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Preface

Super resolution is one of the most fascinating and applicable fields in optical data
processing. The urge to obtain highly resolved images using low-quality imaging
optics and detectors is very appealing.

The field of super resolution may be categorized into two groups: diffractive and
geometrical super resolution. The first deals with overcoming the resolution limits
that are dictated by diffraction laws and related to the numerical aperture of the
imaging lens. The second deals with overcoming the limitation determined by the
geometrical structure of the detector array.

Various techniques have been developed to deal with both types of resolution
improvements. In all approaches, the spatial resolution improvement needs the
object to exhibit some sort of constraint (such as monochromaticity, slow variation
with time, single polarization, etc.), related with an unused dimension of the object.
The improvement is thus made at the price of sacrificing unused degrees of freedom
in the other domains as time, wavelength, polarization, or field of view.

The methods pursuing super resolution utilize masks having diffractive features.
They are classified here according to the nature of their structure:

1. Possessing full/piecewise periodicity
2. Spatially finite repeating random structures/random structure with finite period
3. Random structure with infinite period

The book is thus organized in the following way. Chapter 1 briefly presents the
relevant theoretical background. Chapter 2 discusses several super resolution
methods implementing diffractive masks having a certain degree of periodicity.
In Chapter 3, we explore techniques utilizing diffractive masks having structures
with a finite random period. Finally, in Chapter 4, the mask becomes fully random.

Ramat-Gan, Israel Zeev Zalevsky
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Chapter 1
Theoretical Background

Alex Zlotnik, Zeev Zalevsky, David Mendlovic, Jonathan Solomon,
and Bahram Javidi

1.1 Fourier Optics

1.1.1 Free Space Propagation: Fresnel and Fraunhofer Integrals

Under scalar diffraction theory assumption and assuming that work is relatively

close to optical axis \/ (x — &) + (y — n)* << z, it is possible to write the follow-
ing relationship [1]:

Utey.z0) = S8 [ U'énexp{ [ é>2+(y—n>2]}dédn. (.1

J2z0

This is known as the Fresnel diffraction integral. It can be calculated as a
convolution between the incident field U; and the free space propagation (FSP)
quadratic phase function.

In certain limiting cases, Fresnel diffraction formula can be simplified to yield
Fraunhofer diffraction integral. If the diffraction is observed on a very remote
plane, the quadratic phase factor inside the integral of (1.1) can be omitted,
provided that the following condition is fulfilled:

2
T . 2 D

— + =T = Zzp=—.

Az 0 ( n )max 0 Y
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consists of lens with focal (XZ y)

length f; (&, m) is the object
plane, and (x, y) is the image
plane

Fig. 1.1 Imaging system (ﬁ. n)

The obtained result is then:

exp(jkz T
U(x,y,20) = expUk) o\ {J;L—ZO (+? +y2)]

JAZo

« [ o] i

(x& + yn)} dédn. (1.2)

1.1.2 Imaging System

In this section, a simple imaging system consisting of a single thin lens of a finite
aperture P(u, v) and a focal length f'is briefly analyzed. This system images a planar
object in the (£, 1) plane into a (x, y) image plane, while a monochromatic illumi-
nation is assumed (see Fig. 1.1).

1.1.2.1 Coherent Illumination

The output field Uimage(x, y) is related to input Ugpiec(E, 1) through a superposition
integral:

Unage (,) = / / Usjor (& m)h(x, y: €, m)dEdn, (13)

where A(-;-) is the amplitude at image coordinates (x, y) in response to a point —
source object at (&, 1), and is given by [1]:

h(x,y;é,n);zl eXp{iq( n_f) (x2+y2)}

A2

A°z120
><//P(u,v)exp{—i%[(x—Mﬁ)u—&—(y—Mn)v]}dudv, (1.4)
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where M is the magnification, M = —z,/z;; z1, 2, and f obey the relation:
1 1 1
—4—=-. (1.5)
21z f

After several simple coordinate transformations, one can obtain a convolution
relationship:

Uimage(-xay) :H(X,y) ®Ug(an)7 (16)

where U, is the geometrical optics prediction of the image; ﬁ(x, ) is the point-spread
function with a quadratic phase factor omitted.

1.1.2.2 Incoherent Illumination

Imaging systems using spatially incoherent illumination are linear in intensity [1]
and obey the intensity convolution integral:

Iimage(an) =K- |h(x7y)|2 ®Ig(x7y)7 (1.7)

where « is a constant; fimaee(X, y) and I,(x, y) are intensities of Ujmage(, ¥) and
U,(x, y), respectively.

1.2 Diffraction Resolution Limitation

Let us assume that we have an optical system that relies on a lens with a focal length
f and aperture D. If such a system stares on a scene located at a distance of R from
the sensor (R>>f), the viewed resolution in the image plane is limited by
diffraction:

i (mr)iF ) [

r/iF#

and therefore equals to 1.224F 4, where r is the radial coordinate in the focal plane
r = /X% 42, Ais the wavelength, and F is the F-number of the imaging system
Fy =f/D.

By translating the resolution bound to the object plane, the smallest detail
possibly viewed is of the size:

h(r) o (1.8)

J
(6r)gir = 1225 R. (1.9)
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1.3 Geometrical Resolution Limitation

However, modern optical system are digital and contain some form of an
electronic sensor. The sensor has nonzero pixels, having a size of Ad. The pixel
size provides the “geometrical resolution” bound. This limitation expressed in the
object plane yields:

(Ox), = %R. (1.10)

In most cases, Ad>1.22(/f /D), and the geometrical resolution is the bottleneck,
in the optical system.

1.3.1 The Effects of Sampling by CCD (Pixel Shape and Aliasing)

Let us assume that an image is received on the CCD plane. The CCD samples the
image with finite pixels having a defined pitch. Let us denote the distance between
each pixel as Ax and the width of each pixel as Ad. Sampling the image creates
replicas of the continuous image spectrum in the frequency domain. These replicas
are spaced at a constant offset in the spectrum, which is proportional to the
resolution of the CCD, Av = 1/Ax.

Therefore, sampling the physical image by the CCD is equivalent to [2]:

(a) Convolving it with a rect function (a rectangular window) with a width equal to the
size of a single CCD pixel. The latter simulates the effect of the nonzero pixel size.
(b) Multiplying the input by a comb function ), d(x — mAx) .

In the frequency plane, this is equivalent to:

(a) Multiplying the original’s input spectrum by a sinc function (sinc(x) =
(sin(mx)/mx)) with a width of 2/Ad
(b) Convolving the result with a train of Dirac functions (due to the pixel spacing)

22, 0(v — (n/Ax))

If the distance between the replicas is not sufficient, the replicas overlap. As a
result, the image is corrupted. Figure 1.2a presents an input spectrum, and the
aliased corrupted spectrum is shown in Fig. 1.2b.

Aliasing occurs when the image’s resolution is more than half of that of the CCD
(Nyquist sampling rate). Image resolution measured on the CCD plane is denoted as
AVimage. In mathematical terms, aliasing occurs when 2Aviy,g. >Av. Diffraction effects
have been neglected as it is assumed that geometrical resolution bound is dominant.
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Fig. 1.2 (a) Output image a Original
spectrum before being input
sampled by CCD. (b) Output
image spectrum after being
sampled by CCD. The image
was taken from: J. Solomon,
Z. Zalevsky and

D. Mendlovic, “Geometrical
Super Resolution by Code
Division Multiplexing,”
Appl. Opt. 44, 32-40 (2005)

Spectrum

b Aliasing

Spectum
Replicas

1.4 Super Resolution Explained by Degrees
of Freedom Number

The possibility for super resolution is often explained by the notion of degrees of
freedom (DoF) invariance of a given optical system. Other term describing the
same is the information capacity of the optical system. That is the number of
degrees of freedom (DoF) number the system could pass through is constant and
equal to information capacity [3]:

N =(1+2LB,)(1 4 2L,B,)(1 + 2L.B.)
x (1 + 2LtBr)log(1 4+ SNR), (1.11)

where L, L, is the field of view, L. is the depth of field, B, B, B. is the spatial
bandwidth in x, y, z dimensions; Lt is the observation interval and Br is the
temporal bandwidth. SNR is the signal-to-noise ratio. A priori knowledge of object
properties makes possible to code the object in order to pass it through optical
system inferior in certain DoF and superior in others. An example for such coding is
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FRT MFT FSP

Fig. 1.3 Wigner properties

object space bandwidth (SW) shaping in Wigner space [4]. Space bandwidth
product is the lateral DoF from (1.11). For 1-D signal, it is defined as

SW = AxAv, (1.12)

Ax is the area where the signal u(x) is essentially nonzero and Av is the size of the
frequency where the spectrum of u(x) is essentially nonzero.

1.4.1 Wigner Transform

A Wigner chart is a wave-optical generalization of the Delano diagram (ray optics
YY diagram). Its definition is:

W(x,v) = /00 u<x +§) u (x —);l> exp(—2mivx’)dx/, (1.13)

o0

where u(x) is the complex amplitude and v is the spatial frequency. Apparently, a
Wigner chart presents the spatial and spectral information simultaneously. It doubles
the number of dimensions; thus, a one-dimensional (1-D) object has a two-dimen-
sional (2-D) Wigner chart. Figure 1.3 shows the effects of elementary optical
modules, such as magnification (MAG), a lens (LENS), FSP, and Fourier transform
(FT) or fractional Fourier transform (FRT), on the Wigner chart of a signal [5-8].
The definition of SW was generalized by the use of the ensemble average of the
Wigner chart that is due to a set of signals that may enter the optical system. There
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instead of being a pure number, SW(x,v) was a binary function of two variables
(referring to as 1-D object) with the following definition:

1 f(W(x, V)>>Wlhresh7

SW (x,v) = {O otherwise. (1.14)

The area of lim SW(x, v) indicates in fact the number of DoF; e.g., if dx denotes

X—00

the spatial resolution and Jv is the spectral resolution, then ox = 1/Av, v = 1/Ax,
and the number of degrees of freedom (DoF) N is:

N=-—=—=Ax-Av. 1.15
AS oy ! (1)
For a given optical system whose SW acceptance capabilities are denoted by
SWY,(x,v) and a given input signal whose existing SW is denoted by SWI, (x, v), a
necessary condition for transmitting the whole signal without information loss is:

SWI, (x,v) C SWY,(x,v). (1.16)
If the transmission is lossless, then the following condition takes place:

Nsignal < Nsystem . (1 . 17)

1.5 Inverse Problem Statement of Super Resolution

Achieving either geometrical or diffraction super resolution can be formulated as
solving inverse problem.

Inverse problem is stated in the following manner: An image is known on a
certain grid. One wishes to restore image values on a finer grid. The image is related
to high-resolution unknown object through blurring, sampling, and addition of
noise. The blurring is assumed to be a spatially invariant operator. It is possible
to write the following discrete relationship (on a fine grid):

=
|
T

ylm,n] = glm, n] * u[m,n] = glk + m,l + nlulk, 1], (1.18)
-

T
[=)
(=}

where g[...] is the blurring matrix, u[...] is the high-resolution object to be
restored.

It is convenient to represent 2-D images as column-wise concatenated vectors
and the blurring operator as a matrix. The original and blurred images are therefore
assumed to be related by a compact set of linear equations:

||D>

g
I
S

(1.19)
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In order to be defined as well-posed and to have a unique solution, it must
uphold the following three conditions: existence, stability, and uniqueness [9].
If some of the conditions do not hold, then the problem is ill-posed, and there may
not be a solution, or it may not be unique. Furthermore, since this solution does
not uphold all three conditions mentioned above, the additive noise prevent us
from converging to real solution. Likewise, since there are more unknowns than
equations, the solution is not unique. Finally, a small change in one of the
variables would affect the solution of the problem so that the stability of the
solution would be very low.

One possible direction for the above-mentioned problems is to use the
pseudoinverse matrix that is obtained by a reduction of the least square error.
Techniques dealing with least square error reduction [10] involve recursive least
square error (RLS) [11] and recursive total least square error (RTLS) [12]. A more
sophisticated method to reduce least square errors recursively uses regulari-
zation [13]. This method which succeeds to overcome noise contains Tikhonov’s
regularization component. This component is designed such that for problems
without noise it will be possible to reduce it so that the real solution will be
approached, while for images with noise this positive addition will yet yield an
optimal solution [14].

There is a set of other regularization methods that uses prior knowledge of the
system regarding the statistical properties of the blurring problem. This set of
methods is called stochastic reconstruction methods. In this set of methods,
reconstruction of a super resolution image is a statistical re-evaluation problem,
where all quantities are modeled by their probability functions. One way to
reconstruct is by applying the maximum a posteriori (MAP) where the super
resolved image may be obtained by looking for the maximum of the conditional
probability distribution whose estimation is done by the Markov random field
(MRF) in different ways, enabling the addition of a priori constraints into the
solution [15, 16]. Another solution known as maximum likelihood (ML) is
actually a particular case of MAP, where the required image is obtained by the
ML estimator which does not need any a priori knowledge [17].

A different approach named projection onto convex sets (POCS) assumes a
number of prior demands of the required solution. For each such demand, an
operator is defined that projects a dot in the field of the super resolution image
onto a field fulfilling the constraint. Such an iterative process of operator activa-
tion causes the solution to converge fulfilling all the constraints and even may
avoid guessing the first solution either by using the time domain [18] or by using
the frequency domain [19]. Following that another interesting direction for
solving the blurring problem by iteration is via using the iterated back-projection
(IBP) method [20].
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Chapter 2

Super Resolution Methods Implementing
Diffractive Masks Having a Certain
Degree of Periodicity

Alex Zlotnik, Zeev Zalevsky, Vicente Mico, Javier Garcia,
and Bahram Javidi

2.1 Single Snap-Shot Double Field Optical Zoom

2.1.1 Introduction

This section presents an approach that provides super resolved imaging at the center
of the field of view and yet allows to see the remaining of the original field of view
with original resolution. This operation resembles optical zooming while the
zoomed and the nonzoomed images are obtained simultaneously. This is obtained
by taking a single snap-shot and using a single imaging lens. The technique utilizes
a special static/still coding element and a postprocessing algorithmic, without any
mechanical movements.

Optical zooming is basically a super resolution technique since its purpose is to
obtain resolution higher than provided by the imaging system (prior to zooming).
The physical restrictions that limit the spatial resolution of an imaging system
are either the size of aperture of the imaging lens or the geometrical parameters of
the detection array such as its pitch and fill factor. Eventually, the hardest
limitation prevails.

The common optical realization of optical zoom includes several lenses and a
mechanical mechanism as in ref. [1]. Other principles do not include mechanical
movements but rather other time adaptive concepts allowing variation of the
overall focal length of the lens. In the literatures [2—13], one may see an example
of several works dealing with zooming lenses. Thus, basically the zooming
operation is actually the increase in focal length of the imaging module providing

Z. Zalevsky (P<)
School of Engineering, Bar-Ilan University, Ramat-Gan, Israel
e-mail: zalevsz@macs.biu.ac.il

Z. Zalevsky (ed.), Super-Resolved Imaging: Geometrical and Diffraction Approaches, 11
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© Springer Science+Business Media, LLC 2011
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smaller foot print of each pixel in the detector, on top of the object. The spatial
resolution improvement in the center of the field of view during the zooming
process is obtained since the foot print of each pixel on the object equals to AxR/F,
where Ax is the pitch of the pixels of the detector, F is the focal length, and R is the
distance from the object.

Thus, the regular optical zooming operation has two major disadvantages.
The first one is that the increase of the focal length, for instance, by a factor of
3, while preserving the F-number will result in increase in the volume of the
imaging module by a factor of 3° = 27. It means more weight and less reliability
(due to the mechanical mechanism). The second disadvantage is that the zoomed
and the nonzoomed images are not obtained simultaneously, and the resolution
improvement in the central part of the field of view comes on the expense of
decreasing the field of view. Note that the resolution improvement in the center of
the field of view is not due to the increase of the focal length F but is rather due to
the generation of smaller effective pixels in that spatial region. That is reduction
of Ax by the same factor in which the F-number has been increased.

In the approach reviewed in this section, the zoomed and nonzoomed images
are obtained simultaneously in a single snap-shot. It should be noted that the
resolution improvement obtained in the central part of the field of view [14]
follows the idea presented in ref. [15]. However, the idea in ref. [15] shows
how to obtain the resolution improvement, but here it is shown how to obtain
this improvement without sacrificing the field of view, i.e., also obtaining the
nonzoomed resolution in the remaining part of the field of view. Note that having
an improved resolution in the central part of the field of view and simultaneously
preserving the original nonzoomed resolution in the outer parts yield more
spatially resolved points than the number of pixels in the detector array.
Such an outcome is made possible by a trade-off payment in the dynamic range
of the captured image.

The operation principle is based on the followings: the image resolution
obtained using a common single lens is higher in the center of the field of view
and degrades toward the periphery. Usage of this property is essential for the
proposed operation principle. This is because the surface where a perfect image is
obtained is rather a sphere than a plane. The optical limit for the resolution
obtained in the center is proportional to AF/D (where A is the wavelength, F is
the focal length, and D is the aperture of the lens). For many detectors, this
resolution limit is much less restrictive and harder to reach in comparison to the
restriction due to the sampling pitch of the detector. Consequently, in such cases,
the detector is forced to get a poor image quality. In our technique, the optics
provides, in the center of the field of view, an optical resolution that is limited by
the diffraction. In the remaining part of the field of view, the optics provides a
resolution limit which equals to the detector’s sampling pitch. In this manner by
exploiting the aliasing effect due to sampling of the detector and by performing
some digital postprocessing result in a super resolved image. The image has a
diffraction limited resolution at the center region of the field of view and yet
preserves the original geometrical resolution at its outer parts.
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Lr

Lc
—>

38x 8% 38x

Fig.2.1 One-dimensional object. The minimal details in the central part are three times finer, than
those in the periphery. The image was taken from: Z. Zalevsky and A. Zlotnik, “Single Snap-Shot
Double Field Optical Zoom,” Opt. Exp. 13, 9858-9868 (2005)

2.1.2 Theory

2.1.2.1 Preliminary

For the sake of simplicity, the analysis of the method is one-dimensional (1-D).
A two-dimensional deduction is straight forward. Let us take a 1-D positive object
s(x) (see Fig. 2.1). Its spatial support is denoted by L. This object has minimal
resolution detail denoted by d, in its central Lc part. In the following mathemati-
cal analysis, Lc is taken to be 1/6 of Lt, although other ratio can be chosen.
The finest optically resolved detail in the remaining periphery is three times
larger, 30,, than that equals to the geometrical limitation of the pitch of the
sampling detection array (see Fig. 2.1). This limitation is determined by the optics
and exists prior to the digital sampling performed by the detection array.

One wishes to image this object using an ideal aberration-free optical system
with a magnification factor of 1. The image is captured using a camera with a pixel
pitch of 30,, while pixels are assumed to represent an ideal spatial Dirac impulse
train. The proposed method enables resolving details with a high resolution in the
central part, in spite of the larger pitch, without decrease in the field of view.
Therefore, an optical zooming of X3 in the central 1/6 field of view is obtained,
while having simultaneously the x 1 resolution (without zooming) in the other 5/6
field of view. All of this is obtained from a single optically coded and then digitally
processed image. The penalty is the introduction of some noise in the obtained
image. The optical coding involves insertion of a certain spatial coding grating in
the entrance pupil plane of the imaging lens. The super resolving approach that
increases the resolution in the central 1/6 part of the field of view is based upon the
approach presented in ref. [15]. The investigated case here deals with coherent
illumination, although extension into noncoherent case is straight forward as
described in ref. [15].

Note that the geometrical super resolution method described in ref. [15] is
equivalent to the realization of an optical zoom in the central part of the field of
view since the footprint seen, in the super resolved image, over the observed object
equals to: (R/F) (Ax/x) where R is the distance between the camera and the object,
F is the focal length, Ax is the pitch of the pixels of the camera (Ax = 30), and x is
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the geometrical super resolution factor (the case of k = 3 is assumed hereafter).
In case that optical zoom of factor k is performed, the focal length is changed to
kF and thus the footprint equals to (R/(kF)(Ax). It is easily seen that both
expressions are identical. Thus, in ref. [15], it is shown that how without changing
the focal length it is possible to perform optical zooming, which is actually done by
performing geometrical super resolution. However, the condition for the operation
of the approach presented in ref. [15] is that the input object occupies no more than
1/x of the field of view.

2.1.2.2 Mathematical General Description

S(v) denotes the Fourier transform of the object s(x), with the spatial frequency
coordinate, v, belonging to the spectral range of S[—V;ax, Vimax], Where vy, is the
maximal spatial frequency of the object. It is inversely related to the spatial
resolution ¢,. The Fourier content is virtually divided into three equal regions:

(a) Left third S_;(v) with v € [—Vpax, —1/3Vimax]
(b) Central third So(v) with v € [—1/3Vaxs 1/3Vmax]
(c) Right third S;(v) with v € [1/3Viaxs Vimaxl-

These spectral components are multiplied by the spatial grating so that a certain
degree of orthogonality between the components is created. The coding grating
mask also consists of three regions:

(a) Left third G_;(v) with v € [—va, —1/3Vmax]
(b) Central third Go(v) with v € [—1/3Vax, 1/3Vmax]
(c) Right third G{(v) with v € [1/3Vax, Vimax]

The chosen mask fulfills the orthogonality condition of:
Gi(v)Gi(v) = [l k], Q.1

where 0[/, k] is the Kronicker delta function. When the image is under-sampled by
the detector, an aliasing effect takes place. In fact, the aliasing is essentially a
folding of S_;(v) and S(v) into a central third of the spectrum. Therefore, the
spectrum of the captured image equals to:

1
I(v) = Z Se(v) X G(v) ve {_—1 L] (2.2)

b
=1 3Vmax  3Vmax

To improve the clarity of this presentation, let us now briefly recall the derivation
made in ref. [15]. Let us examine a simple situation, in which the goal is improving
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the resolution by a factor of 3. Assuming an ideal CCD in which the pixels
are indefinitely small and are placed at a distance of Ax from one another
(according to Fig. 2.1, Ax = 34,). Next it is shown that when one pixel is willing
to sacrifice 1/3 of the field of view, the other can obtain an improvement in the
resolution of that central 1/3 of the field of view by a factor of 3 (without increasing
the focal length by a factor of 3). In the case of ideal sampling, the sampling function
of the CCD [denoted as CCD(x)] is modeled as an infinite train of impulses:

CCD(x) = i o(x — nAx). (2.3)

n=—00

As previously mentioned, the coding mask [denoted as CDMA (v)] is divided
into three subfunctions as follows:

1
CDMA(v) = 3 Gu(v — nAv). (2.4)

n=-—1

The CDMA mask is multiplied by the Fourier plane with the spectrum of
the input signal s(x) [denoted as S(v)]. This is obtained by positioning the
coding mask in the coherent transfer function (CTF) plane of the imaging lens.
In the coherent case, in the CTF plane, a Fourier of the imaged object is obtained.
In the noncoherent case, this position is also related to the spectrum of the
imaged object.

This spatial distribution is multiplied by CCD(x), the sampling grid of the
CCD, which means that it is convolved with the Fourier of the CCD grid in
the spectral domain:

n=—00

D(v) = |F(V) Zl: Gu(v— nAv)] * [

n=-—1

i 5<v—ni—z>], 2.5)

where * denotes the convolution operation. Since Av = 27/Ax, the last expression
can be simplified to:

D(v) = [S(V) > Gu(v — nAv)

* [i 5(v—nAv)1,

=—00

= i S(v — nAv)

> Gulv—(n+ k)Av)] : (2.6)

k=—1
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Fig. 2.2 The spatial grating positioned in CTF plane. Its three parts G_1(v), Go(v), and G(v) are
plotted in a folded manner. The period of G(v) is three times smaller than that of G_;(v) and G(v).
The image was taken from: Z. Zalevsky and A. Zlotnik, “Single Snap-Shot Double Field Optical
Zoom,” Opt. Exp. 13, 9858-9868 (2005)

Image retrieval is simply achieved by Fourier transforming the grabbed output
and multiplying it with the original coding mask and then downsampling:

R(v) = D(v)CDMA(v) = { i S(v — nAv)

Z G,(v—(n+ k)Av)] }

n=—00 k=—1
1
Z Gn(v —mAv) |,
m=—1
= Z S(v — nAv)G, (v — nAv) = S(v)CDMA (v) — S(v), @.7)
= ownsampling

Modulating the input’s spectrum by multiplying with the coding mask correctly
prevents data corruption due to aliasing. This insight was proven in ref. [15] and
demonstrated experimentally. It indeed demonstrates super resolution, i.e., an effect
equivalent to seeing an image with a zoom of x3 without changing the focal length.
But this improvement is obtained only in the central 1/3 of the field of view while
the input object occupies only 1/3 of the field of view. Next it is farther proved that
it is possible to obtain the super resolved image in the central field of view without
the need of paying with the outer 2/3 of the field.

The grating of (2.1) is illustrated in Fig. 2.2 in a folded manner: G_(v) and G(v)
are folded into a central third part of the spectrum of Gy(v). As a result, I(v)
can be described as composed of so-called “macropixels.” Each macropixel
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Fig. 2.3 Orthogonality and macro pixels: (a) This is an example for orthogonal coding: in each
spectral region there is a macropixel with a certain nonzero pixel. (b) After aliasing, all nonzero
pixels are folded in a nonoverlapping way, providing orthogonality. (¢) Due to the real realization
of the grating, the true structure is a little bit different from the theory presented in parts (a) and (b)
of the figure. The image was taken from: Z. Zalevsky and A. Zlotnik, “Single Snap-Shot Double
Field Optical Zoom,” Opt. Exp. 13, 9858-9868 (2005)

consists of the S_(v), S;(v), and Sy(v) contributions (see Fig. 2.3a—c). The structure
presented in Fig. 2.3a and b is the theoretical goal since it provides full and simple
orthogonality condition. In reality, however, such binary-like coding grating will
have finite number of harmonics. Therefore, the spectral structure of the
“macropixels” will be different. However, if properly designed, it will yet remain
orthogonal (when proper locations are observed) and will resemble the structure
showed in Fig. 2.3c.

Next, the reconstruction algorithm for the original image is formulated.
The orthogonal coding grating mask is a Dammann-like phase structure whose
spatial effect is similar to replications. The mask is designed such that a different
replication is generated for the high- [G_;(v) and G(v)] and low-frequencies
content [Go(v)] as shown in Fig. 2.4. The replications for high frequencies are
1/6 field of view apart and for low frequencies are 1/2 field of view apart.
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Fig. 2.4 Spatial effect of the coding mask. (a). Replication of high spectral content. (b) Replication
of the low spectral content. The image was taken from: Z. Zalevsky and A. Zlotnik, “Single
Snap-Shot Double Field Optical Zoom,” Opt. Exp. 13, 9858-9868 (2005)

1. First, the high-frequency content S_(v) and S;(v) is reconstructed by sampling
I(v): The spatial contents of S_;(v) and S;(v) occupy only a fraction of the field
of view Lt. Therefore, it is possible to keep only each sixth (Lt/Lc) sample
without losing information. Other samples are calculated using interpolation.
Figure 2.5a illustrates the sampling grid. Note that the sampling points of
S_1(v) and S;(v) are orthogonal. On the other hand, there is a certain noise
added to the sampled high-frequency content due to So(v). In order to minimize
this noise effect, each sample value is taken to be as algebraic average in its
neighborhood. Figure 2.5b shows the Fourier transform of the grating
illustrated in Fig. 2.5a. As one may note, it resembles seven delta functions:
the two pairs of delta functions appearing on both sides of the central
delta resemble spatial derivative since each one of those two pairs contain
one positive and one negative delta while small spatial shift is introduced
between them. Those two pairs that make the derivative correspond to
the two replications (the —1 and the 1 orders) related to the high frequencies
(Fig. 2.4a). The outer two deltas correspond to the two replications (again
the —1 and 1 orders) of the low frequencies (Fig. 2.4b).

2. Next, the reconstructed S_(v) and S,(v) are subtracted from I(v). Ideally, this
leaves only the low-frequency content. It is expressed in the spatial domain as:

) = (o0 o)) ree (). 28)

T
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Fig. 2.5 (a) Sampling high-frequency content: S_;(v) samples are marked with blue circles and
S1(v) samples are marked with red diamonds. (b) The Fourier transform of the grating. The image
was taken from: Z. Zalevsky and A. Zlotnik, “Single Snap-Shot Double Field Optical Zoom,” Opt.
Exp. 13, 9858-9868 (2005)
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where s, and gy are the inverse Fourier transforms of Sy(v) and Go(v),
respectively, and “*” stands for convolution operation. rect(x/Lr) is defined as:

rect <x> = { L x| < LT./Z’ (2.9)
Ly

0 otherwise.

The go(x) is in fact consists of three Dirac impulse functions:

Zanxé( —”L—T> (2.10)

n=-—1

3. Now each iy (x) and so(x) are divided into sets of six equally supported functions,
denoted correspondingly as r;(x) j = 1, ... ,6 and fi(x) j = 1, ... ,6. These two
sets of functions are related through six linear equations. Those equations can be
well understood after observing Fig. 2.4b:

ri(x) = aofi (x) + a_1fs(x),
r2(x) = aofa(x) + a_1fs(x),
r3(x) = aqf3 (x) + a_1fs(x),
ra(x) = aofa(x) + aifi(x),
rs(x) = aofs(x) + arifa(x),
re(x) = aofs(x) + aifz(x) (2.11)
or alternately through a 6 x 6 matrix:
ri(x ag 0 0 a; O 0 X
ra(x 0 a O 0 a4 O X
r3(x 0 0 a O 0 a_ X 2.12)

=

0 ay 0 0 70 0
0 0 aj 0 0 aop

=
= =

|
o
AA/Q/—\A/—\

) )
) )
)| _ )
) aq 0 0 ap 0 0 )
) )
6(x) )

~
IS
AAQAAA

The equation 2.12 can be solved to obtain the set of the fj(x), which is the low
frequency content of the original image information. Note that f;(x) are the original
six spatial regions of s(x) while ri(x) are the spatial distributions obtained in
each of the six regions after generation of the replications on the CCD plane.
Equations 2.11-2.12 correspond to the low-frequency shift shown in Fig. 2.4b.
a; are the coefficients with which each one of the three replication in Fig. 2.4b is
multiplied.
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Fig. 2.6 (a) The experimental setup. (b) The coding Dammann mask that was attached to the
imaging lens. The image was taken from: Z. Zalevsky and A. Zlotnik, “Single Snap-Shot Double
Field Optical Zoom,” Opt. Exp. 13, 9858-9868 (2005)

2.1.3 Simulation Investigation

In the experiment, it is assumed that the test object is imaged with an optical
imaging system having a resolution limit in the periphery equals to the detector’s
array pitch. In the central part of the field of view, the optical resolution is three
times larger than in the periphery. In the simulations, a Lena image is used as an
object. A high-frequency 2-D barcode is planted in the center of this image.
This barcode is under-sampled if its every third pixel is taken into consideration.
Therefore, the central high-frequency content of the image, that is the barcode
pattern, is under-sampled or low-pass filtered by a detector. To adapt the notations
of Fig. 2.1, the resolution of Lena image is 39, while the resolution of the barcode
pattern is J,. A grating element (the coding mask) was attached to the imaging
lens (the CTF plane or the entrance pupil of the lens) as depicted in the experi-
mental setup of Fig. 2.6a. The grating contains a different Dammann grating
(see ref. [16]) in the central and outer parts of the mask as described in Fig. 2.4.
The mask itself is illustrated in Fig. 2.6b.

The three regions of the grating depicted in Fig. 2.3c are merely a shifted
cosine functions. In this arrangement, the high-frequency content is sampled at
1/6 of the basic sampling rate, since the spatial extent of S_;(v) and S;(v) is
Lc = Lt/6. The Fourier transform of the grating is merely several impulse
functions that in the spatial domain generate the six-shifted replicas of the object,
as shown in Fig. 2.5b. After recovering the high-frequency content, one can solve
a set of six linear equations [see (2.11) or (2.12)] in order to reconstruct the
low-frequency content So(v). Figure 2.7a presents the nonzoomed image in which
the full field of view is seen. In this case, though, the central high-resolution
barcode structure cannot be resolved (see Fig. 2.7a). In Fig. 2.7b, a regular optical
zooming to the image of Fig. 2.7a is performed. Here, the field of view is reduced
by a factor of 3 but the spatial resolution is improved by the same factor and now
the central barcode structure can be resolved.
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Fig. 2.7 (a) The nonzoomed test object used in simulations: Lena image with high-frequency
two-dimensional barcode pattern at its center. (b) The x3 zoomed test target where one may see
the high-frequency barcode pattern. The image was taken from: Z. Zalevsky and A. Zlotnik,
“Single Snap-Shot Double Field Optical Zoom,” Opt. Exp. 13, 9858-9868 (2005)

Fig. 2.8 The obtained result after the digital decoding. One may see the full field of view and the
zoomed highly resolved barcode pattern in the center of the field of view. The image was taken
from: Z. Zalevsky and A. Zlotnik, “Single Snap-Shot Double Field Optical Zoom,” Opt. Exp. 13,
9858-9868 (2005)
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In the final stage, the captured image is postprocessed. The resulted image is
shown in Fig. 2.8. This image proves the concept presented here: The high-frequency
central field of view (x3 optical zoom) is retrieved along with the nonzoomed
remaining field of view. Obviously, the 6 x 6 spatial blocks seen on the
reconstructed image in Fig. 2.8 can be removed by proper image processing and
enhancement that was not applied on the obtained image.

2.2 Full Field of View Super Resolution Imaging Based
on Two cStatic Gratings and White Light Illumination

2.2.1 Introduction

The usage of two static gratings for obtaining super resolved imaging dates back
to the work by Bachl and Lukosz in 1967 [17, 18]. Later on, it was expanded and
tested by other researchers [19—21].The Lukosz method is to place two static gratings
in one out of two possible configurations: one grating before the object and the
second one before the image or one grating between the object and the image and
the second one after the image plane. Then, a super resolved imaging is obtained
while payment in the field of view is assumed. In order to have super resolution, the
two fixed gratings create ghost images which limit the field of view around the region
of interest. Except the reduction in the field of view, the concept is applicable in a
simple way since the two gratings are static. However, the discussed system had a
magnification of one and therefore it had one major problem: one out of the two
gratings is not positioned between the object and the image. This means that for the
case of placing the first grating after the object, a second imaging lens is required in
order to image the second grating (which is positioned after the intermediate image
plane) on the output plane. In order to do that, the second imaging lens must provide a
resolution as high as the resolution that one wish to extract and therefore the super
resolution performed to the first lens seems to be not useful.

In this section, a modification to the super resolution approach with two main
novelties is presented [22]. First, a polychromatic illumination is used instead of
monochromatic one. Since the position of each ghost image is wavelength dependent
(due to the gratings), the various images are averaged. Therefore, no limitation on a
restricted field of view is required any longer. The possibility not to limit intentionally
the field of view is very important. Practically it eliminates the need in the intermedi-
ate imagery. The payment will be done in the dynamic range required from the
sensor. The second improvement is that the imaging system constructed has large
magnification ratio and therefore the second grating is magnified as well to match the
first grating. Due to the difference in magnification in comparison to the magnifica-
tion of first one, the spatial period of the second grating is also very large and the
addition of the second imaging lens in order to image it to the output plane does not
require a high-resolution lens. Therefore, the gratings perform super resolution only
on the first imaging lens and the setup therefore is much more effective.
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Fig. 2.9 Sketch of the proposed experimental setup

2.2.2 Mathematical Analysis

In the following, it is proved that indeed when a polychromatic illumination is
used instead of a monochromatic one, the approach of two fixed gratings can
provide super resolved imaging without paying with the field of view. The trade
off in this case will be the dynamic range since the undesired replications will be
averaged into a uniform intensity distribution (Because the various replications do
not fall on the same spatial position, their summation is equivalent to spatial
averaging of the product between the image of the object and the spectral
distribution of the illumination. Such an averaging approximately yields a
constant in case of large number of spatially dispersed replications). Figure 2.9
depicts the sketch of the proposed optical setup. The setup includes two cascaded
imaging modules. The first has a magnification of M; = u;/v, and the second of
M, = u,/v,. The fixed gratings G| and G, are positioned at distances of zy and z;
from the input and the intermediate image planes, respectively. The focal lengths
of the two imaging lenses are F'| and F,, respectively. The values of vy, u;, Fy as
well as vy, u,, F» fulfill the imaging relation. Each one of the two imaging lenses
has finite aperture determining its limits of spatial resolution.

In the two fixed gratings approach, the first grating is used as an encoding
function (that encodes the spatial information of the input object and allows its
transmission through the band limited aperture of the imaging lens) while
the second is used as a decoder (that reconstructs the encoded information and
produces the super resolved image). Both must have identical spatial distributions
except for a scaling factor that depends on the ratio between the magnifications of
the two parts of the optical configuration of Fig. 2.9. The ratio between M, and M, is
large such that the spatial period of the required grating G, will be very large and
will not be deformed by the cut-off frequency of the imaging lens of the second part
of the configuration of Fig. 2.9.
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In order to prove the effect of polychromatic illumination, due to reasons of
simplicity for the mathematical validation, it is assumed that M; = M, = 1, i.e.,
vi =u; = 2F, and v, = u, = 2F, as well as F| = F, = F. The mathematical
derivation is provided in ref. [21]. In that paper, an optical setup with assumptions
similar to presented here is mathematically analyzed. The analysis is based upon
basic Fourier optics relations while the outline for the formulation is as follows:
The input field distribution is a free space propagated at a distance of z, and
multiplied by the first grating G;. Then it is virtually propagated backwards by a
free space distance of —z, in order to reflect the effect of this grating over the input
plane. This result is Fourier transformed and multiplied by a rectangular function
rect(Au//2F) where Ap represents the lateral extent of the aperture of the imaging
lens. The result is inverse Fourier transformed to reach the image plane.
The distribution there is free space propagated a distance of —z; and multiplied
by the grating G, and then propagated backwards by a free space distance of z; in
order to reflect the grating on the image plane which is imaged with a magnification
of 1 (in the simplified assumption) to the output plane. The field distribution
obtained in the image or in the output plane, after all those mathematical
procedures, is given as follows:

uo(x,z = 4F) Z ZA,,ZB / iio(v)rect (A T 2‘;) X exp [Zni (x(mvo + nvy)

ZoAm?vy? o n*v,?

2 2

+ v(zoAmvg — zy Anvy) + - zlﬂvmnvow)} x exp[2mixv]dv,

(2.13)

where vy and v; are the fundamental frequencies of the gratings G; and G,
respectively. A,, and B, are the Fourier series coefficients of those gratings,
respectively. #y(v) is the Fourier transform of the high-resolution input field
distribution. n and m are integers and A is the optical wavelength. v is the spectral
coordinate. In this simplified configuration, the axial location of z = 4F is the
position of the image plane which is basically also the output plane since the effect
of the grating G, that appears after the image plane was already taken into account
(i.e., reflected to the output plane).

The physical meaning of (2.13) is explained as follows: basically, it is an inverse
Fourier transform of the Fourier of the input field distribution iy (v) multiplied by a
synthetic aperture and an additional phase term. Due to the summation over the
index m, the spectrum of the input field iiy(v) is actually multiplied by a synthetic
aperture which is wider than the original aperture that is set by the dimensions of the
imaging lens. The rect expression is synthetically enlarged due to its replications
and following the summation over the index “m”. Therefore, more spatial
frequencies can pass through the output image which contains spatial resolution
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that is equivalent to the one confined within the input field distribution. However,
the expression of (2.13) contains also an undesired phase term of:

R ZoAm>y 21 Anv,2
exp {2ni(x(mvo+nvl) + v(zoAmvy — zyAnvy) + 0 5 0 - 5 : — zidmnvovy | |-
In order to have true super resolution, this term is assumed to be a constant
that does not affect the inverse Fourier transform integral. Choosing zp = —z;
and vo = v; = Au/A2F (two identical gratings) which yields:

. . v 4+ mvgy
o(x,z = 4F) ZZA B,,/ fip(v)rect (—A,u/AZF)
. 20Avo* 2
exp | 2mi | x(v + vo(m + n)) 4+ v(zoA(m + n)vo) + — (m+n)” ) |dv.

(2.14)

Note that the value of zy and z; are measured according to the notations of
Fig. 2.9. This means that choosing zy = —z; means that either G, and G, are in
front of the input and image planes, respectively, or both are after those planes.
For n = —m, super resolution is obtained since then:

up(x,z = 4F) :/ io(v) ZAmB,mrect (Z:/TE‘};>

The expression in (2.15) is exactly the proof of super resolution since the
spectrum of the input field distribution #(v) is multiplied by an extended synthetic
aperture (the term in brackets) allowing transmission of higher spatial frequencies
and therefore reconstruction of the output field ug(x,z = 4F) containing smaller
spatial details.

The meaning of choosing m = —n is equivalent to paying with the field of view
since all the replicas that do not fulfill this condition (crossed terms with n # —
will appear at spatial positions of:

exp[2zmixv]dv.  (2.15)

Xma = Azovo(m + n). (2.16)

The field of view for the input field distribution is smaller than the expression
of (2.16) such that the undesired terms for which m is not equal to —n will not
distort the reconstructed image of the output plane.

All this derivation was done before and described in details in refs. [21, 23, 24].
Next it is shown how the usage of polychromatic illumination can remove the
drawback of this approach that is related to the payment with the field of view.
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Note that the expression (2.15) is for the field distribution. Since the illumination
is polychromatic, the intensity for the final outcome of the mathematical derivation
is computed and then averaged for the various wavelengths. This is due to the fact
that a monochromatic detector averages the readout over the spectral range of the
illumination:

|h(x,z=4F))* = /A AS(A)ZZZ;AmB,,AM*Bnr*' [ N [ _rect ( Xj/”j;;)

m n

v +m'vg )
rect (W) X exp [Zm <x(v+v0(m+n))

+V(zoﬂu(m+n)vo)+zo;h2v02(m+n)2>} X exp [ZM <X(V’+VO(M'+"'))

! 2
—Q—v'(zo)»(m’—f—n')vo)—i—zo 2v0 (m'+n’)2)] didvdy',

(2.17)

where /h/? is the intensity impulse response for the spatially incoherent case. A/ is
the spectral range of the illuminating source (over which the averaging is
performed) and S(/) is the spectral distribution of the source. It is assumed as
well that this distribution is more or less uniform within the spectral range of AA.
To obtain the expression for the impulse response, a point source is assumed in the
input plane, i.e., its Fourier transform is a constant: iéfp(v) = 1. In order to compute
the output distribution in case that any general distribution is positioned in the
input plane, one needs to convolve this impulse response with the intensity of
the input object. Let us denote:

2 2
0Vo _ ZoYo

& = v(zo(m + n)vo) + 2% (m+ n)* — V' (z0(m’ + 1')vo) (m +n')?.

Inspecting the obtained result within the spatial spectral range of the synthetic
super resolved aperture leads to:

5 s [ v+ mv
|h(X7Z:4F)| :§;;;AmBnAm’ Bn’ [m /OcreCt<A,u/)~2F>

/ /
rect (v—f—mvo) x exp[2mix(v + vo(m + n) — v — vo(m' +1'))]

x/ S(2) exp[2miié]didvdy,
A
(2.18)

where /. is the average wavelength of the illuminating spectral band.
Since the spectral bandwidth of the illumination considered to be wide enough
and uniform, it is possible to approximate that:

/ S(2) exp[2miié]di =~ S() / exp[2miAé]ldA = 6(€). (2.19)
A Al
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Fig. 2.10 Picture of the experimental setup at the laboratory. The image was taken from:
J. Garcia, V. Mico, D. Cojoc and Z. Zalevsky, “Full Field of View Superresolution Imaging
based on Two Static Gratings and White Light Illumination,” Appl. Opt. 47, 3080-3087 (2008)

Since (2.19) contains a delta function, it is valid only for £ = 0 which is obtained
only for the case when the integer indexes fulfill: m = —n and m = —n. This is true
since only then the phase of the exponent in (2.19) is zero and therefore all the
components are added constructively during the integration process over the full
range of values of 4. Therefore, the result of (2.15), having the physical meaning of
super resolved imaging, may be obtained without limiting the field of view:

Ih(x, z = 4F) ' / ZA ered(l%zﬁ)

The proposed super resolving technique that allows to improve the resolution
with two fixed gratings without paying in the field of view still requires the
payment in the dynamic range or the signal-to-noise ratio (SNR) in the detector.
Nevertheless, availability of detectors with high dynamic range of 12 and more
bits turns this drawback into less significant.

2

exp(2mixv)dv (2.20)

2.2.3 Experimental Results

To demonstrate the presented approach, the optical setup shown in Fig. 2.10 is
constructed at the laboratory. The experimental setup includes two imaging modules.
The magnification of the first imaging system is selected to be 7.5x. The second
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imaging module magnifies the first image plane into output plane and its magnification
can be selected according to our benefit. A long working distance, infinity corrected
Mitutoyo microscope lens with 0.14 NA is used as a first imaging system. A photo-
graphic objective with variable focus (or magnification) is used as a second imaging
system. Notice that, in a similar way as in commercial microscopes, the second
imaging system acts as a tube lens. This lens should not have the restriction of having
a fixed magnification.

White light illumination is provided by a halogen lamp source and a 3CCD color
video camera (SONY Model DXC-950P) captures the final images. The halogen
lamp has relatively uniform spectrum in the visible range (it resembles black body
radiation) and therefore the assumption for the spectral uniformity as done in
the mathematical analysis is valid. The spectrum of the halogen lamp is presented
in Fig. 2.11a. These data are taken from the literature. In Fig. 2.11b, the sensitivity
response of the three channels (R, G, and B) of the CCD is presented. Those charts
are important since what is relevant to the operation principle is not the illumin-
ating spectrum alone but rather its product with the sensitivity of the detector.
Figure 2.11c shows the combined result of the camera sensitivity and the spectrum
of the illumination by adding the three channels sensitivities each one multiplied by
the spectrum irradiance. In order to demonstrate the validity of the assumption
for the delta function (2.19), the magnitude of the Fourier transform of the chart
of Fig. 2.11d is computed. The display is in dB units. As shown in Fig. 2.11e,
the magnitude of the Fourier is indeed nearly a delta function with attenuation of
more than ten times the values surrounding the peak of the delta.

Two precision Ronchi ruling slides are used as diffraction gratings in the
experiment. The period of both G; and G, gratings is p; = 600 lp/mm and
p1 = 80 Ip/mm, respectively (due to the ratio of magnifications between the two
parts of our setup, the second grating could be a low-frequency grating).
The period of the first grating is selected depending on the NA of the microscope
lens that was used as first imaging system. To achieve a resolution gain factor
close to 2, the diffraction angle for a central wavelength of the broadband spectral
light used as illumination must be nearly twice the angle defined by the NA of
the objective. This means that a period of around 500 lp/mm is suitable for such a
resolution improvement. Once the first grating is selected, one can do both: fixing
the magnification of the microscope objective and properly selecting the
G, grating, or the opposite. In our case, a ratio of 7.5 was defined by the periods
of both diffraction gratings and this is the magnification that is aimed for the
microscope lens.

Since the second imaging setup had a magnification such that the low NA of the
imaging lenses did not reduce resolution any more, a true super resolved image was
obtained. The experiment was performed for 1-D super resolution and therefore the
super resolving factor that was obtained may easily be extracted just by comparing
the resulted resolution on both principal axes. Our purpose was to demonstrate the
super resolution as well as to show that the result is obtained without paying with the
field of view when the white light source is used.
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Fig. 2.11 (a) The illumination spectrum of halogen lamp. (b) Sensitivity response of the three
channels (R, G, and B) of the CCD. (c¢) The combined response of the illumination spectrum and
the sensitivity of the CCD (addition of the three channel sensitivities each multiplied by the
spectral irradiance of the lamp) of (c¢). (d) The magnitude of the Fourier transform of the combined
chart of (c¢). The image was taken from: J. Garcia, V. Mic6, D. Cojoc and Z. Zalevsky, “Full Field
of View Superresolution Imaging based on Two Static Gratings and White Light Illumination,”
Appl. Opt. 47, 3080-3087 (2008)

A negative high-resolution USAF test target was used. Figure 2.12a depicts the
full field of view image when the presented approach is used and the magnification
of the second imaging system is near to 1. One can see that as the ghost images are
wavelength sensitive due to the diffraction orders of the gratings, they are averaged
in the background (which means that there is no limitation on the field of view).
On the other hand, the proper combination of diffraction orders between both
gratings compensates their chromatic dispersion and reinforces the white light
super resolved image. In Fig. 2.12b, the classical Bachl and Lukosz monochromatic
experiment is shown by simply placing an interference filter (515 nm main wave-
length) before the input plane. One may see as the ghost images are not averaged,
the final resolution is limited by the distance between the replicated diffraction
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4

Fig. 2.12 Experimental
results: (a) The full field of
view super resolved image
obtained using the presented
approach, and (b) the full
field of view image with
monochromatic illumination
(Bachl and Lukosz approach).
(¢) Cross section of (a) for the
purpose of computing the
reduction in contrast. The
image was taken from: J.
Garcia, V. Mico, D. Cojoc
and Z. Zalevsky, “Full Field
of View Superresolution
Imaging based on Two Static
Gratings and White Light
Illumination,” Appl. Opt. 47,
3080-3087 (2008)
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orders. In this case, a reduction in the field of view is needed to allow super
resolution over the region of interest.

In Fig. 2.12c, the cross section of the region marked by the square in Fig. 2.12a
is shown. The purpose was to compute the reduction in contrast due to the usage
of white light illumination. The cross section was computed in two locations
(as indicated in the upper right corner of Fig. 2.12¢). The red circles indicate the
cross section in the lower part of marked region where no replication was
generated and thus no reduction in contrast. The blue squares present the cross
section in the upper part of the marked region where the various replications
(differently positioned due to the usage of the polychromatic illumination)
reduced the contrast of the bars. The contrast of the red circles is 0.946 while
that of the blue squares is 0.586. This reduction of 39% in contrast is due to the
replications. Our computation of contrast was performed according to:

]max _Imin
c="x-=_"7 2.21
Imax "_Imin7 ( )

where I, is the maximal value of the intensity and /,,;, is its minimal value.

Note that this super resolution approach as other approaches involving gratings
is not energetically efficient. Due to the gratings, only a certain portion of the
input energy arrives to the region of interest in the output plane. However,
one must distinguish between energetic efficiency and contrast. The reduction
in energy may be compensated if the illumination source is strong enough and if
the detector has an automatic gain control function that adapts the dynamic range
of its sampling (A/D conversion) to the average level of the arriving energy.
The contrast reduction cannot be compensated in the hardware since it is related
to the SNR and to the number of sampling bits identifying the signal from the
background noises.

Theoretically speaking, the reduction in contrast can be estimated as follows:
Since the contrast is defined as formulated in (2.21), and due to the replications a D.
C background is added to the intensity (to /,.x as well as to I;,;,), one may obtain
the expression for new contrast as:

]max - Imin
C= 2.22
Imax + Imin +2D.C ’ ( )

where the D.C background is exactly the average of the imaged object:

S S)uo(x = By A,y — Br2)dA

D.C =
¢ A ’

(2.23)

where f3; and f3, are constants. 1 is the imaged object. For instance, in the case that
resembles our experiment where the object has an average gray level, i.e., D.C of 60
and in spatial region where I,,,,, = 180 and I,,;, = 5, the contrast is reduced to 0.58.
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Fig. 2.13 Experimental results showing the high resolution region of interest from Fig. 4a. The
reference image is obtained (a) without the gratings, and (b) with the gratings installed and using
the presented super-resolution approach. White squares mark the resolution limit

In Fig. 2.13, one may see the central part of the resolution target where a
magnification of close to 7x is chosen for the tube lens system. Indeed, one may
see that the resolution of the vertical lines (Group 9, Element 2 corresponding with
575 lp/mm) is much higher than that of the horizontal lines (Group 8, Element 4
corresponding with 362 Ilp/mm). Therefore, the experiment has demonstrated
resolution improvement by a factor of almost 2.

2.3 Super Resolution Using Gray Level Coding

2.3.1 Introduction

The technique presented in the following section provides resolution improvement
for both diffractive and geometric limitations [25]. The required constraint is that
the object has limited number of gray levels and thus the gray level domain can be
used in order to code and decode the additional spatial information. A very
interesting application in which the presented super resolving coding may be
applied is related to geometrical rather than diffractive super resolution.

2.3.2 Theory

Let us assume that p(x, y) is the blurred point spread function whose blurring is
caused due to the combination of the limited aperture of the optics and the area of
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each pixel in the detection array. The blurred image is sampled by the detection
array. “0,” and “0,” are denoted as the sampling pitch in the horizontal and
vertical axes, respectively. Ax and Ay symbolize the horizontal and the vertical
dimensions of the pixels in the detection array, respectively. Thus, the sampled
image equals to:

B Ax/2 A}/2 R o B B
I,(x,y) = C Y plx =y =y )dddy Y > " 5(x — ndy,y — mdy),

—Ax/2 A)/Z
(2.24)

where C(x, y) is the gray level coding mask. The last equation equals to:

no+0,/2  pmdy+0, /2
1,(n6.,mo,) / (¥ )CU, Y (6, — 6, — ¥/ )X dy
nd—0,/2  Jmd,—0,/2 ’

X (3()( — ndy,y — moy),
(2.25)
where 0, and 0, are the horizontal and the vertical dimensions of the blurring
function, p(x, y), respectively. For the simplicity of explanation, it is assumed that

the input object [j, is a binary function, having resolution coinciding with the
detectors sampling grid J, and §,:

Iin (k1 0y, k20y) = {0, 1}. (2.26)

To simplify further, it is assumed that p(x, y) is a rect function:

p(x,y) = rect <0 ¥ > (2.27)

where 0, = No, and 0, = MJ,, N and M are integer numbers.
The gray level coding mask is chosen such that:

n+N/2—1 m+M/2-1
— ki+N/2=n | nkp+M/2—m x —kiox y — kady
C(x,y) = E E 2ki 2k rect( 5o,

ki=n—N/2 ky=m—-M/2
% 0(x — nNGy,y — mMdy). (2.28)

Thus, the output intensity equals to:

n+N/2 I m+M/2-1
L(nde,mdy) = > > In(kidy,kpd,) - 20N et M2Em (5 99)
ki=n—N/2 ky=m—M/2
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o (M

Fig. 2.14 (a) The gray level coding mask. (b) The look up table relating sensed gray level and the
spatial structure of the original object. The image was taken from: Z. Zalevsky, P. Garcia-Martinez
and J. Garcia, “Superresolution Using Gray Level Coding,” Opt. Exp. 14, 5178-5182 (2006)

The meaning of the last equations is that the coding mask is chosen such that it
is actually the binary base. Therefore, after blur is applied, the gray level of the
blurred pixel equals to a different gray level. For instance, let us assume that
the super resolution is a factor of 2 in each dimension, i.e., N =2 and M = 2,
then the coding mask is a periodic structure with super pixels constructed out of
blocks with a gray level of 1, 2, 4, and 8 as shown in Fig. 2.14a. After blurring and
assuming that /;, is a binary object, the resulted gray level will indicate the spatial
structure of /;, prior to blurring. In Fig. 2.14b, a look up table is shown which
connects the spatial structure of /;, in the super pixel prior to blurring and the
resulted gray level, when the structure is multiplied by the gray level coding mask
and integrated over a super pixel (2.29).

2.3.3 Experiment

The experimental setup is depicted in Fig. 2.15. Spatial light modulator (SLM) was
attached to a binary object. The gray coding mask was displayed on the SLM.
The light passing through the object and the mask was imaged on the top of a
camera. For the purpose of demonstration, a detector binning was used to simulate a
low-resolution device. This permits to record also a high-resolution version for
comparison.

A binning of 1 by 5 was performed in the camera. The coding mask displays gray
values of 1,2, 4, 8, and 16. The imaged object seen by the camera without applying
the binning (high resolution) is presented in Fig. 2.16.
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Fig. 2.15 The experimental setup. The image was taken from: Z. Zalevsky, P. Garcia-Martinez
and J. Garcia, “Superresolution Using Gray Level Coding,” Opt. Exp. 14, 5178-5182 (2006)

Fig.2.16 The high-resolution image. The image was taken from: Z. Zalevsky, P. Garcia-Martinez
and J. Garcia, “Superresolution Using Gray Level Coding,” Opt. Exp. 14, 5178-5182 (2006)

Fig. 2.17 (a) The experimentally grabbed image after binning and before decoding. (b) The
experimentally reconstructed image after the decoding of gray levels. The image was taken from:
Z. Zalevsky, P. Garcia-Martinez and J. Garcia, “Superresolution Using Gray Level Coding,” Opt.
Exp. 14, 5178-5182 (2006)
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Figure 2.17a presents the image seen by the camera after applying the binning.
One may see that most of the spatial content of the object is lost due to the binning
of low-pass effect. Figure 2.17b displays the experimentally reconstructed image
after decoding the gray levels. One may see that except for few reconstruction
errors, which are outlined by red box, the original spatial resolution of the object
was reconstructed.

Note that the suggested gray coding that translates the captured gray level into
resolution of the original image is a very simple code. This code is not immune to
errors. This is something which is very nonrecommendable since small error in the
gray level may change completely the decoding pattern (see, for instance,
the variations of the decoded patters vs. the gray level in Fig. 2.14b). However,
it is very simple to use an optical code that is much more immune to gray level
errors. One example can be the Gray codes [26]. In those codes, the change between
two adjacent codes has variation of only 1 bit and thus errors in the gray level will
cause minimal spatial distortion (distortion of only 1 bit).
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Chapter 3

Techniques Utilizing Diffractive Masks
Having Structures with a Period Limited
Randomness

Alex Zlotnik, Zeev Zalevsky, David Mendlovic,
Jonathan Solomon, and Bahram Javidi

3.1 Geometrical Super Resolution Using Code
Division Multiplexing

3.1.1 Introduction

In many high resolving optical systems, resolution is limited not by the optics but
by the sensor’s nonzero pixel size. As a result, overall resolution is decreased.
Here, a novel approach for enhancing resolution beyond the limit set by the
sensor’s pixels is proposed. This method does not involve additional mechanical
elements, such as those used for microscan. In this scheme, neither the sensor nor
additional elements are moved. The geometrical super resolving procedure is
based on code division multiplexing access (CDMA) approach with all of its
inherent benefits, such as relative noise immunity to single tone interference.
A setup is proposed for coherent and incoherent illumination, with slight
modifications for the latter. A theoretical analysis of the setup is presented and
later compared with empirical results.

This scheme is shown to enhance a one-dimensional image resolution with the
use of only a simple mask which doubled image resolution. This method can
easily be expanded to two-dimensional images and resolution enhancement
factors are greater than two.

Z. Zalevsky (P<)
School of Engineering, Bar-Ilan University, Ramat-Gan, Israel
e-mail: zalevsz@macs.biu.ac.il

Z. Zalevsky (ed.), Super-Resolved Imaging: Geometrical and Diffraction Approaches, 39
SpringerBriefs in Physics, DOI 10.1007/978-1-4614-0833-8_3,
© Springer Science+Business Media, LLC 2011



40 A. Zlotnik et al.

(Top) The waveform of the +1 .
data stream; (middle) the .
chipping waveform; (bottom) Data T
the waveform product 1 ' t
PN [][] 101177 1 1]
code | ][ || Uy Uy L L
! ! t
Coded 1 M A 1 M
signal i

3.1.2 Theoretical Analysis

As the sensor samples the image, aliasing is produced and the image is distorted.
This is due to the fact that the spectral bandwidth of the physical image is relatively
large. Data corruption occurs since it is not possible to discriminate the different
parts of the spectrum in overlapping regions. This is similar to a common problem
in communication: the need to transmit several messages on a common resource,
such as an electronic wire. The solution for this is multiplexing. Each message is
coded in such a way that it can be retrieved later. Common multiplexing schemes
involve frequency multiplexing, time division multiplexing, and CDMA. The latter
offers varied advantages, which is further elaborated in Sect. 3.1.2.1

To avoid data loss in regions of the spectrum that will overlap, potentially
overlapping sections of the spectrum are coded with different spectral masks.
These masks will be orthogonal as is required in CDMA. Coding needs to be in
the Fourier plane, as replicas (due to sampling) are created in the Fourier plane.

Assuming that different parts of the spectrum are coded correctly, data corruption
can be prevented and the received image can be enhanced [1].

3.1.2.1 Code Division Multiplexing

Code division multiplexing access (CDMA) technology focuses primarily on the
“direct sequence” method of spread spectrum [2]. Direct sequence is spread spectrum
technology in which the bandwidth of a signal is enlarged by artificially increasing
the bit data rate by breaking each bit into a number of subbits called “chips.”

The signal is divided into smaller bits by multiplying it with a pseudonoise
(PN) code. A simple multiplication of each bit of the original modulated signal by
this high data rate PN code yields the division of the signal into smaller bits
(which increases its bandwidth). Increasing the number of “chips” expands the
bandwidth proportionally. This is demonstrated in Fig. 3.1.
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Fig. 3.2 Optical setup for Input Coding
CDMA super resolution plgne mask ;?annsg '

Lens

Let us now briefly describe the basic operation of the transmitter/receiver for
the spread spectrum technique. Assume that there are two transmitters with two
different messages to be transmitted. The messages are first modulated. After the
modulator, each signal is multiplied by its own unique pseudonoise code and is
transmitted. Since various signals might be simultaneously transmitted from
different transmitters, these transmissions are represented by simply adding
their spectra. At the receiver end, the incoming signal is the spread spectrum
signal. In order to extract a single message, one must multiply the incoming signal
by the corresponding PN code. Multiplying a given PN code by itself will produce
unity. Therefore, multiplying the signal by the PN code eliminates the spread
spectrum effects for that particular message. This is of course valid for orthogonal
codes with perfect synchronization and no noise. The resulting signal is then
passed through a band pass filter (BPF) centered at the carrier frequency. This
operation selects only the desired signal while rejecting all surrounding
frequencies due to other messages in the spread spectrum.

This scheme is used extensively in communication to provide multiuser access
where each user uses a unique PN code. This method provides a rather significant
single tone interference immunity, which is important in imaging, and a trivial
optical implementation (a simple binary mask).

3.1.2.2 Optical Setup

For achieving superresolution in the presented approach, the following steps are
required:

. Fourier transform of the object

. Multiplication by a CDMA coding mask
. Inverse Fourier transform

. Sampling the output

. Retrieval of the object in full resolution

S S R S

The optical setup can be very simple, as the only additional requirement apart
from a simple imaging system (containing only one lens and a sensor) is to
multiply the image with a mask in the Fourier plane. This can be achieved by
placing the mask against the lens [3]; special care must be taken for verifying the
different dimension scales needed. The optical setup is presented in Fig. 3.2.
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Note that since the lens aperture is not the cause for the resolution reduction,
the coding mask may be attached to the lens knowing that it will perform the
required orthogonal coding of the various spectral regions, later on to be aliased due
to the sampling of the sensor.

3.1.2.3 Mathematical Analysis

Let us examine a simple situation, with the resolution enhanced by a factor of 3.
Only a one-dimensional calculation is carried out, carrying out the proof for
two-dimensions is direct. An ideal sensor is assumed, in which the pixels are
indefinitely small and are placed at a distance of Jx from one another (finite size
pixels are addressed later). Therefore, the sensor is modeled as an infinite train
of impulses:

Sens(x) = Z o(x — n 6x). 3.1
The coding mask is divided into three subfunctions as follows:
~ 1
G(v) = Z gn(v — nAv), (3.2)
n=—1

where Av = 1/ dx, g; has the following properties:

ey — Av) — 0. i 4

8iV)g(v ) . 3Av 3Av

gl‘(V):O, l:*I,O,l, Vv¢ *777 s (33)
gi(V) Z Ov VV.

These properties promise orthogonality of the coding masks. This is shown
graphically in Fig. 3.3. The signals in the Fourier plane (the aperture plane) have
the coordinate “v,” and the subscript “~.” Signals in the sensor plane have the
coordinate “x” and have no subscript.

Notice that the coding masks have been chosen to be nonnegative. The masks are
composed of pixels of the size of An. Each pixel is divided into chips, each have the
size of AW. The consideration for this are presented later on. The coding mask is
multiplied in the Fourier plane with the spectrum of the input, / (which represents
field distribution). Therefore, the output in the Fourier plane is:

O(v) = I(v)Sens(v). (3.4)
The sensor samples this output; therefore, the sampled output S(x) is:

S(x) = O(x)Sens(x). (3.5)
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Fig. 3.3 Coding mask

Expressing equation (3.5) in the Fourier plane, and using (3.1), (3.2), and
(3.4) yields:

S(v) = O(v) * Seni(v) l Zg,,v—nAv]*l

n=—1

f: 5<v—n$>], (3.6)

n=—0Q

where * denotes convolution operation. Since Av = 1/Ax, the last expression is
simplified to:

S(v) = [N(V) Z gn(v — nAv)| * li o(v —nAv) |,
n=—1 n=-—00
= i [(v — nAv) [Z (v —(n+k)Av)|. 3.7
n=-—00 k=—1

Image retrieval is simply achieved by Fourier transforming the grabbed output
and multiplying it with the original coding mask:

:{i I(v — nAv) lZgnv— n—l—kAv]}lngv—mAv]
n=—00 k=—1 m=—1

= I(v — nAv)g,(v — nAv),

}’[7*00

— ()G (v). (3.8)

Choosing only the output field quantities inside the nonzero chip of each pixel
for the given coding mask, a down sampled output is generated which is the desired
output, I(v).
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The conclusion is that modulating the input’s spectrum correctly prevents data
corruption due to aliasing. The input of the optical imaging system is assumed to
be only real and nonnegative. It is convolved with the Fourier transform of the
coding mask which is also real since it is originally symmetrical in the Fourier
plane. The coding mask should be chosen in such a way that there are no negative
values in the image plane. This is further elaborated in Sects. 3.1.2.5 and 3.1.2.6
dealing with different types of illumination. In a real sensor, the pixels have finite
dimensions; this will affect the output spectrum, since it results with multiplying
the spectrum with a sin ¢ function, as mentioned above. This will have no effect
on spectrum orthogonality; it will only introduce a need for recalibrating the
sampled spectrum, but does not introduce any difficulties.

In this proof, it was assumed that the sensor performs ideal sampling,
yet physically it measures only absolute values of the sampled signal. If the coding
mask is chosen correctly, then this limitation can be overcome. This is elaborated
further on.

3.1.2.4 The Effect of Noise

The super resolution scheme presented here offers no significant advantage or
disadvantage upon any other method before the signal is coded. Therefore, if in
the original image a noise is present, then its reconstruction will have the same
noise. The scheme will provide an advantage on noise accumulated after the image
is coded, such as during sampling by the sensor. Let us assume that the sensor is
scratched or dirty. This presents a very narrow interference multiplied by the input
function. The interference function is represented by n(x). The signal measured
now by the sensor, §'(x), is equal to:

§'(x) = S(x)n(x). (3.9)

The retrieved output, R'(v), equals:

R'(v) = [SO) xi(v)|G(v) = [SM)G)] * [A(v)G(v)]. (3.10)

According to (3.8), this can be expressed as:

R (v) = [I[(V)G)] = [A(v)G(v)]. (3.11)
In the space domain, this equals to:

R'(x) = [I(x) * G(x)][n(x) * G(x)]. (3.12)
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Since the function G is assumed to be pseudowhite noise in the object plane
and since the noise function, n(x), is very narrow:

n(x) * G(x) ~ const + G (x — xo), (3.13)

where const > ¢. Using (3.11), the retrieved image is expressed as:

R'(v) = const/(v)G(v) + eexp(—2mixo) [[(v)G(v)] * G(v). (3.14)

Since the noise factor is constant and relatively negligible, one can express the
above equation as:

R'(v) =~ constI(v)G(v). (3.15)

From here, retrieval is identical to what was presented for noninterfered signal.
The advantage that CDMA coding provides for overcoming very space limited
interference was intuitively proven. This is identical to communication CDMA
scheme’s improved resistance to single tone interference (more detail in ref. [4])

3.1.2.5 Coherent Illumination

When coherent illumination is used, the coherent transfer function, CTF (v),
represents the resolution limitations due to diffraction and additional elements in
the system. The CTF(V) equals to the aperture of the imaging lens multiplied by the
coding mask, G(v), which is attached to it. The output image in the sensor plane,
0;, is expressed as:

O;(x) = CTF(x) * go(x). (3.16)

where g, indicates the object obtained at the sensor plane in an ideal system
(without any other aberrations). The sensor samples only magnitudes of the
image. Therefore, the sampled image, I;, equals to:

I; = |CTF(x) * g (x)[. (3.17)

In order not to have information loss, system output, O;, should be real and
nonnegative; this will enable retrieval of output directly from /; (which is actually
the squared absolute of 0;). In order to ensure direct retrieval of the object, g, in full
resolution, both the coding mask and the image must be real and nonnegative.
Since real images have no negative values, therefore it is left to deal only with the
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coding mask. The coding mask must have a Fourier transform that is real and
nonnegative. Furthermore, the coding mask must fulfill (3.3). Below an example for
a suitable coding mask is presented:

Let us choose a coding mask composed of an infinite train of delta-functions in
the space domain, each impulse is spaced by An from adjacent impulses.
This signal has a positive spectrum. Now let us convolve this with a Gaussian,
with the width of a CDMA chip, AW. This will be multiplied by a rect function,
setting the size of the mask to finite size, ABW+v/'bh? — 4ac. ABW corresponds to
the aperture of the imaging lens. Let us now calculate the spectrum of such
a mask:

CTF(v) = { Infinite pulse train * Gaussian }rect function,

4
CTF(v) = { l i o(v — nAn) | = exp (— 222W> }rect (ﬁ)
!

CTE(x) = AWV27 { [ioo 5 <x —n i—f])] exp (— XZAZWZ) } % sinc (’CA};W) .

(3.18)

Assuming that ABW > AW, a real and nonnegative spectrum was received as
desired. One can easily show that this mask also satisfies the conditions for CDMA
coding, if the following equation is realized:

Av:kAn—ATW, keN. (3.19)

This is demonstrated graphically in Fig. 3.4. The top figure presents an input
object spatial spectrum with a spatial bandwidth of 2Av. An example of coding
mask is shown in Fig. 3.4b. Figure 3.4c demonstrates schematically the effect of
coding mask on object spatial spectrum. The bottom figure, Fig. 3.4d, demonstrates
the effect of sampling by the sensor. Notice that data retrieval is possible if the
orthogonality was retained. This example is suitable for the coding mask.

3.1.2.6 Incoherent Illumination

In incoherent illumination, there is a little variation. The intensity distribution
sampled by the sensor is expressed as:

(1)) = OTE(v) (Ug(v) @ Uy (v)), (3.20)
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Fig. 3.4 (a) Object spatial spectrum; (b) example for coding mask, with black rectangles
schematically illustrating Gaussian chips; (c¢) object spectrum multiplied by coding mask;
(d) image spectral distribution after down sampling by sensor. Notice no overlapping occurred

where OTF(v) is the incoherent optical transfer function. ® symbolizes correlation
operation. Goodman shows a more detailed derivation of these relations in ref. [2].

The usage of incoherent illumination affects the output of the system. Not the
coding mask itself should be orthogonal, but rather its autocorrelation. Let us
express the incoherent optical transfer function as a product of autocorrelation of
the coherent transfer function:

OTE(v) = (CTF(v) ® CTF(v)). (3.21)
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This can be expressed in the sensor pane as:

OTF(x) = CTF(x)CTE(x), (3.22)

where OTF(v) is the autocorrelation of the previous function CTF(v), and its
Fourier transform satisfies several conditions:

OTE(v=0) >0 OTF(x) is Real,
OTF(v) = OTF(—v) OTF(x) > 0, (3.23)
OTF(v = 0) > |OTF(v)| | OTF(x) = OTF(—x).

Furthermore, the OTF(v) has to satisfy all of the previous demands for the
CDMA coding, i.e., those presented in (3.3). Again one faces the challenge of
producing a coding mask, which has a real and nonnegative spectrum. This problem
has been addressed above for the mask implemented for incoherent illumination.
The final mask CTE(v) will be easily derived since according to Sect. 3.1.2.3
OTF(v) that satisfies all of the demands could be constructed. The mask that
will be placed in the setup will be CTF(V). Since it is real and nonnegative,
the derivation is direct from (3.21):

OTF(x) = [CTF(x)]?
\
CTF(x) = \/OTF(x). (3.24)

3.1.2.7 The Price of Super Resolution

The trade-offs of this system are presented below:

(i) Loss of field of view — Since the spectrum of the image is multiplied with a
high-resolution coding mask, the image is spread in the image plane. Since this
spread image must not overlap with other images, the field of view of the system
must be limited, as not fulfilling this would distort the original input. Therefore,
the field of view must be limited, by a factor, which is identical to the expected
resolution improvement, i.e., to have a resolution enhancement of three,
the original image must not cover more than one-third of the sensor.

(i) Loss of energy — Possible energy loss occurs only due to the fact that a coding

mask is placed over the input lens.

3.1.2.8 The Two-Dimensional Case

Extension of this method to two-dimensional images is direct. Construction of the
coding mask should be orthogonal in both axes. Such a mask placed on the lens of
an identical optical setup will produce a resolution enhancement of M on the first
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Table 3.1 Physical value Attribute Value Units
used for simulation -
Number of sensor pixels 640 -
Pixel spacing, Ax 9.6 pm
Pixel size, Ad 6.72 pm

axis and N on the second axis (depending on mask attributes on each axis). This will
cause a loss of the total field of view of M x N. Image retrieval will also be
identical, as a two-dimensional Fourier transform can be conducted separately for
each axis.

3.1.3 Computer Simulations

In order to verify the method presented in previous sections, a MATLAB simulation
was constructed. This simulation assumed real dimensions of sensor pixel size
and pixel spacing, which are shown in Table 3.1. For simplicity, the simulation is
one-dimensional. Furthermore, the simulation dealt with a coherent system. An input
image of a cosine grating was chosen, shown in Fig. 3.5. This cosine was at a
frequency in which sensor sampling will cause obvious aliasing. A coding mask
was constructed as described above, as shown in Fig. 3.6.

In the simulation, the input was Fourier transformed, multiplied with the coding
mask and inverse Fourier transformed again. This simulated the coding mask
attached to the imaging lens. The magnitude of the output was sampled according
to attributes of the sensor. Signal retrieval was conducted as follows: sampled data
was inverse Fourier transformed, multiplied by the coding mask, and Fourier
transformed to produce the desired output.

The simulated output of the system is presented in Fig. 3.7: The top image presents
the ideal output of the system (which is actually the original object that is to be
imaged by the system); the middle image presents the output without applying the
super resolution method. One can see a complete loss of image resolution,
and obvious aliasing, as the image frequency appears much lower than that of
the original object. The bottom image shows the input after reconstruction using
CDMA super resolution; one can see that the image was satisfactory reconstructed.

To further elaborate the functionality of the system, the Fourier domain should
be introduced. In the top image in Fig. 3.8, the spectrum of the original cosine grid
input is shown. The rectangle illustrates the allowed bandwidth due to sampling
by the sensor. In the middle figure, the spectrum of the sampled output is
presented. Many artifacts have been added to the spectrum due to multiplication
with the coding mask. Notice in the lower figure that after multiplying
the spectrum by the coding mask, all aliased frequencies are removed, leaving
the original input, i.e., perfect reconstruction.
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Fig. 3.5 Cosine grid used as simulation input. The image was taken from: J. Solomon,
Z. Zalevsky and D. Mendlovic, “Geometrical Super Resolution by Code Division Multiplexing,”
Appl. Opt., 44, 32-40 (2005)

3.1.4 Experimental Results

In order to verify the method presented, an experimental setup was constructed.
The setup consists of a simple imaging system, with only a single lens, an aperture
place in the focal plane (used to limit system bandwidth), and a sensor. The coding
mask was attached to the lens. A sensor, with attributes as illustrated in Table 3.1,
sampled the output. The same cosine input grid and coding mask, as were presented
in the simulation, were used for the experiment.

The sampled output is shown in the top of Fig. 3.9. The expansion of the image
due to the usage of the coding mask is apparent when comparing with the output
width without coding mask, as appears in the lower image on the same figure.
Figure 3.10 allows appreciation of performance: The top image shows ideal output.
The middle image shows the sampled output without the coding mask (this is
identical to Fig. 3.7 (bottom) only the scale is different). One notices the obvious
aliasing by the appearance of lower frequencies. Finally, the lower graph shows
the retrieved output using CDMA super resolution. This CDMA method produced
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Fig. 3.6 Coding mask used for simulation. The image was taken from: J. Solomon, Z. Zalevsky
and D. Mendlovic, “Geometrical Super Resolution by Code Division Multiplexing,” Appl. Opt.,
44, 32-40 (2005)

satisfactory results for the reconstruction. Notice that a slight degradation of the
lower frequencies appears in the retrieved image. Theoretically, this should not be
appeared, it is probably a result of a small alignment error between the sampled
image and the coding mask.

3.2 Diffraction Super Resolution Using Code
Division Multiplexing

3.2.1 Introduction

In this section, CDMA is used to overcome the resolving power of an optical
imaging system, and not by correcting the data obtained on the detector plane as
described in Sect. 3.1. To enable such multiplexing, a unique setup that creates an
incoherent cosine transform of the image is used.
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Fig. 3.7 (Top) Cosine grid, used as input; (middle) cosine grid after sampling by sensor — notice
aliasing; (bottom) signal retrieved using CDMA super resolution. The image was taken from:
J. Solomon, Z. Zalevsky and D. Mendlovic, “Geometrical Super Resolution by Code Division
Multiplexing,” Appl. Opt., 44, 3240 (2005)

3.2.2 Theoretical Analysis

3.2.2.1 Example of Analysis of Super Resolution in Wigner Space

Super Resolution can be achieved by placing several gratings at specific locations
within the imaging setup. Lukosz [5] has presented a setup based on two static
Ronchi gratings that achieve this. Figure 3.11 shows the optical setup used for
achieving the super resolution. One may see from the optical setup that the system
contains two gratings placed one after the input plane and one after the output plane.
These distances and the gratings frequency must be chosen carefully according to
conditions described in ref. [5].
The various optical and mathematical steps are:

o up(x, 0) — up(x, zo ) free space propagation
o ug(x, zo~) — up(x, zo") passing through grating A
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Fig. 3.8 (Top) Cosine grid, used as input, spectrum; (middle) cosine grid after sampling by sensor;
(bottom) signal retrieved using CDMA superresolution. The image was taken from: J. Solomon,
Z. Zalevsky and D. Mendlovic, “Geometrical Super Resolution by Code Division Multiplexing,”
Appl. Opt., 44, 32-40 (2005)

o up(x, zo") — ug(x, 0) virtual backwards propagation

e uplx, 0) — up(u, 2F—) optical Fourier transform

o up(u, 2F—) — up(p, 2F—) rect(/Ap) = ug(p, 2F+) passing through an aperture
o up(u, 2F+) — ug(x, 4F) optical Fourier transform

e up(x, 4F) — up(x, (4F + z;)") free space propagation

o ug(x, (4F + z))7) — uy (x, (4F + z)*) passing through grating B

o up(x, (4F + z))") — ug(x, 4F) virtual backwards propagation

Now let us examine this setup in the Wigner space. This is presented in Fig. 3.12.
In Fig. 3.12a, the SW product of the input is marked in gray and the SW of the
system is marked with a dashed line. One can see that the condition in (1.16) is not
fulfilled, i.e., the systems’ SW does contain the inputs’ SW, but their total area is
about the same. But the condition expressed in (1.17) is fulfilled. In Fig. 3.12b,
the input propagates in space, and in Fig. 3.12c we can see the effect of the grating.
In Fig. 3.12d, the input virtually propagates backward. In Fig. 3.12f, we can see the
input after passing through the systems aperture. As it appears on the output plane,
one can see that all of the input frequencies have been transferred but need to be
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Fig. 3.9 (Top) One-dimensional sampled image from experiment with coding mask; (bottom)
one-dimensional sampled image without coding mask. The image was taken from: J. Solomon,
Z. Zalevsky and D. Mendlovic, “Geometrical Super Resolution by Code Division Multiplexing,”
Appl. Opt., 44, 32-40 (2005)

correctly decoded, in order to receive the original input with no distortion. The SW
of the inputs was theoretically divided into three parts (base band frequencies, high
negative frequencies, and high positive frequencies); these three parts were fre-
quency modulated and transmitted through the system. This is very similar to the
frequency division multiplexing approach (FDMA) in communications.

Retrieval of the image is done in a similar manner. The output of the system
propagates in space (Fig. 3.12f). The signal is multiplied by the second grid
(Fig. 3.12g), and if we virtually propagate, we obtain Fig. 3.12h. In the last figure,
we receive the original input with its full resolution but with two ghost images.
These ghost images limit the size of the original input image, as we must avoid
overlapping of the original image with the ghost images.

3.2.2.2 Super Resolution Using CDMA

As has been shown above, traditional methods that have sacrificed image size for
enhanced resolution used gratings. These actually implemented a setup in which the
frequency is modulated by different parts of the image frequencies. It has been
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Fig. 3.10 (Top) Cosine grid, used as input; (middle) experimental output sampled by sensor;
(bottom) experimental signal retrieved using CDMA superresolution. The image was taken from:
J. Solomon, Z. Zalevsky and D. Mendlovic, “Geometrical Super Resolution by Code Division
Multiplexing,” Appl. Opt., 44, 3240 (2005)
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Fig. 3.11 Classical super resolution setup

shown that CDMA multiplexing almost achieves channel capacity and is superior
to other methods such as FDMA [6].

This method is shown in Fig. 3.13. In Fig. 3.13a, one can see the original input
in the Wigner space and the system’s SW. The signal is Fourier transformed
(or cosine transformed), Fig. 3.13b. The signal is multiplied by a coding mask,
which expands its bandwidth. The signal is Fourier transformed again, Fig. 3.13d,
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Fig. 3.12 Classical super resolution shown in the Wigner plane

and then multiplied by a grid, Fig. 3.13e. Notice that now different parts of the
images produced due to the multiplication with the grid overlap. The CDMA grid
must be constructed in a way that the different images will remain orthogonal.
Finally, the signal passes through the system’s aperture in Fig. 3.13f.

Retrieval of the image is done in a sim

ilar fashion. The image is multiplied by a

grid, which is identical to the first one, and then Fourier transformed. Then it is
multiplied by the CDMA grid and Fourier transformed again.
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Fig. 3.13 CDMA super resolution shown in the Wigner plane

Optical setup for achieving this is shown in Fig. 3.14a. In order to implement the

concept presented, one needs to multiply the optical image in the Fourier domain
with the coding mask. Ordinary lenses perform this feat, but since they limit
systems’ resolution one needs to do this in a different manner. In Sect. 3.2.3, such
a solution is presented.

Figure 3.14b illustrates the “computational path” used to calculate the output

of the setup. The various optical and mathematical steps are:

uo(x, 0) — up(u, zo ) optical cosine transform

up(u, zo ) — uo(u, zo") passing through coding mask

uo(u, zo") — ug(x, 2z9~) additional cosine transform

uo(x, 2z0~7) — up(x, 2z¢") passing through Damman grating

uo(x, 2z07) — uo(u, 2F + 2z4)”) optical Fourier transform

(i, 2F + 220)7) — uo(pt, (2F + 2z9) Jrect(u/Ap) = uo(u, 2F + 2z0)")
passing through imaging systems’ aperture

uo(, 2F + 2z0)") — ug(x, 2F + 2z;) optical Fourier transform

Image retrieval:

vo(xo~) — vo(xo") passing through Damman grating
vo(xo") — vo(u™) Fourier transform

vo(it™) — vo(u") multiplication with coding mask
vo(u") — vo(x) Fourier transform
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Fig. 3.14 (a) Full optical setup. (b) A flowchart illustrating the stages in the mathematical
analysis of the optical setup and the computerized image retrieval. The image was taken from:
J. Solomon, Z. Zalevsky and D. Mendlovic, “Super Resolution Using Code Division
Multiplexing,” Appl. Opt., 42, 1451-1462 (2003)

Note that the first grating should be moved only lightly for obtaining super
resolved functionality of the proposed configuration.

3.2.2.3 Mathematical Analysis

Let us examine a simple situation, in which we want to enhance the resolution by
a factor of 3 [7]. The coding mask composed of three subfunctions is given
as follows:

G(v) = Z 2n(v — nvp). (3.25)

n=—1
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Fig. 3.15 Coding mask function broken into three subfunctions for each of the three ranges

This is shown graphically in Fig. 3.15.
g: has the following properties:

{&@%g00=Q 17, {vow} (3.26)
272

gi(v) =0, i=—1,01"v¢

In order to prove the above properties, a simple grating of three spectral orders
will be chosen:

grid(v) = o(v) + o(v —vo) + (v + vo). (3.27)

The input image, marked by u, is convolved with the Fourier transform of the
coding mask and multiplied by the grating before entering the imaging system.
The system input image is marked as I.

I(x) = [up(x) x CDMA(x)] - grid(x). (3.28)

The systems input spectrum is derived from (3.28) producing:

I(v) = luo(v) Z an(v — nvo)] x [0(v) +0(v — 1)+ (v + 1)],

= up(v) Z gn(v —nv) + up(v — vo) Z gn(v—(n+1)v)

n=-1 n=—1
1

+ uo(v + vo) Z gn(v—(n—1)v). (3.29)

n=—1
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The inputs’ spectrum is multiplied by the systems bandwidth (marked as
rect(v/Av) ), and produces the systems’ output, marked as O.

o) =1(v) «rect(i)
=up(v)go(v) + uo(v —vo)g—1(v) + uo(v + vo)g1(v). (3.30)

Image retrieval is conducted as follows: The systems output is multiplied by an
identical grating, producing R;. This signal can be formulated in the frequency
domain as follows:

Ri(v)=0(v) xgrid(v) = up(v)go(v) + uo(v — 2vg) go (v — vo) +uo (v +2vo)go(v + vo)
+uo(v—vo)g-1(v) +uo(v —2v0)g-1(v—vo) +uo(v)g-1(v —vo)
+uo(v+v0)g1(v) +uo(v)g1 (v —vo) +uo(v+2vo)g1 (v + vo)-

(3.31)

Then this is multiplied with the coding mask, in the frequency domain.
The result is marked as R5:

Ro(v) = Ro(v) - G(v) = up(v)go(v) + uo(v)g-1 (v + vo) + uo(v)g1(v — vo),

= uo(v) - G(v) —————uo(v).
downsampling

(3.32)

As one can see, after down sampling the filter, the output spectrum is identical to
the original image spectrum, with no resolution decrease.

3.2.2.4 Optical Cosine Transform

Cosine transform can be implemented in incoherent illumination in a fashion which
reminds the shearing interferometer [8]. A mirror, orthogonal to the input, is used to
duplicate the input image. The optical setup (which used as a component in the
CDMA super resolution scheme) is shown in Fig. 3.16.
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Let us examine an input image, which is composed of a single dot, it is
duplicated into two dots, by the mirror. These will interfere in a given distance
z and produce an interference mask, which is similar to a cosine function. A single
dot produced a cosine sequence. Due to the reversibility of ray optics, a cosine
grid will produce a single dot in space. This hints that the setup actually cosine
transforms the input. A more rigorous proof is shown below.

First, the output C is calculated in coherent illumination, while [ is assumed as
the input image:

n_ exp(jkz)
C(x") e ex

_ exp(jkz) k / ko, o 2n
= p(j 2% I(x) exp Jo X |exp| —jo—
k 2
+1(x) exp (jz—x ) exp <j ﬂn x’)]dx,
— exp(jkz) ﬁ 2 / & 2 2£ /
=2 Tz exp<]22x I(x)exp J5x Cos pr dx. (3.33)

Now the output is expressed as a function of the space coordinate and time:

C(xX' 1) = p I;)(Izkz exp<j£x’2)/1(x)exp(j2£x)Cos(i—xx)dx. (3.34)

Let us assume incoherent illumination and calculate the intensity of the output:
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This proved that this setup can be used in order to cosine transform the input
signal (which is identical to the Fourier transform for real input images). If a
diffuser is used, this setup can be used to cosine transform the results again, this
is mathematically proven below. Let C denote the output of the first cosine
transform, and F will be the effective result of the mirror used on C after the coding
mask, 4, and the diffuser, g.

F(X 1) =C(X 0)h(X,0)g(x', 1) + C(—x, 0)h(—x, 1)g(—x', 7). (3.36)

The input after passing through the coding mask and the diffuser will be the free
space propagation for a distance of z. This is expressed as O.

ik k k 2
O(x,t)= eXl;/({JZ ?) exp <jzx’2) /F(x, 1)exp (j2x2> exp (—jT:xx’) dx. (3.37)

The intensity measured by the sensor will be:

O(x) /// X OF (X" t)ex kx ex —'2—nxx’
;Zz p]2 P j)vz

2
x exp( ! ) exp< ;—nxx"> A dy"dr. (3.38)

Let us integrate the only terms affected over time:

/F(x', OF (X" 6)dt = h(X)h(x")(g(X', ) g(x", 1)) {c(X, )e (X", 1))

B h(—) (g, )g(—", D) (¥ De(—", 1))
+ h(— () (g(=, (", D)) e, )e (", 1))
b= (") g (X, D)g(—2", ) (e(— De(—x", ).

(3.39)

+ h(X)h(=x")o(x" + xX"){c(¥, t)e (X", 1)
+ h(=x"YA(X")o (X + X" {c(—=x, )c(x", ¢
+ h(=x"Ya(=x")o(x — x"){c(=X',t)c(=x",1)).  (3.40)
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Fig. 3.17 Simulated input and output: (top) the original input image used; (middle) the output of
the system with no resolution enhancement; (bottom) the output of the CDMA super resolving.
The image was taken from: J. Solomon, Z. Zalevsky and D. Mendlovic, “Super Resolution Using
Code Division Multiplexing,” Appl. Opt., 42, 1451-1462 (2003)

Equation 3.28 can now be formulated according to (3.30) as:
0= 232 [ [{IneP1ea)+ (=) Ple(-F}
+{\h<—x>|2|c<x>|2 0 Pt Jerp? (¢ ) .
Bot 52z [ [{IHORICPR + I Pt bexo (¢ ) v

— B, +;2 / {{|h(x)|zc(x)|2}COS (j—:xx’)]dx'. (3.41)

This is the intensity measured by the sensor. This proved that this setup can be
used in order to cosine transform the input signal (which is identical to the Fourier
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Fig. 3.18 Input image spectrum and systems’ bandwidth (marked by rectangle). The image was
taken from: J. Solomon, Z. Zalevsky and D. Mendlovic, “Super Resolution Using Code Division
Multiplexing,” Appl. Opt., 42, 1451-1462 (2003)

transform for real input images), multiply it by a mask and then cosine transform
the input again, i.e., effectively convolving the signal with the Fourier transform
of the mask.

3.2.3 Computer Simulations

In order to verify the method presented in Sect. 3.2.2 for CDMA super resolution,
a MATLAB simulation was constructed. An input image of 64 by 64 pixels was
chosen. A coding mask was constructed in a special manner. It was done in a way
that after convolving with a grating, the different orders of the coding masks
would not overlap, i.e., the transparent parts will not overlap.

In the simulation, the input was cosine transformed, multiplied with the coding mask
and cosine transformed again. It was multiplied by a grating and then it was transferred
through a system with limited bandwidth. This simulated setup is described in
Sect. 3.2.2 according to the computational steeps presented in Fig. 3.14b.
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Fig. 3.19 The coding mask. The image was taken from: J. Solomon, Z. Zalevsky and D. Mendlovic,
“Super Resolution Using Code Division Multiplexing,” Appl. Opt., 42, 1451-1462 (2003)

The input used was a simple binary grating shown in Fig. 3.17 (top). Systems
bandwidth was chosen so as not to enable the transmission of the input image
resolution. The spectrum of the input image and the systems bandwidth are shown
in Fig. 3.18. The coding mask chosen is shown in Fig. 3.19.

The output of the system is presented in Fig. 3.17: In the middle image, the output
is shown for the system without applying the super resolution method. One can see
a complete loss of image resolution. The bottom image shows the input after
construction using CDMA super resolution; one can see that the resolution was
almost completely reconstructed.

3.2.4 Experimental Results

In order to verify the method presented in Sect. 3.2.2 for performing optical cosine
transform, an experimental setup was constructed. The setup was only half of the
setup in Fig. 3.16, i.e., it was composed of an input image, a mirror, and a sensor for
recording the results. The input used was a grid of 100 lines per millimeter.
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Fig. 3.20 Output of cosine setup with coherent illumination. The image was taken from:
J. Solomon, Z. Zalevsky and D. Mendlovic, “Super Resolution Using Code Division Multiplexing,”
Appl. Opt., 42, 1451-1462 (2003)

Fig. 3.21 Output of the cosine setup for incoherent illumination but without a mirror. The image
was taken from: J. Solomon, Z. Zalevsky and D. Mendlovic, “Super Resolution Using Code
Division Multiplexing,” Appl. Opt., 42, 1451-1462 (2003)

First, the output of the setup was recorded for coherent illumination, and is
presented in Fig. 3.20. Then the setup was used with incoherent illumination but
without a mirror, the output was just a blurred spot, as shown in Fig. 3.21. Finally,
the setup was tested with incoherent illumination and a mirror, among the blurred
spot, fine fringes appeared as outlined in Fig. 3.22. Notice that the line spacing is
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Fig. 3.22 Output of the cosine setup with incoherent illumination, arrows emphasize fringe
location. The image was taken from: J. Solomon, Z. Zalevsky and D. Mendlovic, “Super Resolu-
tion using Code Division Multiplexing,” Appl. Opt., 42, 1451-1462 (2003)

identical to the result received with the coherent illumination. This is obvious since
the far field approximation of the input and the cosine transform will produce the
same spatial frequency of the input grating. Notice that the lines do not coincide
since the coherent beam that illuminated the input pattern for the coherent case had
a little elevation angle. Thus, in the far field, this angle caused a shift in the received
fringes. Obviously, this angle had no effect for the incoherent illumination case.
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Chapter 4

Techniques Utilizing Diffractive Masks
Having Structures with a Period
Non-Limited Randomness

Alex Zlotnik, Zeev Zalevsky, Amikam Borkowski, David Sylman,
Vicente Mico, Javier Garcia, and Bahram Javidi

4.1 Geometrical Super Resolved Imaging Using
Nonperiodic Spatial Masking

4.1.1 Introduction

In this section, an approach to overcome the geometrical resolution limitations is
presented [1]. In a sensor array, the resolution is determined by the spatial density of
the pixels on the image plane, i.e., the number of pixels per unit area, and by the
geometrical point spread function (PSF) which characterizes the spatial
responsivity of each pixel. The limitation which is related to the spatial density of
the pixels can easily be removed by a procedure called microscanning and
interlacing, i.e., adding many low-resolution images, each taken at a slightly
different small geometrical shifts [2].

The under sampling aspect of the geometrical limitation which is solved by
applying microscanning and by interlacing several low-resolution images into one
unified image with larger number of pixels is not the main problem that this section
aims to address. After the interlacing, one can obtain an image having a lot of pixels
but which is still blurred due to the large pixels that are used to create this image
[3, 4]. De-blurring this image and improving its resolution to correspond to the
pitch of the sampling grid of the interlaced image is the main issue addressed.
In other words, it is meant to overcome the PSF created by the spatial responsivity
of each pixel after the generation of the interlaced unified image.

The novelty of the described approach is in adding a priori knowledge which
allows proper matrix inversion and true extraction of super resolved information
rather than extrapolation as applied in many other digital super resolved approaches.
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The method is applied over an interlaced image that is generated after microscanning
procedure. The microscanning is a procedure such that the mask and the object
should be moving together in respect to the detector (this can be obtained if the
scanning mirror mechanism is positioned between the mask and the detector rather
than between the object and the mask). Extra optical hardware includes a binary
transparency mask located in the intermediate imaging plane of the optics. The mask
adds the required a priori knowledge for the matrix inversion. The described
technique aims to obtain geometrical super resolution, i.e., it assumes that the
diffraction limitation related to the F-number of the optics can be ignored. Therefore,
in diffraction limited system having F-number of 1, the maximal geometrical resolu-
tion that the proposed approach should aim for is the optical wavelength (i.e., about
half a micron).

Additional related works that use some form of the movement of the camera or
modulation of the pupil function are described in refs. [5-8].

4.1.2 Theoretical Analysis

4.1.2.1 General Description

The proposed idea includes positioning one of the three possible masks in
the intermediate image plane of the imaging optics. The mask contains either a
frame of zero intensities at the borders of the field of view or a binary mask of
large random pixels having the size of the original resolution of the imager or a binary
mask of small random pixels having the size of the intended high resolution. Each one
of those three masks actually imposes conditions of zero energy (or constant energy)
over the high-resolution image before it is being sampled by the detector
(and therefore blurred due to the shape of the sampling pixel). Knowing those
conditions allows extracting the high-resolution information despite the significant
spatial degradation by the detector (i.e., having large pixels with low resolution).

A convenient way to observe the problem of resolution enhancement is by looking
at each pixel in the sampling array as a subpixel matrix functioning as an averaging
operator. Therefore, for each shift of the camera, some new subpixels are added and
some are removed from the averaging. This is equivalent to the convolution of a super
resolved image and a function having the spatial shape of a pixel. This convolution
can be farther described as a set of linear equations Ax ~ b, where & represents the
super resolution image translated to a vector, b represents the interlaced discrete
image constructed as spread vector, and A represents a convolution action caused due
to the spatially extended shape of the pixels. The naive answer to this problem is to
inverse the convolution matrix and to extract the estimator £ as £ = bA~!. Since there
is no existence of a solution, one may use the method of reducing the least square
error ||Ax — b||*, such that % = (ATA)flATb (ie., a pseudoinverse) or using
Tikhonov’s regularization and obtaining £ = (ATA + o1 )_IATb [9].

Note that the resolution improvement algorithm is applied after performing
microscanning which increases the effective number of low-resolution pixels in
the captured image. The suggested approach allows improvement of resolution by




4 Techniques Utilizing Diffractive Masks Having Structures. . . 71

an order of magnitude in every axis as to be demonstrated, i.e., a low-resolution
image that is blurred due to the large pixels of the detector is being microscanned.
The microscanning factor equals to the super resolution factor to be obtained. The
outcome is a blurred image with number of pixels corresponding to the desired
resolution. The blurring is obtained due to the originally large geometry of
the pixels in the detector. If one knows some a priori initial conditions which
can be at the border of the image or at random locations along the image, then
the de- convolution operation is feasible. Basically, the convolution operation
(the blurring) may be expressed as a linear operation applied over the image,
i.e., Ax =b where A is the matrix of blurring, x are the unknown variables that are
the pixels of the high-resolution image which are to be extracted, and b is the
captured low-resolution image. In an image of size M —R—1)x (N—R—1)
where R stands for the size of the blurring kernel one usually has N x M unknown
variables which make the problem of inversion impossible unless it is based
upon extrapolation. Due to the mask positioned in the intermediate plane,
the number of variables is reduced (by blocking the light at certain spatial
positions). Therefore, there will be (M — (R — 1)) X (N — (R — 1)) equations as
well as unknown variables. By posing zeros at the edges of the field of view or at
random positions in the image, the number of variables is reduced. This allows
simple extraction of the real super resolved information without “speculations”
(i.e., without extrapolation).

Note that since R is small (say 8 in comparison to N or M which are 1,000 or
more), the “loss” of spatial information within the field of view or the reduction of
the field of view (when the zeros are at the borders) is negligible.

Therefore, the purpose of the spatial mask is as follows: addition of known
information in order to improve the ratio between the number of equations and the
number of unknown variables. The mask blocks some of the original information
but adds new known information allowing the precise inversion of the matrix A.
As previously mentioned, there are three possibilities:

» Mask blocking the edges of the field of view. The advantage of this mask is that
it is simple for fabrication and actually does not have to be positioned in the
intermediate plane. Instead, the optics itself can be modified in order to realize
this. Note also that this mask does not contain zeros. It may just have uniform
gray levels. The disadvantage is that the inversion is good at the proximity of the
border and it has larger accumulated error noise toward the center of the image.

¢ Random binary mask with large pixels. The a priori knowledge is randomly
spread along the entire image, therefore, the error is not accumulated. Since the
pixels are large (have the size of the low-resolution image), more energy and
more spatial information is lost. One solution is to use two masks each providing
blocking in different spatial positions. Then, by time multiplexing (which is
applied in addition to the microscan), one may capture two images each with
different mask and recover the high resolution over the full field of view by
combining the two super resolved results. The optical implementation of such a
time multiplexing can be obtained by positioning spatial light modulator (SLM)
in the intermediate image plane of the optical system and displaying two
different random sequential binary distributions.
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» Random binary mask with small pixels. The a priori knowledge is also randomly
spread along the entire image. Therefore, the error is not accumulated. Since the
pixels are small (the size of the super resolved image), less energy and less
spatial information is lost. The final result will be the super resolved image
multiplied by the random mask. Another mask is needed to recover the missing
information. In this case, the spatial information is lost but rather there are some
areas in the field of view where there is no super resolution. Therefore, the use of
the second mask (temporal multiplexing) is not crucial (but may be used)
and this is the main advantage of this approach.

4.1.2.2 Algorithm Description
General Outline

As was mentioned previously, the interlaced image can be modeled by a convolu-
tion operation:

=
|
T

ylm, n] = glm, n] * u[m,n] = glk + m, [ + njulk, ], 4.1)
17

T
[=)
(=}

where the functions u# and y represent the original and the blurred images, respec-
tively. The smoothed kernel g is referred to the spatial shape of the pixel with a size
of R.

The original and blurred images, i.e., the functions # and y, are assumed to be
defined by a compact set of linear equations:

b = Ax, (4.2)

where the vector x contains nonnegative pixel values, ordered column-wise, of the
discrete image that corresponds to u. The vector b contains the pixel values,
ordered column-wise, of the blurred and sampled images associated with x.
The matrix A is the blurring matrix obtained by sampling the summing operator.
Every pixel in the blurred image y represents a linear multiplication between
b and x. R-doing this operation for each pixel, one can obtain many different row
vectors. Combining all of these vectors creates the matrix A. In the 1-D case,
this matrix has a Toeplitz Block form. In the 2-D case, the process is much more
complicated, and it requires the integration of many Toeplitz blocks in a Toeplitz
block structure using the Kronecker product. Matrices with this structure are
referred to as block Toeplitz form with Toeplitz blocks (BTTB) matrices.

Let us now demonstrate the operation principle of the algorithm with a concrete
example. Let:
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be a 3 x 5 pixels image, such that x will be ordered column-wise as:
oo

Uoa
uio

|=
I

Uig
Uzo

L U4

i | having the size of 2 x 2 will perform four
longitudinal and two lateral steps. First, let us start by describing the longitudinal
steps of the first row of the kernel. The first step in this row is to multiply the uy, uo;
terms and sum them up. The row-wise vector will be shownas[1 1 0 0 O].
The next step in this row is to multiply the u;,ug, terms and to sum them up.
The row-wise vector will be shownas[0 1 1 0 0]and so on. After gathering

all these vectors to a matrix, a Toeplitz block will be obtained (denoted by A,):

The smoothing kernel g = }

11000
L Lo 100
27210 01 1 0

000 11

The other kernel’s row and the lateral steps can be described as a Toeplitz block
as well where every term in this matrix is represented as the first Toeplitz block A,
that have been obtained. Since this kernel includes two rows representing two
longitudinal movements and two lateral movements, one can obtain a new Toeplitz

block A; = (1) i (1)] By replacing every term in this block with the first
Toeplitz block A, (using the Kronecker product), the final matrix takes next form:
110 0 0f 1 1 0 O O T
01100/ 01 1 0O 0
001 10 0OO0O1T1FPO0
0001 1 00011
A=A ® A2 =
= 1 100 0 |1 1 000
0 01100 |OO1T 100
00110 |0OO0OT1T1FPO
L 00011 |OO0OO0T1 1]
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Every row in this matrix has 15 variables, as expected, and it represents exactly
the linear multiplication with the x column vector of the image, therefore the
b column vector for the blurred image:

Yoo

Yo3
Y10

S
I

Y13 |

has the same length as the number of rows in the matrix A.

By multiplying the vector b by the inverse matrix A", it is possible to recover the
original high-resolution vector x. Since the matrix has more rows than columns
(i.e., there are more variables than equations), the matrix is not square and therefore
it is not invertible. One possibility is to use pseudoinverse, i.e., to use the minimum
mean square error of [JAx — b||*:

|[Ax — b|)* = (Ax — b)"(Ax — b) = (Ax)T(Ax) — bTAx — (AX) b+ b"b.  (4.3)

Setting the gradient to zero yields:
d
< [HAx - bﬂ = 24TA% — 24Th = 0. (4.4)
dx
Therefore:
£(ATA) = ATh = &= (ATA)'ATh = A;'b, 4.5)
where A l'is the pseudoinverse and £ is the estimation for the unknown variables x.
However, since the original image contains noise (quantization noise, shot noises,
thermal noises, etc.), the solution of x = Ay ' will not produce good results and
may even be unstable mathematically. Therefore, additional regularization term is

added to avoid this problem and to reduce sensitivity to existing noise. Tikhonov
regularization term ||Tx||* is used to find a smooth solution:

1Ax = b* + [[x[|* = (Ax = b)" (Ax — b) + (I'x)" (Iv),

h . ; (4.6)
= (Ax)' (Ax) — b"Ax — (Ax) b+ b"b + (Tx) (Tx).

Setting the gradient to zero leads to:

d
- X — + ||[1x = X — + x=0, .
A b|)? x| 24TA% —2ATh +2T'T% = 0 4.7)
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FATA+TT) =ATh = &= (A"A+T7T)"'a"p. (4.8)

If one assumes that I' = «f, where [ is the unity matrix, then the obtained
solution is:

f= (ATA+o21) AT, (4.9)

while o can be estimated using various approaches such as the Bayesian
interpretation, the discrepancy principle, the cross validation, the L-curve method,
the unbiased predictive risk estimator, or the leave-one-out cross-validation
approach [10].

By applying the mask, the information added by the mask improves the
optimization process. Each transparent pixel of the mask does not affect
the calculation procedure, and it is averaged as before due to the large pixel’s
size in the detector which is the low geometrical resolution. Each opaque pixel in
the mask eliminates the information at that point, and it is not being summed with
the rest of the pixels. In fact, each time a “zero” pixel appears, an equation line is
added to the matrix A, composed of zeroes and single “1” values, and add the
value “0” in the outcome vector b:

00 1 0 - -0

0 0 1 0 0
0 010 0 F 0T

0 0 1 0 0

0 01 0 0

0 0 1 0
5 ' 0
A_LllT 10 0 0 1 00 00 0 00O b— | Yo
S R T 0 1 1 :
1 1 0 11 o3
1 0 0 0 1 ' 10
1 0 0 0 1 :
. L Y13 J

11 0 1 1
1 1.0 . 110
000 00O 00 1 10 0 01 1]

In fact, the matrix A may become a square matrix and even one that contains
more rows than columns, making the system more constrained. Thus, it is possible
to implement the inverse algorithm with the combination of the Tikhonov
regularization, getting substantially more accurate result.
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In summary, the proposed approach includes deploying a hardware mask which
adds important a priori information and capturing a set of microscanned images.
The interlaced image generates a blurred image but with the number of pixels
following the required super resolving factor. Then, by applying Tikhonov regular-
ization and inverting the extended (i.e., modified) matrix A, one may extract the
super resolved information.

Computational Requirements

The size of the matrix is (M X N) X [(M — (R — 1)) x (N — (R — 1))]. The matrix
with the “known elements,” which is only a diagonal matrix with the size of
(M x N) x (M x N) should be added to matrix A, creating a very large matrix,
whose size is approximately (M x N) x 2(M x N). The use of Tikhonov regulariza-
tion requires triple matrix multiplication for the matrix A and calculation of the
invertible matrix (ATA)fl, which is a time-consuming manipulation.

In order to increase the processing speed, the computations are not done over the
entire image at once but rather each time the computations are performed over a
segment of the image. The result is used for the computation of the next segment.

One can dramatically reduce the computation requirements if some a priori
information on the object shape or location is known. For example, if the task is
to perform sort of digital zooming in which one wishes to improve the geometrical
resolution only in a limited and specified spatial region, then the region of interest
(ROI) is only a well-known number of neighbored pixels. This can reduce the
number of calculations involved in the Fourier/inverse Fourier transform
computations. That is, in some problems, the selection of proper ROI decreases
the computational complexity.

4.1.3 Experimental Investigation

Schematic sketch of the experimental setup is presented in Fig. 4.1 (the experimental
setup is part of a DarkField wafer inspection system). The experimental system
contains CMOS camera of Phantom v10 with 2,400 x 1,800 pixels capable of
producing images at a frame rate of 480 fps, with focal lengths of BFL = EFL =30
mm and a vibration stage with the precision of 0.5 um. The active area used for
the image capturing is 1,280 x 800 pixels. The camera has pixels with a size of
11.5x 11.5 pm. In the experiments, each group of eight pixels is binned
(i.e., generated pixels of 92 x 92 um). Super resolved image is therefore of original
resolution corresponding to pixels with a size of 11.5 x 11.5 pm. The camera had
eight bits of dynamic range and thus the captured images had gray levels varying
from O to 255. The optical system has different horizontal and vertical magnification
factors. In the horizontal axis, the magnification is 2.3 (generating foot print of 5 pm
over the wafer plane). In the vertical axis, the magnification is 5.75 (generating foot
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Fig. 4.1 Schematic sketch of the experimental setup which is part of the DarkField wafer
inspection system of Applied Materials Ltd. The image was taken from: A. Borkowski,
Z. Zalevsky and B. Javidi, “Geometrical Super Resolved Imaging Using Non periodic Spatial
Masking,” JOSA A 26, 589-601 (2009)

print of 2 pum over the wafer plane). In the experiments, the stage is aimed to generate
relative movement of the resolution target/object and the random mask in comparison
to the detector. The stage allowed moving the object in steps of 11.5 pm,
then stopping and allowing the system to capture an image. As mentioned, the
effective size of the pixels in the system is 92 pm and this is the geometrical limit
for the resolution to be achieved. Thus, the movement of 11.5 pm is a subpixel
movement equivalent to steps of 1/8 of the size of the original pixel (92 pum).
Figure 4.2a shows a high-resolution reference image captured by a camera.
The low-resolution image is seen in Fig. 4.2b. The reduction of resolution is by a
factor of 8 in every axis. Figure 4.2c shows the experimentally obtained image.
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a b
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Fig. 4.2 (a) High-resolution reference image. (b) Low-resolution image (without super
resolution). (¢) Experimentally obtained image where in the left side the image is obtained after
performing regular microscanning procedure and in the right side it is without it. The image was

taken from: A. Borkowski, Z. Zalevsky and B. Javidi, “Geometrical Super Resolved Imaging
Using Non periodic Spatial Masking,” JOSA A 26, 589-601 (2009)

The image in the left side was obtained after performing regular microscanning
procedure and in the right side it is without it. The improvement is visible but it is
less than a factor of 2. Figure 4.2c was generated by shifting the object in steps of
11.5 um and interlacing the 64 captured images into a unified image with higher
sampling resolution.

In the following figures, the images were captured using previously described
experimental platform. An example of the random blocking mask having 50% of



4 Techniques Utilizing Diffractive Masks Having Structures. . . 79

Fig. 4.3 An example of the random mask with 50% blocking. The image was taken from:
A. Borkowski, Z. Zalevsky and B. Javidi, “Geometrical Super Resolved Imaging Using Non
periodic Spatial Masking,” JOSA A 26, 589-601 (2009)

blocking is presented in Fig. 4.3. Figure 4.4a—c presents three super resolved
reconstructions with three types of masks described in Sect. 4.1.2.1 — (a) field of
view limiter, (b) random low-resolution mask, and (c). random high-resolution mask.

One may see that the reconstruction result is similar to the original high-resolution
image. In all three approaches, noise is added and the outcome is proven to have
reduced noise sensitivity. In this simulation, the reconstructed images were obtained
while applying the time multiplexing such that no black regions are remained in the
reconstruction. In the case of Fig. 4.4a, the field of view blocking mask blocked seven
high-resolution pixels (11.5 um) from each side of the field of view.

Figure 4.5 shows the masked image (left) and the blurred and masked images
(right) as they appear in the two cases where the random mask is applied.
Figure 4.5a and b is the cases of high-resolution and low-resolution random
masks correspondingly. The images were obtained through reconstruction of a
single image, without applying the time multiplexing approach which allows
reconstruction over the full field of view.

Next the sensitivity to noise is examined. Figure 4.6a and b shows the reference
high-resolution image without noise and with embedded noise having the standard
deviation of 20 gray levels, respectively. The low resolution is shown in Fig. 4.6c.
The reconstruction with first kind mask, i.e., by blocking the edges of the field of
view, is seen in Fig. 4.6d. Figure 4.6e and f shows reconstructed image with a
second and third kind of random masks, respectively. One may see that despite the
noise most of the information is recovered in all three approaches due to the applied
process of regularization. Next, the sensitivity of the quality of reconstruction to
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Fig. 4.4 Super resolved reconstruction using (a) field of view border condition. (b) Low-resolution
mask in the intermediate image plane. (¢) High-resolution mask in the intermediate image plane. The
image was taken from: A. Borkowski, Z. Zalevsky and B. Javidi, “Geometrical Super Resolved
Imaging Using Non periodic Spatial Masking,” JOSA A 26, 589-601 (2009)

various physical parameters is tested. The sensitivity testing is performed for the
random mask of the third kind.

The first test includes examining the sensitivity of the number of quantization
bits in the camera. Figure 4.7a shows the reference images. Figure 4.7b illustrates
the low-resolution images captured with a CMOS detector having a varied number
of quantization bits. In Fig. 4.7c, the reconstructed image is depicted. One can see
that it is not identical to the input, but due to the spatial masking, the obtained result
is much closer to the original input not only by its spatial resolution but also by the
gray level range obtained in each pixel.

From the figure, it is clear that even for a 4-bit camera, the image is fully
reconstructed. From the preceding simulations, it is possible to conclude that the
obtained result is not sensitive to the number of quantization bits of the CMOS
detector. Even for a CMOS detector having two quantization bits, the original
image is almost completely reconstructed.
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Fig. 4.5 Masked image (/eft) and blurred masked image (right) for: (a) high-resolution mask in
the intermediate image plane and (b) low-resolution mask in the intermediate image plane. The
image was taken from: A. Borkowski, Z. Zalevsky and B. Javidi, “Geometrical Super Resolved
Imaging Using Non periodic Spatial Masking,” JOSA A 26, 589-601 (2009)

The summary for the sensitivity of the described super resolution technique to
the number of quantization bits is presented in Fig. 4.8. Figure 4.8a plots the
standard deviation of the error (i.e., the difference) between the reconstructed and
the original high-resolution images vs. the number of quantization bits. Obviously,
reducing the number of bits increases the standard deviation of the error. One
important parameter related to the presented approach is its numerical reliability
which is related to the capability to perform the matrix inversion as indicated by
(4.9). A way to test this reliability is to observe the condition number. This number
is defined as follows:

k = NORM(AA + 1) NORM((ATA + oczl)’l), (4.10)

where NORM stands for the norm of a matrix (its largest singular value).
In Fig. 4.8b, the condition number vs. number of quantization bits is presented.



Fig. 4.6 (a) High-resolution reference. (b) High-resolution reference embedded with noise with a
standard deviation of 20 gray levels. (c¢) The low-resolution image after blurring by a factor of 8 in
every axis. (d) The reconstruction with mask, i.e., blocking the edges of the field of view. (e) The
same as in (d) but with applying random binary mask with large pixels. (f) The same as in (d) but
with applying random binary mask with small pixels. The size of the small pixel is 1/8 of the
binned pixels of the CMOS detector (i.e., 1 1.5 um). The size of the large pixel equals to the binned
pixel of the CMOS detector (i.e., 92 pm). The image was taken from: A. Borkowski, Z. Zalevsky
and B. Javidi, “Geometrical Super Resolved Imaging Using Non periodic Spatial Masking,” JOSA
A 26, 589-601 (2009)



Fig. 4.7 Computer simulations that examine the sensitivity of the suggested technique to the
number of quantization bits of the camera: (a) reference images captured by a CMOS detector with
varied number of quantization bits, (b) low-resolution images, (c) the reconstructed images. The
image was taken from: A. Borkowski, Z. Zalevsky and B. Javidi, “Geometrical Super Resolved
Imaging Using Non periodic Spatial Masking,” JOSA A 26, 589-601 (2009)
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Fig. 4.8 Tolerance to a
quantization. (a) Standard
deviation of the error between
the reconstructed and the
original high-resolution
images vs. number of
quantization bits. (b) The
condition number vs. number
of quantization bits. The
image was taken from:

A. Borkowski, Z. Zalevsky
and B. Javidi, “Geometrical
Super Resolved Imaging
Using Non periodic Spatial
Masking,” JOSA A 26,
589-601 (2009)
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As anticipated, reduction in the number of bits increases the condition number
which indicates lower reliability of the resulted reconstruction.

Figure 4.9 plots the qualitative effect of additive Gaussian, with zero mean, noise
over the reconstruction quality. The noise level is described by its variance in a
normalized dynamic range of 0—1. For instance, variance of 0.01 is equivalent to the
standard deviation of 0.1 (square root of 0.01) which is the standard deviation of
25.5 (=0.1 x 255) gray levels. The noise variance is between 0.0001 (very small
noise level) and 0.1 (very strong noise). Figure 4.10 summarizes the obtained
results. Figure 4.10a shows the standard deviation of the error (i.e., the difference)
between the reconstructed and the original high-resolution images vs. noise. In
Fig. 4.10b, condition number vs. noise level is plotted. Obviously, increasing the
noise level increases the error of the reconstruction as well as the condition number
(i.e., reducing the reliability of matrix inversion operation).
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Fig. 4.9 Sensitivity to Gaussian noise (with zero average). The noise level is described by its
variance in normalized dynamic range of O—1. The noise variance is: (a) 0.0001, (b) 0.0002,
(c) 0.0005, (d) 0.001, (e) 0.002, (f) 0.005, (g) 0.01, (h) 0.02, (i) 0.05, and (j) 0.1. The image was
taken from: A. Borkowski, Z. Zalevsky and B. Javidi, “Geometrical Super Resolved Imaging
Using Non periodic Spatial Masking,” JOSA A 26, 589-601 (2009)

Next the effect of degree of transparency of the mask on the quality of recon-
struction is evaluated. As the mask gets more transparent, less a priori known values
could be inserted into the reconstruction algorithm. The images of Fig. 4.11 are
obtained for random masks with different blocking portions. The range of the
blocking portion used in test is between 0.0005 (0.05% of the image is blocked)
and up to 0.5 (i.e., half of the image is blocked). Summary of the obtained results is
seen in Fig. 4.12 — here the standard deviation of the error (i.e., the difference)
between the reconstructed and the high-resolution blocked image images is shown.

One may see that for small blocking portions, the error is fixed and then when the
blocking portion is increased the error is significantly reduced. Figure 4.12b
presents the standard deviation of the error between the reconstructed and the
original (unblocked) high-resolution images. Here, increase of the blocking
increases the error since the reconstructed image becomes more different from
the high-resolution original reference image. As previously described, this reduc-
tion in performance can easily be resolved by capturing two rather than a single
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Fig. 4.9 (continued)
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condition number

Noise Variance

Fig. 4.10 Tolerance to noise. (a) Standard deviation of the error between the reconstructed and
the original high-resolution images vs. noise level. (b) The condition number vs. noise level. The
image was taken from: A. Borkowski, Z. Zalevsky and B. Javidi, “Geometrical Super Resolved
Imaging Using Non periodic Spatial Masking,” JOSA A 26, 589-601 (2009)

image while for each image a different random mask is used (while no spatial
overlapping exists between the blocking locations in the two random masks). In
Fig. 4.12c, the condition number vs. the blocked portion is examined. Increasing the
blocking portion gives us more a priori knowledge and thus the condition number is
reduced (meaning increased reliability of the inversion).
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Fig. 4.11 Performance vs. the blocking portion of the random mask. The blocking portion is as
follows: (a) 0.0005, (b) 0.001, (c) 0.002, (d) 0.005, (e) 0.01, (f) 0.02, (g) 0.05, (h) 0.1, (i) 0.2, and
(j) 0.5. The image was taken from: A. Borkowski, Z. Zalevsky and B. Javidi, “Geometrical Super
Resolved Imaging Using Non periodic Spatial Masking,” JOSA A 26, 589—-601 (2009)
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Fig. 4.11 (continued)

Figure 4.13 shows the results of the performance vs. the value of o coefficient in
the Tikhonov’s regularization algorithm [see (4.9)]. The range for the values of «
coefficient is between 0.001 and up to 20.

Figure 4.14 summarizes the effect of the regularization coefficient — Fig. 4.14a
presents the standard deviation of the error (i.e., the difference) between the
reconstructed image and the high-resolution reference image. Increasing the coeffi-
cient contributes to increased reconstruction error. Figure 4.14b plots the condition
number vs. the regularization coefficient. One may see that increasing the coeffi-
cient reduces the condition number (i.e., increases the reliability of the inversion).

4.2 Random Angular Coding for Super Resolved Imaging

4.2.1 Introduction

This section presents a super resolution work that generalizes the concept of super
resolution based on two static gratings by using two random static masks for the
encoding/decoding [11].
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Fig.4.12 The effect of partial blocking by the random mask over the overall performance. (a) The

standard deviation of the error between the reconstructed and the high-resolution blocked image.
(b) The standard deviation of the error between the reconstructed and the original (unblocked)

high-resolution images. (¢) The condition number vs. the blocked portion. The image was taken

from: A. Borkowski, Z. Zalevsky and B. Javidi, “Geometrical Super Resolved Imaging Using Non

periodic Spatial Masking,” JOSA A 26, 589-601 (2009)
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Fig. 4.12 (continued)

As a most noticeable fact, the super resolution effect is obtained without a cost
neither in the time domain nor in the field of view domain. This is contrary to
previous approaches which exploited time domain [12-20] and field of view
[21-27] to achieve a higher resolving power. Now, the impact is only performed
in dynamic range since the contrast of the obtained super resolved image is reduced.
As in the case of static grating approaches, the random masks must have smaller
features than those aimed to be resolved in the object. Here, the concept reported in
ref. [28] is expanded to the two-dimensional (2-D) case while reporting the appli-
cation of the method not only for coherent but also for incoherent (extended white
light source) illumination. Moreover, the gain in resolution depends on the
encoding mask pixel size and a factor of noise but it is independent on the NA of
the imaging system. This is an important improvement in comparison to the original
super resolving idea considering two fixed variable masks. The achieved experimental
results suggest that the technique can be implemented in microscopy by properly
selecting the pixel size of the encoding masks to the NA of the objective lens.

4.2.2 Mathematical Derivation

The schematic sketch of the proposed setup is shown in Fig. 4.15. For simplicity, a
1-D analysis is performed while the extension to 2-D is straightforward.



92 A. Zlotnik et al.

Fig. 4.13 (continued)
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Fig. 4.13 Performance vs. o coefficient of the Tikhonov’s regularization algorithm. The values of
o are: (a) 0.001, (b) 0.002, (¢) 0.005, (d) 0.01, (e) 0.02, (f) 0.05, (g) 0.5, (h) 1, (i) 2, (j) 5, (k) 10, and
(1) 20. The image was taken from. A. Borkowski, Z. Zalevsky and B. Javidi, “Geometrical Super
Resolved Imaging Using Non periodic Spatial Masking,” JOSA A 26, 589-601 (2009)

Thus, the field distribution after free space propagation of z; equals to

g:(x) = /G(u) exp(midz i) exp(2mixp)dp, 4.11)
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Fig. 4.14 The effect of the regularization coefficient over: (a) the standard deviation between the
reconstructed image and the high-resolution reference image. (b) The condition number vs. the
regularization coefficient. The image was taken from: A. Borkowski, Z. Zalevsky and B. Javidi,
“Geometrical Super Resolved Imaging Using Non periodic Spatial Masking,” JOSA A 26,
589-601 (2009)
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Fig. 4.15 Theoretical layout of the proposed setup. The image was taken from: D. Sylman, V.
Mico, J. Garcia and Z. Zalevsky, “Random Angular Coding for Superresolved Imaging,” Appl.
Opt. 49, 48744882 (2010)

where

G(u) :/g(x) exp(—2mixu)dx. (4.12)

This distribution is multiplied by the random encoding mask equals to m(x) and
the obtained product equals to

/ [/ M(p— ul)G(,ul)exp(nilzlulz)dul} exp(2mixp)dpu, (4.13)

while

M(u) = /m(x) exp(—2mixp)dx. 4.14)

Next back free space propagation of —z; is performed to obtain the field
distribution in the input plane while the effect of the encoding mask is included

/ {/ M(p—1y)G(yy) exp(niizl,ulz)d,ul] exp(—ni}vzluz) exp(2mixu)dp,
(4.15)

we switch now to the aperture plane by performing a Fourier transform

/ [/ (/ M(u— ,ul)G(ul)exp(nixlzlulz)d,ul) exp(—miizyi*) exp(2mixp)dp

i
X exp (— 7;1;?)6) dx,

(4.16)
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which after mathematical simplification equals to

2
{/M(g—; - ,ul)G(,ul) exp(niizl,ulz)d,ul] exp( nilzy (fF) ) 4.17)

It is next multiplied by the aperture (assuming a rect function for the aperture)

{/M G(u;) exp(midzip, )d,ul} exp( iz, (5;)2)@&(;; ) (4.18)
2

and after additional optical Fourier transform, the distribution reaches the output
plane (yet without taking into account the second decoding mask)

Ha . 2 Hy Ha
/ {/M<)F ,ul>G(u1)exp(m/121,ul )d,ul} exp< iz (AF) )rect(A’uz)
X exp< 2/7:3;#2)6) du,.

Then, change of variables is performed such that v = u, /AF

/ U M(v — ,ul)G(ul)exp(ni&zlulz)dul] exp(—mijzv?)rect (ﬁ)

X exp(—2mivx)dy.

(4.19)

(4.20)

Now it is need to add a free space propagation of z, in order to reach the random
decoding mask. To do that the angular spectrum approach for computing the free
space propagation is used, i.e., spectrum is multiplied by the chirp phase factor

/ {/M v — 1,)G(uy) exp(midzp,*)dpy | exp(mid(za — z;) 2>reCt(Au2v/2F>

x exp(—2mivx)dv.
4.21)

Now after propagating a free space distance of z,, the distribution is multiplied
by the decoding random mask m*(x). The Fourier of this mask equals to

m*(x (/M ) exp(2mixu) d,u) /M* w) exp(2mixp)dp (4.22)
and the expression obtained equals to

. . . ,
/ {/ M(v—p)G(1y) exp(m}uzlulz)d,ul} exp(mid(z, — zl)vz)rect <W)

{/ M*(—,uz)exp(Zrcix,uz)duz} exp(—2mixv)dv. (4.23)
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It may be rewritten as a convolution in the Fourier domain

. . v
// {/ M(vi — p1,)G(py) exp(mizzypy*)dpy | exp(mid(za — z1)vi?)rect (m)
M*(—v + vy) exp(2mixv)dvdv.

(4.24)

Now it is left to add additional free space propagation of —z,, which means another
Fourier transform multiplied by the chirp factor and inverse Fourier transform

// {/M(vl — 11,)G(uy) exp(miZzipy*)duy | exp(miZ(zo — Zl)vlz)rem(A,u:l//lF)
M (—v+vy) exp(—nilzzvz) exp(2mixv)dvidv.

(4.25)

This is the field distribution in the output plane. Note that the masks of encoding
and decoding are random and therefore are uncorrelated

/M(V)M*(v —v)dv = d(vy). (4.26)

This decorrelated relation is very strong (the mask is very random) and it may be
rewritten as

/f(v) “MOW)M* (v — vy)dv = 6(vy) 4.27)

for any general function f(v).
Since the distributions are fields, M can be complex and nonhermitic. It is
possible to rewrite (4.5) as

//G(,ul) exp(midzpt,*) exp(—milzov?) exp(2mixv)-

[/ exp(mid(zy — szﬁ)rect(#}iF)M(vl — ) M*(=v+vy)dvy | dudv
(4.28)

using the assumption of (4.27), yields

/ /G(,ul) exp(anlulz) exp(—niﬂvzzvz) exp(2mixv)d(v — u;)dpydv  (4.29)

and results with

/G(ﬂl) exp(mid(z1 — z2)py”) exp(2mixp; )dp, (4.30)
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In the spatially coherent case, the expression for intensity is:

2
I(x) = ’/G(ul)exp(nil(zl — )1, exp(2mixp; )du, 4.31)

For z; = z,, one can obtain super resolution since the field of the output equals to
the full resolution object’s field g(x). An interesting application for the proposed
setup can be filtering. By choosing z; —z, not being equal to zero, a filtering
operation is actually applied over the input object.

Note that for the assumption of (4.27), the Fourier transform of the encoding/
decoding mask M must contain a lot of features which means that m(x) should be
large in the spatial domain, at least as large as g(x) and definitely much larger than
the PSF of the imaging system before super resolution (within the width of the
aperture which is a rect in this case, the function M should have as much features as
possible). In addition, the spectral width of the coding/decoding mask, i.e., the
width of M should be as large as the synthetic aperture to be generated in the super
resolution process. This in a way resembles CDMA coding where orthogonality is
also required in order to separate mixed bits. In this case, the resolution of m(x), i.e.,
its smallest feature, should at least as small as the smallest desired feature in g(x)
divided by the super resolution factor. This is the cost for the super resolution
improvement in addition to the energy and contrast loses.

4.2.3 Numerical Simulation of the System

Three numerical simulations are presented in this subsection. One is for 1-D super
resolution and two numerical simulations are for a 2-D resolving. For the system
simulations, a spatially coherent illumination at a wavelength of 500 nm is
assumed. The size of the pixels in the input mask is 0.1 mm, and the density of
the random halls in the encoding/decoding mask is 25%. An example of an
encoding/decoding mask that is used in the simulations is presented in Fig. 4.16.

In the 1-D simulation, the distances are chosen to be z; =z, = 8 m, the size of the
low pass filter is 1.99 lines/mm. The width of the lines of the input object is 0.2 mm.

In the 2-D simulation, the distances are z; =z, = 10 m for the grating input and
12 m for the lattice input object. The size of the low pass filter is of 1.99 lines/mm in
both dimensions. The width of the lines of the input grating is 0.28 mm and the size
of the lattice unit is 0.2 mm x 0.2 mm.

Figure 4.17 presents the numerical simulations of the setup. In Fig. 4.17a, the
image of the high-resolution reference is presented. Figure 4.17b shows the low-
resolution reference as it is seen after the spatial blurring due to a low-resolution
imaging system. After applying the proposed approach, the obtained result is seen
in Fig. 4.17c. In Fig. 4.17d, one may see the results of Fig. 4.17c after reducing the
additive noises added due to the processing procedure. One may see that the
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Fig. 4.16 The mask that was
used for the encoding and the
decoding in the numerical
simulation. The image was
taken from: D. Sylman, V.
Mico, J. Garcia and Z.
Zalevsky, “Random Angular
Coding for Superresolved
Imaging,” Appl. Opt. 49,
48744882 (2010)

reconstructed image is very similar to the original high-resolution reference. The
SNR of the image had been improved from 0.7 to 0.9.

Figure 4.18 shows two additional numerical simulations of the proposed tech-
nique for 2-D super resolution case. In Fig. 4.18a-1 and a-II, two high-resolution
input reference images is shown. In Fig. 4.18b-I and b-II, low-resolution references
as they are seen after the spatial blurring due to a low-resolution imaging system is
plotted. After applying the proposed approach by adding the random masks, the
obtained results are seen in Fig. 4.18c-I and c-II. Figure 4.18d-I and d-II presents
the obtained results of Fig. 4.18c-1 and c-II after reducing the additive noise
generated in the processing. One may see that the reconstructed images also in
the 2-D case are very similar to the original high-resolution references, exactly as it
is in the 1-D case. The SNR of the image had been improved from 0.66 in both
images 4.18b-I and b-II to 1.3 at image 4.18d-I and 0.83 at image 4.18d-I1.

4.2.4 Experimental Results

To validate the proposed approach working under incoherent illumination, the
optical setup showed in Fig. 4.19 was assembled at the laboratory. Extended
(nonpunctual) polychromatic (white light) illumination is provided by Fiber-Lite
MI-150 fiber optic illuminator (halogen lamp source focused onto a fiber optic light
guide). For the encoding/decoding process, two identical binary amplitude square
random masks with different magnifications are used in the experiment. Figure 4.20
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Fig. 4.17 Numerical results for 1-D super resolution. (a) The high-resolution reference image.
(b) The image after reducing high spatial frequencies. (¢) The recovered image. (d) The recovered
image after reducing noise. The image was taken from: D. Sylman, V. Mico, J. Garcia and
Z. Zalevsky, “Random Angular Coding for Superresolved Imaging,” Appl. Opt. 49, 48744882
(2010)

depicts the area of the masks which is used for encoding/decoding the object’s
angular information and where the black circle acts as a reference detail. The masks
are fabricated using a standard process: (a) Taking samples made of glass substrate,
200 nm chrome layer and 500 nm photoresist layer. (b) Removing photoresist in
desired locations using with photolithography methodology. (c) Removing chrome
using chrome etching technique. The resulted mask is transparent in locations were
chrome was etched. The encoding mask (M) has a pixel size of 3 um and a total
width of 4.5 mm while the decoding one (M>) has a pixel size of 20 um and a total
width of 30 mm. Thus, the corresponding mask magnification is set to be 6.67.

Two imaging modules compose the experimental setup. In the first one, a variable
circular diaphragm is attached to the back focal plane of a commercial microscope
lens having 0.1 NA. The diaphragm allows us to stop down the resolution of the
objective lens in order to match its NA with the size of M, used in the experiment.
The magnification of the first imaging system must be properly adjusted to be equal to
that one defined by both random masks. Otherwise, no super resolution effect will be
attainable. To allow this, the first imaging system is placed onto a micrometer stage in
order to allow magnification adjustment between the M; and M, planes.
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Fig. 4.18 Numerical results for 2-D super resolution: (I) 2-D input grating (II) 2-D input lattice.
(a) The high-resolution reference image. (b) The image after reducing high spatial frequencies.
(c) The recovered image. (d) The recovered image after reducing noise. The image was taken
from: D. Sylman, V. Micd, J. Garcia and Z. Zalevsky, “Random Angular Coding for
Superresolved Imaging,” Appl. Opt. 49, 48744882 (2010)
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Fig. 4.19 The experimental setup for incoherent illumination case. The image was taken from:
D. Sylman, V. Mic6, J. Garcia and Z. Zalevsky, “Random Angular Coding for Superresolved
Imaging,” Appl. Opt. 49, 4874-4882 (2010)
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Fig. 4.20 Picture of the theoretical design of the random mask used in the experiment (only a
small part is included). The black circle marks a mask’s detail that can also be traced in Fig. 4.21
for reference. The image was taken from: D. Sylman, V. Micd, J. Garcia and Z. Zalevsky,
“Random Angular Coding for Superresolved Imaging,” Appl. Opt. 49, 48744882 (2010)

Figure 4.21 depicts the cases without and with proper magnification matching
between the masks. The white circle is for referencing both images and also for
Fig. 4.20. Since the input object is placed before M, its image will be placed also in
a plane previous to plane M;. Thus, the second imaging module images the aerial
image provided by the first system through M,. A photographic objective with
variable focus (or magnification) is selected as second imaging module to magnify
the aerial image into the output plane where the CCD (Basler A312f, 582 x 782
pixels, 8.3 um pixel size, 12 bits/pixel) is placed. This second imaging module
plays the role of the tube lens used in microscope systems. Due to the magnification
ratio between the two imaging modules of the setup, M, could be a low-frequency
mask (higher pixel size than M, as it was previously described) and no need for
high-resolution optics which is necessary in the second imaging module.

Under these assumptions, the super resolution approach is applied. A positive
USAF resolution test target is used as input object. The circular diaphragm of
the first imaging lens is closed in order to stop down the resolution of the
experimental setup. Figure 4.22a depicts the low-resolution image provided by
the experimental setup where Group 6 — Element 3 (G6-E3 from now on) is the
last resolved element in the test that defines a resolution limit which equals to
12.4 pm (80.6 Ip/mm). This resolution limit corresponds with a theoretical value
of 0.022 NA in the first imaging module considering the central wavelength
(0.55 pum) of the illumination. After performing the super resolved approach,
the resolution is improved until G7-E2 corresponding with 6.9 um (144.0 Ip/mm)
as shown in Fig. 4.22b, which defines that a resolution gain factor is equal to 1.8.
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b

Fig. 4.21 Example of: (a) magnification mismatch and (b) perfect magnification adjustment
between the two masks. White circle marks the same area for reference. The image was taken
from: D. Sylman, V. Micé, J. Garcia and Z. Zalevsky, “Random Angular Coding for
Superresolved Imaging,” Appl. Opt. 49, 48744882 (2010)

b

Fig. 4.22 Experimental results: (a) without and (b) with using the proposed approach and
corresponding with conventional low-resolution and superresolved images, respectively. The
image was taken from: D. Sylman, V. Mic6, J. Garcia and Z. Zalevsky, “Random Angular Coding
for Superresolved Imaging,” Appl. Opt. 49, 4874-4882 (2010)

Since the pixel size in M has a width of 3 um, the expected theoretical resolution
limit is twice the pixel width, i.e., 6 pm (or 166.7 lp/mm). This resolution limit
corresponds in the USAF test with G7-E3 (161 Ip/mm) which is very close to the
theoretical limit and it is not resolved due to experimental factors such as noise,
contrast reduction, mismatch between masks, etc. But in any case, this is the best
resolution limit that can be achieved using the proposed approach: that one can define
by the minimum period of the encoding mask. And such minimum resolution limit is
theoretically independent on the NA of the first imaging module. Then, the purpose is
to demonstrate this theoretical assumption. Figure 4.23 depicts the experimental
results achieved with different diameters of the limiting diaphragm. Running from
left to right, the NA value is increased from 0.016 to 0.022 and to 0.031, and the
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Fig. 4.23 Experimental results showing that the gain in resolution does not depend on the NA of
the first module imaging system. (a)—(d), (b)—(e), and (c¢)—(f) depict different cases of low and
superresolved images corresponding with different diameters of the lens diaphragm. The image
was taken from: D. Sylman, V. Micd, J. Garcia and Z. Zalevsky, “Random Angular Coding for
Superresolved Imaging,” Appl. Opt. 49, 48744882 (2010)

resolution limit is improved from 17.5 um (G5-E6 in Fig. 4.23a), 12.4 um (G6-E3 in
Fig. 4.23b), and 8.8 um (G6-E6 in Fig. 4.23c) to 6.9 um (G7-E2 in Fig. 4.23d) and
6.2 um (G7-E3 in Fig. 4.23e—f). And the corresponding resolution gain factors are
2.5, 2, and 1.4, respectively. Thus, it is demonstrated that the resolution limit of the
setup is defined by the minimum pixel size of the encoding mask M.
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