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Preface

Super resolution is one of the most fascinating and applicable fields in optical data

processing. The urge to obtain highly resolved images using low-quality imaging

optics and detectors is very appealing.

The field of super resolution may be categorized into two groups: diffractive and

geometrical super resolution. The first deals with overcoming the resolution limits

that are dictated by diffraction laws and related to the numerical aperture of the

imaging lens. The second deals with overcoming the limitation determined by the

geometrical structure of the detector array.

Various techniques have been developed to deal with both types of resolution

improvements. In all approaches, the spatial resolution improvement needs the

object to exhibit some sort of constraint (such as monochromaticity, slow variation

with time, single polarization, etc.), related with an unused dimension of the object.

The improvement is thus made at the price of sacrificing unused degrees of freedom

in the other domains as time, wavelength, polarization, or field of view.

The methods pursuing super resolution utilize masks having diffractive features.

They are classified here according to the nature of their structure:

1. Possessing full/piecewise periodicity

2. Spatially finite repeating random structures/random structure with finite period

3. Random structure with infinite period

The book is thus organized in the following way. Chapter 1 briefly presents the

relevant theoretical background. Chapter 2 discusses several super resolution

methods implementing diffractive masks having a certain degree of periodicity.

In Chapter 3, we explore techniques utilizing diffractive masks having structures

with a finite random period. Finally, in Chapter 4, the mask becomes fully random.
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Chapter 1

Theoretical Background

Alex Zlotnik, Zeev Zalevsky, David Mendlovic, Jonathan Solomon,

and Bahram Javidi

1.1 Fourier Optics

1.1.1 Free Space Propagation: Fresnel and Fraunhofer Integrals

Under scalar diffraction theory assumption and assuming that work is relatively

close to optical axis

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� xÞ2 þ ðy� �Þ2

q
<< z0, it is possible to write the follow-

ing relationship [1]:

Uðx; y; z0Þ ¼ exp jkz0ð Þ
jlz0

ZZ
Uiðx; �Þ exp j

p
lz0

x� xð Þ2 þ y� �ð Þ2
h i� �

dxd�: (1.1)

This is known as the Fresnel diffraction integral. It can be calculated as a

convolution between the incident field Ui and the free space propagation (FSP)

quadratic phase function.

In certain limiting cases, Fresnel diffraction formula can be simplified to yield

Fraunhofer diffraction integral. If the diffraction is observed on a very remote

plane, the quadratic phase factor inside the integral of (1.1) can be omitted,

provided that the following condition is fulfilled:

p
lz0

x2 þ �2
� �

max
¼ p ) z0 ¼ D2

l
:
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The obtained result is then:

Uðx; y; z0Þ ¼ exp jkz0ð Þ
jlz0

exp j
p
lz0

x2 þ y2
� �� �

�
ZZ

Uiðx; �Þ exp �j
p
lz0

xxþ y�ð Þ
� �

dxd�: (1.2)

1.1.2 Imaging System

In this section, a simple imaging system consisting of a single thin lens of a finite

aperture P(u, v) and a focal length f is briefly analyzed. This system images a planar

object in the (x, �) plane into a (x, y) image plane, while a monochromatic illumi-

nation is assumed (see Fig. 1.1).

1.1.2.1 Coherent Illumination

The output field Uimage(x, y) is related to input Uobject(x, �) through a superposition
integral:

Uimageðx; yÞ ¼
ZZ

Uobjectðx; �Þhðx; y; x; �Þdxd�; (1.3)

where h(·;·) is the amplitude at image coordinates (x, y) in response to a point –

source object at (x, �), and is given by [1]:

hðx; y; x; �Þ ¼ 1

l2z1z2
exp i

p
lðz2 � f Þ x2 þ y2

� �� �

�
ZZ

P u; vð Þ exp �i
2p
lz2

ðx�MxÞuþ ðy�M�Þv½ �
� �

dudv; ð1:4Þ

z1 z2

(ξ η) (x, y)(u,v)Fig. 1.1 Imaging system

consists of lens with focal

length f; (x, �) is the object
plane, and (x, y) is the image

plane

2 A. Zlotnik et al.



where M is the magnification, M ¼ �z2 z1= ; z1, z2, and f obey the relation:

1

z1
þ 1

z2
¼ 1

f
: (1.5)

After several simple coordinate transformations, one can obtain a convolution

relationship:

Uimageðx; yÞ ¼ ~hðx; yÞ � Ugðx; yÞ; (1.6)

where Ug is the geometrical optics prediction of the image; ~hðx; yÞ is the point-spread
function with a quadratic phase factor omitted.

1.1.2.2 Incoherent Illumination

Imaging systems using spatially incoherent illumination are linear in intensity [1]

and obey the intensity convolution integral:

Iimageðx; yÞ ¼ k � hðx; yÞj j2 � Igðx; yÞ; (1.7)

where k is a constant; Iimage(x, y) and Ig(x, y) are intensities of Uimage(x, y) and
Ug(x, y), respectively.

1.2 Diffraction Resolution Limitation

Let us assume that we have an optical system that relies on a lens with a focal length

f and aperture D. If such a system stares on a scene located at a distance of R from

the sensor (R>>f ), the viewed resolution in the image plane is limited by

diffraction:

hðrÞ / J1 pr lF#

	� �
r lF#

	













2

(1.8)

and therefore equals to 1:22lF#, where r is the radial coordinate in the focal plane

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
, l is the wavelength, and F# is the F-number of the imaging system

F# ¼ f D= .

By translating the resolution bound to the object plane, the smallest detail

possibly viewed is of the size:

drð Þdiff ¼ 1:22
l
D
R: (1.9)
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1.3 Geometrical Resolution Limitation

However, modern optical system are digital and contain some form of an

electronic sensor. The sensor has nonzero pixels, having a size of Dd. The pixel

size provides the “geometrical resolution” bound. This limitation expressed in the

object plane yields:

ðdxÞg ¼
Dd
f
R: (1.10)

In most cases, Dd>1:22ðlf=DÞ, and the geometrical resolution is the bottleneck,

in the optical system.

1.3.1 The Effects of Sampling by CCD (Pixel Shape and Aliasing)

Let us assume that an image is received on the CCD plane. The CCD samples the

image with finite pixels having a defined pitch. Let us denote the distance between

each pixel as Dx and the width of each pixel as Dd. Sampling the image creates

replicas of the continuous image spectrum in the frequency domain. These replicas

are spaced at a constant offset in the spectrum, which is proportional to the

resolution of the CCD, Dn ¼ 1=Dx.
Therefore, sampling the physical image by the CCD is equivalent to [2]:

(a) Convolving it with a rect function (a rectangular window) with a width equal to the

size of a single CCD pixel. The latter simulates the effect of the nonzero pixel size.

(b) Multiplying the input by a comb function
P

m dðx� mDxÞ .
In the frequency plane, this is equivalent to:

(a) Multiplying the original’s input spectrum by a sinc function sin cðxÞ ¼ð
ðsinðpxÞ=pxÞÞ with a width of 2=Dd

(b) Convolving the result with a train of Dirac functions (due to the pixel spacing)P
n dðn� ðn=DxÞÞ

If the distance between the replicas is not sufficient, the replicas overlap. As a

result, the image is corrupted. Figure 1.2a presents an input spectrum, and the

aliased corrupted spectrum is shown in Fig. 1.2b.

Aliasing occurs when the image’s resolution is more than half of that of the CCD

(Nyquist sampling rate). Image resolution measured on the CCD plane is denoted as

Dnimage. In mathematical terms, aliasing occurs when 2Dnimage>Dn. Diffraction effects
have been neglected as it is assumed that geometrical resolution bound is dominant.

4 A. Zlotnik et al.



1.4 Super Resolution Explained by Degrees

of Freedom Number

The possibility for super resolution is often explained by the notion of degrees of

freedom (DoF) invariance of a given optical system. Other term describing the

same is the information capacity of the optical system. That is the number of

degrees of freedom (DoF) number the system could pass through is constant and

equal to information capacity [3]:

N ¼ ð1þ 2LxBxÞð1þ 2LyByÞð1þ 2LzBzÞ
� ð1þ 2LTBTÞ logð1þ SNRÞ; (1.11)

where Lx Ly is the field of view, Lz is the depth of field, Bx By Bz is the spatial

bandwidth in x, y, z dimensions; LT is the observation interval and BT is the

temporal bandwidth. SNR is the signal-to-noise ratio. A priori knowledge of object

properties makes possible to code the object in order to pass it through optical

system inferior in certain DoF and superior in others. An example for such coding is

a

b

υΔ

Original
input

Spectrum

υΔ−

Aliasing

Spectum
Replicas

υΔυΔ−

Fig. 1.2 (a) Output image

spectrum before being

sampled by CCD. (b) Output

image spectrum after being

sampled by CCD. The image

was taken from: J. Solomon,

Z. Zalevsky and

D. Mendlovic, “Geometrical

Super Resolution by Code

Division Multiplexing,”

Appl. Opt. 44, 32–40 (2005)
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object space bandwidth (SW) shaping in Wigner space [4]. Space bandwidth

product is the lateral DoF from (1.11). For 1-D signal, it is defined as

SW ¼ DxDn; (1.12)

Dx is the area where the signal u(x) is essentially nonzero and Du is the size of the
frequency where the spectrum of u(x) is essentially nonzero.

1.4.1 Wigner Transform

A Wigner chart is a wave-optical generalization of the Delano diagram (ray optics

Y �Y diagram). Its definition is:

W x; nð Þ ¼
Z 1

�1
u xþ x0

2

� �
u� x� x0

2

� �
exp �2pinx0ð Þdx0; (1.13)

where u(x) is the complex amplitude and n is the spatial frequency. Apparently, a

Wigner chart presents the spatial and spectral information simultaneously. It doubles

the number of dimensions; thus, a one-dimensional (1-D) object has a two-dimen-

sional (2-D) Wigner chart. Figure 1.3 shows the effects of elementary optical

modules, such as magnification (MAG), a lens (LENS), FSP, and Fourier transform

(FT) or fractional Fourier transform (FRT), on the Wigner chart of a signal [5–8].

The definition of SW was generalized by the use of the ensemble average of the

Wigner chart that is due to a set of signals that may enter the optical system. There

υ

υυ

υ υ υ

x

x

x

xxx

LENS

FSPFTFRT

MAG

Fig. 1.3 Wigner properties
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instead of being a pure number, SW x; nð Þ was a binary function of two variables

(referring to as 1-D object) with the following definition:

SWB x; uð Þ ¼ 1

0

f W x; nð Þh i>Wthresh;
otherwise:

�
(1.14)

The area of lim
x!1 SW x; nð Þ indicates in fact the number of DoF; e.g., if dx denotes

the spatial resolution and dn is the spectral resolution, then dx ¼ 1=Dn, dn ¼ 1=Dx,
and the number of degrees of freedom (DoF) N is:

N ¼ Dx
Dd

¼ Dn
dn

¼ Dx � Dn: (1.15)

For a given optical system whose SW acceptance capabilities are denoted by

SWYu x; nð Þ and a given input signal whose existing SW is denoted by SWIu x; nð Þ, a
necessary condition for transmitting the whole signal without information loss is:

SWIn x; nð Þ � SWYn x; nð Þ: (1.16)

If the transmission is lossless, then the following condition takes place:

Nsignal 	 Nsystem: (1.17)

1.5 Inverse Problem Statement of Super Resolution

Achieving either geometrical or diffraction super resolution can be formulated as

solving inverse problem.

Inverse problem is stated in the following manner: An image is known on a

certain grid. One wishes to restore image values on a finer grid. The image is related

to high-resolution unknown object through blurring, sampling, and addition of

noise. The blurring is assumed to be a spatially invariant operator. It is possible

to write the following discrete relationship (on a fine grid):

y m; n½ � ¼ g m; n½ � � u m; n½ � ¼
XR�1

k¼0

XR�1

l�0

g k þ m; lþ n½ �u k; l½ �; (1.18)

where g[. . .] is the blurring matrix, u[. . .] is the high-resolution object to be

restored.

It is convenient to represent 2-D images as column-wise concatenated vectors

and the blurring operator as a matrix. The original and blurred images are therefore

assumed to be related by a compact set of linear equations:

Ax ¼ b: (1.19)
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In order to be defined as well-posed and to have a unique solution, it must

uphold the following three conditions: existence, stability, and uniqueness [9].

If some of the conditions do not hold, then the problem is ill-posed, and there may

not be a solution, or it may not be unique. Furthermore, since this solution does

not uphold all three conditions mentioned above, the additive noise prevent us

from converging to real solution. Likewise, since there are more unknowns than

equations, the solution is not unique. Finally, a small change in one of the

variables would affect the solution of the problem so that the stability of the

solution would be very low.

One possible direction for the above-mentioned problems is to use the

pseudoinverse matrix that is obtained by a reduction of the least square error.

Techniques dealing with least square error reduction [10] involve recursive least

square error (RLS) [11] and recursive total least square error (RTLS) [12]. A more

sophisticated method to reduce least square errors recursively uses regulari-

zation [13]. This method which succeeds to overcome noise contains Tikhonov’s

regularization component. This component is designed such that for problems

without noise it will be possible to reduce it so that the real solution will be

approached, while for images with noise this positive addition will yet yield an

optimal solution [14].

There is a set of other regularization methods that uses prior knowledge of the

system regarding the statistical properties of the blurring problem. This set of

methods is called stochastic reconstruction methods. In this set of methods,

reconstruction of a super resolution image is a statistical re-evaluation problem,

where all quantities are modeled by their probability functions. One way to

reconstruct is by applying the maximum a posteriori (MAP) where the super

resolved image may be obtained by looking for the maximum of the conditional

probability distribution whose estimation is done by the Markov random field

(MRF) in different ways, enabling the addition of a priori constraints into the

solution [15, 16]. Another solution known as maximum likelihood (ML) is

actually a particular case of MAP, where the required image is obtained by the

ML estimator which does not need any a priori knowledge [17].

A different approach named projection onto convex sets (POCS) assumes a

number of prior demands of the required solution. For each such demand, an

operator is defined that projects a dot in the field of the super resolution image

onto a field fulfilling the constraint. Such an iterative process of operator activa-

tion causes the solution to converge fulfilling all the constraints and even may

avoid guessing the first solution either by using the time domain [18] or by using

the frequency domain [19]. Following that another interesting direction for

solving the blurring problem by iteration is via using the iterated back-projection

(IBP) method [20].

8 A. Zlotnik et al.
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Chapter 2

Super Resolution Methods Implementing

Diffractive Masks Having a Certain

Degree of Periodicity

Alex Zlotnik, Zeev Zalevsky, Vicente Micó, Javier Garcı́a,

and Bahram Javidi

2.1 Single Snap-Shot Double Field Optical Zoom

2.1.1 Introduction

This section presents an approach that provides super resolved imaging at the center

of the field of view and yet allows to see the remaining of the original field of view

with original resolution. This operation resembles optical zooming while the

zoomed and the nonzoomed images are obtained simultaneously. This is obtained

by taking a single snap-shot and using a single imaging lens. The technique utilizes

a special static/still coding element and a postprocessing algorithmic, without any

mechanical movements.

Optical zooming is basically a super resolution technique since its purpose is to

obtain resolution higher than provided by the imaging system (prior to zooming).

The physical restrictions that limit the spatial resolution of an imaging system

are either the size of aperture of the imaging lens or the geometrical parameters of

the detection array such as its pitch and fill factor. Eventually, the hardest

limitation prevails.

The common optical realization of optical zoom includes several lenses and a

mechanical mechanism as in ref. [1]. Other principles do not include mechanical

movements but rather other time adaptive concepts allowing variation of the

overall focal length of the lens. In the literatures [2–13], one may see an example

of several works dealing with zooming lenses. Thus, basically the zooming

operation is actually the increase in focal length of the imaging module providing

Z. Zalevsky (*)
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smaller foot print of each pixel in the detector, on top of the object. The spatial

resolution improvement in the center of the field of view during the zooming

process is obtained since the foot print of each pixel on the object equals to DxR/F,
where Dx is the pitch of the pixels of the detector, F is the focal length, and R is the

distance from the object.

Thus, the regular optical zooming operation has two major disadvantages.

The first one is that the increase of the focal length, for instance, by a factor of

3, while preserving the F-number will result in increase in the volume of the

imaging module by a factor of 33 ¼ 27. It means more weight and less reliability

(due to the mechanical mechanism). The second disadvantage is that the zoomed

and the nonzoomed images are not obtained simultaneously, and the resolution

improvement in the central part of the field of view comes on the expense of

decreasing the field of view. Note that the resolution improvement in the center of

the field of view is not due to the increase of the focal length F but is rather due to

the generation of smaller effective pixels in that spatial region. That is reduction

of Dx by the same factor in which the F-number has been increased.

In the approach reviewed in this section, the zoomed and nonzoomed images

are obtained simultaneously in a single snap-shot. It should be noted that the

resolution improvement obtained in the central part of the field of view [14]

follows the idea presented in ref. [15]. However, the idea in ref. [15] shows

how to obtain the resolution improvement, but here it is shown how to obtain

this improvement without sacrificing the field of view, i.e., also obtaining the

nonzoomed resolution in the remaining part of the field of view. Note that having

an improved resolution in the central part of the field of view and simultaneously

preserving the original nonzoomed resolution in the outer parts yield more

spatially resolved points than the number of pixels in the detector array.

Such an outcome is made possible by a trade-off payment in the dynamic range

of the captured image.

The operation principle is based on the followings: the image resolution

obtained using a common single lens is higher in the center of the field of view

and degrades toward the periphery. Usage of this property is essential for the

proposed operation principle. This is because the surface where a perfect image is

obtained is rather a sphere than a plane. The optical limit for the resolution

obtained in the center is proportional to lF/D (where l is the wavelength, F is

the focal length, and D is the aperture of the lens). For many detectors, this

resolution limit is much less restrictive and harder to reach in comparison to the

restriction due to the sampling pitch of the detector. Consequently, in such cases,

the detector is forced to get a poor image quality. In our technique, the optics

provides, in the center of the field of view, an optical resolution that is limited by

the diffraction. In the remaining part of the field of view, the optics provides a

resolution limit which equals to the detector’s sampling pitch. In this manner by

exploiting the aliasing effect due to sampling of the detector and by performing

some digital postprocessing result in a super resolved image. The image has a

diffraction limited resolution at the center region of the field of view and yet

preserves the original geometrical resolution at its outer parts.
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2.1.2 Theory

2.1.2.1 Preliminary

For the sake of simplicity, the analysis of the method is one-dimensional (1-D).

A two-dimensional deduction is straight forward. Let us take a 1-D positive object

s(x) (see Fig. 2.1). Its spatial support is denoted by LT. This object has minimal

resolution detail denoted by dx in its central LC part. In the following mathemati-

cal analysis, LC is taken to be 1/6 of LT, although other ratio can be chosen.

The finest optically resolved detail in the remaining periphery is three times

larger, 3dx, than that equals to the geometrical limitation of the pitch of the

sampling detection array (see Fig. 2.1). This limitation is determined by the optics

and exists prior to the digital sampling performed by the detection array.

One wishes to image this object using an ideal aberration-free optical system

with a magnification factor of 1. The image is captured using a camera with a pixel

pitch of 3dx, while pixels are assumed to represent an ideal spatial Dirac impulse

train. The proposed method enables resolving details with a high resolution in the

central part, in spite of the larger pitch, without decrease in the field of view.

Therefore, an optical zooming of �3 in the central 1/6 field of view is obtained,

while having simultaneously the �1 resolution (without zooming) in the other 5/6

field of view. All of this is obtained from a single optically coded and then digitally

processed image. The penalty is the introduction of some noise in the obtained

image. The optical coding involves insertion of a certain spatial coding grating in

the entrance pupil plane of the imaging lens. The super resolving approach that

increases the resolution in the central 1/6 part of the field of view is based upon the

approach presented in ref. [15]. The investigated case here deals with coherent

illumination, although extension into noncoherent case is straight forward as

described in ref. [15].

Note that the geometrical super resolution method described in ref. [15] is

equivalent to the realization of an optical zoom in the central part of the field of

view since the footprint seen, in the super resolved image, over the observed object

equals to: ðR=FÞ ðDx=kÞ where R is the distance between the camera and the object,

F is the focal length, Dx is the pitch of the pixels of the camera (Dx ¼ 3d), and k is

Fig. 2.1 One-dimensional object. The minimal details in the central part are three times finer, than

those in the periphery. The image was taken from: Z. Zalevsky and A. Zlotnik, “Single Snap-Shot

Double Field Optical Zoom,” Opt. Exp. 13, 9858–9868 (2005)

2 Super Resolution Methods Implementing Diffractive Masks. . . 13



the geometrical super resolution factor (the case of k ¼ 3 is assumed hereafter).

In case that optical zoom of factor k is performed, the focal length is changed to

kF and thus the footprint equals to ðR=ðkFÞ ðDxÞ. It is easily seen that both

expressions are identical. Thus, in ref. [15], it is shown that how without changing

the focal length it is possible to perform optical zooming, which is actually done by

performing geometrical super resolution. However, the condition for the operation

of the approach presented in ref. [15] is that the input object occupies no more than

1/k of the field of view.

2.1.2.2 Mathematical General Description

S(n) denotes the Fourier transform of the object s(x), with the spatial frequency

coordinate, n, belonging to the spectral range of ∈[�nmax, nmax], where nmax is the

maximal spatial frequency of the object. It is inversely related to the spatial

resolution dx. The Fourier content is virtually divided into three equal regions:

(a) Left third S�1(n) with n ∈ [�nmax, �1/3nmax]

(b) Central third S0(n) with n ∈ [�1/3nmax, 1/3nmax]

(c) Right third S1(n) with n ∈ [1/3nmax, nmax].

These spectral components are multiplied by the spatial grating so that a certain

degree of orthogonality between the components is created. The coding grating

mask also consists of three regions:

(a) Left third G�1(n) with n ∈ [�nmax, �1/3nmax]

(b) Central third G0(n) with n ∈ [�1/3nmax, 1/3nmax]

(c) Right third G1(n) with n ∈ [1/3nmax, nmax]

The chosen mask fulfills the orthogonality condition of:

GlðvÞGkðvÞ ¼ d½l; k�; (2.1)

where d[l, k] is the Kronicker delta function. When the image is under-sampled by

the detector, an aliasing effect takes place. In fact, the aliasing is essentially a

folding of S�1(n) and S1(n) into a central third of the spectrum. Therefore, the

spectrum of the captured image equals to:

IðnÞ ¼
X1
k¼�1

SkðnÞ � GkðnÞ n 2 �1

3nmax

;
1

3nmax

� �
: (2.2)

To improve the clarity of this presentation, let us now briefly recall the derivation

made in ref. [15]. Let us examine a simple situation, in which the goal is improving

14 A. Zlotnik et al.



the resolution by a factor of 3. Assuming an ideal CCD in which the pixels

are indefinitely small and are placed at a distance of Dx from one another

(according to Fig. 2.1, Dx ¼ 3dx). Next it is shown that when one pixel is willing

to sacrifice 1/3 of the field of view, the other can obtain an improvement in the

resolution of that central 1/3 of the field of view by a factor of 3 (without increasing

the focal length by a factor of 3). In the case of ideal sampling, the sampling function

of the CCD [denoted as CCD(x)] is modeled as an infinite train of impulses:

CCDðxÞ ¼
X1

n¼�1
d x� nDxð Þ: (2.3)

As previously mentioned, the coding mask [denoted as CDM~A nð Þ] is divided
into three subfunctions as follows:

CDM~A nð Þ ¼
X1
n¼�1

Gn n� nDnð Þ: (2.4)

The CDMA mask is multiplied by the Fourier plane with the spectrum of

the input signal s(x) [denoted as S(n)]. This is obtained by positioning the

coding mask in the coherent transfer function (CTF) plane of the imaging lens.

In the coherent case, in the CTF plane, a Fourier of the imaged object is obtained.

In the noncoherent case, this position is also related to the spectrum of the

imaged object.

This spatial distribution is multiplied by CCD(x), the sampling grid of the

CCD, which means that it is convolved with the Fourier of the CCD grid in

the spectral domain:

DðnÞ ¼ S nð Þ
X1
n¼�1

Gn n� nDnð Þ
" #

�
X1

n¼�1
d n� n

2p
Dx

� �" #
; (2.5)

where * denotes the convolution operation. Since Dn ¼ 2p=Dx, the last expression
can be simplified to:

DðnÞ ¼ S nð Þ
X1
n¼�1

Gn n� nDnð Þ
" #

�
X1
n¼�1

d n� nDnð Þ
" #

;

¼
X1
n¼�1

S n� nDnð Þ
X1
k¼�1

Gn n� nþ kð ÞDnð Þ
" #

; (2.6)
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Image retrieval is simply achieved by Fourier transforming the grabbed output

and multiplying it with the original coding mask and then downsampling:

RðnÞ ¼ D nð ÞCDM~A nð Þ ¼
X1
n¼�1

S n� nDnð Þ
X1
k¼�1

Gn n� nþ kð ÞDnð Þ
" #( )

X1
m¼�1

Gm n� mDnð Þ
" #

;

¼
X1
n¼�1

S n� nDnð ÞGn n� nDnð Þ ¼ S nð ÞCDM~A nð Þ��������!
downsampling

S nð Þ; (2.7)

Modulating the input’s spectrum by multiplying with the coding mask correctly

prevents data corruption due to aliasing. This insight was proven in ref. [15] and

demonstrated experimentally. It indeed demonstrates super resolution, i.e., an effect

equivalent to seeing an image with a zoom of�3 without changing the focal length.

But this improvement is obtained only in the central 1/3 of the field of view while

the input object occupies only 1/3 of the field of view. Next it is farther proved that

it is possible to obtain the super resolved image in the central field of view without

the need of paying with the outer 2/3 of the field.

The grating of (2.1) is illustrated in Fig. 2.2 in a folded manner:G�1(n) andG1(n)
are folded into a central third part of the spectrum of G0(n). As a result, I(n)
can be described as composed of so-called “macropixels.” Each macropixel

Fig. 2.2 The spatial grating positioned in CTF plane. Its three parts G�1(n), G0(n), and G1(n) are
plotted in a folded manner. The period ofG0(n) is three times smaller than that ofG�1(n) andG0(n).
The image was taken from: Z. Zalevsky and A. Zlotnik, “Single Snap-Shot Double Field Optical

Zoom,” Opt. Exp. 13, 9858–9868 (2005)
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consists of the S�1(n), S1(n), and S0(n) contributions (see Fig. 2.3a–c). The structure
presented in Fig. 2.3a and b is the theoretical goal since it provides full and simple

orthogonality condition. In reality, however, such binary-like coding grating will

have finite number of harmonics. Therefore, the spectral structure of the

“macropixels” will be different. However, if properly designed, it will yet remain

orthogonal (when proper locations are observed) and will resemble the structure

showed in Fig. 2.3c.

Next, the reconstruction algorithm for the original image is formulated.

The orthogonal coding grating mask is a Dammann-like phase structure whose

spatial effect is similar to replications. The mask is designed such that a different

replication is generated for the high- [G�1(n) and G1(n)] and low-frequencies

content [G0(n)] as shown in Fig. 2.4. The replications for high frequencies are

1/6 field of view apart and for low frequencies are 1/2 field of view apart.

Fig. 2.3 Orthogonality and macro pixels: (a) This is an example for orthogonal coding: in each

spectral region there is a macropixel with a certain nonzero pixel. (b) After aliasing, all nonzero

pixels are folded in a nonoverlapping way, providing orthogonality. (c) Due to the real realization

of the grating, the true structure is a little bit different from the theory presented in parts (a) and (b)

of the figure. The image was taken from: Z. Zalevsky and A. Zlotnik, “Single Snap-Shot Double

Field Optical Zoom,” Opt. Exp. 13, 9858–9868 (2005)
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1. First, the high-frequency content S�1(n) and S1(n) is reconstructed by sampling

I(n): The spatial contents of S�1(n) and S1(n) occupy only a fraction of the field
of view LT. Therefore, it is possible to keep only each sixth (LT/LC) sample

without losing information. Other samples are calculated using interpolation.

Figure 2.5a illustrates the sampling grid. Note that the sampling points of

S�1(n) and S1(n) are orthogonal. On the other hand, there is a certain noise

added to the sampled high-frequency content due to S0(n). In order to minimize

this noise effect, each sample value is taken to be as algebraic average in its

neighborhood. Figure 2.5b shows the Fourier transform of the grating

illustrated in Fig. 2.5a. As one may note, it resembles seven delta functions:

the two pairs of delta functions appearing on both sides of the central

delta resemble spatial derivative since each one of those two pairs contain

one positive and one negative delta while small spatial shift is introduced

between them. Those two pairs that make the derivative correspond to

the two replications (the �1 and the 1 orders) related to the high frequencies

(Fig. 2.4a). The outer two deltas correspond to the two replications (again

the �1 and 1 orders) of the low frequencies (Fig. 2.4b).

2. Next, the reconstructed S�1(n) and S1(n) are subtracted from I(n). Ideally, this
leaves only the low-frequency content. It is expressed in the spatial domain as:

iLðxÞ ¼ s0 � g0ð ÞðxÞ � rect x

LT

� �
; (2.8)

Fig. 2.4 Spatial effect of the coding mask. (a). Replication of high spectral content. (b) Replication

of the low spectral content. The image was taken from: Z. Zalevsky and A. Zlotnik, “Single

Snap-Shot Double Field Optical Zoom,” Opt. Exp. 13, 9858–9868 (2005)

18 A. Zlotnik et al.



Fig. 2.5 (a) Sampling high-frequency content: S�1(n) samples are marked with blue circles and
S1(n) samples are marked with red diamonds. (b) The Fourier transform of the grating. The image

was taken from: Z. Zalevsky and A. Zlotnik, “Single Snap-Shot Double Field Optical Zoom,” Opt.

Exp. 13, 9858–9868 (2005)
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where s0 and g0 are the inverse Fourier transforms of S0(n) and G0(n),
respectively, and “*” stands for convolution operation. rect x=LTð Þ is defined as:

rect
x

LT

� �
¼ 1 jxj � LT=2;

0 otherwise:

�
(2.9)

The g0(x) is in fact consists of three Dirac impulse functions:

g0ðxÞ ¼
X1
n¼�1

an � d x� nLT
2

� �
; (2.10)

3. Now each iL(x) and s0(x) are divided into sets of six equally supported functions,
denoted correspondingly as rj(x) j ¼ 1, . . . ,6 and fj(x) j ¼ 1, . . . ,6. These two
sets of functions are related through six linear equations. Those equations can be

well understood after observing Fig. 2.4b:

r1ðxÞ ¼ a0f1ðxÞ þ a�1f4ðxÞ;
r2ðxÞ ¼ a0f2ðxÞ þ a�1f5ðxÞ;
r3ðxÞ ¼ a0f3ðxÞ þ a�1f6ðxÞ;
r4ðxÞ ¼ a0f4ðxÞ þ a1f1ðxÞ;
r5ðxÞ ¼ a0f5ðxÞ þ a1f2ðxÞ;
r6ðxÞ ¼ a0f6ðxÞ þ a1f3ðxÞ (2.11)

or alternately through a 6 � 6 matrix:

r1ðxÞ
r2ðxÞ
r3ðxÞ
r4ðxÞ
r5ðxÞ
r6ðxÞ

2
6666664

3
7777775
¼

a0 0 0 a�1 0 0

0 a0 0 0 a�1 0

0 0 a0 0 0 a�1

a1 0 0 a0 0 0

0 a1 0 0 a0 0

0 0 a1 0 0 a0

2
6666664

3
7777775

f1ðxÞ
f2ðxÞ
f3ðxÞ
f4ðxÞ
f5ðxÞ
f6ðxÞ

2
6666664

3
7777775
: (2.12)

The equation 2.12 can be solved to obtain the set of the fj(x), which is the low

frequency content of the original image information. Note that fi(x) are the original
six spatial regions of s(x) while ri(x) are the spatial distributions obtained in

each of the six regions after generation of the replications on the CCD plane.

Equations 2.11–2.12 correspond to the low-frequency shift shown in Fig. 2.4b.

ai are the coefficients with which each one of the three replication in Fig. 2.4b is

multiplied.
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2.1.3 Simulation Investigation

In the experiment, it is assumed that the test object is imaged with an optical

imaging system having a resolution limit in the periphery equals to the detector’s

array pitch. In the central part of the field of view, the optical resolution is three

times larger than in the periphery. In the simulations, a Lena image is used as an

object. A high-frequency 2-D barcode is planted in the center of this image.

This barcode is under-sampled if its every third pixel is taken into consideration.

Therefore, the central high-frequency content of the image, that is the barcode

pattern, is under-sampled or low-pass filtered by a detector. To adapt the notations

of Fig. 2.1, the resolution of Lena image is 3dx while the resolution of the barcode
pattern is dx. A grating element (the coding mask) was attached to the imaging

lens (the CTF plane or the entrance pupil of the lens) as depicted in the experi-

mental setup of Fig. 2.6a. The grating contains a different Dammann grating

(see ref. [16]) in the central and outer parts of the mask as described in Fig. 2.4.

The mask itself is illustrated in Fig. 2.6b.

The three regions of the grating depicted in Fig. 2.3c are merely a shifted

cosine functions. In this arrangement, the high-frequency content is sampled at

1/6 of the basic sampling rate, since the spatial extent of S�1(n) and S1(n) is

LC ¼ LT/6. The Fourier transform of the grating is merely several impulse

functions that in the spatial domain generate the six-shifted replicas of the object,

as shown in Fig. 2.5b. After recovering the high-frequency content, one can solve

a set of six linear equations [see (2.11) or (2.12)] in order to reconstruct the

low-frequency content S0(n). Figure 2.7a presents the nonzoomed image in which

the full field of view is seen. In this case, though, the central high-resolution

barcode structure cannot be resolved (see Fig. 2.7a). In Fig. 2.7b, a regular optical

zooming to the image of Fig. 2.7a is performed. Here, the field of view is reduced

by a factor of 3 but the spatial resolution is improved by the same factor and now

the central barcode structure can be resolved.

Fig. 2.6 (a) The experimental setup. (b) The coding Dammann mask that was attached to the

imaging lens. The image was taken from: Z. Zalevsky and A. Zlotnik, “Single Snap-Shot Double

Field Optical Zoom,” Opt. Exp. 13, 9858–9868 (2005)

2 Super Resolution Methods Implementing Diffractive Masks. . . 21



Fig. 2.7 (a) The nonzoomed test object used in simulations: Lena image with high-frequency

two-dimensional barcode pattern at its center. (b) The �3 zoomed test target where one may see

the high-frequency barcode pattern. The image was taken from: Z. Zalevsky and A. Zlotnik,

“Single Snap-Shot Double Field Optical Zoom,” Opt. Exp. 13, 9858–9868 (2005)

Fig. 2.8 The obtained result after the digital decoding. One may see the full field of view and the

zoomed highly resolved barcode pattern in the center of the field of view. The image was taken

from: Z. Zalevsky and A. Zlotnik, “Single Snap-Shot Double Field Optical Zoom,” Opt. Exp. 13,

9858–9868 (2005)
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In the final stage, the captured image is postprocessed. The resulted image is

shown in Fig. 2.8. This image proves the concept presented here: The high-frequency

central field of view (�3 optical zoom) is retrieved along with the nonzoomed

remaining field of view. Obviously, the 6 � 6 spatial blocks seen on the

reconstructed image in Fig. 2.8 can be removed by proper image processing and

enhancement that was not applied on the obtained image.

2.2 Full Field of View Super Resolution Imaging Based

on Two cStatic Gratings and White Light Illumination

2.2.1 Introduction

The usage of two static gratings for obtaining super resolved imaging dates back

to the work by Bachl and Lukosz in 1967 [17, 18]. Later on, it was expanded and

tested by other researchers [19–21].The Lukosz method is to place two static gratings

in one out of two possible configurations: one grating before the object and the

second one before the image or one grating between the object and the image and

the second one after the image plane. Then, a super resolved imaging is obtained

while payment in the field of view is assumed. In order to have super resolution, the

two fixed gratings create ghost images which limit the field of view around the region

of interest. Except the reduction in the field of view, the concept is applicable in a

simple way since the two gratings are static. However, the discussed system had a

magnification of one and therefore it had one major problem: one out of the two

gratings is not positioned between the object and the image. This means that for the

case of placing the first grating after the object, a second imaging lens is required in

order to image the second grating (which is positioned after the intermediate image

plane) on the output plane. In order to do that, the second imaging lens must provide a

resolution as high as the resolution that one wish to extract and therefore the super

resolution performed to the first lens seems to be not useful.

In this section, a modification to the super resolution approach with two main

novelties is presented [22]. First, a polychromatic illumination is used instead of

monochromatic one. Since the position of each ghost image is wavelength dependent

(due to the gratings), the various images are averaged. Therefore, no limitation on a

restricted field of view is required any longer. The possibility not to limit intentionally

the field of view is very important. Practically it eliminates the need in the intermedi-

ate imagery. The payment will be done in the dynamic range required from the

sensor. The second improvement is that the imaging system constructed has large

magnification ratio and therefore the second grating is magnified as well to match the

first grating. Due to the difference in magnification in comparison to the magnifica-

tion of first one, the spatial period of the second grating is also very large and the

addition of the second imaging lens in order to image it to the output plane does not

require a high-resolution lens. Therefore, the gratings perform super resolution only

on the first imaging lens and the setup therefore is much more effective.
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2.2.2 Mathematical Analysis

In the following, it is proved that indeed when a polychromatic illumination is

used instead of a monochromatic one, the approach of two fixed gratings can

provide super resolved imaging without paying with the field of view. The trade

off in this case will be the dynamic range since the undesired replications will be

averaged into a uniform intensity distribution (Because the various replications do

not fall on the same spatial position, their summation is equivalent to spatial

averaging of the product between the image of the object and the spectral

distribution of the illumination. Such an averaging approximately yields a

constant in case of large number of spatially dispersed replications). Figure 2.9

depicts the sketch of the proposed optical setup. The setup includes two cascaded

imaging modules. The first has a magnification of M1 ¼ u1/v1 and the second of

M2 ¼ u2/v2. The fixed gratings G1 and G2 are positioned at distances of z0 and z1
from the input and the intermediate image planes, respectively. The focal lengths

of the two imaging lenses are F1 and F2, respectively. The values of v1, u1, F1 as

well as v2, u2, F2 fulfill the imaging relation. Each one of the two imaging lenses

has finite aperture determining its limits of spatial resolution.

In the two fixed gratings approach, the first grating is used as an encoding

function (that encodes the spatial information of the input object and allows its

transmission through the band limited aperture of the imaging lens) while

the second is used as a decoder (that reconstructs the encoded information and

produces the super resolved image). Both must have identical spatial distributions

except for a scaling factor that depends on the ratio between the magnifications of

the two parts of the optical configuration of Fig. 2.9. The ratio betweenM2 andM1 is

large such that the spatial period of the required grating G2 will be very large and

will not be deformed by the cut-off frequency of the imaging lens of the second part

of the configuration of Fig. 2.9.

Input 
plane 

Image 
plane

u1 v1

F1 F2

u2 v2

Output 
plane 

z0 -z1

Fig. 2.9 Sketch of the proposed experimental setup
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In order to prove the effect of polychromatic illumination, due to reasons of

simplicity for the mathematical validation, it is assumed that M1 ¼ M2 ¼ 1, i.e.,

v1 ¼ u1 ¼ 2F1 and v2 ¼ u2 ¼ 2F2 as well as F1 ¼ F2 ¼ F. The mathematical

derivation is provided in ref. [21]. In that paper, an optical setup with assumptions

similar to presented here is mathematically analyzed. The analysis is based upon

basic Fourier optics relations while the outline for the formulation is as follows:

The input field distribution is a free space propagated at a distance of z0 and

multiplied by the first grating G1. Then it is virtually propagated backwards by a

free space distance of �z0 in order to reflect the effect of this grating over the input
plane. This result is Fourier transformed and multiplied by a rectangular function

rect(Dm/l2F) where Dm represents the lateral extent of the aperture of the imaging

lens. The result is inverse Fourier transformed to reach the image plane.

The distribution there is free space propagated a distance of �z1 and multiplied

by the grating G2 and then propagated backwards by a free space distance of z1 in
order to reflect the grating on the image plane which is imaged with a magnification

of 1 (in the simplified assumption) to the output plane. The field distribution

obtained in the image or in the output plane, after all those mathematical

procedures, is given as follows:

u0ðx; z ¼ 4FÞ ¼
X
m

X
n

AmBn

Z 1

�1
~u0ðnÞrect nþ mn0

Dm=l2F

� �
� exp

�
2pi

�
x mn0 þ nn1ð Þ

þ n z0lmn0 � z1lnn1ð Þ þ z0lm2n02

2
� z1ln2n12

2
� z1lmnn0n1

��
� exp 2pixn½ �dn;

(2.13)

where n0 and n1 are the fundamental frequencies of the gratings G1 and G2,

respectively. Am and Bn are the Fourier series coefficients of those gratings,

respectively. ~u0ðnÞ is the Fourier transform of the high-resolution input field

distribution. n and m are integers and l is the optical wavelength. n is the spectral
coordinate. In this simplified configuration, the axial location of z ¼ 4F is the

position of the image plane which is basically also the output plane since the effect

of the grating G2 that appears after the image plane was already taken into account

(i.e., reflected to the output plane).

The physical meaning of (2.13) is explained as follows: basically, it is an inverse

Fourier transform of the Fourier of the input field distribution ~u0ðnÞ multiplied by a

synthetic aperture and an additional phase term. Due to the summation over the

index m, the spectrum of the input field ~u0ðnÞ is actually multiplied by a synthetic

aperture which is wider than the original aperture that is set by the dimensions of the

imaging lens. The rect expression is synthetically enlarged due to its replications

and following the summation over the index “m”. Therefore, more spatial

frequencies can pass through the output image which contains spatial resolution
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that is equivalent to the one confined within the input field distribution. However,

the expression of (2.13) contains also an undesired phase term of:

exp 2pi x mn0 þ nn1ð Þ þ n z0lmn0 � z1lnn1ð Þ þ z0lm2n02

2
� z1ln2n12

2
� z1lmnn0n1

� �� �
:

In order to have true super resolution, this term is assumed to be a constant

that does not affect the inverse Fourier transform integral. Choosing z0 ¼ �z1
and n0 ¼ n1 ¼ Dm=l2F (two identical gratings) which yields:

u0ðx; z ¼ 4FÞ ¼
X
m

X
n

AmBn

Z 1

�1
~u0ðnÞrect nþ mn0

Dm=l2F

� �
:

exp 2pi x nþ n0ðmþ nÞð Þ þ n z0lðmþ nÞn0ð Þ þ z0ln02

2
ðmþ nÞ2

� �� �
dn:

(2.14)

Note that the value of z0 and z1 are measured according to the notations of

Fig. 2.9. This means that choosing z0 ¼ �z1 means that either G1 and G2 are in

front of the input and image planes, respectively, or both are after those planes.

For n ¼ �m, super resolution is obtained since then:

u0ðx; z ¼ 4FÞ ¼
Z 1

�1
~u0ðnÞ

X
m

AmB�mrect
nþ mn0
Dm=l2F

� �" #
exp 2pixn½ �dn: (2.15)

The expression in (2.15) is exactly the proof of super resolution since the

spectrum of the input field distribution ~u0ðnÞ is multiplied by an extended synthetic

aperture (the term in brackets) allowing transmission of higher spatial frequencies

and therefore reconstruction of the output field u0ðx; z ¼ 4FÞ containing smaller

spatial details.

The meaning of choosing m ¼ �n is equivalent to paying with the field of view

since all the replicas that do not fulfill this condition (crossed terms with n 6¼ �m)
will appear at spatial positions of:

xm;n ¼ lz0n0ðmþ nÞ: (2.16)

The field of view for the input field distribution is smaller than the expression

of (2.16) such that the undesired terms for which m is not equal to �n will not

distort the reconstructed image of the output plane.

All this derivation was done before and described in details in refs. [21, 23, 24].

Next it is shown how the usage of polychromatic illumination can remove the

drawback of this approach that is related to the payment with the field of view.
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Note that the expression (2.15) is for the field distribution. Since the illumination

is polychromatic, the intensity for the final outcome of the mathematical derivation

is computed and then averaged for the various wavelengths. This is due to the fact

that a monochromatic detector averages the readout over the spectral range of the

illumination:

jhðx;z¼4FÞj2¼
Z
Dl
SðlÞ

X
m

X
n

X
m0

X
n0

AmBnAm0 �Bn0
�
Z 1

�1

Z 1

�1
rect

nþmn0
Dm=l2F

� �

rect
n0þm0n0
Dm=l2F

� �
�exp

�
2pi

�
xðnþn0ðmþnÞÞ

þnðz0lðmþnÞn0Þþz0ln02

2
ðmþnÞ2

��
�exp

�
�2pi

�
xðn0þn0ðm0þn0ÞÞ

þn0 z0lðm0þn0Þn0ð Þþz0ln02

2
ðm0þn0Þ2

��
dldndn0;

(2.17)

where |h|2 is the intensity impulse response for the spatially incoherent case. Dl is
the spectral range of the illuminating source (over which the averaging is

performed) and S(l) is the spectral distribution of the source. It is assumed as

well that this distribution is more or less uniform within the spectral range of Dl.
To obtain the expression for the impulse response, a point source is assumed in the

input plane, i.e., its Fourier transform is a constant: ~u0ðnÞ ¼ 1. In order to compute

the output distribution in case that any general distribution is positioned in the

input plane, one needs to convolve this impulse response with the intensity of

the input object. Let us denote:

x ¼ n z0ðmþ nÞn0ð Þ þ z0n02

2
ðmþ nÞ2 � n0 z0ðm0 þ n0Þn0ð Þ � z0n02

2
ðm0 þ n0Þ2:

Inspecting the obtained result within the spatial spectral range of the synthetic

super resolved aperture leads to:

jhðx; z ¼ 4FÞj2 ¼
X
m

X
n

X
m0

X
n0

AmBn Am0 �Bn0
�
Z 1

�1

Z 1

�1
rect

nþ mn0
Dm=�l2F

� �

rect
n0 þ m0n0
Dm=�l2F

� �
� exp½2pixðnþ n0ðmþ nÞ � n0 � n0ðm0 þ n0ÞÞ�

�
Z
Dl

SðlÞ exp 2pilx½ �dldndn0;
(2.18)

where �l is the average wavelength of the illuminating spectral band.

Since the spectral bandwidth of the illumination considered to be wide enough

and uniform, it is possible to approximate that:

Z
Dl

SðlÞ exp 2pilx½ �dl � Sð�lÞ
Z
Dl

exp 2pilx½ �dl ¼ dðxÞ: (2.19)
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Since (2.19) contains a delta function, it is valid only for x ¼ 0 which is obtained

only for the case when the integer indexes fulfill:m ¼ �n andm ¼ �n. This is true
since only then the phase of the exponent in (2.19) is zero and therefore all the

components are added constructively during the integration process over the full

range of values of l. Therefore, the result of (2.15), having the physical meaning of

super resolved imaging, may be obtained without limiting the field of view:

jhðx; z ¼ 4FÞj2 ¼
Z 1

�1

X
m

AmB�mrect
nþ mn0
Dm=�l2F

� �" #
exp 2pixnð Þdn

�����
�����
2

: (2.20)

The proposed super resolving technique that allows to improve the resolution

with two fixed gratings without paying in the field of view still requires the

payment in the dynamic range or the signal-to-noise ratio (SNR) in the detector.

Nevertheless, availability of detectors with high dynamic range of 12 and more

bits turns this drawback into less significant.

2.2.3 Experimental Results

To demonstrate the presented approach, the optical setup shown in Fig. 2.10 is

constructed at the laboratory. The experimental setup includes two imaging modules.

The magnification of the first imaging system is selected to be 7.5�. The second

Fig. 2.10 Picture of the experimental setup at the laboratory. The image was taken from:

J. Garcı́a, V. Micó, D. Cojoc and Z. Zalevsky, “Full Field of View Superresolution Imaging

based on Two Static Gratings and White Light Illumination,” Appl. Opt. 47, 3080–3087 (2008)
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imagingmodulemagnifies the first image plane into output plane and itsmagnification

can be selected according to our benefit. A long working distance, infinity corrected

Mitutoyo microscope lens with 0.14 NA is used as a first imaging system. A photo-

graphic objective with variable focus (or magnification) is used as a second imaging

system. Notice that, in a similar way as in commercial microscopes, the second

imaging system acts as a tube lens. This lens should not have the restriction of having

a fixed magnification.

White light illumination is provided by a halogen lamp source and a 3CCD color

video camera (SONY Model DXC-950P) captures the final images. The halogen

lamp has relatively uniform spectrum in the visible range (it resembles black body

radiation) and therefore the assumption for the spectral uniformity as done in

the mathematical analysis is valid. The spectrum of the halogen lamp is presented

in Fig. 2.11a. These data are taken from the literature. In Fig. 2.11b, the sensitivity

response of the three channels (R, G, and B) of the CCD is presented. Those charts

are important since what is relevant to the operation principle is not the illumin-

ating spectrum alone but rather its product with the sensitivity of the detector.

Figure 2.11c shows the combined result of the camera sensitivity and the spectrum

of the illumination by adding the three channels sensitivities each one multiplied by

the spectrum irradiance. In order to demonstrate the validity of the assumption

for the delta function (2.19), the magnitude of the Fourier transform of the chart

of Fig. 2.11d is computed. The display is in dB units. As shown in Fig. 2.11e,

the magnitude of the Fourier is indeed nearly a delta function with attenuation of

more than ten times the values surrounding the peak of the delta.

Two precision Ronchi ruling slides are used as diffraction gratings in the

experiment. The period of both G1 and G2 gratings is p1 ¼ 600 lp/mm and

p1 ¼ 80 lp/mm, respectively (due to the ratio of magnifications between the two

parts of our setup, the second grating could be a low-frequency grating).

The period of the first grating is selected depending on the NA of the microscope

lens that was used as first imaging system. To achieve a resolution gain factor

close to 2, the diffraction angle for a central wavelength of the broadband spectral

light used as illumination must be nearly twice the angle defined by the NA of

the objective. This means that a period of around 500 lp/mm is suitable for such a

resolution improvement. Once the first grating is selected, one can do both: fixing

the magnification of the microscope objective and properly selecting the

G2 grating, or the opposite. In our case, a ratio of 7.5 was defined by the periods

of both diffraction gratings and this is the magnification that is aimed for the

microscope lens.

Since the second imaging setup had a magnification such that the low NA of the

imaging lenses did not reduce resolution any more, a true super resolved image was

obtained. The experiment was performed for 1-D super resolution and therefore the

super resolving factor that was obtained may easily be extracted just by comparing

the resulted resolution on both principal axes. Our purpose was to demonstrate the

super resolution as well as to show that the result is obtained without paying with the

field of view when the white light source is used.
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A negative high-resolution USAF test target was used. Figure 2.12a depicts the

full field of view image when the presented approach is used and the magnification

of the second imaging system is near to 1. One can see that as the ghost images are

wavelength sensitive due to the diffraction orders of the gratings, they are averaged

in the background (which means that there is no limitation on the field of view).

On the other hand, the proper combination of diffraction orders between both

gratings compensates their chromatic dispersion and reinforces the white light

super resolved image. In Fig. 2.12b, the classical Bachl and Lukosz monochromatic

experiment is shown by simply placing an interference filter (515 nm main wave-

length) before the input plane. One may see as the ghost images are not averaged,

the final resolution is limited by the distance between the replicated diffraction
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Fig. 2.11 (a) The illumination spectrum of halogen lamp. (b) Sensitivity response of the three

channels (R, G, and B) of the CCD. (c) The combined response of the illumination spectrum and

the sensitivity of the CCD (addition of the three channel sensitivities each multiplied by the

spectral irradiance of the lamp) of (c). (d) The magnitude of the Fourier transform of the combined

chart of (c). The image was taken from: J. Garcı́a, V. Micó, D. Cojoc and Z. Zalevsky, “Full Field

of View Superresolution Imaging based on Two Static Gratings and White Light Illumination,”

Appl. Opt. 47, 3080–3087 (2008)
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Fig. 2.12 Experimental

results: (a) The full field of

view super resolved image

obtained using the presented

approach, and (b) the full

field of view image with

monochromatic illumination

(Bachl and Lukosz approach).

(c) Cross section of (a) for the

purpose of computing the

reduction in contrast. The

image was taken from: J.

Garcı́a, V. Micó, D. Cojoc

and Z. Zalevsky, “Full Field

of View Superresolution

Imaging based on Two Static

Gratings and White Light

Illumination,” Appl. Opt. 47,

3080–3087 (2008)
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orders. In this case, a reduction in the field of view is needed to allow super

resolution over the region of interest.

In Fig. 2.12c, the cross section of the region marked by the square in Fig. 2.12a

is shown. The purpose was to compute the reduction in contrast due to the usage

of white light illumination. The cross section was computed in two locations

(as indicated in the upper right corner of Fig. 2.12c). The red circles indicate the

cross section in the lower part of marked region where no replication was

generated and thus no reduction in contrast. The blue squares present the cross

section in the upper part of the marked region where the various replications

(differently positioned due to the usage of the polychromatic illumination)

reduced the contrast of the bars. The contrast of the red circles is 0.946 while

that of the blue squares is 0.586. This reduction of 39% in contrast is due to the

replications. Our computation of contrast was performed according to:

C ¼ Imax � Imin

Imax þ Imin

; (2.21)

where Imax is the maximal value of the intensity and Imin is its minimal value.

Note that this super resolution approach as other approaches involving gratings

is not energetically efficient. Due to the gratings, only a certain portion of the

input energy arrives to the region of interest in the output plane. However,

one must distinguish between energetic efficiency and contrast. The reduction

in energy may be compensated if the illumination source is strong enough and if

the detector has an automatic gain control function that adapts the dynamic range

of its sampling (A/D conversion) to the average level of the arriving energy.

The contrast reduction cannot be compensated in the hardware since it is related

to the SNR and to the number of sampling bits identifying the signal from the

background noises.

Theoretically speaking, the reduction in contrast can be estimated as follows:

Since the contrast is defined as formulated in (2.21), and due to the replications a D.

C background is added to the intensity (to Imax as well as to Imin), one may obtain

the expression for new contrast as:

C ¼ Imax � Imin

Imax þ Imin þ 2D.C
; (2.22)

where the D.C background is exactly the average of the imaged object:

D.C ¼
R
Dl SðlÞu0ðx� b1l; y� b2lÞdl

Dl
; (2.23)

where b1 and b2 are constants. u0 is the imaged object. For instance, in the case that

resembles our experiment where the object has an average gray level, i.e., D.C of 60

and in spatial region where Imax ¼ 180 and Imin ¼ 5, the contrast is reduced to 0.58.
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In Fig. 2.13, one may see the central part of the resolution target where a

magnification of close to 7� is chosen for the tube lens system. Indeed, one may

see that the resolution of the vertical lines (Group 9, Element 2 corresponding with

575 lp/mm) is much higher than that of the horizontal lines (Group 8, Element 4

corresponding with 362 lp/mm). Therefore, the experiment has demonstrated

resolution improvement by a factor of almost 2.

2.3 Super Resolution Using Gray Level Coding

2.3.1 Introduction

The technique presented in the following section provides resolution improvement

for both diffractive and geometric limitations [25]. The required constraint is that

the object has limited number of gray levels and thus the gray level domain can be

used in order to code and decode the additional spatial information. A very

interesting application in which the presented super resolving coding may be

applied is related to geometrical rather than diffractive super resolution.

2.3.2 Theory

Let us assume that p(x, y) is the blurred point spread function whose blurring is

caused due to the combination of the limited aperture of the optics and the area of

Fig. 2.13 Experimental results showing the high resolution region of interest from Fig. 4a. The

reference image is obtained (a) without the gratings, and (b) with the gratings installed and using

the presented super-resolution approach. White squares mark the resolution limit
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each pixel in the detection array. The blurred image is sampled by the detection

array. “dx” and “dy” are denoted as the sampling pitch in the horizontal and

vertical axes, respectively. Dx and Dy symbolize the horizontal and the vertical

dimensions of the pixels in the detection array, respectively. Thus, the sampled

image equals to:

Ioðx; yÞ ¼
Z Dx=2

�Dx=2

Z Dy=2

�Dy=2
Iinðx0; y0ÞCðx0; y0Þpðx� x0; y� y0Þdx0dy0

X
n

X
m

dðx� ndx; y� mdyÞ;

(2.24)

where C(x, y) is the gray level coding mask. The last equation equals to:

Ioðndx;mdyÞ ¼
X
n

X
m

Z ndxþyx=2

ndx�yx=2

Z mdyþyy=2

mdy�yy=2
Iinðx0; y0ÞCðx0; y0Þpðndx � x0;mdy � y0Þdx0dy0

" #

� dðx� ndx; y� mdyÞ;
(2.25)

where yx and yy are the horizontal and the vertical dimensions of the blurring

function, p(x, y), respectively. For the simplicity of explanation, it is assumed that

the input object Iin is a binary function, having resolution coinciding with the

detectors sampling grid dx and dy:

Iinðk1dx; k2dyÞ ¼ f0; 1g: (2.26)

To simplify further, it is assumed that p(x, y) is a rect function:

pðx; yÞ ¼ rect
x

yx
;
y

yy

� �
; (2.27)

where yx ¼ Ndx and yy ¼ Mdy, N and M are integer numbers.

The gray level coding mask is chosen such that:

Cðx; yÞ ¼
XnþN=2�1

k1¼n�N=2

XmþM=2�1

k2¼m�M=2

2k1þN=2�n � 2k2þM=2�mrect
x� k1dx

dx
;
y� k2dy

dy

� �2
4

3
5

� d x� nNdx; y� mMdy
� 	

: ð2:28Þ

Thus, the output intensity equals to:

Ioðndx;mdyÞ ¼
XnþN=2�1

k1¼n�N=2

XmþM=2�1

k2¼m�M=2

Iinðk1dx; k2dyÞ � 2k1þN=2�n � 2k2þM=2�m: (2.29)
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The meaning of the last equations is that the coding mask is chosen such that it

is actually the binary base. Therefore, after blur is applied, the gray level of the

blurred pixel equals to a different gray level. For instance, let us assume that

the super resolution is a factor of 2 in each dimension, i.e., N ¼ 2 and M ¼ 2,

then the coding mask is a periodic structure with super pixels constructed out of

blocks with a gray level of 1, 2, 4, and 8 as shown in Fig. 2.14a. After blurring and

assuming that Iin is a binary object, the resulted gray level will indicate the spatial
structure of Iin prior to blurring. In Fig. 2.14b, a look up table is shown which

connects the spatial structure of Iin in the super pixel prior to blurring and the

resulted gray level, when the structure is multiplied by the gray level coding mask

and integrated over a super pixel (2.29).

2.3.3 Experiment

The experimental setup is depicted in Fig. 2.15. Spatial light modulator (SLM) was

attached to a binary object. The gray coding mask was displayed on the SLM.

The light passing through the object and the mask was imaged on the top of a

camera. For the purpose of demonstration, a detector binning was used to simulate a

low-resolution device. This permits to record also a high-resolution version for

comparison.

A binning of 1 by 5 was performed in the camera. The coding mask displays gray

values of 1, 2, 4, 8, and 16. The imaged object seen by the camera without applying

the binning (high resolution) is presented in Fig. 2.16.

1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0

8 4

12

a

b

Fig. 2.14 (a) The gray level coding mask. (b) The look up table relating sensed gray level and the

spatial structure of the original object. The image was taken from: Z. Zalevsky, P. Garcı́a-Martı́nez

and J. Garcı́a, “Superresolution Using Gray Level Coding,” Opt. Exp. 14, 5178–5182 (2006)
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Fig. 2.16 The high-resolution image. The image was taken from: Z. Zalevsky, P. Garcı́a-Martı́nez

and J. Garcı́a, “Superresolution Using Gray Level Coding,” Opt. Exp. 14, 5178–5182 (2006)

Fig. 2.15 The experimental setup. The image was taken from: Z. Zalevsky, P. Garcı́a-Martı́nez

and J. Garcı́a, “Superresolution Using Gray Level Coding,” Opt. Exp. 14, 5178–5182 (2006)

Fig. 2.17 (a) The experimentally grabbed image after binning and before decoding. (b) The

experimentally reconstructed image after the decoding of gray levels. The image was taken from:

Z. Zalevsky, P. Garcı́a-Martı́nez and J. Garcı́a, “Superresolution Using Gray Level Coding,” Opt.

Exp. 14, 5178–5182 (2006)
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Figure 2.17a presents the image seen by the camera after applying the binning.

One may see that most of the spatial content of the object is lost due to the binning

of low-pass effect. Figure 2.17b displays the experimentally reconstructed image

after decoding the gray levels. One may see that except for few reconstruction

errors, which are outlined by red box, the original spatial resolution of the object

was reconstructed.

Note that the suggested gray coding that translates the captured gray level into

resolution of the original image is a very simple code. This code is not immune to

errors. This is something which is very nonrecommendable since small error in the

gray level may change completely the decoding pattern (see, for instance,

the variations of the decoded patters vs. the gray level in Fig. 2.14b). However,

it is very simple to use an optical code that is much more immune to gray level

errors. One example can be the Gray codes [26]. In those codes, the change between

two adjacent codes has variation of only 1 bit and thus errors in the gray level will

cause minimal spatial distortion (distortion of only 1 bit).
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Chapter 3

Techniques Utilizing Diffractive Masks

Having Structures with a Period Limited

Randomness

Alex Zlotnik, Zeev Zalevsky, David Mendlovic,

Jonathan Solomon, and Bahram Javidi

3.1 Geometrical Super Resolution Using Code

Division Multiplexing

3.1.1 Introduction

In many high resolving optical systems, resolution is limited not by the optics but

by the sensor’s nonzero pixel size. As a result, overall resolution is decreased.

Here, a novel approach for enhancing resolution beyond the limit set by the

sensor’s pixels is proposed. This method does not involve additional mechanical

elements, such as those used for microscan. In this scheme, neither the sensor nor

additional elements are moved. The geometrical super resolving procedure is

based on code division multiplexing access (CDMA) approach with all of its

inherent benefits, such as relative noise immunity to single tone interference.

A setup is proposed for coherent and incoherent illumination, with slight

modifications for the latter. A theoretical analysis of the setup is presented and

later compared with empirical results.

This scheme is shown to enhance a one-dimensional image resolution with the

use of only a simple mask which doubled image resolution. This method can

easily be expanded to two-dimensional images and resolution enhancement

factors are greater than two.
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3.1.2 Theoretical Analysis

As the sensor samples the image, aliasing is produced and the image is distorted.

This is due to the fact that the spectral bandwidth of the physical image is relatively

large. Data corruption occurs since it is not possible to discriminate the different

parts of the spectrum in overlapping regions. This is similar to a common problem

in communication: the need to transmit several messages on a common resource,

such as an electronic wire. The solution for this is multiplexing. Each message is

coded in such a way that it can be retrieved later. Common multiplexing schemes

involve frequency multiplexing, time division multiplexing, and CDMA. The latter

offers varied advantages, which is further elaborated in Sect. 3.1.2.1

To avoid data loss in regions of the spectrum that will overlap, potentially

overlapping sections of the spectrum are coded with different spectral masks.

These masks will be orthogonal as is required in CDMA. Coding needs to be in

the Fourier plane, as replicas (due to sampling) are created in the Fourier plane.

Assuming that different parts of the spectrum are coded correctly, data corruption

can be prevented and the received image can be enhanced [1].

3.1.2.1 Code Division Multiplexing

Code division multiplexing access (CDMA) technology focuses primarily on the

“direct sequence” method of spread spectrum [2]. Direct sequence is spread spectrum

technology in which the bandwidth of a signal is enlarged by artificially increasing

the bit data rate by breaking each bit into a number of subbits called “chips.”

The signal is divided into smaller bits by multiplying it with a pseudonoise

(PN) code. A simple multiplication of each bit of the original modulated signal by

this high data rate PN code yields the division of the signal into smaller bits

(which increases its bandwidth). Increasing the number of “chips” expands the

bandwidth proportionally. This is demonstrated in Fig. 3.1.

Data
t

t

t

+1

−1

PN
code

Bit 0 Bit 1

Coded
signal

Fig. 3.1 CDMA signals.

(Top) The waveform of the

data stream; (middle) the
chipping waveform; (bottom)
the waveform product
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Let us now briefly describe the basic operation of the transmitter/receiver for

the spread spectrum technique. Assume that there are two transmitters with two

different messages to be transmitted. The messages are first modulated. After the

modulator, each signal is multiplied by its own unique pseudonoise code and is

transmitted. Since various signals might be simultaneously transmitted from

different transmitters, these transmissions are represented by simply adding

their spectra. At the receiver end, the incoming signal is the spread spectrum

signal. In order to extract a single message, one must multiply the incoming signal

by the corresponding PN code. Multiplying a given PN code by itself will produce

unity. Therefore, multiplying the signal by the PN code eliminates the spread

spectrum effects for that particular message. This is of course valid for orthogonal

codes with perfect synchronization and no noise. The resulting signal is then

passed through a band pass filter (BPF) centered at the carrier frequency. This

operation selects only the desired signal while rejecting all surrounding

frequencies due to other messages in the spread spectrum.

This scheme is used extensively in communication to provide multiuser access

where each user uses a unique PN code. This method provides a rather significant

single tone interference immunity, which is important in imaging, and a trivial

optical implementation (a simple binary mask).

3.1.2.2 Optical Setup

For achieving superresolution in the presented approach, the following steps are

required:

1. Fourier transform of the object

2. Multiplication by a CDMA coding mask

3. Inverse Fourier transform

4. Sampling the output

5. Retrieval of the object in full resolution

The optical setup can be very simple, as the only additional requirement apart

from a simple imaging system (containing only one lens and a sensor) is to

multiply the image with a mask in the Fourier plane. This can be achieved by

placing the mask against the lens [3]; special care must be taken for verifying the

different dimension scales needed. The optical setup is presented in Fig. 3.2.

Input
plane

sensor
plane

u v

Lens

Coding
mask

Fig. 3.2 Optical setup for

CDMA super resolution
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Note that since the lens aperture is not the cause for the resolution reduction,

the coding mask may be attached to the lens knowing that it will perform the

required orthogonal coding of the various spectral regions, later on to be aliased due

to the sampling of the sensor.

3.1.2.3 Mathematical Analysis

Let us examine a simple situation, with the resolution enhanced by a factor of 3.

Only a one-dimensional calculation is carried out, carrying out the proof for

two-dimensions is direct. An ideal sensor is assumed, in which the pixels are

indefinitely small and are placed at a distance of dx from one another (finite size

pixels are addressed later). Therefore, the sensor is modeled as an infinite train

of impulses:

SensðxÞ ¼
X1
n¼�1

d x� n dxð Þ: (3.1)

The coding mask is divided into three subfunctions as follows:

~G nð Þ ¼
X1
n¼�1

gn n� nDnð Þ; (3.2)

where Dn ¼ 1= dx, gi has the following properties:

gi nð Þgj n� Dnð Þ ¼ 0;

gi nð Þ ¼ 0;

gi nð Þ � 0;

i 6¼ j;

i ¼ �1; 0; 1; 8 n =2 � 3Dn
2

;
3Dn
2

� �

8n:

8>><
>>:

; (3.3)

These properties promise orthogonality of the coding masks. This is shown

graphically in Fig. 3.3. The signals in the Fourier plane (the aperture plane) have

the coordinate “n,” and the subscript “~.” Signals in the sensor plane have the

coordinate “x” and have no subscript.

Notice that the coding masks have been chosen to be nonnegative. The masks are

composed of pixels of the size of D�. Each pixel is divided into chips, each have the
size of DW. The consideration for this are presented later on. The coding mask is

multiplied in the Fourier plane with the spectrum of the input, I (which represents

field distribution). Therefore, the output in the Fourier plane is:

~O nð Þ ¼ ~I nð ÞSen~s nð Þ: (3.4)

The sensor samples this output; therefore, the sampled output SðxÞ is:

SðxÞ ¼ OðxÞSensðxÞ: (3.5)
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Expressing equation (3.5) in the Fourier plane, and using (3.1), (3.2), and

(3.4) yields:

~SðnÞ ¼ ~OðnÞ � Sen~sðnÞ ¼ ~I nð Þ
X1
n¼�1

gn n� nDnð Þ
" #

�
X1
n¼�1

d n� n
1

Dx

� �" #
; (3.6)

where � denotes convolution operation. Since Dn ¼ 1=Dx, the last expression is

simplified to:

~SðnÞ ¼ ~I nð Þ
X1
n¼�1

gn n� nDnð Þ
" #

�
X1
n¼�1

d n� nDnð Þ
" #

;

¼
X1
n¼�1

~I n� nDnð Þ
X1
k¼�1

gn n� nþ kð ÞDnð Þ
" #

: (3.7)

Image retrieval is simply achieved by Fourier transforming the grabbed output

and multiplying it with the original coding mask:

~RðnÞ ¼ ~S nð Þ ~G nð Þ

¼
X1
n¼�1

~I n� nDnð Þ
X1
k¼�1

gn n� nþ kð ÞDnð Þ
" #( ) X1

m¼�1

gm n� mDnð Þ
" #

;

¼
X1
n¼�1

~I n� nDnð Þgn n� nDnð Þ;

¼ ~I nð Þ ~G nð Þ: ð3:8Þ

Choosing only the output field quantities inside the nonzero chip of each pixel

for the given coding mask, a down sampled output is generated which is the desired

output, I nð Þ.

Fig. 3.3 Coding mask
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The conclusion is that modulating the input’s spectrum correctly prevents data

corruption due to aliasing. The input of the optical imaging system is assumed to

be only real and nonnegative. It is convolved with the Fourier transform of the

coding mask which is also real since it is originally symmetrical in the Fourier

plane. The coding mask should be chosen in such a way that there are no negative

values in the image plane. This is further elaborated in Sects. 3.1.2.5 and 3.1.2.6

dealing with different types of illumination. In a real sensor, the pixels have finite

dimensions; this will affect the output spectrum, since it results with multiplying

the spectrum with a sin c function, as mentioned above. This will have no effect

on spectrum orthogonality; it will only introduce a need for recalibrating the

sampled spectrum, but does not introduce any difficulties.

In this proof, it was assumed that the sensor performs ideal sampling,

yet physically it measures only absolute values of the sampled signal. If the coding

mask is chosen correctly, then this limitation can be overcome. This is elaborated

further on.

3.1.2.4 The Effect of Noise

The super resolution scheme presented here offers no significant advantage or

disadvantage upon any other method before the signal is coded. Therefore, if in

the original image a noise is present, then its reconstruction will have the same

noise. The scheme will provide an advantage on noise accumulated after the image

is coded, such as during sampling by the sensor. Let us assume that the sensor is

scratched or dirty. This presents a very narrow interference multiplied by the input

function. The interference function is represented by nðxÞ. The signal measured

now by the sensor, S0ðxÞ, is equal to:

S 0ðxÞ ¼ SðxÞnðxÞ: (3.9)

The retrieved output, ~R0 nð Þ, equals:

~R 0 nð Þ ¼ ~S nð Þ � ~n nð Þ� �
~G nð Þ ¼ ~S nð Þ ~G nð Þ� � � ~n nð Þ ~G nð Þ� �

: (3.10)

According to (3.8), this can be expressed as:

~R0 nð Þ ¼ ~I nð Þ ~G nð Þ� � � ~n nð Þ ~G nð Þ� �
: (3.11)

In the space domain, this equals to:

R0ðxÞ ¼ IðxÞ � GðxÞ½ � nðxÞ � GðxÞ½ �: (3.12)
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Since the function G is assumed to be pseudowhite noise in the object plane

and since the noise function, n(x), is very narrow:

nðxÞ � GðxÞ � constþ eG x� x0ð Þ; (3.13)

where const � e. Using (3.11), the retrieved image is expressed as:

R0 nð Þ ¼ const I nð Þ ~G nð Þ þ e exp �2pix0ð Þ I nð Þ ~G nð Þ� � � ~G nð Þ: (3.14)

Since the noise factor is constant and relatively negligible, one can express the

above equation as:

R0 nð Þ � const ~I nð Þ ~G nð Þ: (3.15)

From here, retrieval is identical to what was presented for noninterfered signal.

The advantage that CDMA coding provides for overcoming very space limited

interference was intuitively proven. This is identical to communication CDMA

scheme’s improved resistance to single tone interference (more detail in ref. [4])

3.1.2.5 Coherent Illumination

When coherent illumination is used, the coherent transfer function, CT~F nð Þ,
represents the resolution limitations due to diffraction and additional elements in

the system. The CT~F nð Þ equals to the aperture of the imaging lens multiplied by the

coding mask, ~G nð Þ, which is attached to it. The output image in the sensor plane,

Oi, is expressed as:

OiðxÞ ¼ CTFðxÞ � ggðxÞ: (3.16)

where gg indicates the object obtained at the sensor plane in an ideal system

(without any other aberrations). The sensor samples only magnitudes of the

image. Therefore, the sampled image, Ii, equals to:

Ii ¼ CTFðxÞ � ggðxÞ
�� ��2: (3.17)

In order not to have information loss, system output, Oi, should be real and

nonnegative; this will enable retrieval of output directly from Ii (which is actually

the squared absolute ofOi). In order to ensure direct retrieval of the object, gg in full
resolution, both the coding mask and the image must be real and nonnegative.

Since real images have no negative values, therefore it is left to deal only with the
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coding mask. The coding mask must have a Fourier transform that is real and

nonnegative. Furthermore, the coding mask must fulfill (3.3). Below an example for

a suitable coding mask is presented:

Let us choose a coding mask composed of an infinite train of delta-functions in

the space domain, each impulse is spaced by D� from adjacent impulses.

This signal has a positive spectrum. Now let us convolve this with a Gaussian,

with the width of a CDMA chip, DW. This will be multiplied by a rect function,

setting the size of the mask to finite size, DBW
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4ac

p
. DBW corresponds to

the aperture of the imaging lens. Let us now calculate the spectrum of such

a mask:

CT~F nð Þ ¼ Infinite pulse train � Gaussianf grect function,
+

CT~F nð Þ ¼
X1
n¼�1

d n� nD�ð Þ
" #

� exp � n2

2DW

� �( )
rect

n
DBW


 �
;

+

CTFðxÞ ¼ DW
ffiffiffiffiffiffi
2p

p X1
n¼�1

d x� n
2p
D�

� �" #
exp � x2DW2

2

� �( )
� sin c xDBW

2

� �
:

(3.18)

Assuming that DBW � DW, a real and nonnegative spectrum was received as

desired. One can easily show that this mask also satisfies the conditions for CDMA

coding, if the following equation is realized:

Dn ¼ kD� � DW
2

; k 2 N: (3.19)

This is demonstrated graphically in Fig. 3.4. The top figure presents an input

object spatial spectrum with a spatial bandwidth of 2Dn. An example of coding

mask is shown in Fig. 3.4b. Figure 3.4c demonstrates schematically the effect of

coding mask on object spatial spectrum. The bottom figure, Fig. 3.4d, demonstrates

the effect of sampling by the sensor. Notice that data retrieval is possible if the

orthogonality was retained. This example is suitable for the coding mask.

3.1.2.6 Incoherent Illumination

In incoherent illumination, there is a little variation. The intensity distribution

sampled by the sensor is expressed as:

= Iið Þ ¼ OT~F nð Þ ~Ug nð Þ � ~Ug nð Þ� 

; (3.20)
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where OT~F nð Þ is the incoherent optical transfer function. � symbolizes correlation

operation. Goodman shows a more detailed derivation of these relations in ref. [2].

The usage of incoherent illumination affects the output of the system. Not the

coding mask itself should be orthogonal, but rather its autocorrelation. Let us

express the incoherent optical transfer function as a product of autocorrelation of

the coherent transfer function:

OT~F nð Þ ¼ CT~F nð Þ � CT~F nð Þ� 

: (3.21)

a

b

c

d

Fig. 3.4 (a) Object spatial spectrum; (b) example for coding mask, with black rectangles
schematically illustrating Gaussian chips; (c) object spectrum multiplied by coding mask;

(d) image spectral distribution after down sampling by sensor. Notice no overlapping occurred
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This can be expressed in the sensor pane as:

OTFðxÞ ¼ CTFðxÞCTFðxÞ; (3.22)

where OT~F nð Þ is the autocorrelation of the previous function CT~F nð Þ, and its

Fourier transform satisfies several conditions:

OT~F n ¼ 0ð Þ � 0

OT~F nð Þ ¼ OT~F �nð Þ
OT~F n ¼ 0ð Þ � OT~F nð Þ�� ��

8<
:

OTFðxÞ is Real,
OTFðxÞ � 0;
OTFðxÞ ¼ OTF �xð Þ:

8<
: (3.23)

Furthermore, the OT~F nð Þ has to satisfy all of the previous demands for the

CDMA coding, i.e., those presented in (3.3). Again one faces the challenge of

producing a coding mask, which has a real and nonnegative spectrum. This problem

has been addressed above for the mask implemented for incoherent illumination.

The final mask CT~F nð Þ will be easily derived since according to Sect. 3.1.2.3

OT~F nð Þ that satisfies all of the demands could be constructed. The mask that

will be placed in the setup will be CT~F nð Þ. Since it is real and nonnegative,

the derivation is direct from (3.21):

OTFðxÞ ¼ CTFðxÞ½ �2
+

CTFðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
OTFðxÞ

p
: (3.24)

3.1.2.7 The Price of Super Resolution

The trade-offs of this system are presented below:

(i) Loss of field of view – Since the spectrum of the image is multiplied with a

high-resolution coding mask, the image is spread in the image plane. Since this

spread image must not overlap with other images, the field of view of the system

must be limited, as not fulfilling this would distort the original input. Therefore,

the field of view must be limited, by a factor, which is identical to the expected

resolution improvement, i.e., to have a resolution enhancement of three,

the original image must not cover more than one-third of the sensor.

(ii) Loss of energy – Possible energy loss occurs only due to the fact that a coding

mask is placed over the input lens.

3.1.2.8 The Two-Dimensional Case

Extension of this method to two-dimensional images is direct. Construction of the

coding mask should be orthogonal in both axes. Such a mask placed on the lens of

an identical optical setup will produce a resolution enhancement of M on the first
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axis and N on the second axis (depending on mask attributes on each axis). This will

cause a loss of the total field of view of M 	 N. Image retrieval will also be

identical, as a two-dimensional Fourier transform can be conducted separately for

each axis.

3.1.3 Computer Simulations

In order to verify the method presented in previous sections, a MATLAB simulation

was constructed. This simulation assumed real dimensions of sensor pixel size

and pixel spacing, which are shown in Table 3.1. For simplicity, the simulation is

one-dimensional. Furthermore, the simulation dealt with a coherent system. An input

image of a cosine grating was chosen, shown in Fig. 3.5. This cosine was at a

frequency in which sensor sampling will cause obvious aliasing. A coding mask

was constructed as described above, as shown in Fig. 3.6.

In the simulation, the input was Fourier transformed, multiplied with the coding

mask and inverse Fourier transformed again. This simulated the coding mask

attached to the imaging lens. The magnitude of the output was sampled according

to attributes of the sensor. Signal retrieval was conducted as follows: sampled data

was inverse Fourier transformed, multiplied by the coding mask, and Fourier

transformed to produce the desired output.

The simulated output of the system is presented in Fig. 3.7: The top image presents

the ideal output of the system (which is actually the original object that is to be

imaged by the system); the middle image presents the output without applying the

super resolution method. One can see a complete loss of image resolution,

and obvious aliasing, as the image frequency appears much lower than that of

the original object. The bottom image shows the input after reconstruction using

CDMA super resolution; one can see that the image was satisfactory reconstructed.

To further elaborate the functionality of the system, the Fourier domain should

be introduced. In the top image in Fig. 3.8, the spectrum of the original cosine grid

input is shown. The rectangle illustrates the allowed bandwidth due to sampling

by the sensor. In the middle figure, the spectrum of the sampled output is

presented. Many artifacts have been added to the spectrum due to multiplication

with the coding mask. Notice in the lower figure that after multiplying

the spectrum by the coding mask, all aliased frequencies are removed, leaving

the original input, i.e., perfect reconstruction.

Table 3.1 Physical value

used for simulation
Attribute Value Units

Number of sensor pixels 640 –

Pixel spacing, Dx 9.6 mm
Pixel size, Dd 6.72 mm
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3.1.4 Experimental Results

In order to verify the method presented, an experimental setup was constructed.

The setup consists of a simple imaging system, with only a single lens, an aperture

place in the focal plane (used to limit system bandwidth), and a sensor. The coding

mask was attached to the lens. A sensor, with attributes as illustrated in Table 3.1,

sampled the output. The same cosine input grid and coding mask, as were presented

in the simulation, were used for the experiment.

The sampled output is shown in the top of Fig. 3.9. The expansion of the image

due to the usage of the coding mask is apparent when comparing with the output

width without coding mask, as appears in the lower image on the same figure.

Figure 3.10 allows appreciation of performance: The top image shows ideal output.

The middle image shows the sampled output without the coding mask (this is

identical to Fig. 3.7 (bottom) only the scale is different). One notices the obvious

aliasing by the appearance of lower frequencies. Finally, the lower graph shows

the retrieved output using CDMA super resolution. This CDMA method produced

Fig. 3.5 Cosine grid used as simulation input. The image was taken from: J. Solomon,

Z. Zalevsky and D. Mendlovic, “Geometrical Super Resolution by Code Division Multiplexing,”

Appl. Opt., 44, 32–40 (2005)
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satisfactory results for the reconstruction. Notice that a slight degradation of the

lower frequencies appears in the retrieved image. Theoretically, this should not be

appeared, it is probably a result of a small alignment error between the sampled

image and the coding mask.

3.2 Diffraction Super Resolution Using Code

Division Multiplexing

3.2.1 Introduction

In this section, CDMA is used to overcome the resolving power of an optical

imaging system, and not by correcting the data obtained on the detector plane as

described in Sect. 3.1. To enable such multiplexing, a unique setup that creates an

incoherent cosine transform of the image is used.

Fig. 3.6 Coding mask used for simulation. The image was taken from: J. Solomon, Z. Zalevsky

and D. Mendlovic, “Geometrical Super Resolution by Code Division Multiplexing,” Appl. Opt.,

44, 32–40 (2005)
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3.2.2 Theoretical Analysis

3.2.2.1 Example of Analysis of Super Resolution in Wigner Space

Super Resolution can be achieved by placing several gratings at specific locations

within the imaging setup. Lukosz [5] has presented a setup based on two static

Ronchi gratings that achieve this. Figure 3.11 shows the optical setup used for

achieving the super resolution. One may see from the optical setup that the system

contains two gratings placed one after the input plane and one after the output plane.

These distances and the gratings frequency must be chosen carefully according to

conditions described in ref. [5].

The various optical and mathematical steps are:

• u0(x, 0) ! u0(x, z0
�) free space propagation

• u0(x, z0
�) ! u0(x, z0

+) passing through grating A

Fig. 3.7 (Top) Cosine grid, used as input; (middle) cosine grid after sampling by sensor – notice

aliasing; (bottom) signal retrieved using CDMA super resolution. The image was taken from:

J. Solomon, Z. Zalevsky and D. Mendlovic, “Geometrical Super Resolution by Code Division

Multiplexing,” Appl. Opt., 44, 32–40 (2005)
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• u0(x, z0
+) ! u0(x, 0) virtual backwards propagation

• u0(x, 0) ! u0(m, 2F�) optical Fourier transform

• u0(m, 2F�) ! u0(m, 2F�) rect(m/Dm) ¼ u0(m, 2F+) passing through an aperture

• u0(m, 2F+) ! u0(x, 4F) optical Fourier transform
• u0(x, 4F) ! u0(x, (4F + z1)

�) free space propagation
• u0(x, (4F + z1)

�) ! u0 (x, (4F + z1)
+) passing through grating B

• u0(x, (4F + z1)
+) ! u0(x, 4F) virtual backwards propagation

Now let us examine this setup in theWigner space. This is presented in Fig. 3.12.

In Fig. 3.12a, the SW product of the input is marked in gray and the SW of the

system is marked with a dashed line. One can see that the condition in (1.16) is not

fulfilled, i.e., the systems’ SW does contain the inputs’ SW, but their total area is

about the same. But the condition expressed in (1.17) is fulfilled. In Fig. 3.12b,

the input propagates in space, and in Fig. 3.12c we can see the effect of the grating.

In Fig. 3.12d, the input virtually propagates backward. In Fig. 3.12f, we can see the

input after passing through the systems aperture. As it appears on the output plane,

one can see that all of the input frequencies have been transferred but need to be

Fig. 3.8 (Top) Cosine grid, used as input, spectrum; (middle) cosine grid after sampling by sensor;

(bottom) signal retrieved using CDMA superresolution. The image was taken from: J. Solomon,

Z. Zalevsky and D. Mendlovic, “Geometrical Super Resolution by Code Division Multiplexing,”

Appl. Opt., 44, 32–40 (2005)
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correctly decoded, in order to receive the original input with no distortion. The SW

of the inputs was theoretically divided into three parts (base band frequencies, high

negative frequencies, and high positive frequencies); these three parts were fre-

quency modulated and transmitted through the system. This is very similar to the

frequency division multiplexing approach (FDMA) in communications.

Retrieval of the image is done in a similar manner. The output of the system

propagates in space (Fig. 3.12f). The signal is multiplied by the second grid

(Fig. 3.12g), and if we virtually propagate, we obtain Fig. 3.12h. In the last figure,

we receive the original input with its full resolution but with two ghost images.

These ghost images limit the size of the original input image, as we must avoid

overlapping of the original image with the ghost images.

3.2.2.2 Super Resolution Using CDMA

As has been shown above, traditional methods that have sacrificed image size for

enhanced resolution used gratings. These actually implemented a setup in which the

frequency is modulated by different parts of the image frequencies. It has been

Fig. 3.9 (Top) One-dimensional sampled image from experiment with coding mask; (bottom)
one-dimensional sampled image without coding mask. The image was taken from: J. Solomon,

Z. Zalevsky and D. Mendlovic, “Geometrical Super Resolution by Code Division Multiplexing,”

Appl. Opt., 44, 32–40 (2005)
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shown that CDMA multiplexing almost achieves channel capacity and is superior

to other methods such as FDMA [6].

This method is shown in Fig. 3.13. In Fig. 3.13a, one can see the original input

in the Wigner space and the system’s SW. The signal is Fourier transformed

(or cosine transformed), Fig. 3.13b. The signal is multiplied by a coding mask,

which expands its bandwidth. The signal is Fourier transformed again, Fig. 3.13d,

Fig. 3.10 (Top) Cosine grid, used as input; (middle) experimental output sampled by sensor;

(bottom) experimental signal retrieved using CDMA superresolution. The image was taken from:

J. Solomon, Z. Zalevsky and D. Mendlovic, “Geometrical Super Resolution by Code Division

Multiplexing,” Appl. Opt., 44, 32–40 (2005)
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Fig. 3.11 Classical super resolution setup
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and then multiplied by a grid, Fig. 3.13e. Notice that now different parts of the

images produced due to the multiplication with the grid overlap. The CDMA grid

must be constructed in a way that the different images will remain orthogonal.

Finally, the signal passes through the system’s aperture in Fig. 3.13f.

Retrieval of the image is done in a similar fashion. The image is multiplied by a

grid, which is identical to the first one, and then Fourier transformed. Then it is

multiplied by the CDMA grid and Fourier transformed again.
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e f
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Aperture
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Grating A
Passage

Backward
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Fig. 3.12 Classical super resolution shown in the Wigner plane
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Optical setup for achieving this is shown in Fig. 3.14a. In order to implement the

concept presented, one needs to multiply the optical image in the Fourier domain

with the coding mask. Ordinary lenses perform this feat, but since they limit

systems’ resolution one needs to do this in a different manner. In Sect. 3.2.3, such

a solution is presented.

Figure 3.14b illustrates the “computational path” used to calculate the output

of the setup. The various optical and mathematical steps are:

• u0(x, 0) ! u0(m, z0
�) optical cosine transform

• u0(m, z0
�) ! u0(m, z0

+) passing through coding mask

• u0(m, z0
+) ! u0(x, 2z0

�) additional cosine transform
• u0(x, 2z0

�) ! u0(x, 2z0
+) passing through Damman grating

• u0(x, 2z0
+) ! u0(m, (2F + 2z0)

�) optical Fourier transform
• u0(m, (2F + 2z0)

�) ! u0(m, (2F + 2z0)
�)rect(m/Dm) ¼ u0(m, (2F + 2z0)

+)

passing through imaging systems’ aperture

• u0(m, (2F + 2z0)
+) ! u0(x, 2F + 2z0) optical Fourier transform

Image retrieval:

• v0(x0
�) ! v0(x0

+) passing through Damman grating

• v0(x0
+) ! v0(m

�) Fourier transform
• v0(m

�) ! v0(m
+) multiplication with coding mask

• v0(m
+) ! v0(x) Fourier transform

 

x x x
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x x
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f e d

Transform
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Cosine
Transform
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Fig. 3.13 CDMA super resolution shown in the Wigner plane
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Note that the first grating should be moved only lightly for obtaining super

resolved functionality of the proposed configuration.

3.2.2.3 Mathematical Analysis

Let us examine a simple situation, in which we want to enhance the resolution by

a factor of 3 [7]. The coding mask composed of three subfunctions is given

as follows:

G nð Þ ¼
X1
n¼�1

gn n� nn0ð Þ: (3.25)

U0(x0)
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+
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+
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+
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Fig. 3.14 (a) Full optical setup. (b) A flowchart illustrating the stages in the mathematical

analysis of the optical setup and the computerized image retrieval. The image was taken from:

J. Solomon, Z. Zalevsky and D. Mendlovic, “Super Resolution Using Code Division

Multiplexing,” Appl. Opt., 42, 1451–1462 (2003)
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This is shown graphically in Fig. 3.15.

gi has the following properties:

gi nð Þ 
 gj nð Þ ¼ 0; i 6¼ j;
gi nð Þ ¼ 0; i ¼ �1; 0; 1 8 n =2 � n0

2
;
n0
2

h i(
: (3.26)

In order to prove the above properties, a simple grating of three spectral orders

will be chosen:

grid nð Þ ¼ d nð Þ þ d n� n0ð Þ þ d nþ n0ð Þ: (3.27)

The input image, marked by u0, is convolved with the Fourier transform of the

coding mask and multiplied by the grating before entering the imaging system.

The system input image is marked as I.

IðxÞ ¼ u0ðxÞ � CDMAðxÞ½ � 
 gridðxÞ: (3.28)

The systems input spectrum is derived from (3.28) producing:

I nð Þ ¼ u0 nð Þ
X1
n¼�1

gn n� nn0ð Þ
" #

� d nð Þ þ d n� 1ð Þ þ d nþ 1ð Þ½ �;

¼ u0 nð Þ
X1
n¼�1

gn n� nnð Þ þ u0 n� n0ð Þ
X1
n¼�1

gn n� nþ 1ð Þn0ð Þ

þ u0 nþ n0ð Þ
X1
n¼�1

gn n� n� 1ð Þn0ð Þ: (3.29)

Fig. 3.15 Coding mask function broken into three subfunctions for each of the three ranges
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The inputs’ spectrum is multiplied by the systems bandwidth (marked as

rect n=Dnð Þ ), and produces the systems’ output, marked as O.

O nð Þ ¼ I nð Þ 
 rect n
Dn


 �

¼ u0 nð Þg0 nð Þ þ u0 n� n0ð Þg�1 nð Þ þ u0 nþ n0ð Þg1 nð Þ: (3.30)

Image retrieval is conducted as follows: The systems output is multiplied by an

identical grating, producing R1. This signal can be formulated in the frequency

domain as follows:

R1 nð Þ¼O nð Þ �grid nð Þ¼ u0 nð Þg0 nð Þþu0 n�2n0ð Þg0 n� n0ð Þþu0 nþ2n0ð Þg0 nþ n0ð Þ
þu0 n� n0ð Þg�1 nð Þþu0 n�2n0ð Þg�1 n� n0ð Þþu0 nð Þg�1 n� n0ð Þ
þu0 nþ n0ð Þg1 nð Þþu0 nð Þg1 n� n0ð Þþu0 nþ2n0ð Þg1 nþ n0ð Þ:

(3.31)

Then this is multiplied with the coding mask, in the frequency domain.

The result is marked as R2:

R2 nð Þ ¼ R2 nð Þ 
 G nð Þ ¼ u0 nð Þg0 nð Þ þ u0 nð Þg�1 nþ n0ð Þ þ u0 nð Þg1 n� n0ð Þ;
¼ u0 nð Þ 
 G nð Þ �����������������!

downsampling
u0 nð Þ:

(3.32)

As one can see, after down sampling the filter, the output spectrum is identical to

the original image spectrum, with no resolution decrease.

3.2.2.4 Optical Cosine Transform

Cosine transform can be implemented in incoherent illumination in a fashion which

reminds the shearing interferometer [8]. A mirror, orthogonal to the input, is used to

duplicate the input image. The optical setup (which used as a component in the

CDMA super resolution scheme) is shown in Fig. 3.16.

Input
plane

z

Spatial filter
h(x)

Output
plane

Diffuser
g(x,t)

z

O(x)I(x) C(x’)

Mirror

Fig. 3.16 Cosine transform

setup
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Let us examine an input image, which is composed of a single dot, it is

duplicated into two dots, by the mirror. These will interfere in a given distance

z and produce an interference mask, which is similar to a cosine function. A single

dot produced a cosine sequence. Due to the reversibility of ray optics, a cosine

grid will produce a single dot in space. This hints that the setup actually cosine

transforms the input. A more rigorous proof is shown below.

First, the output C is calculated in coherent illumination, while I is assumed as

the input image:

Cðx0Þ ¼ expðjkzÞ
jlz

exp j
k

2z
x02

� �Z
I0ðxÞ exp j

k

2z
x2

� �
exp �j

2p
lz

xx0
� �

dx;

¼ expðjkzÞ
jlz

exp j
k

2z
x02

� �Z
IðxÞ exp j

k

2z
x2

� �
exp �j

2p
lz

xx0
� ��

þ IðxÞ exp j
k

2z
x2

� �
exp j

2p
lz

xx0
� ��

dx;

¼ 2
expðjkzÞ

jlz
exp j

k

2z
x02

� �Z
IðxÞ exp j

k

2z
x2

� �
Cos

2p
lz

xx0
� �

dx: ð3:33Þ

Now the output is expressed as a function of the space coordinate and time:

Cðx0; tÞ ¼ 2
expðjkzÞ

jlz
exp j

k

2z
x02

� �Z
IðxÞ exp j

k

2z
x2

� �
Cos

2p
lz

xx0
� �

dx: (3.34)

Let us assume incoherent illumination and calculate the intensity of the output:

Cðx0Þj j2 ¼ 4

l2z2

ZZZ
Iðx1; tÞ�Iðx2; tÞ exp j

k

2z
x1

2

� �
exp �j

k

2z
x2

2

� �
Cos

2p
lz

x1x
0

� �

Cos
2p
lz

x2x
0

� �
dx1dx2dt;

¼ 4

l2z2

ZZ
Iðx1Þj j2 dðx1 � x2Þ exp j

k

2z
x1

2

� �
exp �j

k

2z
x2

2

� �
Cos

2p
lz

x1x
0

� �

Cos
2p
lz

x2x
0

� �
dx1dx2

¼ 4

l2
z2
Z

IðxÞj j2Cos2 2p
lz

xx0
� �

dx

¼ 2

l2z2

Z
IðxÞj j2dxþ 2

l2z2

Z
IðxÞj j2Cos 4p

lz
xx0

� �
dx;

¼ A0 þ 2

l2
z2
Z

IðxÞj j2Cos 4p
lz

xx0
� �

dx:

(3.35)
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This proved that this setup can be used in order to cosine transform the input

signal (which is identical to the Fourier transform for real input images). If a

diffuser is used, this setup can be used to cosine transform the results again, this

is mathematically proven below. Let C denote the output of the first cosine

transform, and F will be the effective result of the mirror used on C after the coding

mask, h, and the diffuser, g.

Fðx0; tÞ ¼ C x0; tð Þh x0; tð Þg x0; tð Þ þ C �x0; tð Þh �x0; tð Þg �x0; tð Þ: (3.36)

The input after passing through the coding mask and the diffuser will be the free

space propagation for a distance of z. This is expressed as O.

Oðx0t; tÞ¼
expð jkzÞ

jlz
exp j

k

2z
x02

� �Z
Fðx; tÞexp j

k

2z
x2

� �
exp �j

2p
lz

xx0
� �

dx: (3.37)

The intensity measured by the sensor will be:

Oð�xÞj j2 ¼ 4

l2z2

Z Z Z
Fðx0; tÞ �Fðx00; tÞexp j

k

2z
x02

� �
exp �j

2p
lz

xx0
� �

	 exp �j
k

2z
x002

� �
exp j

2p
lz

xx00
� �

dx0dx00dt: (3.38)

Let us integrate the only terms affected over time:

Z
Fðx0; tÞFðx00; tÞdt ¼ h x0ð Þh x00ð Þ g x0; tð Þg x00; tð Þh i c x0; tð Þc x00; tð Þh i

þ h x0ð Þh �x00ð Þ g x0; tð Þg �x00; tð Þh i c x0; tð Þc �x00; tð Þh i
þ h �x0ð Þh x00ð Þ g �x0; tð Þg x00; tð Þh i c �x0; tð Þc x00; tð Þh i
þ h �x0ð Þh �x00ð Þ g �x0; tð Þg �x00; tð Þh i c �x0; tð Þc �x00; tð Þh i:

(3.39)

Due to the physical nature of the diffuser, this can be expressed as:

Z
Fðx0; tÞFðx00; tÞdt ¼ h x0ð Þh x00ð Þd x0 � x00ð Þ c x0; tð Þc x00; tð Þh i

þ h x0ð Þh �x00ð Þd x0 þ x00ð Þ c x0; tð Þc �x00; tð Þh i
þ h �x0ð Þh x00ð Þd x0 þ x00ð Þ c �x0; tð Þc x00; tð Þh i
þ h �x0ð Þh �x00ð Þd x0 � x00ð Þ c �x0; tð Þc �x00; tð Þh i: (3.40)
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Equation 3.28 can now be formulated according to (3.30) as:

Oð�xÞj j2¼ 4

l2
z2
Z

hðxÞj j2 cðxÞj j2þ h �xð Þj j2 c �xð Þj j2
n oh

þ h �xð Þj j2 cðxÞj j2þ hðxÞj j2 c �xð Þj j2
n o

exp2 �j
2p
lz

xx0
� ��

dx0;

¼ B0þ 4

l2z2

Z
hðxÞj j2 cðxÞj j2þ h �xð Þj j2 c �xð Þj j2

n o
exp �j

4p
lz

xx0
� �� �

dx0;

¼ B0þ 4

l2z2

Z
hðxÞj j2 cðxÞj j2

n o
Cos

4p
lz

xx0
� �� �

dx0: ð3:41Þ

This is the intensity measured by the sensor. This proved that this setup can be

used in order to cosine transform the input signal (which is identical to the Fourier

Fig. 3.17 Simulated input and output: (top) the original input image used; (middle) the output of
the system with no resolution enhancement; (bottom) the output of the CDMA super resolving.

The image was taken from: J. Solomon, Z. Zalevsky and D. Mendlovic, “Super Resolution Using

Code Division Multiplexing,” Appl. Opt., 42, 1451–1462 (2003)
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transform for real input images), multiply it by a mask and then cosine transform

the input again, i.e., effectively convolving the signal with the Fourier transform

of the mask.

3.2.3 Computer Simulations

In order to verify the method presented in Sect. 3.2.2 for CDMA super resolution,

a MATLAB simulation was constructed. An input image of 64 by 64 pixels was

chosen. A coding mask was constructed in a special manner. It was done in a way

that after convolving with a grating, the different orders of the coding masks

would not overlap, i.e., the transparent parts will not overlap.

In the simulation, the inputwas cosine transformed,multipliedwith the codingmask

and cosine transformed again. It was multiplied by a grating and then it was transferred

through a system with limited bandwidth. This simulated setup is described in

Sect. 3.2.2 according to the computational steeps presented in Fig. 3.14b.

Fig. 3.18 Input image spectrum and systems’ bandwidth (marked by rectangle). The image was

taken from: J. Solomon, Z. Zalevsky and D. Mendlovic, “Super Resolution Using Code Division

Multiplexing,” Appl. Opt., 42, 1451–1462 (2003)
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The input used was a simple binary grating shown in Fig. 3.17 (top). Systems

bandwidth was chosen so as not to enable the transmission of the input image

resolution. The spectrum of the input image and the systems bandwidth are shown

in Fig. 3.18. The coding mask chosen is shown in Fig. 3.19.

The output of the system is presented in Fig. 3.17: In the middle image, the output

is shown for the system without applying the super resolution method. One can see

a complete loss of image resolution. The bottom image shows the input after

construction using CDMA super resolution; one can see that the resolution was

almost completely reconstructed.

3.2.4 Experimental Results

In order to verify the method presented in Sect. 3.2.2 for performing optical cosine

transform, an experimental setup was constructed. The setup was only half of the

setup in Fig. 3.16, i.e., it was composed of an input image, a mirror, and a sensor for

recording the results. The input used was a grid of 100 lines per millimeter.

Fig. 3.19 The codingmask. The image was taken from: J. Solomon, Z. Zalevsky and D.Mendlovic,

“Super Resolution Using Code Division Multiplexing,” Appl. Opt., 42, 1451–1462 (2003)
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First, the output of the setup was recorded for coherent illumination, and is

presented in Fig. 3.20. Then the setup was used with incoherent illumination but

without a mirror, the output was just a blurred spot, as shown in Fig. 3.21. Finally,

the setup was tested with incoherent illumination and a mirror, among the blurred

spot, fine fringes appeared as outlined in Fig. 3.22. Notice that the line spacing is

Fig. 3.20 Output of cosine setup with coherent illumination. The image was taken from:

J. Solomon, Z. Zalevsky andD.Mendlovic, “Super Resolution Using CodeDivisionMultiplexing,”

Appl. Opt., 42, 1451–1462 (2003)

Fig. 3.21 Output of the cosine setup for incoherent illumination but without a mirror. The image

was taken from: J. Solomon, Z. Zalevsky and D. Mendlovic, “Super Resolution Using Code

Division Multiplexing,” Appl. Opt., 42, 1451–1462 (2003)
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identical to the result received with the coherent illumination. This is obvious since

the far field approximation of the input and the cosine transform will produce the

same spatial frequency of the input grating. Notice that the lines do not coincide

since the coherent beam that illuminated the input pattern for the coherent case had

a little elevation angle. Thus, in the far field, this angle caused a shift in the received

fringes. Obviously, this angle had no effect for the incoherent illumination case.
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Chapter 4

Techniques Utilizing Diffractive Masks

Having Structures with a Period

Non-Limited Randomness

Alex Zlotnik, Zeev Zalevsky, Amikam Borkowski, David Sylman,

Vicente Micó, Javier Garcı́a, and Bahram Javidi

4.1 Geometrical Super Resolved Imaging Using

Nonperiodic Spatial Masking

4.1.1 Introduction

In this section, an approach to overcome the geometrical resolution limitations is

presented [1]. In a sensor array, the resolution is determined by the spatial density of

the pixels on the image plane, i.e., the number of pixels per unit area, and by the

geometrical point spread function (PSF) which characterizes the spatial

responsivity of each pixel. The limitation which is related to the spatial density of

the pixels can easily be removed by a procedure called microscanning and

interlacing, i.e., adding many low-resolution images, each taken at a slightly

different small geometrical shifts [2].

The under sampling aspect of the geometrical limitation which is solved by

applying microscanning and by interlacing several low-resolution images into one

unified image with larger number of pixels is not the main problem that this section

aims to address. After the interlacing, one can obtain an image having a lot of pixels

but which is still blurred due to the large pixels that are used to create this image

[3, 4]. De-blurring this image and improving its resolution to correspond to the

pitch of the sampling grid of the interlaced image is the main issue addressed.

In other words, it is meant to overcome the PSF created by the spatial responsivity

of each pixel after the generation of the interlaced unified image.

The novelty of the described approach is in adding a priori knowledge which

allows proper matrix inversion and true extraction of super resolved information

rather than extrapolation as applied in many other digital super resolved approaches.
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The method is applied over an interlaced image that is generated after microscanning

procedure. The microscanning is a procedure such that the mask and the object

should be moving together in respect to the detector (this can be obtained if the

scanning mirror mechanism is positioned between the mask and the detector rather

than between the object and the mask). Extra optical hardware includes a binary

transparency mask located in the intermediate imaging plane of the optics. The mask

adds the required a priori knowledge for the matrix inversion. The described

technique aims to obtain geometrical super resolution, i.e., it assumes that the

diffraction limitation related to the F-number of the optics can be ignored. Therefore,

in diffraction limited system having F-number of 1, the maximal geometrical resolu-

tion that the proposed approach should aim for is the optical wavelength (i.e., about

half a micron).

Additional related works that use some form of the movement of the camera or

modulation of the pupil function are described in refs. [5–8].

4.1.2 Theoretical Analysis

4.1.2.1 General Description

The proposed idea includes positioning one of the three possible masks in

the intermediate image plane of the imaging optics. The mask contains either a

frame of zero intensities at the borders of the field of view or a binary mask of

large random pixels having the size of the original resolution of the imager or a binary

mask of small random pixels having the size of the intended high resolution. Each one

of those three masks actually imposes conditions of zero energy (or constant energy)

over the high-resolution image before it is being sampled by the detector

(and therefore blurred due to the shape of the sampling pixel). Knowing those

conditions allows extracting the high-resolution information despite the significant

spatial degradation by the detector (i.e., having large pixels with low resolution).

A convenient way to observe the problem of resolution enhancement is by looking

at each pixel in the sampling array as a subpixel matrix functioning as an averaging

operator. Therefore, for each shift of the camera, some new subpixels are added and

some are removed from the averaging. This is equivalent to the convolution of a super

resolved image and a function having the spatial shape of a pixel. This convolution

can be farther described as a set of linear equations Ax̂ � b, where x̂ represents the

super resolution image translated to a vector, b represents the interlaced discrete

image constructed as spread vector, and A represents a convolution action caused due

to the spatially extended shape of the pixels. The naive answer to this problem is to

inverse the convolution matrix and to extract the estimator x̂ as x̂ ¼ bA�1. Since there

is no existence of a solution, one may use the method of reducing the least square

error Ax� bk k2, such that x̂ ¼ ATAð Þ�1
ATb (i.e., a pseudoinverse) or using

Tikhonov’s regularization and obtaining x̂ ¼ ATAþ a2Ið Þ�1
ATb [9].

Note that the resolution improvement algorithm is applied after performing

microscanning which increases the effective number of low-resolution pixels in

the captured image. The suggested approach allows improvement of resolution by
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an order of magnitude in every axis as to be demonstrated, i.e., a low-resolution

image that is blurred due to the large pixels of the detector is being microscanned.

The microscanning factor equals to the super resolution factor to be obtained. The

outcome is a blurred image with number of pixels corresponding to the desired

resolution. The blurring is obtained due to the originally large geometry of

the pixels in the detector. If one knows some a priori initial conditions which

can be at the border of the image or at random locations along the image, then

the de- convolution operation is feasible. Basically, the convolution operation

(the blurring) may be expressed as a linear operation applied over the image,

i.e., Ax¼ b where A is the matrix of blurring, x are the unknown variables that are

the pixels of the high-resolution image which are to be extracted, and b is the

captured low-resolution image. In an image of size (M�R� 1)� (N�R� 1)

where R stands for the size of the blurring kernel one usually has N�M unknown

variables which make the problem of inversion impossible unless it is based

upon extrapolation. Due to the mask positioned in the intermediate plane,

the number of variables is reduced (by blocking the light at certain spatial

positions). Therefore, there will be (M� (R � 1))� (N� (R� 1)) equations as

well as unknown variables. By posing zeros at the edges of the field of view or at

random positions in the image, the number of variables is reduced. This allows

simple extraction of the real super resolved information without “speculations”

(i.e., without extrapolation).

Note that since R is small (say 8 in comparison to N or M which are 1,000 or

more), the “loss” of spatial information within the field of view or the reduction of

the field of view (when the zeros are at the borders) is negligible.

Therefore, the purpose of the spatial mask is as follows: addition of known

information in order to improve the ratio between the number of equations and the

number of unknown variables. The mask blocks some of the original information

but adds new known information allowing the precise inversion of the matrix A.
As previously mentioned, there are three possibilities:

• Mask blocking the edges of the field of view. The advantage of this mask is that

it is simple for fabrication and actually does not have to be positioned in the

intermediate plane. Instead, the optics itself can be modified in order to realize

this. Note also that this mask does not contain zeros. It may just have uniform

gray levels. The disadvantage is that the inversion is good at the proximity of the

border and it has larger accumulated error noise toward the center of the image.

• Random binary mask with large pixels. The a priori knowledge is randomly

spread along the entire image, therefore, the error is not accumulated. Since the

pixels are large (have the size of the low-resolution image), more energy and

more spatial information is lost. One solution is to use two masks each providing

blocking in different spatial positions. Then, by time multiplexing (which is

applied in addition to the microscan), one may capture two images each with

different mask and recover the high resolution over the full field of view by

combining the two super resolved results. The optical implementation of such a

time multiplexing can be obtained by positioning spatial light modulator (SLM)

in the intermediate image plane of the optical system and displaying two

different random sequential binary distributions.
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• Random binary mask with small pixels. The a priori knowledge is also randomly

spread along the entire image. Therefore, the error is not accumulated. Since the

pixels are small (the size of the super resolved image), less energy and less

spatial information is lost. The final result will be the super resolved image

multiplied by the random mask. Another mask is needed to recover the missing

information. In this case, the spatial information is lost but rather there are some

areas in the field of view where there is no super resolution. Therefore, the use of

the second mask (temporal multiplexing) is not crucial (but may be used)

and this is the main advantage of this approach.

4.1.2.2 Algorithm Description

General Outline

As was mentioned previously, the interlaced image can be modeled by a convolu-

tion operation:

y m; n½ � ¼ g m; n½ � � u m; n½ � ¼
XR�1

k¼0

XR�1

l�0

g k þ m; lþ n½ �u k; l½ �; (4.1)

where the functions u and y represent the original and the blurred images, respec-

tively. The smoothed kernel g is referred to the spatial shape of the pixel with a size
of R.

The original and blurred images, i.e., the functions u and y, are assumed to be

defined by a compact set of linear equations:

b ¼ Ax; (4.2)

where the vector x contains nonnegative pixel values, ordered column-wise, of the

discrete image that corresponds to u. The vector b contains the pixel values,

ordered column-wise, of the blurred and sampled images associated with x.
The matrix A is the blurring matrix obtained by sampling the summing operator.

Every pixel in the blurred image y represents a linear multiplication between

b and x. R-doing this operation for each pixel, one can obtain many different row

vectors. Combining all of these vectors creates the matrix A. In the 1-D case,

this matrix has a Toeplitz Block form. In the 2-D case, the process is much more

complicated, and it requires the integration of many Toeplitz blocks in a Toeplitz

block structure using the Kronecker product. Matrices with this structure are

referred to as block Toeplitz form with Toeplitz blocks (BTTB) matrices.

Let us now demonstrate the operation principle of the algorithm with a concrete

example. Let:

u ¼
u00 � � � u04
..
. ..

.

u20 � � � u24

2
64

3
75
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be a 3� 5 pixels image, such that x will be ordered column-wise as:

x ¼

u00
..
.

u04
u10
..
.

u14
u20
..
.

u24

2
666666666666664

3
777777777777775

:

The smoothing kernel g ¼ 1
4

1 1

1 1

� �
having the size of 2� 2 will perform four

longitudinal and two lateral steps. First, let us start by describing the longitudinal

steps of the first row of the kernel. The first step in this row is to multiply the u00; u01
terms and sum them up. The row-wise vector will be shown as 1 1 0 0 0½ �.
The next step in this row is to multiply the u01; u02 terms and to sum them up.

The row-wise vector will be shown as 0 1 1 0 0½ � and so on. After gathering
all these vectors to a matrix, a Toeplitz block will be obtained (denoted by A2):

A2 ¼ 1

4

1 1 0 0 0

0 1 1 0 0

0 0 1 1 0

0 0 0 1 1

2
664

3
775:

The other kernel’s row and the lateral steps can be described as a Toeplitz block

as well where every term in this matrix is represented as the first Toeplitz block A2

that have been obtained. Since this kernel includes two rows representing two

longitudinal movements and two lateral movements, one can obtain a new Toeplitz

block A1 ¼ 1 1 0

0 1 1

� �
. By replacing every term in this block with the first

Toeplitz block A2 (using the Kronecker product), the final matrix takes next form:

A ¼ A1 � AT
2 ¼ 1

4

1 1 0 0 0

0 1 1 0 0

0 0 1 1 0

0 0 0 1 1

��������

1 1 0 0 0

0 1 1 0 0

0 0 1 1 0

0 0 0 1 1

��������
0

0

1 1 0 0 0

0 1 1 0 0

0 0 1 1 0

0 0 0 1 1

��������

1 1 0 0 0

0 1 1 0 0

0 0 1 1 0

0 0 0 1 1

��������

2
66666666664

3
77777777775
:
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Every row in this matrix has 15 variables, as expected, and it represents exactly

the linear multiplication with the x column vector of the image, therefore the

b column vector for the blurred image:

b ¼

y00

..

.

y03
y10

..

.

y13

2
666666664

3
777777775

has the same length as the number of rows in the matrix A.
By multiplying the vector b by the inverse matrix A�1, it is possible to recover the

original high-resolution vector x. Since the matrix has more rows than columns

(i.e., there are more variables than equations), the matrix is not square and therefore

it is not invertible. One possibility is to use pseudoinverse, i.e., to use the minimum

mean square error of Ax� bk k2:

Ax� bk k2 ¼ Ax� bð ÞT Ax� bð Þ ¼ Axð ÞT Axð Þ � bTAx� Axð ÞTbþ bTb: (4.3)

Setting the gradient to zero yields:

d

dx
Ax� bk k2

h i
¼ 2ATAx̂� 2ATb ¼ 0: (4.4)

Therefore:

x̂ ATA
� � ¼ ATb ) x̂ ¼ ATA

� ��1
ATb ¼ A�1

P b; (4.5)

where A�1
p is the pseudoinverse and x̂ is the estimation for the unknown variables x.

However, since the original image contains noise (quantization noise, shot noises,

thermal noises, etc.), the solution of x̂ ¼ A�1
p b will not produce good results and

may even be unstable mathematically. Therefore, additional regularization term is

added to avoid this problem and to reduce sensitivity to existing noise. Tikhonov

regularization term Gxk k2 is used to find a smooth solution:

Ax� bk k2 þ Gxk k2 ¼ Ax� bð ÞT Ax� bð Þ þ Gxð ÞT Gxð Þ;
¼ Axð ÞT Axð Þ � bTAx� Axð ÞTbþ bTbþ Gxð ÞT Gxð Þ:

(4.6)

Setting the gradient to zero leads to:

d

dx
Ax� bk k2 þ Gxk k2

h i
¼ 2ATAx̂� 2ATbþ 2GTGx̂ ¼ 0; (4.7)
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x̂ ATAþ GTG
� � ¼ ATb ) x̂ ¼ ATAþ GTG

� ��1
ATb: (4.8)

If one assumes that G ¼ aI, where I is the unity matrix, then the obtained

solution is:

x̂ ¼ ATAþ a2I
� ��1

ATb; (4.9)

while a can be estimated using various approaches such as the Bayesian

interpretation, the discrepancy principle, the cross validation, the L-curve method,

the unbiased predictive risk estimator, or the leave-one-out cross-validation

approach [10].

By applying the mask, the information added by the mask improves the

optimization process. Each transparent pixel of the mask does not affect

the calculation procedure, and it is averaged as before due to the large pixel’s

size in the detector which is the low geometrical resolution. Each opaque pixel in

the mask eliminates the information at that point, and it is not being summed with

the rest of the pixels. In fact, each time a “zero” pixel appears, an equation line is

added to the matrix A, composed of zeroes and single “1” values, and add the

value “0” in the outcome vector b:

A ¼ 1

4

1 0 � � � � � � 0

0 0 1 0 � � � � � � 0

0 � � � 0 1 0 � � � 0

0 0 1 0 � � � 0

0 � � � 0 1 0 � � � 0

0 � � � 0 1 0 0

0 � � � 0 1 0

..

. ..
. ..

. ..
. ..

.

1 1 0 0 0 1 1 0 0 0 0 0 0 0 0

0 1 1 . .
.

0 1 1

1 1 0 . .
.

1 1

1 1 0 0 0 1 1 ..
.

..

.
1 1 0 0 0 1 1

1 1 . .
.

0 1 1

1 1 0 . .
.

1 1 0

0 0 0 0 0 0 0 0 1 1 0 0 0 1 1

2
66666666666666666666666666666664

3
77777777777777777777777777777775

; b ¼

0

..

.

0
y00

..

.

y03
y10

..

.

y13

2
6666666666666666664

3
7777777777777777775

:

In fact, the matrix A may become a square matrix and even one that contains

more rows than columns, making the system more constrained. Thus, it is possible

to implement the inverse algorithm with the combination of the Tikhonov

regularization, getting substantially more accurate result.
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In summary, the proposed approach includes deploying a hardware mask which

adds important a priori information and capturing a set of microscanned images.

The interlaced image generates a blurred image but with the number of pixels

following the required super resolving factor. Then, by applying Tikhonov regular-

ization and inverting the extended (i.e., modified) matrix A, one may extract the

super resolved information.

Computational Requirements

The size of the matrix is (M�N)� [(M� (R� 1))� (N� (R� 1))]. The matrix

with the “known elements,” which is only a diagonal matrix with the size of

(M�N)� (M�N) should be added to matrix A, creating a very large matrix,

whose size is approximately (M�N)� 2(M�N). The use of Tikhonov regulariza-

tion requires triple matrix multiplication for the matrix A and calculation of the

invertible matrix ATAð Þ�1
, which is a time-consuming manipulation.

In order to increase the processing speed, the computations are not done over the

entire image at once but rather each time the computations are performed over a

segment of the image. The result is used for the computation of the next segment.

One can dramatically reduce the computation requirements if some a priori

information on the object shape or location is known. For example, if the task is

to perform sort of digital zooming in which one wishes to improve the geometrical

resolution only in a limited and specified spatial region, then the region of interest

(ROI) is only a well-known number of neighbored pixels. This can reduce the

number of calculations involved in the Fourier/inverse Fourier transform

computations. That is, in some problems, the selection of proper ROI decreases

the computational complexity.

4.1.3 Experimental Investigation

Schematic sketch of the experimental setup is presented in Fig. 4.1 (the experimental

setup is part of a DarkField wafer inspection system). The experimental system

contains CMOS camera of Phantom v10 with 2,400� 1,800 pixels capable of

producing images at a frame rate of 480 fps, with focal lengths of BFL¼EFL¼ 30

mm and a vibration stage with the precision of 0.5 mm. The active area used for

the image capturing is 1,280� 800 pixels. The camera has pixels with a size of

11.5� 11.5 mm. In the experiments, each group of eight pixels is binned

(i.e., generated pixels of 92� 92 mm). Super resolved image is therefore of original

resolution corresponding to pixels with a size of 11.5� 11.5 mm. The camera had

eight bits of dynamic range and thus the captured images had gray levels varying

from 0 to 255. The optical system has different horizontal and vertical magnification

factors. In the horizontal axis, the magnification is 2.3 (generating foot print of 5 mm
over the wafer plane). In the vertical axis, the magnification is 5.75 (generating foot
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print of 2 mm over the wafer plane). In the experiments, the stage is aimed to generate

relative movement of the resolution target/object and the randommask in comparison

to the detector. The stage allowed moving the object in steps of 11.5 mm,

then stopping and allowing the system to capture an image. As mentioned, the

effective size of the pixels in the system is 92 mm and this is the geometrical limit

for the resolution to be achieved. Thus, the movement of 11.5 mm is a subpixel

movement equivalent to steps of 1/8 of the size of the original pixel (92 mm).

Figure 4.2a shows a high-resolution reference image captured by a camera.

The low-resolution image is seen in Fig. 4.2b. The reduction of resolution is by a

factor of 8 in every axis. Figure 4.2c shows the experimentally obtained image.

Fig. 4.1 Schematic sketch of the experimental setup which is part of the DarkField wafer

inspection system of Applied Materials Ltd. The image was taken from: A. Borkowski,

Z. Zalevsky and B. Javidi, “Geometrical Super Resolved Imaging Using Non periodic Spatial

Masking,” JOSA A 26, 589–601 (2009)
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The image in the left side was obtained after performing regular microscanning

procedure and in the right side it is without it. The improvement is visible but it is

less than a factor of 2. Figure 4.2c was generated by shifting the object in steps of

11.5 mm and interlacing the 64 captured images into a unified image with higher

sampling resolution.

In the following figures, the images were captured using previously described

experimental platform. An example of the random blocking mask having 50% of

Fig. 4.2 (a) High-resolution reference image. (b) Low-resolution image (without super

resolution). (c) Experimentally obtained image where in the left side the image is obtained after

performing regular microscanning procedure and in the right side it is without it. The image was

taken from: A. Borkowski, Z. Zalevsky and B. Javidi, “Geometrical Super Resolved Imaging

Using Non periodic Spatial Masking,” JOSA A 26, 589–601 (2009)
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blocking is presented in Fig. 4.3. Figure 4.4a–c presents three super resolved

reconstructions with three types of masks described in Sect. 4.1.2.1 – (a) field of

view limiter, (b) random low-resolution mask, and (c). random high-resolution mask.

One may see that the reconstruction result is similar to the original high-resolution

image. In all three approaches, noise is added and the outcome is proven to have

reduced noise sensitivity. In this simulation, the reconstructed images were obtained

while applying the time multiplexing such that no black regions are remained in the

reconstruction. In the case of Fig. 4.4a, the field of view blocking mask blocked seven

high-resolution pixels (11.5 mm) from each side of the field of view.

Figure 4.5 shows the masked image (left) and the blurred and masked images

(right) as they appear in the two cases where the random mask is applied.

Figure 4.5a and b is the cases of high-resolution and low-resolution random

masks correspondingly. The images were obtained through reconstruction of a

single image, without applying the time multiplexing approach which allows

reconstruction over the full field of view.

Next the sensitivity to noise is examined. Figure 4.6a and b shows the reference

high-resolution image without noise and with embedded noise having the standard

deviation of 20 gray levels, respectively. The low resolution is shown in Fig. 4.6c.

The reconstruction with first kind mask, i.e., by blocking the edges of the field of

view, is seen in Fig. 4.6d. Figure 4.6e and f shows reconstructed image with a

second and third kind of random masks, respectively. One may see that despite the

noise most of the information is recovered in all three approaches due to the applied

process of regularization. Next, the sensitivity of the quality of reconstruction to

Fig. 4.3 An example of the random mask with 50% blocking. The image was taken from:

A. Borkowski, Z. Zalevsky and B. Javidi, “Geometrical Super Resolved Imaging Using Non

periodic Spatial Masking,” JOSA A 26, 589–601 (2009)
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various physical parameters is tested. The sensitivity testing is performed for the

random mask of the third kind.

The first test includes examining the sensitivity of the number of quantization

bits in the camera. Figure 4.7a shows the reference images. Figure 4.7b illustrates

the low-resolution images captured with a CMOS detector having a varied number

of quantization bits. In Fig. 4.7c, the reconstructed image is depicted. One can see

that it is not identical to the input, but due to the spatial masking, the obtained result

is much closer to the original input not only by its spatial resolution but also by the

gray level range obtained in each pixel.

From the figure, it is clear that even for a 4-bit camera, the image is fully

reconstructed. From the preceding simulations, it is possible to conclude that the

obtained result is not sensitive to the number of quantization bits of the CMOS

detector. Even for a CMOS detector having two quantization bits, the original

image is almost completely reconstructed.

Fig. 4.4 Super resolved reconstruction using (a) field of view border condition. (b) Low-resolution

mask in the intermediate image plane. (c) High-resolutionmask in the intermediate image plane. The

image was taken from: A. Borkowski, Z. Zalevsky and B. Javidi, “Geometrical Super Resolved

Imaging Using Non periodic Spatial Masking,” JOSA A 26, 589–601 (2009)
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The summary for the sensitivity of the described super resolution technique to

the number of quantization bits is presented in Fig. 4.8. Figure 4.8a plots the

standard deviation of the error (i.e., the difference) between the reconstructed and

the original high-resolution images vs. the number of quantization bits. Obviously,

reducing the number of bits increases the standard deviation of the error. One

important parameter related to the presented approach is its numerical reliability

which is related to the capability to perform the matrix inversion as indicated by

(4.9). A way to test this reliability is to observe the condition number. This number

is defined as follows:

k ¼ NORM ATAþ a2I
� � � NORM ATAþ a2I

� ��1
� �

; (4.10)

where NORM stands for the norm of a matrix (its largest singular value).

In Fig. 4.8b, the condition number vs. number of quantization bits is presented.

Fig. 4.5 Masked image (left) and blurred masked image (right) for: (a) high-resolution mask in

the intermediate image plane and (b) low-resolution mask in the intermediate image plane. The

image was taken from: A. Borkowski, Z. Zalevsky and B. Javidi, “Geometrical Super Resolved

Imaging Using Non periodic Spatial Masking,” JOSA A 26, 589–601 (2009)
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Fig. 4.6 (a) High-resolution reference. (b) High-resolution reference embedded with noise with a

standard deviation of 20 gray levels. (c) The low-resolution image after blurring by a factor of 8 in

every axis. (d) The reconstruction with mask, i.e., blocking the edges of the field of view. (e) The

same as in (d) but with applying random binary mask with large pixels. (f ) The same as in (d) but

with applying random binary mask with small pixels. The size of the small pixel is 1/8 of the

binned pixels of the CMOS detector (i.e., 11.5 mm). The size of the large pixel equals to the binned

pixel of the CMOS detector (i.e., 92 mm). The image was taken from: A. Borkowski, Z. Zalevsky

and B. Javidi, “Geometrical Super Resolved Imaging Using Non periodic Spatial Masking,” JOSA

A 26, 589–601 (2009)



Fig. 4.7 Computer simulations that examine the sensitivity of the suggested technique to the

number of quantization bits of the camera: (a) reference images captured by a CMOS detector with

varied number of quantization bits, (b) low-resolution images, (c) the reconstructed images. The

image was taken from: A. Borkowski, Z. Zalevsky and B. Javidi, “Geometrical Super Resolved

Imaging Using Non periodic Spatial Masking,” JOSA A 26, 589–601 (2009)



As anticipated, reduction in the number of bits increases the condition number

which indicates lower reliability of the resulted reconstruction.

Figure 4.9 plots the qualitative effect of additive Gaussian, with zero mean, noise

over the reconstruction quality. The noise level is described by its variance in a

normalized dynamic range of 0–1. For instance, variance of 0.01 is equivalent to the

standard deviation of 0.1 (square root of 0.01) which is the standard deviation of

25.5 (¼0.1� 255) gray levels. The noise variance is between 0.0001 (very small

noise level) and 0.1 (very strong noise). Figure 4.10 summarizes the obtained

results. Figure 4.10a shows the standard deviation of the error (i.e., the difference)

between the reconstructed and the original high-resolution images vs. noise. In

Fig. 4.10b, condition number vs. noise level is plotted. Obviously, increasing the

noise level increases the error of the reconstruction as well as the condition number

(i.e., reducing the reliability of matrix inversion operation).

Fig. 4.8 Tolerance to

quantization. (a) Standard

deviation of the error between

the reconstructed and the

original high-resolution

images vs. number of

quantization bits. (b) The

condition number vs. number

of quantization bits. The

image was taken from:

A. Borkowski, Z. Zalevsky

and B. Javidi, “Geometrical

Super Resolved Imaging

Using Non periodic Spatial

Masking,” JOSA A 26,

589–601 (2009)
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Next the effect of degree of transparency of the mask on the quality of recon-

struction is evaluated. As the mask gets more transparent, less a priori known values

could be inserted into the reconstruction algorithm. The images of Fig. 4.11 are

obtained for random masks with different blocking portions. The range of the

blocking portion used in test is between 0.0005 (0.05% of the image is blocked)

and up to 0.5 (i.e., half of the image is blocked). Summary of the obtained results is

seen in Fig. 4.12 – here the standard deviation of the error (i.e., the difference)

between the reconstructed and the high-resolution blocked image images is shown.

One may see that for small blocking portions, the error is fixed and then when the

blocking portion is increased the error is significantly reduced. Figure 4.12b

presents the standard deviation of the error between the reconstructed and the

original (unblocked) high-resolution images. Here, increase of the blocking

increases the error since the reconstructed image becomes more different from

the high-resolution original reference image. As previously described, this reduc-

tion in performance can easily be resolved by capturing two rather than a single

Fig. 4.9 Sensitivity to Gaussian noise (with zero average). The noise level is described by its

variance in normalized dynamic range of 0–1. The noise variance is: (a) 0.0001, (b) 0.0002,

(c) 0.0005, (d) 0.001, (e) 0.002, (f ) 0.005, (g) 0.01, (h) 0.02, (i) 0.05, and ( j) 0.1. The image was

taken from: A. Borkowski, Z. Zalevsky and B. Javidi, “Geometrical Super Resolved Imaging

Using Non periodic Spatial Masking,” JOSA A 26, 589–601 (2009)
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Fig. 4.9 (continued)
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image while for each image a different random mask is used (while no spatial

overlapping exists between the blocking locations in the two random masks). In

Fig. 4.12c, the condition number vs. the blocked portion is examined. Increasing the

blocking portion gives us more a priori knowledge and thus the condition number is

reduced (meaning increased reliability of the inversion).

Fig. 4.10 Tolerance to noise. (a) Standard deviation of the error between the reconstructed and

the original high-resolution images vs. noise level. (b) The condition number vs. noise level. The

image was taken from: A. Borkowski, Z. Zalevsky and B. Javidi, “Geometrical Super Resolved

Imaging Using Non periodic Spatial Masking,” JOSA A 26, 589–601 (2009)
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Fig. 4.11 Performance vs. the blocking portion of the random mask. The blocking portion is as

follows: (a) 0.0005, (b) 0.001, (c) 0.002, (d) 0.005, (e) 0.01, (f ) 0.02, ( g) 0.05, (h) 0.1, (i) 0.2, and

( j) 0.5. The image was taken from: A. Borkowski, Z. Zalevsky and B. Javidi, “Geometrical Super

Resolved Imaging Using Non periodic Spatial Masking,” JOSA A 26, 589–601 (2009)
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Figure 4.13 shows the results of the performance vs. the value of a coefficient in
the Tikhonov’s regularization algorithm [see (4.9)]. The range for the values of a
coefficient is between 0.001 and up to 20.

Figure 4.14 summarizes the effect of the regularization coefficient – Fig. 4.14a

presents the standard deviation of the error (i.e., the difference) between the

reconstructed image and the high-resolution reference image. Increasing the coeffi-

cient contributes to increased reconstruction error. Figure 4.14b plots the condition

number vs. the regularization coefficient. One may see that increasing the coeffi-

cient reduces the condition number (i.e., increases the reliability of the inversion).

4.2 Random Angular Coding for Super Resolved Imaging

4.2.1 Introduction

This section presents a super resolution work that generalizes the concept of super

resolution based on two static gratings by using two random static masks for the

encoding/decoding [11].

Fig. 4.11 (continued)
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Fig. 4.12 The effect of partial blocking by the randommask over the overall performance. (a) The

standard deviation of the error between the reconstructed and the high-resolution blocked image.

(b) The standard deviation of the error between the reconstructed and the original (unblocked)

high-resolution images. (c) The condition number vs. the blocked portion. The image was taken

from: A. Borkowski, Z. Zalevsky and B. Javidi, “Geometrical Super Resolved Imaging Using Non

periodic Spatial Masking,” JOSA A 26, 589–601 (2009)
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As a most noticeable fact, the super resolution effect is obtained without a cost

neither in the time domain nor in the field of view domain. This is contrary to

previous approaches which exploited time domain [12–20] and field of view

[21–27] to achieve a higher resolving power. Now, the impact is only performed

in dynamic range since the contrast of the obtained super resolved image is reduced.

As in the case of static grating approaches, the random masks must have smaller

features than those aimed to be resolved in the object. Here, the concept reported in

ref. [28] is expanded to the two-dimensional (2-D) case while reporting the appli-

cation of the method not only for coherent but also for incoherent (extended white

light source) illumination. Moreover, the gain in resolution depends on the

encoding mask pixel size and a factor of noise but it is independent on the NA of

the imaging system. This is an important improvement in comparison to the original

super resolving idea considering two fixed variable masks. The achieved experimental

results suggest that the technique can be implemented in microscopy by properly

selecting the pixel size of the encoding masks to the NA of the objective lens.

4.2.2 Mathematical Derivation

The schematic sketch of the proposed setup is shown in Fig. 4.15. For simplicity, a

1-D analysis is performed while the extension to 2-D is straightforward.

Fig. 4.12 (continued)
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Fig. 4.13 (continued)
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Thus, the field distribution after free space propagation of z1 equals to

gzðxÞ ¼
Z

GðmÞ exp pilz1m2
� �

exp 2pixmð Þdm; (4.11)

Fig. 4.13 Performance vs. a coefficient of the Tikhonov’s regularization algorithm. The values of

a are: (a) 0.001, (b) 0.002, (c) 0.005, (d) 0.01, (e) 0.02, (f) 0.05, (g) 0.5, (h) 1, (i) 2, (j) 5, (k) 10, and
(l) 20. The image was taken from. A. Borkowski, Z. Zalevsky and B. Javidi, “Geometrical Super

Resolved Imaging Using Non periodic Spatial Masking,” JOSA A 26, 589–601 (2009)
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Fig. 4.14 The effect of the regularization coefficient over: (a) the standard deviation between the

reconstructed image and the high-resolution reference image. (b) The condition number vs. the

regularization coefficient. The image was taken from: A. Borkowski, Z. Zalevsky and B. Javidi,

“Geometrical Super Resolved Imaging Using Non periodic Spatial Masking,” JOSA A 26,

589–601 (2009)
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where

GðmÞ ¼
Z

gðxÞ exp �2pixmð Þdx: (4.12)

This distribution is multiplied by the random encoding mask equals to m(x) and
the obtained product equals to

Z Z
Mðm� m1ÞGðm1Þ exp pilz1m1

2
� �

dm1

� �
exp 2pixmð Þdm; (4.13)

while

MðmÞ ¼
Z

mðxÞ exp �2pixmð Þdx: (4.14)

Next back free space propagation of �z1 is performed to obtain the field

distribution in the input plane while the effect of the encoding mask is included

Z Z
Mðm� m1ÞGðm1Þ exp pilz1m1

2
� �

dm1

� �
exp �pilz1m2

� �
exp 2pixmð Þdm;

(4.15)

we switch now to the aperture plane by performing a Fourier transform

Z Z Z
Mðm� m1ÞGðm1Þ exp pilz1m1

2
� �

dm1

	 

exp �pilz1m2

� �
exp 2pixmð Þdm

� �

� exp � 2pim2x
lF

	 

dx;

(4.16)

Z1 Z2

F F F F

Lens Lens

Output image 
plane 

System limited
aperture

Encoding random
mask

Decoding random 
maskInput object

plane

Fig. 4.15 Theoretical layout of the proposed setup. The image was taken from: D. Sylman, V.

Micó, J. Garcı́a and Z. Zalevsky, “Random Angular Coding for Superresolved Imaging,” Appl.

Opt. 49, 4874–4882 (2010)
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which after mathematical simplification equals to

Z
M

m2
lF

� m1
� �

Gðm1Þ exp pilz1m1
2

� �
dm1

� �
exp �pilz1

m2
lF

� �2
	 


: (4.17)

It is next multiplied by the aperture (assuming a rect function for the aperture)

Z
M

m2
lF

�m1
� �

Gðm1Þexp pilz1m1
2

� �
dm1

� �
exp �pilz1

m2
lF

� �2
	 


rect
m2
Dm2

	 

(4.18)

and after additional optical Fourier transform, the distribution reaches the output

plane (yet without taking into account the second decoding mask)

Z Z
M

m2
lF

� m1
� �

Gðm1Þ exp pilz1m1
2

� �
dm1

� �
exp �pilz1

m2
lF

� �2
	 


rect
m2
Dm2

	 


� exp
�2pim2x

lF

	 

dm2:

(4.19)

Then, change of variables is performed such that n ¼ m2=lF
Z Z

M n� m1ð ÞGðm1Þ exp pilz1m1
2

� �
dm1

� �
exp �pilz1n2

� �
rect

n
Dm2=lF

	 


� exp �2pinxð Þdn:
(4.20)

Now it is need to add a free space propagation of z2 in order to reach the random
decoding mask. To do that the angular spectrum approach for computing the free

space propagation is used, i.e., spectrum is multiplied by the chirp phase factor

Z Z
M n� m1ð ÞGðm1Þ exp pilz1m1

2
� �

dm1

� �
exp pilðz2 � z1Þn2

� �
rect

n
Dm2=lF

	 


� exp �2pinxð Þdn:
(4.21)

Now after propagating a free space distance of z2, the distribution is multiplied

by the decoding random mask m*(x). The Fourier of this mask equals to

m�ðxÞ ¼
Z

MðmÞ exp 2pixmð Þdm
	 
�

¼
Z

M�ð�mÞ exp 2pixmð Þdm (4.22)

and the expression obtained equals to

Z Z
M n� m1ð ÞGðm1Þ exp pilz1m1

2
� �

dm1

� �
exp pilðz2 � z1Þn2

� �
rect

n
Dm2=lF

	 

Z

M�ð�m2Þ exp 2pixm2ð Þdm2
� �

exp �2pixnð Þdn: (4.23)
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It may be rewritten as a convolution in the Fourier domain

Z Z Z
M n1 � m1ð ÞGðm1Þ exp pilz1m1

2
� �

dm1

� �
exp pilðz2 � z1Þn12

� �
rect

n1
Dm2=lF

	 


M�ð�nþ n1Þ exp 2pixnð Þdn1dn:
(4.24)

Now it is left to add additional free space propagation of�z2, which means another

Fourier transform multiplied by the chirp factor and inverse Fourier transform

Z Z Z
M n1 � m1ð ÞGðm1Þ exp pilz1m1

2
� �

dm1

� �
exp pilðz2 � z1Þn12

� �
rect

n1
Dm2=lF

	 


M�ð�nþ n1Þ exp �pilz2n2
� �

exp 2pixnð Þdn1dn:
(4.25)

This is the field distribution in the output plane. Note that the masks of encoding

and decoding are random and therefore are uncorrelated

Z
MðnÞM�ðn� n1Þdn ¼ dðn1Þ: (4.26)

This decorrelated relation is very strong (the mask is very random) and it may be

rewritten as

Z
f ðnÞ �MðnÞM�ðn� n1Þdn ¼ dðn1Þ (4.27)

for any general function f(n).
Since the distributions are fields, M can be complex and nonhermitic. It is

possible to rewrite (4.5) as

Z Z
Gðm1Þ exp pilz1m1

2
� �

exp �pilz2n2
� �

exp 2pixnð Þ�
Z

exp pilðz2 � z1Þn12
� �

rect
n1

Dm2=lF

	 

M n1 � m1ð Þ M�ð�nþ n1Þdn1

� �
dm1dn

(4.28)

using the assumption of (4.27), yields

Z Z
Gðm1Þ exp pilz1m1

2
� �

exp �pilz2n2
� �

exp 2pixnð Þdðn� m1Þdm1dn (4.29)

and results with

Z
Gðm1Þ exp pilðz1 � z2Þm12

� �
exp 2pixm1ð Þdm1: (4.30)
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In the spatially coherent case, the expression for intensity is:

IðxÞ ¼
Z

Gðm1Þ exp pilðz1 � z2Þm12
� �

exp 2pixm1ð Þdm1
����

����
2

(4.31)

For z1¼ z2, one can obtain super resolution since the field of the output equals to
the full resolution object’s field g(x). An interesting application for the proposed

setup can be filtering. By choosing z1� z2 not being equal to zero, a filtering

operation is actually applied over the input object.

Note that for the assumption of (4.27), the Fourier transform of the encoding/

decoding mask M must contain a lot of features which means that m(x) should be

large in the spatial domain, at least as large as g(x) and definitely much larger than

the PSF of the imaging system before super resolution (within the width of the

aperture which is a rect in this case, the functionM should have as much features as

possible). In addition, the spectral width of the coding/decoding mask, i.e., the

width of M should be as large as the synthetic aperture to be generated in the super

resolution process. This in a way resembles CDMA coding where orthogonality is

also required in order to separate mixed bits. In this case, the resolution ofm(x), i.e.,
its smallest feature, should at least as small as the smallest desired feature in g(x)
divided by the super resolution factor. This is the cost for the super resolution

improvement in addition to the energy and contrast loses.

4.2.3 Numerical Simulation of the System

Three numerical simulations are presented in this subsection. One is for 1-D super

resolution and two numerical simulations are for a 2-D resolving. For the system

simulations, a spatially coherent illumination at a wavelength of 500 nm is

assumed. The size of the pixels in the input mask is 0.1 mm, and the density of

the random halls in the encoding/decoding mask is 25%. An example of an

encoding/decoding mask that is used in the simulations is presented in Fig. 4.16.

In the 1-D simulation, the distances are chosen to be z1¼ z2¼ 8 m, the size of the

low pass filter is 1.99 lines/mm. The width of the lines of the input object is 0.2 mm.

In the 2-D simulation, the distances are z1¼ z2¼ 10 m for the grating input and

12 m for the lattice input object. The size of the low pass filter is of 1.99 lines/mm in

both dimensions. The width of the lines of the input grating is 0.28 mm and the size

of the lattice unit is 0.2 mm� 0.2 mm.

Figure 4.17 presents the numerical simulations of the setup. In Fig. 4.17a, the

image of the high-resolution reference is presented. Figure 4.17b shows the low-

resolution reference as it is seen after the spatial blurring due to a low-resolution

imaging system. After applying the proposed approach, the obtained result is seen

in Fig. 4.17c. In Fig. 4.17d, one may see the results of Fig. 4.17c after reducing the

additive noises added due to the processing procedure. One may see that the

98 A. Zlotnik et al.



reconstructed image is very similar to the original high-resolution reference. The

SNR of the image had been improved from 0.7 to 0.9.

Figure 4.18 shows two additional numerical simulations of the proposed tech-

nique for 2-D super resolution case. In Fig. 4.18a-I and a-II, two high-resolution

input reference images is shown. In Fig. 4.18b-I and b-II, low-resolution references

as they are seen after the spatial blurring due to a low-resolution imaging system is

plotted. After applying the proposed approach by adding the random masks, the

obtained results are seen in Fig. 4.18c-I and c-II. Figure 4.18d-I and d-II presents

the obtained results of Fig. 4.18c-I and c-II after reducing the additive noise

generated in the processing. One may see that the reconstructed images also in

the 2-D case are very similar to the original high-resolution references, exactly as it

is in the 1-D case. The SNR of the image had been improved from 0.66 in both

images 4.18b-I and b-II to 1.3 at image 4.18d-I and 0.83 at image 4.18d-II.

4.2.4 Experimental Results

To validate the proposed approach working under incoherent illumination, the

optical setup showed in Fig. 4.19 was assembled at the laboratory. Extended

(nonpunctual) polychromatic (white light) illumination is provided by Fiber-Lite

MI-150 fiber optic illuminator (halogen lamp source focused onto a fiber optic light

guide). For the encoding/decoding process, two identical binary amplitude square

randommasks with different magnifications are used in the experiment. Figure 4.20

Fig. 4.16 The mask that was

used for the encoding and the

decoding in the numerical

simulation. The image was

taken from: D. Sylman, V.

Micó, J. Garcı́a and Z.

Zalevsky, “Random Angular

Coding for Superresolved

Imaging,” Appl. Opt. 49,

4874–4882 (2010)
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depicts the area of the masks which is used for encoding/decoding the object’s

angular information and where the black circle acts as a reference detail. The masks

are fabricated using a standard process: (a) Taking samples made of glass substrate,

200 nm chrome layer and 500 nm photoresist layer. (b) Removing photoresist in

desired locations using with photolithography methodology. (c) Removing chrome

using chrome etching technique. The resulted mask is transparent in locations were

chrome was etched. The encoding mask (M1) has a pixel size of 3 mm and a total

width of 4.5 mm while the decoding one (M2) has a pixel size of 20 mm and a total

width of 30 mm. Thus, the corresponding mask magnification is set to be 6.67.

Two imaging modules compose the experimental setup. In the first one, a variable

circular diaphragm is attached to the back focal plane of a commercial microscope

lens having 0.1 NA. The diaphragm allows us to stop down the resolution of the

objective lens in order to match its NA with the size of M1 used in the experiment.

Themagnification of the first imaging systemmust be properly adjusted to be equal to

that one defined by both random masks. Otherwise, no super resolution effect will be

attainable. To allow this, the first imaging system is placed onto a micrometer stage in

order to allow magnification adjustment between the M1 and M2 planes.

Fig. 4.17 Numerical results for 1-D super resolution. (a) The high-resolution reference image.

(b) The image after reducing high spatial frequencies. (c) The recovered image. (d) The recovered

image after reducing noise. The image was taken from: D. Sylman, V. Micó, J. Garcı́a and

Z. Zalevsky, “Random Angular Coding for Superresolved Imaging,” Appl. Opt. 49, 4874–4882

(2010)
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Fig. 4.18 Numerical results for 2-D super resolution: (I) 2-D input grating (II) 2-D input lattice.

(a) The high-resolution reference image. (b) The image after reducing high spatial frequencies.

(c) The recovered image. (d) The recovered image after reducing noise. The image was taken

from: D. Sylman, V. Micó, J. Garcı́a and Z. Zalevsky, “Random Angular Coding for

Superresolved Imaging,” Appl. Opt. 49, 4874–4882 (2010)

Fig. 4.19 The experimental setup for incoherent illumination case. The image was taken from:

D. Sylman, V. Micó, J. Garcı́a and Z. Zalevsky, “Random Angular Coding for Superresolved

Imaging,” Appl. Opt. 49, 4874–4882 (2010)
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Figure 4.21 depicts the cases without and with proper magnification matching

between the masks. The white circle is for referencing both images and also for

Fig. 4.20. Since the input object is placed beforeM1, its image will be placed also in

a plane previous to plane M2. Thus, the second imaging module images the aerial

image provided by the first system through M2. A photographic objective with

variable focus (or magnification) is selected as second imaging module to magnify

the aerial image into the output plane where the CCD (Basler A312f, 582� 782

pixels, 8.3 mm pixel size, 12 bits/pixel) is placed. This second imaging module

plays the role of the tube lens used in microscope systems. Due to the magnification

ratio between the two imaging modules of the setup, M2 could be a low-frequency

mask (higher pixel size than M1, as it was previously described) and no need for

high-resolution optics which is necessary in the second imaging module.

Under these assumptions, the super resolution approach is applied. A positive

USAF resolution test target is used as input object. The circular diaphragm of

the first imaging lens is closed in order to stop down the resolution of the

experimental setup. Figure 4.22a depicts the low-resolution image provided by

the experimental setup where Group 6 – Element 3 (G6-E3 from now on) is the

last resolved element in the test that defines a resolution limit which equals to

12.4 mm (80.6 lp/mm). This resolution limit corresponds with a theoretical value

of 0.022 NA in the first imaging module considering the central wavelength

(0.55 mm) of the illumination. After performing the super resolved approach,

the resolution is improved until G7-E2 corresponding with 6.9 mm (144.0 lp/mm)

as shown in Fig. 4.22b, which defines that a resolution gain factor is equal to 1.8.

Fig. 4.20 Picture of the theoretical design of the random mask used in the experiment (only a

small part is included). The black circle marks a mask’s detail that can also be traced in Fig. 4.21

for reference. The image was taken from: D. Sylman, V. Micó, J. Garcı́a and Z. Zalevsky,

“Random Angular Coding for Superresolved Imaging,” Appl. Opt. 49, 4874–4882 (2010)
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Since the pixel size inM1 has a width of 3 mm, the expected theoretical resolution

limit is twice the pixel width, i.e., 6 mm (or 166.7 lp/mm). This resolution limit

corresponds in the USAF test with G7-E3 (161 lp/mm) which is very close to the

theoretical limit and it is not resolved due to experimental factors such as noise,

contrast reduction, mismatch between masks, etc. But in any case, this is the best

resolution limit that can be achieved using the proposed approach: that one can define

by the minimum period of the encoding mask. And such minimum resolution limit is

theoretically independent on the NA of the first imaging module. Then, the purpose is

to demonstrate this theoretical assumption. Figure 4.23 depicts the experimental

results achieved with different diameters of the limiting diaphragm. Running from

left to right, the NA value is increased from 0.016 to 0.022 and to 0.031, and the

Fig. 4.21 Example of: (a) magnification mismatch and (b) perfect magnification adjustment

between the two masks. White circle marks the same area for reference. The image was taken

from: D. Sylman, V. Micó, J. Garcı́a and Z. Zalevsky, “Random Angular Coding for

Superresolved Imaging,” Appl. Opt. 49, 4874–4882 (2010)

Fig. 4.22 Experimental results: (a) without and (b) with using the proposed approach and

corresponding with conventional low-resolution and superresolved images, respectively. The

image was taken from: D. Sylman, V. Micó, J. Garcı́a and Z. Zalevsky, “Random Angular Coding

for Superresolved Imaging,” Appl. Opt. 49, 4874–4882 (2010)
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resolution limit is improved from 17.5 mm (G5-E6 in Fig. 4.23a), 12.4 mm (G6-E3 in

Fig. 4.23b), and 8.8 mm (G6-E6 in Fig. 4.23c) to 6.9 mm (G7-E2 in Fig. 4.23d) and

6.2 mm (G7-E3 in Fig. 4.23e–f). And the corresponding resolution gain factors are

2.5, 2, and 1.4, respectively. Thus, it is demonstrated that the resolution limit of the

setup is defined by the minimum pixel size of the encoding mask M1.
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