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Preface to the Second Edition

The discovery of neutrino oscillations and the proof that neutrino masses differ from
zero and are much smaller than the masses of leptons and quarks is the first (and
up to now the only) signature of physics beyond the Standard Model revealed in
particle physics experiments. Further investigations of neutrino oscillations have
continued in many experiments. The next generation of these investigations, and
other experiments now in preparation, will include the search for neutrinoless
double B-decay.

After the first edition of this book was published it was found that the mixing
angle 613 was different from zero and was relatively large (about 8°). This finding
opened the way to the investigation of such fundamental problems of neutrino
mixing as the characteristics of the neutrino mass spectrum (normal or inverted
ordering) and charge conjugation parity (CP) violation in the lepton sector.

The important problem of sterile neutrinos will be solved soon; many reactor,
accelerator, and source short-baseline experiments investigating evidence in favor
of the transition of flavor neutrinos into sterile states, found in Los Alamos Neutrino
Detector (LSND) and other experiments, are now ongoing (or in preparation).
After the discovery of the Higgs boson at the Large Hadron Collider (LHC) and
the establishment of the Standard Model as the theory of elementary particles
in the electroweak region, belief in the minimal effective Lagrangian (Weinberg)
mechanism of the generation of Majorana neutrino masses increased significantly.
The search for neutrinoless double B-decay is now a top priority. In the second
edition of the book I have presented data on the latest neutrino oscillation and other
neutrino data. I have kept the same style of the detailed derivation of major results,
but I have also tried to improve and simplify different derivations.

Vancouver, BC, Canada Samoil Bilenky
December 2017
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Preface to the First Edition

For many years the neutrino was considered a massless particle. The theory of a
two-component neutrino, which played a crucial role in the creation of the theory
of weak interaction, is based on the assumption that the mass of a neutrino is equal
to zero. Now we know that neutrinos have nonzero, small masses. In numerous
experiments with solar, atmospheric, reactor, and accelerator neutrinos, a new
phenomenon, neutrino oscillations, was observed. Neutrino oscillations (periodic
transitions between different flavor neutrinos v,, v, v;) are possible only if neutrino
mass-squared differences are different from zero and the states of flavor neutrinos
are “mixed”.

The discovery of neutrino oscillations opened a new era in neutrino physics:
an era of investigation of neutrino masses, mixing, magnetic moments, and other
neutrino properties. After the establishment of the Standard Model of electroweak
interaction at the end of the 1970s, the discovery of neutrino masses was the
most important discovery in particle physics. The small neutrino masses cannot
be explained by the standard Higgs mechanism of mass generation. For their
explanation a new mechanism is needed. Thus, in particle physics, small neutrino
mass is the first signature of a new physics beyond the Standard Model.

It took many years of heroic efforts by many physicists to discover neutrino
oscillations. After the first period of the discovery and investigation of neutrino
oscillations, many challenging problems remained unsolved. One of the most
important is the problem of the nature of neutrinos with definite masses. Are
they Dirac neutrinos possessing a conserved lepton number which distinguishes
neutrinos and antineutrinos, or are they Majorana neutrinos with identical neutrinos
and antineutrinos? Many new experiments are now ongoing or in preparation. There
is no doubt that exciting results lie ahead.

This book is intended as an introduction to the physics of massive and mixed
neutrinos. It is based on numerous lectures that I have given at different universities
and schools. I have tried to explain how many of the main results were derived. The
details of the derivation can be easily followed by the reader. I hope that this book
will be useful for physicists who are working in neutrino physics, for students, for

ix



X Preface to the First Edition

young physicists who plan to enter this exciting field, and for many scientists who
are interested in the history of neutrino physics and its present status.

Dubna, Russia/Vancouver, BC, Canada Samoil Bilenky
December 2016
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Chapter 1 )
Introduction Check for

The idea of neutrino was put forward by W. Pauli in 1930. This was a dramatic time
in physics. After it was established in the Ellis and Wooster experiment (1927) that
the average energy of the electrons produced in the B-decay is significantly smaller
than the total released energy, only the existence of a neutral particle with a small
mass and a large penetration length which is emitted in the §-decay together with
the electron, could save the fundamental law of the conservation of energy.

At the time when the neutrino hypothesis was proposed the only known
elementary particles were electron and proton. In this sense neutrino (more exactly
electron neutrino) is one of the “oldest” elementary particles. However, the existence
of the neutrino was established only in the middle of the fifties when neutron, muon,
pions, kaons, A and other particles were discovered.

We know at present that the 12 fundamental fermions exist in nature: six quarks
u,d,c,s,t,b, three charged leptons e, u, v and three neutrinos ve, vy, V. They
are grouped in the three families, which differ in masses of particles but have
universal electroweak interaction with photons and vector W* and Z bosons. In
the Lagrangian of the electroweak interaction, neutrinos enter on the same footings
as the quarks and charged leptons. In spite of this similarity of the electroweak
interaction neutrinos are special particles. There are three basic differences between
neutrinos and other fundamental fermions.

1. Neutrinos are the only fundamental particles which have equal to zero electric
charges. As a result, they have only Charged Current and Neutral Current elec-
troweak interaction. At all available energies cross sections of the interaction of
neutrinos with matter is many order of magnitude smaller than the cross section
of the electromagnetic interaction of leptons with matter. This is connected with
the fact that neutrinos interact with matter via the exchange of the heavy virtual
W? and Z° bosons whereas charged leptons interact with matter via exchange
of virtual y-quanta.

© Springer International Publishing AG, part of Springer Nature 2018 1
S. Bilenky, Introduction to the Physics of Massive and Mixed Neutrinos,
Lecture Notes in Physics 947, https://doi.org/10.1007/978-3-319-74802-3_1


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-74802-3_1&domain=pdf
https://doi.org/10.1007/978-3-319-74802-3_1

2 1 Introduction

2. Neutrino masses are many orders of magnitude smaller than the masses of
leptons and quarks. It is natural to assume that neutrino masses, unlike quark
and lepton masses, are of a non Standard Model origin.

3. Neutrinos are the only fundamental fermions which can be truly neutral Majorana
particles. The Majorana nature of neutrinos could be a clue to the solution of the
problem of the origin of small neutrino masses.

Because of the smallness of the neutrino cross section, special methods of the
detection of neutrino processes must be developed. However, after such methods
were developed the observation of neutrino processes allows us to obtain unique
information. For example,

1. the measurement of the cross sections of the deep inelastic processes v, (V) +
N — p~(uh) + X in the 80s and 90s led to the establishment of the quark
structure of the nucleon,

2. the detection of the solar neutrinos allowed us to establish the thermonuclear
origin of solar energy and to obtain information about the central invisible part
of the sun where the energy is produced,

3. the detection of neutrinos from Supernova SN1987A allowed us to obtain the
first information about a mechanism of the gravitational collapse etc.

The measurement of the absolute values of small neutrino masses is a difficult and
challenging problem. This problem is still not solved. The observation of neutrino
oscillations led to the determination of two neutrino mass-squared differences.
From neutrino oscillation data and data of the S-decay experiments on the direct
measurement of the neutrino mass it is possible to conclude that

* Neutrino masses are different from zero.
* Neutrino masses are smaller than ~2.2 eV, i.e. many order of magnitude smaller
than masses of leptons and quarks.

The unified theory of the weak and electromagnetic interactions, the Standard
Model, perfectly describes existing experimental data. Discovery of the Higgs boson
in the LHC experiments at CERN was impressive confirmation of the Standard
Model. However, existence of dark matter and dark energy tell us that a more
general, beyond the SM theory must exist. There were many experiments on
the search for effects of such a theory. This search continues now in the LHC
experiments. The first evidence for a new, beyond the Standard Model theory was
apparently obtained in neutrino experiments in which neutrino oscillations, driven
by small neutrino masses, were discovered.

Discovery of neutrino oscillations signifies not only that neutrino mass-squared
differences are different from zero but also that the fields of flavor neutrinos
Ve, Vy,, Vr are unitary combinations (“mixtures”) of fields of neutrinos with definite
masses. The 3 x 3 neutrino mixing matrix is characterized by three angles and one
CP phase.

The phenomenon of the neutrino mixing is similar to the well established quark
mixing. However, the quark mixing angles are small and satisfy a hierarchy. The
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neutrino mixing angles are completely different: two angles are large and one is
small. This is also an indication that neutrino and quark mixing have different origin.

The most common explanation of the smallness of the neutrino mass is based
on the assumption that the total lepton number is violated at a very large scale
(about 1015 GeV). If this assumption is correct, neutrinos with definite masses
are Majorana particles. In this case neutrinos and antineutrinos are identical. The
leptons (and quarks) are Dirac particles. This means that leptons and antileptons
(quarks and antiquarks) are different particles: they have the same masses but their
electric charges differ in sign. Observation of the neutrinoless double B-decay of
some even-even nuclei (A, Z) — (A,Z + 2) + e~ + ¢~ would be a proof that
neutrinos are Majorana particle.

The first rather long period of the investigation of the problem of neutrino masses,
mixing and oscillations is finished. Neutrino oscillations were discovered. Five
neutrino oscillation parameters (two mass-squared differences and three mixing
angles) are determined with accuracies from about 3% to about 10%. Strong
bounds on the half-lives of the neutrinoless double B-decay of different nuclei were
obtained. Now a new era of investigation of the problem of neutrino masses, mixing
and nature started. The main problems which will be addressed are the following

1. Are neutrinos with definite masses Majorana or Dirac particles?

2. Is the CP invariance violated in the lepton sector? What is the value of the CP
phase?

3. What is the character of the neutrino mass spectrum? Is it normal with smaller
mass-squared difference between lighter neutrinos or inverted with smaller mass-
squared difference between heavier neutrinos?

4. What are the absolute values of the neutrino masses?

5. Is the number of massive neutrinos equal to the number of the flavor neutrinos
(three) or larger than three? In other words are there transitions of flavor neutrinos
into sterile neutrino states?

6. ...

Neutrino experiments of the next generation with atmospheric and solar neutrinos
and neutrinos from accelerators and reactors have started or are in preparation.
New large detectors of atmospheric, solar and supernova neutrinos are under
development. Technologies for new neutrino facilities are being developed. There
is no doubt that a new exciting era of neutrino physics is ahead.

In this book, I intend to give an introduction to the physics of massive and mixed
neutrinos. I start with a brief review of the development of the phenomenological
V — A current x current theory of the weak interaction starting from Pauli’s
hypothesis of the neutrino and Fermi’s theory of the B-decay. In the next chapter
we will consider the Standard Model. The Higgs mechanism of the generation of
masses or quarks and leptons is discussed in some details. Then we will consider
possible mass terms for neutrinos. We will describe in detail the procedure of the
diagonalization of the neutrino mass terms. Next chapter is devoted to the detailed
consideration of the general properties of the neutrino mixing matrix. We will
consider the standard parametrization of the 3 x 3 mixing matrix. Then we will
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present the theory of neutrino oscillations in vacuum. The three-neutrino oscillations
are considered in detail. In the next chapter flavor neutrino transitions in matter
are discussed. We will derive Wolfenstein equation for neutrino evolution in matter
and consider the adiabatic solution of this equation and the resonance MSW effect.
The next chapter is dedicated to the neutrinoless double g-decay of even-even
nuclei. Basic elements of the theory of the decay are presented. Then we briefly
discuss neutrino oscillation experiments and the data obtained. In the next chapter
we discuss B-decay experiments on the measurement of the neutrino mass. In the
last chapter we will consider neutrino in cosmology.

It is impossible in a book to give a full list of references. Taking into account
a limited number of pages available for the book, I give here references mainly
to some pioneer neutrino papers, latest experimental papers, relevant reviews and
books. I would recommend the web site by C. Giunti and M. Laveder (the Neutrino
Unbound, http://www.nu.to.infn.it/) where it is possible to find many references to
the neutrino literature (theory and experiment).

In conclusion I would like to name some principal neutrino events.

1930 In aletter addressed to the participants of the nuclear conference in Tuebingen
W. Pauli suggested that there exists a new neutral, spin 1/2, weakly interacting
particle which is produced together with the electron in the -decay of nuclei. Pauli
called the new particle “neutron”. Later E. Fermi and E. Amaldi proposed the name
neutrino for this particle.

1933-1934 E. Fermi proposed the first theory of the S-decay. Fermi considered
the f-decay as four-fermion process in which a neutron is transformed into a
proton with the emission of a electron-neutrino pair. He proposed the following
Hamiltonian of the 8-decay

i1 = Gr py®n eyyv + h.c. (1.1)

where G  is the Fermi constant.

1934 Bethe and Peierls estimated the cross section of the interaction of neutrino
with nuclei. The estimated value of the cross section was so small that for many
years the neutrino was considered as an “undetectable particle”.

1946 B. Pontecorvo proposed the first radiochemical method of neutrino detection
which was based on the observation of

v+37Cl - e + 37 Ar
and other processes. As possible intensive sources of neutrinos Pontecorvo sug-
gested the sun, reactors and radioactive materials which can be produced in reactors.

1947-1948 Pontecorvo, Puppi, Klein, Tiomno and Wheeler advanced the idea of
the i — e universality of the weak interaction.
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1956-1959 In the Reines and Cowen experiments the (anti)neutrino was discov-
ered. In these experiments antineutrinos from the Savannah River reactor (USA)
were detected in a large scintillator counter via the observation of the reaction

v4p—et+n.

1957 In the Davis experiment with antineutrinos from a reactor no production of
37 Ar in the process

b +37Cl — e~ +Ar
was observed. This was the first indication in favor of the existence of the conserved
lepton number.

1957 In the Wu et al. experiment with polarized ®°Co a large effect of the parity
violation in the B-decay was discovered.

1957 Lee and Yang were awarded the Nobel Prize “for their penetrating investiga-
tion of the so-called parity laws which has led to important discoveries regarding
the elementary particles”.

1957 Landau, Lee and Yang and Salam proposed the theory of the massless two-
component neutrino. According to this theory the neutrino is the left-handed (or
right-handed) particle and the antineutrino is the right-handed (or left-handed)
particle.

1958 The helicity of the neutrino was determined in the Goldhaber, Grodzins and
Sunyar experiment from the measurement of the circular polarization of y-quanta
in the chain of the reactions

e~ +Eu— v+ Sm*

l
Sm +y

It was established that the neutrino is the left-handed particle.

1958 Feynman and Gell-Mann, Marshak and Sudarshan proposed the cur-
rent x current theory of the weak interaction. The Hamiltonian of this theory had
the form

(1.2)

Here

Jo =2 (PLYanL + VL YaeL + VL ValiL) (1.3)

is the i — e universal weak charged current (CC).
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1958 Pontecorvo suggested that neutrinos have small masses, the total lepton
number is violated and neutrino oscillations similar to K° < K oscillations could
take place. He considered effects of neutrino oscillations in experiments with reactor
antineutrinos.

1962 In the Brookhaven neutrino experiment, the first experiment with accelerator
high-energy neutrinos, it was established that neutrino which take part in CC
weak interaction together with electron and neutrino which take part in CC weak
interaction together with muon are different particles. They were called electron
neutrino v, and muon neutrino v,,. In order to explain the data of the Brookhaven
and other experiments it was necessary to introduce two separately conserved lepton
numbers: the electron L. and the muon L. The weak charged current took the form

Jo =2 (PLVYenL + VeLVaer + ‘_),U.Lya/fLL)- (1.4)

1962 Maki, Nakagawa and Sakata assumed that neutrinos have small masses and
the fields of electron and muon neutrinos are connected with the fields of massive
neutrinos v; and v, by the mixing relations

Vel = c0SO vir + sinf vy,

vur = —sinf vig +cosb var, (1.5)

where 6 is a mixing angle.
1962 Strange particles were included into the weak charged current by N. Cabibbo.

1965 First detection of the atmospheric neutrinos (S. Miyake et al., Kolar gold mine
in India, F. Reines et al., South African gold mine).

1967 Glashow (1961), S. Weinberg and A. Salam proposed the unified theory of
the weak and electromagnetic (electroweak) interactions (The Standard Model).

1970 In the pioneer experiment by Davis et al. solar neutrinos were detected. In this
experiment solar v, ’s were detected by the Pontecorvo radiochemical C/-Ar method
via the observation of the reaction

Ve + 30l - e~ +¥Ar.

The threshold of this reaction is 0.81 MeV. Only high-energy solar neutrinos, mainly
from the decay 8B — 8Be + ™ + 1., were detected in the Davis experiment. The
observed rate was two to three times smaller than the rate predicted by the Standard
Solar Model. This discrepancy was called the solar neutrino problem.

1973 In the experiment with high energy accelerator neutrinos at CERN a new
class of the weak interaction, the so called neutral currents (NC), was discovered. In
addition to CC deep inelastic processes

V(@) + N — u(uh) + X (1.6)
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new NC processes
V(W) +N—= v, (v) +X

were observed. The discovery of the neutral currents was the important confirmation
of the Standard Model.

80s In CDHS and CHARM experiments on the study of the deep inelastic
scattering of neutrinos and antineutrinos on nucleons (CERN) the quark structure
of nucleons was established.

1983 In experiments on p — p collider at CERN W= and Z° bosons were
discovered. In 1984 the Nobel Prize was awarded to C. Rubbia and S. van der Meer
for this discovery.

1986 Wolfenstein (1978) and Mikheev and Smirnov showed that for solar neutri-
nos, which were born in the central region of the sun and passed a large amount of
matter on the way to the earth, due to the neutrino mixing and coherent scattering
of electron neutrinos on electrons resonance matter effects could take place.

1987 Neutrinos from the supernova SN1987A in the Large Magellanic Cloud were
detected in the Kamiokande, IMB and Baksan detectors.

1988 Solar neutrinos were detected in the Kamiokande experiment. In this exper-
iment solar neutrinos were detected through the observation of the recoil electrons
in the elastic process

v+e—>v+te (1.7)

The solar neutrino problem was confirmed.

1988 L. Lederman, M. Schwartz and J. Steinberger were awarded the Nobel Prize
for “the discovery of the muon neutrino leading to classification of particles in
families”.

1991 In the GALLEX and SAGE experiments solar v,’s were detected by the
radiochemical method via the observation of the process

ve + 'Ga — e~ + "'Ge. (1.8)

Because of the law threshold (0.23 MeV), in the GALLEX and SAGE experiments
neutrinos from all reactions of the pp-cycle, including the main reaction p + p —
d+e™+v,, were detected. The flux of solar neutrinos measured in these experiments
was about two times smaller that the flux predicted by the Standard Solar Model.

90s It was proven in experiments on the measurement of the width of the decay
Z — v + v at LEP (CERN) that only three flavor neutrinos (ve, vy, v¢) exist in
Nature.
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1995 The Nobel Prize was awarded to F. Reines “for the detection of the neutrino”.

1998 In the Super-Kamiokande experiment a large azimuth angle asymmetry of
high-energy atmospheric muon neutrino events was observed. This was the first
model-independent evidence for neutrino oscillations driven by a neutrino mass-
squared difference Am%3 ~25x%x 103 eV

2000 In the experiment DONUT at Fermilab the first direct evidence of the
existence of the third neutrino v; was obtained.

2002 In the solar neutrino experiment SNO solar neutrinos were detected through
the observation of the CC reaction

Voe+d—>e +p+p (1.9)
and the NC reaction
v+d—v+n+p. (1.10)

This experiment solved the solar neutrino problem in a model-independent way: it
was proven that solar v,’s on the way from the central part of the sun to the earth
are transformed into other types of neutrinos.

2002 R. Davis and M. Koshiba were awarded the Nobel Prize for “pioneering
contributions to astrophysics, in particular for the detection of cosmic neutrinos”.

2002 In the reactor experiment KamLAND, v,’s from 57 reactors in Japan were
detected through the observation of the reaction

Ve+p—e+n (1.11)

The average distance between reactors and detector was about 180km. In this
experiment a model-independent evidence for neutrino oscillations driven by a solar
neutrino mass-squared difference Am%2 ~ 8 x 1073 eV? was obtained.

2004 In the long-baseline accelerator neutrino experiment K2K the evidence
for neutrino oscillations obtained in the atmospheric neutrino experiment Super-
Kamiokande was confirmed. In this experiment, neutrinos from the accelerator
at KEK were detected by the Super-Kamiokande detector at a distance of about
250km.

2006 In the long-baseline neutrino experiment MINOS, the Super-Kamiokande
atmospheric neutrino evidence for neutrino oscillations was also confirmed. In the
MINOS experiment, neutrinos from the accelerator at Fermilab were detected by
the detector in the Soudan mine at a distance of 735 km.
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2007 A new solar neutrino experiment BOREXino started. In this experiment
monochromatic ’ Be solar neutrinos with the energy 0.86 MeV were detected in real
time.

2010 The first off-axis long baseline accelerator neutrino experiment T2K in Japan
with near (280 m) and far (295 km) detectors started. First indications in favor of
non zero value of the oscillation parameter sin? 2613 was obtained.

2012 The small parameter sin” 2013 was measured in the Daya Bay, RENO and
Double Chooz reactor neutrino experiments. This measurements open a way for the
determination of the neutrino mass spectrum and CP angle §.

2015 The Nobel prize was awarded to T. Kajita and A. McDonald “for the
discovery of neutrino oscillations, which shows that neutrinos have mass”.

2016 First data of the new off-axis long baseline accelerator neutrino experiment
NOVA at Fermilab were obtained. There are two detectors in the experiment: near
detector (1 km from the target) and far detector (810 km from the target).



Chapter 2 )
Weak Interaction Before the Standard Chack for
Model

All existing weak interaction data are in a perfect agreement with the Standard
Model. Before this theory was created, there was a long phenomenological period of
the development of the theory of the weak interaction. In this introductory chapter
we will briefly consider this period.

2.1 Pauli Hypothesis of Neutrino

The only weak process which was known in the 20s and 30s was the f-decay of
nuclei. In 1914 Chadwick discovered that the energy spectrum of electrons from S-
decay is continuous. If 8-decay is a process of the transition of a nucleus (A,Z) into a
nucleus (A,Z+1) and the electron (as it was believed at that time), from conservation
of energy and momentum follows that the electron must have a fixed kinetic energy
approximately equal to Q ~ ma z — ma z41 — m, where ma z (ma z41) is the
mass of the initial (final) nucleus and m, is the mass of the electron.

For many years continuous 8 spectra were interpreted as the result of the loss of
energy of electrons in the target. However, in 1927 Ellis and Wooster performed a
crucial calorimetric 8-decay experiment. They measured the total energy released
in a RaE (*'°Bi) source which was put inside of a calorimeter. For the S-decay of
210Bi the total energy release is Q = 1.05MeV. In the Ellis and Wooster experiment
it was found that the average energy per one B-decay is equal to (344 &+ 34) keV
which is in an agreement with the average energy of the electrons (390keV). Thus,
it was proved that the energy carried by the B-decay electron was smaller than the
total released energy.

There were two possibilities to explain this experimental data

1. To assume that in B-decay together with the electron a neutral penetrating
particle, which is not detected in experiments, is produced. The total released
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energy is shared between the electron and the new particle. As a result, electrons
produced in B-decay, will have a continuous spectrum.
2. To assume that in S-decay the energy is not conserved.

The idea of new particle was proposed by W. Pauli. The second point of view was
advocated by N. Bohr.

Pauli wrote about his idea in a letter to H. Geiger and L. Meitner who participated
in the nuclear conference at Tiibingen (December 4, 1930). Pauli asked them to
inform the participants of the conference on his proposal.

Pauli called the new particle “neutron”. He assumed that the “neutron” has spin
1/2, small mass (“the mass of the neutrons should be of the same order of magnitude
as the electron mass and in any event not larger than 0.01 of the proton mass”) and
large penetration length. Pauli assumed that the “neutron”! is emitted together with
the electron in the B-decay of nuclei.

Below there is Pauli’s letter translated into English.

Dear Radioactive Ladies and Gentlemen,

As the bearer of these lines, to whom I graciously ask you to listen, will explain
to you in more detail, how because of the “wrong” statistics of the N and Lig nuclei
and the continuous beta spectrum, I have hit upon a desperate remedy to save the
“exchange theorem” of statistics and the law of conservation of energy. Namely,
the possibility that there could exist in the nuclei electrically neutral particles, that
I wish to call neutrons, which have spin 1/2 and obey the exclusion principle and
which further differ from light quanta in that they do not travel with the velocity
of light. The mass of the neutrons should be of the same order of magnitude as the
electron mass and in any event not larger than 0.01 proton masses. The continuous
beta spectrum would then become understandable by the assumption that in beta
decay a neutron is emitted in addition to the electron such that the sum of the
energies of the neutron and the electron is constant.

I agree that my remedy could seem incredible because one should have seen
those neutrons very earlier if they really exist. But only the one who dare can win
and the difficult situation, due to the continuous structure of the beta spectrum, is
lighted by a remark of my honored predecessor, Mr. Debye, who told me recently in
Brussels: “Oh, It’s well better not to think to this at all, like new taxes”. From now
on, every solution to the issue must be discussed. Thus, dear radioactive people,
look and judge. Unfortunately, I cannot appear in Tiibingen personally since I am
indispensable here in Ziirich because of a ball on the night of 6/7 December. With
my best regards to you, and also to Mr. Back.

Your humble servant W. Pauli

At the time when Pauli proposed the idea of the existence of the “neutron”,
nuclei were considered as bound states of protons and electrons. As it is seen from
Pauli’s letter he assumed that his new particle “exists in the nuclei”. This assumption
allowed him to solve the problem of the spin of some nuclei. Let us consider the

Later E. Fermi and E. Amaldi proposed to call the Pauli particle neutrino (from Italian, neutral,
small).
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nucleus 'N14. According to the proton-electron model this nucleus is a bound state
of 14 protons and 7 electrons. Because spins of protons and electrons are equal to 1/2
the spin of N4 must be half-integer. However, from the analysis of the spectrum
of 7N4 molecules it was found that nucleus 'N4 satisfies Bose-Einstein statistics
and, according to the spin-statistic theorem, the spin of this nucleus must be integer.
An odd number of “neutrons” in ’N14 would make its spin integer.

In 1932 neutron, a heavy particle with a mass approximately equal to the mass of
the proton, was discovered by J. Chadwick. Soon after this discovery Heisenberg,
Majorana and Ivanenko suggested that nuclei are bound states of protons and
neutrons. This hypothesis (which, as we know today, is the correct one) could
successfully describe all nuclear data.

The problem of the spin of N7 and other nuclei disappeared.”> But what about
B-decay of nuclei and continuous B-spectrum? In the framework of proton-neutron
structure of nuclei these problems were solved by E. Fermi in 1933-1934 on the
basis of the Pauli’s hypothesis of neutrino.

2.2 Fermi Theory of -Decay

Fermi was the first who understood that electron-neutrino pair was produced in the
transition’

n—p+e +v. 2.1

and that the Quantum Field Theory provides adequate apparatus for the description
of such processes.

Fermi assumed that the Hamiltonian of the process (2.1) is analogous to the
Hamiltonian of the electromagnetic transition

p—>ptv. (2.2)
The simplest electromagnetic Hamiltonian which induces this transition has the
form of the scalar product of the electromagnetic current j(f M — p(x)yep(x) and
electromagnetic field A% (x)

M (x) = e p(x)Yap(x) A%(x). (2.3)

Here e is the electric charge of the proton, p(x) is the proton field (p(x) = pT(x)y°
is the conjugated field) and y,, (o = 0, 1, 2, 3) are the Dirac matrices.

2Nucleus *N7 is the bound state of seven protons and seven neutrons and has an integer spin.

3We know today that in the B-decay together with the electron an antineutrino v is produced. Later
we will explain the difference between neutrino and antineutrino.
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By analogy, Fermi suggested that the Hamiltonian of the decay (2.1) was the
scalar product of the vector p(x)yyn(x) which provided the n — p transition and
the vector e(x)y, v(x) which provided the emission of the electron-antineutrino pair:

AP (x) = Gr p(x)yan(x) &(x)yav(x) + h.c. (2.4)

Here G F is a constant (which is called the Fermi constant).

Let us stress an important difference between the Hamiltonians (2.3) and (2.4).
The Hamiltonian (2.3) describes the interaction of two fermions and a boson while
the Hamiltonian (2.4) describes the interaction of four fermions. As a consequence
of that, the Fermi constant Gr and the electromagnetic charge e have different
dimensions. In the system of the units # = ¢ = 1, which we are using, e is a
dimensionless quantity whereas the Fermi constant G r has the dimension [M]72.
We will return to a discussion of this point later.

The largest contributions to the probability of the -decay come from transitions
in which electron and antineutrino are produced in states with orbital momenta equal
to zero (S-states). Such transitions are called allowed. For allowed transitions it
follows from the Fermi Hamiltonian (2.4) that spins and parities of the initial and
final nuclei must be equal (Fermi selection rules):

AT =0, 7 =ny. (2.5)

Here AJ = Jy — J; (J;, m; and Jy, my are spins and parities of initial and final
nucleus).

From the conservation of the total angular momentum it follows that in the
case of the allowed transitions which satisfies the Fermi selection rule electron and
antineutrino are produced in a state with the total spin § equal to zero (singlet state).
If electron and (anti)neutrino are produced in the triplet state (S = 1) in this case
we have

AJ=%1,0 m =ny (0— Oisforbidden). (2.6)

These selection rules are called the Gamov-Teller selection rules.

In experiments there were observed S-decays of nuclei which satisfy the Fermi
as well as the Gamov-Teller selection rules. This means that the total Hamiltonian
of the B-decay in addition to the Fermi Hamiltonian (2.4) must include additional
term(s).

2.3 General Four-Fermion Hamiltonian of g-Decay

The Fermi Hamiltonian had the form of the scalar product of vector x vector.
The most general Hamiltonian of the Fermi type, in which only fields but not
their derivatives enter, has the form of the sum of the products of scalar x scalar,
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vector X vector, tensor X tensor, axial x axial and pseudoscalar x pseudoscalar:

%f (x) = Z Gi p(x)O'n(x) e(x)O;v(x) + h.c. (2.7)
i=S,V,T,A,P
Here
0" — 1(8), y* (V), a®P (T), y*ys (A), ys5 (P). (2.8)

and G; are coupling constants, which have dimensions [M]72.

The Hamiltonian (2.7) could describe all 8-decay data. Transitions, which satisfy
the Fermi selection rules, are due to V and S terms and transitions which satisfy the
Gamov-Teller selection rules, are due to A and T terms.

In the Fermi Hamiltonian (2.4) only one fundamental constant G r entered. The
Hamiltonian (2.7) was characterized by five (!) interaction constants. Analogy and
economy which were the basis of the Fermi theory were lost.

There was a general belief that there are “dominant” terms in the interaction (2.7).
Such terms were searched for many years via analysis of the data of different -
decay experiments. This search did not lead, however, to a definite result: some
experiments were in favor of V and A terms, other were in favor of § and T
terms. Up to 1957, when the violation of parity in the S-decay (and other weak
processes) was discovered, the situation with the Hamiltonian of the B-decay
remained uncertain.

2.4 Violation of Parity in -Decay

For many years physicists believed that the conservation of parity (the invariance
under space inversion) is a general law of nature. The discovery of violation of
parity in the S-decay and other weak processes was a great surprise. In the beginning
it looked that this discovery made the theory of the B-decay (and other weak
processes) more complicated. In reality, as we will see later, this discovery lead
to the creation of a simple theory of the weak interaction which allowed to describe
all existed data.

The violation of parity in the weak interaction was one of the most important
discoveries in the physics of the twentieth century. In 1957 Lee and Yang were
awarded the Nobel Prize “for their penetrating investigation of the so-called parity
laws which has led to important discoveries regarding the elementary particles”.

The investigation of the decays of strange particles at the beginning of the 50s
created the so-called § — 7 problem.* As one of the possible solutions of the § — 7

4A strange particle which decayed into 7+ and 70 was called 6 and a strange particle which
decayed into 7T, 7~ and 7+ was called T™. From experimental data it followed that the masses
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problem Lee and Yang proposed the hypothesis of the non-conservation of parity
(1956). They analyzed existed experimental data and came to the conclusion that
there was an evidence that parity is conserved in the strong and electromagnetic
interactions, but there were no data which proved that parity was conserved in the
B-decay and other weak decays. They concluded: ... as for weak interactions parity
conservation is so far only extrapolated hypothesis unsupported by experimental
evidence”. Lee and Yang proposed different experiments which would allow to test
the parity conservation in weak decays.

The first experiments in which large violation of parity was discovered was
performed by Wu et al. at the beginning of 1957.

In this experiment the S-decay of polarized %°Co was investigated. Let us
consider the emission of the electron with momentum p in the 8-decay of a nucleus
with polarization P. From the invariance under rotations (conservation of the total
momentum) it follows that the decay probability can depend only on the scalar
products p - p and P - p. Taking into account that the decay probability depends
linearly on the polarization of a nucleus we obtain the following general expression
for the probability of the emission of the electron with momentum p by a nucleus
with polarization P

wp(P) = wo (1 +aP-k) = wo (1 +aP cosh). (2.9)

Here k = E is a unit vector in the direction of the electron momentum, 6 is the

angle between the vectors P and p, and wo and « are functions of p2.
Under the inversion of a coordinate system momentum p and polarization P are
transformed differently. Namely, momentum is transformed as a vector

pi = —pi (2.10)

while polarization is transformed as a pseudovector
P/ =+P;. (2.11)

Here p; (P;) are components of a vector of momentum (pseudovector of polar-
ization) in some right-handed system and p; (P/) are components of the same
momentum (same polarization) in the inverted (left-handed) system.

From (2.10) and (2.11) it follows that under the inversion the scalar product P - p
is transformed as a pseudoscalar

P.p=-Pp 2.12)

and lifetimes of @+ and t™ are the same. The study of the Dalitz plot of the decay of 7+ showed
that the total angular momentum of 7™, 7, 7 was equal to zero and, consequently, the parity of
7T was equal to —1. If T and T were the same particle in this case the spin of #F must be equal
to zero. The parity of the two pions produced in S-state was equal to +1 and we were confronted
with the following problem: the same particle decayed into states with different parities.
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while p - p is transformed as a scalar
p-p =+p-p. (2.13)

If the invariance under the inversion holds (parity is conserved), in this case the
decay probability in a right-handed system and in an inverted left-handed system is
the same

wp (p') = wp(p). (2.14)

From (2.9)—(2.11) and (2.14) we conclude that in the case of the conservation of
parity « = 0 and the probability of the emission of the electron by the polarized
nucleus does not depend on the angle 6.

In the Wu et al. experiment it was found that « >~ —0.7 (i.e. electrons are emitted
mainly in the direction opposite to the polarization of the nucleus). Thus, it was
discovered that parity in the 8-decay is not conserved.

Let us discuss the Hamiltonian of the B-decay. The Hamiltonian (2.7) is a
scalar. It conserves the parity. In order to take into account the results of the
Wu et al. and other experiments we must assume that the Hamiltonian of the B-
decay is the sum of a scalar and a pseudoscalar. Such a Hamiltonian can be
built if we add to five scalars which enter into the Hamiltonian (2.7) additional
five pseudoscalars which are formed from products of the scalar p(x)n(x) and
pseudoscalar e(x)ysv(x), vector p(x)y“n(x) and pseudovector e(x)y,y5v(x), etc.
The most general Hamiltonian of the S-decay takes the form

A= Y p®O0inx) Ex)0 (G — Giysiv(x) +he.,  (2.15)
i=S,V,T,A,P

where the constants G; characterize the scalar part of the Hamiltonian, the constants
G’ characterize the pseudoscalar part and the matrices O' are given by (2.8).

The Hamiltonian (2.15) is characterized by ten fundamental interaction con-
stants. From the Wu et al. experiment it followed that scalar and pseudoscalar terms
of the Hamiltonian must be of the same order. This means that the constants |G;|
and |G| (at least some of them) must be of the same order.

In 1957-1958 enormous progress in the development of the theory of the weak
interaction was reached. Two fundamental steps were done which brought us to the
modern effective Hamiltonian of the B-decay and other weak processes.

2.5 Two-Component Neutrino Theory

The first step was the theory of the two-component neutrino.

Soon after the discovery of the parity violation Landau, Lee and Yang and Salam
came to an idea of a possible connection of the violation of parity observed in the
B-decay and other weak processes with neutrinos.
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The neutrino field v(x) satisfies the Dirac equation
iy® 0y —m)v(x) =0 (2.16)

where m is the neutrino mass.
Let us present the field v(x) in the form

v(x) = vz (x) + VR (Y). 2.17)
where
1
v R() = ( t”)v(x) 2.18)

are left-handed and right-handed components of the field v(x).
From (2.16) and (2.17) we obtain two coupled equations for vy, (x) and vg(x)

iy¥ 0gvr(x) —mvr(x) =0 iy® dgvr(x) —mvp(x) =0. (2.19)

Let us assume that m = 0. In this case we obtain Weil equations for vy (x) and
VR(x)

iy® 3y vp r(x) =0. (2.20)

Thus, for m = 0, the neutrino field can be vy (x) (or vg(x)). Such a theory can be
valid only if parity is violated. In fact, under the inversion of coordinates the field
v(x) is transformed as follows:

V(&) = nyu(x). (2.21)

Here x’ = (x — x) and n is a phase factor. From (2.21) it follows that under the
inversion a left-handed (right-handed) component of the field is transformed into a
(right-handed) (left-handed) component:

v ry ) = 1y vreL) (x). (2.22)

Thus, Eq. (2.20) is not invariant under the inversion.

A method of the measurement of the neutrino mass was proposed by Fermi and
Perrin in 1934. In order to determine the neutrino mass they proposed to perform a
precise measurement of the high-energy part of S-spectrum in which the neutrino
energy is small. At the time of the discovery of the violation of parity from B-decay
experiments for the neutrino mass it was found the bound much smaller that the
mass of the electron (m < 200eV).

Landau, Lee and Yang and Salam assumed that the neutrino mass was equal to
zero and that the neutrino field was v (x) (or vg(x)). By the reasons, which will be
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clear later, this theory was called the two-component neutrino theory. There were
two major consequences of the two-component theory.

1. Parity is strongly violated in the B-decay and in other processes in which neutrino
participate. The most general Hamiltonian of the §-decay in the case of parity
violation is given by expression (2.15). In the case of the two-component theory
we have

G, = G; (if neutrino field is v (x)) (2.23)

1

and
G: = —G; (if neutrino field is vr(x)) (2.24)

and the most general Hamiltonian of the 8-decay take the form

AP = Y Gip®Oin() &0 (1 F ysv(x) +he.  (2.29)
i=S,V,T,A,P

From this expression it followed that effects of violation of parity in the 8-decay
would be large (maximal).
2. The neutrino helicity (projection of the spin on the direction of momentum) is
equal to —1(+1) in the case if the neutrino field is vz (x) (Vg (x)).
In fact, from the Dirac equation for the massless neutrino we have

pu (p) =0, (2.26)

where g = y, p®. The spinor u” (p) describes a particle with helicity equal to r
(r = £1). We have

Y -ku'(p)=r u (p), (2.27)

where ¥ is the operator of the spin and Kk is the unit vector in the direction of the
momentum p. For the operator of the spin we have

T = ysa =5y (2.28)
From (2.26) and (2.28) we have
X -ku'(p)=ysu(p) (2.29)

Thus, for a massless particle operator y5 is the operator of the helicity.
From (2.27) we find

ysu' (p) =ru"(p). (2.30)
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Similarly, for the spinor u" (— p) which describes the state with negative energy
—p® and momentum —p we have

ys u' (=p) = —r u"(=p). (2.31)
From (2.30) we find that 1—2y5 is the projection operator:

-y

5 1y -l IR CINS PN
, U (p) =u "(p), ) u(p)=0. (2.32)
From (2.31) we have
Puep=dp P u =g =o. (2.33)

2 2

From these relations for the left-handed neutrino field we find
vL(x) = / Np (67 () et (p) 7P +ul (—p) d(p) €7 dPp. (234)

Analogously, for the right-handed neutrino field we have

vR(x) = / Np (') 1) e 4w =pyd (p) 7 ) dPp. (235)

The neutrino helicity was measured in 1958 in a spectacular Goldhaber, Grodzins
and Sunyar experiment. In this experiment the helicity of the neutrino was deter-
mined from the measurement of the circular polarization of y-quanta in the chain
of reactions

e~ +Eu— v+ Sm*

=
Sm +y (2.36)
The authors concluded ... our result is compatible with 100% negative helicity of

neutrino emitted in orbital electron capture”.

The Goldhaber et al. experiment confirmed the theory of the two-component
neutrino. It was established that the neutrino is the left-handed particle and the
neutrino field is vz, (x).

SLet us stress that the experiment by Goldhaber et al. does not exclude that the neutrino has a
small mass. In fact, if in the Hamiltonian of the B-decay enters vy (x) and the neutrino mass is
not equal to zero in this case the longitudinal polarization of the neutrino for m < E is equal to

2
P” ~—1+ szz ~ —1.
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2.6 p-e Universal Charged Current. Current x Current
Theory

The next decisive step in the construction of the Hamiltonian of the B-decay
and other weak processes was done by Feynman and Gell-Mann, Marshak and
Sudarshan in 1957-1958. Generalizing the theory of the two-component neutrino,
Feynman and Gell-Mann, Marshak and Sudarshan assumed that in the Hamiltonian
of the weak interaction enter left-handed components of all fermion fields. In this
case the most general four-fermion Hamiltonian of the S-decay has the form

AP = Z Gi prOiny e, 0'vy +hec., (2.37)
i=S,V,T,A,P

where O; are Dirac matrices (see (2.8)).

We have
L0 =5 j;"s 0,-1_2"51). (2.38)
It is obvious that
”2’“5 (15 0w p: ¥s) 1_2’“5 =0. (2.39)

Therefore, S, T and P terms in the Hamiltonian (2.37) are equal to zero. Moreover
A and V terms are connected by the relation:

I+ys l=ys _ 1+ys 1—vps

2.40
,  Ya¥s o, , Ve, (2.40)

Thus, if we assume that only left-handed components of the fields enter into the
four-fermion Hamiltonian, we come to the unique expression for the Hamiltonian
of the B-decay

Gr , _ _
%ﬂlﬁ = J24pLyanL ery®vy + h.c.
Gr _ .
= N pva(l —ys)ney®(l —ys)v +h.c. (2.41)

The Hamiltonian (2.41) is the simplest possible four-fermion Hamiltonian of
the B-decay which takes into account large violation of parity. Like the Fermi
Hamiltonian (2.4), it is characterized by only one interaction constant.

%In order to keep the numerical value of the Fermi constant the coefficient ! , was introduced

in (2.41). It is interesting that the title of the Feynman and Gell-Mann paper is “Theory of the
Fermi interaction”.
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The theory proposed by Feynman and Gell-Mann, Marshak and Sudarshan was a
very successful one: the Hamiltonian (2.41) allowed to describe all existing -decay
data. We know today that (2.41) is the correct effective Hamiltonian of the §-decay,
of the process ¥ + p — n + ™, and other connected processes.’

Until now we have considered only the Hamiltonian of the 8-decay. At the time
when parity violation was discovered the following processes in which a muon-
neutrino pair was involved were also known

w +(A,Z2)>v+ (A, Z—-1) (pn-capture) (2.42)
+ + = }
um —>e"+v+v (u-decay). (2.43)

In 1947 B. Pontecorvo suggested the existence of a i —e universal weak interaction,
which is characterized by the Fermi constant G r. He compared the probability of
the w-capture (2.42) with the probability of the K -capture

e+ (A Z) > v+ (A, Z—1) (2.44)

and found that the constant of the interaction of the muon-neutrino pair with
nucleons is of the same order as the Fermi constant G . The idea of a ;t — e universal
weak interaction was also proposed by Puppi, Klein and Tiomno and Wheeler. In
order to build a i — e universal theory of the weak interaction, Feynman and Gell-
Mann introduced the notion of the charged weak current

7" =2pry*ny + vry®er + vry“ur) (2.45)

and assumed that the Hamiltonian of the weak interaction has the current x current
form

Gr

I =
I \/2

j* g, (2.46)

where G  is the Fermi constant.
Two remarks are in order.

1. The hadron part of the current has the form

7What about numerous experiments from which it followed that S and T terms are the dominant
terms of the Hamiltonian of the B-decay? In the Feynman and Gell-Mann paper it was written
“These theoretical arguments seem to the authors to be strong enough to suggest that the
disagreement with ®He recoil experiment and with some other less accurate experiments indicates
that these experiments are wrong”. In fact, later experiments did not confirm results of all
experiments which indicated in favor of the dominance of S and T terms.
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where v* = py®n and a® = py®ysn are the vector and axial currents.® Notice
that Fermi transitions of nuclei are due to the vector current and Gamov-Teller
transitions are due to the axial current.

2. The current j* provides transitions n — p, e~ — v, etc. in which AQ =
Or — Qi = 1(Qi(Qy) is the initial (final) charge). By this reason the current
j¢ is called the charged current (CC).

There are two types of terms in the Hamiltonian (2.46): nondiagonal and diagonal.
The nondiagonal terms are given by

AN = OF A{[(pLy nL) @Lyev) +hec)

+ [(pLy®nr)(tLveve) +h.c.]
+ [(eLy*ve) (W yapr) +h.c.]} (2.47)

The first term of this expression is the Hamiltonian of 8-decay of the neutron (2.1),
of the process b + p — et + n and other connected processes. The second term
of (2.47) is the Hamiltonian of the process £~ + p — v + n and other connected
processes. Finally the third term of (2.47) is the Hamiltonian of the u-decay (2.43)
and other processes.

The diagonal terms of the Hamiltonian (2.46) are given by

. G _ B B _ _ B
P Jg ALy er) @LYave)+ Ly ur) (AL Yavur)+(PLy®ne) (AL vepr)]

(2.48)
The first term of the (2.48) is the Hamiltonian of the processes of elastic scattering
of neutrino and antineutrino on an electron

v+e—>v+te (2.49)
and
V4+e—vte, (2.50)

of the process e™ + e~ — ¥ + v and other processes. Such processes were not
known in the 50s. Their existence was predicted by the current x current theory.
The cross sections of the processes (2.49) and (2.50) are very small. The
observation of such processes was a challenge. After many years of efforts, the
cross section of the process (2.50) was measured by F. Reines et al. in an experiment
with antineutrinos from a reactor. At that time the Standard Model already existed.
According to the Standard Model, to the matrix elements of the processes (2.49) and

8This is the reason why the Feynman and Gell-Mann, Marshak and Sudarshan theory is called the
V — A theory.
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(2.50) contributes not only Hamiltonian (2.48) but also additional (neutral current)
Hamiltonian. The result of the experiment by F. Reines et al. was in agreement with
the Standard Model.

2.7 Theory with Vector W Boson

In the Feynman and Gell-Mann paper it was mentioned that the current x current
Hamiltonian of the weak interaction (2.46) could originate from the exchange of
a heavy intermediate charged vector meson.” We will discuss here briefly this
hypothesis. Let us assume that there exists a charged vector W boson and that the
Lagrangian of the weak interaction has the form of a scalar product of the current
Jo given by Eq. (2.45) and the vector field W*

SL=— 8 i WY+he., 2.51)
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where g is a dimensionless interaction constant.

If the Lagrangian of the weak interaction has the form (2.51), the B-decay of
the neutron proceeds in the following three steps: (1) neutron produces the virtual
W~ -boson and is transferred into proton; (2) the virtual W~ -boson propagates; (3)
the virtual W~ -boson decays into a electron-antineutrino pair (see Fig. 2.1).

In the Feynman diagram, the propagator of the W-boson contains a factor
e where O = p, — pp is the momentum transfer and mw is the mass of

QZ,
the vaboson. If the W-boson is a heavy particle (with a mass much larger than the
mass of the proton), in this case Q7 in the W-propagator can be safely neglected
and the matrix element of the B-decay of the neutron can be obtained from the
Hamiltonian (2.46) in which the Fermi constant is given by the relation

2
Gr _ 8 ) (2.52)
V2 8mi,
In a similar way it can be shown that in the region of relatively small energies, the
matrix elements of all weak processes with the virtual W-boson can be obtained
from the current x current Hamiltonian (2.46) in which the Fermi constant is given
by relation (2.52).19

9“We have adopted the point of view that the weak interactions all arise from the interaction of a
current J,, with itself, possibly via an intermediate charged vector meson of high mass" (Feynman
and Gell-Mann).

10From the point of view of the theory with the W-boson, the current x current Hamiltonian with
the Fermi constant (2.52) is the effective Hamiltonian of the weak interaction.
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Fig. 2.1 Feynman diagram

of the process

n— p+e” +vinthe e~
theory with the W*-boson

Thus, the theory with the vector W*-boson could explain the current x current
structure of the weak interaction Hamiltonian and the fact that the Fermi constant
has the dimension [M]2.

We know today that the intermediate charged W*-boson exists. The W*-boson
is one of the heaviest particles: its mass is equal to my >~ 80.4 GeV.

The first idea of the charged vector boson, mediator of the weak interaction, was
suggested by O. Klein in 1938, soon after the Fermi S-decay theory had appeared.
Fermi built the first Hamiltonian of the 8-decay by analogy with electrodynamics.
O. Klein noticed that the analogy would be more complete if weak interaction was
originated from an interaction which had the form of a product of a current and a
vector field (like the electromagnetic interaction).

2.8 First Observation of Neutrinos: Lepton Number
Conservation

The proof of the existence of neutrino was obtained in the mid-fifties in the
experiment by F. Reines and C.L. Cowan. In this experiment (anti)neutrinos from
the Savannah River reactor were detected through the observation of the process

V+p—et +n. (2.53)

Antineutrinos are produced in a reactor 8-decays of neutron-rich nuclei, products of
the fission of uranium and plutonium. The energies of antineutrinos from a reactor
are less than ~10MeV. About 2.3 x 10?° antineutrinos per second were emitted by
the Savannah River reactor. The flux of v’s in the Reines and Cowan experiment
was about 1013 cm =251,
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In the theory of the two-component neutrino, the cross section of the pro-
cess (2.53) is connected with the life-time t,, of the neutron by the relation

272

= +
o (v — e n)=
(vp ) mgfrnpe

E., (2.54)

where E, >~ Ej — (m, — mp) is the energy of the positron, p, is the positron
momenta, f = 1.686 is the phase-space factor, m,, m,, m, are masses of the
neutron, proton and electron, respectively. From (2.54) it follows that the cross
section of the process (2.53), averaged over antineutrino spectrum, is equal to

&(Tep — etn) ~9.5 x 107 cm?. (2.55)

A liquid scintillator (1.4 x 10%1) loaded with CdCl, was used as a target in the
experiment. Positron, produced in the process (2.53), slowed down in the scintillator
and annihilated with electron, producing two y- quanta with energies ~ 0.51 MeV
and opposite momenta. A neutron, produced in the process was captured by Cd
within about 5us, producing y-quantum. The y-quanta were detected by 110
photomultipliers. Thus, the signature of the v-event in the Reines and Cowan
experiment was two y-quanta from the et — e~ -annihilation in coincidence with
a delayed y-quantum from the neutron capture by cadmium. For the cross section
of the process (2.53) the value

oy = (11 £2.6) 107* cm? (2.56)

was obtained in the experiment. This value was in agreement with the predicted
value (2.55).

The particle which is produced in the S-decay together with electron is called
antineutrino. It is a direct consequence of the quantum field theory that antineutrino
can produce a positron in the inverse B-decay (2.53) and other similar processes.
Can antineutrinos produce electrons in processes of interaction with nucleons? The
answer to this question was obtained from an experiment which was performed in
1956 by Davis et al. with antineutrinos from the Savannah River reactor. In this
experiment 37 Ar from the process

5+3C1 = e + Y Ar (2.57)

was searched for. The process (2.57) was not observed in the experiment. It was
shown that the 37 Ar production rate was about five times smaller than the rate
expected if antineutrinos could produce electrons via the weak interaction.

Thus, it was established that antineutrinos from a reactor can produce positrons
(the Reines-Cowan experiment) but can not produce electrons. In order to explain
this fact we assume that exist conserving lepton charge number L, the same for v
and e™. Let us put L(») = L(e™) = —1. According to the quantum field theory the
lepton charges of the corresponding antiparticles are opposite: L(v) = L(e™) = 1.
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We also assume that the lepton numbers of proton, neutron and other hadrons are
equal to zero. Conservation of the lepton number could explain the negative result
of the Davis experiment. According to the law of conservation of the lepton number
a neutrino is produced together with e* in the 87 -decay

(A,Z) > (A, Z—1)+et +v

2.9 Discovery of Muon Neutrino: Electron and Muon Lepton
Numbers

When the universal V — A theory of weak interaction was formulated by Feynman
and Gell-Mann, Marshak and Sudarshan they considered only one type of neutrinos.
There existed, however, an idea, expressed by different physicists, that neutrinos
which take part in the weak interaction together with an electron and a muon could
be different. Let us call neutrinos which participate in weak processes together with
electrons and neutrinos which participate in weak processes together with muons,
correspondingly, the electron and muon neutrinos (v, and v,,). The charged current
of the current x current theory takes in this case the form

J*=2pry*ny + Very®er + Vury®unr) (2.58)

Are v, and v, the same or different particles? The answer to this fundamental
question was obtained in the famous Brookhaven accelerator neutrino experiment.

The first indication that v, and v,, are different particles was obtained from an
analysis of the u* — ety data. The probability of the decay u* — ety was
calculated by Feinberg in the nonrenormalizable theory with W-boson. It was found
that if v, and v, are identical particles for the ratio R of the probability of the decay
ut — eTy to the probability of the decay u™ — et v v is given by

R~ ~107* (2.59)

The decay u*™ — ety was not observed in experiment. At the time of the
Brookhaven experiment, for the upper bound of the ratio R was found the value

R <1078, (2.60)

which is much smaller than (2.59).

A direct proof of the existence of the second (muon) type of neutrino was
obtained by L.M. Lederman, M. Schwartz, J. Steinberger et al. in the first experiment
with accelerator neutrinos in 1962. The idea of the experiment was proposed by B.
Pontecorvo in 1959.
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A beam of w7’s in the Brookhaven experiment was obtained by the bombard-
ment of Be target by protons with an average energy of about 15 GeV. In the decay
channel (about 21 m long) practically all 7+’s decay. After the channel there was
shielding (13.5m of iron), in which charged particles were absorbed. After the
shielding there was the neutrino detector (aluminium spark chamber, 10 tons) in
which the production of charged leptons was observed.

The dominant decay channel of the 7 *-meson is

7t >t + V- (2.61)
According to the universal V — A theory, the ratio R of the width of the decay
+

7t > et + v, (2.62)

to the width of the decay (2.61) is equal to

2 (1="%)?
g="re M~ 1.2 % 1074, (2.63)

2 2
m _ Muyo
ha="

Thus, the decay 7+ — et v, is strongly suppressed with respect to the decay
at — ut 4+ v,L.“ From (2.63) follows that the neutrino beam in the Brookhaven
experiment was practically a pure v, beam (with a small about 1% admixture of v,
from decays of muons and kaons).

Let us assume that v, = v, = v. In this case neutrinos produced in the decay
7t — uT + v can produce muons and electrons in the reactions

V+N—->u +X and v+ N — e + X. (2.64)

Due to the 1 — e universality of the weak interaction one could expect to observe in
the detector (practically) equal number of muons and electrons.
If v, and v, are different particles in this case neutrinos emitted in the decay

7+t — pt + v, can produce only muons in the reaction

v+ N> +X. (2.65)

''The reason for this suppression can be easily understood. Indeed, let us consider the decay (2.62)
in the rest frame of the pion. The helicity of the neutrino is equal to —1. If we neglect the mass
of the e, the helicity of the positron will be equal to +1 (the helicity of the positron will be
the same in this case as the helicity of the antineutrino). Thus, the projection of the total angular
momentum on the neutrino momentum will be equal to —1. The spin of the pion is equal to zero
and consequently the process (2.62) in the limit m, — 0 is forbidden. These arguments explain
the appearance of the small factor (:;’; )2 in (2.63).
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Table 2.1 Lepton numbers

: Lepton number v, e~ v, u~ Hadrons, y
of particles

L, 1 0 0
Ly, 0 1 0

In the Brookhaven experiment 29 muon events were detected. The observed six
electron candidates could be explained by the background. The measured cross
section was in agreement with the V — A theory. Thus, it was proved that v, and v,
are different particles."?

The results of the Brookhaven and other experiments suggested that the total
electron L, and muon L, lepton numbers are conserved:

Z LY = const; Z L' = const (2.66)
i i

The lepton numbers of particles are given in Table 2.1. The lepton numbers of
antiparticles are opposite to the lepton numbers of the corresponding particles.

For many years all experimental data were in an agreement with (2.66). At
present it is established that (2.66) is an approximate phenomenological rule. It is
violated in neutrino oscillations due to small neutrino masses and neutrino mixing.
Later we will discuss neutrino oscillations in details.

2.10 Strange Particles. Quarks. Cabibbo Current

The current x current Hamiltonian (2.46) with CC current (2.45) is the effective
Hamiltonian of such processes in which leptons, neutrinos and nonstrange hadrons
are participating. The strange particles were discovered in cosmic rays in the fifties.
Decays of strange particles were studied in details in accelerator experiments. From
the investigation of the semi-leptonic decays

K+—>M++vﬂ, A—>n+e + v,
YT —>n+e +V, E - A+u +y,
and others the following three phenomenological rules were established.

I. The strangeness S in the decays of strange particles is changed by one
|AS| = 1.
121n 1963 in the CERN with the invention of the magnetic horn the intensity and purity of neutrino

beams were greatly improved. In the more precise 45 tons spark-chamber experiment and in the
large bubble chamber experiment the Brookhaven result was confirmed.
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For example, in accordance with this rule the decay
E” >n+e +v, (2.67)

is forbidden. From existing experimental data for the ratio of the width of the
decay (2.67) to the total decay width of &~ it was found the following upper
bound

R(E™ = ne ¥,) <3.2x 1073, (2.68)
II. In the decays of the strange particles the rule
AQ =AS

is satisfied. Here AQ = O — Q; and AS = Sy — §;, where S; and Sy are the

initial and final total strangeness of the hadrons and Q; and Q s are the initial

and final total electric charges of hadrons (in the unit of the proton charge).
From this rule it followed that the decay

Xt S n4et 4+, (2.69)

is forbidden. We will present the results of modern experiments. From these
experiments the following upper bound was found

R(Zt — netv,) <5 x 107°. (2.70)

III. The decays of strange particles are suppressed with respect to the decays of non
strange particles.

In 1964 independently Gell-Mann and Zweig proposed the idea of the existence of
three quarks u, d, s, constituents of strange and nonstrange hadrons. The quantum
numbers of the quarks are presented in Table 2.2 Let us build from the quark
fields the charged currents which changes the charge by one. If we accept the
Feynman-Gell-Mann, Marshak-Sudarshan prescription (into the weak current enter
left-handed components of the fermion fields) there are only two possibilities to
build such currents from the fields of u, d and s quarks:

ﬁLj/adL and ﬁLJ/aSL. (2.71)
Table 2.2 Quantum numbers Quark O S B
of quarks (Q is the charge, §
u 2/3 0 173

is the strangeness, B is the
baryon number) d —-1/3 0 1/3
s -1/3 -1 1/3
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The first current changes the charge by one and does not change the strangeness
(AQ =1, AS = 0). The second current changes the charge and the strangeness
by one (AQ = 1, AS = 1). The matrix elements of these currents automatically
satisfy rules 1. and II. Let us stress that this was one of the first arguments in favor
of quark structure of the hadron current.

The weak interaction of the strange particles was included into the current x
current theory by N. Cabibbo in 1962.

He introduced an angle ¢ and suggested that the hadronic charged current had
the form

jGabivbo — o5 g0 jIH2 4 sin e AT, (2.72)
Here
=i =g (2.73)

where j(i are components of the SU (3) octet current.

The first term of (2.72) does not change the strangeness and the second term
changes the strangeness by one. Cabibbo showed that the current (2.72) could
describe existed at that time experimental data. From the analysis of the data on
the investigation of the decays of strange particles he found that sin 6¢ ~ 0.2.

In terms of quark fields the Cabibbo current had the form

J&PPO(x) = 2 (cos Oc it (X) e dp(x) + SinOc L (X) Ve SL(X)). (2.74)
The total weak charged current takes the form
JEE@) =2 (e () Ve €L (x) + Pur () Ve pL(x) + L (X)ye df™ (), (2.75)
where

diM™ (x) = cos O dr.(x) + sinfc sp.(x). (2.76)

2.11 Charmed Quark

It was shown in 1970 by Glashow, Illiopulos and Maiani (GIM) that the charged
current (2.74) induces a neutral current which does not change electric charge
(AQ = 0) and change the strangeness by one (|AS| = 1). As a result, the predicted
width of the decay

KT —>at+v+0. 2.77)
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was many orders of magnitude larger than the upper bound of the width obtained in
experiments.

In order to solve this problem Glashow, Illiopulos and Maiani assumed that there
exists a fourth “charmed” quark ¢ with charge 2/3 and that there is an additional
term in the weak current into which enters the field of the new quark ¢z and the
combination of dy, and sy, fields orthogonal to the Cabibbo combination (2.76). The
weak currents took the form

JEC) =2 Fer )y €1 (0) + Dz )y 1o (x) + it L (X) Ve dP™(x) + EL(0) e ST (X)),
(2.78)

where

d™X(x) = cos Ocdy(x) + sinOcs (x)

sMX(x) = —sinfedy (x) + cos s (x) . (2.79)

It can be shown that in the theory with the charged current (2.78) neutral current
which changes the strangeness does not appear.

The relations (2.79) mean that the fields of d and s quarks enter into the charged
current in the mixed form. The phenomenon of mixing was perfectly confirmed by
experiment.

The existence of the c-quark means the existence of a new family of “charmed”
particles. This prediction of the theory was perfectly confirmed by experiment.
In 1974 the J/¥ particles, bound states of ¢ — ¢, were discovered. In 1976 the
D*9 mesons, bound states of charmed and nonstrange quarks, were discovered etc.
All data on the investigation of the weak decays and neutrino reactions were in
agreement with the current x current theory with the current given by (2.78).

In 1975 the third charged lepton t was discovered in experiments at et — e~
colliders. In the framework of the Standard Model, which we will consider in the
next chapter, the existence of the third charged lepton requires the existence of the
corresponding third type of neutrino (v;) and an additional pair of quarks: the ¢ (top)
quark with electric charge 2/3 and the b (bottom) quark with electric charge —1/3.
All these predictions of the SM were perfectly confirmed by numerous experiments.

Taking into account the existence of T and v; and ¢ and b quarks and assuming
the universality, for the charged current we have the following expression

JEC() = 2 Ber (¥) Y €. () + Dz (¥) Ve o (x) + V2. (X) Ve T2 (x)
i1 (%) Ve AP (x) + E1(X) Vo SPX(x) + T (0) ye DI (X)).
(2.80)



2.12  Concluding Remarks 33

Here

AP ) = Y Vig qr(x),

q=u,s,b

PR = ) Vegqr(x),
q=u,s,b

@ = Y Vigqu). (2.81)
q=u,s,b

are mixed quark fields and V is an unitary 3 x 3 mixing matrix. We know today that
the Lagrangian of the CC weak interaction has the form

8
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where W (x) is the field of the vector W*-bosons.

ZEC ) = — iS€(x) W (x) +h.c. (2.82)

2.12 Concluding Remarks

The theory of the weak interaction started with the famous Fermi paper “An attempt
of a theory of beta radiation”. The Fermi theory was based on

e The Pauli neutrino hypothesis.

* The proton-neutron structure of nuclei.

* The assumption that an electron-neutrino pair is produced in the process of a
neutron into a proton transition.

* The assumption that in analogy with electromagnetic interaction the weak
interaction is the vector one.

Later in accordance with experimental data this last assumption was generalized
and other terms (scalar, tensor, axial and pseudoscalar) were included into the
Hamiltonian.

The discovery of the parity violation in the S-decay and other weak processes
played a revolutionary role in the development of the theory of the weak interaction.
Soon after this discovery the two-component theory of massless neutrino was
proposed. According to this theory in the Hamiltonian of the weak interaction the
left-handed (or right-handed) component of the neutrino field enters. In less than
1 year this theory was confirmed by experiment. It was proved that neutrino is a
left-handed particle.

The next fundamental step was the universal current x current V — A theory
of the weak interaction which was based on the assumption that only left-handed
components of the fields enter into charged current.
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The electron neutrino was discovered in the fifties in the first reactor neutrino
experiment. A few years later in the first accelerator neutrino experiment the muon
neutrino was discovered.

After the hypothesis of quarks was proposed, the weak charged current started
to be considered as quark and lepton current. One of the fundamental ideas which
was put forward in the process of the phenomenological development of the theory
was the idea of the quark mixing. At the very early stage of the development of the
theory the idea of the existence of the charged heavy vector intermediate W* boson
was proposed.

It was a long (about 40 years) extremely important period of the development
of the physics of the weak interaction with a lot of bright, courageous ideas.'? The
theory which was finally proposed allowed to describe data of a large number of
experiments. The unified theory of the weak and electromagnetic interactions, the
Standard Model, could not appear without the phenomenological V — A theory.

13 And also many wrong ideas which we did not discussed here.



Chapter 3 )
The Standard Model of the Electroweak Chack for
Interaction

3.1 Introduction

We will consider here the Glashow-Weinberg-Salam theory of the weak and
electromagnetic interactions, which usually is called the Standard Model (SM).
This theory is one of the greatest achievements of particle physics of the twentieth
century. The SM predicted the existence of new particles (charmed, bottom, top),
a new class of the weak interaction (Neutral currents), W= and Z° vector bosons
and masses of these particles, the existence of the third type of neutrino (v;), the
existence of the scalar Higgs boson etc. All predictions of the Standard Model are
in perfect agreement with existing experimental data. In 2012 in the ATLAS and
CMS experiments at LHC (CERN) a scalar particle with the mass >~ 125 GeV was
discovered. All existing data (production cross section, decay rates) are compatible
with the assumption that the discovered particle is the predicted by the Standard
Model Higgs boson. The current x current theory of the weak interaction, which
we considered in the previous chapter, was a very successful theory. In the lowest
order of the perturbation theory this theory allowed to describe all experimental data
existed at the 60s. However, the current x current theory and also the theory with
the W* vector boson were unrenormalizable theories: the infinities of the higher
orders of the perturbation theory could not be excluded in these theories by the
renormalization of the masses and other physical constants.

This was the main reason why, in spite of big phenomenological success, these
theories for many years were not considered as satisfactory ones. The Standard
Model was born in the end of the 60s in an attempt to build a renormalizable
theory of the weak interaction. The only renormalizable physical theory, that was
known at that time, was quantum electrodynamics. The renormalizable theory of
the weak interaction was build in the framework of the unification of the weak and
electromagnetic (electroweak) interactions. This theory was proposed by Glashow,
Weinberg and Salam. It was proved by t’Hooft and Veltman that the Standard Model
is a renormalizable theory.
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The Standard Model is built first as a gauge invariant theory of massless lepton,
neutrino, quark and gauge boson fields. Then we assume that there exist also a scalar
Higgs field, which interact with gauge boson, quark and lepton fields and possess
(due to the symmetry) degenerate vacuum and nonzero vacuum expectation values.
In such a system the symmetry is spontaneously broken. Spontaneous symmetry
breaking generates mass terms of all fields except the electromagnetic field and
apparently neutrino fields.

In the first two introductory sections of this chapter we will consider two major
ingredients of the Standard Model: SU (2) local gauge invariance and spontaneous
symmetry breaking.

3.2 SU(2) Yang-Mills Local Gauge Invariance

Let us assume that

)
¥ (x) = (%1)8) : 3.1)

is the doublet of a SU(2) group (Iﬂ(il)(x) are spin 1/2 fields). If the masses of
Y& (x) fields are equal to m, the free Lagrangian of the field ¥ (x) is given by the
expression

Lo(x) =Y (x) (i y*Be +m) Y (x). (3.2)

The Lagrangian (3.2) is invariant under the global phase SU (2) transformation

V) =Uyx), ¥ =yx)U". (3.3)
Here

U=e274, (3.4)
where A; are arbitrary constants (t - A = 21'3:1 T; A, T; are the Pauli matrices).
Let us stress that the Lagrangian % (x) is invariant under the transformation (3.3)
because (for the constant A;) the derivative dy ¥ (x) is transformed in the same way
as the field ¥ (x).
From the general Noether’s theorem it follows that the invariance under the
transformation (3.3) leads to the conservation of the isovector current

- 1
0o i (x) =0, j¥(x)=1vyx)y” 5 T ¥ (x). (3.5)
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From (3.5) it follows that the total isotopic spin 7; = f jl.o(x)d3x is conserved.

The operator U = ¢’ 274 i the operator of a rotation in a three-dimensional
isotopic space around the direction of the vector A by the angle |A|. Thus the global
SU (2) invariance is the invariance under the rotations which are the same in all
space-time points. However, because different space-time points are independent,
the requirement of the invariance under the local gauge SU (2) transformation

V(@) = UE) (), U)=e 240, (3.6)

where A;(x) are arbitrary functions of x, is the more natural one.
For the derivative d, ¥ (x) we have

I Y(x) =UT () Ux) 8 UT (1) (x)
= UT(x) Bo + Ux) 8 UT (x)) ¥/ (x). (3.7

Because of the second term in this expression the free Lagrangian (3.2) is not
invariant under the transformation (3.6). In fact, let us consider an infinitesimal
SU (2) transformation

U(x):l—i—i;r-A(x), U+(x):1—i;r~A(x), (3.8)

where parameters A;(x) are small and in all expansions over A;(x) we will keep
only linear terms.
From (3.7) and (3.8) we find

O Y(x) = UT(x) (9 — i ; T3y A(X)) ¥'(x). (3.9)
From (3.6) follows that

Y(x) =UT(x) ¢'(x). (3.10)

Comparing (3.9) and (3.10) we conclude that the field ¥ (x) and the derivative
0y ¥ (x) are transformed differently. This is the reason why the free Lagrangian (3.2)
is not invariant under local gauge transformations (3.6).

In order to build a theory which is invariant under local gauge transformations
we need to assume that exist vector-isovector bosons and the field of these bosons
Afx (x) (i = 1,2,3) is transformed in such a way that the term é T - Ag(x) is
“absorbed”.

Let us consider the covariant derivative

1
Dar(x) = O +ig , T Aa(x)) Y (x), (3.11)
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where g is a dimensionless constant. We have
Dy Y(x) = U (x) Ux) Dg UT (x) ¥/ (x). (3.12)
We will consider now the term U (x) D, U™ (x). Using (3.8) we find
U(x) Do Ut (x) =y — i ; T 0y A(x)+igU(x) ; T-Ay(x)UT(x). (3.13)
For the last term of (3.13) we have

U(x) ; T- AU ()= 7 'Aoz(x)"‘i[; T-Ax), ; 7 Ay (x)]

N = N =

T-Ay(x) — ;T~(A x Aq (%)), (3.14)

where we take into account that [;t,-, %tk] = iejk étl. From (3.13) and (3.14) we
obtain

1
U (x) Dg U+(x)=aa+ig21-A;(x)=D;. (3.15)
Here

1
Al (x) = Ay(x) — ¢ Oy A(x) — A(x) X Ag(x). (3.16)

Thus, from (3.12) and (3.15) we have
Dy r(x) = U™ (x) Dy ' (x) (3.17)
Comparing (3.10) and (3.17) we conclude that under the local gauge SU(2)
transformations, which include the phase transformation (3.6) of the spinor field
¥ (x) and the gauge transformation (3.16) of the vector field Ay (x),! the covariant

derivative Dy ¥ (x) and the field ¥ (x) are transformed in the same way.
Thus, if in the free Lagrangian (3.2) we will make the change

0o ¥ (x) = Do ¥ (x) (3.18)

we obtain the Lagrangian
A (x) = P(x) (i y* Do +m) Y (x) (3.19)

which is invariant under the local gauge transformations (3.6) and (3.16).

IThe field Ay (x) is called the gauge field.
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The Lagrangian £ (x) is the sum of the free Lagrangian of the field ¥/ (x) and
the Lagrangian of the interaction of the field ¥ (x) and the vector field Ay (x).
The total Lagrangian must include also the free Lagrangian of the field A4 (x),
which is invariant under the gauge transformation (3.16). In order to build the free
Lagrangian of the field Ay (x) let us consider the commutator [ Dy, Dg]. We have

[Do, Dgl=1ig ; T - Fop(x), (3.20)
where
Fop(x) = 04 Ag(x) — 0 Aq(x) — g Ag(x) X Ag(x) (3.21)
is the stress tensor. From (3.15) we find the following relation
U Dy, DglU" = [Dy, Dg]. (3.22)
Further, from (3.20) and (3.22) we have
1 1
U(x) 5T Fop(x)UT (x) = 5T Fop(x), (3.23)
where
Flp(x) = 3 Al (x) — 8p Ay (x) — g Ay (x) x Af(x). (3.24)

Finally, from (3.8) from(3.23) we find that the stress tensor Fyg(x) is transformed
as an isotopic vector:

Flp (1) = Fop(x) — A(x) x Fop (x). (3.25)

Thus, the scalar product Fyg - F*8 is invariant.
The free Lagrangian of the vector field A, (x), which is invariant under the
transformation (3.16), can be chosen in the form

1
Z3(0) =~ Fap(x) FP (x). (3.26)

The total Lagrangian of the spinor field v (x) and the vector field Ay (x), which
is invariant under the transformations (3.6) and (3.16), is given by the following
expression

- 1 1
L(x) =P (x) (i y 0y +ig 5 T -Ay(x)) + m) Y(x) — 4 Fa,g(x)F“ﬂ(x)-
(3.27)
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Thus, the requirement of the local gauge SU (2) invariance can be satisfied if exists
the vector field A, (x) and the Lagrangian of the interaction has the form of the
product of the isotopic vector current

- 1
Jo(¥) =¥ () Vo, TY(X) (3.28)

and the vector field:

3
L1(x) = —gJa(¥) - A%(x) = —g Y ji(x) A% (x), (3.29)
i=1

The Lagrangian (3.29) can be written in the form

L (x) = (— 2‘32 Jo () W (x) + h.c) — 8 Ja () A% (x). (3.30)
Here
Ja @) =2 jy ), Walx) = le AT (), (3.31)
where
JaEr =l 12 AFT = Al £iA2. (3.32)
For the current j, (x) we have
Ja () =2 9(x) 4 ; (1 +it) Y (x) = 29T 0) y vV (), (3.33)

where ¥tV (x) and ¥~V (x) are components of the isotopic doublet with the third
projections of the isotopic spin /3 equal to é and — é, correspondingly.
According to the Gell-Mann and Nishijima relation we have

0=5LK+ ; Y. (3.34)

Here Q is the electric charge in the units (—e) (e is the electric charge of the

electron) and Y is the hypercharge (Y = Q(l) + Q(_l)). From (3.33) and (3.34)

follows that the current j, (x) changes the charges of particles by one (AQ = 1).

Thus, due to the conservation of the total electric charge the field W% (x) is the field
of the vector particles with electric charges equal to 1.
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For the current jg (x) we have

- 1 1 - _
Jo) =¥ va L, BYE) = 2(W”(x) Ya V) = D0 v y TP ).

(3.35)

The current j3 (x) does not change the electric charges of particles and hence Ag (x)
is the field of neutral, vector particles.

Thus, we have built the SU(2) local gauge invariant Yang-Mills theory with
gauge fields which include charged as well as neutral vector fields. Such a theory
will be used as a basis for the theory of the weak and electromagnetic interactions.

In conclusion we make the following remarks.

1. After the change

0o Y(x) = (0o +ig ; T Ay (X)) ¥ (x) (3.36)
in the free Lagrangian of the spinor field ¥ (x) we came to the interaction
Lagrangian (3.29), which has the form of the product of the isovector current
Jo(x) and the isovector field A% (x). The constant g is the interaction constant g.

It is necessary, however, to stress that the requirements of the local gauge
invariance do not fix the form of the interaction Lagrangian. For example, to the
interaction Lagrangian (3.29) we can add a tensor term

- 1
Ll =P ) oup T V() Fap, (3.37)

which is invariant under the transformations (3.6) and (3.16). Let us stress,
however, that in order to “absorb” the term d, A (x) in (3.9) and to ensure the local
gauge SU (2) invariance we need to perform the change (3.36) which induces the
interaction (3.29).2 Thus, the interaction (3.29) is the minimal gauge invariant
interaction of the spinor and vector gauge fields.

2. The mass term of the vector field é mi Ay (x) A%(x) is not invariant under the
transformation (3.16). Thus, the local gauge invariance requires that W, (x) and
Ag (x) are fields of massless particles. This is the reason why in a realistic theory
the local SU (2) gauge symmetry is violated. In the next section we will discuss
the mechanism of the spontaneous symmetry breaking.

2Let us stress that this is minimum what we have to do to ensure the local gauge SU (2) invariance.
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3.3 Spontaneous Symmetry Breaking. Brout-Englert-Higgs
Mechanism

Let us consider the complex scalar field ¢ (x) and assume that the Lagrangian of the
field is given by the expression

L =8,0" 3% — V(o' ). (3.38)
Here

VigT o) =—n2¢ ¢+ 10" 9)2, (3.39)

where ;2 and A are positive constants.

The first term of the Lagrangian (3.38) is the kinetic term. The second term
V(¢" ¢) is the so called potential. Let us notice that the quadratic term —u” ¢ ¢ is
not a mass term (it differs from a mass term by the sign).

The Lagrangian (3.38) is invariant under the global transformation

¢'(x) = e p(x), (3.40)

where A is a constant arbitrary phase.
Let us find the minimum of the Hamiltonian

3
H =009 dop+ Y 00" i+ V' ). (3.41)

i=1
Equation (3.39) can be written in the form
2 4
2 %
)? -

Vi) =1 ¢ — 0 4

(3.42)

From this expression it is evident that the Hamiltonian reaches its minimum at the
constant value of the field which satisfies the condition

P W
= . 3.43
®o %o i (3.43)
Thus, the Hamiltonian reaches the minimum at

b= o= jz s (3.44)
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where « is a real, constant phase and

v = . (3.45)

Thus, in the case of the complex scalar field with potential (3.39):

e The Hamiltonian is minimal at different from zero constant (vacuum) values of
the field.

e The minimum of the Hamiltonian is reached at an infinite number of vacuum
fields given by (3.44). Obviously that this freedom is due to the global invariance
of the theory.

The system possesses one (any) vacuum field. That means that in the case of the
interaction (3.39) the vacuum state violates global invariance. Such a violation is
called spontaneous.® We can choose

V2

Let us introduce real fields x1(x) and x2(x) which are connected with the complex
field ¢ (x) by the relation

$o = (3.47)

v X1+ix2

¢2+ V2

The fields xi 2(x) are determined in such a way that their vacuum values are equal
to zero.
Notice that in the Quantum Field Theory instead of (3.44) we have

¢(x) = (3.48)

v

5 e, (3.49)

(019 (x)10)

3 A typical example of the spontaneous symmetry braking is the ferromagnetism. As a function of
the magnetization M(#) in the homogeneous case the energy density is given by the expression

E = (3M)? + a1 (MM) + a2 (MM)2, (3.46)

which follows from many-body theory which takes into account collective effects. Here oy > 0
and oy = B(T — T;), where § > 0 and T is the Curie temperature. It is obvious that the energy
is invariant under the rotations. At T < T, the energy reaches minima at (MM)y = —2";}2 . From

this equation it follows that (M)g = \/ - 2‘7;‘2 e, where e is any unit vector. This degeneracy is due

to the rotational symmetry of the Hamiltonian. At 7 < T, the magnetization of a homogenous
_a
207

violates the rotational symmetry of the initial Hamiltonian which follows from the symmetry of
the basic Hamiltonian.

ferromagnetic is a constant vector (M)g = \/ eo. Thus, existence of the ferromagnetism
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where (0]|¢(x)|0) is the vacuum expectation value (vev) of the field ¢ (x). This
relation means that

e vacuum states |0) are not empty states,
* due to global symmetry the vacuum states are degenerate.

Because a physical system possess one (any) vacuum state we can choose

v
0 0) = . 3.50
{0l (x)10) /2 (3.50)

Let us introduce two quantum hermitian fields xj(x) and x2(x) in the following
way:

v+ x1(x) +ixa(x)

¢ (x) = 2

(3.51)

It is evident that
(0 x1,2(x)[0) = 0. (3.52)

Thus, in the vacuum state |0), we have chosen, there are no particles, quanta of the
fields x1(x) and x2(x).

Let us return back to the classical theory of the field ¢ (x). From (3.38) and (3.48)
we obtain the following expression for the Lagrangian of the system®

1 1 A
L= 0081+ 50" XXz =, DGO +20) + X315 (3.53)

The quadratic over y; term
22 1,9
AVXT = 22/L (3.54)

is the mass term of the field yx;(x). There is no mass term of the field y;(x). Thus,
the Lagrangian (3.53) is the Lagrangian of two interacting real scalar fields: the field
x1(x) with mass /2 and massless field x2(x).

According to the general Goldstone theorem spontaneous breaking of a continu-
ous symmetry generates massless (Goldstone) particles. In our example imaginary
part of the field ¢ (x), the field x2(x), is the goldstone field. Its appearance is
connected with violation of the global invariance.

4
4The constant term — fj can be omitted.

A
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We can come to the same conclusion if we parameterize the field ¢ (x) in the
form
v+h(x) jom
e v,
V2

where A (x) and 6 (x) are real fields. Their vacuum values are equal to zero. For the
Lagrangian of the system we find the following expression

o(x) = (3.55)

1 1 h K2 A
L= %hdgh+ 0% 0,0+ + _ )0%0 3,60 —  [h(h +2v)]*>.  (3.56)
2 2 v 202 4

The Lagrangian (3.56) is the Lagrangian of two interacting scalar real fields: the
field A (x) with mass v/2« and massless Goldstone field 6 (x).

The appearance of Goldstone bosons is a problem for theories with spontaneous
symmetry breaking: massless scalar bosons were not observed in experiments.
In local gauge invariant theories, discussed in the previous section, vector gauge
bosons are massless and this is another problem for a realistic theory. Brout, Englert
and Higgs showed that in the theory based on the local gauge invariance and
spontaneous violation of the symmetry Goldstone scalar bosons do not appear and
gauge bosons are massive.

It is obvious that the global invariance with constant phase A do not allow us to
remove the Goldstone massless field 6 (x). Let us consider the scalar complex field
¢ (x) and vector gauge field A, (x) with the following Lagrangian

1
L =10 +igA")¢] (3 + igAy)p — V(p'o) — 4F‘)‘ﬁFa,s. (3.57)
Here
Fop = 3y Ag — 3 Aqg, (3.58)

g is a real dimensionless constant and the potential V (¢' ¢) is given by (3.39).
The Lagrangian (3.57) is invariant under the local gauge transformations

/ _ iAW) / _ 1
Px)=e P(x), Ay(x) = Ag(x) — ¢ 0o A(x), (3.59)

where A(x) is an arbitrary function of x.
The Hamiltonian of the system has the minimum at the constant value of the
scalar field which satisfies the condition

§ v
@y Po = 5 (3.60)



46 3 The Standard Model of the Electroweak Interaction

where the constant v is given by (3.45). Thus, we have

b0 = jz LS (3.61)

where « is an arbitrary phase. If we choose

v
= 3.62
%o /2 (3.62)

we will spontaneously violate the symmetry.
The complex field ¢ (x) can be presented in the form

v+h(x) ;ow
e v

V2

where h(x) and 6(x) are real functions. Their vacuum values are equal to zero.

After spontaneous symmetry breaking the Lagrangian (3.57) continue to be
invariant under the transformation (3.59). We can choose the gauge function A(x)
in such a way that

¢(x) = ) (3.63)

v+ h(x)

¢(x) = 2

(3.64)

Such gauge is called the unitary one.
From (3.57) and (3.64) for the Lagrangian of the real scalar field x (x) and the
real vector field A, (x) we obtain the following expression

2
L= ;B“h duh + g2 A%Ay (v + h)? — i[h(h +20) — iF“ﬂFaﬂ. (3.65)
The Lagrangian (3.65) is the Lagrangian of the interacting real scalar field 4 (x) with
mass mj = «/Z,u and the real vector field Ay (x) with mass m4 = gv. There is no
massless Goldstone field in the system.

This mechanism of the generation of the mass of the vector field is called the
Brout-Englert-Higgs mechanism. The field ¢ (x) is called Higgs field.

Thus, from the local gauge invariant theory of the interacting complex massless
scalar field and the real massless vector gauge field, after spontaneous breaking of
symmetry we came to the theory of a massive neutral vector field and a massive
scalar Higgs field. The massless vector field is characterized by two degrees of
freedom (two projections of the spin) while the massive vector field is characterized
by three degrees of freedom (three projections of the spin). Hence, as a result of
the spontaneous breaking of the symmetry, the Goldstone degree of freedom of the
complex scalar field became an additional degree of freedom of the vector field (2+2
degrees of freedom became 143 degrees of freedom).
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3.4 The Standard Model for Leptons and Quarks

In this section we will consider the unified theory of the weak and electromagnetic
(electroweak) interactions (The Standard Model). The Standard Model is based on
the following principles:

1. The local gauge SU[,(2) x Uy (1) invariance of the Lagrangian of massless fields.
2. The unification of the weak and electromagnetic interactions.
3. The Brout-Englert-Higgs mechanism of the generation of masses of particles.

The Standard Model is the theory of spin 1/2 quarks, charged leptons, neutrinos, spin
1 gauge vector bosons and spin 0 Higgs bosons. The Lagrangian of the theory is built
in such a way to include the phenomenological Lagrangian of the V — A charged
current interaction, which describes the B-decay of nuclei, p-decay, w-decay, decay
of strange particles, neutrino processes and many other processes.

We have seen in the first chapter that into the charged current enter left-handed
components of the lepton and quark fields. Let us assume that

VP = <1;LL) yP = (‘Z‘,Z) YiP = (”{) (3.66)
and
vl = (”L) vy = (CL> vy, = (tL ) (3.67)
dy st by

are doublets of the SU[,(2) group.

In the framework of the Quantum Field Theory it is natural to suggest that the
SUL(2) symmetry is a local one. The local SU[ (2) symmetry requires existence of
a gauge vector field A, (x). It will be ensured if in the free Lagrangian

3
L@ =Y Py s () + Y wh iy syl (1) +... (3.68)
i=1

l=e,pu,t

we will make the following change

1 1
aaw}ip(x) — (0q + igera(x))t//llzp(x), aal//iqL(x) — (g + igztA“(x))‘/’iqL(x)'

(3.69)

5The meaning of primes will be clear later.
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We come to the following Lagrangian of the interaction of leptons and quarks with
gauge vector bosons

Ly = —gja(x)A%(x). (3.70)
Here
G () = P () + j2 (x), (3.71)
where
€ T 1€ 1 €
WP = 0 U, Ty () (3.72)
l=e,ju,T
and
3 1
J) =Y P ), ) () (3.73)
i=1

are lepton and quark isovector currents.
Let us stress the following

1. SUL(2) is the nonabelian group. The interaction constant enters into the stress
tensor (see (3.21)). This means that the interaction constants for different lepton
and quark multiplets must be the same (universality).

2. The interaction (3.70) is the minimal interaction compatible with requirements
of the local SU[ (2) gauge invariance.

We can rewrite the Lagrangian (3.70) in the form

8 .cC yra .3 43
L= (— W% +h.c)— A9 (3.74)
1 2\/2 JO[ g JO[

Here

JSC =20 =260 Yo dp 4T Yo s Ya BDH2 Y T valy  (BT5)

l=e,p,T
is the charged current of quarks and leptons,
L i 1 1 _ ;42
Wy = /2 A, = /2 (A, — 1 AY) (3.76)
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is the field of the charged W*-bosons and the current jg is given by the following
expression

41 _ 1 ) 1 ) 1 )
i=, D dvedi—, Do @vedit, D Vivevin—, Y Lvall
q=u,c,t q=d,s,b l=e,p,T l=e,u,T

(3.77)

The first term of the expression (3.74) is the CC Lagrangian. The last term of this
expression is the Lagrangian of the interaction of quarks and leptons with Ag’l, the
field of neutral vector particles. It is obvious that this term can not be identified
with the Lagrangian of the electromagnetic interaction: in the current j3 enter only
left-handed components of the fields while in the electromagnetic current enter left-
handed and right-handed components of quark and charged lepton fields. Thus, the
CC weak interaction which violates parity and the electromagnetic interaction which
conserve parity can not be unified on the basis of the local SU (2) group.

In order to build the unified theory of the weak and electromagnetic interactions
it is necessary to enlarge the symmetry group. A new interaction Lagrangian must
include the CC Lagrangian and the Lagrangian of the electromagnetic interaction.
The minimal group on the basis of which the weak and electromagnetic interactions
can be unified is the direct product SUy, (2) x Uy (1), where Uy(1) is the group of
the hypercharge.

The local SU x Uy (1) gauge invariance will be ensured if in the free Lagrangian
the left-handed lepton and quark doublets we make the following change

€] . 1 . /1 €] €]
VP (x) = (B + ig , TAu(x) +ig zYiPBa WP (x) (3.78)
and
1 1
oV (x) = (3 +ig . TAGX) +ig YT By ()Y, (x). (3.79)

2 2

In the free Lagrangian of the right-handed lepton and quark singlets we will perform
the change

1
Bl (X) — (3 + ig/zYllpra(x))l}e(x), (3.80)
1
daqr(x) > (0o +ig’ 2Y,”J’Ba(x))q}e(x), qg=u,c,t (3.81)
and
1
duqr(x) = (B +ig YR By(x)qr(x), q=d,s,b. (3.82)

2



50 3 The Standard Model of the Electroweak Interaction

Here B, (x) is Uy (1) gauge vector field and the interaction constants are written
in the form g’éYiep, g’éYZ, etc. Because Uy (1) is an abelian group, Yiep, Yg etc.
are arbitrary constants. We will choose them in accordance with the Gell-Mann-

Nishijima relation

1

where Q is the electric charge. For the left-handed doublets and right-handed
singlets we have, correspondingly,

L=0"+0"), yp=20. (3.84)

From these relations we find

1 4 2
Y =1, vf = N YR =2, Y = 3 ygdown — ~3 (3.85)

From (3.78)—(3.82) for the Lagrangian of the minimal interaction of the quark,
lepton and vector fields we will find the following expression

1
i¥ Be, (3.86)

2= —gja A" =5,

where the isovector current j,, is given by (3.71) and ; jg (x) is the total hypercurrent

1,
e = L) + J(ﬁ(x» (3.87)
2 2/
Here
1
Ja =Yy ZYfP 2 3 I Y}fp vall (3.88)
l=e,ju,T I=e,iu,T

is the lepton hypercurrent and®

1
Jai = ZW,LZYZ% + > qR VeVt + D dry V™ vedr
q=u,c,t q=d,s,b
(3.89)
is the quark hypercurrent.

SLet us notice that hypercharges of the right-handed neutrino singlets v are equal to zero. Thus
neutrino singlets v;, can not contribute to the hypercurrent. As we will see later, the right-handed
neutrino fields can enter only into neutrino mass terms.
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The electric charges of left-handed and right-handed components of the lepton
fields are the same. Thus for the leptonic hypercurrent we have

1 Yl 31 .EMI 31
o =D Y Ll A D Y el = ga =g =

l=e,p,T l=e,u,T
(3.90)
where
== Y Tyl (3.91)
l=e,u,T
is the electromagnetic current of the charged leptons.
Analogously for the quarks we have
1
pdat =i = 131, (3.92)
where
JEM = Z 7'veq - Z q'veq' (3.93)
q =u,c,t q =d,s,b
is the quark electromagnetic current.
For the total hypercurrent of leptons and quarks we obviously find
1y -3
Ja - Ja —Ja- (394)

2

The total SU;, x Uy (1) invariant Lagrangian of the minimal interaction of quarks
and leptons with gauge vector bosons takes the form

L = —8juA” — g (GEM — j3B°. (3.95)

From the requirement of the local gauge SU; x Uy(l) invariance follows that
fields of gauge vector bosons, quarks and leptons are massless. The Standard Model
is based of the Brout-Englert- Higgs mechanism of the generation of masses of
leptons, quarks and intermediate vector bosons. This mechanism assumes existence
of a scalar Higgs field with nonzero vacuum expectation values and degeneracy of
vacuum states. The degeneracy is a result of a gauge symmetry of the Lagrangian.
Because a physical system occupies one vacuum state a gauge symmetry in the case
of the Higgs field is spontaneously broken.

In order for the theory to be invariant under SU; (2) x Uy (1) transformations the
Higgs fields must have definite SUf (2) x Uy (1) transformation properties. Let us
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assume that the Higgs field H (x) is the SU (2) doublet

H(x) = <H+(x)>, (3.96)

where H, (x) is the scalar complex field of particles with electric charges equal to
41 and Hy(x) is the complex field of particles with electric charge equal to zero.
From the Gell-Mann-Nishijima relation (3.83) follows that the hypercharge of the
field H(x) isequaltoone (Yg =140 =1).

For the free Lagrangian of the Higgs doublet we have

Sy =0,H 9“H — V(H' H). (3.97)

Here the potential V (HT H) is given by the expression

2\ 2 4
’“‘) _H L (3.98)

VH'Hy= —p>H ' H+ A (HTH)> = <HTH— 0

where % and A are positive constants.
In order to ensure SU (2) x Uy (1) invariance of the theory in (3.97) we must
change the derivative dy H by the covariant derivative:

1 1
BO,H—>(8a+ig2r-Aa+ig’2Ba)H, (3.99)

where Ay and By are SUL(2) and Uy(1) gauge fields. The Lagrangian takes the
form

1 1 T 1 1
R ((aa—l—igzr-Aa—l—ig’zBa)H) ((3“+ig21-A°‘+ig’zB°‘)H>
—V(H' H). (3.100)

The potential (3.98) reaches a minimum at such constant values of the Higgs field
which satisfy the relation

2
(H"H)o = 112 : (3.101)

where
Vo= . (3.102)

Because of the conservation of the electric charge the vacuum expectation value of
the charged field H is equal to zero. From (3.101) follows that we can choose Hy
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in the form
0
Hy = ( v ) (3.103)
V2
The complex scalar doublet H (x) can be presented as follows
;1o 0
Hx)=e¢e2 v vth(x) | s (3.104)
V2

where 6;(x) (i = 1,2, 3) and h(x) are real functions. The parametrization (3.104)
was chosen in such a way that the vacuum values of the functions 6; (x) and H (x)
are equal to zero.

After the spontaneous symmetry breaking the Lagrangian of the system, we are
considering, remains invariant under the SU (2) x U (1) local gauge transformations.
Let us choose the gauge in such a way that

0
H(x) = <v+h(x)) . (3.105)
V2

With this choice of the gauge (which is called the unitary gauge) we find the
following expression for the Lagrangian (3.100)

/ /

8 Ba)(i T AY + ”; BYH-V. (3.106)

1
Z=, aaha“h+HT(§r-Aa+ :
Let us consider the different terms of this expression. Taking into account that
T Tk =ik +ieinT (3.107)
we have

T-AyT-A% = A, AY =2 W) W% + A3 A3, (3.108)

where W is the field of the charged W* bosons given by Eq. (3.76).
Further, from (3.105) we find

1
HTr-AaH=—2(v+h)2Ag. (3.109)

From (3.98), (3.105), (3.108) and (3.109) we obtain the following expression for the
Lagrangian (3.106)

(g*+8?

1 2
Z:zaaha“mi (o) Wi e

A
(v+h)* Zy 2%~ . (uh+h?)?,
(3.110)
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where
g 3 g
Zo = \/g2+g’2Aa — \/gz—l—g’zB (3.111)
The field A, given by the relation
g g
Aq 3 (3.112)

= A+ B
Vet +g? " Vet +g?

is orthogonal to Z,,.
The Lagrangian (3.110) includes the mass terms of the vector W and Z¢ fields
and the mass term of the scalar field &:

1

5 ma h?. (3.113)

1
,Sfm:m%VW;W“JrzmzzzaZ“—

Here

1 1
m3y, = 4 @i, m = A @ +gHv?, mi=2xv* =242 (3.114)
Thus, after spontaneous symmetry breaking W* (x) became the field of the charged
vector W* bosons with the mass my = ég v, Z%(x) became the field of neutral

vector Z° bosons with the mass m, = é\/gz + g2 v. The field A, (x) remained
massless.

Three Goldston degrees of freedom of the Higgs doublet provided the masses of
the W* and Z° bosons. The fourth degree of freedom, the neutral scalar field (x),
is the field of the scalar Higgs bosons with the mass mj, = ~/2j. Higgs boson was
discovered at LHC in CERN in 2012.

Let us introduce weak (Weinberg) angle 6y by the relation

g =g tanBy. (3.115)
Taking into account that
/
& —costy, & _sinoy. (3.116)
Ve +g? Ve +g?

From (3.111) and (3.112) we find

Al cosOwZy +sinfyw Ay, By = —sinfBwZy + cosbwyAy. (3.117)

o —
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Let us now consider the interaction Lagrangian (3.95). It can be written in the form

& = <—2f’/2 € we —i—h.c) + .2, (3.118)
where
JC =2 =20y +1j) (3.119)
and
L = —g jia* — ¢ GEM - DB (3.120)

The first term of (3.118) is the Lagrangian of the CC interaction of the quarks and
leptons with W+ bosons and the second term is the Lagrangian of the interaction of
the quarks and leptons with neutral vector bosons. Taking into account (3.117) we
have

P = _gsinfy jFMAY - & NCze 3.121
gsin Oy j, 2 cos by Ja ( )

Here
JNC = 2(3 — sin? Oy jEM) (3.122)

The first term of the Lagrangian (3.121) is a product of the electromagnetic current
and the massless vector field A%(x). It can be identified with the Lagrangian of the
electromagnetic interaction

LM = EM g (3.123)
if the constants g and sin Oy satisfy the following unification constraint
gsinfy = e. (3.124)

Here (—e) is the charge of the electron. The massless vector field A® is the
electromagnetic field. After the spontaneous breaking of the SUr(2) x Uy(1)
symmetry the Lagrangian of the system is invariant under the transformations of
the local Ug s (1) group.

The second term of (3.121) is the Lagrangian of the interaction of quarks and
massive neutral vector Z° bosons. The weak current (3.122), which does not change
the electric charges of quarks and leptons is called the neutral current (NC). Before
the SM appeared, only CC interaction was unknown. The unification of the CC weak
and electromagnetic interactions on the basis of the local gauge SU1 (2) x Uy(1)
group allowed to predict the existence of the massive neutral vector Z°-boson and
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a new type of the weak interaction (NC). Neutral current processes were discovered
in 1973 at CERN in experiments on the bubble chamber Gargamelle.

We will now turn to the consideration of the generation of the masses of quarks
and leptons. Let us start with quarks. The mass term of the quark field g (x) has the
form

L =—-mygqgq=—mgqrqr+hec, (3.125)

where my is the mass of the q-quark (¢ = d, u, s ...) In the SM left-handed fields
are components of SU (2) doublets and right-handed fields are SU (2) singlets. Thus,
the quark mass term is not invariant under the SU (2) x U (1) transformations.

Masses and mixing of the quarks are generated in the SM via the mechanism of
the spontaneous symmetry breaking. Let us assume that in the total Lagrangian of
the Standard Model there is the following Lagrangian of the Yukawa interaction of
the quark and Higgs fields

LY = —V2 3 i Y g H 4 hec., (3.126)
a,q
where Y. %OW“ is a complex 3 x 3 matrix. Because ¥;; and H are the SU(2)

doublets and g} are singlets, it is obvious that the Lagrangian f;}own is the
SUL(2) scalar. Let us also require Uy (1) invariance, i.e. the conservation of the
hypercharge. The hypercharges of the quark and Higgs doublets are equal to
1/3 and 1, correspondingly. The Lagrangian (3.126) conserves the hypercharge if
Zeq}e + 1 = 1/3. Thus, eqr = —1/3, i.e. the right-handed fields ¢} in (3.126) are
the “down” fields dj, s, b'g.

From (3.103) and (3.126) after the spontaneous symmetry breaking we find

Here
dy g
DL e=|s |- (3.128)
b/
L,R

The first term of (3.127) is the mass term of the down quarks and the second term is
the Lagrangian of the interaction of the down quarks and the Higgs bosons.

In order to generate the mass term of up quarks we will use the conjugated Higgs
doublet

H=iuH* (3.129)
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The hypercharge of the doublet H is equal to —1. From (3.103) and (3.129) we have

. v+h
H= (¢02>. (3.130)

We will assume that in addition to (3.126) the following Lagrangian of the Yukawa
interaction of quarks and Higgs bosons enters in the total Lagrangian

L =—V2 ) Y, V¥ qr H+he, (3.131)
iq

where Y"? is a complex 3 x 3 matrix. From the conservation of the hypercharge we
have Zeq;e + (—=1) = 1/3. Thus, ¢ L= 2/3 and the index ¢ in (3.131) runs over
u,c,t.

After the spontaneous symmetry breaking we find from (3.130) and (3.131)

L =—Up YUk (v+h) +hec., (3.132)
where
Uy R
Upr=|c<xz | (3.133)
LR

The first term of (3.132) is the mass term of the up quarks and the second term is
the Lagrangian of the interaction of the up quarks and the scalar Higgs bosons.

Let us now bring the mass terms of up and down quarks to the diagonal
form. The complex matrices Y7 and Y%°"" can be diagonalized by the biunitary
transformations (see Appendix B). We have

YU — VEP yup V;PT Ydown — Viiown ydown VI(;OWHT. (3.134)
Here VLup » and Vfo}’{“ are unitary 3 x 3 matrices and y“P and ydoW"

matrices with positive diagonal elements.
From (3.127), (3.132) and (3.134) we find the following expressions

are diagonal

N h h
L = U m"P =— g .
" Om™®U 1+ ) > mgqq (1+ ) (3.135)
g=u,c,t
and
z;‘OW“:—DmeW“D(Hh):— Z m q‘q(1+h). (3.136)
v a v

q=d,s,b
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Here
u d
U=U,+Ugp=\|c|, D=Dr+Dgp=1|5s], (3.137)
b
and
m, 0 O mg 0 O
mP={0m 0|, m™=| 0m 0 |. (3.138)
0 0 my 0 0 mp
Matrices U g and Dy g in (3.137) are given by the relation
ULr=V"y Ul x. Drr=Vi%" D} s (3.139)
For the quark masses we have
mq:yqvv q:dvussscsbvt (3140)

Thus masses of quarks, generated by the Brout-Englert-Higgs mechanism, are pro-
portional to the vacuum expectation value v. The dimensionless Yukawa constants
¥4 are not constrained by the symmetry of the Standard Model. They are parameters
of the model. It follows from (3.135) that g (x) is the field of g-quark with the mass
mg.

Let us consider now the charged current of the quarks. From (3.119), (3.128) and
(3.133) we find

JeShx) =2 U} (x) ya D) (x) (3.141)

We will write down the charged current in terms of the fields of quarks with definite
masses. Taking into account (3.139) and (3.141) we find

jo @) =2 UL() v V D), (3.142)

where the matrix V is given by the relation
V = (V") yown (3.143)
From (3.137) and (3.142) follows that the CC can be presented in the following form

Jg €)= 2L (6) Yo dP™ () +EL(X) Yar PN HLE) vo BPFEL (3.144)
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Here

df*x) = Y VugqL(x)

q=d,s,b

ST = Y Veg qL(x)
q=d,s,b

@ =) Vigqux). (3.145)
q=d,s,b

From (3.143) follows that V' is a unitary matrix
viv =1. (3.146)

We came to an important conclusion: due to the spontaneous breaking of the
electroweak symmetry the left-handed components of fields of the down quarks enter
into the CC of the SM in mixed form. The unitary 3 x 3 mixing matrix V is called
the Cabibbo-Kobayashi-Maskawa (CKM) mixing matrix.

Let us stress that the mixing of quarks is due to the fact that the unitary matrices
VZP and Vg"w", which connect left-handed primed and physical fields of up and
down quarks, are different. It follows from (3.144) and (3.145) that because of the
mixing the charged current changes the flavor of quarks (d — u, s — u,c — s
etc.).

Let us now express the electromagnetic current through the fields of physical
quarks. From (3.123) we have

. 2 - - 1 - _
EMq 3 (U] Yo Uy + Ug va Ug) — 3 (D} ya D} + Dy yo Dg).  (3.147)
Taking into account the unitarity of the matrices Vsz and Vgo}g’“ we find

EMq _ 2

- 1
Ja 3 Uya U — 3 Dy, D. (3.148)

From (3.137) and (3.148) we have

.EM _
Ja =Y g ) va g(), (3.149)

qg=d,u,s,...
where e, .; = % and eq s p = — _l, Thus, we come to the standard expression for

the electromagnetic current of quarks, which is diagonal in quark flavors.
Finally let us consider the quark neutral current of the Standard Model. From
(3.122) we find

ja = U} yo U = D), vy D —2 sin 0w jE (3.150)
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In order to come to the fields of the physical quarks we will use the relations (3.139).
Taking into account that V;p and Vf"w“ are unitary matrices we find

.NCq
Ja

UL yo UL — D1 vo Dp — 2 sin® 6y jEM

Y GLveqr— Y Grveqr—2sin*Ow jEM  (3.151)
q=u,c,t q:d,s,b

From this expression we conclude that the neutral current of the SM is diagonal in
quark flavors.

We will now consider the generation of masses of leptons. The SUp (2) x Uy (1)
invariant Lagrangian of the Yukawa interaction of lepton and Higgs fields has the
form

L =23 Yy YTl H + hee., (3.152)
I,

where Y/¢? is a 3 x 3 complex matrix and H is the doublet of Higgs fields. If we
choose for the field H (x) the expression (3.105) the symmetry will be spontaneously

broken and for the Lagrangian .le,e’) we find the following expression

Ly =L, Y L)y (v +h) +he. (3.153)
Here
e/L,R
r=| g |- (3.154)
_L_/
L,R

Let us now diagonalize the matrix Y/¢?. We have
Y'P =y yP U, (3.155)

where Uy g are unitary matrices and y'°P is a diagonal matrix with positive
elements. From (3.153) and (3.155) we find

L= —Lp yPLg v+ h) +hec., (3.156)
where

LL=U] L, Lr=Uj Lk (3.157)
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From (3.156) we obtain the following expression for the Lagrangian (3.153)

h - h
L) = L Lo + "y == 3 mlw 1w a+ "),
v I=e,iu,T v
(3.158)
Here
e m, 0 O
L=Li+Lg=|pn]|, m*=[0m, 0]. (3.159)
T 0 0 mq,
and
m=yv, l=e,u,r. (3.160)

The first term of the Lagrangian (3.158) is the standard mass term of the charged
leptons. The field /(x) is the field of the charged leptons [* with the mass m; (I =
e, i, 7). The second term of (3.158) is the Lagrangian of the interaction of the lepton
and Higgs fields.

It is a common belief that neutrino masses are generated by a new beyond the
Standard Model mechanism. In the next chapter we will discuss in details the
problem of neutrino masses.

Let us consider now the lepton charged current. It can be written in the following
matrix form

Ja P = 29, (60) v L (), (3.161)
where
VoL
vp=|v, | (3.162)
/
(273

Taking into account (3.157), we have for the leptonic charged current

J P () = 20, (%) Yo LL(x) =2 > UL ) va lL (). (3.163)
l=e,u,T

Here I(x) is the field of lepton [ with the mass m; and

v =Uj vy = | v | (3.164)
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The field vz (I = e, u, ) is called the flavor neutrino field. Let us consider now the
electromagnetic current of the charged leptons. Taking into account the unitarity of
the matrices Uy, g we find from (3.91)

Ja ) = =L7 () ya L (1) = L) v Ly () = =L o L), (3.165)

From (3.165) and (3.159) we obtain the following standard expression for the
electromagnetic current of the leptons

J.OI;:Mlep(x) _ Z (—1) l_(x) Ve L(x). (3.166)

l=e,p,T

For the lepton neutral current we have from (3.122)
Ja O ) = () Yo v (6) = L7 () ye L) (1) — 2 sin® 0y jEM(). (3.167)

In terms of the flavor neutrino fields and fields of physical leptons from (3.167) we
find the following expression for the neutrino and charged leptons neutral current

2P = Y @ vevie ) = Y IL@) valL () — 2 sin 6y jEM (),
l=e,u,T l=e,nu,T
(3.168)
where jEM (x) is given by (3.166).
Let us notice that if in the Standard Model neutrino masses are equal to zero, the
total SM Lagrangian is invariant under the global transformations

v @) =eMur), @) =eMx), ¢'0)=qx) (3.169)
where A; (I = e, u, T) are arbitrary constant phases.

From the invariance under the transformations (3.169) follows that the total
electron L., muon L, and tau L. lepton numbers are conserved :

Z Lé = const Z LL = const Z Li = const. (3.170)
i i i

The flavor lepton numbers of the particles are presented in Table 3.1. The lepton
numbers of the antiparticles are opposite to the lepton numbers of the corresponding
particles. The conservation of the total flavor lepton numbers means that in the CC

p L, 1 0 0 0
L, 0 1 0 0
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decays together with a «™ a muon neutrino v, is produced, in the process of the
CC interaction of an electron antineutrino v, with a nucleon a e* is produced etc.
We know at present that the law of the conservation of electron, muon and tau
lepton numbers is an approximate one. As we will discuss in details later, due to
small neutrino masses and neutrino mixing the conservation law (3.170) is strongly
violated in neutrino oscillations.

Let us summarize some results considered before. The SM Lagrangian of the
interaction of quarks and leptons with W* and Z° bosons and y-quanta is given
by the sum of the CC Lagrangian, the NC Lagrangian and the electromagnetic
Lagrangian:

8 .cCya 8 NC ~a .EM 4«
L =|- w h.c) — VAR A%, 3.171
T ( ZJZJQ + C) 2 costy € Jy ( )

The Fermi constant Gy, which characterizes the effective four-fermion weak

interaction induced by the exchange of the virtual W-boson at Q% <« m%v, is

connected with the constant g and mass of the W-boson by the relation
G 2
Fo s (3.172)
V2 8mi,

The value of the Fermi constant is well known from investigation of the u-decay
and other low-energy CC weak processes. We have

Gr = 1.1663787(6) x 107> GeV > (3.173)

The mass of the W-boson is given by the relation (see (3.114))

1
my = 2g v. (3.174)

From (3.172) and (3.174) we have

g’ 1 Gr

= = . (3.175)
8m3, 20* 2

Thus the constant v, the vacuum expectation value of the Higgs field, is determined
by the Fermi constant:

v=(W2Gp)"'? ~246GeV. (3.176)

From (3.114) and (3.115) we obtain the following relation between the masses of
the W and Z bosons

Y~ cosOy. (3.177)
mgz
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Further, taking into account the unification condition (3.124), we find the following
expressions for the masses of the W and Z bosons

T 172 1 TQ 172 1
my = my = (3.178)

V2Gr sin Oy’ V2Gp sin Oy cos Oy’
where o = ji is the fine structure constant. We have
o 1/2
= 37.28039(1) - GeV (3.179)
V2Gr

The parameter sin” Ay characterizes the neutral current. The value of this parameter
was determined from the data of numerous experiments on the investigation of NC
processes. From the existing data it was found that

sin? Oy = 0.23126(5) (3.180)

If we take into account radiative corrections, the relation (3.178) for the mass of the
W boson is modified. We have in this case

TQ 172 1
my = _ , (3.181)
V2Gp sinOw (1 — Ar)

where the term Ar is due to the radiative corrections. For this term the value Ar =
0.03639 £ 0.00036 £ 0.00011 was obtained. From existing data for the masses of
the W* and Z° bosons the following values were found

mz = (91.1876 £ 0.0021) - GeV  mwy = (80.385 £ 0.015) - GeV. (3.182)

These values are in a perfect agreement with the prediction of the Standard Model.

3.5 Concluding Remarks

The unified theory of the weak and electromagnetic interactions (The Standard
Model) is based on the following basic principles

1. Local SUL(2) x Uy (1) invariance of the Lagrangian of massless quark, lepton
and vector fields with left-handed doublets and right-handed singlets.

2. Brout-Englert-Higgs mechanism (with Higgs doublet) of the generations of the
masses of W* and Z° bosons, the quarks and the charged leptons.

3. The unification of the weak and electromagnetic interactions.
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The SM Lagrangian contains as a low-energy limit the effective classical current x
current Lagrangian of the CC weak interaction.

In order the Standard Model will be a renormalizable theory it is necessary that
the sum of the electric charges of the particles, the fields of which are components
of the doublets, is equal to zero:

21
3G+ NPT 04 (D) N =0, (3.183)

Here N9"“™ and N'*P™ are the numbers of the quark and lepton families. We took
into account in (3.183) that there exist three colored quarks of each type. Thus, we
have

N(;luarks _ Nl)(;ptons. (3.184)

After the t-lepton was discovered (1975), the Standard Model allowed to predict
the existence of the third neutrino v;, SU(2) partner of 7, and the third family of
quarks (b and ¢). The Standard Model predicted a new class of the weak interaction,
Neutral Currents, existence of the vector W and Z° bosons and the masses of these
particles. It predicted existence of the neutral, scalar Higgs boson. All predictions
of the Standard Model were confirmed by experiments.

On the basis of this agreement of the Standard Model with experiment we can
conclude that in the framework of the basic principles on which the SM is based
Nature chooses the simplest possibilities (SU (2) is the simplest nonabelian group,
the SM interaction Lagrangian is the simplest minimal one, the Higgs doublet is the
minimal possibility etc). Massless two-component neutrinos in the Standard Model
is the simplest possibility. Future experiments will allow to test this last possibility.



Chapter 4 )
Neutrino Mass Terms Check for

4.1 Introduction

The neutrino mass term is the central object of the theory of massive and mixed
neutrinos. It determines neutrino masses, neutrino mixture, neutrino nature (Dirac
or Majorana) and the number of massive and sterile neutrinos.

We have seen in the previous chapter how the mass term of the charged
leptons is generated by the standard Brout-Englert-Higgs mechanism. Here we will
consider all phenomenologically possible neutrino mass terms. Our discussion will
be general, based only on Lorentz invariance. We will only use the fact that a mass
term of any spin-1/2 field is a sum of Lorentz-invariant products of left-handed and
right-handed components of the field.

It was established by the LEP experiments at CERN that three flavor neutrinos
Ve, Vu, Vo exist in nature. The flavor neutrinos take part in CC and NC weak
processes via the standard charged current and neutral current interactions

gC o 8 jCCyepe, gN—_ 8 NCza 4.1
! 2\/210‘ Hhe ! ZCOSQW]“ @D

where

$Ce =2 ) M yel), JYC= ) @ rvevii).  (42)
l=e,u,T l=e,p,T

The flavor fields v;z (x) (I = e, i, T) must enter into the neutrino mass term. The
structure of mass term depends on

» other fields (if any) which enter into the mass term,
* the conservation of the total lepton number L = L, + L, + L+.
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68 4 Neutrino Mass Terms
4.2 Dirac Mass Term

The mass term of the charged leptons is given by the expression

LP(x) = — Z my[(x) [(x) = — Z my I (x) g (x) + h.c. (4.3)

I=e,p,T I=e,p,T

Because of the conservation of the total electric charge the SM Lagrangian is
invariant under the global transformation

[ (x) = e Mp(x), Ihx) =ep(x), Wo(x)=eWy(x), v, = vy etc.
4.4
where A is an arbitrary constant. The mass term (4.3) is the Dirac mass term and
1(x) is the Dirac field of the leptons /™ and antileptons /.

Let us now consider neutrinos. By analogy with leptons we will assume that in
addition to the flavor left-handed fields v,z (x) three right-handed neutrino fields
vir(x) enter into the Lagrangian. In this case the most general neutrino mass term
have the form

LP(x) == Brr(x) M) vig(x) + hec. 4.5)
U1l

Here the indices [ and [’ takes values e, u, T and M Disa3x3 complex, nondiagonal
matrix.

Let us present the mass term (4.5) in the diagonal form. The complex matrix MP
can be diagonalized by the biunitary transformation (see Appendix B).

MP=U"mv. (4.6)

Here U and V are unitary matrices and m;; = m;8;x, m; > 0.
From (4.5) and (4.6) we find

3
LPx) ==Y my vi(x)wi (x), 4.7)

i=1

Thus, v;(x) = v;r(x) 4+ vir(x) is the field of neutrino with mass m;. Flavor fields
vy (x) are connected with left-handed components of the fields of neutrinos with
definite masses by the relations

3
() =Y Uivir(x) (=e p,7) (4.8)

i=1
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From (4.2) and (4.8) we conclude that fields of massive neutrinos enter into the

charged current in the mixed form (like quark fields). The unitary 3 x 3 mixing

matrix U is called Pontecorvo-Maki-Nakagawa-Sakata (PMNS) mixing matrix.
Notice that for the right-handed fields v;g (x) we have

3
MR(Y) =Y Vi vir(x) (I =e, 1, 7). 4.9)
i=1

From (4.2), (4.7) and (4.8) follows that the total Lagrangian is invariant under the
global transformations

V() = e M vi(x), vip(x) =€ M vig(x),l'(x) = I(x), ¢'(x) =qx),
(4.10)

where A is an arbitrary constant.

From invariance under the transformation (4.10) follows that the total lepton
number L is conserved and that v;(x) is the Dirac field of neutrinos v; and
antineutrinos v;, particles with the same mass m; and different lepton numbers:
L(v;) =1, L(v;) = —1.The mass term (4.5) is the standard Dirac mass term.

4.3 Majorana Mass Term

Is it possible to built the neutrino mass in which only left-handed flavor fields vz
enter? If we require the conservation of the total lepton number L the answer to this
question is negative. In fact, we have

YSVIL = —ViL, VILY5 = VL. (4.1D)

From these relations follow that product of neutrino fields invariant under global
transformation vl’ L= ey is equal to zero:

vypvip = vprysysvie = —vppvir = 0. (4.12)
However, if we assume that the total lepton number is violated we can built the
neutrino mass term in which only flavor neutrino fields v, enter.! In fact, from

(4.11) we find

vivh =9 . (4.13)

n the case of two flavor neutrinos this was shown for the first time by Gribov and Pontecorvo
[54].
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Let us multiply this relation by the unitary matrix of the charge conjugation C,
which satisfies the relations

cylcl'=—y, c'=-c (4.14)
Taking into account that C yST C~! = y5 we obtain
ys (i) = (L), (4.15)

where (v;)¢ = C DITL is the conjugated flavor field.
From (4.11) and (4.15) we find

VL (uin) = prysys(in) = vpp(ip)©. (4.16)

It is obvious that the product vy, C DZTL is not invariant under global transformations.
The most general neutrino mass term in which only flavor fields enter has the
form

1 } . 1_ .
M= Z by MY (L) +hee. = -, MM ()¢ +he.  (4.17)
U'\l=e,u,T
Here
Vel
v = | vur (4.18)
VrL

and MM is a complex 3 x 3 nondiagonal matrix.
From the Fermi-Dirac statistics of neutrino fields and (4.14) follows that MM is
a symmetrical matrix. In fact, we have

b MM ()¢ =0, MM C BT = -5, (MMT T 3] =5, (MM)T (vp)°.
(4.19)

From (4.19) we have
MM = (M7, (4.20)
The symmetrical matrix MM can be presented in the form (see Appendix C)

MM =—UmUT, (4.21)
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where U is an unitary matrix and m is a diagonal matrix (m;x = m; 8jx, m; > 0).
From (4.17) and (4.21) we find

1 1 R 1
zM:—z aLUmUTCDLT+h.c.:—2 UTvLm(U‘vL)C+h.c.:—2 M m vM,

(4.22)
Here
V1 mi 0 O
WM =vUtv, + WU =wv|, m=] 0m 0|, (4.23)
V3 0 0 mj3
From (4.22) and (4.23) we have
1 3
XM — _2 z; m; \_)i V. (424)
i

Thus, v; (x) is the field of the neutrino with mass m;. From (4.23) we obviously have
WM (x)¢ =vM(x). (4.25)

Thus, the field of neutrinos with definite mass v; (x) satisfy the Majorana condition
Vi (x) = v; (x). (4.26)

The mass term (4.17) is called the Majorana mass term.

The Majorana field v; (x) is the field of neutrinos. There is no notion of neutrinos
and antineutrinos in the case of the Majorana field v;(x) (or v; = v;). This is
connected with the fact that in the case of the mass term (4.22) the Lagrangian is not
invariant under the global transformations and there is no conserved lepton number
which allows to distinguish neutrino and antineutrino. For the Majorana field v; (x)
we have the following expansion

1 : .
_ r —ipx t —r T ipx 3
v = | Gy 2 (ar(pyu (e P> +al(p) C @ )T € 77) dp.

4.27)

Here a,(p) (a,T (p)) is the operator of the absorption of neutrino (creation of
antineutrino) with momentum p and helicity r, the spinor u” (p) describes the state
with momentum p and helicity r.
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From (4.23) we find

3
v (x) =U v (x), wrx) = Z Uii viL (x) (4.28)
i=1

Here U is the unitary 3 x3 mixing matrix. Thus, in the case of the Majorana mass
term (4.22) the left-handed flavor fields v, which enter into CC and NC of the
Standard Model, are connected with the left-handed components of the Majorana
fields v;z by the mixing relation (4.28).

In conclusion let us stress an important difference between Majorana and Dirac
fields. Any fermion field is the sum of the left-handed and right-handed components.
We have

M) = v (x) + vi (x). (4.29)
Comparing (4.23) and (4.29), we find
wM(x) =UTvp(x), vM ) = UL (x)C. (4.30)

Thus, right-handed and left-handed components of the Majorana field are connected
by the relation

v () = W (), vir(x) = (0L (x))° (4.31)

It is obvious that this relation is a direct consequence of the Majorana condition:

I—vys T4yl 1+ys 1+ ys
W =C Pwr=c el =T P T Pui—ue 432)
Thus, right-handed and left-handed components of the Majorana field are connected
by the relation (4.31). The right-handed and left-handed components of the Dirac
field are independent.

4.4 Dirac and Majorana Mass Term

The most general neutrino mass term is not invariant under the global transforma-
tions (does not conserve the total lepton number L) includes the left-handed flavor
fields vir (I = e, u, 7) and right-handed sterile fields vs; which do not enter into
SM interaction Lagrangian (s = s1, 52, 53). We have

1 1
FbM _ -, b MM ()¢ — vy MPvg — 5 (vR)® MNvg +h.c. (4.33)
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Here M %4 and M %l are complex non-diagonal symmetrical 3 x 3 matrices, MP is a
complex non-diagonal 3 x 3 matrix, vy, is given by (4.18) and

Vsi R
vr = [ vyr |- (4.34)

Vs3 R

The mass term (4.33) is the sum of the left-handed Majorana mass term, the Dirac
mass term and right-handed Majorana mass term. It is called the Dirac and Majorana
mass term.

The mass term .#P*™ can be written in the following matrix form

1 :
DM _ -, i MP™M@n )¢ 4+ hee. (4.35)
Here
v
ny = ((v RL)> (4.36)
and
MM pmP
MPM ( L > (4.37)
M MY

is a symmetrical 6 x 6 matrix. Notice that in (4.35) we took into account the
following relation

i MPvg = )" (MP)T BT = r)e (MP)T (). (4.38)
The matrix MP+M can be presented in the following diagonal form
MPM=UmuT, (4.39)

where U is an unitary 6 x 6 matrix and m;; = m; §jx, m; >0 (@, k=1,...6).
From (4.35) and (4.39) we have

6
1 . . 1._ 1 _
$D+M=—2U’an(UTnL)‘+h.c.=—2vavM=—2 E m; v; v;.
i=1

(4.40)
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Here
V1
W= o= | @4
V6
where
From (4.41) we have
(VM)C — UM and vic =y (i=1,2,....6). (4.43)

From (4.40) and (4.43) follow that v; (x) is the field of Majorana particles with mass
m;.

It is obvious from (4.42) that v;;, and (v;g)¢ are connected with left-handed
components of the Majorana fields v;;, by a unitary transformation. In fact, we have

np=Uvp. (4.44)

From (4.44) we obtain the following relations

6 6
vL() = Y Uivir(x), (r(x)= Y Usivir(x), (4.45)
i=1 i=l1

where U is the unitary 6 x 6 mixing matrix. Thus, in the case of the Dirac and
Majorana mass term, flavor fields v;z are “mixture” of the six left-handed fields of
Majorana particles with mass m;. The sterile fields (vsg)¢, which do not enter into
charged and neutral currents, are “mixture” of the same left-handed components of
the Majorana fields.

Let us notice that there are no special reasons to assume that the index s takes
three values. In the general case the index s takes ng;or values (nger > 3). In this
case for the mass term we have

1 3+ngter
FPM -, Y omivivi, v =v (4.46)
i=1
The mixing relations take the form
3+-ngter 34-ngter
vr() = Y Uivie(x), MR = Y Usivir(x). (4.47)
i=1 i=1

Here U is a unitary (3 + ngter) X (3 + nger) matrix.
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4.5 Neutrino Mass Term in the Simplest Case
of Two Neutrino Fields

It is instructive to consider a neutrino mass term in the simplest case of two
neutrino fields. Let us consider the Dirac and Majorana mass term in the case of
one generation. We have

$D+M - _

_ . _ 1
mp vy (vp) —mp Vg vg — ) mpg (VR)¢ vg + h.c.

i MP™M )¢ + hee. (4.48)

[N I S

Here my, mp and mp are real parameters (we assume CP invariance) and

MPM — (Z; Z’;) ny = ((5,5)6)‘ (4.49)

It is convenient to present the matrix MP*+M in the form
1
MPM — , T MPM oy, (4.50)
where Tr MP™M =, + mg and Tr M = 0. We have

M:<_5(’”R_’"L)l "D ) @.51)
mp p (mg —mp)

The matrix M can be easily diagonalized by the orthogonal transformation (see
Appendix A). We have

M=0moT, (4.52)

where

_ [ cosf sinf - (m1 O
O_<—sin9 cos@)’ m—<0 n‘11> (453)

Here

_ 1
m1,2=¢2\/(mR—mL)2+4m§) (4.54)
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From (4.52)—(4.54) we find

2 —
@n20= P | cos26= MR ML . (4.55)

MR ML \/(mR —mp)? +4m?,
For the matrix MP™ from (4.50), (4.52) and (4.54) we have
MP™ = om' 07, (4.56)
where
my = ; (mg+mp) F ;\/(mR —mp)? +4m3, (4.57)

are eigenvalues of the matrix MP+M which can be positive or negative. Let us write
down

m; = m; n; (4.58)
where m; = |m’| and n; = 1. Taking into account (4.57) and (4.58) we have
MPM=—o0omnol =umuT, (4.59)

where U = O n'/? is unitary matrix.
From (4.48) and (4.59) we obtain the following expression for the mass term

1 1
$D+M:_2vavM:_2 Zmi\?ivi. (4.60)
=12
Here
M — Ut ny 4 (U ) = <]‘jl) 4.61)
2

It is obvious from (4.61) that

Ve = ;. (4.62)

1

Thus, v; and v, are fields of Majorana neutrino with masses m 1 and m», respectively.
From (4.49), (4.53) and (4.61) we obtain the following mixing relations in the
case of the Dirac and Majorana mass term for one neutrino family

vy =cos6./n1vig +sinf/mvor
(V) = —sinO./n1vir +cosb/mvar. (4.63)
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The neutrino masses m; and m> and the mixing angle 6 are determined by three
real parameters my, mg and mp (see relations (4.55) and (4.57)). The parameter
n; (i = 1,2) determines the CP parity of the Majorana neutrino v; (see the next
section).

For the Majorana mass term in the case of two flavor fields (say, v, and v;) we
have

1
M= - vz MM ()€ + hee. (4.64)
Here
MM = (’"W My ) v = ("ML) (4.65)
My Mrr. VL.
It is obvious that if we change m,,,, — mp, m¢; — mg, my; — mp we can use

the relations obtained for the Dirac and Majorana mass term. For the masses of the
Majorana neutrinos v; and v, we have

1 1
Mz =1 e m) F o O —m? + 4. (4.66)
The flavor fields v, and v, are given by the relations

vur = cosf./n1vip +siné/nvar
—sinf./n viL + cos6./n2 var, (4.67)

VL
where for the mixing angle 8 we have

2
tan20 = M , cos26 =

Moo = Mup \/(mrr - m,u.u)2 + 4m,2ﬂ

Mer —Mup

(4.68)

Two extreme cases are of interest:
e my; =0.
In this case there is no mixing:

0 =0, my=myyu, Mmy=mneg, Vup =ViL, V7L = V2L

S Mpp = Mg
This is the case of the maximal mixing:

T

1 1
0= , mpay=myuLtmys, vuL = iL+v2r), veL = (=viL+v2r)
4 2223 MnT 13 \/2 T \/2
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4.6 Concluding Remarks

There are three phenomenologically possible neutrino mass terms.

1. The Dirac mass term in which flavor left-handed and sterile right-handed fields
enter. The total lepton number L is conserved in the case of the Dirac mass term.

2. The Majorana mass term in which only flavor left-handed field enter. The total
lepton number L is violated in the case of the Majorana mass term.

3. The most general Dirac and Majorana mass term in which flavor left-handed and
sterile right-handed fields enter. The total lepton number L is not conserved in
the case of the Dirac and Majorana mass term.

In the case of the Dirac mass term fields of neutrinos with definite masses are Dirac
fields of neutrinos (L(v;) = 1) and antineutrinos (L(v;) = —1). In the case of the
Majorana mass term fields of neutrinos with definite masses are Majorana fields of
neutrinos (v; = v;). In the case of the Dirac mass term and the Majorana mass term
the number of massive neutrinos v; is equal to three (the number of neutrino flavors)
and mixing have the form

3
v (x) =Y Uivir(x).

i=1

Here U is the unitary PMNS mixing matrix and v;(x) is the field of the Dirac
(Majorana) neutrino with the mass m; .

In the case of the Dirac and Majorana mass term fields of neutrinos with definite
masses are Majorana fields and the number of massive neutrinos depends on the
number of sterile fields nger and is larger than three. For the mixing we have in this
case

3+-ngter 34-ngter

vr() = Y Uivie(), R = Y Usvir(x). (4.69)

i=1 i=1

The discussion in this chapter was purely phenomenological: neutrino masses and
elements of the mixing matrix are considered here as parameters which must be
determined from experimental data. In the following chapters we will consider in
details neutrino oscillations, major consequence of the neutrino masses and mixing,
and neutrino oscillation experiments which allows to determine neutrino mixing
angles and neutrino mass-squared differences. We will also discuss experiments
which allow to establish the nature of the massive neutrinos (experiments on the
search for neutrinoless double B decay) and briefly discuss experiments on the
search for transitions of flavor neutrinos into sterile states.



Chapter 5 )
Seesaw Mechanism of the Neutrino Mass Check for
Generation

5.1 Introduction

Information about neutrino masses was obtained from neutrino oscillation exper-
iments, experiments on the precise measurement of the end-point part of the
B-spectrum of 3H and from cosmological data. From analysis of the data of
the neutrino oscillation experiments the values of two neutrino mass-squared
differences were determined. From *H experiments the upper bound on the effective
neutrino mass was obtained. From cosmological measurements an upper bound of
the sum of the neutrino masses can be inferred. In spite absolute values of neutrino
masses at present are not known from these data we can conclude

¢ Neutrino masses are different from zero.
* The mass of the heaviest neutrino is in the range
(5-1072 <my, <3-107H eV

Thus, neutrino masses are many orders of magnitude smaller than masses of
other fundamental fermions (leptons and quarks). In this chapter we will consider
the most viable beyond the Standard Model seesaw mechanism of the neutrino
mass generation which connect the smallness of neutrino masses with a new lepton
number violating physics at a scale which is much larger than electroweak scale
determined by v =~ 246 GeV.

We will discuss first problems connected with the generation of neutrino masses
by the standard Brout-Englert-Higgs mechanism. Let us consider the following
SUL(2) x Uy(1) invariant Lagrangian of the Yukawa interaction of the leptons and
the Higgs boson

lep o/ ~
Ly =2 Y Y, ,v,g H+he (5.1)
N
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Here 1//11?’ is the left-handed lepton doublet (see (3.66)), H = i ToH* is the
conjugated Higgs doublet, v/, are right-handed singlets of the SUL(2) x U(1)y
group and Y, l/ ; are dimensionless, complex Yukawa constants.

After the spontaneous symmetry braking from (3.130) and (5.1) we find

Ly == 0, Y, vhr+h) +he.=—0 Y vp(w+h) +he.  (52)
li,lp

Here

eL eR

;o / ro_ /

v = | VL ve=1|vr |- (5.3)
’ ’
VL ViR

In terms of the flavor neutrino fields (see (3.164)) the proportional to v term of the
Lagrangian (5.2) takes the form

#P = v Yvg +he., (5.4)

where Y = UZ Y’, vg = vj. Taking into account the results of the previous chapter
we conclude that the Brout-Englert-Higgs mechanism generates the Dirac neutrino
mass term.

For the complex matrix ¥ we have

Y=UyVT, (5.5)

where U and V are unitary matrices and y;x = y; 8ik, yi > 0.
From (5.4) and (5.5) for the neutrino mass term we find the following standard
expression

3
LP@) ==Y mi v (i (x). (5.6)
i=1

The Dirac fields of neutrinos with definite masses v;(x) are determined by the
relation

vy (x)
Uvp(x) + Vivg(x) = | 1(x) (5.7)
v3(x)

and the Dirac neutrino masses are given by the relation

m; = y; v. (5.8)
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For the neutrino mixing we have

3
v (x) =Y Usi vir (x). (5.9)
i=1

From (5.8) follows that neutrino masses generated by the Brout-Englert-Higgs
mechanism, like all other SM masses, are proportional to the vacuum expectation
value of the Higgs field v. For the heaviest neutrino we find the following inequality

ms3

3= - <107t (5.10)
v

For other particles of the third family we have y; ~0.7-1072, y, ~ 1.7-1072, y, =~
0.7. Thus, in order to generate neutrino masses by the SM mechanism we need to
assume that dimensionless neutrino Yukawa coupling constants are many orders of
magnitude smaller than Yukawa coupling constants of leptons and quarks. It is very
unlikely that neutrino masses are of the SM origin. It is very plausible that the SM
neutrinos are massless.

5.2 The Generation of the Neutrino Masses by Effective
Lagrangian Method

If the Standard Model neutrinos are massless particles, small neutrino masses are
generated by a beyond the Standard Model (BSM) mechanism. A general method
which allows to reveal a BSM effects by investigation of relatively low-energy
phenomena is the method of the effective Lagrangian.

Effective Lagrangian is dimension five or more nonrenormalizable Lagrangian,
invariant under SUy (2) x Uy (1) transformations and built from SM fields. In order
to build the effective Lagrangian which generate a neutrino mass term let us consider
the SU;, (2) x Uy(1) scalar

W 1),

where wllzp is the lepton doublet (see (3.66)), H = i o H* is the conjugated Higgs
doublet.
After the spontaneous symmetry breaking (SSB) we have

v+h_,
\/2 Vi

From this expression it is obvious that the only possible SU (2) x Uy (1) invariant
effective Lagrangian which generate the neutrino mass term (after SSB) has a

(WP ) = (5.11)
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form (Weinberg)

1 ~lep 73 ~lep 73
2 = - > W H) Y]y, COt )T +hee. (5.12)
Il

Here C is matrix of the charge conjugation, Y, 1/1 L =1 1/2 , are dimensionless constants
which are not constrained by the SU (2) x Uy (1) symmetry.

The operator in the expression (5.12) has a dimension M>. Because the
Lagrangian must have the dimension M* the constant A has a dimension of a
mass.

The Lagrangian (5.12) does not conserve the total lepton number L. Thus, the
constant A characterizes the scale of a L-violating, beyond the SM physics. After
spontaneous symmetry breaking from (5.12) we obtain the following neutrino mass
term

2 2

v _ _ 1 v _

A > w0, Y, €O +he. = —, ConY C(p)" +hec.
Il

1

M _
M=—

(5.13)
The fields vl’ ;. are connected with the flavor neutrino fields vy by the relation
vi = UL VL, (5.14)

where Uy is an unitary matrix (see 3.164). From (5.13) and (5.14) for the neutrino
mass term we find the following expression

2

1 v _ _ 1 v? _ .
M=~ C oy o +he == ) Y Vi (o) +he.

2
1,12
515)

Here Y = UZ Y’ (UZ)T is a symmetrical 3 x 3 matrix. The matrix Y can be presented
in the form

Y=UyUT, U'U=1, yi=yidix, yi >O0. (5.16)

From (5.15) and (5.16) we find the following standard expression for the Majorana
neutrino mass term

3
1
$M=—2 Zm,-a,- Vi. (5.17)
i=1
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Here v; = vf is the Majorana field with the mass

U2

v
mi= i =(A) (vyi). (5.18)
The flavor fields v;; are connected with the left-handed components of the fields of
neutrinos with definite mass v;;, by the standard mixing relation

3
v = Z Ui viL. (5.19)
i=1

Thus, from the Weinberg effective Lagrangian (5.12) we obtained the Majorana
mass term.

We showed in the previous chapter that the Majorana mass term is the most
economical, L-violating mass term in which only left-handed flavor fields v;;, enter.
Neutrino masses considered in Sect. 4.3 were parameters which must be determined
from experiments. There were no any theoretical hints in favor of the smallness of
neutrino masses.

By the effective Lagrangian method we obtained for the neutrino masses the
relation (5.18). The factor (vy;) is “a typical fermion mass” in the SM. Thus,
neutrino masses generated by the BSM effective Lagrangian (5.12) are suppressed
with the respect to the “SM fermion masses” by the factor

v SM scale
= .. (5.20)
A scale of a BSM physics

Let us stress, however, that the scale of a new L-violating physics A is unknown.
From (5.20) we have the relation

A=y ' . (5.21)

mi

Absolute values of neutrino masses are unknown at present. However, if we assume
neutrino mass hierarchy (m; <« my < m3) from neutrino oscillation data we find
that ms ~ 5 - 10~2 eV. We have

2
~1.2.10" GeV. (5.22)

m3

If we assume that A ~ TeV in this case for the dimensionless quantity y3 we find
too small value: y3 =~ 107 !2. If we assume that y3 is of the order of one (like the
Yukawa constant for the 7-quark) in this case A ~ 10'3. These are extreme cases.
Large A (A > v) is a plausible possibility.
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We will consider now a possible origin of the effective Lagrangian (5.12). Let us
notice that the typical effective Lagrangian is the four-fermion Fermi Lagrangian of
the B-decay

LF = —Grpy®n éy,v +h.c. (5.23)

The Lagrangian (5.23) has dimension M and the Fermi constant G ¢ has dimension
M2

We know that the modern effective Lagrangian of the B-decay, of the process
U+ p — e™ + n and other connected processes

Gr  _ _
= — J1;4pLyanL &L yavL + h.c. (5.24)

is generated by the exchange of the virtual vector W boson between (p — n) and
(e — v) vertices.

The Weinberg effective Lagrangian (5.12) can be generated by the exchange of
virtual heavy Majorana leptons between lepton-Higgs vertices. In fact, let us assume
that exist heavy Majorana leptons Ny (k = 1, 2, .. .), singlets of the SU (2) x Uy (1)
group, which interact with lepton-Higgs pairs via SU (2) x Uy (1) invariant Yukawa
interaction

L =23 0 H Y Neg +he. (5.25)
Lk

where Y}, is a dimensionless Yukawa coupling constant. We are interested in the
processes with virtual leptons N in the region 0> <« M ,f (M is the mass of the
lepton Ni). Taking into account that N, kT (x) = —Ni(x)C for the propagator of the
heavy Majorana lepton we have in the small Q? region

1 ; 1 r
—( —;y5><0|Nk(x1)Nk(x2)|O)C< ZVS)

(0| Nkr (x1) N (x2)10)

1

T
L+ VS) . (5.26)

! 8(x1 —xz)C< )

Mj
Using this relation, for the local effective Lagrangian, induced by the interaction

(5.25), in the second order of the perturbation theory we find the following
expression

_ . -1 - - ~
fleff — _(w}‘epH) Y/MY/Tc(wzepH)T +hC

=+ 1 ry = 1 - =1 ~
== i H) ) Y/lkMk Vi C )T +he. (527
1,1 k
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Comparing (5.12) and (5.27) we conclude that
1 -1 -
Vi, = 2 Ve, Vi (5.28)

Thus, the scale of L-violating physics A is determined by the masses of heavy
Majorana leptons.

Let us consider the Lagrangian (5.25) and the mass term of the heavy Majorana
leptons. After the spontaneous symmetry breaking in terms of the flavor neutrino
fields we have

1 -
L = MPNg — 2NLMNR +h.c. (5.29)

Here MP = v UZI?’ is a 3 x 3 complex matrix and M, = M; §;.
Comparing (5.28) with (4.33) we conclude that (5.29) is the Dirac and Majorana
mass term in which

e there is no left-handed Majorana mass term;
* the right-handed Majorana mass term has diagonal form; its elements are much
larger than the elements of the matrix MP.

Diagonalization of the Dirac and Majorana mass term (5.29) leads to the same
results as the effective Lagrangian: small Majorana neutrino masses. We will show
that in the next section.

5.3 Diagonalization of the Seesaw Matrix

The seesaw mechanism, proposed at the end of the seventies, is apparently the most
natural and viable mechanism of neutrino mass generation. In the previous section
we have considered equivalent mechanism based on the effective Lagrangian. Here
we will discuss the seesaw mechanism in the framework of the Dirac and Majorana
mass term.

In order to expose the main idea of the mechanism let us consider the simplest
case of one family. General case of one family was considered in Sect.4.5. We
assume that

* there is no left-handed Majorana mass term, i.e. m;, = 0,

* the Dirac mass term m p is generated by the Standard Higgs mechanism, i.e. it is
of the order of a mass of quark or lepton,

* the lepton number is violated at a scale which is much larger than the electroweak
scale, i.e. mg > mp.
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From (4.57) we find in this case

2

1 mi,
m1=2|mR—\/m%Q~|—4m2D|2mR <L mp (5.30)
and
1 \/ 2 20~
m2=2|mR—|— myp +4mp| =~ mg > mp. (5.31)
For the mixing angle from (4.55) we have
o~"P «1. (5.32)
mg

Let us consider now the case of three families. The Dirac and Majorana seesaw
matrix has the form

M:( 0 mD), (5.33)

T
my Mg

where mp and My are 3 x 3 matrices and Mg = M;. We will assume that My is
a diagonal matrix.
Let us introduce the matrix m by the relation

VIMV =m, (5.34)

where V is a unitary matrix. We will show that the matrix V can be chosen in such
a form that the matrix m has a block-diagonal form.
In the one family case in the linear over the mixing angle 6 approximation for

the mixing angle we have
1 mp
~ m
T 1R . (5.35)

mg

By analogy we will present the unitary matrix V in the form

.
V= <_1a "1 ) , (5.36)

where a < 1. It is easy to check that in the linear over a approximation VIV = 1.
From (5.34) and (5.36) follows that the matrix m takes the block-diagonal form if
we choose

a=Mg'mh. (5.37)
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We have

—-1_ T
(—mpMgp mp 0O 533
m_< 0 o) (5.38)

From (5.34) and (5.38) for the Dirac and Majorana mass term we find the following
expression

, 1 1
gseesaw — —zﬁLmL(vL)C — 2(VR)CMRUR + h.c. (5.39)
where left-handed Majorana matrix is given by the relation
_ -1 T
mp =—mp Mg mp. (5.40)

The first term of the expression (5.39) is the Majorana mass term of light neutrinos
and the second term is the mass term of the heavy Majorana leptons. The structure
of the relation (5.40) with large Mg in denominator ensure the smallness of neutrino
masses with respect to masses of leptons and quarks.

5.4 Concluding Remarks

If the SM neutrinos are left-handed, massless, Weil particles, neutrino masses and
mixing are generated by a beyond the Standard Model mechanism. We considered
here the seesaw mechanism which is the most viable mechanism of the generation
of small neutrino masses. The seesaw mechanism is based on the assumption
that exist heavy Majorana leptons which interact with lepton-Higgs pairs. This
interaction induces L-violating effective Lagrangian which (after spontaneous
symmetry breaking) generates the most economical Majorana mass term in which
only left-handed flavor neutrino fields v;;, enter. The seesaw neutrino masses are
suppressed with respect to the SM masses of quarks and leptons by a factor which
is the ratio )i (v = 246 GeV is the scale of the SM physics and A is a scale of a new
L-violating physics). From the measurement of the absolute values of the neutrino
masses the scale A cannot be determined. The value of the parameter A is an open
problem. A > v is a plausible possibility. If the seesaw mechanism is realized in
nature in this case

e Neutrino with definite masses v; are Majorana particles. Observation of L-
violating neutrinoless double B-decay of heavy even-even nuclei would be a
crucial test of this prediction. We will consider this process in details in Chap. 9.

* The number of neutrinos with definite masses v; is equal to the number of flavor
neutrinos (three). The experiments on the search for transitions of flavor neutrinos
into sterile states would allow to check this prediction. We will discuss these
experiments later.
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Exist heavy Majorana leptons. If masses of the Majorana leptons are much
larger that v they cannot be produced at modern accelerators. However, they
can be created in the early Universe. In Chap. 12. we will consider a popular
mechanism of the generation of the barion asymmetry of the Universe induced
by CP-violating decays of the heavy Majorana leptons (leptogenesis).

In conclusion let us notice that the effective Lagrangian (5.12) can be induced by
three different beyond the SM interactions:

1.

The interaction of lepton-Higgs pairs with a heavy Majorana SU;(2) x Uy (1)
singlet leptons Nyr which we considered in this chapter. The Lagrangian fleff
is induced in this case by the exchange of a virtual Majorana leptons between
lepton-Higgs pairs. This scenarios is called type I seesaw.

. An interaction of lepton pairs and Higgs pair with triplet heavy scalar boson. The

effective Lagrangian .,Sfleff is generated in this case by the exchange of a virtual
scalar boson between lepton and Higgs pairs (type II seesaw).

. An interaction of lepton-Higgs pairs with heavy Majorana triplet fermions. The

effective Lagrangian .,Sfleffis generated in this case by the exchange of a virtual
Majorana triplet fermions between the lepton-Higgs pairs (type III seesaw).



Chapter 6 )
Neutrino Mixing Matrix Shethie

6.1 Introduction

As we have seen in the previous chapters, if in the total Lagrangian there is a
neutrino mass term, the flavor neutrino fields v;; (I = e, u, T) which enter into
CC lepton and NC neutrino currents

i$€=2 3" wvai. JYC= " wwvew ©6.1)
I=e,u,t l=e,pn,7

are mixtures of left-handed components of the fields of neutrinos with definite
masses vz, (x):

3
viL(x) =Y Uk vir.(x). (6.2)

i=1

Here U is a unitary 3 x 3 PMNS mixing matrix and v; (x) is the field of neutrino
(Dirac or Majorana) with the mass m;.

The matrix U is the object of central interest of theory and experiment. In this
chapter we will consider the general properties of a unitary n x n mixing matrix in
the Dirac and Majorana cases. We will consider the standard parametrization of the
3 x 3 mixing matrix and obtain conditions which the mixing matrix must satisfy
if there are C P invariance in the lepton sector. In the last section of this chapter
we will briefly discuss models of neutrino mixing based on assumptions of flavor
symmetry.
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90 6 Neutrino Mixing Matrix
6.2 The Number of Angles and Phases in the Matrix U

A unitary mixing matrix U in the general n x n case can be presented in the
form U = ¢'H, where H is a hermitian n x n matrix. From the condition
H;; = H}}; follows that the matrix H is characterized by n (diagonal elements) +

2 ("2; ") (non diagonal elements) = n? real parameters.

The number of angles which characterizes a unitary #n x n matrix coincides with
the number of parameters which characterizes a real orthogonal n x n matrix O
which satisfies the condition

oTo=1. (6.3)

An orthogonal matrix O can be presented in the form O = e, where AT = —A.
The diagonal elements of the matrix A are equal to zero. The number of real non
diagonal elements is equal to "("; ' Thus, the number of angles which characterize
a unitary matrix U is equal to

nn—1)

) (6.4)

Nangles =

Other parameters of the unitary matrix U are phases. The number of phases is equal
to

nin—1 nin—+1
”phasesznz— (2 )= (2 ) (6.5)

The number of physical phases, which characterize the unitary mixing matrix, is
smaller than nphases. This is connected with the fact that the mixing matrix enters
into the charged current together with Dirac fields of charged leptons and Dirac (or
Majorana) fields of neutrinos.

In fact, a unitary n x n matrix can be presented in the form

S(B) UP §T(a). (6.6)
Here
Si(B) = P 8y, Spi(a) = €' 8, (6.7)

where f; and «; are real phases. There are (2n — 1) independent parameters in phase
matrices in (6.6). In fact, we can present the matrix S(«) in the form

S(a) = Y18@), (6.8)
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where @1 =0, @; = o; — a1 (i > 2). From (6.6) and (6.8) we obviously find
S(B) U ST (@) = S(B) UP 7 (@), (6.9)

where 8; = f; — . Thus, the matrix UP is characterized by ”(”2+ D_@n-1=
(”_1)2("_2) phases.

In the case of the neutrino mixing the leptonic charged current has a form

JECT ) =2 @) ve Y Ui vie(x) (6.10)
I i

Let us consider first the Dirac neutrinos v;. Because phases of the Dirac fields are
not physical, arbitrary quantities it is obvious from (6.10) that phase factors ¢!# and
e'® can be included, correspondingly, into lepton and neutrino fields. Thus, in the
case of the Dirac neutrinos neutrino mixing matrix is UP. It is characterized by

b _ (m=Dn-2)
nphases - 2

(6.11)
physical phases. )

In the case of the Majorana neutrinos only phase factors ¢'#! can be included in
the Dirac fields /1 (x). The Majorana fields satisfy the Majorana condition v; (x) =
Cf)l.T (x) which fix phases of the fields. Thus, the Majorana mixing matrix has the
form

UM = UP s@). (6.12)
It is characterized by
n—1m-2) nn—1)
Mphases = 5 -1 ="" (6.13)

physical phases.

In the simplest case of two families 2 x 2 mixing matrix for Dirac neutrinos
is real. It is characterized by one angle. In the case of the Majorana neutrinos the
mixing matrix is characterized by one angle and one phase.

In the most important case of three families 3 x 3 mixing matrix is characterized
by three angles and one phase for the Dirac neutrinos. In the case of the Majorana
neutrinos the mixing matrix is characterized by three angles and three phases.

6.3 CP Conservation in the Lepton Sector

In this section we will obtain conditions which the unitary mixing matrix U (in the
case of Dirac or Majorana neutrinos) must satisfy if the C P invariance in the lepton
sector holds.
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If C P is conserved we have
Vep LEC ) Vap = LFC . (6.14)

Here V¢ p is the operator of the C P conjugation, x’ = (x%, —x) and f,cc(x) is the
Lagrangian of the CC interaction of leptons and W-bosons:

ZEC) = - 52 3 ILG0) v Ut vin () W ()
L,i
— B SR ve Uf 1L (0) WE ). (6.15)
\/2 1,i

We will consider first the case of the Dirac neutrinos. For the Dirac lepton and
neutrino fields we have!

Ver 1) Vep =y CTT (), Vepvin) Vep =y Col (), (6.16)
where C is the matrix of the charge conjugation. From (6.16) we find
Vep IL(x) Vap = =11 () €'y Vep i (x) Vip = —vl () €710

(6.17)
From (6.16) and (6.17) we have

—1Ta Y0y 0 Ol ()
8 I (') v 9l (x)

= —8a Dir (x) Ya lL(X"). (6.18)

Vep IL(x) Yo viL(x) Vop

Here §, = (1, —1, —1, —1) is the sign factor.?
For the field of the W* bosons we have

Vep W (x) Vip = =8, W (). (6.19)

! By a redefinition of arbitrary phases of the lepton fields we can always put the C P phase factors
of the Dirac fields equal to one.

2Notice that in (6.18) no sum over « is assumed and minus sign in the last term is due to the
transposition of the fermion fields.
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From (6.18) and (6.19) we find

Vep .Z,CC(x) Vc_zi = —52 Z Vin (X)) Yo Upi lp(x") W (x')
1,i
— 8 SO v U vin () W)
V2
= ZFC(). (6.20)

Comparing (6.20) and (6.15) we conclude that in the case of the Dirac neutrinos
from the C P invariance follows that the neutrino mixing matrix is real:

Ui =Uj;. (6.21)

Let us now consider the case of the Majorana neutrinos. Because of the Majorana

condition v; (x) = C\")l.T (x) the CP phase factors cannot be included in the Majorana
fields. We have

Vep vi@®) Vep =mi v* € 5l () = mi y* vix), (6.22)

where 7; is the C P phase factor of the Majorana field v; (x) (|n;|> = 1).
We will show that n; = %i. In fact, we have

Vép i) (Vep)® = vi) = mi Vep y* vix) Vep =17 v° € (7O ()
=7 y° CyT5l (x) = —nf vi (x). (6.23)
From this relation follows that
nt=—1, n==i (6.24)
Taking into account the Majorana condition, from (6.17) and (6.22) we find

Ver I vavie () Vap = —nilF DC 0%y 0Ol () = —1i8a i (8 vulr (X)).
(6.25)

Further, from (6.14), (6.19) and (6.25) we have

Vep ZFC(x) Vep = _52 D i () vo U i L (') W (x)
1,i
- 52 D TG vo U™ mf vin () W ()
1,i

= 75, (6.26)
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From this relation we conclude that if there is the C P invariance in the lepton sector
Majorana neutrino mixing matrix satisfies the relation

UM g = UM, (6.27)

6.4 Standard Parametrization of 3 x 3 Mixing Matrix

We will consider here the unitary 3 x 3 mixing matrix for Dirac neutrinos and
introduce the standard parameters which characterizes it: three mixing angles and
one phase. We will show in the next chapter that from the neutrino mixing

3
v (x) =Y Usi v (x) (6.28)
i=1

follows that state of the flavor neutrinos |v;) (I = e, i, T) is connected with states
|vi) of neutrinos with masses m; (i = 1, 2, 3) and momentum p by the relation

3
vy = U vi), (6.29)
i=1

where
(vilvk) = ik- (6.30)

In the matrix form the relation (6.29) can be written as follows

lve) =U* |v), (6.31)
where
[Ve) [vi)
ey =1 1ve) |» = 1|1Iv) |- (6.32)
[ve) [v3)

In order to parameterize the matrix U we perform three Euler rotations. The first
rotation will be performed at the angle 612 around the vector |v3). The new vectors
are

vi) = ciz [vi) + 512 [v2)
[v2)" = —s12 [v1) + c12 [12)
lv3) = |v3), (6.33)
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where ¢12 = cos 82 and s12 = sinf2. In the matrix form (6.33) can be written as
follows

[v) = Ri2(612) [v). (6.34)
Here
cr2 s12 0
Ri2(012) = | —s12¢120 | . (6.35)
0 01

The second rotation will be performed at the angle 63 around the vector |vp)’. At
this step we will introduce the C P phase §, connected with the rotation of the
vector of the third family |v3). We will obtain the following three orthogonal and
normalized vectors:

/s
)" = c13 [v) + s13€' |v3)’
[v2)” = )

[v3)" = —s13¢7" [v1) + e13 [v3). (6.36)

In the matrix form we have

v)" = R{3(013) [v)' = R{3(013) R12(012) |v). (6.37)
Here
ci3 0513
Ri(013) = o 1 0 |. (6.38)

—s13¢7% 0 c13
Finally, after the third rotation at the angle >3 around the vector |v)” we find

lve) = |v1)”
lvu) = c23lv2)” + 523 [v3)”

[ve) = —s23 [v2)" + 23 |v3)". (6.39)
In the matrix form we have

[vr) = Rp3(623) [v)” = Rp3(623) Ri3(613) Ri2(612) [v) = U™ |v). (6.40)
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Here
1 0 O
Ro3(023) = | 0 c23 s23 |- (6.41)
0 —s23 23
From (6.40) we find
U™ = R23(023) R}53(613) R12(612). (6.42)

Thus, the unitary neutrino mixing matrix U is given by the product of three Euler
rotation matrices

1 0 O ci3 0 S13e*i‘S ci2 5120
U=10 c3 523 0 1 0 —s12¢120 |- (6.43)
0 —s523 €23 —s13e"‘S 0 ci13 0 01

From (6.43) we find the following standard expression for the Dirac neutrino mixing
matrix
—is
c13¢12 C13512 s13e”!
D - .
UP = | —ca3s12 — sa3cis13e® cazcin — sa3siosize’®  cizsoz |- (6.44)
523512 — €23C12813€'® —s03¢12 — co3s12813€’® C13023

The mixing angles 612, 623 and 613 and the phase § are parameters. They can be
determined from neutrino oscillation experiments (see later).
The 3 x 3 Majorana mixing matrix has the form (see previous section)

uM = uP sM(a) (6.45)

where the phase matrix S™ (@) is characterized by two Majorana phases and has the
form

el 0 0
sM@ =] 0 e®0]. (6.46)
0 01

and the matrix UP is given by (6.44).
Under the change & — 7 + 6 the matrix

< cos @ sin@) (6.47)

—sinf cosb
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changes sign. In the observable transition probabilities enters the square of the
mixing matrix. Thus, angles 6 and 7 4 6 cannot be distinguished. Moreover, from
the expressions for observable probabilities (see the next chapter) it follows that for
the mixing angles 612, 623, 813 we can choose the range 0 < 6 < ’5 and for the
C P phase § the range 0 < § < 2m. As it was shown in the previous section, if C P
is conserved the Dirac mixing matrix is real: U D — yP* Thus, in this case we have
§=0,m.

6.5 On Models of Neutrino Mixing

During many years existed the following upper bound on the value of the parameter
)
sin” 613:

sin0;3 <5-1072. (6.48)

This bound was obtained from analysis of the data of the CHOOZ reactor neutrino
experiment (1997-1998). Thus the CHOOZ data were compatible with a popular at
that time idea that 6;3 = 0.

It is obvious from the previous subsection that if 6;3 = 0 the general unitary
mixing matrix can be obtained by (1,2) and (2,3) Euler rotations. It has the following
form

1 0 O ci2 s12 0 Cc12 S12 0
U=10 c3 23 —s12¢120 ) = | —c23s12 c23c12 523 | . (6.49)
0 —s23 23 0 01 $23512 —$23C12 €23

From global analysis of the data of atmospheric, accelerator and solar experiments
and the reactor experiment KamLLAND, performed in 2003 the following 2o ranges
were obtained

0.25 < sin® 0y, < 0.36, 0.36 < sin® 63 < 0.67. (6.50)
For the best fit values of these parameters it was found

sin® 012 = 0.30, sin® 63 = 0.52. (6.51)

These data were compatible with the simplest assumption

1 1
sin® 0;p = 3 sin? 03 = . (6.52)
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From (6.52) follows that the neutrino mixing matrix can be chosen in the following

form
2 1
\/3 V3 0

_ 11 1
Ut = _«/16 \/13 —I/z . (6.53)
V6 V3 V2

The matrix Utp is called tri-bimaximal mixing matrix. Notice that the elements of
the second column of the matrix (6.53) are equal. We have

1
v = /3 (Ver +vur +ver). (6.54)

Idea of the tri-bimaximal mixing inspired many models of neutrino mixing based on
broken finite flavor symmetries. For illustration we will consider the tri-bimaximal
mixing from the point of view of the broken A4 symmetry.

We will assume that neutrino with definite masses are Majorana particles. In this
case for the mass matrix M we have

M =UMm oM, (6.55)

where UM is the mixing matrix and m;; = m; ;. As we have seen in the previous
section UM = (e/®1, ¢/®2, 1) where the matrix UP is given by (6.44) and @ » are
Majorana phases.

Let us assume that UP = Utp and a1,2 = 0. In this case the neutrino mass
matrix is given by the expression

Mrp = Urg m Ulg. (6.56)

From (6.53) and (6.56) for the neutrino mixing matrix we easily find the following
expression

Gmi+3ma)  (—ymi+ jm2) (—ymy + jm2)
Mg = | (=imi+ yma) (gmy+ yma+ ym3) (gmi + yma — ym3)
(—3m1+ 3m) (gmi+ ymy — ym3) (gmy + ymy + ym3)
(6.57)

The tri-bimaximal mass matrix depends on three parameters. Let us introduce

2 +1 ! ~|—1 ! +1 (6.58)
X= _m my, =—_m my, v=—_m ms. .
3 1 3 2 y 3 1 3 2 2 1 2 3
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From (6.57) we have

XY y
Mt = yx+vy—v|. (6.59)
yy—vx—+v

The group A4 is the group of even permutations of four objects. All elements of the
group are products of two generators S and 7 which satisfy the relations

$S2=T73= (ST’ =1. (6.60)

The number of elements in the A4 group is equal to ‘g = 12. Taking into account
the relations (6.60) we see that elements of the A4 group (all possible products of §
and T) are given by

1,T,8,ST,TS,T* TS, TST, ST?, STS, T*ST, TST>. (6.61)
The group A4 has four irreducible representations: one triplet and three singlets
3,1,1,17. (6.62)
For one-dimensional unitary representations we can choose S = 1, T = ¢/“. From
the relations (6.60) follows that 3« = 27 n, where # is an integer number. Thus, we
have
1:§5=1T=1; I':S=1T=0*: 1":5=1T=w, (6.63)
27 ;
where w = e 3 '.

In the basis in which the matrix 7 is diagonal, the 3 x 3 unitary matrix 7" has the
following general form

P00
T=| 0 ¢ 0 |, (6.64)
0 0 b

where §; is a real phase. Taking into account that T3 =1, we have Bi = 23” n; (n; =
0,1,2,...) We can choose the three-dimensional representation of the generator 7
in the form

100
T=|0w?0]. (6.65)
00 w
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The real unitary matrix S satisfies the condition ST S = 1. Taking into account that
§%2 = 1 we have ST = S. It is easy to check that the three-dimensional orthogonal
symmetrical matrix

-1 2 2
2 -1 2 |. (6.66)
2 2 -1

S

satisfies the relations (6.60).

Let us assume that the lepton doublets L;;, (I = e, u, T) are A4 triplets. In order
to generate the neutrino mass term we will further assume that exist a scalar triplet
Higgs-like flavon fields ¢, ¢s and a singlet field & which enter into the A4 invariant
Yukawa interactions together with lepton doublets.

If we assume the vacuum alignments

<¢r >=(vr,0,0), <¢s>=(vs,vs,05), <§>=u (6.67)

the A4 symmetry will be broken down to the Gg symmetry generated by the
operator S. The mass matrix M satisfies in this case the relation

SMS =M, (6.68)

where S is given by (6.66). From (6.68) we find that the mass matrix M is given by

X y Z
M=|yx+v+y—z w . (6.69)
z w x+v

This matrix is characterized by four real parameters and does not have the tri-
bimaximal form (6.59).

We will come to the tri-bimaximal mixing if we further assume & — T symmetry
of the neutrino mixing matrix

SueMS,: =M, (6.70)
where
100
Suyzr=1001]. (6.71)
010

From (6.70) and (6.71) we find that

z=y. 6.72)
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With the relation (6.72) we come to the tri-bimaximal neutrino mixing matrix (6.59).
Let us stress that in order to implement & — T symmetry we need to assume that
there are no 1’ and 1” scalar flavon fields in the Yukawa interactions.

In 2012 it was discovered in the Daya Bay, RENO and Double Chooz reactor
neutrino experiments that the angle 63 is different from zero. From the global
analysis of neutrino oscillation data it was found that

sin® 012 = 0.30410013  sin® 6p3 = 0.45210052  sin® 013 = 0.0218 39010,
(6.73)

Thus, the tri-bimaximal mixing can be considered only as a first approximation valid
with accuracy of a few %.

Numerous models, which are based on different broken discrete flavor symme-
tries and take into account the fact that the angle 613 is different from zero, were
proposed. It is not our aim to discuss here these models. References to original
papers can be found in reviews which we present at the end of the book.

For illustration of some ideas and results we will briefly discuss one class of
the models. As we saw in Chap. 3, the leptonic charged current is given by the
expression

JECE) =20 ()l (1) =2 Y B ) valy (2). (6.74)
l=e,u,T

After the diagonalization of the charged lepton and neutrino mass terms we have
L) (x) = Ufp Lp(x), Vv;(x)=U} vp(x). (6.75)

1 . .
where U Lep and U} are unitary 3 x 3 matrices and

er(x) viL(x)
Lix)=| @) |, vix)=|vr(x) ). (6.76)
77, (x) viL(x)

Here /(x) (I = e, u, 1) is the field of a lepton with mass m; and v;(x) (i =1, 2, 3)
is the field of neutrino with mass m; .
From (6.74) and (6.75) we have

JSC) =200 U Uyl () = 250U T yo L (0) =2 ) 510U yvalp (x).
Li
(6.77)
Thus the PMNS mixing matrix is given by the relation

U=U>"uj. (6.78)
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It was assumed that the matrix U, is determined by a broken finite flavor symmetry
(A4, S4 and others) and ¢’3 element of this matrix is equal to zero. The tri-bimaximal
matrix (6.53) is one of the possible examples. In this approach nonzero value of the

angle 013 is due to the matrix U;ep.
So let us assume that the PMNS mixing matrix is given by the expression

U = UrgRo3(a), (6.79)
where Urp is the tri-bimaximal matrix (6.53) and the matrix R»3(«) has the form

1 0 0
Ry3(x) = | 0 cosa sina |, (6.80)
0 —sina cosa

where the parameter o is determined by 613. The relation (6.79) leads to the
following sum rules

1 1 2
sin’ 63 = ) —V2 sin 6013 (:058—}—0(sin2 013), sin’ 012 = 373 sin? 013+ O(Sin4 613).
(6.81)

Another possibility is to assume
U = UrgRi3(a), (6.82)
where

cosa O sina
Riz(a) = 0O 1 0 , (6.83)

—sina 0 cosa

The relation (6.82) leads to another sum rules

.2 1 I .2 .2 1 L. 2 . 4
sin“ 63 =  + sinfy3 cos §+ O(sin” 013), sin“O1p = _+ _sin“ O3+ O(sin” 613).
2 V2 3°3
(6.84)
The sum rules (6.81) and (6.84) will be tested in future neutrino oscillation

experiments. Many other sum rules, based on different symmetry groups, were
obtained in different papers.



Chapter 7 )
Neutrino Oscillations in Vacuum Check for

7.1 Introduction

Discovery of neutrino oscillations in the atmospheric Super Kamiokande, solar
SNO, reactor KamLAND, solar Homestake, GALLEX-GNO and SAGE experi-
ments was one of the most important recent discovery in the elementary particle
physics. This discovery was confirmed by the accelerator K2K, MINOS, T2K,
NOVA, reactor Daya Bay, RENO, Double Chooz and solar BOREXINO exper-
iments in which neutrino oscillations were studied in details. In 2015 T. Kajita
and A. McDonald were awarded by the Nobel prize “for the discovery of neutrino
oscillations, which shows that neutrinos have mass”. Neutrino oscillations are driven
by small neutrino mass-squared differences and neutrino mixing. From all existing
data it follows that neutrino masses are many orders of magnitude smaller than
masses of other fundamental fermions (quarks and leptons). Small neutrino masses
cannot be naturally explained by the SM Higgs mechanism of the mass generation.
A new beyond the SM mechanism of the mass generation is required.

Neutrino oscillation parameters are known at present with accuracy from about
3% to about 10%. Investigation of neutrino oscillations enter now into a new era,
era of precision measurements. Main questions which will be addressed in the future
neutrino oscillation experiments are the following:

e What is the character of neutrino mass spectrum (normal or inverted).
* What is the value of the CP phase §.
¢ Are there transitions of flavor neutrinos into sterile states.

In this chapter we will consider in some details neutrino oscillations in vacuum.
Neutrinos and antineutrinos are emitted in weak decays of pions and kaons,
which are produced at accelerators and in the processes of interaction of cosmic
rays with the atmosphere, in decays of muons, products of decays of pions and
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kaons, in B-decays of nuclei, products of the fission of uranium and plutonium in
reactors, in nuclear reactions in the sun etc. The first question which we will address
here will be the following: in the case of the neutrino mixing what are the states of
neutrinos and antineutrinos which are produced in weak interaction processes and
take part in CC and NC neutrino processes.

7.2 Flavor Neutrino States. Oscillations of Flavor Neutrinos

Let us consider a decay
a—b+IT 4. (7.1)

Here a and b are some hadrons (in the case of two-body decays b is vacuum).
The leptonic part of the SM Lagrangian of the CC interaction is given by the
expression
ZEC=— % S BLyely W the. (1.2)
\/2 I=e,u,T

In the case of the three-neutrino mixing

3
L =Y UpviL, (7.3)
i=1

where U is a unitary PMNS mixing matrix and v; is the field of neutrino (Dirac or
Majorana) with the mass m;.
The matrix element of the transition @ — b + [ + v; is given by the expression

Gr

(viltb|S|a) = U (—i) A

N2t (pi) ya ur(=p 1) (bl J*(0) |a) @m)* §(P' — P).
(7.4)

Here p; and p; are momenta of v; and /™, P and P’ are the total initial and final
momenta, J* is the hadronic charged current and N is the product of the standard
normalization factors.

In neutrino oscillation experiments neutrino energies E are much larger than
neutrino masses. In reactor experiments £ =~ a few MeV, in the atmospheric and
accelerator experiments E =~ a few GeV etc. For neutrino masses from exiting data
we have m; < 1eV.
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For the ultrarelativistic neutrinos we have

2
Amyy,

2F (i #k) (7.5)

Ipi — Pkl =~

where Aml.zk = m% — ml2 From the three-neutrino analysis of the neutrino oscillation

data for two mass-squared differences the following values were obtained
Am?y~8-1077eV?,  Amd;~2.4.107° eV? (7.6)

Thus for the reactor (KamLAND) and the accelerator (atmospheric) neutrino
experiments we have

Am%2 t N 2 Am%3 c* N 0.6

o~ , ~ (7.7)
2E he 10 km 2E hc 102 km

On the other side from the Heisenberg uncertainty relation for the uncertainty of the
neutrino momentum he have

1
(Ap)om =~ 4 (7.8)

where d is a microscopic size of a wave packet of a neutrino source.
From (7.5), (7.7) and (7.8) we have

Ipi — Pkl < (4Ap)om. (7.9)

Thus from the Heisenberg uncertainty relation follows that it is impossible to resolve
production of ultrarelativistic neutrinos with small mass-squared differences in
weak decays. This means that in weak decays the flavor lepton numbers L., L, L,
are conserved. Neutrinos ve, vy, v (antineutrinos v,, v, vz ) which can be produced
in weak decays together with e™, u*, ™ (e™, u™, t7), respectively, are called
flavor neutrinos (antineutrinos ).l

What is the state of the flavor neutrino? From (7.4) we find

i lTb|Slay ~ U (it b|S|a)su, (7.10)

Here (v; [T b |S| a) sy is the SM matrix element of the decay (7.1).

!'Similarly, flavor neutrinos ve, v, v; (antineutrinos v, b, v) produce e~, u~, T~ (e*, ut, tF)
in CC neutrino reactions.
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From (7.10) follows that the coherent state of neutrino produced in the decay
(7.1) is given by

3

> i) Ui (w1t bIS|a)su, (7.11)
i=1

where |v;) is normalized state of the left-handed neutrino with the mass m;,

momentum p and the energy E; = \/ Ip|? + ml2 From (7.11) we find that the
normalized coherent state of the flavor neutrino vy is given by the expression

3
i) =D Ujk ) (7.12)

i=1

Analogously for the state of the flavor antineutrino 7; we have?

3
o) =Y Usi I%i). (7.13)

i=1

As we have discussed in the previous section due to the Heisenberg uncertainty
relation in weak decays and neutrino reactions flavor neutrinos (antineutrinos), i.e.
coherent superpositions of states of neutrinos (antineutrinos) with definite masses,
are produced and detected. In other words in weak decays and reactions we cannot
resolve productions and absorption of neutrinos (antineutrinos) with small mass-
squared differences. Small neutrino mass-squared differences can be revealed in
special experiments with large distances between neutrino sources and detectors.
Physical basis for such type of experiments is the time-energy uncertainty relation

AE At 2 1. (7.14)

Here At is the time interval during which the state with the energy uncertainty AE
is significantly changed.

. AmZ;
In the case of the neutrino beams AE = |E; — Ei| =~ | 2";."" and At ~ L,

where L is the distance between a neutrino source and neutrino detector. From the
time-energy uncertainty relation (7.14) follows that in order to reveal mass-squared
difference |Am,%i| the quantity é must satisfy the condition

L
Am?, > 1. 7.15

2In the case of the Majorana neutrino v; we need to change |7;) by the state of the right-handed
Majorana neutrino with the mass m;.
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We will come to the same condition later when we will consider probabilities on the
flavor neutrino transitions in vacuum.

We will consider now the theory of the neutrino oscillations in vacuum. Let us
assume that at 7 = 0 in a weak decay (7 — ut +v,, ut — et + v, + v, etc.)
the flavor neutrino v; was produced. At the time ¢ > 0 for the neutrino state we have

vi)e = e ). (7.16)
Here H is the free Hamiltonian. In a neutrino detector at the time ¢ flavor neutrinos
are detected. Let us expand the state |v;); over the complete system of the states of
flavor neutrinos |v;). We have

e =Y Al — v ) (7.17)
l'=e,u,t
Here
3
Ay = vp) = (wpl e ) = Ui e Ei U (7.18)

i=1

In (7.18) we take into account that
Hiv)=E ). Ei=\/IpR+m? (uli)=Uy Gl =Ui.  (1.19)

From (7.18) follows that A(v; — vy) is the amplitude of the probability to find at
the time ¢ the flavor neutrino vy in the beam of neutrinos which originally at ¢t = 0
was a beam of v;. The expression (7.18) has the simple meaning: the factor Uj; is the
amplitude of the transition from the initial flavor state |v;) into the state of a neutrino
with definite mass |v;); the factor e~ i’ describes the propagation in the state with
definite mass and energy; the factor Uy; is the amplitude of the transition from the
state |v;) to the flavor state |vy). The sum over all states with definite masses must
be performed.

The probabilities of the transitions v; — vy and v; — vy are equal, respectively,

3
P — vp) =) Ure Bt Uf |2 (7.20)
i=1

and

3
P(v; — by) = | Z Up e Bty 1. (7.21)
i=1
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From the unitarity of the mixing matrix it follows that (7.20) is normalized transition
probability. In fact, we have

ZP(V[ — vl/) = ZZ(UF’.U;’(I{) e*l' (Ei—Ep)t U;;Ulk
4 ik U

= Zaik e Ikt U;Ulk

ik
=Y Uil =1. (7.22)
i
Analogously we find
> P = ) =1 (7.23)
l/
and also
ZP(W — ) =1, ZP(D; — o) = 1. (7.24)
I I

Further, the expression (7.20) for the v; — vy transition probability can be written
in the form

3
P~ v) = | Y Uje B0 Uy P (7.25)
i=1
Comparing this expression with (7.21) we conclude that the following relation holds
Py = vy) =Py — vp). (7.26)

This relation is a consequence of the C PT invariance. From (7.26) follows that v;
and v; survival probabilities are equal

P(y — v) = P(i — ). (7.27)

Let us assume now that the C P invariance in the lepton sector holds. In this case,
as it was shown in the previous chapter,

Ui = Ut (7.28)
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in the case of the Dirac neutrinos v; and
Ui ni = Uj (7.29)

in the case of the Majorana neutrinos (17; = =i is the CP parity of the neutrino v;).
For the Majorana neutrinos we have

Up; U['; = U;fi 77?77,' U = U;fi Uj;. (7.30)
From (7.20), (7.21), (7.28) and (7.30) we find that in the case of the C P invariance
P(w d vy) = P(\_)[ d l_)lf). (7.31)

The probabilities of the transitions vy — v; and v; — V; are equal due to CPT
invariance. Thus, in order to check whether C P is conserved in the lepton sector we
need to test the relations (7.31) at I’ # 1.

Let us notice that from relations (7.26) and relations (7.31) we find

Pvi = vpy) =P(vy — v), P — vp) =Py — vy). (7.32)

These relations are a consequence of the invariance under time reversal 7 which
obviously holds if both C P invariance and C PT invariance take place.

Finally, we will show that investigation of the neutrino oscillations does not allow
to reveal the nature of neutrinos with definite masses (Dirac or Majorana?). In fact,
the neutrino mixing matrix in the case of the Majorana neutrinos has the form (see
(6.45))

ul =upP sii(a), (7.33)

where S;; (@) = €% (@3 = 0, &), are Majorana phases) and UP? is the mixing
matrix in the case of the Dirac neutrinos. We have

uY oM =up upP*. (7.34)
From (7.34), (7.20) and (7.21) follows that the Majorana phases do not enter into

transition probabilities. In other words neutrino transition probabilities have the
same form in the Majorana and Dirac cases.
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7.3 Standard Expression for v; — v (v; — vp) Transition
Probability

Let us consider now the expression (7.20) for the v; — vy transition probability. We
have

P — vy) = Y Ui Uy Ufs Upee™ EimE01

ik
=Y Uil Uk
i
+2Re Z Up; Uy Uy Upe™ EiEOL (7.35)

i>k

This expression can be presented in an another form if we take into account the
unitarity condition

> Uri Ujs = 6. (7.36)
i

From this relation we find

> Ny \Ui* = 8y —2Re Y Up; Uyl Ufs Un. (7.37)

i i>k

With the help of this relation we obtain the following expression for the v; — vy
transition probability

P(v; — vy) = 8 — 2Re Z Upi U, Ut Upe(1 — e~ BBy (7.38)

i>k

From this expression it is obvious that transitions between different flavor neutrinos
(described by the second term of the expression (7.38)) can take place only if E; #
Ey, i.e. m; # my. The necessary condition for such transitions (E; — Ex) t 2 1)
corresponds to the time-energy uncertainty relation (7.15).

For the ultrarelativistic neutrinos we have

t~L, (7.39)

where L is the neutrino detector-source distance. Taking also into account that

2
Amz

E; — Ep ~ 2B

(7.40)
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we find the following general expression for the neutrino transition probability in
the case of the three-neutrino mixing into vacuum

P — v) =8y —4 Y _Re(Uy; Uji, Ujs Up) sin® Ay

i>k
+2) " Im(Uy; Ujy Ujs Ui sin 24y, (7.41)
i>k
where
Amiy
Aki = . (7.42)

4E

In order to obtain v; — vy transition probability we need to make in (7.41) the
following change U;; — Uj:. We find

P(iy — ) =8y —4 Y Re(Uy; U Ujr Up) sin® Ay

i>k

=2 " Im(Uy; Uy, Ufs Une) sin 24, (7.43)
i>k
We see from these expressions that transition probabilities depends on the quantity
é which is determined by experimental conditions. Transition probabilities are
determined by the six neutrino oscillation parameters: two neutrino mass-squared
differences, three mixing angles and one C P violating phase.
From the standard general expressions for transition probabilities (7.41) and
(7.43) it is easy to obtain transition probabilities which are investigated in neutrino
oscillation experiments (v, — vy, V. —> Ve, Ve — Ve etc.). Let us notice that

1. Neutrino mass-squared differences in the expressions (7.41) and (7.43) are not
independent. They are connected by the relation Am%3 = Am%3 + Am%z.

2. The quantities Im Uy; U} U}, Uy for different a i and k are not independent (they
are connected by the relations which are based on the unitarity of the mixing
matrix).

We will obtain now a simple alternative expressions for the neutrino transition
probabilities in which only independent mass-squared differences enter and the
unitarity of the mixing matrix is fully employed. The method which we will use
can be easily applied to transitions of the flavor neutrinos into sterile ones.
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7.4 Alternative Expression for Neutrino (Antineutrino)
Transition Probability in Vacuum

The expression (7.20) for the v; — vy transition probability (I, ! = e, u, T) can be
presented in the form

3
P — vp) = | Y Upi e "ETED U P =18 + Y Upi (e = 1) Uy |2
i=1 i#p
= |8y — 2i Z Up; Uf; e 401 sin Ay | (7.44)
i#p
Here p is a fixed, arbitrary index and A; is given by (7.42). Let us notice that in
the expression (7.44)

* we took into account that transition probability does not depend on a common
phase (e 7/ Er?);
* we used the unitarity of the mixing matrix in the transition amplitude.

From (7.44) we find the following expression for the v; — vy transition probability

Py — vp) = 8 — 4 Y Uil 81 — |Upil?) sin® A (7.45)
i
+8Re Y e =AW Uy U U Ul sin A sin A .

i>k
From this expression we obviously have

P(u — vp) =8y — 4 Y Ui PGy — |Uril?) sin Ay
i
+8 Y [Re (Ui UjUfy Un) cos(Api — Api)
i>k
+ Im (Ul/,'U;;U;kalk) sin(Ap; — Apg)]sin Ap; sin A py.
(7.46)

Let us stress that in the second term of this expression i # p and in the third term
i,k # p.
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In order to obtain ; — 1y transition probability we will change U;; — U} in
(7.46). We have

P(y — ) =81 —4 > _ U8y — |Upi) sin® Ay

1

+8 Y [Re (Ui UjUfy U cos(Api — Api)

i>k
— Im (Ul/,'U;;U;kalk) sin(Ap; — Apg)]sin Ap; sin A py.
(7.47)

7.4.1 Two-Neutrino Oscillations

Let us consider the simplest case of the two-neutrino mixing

v = Z Uy vi. (7.48)

i=1,2

Here U is a orthogonal 2 x 2 matrix

cosf sinf
U= , 7.49
(—sin& cos&,) (749)

where 0 is the mixing angle.
We will choose in (7.46) and (7.47) p = 1. In this case i = 2 and there is no
interference terms in the transition probability. We find

P(v, — vp) = P(iy — V) = 8y — 4 |Up|* (81 — Ui ) sin® A. (7.50)
where A = Am>L Am? = m% — m%

4E >
From this expression for the probability of v; to survive we obtain the following

expression
Py — v) =1 — 4 |Upl>(1 — |Un|?) sin® A. (7.51)
The v; — vy transition probability is given by the expression
Py — vp) = 4 |Up*|Upm|? sin? A (' #1). (7.52)
From this expression it is obvious that

P(vi = vy) = P(vpy — ). (7.53)
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Further, from the conservation of the probability we have
P —=v)=1-Pvi = vy), Py —v)=1-=-Ply— ) (7.54)

From (7.53) and (7.54) we conclude that in the two-neutrino case the following
equation holds

P(vy — v) =Py — vp) (" #D). (7.55)
From the unitarity of the mixing matrix we have
U2l =1~ Up/*. (7.56)
Thus from (7.52) and (7.56) we find for the appearance probability the expression
P(v — vp) =4 [Upl*(1 — |Upl?) sin® A (' #1). (1.57)

which obviously follows from (7.51) and the conservation of the probability.
Let us also notice that in the case of the two-neutrino mixing the C P relation

P(vi —» vy) =Py — vp) (' #1), (7.58)

is always valid.?> Thus in order to check whether in the lepton sector C P is violated
we need to study effects of the three-neutrino mixing.

From (7.51) and (7.49) for the survival probability we find the following standard
two-neutrino expression

Am?L 1 Am?*L
P — ) = 1—sin®20 sin2 "~ =1— sin®20 (1—cos " 7). (1.59)
4E 2 2E

The v; — vy appearance probability is given by

Am?L 1, Am*L
= _sin“20 (1 — cos ) (" #D.

P(vi —» vy) = sin® 260 sin® AE 9 oE
(7.60)

3This is also obvious from the results of the previous chapter: for n = 2 the number of C P phases
in the mixing matrix is equal to zero.
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All previous formulas were written in the i = ¢ = 1 system. For the survival
probability in the CGS system we have*

EEUUR Am*L 1., Am*L
P(v; — v;) = 1 —sin“ 20 sin“ 1.27 E =1- ) sin“ 260 (1 —cos2.54 E ).
(7.61)
Appearance probability is given by the expression
.2 ) Am’L | Am?L
P(v; — vp) = sin” 20 sin” 1.27 E = ) sin“ 26 (1 — cos2.54 ).
(7.62)

In expressions (7.61) and (7.62) Am? is the neutrino mass-squared difference in
eV?2, L is the source-detector distance in m (km) and E is the neutrino energy in
MeV (GeV).

We will now introduce the oscillation length

E
L% =4 . 7.63
™ Am? (7.63)
In the CGS units we have
ose E fic N E
1 =4m Am2et = 2.47 Am? m (km), (7.64)

where E is the neutrino energy in MeV (GeV) and Am%2 is neutrino mass-squared
difference in e V2.

From (7.59), (7.60) and (7.63) for the survival and appearance probabilities we
have

1 L
Py > v)=1- sin®20 (1 — cos 27 Losc) (7.65)
and
1., L
Py —» vp) = 5 sin“ 260 (1 — cos 2w Losc) (7.66)

Thus, the oscillation length is the period of the oscillations. For neutrino oscillations
to be observed it is necessary that

L > Lo, (7.67)

4We take into account that in the CGS system the argument of the cosine in (7.59) is equal to
Am%zc“L
2E he
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P (1/# —,)

sin? 20— - - - - -

0 s 2m L/E

2.54 Am? 2.54 Am®

Fig. 7.1 Transition probability P(v, — v,) as a function of é

Notice that the same estimate we obtained from the time-energy uncertainty relation
(see (7.15).

In Fig.7.1 the transition probability P(v, — v,.) as a function of é (in units
May) is plotted. At the points

L 2 L 2n(n+)
T and = ( 2)

_ - =0.1.2. ...
E 254 Am? E- 254am )

only v, or, correspondingly, v, can be observed. At other values of é both v, and

v can be found (v, with the probability P(v, — v.) and v, with the probability
P(vy, — vy,) =1—-P(v, — v.)). From Fig.7.1 it is clear why phenomenon, we
are considering, is called neutrino oscillations.

7.4.2 Three-Neutrino Oscillations

Existing neutrino oscillation data are perfectly described under the assumption of
the three-neutrino mixing

3
v = ZU[,'U,‘L, l=e,pu,t. (7.68)

i=1

We will consider here in details neutrino oscillations in this most important case.
In the case of the three-neutrino mixing neutrino (antineutrino) transition proba-
bilities depend on two mass-squared differences. From analysis of the existing data
it follows that one mass-squared difference is much smaller than the other one.
We will assume that the mass of neutrino v, is larger than the mass of vy (my >
m1) and that the small (“solar’’) mass-squared difference is given by

Am% = Am%z = m% — m% > 0. (7.69)
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For the mass of the third neutrino v3 there are two possibilities.
NO. The mass of v3 is larger than the mass of v,

mp <mp <m3. (7.70)

Such ordering of the neutrino masses is called the normal ordering (NO).
10. The mass of v3 is smaller than the mass of v{

mi3 <mp <mjp. (7.71)

Such ordering of the neutrino masses is called the inverted ordering (10).

The character of the neutrino mass spectrum at present is not known. Its deter-
mination is a major aim of modern and future accelerator, reactor and atmospheric
neutrino oscillation experiments.

Neutrino mixing matrix U is determined by the relation (7.68) and does not
depend on the neutrino mass spectrum. In the standard parametrization the matrix
U is characterized by three mixing angles 012, 623, 613 and one C P phase & (see
(6.44)). For both possible neutrino mass-spectra the small (solar) mass-squared
difference is determined by the relation (7.69). It is natural to determine the sixth
neutrino oscillation parameter, large (“atmospheric”’) mass-squared difference, in
such a way that it does not depend on the neutrino mass spectrum.

We will determine the atmospheric mass-squared difference Am% as follows

Am} = Am3; (NO)  Am? = |Am3;| (10). (7.72)

Thus Ami is the mass-squared difference between the largest and the intermediate
masses (NO) or between the intermediate and the smallest masses (I0). It is obvious
that Amﬁ, determined by the relations (7.72), does not depend on the neutrino mass
spectrum.’

For the NO neutrino mass spectrum we will choose in (7.46) p = 2. In this case
the index i takes values i = 1, 3 and in the interference term i = 3, k = 1. Taking
into account that Am%3 = Am%4 and Am%l = —Am% for the vi — vy (V; — V)
transition probability we find the following general expression

POy — u) (PO (5 — W)
=8y — 4 |Up >y — |Ups)?) sin® Ay
—41Un > — U 1*) sin® Ag — 8 [Re (Up3UR U Unt) cos(Ag + As)
+ Im (U3 U['_Z, UfflUll) sin(Aa + Ag)]sin A4 sin Ag. (7.73)

3Other possibility: Am% = Am?2, (NO) and Am?% = |Am3;| (I0). In this case Am? is the
mass-squared difference between the largest and the smallest masses.
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Here

Am? (L
Ags = I 7.74
A,S AE (1.14)

For the IO neutrino mass spectrum we choose p = 1. The index i in this case
takes values 2, 3 and in the interference term i = 3,k = 2. Taking into account
that Am%3 = —Ami‘ and Am%2 = Am% for the v; — vy (V; — Vp) transition
probability in the IO case we have

POy — v) (PO — 1))
=811 — 41U (1 — U3 [?) sin® Ap
—4 Ui (811 — |Upal?) sin® As — 8 [Re (Ur3Up U, Up) cos(Ay + As)
F Im (Up3USZUS,UR) sin(Aa + Ag)]sin Ay sin Ag. (7.75)
Let us stress that in (7.73) and (7.75) there is only one interference term. Transition
probabilities for the normal and inverted ordering differ by the change U;1 < Uy,
Uy S Upp and (&) — (F) in the last term.
The last terms of the expressions (7.73) and (7.75) are different from zero if C P
is violated in the lepton sector. Let us determine the C P asymmetry
AP =P( —P(; — ¥
=P — vpy) =Pl — vp). (7.76)
The C P asymmetries in different channels satisfy the following relations
ASP =—ACP = AL (7.77)
In fact, from the relation (7.26), which is based on the C PT invariance, follows that
cp cp
A”/ = _Al/l . (7.78)

Further, from the conservation of the probability we have

ZA,CZ,P = Z P(v, — vy) — Z P(i; — by) = 0. (7.79)
4 4

l/
Taking into account that Alclp = 0 from (7.79) we obtain the following relations
AST+ASP =0, ASE+ASCE =0, AP +ASE =0 (7.80)

From (7.78) and (7.80) we can easily find the relations (12.201).
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For the normal and inverted ordering we obtain the following expressions for the
C P asymmetry

(ASP N0 = =16 Im Ups U U, Upy sin(Ag 4 As) sin A g sin Ag (7.81)
and

(ALY 10 = 16 Im Ups U U, Upa sin(Ag + As) sin Ay sin Ag. (7.82)

7.4.3 Neutrino Oscillations in Leading Approximation

From analysis of the neutrino oscillation data it follows that the solar mass-squared
difference is much smaller than the atmospheric one

Am% ~3-107% Am3 (7.83)
and that the parameter sin? 613 1s small:
: 2 ~ -2
sin“ @13 >~ 2.3-107~. (7.84)

If we neglect the contribution of small parameters to the neutrino transition
probabilities we will obtain simple two-neutrino expressions which describe basic
features of neutrino oscillations valid with accuracies of a few %.

Let us consider v, — v, transition in the atmospheric and long baseline
accelerator experiments. In these experiments A4 ~ 1 and Ag <« 1. Neglecting
the contribution of the parameter Ag, from (7.73) and (7.75) for the probability of
v, to survive (for NO and IO spectra) we find the following expression

P(v, — vu) = 1 —4|U,315 (1 — |Uy3l%) sin® Ag. (7.85)

If we further neglect the contribution of sin? 613 we have

5 ., AmAL
P(vy — vu) = 1 —sin” 26>3 sin . (7.86)
Thus in the leading approximation v, (v,,) survival probability in the atmospheric
range of the parameter é is characterized by two parameters: sin® 263 and Am%.
It follows from (7.73) and (7.75) that in the leading approximation we have
P (v, — ve) 2 0. This means that in this approximation v, disappearance is due to

v, — Vg transitions. From the conservation of the probability we have

2
zAmAL.

in (7.87)

Plvy > ve) 21— P, — vy) = sin’ 263 sin
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We come to the conclusion that in the atmospheric range of L/E in the leading
approximation neutrino oscillations are two-neutrino v, = v oscillations.

Let us consider now v, disappearance in the long baseline reactor experiment
KamLAND. In this experiment

As>~1, Ax> 1. (7.88)

Due to the averaging over neutrino energy resolution the term proportional to sin A 4
do not give contribution to the survival probability. Neglecting the contribution of
sin? 63, for the v, survival probability (for NO and IO mass spectra) from (7.73)
and (7.75) we find the following expression

2
, AmgL

Pve > v,) > 1— sin? 201, sin AR

(7.89)
Thus the study of neutrino oscillations in the reactor KamLAND experiment allows
to determine the parameters sin? 2017 and Am%.

The disappearance of v,’s in the KamLAND experiment is due to v, — v, and
Ve — Vy transitions in the region determined by the condition (7.88). In fact, from
(7.73) and (7.75) in the leading approximation we find

- - 2 ) ) Am?sL
P(Ve — v,) 2 cos” 623 sin” 2012 sin (7.90)
and
- - ) .2 .2 AmgL
P(v, — v;) =~ sin” 63 sin” 26013 sin AE (7.91)
From analysis of the neutrino oscillation data follows that sin? 623 ~ cos? Op3 ~ é
From (7.90) and (7.91) we have
_ _ _ _ 1 _ _
P(ve — vy) >~ P(V, — V) ) (1 =P, — ve)). (7.92)

In analysis of the first data of the atmospheric and accelerator neutrino oscillation
experiments (Super-Kamiokande, K2K, MINOS) and the first data of the long-
baseline reactor experiment KamLAND the expressions (7.86) and (7.89) for v, and
v, survival probabilities in the leading approximation were used. These data allowed
to obtain the first information about Am%4 and sin? 2653, Am% and sin? 26;,. In the
recent years the value of the parameter sin’ 013 was measured in the T2K, Daya
Bay, RENO, Double Chooz and NOvA experiments. In analysis of the modern data
expressions for the three-neutrino oscillations are used. The leading approximation
allows us, however, to understand the basic picture of neutrino oscillations in
the regions sensitive to Am% and to Am%. In order to study beyond the leading
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approximation effects such as C P violation in the lepton sector or the neutrino
mass ordering we need to perform high precision neutrino oscillation experiments.
In the next sections we will present exact expressions for three-neutrino transition
probabilities in different channels.

7.4.4 v, — v, Survival Probability

Inreactor neutrino oscillation experiments v, survival probability is measured. From
(7.73) and (7.75) for the normal and inverted mass ordering we have, respectively,

PNO(D, — o) = 1 — 4 [Ugsl?(1 — |Usl?) sin® Ay
—4|Ue1 [A(1 = |Ue1|?) sin® As
— 8|Ue3)?|Ue1|? cos(Ap 4 Ag) sin Ay sin Ag. (7.93)
and
PO, = D) =1 —4 |Ug|>(1 — |Us?) sin® Aa
—4|Ue2)*(1 = [Ue2|?) sin® Ag

—8 |Ue3|*|Ue2|* cos(Ay + Ag)sin Ay sin Ag.  (7.94)

Using the standard parametrization of the PMNS matrix (see (6.44)) from (7.93)
and (7.94) we

PNO@, — 7,) = 1 —sin®20;3sin> Ay
—(cos4 013 sin? 2012 + cos? 012 sin? 2013) sin? Ag
—25sin? 2013 cos? 012 cos(Ag + Ag) sin Ay sin Ag. (7.95)
and
PO®, > 1) = 1 —sin®20;3sin”> Ay
—(cos* 013 sin” 2015 + sin® 05 sin® 2013) sin’® Ag

—2sin? 2013 sin? 012 cos(Ax + Ag) sin Ay sin Ag. (7.96)

Notice that PNO(3, — ¥,) and P1O(v, — v,) differ by the change cos?6, =
.2
sin“ 015.
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7.4.5 vy — veand v, — v, Appearance Probabilities

In this section we will present expressions for v, — v, (v, — V.) vacuum
transition probabilities in the case of the normal and inverted neutrino mass
ordering. From general expressions (7.73) and (7.75) we find

PO, = v)(PNO(D, — 1,))
=4 |Ues|*|Up3* sin® Ay
+4 Ut *|Upu > sin® Asg
—8Re (Ue3U:j3 51U cos(Ap + Ag)sin Ay sin Ag
F8Im (Ue3U:j3 51U sin(Aq + Ag)sin Ay sin Ag. (7.97)
and
PO, = v)(POH, — v.))
=4 |Ugs|*|Up3* sin® Ay
+4 |Ua2P|U,2]* sin® A
—8Re (Ue3U:3 5Uu0) cos(Ap + Ag)sin Ay sin Ag
48 Im (Ue3U:3Ue*2U,L2) sin(A4 + Ag) sin A4 sin Ag. (7.98)

Using the standard parameterizations of the PMNS mixing matrix in the case of the
normal ordering we have

PNO(v, — vo) (PNO(B,, — 1)) = sin® 2613 sin® Bp3 sin® Ay
+ (sin2 2012 cos® 013 cos® 63 + sin’ 2013 cos* 012 sin’ 63
+ K cos® 012 cos ) sin? Ag

+ 2 sin’ 2013 sin’ 63 cos® 012 + K cos§) cos(Ag + Ag)sin Ay sin Ag

F 8Jcp sin(Agq + Ag) sin Ay sin Ag. (7.99)
Here
K = sin 260y, sin 2613 sin 26»3 cos 613 (7.100)
and
Jocp = é sin 2617 sin 26013 sin 20,3 cos #13 sin § (7.101)

is the Jarlskog invariant.



7.4 Alternative Expression for Neutrino (Antineutrino) Transition Probability. . . 123

In the case of the inverted ordering we find
PO, = 1) (PO @, — ¥,)) = sin® 2613 sin® 63 sin® Ay
+ (sin2 2012 cos” 013 cos’ 0p3 + sin® 20,3 sin* 015 sin® 623
— K sin® 612 cosé) sin’ Ag
+ 2 sin’ 2013 sin” 623 sin” 6012 — K coséd) cos(Ag + Ag)sin Ay sin Ag
F 8Jcp sin(Ag + Ag) sin Ay sin Ag. (7.102)
From (7.99) and (7.102) follows that the C P asymmetry
ACP _p _ brn -
en =Py = ve) =P, — V) (7.103)
does not depend on the neutrino mass ordering. We have
ASF = —16Jcp sin(Ap + Ag)sin Ay sin Ag. (7.104)

The C P asymmetry is different from zero if all three mixing angles 63, 612, 013 are
not equal to zero and both mass-squared differences solar Am% and atmospheric

Am%4 are relevant.

7.4.6 v, — v, Survival Probability

From general expressions (7.73) and (7.75) for the v, — v, survival probability in
the case of the normal and inverted mass ordering we have, correspondingly,

PNO(, — v,) =1 —4 U171 — |U,31%) sin® Ay
—41Uun P = U |?) sin® Ag
—8 |U3|Up1|* cos(Aa + Ag)sin Ay sin Ag. (7.105)
and
PO, = v)) =1 =4 U210 = |Uw?) sin® A
—41Up2*(1 = |Upal?) sin Ag
—8 |U3/2|Upa|* cos(Aa + Ag)sin Ay sin Ag. (7.106)
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Using standard parametrization of the PMNS matrix we find in the case of the
normal ordering

PNO(v, — v,) = 1 — (sin® 2623 cos® B13 + sin® 26013 sin” Bp3) sin® Ay
— 41U P = U P) sin® Ag
- 2(sin2 203 cos® 013 sin” 012 + sin® 2013 cos® O} sin* 023
+ K sin® 023c088) cos(Ap + Ay)sin Ay sin Ag. (7.107)

Here

K cosé

7.108
4 cos? 013 ( )

U1 |2 = cos? 6h3 sin® 012 + sin® 623 cos® B2 sin” 013 +

and K is given by the relation (7.100).
For the inverted ordering we have

Plo(vﬂ —v)=1- (sin2 2073 cos? 013 + sin? 2013 sin? 623) sin? Ay
—4|Up2(1 = |Up2) sin® A
— 2(sin2 203 cos? 013 cos® 012 + sin? 2013 sin? 012 sin* 63
— K sin® 623c0s8) cos(Ayg + Ay)sin Ay sin Ag, (7.109)

where

K cosé

. 7.110
4 cos? 013 ( )

|UM2|2 = cos’ 63 cos® 012 + sin’ 623 sin’ 012 sin’ 013 —

7.4.7 Transitions of Flavor Neutrinos into Sterile States

From existing experimental data indications in favor of transitions of flavor v, and
v, into sterile neutrino states were obtained. These indications were obtained in
LSND, MiniBooNE, short baseline reactor and neutrino source experiments which
are sensitive to neutrino mass-squared difference(s) much larger than Ami.

Transitions of the flavor neutrinos into sterile states are possible if the number of
neutrinos with definite masses v; is larger than the number of the flavor neutrinos
(three). For the neutrino mixing we have in this case

3+Vlster 3+nsler

v = Z UiiviL, vsL = Z UsiviL, (7.111)

i=1 i=1

where the index s takes nger values (51, 52, ...8ny,,) and U is a unitary (3 + np,, ) X
(3 + npg,, ) matrix.
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We will assume that all mass-squared differences are small enough so that due
to the Heisenberg uncertainty relation production (and absorption) of neutrinos with
different masses cannot be resolved in weak processes. For neutrino states (flavor
and sterile) we have in this case

va) =) UsiIvi), @ =e p 51,52, .. (7.112)

Here |v;) is the state of neutrino with mass m;, momentum p and the energy E; ~

2
E + ’2"]‘5, E = |p|. From the unitarity of the mixing matrix we have

(Vo [Va) = Sararr Vi) =Y Ui [Var). (7.113)
a/

If at + = 0 a flavor neutrino v, with momentum p was produced, at the time ¢ the
neutrino state is given by

. . o
)i = e M vg) =Y v d(varle ™ M va) = Y ) Uie ETUZ),
al C{/ l'

(7.114)
where H is the free Hamiltonian.
The transition probability in the general case of the transitions into flavor and
sterile states has the form

3+ngter
P(vy = V) = | Z U e Bl Ui ? (7.115)

i=1

It is obvious that the results obtained before for the case of the transitions between
flavor neutrinos can be applied to the transitions of flavor neutrinos into flavor and
sterile states. We have

P(vy = 1) (P(ly = Pa)) = bae’ —4 D Uuil*@Gara — |Uil?) sin® Ap;

1
+8 Z[Re (Ui UZUZ Ugi) €08(A pi — Apk)
i>k

+Im (Uyi UL U Ugk) sin(Ap;i — Apr)]sin Ap; sin A . (7.116)

It is easy to check that P(vy — vy) (P(vy — Vy)) transition probabilities are
correctly normalized. In fact, taking into account the unitarity of the (3 + n,,,) X
(3 + npg,) mixing matrix U from (7.114) we find

D Pe > V) =Y O Ui U e ETE S Upy = [Uil* = 1
o ik« i

/

(7.117)
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Similarly we have

ZP(Da — by) =1 (7.118)

Sterile neutrinos cannot be detected in the standard weak processes. Transitions
of flavor neutrinos into the sterile states can be revealed if we can proof that
there exist flavor neutrino oscillations v; = vy in the short baseline region of é
which corresponds mass-squared difference(s) larger than A%m 4. Other possibility
to obtain an information about transitions of flavor neutrinos into sterile states is
based on the relation (7.115). From this relation we have

Z POy — vp) =1— Z Py — vy) (7.119)

I'=e,u,t S=81,825---Sngter

The left-handed part of this relation is the total probability of the transition of a
flavor neutrino v; into all flavor neutrinos (v, v, and v;). This probability can
be determined if neutrinos are detected at some distance from a source by an
observation of a NC process. If the probability Y ,_ e.u,r PV — vp) is less than
one (and depends on Ié) it would be a proof of the transitions of an active neutrino
into sterile states.

Let us consider the simplest 3+1 scheme with four massive mixed neutrinos v;
and with Am%4 > Ami‘, m4 and m1 being masses of the heaviest and the lightest
neutrinos.®

For the probability of the v; — vy transition in an experiment sensitive to Am% 4

2
(Als = AT}Z“L =~ 1) from (7.116) we find the following approximate expression

P — vp) = P — D) = 8y — 4 |Ua* Gy — |Upgl?) sin® Agg. (7.120)

Notice that we have neglected contributions of small mass-squared differences
Am%2 and Am%3 and chose p = 1.
From (7.120) for v, — V., Ve — V. and v, — v, transition probabilities we
find
P(v, — D) = sin’ 260, sin® A
" e e 14,
P(V, — 1e) = 1 — sin” 20, sin> A4,

P(v, — vy) = 1 — sin®26,,, sin® Ayy. (7.121)

SFrom analysis of the existing data it follows that Am%4 ~ leV2.
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Here

$in® 200, = 4|Uea|*|Upal®,  sin® 2000 = 4|Ueal*(1 = |[Ueal?),
sin® 20, = 4|U,a|*(1 — |U,4]?). (7.122)

From analysis of the existing data in favor of transitions into sterile neutrinos follows
that the amplitudes sin® 20, and sin? 20,. are small. Thus we have

sin? 20, = 4|Us|?,  sin®20,, ~ 4|U,4|%. (7.123)

From (7.122) and (7.123) we find the following relation between transition ampli-
tudes

1
sin’ 26, ~ A sin’ 20, sin® 26,,,,. (7.124)

Thus if we know sin® 26,,, and sin® 26,, we can predict sin> 26,,,,. Notice that the
existing data are not in agreement with this prediction.



Chapter 8 )
Neutrino in Matter Check for

8.1 Introduction

Up to now we have considered the propagation of mixed neutrinos in vacuum. We
have seen that due to neutrino mass-squared differences and neutrino mixing the
flavor content of the neutrino beam in vacuum depends on distance (time). As it was
shown by Wolfenstein in the case of matter not only neutrino masses and mixing but
also the coherent scattering of neutrinos in matter must be taken into account. The
contribution of the coherent scattering into the Hamiltonian of neutrino in matter is
proportional to the electron number-density. If the electron density depends on the
distance (as in the case of the sun) the v, — v, transition probability can have a
resonance character (MSW effect). We will consider in this chapter the propagation
of the mixed neutrino in matter.

8.2 Evolution Equation of Neutrino in Matter

The state of neutrino with momentum p in matter |¥ (¢)) satisfies the Schrodinger
equation

i8|l11t(t)) = H |¥(1)). 8.1)

0

Here H = Hy + Hj is the total Hamiltonian, where Hj is the free Hamiltonian and
Hj is the effective interaction Hamiltonian.
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Let us expand the state |¥(z)) over the total system of states of the flavor
neutrinos v; with momentum p

W)=Y ay) v (8.2)
l=e,iu,T
Here
3
vy =Y Uji v, (8.3)
i=1
where
m2
Hop |vi) = E; |vi), Ei~p+ zl . (8.4)
pP

In the flavor representation the evolution equation takes the form

0 t
i “avzt( : = ;[(Vl |Hol vy + (v [Hplvp)] ap (). (8.5)
For the free Hamiltonian we have

2
m*
(| Hol w) = 3 o0li) Eq i) = pd + 3 Ui Ufy: (8.6)

i i

It is easy to see that the first, proportional to the unite matrix term, can be removed
from the Hamiltonian by the redefinition of the unphysical common phase. '

The second term of the evolution equation (8.5) is due to the coherent scattering
of neutrinos in matter. Because of the coherent scattering the refraction index of
neutrino in matter is different from one (vacuum value) and for the flavor neutrino
vy at the point x is given by the following classical expression

2
P (1) = 1+ p’; 3 fuama©) na(x) . 8.7)

Here fi,a—va(0) is the amplitude of the elastic v; — a scattering in the forward
direction and n,(x) is the number density of particles a. The potential generated by

n fact, let us consider the equation i agi’ ) — (H(t) + a(t) - I) a(t) where «(t) is an arbitrary

function. For the function a’(¢) = ¢'®® a(r), which cannot be distinguished from a(t), we have
i7" = H(t)d ().
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the coherent scattering is given by the difference of neutrino energy in matter and
neutrino energy in vacuum. We have

2
(vi|Hflvi) =p nw;vl(x) — D= [7: waa%wa(o) ng(x). (8.8)

a

We will consider the propagation of neutrino in a neutral medium of electrons,
protons and neutrons. The amplitude of the elastic v, — e scattering is due to the
w* exchange (CC) and A exchange (NC). The amplitudes of the elastic v, ; —e
scattering and v, , ; — N scattering are due to the 79 exchange (NC).

The corresponding CC and NC effective Hamiltonians are given by the expres-
sions

G
ACC(x) = Jg 4 Do, (X)Y*ver (x) &L(x) Yuer (x) (8.9)
and
AN (x) = i}/; 2l:§’rm(x>y“m(x> iV (), (8.10)

where j(flv €(x) is the NC of electrons and quarks.

Because of the v, — v, — v; universality, potentials which are due to the NC
elastic v, ; — e and v, ; — N scattering are proportional to unit matrices. As we
saw before such terms can be removed from the Hamiltonian by the redefinition of
a common phase. The only term which can change the flavor content of the neutrino
beam is due to the CC elastic v, — e scattering. From (8.9) we have

Grp
18,0 = o (8.11)
and corresponding effective potential is equal
(ve |Hi| ve) = V2 G F ne(x) (8.12)

Finally, the Wolfenstein evolution equation for the mixed neutrino in matter has the
form

0 2
i git) — W ZE UT +V2GF n.(1)B) a(t). (8.13)
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Here B.. = 1 and all other elements of the matrix 8 are equal to zero. We took
into account that for the ultrarelativistic neutrino x =~ ¢ where ¢ is the neutrino
propagation time in matter.”> We will finish this section with two remarks.

1. The electron neutrino current can be written in the form

VerL Y Vel = VeTL i VeTL = _VeTLC_1 CVaC_l c VeTL = —VerY Ver:
(8.14)

where C is the charge conjugation matrix. It follows from this expression that the
amplitude of the elastic scattering of the right-handed antineutrinos on electrons
differs by the sign from the amplitude of the CC v, —e scattering. For the effective
interaction Hamiltonian of the antineutrino in matter we have

Hi(t) = —v2 GF n.(1)B. (8.15)

2. The evolution equations of neutrino in matter in the case of the Majorana and
Dirac neutrinos v; are the same.
In fact, the mixing matrices for Majorana and Dirac neutrinos are connected
by the relation (see (6.45))

UM = P sM(a) (8.16)

where S¥ (@) is the diagonal phase matrix. We obviously have

2 2
m m
oM oM =yP T UPT 8.17

2E 2E ®.17)
We have shown in the previous section that via the investigation of the neutrino
oscillations in vacuum it is impossible to reveal the nature of the massive
neutrinos. From (8.17) it follows that the same is true for the neutrino transitions
in matter.

2Let us notice that in the case of flavor and sterile neutrinos both CC and NC interactions contribute
to the effective potential of neutrino in matter. We have in this case

Hi() = V2GE ne(f° +V2G ) m(0)f?

where n,(x) is the number density of neutrons, S5, = 1 and B, = 1. Other elements of the
matrices 8¢ and * are equal to zero.
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8.3 Propagation of Neutrino in Matter with Constant Density

We will consider first the case of a matter with a constant density. The hermitian
effective Hamiltonian of neutrino in a matter in the flavor representation can be
diagonalized by the unitary transformation

H=U™E™y™,. (8.18)

Here E}} = E;" 8k, E]" being the eigenvalue of the matrix H and U™ um = 1.
We have

(v [H vy = (o [1)™ E* ™ | w), (8.19)

i
where

H|iy™ = E™| i)™ (8.20)

1
Comparing (8.18) and (8.19) we conclude that
(i | iy™ = U, ™) = U™, (8.21)

The states of the flavor neutrinos v; are connected with states of neutrinos with
definite energies in matter by the mixing relations

3
vy =D UM )", I=e p.T. (8.22)
i=1

From (8.18) follows that the evolution equation in the flavor representation has the
form

. da(t)
i

0 = U™E™U™ a(r) . (8.23)

Let us introduce the function
a'(t) =U"a(). (8.24)
From (8.23) and (8.24) we obtain the equation

. 3a' (1)
l

, =EmdO). (8.25)
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It is obvious that the solution of this equation has the form
dt)=e"E" a0, (8.26)

where a’(0) is the wave function at the initial time t = 0. From (8.24) and (8.26) for
the wave function in the flavor representation we have

aty =U™e P E" ™ g (0) . (8.27)
Let us assume that at initial time the flavor neutrino v; was produced. From (8.27)

we find that the probability of the v, — vy transition in matter with the constant
density is given by the expression

—i EM 2
P (v — ) = | Y Ule B U, (8.28)
i
Let us consider now in some details the simplest case of two flavor neutrinos v, and
vy (x = p or 7). For the vacuum mixing we have

Vel = cOSBvir + sinBvyy

Vy = —sinfvyz 4+ cosbvyy , (8.29)

where v; and v, are neutrino fields with masses m; and mj. The effective
Hamiltonian of neutrino in a matter has the form

m2 +
H=U,_ U + 2 Gr n.B (8.30)

where U is a 2 x 2 real orthogonal matrix

cosf sinf
U= . 8.31
(—sin@ cos@) ( )

It is convenient to present the total Hamiltonian in the form

1 -
H = 2Tr H+H. (8.32)
Here
1 m2+m2 1
TrTH= ! 2 2G 8.33
ST AL +2J F e (8.33)

and H is the traceless part of the Hamiltonian.
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‘We have
- 1 [—Am?cos20+A Am?sin20
H = , 8.34
4E ( Am?sin20  Am®cos26 — A (8.34)
where
A=2V2Gpn, E (8.35)

and Am? = m% — m% We will label neutrino masses in such a way that my > m

and Am? > 0.

The first term of (8.32), which is proportional to the unit matrix, can be excluded
from the Hamiltonian. The real symmetrical 2 x 2 matrix H can be diagonalized by
orthogonal transformation (see Appendix A). We have

H=ym™Egmym (8.36)
Here
oM sinH™
ym — (o8 8.37
(— sin 6™ cos 6™ 37
and
EM
Em— [ ©1 8.38
(5 E?) (®39
where
1
h=F,, V(Am2cos 20 — A)? + (Am? sin 20)2 (8.39)

are eigenvalues of the matrix H.
The mixing angle of neutrino in matter ™ is given by the relation

. Am? sin 20
tan 20™ =

= . 8.40
Am?cos 20 — A (8.40)

From (8.28) and (8.37) for the probability of the v; — vy (vy — ;) transition in
matter we find the following expression

1
Py — vp) =Py = ) = 5 sin®26™ (1 — cos AE™ L) . (8.41)
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Here I’ # [, (I or I’ is equal to €), L = ¢ is the distance, which neutrino travels in
matter and

1
AEM=EP —Ef'= V(Am?2 c0s26 — A)2 + (Am2 sin 26)2 . (8.42)

The probability of v; (vy) to survive can be obtained from the condition of the
conservation of the probability. We have

1
P"(vy — v) =P"(vp — vp) =1-— 5 sin? 260™ (1 —cosAE™L). (8.43)
The expression (8.41) can be written in the form

1 L
P™(v; — vp) =Py = ) = 5 sin® 26™ (1 — cos 27 Im ), (8.44)

0osc
where

_ 4 E
V(Am? c0s26 — A)? + (Am? sin 26)?

m
0sc

(8.45)

is the oscillation length of neutrino in a matter with a constant density.

It is obvious that at n, = 0 we have 0™ = 0, AE™ = Am? and expressions
(8.41), (8.43) and (8.45) coincide with the standard vacuum two-neutrino transition
probabilities and oscillation length, correspondingly.

If n, # O the neutrino mixing angle in matter can be significantly different from
the vacuum value. Let us assume that at some energy E the following equality

Am%cos 20 = A =22Gpn, E (8.46)

is satisfied. It follows from (8.40) that in this case ™ = 7 /4 (maximal mixing)
independently on the value of the vacuum mixing angle 6. The condition (8.46) is
called MSW resonance condition. We will return to the discussion of this condition
later.

If the condition (8.40) is satisfied, the oscillation length in matter can also be
significantly different from the oscillation length in vacuum. In fact, we have in this
case

m Losc

= 8.47
O%¢ " sin 26 8.47)

where Lo = 4 Ai , is the vacuum oscillation length.
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Diagonalization of the Hamiltonian of neutrino in matter in the case of the three-
neutrino mixing is a more difficult problem. An expansion over small parameters
Am%2
Am%3
accelerator experiments the following approximate three-neutrino expression for the
v, — V, transition probability in the Earth matter is usually used

and sin” 63 simplifies its solution. For analysis of the data of long baseline

Pm(vu — Ve) = Py + Pgins + Peoss + P3, (8.48)
where
2 sin? 2013 . 5 ) sin’ 2012 . o
Py = sin” 03 @— 1) sin“[(a — 1)A13], P3 = a”cos” 63 22 sin“[aA13],
(8.49)
sin 8 cos 013 sin 2017 sin 26,3 sin 2013 . . .
Pgins = —«a sin A3 sinfaAq3] sin[(1—a)A3]
a(l —a)
(8.50)
and
€08 6 cos 613 sin 26017 sin 20,3 sin 2613 . .
Peoss = o cos Az sinf[aA3]sin[(1 —a)A3]
a(l —a)
(8.51)
Here
Am? Am?, L 272G pn E
a=""120 A= 0T v Fhe (8.52)
Amiy 4E Ami,

The expression (8.48) can be used if the source-detector length L satisfies the

condition L < 8000km (%) (10,5V?).
12

8.4 Adiabatic Transitions of Neutrino in Matter

We will consider here solar neutrinos. The evolution equation of a mixed neutrino
in matter in the flavor representation has the form

. da(r)
i

5 = H"®aw, (8.53)

where H™(t) = U ’2"2 UT + H; (1) is the total effective Hamiltonian.
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The hermitian matrix H™3'(¢) can be diagonalized by a unitary transformation
H™@t) = U™@) E™@) U™ (1) , (8.54)
where U™ (1)U™ (1) = 1 and Ej (1) = E()éik , E"(t) being the eigenvalue of

the Hamiltonian.
We have

(v [H@®)vi) = Z(vz' i)™ E* @) ™) [ ), (8.55)

where
H@) i)™ = Ef () [ i(0)™. (8.56)
From (8.55) and (8.56) follows that
(i)™ = U0, ™@@) |v) = Up™(@). (8.57)

The flavor neutrino states v; are connected with states of neutrinos with definite
energies in matter by the mixing relations

M Zn(t)mml(t)m Z ™, l=e . (8.58)

i=1
From (8.53) and (8.54) we have
da(t)
at

U™ (1)i = E™0) U™ (1)a(r) . (8.59)

Let us introduce the function
a ) =U"()a(). (8.60)
From (8.59) and (8.60) we obtain the following equation for the function a’(¢)

’ mT
200 _ pmgy 4 ®

9 9 U ®)a (1) . (8.61)

. . qumt . .
If n, does not depend on ¢ in this case o ar ) = 0. We will assume that the function

n.(t) depends on ¢ so weakly that the second term in Eq. (8.61) can be neglected. In
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this approximation, which is called the adiabatic approximation, the solution of the
evolution equation

. 0d'(1)
1

y SETO a'(r) . (8.62)

can be easily found. We have
d'(t) = e~ Jo EM0dt 1 0y (8.63)

From this equation follows that in the adiabatic approximation the neutrino remains
on the same energy level during evolution.

From (8.60) and (8.63) we find the following adiabatic solution of the evolution
equation in the flavor representation

a(t) = U™(1) e Jo E"(dt ymati 0y 4 (0. (8.64)

From this expression follows that in the adiabatic approximation the probability of
the transition v; — vy during the time ¢ is given by the expression

P (v, — vy) = |Z Ul (t) e Jo EP @t U™ (0))° . (8.65)

1

Because in the adiabatic approximation the neutrino remains on the same energy
level, the v; — vy transition amplitude has a very simple structure, similar to
the structure of the transition amplitudes in the case of the vacuum and a matter
with a constant density : U;7*(0) is the amplitude of the transition from the state of

the initial v; to the state with energy E;(0) ; the factor e~* Jo EM 041 describes the
propagation in the state with energy E"; U7} (¢) is the amplitude of the transition
from the state with energy E}"(¢) to the flavor state vy. The coherent sum over i is
performed.

From (8.65) we find

P (v — vp) = YU U O)
i

+2ReZU;}}(t) (e o EPO=EFO) mx ) M (0). (8.66)

i>k

In the case of solar neutrinos, the transition probability must be averaged over the
central region of the sun, in which solar v, are produced (~10° km), over the energy
resolution etc. After integration over many periods of oscillations, the oscillatory
terms in the transition probability disappear. From (8.66) we find the following
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expression for the averaged probability of the solar v, to survive

3
PP (v, = o) = Y [UZOP UL O). (8.67)

i=1

In the simplest two-neutrino case the mixing matrix in matter U™ () is a real,
orthogonal 2 x 2 matrix:

m, _ [ COS 911%([) sin 9{%([)
vin= (— sin 075 (¢) cos 91"%(1‘)) ) (8.68)

For the second term of the Hamiltonian (8.61) in the two-neutrino case we easily
find

OU™@) o (0 —ifB)
i v (t)_<i9.$(t) R ) (8.69)

The first term of the Hamiltonian (8.61) can be presented in the form

<E{n(z) 0 )
0 ENN»
| —YE™®) - EM@)) 0
_ m m 2372 1
= 2(E1 )+ E3(1) + ( 0 YER®) - E{“(t)))
(8.70)

The first term of (8.70), proportional to the unit matrix, can be omitted. The
Hamiltonian in the evolution equation (8.61) has the form

o (—i(E;‘l(;) ~EP@) i) ) _ 71
i073(1) YER (@) — EP)
Let us introduce the parameter of adiabaticity

(E3'(1) — ET (1)

Ao () :
210

y@) = (8.72)

The solution of the evolution equation (8.61) is adiabatic if nondiagonal elements of
the matrix (8.76) are much smaller than the diagonal elements, i.e. if the parameter
of adiabaticity is much larger than one:

y(®) > 1. (8.73)
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8.5 Two-Neutrino Case

The average survival probability of solar v,’s in matter is given in the three-neutrino
case by the following expression®

P (Ve — ve) = [Ugs|* + (1 — [Us3|H)? P, (Ami,, 612) (8.74)

Ve—> Ve

where P{’fe S (Am%z, 012) is the two-neutrino transition probability. From the data
of the Daya Bay, RENO and Double Chooz reactor experiments follows that
IUe3|2 = sin? 013 >~ 2.2 - 10~2. Thus with an accuracy of a few % the v, survival
probability is given by the two-neutrino expression P} (Am%z, 612). The two-
neutrino v, — V, survival probability is usually used in the analysis of the solar
neutrino data.

We will consider here in some details the propagation of the solar neutrinos in
matter in the case of the two-neutrino mixing.

For neutrino fields we have
Ver, = COSO12v1L + 8inB12v2y, Vur = —SinBipvip + cosbOiovoy, (8.75)

where a = p, t. The Hamiltonian of neutrino in matter in the flavor representation
has the form (proportional to the unit matrix term is omitted)

—Am?yc0s201 + A(x)  Am3,sin261n
Am?, sin 201, Am?, cos 201, — A(x)

H™ () =< ) . (8.76)

Here A(x) = 2/2Gpne(x)E, Am3, =m3 —m? > O and x ~ 1.
The real, symmetrical, traceless 2 x 2 matrix (8.75) can be easily diagonalized
(see Appendix A). We have

H™(x) = U™ (x)E™ (x)U™ (x) . (8.77)

Here Ejj(x) = E(x)8;x and U™ (x) U™ (x) = 1. The eigenvalues of the matrix
H™(x) are given by

1 .
M) = Fur \/ (Am?, cos 2012 — A(x))2 + (Am?, sin 20;,)? (8.78)

3It is instructive to obtain this expression in the vacuum case. We have P(v, — v,) =
Am?,
i Am . .

| Z?: 1 1Uei |2e7 2E |2. For the average probability the effect of interference due to the large Am%3

AAmzl.
disappears. We find P(v, — v,) = U3 |* + | Zi:l,z |U,i|?e 2 2. Finally, taking into account
that |U,; |2 = (1 — |Ues|?) cos? 012 and |Uz|? = (1 — |Ues|?) sin® 812 we come to the following

2
expression P(v, — v,) = Us* 4+ (1 — U322 — sin? 2012 sin? A4mE‘2 ).
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The matrix U™ (x) has the form

U () = < cos O3 (x) sin6} (x)) (8.79)
—sin6}3(x) cos 6] (x) '

where the mixing angle 6™ (x) is determined by the equation

Am%2 sin 260

tan 20 (x) = .
12(*) Am?, cos 2012 — A(x)

(8.80)

States of the flavor neutrinos are connected with the states of neutrinos with definite
energy |v1,2(x))™ by the following mixing relation

[Ve) = cos 85 (x) vy (x))™ + sin 675 (x)|v2 (x))™
[vg) = —sin 912(x)|v1(x)) + cos le(x)lvz(x))m . (8.81)

From (8.78) and (8.80) it follows that at the point xg at which the condition
Am?, 082012 = A(xg) = 2v/2G FE ne(xg) (8.82)

is satisfied, the mixing in matter is maximal and the difference of the neutrino
energies is minimal:

Am%z sin 201>

o =
12(XR) E

(E3'(xR) — ET'(xR)) = (8.83)

b4
4’
This condition is called the MSW resonance condition.

The electron density n.(x) is maximal in the center of the sun and decreases
exponentially to its periphery. Neutrinos, produced in the central region of the sun,
are traveling towards the its surface can pass through the resonance region x = xg.
The resonance region is the most important one for the neutrino transition in the
sun.

Let us calculate the adiabaticity parameter y (x) which is determined by the
relation (8.72). From (8.80) we have

do™(x) Am?, sin 20,94 550
dx 2[(Am3, cos 2012 — A(x))2 + (Am3, sin 2012)?] '
Further, from (8.78) and (8.84) we find
[(Am2, cos2012 — A(x))% + (Am2, sin 2912)2]3/2
y(x) = 12 2 (8.85)

2E Am3,sin 2015 |44
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From (8.85) we obtain for the value of the parameter of the adiabaticity at the
resonance point x g the following expression

(Am?, sin 2615)?

(8.86)
2E2V2GFE|Ye |y

v(xR) =

. A 26
Taking into account that 2¢/2G pE = m,‘f (iog) " from this relation we find

Am%2 sin? 2012

y(xg) = . (8.87)
2E cos 2012 | [ |y
The electron density n,(x) can be presented in the form
1
ne(x) = Yep(x)M. (8.88)

Here Y, = :" is the ratio of the electron and nucleon number density, p(x) is the
matter density and M is the nucleon mass.
The sun density p(x) is well described by the exponential function

p(x) >~ p(0) e /"0 (8.89)
Here
R 6.6-10*k (8.90)
07 10.54 ’

where R is the solar radius, and p(0) ~ 150 g/cm’.
From (8.87) and (8.89) for the adiabaticity parameter at the point xg we have

Am%z sin? 2012 ro

y(xr) = 2E cos 20 (8.91)
Let us estimate the parameter y (xg). Taking into account that
Am3, ~7.4.107 eV?, sin® 613 ~0.31 (8.92)
from (8.90) and (8.91) we obtain the following expression
y(xg) ~2.7-10* (MZV) ) (8.93)

In the solar neutrino experiments neutrinos with energies in the range (0.2—15) MeV
are detected. From (8.93) follows that in the whole interval of the detected solar
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neutrino energies

y(xg) > 1. (8.94)

This inequality ensures that transitions of solar neutrinos are adiabatic ones. From
(8.67) for the adiabatic two-neutrino probability of the solar v,’s to survive we find
the following expression

P (v, = 1) = Y [UZ @) UL (0)|* = cos® 03 (x) cos” 0]3(0)
i=1,2

1
+ sin® 03 (x) sin? 015(0) = 5 (14 cos 201 (x) c0s 2015(0)) . (8.95)

The solar v,’s are produced in the central part of the sun and propagate to its surface.
Let us estimate neutrino energies at which the matter term at the production point
A(0) is much larger than Am%2 cos 612 term:

2V2G pEn.(0) > Am3, cosbrs (8.96)
From this inequality we have

Am%2 co0s 201> Am%2 cos20ip M

E > Ey= = .
2V2GFn.(0)  2v2GF Y.p(0)

(8.97)

Using the values (8.92) of the neutrino oscillation parameters, pp ~ 150 g/cm? and
Y. ~2/3 we find Eg >~ 1.8 MeV.
From Eq. (8.80) follows that in the high energy region
E > Eop~ 1.8 MeV (8.98)

the matter neutrino mixing angle in the production region 6™(0) is given by
b4
tan 26015(0) ~ 0, 65(0) 5 - (8.99)

On the surface of the sun A = 0 and 9{‘5 = 012, where 617 is the vacuum mixing
angle. Thus, from (8.95) follows that for the solar v,’s with energies, which satisfy
the condition (8.98), the survival probability is given by the expression

1
P™ (v, — 1) 5 (1 — cos2612) = sin” ;5 . (8.100)
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From (8.92) and (8.100) we obtain the following value of the v, survival probability
in the high-energy region:

P™(ve — v,) >~ 0.31. (8.101)
In the region of neutrino energies significantly smaller than Ey
E « Eg ~ 1.8 MeV (8.102)

the matter term in the production region can be neglected and from (8.80) we find
015(0) = 612. Thus, in the low-energy region the v, survival probability in matter is
the same as in the vacuum

m L. 2
P"(ve = ve) > 1 — ) sin” 201,. (8.103)
From (8.92) in the low-energy region we find
P™(ve — ve) =~ 0.57. (8.104)

In every of the two energy regions, we considered, the v, transition probabilities
practically do not depend on energy and differ approximately by the factor two.
In the transition region a strong energy dependence must be exhibited. Detailed
calculations show that the transition region between low-energy and high-energy
regimes lies in the interval (2-5) MeV.

In the BOREXINO experiment (see later) the “Be neutrinos with energy E =
0.87MeV was detected. For the v, survival probability the value

P™ (v, = v,) = 0.51£0.07 (8.105)

was obtained.
We will finish this section with the following remarks

1. It follows from (8.81) and (8.99) that high energy solar neutrinos (£ > Eq) are
produced in the state with definite energy in matter

[ve) = [v2(0)™ . (8.106)

In the adiabatic transitions during evolution neutrinos stay on the same energy
level. Thus on the surface of the sun the high-energy neutrinos are in the vacuum
state |v).

2. We have considered adiabatic transitions of neutrinos in matter. In the general
case for the averaged two-neutrino v, survival probability in matter we have

PP (v, = ve) = Y [UR ) Py [UZ(0) (8.107)
i,k
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where Py; is the probability of the transition from the state with energy E" at the
point x = 0 to the state with energy E;" at the point x. From the conservation of
the total probability we have

P11=1—P21; P22=1—P12. (8.108)
Further, from the T invariance we have Py; = Pj;. From (8.107) and (8.108)

we obtain the following general expression for the two-neutrino v.-survival
probability

P (b, = 1) = -+ (1 — Ppa) cos 20 cos 26" (0) (8.109)
e e —2 2 12) COS COS .



Chapter 9 )
Neutrinoless Double Beta-Decay Sheiie

9.1 Introduction

Discovery of neutrino oscillations, driven by neutrino mass-squared differences and
neutrino mixing, is one of the most important discovery in the particle physics.
It is unlikely that small neutrino masses are of the standard Brout-Englert-Higgs
mechanism origin. A new, beyond the Standard Model mechanism of the generation
of neutrino masses is required.

The most viable, economical and simple effective Lagrangian (seesaw) mecha-
nism of the neutrino mass generation is based on the assumption of the violation of
the total lepton number at a large scale. This mechanism predicts that neutrinos with
definite masses v; are Majorana particles.

The problem of the nature of massive neutrinos (Dirac or Majorana?) is one of
the most fundamental problem of neutrino physics. The solution of this problem will
have an enormous impact on our the understanding of the origin of neutrino masses
and mixing.

Neutrino oscillations is an interference phenomenon sensitive to very small
values of neutrino mass-squared differences. However, by the investigation of
neutrino oscillations it is impossible to decide on the nature of neutrinos v;: are
they Dirac or Majorana particles. In order to reveal the nature of neutrinos with
definite masses it is necessary to study processes in which the total lepton number
L is violated.

The neutrinoless double B-decay (OvBB-decay)

(A,Z) > (A, Z+2)+e +e ©.1)

of 70Ge, 130Te, 136X e and other even-even nuclei is allowed if v; are Majorana neu-
trinos. The study of the OvpBB-decay is the most sensitive method of the investigation
of the nature of neutrinos with definite masses. However, the probability of the
process is very strongly suppressed because, first, the OvgB-decay is a process of the

© Springer International Publishing AG, part of Springer Nature 2018 147
S. Bilenky, Introduction to the Physics of Massive and Mixed Neutrinos,
Lecture Notes in Physics 947, https://doi.org/10.1007/978-3-319-74802-3_9


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-74802-3_9&domain=pdf
https://doi.org/10.1007/978-3-319-74802-3_9

148 9 Neutrinoless Double Beta-Decay

second order of the perturbation theory in the Fermi constant G ¢ and, second, this
process is due to neutrino helicity-flip. As a result, the matrix element of the OvB8-
decay is proportional to the effective Majorana mass mgg = ), Uezl.m,- (m; is the
mass of the neutrino v;, U,; is the element of the neutrino mixing matrix). Smallness
of the neutrino masses is an additional reason for smallness of the probability of the
OvBB-decay.

Up to now the neutrinoless double B-decay was not observed. From performed
experiments impressive lower bounds for life-time of the OvBS-decay of some nuclei
were obtained ( Tlo/”z(l%Xe) > 1.1-10% years, Tlo/"2(76Ge) > 5.2-10% years etc.).
However, in order to reach half-lives of the OvB8S-decay suggested by the neutrino
oscillation data significant improvement is required. Several new experiments on
the search for the OvBB-decay which could probe the region of the inverted neutrino
mass hierarchy are at preparation at present.

Let us compare OvBB-decay with the following lepton number violating pro-
cesses

Kt > a +ut+put 9.2)
and
u~ +Ti— et +Ca. 9.3)

If v; are Majorana particles these processes are allowed and their matrix elements
are proportional to

Ml =1 Upimil and |myel =1y Uui Uei mil, (9.4)
i i

correspondingly. Taking into account the Cauchy-Schwarz inequality and the
unitarity of the mixing matrix, we have

| < \/Z|Uzi|2m,? \/Zwmzs;nw, ©.5)
i i

where m;,q 1S the mass of the heaviest neutrino. From the data of tritium
experiments on the measurement of the neutrino mass (see the next chapter) it
follows that m,,,, < 2.2 eV . Thus, we have

|myr| <2.2eV. (9.6)
The sensitivities to the parameter |m | and |m .| of experiments on the search

for the processes (9.2) and (9.3), correspondingly, are much worse than the upper
bound (9.6).
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From exiting data it was found

Tkt — a7 utuh)

<3.107° 9.7
F(K+ —al) — ©.7)

and

I'(u~Ti = etCa)

. <1.7-107'2. (9.8)
I'(u~Ti — all)

From these results the following bounds were obtained
Imul < 4-10*MeV,  |my.| < 82MeV . 9.9)

Similar bounds can be inferred from the data on the search for other lepton number
violating processes. On the other side from existing experiments on the search for
the OvBB-decay it was found

Mee =mpg < (1.44.5)- 107" eV . (9.10)

The possibilities to use large targets (usually enriched in isotope which could exhibit
BB-decay), to reach small background and high energy resolution make experiments
on the search for the OvBB-decay a unique source of information about the nature
of massive neutrinos v;. In the next sections we will consider this process in some
details.

9.2 Basic Elements of the Theory of OvSg-Decay

We will consider here the basic theory of neutrinoless double S-decay. Assume that
an even-even nucleus (A, Z) has a mass M4,z and the mass of odd-odd nucleus
with the same atomic number (A, Z 4 1) is larger than M4 7. In such a case the
usual B-decay (A,Z) — (A,Z + 1) + e~ + v, is forbidden. If, however, exist
even-even nucleus (A, Z 4 2) with mass smaller than M4 z, the nucleus (A, Z) can
decay into (A, Z + 2) with emission of two electrons via (A, Z) — (A, Z +2) +
e +e +v.+veor(A,Z) > (A, Z+2)+e +e .

Let us consider the even-even nucleus 7°Ge. The decay °Ge — 7°As + e~ + 1,
is forbidden (the 7°As nucleus is heavier than 7°Ge). However, the transition of 7°Ge
into lighter even-even nucleus 7%Se and two electrons is allowed.
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Table 9.1 B candidate

g Transition To = Qpp(keV) Abundance (%)
nuclei 76 76
Ge — 0Se 2039.6 £ 0.9 7.8
100Mo — 100Ry 3934 + 6 9.6
130Te 5 130Xe 2533 +4 34.5
136Xe —» 136Ba 2479 + 8 8.9
150Nd — 199Sm  3367.1 £2.2 5.6
828e — 82Kr 2995+ 6 9.2
BCa — BTy 4271+ 4 0.187

In the first column nuclei transitions are indicated; in the
second column Q-values are shown; in the third column
abundances of S8 candidates are presented

Two types of B-decays are possible
1. Two-neutrino double S-decay (2vB8-decay)

(A,Z) > (A, Z+2)+e +e +Vve+Ve. 9.11)
2. Neutrinoless double S-decay (OvB8-decay)
(A, Z) > (A, Z+2)+e +e . 9.12)

In Table 9.1 a list of several even-even nuclei, which can have the Sg-decay, is
presented.

The 2vBB-decay is allowed, second order in the Fermi constant G r, very rare
process. This decay was observed in the case of more than ten different nuclei with
half-lives in the range (10'8-102%) years.

The OvBB-decay is allowed only in the case if the total lepton number is not
conserved and neutrinos with definite masses are Majorana particles. We will
consider this process assuming that neutrinos have the standard charged current
interaction

Hi(x) = j’; 2200y verL(x) j£ € (x) +hec. (9.13)

Here G F is the Fermi constant and
3
Ver(¥) = Y Ui vir(x) (9.14)
i=1

where v;(x) is the field of the Majorana neutrino with the mass m; (Vf(x) =
Cvl (x) = vi(x))

JSC ) = cosbc ju(x), (9.15)



9.2 Basic Elements of the Theory of OvBB-Decay 151

Fig. 9.1 Feynman diagram
of the neutrinoless double
B-decay

where j,(x) is the AS = 0 hadronic weak charged current and ¢ is the Cabibbo
angle.

The neutrinoless double S-decay is the second order in G process with the
virtual neutrinos. The Feynman diagram of the transitionn +n — p+ p +e~ +
e~ is presented in Fig.9.1. The matrix element of the OvBB-decay is given by the
following expression

(1sm =4 (G” °0890>2
2! V2

X Ny Ny / L (p1)e Py (O[T (ver, (1) v (x2))10)

x yPT al (p2)e' P2 (N T (Jo (x1)Jp (x2)IN;) d*x1d*x2 — (p1 2 p2).
(9.16)

Here p; and p, are electron momenta, Jy(x) is the weak charged current in the
Heisenberg representation, N; and N are the states of the initial and the final nuclei

with 4-momenta P; = (E;,pi) and Py = (Ef,pg) and N, = (2n)3/;J2p0 is the
standard normalization factor. Let us consider the neutrino propagator. From the

Majorana condition we have

vl (x) = -0 C. 9.17)
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Taking into account (9.17) we find'

1- i 1-
O (et eyl @)10) = = 7 3 VR OITtenieceanloy -7 €
k
I—ys L / i ey Y M 4 1—ys
- _ U2, et (x1—x2) . d*q C
2 Zk: ¢ (27‘[)4 q2 — m]% 2
i ) 4 (x1—x2) i 1=y
=~ )t ZUekmk/ pom T4, C (9.18)
k k

It follows from (9.18) that, in accordance with the theorem on the equivalence of
theories with massless Majorana and Dirac neutrinos, the matrix element of the
OvBB-decay is equal to zero in the case of massless neutrinos. This is connected
with the fact that only left-handed neutrino fields enter into the Hamiltonian of the
weak interaction.

Let us consider the second term of the matrix element (9.16). We have

i (p)y“( —ys)yPCif (p2) = i (p)C v (1 = vy i) (p1)
= —ir(p)yP (1 — ys)yeCil (p1) . (9.19)
Taking into account (9.19) and the relation
T (Jp(x2)Jo(x1)) = T (Ju (x1) Jp(x2)) (9.20)

we find that the second term of the matrix element (9.16) is equal to the first one.
For the matrix element of the OvB-decay we obtain the following expression

GFC089C>2

V2
_ . i 5 e—iq (x1—x2) i-
x NplezfuL(Pl)elpmVa Q2m) ZUekmk/ 7 , d°q
k

—my

(£18%1i) =—4<

1— ) .
. PBC AT (p)elP 2 (N f|T (Jo(x1) Jp (12))|Ni) d*x1d*xs.

2
9.21)

INotice that in the case of the Dirac neutrinos (O\VEL(xl)vZL(xz)\O) =

T
IEVS >k Ufk (Olvk(xl)va(xg)\O)1 2V5 = 0. The neutrinoless double B-decay is obviously
forbidden in the Dirac case.
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The calculation of the nuclear part of the matrix element of the OvB8-decay is a
complicated nuclear problem. There exist several approximate methods which are
used in such calculations. We will present now the matrix element of the OvBg-
decay in a form which is usually used in calculations of the nuclear part of the
matrix element.

Let us perform in (9.21) the integration over the time variables xg and x?. The

integral over xg can be presented in the form

oo )C? oo
/ odx? =/ ...dx§+/ dx . (9.22)
—0o0 —0oQ XO

1

In the first integral we have x? > xg . In this region we can perform integration over

@ in the expression (9.21). We find>

i e iq(x1—x2) 1 e—ia ) —xD+iq(xi—x2)
/ 4 / dq, (9.23)

- qg= _
et | g2 —m? @2n)3 23

where

Q= \/(q)2 +m2 . (9.24)

In the second integral of the expression (9.22) we have x? < xg. In this region we

find

i eidi—x) 1 il () Ha )
A 20 T O
qc —my qk

Let us consider the matrix element (N |T (Jo (x1) Jg(x2))|N;). From the invariance
under the translations we have

Ja () = €M g e (1 (0,%) = Ju(x), (9.26)
where H is the total Hamiltonian. Using this relation at x? > xg we find

(NfIT (Jo(x1) Jp(x2))|Ni) = (N | Jo(x1) Jp (x2)|Ni)

. 0 . 340
=Y el ErEO  EnmEDS (N | T (1) [ Np) (N | Jp(x2)INi). (9.27)
n

Here | N,,) is the vector of the state of the intermediate nucleus with four-momentum
P, = (E,, pn) and the sum over the total system of states |NV,) is performed. In the

2We took into account that in the propagator mi — mf —ie.
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region x? < xg we have

(NfIT (Jo(x1) I (x2))INi) = (Nl Ja(x2) Jp(x1) | N;)

P - 0 - _F )40
=Y Erm B o EnmEDYUN | o (x2) [ Na) (N Jp(x1)N;). (9.28)
n
From Egs. (9.23) and (9.27) we find

0
00 x| ) -
/ dx?/ dXSUVfI Jo(x1)J (Xz)|Nl_)et(p?x?+p3x§)ezq£(xg—x?)
—00 —00

_ Z (N gl Jo(X1)[Np)(Nn| Jg(x2)|N;

! 2n8(Ef + P + pY — Ep).
E,+p)+3q) — Ei —ie Frhrm R

n

(9.29)

Analogously, from (9.25) and (9.28) we obtain the following relation
00 00 ~
f dx” / xS (NF 1 Ja(x2) T (XD IN; Yl (P11 +P0xD) gide () 1)
—0o0 Xl

_ Z (Ny| Jg(x2)[Np)(Nu| Jo(X1)|N;

g 278(Ef + p + pd — Ep).
En+p)+q)—Ei —ie .

n

(9.30)
In Eqgs. (9.29) and (9.30) we used the relations
0 ;o0 0 0 . : 0 0 _i
/ e dxd — f OO Gy = lim (9.31)
—oo —00 e—0a —1e
and
%o 0 0 o . 0 0 . i
f el dxd — / OHON g = lim . (9.32)
0 0 e>0a -+ 1€

which are based on the standard assumption that interaction is turned off at £o00.
Taking into account all these relations, for the matrix element of the neutrinoless
double B-decay we find the following expression

2
(fISPliy =i (GF;O;@C)

XNp, Np,it (p1)y®yP (1 + ys)CﬁT(pz)/d3x1d3x1e*"l’1"1*il’2x2
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1 el (17x2) (Nl Joa(x1)|Np)(Nn| Jg(X2)|N;)
<3 U2m, / . d3q[z 71 Ja 1N (N p(x2)INi
qi n E,+ py +q, — Ei — i€

+Z Nyl Jg(x2)|Np)(Nn| Jo(x1))|Ni)

A ) 2n8(Ef + pY+ p) — Ei). (9.33)
E,+ p)+qy — Ei —ie ] pmAm R

n

Equation (9.33) is the exact expression for the matrix element of the OvgB-decay
in the second order of the perturbation theory. We will consider major 0% — 0T
transitions of even-even nuclei. For these transitions the following approximations
are standard ones.

1. Small neutrino masses can be safely neglected in the expression for the neutrino

energy é,? = \/ q%+ m%, q = |q|. In fact, from the uncertainty relation for the
average neutrino momentum we have ¢ >~ 1/r, where r is the average distance
between two nucleons in a nucleus. Taking into account that r ~ 10~ 3 cm,
we find that ¢ >~ 100MeV. For the neutrino masses we have the upper bound
my < 1eV. Thus, we have c},? ~gq.

2. Long-wave approximation. We have |px - Xx| < |pk|R =~ Al/3 100”1(‘46\, k =
1,2; R ~1.2-10"13 A3 ¢cm is the radius of the nucleus). Taking into account
that pr < 1MeV, we obtain e "P¥* ~ 1. Thus, in the OvBS-decay the two
electrons are produced predominantly in the S-states.

3. Closure approximation.

The energy of the virtual neutrino ¢ ~ 100MeV is much larger than the
excitation energy of the intermediate states of a nucleus (E, — E;). Taking this
into account we can replace the energy of intermediate states E, by average
energy E. In this approximation (which is called the closure approximation) we
can perform the sum over the total system of intermediate states |N,) in the
matrix element (9.33).

Let us consider energy denominators in (9.33). In the laboratory frame we
have

0 0 0 0
pi+p pi—p M; +M
E+q+p) ,—M; = E+( 12 SE 12 2)tq—M; ~ g+E— ' 7
(9.34)
0_.0
where we take into account that ' ! 5 Pl <« ¢ and neglect nuclear recoil.

We have

Z (Nfl Ja (XD |Np) (Nn| Jp(x2)|Ni) + Z (Ngl Jp(x2)INp) (Np| Jo (x1)N;)
Ey+p3+q) — Ei —ie Ey+p) +q) — Ei —ie
1

= oy (NpL (Ja(x) T (X2) + g (x2) Ja (1)) [Ni).  (9.35)
(43"

n n
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4. The nonrelativistic impulse approximation for the hadronic charged current
Jo (X):

Jo(X) = Za(x — 1) Tl gap P (4P, (9.36)
n
where gy is metric tensor (goo = 1, gii = —1, gop = 0, @ # B) and
. o, Xq o,-q
I2a = gv(g?), Ju(g) = ga(@®)on +igmu(q? "2M —gr(q?) 2"% 3(17-)

Here gv(¢?), g4(¢%), gm(¢>) and gp(g?) are CC vector, axial, magnetic and
pseudoscalar formfactors of the nucleon, o; and t; are Pauli matrices, 74 =
; (71 +i12) and index n runs over all nucleons in a nucleus. We have gy (0) = 1,
8a(0) = ga =~ 1.27 and gy (0) = wp — n (up and p, are the anomalous
magnetic moments of the proton and the neutron). From PCAC it follows that the
pseudoscalar formfactor is given by the expression gp(¢2) = 2Mga/(q*> + m%).

The approximate matrix element of the Ov8S-decay has the form

G cosvc
V2
£l (X1—X2)

1
w [ Bridn /fq (N 1 (Ja (x1) T (%)
/ 27)3 q (q LE- Mi';Mf) [ )

+J502) Ju (1)) INi} | 20 8(M + p) + p§ — M. 9.38)

2
(fISPi) = imgp ( ) Nplezﬁ(pl)J/aJ/ﬁ(l +ys5)Cii” (p2)

where

mpp =Y Ugpmi (9.39)
k

is the effective Majorana mass.

Let us stress that the matrix element of the Ovgp-decay is proportional to the
effective Majorana neutrino mass. This is a general consequence of the neutrino
mixing, of the smallness of neutrino mass with respect to the neutrino momentum
and of the fact that fields of neutrinos with definite masses are left-handed fields.

It is obvious that ! 7! = 0. Thus, in the impulse approximation we have

Jo(x1) Jg(x2) = Jp(x2) Ju(X1). (9.40)
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Further, the matrix y®y# in the leptonic part of the matrix element (9.38) can be
presented in the form

1
b =g 4 5 P —yPy®). (9.41)

It follows from (9.40) that the second term of this relation does not give contribution
to the matrix element. Further from (9.36) we find

Jo(x1)Jp(x2)gF = " 8(x1 —1)8(xa — tu) LT () T —Jn - Im)  (9.42)

n,m

Taking into account all these relations after the integration over x; and x; from
(9.38) for the matrix element of the OvBB-decay we find the following expression

G 9c\? 1
(f1871i) = imgg ( " C) i(p) (1 +y5)Ci” (p2)
@)%/}
1 3 lqrnm 0,0 B '
x<Nf|(;; 2y’ fd T s M+Mf)r+r+ 8 = Jud) ) 1N
x2w8(Ms + pi + pd — M), (9.43)

where rp,;;, = r;, — ;. We have q -y = g rum cos 0. After the integration over the
angle 6 we find

1 / 4Tum 34 1 /00 sin(grum) dq
@n)* ) qg+E — J(M; + My)) = 2720 Jo qg+E— (M + My)
(9.44)

The matrix element of the OvgB-decay takes the form

. . G Fcosvc 2 1
(f18%)i = —imgg ( F ) " L 0+ v ()
\/2 2(27)6 \/pO 0
xM® 8(p) + p3 + My — M), (9.45)

where R is the radius of the nucleus and the nuclear matrix element M° is given
by the expression

M = (Wr| Y H(rum, E)TLT (Judm — T I IW:). (9.46)

n,m
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Here

H(rym, E) =

2R /°° sin(g rpm) dq 9.47)
0

T Fom q+E— M +Myp)

and |¥;) and |¥) are wave functions of the initial and final nuclei.
The major contribution to the nuclear matrix element of the OvBg-decay give
vector and axial terms in (9.37). Taking into account only these terms we have

1
MY =gy | MOy — MY ). (9.48)
8A
Here
M?}VT = (¥y] Z H(rpm, E) tﬁrjr" oo™ |Y;) (9.49)
n,m
is the Gamov-Teller matrix element and
MY = (Wy| Y H(ram, E) 4Tl W) (9.50)
n,m

is the Fermi matrix element.

The function H (ry,,,, E) is called a neutrino potential. Taking into account that
qg >» E — (M; + My)/2, for the neutrino potential we obtain the following
approximate expression

2R [* sin(g r) 2R /7 R
H(r) ~ / dg = ( ): . 9.51)
wr Jo q mr \2
Let us calculate now the probability of the OvBS-decay. We have
~r =7 T 2
> |@ eoa + @) |
ry,r2
=Tr[(1+y5)(y - p2 —me)(1 — y5)(y - p1 +me)]
=8pi-p2. (9.52)

From Egs. (9.45) and (9.52) for the decay rate of the OvBB-decay we find the
following expression

Gr cos@c)4
(2m)5R?
XF(E\, (Z+2))F(E2, (Z+2))|p1llp2|sin@ d0dEy.  (9.53)

(
dr® = mgg|* | M2 (E1E2 — |p1llp2| cos 0)
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Here E| 2 = p(l)’2 are the energies of the emitted electrons (E2 = M; — My — Ey)
and 6 is the angle between the electron momenta p; and p». The function F(E, Z)
describes final state electromagnetic interaction of the electron and the nucleus. For
a point-like nucleus it is given by the Fermi function

27
— e 27y’

F(E.Z)= n=Za 'Z". (9.54)

From (9.53) follows that for the ultra relativistic electrons 8-dependence of the
decay rate is given by the factor (1 — cos ). Thus, ultra relativistic electrons can
not be emitted in the same direction. This is connected with the fact the high-energy
electrons produced due to CC weak interaction have negative helicity. If the two
electrons are emitted in the same direction, the projection of their total angular
momentum on the direction of the momentum is equal to —1. In 0T — 07 nuclear
transitions this configuration is forbidden by angular momentum conservation.

From Eq. (9.53) for the half-life of the neutrinoless double S-decay (A, Z) —
(A, Z+2)+ e + e we find the following expression

Ov

r
5 = Imps? M”12 G Q. 2). 9.55)

Ovy—1
(Tl/vz) :ln

where the phase-space factor is given by>

G"(0,27) = ! (GF cosOc)*
: 2In2Q2r)s T

1 2 T
x / aT; / sin6d6 |py|lp1| (E1E2 — |pilp2] cos 6)
0 0
< F(Ey, (Z +2)) F(Ex, (Z +2)). 9.56)

Here T1 = E| — m, is the Kinetic energy the electronand Q = M; — My — 2m, is
the total released kinetic energy.

Thus for small Majorana neutrino masses the total rate of the OvBB-decay is the
product of three factors:

1. The modulus squared of the effective Majorana mass.
2. Square of nuclear matrix element.
3. The known factor G%(Q, Z).

The values of the factor G (Q, Z) for OvBB-decays, which are searching for in
different experiments, are presented in Table 9.2. The problem of calculation of
nuclear matrix elements we will discuss later in this chapter. The effective Majorana
mass is given by the relation mgg = Y, Uezk my. Neutrino mixing angles and

3 An additional factor 1/2 is due to the fact that in the final state there are two identical electrons.
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Tz:)l:le 9.2 The phase factor 0vBg transition ~ G%(Q, Z)(10~20 years—! eV~2)
G (.Q., Z) for some OvBp 76Ge — 76Se 0.9049
transitions IOOM() . IOORU 6.097

130Te 5 130Xe 5446

36xe —» 136By  5.584

I0Nd — 159sm  24.14

825e — 82Ky 3.891

BCa — Ti 9.501

neutrino mass-squared differences were determined from the data of the neutrino
oscillation experiments. Taking into account existing data, we will consider now
expected values of the effective Majorana mass.

9.3 Effective Majorana Mass

In order to determine the effective Majorana mass

3
Impg| = IZ UZmy| (9.57)
k=1

we need to know absolute values of neutrino masses and elements of the Majorana
neutrino mixing matrix which in the standard parametrization have the form

U,1 = cosB3cos leei&', U,y = cos 03 sin leei&z, U,3 = sin 913ei&3 (a3 = —9),
(9.58)

where «; are Majorana phases.

From neutrino oscillation data we know the values of the neutrino mixing angles
and two mass-squared differences (solar Am% and atmospheric Amﬁ). The value
of the smallest neutrino mass m,,;, and Majorana phases are unknown parameters.
From the data analysis it was established that the solar mass-squared difference is
much smaller than the atmospheric one:

Am% 1 9.59)
N .
Amy 30

For three massive neutrinos two types of neutrino mass spectra are possible. Usually,
neutrino masses are labeled in such a way that Am%2 = m% - m% > 0 and Am%2 =
Am%. For the third mass m3 there are two possibilities. Correspondingly, there are

two possible neutrino mass spectra:
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1. Normal ordering (NO)
mp < mp < ms, Am%3 = Ami. (9.60)

For the neutrino masses we have in this case
2 m_o,=\/Am124~|—Am§~|—m2

2
mj = Mmin, M2 = \/Ams +m s min®

2. Inverted ordering (10)
my <my <my, |Amiy| = Am? (9.61)

For the neutrino masses in the IO case we have

m3 = Mmin, M| = \/Am% + mrznin’ mz = \/Am% + Am% + mrznin'

Three neutrino mass spectra are of a special interest.

9.3.1 Hierarchy of the Neutrino Masses

m; K my K m3. (9.62)
In this case we have
my < \/Amg ~8.7-107%eV?,  my \/Amg, ms =~ \/Ami. (9.63)

Neglecting the contribution of m; and using the standard parametrization of the
neutrino mixing matrix we find

|mpg| =~ cos? 013 sin? 012 \/Amg + e %sin 03 \/Ami (9.64)

Here o = a3 — &3 is (unknown) Majorana phase difference.
The first term in Eq.(9.64) is small because of the smallness of Am%. The

contribution of the “large” Am%4 to |mpg| is suppressed by the small factor sin” 013.
Using the best fit values of the parameters we have

cos® D13 sin? ﬁlz\/Amé ~3.1073 eV, sin? 1913\/Am124 ~1-103eV. (9.65)

From (9.64) and (9.65) we find the following expected range for the effective
Majorana mass in the case of the normal hierarchy of the neutrino masses

2x 1073 eV < Impg| <4 x 1073 eV. (9.66)
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Thus, expected values of the effective Majorana mass |mgg| in the case of the
normal hierarchy is significantly smaller than the expected sensitivity of the future
experiments on the search for OvgB-decay (see later). Observation of the OvgS-
decay in this case will be a real challenge.

9.3.2 Inverted Hierarchy of the Neutrino Masses

For the neutrino masses we have in this case

Am

2
m3 K \/Am%, mp \/Am%, my > \/Ami‘ 1+ S2 ). 9.67)
A

2Am

In the expression for the effective Majorana mass |mgg| the lightest mass m3 is
multiplied by the small parameter sin? 63. Neglecting the contribution of this term

2
and also neglecting the small term ZAA’:Sz in (9.67) we find
A

mppl = cos? 013/ Am3, (1 —sin® 20612 sin® a)?, (9.68)

where @ = a» — o is the only unknown parameter in this expression.
From (9.68) we find

cos’ 013 cos20q2 \/Ami < |mgg| < cos? 013 \/Ami, (9.69)

where upper and lower bounds corresponds, respectively, to equal and opposite CP
parities of v; and v, in the case of CP conservation in the lepton sector.* Using the
values of the parameters in Eq. (9.69) we have

2x 1072 < jmpg] <5 x 1072 eV. (9.70)

The anticipated sensitivities to the effective Majorana mass of the next generation
of the experiments on the search for the Ov8g-decay are in the range (9.70). Thus,
the future OvBB-decay experiments will probe the inverted hierarchy of the neutrino
masses.

4 In fact, from CP invariance follows that U,; = Ujni, where n; = =i is the CP parity of
the Majorana neutrino with mass m;. From this condition we find Qi = n;. Thus, we have
el —ay) — plie — nani- If n2 = n1 we have @ = 0, 7 (the upper bound in Eq. (9.69)), and if
12 = —ny we have @ = £ /2 (the lower bound in Eq. (9.69)).
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9.3.3 Quasi-Degenerate Neutrino Mass Spectrum

If mmin > \/Am% ~ 5.1072 eV the spectrum of neutrino masses is quasi-
degenerate

mip =X mpy = m3 = Mmnpin- (9.71)
For the Majorana neutrino mass we have in this case
|mpgl > a mupin, (9.72)

where a = | Zf’: 1 Uezl. |. Neglecting the contribution of the small angle 613 we have

a=(1—sin®26p sin@)?, cos26pp <a<l1. (9.73)

Notice that in the case of the quasi-degenerate neutrino mass spectrum the value
of mmpin can be determined from experiments on the measurement of the effective
neutrino mass mg via investigation of the end-point part of the tritium B-spectrum
(see the next chapter). We have

Mmin = Mg. (9.74)

We have considered three neutrino mass spectra with the values of mp;, of a special
interest (very small or relatively large). In Fig.9.2 the effective Majorana mass for
the case of normal and inverted neutrino mass ordering as a function of mp;p is
presented. Uncertainties of the parameters Am%, Ami and sin® f1, and possible
values of the Majorana phase differences are taken into account in Fig.9.2. Notice
that for the normal neutrino mass ordering in the region (2 - 1073 < mpi, < 7 -
x1073) eV the Majorana neutrino mass is very small.

9.4 On the Nuclear Matrix Elements of the OvS3-Decay

The effective Majorana mass |mgg| is not a directly measurable quantity. From the
measurement of the half-life of the OvBp-decay only the product of the effective
Majorana mass and nuclear matrix element can be obtained (see relation (9.55)).
If the OvBB-decay will be observed, it will be proved that neutrinos with definite
masses are Majorana particles and total lepton number is violated. However, in order
to determine very important quantity m gg we need to know nuclear matrix elements
(NME) which must be calculated.
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Fig. 9.2 Effective Majorana mass for the normal, inverted and quasi-degenerate neutrino mass
spectra as a function of mp;, (arXiv:1411.4791)

The calculation of NME is a complicated nuclear problem. Five different
many-body approximate methods have been used for the calculation of NME of
neutrinoless double-8 decays of different even-even nuclei:

¢ Nuclear Shell Model (NSM).

* Quasi-Particle Random Phase Approximation (QRPA).
 Interacting Boson Model (IBM).

* Energy Density Functional Method (EDF).

* Projected Hartree-Fock-Bogoliubov Method (PHFB).

The consideration of these many-body methods is out of the scope of this book.
In Table 9.3 we present ranges of calculated values of NME of the Ov88 decays
of some nuclei of experimental interest. In the third column of Table 9.3 ratios
of maximal and minimal values of the nuclear matrix elements and in the fourth
column ranges of expected halve-lives of the OvS8 decays under the assumption
that [mgg| = 0.1 eV are presented.

As it is seen from Table 9.3 there is about one order of magnitude difference
between different model calculations of halve-lives of the Ovgg-decay. Thus, the
present situation with the calculation of NMEs is far from satisfactory. Further
progress in mandatory. Taking into account a complexity of the problem of reliable
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Table 9.3 Calculated values of |M”|, ratio “%?)Uv‘l‘“f‘x and half-lives of the OvBp-decay of some

nuclei of experimental interest, calculated under the assumption that [mgg| = 0.1eV

» ov T (mp=0.1eV)
B transition [ “%o‘, “":?: 1/2[ ln(léﬁ year]e
76Ge — 76Se 3.59-10.39 2.9 1.0-8.6

100\ o — 100Ry 4.39-12.13 2.8 0.1-0.8

130T _, 130xe 2.06-8.00 3.9 0.3-4.3

136xe —» 13684 1.85-6.38 3.4 04-52

150Ng — 150§m 1.48-5.80 3.9 0.1-1.9

82Ge — 82Ky 3.41-8.84 2.6 0.3-2.2

BCa — BTy 0.89-4.14 4.6 0.6-13.3

treatment of many-body nuclear system it will be also important to find a way to
check different calculations of NMEs of the Ovg88-decay.

Let us notice that NME for 7°Ge and heavier nuclei, calculated in the framework
of the Nuclear Shell Model, practically do not depend on a nucleus. It follows from
(9.55) that in this case the ratio of halve-lives of different nuclei is determined by
the ratio of known phase space factors:

T)HA. Z) G0, 7)) ©.7%)
ThALZ) G 2) '
Thus, observation of the OvBB-decay of two and more nuclei would allow to check
NSM. If the relation (9.75) would be in agreement with experiment this would allow
to determine |mgg| and to check the three-neutrino mechanism of the OvB8-decay.

9.5 Experiments on the Search for OvB#-Decay

If neutrinos with definite masses are Majorana particles, neutrinoless double B-
decay of some even-even nuclei is allowed but, as we discussed before, the
probability of the decay is extremely small. Experiments on the observation of this
process are very challenging.’ Main signature of the process is a monochromatic
peak in distribution of the sum of energies of two electrons (which in the case of the
OvBB-decay is equal to the energy release in the nuclear transition Q). There are,
however, different sources of background such as 2vB§-decay, natural radioactivity,
cosmic rays etc.

SIf |m ppl = \/ Ami ~5.1072 eV (inverted hierarchy) in one ton of isotopically enriched detector
about one OvBB-decay event per year is expected.
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In experiments on the search for the OvgB-decay

 very high energy resolution is required;

* background level must be very low;

* high detection efficiency must be reached;

* large mass of isotopes, for which Ovgg-decay is allowed, must be used.

In order to reach low background, OvBB experiments must be performed in
underground laboratories, low-radioactivity materials for detectors have to be used
and effective shielding against external radioactivity must be provided.

At present there exist data of many experiments on the search for OvgB-decay
of different nuclei. Up to now no evidence for the OvgBB-decay was found. We will
briefly discuss only recent experiments in which the best sensitivity was reached.

1. In the GERDA experiment (Gran Sasso underground laboratory) the OvB8-decay
of 7°Ge ("°Ge — 76Se + ¢~ + e™) is searched for. Germanium detectors with
76Ge fraction, enriched from 7.8% (natural abundance) to 87%, are employed in
the experiment. Detectors operate in radio-pure liquid argon LAr used for cooling
and for shielding against external background.

In the Phase-I of the experiment the lower bound Tf'/"z > 2.1-10% year
(90%CL) was obtained with an exposure 21.6kgyear and background B =
0.01 e\c,olfgmyse o+ Len germanium detectors with total mass 17.6 kg were deployed
in the Phase I.

In the Phase-II, started in December 2015, 37 enriched germanium detectors
with total mass 35.6kg were used and the level of the background (0.71“3):;) .

1073 counts ke kgyear at Q = 2039 & 0.007 keV was reached. No Ovpg signal

counts
was observed. Combing data of Phase I and Phase II it was found that Tlo/"2 >
5.3 - 10 year (90%CL). Taking into account existing uncertainties of NME for
the effective Majorana mass the following upper bound |mgg| < (0.15-0.33) eV
was obtained.

2. The OvBp-decay of 130Xe (136Xe — !3Ba 4 e~ + e7) is searched for in
the KamLAND-Zen experiment (Kamioka underground Observatory). In this
experiment a balloon filled with 13 ton Xe-loaded liquid scintillator is imbedded
in the center of the KamLAND detector (1 kton of liquid scintillator). In the
Phase-I of the experiment 320 kg of enriched xenon gas (90.6% of '3°Xe) was
dissolved in the liquid scintillator. After 89.5 kg year of exposure it was found
the following bound 77, > 1.9 - 10 year (90%CL).

In the Phase-II of the experiment after purification of the Xe-loaded liquid
scintillator the significant reduction of the background was achieved. Combining
Phase-1 and Phase-II results, the limit Tlo/"2 > 1.07 - 10%° year (90%CL) was
obtained. From this limit for the effective Majorana mass it was found |mgg| <
(0.06-0.16) eV.

3. In the EX0-200 experiment (WIIP underground site in New Mexico) the Ovg-
decay of 130Xe is investigated. In this experiment Time Projection Chambers are
filled with 200 kg of enriched liquid xenon (80% of '3°Xe). The background level
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B=(1.740.2)-1073 ke@‘)ﬁ‘gmysear and energy resolution 3.5% at Q = 2.458 MeV

are reached. The lower bound Tlo/"2 > 1.1 10% year (90%CL) was obtained in
the EXO-200 experiment. From this bound for the effective Majorana mass the
following upper bound |mgg| < (0.19-0.45) eV was inferred.

4. In the cryogenic CUORE-0 experiment (Gran Sasso underground laboratory) the
neutrinoless double B-decay of '39Te (130Te — 139Xe + ¢~ 4 ¢™) was searched
for. In this experiment TeO» crystals are arranged in a tower (total mass 39 kg and
130Te mass, due to natural abundance, is 10.9kg). The energy resolution (5.1 =+
0.3) keV and the background B = 0.058 $3'"'* keV kg year were reached in the
CUORE-0 experiment. After 9.8 kg year of exposure the lower bound Tlo/"2 >2.7-
10%* year (90%CL) was found. Combining data of the CUORE-0 experiment and
of the previous experiment CUORECINO it was obtained Tlo/"2 > 4.0 10%* year
(90%CL). From this result the following upper bound |mgg| < (0.27-0.76) eV
was inferred.

5. In the NEMO-3 experiment (Frejus Underground Laboratory) the Ovg8-decay of
the different nuclei (100M0, 828e, 967r, 48Ca, 150Nd) was investigated. Electrons
in this experiment were identified by the curvature in the magnetic field and their
energy was measured in the calorimeter. The most stringent bound was obtained
for 199Mo (7 kg of enriched Mo was utilized). For half-live it was found the
following lower bound Tlo/"2 > 1.1-10%* year (90%CL). From this result it follows
that [mgg| < (0.3-0.9) eV.

Future experiments on the search for neutrinoless double S-decay are aimed to
probe inverted hierarchy region (|mgg| = (a few) 1072 eV).

The GERDA cryostat will host a 200kg germanium detector. The sensitivity of
this detector will reach Tlo/"2 ~ 1 - 10%7 year. The 200 kg experiment could be a first
step for a 1 ton experiment with sensitivity Tf'/"z ~ 1- 10?8 year which corresponds
to lmpg| =~ (1-2) - 1072 eV,

The KamLAND-Zen collaboration plan to increase the volume of Xe-loaded
liquid scintillator which will be loaded with 800 kg of enriched Xe. This will allow
to probe |mpg| >~ 5- 1072 V.

The next step of the EXO experiment will the nEXO experiment with 5 ton
of enriched Xe and sensitivity Tlo/"2 ~ 6 - 10?7 year. After 5 years of running the

collaboration plan to reach |mgg| >~ (1.5-2.5) - 1072 eV.

In the cryogenic CUORE experiment (741 kg of TeO, with 206 kg of 88 nuclei
130Te) the sensitivity Tlo/"2 ~ 9.5.10% year is planned to be reached. Such sensitivity
correspond to [mgg| == (5-15) - 102 eV.

Several other high-sensitivity experiments on the search for the OvB8-decay are
in preparation: Majorana ("°Ge), SNO+ (139Te), COBRA (!16Cd), SuperNEMO
(32Se), CANDELS (*8Ca), NEXT (139Xe) and others.



Chapter 10 )
On Absolute Values of Neutrino Masses Chack for

10.1 Masses of Muon and Tau Neutrinos

We have seen in the previous sections that neutrino oscillation experiments allow
us to obtain the values of the neutrino mass-squared differences. Information about
the absolute values of the neutrino masses can be inferred from experiments on
the precise measurement of the kinematics of decays of different particles, from
cosmological data and from experiments on the measurement of the neutrinoless
double B-decay.

In this section we will briefly discuss an information on “masses” of muon and
tau neutrinos.!

The most precise upper bound on the mass of the muon neutrino was obtained
from the measurement of the muon momentum in the decay

at = ut 4, (10.1)

From the energy-momentum conservation for the mass of neutrino, produced in the
decay 7t — putv,, we find the following expression

2 —mkml - 2mn\/m§ T (p)?, (10.2)

m
where m; and m, are masses of the pion and muon and p,, is the momentum of the
muon (in the pion rest frame).

I Let us notice that in the case of the neutrino mixing the states of the flavor neutrinos v,, v, vy
are not states with definite masses. However, if the spectrum of the neutrino masses is degenerate
(m; > \/ Am%4 ~25-1072eV?) only common (minimal) neutrino mass mpyj, can be determined
from experiments on the investigation of different decays.
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In the most precise PSI experiment for the muon momentum the value
Py = (29.79200 £ 0.00011) MeV (10.3)
was found. From (10.2) and (10.3) it follows that
m%ﬂ = (—0.016 £ 0.023) MeV. (10.4)
This result implies the following upper bound for the muon neutrino mass
my, < 190 keV. (10.5)

The upper bound for the mass of the tau neutrino was obtained from a study of the
decays

T2 +xt v, T o3 42+ @Y 4 vr (10.6)
in the ALEPH experiment (CERN). From this experiment was found the bound

m,, < 18.2MeV. (10.7)

10.2 Effective Neutrino Mass from the Measurement
of the High-Energy Part of the 8-Spectrum of Tritium

The most stringent upper bound on the absolute value of the neutrino mass was
obtained from the precise measurement of the high-energy part of the -spectrum
of tritium

3SH >3 He4 e +v,. (10.8)

The effective Hamiltonian of the S-decay is given by the expression
GF ., .
MG = \/223LVaVeL j% +h.c., (10.9)
where j¢ is the hadronic charged current and

Vel = Z Uiivip (10.10)
i

is the mixed field of the electron neutrino.
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The B-spectrum of the decay (10.8) is given by the following expression
ar 2drl}
= Ui , 10.11
IE Z Vail® | (10.11)
where

dar;
dEl = Cp(E~|—me)(Eo—E)\/(Eo —E)2? - ml2 F(E)O(Eoy—E—m;). (10.12)
Here p and E are the momentum and kinetic energy of the electron, Ey ~ 18.6keV
is the energy release and F (E) is the Fermi function, which describes the Coulomb
interaction of the final electron and 3He nucleus. The constant C is given by the
expression

2 .5
c= 9" o ocimP, (10.13)
273
where m, is the electron mass, 6¢ is the Cabibbo angle and M is the nuclear matrix
element. Let us stress that the nuclear matrix element is a constant and the shape of
the electron spectrum of allowed tritium decay (10.8) is determined by the phase
space factor. The neutrino mass m; enters in (10.12) only through the neutrino
momentum p; = \/(Eo — E)? — ml2
As is seen from (10.12), the largest distortion of the electron spectrum can be
observed in the region Enax — E =~ m;, where Eqax = Eg — m; is the maximal
electron energy. However, for m; ~ 1 eV only a very small fraction (about 2-10713)
of the tritium decays give a contribution to this region. In order to increase the
luminosity of the tritium experiments a much larger part of the §-spectrum is used
for the analysis of the effect of the neutrino mass. Taking into account experimental
conditions we have

mg

2
,Z‘/(EO — B —m}|Uq|” = (Eo - E) (1 + ks _E)z) ~ J(Eo— B2 = m,
(10.14)

where
mp = \/Z Uei |2m2. (10.15)
i

is the effective neutrino mass. The tritium electron spectrum takes the form

I L e +mo)E —E)\/(E — E) —m? F(E) (10.16)
JdE — P e 0 0 B . .
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In order to measure the distortion of electron spectrum due to small neutrino mass
any experiment must have

* ahigh energy resolution,
* a well-known spectrometer resolution,
* intense tritium source and ability to detect a large number of decays.

The best upper bounds on the effective neutrino mass m g were obtained in the Mainz
and Troitsk tritium experiments. In the Mainz experiment, frozen molecular tritium
condensed on the graphite substrate was used as a tritium source. The electron
spectrum was measured by an integral spectrometer with a retarding electrostatic
filter which combine high luminosity with high resolution (4.8 eV). In analysis of
the experimental data four free parameters were used: the normalization C, the
background B, the released energy Eq and the effective neutrino mass-squared m%
From the fit of the data it was found that Eg = 18.575¢eV.

For the determination of the effective neutrino mass the last 70eV of the
spectrum was used in the experiment. From the combined analysis of all data it
was found

my=(~12+£22£2.1)eV>. (10.17)

From (10.17) the following upper bound for the effective neutrino mass was
obtained

mg <23eV (95% CL). (10.18)

In the Troitsk tritium experiment a windowless gaseous molecular source was used.
The electron spectrum was measured by an integral electrostatic spectrometer of
the same type as in the Mainz experiment. The resolution of the spectrometer was
(3-4)eV.

In the fit of the Troitsk data the same four free parameters, as in the Mainz
experiment, were used. From the analysis of the data, for the parameter m% it was
found

mpy = (0.67 £2.53) eV?. (10.19)

From (10.19) the following upper bound for the effective neutrino mass was
obtained

mg < 2.12 eV (Bayesian statistics), mg < 2.05 eV (Feldman—Cousins).
(10.20)

The experiment of the next generation on the measurement of the neutrino mass
will be the Karlsruhe Tritium Neutrino Experiment (KATRIN). In this experiment
two tritium sources will be used: a gaseous T source, as in the Troitsk experiment,
and a frozen tritium source, as in the Mainz experiment. The integral spectrometer
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with a retarding electrostatic filter will have two parts: the pre-spectrometer, which
will select electrons in the last ~100eV part of the spectrum, and the large
main spectrometer. It will have high luminosity, low background and high energy
resolution (1eV).

It is anticipated that after 5 years of running a sensitivity to the effective neutrino
mass 0.2 eV at 95% CL will be reached and the mass mg = 0.35eV (mg = 0.30eV)
can be measured with 5 o (3 o) significance.

An ambitious future Project 8 tritium experiment will be based on a new
technology of the measurement of the endpoint tritium electron spectrum by the
Cyclotron Radiation Emission Spectroscopy technique. In this experiment gaseous
atomic trittum will be stored and decay in an uniform magnetic field. Magnetically-
trapped electrons execute cyclotron motion and produce microwave radiation. The
energy of the electron determines the frequency of the radiation. The precise
measurement of the frequency allows to obtain excellent energy resolution. At
the kinetic energy of electron 18.6keV (tritium end-point energy) the energy
resolution 1 eV can be achieved if electron is trapped and observed during several
microseconds. At the final phase of the Project 8 experiment the sensitivity mg =~
4.1072 eV is planned to be achieved. In case of the inverted hierarchy of neutrino

masses mg - \/Ami ~ 5.1072 eV. Thus the Project 8 experiment will probe TH
neutrino mass spectrum.



Chapter 11 )
Neutrino Oscillation Experiments Shethie

11.1 Introduction

A long period of the searching for neutrino oscillations started in 1970 with
the Homestake solar neutrino radiochemical experiment by Davis et al. In this
experiment, the observed rate of solar v, was found to be two to three times smaller
that the rate, predicted by the Standard Solar Model (SSM). This discrepancy was
called the solar neutrino problem.

Before the Homestake experiment started, B. Pontecorvo suggested that because
of neutrino oscillations the observed flux of the solar neutrinos might be two times
smaller than the predicted flux.! After the Davis results were obtained the idea of
neutrino oscillations as a possible reason for the solar neutrino deficit became more
and more popular.

In the eighties, the second solar neutrino experiment Kamiokande was per-
formed. In this direct-counting experiment a large water-Cherenkov detector was
used. The solar neutrino rate measured by the Kamiokande experiment was also
smaller than the rate predicted by the SSM.

In the Homestake and Kamiokande experiments high-energy solar neutrinos,
produced mainly in the decay of 8B, were detected. The flux of these neutrinos
is about 10™* of the total solar neutrino flux and the predicted value of the flux
depends on the model.

In the nineties new radiochemical solar neutrino experiments SAGE and
GALLEX were performed. In these experiments neutrinos from all reactions of
the solar pp and CNO cycles, including low-energy neutrinos from the reaction
pp — detv,, were detected. This reaction gives the largest contribution to the
flux of the solar neutrinos. The flux of the pp neutrinos can be predicted in a
model independent way. The event rates measured in the SAGE and GALLEX

" At that time only v, and v,, were known.
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experiments were approximately two times smaller than the predicted rates. Thus,
in these experiments important evidence was obtained in favor of the disappearance
of solar v, on the way from the central region of the sun, where solar neutrinos are
produced, to the earth.

Another indications in favor of neutrino oscillations were obtained in the nineties
in the Kamiokande and IMB neutrino experiments in which atmospheric muon and
electron neutrinos were detected. These neutrinos are produced in decays of pions
and kaons, created in interactions of cosmic rays with nuclei in the atmosphere,
and in decays of muons, which are produced in the decays of pions and kaons. It
was found in these experiments that the ratio of the numbers of v, and v, events is
significantly smaller than the predicted (practically model independent) ratio.

On the other side, no indications in favor of neutrino oscillations were found
in the eighties and nineties in numerous reactor and accelerator short baseline
experiments.”

A first model independent evidence in favor of neutrino oscillations was obtained
in 1998 in the water-Cherenkov Super-Kamiokande experiment. In this experiment
a significant up-down asymmetry of the high-energy atmospheric neutrino muon
events was observed. It was discovered that the number of up-going high-energy
muon neutrinos, passing through the earth, is about two times smaller than the
number of the down-going muon neutrinos coming directly from the atmosphere.

In 2002 in the SNO solar neutrino experiment evidence in the favor of the
disappearance of solar v, was obtained. In this experiment solar neutrinos were
detected through the observation of CC and NC reactions. A Model independent
evidence of the disappearance of solar v, was obtained. It was shown that the flux
of the solar v, is approximately three times smaller than the flux of v, v, and v;.

In 2002 in the KamLAND reactor neutrino experiment a model independent
evidence in favor of oscillations of reactor antineutrinos was obtained. In this
experiment was found that the number of reactor v, events at the average distance
of ~180km from the reactors is about 0.6 of the number of the expected events.
In 2004 a significant distortion of the v, spectrum was observed in the KamLAND
experiment.

All these experiments complete the first period of the brilliant discovery of
neutrino oscillations. It was proven that neutrinos have small masses and that the
flavor neutrinos ve, vy, v; are “mixed particles”. All observed data can be described
if we assume the three-neutrino mixing. The values of four neutrino oscillation
parameters (two-mass squared differences and two mixing angles) were determined.

The muon neutrino disappearance were observed in the accelerator long-baseline
K2K, MINOS and later T2K and NOvA experiments. These experiments confirm
the results obtained in the pioneer atmospheric Super-Kamiokande experiment.

Oscillations of atmospheric and accelerator neutrinos (solar and reactor Kam-
LAND neutrinos) are determined mainly by the large mass-squared difference Ami

2Notice that the spectrum of the reactor v, was recently recalculated. As a result, old reactor data
are considered at present as an indication in favor of active-sterile neutrino oscillations (see later).
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and large mixing angle 63 (small mass-squared difference Am% and large mixing
angle 612). During many years from the reactor CHOOZ experiment only upper
bound for the small mixing angle 613 was known.

The angle 03 determines subdominant v, < v, oscillations of accelerator and
atmospheric neutrinos and disappearance of reactor antineutrinos driven by the
atmospheric mass-squared difference. First evidence in favor of v, < v, oscil-
lations was obtained in the accelerator T2K experiment. In 2012-2016 the angle
013 was measured with high precision in the reactor Daya Bay, RENO and Double
Chooz experiments. This was very important development in the investigation of
a new phenomenon, neutrino oscillations. The way to the determination of the
character of the neutrino mass spectrum (normal or inverted mass ordering?) and
to the measurement of the C P phase § was open.

In this chapter we will briefly discuss the major neutrino oscillation experiments.

11.2 Solar Neutrino Experiments

11.2.1 Introduction

Solar v,’s are produced in reactions of the thermonuclear pp and CN O cycles in
which the energy of the sun is generated. The thermonuclear reactions are going on
in the central, most hot region of the sun. In this region the temperature is about
15 - 106 K. At such a temperature the major contribution to the energy production
is given by the pp cycle. The estimated contribution of the CNO cycle to the sun
energy production is about 1%.3

The pp cycle starts with the pp and pep reactions

p+p—d+et+v, and p+e +p—d+v,. (11.1)

The pp reaction gives the dominant contribution to the deuterium production
(99.77%). The contribution of the pep reaction is 0.23%.
Deuterium and proton produce *He in the reaction

p+d—3He+y. (11.2)

Nuclei *He disappear due to the following three reactions

SHe+’He »*He+p+p (84.92%). (11.3)
He+ p »>* He+ e + v, (about 1077%) (11.4)
He +*He —»' Be+y (15.08%) (11.5)

3In stars significantly heavier than the sun the central temperatures are higher and the CNO cycle
gives important contribution to the energy production.
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In the first two reactions “He is produced. Nuclei ’Be, produced in the third reaction,
take part in two chains of reactions terminated by the production of “He nuclei

"Be+e” — 'Li+ve, 'Li+ p—*He+*He. (11.6)
and
p+ ' Be 8B4y, 3B-8Be*+et+v, %Be* >*He+*He. (11.7)

Positrons annihilate with electrons and produce photons. Thus, the energy of the sun
is generated in the transition*

4p+2¢~ > He+2v.+ 0, (11.8)
where
Q = 4mp 4 2m, — may, ~ 26.73 MeV (11.9)

is the energy produced in the transition (11.8).> From (11.8) follows that the
production of %Q ~ 13.36 MeV is accompanied by the emission of one neutrino.
Let us consider a neutrino with energy E. The production of such neutrino is
accompanied by the emission of luminous energy equal to ;Q — E. If ¢,(E) is
the flux of neutrinos from the source r (r = pp,7 Be’B, .. .) on the earth, we have
the following relation

1 Y
Zf(zg—m ¢r(E)dE = ") (11.10)

where %% is the luminosity of the sun and R is the sun-earth distance.

The relation (11.10) is called luminosity relation. It is a general constraint on
the fluxes of solar neutrinos. The luminosity relation is based on the following
assumptions

1. The solar energy is of thermonuclear origin.
2. The sun is in a stationary state.

4 The CN O cycle is the following chain of reactions: p 4+ '2C — BN+ y, BN — BC 4 ¢t +
Ve, p+13C = UN+y, p+ N> B0+ y,50 - BN + et + v,. There are two branches
of reactions with nuclei '°N, terminated with the production of *He: p + SN — 12C 4 *He or
P+ N 100 49, p+100 = TE 4+ 3, 1TF 5 170 4 et 41, p+ 170 — N+ “He.
5The energy, produced by the sun, is emitted in the form of photons (about 98%) and neutrinos
(about 2%).
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Table 11.1 Solar neutrino-producing reactions and SSM neutrino fluxes

Abbreviation Reaction SSM flux (cm~2s™!)  Neutrino energy (MeV)
22 p+p—>d+et +v, 5.97 (1 +£0.006) - 1010 <0.42

pep pte +p—>d+tv, 1.41 (14£0.011) - 108 1.44

"Be e~ +7"Be — "Li+ v, 5.07 (14£0.06)-10°  0.86

8B 8B — 8Be* + et + v, 594 (1£0.11)- 106 <15

hep He + p — *He+e™ +v, 7.90(1+0.15)-10° <188

3N BN — BCH+et +v, 2.88 (1£0.15) - 108  <1.20

150 50 - BN +et + v, 2151 +0.17)-108 <173

17p TF 5 170 4 ¢t 41, 5.82 (1 +£0.19) - 10° <1.74

The last assumption is connected with the fact that neutrinos observed in a detector
were produced about 8 min before the detection. On the other side it takes about 10°
years for photons produced in the central region of the sun to reach its surface.

We can rewrite the luminosity relation in the form

0 2
Z(z —E,) D=, o (11.11)
Here
E, = q; /E¢,(E) dE (11.12)

is the average neutrino energy from the source r and @, = [ ¢,(E) dE is the total
flux of neutrinos from the source r.

The calculation of neutrino fluxes from different reactions can be done only in the
framework of a solar model. Usually the results of the Standard Solar Model (SSM)
calculations are used.® In Table 11.1 we present SSM fluxes of v, from different
reactions. In this Table we included also SSM fluxes from the following reactions
of the CNO cycle: N — 13C + ¢t 4+ 1,, O - BN + et + v, and 'F —
70 + e* + v,. In the last column of Table 11.1 neutrino energies are given.

It is evident from Table 11.1 that the second term of the luminosity rela-
tion (11.10) is much smaller than the first one. If we neglect this term, we find

5The Standard Solar Model is based on the assumption that the sun is a spherically symmetric
plasma sphere in hydrostatic equilibrium. The effects of rotation and of the magnetic field are
neglected.
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Fig. 11.1 Predicted by the Standard Solar Model spectra of solar neutrinos from different
reactions

the following estimate for the total flux of neutrinos

“o
b = D, ~ . 11.1
Yoox, %, a

Taking into account that % = 2.40-10%° MeV s~! and R = 1.496-10'3 cm we find
@ ~6-100cm?s7!. (11.14)

In Fig. 11.1 predicted by the SSM spectra of neutrinos from different reactions are
presented.

11.2.2 Homestake Chlorine Solar Neutrino Experiment

The pioneer experiment, in which solar electron neutrinos were detected, was the
Homestake experiment by R. Davis et al.” The experiment continued from 1968 till
1994.

7For this experiment R. Davis was awarded with the Nobel Prize in 2002.
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In the Davis experiment radiochemical chlorine-argon method, proposed by
B. Pontecorvo in 1946, was used. Solar electron neutrinos were detected through
the observation of the reaction

Ve +37C1 — e~ + ¥Ar. (11.15)

The 37 Ar atoms are radioactive. They decay via electron-capture with emission of
Auger electrons. The half-life of the decay is 34.8 days.

A tank filled with 615 tons of liquid tetrachloroethylene (C2Cls) was a part of the
detector in the Davis experiment. In order to decrease the cosmic ray background,
the experiment was performed in the Homestake mine (USA) at depth of about
1480 m (4100 m water equivalent). The radioactive 3’ Ar atoms, produced by solar v,
via the reaction (11.15) during the exposure time (about 2 months), were extracted
from the tank by purging with “He gas. About 16 atoms of 37 Ar were extracted
during one exposure run. The gas with radioactive 3’ Ar atoms was placed into a
low-background proportional counter in which the signal (Auger electrons) was
detected. An important feature of the experiment was the measurement of the rise
time of the signal. This allowed to suppress the background.

The energy threshold of the Cl-Ar reaction is equal to 0.814 MeV, i.e. it is larger
than the maximal energy of pp neutrinos, constituting the major part of the solar
neutrinos flux (see Table 11.1). At high ®B energies the transition to an excited state
of 37 Ar significantly increase the cross section of the process (11.15). As a result,
the dominant contribution to the counting rate give the high energy ®B neutrinos.
The SSM contribution of the 3B neutrinos to the event rate is approximately equal to
5.8 SNU.® The SSM contribution to the event rate of ’Be neutrinos is approximately
equal to 1.2 SNU. Other much smaller contributions come from pep and CNO
neutrinos.

The averaged over 108 runs (between 1970 and 1994) event rate, measured in the
Homestake experiment, is equal to

Ral = (2.56 £ 0.16 0.16) SNU (11.16)

The measured event rate is significantly smaller than the rate predicted by the SSM
(under the assumption that there are no neutrino oscillations):

(Rc)ssy = 8.6 £1.2 SNU (11.17)

11.2.3 Radiochemical GALLEX-GNO and SAGE Experiments

Neutrinos from all solar neutrino reactions, including low-energy neutrinos from the
pp reaction, were detected in the radiochemical gallium GALLEX-GNO and SAGE

8The solar neutrino unit (SNU) is determined as follows:1 SNU = 10~ %events atom™! s~!.
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experiments. In these experiments neutrinos were detected by the radiochemical
method through the observation of the reaction

ve +'Ga = ™ + "' Ge, (11.18)

in which radioactive 7' Ge was produced. The threshold of this reaction is equal to
0.233 MeV. The half-life of 7' Ge is equal to 11.43 days.

The detector in the GALLEX-GNO experiment was a tank containing 100 tons
of a water solution of gallium chloride (30.3 tons of 7'Ga). The experiment was
done in the underground Gran Sasso Laboratory (Italy). During 1991-2003 there
were 123 GALLEX and GNO exposure runs. The duration of one run was about 4
weeks. About 10 atoms of "!Ge were produced during one run. Radioactive 7!Ge
atoms were extracted from the detector by a chemical procedure and introduced
into a small proportional counter in which Auger electrons, produced in the capture
e~ + 1Ge — "'Ga + v,, were detected.

The measured event rate averaged over 123 runs is equal to

Rga = (67.5£5.1) SNU. (11.19)
The SSM event rate
(Rga)ssm = (128 13) SNU. (11.20)

is about two times larger than the measured rate.

The major contribution to the SSM predicted event rate comes from the pp
neutrinos (69.7 SNU). Contributions of "Be and ®B neutrinos to the SSM event
rate are equal to 34.2 SNU and 12.1 SNU, respectively.

In SAGE gallium experiment about 50 tons of 7!Ga in the liquid metal form
were used. The experiment was done in the Baksan Neutrino Observatory (Caucasus
mountains, Russia) in a hall with an overburden of 4700 m of water equivalent.
Neutrinos were detected through the observation of the reaction (11.18). An
exposure time in this experiment was about 4 weeks. The 7'Ge atoms, produced
by the solar neutrinos, are chemically extracted from the target and are converted to
GeHy. Auger electrons, produced in decay of germanium, were detected in a small
proportional counter.

The germanium production rate, measured in the SAGE experiment, averaged
over 92 runs (1990-2001) was equal to

Rca = (70.833(stat) 137 (syst)) SNU. (11.21)

As it is seen from (11.19) and (11.21), the rates measured in the SAGE and in the
GALLEX-GNO experiments are in a good agreement.
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11.2.4 Kamiokande and Super-Kamiokande Solar Neutrino
Experiments

In radiochemical experiments the neutrino direction can not be determined. The first
experiment in which the neutrino direction was measured was Kamiokande. It was
proved that the detected neutrinos were coming from the sun.

In the Kamiokande experiment a 3000 ton water-Cherenkov detector was used.
The experiment was done in the Kamioka mine (Japan) at a depth of about 1000 m
(2700 m water equivalent).

In the Kamiokande experiment the solar neutrinos were detected through the
observation of recoil electrons in the elastic neutrino-electron scattering

Vet+e—>ve+e (x=e, i, 1) (11.22)

All types of flavor neutrinos could be detected via observation of the process (11.22).
However, the cross section of v, ; — e scattering is significantly smaller than the
cross section of v, — e scattering (o (v, e — vy e) =~ 0.16 o (v.e — v.e)). Thus,
mainly the flux of solar v, was measured in the Kamiokande experiment.

Solar neutrinos were detected via the observation of the Cherenkov radiation of
electrons in water. About 1000 large (50 cm in diameter) photomultipliers, which
covered about 20% of the surface of the detector, were utilized in the experiment.
Because of the contamination of Rn in the water it was necessary to apply a 7.5 MeV
energy threshold for the recoil electrons.

At high energies recoil electrons are emitted in a narrow (about 15°) cone
around the initial neutrino direction. In the experiment a strong correlation between
the direction of recoil electrons and the direction to the sun was observed This
correlation was an important signature which allowed to suppress background and
to prove that the observed events were due to solar neutrinos.

Because of the high threshold mainly ®B neutrinos were detected in the
Kamiokande experiment. The total flux of high energy ®B neutrinos obtained
from the data of the Kamiokande experiment was equal to

oK = (2.804+0.1940.33) - 10°cm 2571, (11.23)

The ratio of the measured solar neutrino flux to the flux predicted by the SSM (under
the assumption that there are no neutrino oscillations) was equal to R¥ = 0.51 +
0.04 £ 0.06.

The Kamiokande result was an important confirmation of the existence of the
solar neutrino problem, discovered in Davis et al. in the Homestake experiment.’

9In 1987 the Kamiokande Collaboration (and also the IMB and Baksan Collaborations) observed
neutrinos from the explosion of the supernova SN1987A. This was the first observation of
supernova neutrinos. The experiment confirmed the general theory of the gravitational collapse.
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The Kamiokande experiment was running during 9 years from 1987 till 1995.
In 1996 the Super-Kamiokande, experiment of the next generation, started. In this
experiment a huge 50kton water-Cherenkov detector (fiducial volume 22.5 kton)
was used.

There were four phases of the Super-Kamiokande experiment. The SK-I phase
started in 1996 and finished in 2001. In this phase 11,146 photomultipliers (PMT)
were used. In 2001 an accident happened in which about 60% of PMTs were
destroyed. After about a year, the data-taking started with 5182 photomultipliers
(SK-II). This phase finished in 2005. In 2006 SK-III started with 11,129 PMTs. The
fourth phase of the experiment started in 2006 and finished in 2014.

During the SK-I phase the threshold for the kinetic energy of the recoil electrons
was 6 MeV (first 280 days) and 4.5 MeV for the remaining days. In the SK-IV phase
the recoil electron threshold was 3.49 MeV. Due to high threshold only ® B and hep
neutrinos where detected in the Super-Kamiokande experiment.

Improvement in the electronics, in the water circulation system, in calibration
and in methods of analysis allowed to reach in the SK-IV much smaller systematic
uncertainty than during other phases of the experiment. The measured in the SK-IV
flux of the solar neutrinos is equal to

@SV — (2,308 4 0.020 (stat.) 4 0.039 (syst.) - 106cm ™2 s~ 1, (11.24)
Combining the results of all Super-Kamiokande phases it was found
@5K = (2.345 4 0.014 (stat.) & 0.036 (syst.) - 106 cm ™25~ !, (11.25)

Due to the earth matter effect the fluxes of solar neutrinos during day and during
night must be different (in the night flux it must be more v, than in the day flux).
The high statistics of the events allowed the Super-Kamiokande Collaboration to
measure the day-night asymmetry. In the SK-IV it was found

Ap_N = (=3.6 £ 1.6 £ 0.6)% (11.26)

No distortion of the spectrum of recoil electrons with respect to the expected
spectrum was observed.'? From analysis of the all SK data for the solar neutrino
mass-squared difference the following value was obtained

Am% = (4.873) - 1077 eV, (11.27)

10The initial 8B solar neutrino spectrum is determined by the weak decay 8B — et + v, + 2a.
This spectrum can be obtained from the laboratory measurement of the «-spectrum. The fact that
the electron spectrum, measured in the Super-Kamiokande experiment, is in an agreement with
the expected spectrum means that in the high-energy ®B region the probability of the solar v, to
survive is a constant.
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From the SK-IV data for the parameter sin? 01, it was found

sin® 61, = 0.32770:036. (11.28)
From the analysis of all SK data it was obtained

sin® 61, = 0.3341003]. (11.29)

Finally, from the fit of all solar and KamL AND data (assuming that the parameter
sin’ 63 is given by the reactor value (see later)) it was found

Am% = (7497012 - 107 V2, sin? 61, = 0.30770913. (11.30)

11.2.5 SNO Solar Neutrino Experiment

The fluxes of solar neutrinos, measured in the Homestake, GALLEX-GNO, SAGE,
Kamiokande and Super-Kamiokande experiments, were significantly smaller than
the fluxes, predicted by the Standard Solar model. From the analysis of the data
of these experiments, strong indications in favor of neutrino transitions in matter,
driven by neutrino masses and mixing, were obtained.

The first model-independent evidence for transitions of solar v, into v, and vy
was obtained in the SNO solar neutrino experiment. The SNO detector was located
in the Creighton mine (Sudbury, Canada) at a depth of 2092 m (5890 + 94 m water
equivalent). The detector consisted of the transparent acrylic vessel (a sphere, 12 m
in diameter) containing 1kton of pure heavy water D,O. About 7kton of H,O
shielded the vessel from external radioactive background. An array of 9456 PMTs
detected Cherenkov radiation produced in the D>O and H;O.

A crucial feature of the SNO experiment was the detection of the solar neutrinos
via three different processes.

1. The CC process
Ve+d—>e +p+p. (11.31)
2. The NC process
vwt+d—>vi+p+n (x=e u, 1) (11.32)
3. Elastic neutrino-electron scattering (ES)

Ve t+e—> v te. (11.33)
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The CC and ES processes were observed through the detection of the Cherenkov
light produced by electrons in the heavy water. The NC process was observed via
the detection of neutrons. There were three phases of the SNO experiment in which
different methods of the detection of neutrons were used.

e The NC neutrons were captured in DO and produced 6.25 MeV y-quanta in the
reaction n +d — 3H + y. During Phase I the Cherenkov light of secondary
Compton electrons and e™ — e~ pairs was detected.

* In Phase II of the SNO experiment about two tons of NaCl were dissolved in the
heavy water. Neutrons were detected through the observation of y-quanta from
the capture of neutrons by 3>Cl nuclei. For thermal neutrons the cross section of
this process is equal to 44 barn while the cross section of the process nd — >Hy
is equal to 0.5 mb. Thus, the addition of the salt significantly enhanced the NC
signal.

e In Phase III an array of proportional counters was deployed in the heavy water.
Neutrons were detected through the observation of the reaction n+3He — p-+>H
in which proton and *H had a total kinetic energy 0.76 MeV. Charged particles
in the proportional counters produced ionization electrons and the induced by
them voltage was recorded as a function of time. This technic allowed to reduce
background significantly.

The SNO Collaboration started to collect data in 1999. The last phase was finished
in 2006. The SNO threshold for the detection of the electrons from the CC and the
ES processes was equal to Ty = 5.5 MeV. The neutrino energy threshold for NC
process is 2.2 MeV (the deuterium bounding energy). Thus, in the SNO experiments
mostly high energy solar 8B neutrinos were detected.

The initial spectrum of v, from the 8B decay is known. It was obtained from the
measurement of a-spectrum from the ®B decay. The SNO and other solar neutrino
data are compatible with the assumption that in the high-energy ®B region v, — v,
survival probability is a constant.

From the observation of the CC events for the flux v, the following value was
obtained

@€ = (1.68 £ 0.06 (stat.) ") 05 (syst.)) - 10°em ™25~ (11.34)

Because of the v, — v, — v; universality of the NC neutrino-hadron interaction the
observation of NC events allows to determine the total flux of all flavor neutrinos. In
the SNO experiment was found that the total flux of all flavor neutrinos is equal to

@Q\fl = (5.25£0.16 (stat.) T0 13 (syst.)) - 10°em 257! (11.35)
The value (11.35) of the total flux of all flavor neutrinos is in agreement with the
flux of the ®B neutrinos predicted by the Standard Solar Model (see Table 11.1).
The SNO experiment solved the solar neutrino problem. If we compare the flux of
v, with the total flux of v, v, and v;, we come to the model independent conclusion
that solar v, on the way from the sun to the earth are transformed into v, and v;.
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From the three-neutrino analysis of the SNO and other solar neutrino data
and also data of the reactor KamLLAND experiment for the neutrino oscillation
parameters the following values were obtained

Amy = (141702107 V2, tan? 61 = 0.4467093 sin® 63 = 2.5718.1072.
(11.36)

11.2.6 Borexino Solar Neutrino Experiment

Due to very low background in the Borexino solar neutrino experiment low energy
pp, ' Be and pep neutrinos and also high energy 3 B neutrinos were detected.

The Borexino detector is located in the Gran Sasso underground laboratory
(Italy). It consists of concentric shells of increasing radio-purity. The Inner Detector
is a nylon vessel which contains 280 tons of liquid scintillator. It is surrounded
by layers of buffer liquid and highly purified water which allows to suppress
background of cosmic muons.

The Borexino collaboration are taking data since 2007. In the Phase I of the
experiment (2207-2010) rates of solar pp, ' Be and pep neutrinos were measured
and a bound on the flux of CNO neutrinos was obtained. In the Phase II, started in
2011, the rate of pp neutrinos was determined.

The solar neutrinos are observed in the Borexino experiment through the
detection of recoil electrons from the elastic neutrino-electron scattering

Vvyt+e—> v +e, x=e,u,rt. (11.37)

The scintillation light is detected by 2212 PMTs uniformly distributed on the
inner surface of the detector. The measurement of the scintillation light allows to
determine the energy of the electrons. There is no information about the direction
of the electrons. Because the energy threshold in the Borexino experiment must be
low, the major requirement is an extremely low radioactive contamination of the
scintillator (9—10 order of magnitude lower than the natural radioactivity).

In the reaction 'Be + e~ —’ Li + v, neutrino with the energy 0.86MeV is
produced. The signature of 0.86 MeV v, is a characteristic Compton-like spectrum
with a shoulder at about 660keV. The ’Be rate was obtained from the fit of the
data in which contributions of decays of 85 Kr, 210Bi, 11C and 2'%Po were taken into
account. For the interaction rate of the 'Be neutrinos it was found the value

Rrg. = (46 £ 1.5 (stat.) &= 1.5(syst.)) cpd/(100 tons), (11.38)

where cpd = counts/(day). Assuming that the probability of 7 Be electron neutrino
to survive is given by the standard MSW value for the flux of 7Be neutrinos
from (11.38) we find

@5 = (4.43+0.22)-10° cm 257" (11.39)



188 11 Neutrino Oscillation Experiments

The pep neutrinos have an energy 1.44MeV. Taking into account the major
background from the ''C decay in the Borexino experiment for the pep rate was
obtained

Rpep = (3.1 £0.6 (stat.) & 0.3(syst.)) cpd/(100 tons), (11.40)
For the flux of pep neutrinos it was found
&PP = (1.63+£0.35) - 108 cm 2571, (11.41)

From the fit of the data (in which the pep rate was fixed at the value (11.40)) for the
rate of the CNO neutrinos the following upper bound was obtained

Rcno < 7.4 cpd/(100 tons). (11.42)
This bound implies the following bound for the CNO neutrinos
&N <7.7.10%em™2s7 . (11.43)

The flux of the low energy pp neutrinos (the maximal neutrino energy is 420keV)
is the major flux of the solar neutrinos. In the Phase II of the Borexino experiment
the rate of the pp neutrinos was determined. The main problem was a background
from the '“C B decay. Taking into account in the fit of the data also decays of other
background nuclei (>'°Po, 21°Bi and others) the following rate of the pp neutrinos
was obtained

Rpp = (144 £ 13 (stat.) & 10(syst.)) cpd/(100 tons). (11.44)
From (11.44) the following flux of the pp neutrinos was inferred
@M = (6.64+0.7)- 100 cm™2s7 1, (11.45)
This flux is in an agreement with the flux predicted by SSM.
If we use the SSM flux, from (11.44) for the probability of the low energy pp
neutrinos to survive we obtain the value
P, — v,) =0.64 £0.12. (11.46)
In the Borexino experiment the rate of the high-energy ®B neutrinos was also
determined. The threshold for recoil electron energy in this experiment was equal to

3 MeV. For the rate 8 B neutrinos it was found

Rsg = (0.22 £ 0.04 (stat.) £ 0.01(syst.)) cpd/(100 tons). (11.47)
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Fig. 11.2 Borexino experiment: v, survival probability of pp, 7Be, pep and 3B solar neutrinos.
Curve is MSW prediction (arXiv:1707.9279)

The flux of 8B neutrinos, determined from (11.47)
q)ﬁf' =(524+0.3)-10cm™2s7 . (11.48)

is in agreement with Super-Kamiokande and SNO data.

The results obtained in the Borexino experiment allow to obtain the v, survival
probability of pp, ’Be, pep and 3B solar neutrinos (see Fig. 11.2). As it is seen
from Fig. 11.2 the Borexino data are in agreement with MSW prediction. Up to now
no indications in favor of a non-standard physics were obtained.

11.3 Super-Kamiokande Atmospheric Neutrino Experiment

The Super-Kamiokande is a multi-purpose detector. In the previous section we
considered the Super-Kamiokande solar neutrino experiment. In this section we
will consider the Super-Kamiokande atmospheric neutrino experiment. In the Super-
Kamiokande atmospheric neutrino experiment the first model independent evidence
in favor of neutrino oscillations was obtained (1998). This discovery opened a new
era in the study of the problem of neutrino masses, mixing and oscillations.

The Super-Kamiokande detector is a 50 kton water Cerenkov detector which
is optically separated into inner detector ID (32kton, fiducial volume 22.5 kton)
viewed by 11,146 inward-facing 50 cm PMTs and outer detector OD with 1885
20cm PMTs which is used as a veto for events induced by the cosmic rays.
Cherenkov radiation produced by charged particles, traveling through detector, is
collected by PMTs.
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The Super-Kamiokande atmospheric neutrino experiment started in April 1966.
There were four phases of the experiment. The SK-I phase started in April 1996
and finished in November 2001 when the accident with photo-tubes happened. The
SK-II phase, with only half of PMTs operating, continued from 2002 till 2005. In
2006 after the total number of PMTs was restored, the SK-III phase started. This
phase finished in 2008 when a new phase SK-IV with upgraded electronics began.

In the Super-Kamiokande atmospheric neutrino experiment neutrinos (and
antineutrinos) are detected in a wide range of energies from about 100 MeV to
about 10TeV and distances from about 10km to about 13,000km. Atmospheric
neutrinos originate from the decays of pions and kaons, produced in the processes
of interaction of cosmic rays with nuclei of the atmosphere, and consequent decays
of muons. Neutrinos with energies <5GeV are produced mainly in the decays of
pions and muons

7 S pF ), wE o e 45000 + ve(e) (11.49)

At higher energies the contribution of kaons becomes also important.
Neutrinos and antineutrinos are detected through the observation of electrons and
muons produced in the CC processes

) +N—=>1"ADH+X (=e, p). (11.50)

Atmospheric neutrino events are divided into three categories

* Fully contained events (FC). Events are called FC if initial vertexes are in the
ID fiducial volume and all energies are deposited in the inner detector. Such
events are separated into two samples: sub-GeV (E < 1.33 GeV) and multi-GeV
(E > 1.33 GeV).

 Partially contained events (PC). If a high energy muon escapes the inner detector
and deposits part of its energy in the outer veto detector such an event is called a
PC event.

» Upward going muons (Upp). Upward going muon events are due to interaction
of muon neutrinos in the rock outside of the Super-Kamiokande detector which
produce muons entering into the detector from below. There are two categories of
such events. Upward stopping muons are those muons which come to rest in the
detector. Upward through-going muons are those muons which pass the whole
detector.

FC events are produced by neutrinos with energies of a few GeV. PC events are
produced by neutrinos with energies about an order of magnitude higher. The
energies of neutrinos which produce upward stopping muons is about 10GeV.
Upward through-going muons are produced by neutrinos with an average energy
of about 100 GeV.

During four phases of the Super-Kamiokande experiment it was observed 10,386
(10,493) sub-GeV pu (e)-like FC events, 4370 (4076) multi-GeV u (e)-like FC events
and 3003 PC events.
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A model-independent evidence in favor of neutrino oscillations was obtained by
the Super-Kamiokande Collaboration through the investigation of the zenith-angle
dependence of the atmospheric electron and muon events. The zenith angle 6 is
determined in such a way that neutrinos going vertically downward have 6 = 0
and neutrinos coming vertically upward through the earth have 6 = 7. Because of
the geomagnetic cutoff at small energies (0.3—0.5 GeV) the flux of downward going
neutrinos is lower than the flux of upward going neutrinos. At neutrino energies
E > 0.9GeV the fluxes of muon and electron neutrinos are symmetric under the
change 8 — 7w — 6. Thus, if there are no neutrino oscillations at high energies the
numbers of electron and muon events must satisfy the relation

Ni(cos@) = Nj(—cosb) [ =e, . (11.51)

A significant violation of this relation was found in the Super-Kamikande
experiment.

For the study of flavor neutrino oscillations it is crucial to distinguish electrons
and muons produced in the processes (11.50). In the Super-Kamiokande experiment
leptons are observed through the detection of the Cherenkov radiation. The shapes
of the Cherenkov rings of electrons and muons are completely different. In the case
of electrons the Cherenkov rings exhibit a more diffuse light than in the muon case.
The probability of a misidentification of electrons and muons is below 2%.

First indication in favor of neutrino oscillations came from the measurement of
the ratio r of the (v, + V) and (ve + v,) fluxes. This ratio can be predicted with
an accuracy of about 3%. In the SK-I phase, for the double ratio R = ’r “‘eés (Fmeas
is the measured and ryc is the predicted ratios) following value was obtained in the
sub-GeV region

Rsub—Gev = 0.658 £ 0.016 == 0.035 . (11.52)
In the multi-GeV region was found
Rmulii-Gev = 0.702 £ 0.032 £ 0.101 . (11.53)

If there are no neutrino oscillations the double ratio R must be equal to one.

The most important Super-Kamiokande result was obtained from the measure-
ment of the zenith-angle distribution of the electron and muon events. The latest
results of the measurement of these distributions are presented in Fig. 11.3. As is
seen from Fig. 11.3 the distributions of sub-GeV and multi-GeV electron events are
in agreement with the expected distributions. In the distributions of the sub-GeV
and multi-GeV muon events and upward stopping muon events a significant deficit
of upward-going muons is observed.

This result can be explained by the disappearance of muon neutrinos due to
neutrino oscillations. As we have seen before, in the case of neutrino oscillations
the probability of v, to survive depends on the distance between neutrino source
and neutrino detector. Downward going neutrinos (f 2~ 0) pass a distance of about
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Fig. 11.3 Super-Kamiokande atmospheric neutrino experiment: zenith angle dependence of the
numbers of electron and muon events. The MC prediction assuming that there are no oscillations
and distribution of events obtained with best-fit values of the oscillation parameters are shown
(arXiv:1412.5234v1 [hep-ex])

10-20km. On the other side upward going neutrinos (¢ =~ m) pass a distance
of about 13,000 km (earth diameter). The measurement of the dependence of the
numbers of the electron and muon events on the zenith angle 6 allows to span
distances from about 10km to about 13,000km. The energies of the atmospheric
neutrinos are in the range 100 MeV-100GeV Such wide ranges of energies and
distances allow the Super-Kamikande Collaboration to study neutrino oscillations
in details.

The Super-Kamiokande data can be explained by the v, (and v,) disappearance
due to dominant v, < v; oscillations. Taking into account that Am_zg < Am% and

neglecting small contribution of sin® 63 we have

P(v, — vu) = P(i, — bu) = 1 —sin® 26p3 sin (11.54)

From analysis of the Super-Kamiokande data, obtained during SK-I phase, the
following 90% CL ranges of the neutrino oscillation parameters were obtained

15107 < Am% <3.4-1073 eV?,  sin® 2623 > 0.92. (11.55)
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Fig. 11.4 Values of the probability P(v, — v,) as a function of the parameter IL;“’ determined
from the data of the Super-Kamiokande atmospheric neutrino experiment. The best-fit two-
neutrino oscillation curve is also plotted (arXiv:hep-ex/0404034)

In the standard Super-Kamiokande analysis of the data the dependence of the
probability on ]Ll. is practically washed out because of the poor resolution. In
order to reveal the oscillatory behavior of the probability, the Super-Kamiokande
Collaboration performed a special analysis. A subset of events with high resolution
in the variables L and E was chosen for the analysis. This allowed to determine
the v, survival probability as a function of é and to reveal the first minimum of
the survival probability (see Fig. 11.4). It is seen from Fig. 11.4 that the minimum

of the survival probability is reached at

L 2k K
( ) = ¢ ~s500 (11.56)
E min AmAc4 GeV

From this number we can estimate the neutrino mass-squared difference:
Am% ~2.5-107% eV2. (11.57)

This value is in agreement with (11.55).
The detection in the Super-Kamiokande detector of v;, produced in v, <= v,
oscillations, is a difficult problem.11 This is connected with the fact the threshold

11y, produced in v, S v oscillations were observed in the long baseline experiment OPERA.

The distance between the source of v, (CERN) and the detector (Gran Sasso Laboratory) in this
experiment was about 730 km. The production of 7 in v;-nucleon CC processes was detected in an
emulsion. Five v; events were observed.
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for production of t in CC vy — N processes is about 3.5 GeV and the majority of the
atmospheric neutrinos have energies which are below of this threshold. Nevertheless
the Super-Kamiokande Collaboration by special analysis of the data, obtained
during first three phases, found 180.1 +44.3 (stat)ﬂ;g (syst) vr-interactions. This
result confirm v; appearance at 3.8 o level.

Finally from the three-neutrino analysis of the SK-I, SK-II and SK-III data for
the NO (IO) neutrino mass spectrum the following 90% CL intervals were found

(1.9 (1.7) < Am% < 2.6 (2.7)) - 1072 eV2, 0.407 < sin® 623 < 0.583,
sin® 2013 < 0.04 (0.09). (11.58)

11.4 KamLAND Reactor Neutrino Experiment

In the KamLAND reactor experiment oscillations of reactor v,, driven by the
solar mass-squared difference Am%2 = Am% were observed. The KamLAND
detector is located in the Kamioka mine (Japan) at a depth of about 1 km (2700 m
water equivalent). It contains a 13 m-diameter transparent spherical nylon balloon
filled with a 1kton liquid scintillator. The balloon is suspended in 1800m> non-
scintillating purified mineral buffer oil. The internal detector (balloon and buffer
oil) is contained in a 18 m-diameter stainless steel spherical vessel. On the inner
surface of the vessel there are 1879 50-cm diameter PMTs (the PMT coverage is
34%). The internal detector is surrounded by 3.2 kton water with 225 PMTs (outer
detector). This Cherenkov detector serves as a veto which provides shielding from
cosmic-ray muons and external radioactivity.

In the KamLAND experiment v, from about 50 power reactors were detected.
A flux-averaged distance between reactors and the Kamioka mine was ~180km.
About 80% of antineutrinos came from 26 reactors at distances 138-214 km.

Reactor v,s are produced in decays of nuclei, which are products of fission of
50U (57%), 238U (7.8%), 3Pu (29.5%) and 2*'Pu (5.7%). Each fission, in which
about 200 MeV is produced, is accompanied by the emission of 6 v,. A reactor with
power about 3 GW;j, emits about 6 - 1029 3, /s.

Reactor antineutrinos are detected through the observation of the inverse 8-decay

Ve+p— et +n. (11.59)

The threshold of this process is 1.8 MeV. Two y-quanta from the annihilation of e™
(prompt signal) and y-quanta produced in a neutron capture by a proton or a '>C
nuclei (delayed signal with a mean delay time (207.5 & 2.8) - us) are detected in the
experiment. The signature of the event in the KamLAND experiment (and in other
reactor neutrino experiments) is a coincidence between the prompt and delayed
signals. It provides a strong suppression of a radioactive background.
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The prompt energy E, is connected with the neutrino energy E by the relation
E~E,+E,+0.8MeV. (11.60)

where E, is average neutron recoil energy (~10keV). The prompt energy is the
sum of the positron kinetic energy and the annihilation energy (2 m,).

In the KamLAND experiment not only v, from reactors but also v,, which
are produced in decay chains of 2%U and 23’Th in the earth (geo-neutrinos),
are detected. The prompt energy released in the interaction of geo-neutrinos with
protons is less than 2.6 MeV. In order to avoid geo-neutrino background in the
study of neutrino oscillations the KamLAND Collaboration imposed 2.6 MeV E -
threshold.

As we have seen before, the neutrino oscillation length is given by the expression

E

2
my,

Lip~25 m, (11.61)

where E is the neutrino energy in MeV and Am%2 is the neutrino mass-squared
difference in eV>. The average energy of the reactor antineutrinos is 3.6 MeV. For
the solar neutrino mass-squared difference Am%2 ~8.107 eV?at E = 3.6MeV
we have L1 ~ 120km. From this estimate we conclude that distances between
the KamLLAND detector and Japanese reactors are appropriate to study neutrino
oscillations driven by the solar neutrino mass-squared difference.

The KamLLAND experiment started in 2002 and continued up to 2012. During
this period 2611 v, events were detected with an estimated background (excluding
geo-neutrinos) 364.1 + 30.5 events. Expected number of the events (assuming that
there are no neutrino oscillations) is 3564 4 145.

From the latest 3-neutrino analysis of all KamLLAND data for the neutrino oscil-
lation parameters Am%, tan? 0, and sin? 013 the following values were obtained

Am% = (7.54T019) - 107 V2, tan® 015 = 0.48110095  sin® 613 = 0.01010 0.
(11.62)

From a joint analysis of the KamLAND data and the data of all solar neutrino
experiments a better accuracy for the parameter tan” 6} can be inferred!?:

Am% = (7.537019) - 1075 V2, tan® 61, = 0.4371002%  sin® 613 = 0.02310013.
(11.63)

In Fig. 11.5 the ratio of the numbers of the observed and expected events (the
Ve survival probability) as a function of Lo/E is plotted (Lp = 180km is

12This analysis is based on the assumption of the CPT invariance.
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Fig. 11.5 Ratio of v,
spectrum measured in the
KamLAND experiment to the 1
spectrum, expected in the
case of no oscillations as a
function of LEO (Lo = 180 km
is flux-weighted average
distance from reactors to the
detector). The expected ratio
calculated with the values of
the oscillation parameters
obtained by the KamLAND
collaboration is also shown
(arXiv:0801.4589)
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the flux-averaged distance between reactors and the KamLAND detector, E is
the neutrino energy). The curve is the calculated survival probability with best-
fit parameters obtained from the three-neutrino analysis of the KamLAND data.
Figure 11.5 illustrates oscillatory behavior of the v, survival probability determined
from the data of the KamLAND experiment.

11.5 Measurement of the Angle 03 in Reactor Experiments

11.5.1 Introduction: CHOOZ Reactor Experiment

From the data of first neutrino oscillation experiments an information about two
mass-squared differences (atmospheric Am%4 and solar Am%) and two mixing
angles (23 and 012) was obtained. During many years only an upper bound for
the parameter sin? 613 was known. This bound was obtained from the data of the
reactor CHOOZ experiment.

The v,-survival probability, driven by the atmospheric mass-squared difference,
in the major two-neutrino approximation is given by the expression

2
Am4 L

AE ) (11.64)

PV, — o) = 1 —sin 2013 sin?(
Thus the study of the disappearance of the reactor v, allows to determine the
parameter sin> 20;3. For the average energy of the reactor antineutrinos (3.6 MeV)
the corresponding oscillation length is equal to

E
Losc >~ 2.5 , M 3.6km. (11.65)

my
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In the CHOOZ experiment one antineutrino detector was exposed to two reactors
of the CHOOZ power station (8.5GW;;). The distance between the detector
and reactors was about 1 km. The CHOOZ detector comprised 5 tons of Gd-loaded
liquid scintillator contained in an acrylic vessel. The antineutrinos were detected
through the observation of the classical reaction

Ve+p— et +n. (11.66)

From April 1997 till July 1998, in the CHOOZ experiment 3600 antineutrino events
were recorded. For the ratio R of the total number of detected and the expected
events it was found

R =1.01 £2.8% (stat.) £ +2.7% (syst.). (11.67)
From the data of the experiment the following upper bound
sin®26;3 < 0.16. (11.68)

was obtained.

In 2012 three new reactor experiments Daya Bay, RENO and Double Chooz
started. The aim of these experiments was to measure the angle 613 (or to
improve the CHOOZ bound). The parameter sin> 2 613 was successfully measured
(it occurred that its value is close to the CHOOZ upper bound (11.68)). This finding
is extremely important for the future investigation of the problem of the neutrino
mixing. As we have seen before, the C P phase ¢ enter into the PMNS mixing matrix
the form sin 83 e~*%. Thus such fundamental effect of the three-neutrino mixing as
C P violation in the lepton sector can be studied only if the mixing angle 6;3 is not
equal to zero (and relatively large). Another problem, the solution of which requires
nonzero 013, is the problem of the character of the neutrino mass spectrum (normal
or inverted ordering?). In the next subsections we will briefly discuss Daya Bay,
RENO and Double Chooz experiments.

11.5.2 Daya Bay Experiment

In the Daya Bay experiment antineutrinos from six commercial nuclear reactors,
located at Daya Bay and Ling Ao nuclear power stations (China), are detected.
Each reactor has a thermal power 2.9 GWy,. Antineutrino detectors are disposed
in two near underground halls and one far underground hall (correspondingly, at the
distances 350-600m and 1500-1950m from the reactors). In each near hall there
are two antineutrino detectors. In the first phase of the experiment (December 201 1—
July 2012) there were two antineutrino detectors in the far hall. In October 2012 two
additional antineutrino detectors were disposed in the far hall.
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All eight antineutrino detectors have identical three-zone structure: 20 tons of
Gd-loaded liquid scintillator in the inner zone (v, detector), 22 tons of liquid
scintillator in the middle zone and 37 tons of mineral oil in external zone.
Scintillation light is detected by 192 8-in. PMTs.

Reactor v,’s are detected via the observation of the inverse §-decay

Ve+p— et +n. (11.69)

Detection of photons produced in et — e~ annihilation (prompt signal) allows to
determine the positron energy (Epr = T + 2m,, T being positron Kinetic energy).
The neutron, produced in (11.69), thermalizes and is captured by a Gd nucleus,
producing y-rays with total energy 8 MeV, or a proton, producing y-quantum with
the energy 2.2 MeV (delayed signal).

During 217 days of the data-taking with six antineutrino detectors and 1013 days
of the data-taking with eight antineutrino detectors in the Daya Bay experiment the
total number of 2.5 - 10° i.-events were observed. Such large statistics allowed the
Daya Bay Collaboration to obtain a very precise value of the parameter sin” 6;3. For
the ratio of the v, total rates in the far and near detectors it was found

R =0.949 £+ 0.002 (stat.) = 0.002 (syst.) (11.70)

From the three-neutrino analysis of observed rate and energy spectrum the following
values of the parameters sin? 203 and | Am2,| were obtained

sin® 2613 = 0.0841 £ 0.0027 (stat.) & 0.0019 (syst.) (11.71)
and
|Am2,| = (2.50 + 0.06 (stat.) & 0.06 (syst.)) - 1072 eV?, (11.72)
where
|Am2,| = cos® 61| Am?5| + sin® 612] Am3;). (11.73)

is the effective (“average”) reactor mass-squared difference.
In the case of the normal ordering of the neutrino masses it was found

NO Am? = (2.45+0.06 (stat.) £ 0.06 (syst.)) - 1073 eV2. (11.74)
For the inverted ordering it was obtained

10 Am?% = (2.56 £ 0.06 (stat.) & 0.06 (syst.)) - 1072 eV?2., (11.75)
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Fig. 11.6 Daya Bay experiment: the reactor v, survival probability as function of the parameter
Lesr/ E. The points are the ratios of the observed and expected events. The solid line was calculated
using the best-fit values of the parameters sin? 20,3 and \Amgel (arXiv:1610.04802)

These values for the atmospheric mass-squared difference are in a good agreement
with the values which were found from the data of the accelerator neutrino
experiments which we will discuss later.

In Fig. 11.6 the reactor v, survival probability as function of the parameter Lesr/E
is presented. The points are the ratios of the observed and expected events. The curve
was calculated using the best-fit values of the parameters sin® 20;3 and |Amge|. The
curve demonstrates oscillation behavior of the event rates observed in the Daya Bay
experiment.

11.5.2.1 RENO Experiment

The reactor neutrino experiment RENO started in August 2011. Antineutrinos from
six reactors at Hanbit nuclear power plant (Korea) are detected by two underground
detectors, located at the distances 294 and 1383 m from the center of reactor array.
The thermal power of each reactor is about 2.8 GWy,.

Near and far detectors in the RENO experiment are identical. The innermost part
of the detector is an acrylic vessel filled with 16 tons of Gd-doped liquid scintillator
(target). It is contained in another acrylic vessel filled with liquid scintillator (y-
catcher in which y-quanta, escaping from the target region, are detected). Outside
the y-catcher there is a 70-cm thick layer of mineral buffer oil which provides
shielding from external radioactivity. Produced light is detected by 354 10-in. PMTs
which are mounted on the inner wall of a stainless steel container. The container
is surrounded by a veto water-Cherenkov detector which provides shielding against
y-quanta and neutrons from surrounding rocks.

During 500 days of the data-taking it was detected 290,775 (31,514) v, events
in the near (far) detector. Two identical detectors allow to perform a relative
measurement of antineutrino rates and spectra. This relative measurement allowed
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to reduce systematic errors coming from uncertainties of the reactor neutrino flux
and detection efficiency. From analysis of the RENO data for the neutrino oscillation
parameters it was found the values

sin® 2013 = 0.082 £ 0.009 (stat.) &= 0.006 (syst.) (11.76)
and
|Am2,| = (2.62103} (stat) 7013 (syst.)) - 1072 eV?, (11.77)

which are in agreement with Daya Bay values (11.71) and (11.72).

In Fig. 11.7 (top) the dependence of the number of the v, events, observed in
the far RENO detector, on the prompt energy is plotted. The shaded histogram was
found from near detector data. On the bottom the ratio of the number of v, far
detector events to the number of predicted events (assuming that there is no neutrino
oscillations) is depicted (points). The shaded band is the ratio of the number of the
far detector events to the number of MC predicted best-fit events.
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Fig. 11.7 Top: the dependence of the number of the v, events, observed in the far RENO detector,
on the prompt energy. The shaded histogram was found from near detector data. Bottom: points
are the ratio of the number of v, far detector events to the number of predicted events (assuming
that there is no neutrino oscillations). The shaded band is the ratio of the number of the far detector
events to the number of MC predicted best-fit events (arXiv:1610.04326v3)
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11.5.2.2 Double Chooz Experiment

In the Double Chooz experiment v,’s from two reactors (the thermal power of
each reactor is 4.25 GWy,) are detected. The experiment is performed at CHOOZ-B
power plant, Chooz, France. The Double Chooz experiment started in 2011 with one
detector at the average distance 1050 m from reactors. In 2015 the near detector at
the average distance 400 m was constructed. Both detectors have identical structure.
The inner target detector has 10.3 m? of Gd-doped liquid scintillator. It is surrounded
by 22.4m? liquid scintillator (y-catcher) and 100m® non-scintillating mineral
buffer oil. Photons, produced in the target and y-catcher, are detected by 390 10-in.
diameter PMTs. Optically separated from three inter volumes there is an external
veto detector.
Reactor antineutrinos are detected via classical reaction

Ve + p — et +n. (11.78)

Coincidence of a prompt signal from annihilation of et with ¢~ in the liquid
scintillator (energies from 1 to 11 MeV) and a delayed signal from capture of
neutron by a Gd nucleus (photons with total energy 8 MeV) is a good signature
of the event.

Disappearance of the reactor v, was observed in the experiment. In the case of
the three-neutrino mixing the probability of v, to survive can be presented in the
form

A 2 L A 2L
P(v, — v.) ~ 1 — sin® 203 sin> < ’::ge ) — cos* 03 sin? 26y, sin? ( TES ) )
(11.79)

where the effective reactor mass-squared difference Amze is given by (11.73).
From analysis of the data of 673 days of far detector and 151 days of near
detector, using the constraint

|Am2,| = (2.44+0.09) - 1072 eV, (11.80)

obtained from the data of the accelerator MINOS experiment, in the Double Chooz
experiment it was found

sin?263 = 0.111 & 0.018 (stat. -+ syst.). (11.81)
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11.6 Long-Baseline Accelerator Neutrino Experiments

11.6.1 K2K Accelerator Neutrino Experiment

In long baseline accelerator neutrino experiments there is a possibility to use beams
of neutrinos and antineutrinos, to work with narrow band neutrino beams (off-
axis neutrino beams) etc. This allow to study C P violation in the lepton sector, to
reveal the character of the neutrino mass spectrum and to perform a high precision
measurement of neutrino oscillation parameters.

Oscillations in the long baseline accelerator neutrino experiments are driven
predominantly by the atmospheric mass-squared difference Ami. For a neutrino
energy £ >~ 1GeV and Ami ~ 2.5-1073 eV? the oscillation length Lo is given by

E
Lose >~ 2.5 L M 10° km . (11.82)

ma
In the first long baseline K2K experiment the distance between the neutrino source
(KEK accelerator, Japan) and the neutrino detector (Super-Kamiokande) was about
250km.

Protons with an energy of 12GeV from the KEK-PS accelerator bombard an
aluminum target in which secondary particles were produced. Positively charged
particles (mainly 7+) were focused in horns and decayed in a 200 m-long decay
pipe. After a beam dump in which all hadrons and muons were absorbed a neutrino
beam was produced (there were 97.3% of v, 1.3% of v, and 1.4% of v, in the
beam). The neutrinos had energies in the range (0.5-1.5) GeV.

In the K2K experiment the disappearance of muon neutrinos was searched for.
The two-neutrino probability of v, to survive has the form

L
P(v, — vy) = 1 —sin® 2623 sin®(1.27 Am?, 2 (11.83)

where E is the neutrino energy in GeV, L is the source-detector distance in km and
Am% is the atmospheric neutrino mass-squared difference in eV?.

From 1999 till 2004 in the K2K experiment 112 neutrino events were detected.
For the number of the expected events (in the case if there were no neutrino
oscillations) was found the value 158;”3%. In the low energy region the distortion
of the neutrino spectrum was observed.

From the two-neutrino analysis of the K2K data under the assumption that
sin 2653 = 1 it was found the following 90% CL range for the parameter Am%:

1.9-1073 eV? < Am? <3.5-1073 eV2. (11.84)
The K2K experiment was the first experiment with artificially produced neutrinos

which confirmed the existence of neutrino oscillations discovered in the atmospheric
Super-Kamiokande neutrino experiment.
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11.6.2 MINOS Accelerator Neutrino Experiment

In the long baseline MINOS experiment muon neutrinos produced at the Fermilab
Main Injector facility were detected in the Sudan mine (Minnesota, USA) at a
distance of 735km. Data-taking started in the MINOS experiment in 2005 and
finished in 2012. In 2013 the experiment MINOS+, successor of the MINOS,
started.

Protons with an energy of 120GeV, extracted from the Main Injector proton
accelerator, bombarded a graphite target and produced (predominantly) pions and
kaons. Positively (or negatively) charged particles were focused by two magnetic
horns and directed into a 675 m long decay pipe. After the pipe there was an absorber
for hadrons and 240 m of rock in which muons were stopped.

Muon neutrinos were produced in the decays 7+ (K*) — u* + v,. Electron
neutrinos were produced in the decays u* — et + v, + v, and KT (K?) —
et + v, + 7% 7). Antineutrinos were created in charge conjugated processes.
The v, -dominated beam consisted of v, (91.7%), v, (7%), ve and v, (1.3%). The
v, -enhanced beam consisted of v, (58.1%), v, (39.9%), v, and v, (2.0%). For the
MINOS experiment the Main Injector supplied 10.71 - 10%° protons-on-target (POT)
in order to produce the v, -dominated beam and 3.36 - 10?° POT in order to produce
the v, -enhanced beam.

The majority of the MINOS data was obtained with the low-energy neutrino
beam (1 < E < 5GeV) which has a peak at 3 GeV. There were two identical
neutrino detectors in the MINOS experiment. The near detector (ND) with a mass
of about 1 kton was at a distance of about 1.04 km from the target and about 100 m
underground. The far detector (FD) with a mass of 5.4kton was at a distance of
735km from the target and 705 m underground (2070 m water equivalent). The
detectors were steel (2.54 cm thick)-scintillator (1 cm thick) calorimeters magne-
tized to 1.3 T (ND) and 1.4 T (FD). The measurement of the curvature of the muon
tracks allows to distinguish v, from v, and to measure energy of muons which
leave the detector. The energies of the muons which are stopped in the detector are
determined by their ranges.

Muon neutrinos and antineutrinos were detected in the MINOS experiment via
the observation of the CC process

V(D) +Fe — = (uh) + X, (11.85)

Such events are characterized by tracks caused by muons and a hadronic showers.
The neutrino energy is given by the sum of the muon energy and the energy of the
hadronic shower. Electron neutrinos were detected via the observation of the CC
process

ve +Fe — ¢~ + X. (11.86)
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The signature of such events is an electromagnetic shower. Because electrons do not
have track-like topology, v, and v, events can not be separated.

In the near detector the initial neutrino spectrum was measured. This measure-
ment allowed to predict the expected spectrum of the muon neutrinos in the far
detector in the case if there were no neutrino oscillations and to determine the v, (v,,)
survival probability as a function of the neutrino energy. The search for v, — v,
and v, — Vv, appearance was also performed.

In the MINOS experiment not only Main Injector beam generated neutrino events
but also atmospheric neutrino events were observed (starting from 2003). In the final
three-neutrino oscillation analysis all detected events were taken into account. In this
analysis the average reactor neutrino value sin® 613 = 0.0242 =+ 0.0025 was used.
The solar-KamLAND values Am% = 7.54 .10 eV? and sin? 012 = 0.307 were
also kept fixed in the fit. In the case of the normal mass ordering from analysis of
the MINOS data it was found

Am% = (2.28 —2.46) - 1073 eV? (68%), sin® 623 = (0.35 — 0.65) (90%)
(11.87)

In the case of the inverted mass ordering it was obtained

Am% = (232 —2.53)- 1073 eV? (68%), sin® 623 = (0.34 — 0.67) (90%)
(11.88)

The MINOS+ experiment is running in the high-energy region 3—10 GeV. During
the first year of the operation, starting from September 2013, it was collected 2.99 -
10%Y POT. Oscillation parameters found from analysis of the MINOS+ data are in
agreement with the oscillation parameters (11.87) and (11.88) obtained from the
analysis of the MINOS data.

In Fig. 11.8 neutrino energy spectrum, obtained from the results of the MINOS
and MINOS+ experiments, is presented. The curve is the prediction calculated with
best-fit MINOS oscillation parameters. The histogram is the expected spectrum in
the case if there is no neutrino oscillations.

11.6.3 T2K Experiment

The T2K experiment is performed at J-PARC accelerator facility in Tokai (Japan).
In order to produce a neutrino beam a 30 GeV protons hit a graphite target and
produce charged pions and kaons which are focused by three magnetic horns. Either
positive or negative mesons are focused resulting in a beam of predominantly v,, or
v, produced in a 96 m long decay tube. The decay volume is followed by the beam
dump and muon monitors. Neutrinos are detected by an on axis near detector and
of axis, at 2.5° relative to the beam direction, near and far detectors. The off axis
narrow band neutrino energy spectrum has a peak at 0.6 GeV.
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Fig. 11.8 Neutrino energy spectrum, obtained from the results of the MINOS and MINOS+ exper-
iments. The curve is the prediction calculated with best-fit MINOS oscillation parameters. The
histogram is the expected spectrum in the case of no neutrino oscillations (arXiv:1601.05233v3)

Two T2K near detectors INGRID (on axes) and ND280 (off axis) are located
at the distance 280m from the target. They measure the beam direction, com-
position, neutrino spectrum and the event rate. The 50kton water-Cherenkov
Super-Kamiokande detector is used as a far detector in the T2K experiment. It is
located off axes at the distance 295 km from the target.'>

From January 2010 till May 2013 in the T2K experiment only neutrino data
were collected. From May 2014 till May 2016 predominantly antineutrino events
were observed. This corresponds to a neutrino and antineutrino beam exposures on
the far detector, correspondingly, 7.48 - 10%° POT and 7.47 - 10°° POT.

From the three-neutrino analysis of v, and v, disappearance data it was found

sin 623 = 0.5147003°  Am% = (2.51£0.10)- 1073 eV? (11.89)
in the case of the normal mass ordering and
sin? 623 = 0.511 £ 0.055, Am?% = (2.4840.10) - 1072 eV? (11.90)

for the inverted mass ordering.

2
B3For E >~ 0.6 GeV and L=295 km we have 1.27 AmEA b 7 . Thus, neutrino energy and the source-

detector distance in the T2K experiment correspond to the first maximum of oscillations driven by
the atmospheric mass-squared difference.
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In 2011 in the T2K experiment the first 2.5 o evidence in favor of v, — v,
transition was obtained. This was the first indication in favor 813 # 0. During
the exposure which finished in 2014 twenty eight electron neutrino events were
observed. The energy distribution of these events was consistent with v, appearance
due to neutrino oscillations. Assuming Am%4 =245.1073 eVz, sin? 63 = 0.5,
8 = 0, it was found from analysis of the v, appearance data

sin 26013 = 0.1407003% (NO),  sin®26;3 = 0.1701003> (10). (11.91)

11.6.4 NOvA Experiment

A new long baseline accelerator neutrino oscillation experiment NOvA with near
and far identical detectors (ND and FD) started to collect data in 2014. The energy
spectrum of neutrinos, produced at FermiLab Main Injector facility, is measured
by the 290-ton ND, located 1km away from the Main Injector target, 100 m
underground. The 14-kton FD is located on the surface, 14.6 mrad off axis, at the
distance 810 km from the FermiLab (Ash River, Minnesota, USA). A narrow band
neutrino beam with peak energy about 2 GeV (the first oscillation maximum) is
utilized in the NOvA experiment. The flavor composition of the neutrino beam at
the FD is estimated to be 97.8% v, 1.6% v,, and 0.6% (v, + V,) assuming that there
are no oscillations.

Both ND and FD are segmented tracking calorimeters. Reflective cells of length
15.5m (3.9m) in the FD (ND) with a 3.9 x 6.6cm? cross section are filled with
liquid scintillator. Light, produced by charged particles, is collected in each cell by
optical fiber and measured with an avalanche photodiode.

The study of v,, disappearance requires identification in FD of the reactionv,, +
N — u~ 4+ X and the measurement of the neutrino energy. The neutrino energy is
given by a sum of the reconstructed muon energy and recoil hadronic energy. The
investigation of v, appearance requires identification in FD of the process v, + N —
e~ + X and understanding background processes. The signature of this CC process
in the NOVA detectors is an electromagnetic shower and associated hadronic recoil
energy.

From the analysis of the NOvA v, disappearance data, obtained from 6.05 - 1020
POT exposure, in the case of the normal mass ordering it was found

Am% = (2.67+0.11)- 1073 eV? (11.92)
For the parameter sin” 63 two statistically-degenerate values were obtained

sin® 63 = 0.40470039,  sin’ 63 = 0.62470 0% (11.93)
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Fig. 11.9 NOvA experiment: 90% CL allowed region in the plane of the parameters
sin? 63 and Ami. T2K and MINOS allowed regions are also shown (arXiv:1701.05891v1)

In the case of the inverted mass ordering it was found

Am% = (272+0.11)- 1073 eV? (11.94)
and
sin® 623 = 0.39810039, or sin®6x3 = 0.61870030 (11.95)

In Fig.11.9 NOvA 90% CL allowed region in the plane of the parameters
(sin® 63, Amﬁ) are shown. T2K and MINOS allowed regions are also presented.

With the same exposure 6.05-10%° POT 33 v, candidate events with a background
8.2 + 0.8 events were observed in the NOvA experiment. Combing these data with
NOvVA v,, disappearance data and with the reactor value of the parameter sin” 013 the
NOVA Collaboration concluded that inverted neutrino mass spectrum with 623 < Z
is disfavored at 93% CL for all values of the CP phase §.



Chapter 12 )
Neutrino in Cosmology Shethie

12.1 Basics of Cosmology

12.1.1 Introduction

All existing cosmological data are described by the standard Big-Bang cosmological
model which we will briefly discuss in this section. The standard cosmology is
based on

1. Cosmological Principle.
2. Friedman equations which are a consequence of the Einstein equations of the
general relativity.

12.1.2 Cosmological Principle

According to the cosmological principle the Universe observed from any spacial
position and at any time is isotropic and homogeneous at a large scale. This principle
was formulated by Einstein as a theoretical suggestion. Present day cosmological
observations (cosmic microwave background radiation, the large-scale structure of
the Universe and others) are in agreement with the cosmological principle at a scale
~100Mpc.!

"Mpc = 3.26 10° light-year = 3.09 - 10?2 m.
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210 12 Neutrino in Cosmology
12.1.3 Friedman-Robertson-Walker Metric: Hubble Law

Let x* = (x°, x) be a time-space coordinate of a point in some coordinate system.
The square of the element of length (interval) has the following general form

ds® = gup(x) dx®dxP. (12.1)

where gu5(x) = gga(x) is the metric tensor (or metric). The metric determines the
geometry of a space. It plays a fundamental role in the General Theory of Relativity
and Cosmology.

The metric depends on the coordinate system. The comoving coordinate system,
the system in which matter is at rest, is the most natural reference system in
cosmology. Because comoving observers see the same sequence of events they have
the same time which is proper time. The Universe is isotopic and homogeneous only
in the comoving system.

We will consider the metric of isotropic and homogeneous space in the comoving
system. Because in such a space all directions are equivalent, we have go; = 0
(i = 1,2, 3). Thus in an isotropic and homogeneous space interval can be presented
in the form

ds® = dt* — gi; dx'dx*. (12.2)

Let us consider = const case. In the Euclidean space for the element of the length
we have

3
di* = Z (dxhH?, (12.3)
i=1

where x!, x2, x> are Cartesian coordinates. They are connected with the spherical

coordinates p, 6 and ¢ by the relations
x! = psinf cos @, x2=,osin95in¢, x3 = pcosb. (12.4)
In spherical coordinates we have
di> = dp® + p*(d6® + sin® 0dp?). (12.5)

In the general case of the isotropic space we have

di* = dp® + f*(p) (d6? + sin® 0d¢?), (12.6)
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Fig. 12.1 Robertson-Walker
geometry of a homogeneous
and isotropic space

where f(p) is a function of p. The condition of isotropy allows to determine
possible functions f(p). In fact, let us consider Fig. 12.1. Assuming that angles
o and B are infinitesimally small, we have

CB=fQ2p)a=f(p)B. DE=f(p—x)a+ fx)B=/f(p+x)a (12.7)
From these relations we obtain the following relation

2
Fo-0+F0 % =t 15 (12.8)
f(p)

Now if we take the derivative over x and put x = 0 from (12.8) we find

dfp) _ fQ2p)

= . (12.9)
dp 2f(p)
Notice that in deriving (12.9) we took into account that f(p) >~ p at p — 0.
It is obvious that
fip) =sinp, folp) =p, f-1(p) =sinhp (12.10)

are solutions of Eq. (12.9). It is possible to show that there are no other solutions of
this equation. For arbitrary ¢ we have

ds? = dr* — a*(1)(dp* + f2(p) (d6? + sin® 0 d¢?)), (12.11)

where the functions fi(p) are given by (12.10) and a(#) is function of ¢ (scale
factor). This function can not be determined from the requirements of isotropy. The
metric (12.11) is called the Friedmann-Robertson-Walker metric.

The Friedmann-Robertson-Watson metric can be presented in another form. Let
us introduce the variable r = f(p). We have

d 2
ds® = dt* —az(t)(l rk , +77(d0* +sin®0dg?)), k=1,0,—1. (12.12)
— Kr
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The parameter k is the spacial curvature. At k = +1, 0, —1 the Universe is closed,
flat and open, correspondingly.

For k = 1 the spacial Universe is a surface of a sphere of radius a in the 4-
dimensional Euclidian space. In fact, the surface of a sphere is given by the equation

4
Z(x")2 = a2 (12.13)
i=1

For the metric on the sphere we have

4 .
di* =) (dx). (12.14)
i=1

Equation (12.13) allows to exclude the x* coordinate. We find

i xldal

dx* = — . (12.15)
\/az _ Z?:l(xi)z
Let us introduce the spherical coordinates
x!' =r'sinfcos¢, x> =r'sinfsing, x> =rcosé. (12.16)
For the metric we have
2 2020702 2 2 rdr? a 2020102 i 2
dl* =dr “+r “(d0“+sin” 0d¢p~)+ ) n = 5 ,zdr +r “(dO“+sin” 0dop~).
as —r a~ —r
(12.17)
Finally, introducing the dimensionless variable r = Z/ , we find the following
expression
2 2 dr? 2 (702 1 «in2 2
di-=a (t)(1 , +r7(d67 + sin” 0d¢”)). (12.18)
—r
The case k = 0 in (12.12) corresponds to the flat space. The case k = —1 can be

obtained from the expression (12.17) if we change a — ia. It corresponds to the
space with negative curvature (hyperboloid in the 4-dimensional space).
The proper distance to an object is given by the relation

d(t) = a(tyr, (12.19)
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where r is the comoving distance which does not depend on time. From (12.19) we
have

d(t) =v(t) =a@) r. (12.20)

Further, from (12.19) and (12.20) we find

v(t) = H(t)d(1), (12.21)
where
_a@
H() = ay’ (12.22)

Thus, the relative velocity of two Galaxies is proportional to the distance between
them. This relation was discovered by Hubble in 1929. It is called the Hubble law.
The Hubble law is in a good agreement with experiment. The coefficient H is called
the Hubble parameter. It is an important cosmological parameter.
Let us determine the red shift
Ao — Ae

- , 12.23
z e ( )

where X, is the wavelength of the light observed at the time 7, and A, is the
wavelength of the light emitted at the time # (f. < #,). The cosmological change in
time of all lengths is determined by the scale factor a(t). We have

Ao _ a(to) _

= =z+ 1. (12.24)
Ae a(te)

All light spectra observed from different Galaxies are red-shifted: 1, > Ae. Thus,
we have a(t,) > a(te). The observation of red shifts of the light emitted by Galaxies
is the direct evidence in favor of the expansion of the Universe.

12.1.4 Friedman Equations

The evolution of the scale factor a(¢) is determined by the Einstein equation of the
General Theory of Relativity

Guv — Aguy = 87GTy,. (12.25)

Here

1
G;w = R;w - 2R (1226)
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is the conserved Einstein tensor, 7#" is the conserved energy-momentum tensor,
G is the gravitational constant and A is the cosmological constant. In the units
i = ¢ = 1 the constant G has the dimension M~2 and the constant A has the
dimension M2. We have \/IG = Mp, where Mp ~ 1.2 - 10" GeV is the Planck

mass. In (12.26) Ry, is the Ricci curvature tensor which is determined by the metric
tensor and its first and second derivatives and R = R,,,g"" is the scalar curvature.

The standard cosmology is based on the assumption that the Universe can be
considered as a perfect fluid. In this case the energy-momentum tensor 7" is given
by the expression

Ty = (p + puyty — p guv- (12.27)

Here p, p and u,, are energy density, pressure and velocity. In the comoving system
u = (1,0,0,0) and p, p can depend only on ¢.

From the Einstein equations (12.25) and (12.27) for the isotropic and homoge-
neous Universe the following equations can be inferred

.\ 2
a 871G k A
= H? = — 12.28
(a) 3 P2 + 3 ( )
and
a dn G A
=— (o+3p)+ . (12.29)
a 3 3

These equations are called the Friedman equations.

The Friedman equation (12.28) can be interpreted in the following way. Let us
consider a Galaxy with the mass m on a surface of a sphere of the radius r. The
energy of the Galaxy is the sum of kinetic and gravitational potential energy:

muv? mM
E = -G , (12.30)
2 r

where M is the total mass (energy) of the non relativistic matter and radiation inside
of the sphere. Assuming that the mass density p = )_; p; is a constant we have
M = *T p r3. Further, using the Hubble law v(t) = H (1) r(1), H = 38 and the
relation () = a(¢) r., where r. is the comoving distance between the center of the
sphere and the Galaxy, from (12.30) we find

; 87G  k
=" N (12.31)
a 3 a?

where k = — ZEZ.
mr,

In order to include the contribution of the cosmological constant A we assume
that not only the gravitational field acts on the Galaxy, we are considering, but also
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some additional field with the potential energy

1
Uy = —6mAr2, (12.32)
which is called the dark energy. This assumption means that in addition to the
standard attractive gravitational force the repulsive force Fy = — agr“ = émAr

acts on the Galaxy. The energy of the Galaxy is given in this case by the relation

1 dn G 1
E = 2Hzmr2 — T; ,omr2 — 6Amr2. (12.33)
From (12.33) we have the equation
a, 8 k 1
= Gp— A, 12.34
(a) 3 0P~ + 3 ( )

which coincides with the Friedman equation (12.28) if we identify the constant k =

— rifZ with the curvature and assume that k takes the values +1, 0, —1.

In Eq.(12.34) p is the density of non relativistic matter and radiation. Let us
introduce the energy density determined by the cosmological constant A (vacuum
density):

_ 4 (12.35)
PA= 8nG '
The Friedman equation takes the form
a 8 k
C)Y="7Gpot— , (12.36)
a 3 a
where
Prot = P + oA (12.37)

is the total density.

In order to introduce pressure p,, which is determined by the cosmological
constant A, we will consider the Einstein equation. From (12.25) and (12.27) we
have

A
) guvl.  (12.38)

Gy =81G Ty + Aguy = 8nG [(p + pluyuy, — (p — 87 G

We will present the Einstein equation in the form

G;w =81 G [(otor + ptot)”p,uv — Dt g,uv]a (12.39)
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where

Pot =P+ PA, Piot=P+ PA (12.40)

are the total density and total pressure.
From comparison of (12.38) and (12.39) we conclude that

A

=0, = — . 12.41
pa+ pa pA . ( )

Thus the pressure p, is a negative quantity. From (12.41) for p4 we obtain the
expression

_ 4 (12.42)
PA= 8 G ’

which coincides with (12.35).
We will show now that the second Friedman equation (12.29) is a consequence
of the first Eq. (12.28) and the first law of the thermodynamics
dU =dQ — pirdV. (12.43)
where dU is the change of the internal energy of a system, d Q is the supplied heat,

Drot 1s the total pressure and dV is the change of the volume of the system. The
expansion of the Universe is an adiabatic process. Thus d Q = 0 and

Here U = piotV, where pyo is the total energy density. From (12.44) we find

. 1%

Prot = —(Prot + Prot) v (12.45)
Finally, taking into account that V (¢) ~ a’(r), we find

. a
Prot = —3(ptot + Ptot)a . (12.46)

Let us consider now the first Friedman equation (12.28). Calculating derivative over

t we find
afda [(a\*\ 4n _. k a
_ = G prot — 5 - (12.47)
a\a a 3 aca
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From (12.28) and (12.47) we easily find the equation

a 4
0 3 G (prot + 3 pror)- (12.48)

Taking into account that ot + 3pior = p + 3p — 4:?G’ we come to the second
Friedman equation

a 4 1
=— _G((p+3p+ _A. (12.49)
a 3 3

In the next subsection we will consider different solutions of the Friedman
equations. Here we will show that using experimental data it is possible to draw
important conclusions about the expanding Universe directly from the Friedman
equations.

1. From Eq. (12.36) we have

81 G k

1= 3H2 Prot — H2a2 (12'50)
This equation we can rewrite in the form
k
a2 = (21t — 1). (12.51)
Here
Q= ", (12.52)
(4
where
3H?
L= . 12.53
Pec 87G ( )

From (12.51) follows that in the case por = pc (2t = 1) the Universe is flat
(k = 0). If por > pc (£2t0t > 1) the Universe is closed. In the case pyor < pc
(210t < 1) the Universe is open. From existing data it was found that the total
density parameter 2o at present time is equal to

Qi = 1.02 £0.02 (12.54)

Thus from existing data follows that the Universe is flat.
The density p. is called the critical density. We have

pe=188-107¥ h?> gem™ = 1.05- 107> % GeV cm™>. (12.55)
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Here
h= " (12.56)
~ 100 km s—! Mps™! )
From analysis of the existing data follows that
h =0.73 £0.03. (12.57)

2. The second Friedman equation determine acceleration of the expansion rate of
the Universe. Let us determine the cosmic deceleration parameter

. 1 d . ad (12.58)
1= H?2a a2’ '
From (12.49) we find
47 G A
= 3p) — 12.59
g="3 3= o (12.59)

Terms in the right-hand side of (12.59) have different signs. If the first gravi-
tational term dominates, the parameter g is positive and the expansion of the
Universe is slowing down (due to gravitational attraction). If the second A-term
dominates, g is negative and the expansion of the Universe is accelerating (due
to repulsion caused by the cosmological constant).

From (12.42) and (12.53) we find

A
Qr=""= " (12.60)
pe  3H?
Further, we have
0 = Pmat + Prad> P = Pmat + Prad, (12.61)

where Pmat(Pmat) and prad(prad) is the matter and radiation density (pressure).
Taking into account that ppa = 0 and pryg = éprad, from (12.59) we find

1
q= zgmat + $£rad — £24. (12.62)

Here

Pmat Prad
-Qmat = , -Qrad = .

Pc Pc

(12.63)
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From analysis of the existing data follows that
Qmat = 0.241+0.034, 24 = 0.759£0.034, 21aqh> =2.47-107°.  (12.64)

Thus, at present time the cosmological term in Eq. (12.59) dominates and the
expansion rate of the Universe is accelerating (qo < 0).

12.1.5 Solutions of the Friedman Equation

After the Big Bang during large part of the history of the Universe radiation or non
relativistic matter (dust) or dark energy (cosmological constant) dominated. It is
instructive to obtain solutions of the Friedman equation under the assumption that
only one component of the energy density presents.

For the perfect fluid the uniform pressure is a function of the density. For the non
relativistic matter p = 0. In the case of the radiation p = ép. For the cosmological
constant p = —p. Thus, for substances we are interested in, the equation of state
has the form

p=wp, (12.65)
where w = 0 for non relativistic matter, w = é for radiation and w = —1 for dark
energy (cosmological constant).

In the case of one component from (12.65) we have

R a
=-3(1+w) . (12.66)
P a

From this equation we find

dinp  dlng>3t+)

12.67
dt dt ( )
It is obvious that solution of this equation has the form

o(t) = C a3+ ) (12.68)

where C is a constant.
From (12.68) we conclude that in the case of matter (usual and dark) we have

Omat X a . (12.69)



220 12 Neutrino in Cosmology

For radiation (y-quanta, neutrinos, ultra relativistic particles) from (12.68) we find
Orad X a "%, (12.70)
Finally for dark energy we obtain
pA = const. (12.71)

Notice that (12.69) follows from the fact that pma ‘1, , V « a’. The
behavior (12.70) is due to the fact that the energy density of radiation is proportional
0y o)

From (12.69)—(12.71) we can draw important conclusions about the history of the
Universe. Namely, we can conclude from these relations that in the early Universe
when the scale factor a(¢) is small radiation dominates. Because density of matter
falls slower than the density of radiation at some time densities of radiation and
matter become equal. After that time the matter starts to dominate. At later time the
dark energy (constant density) dominates.

Let us obtain solutions of the Friedman equation for the flat Universe in the case

of non relativistic matter or radiation. From (12.47) and (12.68) we have

i=Ca 3", (12.72)
From this equation we obviously find
d 30+w
2 = C s 1273
i 1 ( )

where C; = 3(1; W) C. After integration over ¢ we obtain the following relation

3(1+w)

3(1+w)
a 2w —a3"(0)=Cyt. (12.74)

Further, taking into account that in the Big Bang Universe a(0) = 0, we find

2
a(t) = Cp t30+w (12.75)
From this relation for the Hubble parameter we obtain the following expression

am 2 1

HO= 0 T30 +w) ¢

(12.76)

In the case of matter w = 0 and we have

a(t) 13, H(r) = ;t . (12.77)
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In the case of radiation w = _l, and from (12.75) and (12.76) we find

a(t) 12, H(t) = 211‘ . (12.78)

If we take into account only the cosmological constant, the Friedman equation takes
very simple form

(2) =m=1
= H* = (12.79)
a 3

Thus if dark energy dominates, the Universe expands exponentially

A
a(t) o« e\/3t (12.80)
and the Hubble parameter is a constant
A
H = 3 (12.81)

12.2 Early Universe; Neutrino Decoupling

In this section we consider radiation-dominated early Universe. During much of this
period relativistic particles were in thermal equilibrium.? The equilibrium number
density of a fermion (boson) of a type i is given by the expression’

, d3 R 00 2d
n; 8i / p 8i / prap (12.82)
0

T 2r)3 E;i (p)—1; T o2 Ei(p)—1j
A a4

Here g; is the number of the internal degrees of freedom, E;(p) = \/ P2+ miz, mi

is the mass of the particle i, w; is the chemical potential, 7; is the temperature and
k ~ 1.38 - 107! erg/grad is the Boltzmann constant. For the equilibrium energy
density we have

g [ Ei(p)p*dp
p,:zn’z / Lo (12.83)

- |

2 A condition for the thermal equilibrium we will discuss later.

3The factor .8 3 is the density of states ((27)3 is due to the relation h = 27 k).

8
Q2n
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In the early Universe the chemical potentials of all relativistic particles are small
and can be neglected. In the ultra-relativistic case kT; >> m; for the number density
and the energy density we find the following expressions

2 oo L3
gi 3 © x2dx gi 4/ x’dx
P = kT; , P = kT; s 12.84
n; 27_[2( i) /O o+ 1 Pi 27_[2( i) ) e 1 ( )

where x = kT Integrals in (12.84) are connected with the Riemann zeta function
Z(n) determined by the relation

r(n) = / o ldx (12.85)
I'(n) ’

where I"(n) is the Gamma-function. For integer n we have I'(n) = (n — 1)!. For
Bose particles from (12.84) and (12.85) we obtain the following expressions

& 3 & 4
ni= G CTD2Q). pi= ) (KT)65 (). (12.86)

Taking into account that

T
(@) =120, =T (12.87)
we find
2
m=" Ve wr =7 g KT (bosons). (12.88)

In order to calculate the number density and the energy density for the Fermi
particles we will use the relation

1 1 2

ex-l—l:ex—l_ezx—l—l' (12.89)
We obviously have
0o n 1 00 yn
/0 ex+1=(1—2n)/() 1 (12.90)
Using this relation we easily find
3O wmy = ’ng,- (kT)* (fermions). (12.91)

Ty g2 8 30
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The total energy density can be presented in the form

2

T
p= Zp,- = 308 D" (12.92)
1

Here T is the photon temperature and

\* 7 7 \*
ge= > gi(T) te 2 gi(T) . (12.93)

bosons fermions

is the effective number of degrees of freedom of ultra-relativistic particles. Let us
consider particles with mass m. If kT <« m particles are non-relativistic, E(p) =~

m + é’; and from (12.82) for the number density in the Bose and Fermi cases we
have

—m— o0 2
n= & e (kTM/ e72rﬁkTp2dp. (12.94)
0

After calculation of the integral in (12.94) we find

mkT\*>?  —on-w
n=g - e kT, (12.95)

Thus the number density of non-relativistic particles in the Universe is Boltzmann-
suppressed. For the energy density in the non-relativistic case we have

o0 = mn. (12.96)

Let us consider now the entropy of the Universe. From the second law of
thermodynamics

TdS =d(pV)+pdV (12.97)

we have
1 %4
ds = Td((/) +pV)— po. (12.98)

Further, we find that in the case of equilibrium

_ (p+p)dT‘

d
p T

(12.99)
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Notice that this relation follows from the condition 3?‘)/23% = 3?}235‘,. From (12.98)
and (12.99) we have
1 p+p p+p
dsS= _d V) — VdT =d V. 12.100
FAe+ V) =" ( ’ (12.100)

In thermal equilibrium the total entropy is conserved. In fact, from (12.100) we have

dS_V(d,o 1dV> V(dp (p+p)dT

- —0. (12.101
at ~ 1t \a TPy g )Tl T dt) ¢ )

The first term in (12.101) vanishes due to the relation (12.45) and the second term
vanishes due to the relation (12.99).
If there are several particles, for the total entropy density s = ‘S, we have

pi + pi
= . 12.102
For relativistic particles pressure and density are connected by the relation
pi = ;,o,-. From (12.88) and (12.102) we find

2 2
s = ;’5 2us (KT)3, (12.103)

where the effective number of degrees of freedom g, is given by the expression

T\, 7 T\’
B = ) gi(T) +() 2 gi(T) : (12.104)

bosons fermions

The total entropy of the expanding Universe S = sV is a conserved quantity. Taking
into account that V (1) o a3(r) from (12.103) we conclude that the temperature of
the expanding Universe drops as a ! (¢)

kT o gis? a1 (0). (12.105)

As we discussed before, in the early Universe ultra-relativistic particles domi-
nate. At this stage the contribution of the curvature and the cosmological constant
terms in the Friedman equation can be neglected. For the Hubble parameter we have
in this case

87 G 473 | (kT)?
H= ~ ) 12.106
\/ 3 P \/45 & ( )
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Here Mp = \/IG ~ 1.22-10' GeV is the Planck mass. From (12.106) we obtain the
following expression for the Hubble parameter

=021 2s*1 (12.107)
=S\ Mev ' '

The time of expansion ¢ is connected with the Hubble parameter by the relation
t = 2;1 (see (12.80)). Using the relation (12.107), we find the following relation
which connect the time of expansion with the temperature

= U oaggrtr (MeVY (12.108)
= = 2. S. .
2H 8 kT

Let us notice that the effective number of the degrees of freedom depends on the
temperature. For example, at k7 > 100GeV all Standard Model particles are
relativistic and internal degrees of freedom of photons (2), W=, Z9 bosons (3 x3),
gluons (8 x 2), the Higgs boson (1), quarks and antiquarks (6 x (4 x 3)), charged
leptons and antileptons (3 x 4), neutrinos and antineutrinos (3 x 2) contribute
to g«. We have in this case g, = gp + ;g r = 106.75. As the temperature
decreases different particles became non relativistic and annihilate. At 1 MeV
< kT < 100MeV electrons and positrons, photons and neutrinos are relativistic
particles. Taking into account that in this range of temperatures 7, = T, = T we
have g, =2+ ; -10=10.75. At1 eV <« T <« 1 MeV the only relativistic particles
are the photon, and neutrinos. Taking into account that 7, = (141)1/ 3 T, (see later)
we have, at such temperatures, g, = 3.36.

If interaction rate I" of reactions, which are responsible for the thermal equi-
librium, is much larger than the Hubble parameter H, which characterizes the
expansion rate of the Universe, the thermal equilibrium is reached before the effect
of expansion becomes important. When the Universe expands the temperature
drops and at some temperature the interaction rate I for some particles become
comparable with the expansion rate H. At such temperatures the equilibrium will
not be maintained and the particles decouple with a freeze-out abundance. Different
particles have different interaction rates and decouple at different times.

In order to determine the interaction rate let us consider the reaction a + b —
¢ + d. The cross section of the reaction is given by the relation

ofi = u;f (12.109)
]

where w s; is the number of transitions in unit volume during unit time and j; =
ngnpv (ng(np) being the number density of the particles a (b) and v is the relative
velocity). The interaction rate of the particle a (b) is determined by the relation

I'y, =npov, T} =nyov. (12.110)
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At high energies we have n, >~ np =nand I';, >~ I, = I'. From (12.110) it follows
that I" has the dimension L’3L2% =T 1 (or[M]inthe i=c =1 units).

We will consider neutrino decoupling. In the early Universe neutrino equilibrium
is kept by the reactions

et te =+, v +eT =) et (=e pn, 1) (12.111)
Averaged cross sections of the weak processes (12.111) are of the order
o~ GL(kT) . (12.112)

Taking into account that for the ultra-relativistic particles n ~ (kT)3, for the
neutrino interaction rate we have

I~ G%(kT)>. (12.113)
The Hubble parameter is given by

kT)?
H~ G kT)* = (M) ) (12.114)
P

With the expansion of the Universe the interaction rate drops more rapidly than the
Hubble parameter. The neutrino freeze-out temperature Tvdec can be estimated from
the relation

r
~ 1. 12.115
H ( )
From this relation we have
kT ~ ( ! )3~ 1 Mev (12.116)
v MPG%;
Notice that from more accurate calculation it was found that T3¢ = 0.8 MeV.

After the decoupling neutrinos preserve Fermi-Dirac distribution, the Universe is
transparent for neutrinos and the neutrino temperature evolves as a .

After the neutrino decoupling y’s and e* are in thermal equilibrium. When
the temperature drops below electron mass the electrons and positrons begin to
annihilate. The released energy heats up only y’s because neutrinos are decoupled.
Thus, after et — e~ annihilation the temperature of photons will be higher than the

neutrino temperature.
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In fact, the effective number of degrees of freedom of y’s and e* is equal to
gxs = 2+ ; -4 = 121. After the annihilation of electrons and positrons we have
gxs = 2. Because the total entropy of relativistic particles which are in equilibrium
is conserved we have

11
) (Ta); =2(Ta), (12.117)

where subscript b(a) means before (after) et — e~ annihilation.
Further, from the conservation of the total entropy of decoupled neutrinos we
find

(T)a _ (@)
Ty~ @a

Finally, taking into account that (7)), = (T)p, from (12.117) and (12.118) we find
the following relation between neutrino temperature and photon temperature

4\ 1/3
TU=<11) T. (12.119)

(12.118)

This relation holds also at present. From the study of the cosmic microwave
background radiation (CMB) it was found that 7 = 2.725K. Thus, the neutrino
temperature at present is equal to 7\, = 1.945K and kT, = 1.676- 10™*eV.

At least two massive neutrinos at present are non-relativistic. In fact, for the
normal mass ordering we have

my = \/m% + Am?, > 8.6-107% eV, m3 ~ \/m§ +Am% 2491072 eV
(12.120)

Thus, we have m» 3 > kT,. Analogously, in the case of the inverted mass ordering
we have mo | > 4.9-1072 eV and my 1 > kT,.
The entropy density of y’s and v’s at kT < m, is given by the expression

272 7 4 7
= (kTY, gus =2+ _ - 2Newr, =2 Netr = 3.94.  (12.121
s 45 8xs(kT) 8xs +8 eff11 + 11 eff ( )
If there are only flavor neutrinos Nesf = 3. However, if we take into account that
neutrino decoupling was not quite complete when e™ — ¢~ annihilation started, we
have Negr = 3.046.
For the energy density of y’s and v’s we have

2

T
20 kT, go=2+

7 4 7 4
~2Neff(11)4/3=2+ (Y3 Negr = 3.36.

p= 8 1111
(12.122)
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12.3 Neutrino Background

After et — ¢~ annihilation, the number density of y’s is given by the expression

3
n, = iiz)gy(kT)3, gy =2. (12.123)

For the number density of neutrinos we have

3 4
ny = 4nyNeff11 (12.124)
Taking into account that the photon temperature at present is equal to 7 = 2.725K
from (12.123) for the present photon number density we find

ny ~ 410 cm™>. (12.125)

From (12.124) follows that number density of all flavor neutrinos at present is
equal to

n, ~ 336 cm ™. (12.126)
These numbers can be compared with the number density of baryons in the Universe
ng ~25-107" em™3. (12.127)

Thus, photons and neutrinos are the most abundant particles in the Universe.

Because the neutrino number density is so large it is possible to obtain some
information on neutrino masses directly from the measurement of the cosmological
parameters. Let us assume that all neutrinos at present are non-relativistic and
neutrino mass spectrum is quasi-degenerate (mq ~ my >~ m3 =~ ! Zi m;). We
have in this case

@, = ZiMin 2 mi (12.128)
Pc 3 pe

where p, = g’ 5(2; is the critical density. From (12.126) we find*

Zi mi
Q, ~ ) 12.129
YT 94 n2evV ( )

4 pc _ 1.0510*eV cm™3 h?
:l;"v 112 cm—3

100 /2 km s~! Mpc™!.

~ 94 h? eV, where h is determined by the relation H =
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Neutrinos can be a part of the dark matter. It is obvious, however, that
2, < 2pMm. (12.130)

From the analysis of the existing data follows that £2pyp =~ 0.26 and & =~ 0.68. Thus,
from (12.129) and (12.130) we find the following bound (Gerstein and Zeldovich)

> mi SleV. (12.131)

1

Comparable bound can be obtained from the tritium B-spectrum data. In fact, from
the Troitsk and Meinz data we have mg = (Zi |Uei |2ml.2)1/2 < 2.3 eV. In the case
of the degenerate spectrum from this bound it follows that ) ", m; < 6.9 eV. We
will see later that from CMB and other cosmological data an about one order of
magnitude better bound can be derived.

Unlike the relic photons, the relic neutrinos have not been observed. Their
observation is an extremely challenging problem. The cross section of the neutrino-
nucleon scattering is so small (~107%2 ¢m?) that the direct observation of this
process does not look possible.

12.4 Big Bang Nucleosynthesis

The measurement of the primordial abundances of the light elements D, 3He, “He
and "Li, produced in the end of the first 3 min of the evolution of the Universe,
provides one of the most important confirmations of the Big Bang theory. It is
very impressive that these abundances span nine orders of magnitude range. The
detailed study of the primordial nucleosynthesis allows to obtain information about
the number of neutrinos. We will discuss here briefly the primordial nucleosynthesis.
The synthesis of light elements is determined by conditions in the early Universe
at kT ~ 1 MeV corresponding to ¢ ~~ 1s. At higher energies the thermodynamic
equilibrium between protons and neutrons was due to the neutrino processes

Ve+n=e +p, De~|—p<:’e+—|—n. (12.132)

Assuming that @, = p, from (12.95) for the ratio of neutron and proton number
densities we find the following expression

32
fin _ <m> e i (12.133)
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Here m, and m , are neutron and proton masses and Am = m, —m, = 1.293 MeV.
In the first factor in Eq. (12.133) neutron-proton mass difference can be neglected.
We have
ny —Am
~e kT, (12.134)
np

Let us estimate the temperature at which neutrons and protons are decoupled from
equilibrium due to the weak reactions (12.132). The n = p conversion rate is
determined by G% and is given by

Li=p = GR(k T). (12.135)
The freeze-out temperature can be estimated from the relation

(k Tfreeze) 2

—-1/2
Mpgx /

G%?(k Tfreeze)5 ~ H >~ (12.136)

where M p is the Planck mass and g, is the number of relativistic degrees of freedom
which depends on the number of neutrinos. Thus, we have

1/3

1

kTtreeze > ( ) 1/2) ~ 1 MeV. (12.137)
GFMPg*

At such temperatures from (12.133) for the ratio of the neutron and proton number
densities we find

1
2 (12.138)
np 6

After the freeze-out neutrons decay (n — p + et + b,) with half-life 7, = 880.3 &+
1.1s.

The rates of reactions of the nucleosynthesis depend on the barion (nucleon)
number density which is usually normalized to the photon density

n= , (12.139)
where

ng=np+n, + Any (12.140)

and n4 is the number density of nuclei with atomic number A.
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The Big Bang nucleosynthesis starts with the production of deuterium in the
reaction

n+tp—D+y. (12.141)

However, at kT ~ 1 MeV because of the large number density of y’s and the small
deuterium bounding energy (ep =~ 2.23MeV) deuterium nuclei, produced in the
process (12.141), are dissociated in the inverse reaction

y+D—>n+p. (12.142)
The nucleosynthesis temperature can be estimated from the condition
1 —¢D
nleTiT <1, (12.143)

i.e. from the requirement that the number density of photons with energy above
the threshold of the reaction (12.142) is not larger than the barion number density.
From (12.143) it follows that the nucleosynthesis starts at k7 >~ 0.1 MeV. Due
to the decay of neutrons by the time of the beginning of the nucleosynthesis the
neutron-proton ratio drops to

i 1
~ (12.144)
np 7

During the nucleosynthesis practically all neutrons will be bound in “He, a light
nucleus with the largest binding energy (esy, =~ 28.3MeV), through the chain of
two-body reactions

n+p—>D+y, p+D—3He+y, D+>He— *He+ p. (12.145)

In order to estimate the mass fraction of “He we take into account that na, ~ e
We have

nn
N 4n4He ~ np

Y ~ ~ 0.25. 12.146
P np 1+ Z; ( )

This estimate is compatible with observed primordial abundance of “He.

When rates of the reactions (12.145) are smaller than the expansion rate (at the
small number density of deuterium) the abundances of D and *He are frozen out.
The predicted abundances of D and *He are decreased with the increase of 7 and
are in the range (1075-10~%).

In the nucleosynthesis a small amount of Li is produced in the reactions

SH+*He — "Li+y, *He+*He — 'Be+y, 'Be+e” — 'Li+v,. (12.147)



232 12 Neutrino in Cosmology

The predicted abundance of "Li depends on 7 and lies in the range (10~'°-1077).
Notice that stable nuclei with atomic numbers 5 or 8 do not exist. This prevent
production in the Big Bang nucleosynthesis of nuclei heavier than "Li in p + *He,
n + “He and *He + “He reactions.

Light elements were produced in the Big Bang nucleosynthesis during the first
3 min after the Big Bang. Due to effects of the subsequent stellar nucleosynthesis,
the estimation of the systematic errors in the present-day measurements of primor-
dial abundances of light elements is a complicated problem. For the abundances of
D, the following value was found

D
y = 253£0.26) 1075, (12.148)

For the abundances of He from the latest measurements it was obtained
Y, = 0.245 £ 0.004. (12.149)

For abundance of "Li from different data it was found

Li 0 L 0 L -10
=(1.7£03) 107, =(2.19+£0.28) 107, = (1.86 £0.23) 107 ".
H H H
(12.150)
No reliable data for the primordial abundance of 3He exists at the moment. The
primordial abundances of the light elements as functions of the parameter n were
calculated in the framework of the Standard Model with three types of neutrinos.
Thus from the measured primordial abundances of the light elements we can
determine the value(s) of the parameter 1. Using the most precise 3 data it was
found

58-10700% <y <6.6-107'° (95% CL) (12.151)
From these inequalities we obtain the following range for the parameter £2;
0.021 < 2,h* < 0.024 (95% CL) (12.152)

The parameter £2,4> can be determined from CMB temperature fluctuations (see
later). From the latest Planck data it was found the value

2,h? = 0.0223 £ 0.0002, (12.153)

which corresponds n = (6.09 + 0.06) - 10710, Impressive agreement
between (12.152) and (12.153) is a strong argument in favor of the Big Bang
Cosmology and the Standard Model (with three neutrinos).

The agreement of the theory of the Big Bang nucleosynthesis with the measure-
ments allows to limit the number of possible additional light neutrino types. At
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temperatures kT ~ 1MeV the energy density of the Universe is determined by
photons, e, neutrinos and antineutrinos. The effective number of the relativistic
degrees of freedom can be written as

77
=244, +2, N, (12.154)

where N, is the number of neutrino types. If N, > 3 the expansion rate

8
H= \/ ;TGg* (k T)> (12.155)

will be larger than in the standard case and, as a result, the decoupling temperature
will also be larger. If the decoupling temperature will be larger the ratio ZZ will
be larger and the primordial abundance of “He will be larger than in the case of
N, = 3. From the primordial abundance of “He together with the CMB value of the

parameter 1 the value

N, =3.141070 (12.156)

was found for the number of neutrino types.

12.5 Large Scale Structure of the Universe and Neutrino
Masses

The most direct information about the sum of neutrino masses Y, m; can be inferred

from the study of the suppression of the matter fluctuations caused by massive

neutrinos. Such information can be obtained from the investigation the Large Scale

Structure (LSS) of the Universe. We will first define the density fluctuation function
s — PO— <>

(x) = ) (12.157)

<p>

where p(x) is the matter density and < p > is the volume average density. The
Fourier component of the function §(x) is given by

S(k) = /e*"k’&s(x) d’x. (12.158)

)3
Let us define the matter power spectrum P (k) as follows

Pk) =< [§K)* > . (12.159)
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Because all directions of fluctuations are equivalent we have
P(k) = P(k). (12.160)
The power spectrum at present is given by the relation
P(k, 1) = T*(k) P(k), (12.161)

where P (k) is the primordial spectrum and 7 (k) is the transfer function which is
determined by the evolution of initial perturbations. The primordial spectrum P (k)
is determined by the initial conditions in the Universe. It is usually assumed that it
has a power-law form

Pk) = A k™, (12.162)

where A is a constant. If ny = 1 the primordial power spectrum is the scale invariant
Harrison-Zeldovich spectrum. From the fit of the latest Planck data it was found that
ng = 0.968 £ 0.006. In the calculation of the function 7 (k) complicated effects,
connected with the growth of the original density perturbations, must be taken
into account. The measurement of the LSS of the Universe allows us to determine
the power spectrum of visible matter P, (k, fy). The power spectrum of all matter
(visible and dark) Py, (k, tp) can be different from the power spectrum of visible
galaxies. Thus, for the comparison of the measurements and theory we need to know
the bias parameter

_ Pg(ka t())

2

(12.163)
Notice that this parameter can be determined from higher order correlations.

The contribution of neutrinos to the matter density of the Universe is small
(_g; < 7%). Nevertheless from analysis of the modern high precision cosmological
data a rather stringent limit on the sum of neutrino masses ) ; m; can be obtained.
We will present now some qualitative arguments in favor of the high sensitivity of
the LSS data to the sum of neutrino masses.

The growth of density fluctuations induced by the gravitational attraction has the
form

3p «~al. (12.164)
If all matter is able to cluster, p = 1. In general we have

p =", (12.165)
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where §2. is fraction of matter which can cluster. On the scale where neutrinos are
not clustering we have

Qm — 2,
Q. = =1-f, (12.166)
£

where §2,, is the density of all matter, 2, is the neutrino density and
f= . (12.167)

Density fluctuations start growing at the beginning of the mater dominated era (scale
factor ays) and they stop growing at the time when the dark energy dominated era
starts (scale factor a 4). The growth of the fluctuations during this time is given by
the factor

3/5

25 3, a
<"A> ~ <“A> e 3 My (12.168)
ay ay

where the exponent gives the suppression of the growth of the fluctuations due to
neutrino non-clustering. The suppression of the power spectrum at a scale where
neutrinos do not cluster is given by

Pk, omi) _ ~Spmg

12.169
P(k, 0) ( )
For the fraction of neutrinos f, we have (see (12.129))
fy = 2 mi (12.170)

T 94eV 2,k

From analysis of Planck CMB data it was found that 2mh?* ~ 0.14. Thus, we have

m
fo =~ %e\’] (12.171)

High sensitivity of LSS data to the parameter Y  m; is connected with the fact that

the ratio (;‘A ) is large. It was found that
M

Pk, >mi) _ 1of, (12.172)
P(k,0)
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After decoupling neutrinos form a collisionless fluid in which separate particles
free-stream with a thermal velocity v;,. The neutrino free-streaming wave length
Ars is determined by the distance which neutrinos pass during the Hubble time 111

Aps = 2 \/2 vrh (12.173)
=2 . .
FS 3 H
Taking into account that H = \/ 8736 pm for the neutrino free-streaming wave
number we have
4r G 2
ks =27 = [T P (12.174)
AFS v,

For non-relativistic neutrinos with mass m we have

5 3.5kT, 3.15kT° 4 . kT?
v~ P~ v v 34504 )BT (12.175)
m a 11 m

m m

where T;) = 2.725K is the CMB radiation temperature at present.
The minimal wave number, which corresponds to the time when neutrinos
became non relativistic, is given by the relation

12 ((2mi 1z
knr >~ 0.018 .Qm/ ( eV ) h Mpc_l. (12.176)
(&

Atk > ky the power spectrum is suppressed by a factor given by Eq. (12.172). This
suppression is due to the fact that neutrinos do not cluster on the scales k > ky.
In the region k < kg, corresponding to scales larger than the horizon, there is no
suppression of the power spectrum.

From analysis of the SDSS and BOSS Galaxy distribution data the following
upper bound was obtained

Zmi <0.6eV (12.177)

The bound on the sum of neutrino masses depends on the values of other cosmo-
logical parameters. For example, a change of the spectral index n in the primordial
power spectrum (12.162) can partially mimic the effect of neutrino masses. The
joint analysis of the SDSS data and the Cosmic Microwave Background (CMB)
radiation data, which strongly constrain the values of the cosmological parameters,
allows to obtain more stringent and reliable bound on the parameter ) _ m;. We will
briefly discuss these data in the next subsection.
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12.6 Cosmic Microwave Background Radiation

The measurements of anisotropies of the Cosmic Microwave Background (CMB)
radiation provide a profound confirmation of the Big Bang cosmology. These mea-
surements allow one to obtain the most precise values of cosmological parameters.

The spectrum of the CMB radiation is an ideal Planck spectrum which is
characterized by the temperature. The mean measured temperature is 7 =
(2.72548 £ 0.00057) K. The CMB radiation is almost isotropic in the sky with
small anisotropies of the order ATT ~ 107>, Starting from the pioneering COBE
satellite, the CMB anisotropies were measured in different experiments. After
the COBE satellite CMB anisotropies were studied by the Wilkinson Microwave
Anisotropy Probe (WMAP). The Planck is the satellite of third generation dedicated
to the observation of the sky in the microwaves. It operated from 20009 till 2013.

The CMB radiation was generated at the time when the Universe was cool
enough to allow the recombination of hydrogen atoms (recombination era, about
380,000 years after the Big Bang). The temperature at that time dropped to 3000 K.
On the way to us due to elastic Compton scattering on hot electron gas CMB photons
became linearly polarized. This polarization was measured in the WMAP, Planck
and other experiments. Anisotropy of the CMB radiation is due to perturbations of
the gravitational potential (Sachs-Wolfe effect) and other effects.

The CMB anisotropies can be expanded in spherical harmonics

oo m=l
8T (n) = Z Z aim Yo (). (12.178)
=1 m=—I

Here T (n) = T(n) — T, where T is the average temperature, and n is the unit
vector. The angular temperature angular power spectrum is defined as follows

1
TT
=, Em: <aj,am > . (12.179)

Analogously are determined angular power spectra C IE E c lT E and C ZBB for polar-
ization anisotropies (E is the electric mode and B is the magnetic mode).

CMB photons during their traveling to the Earth are experienced gravitational
effects of the matter distribution (CMB lensing). The CMB lensing has distinctive
effect on the angular power spectra. It is strongly affected by neutrino masses:
massive neutrinos suppress the clustering on scales smaller than the horizon at the
nonrelativistic transition and affect the lensing potential. From the latest analysis of
the Planck data it was found (95% CL)’

Zm,- <0.72¢eV Planck TT + lowP. (12.180)

1

Slow P is TE and EE polarization data at < 30.
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If the Planck TT + lowPB data are analyzed together with Barion Acoustic
Oscillation (BAO) data,® the acoustic scale degeneracy will be broken and the bound
on the parameter ) _; m; is much stronger

> “mi <021 eV Planck TT + lowP + BAO. (12.181)

1

Additional polarization data make a relatively small improvement to the bounds:

Zm,- <0.49eV Planck TT, TE, EE + lowP:

1

Y mi <0.17eV Planck TT, TE, EE +lowP + BAO.  (12.182)

1

Analysis of the Planck CMB data allows to obtain an information about the effective
number of neutrinos Negr.” No evidence in favor of additional neutrino degree of
freedom was found (68% CL):

Netf = 3.134+0.32 Planck TT + lowP;

Nefr = 3.15+£0.23 Planck TT + low P + BAO;

Nef = 2.994+0.20 Planck TT,TE, EE + lowP;

Netr = 3.04£0.18 Planck TT, TE, EE + lowP + BAO. (12.183)

The Planck CMB data are perfectly described by the Standard Cosmological Model
ACDM with six parameters: the barion density £2;, 42, the cold dark matter density
2. h?, the spectral index n plus additional three parameters which describe
dynamics of the evolution of the Universe. From analysis of the Planck data it was
found

2p h? = 0.02226 £ 0.00023, 2, h? = 0.1186 & 0.0020, n, = 0.968 + 0.006.
(12.184)

In this analysis the normal neutrino mass hierarchy with >, m; = 0.06eV was
assumed. The bounds (12.180)—(12.182) were obtained under the assumption that

SIn the early Universe baryons and photons can be treated as a fluid. The combination of effects of
gravity and pressure of radiation creates longitudinal acoustic oscillations in the photon-baryon
fluid. The oscillations of the photons induce peaks in the power spectra at different angular
momenta.

TThe effective number of neutrinos, larger than the standard one (Neg = 3.046), would lead to a
faster expansion of the Universe and earlier recombination era.
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>_; m; is an additional variable parameter. Marginalizing over neutrino masses and
using BAO measurements from SDSS, BOSS and 6dF surveys it was found

h = 0.678 %+ 0.009. (12.185)

Within the ACDM model the following values of the cosmological parameters can
be derived

2, =0.308+0.012, £24 =0.692+0.012, £2; =0.000+£0.005. (12.186)

We considered mainly Planck CMB data. Other cosmological data are also
described by the six parameters ACDM model. However, there is a tension between
Planck and other analysis. For example, from HST data it was found

h =0.732£0.017. (12.187)

Summarizing, from analysis of the cosmological data more stringent bounds on
neutrino masses than from laboratory experiments can be inferred. However,
cosmological results are model dependent.

12.7 Supernova Neutrinos

Neutrinos play a crucial role in gravitational collapse of a core of a massive star
(supernova explosion). 99% of energy released during a supernova explosion is
emitted in the form of neutrinos of different types. In 1987 for the first time neutrinos
from the supernova SN 1987A were detected by the Kamiokande II, IMB and
Baksan detectors. The observation of supernova neutrinos and the first observation
of solar neutrinos by R. Davis et al. opened a new field in astronomy, neutrino
astronomy. In 2002 R. Davis and M. Koshiba were awarded with Nobel Prize
for “for pioneering contributions to astrophysics, in particular for the detection of
cosmic neutrinos”.

We will briefly discuss here main stages of the gravitational collapse of a type
II supernova and main neutrino emission phases. A massive star with a mass larger
than eight solar masses evolves through a chain of fusion reactions. It starts with
transition 4 p — “He which take place at the temperature 2 - 107 K. When the
temperature reaches 2 - 108 K the transition 3 “He — '?C becomes possible. Then
160 nuclei are produced in the transition *He + '>C — 10 etc. At the temperature
3.5 - 10? K 3°Fe nuclei are produced in the transition 2 28Si — °Fe. °Fe are the
most tightly bound nuclei. With production of *®Fe nuclei the chain of the thermo-
nuclear transitions is terminated. As a result of the evolution a star has an onion-like
structure with an iron core surrounded by shells of silicon, neon, oxygen, carbon,
helium and hydrogen.
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The iron core typically has a mass of about one solar mass, a radius of a few
thousand km, a central density of about 10'°¢ cm™ and a central temperature of
about 1 MeV.

The gravitational contraction of the iron core with the mass smaller than the
Chandrasekhar limit (1.44 M) where M, is the solar mass) is balanced by the
electron degeneracy pressure. When the mass of the core becomes larger than
the Chandrasekhar limit the electron degeneracy pressure can not prevent the
gravitational attraction and the collapse of the core starts.

The released energy is given by the gravitational binding energy of the core

3GM?

Ep >~ ,
B=5 R

(12.188)

where M, is the mass of the core and R, is the radius of the core (after collapse).
At M. ~ M and R >~ 10 km the energy >~ 3 - 1073 erg is released during the
gravitational collapse.

At an earlier stage of the collapse due to increase of the temperature the photo-
dissociation of iron nuclei

y +°Fe — 130 + 4n (12.189)

take place. At the same time because energies of electrons are increased the electron
capture processes

e +p—>vet+n, e +(AZ)—v.+ (A Z—-1) (12.190)

start. At this earlier stage of the collapse the produced v,’s freely escape the star.

The processes (12.190) reduce the electron pressure and accelerate the collapse.
When the density of the core reaches about ~10'2 g cm™3 neutrinos become trapped
and star can not loose lepton number due to neutrino emission. Neutrino trapping is
mainly due to coherent NC scattering of neutrinos on heavy nuclei. At this stage, the
inner part of the core (~0.8 M) collapses with subsonic velocity proportional to the
radius (homologous collapse). The outer part of the core collapses with supersonic
free-fall velocities.

When the density of the core reaches nuclear density of about 10'* g cm™3 the
pressure of the degenerate nucleons stops the collapse of the inner part of the core.
The stop of the collapse of the inner core creates shock wave which propagates
outward through the outer part of the core.

The shock wave propagating through infalling matter of the outer part of the
core dissociates nuclei into protons and neutrons. The capture rate of electrons on
protons is larger than on nuclei. As a result a huge number of v,’s are produced
behind moving shock front in the process e~ + p — v, + n. When the shock
reaches the region with a density of about 10" g cm™3 neutrinos can leave the
star (neutronization burst). Emitted v,’s carry away about 10°! erg during a few
milliseconds.
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Because of the loss of energy through photodisintegration of nuclei and neutrino
emission the shock wave is weakened and stalled at 100—200 km radius, during tens
of milliseconds after the bounce.

The most popular mechanism of the revival of the stalled shock wave is the
energy transfer by neutrinos emitted by a proto-neutron star. Current numerical
stimulations demonstrate the viability of this neutrino-heating mechanism. The
energy input by neutrinos drives the shock way outward leading to the supernova
explosion in about 0.5 s after the bounce.

Before the shock front re-accelerates outward, by massive accretion of infalling
material (about 0.1 M, s~1) a remnant begins to form. The remnant evolves to
a neutron star or a black hole depending on the mass of the progenitor star. The
hot accretion mantle around the core emits all types of neutrinos and antineutrinos
(accretion phase). During this phase within 20 ms about 2 - 107! erg is emitted.

After about 1s accretion ends and the remnant enters into Kelvin-Helmholtz
cooling phase. During this phase remaining gravitational bounding energy is
transferred into neutrinos and antineutrinos via NC reactions

e +et > v+, et + N — ei—i—N—i—w—i—f); (l=e,u, 1)
N+N—->N+N+vy+v, y+et—>eT+uy+7,... (12.191)

Neutrinos are trapped in the inner high-density part of the proto-neutron star.
Because v, and v, have both CC and NC interactions and v, ; and v, ; have only
NC interaction there are three different neutrino-spheres with radii from about 50 to
100 km. It takes a fraction of a second for the trapped neutrinos to diffuse to that part
of the neutrino-sphere where they can leave the star. Neutrinos are emitted from the
neutrino-spheres with black-body spectrum and average energies in the range (10—
20)MeV (cooling phase). The emission of thermal neutrinos of all flavors continues
for a few seconds. These neutrinos carry out practically all energy produced in the
supernova explosion. The luminosity of all types of neutrinos and antineutrinos
during the cooling phase are practically the same.

On 23 February 1987 in the Large Magellanic Claud (a nearby galaxy) at a
distance of about 51.4 kpc from the earth a supernova SN 1987A was observed. In
three underground neutrino detectors Kamiokande II, IMB and Baksan at the same
time (up to uncertainties in time calibrations) neutrino bursts with neutrino energies
of about 15 MeV over a time interval about 12 s were observed. The neutrino events
were detected about 3 h before the first optical observation of SN1987A was done.?

In all three detectors antineutrinos were observed via the reaction

Ve+p— et +n. (12.192)

8 This corresponds to the general theory of the supernova explosion: neutrinos are produced during
10s after the core collapse and visible light is produced later after the shock reaches the surface of
the star.
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The cross section of this reaction
E \2
o~85-107* cm? (12.193)
MeV

is much larger than the cross sections of other possible reactions. Eleven antineu-
trino events were observed in the Kamiokande II detector, eight events in the
IMB detector and five candidate-events in the Baksan detector. The total measured
released energy ((4.7 £ 1.5) - 1073 erg (Kamiokande II) and 2.9 £ 1.0) - 1073 erg
(IMB)) is consistent with the standard estimate.

From one to three core-collapse supernovae per century is expected in our galaxy.
When this happens, in modern and future neutrino detectors thousands of supernova
neutrino events will be detected. The detailed investigation of supernova neutrinos
will be very important for the study of the mechanism of supernova explosions and
for obtaining information about neutrino properties. In the case of the supernova
neutrinos not only the usual MSW effect due to coherent neutrino-electron scat-
tering but also nonlinear matter effects due to neutrino-neutrino scattering become
important. The consideration of all these important effects is out of the scope of this
book.

12.8 Baryogenesis Through Leptogenesis

From existing cosmological data follows that our Universe predominantly consists
of matter. The baryon-antibaryon asymmetry of the Universe np is determined as
follows

np—ng

nB = ) (12.194)
ny

where np and nj is the baryon and antibaryon number densities and n,, is the
photon number density. Taking into account that n 3 <« np we have ng >~ n, where
n= Zf . The parameter 1 was determined from the measurement of the primordial
abundances of deuterium and other light elements and from the measurement of the
anisotropy of CMB radiation. From very precise recent Planck data it was found

ng = (6.10 £+ 0.04) - 10710, (12.195)

In the Big Bang Universe there was no initial baryon asymmetry. Baryon asymmetry
can be generated only during the evolution of the Universe. There exist several
approaches to the generation of the baryon asymmetry of the Universe. We will
consider here briefly the generation of the baryon asymmetry through the lepton
asymmetry, produced by C P violating decays of heavy Majorana particles. This
approach was inspired by the seesaw mechanism of the neutrino mass generation
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which connect the smallness of neutrino masses with the existence of heavy
Majorana leptons.

In order that the baryon asymmetry was created in the evolution of the Universe,
the following three conditions, formulated by A. Saharov, must be satisfied:

* The baryon number has to be violated.
e C and C P must be violated.
* Departure from thermal equilibrium must take place.

In fact, if the baryon number is conserved, from the state with B = 0 we can not
obtain the present state with B # 0. In order that particles and antiparticles behave
differently, C and C P must be violated. From the C PT invariance it follows that
the masses of a baryon and an antibaryon are equal and, consequently, in the thermal
equilibrium the number densities of baryons and antibaryons are the same.

In principle, the Standard Model could ensure all three Sakharov’s conditions.

1. The baryon and lepton numbers are not conserved in the SM in processes of
transitions between different vacua which have different topological charges and
are separated by a potential barrier. The heights of the barriers are given by the
sphaleron energy (a saddle point of the energy of gauge and Higgs fields). At
T « 100GeV the rate of such tunnel transitions is determined by the instanton

action and is negligibly small (I" =~ v~ 107165). At temperatures higher
than ~100 GeV, transitions over the barrier due to thermal fluctuations become
important and the rate of (B + L)-violating processes can be significant. The
interaction rate of such sphaleron processes are larger that the expansion rate of
the Universe in the temperature range 10?> GeV < kT < 10'2 GeV. B — L in the
sphaleron processes is conserved.

2. The SM interactions violate C. The C P invariance is violated via the Kobayashi-
Maskawa phase dxym which enter into the CKM quark mixing matrix.

3. The electroweak phase transition (transition from SUr (2) x Uy (1) symmetric
phase of massless SM particles to the phase with broken symmetry and massive
W*’s, Z0s, quarks and leptons) which occurred at kT ~ 100 GeV in principle
could be out-of-equilibrium transition.

However, the SM can not explain the baryon asymmetry of the Universe:

* the CP asymmetry in the Standard Model is different from zero only if all three
families are involved. This means that masses of all quarks and all mixing angles
must enter into the C P asymmetry. As a result, the C P asymmetry in the SM is
suppressed by the smallness of masses of light quarks with respect to the scale
of the electroweak breaking and by the smallness of the product s12523513. The
estimated Standard Model C P asymmetry (~107'®) is too small to explain the
asymmetry (12.195),

* the departure from equilibrium can be satisfied if the mass of the Higgs boson is
less than ~70 GeV. From the data of the LHC experiments follows that my =~
125 GeV,
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* because in the SM (B — L) is conserved, the sphaleron processes would wash
out the baryon asymmetry.

Thus, explanation of the baryon asymmetry of the Universe requires a new beyond
the Standard Model Physics. This new physics must insure: (1) a new source of C P
violation; (2) (B — L) violation; (3) out of equilibrium processes.

The leptogenesis is a scenario in which new physical processes generate a lepton
asymmetry of the Universe which is partially converted into a baryon asymmetry
through sphaleron processes.

Let us assume that there exist heavy Majorana leptons N; (i = 1,2,...)
with masses M; much larger than the electroweak vacuum expectation value
v > 246GeV and that the fields N;(x) = N{(x) are singlets of the electroweak
SUL(2) x Uy(1) group. Further we assume that N; interact with the SM leptons
and Higgs. The SU1 (2) x Uy (1) invariant Yukawa interaction and the mass term of
the heavy Majorana leptons N; have the form

1 _ o
L = -, Z M;N;N; — (ZZ Liz¢ viiNig +h.c). (12.196)
i N

Here L;; and ¢ = iTo¢* are lepton and conjugated Higgs doublets (see Chap. 3),
y;; are dimensionless complex constants.
The Lagrangian (12.196)

1. is not invariant under the global phase transformation of the fermion fields and
does not conserve the lepton number L,

2. conserves the baryon number B and, consequently, does not conserve (B — L).

3. in the case of a complex matrix y it violates C P.

In the second order of the perturbation theory the Lagrangian (12.196) induces the
Weinberg effective Lagrangian

_ - 1 =
L= Z Licd iy, yiCHT Ll +hec. (12.197)
Il !

which after the spontaneous SUr(2) x Uy(l) symmetry breaking generate the
Majorana neutrino mass term

1
M = - > B MpICf +hee. (12.198)
1

where MM is the seesaw mass matrix

MM =0T (12.199)
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As we discuss in Chap. 5, the seesaw mechanism is the most plausible mechanism
of the small neutrino mass generation. Thus, existence of heavy Majorana leptons
N; and interaction (12.196) allows not only to explain phenomena of light neutrino
masses but also to ensure conditions 1-3 above for the leptogenesis.

Let us notice that if small neutrino masses imply existence of heavy Majorana
leptons and of the interaction (12.196), then leptogenesis is a likely phenomenon.
Whether it can explain observed baryon asymmetry of the Universe is a complicated
quantitative problem with many unknown parameters involved. We will make a few
illustrative remarks.

The leptogenesis starts in the Early Universe at kT =~ M; when out of
equilibrium decays of Majorana leptons into C P-conjugated final states LH and
LH occur. The C P asymmetry is defined as follows

_ I'(N; > LH)—T'(N; > LH)
" I'(N; > LH)+ I'(N; - LH)’

€ (12.200)
In the tree approximation the phases of the matrix y do not enter into the expression
for the decay probability and I'h(N; — LH) = Ih(N; — LH ). In order to reveal
C P violation we must take into account loop diagrams. The C P phases enter into
the interference between the tree and loop diagrams.

In the case of the hierarchical spectrum of N; the most important contribution
to the leptogenesis give decays of the lightest Majorana particles N1 For the C P
asymmetry we have

3 Z Im(ny)%i M,

= 12.201
167 yHi M, ¢ )

€]

i

The decays of Nj’s are out of equilibrium if the decay rate is smaller than the
expansion rate at the time of the leptogenesis:

I'y, S H(T ~ M)). (12.202)

~ 8; (YY) M1 and that the Hubble constant is given

by the relation H(T) = 1.66 g./? AZ , from (12.202) we obtain the condition

Taking into account that Iy,

YYT 2
g = ¢ M)“” <1073 eV, (12.203)
1

The baryon asymmetry np is the product of the C P asymmetry €;, a wash out
parameter n° and a factor which takes into account the sphaleron conversion of the

9The calculation of the parameter 7 requires the numerical solution of the Boltzmann equation for
1073 eV

leptogenesis. Approximately we have n =~ i1
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lepton asymmetry into the baryon asymmetry. It was found that

1
= — . 12.204
nB 10317 ( )

From the requirement of an agreement with the observed asymmetry we have
M; > 10° GeV. (12.205)

Notice that if we consider a one-flavor lepton asymmetry for the lightest neutrino
mass we obtain the bound

my <107 eVv. (12.206)

However, if we include all three flavors, large flavor effects are possible and the
estimate (12.206) will be not valid.

Let us also notice that in the case of the quasidegenerate spectrum of masses
of heavy Majorana particles the picture of the leptogenesis becomes completely
different. If M> — M1 ~ [y the lepton asymmetry is enhanced resonantly. The
baryon asymmetry of the Universe could be explained for M; ~ 1 TeV.

In conclusion let us stress that the leptogenesis is an attractive possibility of the
explanation of the baryon asymmetry of the Universe. It is a consequence of the
seesaw mechanism of the neutrino mass generation which is apparently the most
plausible possibility of the explanation of the smallness of the neutrino masses.
However, masses of heavy Majorana leptons and Yukawa coupling constants are
unknown parameters. Processes induced by the interaction (12.196), which drive
leptogenesis, can not be observed in a laboratory. Thus, it is not possible to
test leptogenesis in a model independent way. However, the observation of the
neutrinoless double B-decay of heavy nuclei would prove that massive neutrinos
are Majorana particles. This observation would be a strong argument in favor of the
seesaw mechanism of the neutrino mass generation and leptogenesis.



Chapter 13 )
Conclusion and Prospects Shethie

Existence of neutrino was predicted by Pauli in 1930 from the requirement of
the conservation of energy in the S-decay of nuclei. In 1934 Fermi built the first
phenomenological four-fermion theory of the decay of n — p + e~ + v, which
could describe wide range of nuclear S-decay (Fermi) transitions.

It took more than 20 years to confirm the Pauli’s prediction: in the fifties the
neutrino was discovered in the Reines-Cowan reactor neutrino experiment in which
the process ¥, + p — e™ + n was observed.

The first theory of the massless two-component neutrino was proposed by
Landau, Lee and Young and Salam in 1957 soon after the parity violation in the
weak interaction was discovered. The two-component neutrino theory was perfectly
confirmed in 1958 in the spectacular Goldhaber et al. experiment in which neutrino
helicity was measured. Soon after the confirmation of the two-component neutrino
theory Feynman-Gell-Mann and Marshak-Sudarshan proposed the universal current
x current V — A theory of the weak interaction which could describe all existed at
that time B-decay and other weak interaction data.

At this earlier stage of the development of the weak interaction theory B.
Pontecorvo put forward courageous idea of small neutrino masses, neutrino mixing
and neutrino oscillations (1957-1958). One flavor neutrino was known at that time.
Pontecorvo considered the only possible in this case transitions of flavor neutrino
and antineutrino into sterile states: vy = vy and Vg = vg.

In 1962 in the first experiment with neutrinos from accelerator the second flavor
neutrino v, was discovered (Brookhaven). At that time Maki, Nakagawa and Sakata
proposed idea that flavor fields v, and v, are “mixtures” of the fields of neutrinos
v1 and v, with masses m and m».

In the nineties in the LEP experiments at CERN it was established that the
number of the flavor neutrinos is equal to three. The third flavor neutrino v, was
observed in the DONUT experiment at Fermilab.
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In 1967 the Glashow-Weinberg-Salam unified theory of the weak and electro-
magnetic interactions (the Standard Model) was proposed. This theory predicted
existence of charged and neutral vector bosons W* and Z° and a new type of the
weak interaction-Neutral Currents. The discovery of NC processes v, (v,) + N —
v, (V) + X at CERN in 1973 was the beginning of triumphal confirmation of the
Standard Model. Detailed study of different NC induced processes fully confirm
predictions of the Standard Model. In 1983 at CERN vector W* and Z° bosons
were discovered.

Before discussion of the problem of neutrino masses and mixing, which is the
main subject of this book, we will make the following general remarks. Neutrinos
are the only Standard Model elementary particles with equal to zero electric charges.
There are two major consequences of Q, = 0.

1. Neutrinos have no direct electromagnetic interaction. In the region of energies
E <« mw neutrinos have only well known Standard Model weak interaction
determined by the Fermi constant Gy ~ 1.1666 - 107> GeV 2. As a result
detection of neutrinos usually is a challenge. It requires large sophisticated (often
underground) detectors, intensive neutrino sources, effective ways of background
suppression etc. However, if the problem of neutrino detection is solved neutrino
become an unique tool

» for the investigation of the quark structure of nucleon (deep inelastic neutrino-
nucleon scattering),

» for the study of internal invisible region of the sun in which thermonuclear
solar energy is produced (solar neutrino experiments)

 for the investigation of the mechanism of the gravitational collapse (detection
of supernova neutrinos) etc.

2. Quarks and leptons are Dirac particles. Neutrinos are the only elementary
particles which can be Dirac or truly neutral Majorana particles. Modern
understanding of neutrino masses is based on the assumption that neutrinos are
Majorana particles.

The first indication in the favor of neutrino masses, mixing and oscillations
was obtained in the Davis solar neutrino experiment in the seventies. The Davis
finding (observed flux of the solar neutrinos is two to three times smaller than the
predicted flux) was confirmed the Kamiokande, GALLEX and SAGE solar neutrino
experiments in the eighties and nineties. Neutrino oscillations were discovered
in the 1998 in the atmospheric Super-Kamiokande experiment, in 2002 in the
SNO solar neutrino experiment and in the KamILAND reactor neutrino experiment.
The discovery of neutrino oscillations was confirmed by the accelerator neutrino
experiments K2K, MINOS, T2K and NOvA.

From all existing data it follows that CC and NC neutrino interactions are the
Standard Model interactions. Are neutrinos in the SM massless or massive particles?
From our point of view this fundamental question is still open. However, there exist
strong arguments that the SM neutrinos are massless two-component particles.
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1. Masses of all particles generated by the standard Higgs mechanism are propor-
tional to the Higgs vacuum expectation value v = (v2G )~ /2 ~ 246 GeV. If
neutrino masses m; are generated by the Higgs mechanism in this case we have

mi=yiv (i=123), (13.1)

where y; are dimensionless Yukawa couplings which can be determined from
the relation (13.1) if neutrino masses are known. At present absolute values of
neutrino masses are unknown. From neutrino oscillation data and existing upper
bounds on neutrino masses we can conclude, however, that the heaviest neutrino
mass m3 is in the range 5 - 1072 < m3 < 1eV. Thus for y3 we have the range

2.100P < y3<4.10712. (13.2)
For other particles of the third generation we have
v ~07, yp~17-1072, y, ~0.7-1072. (13.3)

From comparison of (13.2) and (13.3) we conclude that it is very unlikely that
neutrino masses are of the same SM origin as masses of leptons and quarks.

2. In the framework of such general principles as local gauge invariance, unification
of the weak and electromagnetic interactions and spontaneous symmetry break-
ing in Standard Model the simplest possibilities are realized (local SUL(2) x
Uy (1) symmetry with lepton and quarks left-handed doublets and right-handed
singlets etc.). Massless, two-component, left-handed SM neutrinos is the sim-
plest, most economical possibility.

Thus, it is very plausible that neutrino masses are generated by a new beyond the
Standard Model mechanism. The simplest and the most economical mechanism
was prosed by Weinberg in 1979. The Weinberg mechanism of the neutrino mass
generation is equivalent to the seesaw mechanism. It is based on the assumption
that at a scale A, much larger than the electroweak scale v, the total lepton number
L is violated. As a result neutrinos v; (i = 1, 2, 3) with masses m; are Majorana
particles. The Majorana masses m; are given by the expression

v2

mi = yi e (13.4)
where y; are dimensionless (unknown) constants.
Expressions (13.1) and (13.4) are significantly different: in (13.4) enters
additional factor

v electroweak scale
= ) (13.5)
A scale of a new Physics
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which can naturally explain why neutrino masses are so much smaller than lepton
and quark masses.

In order to confirm such a beyond the SM mechanism of the neutrino mass
generation it is necessary to prove that L is not conserved and neutrino with definite
masses are Majorana particles. The most sensitive experiments on the test of the
lepton number violation are experiments on the search for neutrinoless double B-
decay of even-even nuclei

(A,Z) > (A, Z+2) +e +e . (13.6)

If L is violated OvBB-decay is allowed but its probability is extremely small. This is
connected with the fact that

* the process (13.6) is the second order in the Fermi constant G ¢ process,
* the probability of the OvSB-decay is proportional to very small effective Majo-
rana mass |mggl? = | Y Uezi m;|?.

Many experiments on the search for the neutrinoless double B-decay were per-
formed. Up to now no indications in favor of the OvBB-decay were obtained.
From existing data follows that [mgg| < (1.4 —4.5) 10~! eV. New more precise
experiments with about one ton detectors are in preparation. In future experiments
the sensitivity |mgg| = a few 102 eV will be reached.

Data of experiments on the investigation of neutrino oscillations are perfectly
described in the framework of the three-neutrino mixing. Neutrino transition
probabilities are characterized in this case by six parameters: atmospheric Ami‘
and solar Am% mass-squared differences, three mixing angles 612, 623, 813 and C P
phase 8. From analysis of the existing data first five neutrino oscillations parameters
have been determined with accuracies from ~2% (Amg’ 4 to ~11% (sin2 023).
Important aim of future neutrino oscillation experiments (T2K, NOvA, JUNO,
RENO-50, DUNE and others) is to measure these parameters with ~1% accuracy.

Measurement of the angle 613 in the T2K, Daya Bay, RENO and Double Chooze
experiments opened the way of the solution of the following fundamental problems
of the three-neutrino mixing

1. What is three-neutrino mass spectrum, Normal or Inverted?
2. Does CP violated in the lepton sector and what is the precise value of the
phase §?

These challenging problems will be resolved in the accelerator T2K, NOvA, DUNE,
reactor JUNO and RENO-50, atmospheric Hyper-Kamiokande, IceCube, PINGU,
KMB3NeT and other future experiments.

The next problem, which will be solved in the nearest years, is the problem of the
transitions of the flavor neutrinos into sterile states? At the moment exist indications
in favor of “anomalous” neutrino oscillations obtained in several short-baseline
experiments. The first and the most detailed indications in favor of sterile neu-
trinos were obtained in the accelerator LSND experiment in which short-baseline
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transitions v, — 1V, were observed. Many years later indications in favor of
v, — V. transitions were obtained in another accelerator MiniBooNE experiments.
Recently data of old short-baseline reactor experiments were reanalyzed with a new
reactor neutrino fluxes. From this analysis indications in favor of sterile neutrinos
were also found (reactor neutrino anomaly). Finally indications in favor of transition
of v,.’s to the sterile neutrino states were obtained in the GALLEX and SAGE source
experiments.

In order to explain indications in favor of sterile neutrinos we need to assume
that the number of neutrinos with definite masses is larger than the number of the
flavor neutrinos (three) and that additional mass-squared difference (or differences)
is much larger than Ami. For example, the results of the LSND experiment can be
explained if Am%4 = 1.2 eV? and sin%20;4 = 3 - 1073 (best-fit values).

Let us notice that

* From global analysis of data of all short baseline experiments a disagreement
(tension) between appearance and disappearance results was found.

* Inrecent IceCube, Daya Bay, MINOS and NEOS experiments no indications in
favor of transitions of flavor neutrinos into sterile states were obtained. However,
these data can not exclude the whole region of parameters which is allowed by
previous experiments.

The problem of the existence of sterile neutrinos is one of the most urgent problem
of modern neutrino physics. Let us stress that if the minimal, beyond the Standard
Model, lepton number violating Weinberg mechanism of neutrino mass generation
is realized, it must be no light sterile neutrinos.

At the moment many new reactor, accelerator and source neutrino short-baseline
experiments on the search for transitions of flavor neutrinos into sterile states are
in preparation. There is no doubts that the problem of existence of light sterile
neutrinos will be solved in nearest years.

At present only upper bounds of the absolute values of neutrino masses are
known from Mainz and Troitsk tritium experiments and from cosmological data.
With new tritium and other experiments (KATRIN, Project-8 and others) and with
new more precise cosmological data a large progress in our information about
neutrino masses is expected.

Summarizing, the discovery of neutrino oscillations, driven by small neutrino
mass-squared differences and neutrino mixing, opened a new exciting field of the
investigation of a beyond the Standard Model Physics. It will take many years of
research and development of new technologies in order to answer fundamental
questions of modern neutrino physics.



Appendix A
Diagonalization of a Complex Matrix

Let us consider a hermitian operator A. Eigenstates and eigenvalues of the operator

A are given by the equation
Ali)y=a; |i).
We will assume that the states |i) are normalized

(i) = 1.

(A1)

(A2)

From the condition A = (A)T follows that a; = a’ and that states belonging to

different eigenvalues are orthogonal
(i'iy=0, ap#a.

Further the states |i) form a full system. Thus we have
> iyl =1.
i
From (A.1) and (A.4) we easily find

A= "li)a il.

Let |) be another normalized and orthogonal full system of states:

<0l/|0l> = Su/'a-
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From (A.5) we have

(o |Aler) =Y (e']i} ai (iler). (A7)

i
Further, taking into account that
(ila) = (eli)* (A.8)

we can rewrite the relation (A.7) in the following matrix form

A=UaU", (A.9)
where A is the matrix with the matrix elements («/|A|a), a;; = a; 8 and
Uwi = (a]i). (A.10)

It is easy to see that U is an unitary matrix. In fact, we have

Y leli)tile) =Y UaiUsy = (U UNae = Saar- (A.11)

1 1

From (A.1) we find the following equation for eigenvalues and eigenfunctions of
the matrix A

> Ager uly = a; ul,, (A.12)
a/

where (x|i) = ufx Equation (A.13) has nonzero solution if the condition
Det(A —a) =0 (A.13)

is satisfied. This equation determines the eigenvalues of the matrix A.

The result (A.9) is very well known from quantum mechanics: hermitian matrix
can be bring to the diagonal form with the help of a unitary transformation. In order
to present in the standard form mass terms of leptons and quarks, generated by the
SM Higgs mechanism, and also the Dirac neutrino mass term we need to bring to the
diagonal form arbitrary complex matrix. We will present here a simple method of
the diagonalization of a general, complex n x n matrix M. It is obvious that M M
is a hermitian matrix. In fact, we have (M M¥)" = M MT. Thus the matrix M M
can be presented in the form

MM =Um?U". (A.14)
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Here U is a unitary matrix and mizk = ml2 8ik, where ml2 is the eigenvalue of the
matrix M M". The eigenvalues ml2 and the matrix U can be found from the solution
of the equation

Z(M MT)owt’ X(i/ = m[2 X(i- (A.15)

o

We have U,; = xé. It is easy to see that ml2 > 0. In fact, we have
mp =M M X =31 () Maral > 0. (A.16)
o o

The matrix M can always be presented in the form

M=UmVT, (A.17)
where m; = ~|—\/m12 and!

Viem U M. (A.18)
We will show now that the matrix V is an unitary matrix. From (A.18) we find
V=M Um" (A.19)
Further from (A.18), (A.19) and (A.14) we have
viveam'U'MMUm'=m'vTumntPuvtum! = 1. (A.20)
Thus, we have shown that a complex n x n nonsingular matrix M can be

diagonalized by the bi-unitary transformation (A.17) and presented the way how
matrices U, m and V can be found.

IWe assumed that all eigenvalues of the matrix M M are different from zero. Thus, the diagonal
matrix m~! does exists.



Appendix B
Diagonalization of a Complex
Symmetrical Matrix

In the case of the Majorana and the Dirac and Majorana mass terms mixing matrices
are symmetric. We will consider in this Appendix the diagonalization of a general,
n x n complex, symmetric matrix

M=M". (B.1)

We have shown in Appendix A that any complex matrix M can be presented in the
form

M=VimV,, (B.2)

where V) are unitary matrices and m;x = m; é;x, m; > 0. From (B.2) it follows
that

MT=v) Tmvl. (B.3)
From (B.2) and (B.3) we have
MM =vim*v], MTMT T =v]Tm?v]. (B.4)
Taking into account that M is a symmetrical matrix, from (B.4) we find
vim?v) =v) Tm?v] . (B.5)
From this relation it follows that

Vivim*=m?vl v, (B.6)
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i.e. that the commutator of the matrix V2T V1 and the diagonal matrix m? is equal

to zero. We assume that m; # my for all i # k. From (B.6) it follows in this case
that V2T V1 is a diagonal matrix. Further, taking into account that V2T V1 is a unitary
matrix we conclude that

V] Vi =S@), (B.7)
where

Sik() = € % 5 . (B.8)

From (B.7) it follows that the matrices V2> and V; are connected by the following
relation

v, =S vl (B.9)
Finally from (B.2) and (B.9) we find

M=UmUT, (B.10)
where U = V; (S*(a)/? = v, §*(%) is a unitary matrix. Thus, we have proved

that a complex, symmetrical n x n matrix can be diagonalized with the help of one
unitary matrix.



Appendix C
Diagonalization of a Real Symmetrical
2 x 2 Matrix

In the simplest case of two neutrinos in matter we need to diagonalize the effective
Hamiltonian which (after subtracting the trace of H) has the form

%:(Z’z), (C.1)

where a and b are real quantities. For the eigenfunctions and the eigenvalues of the
matrix . we have the following equation

H u; = E,’ uj . (C.2)

The eigenvalues E; can be found from the equation

Det(2Z — E)=0. (C.3)
Obviously we find
E1p=FVa2+b2. (C.4)
Further, we have
A =0EO0", (C.5)

where O is areal orthogonal 2 x 2 matrix which has the following general form

cosf sinf
0= _ . (C.6)
—siné cos6
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260 C Diagonalization of a Real Symmetrical 2 x 2 Matrix
From (C.4)—(C.6) we find the following equations for the angle 6
a=+a+b? cos20, b=+/a2+b? sin26. (C.7)

From these relations we find

b a
tan260 = , cos26 = . (C.8)
a Va2 + b2

From these relations follow that if diagonal element of the Hamiltonian vanishes
(a = 0) in this case

6 = /4 (maximal mixing) (C9)

and E, — E| reaches the minimum. Notice that ¢ = 0 is the condition for the MSW
resonance in matter.
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