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Preface

This book is, of course, about stochastic chemical kinetics. Chemical kinetics is a
prototype of nonlinear science, since the rate of reaction is generally a nonlinear
function of the quantities of the reacting chemical components.

Stochastic models are able to describe fluctuations around some deterministic
values, but also internally random processes without having any deterministic trend
(as in small chemical systems). In general, stochastic kinetic models are Markovian
jump processes, and the temporal evolution can be described by a Kolmogorov
equation, also called the master equation:

dPn

dt
D APn.t/: (1)

Equation (1) is a linear differential-difference equation, and the special structure
of A is governed by the stoichiometry. In spite of the fact that Eq. (1) is linear,
it can give rise to nonlinear phenomena. The master equation can be converted
into nonlinear equations for some macroscopic variables, e.g. by calculating the
expectations of concentrations or amounts of substance.

The book deals with spatially homogeneous systems (or a system of spatially
homogeneous systems, such as compartmental systems), so reaction-diffusion
systems and the related stochastic models based on stochastic partial differential
equations and/or on Markov fields are neglected.

There is a generation gap between the two authors. The senior author worked on
stochastic kinetics with his mathematician friend János Tóth, mostly in the 1970s,
and the cooperation led to a book that is a quarter of a century old now (P.É.
and J.T.: Mathematical Models of Chemical Reactions. Theory and applications of
deterministic and stochastic models. Manchester Univ. Press., Princeton Univ. Press.
1989). János should have been a natural coauthor of the present book, too, but he has
been busy writing another one (Tóth, J., Nagy, A. L., & Papp, D.: Reaction Kinetics:
Exercises, Programs and Theorems. Mathematical and Computational Chemistry.
New York: Springer Verlag. In preparation.) Many ideas and techniques presented
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viii Preface

in this book reflect (we hope) his spirit, too, as we deliberately adopted parts from
János’s works, and we thank him for his permission to do it.

The more junior author began his involvement in this field a decade ago by
re-discovering stochastic kinetics without any knowledge of the previous literature
– as a hobby for himself. The primary question for him was the interpretation
of the Soai reaction, which is connected to efforts to understand the origins of
homochirality and, ultimately, life on Earth. His wife, who was his single-member
audience at that time, convinced him to try to publish his thoughts and results. The
response to his first article from other scientists was sufficiently enthusiastic to keep
him busy thinking about stochastic kinetics and writing scientific papers – although
his main professional field is still experimental.

The development of the experimental techniques implied the much more exten-
sive application of stochastic models, and we felt we should write a book now, which
tries to be a bridge between the theory-induced pioneer period and the present and
future somewhat more application-oriented times. Obviously, stochastic kinetics has
an increasing popularity, mostly due to the renaissance of systems biology, as it is
reflected in the subtitle of the book.

Chapter 1 is a light introduction to the fluctuation phenomena and to the most fre-
quently used concepts of stochastic processes and stochastic kinetics. The scope and
limits of the applicability of the deterministic model is discussed. Stochastic model-
ing grew up from the studies of fluctuation phenomena, particularly of the Brownian
motion, famously studied by Einstein. His studies led to the first formulation of
the fluctuation-dissipation theorem. Continuous time, discrete state space stochastic
models are now often used to describe chemical fluctuations. Systems biology
combines new experimental techniques and theoretical/computational methods
containing a strong component related to the measurement, analysis and modeling
of noise processes.

Chapter 2 is a more formal description of the topic. The mathematical framework
of the most often used stochastic models of chemical reactions are discussed. First,
a brief overview on and some classification of the stochastic (mostly Markovian)
processes is given. The standard stochastic model of homogeneous reaction kinetics
is defined, and the construction leads to the most extensively used master equations.
The analogies between the deterministic and stochastic models are analyzed,
among others, with the concept of the stochastic map. The different methods of
obtaining transient and stationary solutions, and then the simulation techniques are
reviewed. The deterministic continuation and the continuous state approximation
are considered, and finally, a brief hint on the non-Markovian approximation is
given.

Chapter 3 reviews the most important applications of stochastic kinetic models.
Fluctuations particularly cannot be neglected in small systems and around unstable
stationary points. Compartmental systems and enzyme kinetics are popular fields
of stochastic kinetics, autocatalytic systems are somewhat neglected despite their
historical role. Other fields of systems biology (and related areas), as signal
processing, gene expression and chiral symmetry, also convincingly show the
necessity of applying stochastic models. After two technical subsections (parameter
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estimation and stochastic resonance), the application of stochastic kinetics in the
theory of computation is reviewed. Finally, Chapter 4 gives a subjective summary
of what is written in the previous three chapters.

Our book is hopefully an organic sprout on the verdant existing scientific litera-
ture. Crispin Gardiner’s Stochastic Methods: A Handbook for the Natural and Social
Sciences is an excellent resource for learning (and teaching) concepts, methods and
applications of stochastic processes. Peter Schuster has an extremely good textbook
on the net (Stochasticity in Chemistry and Biology. When Small Population Sizes
Matter and Environments Fluctuate), Darren Wilkinson’s Stochastic Modelling for
Systems Biology has its second edition, and it is very well usable to learn simulation
methods and statistical inference techniques. The literature is now rapidly growing,
and we might have overlooked very important items. It is not necessarily reflected
in the references, but many papers of Hong Qian were read, and our way of thinking
is hopefully not too far from the spirit we spelled out from them. We deliberately
adopted text, figures, and ideas from the scientific works of other colleagues. We
think precise citation/credit was given.

We benefited from having a wonderful working environment. Kalamazoo
College was awarded by a Henry R. Luce Professorship and one of us (P.É.)
has had the privilege to serve here to build a program about Complex Systems.
The Wigner Research Centre for Physics of the Hungarian Academy of Sciences
in Budapest also provides a supportive environment when he spends the summers
there. He also benefited from spending the Michaelmas term of 2012 as a fellow
of the Institute of Advanced Studies at Durham University. G.L. is expecting to be
a full professor at the Department of Inorganic and Analytical Chemistry of the
University of Debrecen in Hungary soon. This environment constantly reminds him
of the fact that the primary role of scientific theories is to interpret experimental
data.

Budapest, Hungary/Debrecen, Hungary/Kalamazoo, USA Péter Érdi
December 2013 Gábor Lente





Contents

1 Stochastic Kinetics: Why and How? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Chemical Kinetics: A Prototype of Nonlinear Science . . . . . . . . . . . . . . 1

1.1.1 The Power Law and Mass Action Type
Deterministic Model of Homogeneous Reaction
Kinetics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.2 Stationary States and Their Stability . . . . . . . . . . . . . . . . . . . . . . . . 11
1.2 Applicability of the Deterministic Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.3 Fluctuation Phenomena.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.3.1 Brownian Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.3.1.1 Diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.3.1.2 Fluctuation-Dissipation Theorem .. . . . . . . . . . . . . . . . 16
1.3.1.3 Towards the Theory of Stochastic Processes . . . . . 17
1.3.1.4 Experimental Determination

of the Avogadro Constant . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.4 Stochastic Chemical Kinetics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.4.1 Model Framework: Preliminary Remarks . . . . . . . . . . . . . . . . . . 17
1.4.2 Historical Remarks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.4.3 On the Solutions of the Stochastic Kinetic

Models: Analytical Calculations Versus Simulations . . . . . . 19
1.4.4 The Renaissance of Stochastic Kinetics:

Systems Biology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2 Continuous Time Discrete State Stochastic Models . . . . . . . . . . . . . . . . . . . . . . 25
2.1 Model Frameworks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.2 Stochastic Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.2.2 Time and State Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.2.3 Important Types of Stochastic Processes . . . . . . . . . . . . . . . . . . . 27
2.2.4 Markov Chains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

xi



xii Contents

2.2.5 Continuous Time Discrete State Markov Process . . . . . . . . . . 31
2.2.6 Semi-Markov Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.3 The Standard Stochastic Model of Homogeneous
Reaction Kinetics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.3.1 State Space: Size and Enumeration . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.3.2 Master Equation .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.3.3 Connection Between Deterministic and Stochastic

Kinetics: Similarities and Differences . . . . . . . . . . . . . . . . . . . . . . 41
2.3.4 Stochastic Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.4 Solutions of the Master Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.4.1 What Do We Mean by Exact Analytical Solutions?. . . . . . . . 45
2.4.2 Direct Matrix Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.4.3 Time-Independent Q-Functions .. . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.4.4 Laplace Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.4.5 Generating Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.4.6 Poisson Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.4.7 Mathematical Induction.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
2.4.8 Initial Conditions Given with a Probability Distribution .. . 53
2.4.9 Time Scales. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.5 Stationary and Transient Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
2.5.1 Stationary Distributions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
2.5.2 Transient Distributions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
2.5.3 Properties of Stationary and Transient

Distributions: Unimodality Versus Multimodality . . . . . . . . . 56
2.6 Simulation Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
2.7 Deterministic Continuation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
2.8 Continuous State Approximations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
2.9 Non-Markovian Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.1 Introductory Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.2 Fluctuations Near Instabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.2.1 Stochastic Chemical Reaction: A Simple Example . . . . . . . . 72
3.2.1.1 Keizer’s Paradox .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.2.2 Stochastic Theory of Bistable Reactions. . . . . . . . . . . . . . . . . . . . 74
3.2.2.1 Schlögl Reaction of the First-Order

Phase Transition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
3.2.2.2 Time Spent in Each Steady State, and Time

Scale of Transitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
3.2.2.3 The lac Operon Genetic Network. . . . . . . . . . . . . . . . . 78

3.3 Compartmental Systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
3.3.1 Model Frameworks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
3.3.2 Master Equation and State Space . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
3.3.3 Solutions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81



Contents xiii

3.4 Autocatalysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
3.4.1 Autocatalytic Extinction .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
3.4.2 Time Dependence of the Crazy Clock Reaction .. . . . . . . . . . . 87
3.4.3 Autocatalytic Cycle Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

3.5 Enzyme Kinetics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
3.5.1 Michaelis–Menten: Scheme and State Space . . . . . . . . . . . . . . . 91
3.5.2 Michaelis–Menten: Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
3.5.3 Other Enzyme Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

3.6 Signal Processing .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
3.6.1 Signaling with Chemical Networks: General Remarks . . . . 101
3.6.2 Signal Processing in Biochemical Networks . . . . . . . . . . . . . . . 102

3.6.2.1 Evaluation of Signal Transfer by Mutual
Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

3.6.2.2 Impact of Network Structure
on the Transmission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

3.6.2.3 Further Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
3.6.3 Signal Processing in Olfactory Systems . . . . . . . . . . . . . . . . . . . . 110

3.6.3.1 Fisher Information and Optimal
Signal Transmission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

3.6.3.2 Stochastic Kinetic Models of Odor
Intensity Detection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

3.6.3.3 Estimation of Optimal Olfactory Signals . . . . . . . . . 112
3.6.4 Calcium Signaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

3.7 Gene Expression .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
3.7.1 A Very, Very Short Review of Biochemical Background . . 116
3.7.2 Measurement of Noise in Genetic and Other

Biochemical Networks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
3.7.3 Stochastic Kinetic Models of Gene Expression . . . . . . . . . . . . 118

3.7.3.1 General Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
3.7.3.2 A Three-Stage Model of Gene Expression . . . . . . . 118
3.7.3.3 Separating Intrinsic from Extrinsic

Fluctuations .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
3.8 Chiral Symmetry.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

3.8.1 Racemic Mixtures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
3.8.2 Simple Enantioselective Autocatalysis. . . . . . . . . . . . . . . . . . . . . . 125
3.8.3 The Frank Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
3.8.4 The Soai Reaction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

3.9 Parameter Estimation in Stochastic Kinetic Models . . . . . . . . . . . . . . . . . 132
3.9.1 Estimation of Rate Constants from Equilibrium

Fluctuations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
3.9.2 Parameter Estimation for Stochastic Kinetic

Models: Beyond the Fluctuation-Dissipation Theorem . . . . 133
3.10 Stochastic Resonance in Chemical Systems. . . . . . . . . . . . . . . . . . . . . . . . . . 135

3.10.1 General Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135



xiv Contents

3.10.2 Stochastic Resonance in One- and Multi-parameter
System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

3.10.3 Stochastic Resonance of Aperiodic Signals . . . . . . . . . . . . . . . . 137
3.11 Computation with Small Stochastic Kinetic Systems. . . . . . . . . . . . . . . . 137
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

4 The Book in Retrospect and Prospect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159



Chapter 1
Stochastic Kinetics: Why and How?

1.1 Chemical Kinetics: A Prototype of Nonlinear Science

The kinetic behavior of a chemical reaction is traditionally described by a system
of (generally) nonlinear differential equations. The unknowns in these equations
are the concentrations of the species present in the system. Let A1, A2, : : : , An

be the chemical species (usually molecules or ions) in an n-component system,
ŒA1�; ŒA2�; : : : ; ŒAn� their concentrations given as a continuous function of time,
and c.t/ is the n-dimensional vector (the state of the system) composed of
scalars ŒA1�; ŒA2�; : : : ; ŒAn�. In this case, the differential equation describing the
concentration changes, commonly called the rate equation or rate law, takes the
following general form:

dc.t/
dt
D f.c.t/Ik/I c.0/ D c0 (1.1)

where f is the function which governs the temporal evolution of the system, k is the
vector of the parameters (rate constants or rate coefficients) and c0 (with elements
[A1]0, [A2]0, : : : , [An]0) is the initial value vector of the component concentrations.

It is to be noted that rate equation (1.1) assumes a homogeneous system, which
means that the intensive physical properties within the reactor do not depend on the
spatial coordinates. The description of such a system is independent of the values
of extensive physical properties, most significantly the volume of the reactor. As a
rule, an initially homogeneous system will conserve homogeneity unless it is under
a special, direction-dependent external influence.1

1Famously, Turing constructed a model of a reaction – diffusion system [70] in which there
exists a stable homogeneous stationary state losing its stability as a result of inhomogeneous
perturbations. It was shown a few decade later [68, 69] that the presence of cross-inhibition
(i.e. .@fi =@xj /.c/ < 0) is a necessary condition of Turing instability. This result implies that the
presence of higher than first order reactions is a necessary condition of Turing instability.

P. Érdi and G. Lente, Stochastic Chemical Kinetics: Theory and (Mostly) Systems Biological
Applications, Springer Series in Synergetics, DOI 10.1007/978-1-4939-0387-0__1,
© Springer Science+Business Media New York 2014
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2 1 Stochastic Kinetics: Why and How?

Deterministic models of chemical reactions might be identified with Eq. (1.1).
Function f typically has a very special structure related to the individual chemical
reaction steps possible in the system. Therefore, not all kinds of systems of
differential equations (not even all those with a polynomial right-hand side) can
be considered as reaction kinetic equations. Trivially, the term �kc2.t/c3.t/ cannot
occur in a rate equations referring to the rate of c1 since the quantity of a component
cannot be reduced in a reaction in which the component in question does not
take part. Putting it another way, the negative cross-effect is excluded. Chemical
kinetic equations always have unique solutions, which sometimes can be deduced
analytically, but more often is only available using approximate numerical methods
of integration.

An overall chemical reaction is understood to consist of a finite number of
individual reaction steps. Chemical reaction steps possible in the system are
represented by stoichiometric equations, which have the following form:

0 D
nX

iD1

�j;iAi .j D 1; 2; : : : ; m/ (1.2)

where m is the number of different reactions. The value �j;i , called the stoichio-
metric coefficient of component Ai in reaction step j , is positive for species that
are produced, negative for species that are consumed, and 0 for species that do not
appear in the reaction step j . It is a long established custom to use integers only as
stoichiometric coefficients, with 1 as their greatest common factor in any reaction
(a given value of j in Eq. (1.2)). This convention is especially important in mass
action type kinetics, and also in the stochastic equivalent of deterministic kinetics.
The matrix composed of the stoichiometric coefficients is called the stoichiometric
matrix of the system:

� D

0
BBB@

�1;1 �1;2 � � � �1;n
�2;1 �2;2 � � � �2;n
:::

:::
: : :

:::

�m;1 �m;2 � � � �m;n

1
CCCA (1.3)

The stoichiometric equations can very often be used to determine the number of
independent components and the number of independent elementary reactions. It is
possible to show that certain linear combinations of concentrations [A1], [A2], : : : ,
[An] are constant (i.e. do not depend on time, only on the initial conditions),
which leads to a reduction of the number of the differential equations. A systematic
approach to determine the minimal number of independent reactions was given in
the now classical papers of Rutherford Aris [1–3], see also [7].2

2Chapter 3: stoichiometry: the algebraic structure of complex chemical reactions of [19] still seems
to be a good overview.
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It is also quite customary to represent stoichiometric equations using a reaction
arrow, left of which are given the substances with negative stoichiometric
coefficients (reactants), and substances with positive stoichiometric coefficients
(products) are displayed on the right. For example, the stoichiometric equation
0 D �A1 � 3A2 C 2A3 is given as A1 C 3A2 �! 2A3 in this formalism.

At this point, an interesting and often neglected point should also be made.
Despite the fact that textbooks define the concept of the rate of reaction based on
the rates of concentration changes, this definition should be limited to chemical
reactions that can be represented by a single reaction step (a careful reading of
IUPAC recommendations also reveals this restriction). In other words, the rate
of reactions should generally be a vector whose dimension is determined by the
number of reactions steps. The rate of an individual reaction step (vj ) can be defined
without problems. The constituent functions of f can be given as the sum of the rates
of the individual steps, taking the stoichiometric coefficients into account:

fi .c/ D
mX

jD1

�j;ivj .i D 1; 2; : : : ; n/ (1.4)

The rates of individual reaction steps (vj ) depend on some of the elements of
the k vector as parameters. Typically, different rates have different parameters, but
symmetry laws may results in different reaction steps having identical rate constants.

1.1.1 The Power Law and Mass Action Type Deterministic
Model of Homogeneous Reaction Kinetics

Many real systems adhere to power law kinetics, which means that rates vj can be
obtained by multiplying the concentrations raised to a suitable power:

vj D kj

nY

kD1

ŒAk�
˛j;k (1.5)

In this case, the constituent functions of f can be given as:

fi .c/ D
mX

jD1

�j;ikj

nY

kD1

ŒAk�
˛j;k .i D 1; 2; : : : ; n/ (1.6)
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The ˛j;k values are often, but not necessarily, integer3 and are called the order
of reaction step j with respect to substance Ak . The sum

Pn
kD1 ˛j;k is called

the overall order of reaction step j . This overall order has special significance
in determining the physical unit of the scalar kj , which is referred to as the rate
constant of reaction step j , and is an element of the parameter vector k in Eq. (1.1).
In general, values of ˛j;k cannot be deduced from stoichiometric coefficients and
can be built into a separate order matrix:

˛ D

0

BBB@

˛1;1 ˛1;2 � � � ˛1;n

˛2;1 ˛2;2 � � � ˛2;n

:::
:::

: : :
:::

˛m;1 ˛m;2 � � � ˛m;n

1

CCCA (1.7)

At this point, it should be pointed out that experiments in chemical kinetics
are typically carried out in a way that the dependence of parameter k on external
conditions (most prominently on temperature) can be neglected during a single
experiment, so scalars kj are constants as far as the solution of Eq. (1.1) is
concerned. Should this not be the case, it is still very common to keep the notation
of power law kinetics and introduce additional differential equations describing
the time dependence of the parameters. It should be stated that such equations
typically preserve the autonomous property of differential equation (1.1): time
never appears as an explicit variable, only through the concentrations or the values
of external parameters. The practically rare case of a system with non-constant
volume can be handled in an analogous manner, a special difficulty arises here
because concentration change not only in chemical reactions, but also as a result
of the volume change.

Within power law kinetics, mass action type kinetics4 has very special impor-
tance. It is characterized by the fact that the order matrix can be determined from
the stoichiometric matrix using the following simple rule:

˛j;i D ��j;i if �j;i < 0

˛j;i D 0 if �j;i � 0
(1.8)

3Savageau proposed the power law approximation for systems with non-ideal kinetics [62–64].
A highly cited paper for the breakdown of the mass action, and of the use of fractal kinetics
(and also of kinetics with time-dependent rate constants) is [35]; see also [65]. In the power-law
approach, rather than introducing a time dependence to the rate constants of second- and higher-
order reactions, the reactant concentrations are raised to non-integer powers.
4The theory of formal reaction kinetics, called also as chemical reaction network theory, found
beautiful relationships between the structure of the reaction network and its dynamic behavior. We
can point here to the pioneer papers only [21, 31].
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It is a very basic tenet of chemical kinetics that observations in all chemical
reactions can be described by special mass action type kinetics called a series of
elementary reactions; this property will be referred to as reducibility in this text.
Unfortunately, the concept of an elementary reaction is not very clearly defined in
a mathematical sense. A necessary but not sufficient condition for a mass action
type system to qualify as a series of elementary reactions is that all stoichiometric
coefficients are 0, ˙1, or ˙2 (possibly ˙3 in very exceptional cases) and none
of the reaction steps have an overall reaction order greater than 2 (3 is possible
again as a rare exception). If observations can be described by a rate law that
cannot represent a series of elementary reactions, this fact is usually taken to imply
that not all components or reactions have been correctly identified, and a more
complete (and doubtlessly more complicated) description is possible by taking into
account more elementary reactions. However, experimental data often do not allow
such identifications or the determination of all rate constants. In these cases, it is
entirely up to the judgment of the experimenter to decide whether finding a suitable
series of elementary reactions is necessary for research purposes or the simpler, but
theoretically incomplete description serves the objectives better.

A very common notation used to condense the stoichiometric and kinetic
information of a reaction step with a power rate law is to write the following
chemical equation:

nX

iD1

˛j;iAi �!
nX

iD1

.˛j;i C �j;i /Ai (1.9)

In a mathematical sense, this sort of notation is limited to cases when all ˛j;i and
.˛j;i C �j;i / are non-negative. However, from a practical point of view, this is not
much of a limitation as most known processes (e.g. all reactions with mass action
type kinetics) satisfy this criterion. Because of its brevity, this notation is more
popular than giving separate stoichiometric and order matrices.

Further limitations from physical and chemical laws apply for differential
equation (1.1). Because of the property of reducibility and the difficulty in defining
elementary reactions, the mathematical consequences of these limitations are most
practically stated in terms of power law kinetics. One obvious limitation is that
concentrations should remain non-negative at any reaction time. A sufficient but
not necessary condition for the non-negativity of concentrations is that ˛j;i > 0

should hold for any pair of .i; j / values for which �j;i < 0. Mass action kinetics
not only satisfies this necessary condition, but also guarantees that all component
concentrations remain positive (i.e. they cannot reach the value of zero at finite
times).

Another set of limitations are imposed by the law of mass conservation.
These can often be deduced from the stoichiometric equations in closed systems
(i.e. those which cannot exchange particles with the surroundings). In an open
system, the effect of in- and outflow is often most conveniently described as
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reactions which have no reactant (for inflow) or product (for outflow). The
notation ¿ is often used in these cases. It should not be left without notice that
certain conservation laws apply for open systems as well, but their mathematical
formulation may be much more difficult than in closed systems.

A more special set of limitations is given by the principle of detailed balance.
These posit that for each stoichiometric reaction (1.9), the model must also contain
the exact reverse reaction as well (“microscopic reversibility”):

0 D
nX

iD1

��r.j /;iAi (1.10)

where r.j / is a function giving the number of the stoichiometric equation corre-
sponding to the reverse of stoichiometric equation j . Furthermore, the principle of
detailed balance also requires a very specific relationship between ˛j;i and ˛r.j /;i

values:

�j;i D ˛r.j /;i � ˛j;i (1.11)

Finally, the ratio of the values of the rate constants of the forward and reverse
steps, kj =kr.j /, should be equal to the equilibrium constant of the process, that
can be obtained from measurements independently of the kinetic studies. However,
the required values of reverse rate constants are often so low so that they have no
experimentally detectable consequences. It is, therefore, very common to deal with
rate laws that do not adhere explicitly to the principle of detailed balance.5

Different types of physical limitations apply to the values of rate constants. All
rate constants have a lower limit of 0. Reaction steps with exactly 0 rate constants
can be deleted from the system without any change in the results. The upper limits
of the rate constant values are set by the time scale of intramolecular motion or the
velocity molecules move relative to each other depending on the overall order of the
reaction step.

The introduced concepts are illustrated by a few examples in the next paragraphs.

Example 1.1. Consider the simple reaction representing inflow: Ø �! A1. Here
n D m D 1, and �1;1 D 1. The mass action type induced kinetic differential equation
of this reaction (with ˛1;1 D 0) is:

dŒA1�

dt
D k1 (1.12)

5At the beginning of the twentieth century, Wegscheider [74] gave an example to show that in
some cases, the existence of a positive equilibrium state alone does not imply the equality of
all the individual forward and backward reaction rates in equilibrium, and to ensure it, some
relationship should be among the rate constants. More generally, but rather vaguely, the principle of
detailed balance was formulated by Fowler and Milne [24]. Necessary and sufficient conditions for
detailed balancing in mass action systems was given by a champion of formal chemical kinetics,
Martin Feinberg [22], whereas the relationship between detailed balance and the second law of
thermodynamics was also investigated later [42]. For some applications related to biophysical
kinetics see [12, 53, 54].
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Taken literally, this model would predict that the concentration can grow
infinitely high. This means that the validity of this rate equation must be limited
to a finite time period.

Example 1.2. Consider the irreversible second order dimerization reaction:
2A1 �! A2. Here n D 2, m D 1, and � D .�2; 1/. The mass action type
induced kinetic differential equation of this reaction assumes ˛ D .2; 0/:

dŒA1�

dt
D �2k1ŒA1�

2

d ŒA2�

dt
D k1ŒA1�

2

(1.13)

The fact that the usual definition of rates requires a coefficient 2 in the differential
equation defining the concentration change of A1 should be noted here. Including
or excluding this stoichiometric coefficient is often a source of ambiguity in
the literature. A time-independent linear combination of concentrations here is
ŒA�1 C 2ŒA2�.

Example 1.3. Consider the irreversible half-order reaction: A1 �! A2. Here
n D 2, m D 1, � D .�1; 1/, ˛ D .0:5; 0/. The kinetic differential equation of
this reaction is:

dŒA1�

dt
D �k1

p
ŒA1�

d ŒA2�

dt
D k1

p
ŒA1�

(1.14)

Whilst concentrations seldom actually reach the value of zero6 in deterministic
kinetics, this reaction features ŒA1� D 0 after a finite time of t D 2

p
ŒA1�0=k,

independently of the initial concentration of A2.

Example 1.4. Consider the irreversible fist order catalytic reaction: A1 �! A2. A3

is assumed to be a significant substance in this system that does not appear in the
stoichiometric equation, but has an effect on the rate. Here n D 3, m D 1, and � D
.�1; 1; 0/. The kinetic differential equation of this reaction with ˛ D .1; 0; 1/ is:

dŒA1�

dt
D �k1ŒA1�ŒA3�

d ŒA2�

dt
D k1ŒA1�ŒA3�

d ŒA3�

dt
D 0

(1.15)

A3 is called a catalyst in this reaction, as its stoichiometric coefficient is zero,
but the order of reaction with respect to it is positive.

6Such kind of behavior, i.e. convergence to terminal attractors may emerge if the j @fi
@xj

j < 1
Lipschitz conditions are violated [76].
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Example 1.5. Consider the first order irreversible autocatalytic reaction with the
stoichiometric equation Ø �! A1. Here n D m D 1, �1;1 D 1, ˛1;1 D 1. The
kinetic differential equation of this reaction is:

dŒA1�

dt
D k1ŒA1�: (1.16)

A1 is called an autocatalyst in this reaction, as the stoichiometric coefficient
and the order of reaction are both positive for this component. This is an example
of power law kinetics, which is not mass action type. Some confusion may arise
here, though. The first order irreversible autocatalytic reaction is often represented
by the equation A1 �! 2A1 and is said to have mass action type kinetics because
this form show one as the coefficient before A1 on the left. However, the equation
itself does not adhere to the formalism of stoichiometric equations, in which it is
not possible to have the same substance both as a reactant and a product. The term
‘mass action’ itself originates from equilibrium thermodynamics, where the use of
stoichiometric equations is exclusive. Therefore, it is probably more precise to adopt
the usage established earlier. However, to avoid superfluous confusions, we will use
the conventional notation.

Example 1.6. Consider the second order (or: quadratic) autocatalytic reaction with
the stoichiometric equation Ø �! A1. Here n D m D 1, �1;1 D 1, ˛1;1 D 2. The
kinetic differential equation of this reaction is:

dŒA1�

dt
D k1ŒA1�

2: (1.17)

Similarly to the previous example, the equation is also often given in the 2A1 �!
3A1 form.7 This system has the property that the concentration approaches infinity
at a finite time [13].

Example 1.7. Consider the reversible reaction between adduct formation between
reactants A1 and A2 to give product A3. The two reaction in this scheme are A1 C
A2 �! A3 and its reverse A3 �! A1 C A2. Here n D 3, m D 2, and the matrices
�, ˛ are given as:

� D
��1 �1 1

1 1 �1
�

˛ D
�
1 1 0

0 0 1

�
(1.18)

7The equation itself implements large, “higher-than-linear” positive feedback (or “hyperbolic
growth”), which seems to be a general mechanism behind finite time singularities. It ensures that
the instantaneous doubling time tends to zero after a finite period. Finite time singularity roughly
speaking means that a dynamical variable gets an infinite value at a finite time. This phenomenon
is qualitatively different from the exponential growth, when infinite value can be attained during
infinite time only.
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The kinetic differential equations of this reaction scheme are:

dŒA1�

dt
D �k1ŒA1�ŒA2�C k2ŒA3�

d ŒA2�

dt
D �k1ŒA1�ŒA2�C k2ŒA3�

d ŒA3�

dt
D k1ŒA1�ŒA2� � k2ŒA3�

(1.19)

This is an example of mass action type kinetics that also conforms to the principle
of detailed balance. Time-independent linear combinations of concentrations are
ŒA1�C ŒA3� and ŒA2�C ŒA3�.

Example 1.8. Consider the well-known Michaelis–Menten reaction scheme com-
posed of three processes A1 CA2 �! A4, A4 �! A1 CA2, and A4 �! A1 C A3.
The conventional meaning of the components are: A1: enzyme, A2: substrate, A3:
product and A4: enzyme-substrate complex. Here n D 4, m D 3, and the matrices
�, ˛ are given as:

� D
0

@
�1 �1 0 1

1 1 0 �1
1 0 1 �1

1

A ˛ D
0

@
1 1 0 0

0 0 0 1

0 0 0 1

1

A (1.20)

The kinetic differential equations of this reaction scheme are:

dŒA1�

dt
D �k1ŒA1�ŒA2�C k2ŒA4�C k3ŒA4�

d ŒA2�

dt
D �k1ŒA1�ŒA2�C k2ŒA4�

d ŒA3�

dt
D k3ŒA4�

d ŒA4�

dt
D k1ŒA1�ŒA2� � k2ŒA4� � k3ŒA4�

(1.21)

This is again mass action type kinetics. It should be noted that two time-
independent linear combinations of concentrations can be derived in this system:
ŒA1�C ŒA4�, and ŒA2�C ŒA3�C ŒA4�.

Example 1.9. Consider the steady state Michaelis–Menten reaction scheme
described stoichiometrically as A1 �! A3, and A2 playing the role of the catalyst.
It is very typical in the Michaelis–Menten scheme presented in the previous example
that experimental methods cannot distinguish A1 and A4, therefore only one of them
is included in the steady state scheme. In addition, it is also very common that the
time resolution of the experimental method is not sufficient to follow the first,
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adduct formation step in the full scheme given in the previous example. In this
description, n D 3, m D 1, and � D .�1; 1; 0/. Typically, non-power law kinetics
is used in this case as defined by the following differential equations:

dŒA1�

dt
D �k1ŒA1�ŒA3�

k2 C ŒA1�

d ŒA2�

dt
D k1ŒA1�ŒA3�

k2 C ŒA1�

d ŒA3�

dt
D 0

(1.22)

This rate equation itself is called the Michaelis–Menten equation. Constant k2,
which has a dimension of a concentration, is called the Michaelis constant. The
concept of orders of reaction cannot be defined here, as this is not power-law
kinetics.

Example 1.10. Consider the Gray model [47] with second order autocatalysis:
A1 �! A2, A1 �! Ø, Ø �! A1, A2 �! Ø, Ø �! A2. Here n D 2, m D 5, and
the matrices �, ˛ are given as:

� D

0

BBBBB@

�1 1

�1 0

1 0

0 �1
0 1

1

CCCCCA
˛ D

0

BBBBB@

1 1

1 0

0 0

0 1

0 0

1

CCCCCA
(1.23)

The kinetic differential equations of this reaction scheme are:

dŒA1�

dt
D �k1ŒA1�ŒA2� � k2ŒA1�C k3

d ŒA2�

dt
D k1ŒA1�ŒA2� � k4ŒA2�C k5

(1.24)

Usually, k5 D 0 is set by assuming that A2 is not present in the feed, and the
difference k3 � k4 is kept positive by assuming that there is a first-order chemical
reaction consuming A2 in addition to the outflow.

With the exception of Example 1.9, all of the ten listed examples show power
law kinetics, but only Examples 1.1, 1.2, 1.7 and 1.8 adhere to mass action kinetics
in the sense defined here. In addition, only Examples 1.2, 1.7 and 1.8 satisfy the
necessary conditions to be a sequence of elementary reactions.
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1.1.2 Stationary States and Their Stability

Returning now to the general rate equation given in Eq. (1.1), stationary conditions
are said to prevail if concentrations do not change. The concentration vector cst is a
stationary point in the state space if it is a solution of the following equation:

0 D f.cst Ik/ (1.25)

In effect, a stationary point is a single-point trajectory in the concentration space.
If the limiting value limt!C1 c.t/ of a trajectory exists, it is a stationary point.
As the solution of the differential equation (1.1) is unique, each initial condition can
give rise to no more than one stationary state. The existence and uniqueness of the
solutions are ensured by the Picard-Lindelöf theorem.

Stationary states are classified based on their stability. Intuitively, the stability
of a stationary point implies the property that the system returns to this state after
a small perturbation. The absence of this property is referred to as instability.
A stationary point cst is said to be Lyapunov stable if for any U neighborhood
of cst , there exists another U1 neighborhood so that all trajectories originating from
U1 remain entirely in U . A stable stationary point cst is asymptotically Lyapunov
stable if a suitable U1 can be given so that all trajectories originating from U1 tend
to the stationary point as time approaches infinity, limt!C1 c.t/ D cst . A stationary
point is Lyapunov unstable if it is not stable. A system is globally stable if
limt!C1 c.t/ D cst is true for every trajectory.

It may happen that the solutions tend to a periodic trajectory, and this behavior
is related to the important class of the oscillatory reactions. In more than two
dimensions, it may also happen that the trajectories remain in a bounded set, but
they neither tend to an equilibrium point, nor to an oscillatory solution. Loosely
speaking this behavior is called chaotic.

If a system of differential equations has multiple attractors, the phenomenon
of multistability occurs. Specifically, if the attractors are equilibrium points, it is
called multistatonarity.

The stability properties of deterministic stationary points have special signifi-
cance for stochastic kinetics. In general, a system in an unstable stationary state
is expected to show phenomena that can only be interpreted by theory containing
stochastic elements, and the nature of fluctuations near instability points should be
carefully studied.

1.2 Applicability of the Deterministic Model

The line of thought presented in the previous section is said to represent the
deterministic approach to chemical kinetics. This means that the rate law shown
in Eq. (1.1) always yields a unique c.t/ function, which can be also called a
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trajectory in the concentration space of the system. Each trajectory in this space
is unambiguously identified by any of its points: the value of the concentration
vector c at a single time point is sufficient to calculate the entire function c.t/.
If two trajectories (c1 and c2) have a common point in the concentration space at
different time values so that c1.t1/ D c2.t2/, then a shift in time must convert the
two trajectories into each other, c2.t/ D c1.t C t2� t1/ must hold for any value of t .

If the initial state is not a single vector but known as a probability distribution
of a range of states,8 the probability distribution of states at time t can be obtained
using the trajectories starting from the possible initial states. If state c.0/ occurs
with probability P at the initial time, the state c.t/ from the state trajectory must
occur with probability P after time t . This property is sometimes a useful tool
that can simplify calculations in stochastic systems. Despite the appearance of
probability distributions, this case should still be considered deterministic kinetics
as the stochastic element is introduced by the initial conditions and not by the
rate law.

A number of time-tested computational algorithms are known to solve the
differential equation (1.1) even in quite general cases. These numerical methods are
implemented in several commercially or even freely available software packages.
Some of these programs also contain minimizing components as well, which make
it possible to find the vector of parameters (k) that best interpret an experimental
data set of arbitrary size. This needs to be stated to show that determining rate
constants is in fact not a central problem in modern chemical kinetics, despite some
beliefs to the contrary. The fundamental problem in twenty-first century kinetics is
establishing the rate laws based on experimental observations and interpret them on
a molecular level.9

From a theoretical point of view, the major insufficiency in the deterministic
model is the assumption that concentrations are continuous functions of time.
Dalton’s atomic theory, postulated in the beginning of the nineteenth century and
generally accepted up to date, states that matter is composed of particles. Therefore,
concentration values should be discrete rather than assuming any values from a
continuous range. This seriously contradicts the assumptions made before setting
up rate law (1.1). However, the continuous state space deterministic approach is still

8Starting from deterministic models, randomness can be incorporated with different implementa-
tion. First, the weakest way is to assume that the only source of the randomness is due to the lack
of precise knowledge of the initial values. Second, the parameters might contain some uncertainty,
so the constants can be replaced by values taken from some stationary stochastic process. Third,
the governing law, i.e. the forcing function itself may contain randomness.
9The derivation of mass action kinetic laws from elementary principles (at least for reversible
bimolecular gas-phase reactions) was given by a seminal paper of Ross and Mazur in 1961 [61].
Starting from a Boltzmann equation containing also a term due to reactive collisions, the mass
action kinetic equations were derived by using the Chapman-Enskog approximation method. In
this special case, macroscopic kinetics equations can be considered as the ‘zeroth order approach’
of the equations of non-equilibrium statistical mechanics.
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a very useful one in chemical kinetics. Chemically detectable amounts of substance
are usually macroscopic and contain more (often much more) than 1010 molecules.
At these high molecule numbers, the errors caused by assuming a continuous range
of possible concentrations are usually much smaller than experimental errors from
a multitude of other sources. As illustrated in this book, stochastic approaches to
chemical kinetics are usually much more difficult to implement computationally.
It was already mentioned that standard algorithms are available for solving the rate
law (1.1) no matter what its actual form is. For experimenters, it usually makes more
sense to use this routine method because its systematic error will by no means limit
its applicability to interpret observed data.

Yet it must be recognized that deterministic kinetics is based on the assumption
of continuously changing concentrations, which leaves open the possibility that
Eq. (1.1) may not give a physically acceptable model of reality well in certain
exceptional cases. An obvious exceptional case is when the reactor is small
and the number of molecules in it is low (e.g. <104). This is not uncommon
in biological systems, and the improvement of detection techniques increasingly
enables experimental studies in such systems. Furthermore, some rate laws have
the inherent property that changes at very low concentrations are of profound
consequence even when the molecule numbers grow to macroscopic values. A
systematic study of the applicability limits of deterministic kinetics will be one of
the recurring themes in this book.

Another phenomenon where deterministic kinetics is not usually useful is
describing inherent fluctuations, which are known to exist independently of any
other fluctuations caused by changing external conditions.

1.3 Fluctuation Phenomena

1.3.1 Brownian Motion

The Scottish botanist Robert Brown discovered the existence of fluctuations when
he studied microscopic living phenomena. However, the physical nature of the
motion, which was named after its discoverer, was not known for a long time.
As Darwin [14] wrote in 1876: “I called on him [Brown] two or three time before
the voyage of the Beagle (1831), and on the occasion he asked me to look through
a microscope and describe what I saw. This I did, and believe now that it was the
marvelous currents of protoplasm in some vegetable cell. I then asked him what I
had seen; but he answered me, ‘This is my little secret.’ ”

Brownian motion could be well detected in colloidal solutions. The mass of the
– literally microscopic – Brownian particle is much greater than the mass of the
solvent molecules, and the observable motion is the result of the individual motions
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of the small molecules. The theory of Brownian motion10 was given by Einstein
[17] and Smoluchowski [72]. The theory11

• Gave a relationship for the time-dependence of the average of the square of the
displacement X.t/ of the Brownian particle,

< X.t/2 >WD< Œx.t/ � x.0/�2 >D Dt; (1.26)

where x.t/ is the actual and x.o/ is the initial coordinate of the Brownian
particle;

• Found the connection between the mobility of the particle and the – macroscopic
– diffusion constant:

D D �kBT: (1.27)

Since the diffusion constant D measures the deviation from the average, and
� WD �m, the mobility is the measure of the dissipation (� is a damping
constant, m is the mass of the Brownian particle) Eq. (1.27) is the first version
of the fluctuation-dissipation relation (kB is the Boltzmann constant, T is the
temperature).

• Considered the motion of the Brownian particles as memoryless and
non-differentiable trajectories, and helped prepared the pathway to the
formulation of the theory of stochastic (actually Markov) processes.

• Offered a new method to determine the Avogadro constant.

1.3.1.1 Diffusion

The theory of Brownian motion led to the construction of a new types of equations,
stochastic differential equations, first formulated by Paul Langevin. It implements
a principle, which assumes that the forcing function has a systematic and determin-
istic part, and a term due to the rapidly varying, highly irregular random effects. In
a general form it is written as

dx=dt D a.x; t/C b.x; t/�.t/ (1.28)

10For the early history, see Chapter 15 of the seminal book on the history of the kinetic theory
of gases [8]. An excellent website for historical items and surveys related to Brownian motion is
found at http://www.physik.uni-augsburg.de/theo1/hanggi/, [28].
11Historically, it is interesting that Brownian motion had earlier application in finance than in
physics. Louis Bachelier (1870–1946) in a paper in 1900 [5] defined Brownian motion and applied
it as a model for asset price movements. While the paper (actually a dissertation) did not gain
a very high reputation after its preparation, it is qualified now as the starting point of financial
mathematics.

http://www.physik.uni-augsburg.de/theo1/hanggi/
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It is well-known now that Eq. (1.28) is not precise, since �.t/ is often
non-differentiable, and therefore x.t/ is also non-differentiable.12

Retrospectively, Einstein’s theory considers a.x; t/ D 0 and b.x; t/ D p2D and
assuming Gaussian white noise13 (1.28) becomes

dx=dt D p2D�.t/ (1.29)

or

dx=dt D p2DdW.t/ (1.30)

where W.t/ is the Wiener process.14 After the integration of (1.30) the mean
position and the mean square displacement can be calculated, so one finds <

x >D< x0 > , and < x2 > � < x >2D 2Dt .
Langevin also took into account the friction effects on the motion of particles,

and his description is for the velocity v is

dv=dt D ��v Cp2DdW.t/: (1.31)

This model leads to a time-dependent mean position, later called the Uhlenbeck–
Ornstein process [71, 73] (see Sect. 2.8) as opposed to Einstein’s model (1.30).

Both from theoretical and practical points of view, the connection between the
stochastic differential equation and the evolution equation for the P probability
density function (called the Fokker–Planck equation in physics) is very important.
The solution of (1.28) under a rather general condition is a diffusion process
(a special case of Markovian stochastic processes) defined by the infinitesimal
generator A (for scalar case):

A D a
@

@x
C 1

2
b
@2

@x2
(1.32)

Here a.x; t/ is the velocity of the conditional expectation (called “drift”), and
b.x; t/ is a the velocity of the conditional variance (called a “diffusion constant”).
The general form of a Fokker–Planck equation is:

dP

dt
D AP (1.33)

12One much discussed problem of stochastic calculus is the interpretation of stochastic integrals,
“Ito versus Stratonovich”, and we refer to Sect 4.2 of the now classical book [25].
13White noise is considered as a stationary Gaussian process with EŒ�t � D 0 and EŒ�t�t 0 � D
ıt t 0 jt � t 0j, where ı is the Dirac delta function.
14A Wiener process W.t/ is a process with independent increments .t2/ � W.t1/ that follow
Gaussian distribution. See Sect. 2.8 for details.
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Specifically, the Wiener process is defined by a.x; t/ WD 0, and b.x; t/ WD p2D.
This equations is the well-known diffusion equation. The probability density
function of finding a particle at position x at time t is governed by the diffusion
equation when the microscopic motion of the particle is described by the Wiener
process.

Anomalous diffusion is characterized by the deviation from the linear time
dependence of the mean squared displacement. Instead, anomalous diffusion
(related to the breakdown of the Gaussian and Markovian assumptions, short-
range correlations) is described by < X2.t/ >� tn, where n < 1 and n > 1 are
called subdiffusion and superdiffusion, respectively, and the theory grew up from
the studies of transport process (for a review, see [52]).

1.3.1.2 Fluctuation-Dissipation Theorem

The spirit of the Einstein relationship was applied to characterize noise occurring
in electric circuits being in thermal equilibrium by Nyquist (theory) and Johnson
(experiments) in the Bell Labs in 1928 [32, 55].15 The internal voltage fluctuation
is proportional to the resistance R, temperature T and the b bandwidth of the
measurement:

< V 2 >D 4RKBT (1.34)

The fact that the same forces that cause the fluctuations also result in their
dissipation was formulated as the fluctuation-dissipation theorem in seminal papers
[10, 11, 38] of non-equilibrium thermodynamics.

The ‘spirit’ of the fluctuation dissipation theorem can be utilized in chemical
kinetics, and individual rate constants can be estimated form equilibrium concen-
tration fluctuations when from the equilibrium concentration, only the equilibrium
constant (the ratio of rate constants) can be calculated. Direct measurements
of concentration fluctuations started in the 1970s by using electric conductance
measurements [20] and fluorescence correlation spectroscopy [45]. In the first case,
the kinetic parameters of the dissociation reaction of beryllium sulfate were obtained
from the analysis of the frequency spectrum of the fluctuations in the concentrations
of the reactants. The latter led to the discovery of new optical methods, see e.g.
[37, 57].

Fluctuation or noise phenomena have representation in the time domain and the
frequency domain. Loosely speaking, at least for stationary processes (where some
statistical characteristics are time-independent), the two point autocorrelation
function can be converted by Fourier transformation to power spectral density.

15Excuse us for a little off-topic remark. The Nyquist-Johnston noise is different form the shot
noise occurring due to the flow of the discrete nature of the flowing objects (electrons) introduced
by Schottky in 1918, also in the Bell lab related to the emergence of the semiconductor industry.
Off-off topic: for a very well written history of Bell Labs, see [26].
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C.t/ WD EŒ�.t/�.t � �/� (1.35)

S.!/ D 1

2�

Z C1

�1
C.t/cos!d� D 1

2�
< �2 >eq �.!/

�.!/C !2
(1.36)

�.!/ is the Fourier transform of the dissipation constant, and < �2 >eq character-
ized the measure of the equilibrium fluctuations. The relationship is famously called
the Wiener–Khinchine theorem.

We will return to the topic of the fluctuation-dissipation theorem in chemical
kinetics at Sect. 3.9.

1.3.1.3 Towards the Theory of Stochastic Processes

Followed (and sometimes preceded) by studies of Einstein, Langevin and Schmolu-
chowski, the formal definition of Brownian motion was given by Wiener [75];
Uhlenbeck and coworkers gave a generalization. Non-differentiable Brownian
trajectories (fractals, using the modern language) are statistically self-similar on
all scales, and were studied famously by Paul Levy [44] and his student, Benoit
Mandelbrot [46]. Equations for the discrete state space jump process16 referred as
Kolmogorov equations, going back to the work [34].

1.3.1.4 Experimental Determination of the Avogadro Constant

The experimental verification of the heterogeneous nature of colloid solutions,
studies on disperse and discontinuous structure of matter, and of the Einstein–
Schmoluchowski theory resulted in three Nobel-prizes in chemistry in 1925–1926
(Zsigmondy, Svedberg) and physics (Perrin). Perrin improved very much the
procedure to estimate the Avogadro constant by using the relation between colloidal
osmotic pressure and concentration.17

1.4 Stochastic Chemical Kinetics

1.4.1 Model Framework: Preliminary Remarks

To describe fluctuation phenomena a continuous time, discrete state space stochastic
model has to be defined. Introducing a stochastic description, let � be a stochastic
vector process, the dimension of which is equal to the dimension of the concentra-
tion vector.

16“in a small time interval there is an overwhelming probability that the state will remain
unchanged; however, if it changes, the change may be radical”, [23].
17For the short history of colloidal suspensions and Brownian motion, see e.g. [30].
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Pn.t/ WD P.�.t/ D n/ (1.37)

is the probability that the vector of the numbers of components is n. Pn.t/ is the
time-dependent distribution function. The temporal evolution of the distribution
is determined by the assumption that the chemical reaction is considered as
a Markovian jump process, and the temporal evolution can be described by a
Kolmogorov equation, also called the master equation:

dPn

dt
D APn.t/: (1.38)

Equation (1.38) is a linear differential-difference equation, the special structure
of A given by the stoichiometry. Introducing ann0 as the infinitesimal transition
probability, which gives the probability (per unit time) of the jump from n0 to n,
the master equation can be interpreted as a gain-loss equation for the probability of
each state n:

dPn

dt
D
X

n0Œann0Pn.t/ � an0nPn.t/�: (1.39)

The first term of the right-hand side is the gain due to the transition form all the
other states n0, and the second term is the loss due to the jump to other states. For a
more formal description of the model framework see Sect. 2.1.

1.4.2 Historical Remarks

As we know, probably Leontovich [43] was the first to investigate stochastic
models of chemical reactions. Delbrück [15] studied the autocatalytic reaction (see
Sect. 3.4) A C X �! 2X which is used to describe the formation of tripsin from
tripsinogen. The deterministic and the standard stochastic models were formulated
and the binomial distribution of the latter is approximated by a normal distribution.
The distribution of the time at which a given number of particles is attained is
also determined. In the same year, in 1940, Kramers [36] provided a general
approximation of CDS models with CCS models. General compartmental systems
have been solved by Siegert [66]. The Hungarian mathematician Alfréd Rényi [59]
was the first to provide a detailed analysis of the standard stochastic model of a
higher than first order reaction. He has shown that the expectation of the numbers
of molecules in a stochastic model is close to the corresponding quantities in the
deterministic model, and the difference is proportional to the reciprocal of the
square root of the number of molecules (see also [6]). Therefore, the relative error
is small, if this number is large, otherwise it is large. He also made a series of
approximations of the distributions of molecule numbers under different conditions.
A direct continuation of his work can be found in [40]. The author carried out the
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calculations on the standard stochastic model of A C B  ! C in detail using
Laplace transforms. His results correspond to the results of [39] (see Sect. 2.3.3).
For the early history of stochastic kinetics consult [48–51].

To make the long story short, theoretical calculations showed why and when
the application of stochastic models is necessary in chemical kinetics, and the
emergence of methods of measuring concentration fluctuations give the evidence
that it is possible to compare theoretical predictions to experimental data.

1.4.3 On the Solutions of the Stochastic Kinetic Models:
Analytical Calculations Versus Simulations

While the solution of the master equation contains all the information about the
system that is required in the practice, closed form solutions can be obtained for
a very restricted class of systems. In Sect. 2.4 the methods of obtaining exact or
approximate solutions will be reviewed. Not being able to solve the master equation,
we are often satisfied by the determination of the first and second moments. The
approximation of the jump processes by continuous (such as diffusion) processes
also helps, equations for the latter processes are more easily solvable. Instead of
obtaining transient solutions we might be satisfied with having stationary solutions,
which might be unimodal or multimodal.

Stochastic simulation is an often used method to approximately generate a
realization of the stochastic process. By generating a large number of realizations,
an approximate distribution function can be constructed. About the different
algorithms, also from historical perspective, see Sect. 2.6.

1.4.4 The Renaissance of Stochastic Kinetics: Systems Biology

Systems biology combines (i) the collection and analysis of large data sets of
experimental data and (ii) mathematical modeling and (iii) statistical analysis to
interpret these data and to make predictions for the result of new experiments. Its
main tenets are, among others, to predict phenotype from genotype, understand
metabolism, cell-cell communication, cellular networks etc. The whole approach
grew up from the studies of traditional biological systems (autocatalysis, Sect. 3.4,
and classical enzyme kinetics Sect. 3.5).

From the perspective of their function, chemical systems can be considered
as signal processing devices, and (stochastic) biochemical networks convert time-
dependent inputs to time-dependent outputs. The relationship between the structure
of the reaction network and the efficiency of information transfer is discussed
in Sect. 3.6.2.
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Many biochemical and biophysical processes are involved in gene regulation.
While traditional biochemistry adopted a rather rigid deterministic scenario con-
sidering the execution of instructions encoded in the DNA, chemical reactions
taking place at single cell level are now admittedly better described by stochas-
tic models than with deterministic ones. Reactions in gene expression, such as
promoter activity and inactivity, transcription, translation, and decaying of mRNA
and proteins are the most important chemical steps. Measurements on stochastic
gene expression in single cells with single molecule sensitivity [9, 18] implied
the necessity of stochastic description [56]. Models of stochastic gene expression
[58, 60] will be reviewed in Sect. 3.7.3.

Section 3.8 is dealing with symmetry breaking in chiral systems, in particular
with the Frank model and the Soai reaction. Chirality, after all, is as excellent model
for demonstrating the importance of fluctuations.

While a cell is a highly heterogeneous spatial system, nevertheless, modeling
of spatially homogeneous systems brought reasonable results in the past, and we
decided to restrict ourselves to such situations. Both theoretical frameworks [4] and
stochastic simulation of reactions diffusion systems were offered quite early [29],
and the latter developed further decades later (e.g. [16,27,33]). We expect, however,
the development and applications of methods (analogous to partial differential
equations as deterministic models) of analyzing spatially inhomogeneous and
heterogeneous systems such as [41, 67].
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Chapter 2
Continuous Time Discrete State
Stochastic Models

2.1 Model Frameworks

The deterministic models of classical kinetics are appropriate only when the
system can be considered as macroscopic, and even then the deviations from the
“average values” remain negligible. Chemical equilibrium, the study of which
usually precedes chemical kinetics within physical chemistry, is well understood to
be modeled better by a particle-based view with some stochastic elements developed
in statistical thermodynamics than classical thermodynamics based entirely on
macroscopic functions. It follows quite logically that deterministic chemical kinetics
should have a more generally applicable particle-based counterpart as well that
should give a better approach to observed physical reality. A number of situations
are known when assuming continuous concentration-time functions is a very crude
approximation. Often times, natural fluctuations (i.e. not caused by any external
influences) are important in the system. Some of the possible reasons are as
follows:

• The size of the chemical system is small. In this case, the state space is discrete,
the continuous approximation is very bad. Discrete state space, but deterministic
models are also out of question, since fluctuations cannot be neglected even
in the “zeroth” approximation, because they are not superimposed upon the
phenomenon, but they represent the phenomenon itself.

• The system operates near an instability point of a deterministic model. In this
case, small fluctuations may be amplified and produce observable, even macro-
scopic effects.

• Fluctuations can be a source of information. The fluctuation-dissipation theorem
connects the spontaneous fluctuations around an equilibrium state, and the dis-
sipative process leading to equilibrium. Using this theorem applied to chemical
kinetics, rate constants can be calculated from equilibrium fluctuations.

P. Érdi and G. Lente, Stochastic Chemical Kinetics: Theory and (Mostly) Systems Biological
Applications, Springer Series in Synergetics, DOI 10.1007/978-1-4939-0387-0__2,
© Springer Science+Business Media New York 2014
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• A specific importance is found for a concentration that falls to zero at a finite
time value. As pointed out earlier, this is not possible within the mathematical
framework of deterministic mass action type kinetics. However, the stochastic
approach may associate this event with a non-zero probability.

The alternative to deterministic kinetics used in most of this book is called the
continuous time discrete state stochastic model. Its relationship to deterministic
kinetics is analogous to the connection between classical and statistical thermo-
dynamics. Statistical thermodynamics can give some sort of a theoretical prediction
about equilibrium fluctuations, stochastic kinetics can describe the time evolution of
chemical fluctuation phenomena. The concentration, (a continuous variable) should
be transformed into a function of the number of components (discrete variable):
c.t/ ! N�1

A V �1N.t/, where NA is Avogadro’s constant (necessary to account for
the fact that concentration is defined using the amount of substance rather than
particle numbers), V is the volume of the system, c.t/ is a concentration vector
and N.t/ is the vector of the particle numbers at a fixed time t .

Stochastic kinetics and its applications will be described in this book, but not
before some more general definitions and theorems of stochastic processes are
introduced.

2.2 Stochastic Processes

A brief summary of the mathematical foundations of stochastic processes will be
given in the next sections. A more detailed, and relatively easy-to-read classic
summary can be found in the literature [44]. Our description mainly follows the
approach of Barabás et al. [4], which was partially motivated by our old wording
(section 5.1.3 in [24]).

2.2.1 Definition

Given the independent variable set T , whose elements usually represent time,
and the set of possible outcomes S , called the state space, a stochastic process is
defined as a collection of random variables fX.t/; t 2 T g on the same probability
space.

The mapping t 7! X.t; �/ defined on set T is a realization or a sample path
of the process. (The name temporal trajectory is also used, but it may cause
misunderstanding because this term is used differently in the case of deterministic
models.)



2.2 Stochastic Processes 27

2.2.2 Time and State Space

Stochastic processes can be divided into four categories depending on the continu-
ous or discrete nature of the time variable and the random variables.

Discrete time, discrete state stochastic processes (DDS) feature a time variable
and a state space that are both discrete (i.e. they belong to a finite or countable
set). If the assumed values of time, ti .i D 1; 2; : : :/, form an increasing sequence,
X.ti / is a random sequence. If the process is Markovian (see Sect. 2.2.4), then it
is called a Markov chain. Simulation techniques in stochastic chemical kinetics
usually belong to this class.

In the case of continuous time, discrete state stochastic processes (CDS),
the state space is still discrete, but the time variable assumes a continuous range
of values in .�1;C1/. A Markovian process with these features is called
a continuous time Markov chain. The standard stochastic model of chemical
reactions is a CDS approach, with R as the set of times, and N

n as the state space,
where n is the number of chemical species.

For discrete time, continuous state stochastic processes (DCS), X.t/ assumes
a continuous range of values, but time variable t is discrete. If the process is
Markovian, it is called a discrete time Markov process.

Finally, both X.t/ and t assume continuous ranges of values in a continuous
time, continuous state stochastic processes (CCS). A continuous time Markov
process is a Markovian CCS process.

2.2.3 Important Types of Stochastic Processes

A stationary process is a stochastic process whose joint probability distributions
do not change when shifted in time. A stochastic process X.t/ with the cumulative
distribution function FXt1 ;:::;Xtk

.xt1 ; : : : ; xtk / at times t1; : : : ; tk is stationary if the
following equation holds for all k; � , and t1; : : : ; tk values:

FXt1 ;:::;Xtk
.xt1 ; : : : ; xtk / D FXt1C� ;:::;XtkC�

.xt1 ; : : : ; xtk /: (2.1)

Weak sense stationarity (wide-sense stationarity or covariance stationarity)
only requires that the first and second moments do not vary with respect to time. Any
strictly stationary process that has a mean and a covariance is weakly stationary.

A DDS stochastic process or a random sequence fXng is an independent process
if the joint density function can be written as the product of the density functions of
the variables:

fX1;:::;Xn.x1; : : : ; xnI t1; : : : ; tn/ D fX1.x1I t1/ � � �fXn.xnI tn/: (2.2)
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A random vector X is a white random vector if its mean vector is zero and its
autocorrelation matrix is a multiple of the identity matrix:

hXi D 0 RX D
˝
XXT

˛ D 	2I: (2.3)

A continuous time random process X.t/ (t 2 R) is a white noise process if its
mean function and autocorrelation satisfy the following equations:

hX.t/i D 0 RX.t1; t2/ D
˝
X.t1/X.t2/

T
˛ D N0

2
ı.t1 � t2/: (2.4)

In Eq. (2.4), ı stands for the Dirac delta function, which returns a zero value
for every real number except 0, but its definite integral over any interval around 0 is
exactly 1. A possible way to define this function is as follows:

ı.�i/ D lim
x!0

1

x
p
�
e��2

i =x
2

(2.5)

The most important property of the Dirac delta function for the present purposes
is that the integral of its product with any function h.�/ can be given very simply:

Z C1

�1
h.�i /ı.�i � x/d�i D h.x/ (2.6)

The increments of a continuous time stochastic process by X.t/ are the
differences X.s/�X.t/ between its values at different times t < s. The increments
of the process are independent if increments X.s/ � X.t/ and X.u/ � X.v/ are
independent random variables whenever the two time intervals Œt; s� and Œv; u� do not
overlap and more generally, any finite number of increments assigned to pairwise
non-overlapping time intervals are mutually (not just pairwise) independent.

2.2.4 Markov Chains

A highly important class of stochastic processes was named after Russian sci-
entist Andrey Andreyevich Markov (1856–1922), who was not the only notable
mathematician in his family. A Markov chain is a sequence of random variables
X1;X2; : : : Xn; : : : that satisfy the following equation for every n .n D 1; 2; : : : /:

P.Xn D j jX1 D i1; X2 D i2; : : : ; Xn�1 D in�1/

D P.Xn D j jXn�1 D in�1/

(2.7)

The Markovian property means that the probability of the state at time n depends
only on the state at time n � 1 and does not depend directly on the earlier states: the
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future depends on the past only through present. This is often summarized briefly
by stating that a Markov chain has no memory.

The probabilities pij D P.Xn D j jXn�1 D i/ are called single-step transition
probabilities, which give the probability of the Markov chain going from state i into
state j in one step. In the special case when the single-step transition probabilities
do not depend on n, the Markov chain is called (time-)homogeneous (the word
‘stationary’ is also used occasionally in this sense, which may be the source of
some confusion as this stationarity is different form the one defined in Sect. 2.2.3).

In the homogeneous case, m-step transition probabilities can be defined as
follows:

npm
ij D P.XnCm D j jXn D i/: (2.8)

From now on, this text will deal with homogeneous Markov chains exclusively,
and the m-step transition probabilities will be denoted simply pm

ij .
From Eq. (2.7), the following Markov property, which is a special case of the

Chapman–Kolmogorov equation, is easily proven for any integer l (0 < l < m):

pm
ij D

X

k2S
pm�l
ik pl

kj .m D 2; 3; : : : / (2.9)

If the state space of a homogeneous Markov chain is finite (or infinite but
countable), the transition probabilities can be collected into a matrix, which is called
the transition probability matrix:

P D

0

B@
p1;1 p1;2 � � �
p2;1 p2;2 � � �
:::

:::
: : :

1

CA (2.10)

The sum of each row in P is one and all elements are non-negative. Therefore,
P is a (right) stochastic matrix. The k-step transition probabilities for a time-
homogeneous Markov chain are given by the kth power of the transition probability
matrix, Pk .

A probability distribution � is called a stationary distribution if it satisfies the
following equation.

� D �P (2.11)

A stationary distribution � is a normalized (i.e. the sum of its elements is 1)
left eigenvector of P associated with the eigenvalue 1. A stationary distribution
always exists, but it is not necessarily unique. If the Markov chain is irreducible
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and aperiodic (see the next few paragraphs for the definitions of these properties), a
unique stationary distribution exists. In this case, Pk converges to a rank-one matrix
in which each row is the stationary distribution:

lim
k!C1 Pk D 1� (2.12)

In Eq. (2.12), 1 is the column vector with all entries equal to 1.
A careful analysis of the structure of the state space can often give useful hints for

obtaining the state probabilities, or prove notable symmetry properties. Therefore,
some definitions relevant to the properties of individual states or a group of states
will be given in the next paragraphs.

State j is accessible from state i (written as i ! j ) if there is non-zero
probability of passing into state j from state i (there exists an integer n > 0 such
that P.Xn D j jX0 D i/ D pn

ij > 0). A Markov chain is irreducible if all pairs of
states are mutually accessible from one another.

State i has period k if any return to state i must occur in multiples of k time steps
(k D gcdfn W P.Xn D i jX0 D i/ > 0g, where gcd is the greatest common divisor).
If k D 1, the state is aperiodic. Otherwise (k > 1), the state is said to be periodic
with period k. A Markov chain is aperiodic if all its states are aperiodic.

State i is transient if the probability of never returning to this state is larger
than zero. If the random variable Ti represents the the hitting time, which is the
first (earliest) return time to state i : Ti D inffn � 1 W Xn D i jX0 D ig, state
i is transient if and only if P.Ti D C1/ > 0. A recurrent or persistent state
is not transient (it has a finite hitting time with probability 1). Even if the hitting
time is finite, it does not necessarily have a finite expectation. If the expected return
time, Mi WD hTii, is finite, state i is positive recurrent. Otherwise, the state is null
recurrent (the terminology non-null persistent or null persistent is also used).

It can be shown that a state is recurrent if and only if the following equation
holds:

C1X

nD0

pn
i i D C1 (2.13)

An irreducible Markov chain has a stationary distribution if and only if all of its
states are positive recurrent. In that case, � is unique, and the chain converges to
the stationary distribution from any initial state. Such a � is called the equilibrium
distribution of the chain.

A state is absorbing if it is impossible to leave this state. Therefore, the state i

is absorbing if and only if pii D 1 and pij D 0 for i 6D j . State i is ergodic if it
is aperiodic and positive recurrent. If all states in a Markov chain are ergodic, then
the chain is said to be ergodic. It can be shown that a finite state irreducible Markov
chain is ergodic if its states are aperiodic.
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2.2.5 Continuous Time Discrete State Markov Process

In analogy with DDS Markov chains, a stochastic process fX.t/gt2.R/ is a continu-
ous time Markov process if the following equation holds for every t1 < t2 < � � � <
tnC1 (n is a positive integer):

P .X.tnC1/ D j jX.t1/ D i1; X.t2/ D i2; : : : X.tn/ D in/

D P .X.tnC1/ D j jX.tn/ D in/

(2.14)

Equation (2.14) is fully analogous to Eq. (2.7). Thus, most of the properties of
the continuous time Markov process are similar to those of the Markov chain.

Let �i denote the time that the process spent in state i . According to the Markov
property in Eq. (2.14), �i does not depend on the past of the process, so the following
equation holds:

P .�i > s C t j�i > s/ D h.t/ (2.15)

Function h.t/ in Eq. (2.15) only depends on the remaining time t , and not on the
past time s. The only continuous probability distribution which satisfies Eq. (2.15) is
the exponential distribution. Equation (2.15) is often quoted as the memorylessness
property of the Markov process. In the discrete time case, requirement (2.15)
leads to the geometric distribution.

The transition probability for a Markov process is defined as:

pij .s; t/ D P .X.t/ D j jX.s/ D i/ : (2.16)

Obviously, the following equation holds for the transition probabilities for all
possible i values:

X

k2S
pik.s; t/ D 1 (2.17)

Furthermore, it follows from Eq. (2.15) that pik.s; t/ only depends on the differ-
ence .t � s/ in a Markov process, but not on the values of t and s individually. The
definition of the transition probabilities gives rise to the Chapman–Kolmogorov
equation:

pij .s; t/ D
X

k

pik.s; u/pkj .u; t/ .i; j D 0; 1; 2; : : : / (2.18)

The transition probability matrix P.s; t/ can be constructed from the individual
transition probabilities:

P.s; t/ D

0

B@
p1;1.s; t/ p1;2.s; t/ � � �
p2;1.s; t/ p2;2.s; t/ � � �

:::
:::

: : :

1

CA (2.19)
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For internal consistence, let P.t; t/ be the identity matrix (I). Using this notation,
the Chapman–Kolmogorov equation given in Eq. (2.18) can be stated in a matrix
form:

P.s; t/ D P.s; u/P.u; t/ s 5 u 5 t: (2.20)

If the transition probabilities satisfy some continuity conditions, a system of
differential equations can be written that describes the process. The absolute state
probabilitiesPi .t/ WD P.X.t/ D i/ of a CDS Markov process, i.e. the probabilities
for the system to be in the state i , satisfy a relatively simple recursive equation with
the transition probabilities:

Pi.t/ D
X

j

pj i .s; t/Pj .s/ (2.21)

Pi.t/ functions are very often the most preferred characteristics of CDS Markov
processes in physical and chemical applications. From the Chapman–Kolmogorov
equation, the master equation of the CDS Markov process can be derived:

dPi .t/

dt
D
X

j

.qj iPj .t/ � qij Pi .t//; (2.22)

The qij values are called infinitesimal transition probabilities (transition rates),
and can be obtained from the transition probabilities as follows:

qii D 0

qij D lims!t

pij .s; t/

t � s
.i ¤ j /

(2.23)

In a Markov process, pij .s; t/ only depends on the difference .t � s/, so qij is
independent of t as already implied in Eq. (2.23). Time-dependent transition rates
may only appear in non-Markovian processes. The master equation can also be
stated in a matrix form for the vector of absolute probabilities, P.t/, this is often
most suitable for carrying out numerical calculations and will be discussed in more
detail later. A few examples of the Markov process will be introduced in the next
few paragraphs.

Example 2.1. A Markov process X.t/ (t = 0) is a birth-and-death process
with parameters 
0; 
1; : : : and �0; �1; : : : if the transition probabilities satisfy the
following equations:

pi;iC1.t; t C h/ D 
ihC o.h/

pi;i�1.t; t C h/ D �ihC o.h/

pi;i .t; t C h; / D 1 � .
i C �i/hC o.h/

pi;j .t; t C h/ D o.h/ if j ¤ i and j ¤ i ˙ 1 h! 0:

(2.24)
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Because the birth-and-death process is a special CDS Markov process, the master
equation can be re-arranged into a special form. If Pn.t/ is the probability of the
process being in state n at time t , the following equations hold:

dP0.t/

dt
D �
0P0.t/C �1P1.t/

dPn.t/

dt
D �.
nC�n/Pn.t/C
n�1Pn�1.t/C�nC1PnC1.t/ .n = 1/

(2.25)

A chemical reaction scheme that gives rise to a birth-and-death process is as
follows:

Ø
k1�! A1

A1

k2�! 2A1

A1

k3�! Ø

(2.26)

Example 2.2. A CDS stochastic process N.t/ is a Poisson process if it starts at zero
(N.0/ D 0), it has independent, stationary increments, and, for every t > 0, N.t/ is
a Poisson random variable with parameter 
t described by the following equation:

P .N.t/ D n/ D .
t/n

nŠ
e�
t ; n D 0; 1; 2; : : : (2.27)

A Poisson process is a birth-and-death process, in which only birth occurs with

i D 
 and �i D 0 for i D 0; 1; 2; : : : . In this case, Eq. (2.25) assumes a simpler
form:

dPn.t/

dt
D �
.Pn.t/ � Pn�1.t//: (2.28)

The solution of Eq. (2.28) is exactly given by Eq. (2.27). A chemical example of
the Poisson process is:

Ø
k1�! A1 (2.29)

Example 2.3. Let Gd denote the points of a d -dimensional lattice. The position of a
point at time t D n is given by Sd

n . The point changes its position such that one of its
coordinates changes by ˙1 with probability 1

2d
and all the other d � 1 coordinates

remain unchanged. If Xd
k stands for the shift in the time interval .k� 1; k/, then Sd

n

can be given as:

Sd
n D Sd

0 C
nX

kD1

Xd
k (2.30)
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Xd
k are independent, identically distributed random variables, hence Sd

n is a Markov
process. Let P.d/ be the probability that a random walk on a d -dimensional lattice
returns to the initial position. It is easily proven that P.1/ D P.2/ D 1, but
P.d/ < 1 for any d = 3. Moreover, the probability that a random walk on a
d -dimensional lattice returns to the initial position infinitely many times equals 1
for d D 1 and d D 2 but equals 0 for d = 3. Some approximate values of P.d/ are
as follows: P.3/ D 0:340537, P.4/ D 0:193206, and P.5/ D 0:135178.

Example 2.4. Let Ti > 0 for i D 1; 2; : : : be a sequence of independent, identically
distributed random variables. The random variable Ti is referred to as the i th
holding time. The nth jump time (Jn, n > 0) is defined by the following equation:

Jn D
nX

iD1

Ti and J0 D 0 (2.31)

The process Nt D sup fn W Jn 5 tg is called a renewal (counting) process. If
the random variables Ti are exponentially distributed with parameter 
, then Nt is a
Poisson process with parameter 
, and the following equation holds:

lim
t!C1

Nt

t
D 1

�T1

(2.32)

If X1;X2 : : : is a sequence of independent, identically distributed random
variables satisfying �jXi j < C1, the random sum St D PNt

iD1 Xi is called a
renewal reward process, for which the following equation holds:

lim
t!C1

St

t
D �X1

�T1

(2.33)

With F.x/ WD P.Xi < x/ as the common distribution function of the random
variables Xi , the expectation of the renewal counting process is the renewal
function and the renewal equation can be proved:

�Nt D F.t/C
Z t

0

�Nt�x dF.x/ (2.34)

2.2.6 Semi-Markov Processes

A semi-Markov process, also called Markov renewal process, is a process that
may change states any time (it is a continuous time process) and the waiting times
between the changes are not necessary exponentially distributed. A continuous time
Markov chain is a special case of a semi-Markov process, in which the transition
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SMP

MP

BDP

PBP

PP

RNP

RW

Fig. 2.1 Classification of stochastic processes

SMP: Semi-Markov Process pij arbitrary, F� arbitrary
MP: Markov Process pij arbitrary, F� memoryless
BDP: Birth-and-Death Process pij D 0 if ji � j j > 1 F� memoryless
PBP: Pure Birth Process �i D 0 F� memoryless
RW: Random Walk pij D qj�i , F� arbitrary
RNP: Renewal Process q1 D 1, F� arbitrary
PP: Poisson Process 
i D 
 F� memoryless

times are exponentially distributed as shown in (2.15). Formally, a stochastic process
is a semi-Markov process if the following equation holds for each n � 1, t � 0 and
i; j 2 S with the waiting time �n defined as �n D tn � tn�1:

P.�nC1 � t; XnC1 D j jX1 D i1; X2 D i2; : : : ; Xn D in/

D P.�nC1 � t; XnC1 D j jXn D in/
(2.35)

A graphical representation of the processes defined thus far is given in Fig. 2.1.

2.3 The Standard Stochastic Model of Homogeneous
Reaction Kinetics

The widely used deterministic model of chemical kinetics was described in Chap. 1.
This section will introduce the stochastic equivalent of Eq. (1.1) using very sim-
ilar notations and the concepts of stoichiometric (�) and order matrices (˛).
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The equivalence here refers to the fact that the interactions governing the natural
events are the same, the only difference is that they are considered on a molecular
rather than bulk level. As already mentioned in the beginning of this chapter, the
concentration vector is replaced by the particle number vector N.t/ D NAV c.t/ in
the standard stochastic model. Whilst the trajectory c.t/ is unambiguously defined
by the initial condition c.0/ and the rate equation (1.1), the same is not true for
sample path N.t/, and fN.t/; t 2 T g is a stochastic process with time as the
independent variable. The elements of vector N are the particle numbers of chemical
species A1, A2, : : :, An, and are denoted a1, a2, : : :, an. The number of elements in
vector N is equal to the number of chemical species (types of particles), n.

The CDS approach to stochastic kinetics assumes that N.t/ is a Markov
process. The stochastic equivalent of the deterministic rate equation is the master
equation of the process, in which the time-dependent probabilities of states
PN.t/ D P.N.t/ D N/ are the dependent variables and the independent variable is
time (t). The notation with an enumeration of the particle numbers as the index of
the probabilities, Pa1;a2;:::;an .t/, is also used instead of PN.t/.

2.3.1 State Space: Size and Enumeration

The state space of CDS stochastic kinetics is the values vector N can assume.
Because all elements of this vector are natural numbers, the state space is always
a subset of Nn. As N

n is a countable set, so is the state space. As a fundamental
principle, the state space should always be finite because, even in the absence of
other reasons, the overall number of elementary particles in the Universe is known
to be finite. However, using an infinite state space sometimes makes mathematical
calculations easier. In these instances, the physical limitations of using the infinite
model should be recognized and (preferably) clearly stated.

A state can generally be identified by giving the numbers of all particle types,
such as .a1; a2; : : : ; an/. Some of the concepts introduced earlier about the states
(e.g. accessible and absorbing states) of a stochastic process will be useful in
analyzing the state space of CDS stochastic kinetics as well. States i and j are
mutually accessible if state i is accessible from state j and state j is also accessible
for state i at the same time. State i is downstream from state j if state i is
accessible from state j , but the two states are not mutually accessible. In this case,
state j is also upstream from state i . An absorbing state represents a final mixture
in which chemical reactions are not possible any more.

The actual size of the state space is typically determined by the initial conditions.
A state is impossible if it is not accessible from the initial state(s), whereas a
possible state is not impossible. The initial state can be a single state or a range of
states characterized by some initial distribution PN.0/. As the largest computational
problem in CDS stochastic kinetics is posed by the typically huge number of states,
it is imperative to exclude all impossible states from the state space.
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Counting the number of states (denoted M ) in a finite state space is usually
important, but not always essential. The initial conditions usually give rise to
a number of conservation equations, similarly to the time-independent linear
combinations of concentrations for the deterministic model. States not satisfying
these conservation equations are impossible. Therefore, counting the number of
possible states is basically the combinatorial problem of determining the number
of solutions for a set of simultaneous Diophantine equations. The difficulty of
this task varies greatly from trivial (e.g. for m D 1) to immensely complex. The
least common multiple of the integer multipliers in the conservation equations
usually has special significance. Some guidelines are available in the mathematical
literature [15]. Because of the conservation equations, unambiguous identification
of a possible state seldom requires giving all the particle numbers a1; a2; : : : ; an.
If this is the case, indexing of the probabilities is often reduced to those ai values
that are necessary as the rest of the values can be calculated from the conservation
equations. For example, giving any one of the ai values is sufficient to identify a
state in a single-step reaction (m D 1) with a unique initial state.

Enumerating the Diophantine solutions of the conservation equations is also
often necessary. For this purpose, an enumerating function, f , is needed, which
gives a single and unique whole number to every possible state without repetitions
or omissions. Therefore, f .a1; a2; : : : ; an/ should take the values 1; 2; : : : ;M .
The need for avoiding omissions in the values of the enumerating function is not
theoretically necessary, but has high practical importance in order to minimize the
dimensions of matrices for certain solution methods. It should also be noted that
the enumerating function is far from being unique. In fact, the number of different
enumerating functions for a given system and initial conditions is MŠ. Using an
enumerating function, the states can be ordered and the indexing Pf.a1;a2;:::;an/.t/

can be used instead of PN.t/ to have positive integers as indexes rather than vectors,
which is very convenient if matrix operations are used to solve the master equation.

It has already been stated that determining the number of possible states
can be quite a formidable combinatorial problem even in systems of moderate
complexity. The difficulties in finding enumerating functions are often much worse.
An enumerating function is invertible by definition, but finding its inverse can
be a third hard problem. Fortunately, computational algorithms can typically be
programmed in a way that the inverse of the enumerating function is not necessary.

If all else fails, a brute force method can be used to determine the number of
states and define an enumerating function in a relatively small state space if the
maximum number of particles in possible states is known:

Nmax D max.max.a1/;max.a2/; : : : ;max.an// (2.36)

The algorithm involves generating all possible points in the set Nmax
n by

successively organized cycles. Adherence to the conservation equations is tested
for all such points. The first point that satisfies all equations is assigned a value of 1,
then the following satisfactory points are given gradually increasing values. When
function f is generated in this way, it will be given by an enumeration of the entire
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state space and all the values instead of a symbolic formula. This is computationally
only viable for small values of M . Inverting function f is trivial in this case.

In most published papers, analyzing the state space of a problem does not receive
much attention. However, this is usually worth the effort as it often reveals special
features of the studied system that could aid the general solution of the master
equation or accelerate the algorithms.

2.3.2 Master Equation

The master equation of CDS stochastic kinetics has the same importance as the
rate equation of the deterministic approach, and has a similar structure as well.
Deterministic rates should be replaced by transition rates. The same notation is used
here (vj ) for the two physical quantities, but their physical dimensions are different.
The dimension of rates is concentration divided by time (the most common unit is
mol dm�3 s�1), the dimension of transition rates is inverse time (the most common
unit is s�1). A sort of equivalence of the deterministic and stochastic approaches can
be ensured if the functions describing the dependence of transition rates on particle
numbers can be obtained by replacing concentrations [Ai ] with particle numbers ai ,
and rate constants kj by rate parameters �j in the symbolic formulas. This procedure
is probably the only possibility for non-power law rates or for fractional orders of
reaction in power-law rates. However, this is never fully consistent with physical
reality. Because of the reducibility of net chemical reactions and the molecular level
of description in CDS stochastic kinetics, it is best to reduce all systems to mass
action type kinetics and give the transition rate of reaction j starting from state
.a1; a2; : : : ; an/ as follows:

vj .n/ D vj .a1; a2; : : : ; an/ D �j

nY

kD1

�
ak
˛j;k

�
(2.37)

The full master equation of the process is then given by summing all transition
rates relevant to a given state:

dPf.a1;a2;:::;an/

dt
D �

mX

jD1

vj .a1; a2; : : : ; an/Pf.a1;a2;:::;an/

C
mX

jD1

vj .a1 � �j;1; a2 � �j;2; : : : ; an � �j;n/Pf.a1��j;1;a2��j;2;:::;an��j;n/

(2.38)

The master equation as stated in Eq. (2.38) can be solved directly in computer
calculations by using some matrix algebra for cases when the number of states is
finite (M ). First, the equation is stated for the vector P.t/, the elements of which are
the individual Pf.a1;a2;:::;an/.t/ values:

dP.t/
dt

D ˝P.t/ (2.39)
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The matrix ˝ is composed of the transition rates and its elements are defined as
follows:

˝f.a1;a2;:::;an/;f .a1;a2;:::;an/ D �
mX

jD1

vj .a1; a2; : : : ; an/

˝f.a1;a2;:::;an/;f .a1��j;1;a2��j;2;:::;an��j;n/ D vj .a1; a2; : : : ; an/

(2.40)

Problems with this definition might arise if two (or more) reaction steps are
described by the same set of stoichiometric coefficients. However, within mass
action type kinetics where the stoichiometric coefficients determine the orders of
reaction, this problem is easily handled by uniting these steps into one with a rate
parameter that is equal to the sum of the original rate parameters.

In addition, ˝ can also be defined using the transition probability matrix of
Eq. (2.20):

˝ D lim
s!t

P.s; t/C I� 2diag.P.s; t//
t � s

(2.41)

Here, matrix diag(P.s; t/) is the diagonal square matrix that only contains the
main diagonal elements of P.s; t/. ˝ is independent of time for the same reason
qi;j values are not time-dependent.

The equivalence of the deterministic and stochastic approaches is guaranteed by
a connection between deterministic rate constants and stochastic rate parameters:

�j D kj .NAV /�
Pn

kD1 ˛j;k (2.42)

Although the physical dimensions of rate constants vary depending on the overall
order of the reactions step, the physical unit of stochastic rate parameters is always
inverse time. Chapter 3 will give numerous examples of the use of the CDS master
equation. However, some significant phenomena will be illustrated here by examples
that have little practical significance.

Example 2.5. Consider the irreversible second order dimerization reaction:
2A1 �! A2. Let N0 and 0 be the number of A1 and A2 particles in the initial
state. There is only one conservation equation in this system:

N0 D a1 C 2a2 (2.43)

In the possible states, a1 � N0 and a1 has the same parity as N0. The number of
possible states is M D int.N0=2/C 1, where int denotes the integer part function.
A suitable enumerating function is f .a1; a2/ D a2 C 1. The CDS master equation
is as follows:

dPa1;a2

dt
D ��1 a1.a1 � 1/

2
Pa1;a2 C �1

.a1 C 2/.a1 C 1/

2
Pa1C2;a2�1 (2.44)
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A direct equivalent of the deterministic description in this case would be to have
the rate term a21 instead of a1.a1 � 1/. However, the a21 term would imply that a
single molecule of A1 could undergo a reaction requiring two A1 particles with a
non-zero probability, which is physically impossible.

Example 2.6. Consider the irreversible half-order reaction: A1 �! A2. Let N0 and
0 be the number of A1 and A2 particles in the initial state. The only conservation
equation in this system is:

N0 D a1 C a2 (2.45)

In the possible states, a1 � N0. The number of possible states is therefore M D
N0 C 1. A suitable enumerating function is f .a1; a2/ D a2 C 1. The CDS master
equation is as follows:

dPa1;a2

dt
D ��1pa1Pa1;a2 C �1

p
a1 C 1Pa1C1;a2�1 (2.46)

This is an example of power law kinetics, which does not adhere to mass action.
Therefore, the conventions of the transition rate definition given in (2.37) cannot be
used here. In general, it is better to reduce this system to a several-step scheme that
follows mass action type kinetics.

Example 2.7. Consider the mass action kinetics scheme of catalyzed dimerization,
which is composed of two elementary reactions: A1 + A2 �! A3, A1 C A3 �! A2

C A4. Let N0, C0, 0, and 0 be the number of A1, A2, A3, and , A4 particles in the
initial state. There are two conservation equations:

N0 D a1 C a3 C 2a4

C0 D a2 C a3

(2.47)

Giving the molecule numbers of a1 and a2 always unambiguously identifies a
state as the conservation equations can be re-arranged to a3 D C0 � a2 and a4 D
0:5.N0�a1�C0Ca2/. In the possible states, a1 � N0, a2 � C0, andN0�a1�C0Ca2
is a non-negative even number. The number of possible states is:

M D int

�
.N0 C 2/2

4

�
if N0 � C0

M D int

�
C2
0

4

�
C int

�
N0 � C0

2
C 1

�
.C0 C 1/

if N0 > C0 and N0 � C0.mod 2/

M D int

�
.C0 C 1/2

4

�
C int

�
N0 � C0

2
C 1

�
.C0 C 1/

if N0 > C0 and N0 ¤ C0.mod 2/

(2.48)
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A suitable enumerating function is:

f .a1; a2; a3; a4/ D N0 � a1 � C0 C a2

2
.C0 C 1/C C0 � a2 C 1 if a1 � a2

f .a1; a2; a3; a4/ DM � int

 
.C0 C a1 � a2/

2

4

!
� a1 if a1 < a2

(2.49)

The CDS master equation is as follows:

dPa1;a2;a3;a4

dt
D �Œ�1a1a2 C �2a1.C0 � a2/�Pa1;a2;a3;a4

C�1.a1 C 1/.a2 C 1/Pa1C1;a2C1;a3�1;a4

C�2.a1 C 1/.C0 � a2 C 1/Pa1C1;a2�1;a3C1;a4�1

(2.50)

This example shows that the formula for the number of states and the enumerat-
ing function may show some complexity even if the scheme and the master equation
are simple.

2.3.3 Connection Between Deterministic and Stochastic
Kinetics: Similarities and Differences

In the previous subsection, it has been emphasized that the CDS approach intro-
duced is an equivalent of the usual deterministic rate equation in some sense. In fact,
the applicability of the CDS approach is wider than that of deterministic kinetics as
it accommodates the particulate nature of matter. The two approaches are connected
formally by Kurtz’s theorem [48]. The theorem basically states that the deterministic
approach is the limiting case of the CDS approach for infinite volume (hence infinite
molecule numbers). There are some further analogies between the structures of the
two approaches, which can be listed as follows:

1. Deterministic kinetics uses autonomous differential equations, i.e. rates only
depend on time through the time dependence of concentrations, but not directly.
The stochastic equivalent of this property is that CDS is a Markov process, i.e.
transition rates are independent of time.

2. The rate equation in the deterministic approach defines reaction rates as a
function of concentrations. The stochastic equivalent is that transition rates are
functions of molecule numbers.

3. In the deterministic rate equation, each differential equation contains a maximum
of m additive terms because a concentration can be changed in m different
reactions at most. In, the stochastic equivalent, a differential equation for the
probability of any state contains all the transition rates from all preceding and
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to all successor states. The maximum number of preceding states is m, the
maximum number of successor states is also m. In the master equation, the
equation for the time derivate of Pi contains the probabilities of m other states
with positive transition rates, whereas the negative term before Pi also contains
m additive terms.

There are notable differences, though. The deterministic rate equation is typically
non-linear and contains differential equations for n species. The master equation is
always linear and homogeneous, but the number of equations in it is the number of
states M . As pointed out, M is usually huge compared to n, which gives the main
difficulty of solving the master equation. No general strategy is known for obtaining
useful properties from this solution. On the other hand, numerical integration of rate
equations is a well-developed field and several software packages are available that
calculate the concentrations of any mass action type deterministic model.

It is customary to compare the time dependence of concentrations obtained in
deterministic calculations with the expectation of stochastic molecule numbers,
which are defined as follows:

hai i .t/ D
X

all states

aiPf.a1;a2;:::;an/.t/ (2.51)

The standard deviation, or variance of the molecule number of Ai is given as:

	ai .t/ D
q˝

a2i
˛
.t/ � hai i .t/2 D

s X

all states

a2i Pf.a1;a2;:::;an/.t/ � hai i .t/2 (2.52)

The standard deviation of a molecule number has no analogue, or, with a slightly
different approach, is always 0 in deterministic kinetics.

Example 2.8. Consider the first order irreversible autocatalytic reaction with the
chemical equation A1 �! 2A1. The state space is infinite in this case, but the
initial presence of the N0.� 1/ molecules of A1 is required. A suitable enumerating
function is f .a1/ D a1 �N0 C 1 The master equation is as follows:

dPa1�N0C1.t/

dt
D k1.a1 � 1/Pa1�N0.t/ � k1a1Pa1�N0C1.t/: (2.53)

Multiplying all equations with their specific a1 values in Eq. (2.53) and summing
them give an explicit equation for the expectation (or first moment) of the molecule
numbers of A1:

d ha1i .t/
dt

D k1 ha1i .t/ (2.54)

This is the same as Eq. (1.16), which describes the concentration of A1 in the
deterministic approach. The two models are said to be ‘consistent in the mean’ [7,8].
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This is not a general property of the master equation, it is specific for the case where
the overall order of reaction is 1. The same method yields the following equation
for the second moment,

˝
a21
˛
.

d
˝
a21
˛
.t/

dt
D 2k1

˝
a21
˛
.t/C k1 ha1i .t/ (2.55)

The equation for the variance of molecule number of A1 can be obtained by
combining Eqs. (2.52), (2.54) and (2.55):

d	a1.t/

dt
D 	a1.t/C

k1 ha1i .t/
2	ai .t/

(2.56)

Ordinary differential equations (2.54)–(2.56) can be solved analytically in this
case.

Example 2.9. Consider the second order quadratic autocatalytic reaction
2A1 �! 3A1. The properties of the state space and the enumerating function
are the same as in the previous example. The master equation of this process is:

dPa1�N0C1.t/

dt
D k1.a1 � 1/2Pa1�N0.t/ � k1a

2
1Pa1�N0C1.t/: (2.57)

The general method used in the previous example yields the following equation
for the expectation:

d ha1i .t/
dt

D k1
˝
a21
˛
.t/ (2.58)

In this equation, a higher order moment appears. This is a general phenomenon
for all systems featuring non-first order processes, which limits the applicability of
the presented strategy for the calculation of expectations.

At this point, it should be also pointed out that relying on expectations can
sometimes be misleading. Blomberg [9] gave an excellent example to highlight a
major source of possible pitfall in understanding. This could be termed the ‘fallacy
of statistical expectations’, which means that an expectation is not necessarily a
value that actually occurs with a significant probability. To put it more vaguely,
individual states close to the expectation are sometimes not expected to occur at all.

To illustrate this phenomenon, consider the following two-step scheme involving
autocatalysis:

A1

k1�! A2

A1 C A2

k2�! 2A2

(2.59)
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If k1 � k2=.NAV / holds with N0 and 0 as the initial numbers of A1 and A2

molecules, this system is characterized by a long wait before the first molecule of A2

forms, then suddenly all the remaining A1 molecules are converted to the product.
At intermediate times, the expectation for the molecule numbers of A2 will be well
between 0 and N0 despite the fact that only the states with 0 and N0 molecules of
A2 could occur with significant probability.

2.3.4 Stochastic Maps

When actual experimental data are evaluated, it must be decided whether the
particular problem can be handled by the computationally less intensive determin-
istic approach, or the use of mathematically more demanding stochastic kinetics
is inevitable. The general notion seems to be that “large” systems (not usually
clearly defined) can always be described deterministically, whereas stochastic
considerations are necessary for small systems. This is partially based on Kurtz’s
theorem [48]. However, the quoted general guideline is far from reliable under
certain conditions [38].

A more satisfactory way of dealing with this problem could be called stochastic
mapping [18, 51], which attempts to identify the part of the parameter space of a
given kinetic scheme in which only the stochastic approach is viable. A convenient
definition of this stochastic region is the set of parameter values for which the
stochastic approach shows that the relative standard error of the target variable
is larger than a pre-set critical value (often 1 % because of the usual precision
of analytical methods used for concentration determination). Although there is no
general proof known yet, a small standard deviation of the expectation of a variable
calculated based on the stochastic approach seems to ensure that the stochastic
expectation is very close to the deterministic solution. Stochastic maps are graphs
that help identify the stochastic regions of kinetic models. A few examples of these
maps are known in the literature.

It should be emphasized that stochastic maps critically depend on the property
of interest (referred to as the target variable). Naturally, the number of reactant
molecules can be given reliably by the deterministic approach in the very beginning
of any chemical reaction (about identical to the initial number), whereas the same
cannot be done for the number of product molecules. Therefore, it must be specified
which property of the system is considered. For the comparison between the two
approaches, one natural way is to compare a quantity (most often a concentration)
calculated in the deterministic approach with the expectations of the same quantity
derived in the stochastic method [18, 51].
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2.4 Solutions of the Master Equation

The master equation can be solved symbolically, numerically, or approximate
symbolic solutions can be sought. The method of choice usually depends on the
size of the state space and the complexity if the reactions scheme. Several methods
of solution are described in this chapter. If all else fails, Monte Carlo simulations
can be carried out. This strategy is introduced briefly in Sect. 2.6.

2.4.1 What Do We Mean by Exact Analytical Solutions?

There is a question of semantics about exact analytical solutions. In usual math-
ematical conventions, the solution of a system of differential equations is termed
“analytical” (as opposed to numerical) if the differential equation itself is solved
by an analytical method leading to a formula that gives the dependent variable as
a function of the independent variable without involving any differentials. In this
sense, the master equations of all CDS models can be solved analytically as they
are linear, first-order, ordinary differential equations. Defining the infinitesimal
transition probability matrix ˝ is always possible in such systems and the matrix
exponential of its product with time gives a symbolic form of the analytical solution
after multiplication by the initial probability vector as described in later Eq. (2.60).
Nevertheless, this symbolic solution is rarely useful for practical purposes except in
computations involving not more than a few thousand possible states.

The solution of a system of linear, first-order, ordinary differential equations
can always be given as a linear combination of exponential functions multiplied by
polynomials. This requires first the calculation of the eigenvalues of the infinitesimal
transition probability matrix and then finding the multiplication factors, neither
of which is necessarily possible analytically. So a narrower possible definition of
an analytical solution of a CDS model could be a case when suitable analytical
formulas giving the eigenvalues and multiplication factors are found. A third, even
more restrictive, but not uncommon view is that a solution is only analytical when
it can be given in terms of combinations of known discrete (often multinomial)
probability distributions with the parameters of the distributions expressed as
continuous functions of time. In this sense, analytical solutions for systems other
than networks of first order reactions are only known in exceptional cases (e.g.
compartmental processes).

2.4.2 Direct Matrix Operations

The solution of Eq. (2.39) can be stated in a symbolic manner by using the matrix
exponential function:

P.t/ D expm.˝t/P.0/ (2.60)
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The matrix exponential function of a ˝ is the matrix extension of the exponential
function defined on real (or complex) numbers, and is routinely calculated by a
number of widely used mathematical softwares:

expm.˝/ D I C˝ C 1

2Š
˝˝ C 1

3Š
˝˝˝ C : : : : D

1X

iD0

1

i Š
˝i (2.61)

Using the solution given in Eq. (2.60) is normally quite straightforward in a finite
system with no more than a few thousands individual states once the transition
probability matrix ˝ is constructed. In matrix ˝ , all of the rows should contain
at least one non-zero element, otherwise the corresponding state is impossible.
A column may contain zeros only if the corresponding state is absorbing.

The practicability of these direct calculations is not usually limited by computa-
tion power, but the memory needed for the storage of the elements of the transition
probability matrix. In a usual chemical reaction with about 1020 species, the number
of states easily exceeds 10100. This is much larger than the estimated number of
elementary particles in the visible universe (about 1080), so the restrictions on the
extension of stochastic kinetic calculations for higher particle numbers are of very
fundamental nature and the problem is not merely a question of computing power.
Nevertheless, the direct method is often useful for comparative calculations in
small systems intended to demonstrate the validity of assumptions used for deriving
various approximations of the exact solution. At this point, it should be noted that
˝ is normally a sparse matrix, in which most of the elements are zero. In fact, the
number of non-zero elements in any given row or column of ˝ is not larger than
the number of possible reactions in the system, which rarely exceeds a few dozen.
This means that ˝ is an extremely sparse matrix, with only a tiny fraction of the
elements differing from zero. It is also known that ˝ is a singular matrix, where
all of the column sums are zero, which is again a special property of the matrix.
These properties, in principle, could be used to develop numerical algorithms for
calculating the matrix exponential of ˝t that are much faster and more efficient
than the standard one that is developed for general matrices. In the typical cases
when the initial state is certain, only one row of expm.˝t/ needs to be calculated,
which could also be a factor in accelerating the numerical calculations. However,
these possibilities do not seem to have been explored in any studies.

A somewhat higher number of states (often an order of magnitude) can be
handled in direct numerical calculations for cases when the transition probability
matrix is a lower triangular matrix, that is, when all of its elements above the main
diagonal are zero. This may seem a very strict condition at first sight. However,
practically irreversible reactions are quite common in chemistry and the master
equation for these can always be stated with ˝ arranged as a lower triangular
matrix with a suitably selected enumerating function. These systems also share the
characteristic that none of the states can occur twice as time progresses and they
have at least one absorbing state. The master equation of a system like this in the
matrix format is given as:
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0

BBB@

dP1

dt
.t/

dP2

dt
.t/
:::

dPM

dt
.t/

1

CCCA D

0

BBB@

�PM
iD2 !i;1 0 � � � 0
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:::
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:::
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1

CCCA

0
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P1.t/

P2.t/
:::

PM .t/

1

CCCA (2.62)

The eigenvalues of the transition probability matrix in Eq. (2.62) are exactly the
elements in the main diagonal. Assuming that all these eigenvalues are different (not
uncommon in chemical systems), the solution can be given as follows:

0

BBB@

P1.t/

P2.t/
:::

PM .t/

1

CCCA D

0

BBB@

C1;1 0 � � � 0
C2;1 C2;2 � � � 0
:::

:::
: : :

:::

CM;1 CM;2 � � � 0

1

CCCA

0

BBBB@

e�
PM

iD2 !i;1

e�
PM

iD3 !i;2

:::

e0

1

CCCCA
(2.63)

The constants Ci;j can be calculated from the initial conditions in a successive
manner:

C1;1 D P1.0/

Cn;j D
Pn�1

iDj !n;iCi;j
PM

iDnC1 !i;n�PM
iDjC1 !i;j

j < n

Cn;n D Pn.0/�Pn�1
jD1 Cn;j

(2.64)

2.4.3 Time-Independent Q-Functions

In cases when the master equation is of the form shown in Eq. (2.62), the concept of
time-independentQ functions may be useful if the interesting properties themselves
are independent of time [49, 50]. For systems that have no elements of reversibility,
there are no mutually accessible states. Therefore, it is often informative to calculate
the Qf.a1;a2;:::;an/ probability of a given state ever occurring during the entire course
of the reaction. It can be shown that Qf.a1;a2;:::;an/ is related to the time-dependent
function Pf.a1;a2;:::;an/.t/ as follows:

Qf.a1;a2;:::;an/ D lim
t!1Pf.a1;a2;:::;an/.t/C

Z 1

0

0

@
MX

jD1

!f.a1;a2;:::;an/;j

1

APf.a1;a2;:::;an/.t/dt
(2.65)

The most frequent use of Q functions is to re-arrange the master equation, or
perhaps use more direct ways of thought based on the chemical characteristics of
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the system, to give a later Qi as a function of earlier Qi quantities. This sort of
recursive definition often makes it possible to use mathematical induction to prove
an analytical formula for any Qi . The typical implementation of this strategy is
when there are several absorbing states in the system: the probability distribution
for the final outcome of the reaction will simply be given by the Qi values. The
Q functions may also be useful in cases when time dependent characteristics are
sought for a large number of molecules by a combined stochastic and deterministic
approach.

2.4.4 Laplace Transformation

An already noted property of the master equation given in Eq. (2.22) or (2.39) is that
it is a first-order, linear differential equation with constant coefficients. Therefore,
Laplace transformation might occasionally provide a convenient way of looking for
the time-dependent solution. The Laplace transform of a function f .x/ is defined as:

L .f .x//.s/ D
Z 1

0

esxf .x/dx (2.66)

Two properties of the Laplace transform have high relevancy here. The first
is linearity, which states that the Laplace transform of a linear combination
of functions can be given as the linear combination of the individual Laplace
transforms:

L

 
X

i


ifi .x/

!
.s/ D

X

i


iL .fi .x//.s/ (2.67)

The second important property is that the Laplace transform of the derivate of a
function can be given in terms of the Laplace transform itself:

L

�
df .x/

dx

�
.s/ D sL .f .x// .s/� f .0/ (2.68)

Using these two simple properties, the Laplace transform of Eq. (2.39) is as
follows:
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1

CCCA (2.69)
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It is seen that Laplace transformation gives rise to a system of linear equations
with the independent variable p. So the Laplace transforms of the Pi functions can
sometimes be obtained quite readily based on Eq. (2.69). If ˝ is a lower triangular
matrix as explained in Eq. (2.62), induction is sometimes possible to obtain an easily
handled form of L .Pi .t//.p/ functions. Nevertheless, the need for the inverse
Laplace transformation of the results or for calculations with complex numbers may
occasionally render this strategy burdensome.

2.4.5 Generating Functions

Introducing a generating function of the following form can often be a useful
strategy in solving the master equation:

G.z1; z2; : : : ; zn; t/ D
X

all states

za1za2 � � � zabPf.a1;a2;:::;an/.t/

zi 2 C i D 1; 2; : : : ; n

(2.70)

The rationale in constructing this function is that all the individual variables
of interest in the stochastic description can be obtained from it in a relatively
straightforward manner. The expectation of the number of Ai molecules can be
generated using first partial derivatives:

hai i .t/ D @G.1; 1; : : : ; 1; t/

@zi
(2.71)

Second order moments and correlations can be given using second and mixed
partial derivatives as follows:

˝
a2i
˛
.t/ D @2G.1; 1; : : : ; 1; t/

@z2i
C @G.1; 1; : : : ; 1; t/

@zi
(2.72)

˝
aiaj

˛
.t/ D @2G.1; 1; : : : ; 1; t/

@zi @zj
i ¤ j (2.73)

The individual state probabilities can be obtained from the generating function
by successive partial derivations:

Pf.a1;a2;:::;an/.t/ D
1

a1Ša2Š � � �anŠ
@a1Ca2C���CanG.0; 0; : : : ; 0; t/

@za11 @za22 � � � @zann
(2.74)

Usually, all the possible states are enumerated on the right hand side of Eq. (2.70),
and summing all the probabilities listed there should give 1. Therefore, the following
equation also holds for the generator function at any time t :

G.1; 1; : : : ; 1; t/ D 1 (2.75)
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In the case of power law kinetics, summing the M equations in master
equation (2.38) transforms it into the following partial differential equation:

@G.z1; z2; : : : ; zn; t/

@t
D

mX

jD1

�j

nY

iD1

z
˛j ;i

i

˛j;i Š

 
nY

iD1

z
�j ;i

i � 1

!
@˛j;1C˛j;2C���C˛j;nG.z1; z2; : : : ; zn; t/

@z
˛j;1
1 @z

˛j;2
2 � � � @z

˛j;n
n

(2.76)

The boundary condition is stated by setting t D 0 in Eq. (2.70).
Although the generating function is defined very broadly in Eq. (2.70) (on the

entire complex plane), its application shows that handling it in the Œ0; 1� real
interval is usually quite sufficient. In fact, the values and derivatives are usually
only needed at zi D 0 or zi D 1. This observation means that the generating
function contains more information than necessary for the full CDS description of
the system. Consequently, solving partial differential equation (2.76) is usually a
more difficult problem than solving the original master equation in Eq. (2.38). Yet
using a generator function and Eq. (2.76) is not entirely in vain. The main advantage
of this approach is that the master equation, which is composed of M ordinary
differential equations, is transformed into a single partial differential equation with
.nC 1/ variables. These variables correspond to the types of molecules present and
the single variable of time. However, the user should not forget that inability to solve
Eq. (2.76) by no means implies that a closed and easily handled solution does not
exist for master equation (2.38).

2.4.6 Poisson Representation

Another possible method for solving the master equation (2.22) is called the Poisson
representation [13, 31, 32]. The technique sets up a Fokker–Planck equation that
is equivalent to master equation (2.22). To implement the Poisson representation,
the state probabilities are assumed to be given as a superposition of uncorrelated
Poisson distributions:

Pf.a1;a2;:::;an/.t/ D
Z nY

iD1

e��i �
ai
i

ai Š
g.�; t/d�

Z Z
� � �
Z nY

iD1

e��i �
ai
i

ai Š
g.�1; �2; : : : ; �n; t/d�1d�2 � � �d�n

(2.77)

Here, the function g.�1; �2; : : : ; �n; t/ is referred to as the quasiprobability
distribution. Variables �1; �2; : : : ; �n; t are auxiliary variables: the limits of the
integration are specified later, often real numbers between 0 and1. It is tempting
to interpret g.�1; �2; : : : ; �n; t/ as the probability density of the system showing
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�1; �2; : : : ; �n as the expectation of molecule numbers of species A1, A2, : : : , An

at time t , but this interpretation does not account for the fact that function g may
assume negative or even complex values.

At first sight, Eq. (2.77) may seem to be at odds with the properties of functions
Pf.a1;a2;:::;an;t /. Poisson distributions are not bounded, whereas the state space is
often finite. This apparent contradiction can be resolved by showing that any
discrete distribution can be generated as the superposition of uncorrelated Poisson
distributions. This is most conveniently proved by for the purposes of this book by
giving a function g.�1; �2; : : : ; �n; 0/ that is suitable for use in Eq. (2.77) for any
initial conditions:

g.�; 0/ D
X

all states

Pf.a1;a2;:::;an/.0/

nY

iD1

eai ai Š

a
ai
i

ı.�i � ai / (2.78)

In Eq. (2.78), ı stands for the Dirac delta function, which was defined in (2.5).
Another, somewhat semantic source of misunderstanding is the use of the phrase

‘uncorrelated Poisson distributions’ before introducing Eq. (2.77). At the very least,
the conservation equations (see Sect. 2.3.1.) in a system provide a clear source of
correlation between some molecule numbers. However, function g.�; t/ actually
incorporates the conservation equations. In fact, it would be much better to state
that the Poisson distributions are only correlated through the g function.

In a way, the philosophy behind the introduction of the Poisson representation
in Eq. (2.77) is similar to the one used in the definition of generating functions
in Eq. (2.70): instead of M distinct single variable continuous functions, the
problem is transformed into one involving a single function with n C 1 indepen-
dent (and continuous) variables. In the generating function approach, individual
Pf.a1;a2;:::;an;t / functions and various expectations can be obtained by differentiating
G.z1; z2; : : : ; zn; t/, whereas integration is used for the same purpose in the Poisson
representation approach. In both cases, the transformed continuous function actually
carries more information than the original Pf.a1;a2;:::;an;t / functions, a property that is
taken advantage of in order to obtain a relatively simple partial differential equation
for the transformed continuous functions (G or g).

Another similarity to the generating function approach is that the expectation for
a molecule number can be defined easily using function g.�; t/:

hai i .t/ D
Z

�ig.�; t/d� (2.79)

Furthermore, higher factorial moments relevant to power law kinetics can also be
stated in a very straightforward manner:
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��
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˛2

�
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��
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�
˛i
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˛i Š
g.�; t/d� (2.80)
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However, there are notable differences between the generating function and
Poisson representation approaches. The initial state probabilities define the
G.z1; z2; : : : ; zn; 0/ unambiguously, whereas this is clearly not the case for
the g.�; 0/ function. In fact, the generally applicable function constructed from
the initial conditions in Eq. (2.78) is just one example and is by no means unique.
It is not impossible that mathematical ingenuity or perhaps some special properties
of a particular set of initial conditions may occasionally give rise to a g.�; 0/

function that is much easier handle than the one shown in Eq. (2.78).
Master equation (2.38) can be transformed by substituting the definition given in

Eq. (2.77):
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(2.81)

Further re-arrangements are made in this form without adding other equations.
First, mass action type kinetics is assumed as given in Eq. (1.8). Then integration
by parts is used successively with the aim of eliminating all molecule numbers
a1; a2; : : : ; an as multiplicators (but not as exponents) and stoichiometric coeffi-
cients �j;i from Eq. (2.81). Finally, the functions are set to be equal on the right
and left hand site of the equation instead of the definite integrals, and the following
partial differential equation can be obtained for g.�; t/:
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1 � � ��˛j;n

n g.�1; �2; : : : ; �n; t/

(2.82)

Equation (2.82) is called a generalized Fokker–Planck equation. At this point,
it should be noted that although Eq. (2.81) follows from Eq. (2.82), the reverse is
not strictly true because of the step where the integration is dropped in during the
derivation.

Interestingly, the concepts of Poisson representation and the generating function
can be used simultaneously, so the generating function of the probabilities defined
as superposition of uncorrelated Poisson distributions in Eq. (2.77) can be given as
follows:

G.z1; z2; : : : ; zn; t/ D
Z

e
Pn

iD1.zi�1/�i g.�; t/d� (2.83)

An alternative derivation of Eq. (2.82) may be based on Eq. (2.83).
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Again, the reader should be warned that inability to solve Eq. (2.82) does not
imply that nothing useful about the solution of master equation (2.38) can be stated
by other methods. In fact, it seems that the main value of the Poisson representation
is that the methodology it describes can be used generally in each case to obtain the
generalized Fokker–Planck equation (2.82). However, this is seldom the easiest or
the most elegant route to the solution of master equation (2.38).

2.4.7 Mathematical Induction

In a few cases, mathematical induction is a useful method to prove a closed form
of a solution that is conjectured based on some heuristic line of thinking. This is
especially the case when time-independent Q functions are used, as they very often
lead to recursive equations starting from a value known from the initial conditions.
However, simply substituting the solution into the master equation often serves the
same purpose as mathematical induction.

Nevertheless, mathematically informed intuition based inductive (and often
heuristic) lines of thought seems to be the richest source of obtaining closed
solutions of master equation (2.38) in specific cases. For these, a careful analysis
of the structure of the state space is often a very useful starting point.

2.4.8 Initial Conditions Given with a Probability Distribution

Some of the strategies presented in the previous subsections assumed that the initial
state is a certain single state. This assumption might seem to limit the general
applicability of algorithms. However, the linear nature of the master equation is
very forgiving in this respect. If it is not convenient to use the initial distribution
during the solution of the master equation, it is always possible to obtain the
general solution as a linear combination of the particular solutions starting from
certain initial states, where the factors used in the linear combination are the initial
probabilities. If the particular solution of the master equation from the certain
initial state .a1; a2; : : : ; an/ is denoted P.t/.a1;a2;:::;an/, the general solution from an
initial distribution P.0/ (with elements Pf.a1;a2;:::;an/.0/) is simply given as:

P.t/ D
X

all states

Pf.a1;a2;:::;an/.0/P.t/
.a1;a2;:::;an/ (2.84)

In fact, this technique based on the linear combination of single-state derived
properties has already been used in this book occasionally. For example, this was
the underlying logic used to construct Eq. (2.78).
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2.4.9 Time Scales

As has already been stated and emphasized by the matrix formalism, master
equation (2.39) is a system of simultaneous linear, first-order, ordinary differential
equations. Therefore, the eigenvalues of matrix ˝ , denoted here as 
1; 
2; : : : ; 
M ,
have special significance in the solution as they each represent the exponent of one
term in a multiexponential function. The reciprocals of the eigenvalues are called
life times corresponding to each term. These life times give a rough idea about
the characteristic time scale of changes in a system. Many systems that do not
exclusively contain first order processes feature three different groups of live times,
which are referred to as three different time scales [60], especially in biochemical
reactions networks:

1. The time scale of individual reactions, called the molecular signaling time scale
(tms) in cellular biochemistry

2. The time scale of nonlinear network dynamics (tnd )
3. The time scale of the transitions between domains of attraction, called cellular

evolution (tce)

In nonlinear deterministic kinetics (i.e. at least one reaction in the network is not
first order), a long time means t 	 tnd but not t > tce . On this time scale, a system
reaches an attractor determined by the initial state. At times t 	 tce , the system is
characterized by a probability distribution between the two domains of attraction.

In addition, it is to be noted that there is a great separation of time scales between
(tnd ) and (tce) when the populations are large. For times t 	 tnd but not t > tce ,
the behavior of the system follows a bifurcation diagram. On the time scale t > tce ,
this bifurcation diagram has to be modified by the Maxwell construction.

2.5 Stationary and Transient Distributions

Thus far, considerations in this chapter were focused on the time dependence of
individual state probabilities. However, it is customary and also often useful to
think about the state probabilities collectively as forming a discrete distribution.
Maxima, minima and zero values occurring on this distribution are normally used
as descriptors to characterize the solution of a problem as a whole.

2.5.1 Stationary Distributions

A stationary distribution, already defined in Eq. (2.11), is the direct stochastic analog
of deterministic stationary state concentrations defined in Eq. (1.25). A stationary
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distribution is a vector, usually denoted as �, and satisfies the following equation,
which is derived from Eq. (2.39) by setting the left side 0:

0 D ˝� (2.85)

In the deterministic approach, Eq. (1.25) does not usually have a unique solution.
However, if the conservation equations arising from the initial conditions are
considered, the number of stationary states is typically finite and often one. In
the stochastic approach, the conservation equations are already satisfied by limiting
the state space to possible states. Yet, Eq. (2.85), which is always linear, never has a
unique solution (if it had, it would be the trivial solution where all state probabilities
are 0). As already explained, matrix ˝ is always a singular matrix. In fact, it is a
negative semidefinite matrix meaning that the only negative elements occur in the
main diagonal, but these elements are dominant in each column.

In addition to satisfying Eq. (2.85), a stationary distribution � must fulfil two
additional conditions. The first is that all the probabilities should be non-negative.
The second is that the sum of all probabilities should be one (normalization):

X

all states

�f.a1;a2;:::;an/ D 1 (2.86)

Even with the non-negativity and Eq. (2.86), a stationary distribution may or may
not be uniquely determined. If it is, then the stationary distribution is independent
of the initial conditions. The opposite case is more common. In fact, if at least one
of the states is final, its stationary probability cannot be determined from Eq. (2.85)
as all of its coefficients are zero. Section 2.2.4 gives some more information on the
uniqueness of stationary distributions.

In typical cases, the stationary distribution � can also be thought of as the limit
of the vector of probability functions with time approaching infinity:

�f.a1;a2;:::;an/ D lim
t!1Pf.a1;a2;:::;an/.t/ (2.87)

This means that if a stationary distribution exists (which is not guaranteed),
it is uniquely determined by the initial conditions. A criterion for the existence
and uniqueness of the stationary distribution follows from the Karlin–McGregor
condition for birth-and-death processes [45].

Although Eq. (2.85), even combined with Eq. (2.87), is a system a simultaneous
linear equations, the solution is often more problematic than it would be expected.
The primary source of the problems is the typical large number of states, which is
translated into huge dimensions of matrix ˝ . Numerical solution methods based
on elimination are often less useful than iterative approaches. Sometimes, special
techniques may be developed that suit a special system also making use of the fact
that ˝ is a sparse matrix.

Under certain conditions, the stationary distribution can be obtained without
dealing with Eq. (2.85) based on the concepts of statistical mechanics:
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�f.a1;a2;:::;an/ D
Mf.a1;a2;:::;an/e

Ef.a1;a2;:::;an/

P
all states Mf.a1;a2;:::;an/e

Ef.a1;a2;:::;an/
(2.88)

In Eq. (2.88), Mf.a1;a2;:::;an/ is the multiplicity and Ef.a1;a2;:::;an/ is the energy of
state .a1; a2; : : : ; an/. The function in the enumerator on the right is usually called
partition function. If the model shows detailed balance, the formula written in
Eq. (2.88) can always be used. In other cases, it might still be useful, sometimes for
a closed subgroup of states [17, 18].

2.5.2 Transient Distributions

Transient distributions can be defined at any time instant by collecting all state
probabilities. Unlike stationary distributions, transient distributions can only be
obtained from the full solution of master equation (2.39). It is often useful to think
of the full solution as the time dependence of the transient distribution. In many
cases, it is sufficient to characterize the transient distribution in a semiquantitive
manner: listing the number or positioning of minima or maxima is often thought to
be important.

2.5.3 Properties of Stationary and Transient Distributions:
Unimodality Versus Multimodality

The view that the stationary distribution is necessarily Poissonian was commonly
held at some point [53, 59]. However later results clearly proved that such a case
is exceptional [68] rather than regular [69, 74]. Still later, an interesting connection
was demonstrated between the deterministic and the stochastic kinetic approaches.
A sufficient condition of the existence of the product form stationary distribution is
complex balancing, a property also implying the regular behavior in deterministic
kinetics [2].

At this point, it should be recalled that state spaces and, consequently, stationary
distributions are typically finite in CDS models. Therefore, some more explanation
is needed before going into the details of comparison with infinite Poisson distri-
butions. Another problem is that a state cannot generally be identified with a single
molecule number. Earlier considerations in this book used enumerating functions to
solve the similar problem of forming a single vector of the possible states, but it was
also pointed out that these enumerating functions are not unique. A possible way
to overcome this problem would be to use multivariate Poisson distributions. Yet,
much like in the monovariate case, Poisson distributions can only be taken literally
when mass conservation equations are absent. Most of the following discussion will
be limited to monovariate cases.
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When the size of the state space is sufficiently large, the infinite nature of a
Poisson distribution has little relevance as only a miniscule part of the probability
values would fall into the region that is ab ovo impossible because of the finite
nature of the stationary distribution. Still, a mathematically more acceptable way
to make this statements would use truncated (and finite) versions of the Poisson
distribution [57]. In terms of Eq. (2.88), the Poisson distribution actually specifies
the possible form of the multiplicities Mf.a1;a2;:::;an/. Even in the strongly restrictive
case based on the assumption that the grand-canonical distribution of the particle
number of an ideal mixture is Poissonian, the stationary distributions obtained
were not Poissonian in general [72]. Furthermore, a particular chemical reaction
exhibiting a non-Poisson distribution was also simulated [75]. A sufficient condition
to obtain a Poissonian stationary distribution was found for a certain class of birth-
and-death processes [73], but the assumptions were slightly different from those
typical of chemical reactions. A necessary and sufficient condition for a simple birth
and death type process to feature a Poissonian stationary distribution (if it actually
has a unique stationary distribution) is that the process should be linear [23]. Further
conclusions were drawn for polynomial simple Markov population processes [46].
When the detailed balance conditions hold, special relations between the coefficients
are necessary for the stationary distribution to be Poissonian [68–70].

The property of unimodality and multimodality is connected to the number of
extrema on the stationary or transient distribution. Again, multivariate definitions of
uni- and multimodality must be used for general cases [16, 67], but the typical and
very often only tacit assumption is that only monovariate cases are handled. In a
case like this, this single variable is suitable as a trivial enumerating function and a
distribution �i is said to be unimodal if the series �iC1��i has precisely one change
of sign. A number of useful theorems and conditions for uni- and multimodality are
found in the work of Medgyessy [54, 55].

Earlier, the appearance of multiple stationary states in the deterministic model
was assumed to be strongly connected to multimodality in the stochastic stationary
distribution. In particular, the number and location of stable stationary points in
the deterministic approach were ascribed to maxima in the stochastic distribution,
whereas unstable stationary points were similarly correlated with minima. These
assumptions were first shown to be wrong using non-kinetic examples in stochastic
catastrophe theory [14, 20]. The Schlögl reaction was used particularly frequently
to study the exotic behavior of deterministic and stochastic models [21, 26].
It seems likely that multistationarity and multimodality correspond to each other
asymptotically with increasing volume [6, 10, 28, 43].

Useful forms for transient distributions are typically difficult to obtain sym-
bolically. It would be natural to assume that processes leading to a unimodal
stationary distribution involve unimodal transient distributions. However, this is not
true without exceptions: the phenomenon of transient bimodality is well known
from the stochastic analysis of explosive reactions [5, 29, 30].
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2.6 Simulation Methods

Stochastic simulation of chemical reactions emerged as an alternative method to
solve differential equations numerically for identifying reaction mechanisms [63].
Lindblad and Degn [52] introduced a discrete time discrete space stochastic (DDS)
model (i.e. a Markov chain). The probability that a certain elementary reaction will
be selected in a time instant is proportional to the rate constants and to the particle
numbers of the reactants. Having selected a reaction, the value of the state vector
is modified according to the stoichiometry. The iteration of the procedure generate
a realization of a process. The algorithm was recommended to use Monte Carlo
simulation in the education of chemists [56, 61].1

The celebrated Gillespie algorithm [34, 35, 37, 39] is based on answering two
questions: “. . . when will the next reaction occur, and what kind of reaction
will it be?. . . ” by defining the reaction probability density function P.�; �/.
Accordingly, P.�; �/d� means the probability at time t that the next reaction
will occur in the differential time interval .t C �; t C � C d�/, and it will be an
R� reaction. It is calculated as the probability of that no reaction occur in the
given time interval by multiplying with the probability of the occurrence of the
reaction R�. The probability of the no reaction is an exponential function of the
time interval � . (The no reaction interval can be identified with the waiting time
used in the theory of stochastic process. No reference was given to the Feller–Doob
theorem by Gillespie.)

Simulations are usually carried out when the master equation of the process
cannot be handled in any other meaningful way. Alternatively, they may be used
for an initial study of a particular system and serve as a source of conjectures that
can be proved properly based on the master equation.

In simulations, a number of realizations (sample paths) are generated using
random numbers primarily on DDS principles [33, 34, 62]. In a way, this can be
thought of as a directed random walk in an n-dimensional state space. An almost
exclusive approach is based on generating evenly distributed random numbers
between 0 and 1 (rnd), two such numbers are needed in each DDS jump. For
simplicity, the description here relies on the stochastic transition rates defined in
Eq. (2.37). Two series are generated, the first is a time series tk , the second is a state
series nk . The first element of the time series is the initial time, usually t1 D 0,
whereas the first element in the state series is the initial state i , S1 D i . The
successive members of these two series are defined in a recursive manner:

1Everybody has a story how (s)he missed to be a world champion. The senior author of this
book and his friends used this algorithm [22, 25, 64, 65]. They have probabaly heard about Doob’s
theorem first from his book [19] from János Tóth around 1973 (an early version is due to Feller [27].
Their (our :-)) student/colleague Vera Hárs implemented an algorithm known now as the Gillespie
algorithm in her master thesis [42]. Why we did not publish it? Well, those were different times.
Our consolation is that everybody has a predecessor. Patrick Hanusse [41] published a paper in
French, by using a rather similar algorithm.
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tkC1 D tk � log.rnd/Pn
jD1 vj .n/

(2.89)

nkC1 D nk C .�i;1; �i;2; : : : ; �i;n/ if

Pi�1
jD1 vj .n/Pn
jD1 vj .n/

5 rnd <

Pi
jD1 vj .n/Pn
jD1 vj .n/

(2.90)

It should be emphasized that the random numbers (rnd ) used in Eqs. (2.89)
and (2.90) must be independent, otherwise some correlation will be introduced
between the time and state series. The values of �i;j are the stoichiometric
coefficients defined in Eq. (1.2), whereas the quantity vj .n/ is the transition rate
of reaction j in state n as given by Eq. (2.37). The term propensity function is
also often used for vj .n/. The presented method itself is often referred to as exact
stochastic simulation algorithm (or exact SSA).

Generating a single sample path by simulation usually does not serve any
practical purposes. Repetitions, that is, multiple independent simulated sample paths
from the same initial conditions are necessary to learn certain properties of the
investigated process. For example, the absolute state probabilities can in principle
be approximated: if the overall number of simulated trajectories is N , and Nn.t/ of
these show the system in state n, or .a1; a2; : : : ; an/, at time t , Pn.t/ is estimated as:

Pf.a1;a2;:::;an/.t/ D
Nn.t/

N
(2.91)

Using Eq. (2.91) is seldom a particularly practicable way of characterizing
simulation results. Such efforts are normally much more successful if the estimated
property is some sort of cumulative probability, the particle number of a species
present, or the time necessary to reach certain pre-defined target conditions.

The number of recursive simulation steps calculated in a sample path is usually
rather arbitrarily decided, the only factor being the final purpose of the simulation
studies. In irreversible reaction systems subject to mass conservation such as the one
described by master equation (2.62), all sample paths are necessarily finite. In other
systems, infinite sample paths are possible so the simulation algorithm must include
testing for some sort of stop conditions. Generally, if there is an absorbing state,
there are possible finite sample paths. An element of reversibility in the reactions,
on the other hand, guarantees the existence of infinite sample paths.

The main advantage of simulations lies in the simplicity of calculations. Despite
the formulation of Eq. (2.90), there is no need for actually enumerating all the
possible states, it is enough to deal with those that are accessible from nk . This
fact often greatly reduces the computation time requirements. For some purposes,
it is not even necessary to store the elements of the two series tk and nk , the
recursive calculations only need the current members of the two series because of
the memorylessness of Markov chains. Thus, simulations are usually not restricted
by the available memory, and increasing the computational power usually results in
significant improvements in terms of the size of the system that can be handled by
simulations.
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These advantages come at a cost: simulations usually provide information on
a minute fraction of the entire state space. On the positive side, this information
is normally gained exactly about the states that occur with the highest probability,
which are the states worth knowing about. Less likely states can be characterized by
increasing the number of repetitions carried out, but the number of possible states
usually imposes a fundamental limitation on this strategy.

Elements of reversibility in the reactions studied often slow down simulations
because the sample path may easily move back and forth between two states or two
distinct groups of states. There are a number of published tricks for accelerating
simulations in such cases.

The most common accelerating method is referred to as tau leaping [36]. The
essence of the method is choosing a suitable time interval � , during which the
transition rates do not change appreciably. Instead of taking one step at a time for a
time period tkC1� tk , the random number generator is used to take several reactions
steps during the fixed time � . For each reaction, Poisson random numbers are
generated to simulate the number of reaction events in the time period � . This can be
achieved using the commonly available generator of uniformly distributed random
numbers between 0 and 1 (rnd ):

bj D i if
iX

kD0

.vj �/
k

kŠ
e�vj � 5 rnd <

iC1X

kD0

.vj �/
k

kŠ
e�vj � (2.92)

The �-leaping step taken then is:

n.t C �/ D n.t/C
mX

jD1

bj .�j;1; �j;2; : : : ; �j;n/ (2.93)

Obviously, the cornerstone of the tau leaping method is choosing the suitable
time interval � . Too large a time step will fail to meet the leap condition (small
changes in transition rates). Too small a time step will result in a large number
of leaps without any chemical reaction, which is considerably less efficient than
the original simulation method described by Eqs. (2.89) and (2.90). In essence, this
is a well-known problem that arises during the numerical solution of the ordinary
differential equations such as deterministic rate equation (1.1): too small time steps
make the algorithm impossibly slow, too large time steps lead to unreasonable
results. To add some confusion to selecting suitable � values for leaping, the paper
that introduced the method itself recommended a flawed strategy [36], which led
to substantial inaccuracies and occasionally caused the population(s) of one or
more reactant species to go negative [12]. The solution to the problem can also
be borrowed from the standard strategies of the numerical solution of ordinary
differential equations. Testing a computed step usually reveals if the selected value
of � is too large. The step can be rejected and � lowered before re-taking the step.
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This is called postleap checking [1], and a favorable way to implement this is to
select a target 
 first, then calculate an efficient � value with the following equation:

� D min
iD1;2;:::;n

 
max.
ai .t/=gi ; 1/

jPm
jD1 �j;1vj .n.t//j

;
Œmax.
ai .t/=gi ; 1/�2Pm

jD1 �
2
j;1vj .n.t//

!
(2.94)

In Eq. (2.94), the quantity gi is defined for each Ai species as a pre-determined
function that gives the overall order of the highest-order reaction in which Ai is
a reactant. After calculating a possible �-step with this interval, the step is only
accepted if it satisfies the following leap condition for all species (i D 1; 2; : : : ; n):

jai .t C �/ � ai .t/j � max.
ai .t/=gi ; 1/ (2.95)

If the leap condition is not met, the leaping step is retried with a suitably reduced
value of � . Occasionally, the step may simply be re-tried with a new set of Poisson
random numbers. Sometimes it is also useful to test if any reaction steps have
actually occurred during the interval � to avoid excessively long computation times.

The analogy of the problem of selecting �-values with the time step problem of
ordinary differential equations is by no means accidental. In fact, the Euler method
of the numerical solution of deterministic rate equation (1.1) is obtained if the
Poisson random numbers in (2.92) are replaced by their expectation, vj � .

Another accelerating trick is called R leaping [3]. In effect, a leap is defined
here with the number of reaction steps taken rather than the time these steps
take. The deterministic equivalent of this is numerical integration of the ordinary
differential equations with one of the concentrations as the independent variable and
considering time as a dependent variable. In programming this algorithm, Eq. (2.93)
is used in a different way: a set number of reaction steps (l) is selected first so that
l D Pm

jD1 bj , and then the time interval � is assigned by generating a gamma
distributed random variable with shape l and rate

Pn
jD1 vj .n/. For l D 1, the

gamma distribution is the same as the exponential distribution, and the time � can
be given as in Eq. (2.89) with � D tkC1 � tk . The individual integer bj values are
then randomly generated based on a multinomial distribution with the individual
probabilities vj .n/=

Pn
jD1 vj .n/.

A still different sort of acceleration of the simulation method can be obtained
by uniting the variables that are connected in fast equilibrium reactions [17].
For example, if species A1 and A2 are connected through a fast ‘isomerization’
equilibrium (so that the reversible reaction connecting them is mass action type),
then the simulation can be more efficiently run using only the sum of the two
molecule numbers: a12 D a1 C a2. In this formalism, A1 and A2 become the two
states of a generic A12 species. Knowledge of the equilibrium constant of the
isomerization (or the rate constants of the forward and reverse reactions) enables the
calculation of the time-independent probability p of finding a certain molecule in
the A1 state as opposed to the A2 state. Therefore, whenever the molecule number
for A1 is needed, it can be given as pa12. Conversely, .1 � p/a12 can be used to
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replace a2 in calculations. In effect, this accelerating method reduces the state space
of the problem. Deterministic kinetics features a direct analog of this method, which
is called steady-state assumption.

2.7 Deterministic Continuation

As pointed out in the previous sections, stochastic kinetic calculations are seldom
viable up to high particle numbers normally encountered in chemistry. It has also
been stated that the stochastic approach to chemical kinetics is often only important
for relatively small systems. Nevertheless, certain mechanisms may conserve or
even amplify initial fluctuations. In such cases, a method called deterministic
continuation [17, 50] may prove very useful.

In this method, stochastic kinetic calculations are carried out either with the
master equation or with simulations until a pre-set number of molecular events occur
or product molecules are formed. From this point on, the calculations are continued
by the usual deterministic method described in Sect. 1.1. Basically, this means
that the differential equation (1.1), which is directly equivalent to the stochastic
model used, is solved with the initial concentration vector given from the results of
stochastic calculations. As stochastic calculations are usually done based on particle
numbers, it is often useful to formulate Eq. (1.1) in a way that particle numbers
appear in it as dependent variables rather than concentrations. This can always be
done by multiplying or dividing with the volume of the system and Avogadro’s
constant.

Sometimes, only some static property of the system (such as the final state
reached) is important, and the actual time dependence of the particle numbers is not
of much interest because there are no experimental data as a function of time. In a
case like this, it could always be a good strategy to re-formulate Eq. (1.1) in a way
that time is dropped from the list of variables, and a purposefully selected particle
number is used instead. This technique is often useful in overcoming problems
related to the Stiff numerical property of the differential equations. In this technique,
it is important to select a particle number that changes monotonously in time as
a substitute independent variable. As an example, the simultaneous differential
equations of the Michaelis–Menten mechanism given in Eq. (1.21) in Sect. 1.1 will
be transformed into a system not using time as a variable any more. The reaction
sequence A1 + A2 �! A3, A3�! A1 + A2, and A3�! A1 + A4 shows that A4 only
occurs as a product, therefore its concentration must change monotonously in time,
and is suitable for using as an alternative independent variable. Incidentally, a more
insightful analysis would show that A2 also usually changes monotonously in this
system, but not A1 and A3. The system of transformed time-independent equations
is essentially obtained by dividing the individual differential equations with that
describing the concentration change of A4:
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dŒA1�

d ŒA4�
D �k1ŒA1�ŒA2�

k3ŒA3�
C k2

k3
C 1

d ŒA2�

d ŒA4�
D �k1ŒA1�ŒA2�

k3ŒA3�
C k2

k3

d ŒA3�

d ŒA4�
D k1ŒA1�ŒA2�

k3ŒA3�
� k2

k3
� 1

(2.96)

Although this set of equations seems more complicated than the original one
at first sight, in fact, it usually has much better properties for numerical integration.
In effect, this approach calculates the trajectory defined by the deterministic rate law
in the concentration space without specifying the time values. In this special case,
the time-independent set of differential equations is autonomous. This property is
not general, the concentration used as a substitute independent variable may appear
in more or more of the equations on the right-hand side as well.

2.8 Continuous State Approximations

Continuous state stochastic approaches are also frequently used to describe chemical
processes. A direct analog of the CDS approach would be to assume that concen-
tration (or molecule numbers) can take any value from a range instead of being
discreet. In this approach, the number of possible states is necessarily infinite,
but their continuous nature opens the possibility of using new and sometimes
advantageous mathematical techniques. As state probabilities should still add up
to 1, only a finite number of states may have nonzero probability. At this point,
it must be recalled that zero probability is not the same as an impossible event.
In typical continuous state approaches, all individual state probabilities are zero
and are consequently of little practical use. The description should rely on the
multivariate cumulative distribution function, F.x1; x2; : : : ; xn/ for n independent
variables, which represents the probability that the random variable Xi takes on a
value less than or equal to xi for all values of index i . This function is monotonically
non-decreasing and right-continuous for each of its variables. Again, the time
dependence of this cumulative distribution function is of interest, the notation
F.x1; x2; : : : ; xn; t/ is often used.

The probability density function f .x1; x2; : : : ; xn; t/ is often more useful for
calculations and is defined as:

f .x1; x2; : : : ; xn; t/ D @nF.x1; x2; : : : ; xn; t/

@x1@x2 � � � @xn (2.97)

The function f .x1; x2; : : : ; xn; t/ is the closest equivalent of the state proba-
bilities Pf.a1;a2;:::;an/.t/ in the discreet approach. The definition of the cumulative
distribution function F.x1; x2; : : : ; xn/ can be used directly in the discreet state
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space as well, the values will be equal to the sum of the probabilities of all states for
which a1 � x1; a2 � x2; : : : ; an � xn.

It should also be mentioned that spatially non-homogeneous systems are very
common in the continuous state approaches, i.e. some of the variables of the
cumulative distribution function or the probability density function may be spatial
coordinates.

The Kramers–Moyal–Stratonovich equation [47, 58, 66] equation can be
derived for a probability density function using the j th velocity function of
conditional moments, denoted as Dj . In the physical literature, it is also called
Kramers–Moyal extension and takes the following form for the single variable case:

@f .x; t/

@t
D

1X

jD1

1

j Š

�
� @

@x

�j �
Dj .x; t/f .x; t/

�
(2.98)

An analogue of the master equation (2.22) is the Fokker–Planck equation,
which describes the time evolution of the probability density function of the position
of a particle undergoing Brownian motion in a fluid. This equation is derived
from Eq. (2.98) by truncating the expansion after the second term. In one spatial
dimension, D1.x; t/ is called drift, D2.x; t/ is diffusion, and the Fokker–Planck
equation is stated as:

@

@t
f .x; t/ D � @

@x

�
D1.x; t/f .x; t/

� C @2

@x2

�
D2.x; t/f .x; t/

�
(2.99)

More generally, the time-dependent probability distribution may depend on a
vector x of N macrovariables xi . The general form of the Fokker–Planck equation
is then:

@f .x; t/
@t

D �
NX

iD1

@

@xi

�
D1

i .x/f .x; t/
�C

NX

iD1

NX

jD1

@2

@xi @xj

h
D2

ij .x/f .x; t/
i

(2.100)

where D1 is the drift vector and D2 the diffusion tensor; the latter results from the
presence of a random force.

In statistical physics, a Langevin equation is a stochastic differential equation
describing Brownian motion of charged particles in a potential (see also (1.28)
and (1.31)).

The first Langevin equations studied were those in which the potential is
constant, so that the acceleration a of a Brownian particle of mass m is expressed
as the sum of a viscous force which is proportional to the particle’s velocity v (by
Stokes’ law), a noise term �.t/ (the name given in physical contexts to terms in
stochastic differential equations which are stochastic processes) representing the
effect of a continuous series of collisions with the atoms of the underlying fluid,
and F.x/ which is the systematic interaction force due to the intramolecular and
intermolecular interactions:
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ma.t/ D m
dv.t/
dt
D F.x.t// � ˇv.t/C �.t/ (2.101)

Example 2.10. A CCS process Wt is called Wiener process if it satisfies the
following three conditions:

1. W0 D 0

2. Wt is almost surely continuous,
3. Wt has independent increments with normal (Gaussian) distribution, i.e.

Wt �Ws Ï N.0; t � s/.

Here N.�; 	2/ denotes the normal distribution with expectation � and variance
	2. The Wiener process plays a key role in describing Brownian motion.

The basic properties of the Wiener process:

1. The expectation is zero: hWt i D 0.
2. The variance is t :

˝
W 2

t

˛ � hWti2 D t .
3. Its covariance and correlation are: cov.Ws;Wt / D min.s; t/ corr.Ws;Wt / D

min.s;t /p
st
D
q

min.s;t /
max.s;t / .

4. The unconditional probability density function at a fixed time t is: fWt .x/ D
1p
2�t

e� x2

2t .

Example 2.11. The Ornstein–Uhlenbeck process [71] also known as the mean-
reverting process, is a stochastic process fX.t/g obeying the following stochastic
differential equation:

dX.t/ D �.�� X.t// dt C 	 dW.t/; (2.102)

where � > 0;� and 	 > 0 are parameters and W.t/ denotes the Wiener process.
The Ornstein–Uhlenbeck process is a special case of a Gaussian process that has
a bounded variance and admits a stationary probability distribution, in contrast to
the Wiener process; the difference between the two is in their drift term. For the
Wiener process, the drift term is constant zero, whereas for the Ornstein–Uhlenbeck
process, it is dependent on the current value of the process: if the current value of
the process is less than the (long-term) mean, the drift will be positive; if the current
value of the process is greater than the (long-term) mean, the drift will be negative.
In other words, the mean acts as an equilibrium level for the process. This gives the
process its informative name, “mean-reverting.” The stationary (long-term) variance
is given by var.X.t// D 	2

2�
. The Ornstein–Uhlenbeck process is the continuous-

time analogue of the discrete-time first order autoregressive process.
It is possible (and often convenient) to represent X.t/ (unconditionally) as a

scaled time-transformed Wiener process:

X.t/ D �C 	p
2�

W.e2� t /e�� t (2.103)
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or conditionally (given X.0/) as

X.t/ D X.0/e�� t C �.1 � e�� t /C 	p
2�

W.e2� t � 1/e�� t (2.104)

The Ornstein–Uhlenbeck process can be interpreted as a scaling limit of a
discrete process, in the same way that Brownian motion is a scaling limit of random
walks. Consider an urn containing n red and smaragdite balls. At each step a ball
is chosen at random and replaced by a ball of the opposite color. Let Xn be the
number of red balls in the urn after n steps. Then

XŒn��n=2p
n

converges to an Ornstein–
Uhlenbeck process, as n tends to infinity.

In the simplest case, the solution of the Langevin equation is an Ornstein–
Uhlenbeck process [44, 71].

The Fokker–Planck equation describing the distribution f .x; t/ of the Ornstein–
Uhlenbeck process is given by

@f .x; t/

@t
D �

@

@x
..x � �/f .x; t//C 	2

2

@2f .x; t/

@x2
(2.105)

This equation has the following stationary solution:

fs.x/ D
r

�

�	2
e��.x��/2=	2

(2.106)

2.9 Non-Markovian Approaches

Non-Markovian approaches to stochastic chemical kinetics are sometimes found in
the literature [11, 40]. However, there is an intellectual catch here, which will be
illustrated by a simple example. The outflow reaction A1 �! Ø with rate constant

, and 2 as an initial number of A1 molecules has the following master equation:

dP2.t/

dt
D �
P2.t/

dP1.t/

dt
D 
P2.t/ � 
P1.t/

dP0.t/

dt
D 
P1.t/

(2.107)

Equation (2.107) clearly describes a Markov process. When this system of
differential equation is solved with the deterministic initial condition P2.0/ D
1; P1.0/ D P0.0/ D 0, it is easy to notice that P2.t/ D e�
t and P0.t/ D
1�P2.t/�P1.t/. Substituting this information into Eq. (2.107) leaves to following
single-variable ordinary differential equation for P1.t/:

dP1.t/

dt
D 
e�
t � 
P1.t/ (2.108)
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As the variable time explicitly appears in Eq. (2.108), it could be argued that the
approach suddenly became non-Markovian, which is in conflict with the original
Markovian nature of the process. However, all that happened is that the zero point
in time was defined when the solution was obtained for variable P2.t/.

As pointed out in Sect. 2.2.5, the property of memorylessness is a characteristic
feature of Markov chains. But this property is also very generally true for many
physical or chemical processes: all the information necessary to predict future
changes in a system (deterministically or using probabilities) is thought to be
contained in the present state. Because of these somewhat philosophical problems,
it is probably better to limit the use of the term ‘non-Markovian’ to the particular
mathematical equations used in describing a process rather than the physical
phenomenon itself.

In a work describing non-Markovian polymer reaction kinetics [40], it was
pointed out that the typical reactive conformation of the polymer is more extended
than the equilibrium conformation, which leads to reaction times significantly
shorter than predicted by Markovian theories. Here, introducing the non-Markovian
mathematics is caused by the fact the different conformers of the same polymer are
thought to be the same species. Clearly, the conformers are different with respect
to reactivity. Therefore, regarding different conformers different species would
certainly give rise to a Markovian description. It should also be pointed out that
a very similar problem has long been known in the field of photochemistry, where
electronically excited states have very different reactivities than ground states, yet
they only differ in the configuration of electrons. The standard solution there is to
consider the excited state a separate species with its own properties (number of
molecules or concentration).

Another application of non-Markovian approach (actually to gene expression)
will be mentioned in Sect. 3.7.
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Chapter 3
Applications

3.1 Introductory Remarks

We certainly cannot give an extensive review of the possible applications of
stochastic chemical kinetics. Obviously, the investigation of the behavior of “small
systems”, i.e. the case when the number of particles is “small”, and fluctuation
phenomena is very important. More precisely, they cannot be interpreted as the
superposition of certain deterministic behaviors, as they are the very phenomena
under observations.

Fluctuation phenomena are particularly significant in connection with critical
phenomena related to instabilities, and we start the analysis of applications here,
related to simple and bistable reactions, respectively. A number of specific systems
will be studied in this chapter. Compartmental systems are from a formal point
of view analogues of isomerization reactions, and often used in the classical
“biomathematics” literature. Autocatalysis implements positive feedback in the
chemical system, and they are important ingredients e.g. of chemical oscillators.
Enzyme-catalyzed reactions are extensively studied now by stochastic kinetic
methods due to the availability of data on single enzyme activity. In the next
section, chemical reaction networks as signal generating devices are studied, among
others, signal processing in olfactory systems is reviewed. Then the kinetic basis of
biological chirality is reviewed. In the last 15 years, there was a huge development
in studying the mechanisms of genetic regulatory networks as a consequence of the
combination of new experimental technique and stochastic kinetic analysis. Noise
is also a source of information, and the fluctuation-dissipation theorem of chemical
kinetics offers a method to estimate rate constants from equilibrium fluctuations.
The field of stochastic resonance became popular, since noise plays a beneficial role
in signal amplification. Finally, we review the remarkable applicability of stochastic
chemical kinetics in the theory of computation.

P. Érdi and G. Lente, Stochastic Chemical Kinetics: Theory and (Mostly) Systems Biological
Applications, Springer Series in Synergetics, DOI 10.1007/978-1-4939-0387-0__3,
© Springer Science+Business Media New York 2014
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3.2 Fluctuations Near Instabilities

3.2.1 Stochastic Chemical Reaction: A Simple Example

Here is a simple example to show the importance of fluctuations. Let us consider
the reaction ([56], Sect. 5.6.1):

ACX

0! 2X (3.1)

X
�! 0: (3.2)

where A is the external and X is the internal component, and 0 denotes a so-called
zero complex. This reaction can be associated with a simple birth-and-death process.
The deterministic model is the following:

dx.t/=dt D .
 � �/x.t/I x.0/ D x0; (3.3)

(here 
 D 
0ŒA�.) The solution is

x.t/ D x0exp..
 � �/t/: (3.4)

If 
 > �, i.e. the birth rate constant is greater than the death rate constant, x is
exponentially increasing function of time. For the case of 
 D �

x.t/ D x0: (3.5)

The stochastic model of the reaction is

dPk.t/=dt D �k.
C �/Pk.t/C 
.k � 1/Pk�1.t/C �.k C 1/PkC1.t/ (3.6)

Pk.0/ D ıkx0 I k D 1; 2; : : : N: (3.7)

There are two consequences of the model:

1. The expectation coincides with the process coming from the deterministic
theory, i.e.

EŒ�.t/� D x0exp.
 � �/t; (3.8)

which in the case of 
 D � reduces to the form

EŒ�.t/� D x0:

2. The variance of the process is

D2Œ�.t/� D .
C �/t: (3.9)
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E[ξ(t)] ± D[ξ(t)]:

t

E[ξ(t)]:

Fig. 3.1 Amplifications of
fluctuations might imply
instability. While the
expectation is constant, the
variance increases in time

For the case of 
 D �

D2Œ�.t/� D 2D
t;

i.e. progressing with time, larger and larger fluctuations around the expectation
occur (Fig. 3.1).

It is quite obvious that in this situation, it is very important to take the fluctuations
into consideration. Such kinds of formal reactions are used to describe the chain
reactions in nuclear reactors. In this context, it is clear that the fluctuations have to
be limited since their increase could imply undesirable instability phenomena.

Fluctuations near instabilities, as an analogy to phase transitions have been
studied by [137]. Near instability points (a) the amplitude of fluctuations grows;
(b) the lifetime of these fluctuations becomes longer; and (c) the spatial correlation
length increases.

3.2.1.1 Keizer’s Paradox

Keizer [88] studied an autocatalytic system, where the deterministic and stochastic
models seemingly lead to paradoxical results. Let’s have the reaction

AC X
k1�*)�

k�1

2X (3.10)

X
k2! 0: (3.11)

The deterministic model is the following:

dx.t/=dt D k1ax.t/ � k�1x
2.t/ � k2x.t/I (3.12)
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There are two equilibrium points, x�
1 D 0 and x�

2 D k1a�k2
k1

, the first is unstable
and the second is stable.

In the stochastic model, the birth and death rates are defined, as

�n D k1an and 
n D k1n.n�1/Ck�1n

V
C k2n

Since �0 D 0, n D 0 is an absorbing state, and its stationary distribution
has probability 1 for n D 0, i.e. extinction. It looks a paradox that x D 0

is an unstable fixed point of (3.12). As it was shown [88, 194] the stochastic
model predicts the deterministic behavior on a reasonable time scale, which can
be consistently obtained from both models. For tnd � t � tce , the system has
a quasistationary distribution centered around the non-trivial fixed point. One can
obtain this distribution as the eigenfunction associated with the largest non-zero
eigenvalue derived from the master equation (2.24). The time scale reaching the
extinction state is proportional to exp.�cV /, where c > 0, see also [149].

3.2.2 Stochastic Theory of Bistable Reactions

3.2.2.1 Schlögl Reaction of the First-Order Phase Transition

The Schlögl reaction of the first-order phase transition has been the workhorse
for studying the relationship between multistatonarity (seen in the deterministic
models) and multimodality (of the stationary distribution in stochastic models). The
results of [50, 57] suggest that multistationarity and multimodality correspond to
each other asymptotically with increasing volume.

AC 2X
k1�*)�
k2

3X (3.13)

B
k3�*)�
k4

X;: (3.14)

A andB are external components,X is the only internal component. The reaction
model was re-investigated by [195] within the framework of non-equilibrium
thermodynamics.

The deterministic model is

dx.t/=dt D k1ax
2 � k2x

3 � k4x C k3bI x.0/ D x0: (3.15)

The two “phases” of the system is identified by having one or three stationary
points. In the latter, there are two stable stationary points separated by an unstable
one, so the system is called bistable. The master equation is given as

dPn.t/

dt
D 
n�1Pn�1 C �nC1PnC1 � .
n C �n/Pn; (3.16)
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for n D 1 : : :1, and

dP0

dt
D �1P1 � 
0P0: (3.17)

Here 
n D Ok3nB C Ok1nAn.n � 1/ and �n D Ok4nC Ok2n.n � 1/.n � 2/, 
n and �n

are the birth and death rates, respectively.
Of course, we can express the birth and death rates with the deterministic rate

constants, and in that case, the volume V is explicitly taken into account by taking
into account Oki D ki

V m�1 .


n D ak1n.n � 1/

VNA

C bk3VNA; (3.18)

and

�n D nk4 C k2n.n � 1/.n� 2/

.NAV /2
(3.19)

The stationary distribution is calculated by using the detailed balance assumption

n�1P

ss
n�1 D �nP

ss
n

1 as

P ss
n D P ss

0

n�1Y

iD0


i

�iC1

; P ss
0 D 1 �

1X

jD1

P ss
j : (3.20)

There is a remarkable difference in the behavior of the deterministic and
stochastic models. The set of the initial conditions can be classified into two
classes, since starting from any element of one class, the system tends to one
of the two possible point attractors. As the stochastic description is concerned,
two remarks should be made. First, the modality of the distribution is volume-
dependent, and there might be a change in the qualitative behavior of the system,
as the bifurcation diagram shows (volume is the bifurcation parameter in Fig. 3.2).
Second, the stochastic model also describes that the system quickly tends towards
one of the stable points, but it allows with certain probability to drive the system.
This phenomenon is related to the concept of relative stability [93, 94, 148].

3.2.2.2 Time Spent in Each Steady State, and Time Scale of Transitions

Diffusion in Bistable Potential

Fokker–Planck equations in a double-well potential are widely used to describe
phase transitions, and exact solutions for the diffusion in bistable potentials in

1The detailed balance condition is stronger than that required merely for a stationary distribution;
that is, there are Markov processes with stationary distributions that do not have detailed balance
e.g. [42].
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Fig. 3.2 The volume-dependence of the modality (Adapted from [50])

the case of certain potential functions were given [70, 75]. The estimation of the
relaxation times from metastable to stable states was also given [117]. The Fokker–
Planck equation can be written as

@P.x; t/

@t
D � @

x
ŒA.x/P.x; t/� C .1=2V /

@2

@x2
ŒB.x/P.x; t/�: (3.21)

The stationary distribution is

P st .x/ D .K=B.x//expŒ�V U.x/�; (3.22)

where K is a normalization constant and

U.x/ D �2
Z x

0

ŒA.x0/=B.x0/�dx0: (3.23)

U can be considered analogous to “free energy”. The stationary states of the
system occur at the extrema of U.x/. (Meta)stable states can be identified with
local minima. The relaxation time of the process leading from a metastable to a
stable state is considered as
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�m D 2V

Z xu

xm

expŒV .U.x/�dx

Z x

�1
1=B.y/fexpŒ�V U.y/�gdy; (3.24)

where xu and xm are neighboring unstable and metastable states. It can be seen
that the relaxation time exponentially depends on the volume. By evaluating the
integrals, the relaxation time is estimated as

�m � expŒV .U.xu/ � U.xm//�: (3.25)

The formula shows not only the exponential dependences of the relaxation time
on the system size, but also the effect of the height of the potential barrier
.U.xu/� U.xm//.

Returning now to the master equation (3.16), it can be re-stated in the matrix
formalism of Eq. (2.39). The composition of matrix ˝ is as follows:

˝ D

0
BBB@

�
0 �1 0 � � �

0 �
1 � �1 �2 � � �
0 
1 �
2 � �2 � � �
:::

:::
:::

: : :

1
CCCA (3.26)

Infinite matrix (3.26) is singular (all the column sums are 0) and negative
semidefinite. All the eigenvalues are non-positive real numbers, the highest one is
zero. The largest non-zero eigenvalue differs from the others: it decays exponentially
as the volume size increases and dictates the slow time scale of the system. The other
eigenvalues are relatively stationary with the volume change, and are much larger in
magnitude.

Considerable numerical efforts have been made [194] to estimate the mentioned
largest non-zero eigenvalue. The method used was to truncate matrix (3.26) at a
reasonable value to be finite, and the eigenvalues of the resulting (non-singular!)
tridiagonal matrix were calculated numerically.

Stochastic bistable systems can be characterized by three different time scales
as it was mentioned in Sect. 2.4.9, (see e.g. [149]): (i) the time scale tms of the
individual reactions (under the somewhat strong assumption that the ki constants
have a common scale); (ii) the time scale tnd of the whole reaction system; and
(iii) the time scale tce (can be called, as evolutionary time scale) of the transition
between the (meta)stable states. The “long-term” behavior of the deterministic
models happens when t 	 tnd and t � tce , and the system “selects” an
attractor depending on the initial value. (Such kinds of systems can be interpreted
as classifiers of the set of the potential initial values.) On the time scale t 	 tce the
system is better characterized by a bimodal distribution.

As it was emphasized by Qian [149], nonlinear stochastic biochemical dynamics
seems to be a new mathematical framework to combine deterministic and statistical
aspects of modeling, which is capable of describing the importance of rare events.
Such kinds of events occur with infinitesimal probability on a regular time scale
associated with deterministic phenomena, but occur with probability 1 on an
evolutionary time scale.
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3.2.2.3 The lac Operon Genetic Network

Jacob and Monod outlined a network theory of genetic control in prokaryotes
(prokaryotes are simple cells, which do not contain nucleus, while eukaryotes do) in
1961 [81,127]. The Operon model is the classical model for the cellular metabolism,
growth and differentiation (for the legacy and historical analysis of this seminal
work see [129]). Detailed deterministic models [201] (which by taking into account
the network structure of the lactose operon regulatory system) are able to reflect
the fundamental bistable property of the system, admittedly for large system only.
However, a single cell can switch between different phenotypes by some stochastic
mechanism (e.g. [4]).2 Nowick and Weiner [138] famously recognized the “all-or-
none”, bimodal nature of lac operon, and the existence of switching mechanism
between different (in their case “induced and “non-induced”) phenotypes, and
hypothesized that the random expression of a single molecule of permease should
be enough to trigger induction. Choi et al. [38] identified a mechanism of switching
between different phenotypes triggered by a single-molecule event3 Measurements
of genetic noise will briefly be reviewed in Sect. 3.7.2.

3.3 Compartmental Systems

The stochastic kinetic description of compartmental systems has been the subject
of a large number of research articles, which often appear to be independent of
each other [11,12,31,43,65,66,77,78,82,90,102,108,121,123,128,171,172,177–
180]. In most chemical considerations, such systems of reactions are called first
order processes, which may be both open and closed. Compartmental processes are
characterized by the fact that the possible changes of all single molecular (or other)
entities are independent of the presence of others. In other words, no interaction
between any two such entities occurs.

3.3.1 Model Frameworks

A general network of first order reactions in a closed system involves n different
chemical species (A1, A2, . . . , An), every one of which can convert to any other, i.e.
chemical reactions are possible for all pairs of species present:

2As they write “. . . Conventional deterministic kinetics cannot be used to predict statistics of
regulatory systems that produce probabilistic outcomes. Rather, a stochastic kinetic analysis must
be used to predict statistics of regulatory outcomes for such stochastically regulated systems.”
3It is known that bistable systems may show history-dependence, i.e. hysteresis and they are related
to memory phenomena. For a very good reading about chance, bistability and memory, see [143].
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Ai

ki;j�! Aj (3.27)

This sort of reaction is sometimes termed ‘conversion’ to distinguish it from other
types of possible processes in compartmental systems.

From a chemist’s point of view, a reactor can be made open with inflow and
outflow by including processes that produce or consume Ai molecules without
consuming or producing any other molecules. In the reactions representing the
inflow, molecules are produced. These processes are sometimes termed ‘production
from a source’.

Ø
˛i�! Ai (3.28)

The outflow process, sometimes termed ‘degradation’, it is the exact opposite of
the inflow process:

Ai

!i�! Ø (3.29)

Finally, there is a family of steps, which is termed ‘catalytic production from a
source’, in which species Aj is produced in with a rate that is proportional to number
of Ai molecules:

Ø
ˇi;j ;Ai�! Aj (3.30)

The notable case of i D j here could be considered self-reproduction or
autocatalytic formation.

It should be noted that a ‘catalytic degradation’, which would be an equivalent
of catalytic production is not possible because a molecule cannot be degraded in a
manner that is independent of its own presence.

Although the outflow process is often included in schemes as written in (3.29),
this is not a conceptual necessity. In fact, in any system involving outflow defining
a .nC 1/th ‘reservoir’ species, and including it as a common product of all outflow
processes, will lead to a mathematically equivalent scheme. In the absence of
production steps, such an equivalent system will be closed. It is also notable that
open chemical reactors are sometimes conveniently formulated without the inflow
or outflow processes described here in order to keep the number of molecules in the
reactor finite.

Another question that arises is about stoichiometry. All equations here are written
with a set 1:1 stoichiometry for each process (meaning that for each molecule
of reactant produced, there is one molecule of product formed, or the inflow or
outflow occurs individually for molecules) in the compartmental network. This is
not necessarily the case in all examples and including stoichiometric coefficients
may be needed. For 1:1 stoichiometry in a closed system without inflow and outflow,
conservation of matter ensures that the sum of particle numbers is always the same.
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With different stoichiometries but still in closed systems, a similar conservation
relationship can be defined by using a suitable linear combination of particle
numbers.

Individual states in a compartmental system can be identified by giving the
numbers of different molecules. In a given state, let ai mean the number of entities
for species Ai .

For truly open systems, no mass conservation equation holds and the number of
possible states is infinite. Calculations in such a system need to be analytical (e.g.
using the Poisson representation) or the numerical calculations should be limited to
a suitably chosen finite subgroup of states.

3.3.2 Master Equation and State Space

The master equation of the general compartmental system is given as follows:

dPa1;a2;:::;an .t/

dt
D

�
0

@
nX

iD1

.˛i C !iai /C
nX

iD1

nX

jD1

.aiki;j C aiˇi;j /

1

APa1;a2;:::;an .t/

C
nX

iD1

nX

jD1

.ai C 1/ki;j Pa1;a2;:::;aiC1;:::;aj�1;:::;an .t/

C
nX

iD1

nX

jD1

aiˇi;j Pa1;a2;:::;ai ;:::;aj�1;:::;an .t/

C
nX

iD1

˛iPa1;a2;:::;ai�1;:::;an .t/

C
nX

iD1

!iPa1;a2;:::;aiC1;:::;an .t/

(3.31)

For cases when all ˛i , ˇi;j and !i , values are zero, the conservation of mass
ensures that the sum of all ai values will be equal to the overall number of
particles, N0:

N0 D
nX

iD1

ai (3.32)

The number of states can be given by a combinatorial line of thought: it is
identical to the number of different non-negative integer solutions of Diophantine
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equation (3.32). The mathematics of this class of problems was developed in detail
[41] and the number of states can be given by a binomial coefficient:

M D
�
N0 C n � 1

n � 1

�
D .N0 C n � 1/Š

.n � 1/ŠN0Š
(3.33)

A suitable enumerating function for this special but very common case is given
as follows:

f .a1; a2; : : : ; an/ D 1C
nX

iD2

aiX

jD1

�
N0 � j C i � 1 �Pn

hDiC1 ah
i � 2

�
(3.34)

For more general cases with inflow and outflow, the size of the state space
depends on how many of the parameters ˛i , ˇi;j and !i are zero. If all ˛i and
ˇi;j values are zero, the state space is finite. In all other cases, the number of states
is infinitely large.

3.3.3 Solutions

Master equation (3.31) can be handled by using the generating function introduced
in Eq. (2.70). The partial differential equation equivalent to master equation (3.31)
is as follows:

@G.z1; z2; : : : ; zn; t/

@t
D

nX

iD1

.zi � 1/˛iG.z1; z2; : : : ; zn; t/

�
nX

iD1

.zi � 1/

�
!i C

nX

jD1

ki;j

�
@G.z1; z2; : : : ; zn; t/

@zi

C
nX

iD1

.zi � 1/

nX

jD1

@G.z1; z2; : : : ; zn; t/

@zj
.ki;j C ˇi;j zj /

(3.35)

The time dependences for the molecule numbers of species Ai is can be obtained
from the set of ordinary differential equations fully analogous to the deterministic
equations describing the evolution of concentrations in the compartmental system:

d hai i .t/
dt

D ˛i C
nX

jD1

˝
aj
˛
.t/.kj;i C ˇj;i / � hai i .t/

�
!i C

nX

jD1

ki;j

�
(3.36)

An essential and often noted consequence of this equation is that the expectations
of molecule numbers obtained by the stochastic approach in a compartmental
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system are identical to the concentrations obtained by the deterministic approach.
The equation can be re-formulated into a more concise matrix format:

dn.t/
dt
D kn.t/C ˛ (3.37)

In this equation, the expectations are arranged in the form of vector a.t/:

n.t/ D

0
BBB@

ha1i .t/
ha2i .t/

:::

hani .t/

1
CCCA (3.38)

A similar vector of ˛ values is also defined:

˛ D

0

BBB@

˛1

˛2

:::

˛n

1

CCCA (3.39)

Finally, the remaining rate constants are given in the matrix k as follows:

k D

0

BBB@

ˇ1;1 � !1 �Pn
iD1 k1;i k2;1 C ˇ2;1 � � � kn;1 C ˇn;1

k1;2 C ˇ1;2 ˇ2;2 � !2 �Pn
iD1 k2;i � � � kn;2 C ˇn;2

:::
:::

: : :
:::

k1;n C ˇ1;n k2;n C ˇ2;n � � � ˇn;n � !n �Pn
iD1 kn;i

1

CCCA

(3.40)

It is also possible to give a similar matrix equation for the second order moments.
These moments are most easily calculated as elements of the following matrix ˙ :

˙.t/ D

0

BBB@

s1;1.t/ � ha1i .t/ s1;2.t/ � � � s1;n.t/

s2;1.t/ s2;2.t/ � ha2i .t/ � � � s2;n.t/
:::

:::
: : :

:::

sn;1.t/ sn;2.t/ � � � sn;n.t/ � hani .t/

1

CCCA

(3.41)

Here, the quantity si;j .t/ is defined as:

si;j .t/ D
X

all states

aiaj Pa1;a2;:::;an .t/ (3.42)

The equation itself is given as follows:

d˙.t/

dt
D k˙.t/C .k˙.t//T C � .t/C .� .t//T (3.43)
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The matrix � in this equation is defined as:

� .t/ D

0

BBB@

.ˇ1;1 C ˛1/ ha1i .ˇ1;2 C ˛1/ ha2i � � � .ˇ1;n C ˛1/ hani

.ˇ2;1 C ˛2/ ha1i .ˇ2;2 C ˛2/ ha2i � � � .ˇ2;n C ˛2/ hani
:::

:::
: : :

:::

.ˇn;1 C ˛n/ ha1i .ˇn;2 C ˛n/ ha2i � � � .ˇn;n C ˛n/ hani

1

CCCA (3.44)

The moment generating function is also useful for obtaining the distribution of
Ai molecules at the steady state:

PAi .k; t/ D
1

kŠ

@kG.z1; z2; : : : ; zn; t/

@zki
.z1 D 1; z2 D 1; : : : ; zi D 0; : : : ; zn; t/

(3.45)

In the case of first-order reaction networks, there is a particularly useful line of
thought, which can simplify some considerations. This could be termed the method
of independent molecules, which can be employed because – as a consequence of
first order processes only – there are no interactions between molecules and the state
of each individual molecule can be described without knowing about the states of
the rest of the molecules in the system. This line of thought is particularly easily
used under conditions when the initial state of the system contains only one type
of molecules, which is not uncommon in practice. If this holds, even Pa1;a2;:::;an

functions can be given in a simple way using ˘i functions:

Pa1;a2;:::;an .t/ D
N0ŠQn
iD1 ai Š

nY

iD1

� hai i
N0

�ai

(3.46)

Among compartmental systems, the one describing irreversible first order decay,
i.e. the case when n D 2, k1;2 > 0, and k2;1 D 0, is the classical example
invariably present in all introductory chemical kinetics textbooks. In many cases,
chemical reactions can be simplified to this mathematical description by the method
flooding (i.e. using all the reactants in large excess except the limiting reagent).
The molecule numbers for both the reactant and product (species A1 and A2) are
characterized by a binomial distribution. In this case, a usual experimental problem
is to estimate the quantity of k1;2t from measured values of molecule numbers,
which could serve as a way for either determining the age of a sample using a
known rate constant, or finding the rate constant of a process for which the time
of experiment is known. If N particles remain in an experiment out of an initial
number of N0, the expectation for k1;2t can be given as follows:

hk1;2ti D ln
N0 C 1

N C 1
(3.47)
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Fig. 3.3 Stochastic map of the irreversible first order reaction with k1;2t as the target variable
(Adapted from [103])

The standard deviation can be calculated by the following equation:

	k1;2t D ln

 
1C

s
N0 �N

.N C 1/.N0 C 2/

!
(3.48)

A stochastic map based on this target variable is shown in Fig. 3.3.

3.4 Autocatalysis

Autocatalysis is the phenomenon when the appearance of a product in a chemical
reactions system opens a new pathway for the reaction, thereby accelerating the rate
of reaction. In macroscopic observations, autocatalysis is often recognized from
the presence of an induction period, which is basically the time necessary for the
slow formation of the initial amount of product necessary to jump-start the process.
However, an induction period is neither a necessary nor a sufficient condition for
proving the autocatalytic nature of a process.

As early as 1940, Delbrück pointed out that autocatalysis may lead to macro-
scopically observable fluctuations under certain conditions [44]. Experimental
verification of this prediction was reported in the 1980s by Nagypál and Epstein,
who have shown that autocatalytic phenomena lead to observable fluctuations in the
chlorite ion – thiosulfate and chlorite ion – iodide ion systems [134,135]. The latter
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reaction involves visible color change because of the formation of iodine and is
sometimes referred to as the crazy clock reaction as opposed to the classical clock
reaction [106] first described by Landolt [95], which also involves iodine formation
without any measurable fluctuations in the sulfite ion – iodate ion system.

Conceptually, a full description of an autocatalytic system should involve at least
two different types of chemical reactions. The first is an initiating process that
provides a (usually slow) way of forming the first molecules of the product. The
rate of this step should be independent of the presence of the product. The second
is the actual autocatalytic step, whose rate is proportional to some power of the
concentration (or particle number) of the product in addition to any dependence
on reactant concentrations. The terms positive feedback or amplification are also
sometimes used to characterize the essence of the second step. The necessity of
the first type of process is not always recognized in the deterministic or stochastic
considerations on autocatalysis, but can be deduced logically quite easily: in a
scheme lacking this step, no reaction would occur at all if the product is not already
present at the initial time.

Surprisingly, stochastic theoretical works on autocatalysis often only deal with
one of these two types of chemical reactions. When the first process is absent, it is
easy to resort to the argument that the product is present in some minimal quantity at
the initial time for some unspecified external reason or even its deliberate addition
can be assumed in order to start the process. In this case, the magnitude of this
initial product amount will greatly influence any later considerations. When the
autocatalytic reaction is absent, then the usual assumption is that the fluctuations
generated by the initiating process will spread to later observations.

This second avenue of thought was used in Delbrück’s early article, the title of
which may even be considered somewhat misleading as there is no mathematical
treatment given for any autocatalytic reaction. The work uses the assumption that
the autocatalytic process is initiated by a simple first-order reaction and derives
expectations and standard deviations for particle numbers and waiting times. These
are the same as those used in the description of first-order processes (see Sect. 3.3).
The arguments are then verbally extended for autocatalytic processes by noting
that the macroscopically observable stochastic distributions in them should be very
similar to those in the initiating reaction at very low particle numbers.

3.4.1 Autocatalytic Extinction

The lack of an initiating process was shown to give rise to a phenomenon called
extinction in autocatalytic systems [49], which occurs when the molecule number
of the autocatalytic species falls to zero in a system that involves a pathway for the
decay of the autocatalyst. This phenomenon is unknown in deterministic kinetics,
as an initially nonzero concentration can at no time be exactly zero there. A detailed
study was published for a kinetic scheme that does not conserve mass. In this
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work, a reversible autocatalytic step and an irreversible decay step were considered
simultaneously:

A1 ! 2A1 v1 D k1ŒA1�

2A1 ! A1 v2 D k1ŒA1�
2

A1 ! Ø v3 D k3ŒA1�

(3.49)

Because of the non-mass-conserving nature of the process, there is an infinitely
large number of possible states in this system. However, identifying a state is very
easy by giving the number of A1 molecules, as this is the only particle present. The
master equation can be written as follows:

dPi .t/

dt
D � Œ�1i C �2i.i � 1/C k3i � Pi .t/C �1.i � 1/Pi�1.t/

C Œ�2i.i C 1/C �3.i C 1/� PiC1.t/

(3.50)

In the mathematical handling of this master equation, the Poisson representation
was used (Sect. 2.4.6). The probability distribution over discrete chemical popula-
tion configurations was expanded in terms of an overcomplete basis of analytically
continued Poissonian probability distributions.

Pi.t/ D
Z

d2xf .x; t/e�x x
i

i Š
(3.51)

Here, the integral is taken over the entire complex plane. It was proven that
there always exists a real, positive definite distribution f (x,t) that can be used in this
equation. Because of the overcompleteness of the basis, there are an arbitrarily large
number of such distributions; each of which carries the same information contained
as the original probability distribution P(n,t).

The master equation can be transformed into the following equation of motion
for the transformed distribution:

@f .x; t/

@t
D .k3 � k1/f .x; t/: (3.52)

This new equation of motion has exactly the same form as a Fokker–Planck
equation, which describes the evolution of a probability distribution associated with
a continuous-variable diffusion process. An advantage of this calculation method is
that there is an equivalent representation by a set of stochastic differential equations,
which can be solved to give x as a function of time.

dx D �.k1 � k3/x � k2x
2
�
dt Cp2x.k1 � k2x/dW.t/: (3.53)
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Here, dW.t/ is the Wiener increment for which hdW.t/i D 0 and which satisfies
the autocorrelation relation hdW.t/dW.t C �/i D ı.�/dt .

The individual Pi.t/ functions can be obtained when the x.t/ function is known:

Pi.t/ D
�
e�x.t/ x.t/

i

i Š

�
(3.54)

Based on the previous considerations, a simple prescription can be established
for calculating extinction times (T ) in a numerical simulation as a function of the
initial number of species (x0):

T .x0/ D
Z 1

0

h1 � e�xidt (3.55)

At this point, it should be again noted that extinction is a phenomenon that is
caused by the lack of a non-autocatalytic pathway for the formation of A1, and not
by the lack of conservation of mass in the scheme. There is a published experimental
example of extinction in the literature of autocatalytic enzyme reactions [7]. The
non-mass-conserving nature of the scheme is responsible for another exclusively
stochastic phenomenon in this system, which is termed autocatalytic runaway: there
is always a finite probability that the autocatalytic population will be too large
compared to reasonable physical constraints.

3.4.2 Time Dependence of the Crazy Clock Reaction

The models presented so far are too simple to give any meaningful interpretation of
the experimentally observed stochastic fluctuations in autocatalytic systems. This
was attempted, as an additional benefit from modeling work in chiral autocatalysis,
based on a scheme that included both an initiating and an autocatalytic step [98].
The scheme was composed of a first order direct reaction and a step which was first
order with respect to both the reactant and the product:

A1 ! A2 v D k1ŒA1�

A1 ! A2 v D k2ŒA1�ŒA2�

(3.56)

A state is unambiguously identified by giving the number A1 molecules as
conservation of mass ensures a2 D N0 � a1, where N0 as the initial number of
A1 molecules. The master equation describing this scheme with is as follows:

dPi .t/

dt
D � Œ�1i C �2i.N0 � i/� Pi .t/

C Œ�1.i C 1/C �2.i C 1/.N0 � i � 1/�PiC1.t/

(3.57)
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Fig. 3.4 Experimental and
fitted cumulative distribution
functions for the reaction
time in the crazy-clock
(chlorite ion-iodide ion)
reaction (Adapted from [98])

It was shown that this model gives a reasonably good fit to the experimentally
observed reaction times in the chlorite ion-iodide ion reaction. The goodness of the
fit is illustrated by Fig. 3.4.

3.4.3 Autocatalytic Cycle Process

A more complex autocatalytic model was studied by Cianci et al. [39], the scheme
of which involves the sequential autocatalytic interconverting of n species Ai and
an out-of-cycle nonreactive species AnC1:

Ai C AiC1 ! 2AiC1 vi D ki ŒAi �ŒAiC1� i D 1; : : : ; n � 1

An C A1 ! 2A1 vn D knŒAn�ŒA1�

AnC1! Ai vnCi D knCi ŒAnC1� i D 1; : : : ; n

Ai ! AnC1 v2nCi D k2nCi ŒAi � i D 1; : : : ; n

(3.58)

Parameters ki are the autocatalytic process rate constants, while knCi and k2nCi

are the rate constants at which reactive Ai molecules appear and disappear from the
system. The overall number of particles in the system is denoted by N0. The number
of states is the same as for a compartmental system with .nC 1/ different types of
molecules and a fully analogous enumerating function can be used, see Eqs. (3.33)
and (3.34). This scheme does not show extinction phenomena, as all n autocatalytic
species can be formed in a non-catalytic pathway. In this scheme, a state can be
identified by giving the number of each Ai species as ai , while the number of AiC1

species is obtained by conservation of mass as anC1 D N0 �Pn
iD1 ai . The master

equation is as follows:
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dPa1;a2;:::;an .t/

dt
D

�
 
�nana1 C

n�1X

iD1

.�iai aiC1 C �nCianC1 C �2nCi ai /

!
Pa1;a2;:::;an .t/

C
n�1X

iD1

�i .ai C 1/.aiC1 � 1/Pa1;:::;aiC1;aiC1�1;:::;an .t/

C�n.an C 1/.a1 � 1/Pa1C1;:::;an�1.t/

C
nX

iD1

�nCianC1Pa1;:::;ai�1;:::;an .t/

C
nX

iD1

�2nCi .ai C 1/Pa1;:::;aiC1;:::;an .t/

(3.59)

This system of equations is solved using the van Kampen expansion method,
[192] which yields the following partial differential equation:

�
nX

iD1

@˘

@�i

d ŒA�i

dt
D

n�1X

iD2

.ki ŒAi �ŒAiC1� � ki�1ŒAi�1�ŒAi �/
@˘

@�i

C.k1ŒA1�ŒA2� � knŒAn�ŒA1�/
@˘

@�1
C .knŒAn�ŒA1� � kn�1ŒAn�1�ŒAn�/

@˘

@�n

C
nX

iD1

.k2nCi ŒAi � � ki ŒAnC1�/
@˘

@�i

(3.60)

In this equation, functions [Ai �.t/ represent the deterministic solution of the same
reaction scheme, for which the following ordinary differential equations hold:

dŒA1�

dt
D knŒAn�k1ŒAi � � ŒA1�ŒA2�C knC1ŒAnC1�� k2nC1ŒA1�

d ŒAi �

dt
D ki�1ŒAi�1�ŒAi � � ki ŒAi �ŒAiC1�C knCi ŒAnC1� � k2nCi ŒAi �

i D 2; : : : ; n � 1

d ŒAn�

dt
D kn�1ŒAn�1�ŒAn� � knŒAn�ŒA1�C k2nŒAnC1� � k3nŒAn�

(3.61)

Distribution ˘.�1; : : : ; �n; t/ is defined as:

˘.�1; : : : �k ; t/ D P

�
�1 C �1p

N0

; : : : ; �n C �np
N0

; t

�
(3.62)
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The second and third moments of �i functions were characterized and an
analytical solution based an approximation was compared to simulation results.

Discreteness-induced transitions were also studied in a variation of the model
given in Eq. (3.58), which only contained the autocatalytic cycle with species up
to An (i.e. knCi and k2nCi rate constants were zero) and all autocatalytic process
rate constants (ki ) were equal to a common value k [188]. However, the model was
studied in a flow reactor, so the deterministic rate equation was as follows:

dŒA1�

dt
D kŒAn�ŒAi � � kŒA1�ŒA2�CD.ŒA1�feed � ŒA1�/

d ŒAi �

dt
D kŒAi�1�ŒAi � � kŒAi �ŒAiC1�CD.ŒAi �feed � ŒAi �/

i D 2; : : : ; n � 1

d ŒAn�

dt
D kŒAn�1�ŒAn� � kŒAn�ŒA1�CD.ŒAn�feed � ŒAn�/

(3.63)

In Eq. (3.63), D is a parameter characteristic of the flow rate, and ŒA1�feed,
ŒA2�feed, : : :, ŒAn�feed are the concentrations of species A1;A2; : : : ;An in the feed.
With a further simplifying assumption ŒA1�feed D ŒA2�feed D : : : D ŒAn�feed,
the deterministic version of this model has a single stationary point, in which all
concentrations are equal.

Simulations using the Gillespie algorithm showed that the stochastic behavior
of this system at low molecule numbers and n � 4 is quite different from what is
expected and observed at the high volume limit. Instead of each molecule number
fluctuating around the common stationary value, the system underwent continuous
changes between two states for n D 4. The first was rich in A1 and A3 and had 0
molecules of A2 and A4. In the second, A2 and A4 were abundant, whereas A1 and
A3 were not present. These states resemble extinct states, but are in fact not final
states as the flow can always introduce new molecules of any of the reagents. As
expected, switching between these two distinct states occurred randomly and in a
short time compared to the time intervals spent in the two characteristic states.

It should be noted that the key to this phenomenon is that the flow is relatively
slow compared to the autocatalytic processes. Setting D D 0 in Eq. (3.63) reveals
that even the deterministic system without in- and outflow in fact has additional
stationary points: ŒA1� D ŒA3� D 0 (with ŒA2� and ŒA4� left undetermined), and
ŒA2� D ŒA4� D 0 (where ŒA1� and ŒA3� are undetermined). So the stochastic
simulation results actually showed the dominance of these additional stationary
states, which may not be very surprising as the deterministic stationary point
ŒA1�feed D ŒA2�feed D : : : D ŒAn�feed is an unstable one.
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3.5 Enzyme Kinetics

Enzyme-catalyzed reactions, although by no means fundamentally different from
non-biological forms of catalytic processes, are usually discussed separately in the
kinetic literature. The main reasons for this are the very specific features of enzymes
such as high selectivity, extreme efficiency and activity, as well as their typically
very low concentrations in biochemical systems. A single cell can be considered
as a spatially distinct reactor whose size is clearly small compared to other usual
chemical systems. This small size together with the large molecular dimensions and
high variety of enzymes present in living cells ensures that the amounts of at least
some of the essential enzymes in a cell do not exceed a few individual molecules. As
a consequence, the stochastic approach to chemical kinetics is extremely important
in biochemistry. With the advance of experimental detection methods, especially
fluorescence spectroscopy, studies on the activity of a single enzyme have been
possible for the last decade [51, 54, 60, 62, 96, 113, 166, 184, 193, 196]. This
development was also the driving force of further theoretical studies on stochastic
kinetic methods specific to enzyme catalysis.4

3.5.1 Michaelis–Menten: Scheme and State Space

Without doubt, the single most important mechanism in enzyme kinetics is the
Michaelis–Menten equation [124] and the corresponding chemical scheme devel-
oped by Briggs and Haldane [30]. The simplest and most commonly used form of
this mechanism comprises two consecutive processes: the reversible reaction of the
enzyme (E) and a substrate (S) to form an adduct (ES), and the formation of the
product (P) with simultaneous re-generation of the reactive form of the enzyme:

EC S
k1�*)�
k�1

ES
k2�! EC P (3.64)

The deterministic differential equations for this scheme have already been given
as Example 1.8 in Chap. 1 with the notation E = A1, S = A2, ES = A3, and P = A4.
This scheme has been the subject of numerous theoretical works using the stochastic
approach to chemical kinetics. For the identification of a given state, the number of
free enzyme molecules (e) and the number of uncomplexed substrate molecules (s)
can be conveniently used. Using the conservation of mass and the initial molecule
numbers e0 and s0, the number of enzyme-substrate adducts (es) is calculated as
es D e0 � e, and the number of product molecules formed is given by p D s0 � s�
e0 C e. The master equation can be formulated as:

4The classical papers on stochastic models of enzyme kinetics were written in the first half of the
1960s [13, 14, 80].
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dPe;s.t/

dt
D � Œ�1es C .��1 C �2/.e0 � e/� Pe;s.t/

C�1.e C 1/.s C 1/PeC1;sC1.t/C
C��1.e0 � e C 1/Pe�1;s�1.t/

C�2.e0 � e C 1/Pe�1;s.t/

(3.65)

The connection between stochastic and deterministic rate constants are easily
given by considering the orders of reactions for each rate constant (�1 D k1NA=V ,
��1 D k�1, �2 D k2). The overall number of different possible states (M ) is:

M D .s0 � e0

2
C 1/ 
 .e0 C 1/ (3.66)

This formula is given for the usual case of s0 � e0. For s0 < e0, a fully analogous
formula obtained by exchanging s0 and e0 can be used. A suitable enumerating
function is defined as follows:

f .e; s/ D
�

.s0 � s � e0 C e C 1/.e0 C 1/� e if e � s

.s0 � s � e0 C e C 1/.e0 C 1/� .e�s�1/.e�s/

2
� e if e > s

(3.67)

A characteristic feature of the state space is that it can be divided into subsets
of mutually accessible states, which have identical s � e values. The subset with a
lower s � e value is always downstream from the subset with a higher s � e value.
Reactions with rate parameters �1 and ��1 only occur within a subset, whereas the
reaction with rate parameter �2 moves the system between subsets.

3.5.2 Michaelis–Menten: Solutions

The master equation for a single enzyme molecule (e0 D 1) was solved by Arányi
and Tóth [2]5 using marginal generating functions.

Ge.z; t/ D
s0�1CeX

sD0

zsPe;s .t/ (3.68)

The master equation can be transformed into system of partial differential
equations:

@Ge.z; t/

@t
D �1.e C 1/

@GeC1.z; t/

@z
� �1ez

@Ge.z; t/

@z
� .��1 C �2/.1 � e/Ge.z; t/

C.��1 C �2/z.2 � e/Ge�1.z; t/
(3.69)

5We might be biased, but probably even objectively a somewhat overlooked very important pioneer
paper.
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In effect, instead of the 2s0 C 1 simultaneous ordinary differential equations
displayed in Eq. (3.65), the problem is now transformed into two simultaneous
partial differential equations.

The solution of this system of equations is:

G0.z; t/ D � e���1.z�1/=�1e��2t C �
��1 C �2

��1zC �2
e.�1C�2/t

C
2X

iD1

1X

nD0

�
.n/
i

"
�2 � .�2 C 


.n/
i /z

�
.n/
i

#qn

e

.n/
i t

G1.z; t/ D � .�1/ � � e���1.z�1/=�1e��2t � � e�.�1C�2/t

�
2X

iD1

1X

nD0

�
.n/
i

"
�2 � .�2 C 


.n/
i /z

�
.n/
i

#qnC1

e

.n/
i t

(3.70)

where

qn D 

.n/
i 


.n/
i C .�1 C ��1 C �2/


.n/
i C �1�2

�1.�2 C 

.n/
i /

(3.71)

Values of 
 can be obtained as the roots of a quadratic equation:



.n/
1 D

��1.nC 1/� ��1 � �2

2

�
q
Œ�1.nC 1/C ��1 C �2�

2 � 4�1�2.nC 1/

2



.n/
1 D

��1.nC 1/� ��1 � �2

2

C
q
Œ�1.nC 1/C ��1 C �2�

2 � 4�1�2.nC 1/

2

(3.72)

Incidentally, the previous equations actually give the eigenvalues of the transition
probability matrix defined by the master equation of the process. The size of this
transition probability matrix is .2s0 C 1/ 
 .2s0 C 1/, and its structure is such that
the eigenvalues can be calculated as a trivial eigenvalue of 0 and the eigenvalues of
s0 independent 2
2matrices, each corresponding to a subsystem composed of a pair
of states with identical number of product molecules. The special structure of the
transition probability matrix is also observed for e0 > 1. In this case, the subsystems
are characterized by .s0�e0C1/ different matrices of .e0C1/
.e0C1/ dimensions,
with additional submatrices of sizes e0 
 e0, .e0 � 1/ 
 .e0 � 1/, . . . , 2 
 2 (one of
each). The reason behind this special state structure is the existence of subsets of
mutually accessible states.
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Returning to Eq. (3.70) now, the constants � can be determined from the initial
conditions:

G0.1; t/CG1.1; t/ D 1

G0.z; 0/ � 0

G1.z; 0/ � zs0

(3.73)

The Pe;s .t/ function then can be determined from the generating function:

Pe;s .t/ D 1

sŠ

@sGe.z; t/

@zs
(3.74)

A further possible line of thought for single enzyme kinetics (e0 D 1) in
this system is to give the functions P1;s0 and P0;s0�1 for the most natural initial
condition where only separated enzyme and substrate molecules are present, which
is expressed by P1;s0 .0/ D 1 and Pe;s.0/ D 0 for every other state. The solution is:

P1;s0 .t/ D �


.s0�1/
2 C �1s0



.s0�1/
1 � 


.s0�1/
2

e

.s0�1/

1 t C 
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1 C �1s0
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1 � 


.s0�1/
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2 t

P0;s0�1.t/ D � .
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(3.75)

The waiting time (�) before the formation of the first product molecule (P)
assumed some special importance in this system [89]. Its expectation is calcu-
lated as:

h�i D
Z 1
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(3.76)



3.5 Enzyme Kinetics 95

The nature of enzyme catalyzed reactions is such that the substrate (S) is
mostly used in large excess over the catalyst enzyme and the experimental methods
used to monitor the process typically have neither the time resolution nor the
chemical sensitivity to follow the formation of the enzyme-substrate adduct (ES)
directly. Under such conditions, which are most often described by k1ŒS�0 C
k�1 >> k2, mathematical simplifications called the pre-equilibrium and steady-
state approximations are often used in deterministic kinetics. In the classical
approach to Michaelis–Menten kinetics, the steady-state assumption is used for
the intermediate species ES.6 The derivation gives rise to a combination parameter
KM D .k2 C k�1/=k1 called Michaelis constant and the classical Michaelis–
Menten equation:

dŒP�

dt
D k2ŒE�0ŒS�

KM C ŒS�
(3.77)

This example nicely illustrates that the experimental limitations behind intro-
ducing the simplifying treatment result in a loss of information: it is impossible
to resolve all three parameters (k1; k2; k�1) of the original scheme, only two
of them (k2 and combination parameter KM) are accessible. Further and often
unavoidable experimental limitations will typically result in additional loss of
parametric information. For example, solubility problems with substrate S could
limit experimental work to conditions ŒS�0 < KM, where the number of reliably
resolvable parameters decreases to 1 (i.e. k2=KM).

Remarkably, the equation for the expectation of the waiting time can be
transformed into a form that is seemingly fully analogous with the deterministic
Michaelis–Menten equation:

1

h�i D
k2ŒS�

KM C ŒS�
(3.78)

This equation is commonly referred to as the single-molecule Michaelis–
Menten equation in the literature [89]. However, it should not be left unnoticed that
the analogy is overwhelmingly accidental in this case. The deterministic Michaelis–
Menten equation can only be used in a limited range of parameters because
of the steady-state approximation used to derive it, whereas the single-molecule
Michaelis–Menten equation is deduced from the exact mathematical solutions and
is therefore free of such limitations. Furthermore, it is also tempting to extend the
analogy to systems containing several enzyme molecules (e0 > 1) by somehow
including e0 in Eq. (3.78), but this was shown to be incorrect: the formal analogy is
limited to single-enzyme kinetics [48].

6Two classical papers for the mathematical analysis of the pseudo-steady state hypothesis are [71,
168].
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Further theoretical work [17,51,54,101,113,151,167,182,184,191,200] on the
Michaelis–Menten scheme included the development of a stochastic equivalent of
the deterministic pre-equilibrium and steady-state approximations, which replace
one of the differential equations with an algebraic equation and give the concen-
tration of the intermediate as an explicit function of other concentrations so that the
time dependence remains only implicit. A stochastic equivalent can be introduced by
assuming that the function Pe;s .t/ can be obtained as a product of a time dependent
R function and an S value, which is characteristic of the state but does not depend
on time [48]:

Pe;s .t/ D Rs0�sCe�e0 .t/Se0�e;s0�sCe�e0 (3.79)

In essence, this assumption states that the probability of the formation of a given
number of ES adducts can be obtained simply from the number initial number of
enzyme molecules and untransformed product molecules without explicit inclusion
of time. Thus, the deterministic pre-equilibrium and steady-state approximations
decrease the number of concentrations whose time dependence needs to be cal-
culated, whereas the stochastic equivalent reduces the number of states whose
probability needs to be calculated as a function of time. With the new notation
introduced by Eq. (3.79), Eq. (3.65) is transformed into the following, more compact
form:

dRp.t/

dt
D k2ap�1Rp�1.t/ � k2apRp.t/ (3.80)

The new quantity ap is the steady-state expectation for the number of ES
molecules when there are p.D s0 � s � �e0 C e/ molecules of product formed.
Function Rp is actually the sum of Pe;s .t/ probabilities for states with identical p
values:

Rp.t/ D
min.e0;s0�p/X

iD0

Pi;s0Ce�p�e0 .t/ (3.81)

The value of ap can be calculated using the S function:

ap D
min.e0;s0�p/X

iD0

iSi;p (3.82)

Different works used different S and ap functions in the approximation. In a
simple possibility, the S function does not even need to be specified as Rp.t/ can
be given based on ap solely. An ap function used in a few studies can be given by a
(not fully justified) transfer of the deterministic Michaelis–Menten equation to the
stochastic approach [116, 153]:

ap D e0.s0 � p/

s0 � p C ��1C�2
�1

(3.83)
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In a slightly more advanced sequence of thought, S values can be given
as individual conditional equilibrium probabilities using partition functions as
described in statistical thermodynamics [48]:

Si;p D

�
e0

i

�
.s0�p/Š

.s0�p�i /Š

	
��1C�2

�1


�i

Pmin.e0;s0�p/
iD0

�
e0
i

�
.s0�p/Š

.s0�p�i /Š

	
��1C�2

�1


�i
(3.84)

This leads to the following ap function:

ap D
Pmin.e0;s0�p/

iD1 i

0

@ e0
i

1

A .s0�p/Š
.s0�p�i /Š

	
��1C�2

�1



�i

Pmin.e0;s0�p/
iD0

0

@ e0
i

1

A .s0�p/Š
.s0�p�i /Š

	
��1C�2

�1



�i

D min.e0; s0 � p/
1F1

	
�min.e0;s0�p/C1;je0�s0CpjC1;� ��1C�2

�1




1F1
	
�min.e0;s0�p/;je0�s0CpjC1;� ��1C�2

�1




(3.85)

The notation 1F1 here means the confluent hypergeometric function. This formula
is also independently known from the stochastic description of reversible second
order reactions [122]. The standard deviation corresponding to ap is given as:

	a;p D
s

apKM

VNA
� .e0 � ap/.s0 � p � ap/ (3.86)

The expectation and standard deviation for the number of enzyme-substrate
adducts can be calculated as follows for any given time t :

hesi .t/ D
s0X

iD0

aiRi .t/ (3.87)

	es.t/ D
vuut

s0X

iD0

�
.	2

a;i C Œai �2/Ri .t/
� � Œhesi .t/�2 (3.88)

Similarly, the expectation and standard deviation for the number of product
molecules are given as:

hpi .t/ D
s0X

iD0

iRi .t/ (3.89)



98 3 Applications

Fig. 3.5 Stochastic map of the Michaelis–Menten mechanism with the number of product
molecules formed as the target variable

	p.t/ D
vuut

s0X

iD0

i2Ri .t/ �
 

s0X

iD0

iRi .t/

!2

(3.90)

It was also pointed out that a limitation of the stochastic steady-state approxima-
tion is its inability to predict the number of ES adducts in an initial time period of
the reaction. This dead time can be estimated by the following formula:

td D 1

��
ln
20�� C �1a0

�� C �1a0
�� D �1.e0 C s0 � 2a0/C ��1 (3.91)

The waiting time for the first product molecule to form (�) can also be estimated
based on the approximations:

h�i D 1

�2a0
(3.92)

A stochastic map using the number of product molecules (P) formed the
Michaelis–Menten scheme is shown in Fig. 3.5. The graph uses deterministic rate
constants for convenience and shows composite parameters on both axes: k2t (time
in units of 1=k2) on the x axis and ŒS�0=KM (initial substrate concentration in KM

units) on the y axis. In addition, the map also depends on e0 (1 and 100 are used in
Fig. 3.5) and the overall volume of the system (small V and large V limits). In fact,
the extreme case of s0 D 1 sets a lowest meaningful volume, Vmin D 1=.ŒS�0NA/,
for the map.
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An approximate solution for master equation (3.65) was given using the binomial
approach for both stages of the process (reactant association and product formation)
[104]:

P
approx
e;s .t/ D

�
w

e0 � e

�
.1 � qq.t//wCe�e0qq.t/e0�e

�
s0

s C e0 � e

�
p.t/sCe0�e.1 � p.t//s0�s�e0Ce

(3.93)

Two time functions, p.t/ and qq.t/ appear in this formula. The definition of the
former is as follows:

p.t/ D ��1 C �2

s0�1
W

�
s0�1

��1 C �2
exp

�
�1.s0 � e0�2t/

��1 C �2

��
(3.94)

Here, W denotes the Lambert W function, which is the inverse of the xex

function. The function qq.t/ can only be conveniently defined through a series of
equations, which also give the meaning of quantity w in Eq. (3.93).

w D min.e0; e0 C s � e/ (3.95)

qq.t/ D 
1.t/

e0

1 � e.
2.t/�
1.t//�1t


2.t/=
1.t/ � e.
2.t/�
1.t//�1t
(3.96)


1.t/ D e0 C p.t/s0

2
C ��1 C �2

2�1
C
p
.e0 C p.t/s0 C ��1 C �2/2 � 4e0p.t/s0

2
(3.97)


2.t/ D e0 C p.t/s0

2
C ��1 C �2

2�1
�
p
.e0 C p.t/s0 C ��1 C �2/2 � 4e0p.t/s0

2
(3.98)

The usefulness of the approximate probability values calculated by (3.93) was
systematically tested in small systems (e0 D 6 � 10 and s0 D 60 � 100) using the
exact solution of Eq. (3.65) obtained by a direct method.

3.5.3 Other Enzyme Systems

Stochastic sequences of thought have been applied to a number of enzymes
following more complicated kinetic patterns than the Michaelis–Menten equation.
In an experimental study of the oxidation of molecular hydrogen by HynSL hydro-
genase from Thiocapsa roseopersicina, evidence of the stochastic autocatalytic
phenomenon of extinction was obtained [8]: the catalytic reaction came to an end
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without consuming the reactants or giving a noticeably degraded enzyme. The
reaction was interpreted by a three step catalytic cycle, in which the first process
was autocatalytic to an enzyme form:

E2 C E3

�b�! 2E3

E3

�c�! E4

E4 C H2 C 2Mo
�d�! E2 C 2Mr

(3.99)

E2, E3 and E4 are different enzyme forms in the catalytic cycle, H2 is hydrogen,
whereas Mo and Mr are the oxidized and reduced form of the electron acceptor
compound benzyl viologen. A state here is identified by giving the number of E2,
E3 and Mr molecules as e2, e3 and p. The master equation can then be stated as
using m and h for the number of Mr and H2 species, and introducing the constant n
as the total number of all enzyme forms (n D e2 C e3 C e4):

dPe2;e3;p.t/

dt
D � Œ�be2e3 C �ce3 C �d.n � e2 � e3/m.m� 1/h�Pe2;e3;p.t/

C�b.e2 C 1/.e3 � 1/Pe2C1;e3�1;p.t/C �c.e3 C 1/Pe2C1;e3C1;p.t/

C�d.n� e2 � e3 C 1/.mC 2/.m � 1/.hC 1/Pe2�1;e3;p�2.t/

(3.100)

A method for calculating individual state probabilities was devised under
conditions when there is no substantial loss of either Mo nor H2 in the system.
Under such conditions, the master equation can be transformed after the introduction
of two new functions:

Se2;e3.t/ D
1X

iD0

Pe2;e3;i .t/ and Re2;e3 .t/ D
1X

iD0

iPe2;e3;i .t/ (3.101)

With the shorthand notation of � D �d .mC 2/.mC 1/h, the transformed master
equation can be deduced from an appropriate linear combination of Eqs. (3.100) and
is written as:

dSe2;e3.t/

dt
D � Œ�be2e3 C �ce3 C �d.n � e2 � e3/� Se2;e3 .t/

C�b.e2 C 1/.e3 � 1/Se2C1;e3�1.t/C �c.e3 C 1/Pe2C1;e3C1.t/

C�d.n � e2 � e3 C 1/Se2�1;e3 .t/

(3.102)
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dRe2;e3 .t/

dt
D � Œ�be2e3 C �ce3 C �d.n � e2 � e3/� Re2;e3 .t/

C�b.e2 C 1/.e3 � 1/Re2C1;e3�1.t/C �c.e3 C 1/Re2C1;e3C1.t/

C�d.n � e2 � e3 C 1/Re2�1;e3 .t/C 2�d.n � e2 � e3 C 1/Se2�1;e3 .t/

(3.103)

The transformed master equation may seem more complicated than the original
one, but in fact it is a highly reduced form because the number of states and therefore
the number of differential equations depends only on the overall number of enzyme
molecules (n). With this technique, the values of the rate constants that lead to highly
probable extinction in the process could be found. The method itself is in principle
suitable for handling any system containing a catalytic cycle and simultaneous
product formation.

3.6 Signal Processing

3.6.1 Signaling with Chemical Networks: General Remarks

Chemical systems can be interpreted as signal processing devices. These systems,
i.e. reaction networks, convert (generally speaking) multiple, time-dependent and
noisy inputs to responses. The general goal is to determine the relationship between
the input and outputs. There are direct and inverse problems. If the network of the
chemical system is known, than a white box model approach is used. If the network
is not known, the procedure called “system identification” is adopted. The situation
is more complicated. To understand the mechanism of information processing of
the chemical network to be studied should be the subject of decomposition, and
functional modules are identified. Some illustrative examples will be given.

Input signals can influence one or more chemical components, may be constant
in time or time-dependent. Periodic inputs are often used. At many times, random
environment generates noisy input. (Chemical signal processing can be analyzed
by deterministic models, but our concern here is stochastic modeling. Randomness
has at least two sources: in addition to noisy input, internal noise due to the small
number of molecules also can occur.)

An important class of (bio)chemical signal processing is related to the concept
of frequency filtering. It is a process of selecting, or suppressing, certain frequency
components of a signal. The basic types of frequency filters known from the studies
of electrical circuits can be implemented by chemical reactions. Arkin [3] and
Samoilov et al. [164] demonstrated how low-pass, bandpass and high pass filters,
and even more complex chemical filters (such as notch filter and bump filters) can
be implemented by simple chemical mechanisms. The functional form of filtering
(some characteristic quantity of the output and input signals) as a function of
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the input frequency determined the type of filtering. For low-pass and high-pass
filtering, the function is monotonically decreasing and increasing, respectively. For
a band-pass filter, there is a maximum, if it is not very sharp, there is a reasonable
“band” around it. A notch filter passes all frequencies except those in a stop
band centered on a center frequency. A bump filter shows two (or more) peaks,
so it behaves optimally for two frequencies. Filtering procedures are particularly
interesting in stochastic systems due to the intricate relationship between signal and
noise.

Generally, the fundamental property of signal processing is its efficiency, and
there are some statistical measures, such as mutual information and Fisher informa-
tion, to characterize it. Examples will be briefly shown.

3.6.2 Signal Processing in Biochemical Networks

3.6.2.1 Evaluation of Signal Transfer by Mutual Information

In the general case, (stochastic) biochemical networks map time-dependent inputs
to time-dependent outputs. The efficiency of information transmission can be well
characterized by the mutual information between the input signal I and output
signal O by the mutual information

M.I;O/ D H.O/ �H.OjI /; (3.104)

where

H.O/ � �
Z

p.O/logp.O/dO

is the information-theoretical entropy of the output O having P.O/ probability
distribution, and H.OjI / � � R p.I /dI

R
p.OjI /logp.OjI /dO is the average

(over inputs I ) information-theoretical entropy of O given I , with p.OjI / the
conditional probability distribution of O given I , as it was studied by Tostevin and
ten Wolde [189, 190].

They applied the general formalism to some simple biochemical systems with
an input species S and output species X. Denoting the time dependence of the
particle numbers with S(t) and X(t) (they are called “trajectories” which should be
understood as realizations of stochastic processes), the mutual information between
the two trajectories is written as

M.S;X/ D
Z

DS.t/

Z
DX.t/p.S.t/; X.t//log

p.S.t/; X.t//

p.S.t//p.X.t//
: (3.105)

Analytical results can be and were obtained by assuming small (and) Gaussian
fluctuations around the stationary value hSi and hXi, respectively: s WD S� < S >

and x WD X� < x >.
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The mutual information rate defined as R.s; x/ D limT!1 M.s; x/=T can
be calculated from the power spectra of the fluctuations (derived as the Fourier
transform of the elements of the covariance matrix) as

R.s; x/ D � 1

4�

1Z

�1
d! ln

�
1 � jSsx.!/j2

Sss.!/Sxx.!/

�
(3.106)

R.s; x/ takes into account temporal correlations between the input and output
signals. Equation (3.106) is exact for linear systems with Gaussian noise. While this
is not a trivial restriction for chemical systems, the theory comes from the studies
of optical fiber communications [126]. However, in the case of chemical reactions,
the detection of input signals may generate correlations between the signal and the
intrinsic noise of the reactions. If there is no correlation, the spectral addition rule
expressed by Eq. (3.107)

Sxx.!/ D N.!/C g2.!/Sss.!/ (3.107)

is valid. Here N.!/ is the internal fluctuation and Sss.!/ is the power spectrum of

the input signal, furthermore g2.!/ D jSsx.!/j2
Sss .!/2

is the frequency-dependent gain.

The spectrum of transmitted signal is expressed as P! D g2.!/Sss.!/, so
Eq. (3.106) can be rewritten as

R.s; x/ D � 1

4�

1Z

�1
d! ln

�
1C P.!/

N.!/

�
(3.108)

Specific examples to process time continuous signals were given [189]. For all

the three cases, the input signal is taken as 0
k! S and S


! 0. This reaction leads
to Poissonian stationary distribution to be well approximated by Gaussian, at least
for a large number of particles. The reliability of the transmission is evaluated by

the gain-to-noise ratio defined as g2.!/

N.!/
.

Reversible Binding

SCW
�DkfW�*)�

�
X (3.109)

This scheme describes reversible binding, it might be considered as ligand-
receptor interaction, or a reaction between enzyme and its substrate. The input
signal is taken to be the total number of both bound and unbound molecules, i.e.
ST .t/ D S.t/ C X.t/. This scheme (called “motif” in the literature of systems
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biology and related areas) works as a low-pass filter, since the gain-to-noise ratio
is constant at low frequencies, but inversely proportional !2 for high frequencies.
The result suggests that it the processing of high-frequency input is unreliable in
biochemical signal processing, since this scheme is certainly a frequently used
biochemical signal detector.

Signaling Molecule Is Deactivated upon Detection

A remarkable example of the deactivation of the signaling molecule is when the
activation of a receptor is followed by endocytosis:

S
�! X

�! 0: (3.110)

In this case, the mutual information between instantaneous values of S and X

is zero. However, the analysis of the mutual information between the input and
output trajectories shows that the gain-to-noise ratio diverges (at least in the limit
of infinitely fast reaction), so the scheme is able to transmit reliably input signals
varying with high-frequency.

Coarse-Grained Model for Enzymatic Reactions

The scheme

S
�! S CX (3.111)

X
�! 0: (3.112)

is a somewhat oversimplified model for enzymatic reactions or gene activation. For

this scheme, g2.!/

N.!
does not depend on !, so the fidelity of the transmission is not

frequency-dependent.

3.6.2.2 Impact of Network Structure on the Transmission

Obviously, the network structure influences signal transmission. In particular, it
was studied by processing constant input signals [203]. Specifically, they studied
the maximum mutual information between the input (chemical) signal and the
output (genetic) response for small networks. Actually possible networks of three
chemical species were considered each under the control of one regulator. Instead
of mass action kinetics, simple rational functions were adopted, and linear noise
approximation was used. The fidelity of transmission was characterized basically by
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(average) mutual information. While generally all small networks proved to be quite
good signal transducers, networks with negative feedback work somewhat better.

A comparative study of certain networks with time-dependent inputs was given
by [46]. The simplest network is a cascade reaction, and more complicated networks
can be generated by supplementing it with autoregulation, feedforward and feedback
connections. It is plausible that in a cascade with n nodes, the information about the
input encoded in the signal at node i C 1 cannot be greater than the information at
node i . The mechanism is irreversible, so the lost information about the input cannot
be recovered later in the cascade.

The analysis is based on the calculation of the gain-to-noise ratio. The details
of the calculation are not repeated here, we restrict ourselves to tell the qualitative
consequences.

Two-Component Cascade with Autoregulation

Autoregulation modifies the diagonal elements of the Jacobian matrix. The deter-
ministic model of autoregulation of a simple cascade is given by Eq. (3.113a):

dx

dt
D f .x/s � �x.x/ (3.113a)

f .x/ D vˇ

K C x

�
ˇ D K; negative regulation
ˇ D x; positive regulation

(3.113b)

Jxx D ��x C hsi
�
@f .x/

@x




s:s:

(3.113c)

For negative regulation, Jxx > �x , while Jxx < �x holds for positive
regulation. Turning to the stochastic model of the system, calculations show that,
interestingly, information transmission is not influenced by the autoregulation at the
output of this network scheme.

Three-Component Cascade with Autoregulation

dv

dt
D f .v/s � �v.v/ (3.114a)

dx

dt
D ˇv � �xxf .v/ D vˇ

K C x

�
ˇ D K; negative regulation
ˇ D v; positive regulation

(3.114b)

Jvv D ��x C hsi
�
@f .v/

@v




s:s:

(3.114c)
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The analysis of the stochastic version of the scheme shows that the gain-to-
noise ratio decreases compared with the simple cascade. Negative autoregulation
therefore tends to suppress slowly varying signals relative to the simple cascade,
while positive autoregulation amplifies them.

Feedback from the Output Signal to an Upstream Component

dv

dt
D f .x/s � �vv (3.115a)

dw

dt
D ˇv � �ww (3.115b)

f .x/ D vCm

Kn C xn

�
C D x; positive feedback
C D K; negative feedback

(3.115c)

Two cases of feedback were studied. First, the output x sends back information
to an upstream component. The feedback x to v does not increase the information,
and is actually a source of noise to the s ! v pathway. Since the noise is highest at
low frequencies, this network scheme works as a high-pass filter.

A Four-Component Cascade with Feedback from an Intermediate Component

Second, there is a feedback from an intermediate to component precedes it in the
cascade. A four-component (i.e. a three step) cascade was studied:

dv

dt
D f .w/s � �v (3.116a)

dw

dt
D ˇv � �ww (3.116b)

dx

dt
D �w � �xx (3.116c)

f .w/ D �C n

Kn C wn

�
C D w; positive feedback
C D K; negative feedback

(3.116d)

At low frequencies, positive feedback amplifies the signal and the noise intro-
duced at the levels of v and w, but not noise introduced at x. At low frequencies,
the gain-to-noise ratio increases relative to the simple cascade. However, at high
frequencies, the positive feedback reduces the gain and the noise upstream of x, but
not the internal noise; therefore the gain-to-noise ratio is reduced compared to the
simple cascade. The implication is that a network with negative feedback reduces
the gain at low frequencies, reducing the gain-to-noise ratio. At high frequencies,
the feedback amplifies the signal but not the internal noise, leading to an increase
in the gain-to-noise ratio.
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Generally speaking, the most important design principle is the autoregulation and
feedback can improve information transmission, but only if they occur upstream to
the noise source. The results are admittedly approximative, since among others, the
linear noise approximation was used.

3.6.2.3 Further Studies

Stochastic Signaling and Noise-Induced Bistability

Samoilov et al. [165] showed by using both analytical and numerical investigation
that at least in one ubiquitous class of (bio)chemical-reaction mechanisms, namely
in enzymatic futile cycles, the external noise may induce a bistable oscillatory
(dynamic switching) behavior that is both quantitatively and qualitatively different
from what is predicted or possible deterministically. When two metabolic pathways
work simultaneously in opposite directions and have no overall (mass) effect, the
only effect is energy dissipation (i.e. entropy production).

The effect of external noise (on EC) is summarized by the addition of a
correction (diffusion) term to the deterministic result:

RN.	/.Xss; ECIE�/ D EC�k�E � .X0 �Xss/.KC CXss/

KCXss.K�CX0 � Xss/
C 	2kCKC
.KCCXss/2

D 0

(3.117)

Here fEC; E�g denote the forward and reverse (e.g., activating and deactivating)
enzymes, and X;X� stand for the concentrations of the forward substrate and
product, respectively. ks are the catalytic constants of the enzyme (the complex
to product reaction rates), and KC and K� are the Michaelis constants for the
substrate reaction.RN ŒX

�
ss; ECIE�� D 0 is the stationary response curve (nullcline)

relationship, X0 is the total amount of X and X� (s� is the signaling molecule, 	 is
the forward enzyme noise strength.

That is, an enzymatic futile cycle can act not only as a signal transducer but also
as a stochastic amplifier. Under certain circumstances, the system is not expected to
have any significant amplification in a deterministic system, but shows substantial
signal gain stochastically Fig. 3.6.

As the external signal increases and begins to approach the sigmoidal region, the
response level becomes bistable and begins to transiently switch between two states
with a characteristic amplitude/frequency distribution. This dynamic switching may
be viewed as an extra information channel through which more (accurate) signals
can be passed to the downstream processes. The extra channel is obtained simply
due to the stochastic nature of the chemical reactions (and it is not related to the
network structure of the reaction) (Fig. 3.7).
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External Noise

E+

E−

X X ∗ ReadoutReadout

Fig. 3.6 The enzymatic
futile cycle reaction
mechanism (Adapted from
[165])

Fig. 3.7 Transition between
uni- and multistationarity.
The bifurcation parameter p
is the exponent of EC in a
relationship connecting the
variance EC and EC

(Adapted from [165])
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Fig. 3.8 Stochastic
bifurcation plot of the
fractional steady-state values
of activated kinase, as a
function of the volume V. The
solid curves represent the
maxima of the steady-state
distribution, and the dashed
curve represents the
minimum of the distribution.
V D 1:67 is the critical
value, where the bistability
disappears (From [22])

In a somewhat similar analysis, [22] showed the volume of the system V and the
available free energy as bifurcation parameters in a signaling pathway (namely in
driven phosphorylation-dephosphorylation cycle kinetics with autocatalytic kinase).
Figure 3.8 demonstrates the existence of bistability for low volume.
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At Dt Bt

Fig. 3.9 Illustrative example of a network with two modules. Each circle represents a module, i.e.
a group of biochemical species. The network species are grouped into three non-overlapping sets
A, B and D as shown, in such a way that At$Dt Bt – i.e. the trajectories (up to any time t ) of A
and B are independent given the trajectory of D. Hence At and Bt contain no mutual information
given Dt , all information transfer between the two modules being conveyed via Dt (From [24])

Kinetic Independence: A Framework for Analyzing Signal Processing

Bowsher and his colleagues gave a framework to analyze information encoding
and propagation by biochemical reaction networks [24–26]. They formulated a kind
of inverse problem starting from measured time courses of different biochemical
species in the reaction network and the general goal is to express the interaction
of components by some probabilistic relationships. The basic concept is the
conditional independences between species trajectories. Reaction networks are
decomposed into modules by using dynamic conditional independence properties
and some stoichiometric information. An algorithm, called MIDIA, was developed.
It is a graphical algorithm that makes use of a new representation of the kinetics
of reaction networks called the Kinetic Independence Graph (KIG). The conceptual
and mathematical framework was elaborated in [24].

Network species can be decomposed into non-overlapping groups AIDIB such
that A.t/ and B.t/ contain no mutual information given D(t). The key concept is
the conditional independence: At ½Dt Bt , which gives two modules (circles) as
Fig. 3.9 shows.

Species in the overlap region, D, are informational intermediaries. The MIDIA
algorithm computes exact network decompositions based on dynamic independence
properties of the modules and also able to identify important biochemical interme-
diaries that result in the overlap of modules.

In [26], the authors provided a new framework for understanding sources of
stochasticity. Fluctuations can be decomposed into multiple components, and some
advice might be given to the experimentalists which component quantities should
be measured.
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3.6.3 Signal Processing in Olfactory Systems

3.6.3.1 Fisher Information and Optimal Signal Transmission

Signal processing in the early phase of olfactory processing is obviously chemosen-
sory information processing by chemical reactions. In the theory of neural transmis-
sion and neural coding, the Fisher information measure is often used to characterize
signal transmission. Brunel and Nadal [32] discusses the relationship between the
statistical concept of Fisher information and mutual information (coming of course
from information theory).

Let’s assume the probability density function of random variable X with values
x depends on a scalar parameter � , so it is written as f .xI �/.

Fisher information about parameter � in random variable X is given by
Eq. (3.118):

JX.�/ D E

 �
@ ln f .X I �/

@�

�2
!
D
Z

M

�
@ ln f .xI �/

@�

�2

f .xI �/d�.x/: (3.118)

Here � is an additive probability measure, and M is the support (i.e. the closure
of the set of possible values of a random variable). It is not a measure of information
in information-theoretical sense. Fisher information tells the relationship between
changes in the parameter and changes in the distribution. To put it in another way,
it tells how well the parameter change can be estimated by knowing the changed
distribution.

The Cramér-Rao inequality relates the variance of estimator O� and Fisher
information

1

JX.�/
� Var. O�/;

more precisely, there is a lower bound for variance of any parameter estimator.
In [145] there is a practical introduction to use Fisher information for finding

optimal signal in optimally detecting odorant concentration in olfactory system.
Before discussing how to use Fisher information to optimal signal detection, the
stochastic kinetic models of some odor intensity detection schemes are presented.
As [146] emphasizes, the binding-activation cascade can be classified into two
categories, concentration detectors and flux detectors.

3.6.3.2 Stochastic Kinetic Models of Odor Intensity Detection

Both deterministic and stochastic models exist to describe odor intensity detection,
in particular the response of the system to chemical stimulus. Figure 3.10 shows the
stimulus response curve in both cases.
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Fig. 3.10 Deterministic and the stochastic concepts. (a) A unique response, C.S/ is plotted
against the odorant log-concentration, s. Two equal changes 
 in response, the number of activated
receptors C.s/, are caused by different changes in corresponding odorant concentrations, �1 < �2,
because of varying slope of the input–output function. Therefore, the changes in the odorant
concentration in the region around �1 can be determined from the knowledge of the response
C.s/ more precisely than in region around �2. (b) Even the fluctuations of the response are taken
into account and plotted versus the odorant log-concentration, s. Hence the changes �1 and �2 in
odorant log-concentration are different from the situation as in (a). Due to the larger variability of
the responses in the central part of the transfer function: �1 �2 (Based on [146])

Basic Model

The simplest model is based on the assumption that a receptor occupied is

instantaneously activated: AC R
k1�*)�
k�1

C; where A represents an unbound molecule

of odorant, R unoccupied receptor and C stands for bound activated receptor
(complex of the odorant molecule and the receptor), k1 and k�1 are the reaction
rates coefficients of association and dissociation of the odorant molecules.

Model of Simple Activation

The receptors really appear in three states: unbound, R, occupied but not activated,
C �, and occupied activated, C.

CC k�1�*)�
k1N

AC R
k1A�*)�
k�1

C
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Double-Step Model

This model also contains receptors in three states, but here it is assumed that the
occupied receptor can become activated only with a delay after the binding:

AC R
k1�*)�
k�1

CC k2�*)�
k�2

C

Flux Detector

As opposed to concentration detectors, “flux detectors” accumulate the stimulus
molecules in a perireceptor compartment. If the arrival of stimulus molecules is
balanced with deactivation, constant effective stimulus concentration at constant
adsorptive flux of stimulus molecules is generated [83].

AE

kI�*)� A

AC R
k1�*)�

k�1

C
k0�! RCA

In this simple model of a flux detector in which receptor molecules themselves
catalyze the deactivation, the dose-response relationship is linear (and not sigmoid).

Results

The mean and the standard deviation of the number of activated receptors as a
function of odorant log-concentration can calculated either analytically or at least
numerically, as Fig. 3.11 shows.

3.6.3.3 Estimation of Optimal Olfactory Signals

In the deterministic model, the optimality measure is the first derivative of the input–
output function with respect to the concentration of odorant is Jdet .s/ D @f

@.s/
, which

measures the slope of the function. In their analysis, Pokora and Lansky [146]
assumed that the particle number is sufficiently large to adopt continuous approach,
and for the actual models the deterministic model coincides with the equation for
the expectation, i.e. E.C.s// D f .s/. Three criteria were derived. The first criterion
is based on the approximative assumption for the expectation, therefore the criterion
is J1.s/ D @E.C.s/

@.s/
, and the optimal concentration s1 maximizes it:

J1.s/ D max
s

J1.s/: (3.119)
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Fig. 3.11 Mean and standard deviation of the number of activated receptors in the basic model,
model of simple activation, double-step model and flux detector as functions of the odorant log-
concentration (Based on [146])

The second criterion J.s/ (keeping the notation of the original paper) is the
Fisher information adopted. The assumption is that to the continuous random
variable C.s/, there is a family of probability density functions g(x;s) where the
odorant concentration s is the parameter.

The optimal concentration s is estimated as Os from sampling responses
fx1; x2; : : : ; xng of C.s/ by using the Fisher information

J.s/ D E
	@ lng.s/

@s


2 D
Z

1

g.xI s/
	@g.xI s/

@s


2
dx: (3.120)

The independence of measurements is far are from being trivial. The Rao–
Cramer equality is

Var Os � J.s/�1: (3.121)

Since the higher J.s/ is, the better the estimation of s is, the optimal concen-
tration s0 maximizes J.s/. However, the analytical expression of J.s/ is generally
difficult, so the third criterion J2 is defined based on another approximation, namely
assuming the knowledge of the first two moments E.C.s// and Var.C.s// of the
distribution only:

J2.s/ D 1

Var.C.s/

	@E.C.s//

@s


2 D J1.s/
2

Var.C.s/:
(3.122)

J2.s/ is a lower bound to J.s/, J2.s/ � J.s/, so an optimal concentration s2 can
be defined.
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Fig. 3.12 Optimality criteria in the basic model, model of simple activation, double-step model
and flux detector as functions of the odorant log-concentration (Based on [146])

Results

The optimality criteria J.s/, J.s/ and J2 were computed, as Fig. 3.12 shows.
For the basic model, the criteria are unimodal and the deterministic and a

stochastic models lead to the same result. Similarly, for the flux detector from
the deterministic and stochastic models the same optimal concentration can be
calculated. However, from the model of simple activation the deterministic and
statistical approaches can give different results, the optimum from statistical point
of view is located at lower concentrations of odorant than that obtained with the
approach based on the slope of the input–output function. For the double step model,
the deterministic and statistical approaches give different results, as the shift of the
locations of the maxima illustrates.

3.6.4 Calcium Signaling

Many cells use changes in cytosolic Ca2C concentration for signaling.
Theoretically, it is a paradigmatic example how local stochastic events (open-

ing and closing of channels) lead to global periodic behavior. A channel type
present in the endoplasmic reticulum membrane of many cells is the inositol 1; 4;
5-trisphosphate (IP3) receptor channel.
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Fig. 3.13 A lumped kinetic
scheme of the channel
kinetics. X00: state with no
Ca2C bound; X10: activated
state; X11 and X01: inhibited
states. An index is 1 if an ion
is bound and 0 if not.
Transition rates are shown at
the edges of the rectangle
(Based on [58])

There is a hierarchy of spatiotemporal events (e.g.):

• Single channel opening (blip)
• The opening of several closely packed channels (puff)
• Cooperation of puffs may set off a wave traveling through the cell
• Waves may occur periodically, so they can be seen as global oscillations.

It is interesting for us that for parameters taken from the nonoscillatory determin-
istic regime, oscillations with different frequencies emerge induced by stochastic
channel dynamics.

Figure 3.13 shows a lumped kinetic scheme of the channel kinetics:
Due to the probabilistic nature of the binding and the dissociation process in this

system, stochastic kinetic models are appropriate, and they are the basis of the short
period oscillations. On a higher level of the hierarchy, there is a cooperation among
puffs which leads to the nucleation of waves. Simulations [58] showed that such
probabilistic nucleation is responsible for the generation of long period oscillations.

The studies of the stochastic aspects of intracellular Ca2C dynamics demon-
strated the fundamental role of fluctuations arising from the control of the release
channel by Ca2C and IP3.

In a more general way, internal noise has a special role for calcium signaling in a
coupled cell system [109,202]. Addition of noise can expand the region of parameter
space in which cycles occur. The effect can be maximized for particular values of
the system size or noise strength. (The phenomenon is called “internal stochastic
resonance”, cf. with Sect. 3.10, where stochastic resonance is reviewed.)

Multi-scale modeling supports the view that global calcium signals are driven
by single channel fluctuations [175], where stochastic models of channel gating is
integrated into deterministic diffusion models.

“Self-organized criticality” (SOC) is known as a general phenomenon occurring
in nature and society related to the emergence of macroscopic complexity from
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Fig. 3.14 Distributions of clusters and of receptors involved obtained with simulations of
intercluster dynamics with calcium accumulation. Power law distribution can be rather well fitted
(Based on [112])

spontaneous local interactions [7]. Patterns of activity characterized by different
length scales can occur with a probability density that follows a power law with
pattern size.

Stochastic localized activity may elicit global Ca2C signals [112]. The amplitude
distribution of local signals deviates from Gaussian for a significant fraction of large
size events. It can be log-normal or power law. For some reasonable region the
analysis of the model shows that a global elevation of the Ca2C concentration plays
a major role in determining whether the puff size distribution is long-tailed or not.
This suggests that Ca2C is a key to determine whether IP3-mediated Ca2C signals
can display a SOC-like behavior or not. For the illustration of SOC-like behavior,
see Fig. 3.14.

3.7 Gene Expression

3.7.1 A Very, Very Short Review of Biochemical Background

Gene expression is the complicated process which converts genetic information
from a DNA sequence into protein. Prokaryotes do not have nucleus, so DNA can
be found in any part of the cell, while in eukaryotes, it is located in the nucleus.
In prokaryotes there are two main processes: transcription and translation. In
eukaryotes there is one more process: splicing.

Transcription is a complicated series of events that use DNA to synthesize
messenger RNA (mRNA) by using enzyme RNA polymerase as a catalyst. The
series of events contain (in prokaryotes) binding, initiation, RNA synthesis, elonga-
tion, termination. Specifically, a promoter is a region of DNA that induce binding.
Eukaryote transcription is much more complicated, but some processes have the
same mechanism.

Splicing is a modification of the nascent transcript in which certain nucleotide
sequences (introns) are removed and other sequences (exons) are retained or joined.
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Translation is a process when the mRNA is processed by a ribosome complex
using the genetic code, which relates the DNA sequence to the amino acid sequence
in proteins. It contains more elementary steps, such as initiation, elongation,
translocation and termination.

Degradation While DNA is stable, RNA and protein molecules can be subject
to degradation, and it is also an important step in the regulation of gene expression.7

3.7.2 Measurement of Noise in Genetic and Other Biochemical
Networks

New experimental techniques give the possibility to measure the dynamics of gene
expression in single cells and reveal bursts of both mRNA and protein synthesis
in different types of organisms [152, 169]. Elowitz et al. [53] introduced the
concepts of extrinsic and intrinsic noise in gene expression (for its mathematical
analysis see [185]). Ozbudak et al. [139] showed how noise in gene expression
depends on the modification of the parameters of the underlying biochemical
processes. Generally speaking, while intrinsic noise results from the discrete nature
and inherent randomness of biochemical reactions such as promoter remodeling,
transcription, translation, and degradation of mRNA and protein species, extrinsic
noise arises from intercellular differences in the amounts of cellular components
(e.g., RNA polymerases and ribosomes). Single-molecule experiments (which
were mentioned earlier related to the detection of single-molecule events induced
bistability (Sect. 3.2.2.3) showed that proteins were synthesized in a rapid, burst-
like fashion [37].

The significance of stochasticity in endogenous biochemical networks have been
summarized by [169]:

• High-throughput studies have been carried out in yeast
• Three-color experiments have been used to quantify different contributions to

extrinsic fluctuations
• Stochasticity has been measured in mammalian cells, both in gene expression

and in the p53 network,
• In slime mold
• In HIV transactivation,

7There are some recent developments that suggest that gene expression might be circular [69].
Eukaryotic gene expression can be viewed as a circular process, whereby “first” (transcription)
and the “last” (mRNA degradation) are interconnected.
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• In bacterial chemotaxis
• In the timing of mitosis, meiosis (19), and lysis by phage lambda

Fluctuations are detected mostly in protein concentrations, but also in mRNA’s.

3.7.3 Stochastic Kinetic Models of Gene Expression

3.7.3.1 General Remarks

The perspective that models of gene expression should have stochastic elements
goes back to the pioneering works of Rigney and Schieve [159], D. Rigney [157,
158], and O. Berg [18], but these works came too early for main stream molecular
biologists. Stochastic chemical kinetics became the lingua franca of modeling gene
regulatory networks and related fields 20 years later, due to some highly cited papers
[4, 119].

3.7.3.2 A Three-Stage Model of Gene Expression

Genes and proteins form transcriptional regulatory networks, and they are often
present in small numbers in the cell, so CDS models proved to be the appropriate
tool to study the behavior of such kinds of systems. The three-stage model written as

inactive gene


C

1�*)�

�1

active gene

2�! mRNA


3�! protein (3.123)

supplemented with two degradation steps (the second also called as proteolysis):

mRNA
�m�! 0 protein

�p�! 0 (3.124)

seems to be generally accepted (say [23, 142, 154, 169]). From a strict chemical
point of view, all steps can be considered as “net reactions” containing several
(or many) elementary reactions. The state of the system can be characterized by
n D .n1; n2; n3/, where n1, n2 and n3 are the number of active genes, mRNAs and
proteins per cell, respectively. The standard model consists of six first order reaction
steps (so the whole system is a special compartmental system). The time scale of
the gene activity is �1 WD 1



C

1

C 
�
1 ; �2 WD 1

�m
and �3 WD 1

�p
are the time scale of the

degradation steps.
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Adopting a Markovian assumption8

dP.n1; n2; n3/.t/

dt
D 
C1 .nmax

1 �n1C1/P.n1�1; n2; n3/�
C1 .nmax
1 � n1/P.n1; n2; n3/

C
�1 .n1 C 1/P.n1 C 1; n2; n3/� 
�1 n1P.n1; n2; n3/

C
2n1P.n1; n2 � 1; n3/� 
2n1P.n1; n2; n3/

C .n2 C 1/

�2
P.n1; n2 C 1; n3/ � n2

�2
P.n1; n2; n3/

C
3n2P.n1; n2; n3 � 1/ � 
3n2P.n1; n2; n3/

C .n3 C 1/

�3
P.n1; n2; n3 C 1/ � n3

�3
P.n1; n2; n3/; (3.125)

where nmax
1 denotes a constant number of switching genes. By using the generating

function methods, the time-dependent solution can be obtained. Since often station-
ary protein fluctuations (protein noise) can be measured, it is worth to calculate some
characteristic quantities. There are two often used measures of noise in terms of the
first two moments of a probability distribution, the normalized stationary variance
in the number of protein molecules per cells and the Fano factor (variance divided
by average).9 The terms contributing to the normalized stationary variance:

	2
3

< n3 >2
D from individual birth and death C from spontaneous RNA noise

C from forced mRNA noise, originating in the gene activation-inactivation.
(3.126)

The first term is at least approximately Poissonian (or some other unimodal)
distribution.

For rapidly fluctuating genes and mRNAs, protein fluctuations can be calcu-
lated as

	2
3

< n3 >2
D 1

< n3 >
C 	2

E

< nE >2

�E

�E C �3
; (3.127)

where E represents the external environment of either mRNAs or active genes.
The two terms of the right-hand side are related to the concept of disorder

8A non-Markovian process may arise due to time delay in transcription, translation and/or in
degradation [28, 29, 156]. It is known that even in deterministic models, there are time-delay
induced bifurcations [91]; however, delay-induced stochastic oscillations in gene regulation were
also found.
9For the details see e.g. Sect. 2.2 of [142].
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[204] associated with fluctuation in rate constants due to slow conformational
fluctuation.10 Both transcriptional and translational bursting contribute to protein
fluctuations, and the identification and separation of the these contributions both
experimentally and theoretically seem to be subject of present and near-future
studies (e.g. [163]). Noise can be characterized by the Fano factor taken for the
protein fluctuation due to translational burst:

F WD 	2
3

< n3 >
D 1C < b >; (3.128)

where b is the number of translations per transcript.11 For Poissonian stationary
fluctuations F D 1, and F > 1 has a larger spread (larger noise).

Assuming for the gene g both transcriptional and translational bursts, noise
strength F.g/ can be decomposed into transcriptional and translational components
[163]. If B.g/ denotes the transcription burst size of gene and C.g/ is the number
of proteins translated from one mRNA molecule then, ignoring any other noise
contributors, the noise strength can be approximated as

F.G/ WD 1C C.g/B.g/ (3.129)

Analytical Methods

While simulation methods are most often used to study the time-dependent prop-
erties of gene regulatory systems, in the previous examples stationary variances
were calculated [198]. Walczak et al. [197] reviewed the scope and limits of
the more general approach of analytical methods by using master equations,
and continuous approximations based on Fokker–Planck and Langevin equations.
Some results were obtained both for transcriptional and translational bursts. It
was shown that both types of bursts generates more noise than a simple birth-
and-death mechanism leading to Poisson distribution. Stronger deviations from
the Possionian distribution were also demonstrated (for transcriptional burst) [79],
where bimodal and power law distributions occurred as the rate constants are varied
over biologically significant time scales.

3.7.3.3 Separating Intrinsic from Extrinsic Fluctuations

As it was mentioned earlier, fluctuations in reactions leading to the production of a
protein have two sources: (i) intrinsic noise is related to variations in protein levels

10The term “dynamic disorder”, which comes from statistical mechanics, is nothing to do with
the concept of “dynamical diseases”, a sudden change in the qualitative dynamical behavior of a
system due to some impairment of the physiological control system, say [114].
11The assumption behind the validity of the approximative formula is that the mRNA degradation
is much faster than the proteolysis.
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Fig. 3.15 The structure, dynamics and model of the dual reporter setup (From [72])

even in a population of cells with identical genotype and concentrations and states
of cellular components, (ii) extrinsic noise due to fluctuations in the amount or
activity of molecules involved in the expression of a gene, like RNA polymerase or
ribosomes. A very successful interaction between the methods of new experimental
techniques and of stochastic kinetics is related to the dual reporter method [53].
The idea was to incorporate a second independent system in the same environment,
and observe both subsystems. Correlations between the subsystems reflect the
influence of the common environment. Two identical and independent reporters
embedded in a shared fluctuating environment can be used to identify intrinsic and
extrinsic noise terms. The noise contributions identified by dual reporter methods
correspond to the noise contributions predicted by correct stochastic models of
either intrinsic or extrinsic mechanisms. It was found that “. . . the extrinsic noise
from the dual-reporter method can be rigorously analyzed using models that ignore
intrinsic stochasticity. In contrast, the intrinsic noise can be rigorously analyzed
using models that ignore extrinsic stochasticity only under very special conditions
that rarely hold in biology. . . ” (Fig. 3.15).

It was claimed that the normalized covariance between the two reporter proteins
can be used as a measure of extrinsic noise, and the remaining noise can be identified
as intrinsic. Denoting by x and y the levels of the two reporter proteins, we have
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�2tot WD
	2
x

< x >2
D �int

2 C �2int C �2ext (3.130)

�2ext D
Cov.x; y/

< x >< y >
; (3.131)

where angled brackets denote means over the cell population. The scope and limits
of the early suggestion were analyzed by [72, 73] permitting also time-dependent
environment, and the whole field seems to be a very lively topic [161, 199].

3.8 Chiral Symmetry

Molecular chirality is associated with the lack of certain symmetry elements in
the three dimensional structures of molecules. In effect, an object is chiral if it is
not identical to its mirror image. This molecular asymmetry has extremely high
biological relevance as the basic building blocks of biomolecules, amino acids and
simple sugars are chiral and, therefore, biomacromolecules such as polysaccharides,
peptides and nucleic acids are also chiral. In nature, the mirror image counterparts
have very different roles: typically, only one of them is abundant and it cannot
be exchanged with the other one. This phenomenon is called homochirality or
biological chirality, the origins of which have been the subject of extensive
theoretical speculations for about two centuries.

3.8.1 Racemic Mixtures

Statistical thermodynamics shows that in true chemical equilibrium, the distribution
of the two mirror-image pairs of a chiral molecule (called enantiomers) is described
by a binomial distribution [34–36, 99, 125, 171]. The enantiomers are labeled R and
S by convention (an earlier notation is D and L). Allowing for a difference in the
stability of the two enantiomers, this distribution can be given as follows:

P.r; s/ D
�
r C s

r

�
.0:5C "/r.0:5 � "/s (3.132)

Here, P(r,s) is the probability that r molecules of the R enantiomer and s
molecules of the S enantiomer occur in an ensemble of (r + s) molecules. Parameter

 is characteristic of the degree of inherent difference between the two enantiomers
(
� 0.5), and is connected to the energy difference (�E) between the R and S
molecules as follows:
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" D e�E=RT � 1

2.e�E=RT C 1/
(3.133)

The expectation and standard deviation for the number of R enantiomers from
this distribution is given by straightforward formulae:

hri D .0:5C "/.r C s/ (3.134)

	r D
p
.r C s/.0:5C "/.0:5� "/ (3.135)

In practice, intensive parameters are preferred in the characterization of a mixture
of enantiomers. One possibility is to use the molar fraction of the R enantiomer (xR),
another and even more popular option is using the enantiomeric excess (ee). Their
definitions are given as follows:

xR D r

r C s
(3.136)

ee D jr � sj
r C s

(3.137)

The expectations and standard deviations of these parameters can be estimated
as follows:

hxRi D 0:5C " (3.138)

	xR D
s

.0:5C "/.0:5 � "/

.r C s/
(3.139)

heei � heei"D0 D
1

r C s

Œ.rCs�1/=2�Y

iD1

2i C 1

2i
(3.140)

	ee D
r

1

r C s
C 4

r C s � 1

r C s
"2 � heei2 (3.141)

In most relevant works " D �E D 0 is assumed, which represents a sort of
common sense and means the total symmetry of the two enantiomers. Nevertheless,
there are numerous quantum chemical calculations based on the principle of parity
violation and a consequent inherent asymmetry in atomic nuclei that predict a �E

around 10�13 J mol�1 and an " of 10�17 at room temperature. For 1 mol of chiral
molecules (r C s D 6 
 1023) these values lead to an expected excess of the
more stable enantiomer (6 
 106) that is much smaller than the standard deviation
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(1:9
1011), which would characterize average natural fluctuations. This small value
of �E is still several orders of magnitude lower than the detection limits of the
most advanced experimental methods, so its existence is at best an unconfirmed
theoretical prediction. In addition, it has also been conclusively shown that such a
small value of 
 is without consequence when the mass of chiral material is smaller
than the mass of planet Earth, and thus could not have any role in the emergence of
biological chirality.

In chemical systems, the number of particles typically exceeds 1010, often greatly
so. Under such conditions, the binomial distribution for " D 0 basically means
that the two enantiomers are formed in equal amounts, and the fluctuations from
this are undetectably small. This is called a racemic mixture in chemistry, and it
is assumed that any synthesis method without the intervention of external chiral
influences (such as chiral reagents, catalysts, mineral surfaces or circularly polarized
electromagnetic radiation) will lead to a racemic product mixture.

Limited, but rather important experimental examples were published that do
not adhere to this theoretical expectation [9, 10, 68, 101]. In these examples,
macroscopically detectable fluctuations were observed in the enantiomeric excess
of the product mixture in the absence of any external chiral influence. The most
extensively studied such process is the Soai reaction [87, 173, 174, 176], which
involves carbon-carbon bond formation in the reaction between an aldehyde with
organometallic zinc reagents. The bromide ion induced dissociation of a trinuclear
cobalt complex [6], and some chiral Mannich and aldol reactions [118] provide
further example of this phenomenon, which is called absolute asymmetric synthesis
or chiral symmetry breaking. The name absolute asymmetric synthesis originates
from the fact that individual experiments in these processes may result in highly
enriched enantiomeric excesses in products without any obvious reason. Symmetry
breaking is a bit more confusing term, as it only means that non-racemic mixtures
are formed in individual experiments. However, the statistical ee distributions are
usually symmetric or close to symmetric. In this sense, these processes do not
usually violate any symmetry laws. In any case, these observations are especially
important because, although the compounds involved are by no means close to
the abundant biomolecules (e.g. the conditions of the Soai reaction do not tolerate
neither air nor water), they provide the only experimental information relevant for
the formation of biological homochirality and provide direct observations in a field
otherwise limited to theoretical speculations.

There are several requirements that must be fulfilled by a kinetic scheme to
predict a non-binomial final distribution of the enantiomers formed. First, the
direct transformation of enantiomers to each other must be vanishingly slow. This
racemization reaction would lead to the binomial distribution no matter how the
chiral material had been formed in previous processes. Second, the formation
probability of enantiomers must be influenced by factors other than initially present
(because they are completely non-chiral). The most obvious possibility is that the
rates of reactions are influenced by the chiral molecules formed in the reaction. In
chemical processes, such an effect is usually called autocatalysis (for an accelerating
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effect) or autoinhibition (for a decelerating effect) as it is the product that influences
the rate. In addition, this effect should be enantioselective, i.e. the R product formed
must have different influence of the formation of R and S enantiomers. Such an
interaction is not ruled out by symmetry laws. Both the phenomenon of autocatalysis
and enantioselective catalysis are well known experimentally in chemistry, and a
combination of these two, although may not be very common, is not impossible,
either.

The possible role of enantioselective autocatalysis was probably first proposed
by Frank on the basis of deterministic calculations which showed that miniscule
deviations from chiral symmetry can be amplified by this mechanism [63]. Frank
also coined the term mutual antagonism, which he primarily used for the interaction
of R and S enantiomers that reduces the autocatalytic effect. The concepts of
enantioselective autocatalysis and mutual antagonism have been invariably present
in a high number of deterministic model calculations aimed at describing chiral
amplification.

Stochastic theoretical considerations in this field were centered primarily on
interpreting the experimental data available and this fact clearly determined the
emphasis in the studies. Little effort has been devoted to describing the time
dependence from any chemical models as no kinetic data have been published in
the experimental examples. The studies were instead focused on predicting the final
enantiomeric distributions, which is often conveniently done by using Q functions.
Another characteristics of these theoretical attempts is the insistence of reaching
predictions to chemically reasonable high numbers of particles (1019 in the case of
the Soai reaction), sometimes even at the expense of mathematical precision.

3.8.2 Simple Enantioselective Autocatalysis

A particularly well studied example is a reaction in which the chiral product is
formed from a nonchiral reagent A simultaneously in a direct and an autocatalytic
pathway [97, 98, 100]:

A! R
v D .0:5C 
/�uaC �car

�

A! S
v D .0:5 � 
/�uaC �cas

�

(3.142)

The most important case is when only A is present initially (with an initial
molecules number of N0). The overall number of possible states (M ) can be
given as:

M D .N0 C 1/.N0 C 2/

2
(3.143)
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States can be identified solely by giving the numbers of R and S enantiomers
(r and s, r C s � N0) as the number of remaining A molecules (a0 � r � s) can be
calculated from conversion of mass. A suitable enumerating function can be given
as follows:

f .r; s/ D .r C s/.r C s C 1/

2
C r C 1 (3.144)

The master equation of the process is the following:

dPr;s.t/

dt
D �Pr;s.t/a

�
�u C �cr

� C �cs
�
�

CPr�1;s.t/a
�
.0:5C "/�u C �c.r � 1/�

�
(3.145)

CPr;s�1.t/a
�
.0:5C "/�u C �c.s � 1/�

�

For chemically first order autocatalysis (� D 1), a number of analytical formulae
for the final state reached in this scheme could be derived. The use of the Q

functions was rather advantageous for this problem. As the variables of interest are
independent of time, only the ratio of the two rate constants (˛ D �c=�u) appears as
an important parameter:

Q.r; s/ D
�
r C s

r

� Qr�1
jD0.0:5C "C j̨ /

Qs�1
jD0.0:5 � "C j̨ /

QrCs�1
jD0 .1C j̨ /

(3.146)

The expectation for xR and its standard deviation can also be given:

hxRi D 0:5C " (3.147)

	xR D
s

.0:5C "/.0:5� "/
.r C s/�1 C ˛

1C ˛
(3.148)

A formula for the expectation of ee can also be given:

heei D
Œ.N0�1/=2�X

iD0

N0 � 2i

N0

.Q.N0 � i; i /CQ.i;N0 � i//

D 1 �
Œ.N0�1/=2�X

iD0

2i

N0

.Q.N0 � i; i /CQ.i;N0 � i//

(3.149)
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Finally, it can be shown that the discrete distribution converges to a continuous
beta distribution with parameters .0:5C "/˛�1 and .0:5 � "/˛�1 as N0 approaches
infinity. The limiting continuous distribution function is:

P.xR/ D � .1=˛/

� ..0:5C "/=˛/ � ..0:5 � "/=˛/
x
.0:5C"/=˛�1
R .1�xR/

.0:5�"/=˛�1 (3.150)

For " D 0, the continuous distribution with no initial chiral material present
reduces to a symmetric beta distribution. In addition, the description has been
extended to initial conditions where some R and/or S molecules are present in the
initial mixture [170]:

Q.r; s/ D
�
r C s � r0 � s0

r � r0

� Qr�1
jDr0

.0:5C j̨ /
Qs�1

jDs0
.0:5C j̨ /

QrCs�1
jDr0Cs0

.1C j̨ /
(3.151)

The expectation for the enantiomeric excess and its standard deviation have been
reported as:

heei D .N0 C 1=˛/ jr0 � s0j
N0.r0 C s0 C 1=˛/

(3.152)

	ee D 2

N0

s
.N0 C 1=˛/.N0 � r0 � s0/.r0 C 0:5=˛/.s0 C 0:5=˛/

.r0 C s0 C 1=˛C 1/.r0 C s0 C 1=˛/2
(3.153)

For higher-order autocatalysis (� > 1), the probability of getting one enantiomer
only, Q.r; 0/, can be given, which confirms that one of the enantiomers will be in
overwhelming excess over the other for � > 1 and sufficiently large values of N0.
For " > 0, the following expression can also be proved

Q.b; 0/

Q.0; b/
< e4"=.0:5�"/C2.��1/"=˛ (3.154)

However, higher-order autocatalysis under reasonable conditions does not
necessarily lead to the formation enantiomeric excesses close to 100% because
the convergence to the unique final distribution, unlike in the case of first-order
autocatalysis, may not be very fast. Numerical calculations can be carried out using
the method of deterministic continuation. First, the appropriate values of Q.r; s/ are
recursively calculated with the CDS approach for a relatively small value of .rC s/,
e.g. 1,000 or 10,000 to obtain a discrete distribution function can be obtained in this
way. The distribution of the molar fractions in the final state can then be calculated
by the numerical integration of the following, deterministic differential equation:

� dxR

da
D 0:5C "C ˛r�

.1C ˛r� C ˛r�/.N0 � aC 1/
� xR

N0 � aC 1
(3.155)
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This approach gives a discrete approximation of the final distribution the number
of points in which is identical to the .r C s/ value up to which the CDS approach
was used. This method was used to prove that second order autocatalysis can give
a prediction for the distribution of enantiomeric excesses that fits the experimental
observations better than the results following from first order autocatalysis.

A very similar system with a somewhat more complicated rate equation and
elements of reversibility (termed recycling there) was also analyzed in some detail
[162, 183]. The scheme is given as follows:

A! R

v1 D 0:5�0aC �1ar C �2ar
2 � 
r

A! S

v2 D 0:5�0aC �1as C �2as
2 � 
s

(3.156)

The master equation corresponding to this scheme is as follows:

dPr;s.t/

dt
D �Pr;s.t/.�0aC �1ar C �1as C �2ar

2 C �2as
2 C 
r C 
s/

CPr�1;s.t/
�
0:5�0.aC 1/C �1.aC 1/.r � 1/C �2.aC 1/.r � 1/2

�

CPr;s�1.t/
�
0:5�0.aC 1/C �1.aC 1/.s � 1/C �2.aC 1/.s � 1/2

�

CPrC1;s.t/
.r C 1/C Pr;sC1.t/
.s C 1/

(3.157)

As the processes are reversible in this system, none of the states is final and Q

functions carry no meaning. The ˘r;s stationary probabilities should be defined as
the final, time-independent, stationary probability values for each state:

˘r;s D lim
t!1Pr;s.t/ (3.158)

The stationary absolute state probability values can be given as:

˘r;s D � a0Š
rŠsŠ.N0�r�s/Š


N0�r�s

Qr�1
jD0.0:5�0 C �1j C �2j

2/
Qs�1

jD0.0:5�0 C �1j C �2j
2/

(3.159)

Here,� is a normalizing constant and the appropriate products shown should simply
be replaced by a number 1 if r D 0 or s D 0. Continuous approximations of the
final distributions have also been given.
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Finally, a random walk CDS approach was introduced on a square lattice .r; s/

in a triangular region 0 � r , 0 � r , r C s � N0 for studying the system without
recycling (
 = 0). The random walker can only make directed walks to the R and S
directions: the possible steps are .r; s/! .r C 1; s/ and .r; s/! .r; s C 1/. Based
on the transition rates in the master equation, the walker on site .r; s/ stays on the
site for the following waiting time:

�.r; s/ D 1

Œ�0 C �1.r C s/C �2.r2 C s2/�.N0 � r � s/
(3.160)

After the waiting time of � , the jump is in either R or S direction with the respective
probabilities of PR and PS:

PR.r; s/ D 0:5�0 C �1r C �2r
2

�0 C �1.r C s/C �2.r2 C s2

PS.r; s/ D 0:5�0 C �1s C �2s
2

�0 C �1.r C s/C �2.r2 C s2/

(3.161)

In fact, this is identical to the Monte Carlo simulation approach to stochastic
kinetics, which is also the basis of the Gillespie algorithm.

3.8.3 The Frank Model

The scheme initially originally proposed by Frank [63] has also been analyzed by
the CDS approach [105]:

A! R v1 D 0:5�uaC �car
�

A! S v2 D 0:5�uaC �cas
�

RC S! 2C v3 D �d rs

(3.162)

In addition to enantioselective autocatalysis, mutual antagonism in the third step is
also present in this mechanism.

The overall number of possible states M is a third-order polynomial of N0 in this
system:

M D
�
N0 C 3

3

�
D .N0 C 3/.N0 C 2/.N0 C 1/

6
(3.163)
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The identification of individual states requires three variables here, which are
conveniently selected as a, r , and s. A suitable enumerating function is given by
the following formula:

f .a; r; s/ D a3

6
C aN0.aCN0/

2
� a2 C 2aN0

C11a

6
C r2

2
C r.N0 � a/C 3r

2
C s C 1

(3.164)

The analysis was done in a way that also allows some inflow of reactant A and an
outflow of the reaction mixture. The master equation can be written as:

dPa;r;s.t/

dt
D �fa�u C ar�c C as�c C rs�d C .N0 � a/�f gPa;r;s.t/

Cf0:5.aC 1/�u C .aC 1/.r � 1/�cgPaC1;r�1;s.t/

Cf0:5.aC 1/�u C .aC 1/.s � 1/�cgPaC1;r;s�1.t/

Cf.r C 1/.s C 1/�dgPa;rC1;sC1.t/C .r C 1/�f Pa�1;rC1;s .t/

C.s C 1/�f Pa�1;r;sC1.t/C .N0 � a � r � s C 1/�f Pa�1;r;s.t/

(3.165)

Parameter �f (dimension: inverse time) here corresponds to the flow rate, the
equation itself also describes a closed system without flow if �f D 0 is set. The
detailed analysis questioned the positive role that was assumed to be played by
mutual antagonism in creating high enantiomeric excesses. In fact, its effect in
decreasing the overall amount of chiral material in a reactor seems to be more
important than the increase in enantiomeric excess values.

3.8.4 The Soai Reaction

The models described in the previous sections all share the drawback that they are
chemically unreasonable in their simplicity. The mechanism of the Soai reaction
is known to be much more complex. Schemes like these are not easily processed
within the CDS approach primarily because of the high number of states involved.
A particularly noted series of chemical reactions was proposed by Buhse to interpret
experimental findings [33]:
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CHO + Zn
k1�! (R)-COZn

CHO + Zn
k1�! (S)-COZn

(R)-COZn + (R)-COZn
k2�! (R)(R)-(COZn)2

(R)(R)-(COZn)2
k�2�! (R)-COZn + (R)-COZn

(S)-COZn + (S)-COZn
k2�! (S)(S)-(COZn)2

(S)(S)-(COZn)2
k�2�! (S)-COZn + (S)-COZn

(R)-COZn + (S)-COZn
˛k2�! (R)(S)-(COZn)2

(R)(S)-(COZn)2
k�2�! (R)-COZn + (S)-COZn

(R)(R)-(COZn)2+ CHO
k3�! (R)(R)-(COZn)2-CHO

(R)(R)-(COZn)2-CHO
k�3�! (R)(R)-(COZn)2+ CHO

(S)(S)-(COZn)2+ CHO
k3�! (S)(S)-(COZn)2-CHO

(S)(S)-(COZn)2-CHO
k�3�! (S)(S)-(COZn)2+ CHO

(R)(S)-(COZn)2+ CHO
k3�! (R)(S)-(COZn)2-CHO

(R)(S)-(COZn)2-CHO
k�3�! (R)(S)-(COZn)2+ CHO

(R)(R)-(COZn)2-CHO + Zn
k4�! (R)(R)-(COZn)2+ (R)-COZn

(S)(S)-(COZn)2-CHO + Zn
k4�! (S)(S)-(COZn)2+ (S)-COZn

(R)(S)-(COZn)2-CHO + Zn
k4�! (R)(S)-(COZn)2+ (S)-COZn

(R)(S)-(COZn)2-CHO + Zn
k4�! (R)(S)-(COZn)2+ (R)-COZn

(3.166)

This sequence of reaction comprises four different sorts of reactions, but because
of some reversibility and the existence of enantiomers, the full model contains 18
individual steps. Because of symmetry reasons, the actual number of parameters
(rate constants) is only seven (k1; k2; k�2; k3; k�3; k4; and ˛). Final enantiomeric
distributions predicted by the model were calculated by combining several
computation-accelerating techniques: Monte Carlo simulations in the beginning
using the stochastic analog of the steady state approximation, then deterministic
continuation. A technique called symmetrization was also introduced. Symmetry
ensures that the same enantiomeric excess must be formed with the same probability
for both R and S enantiomers. The Monte Carlo simulation converges toward this
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Fig. 3.16 Experimentally
observed and theoretically
predicted probability
distributions of enantiomeric
excesses in the Soai reaction.
Experimental data from Soai
et al. [176] (Adapted from
[47])

symmetry in a probabilistic fashion after a high number of repetitions (convergence
is roughly proportional to the square root of the number of repetitions done).
Symmetrization is a method to force this symmetry into the calculation results:
whenever a particular repetition gave a certain final enantiomeric excess value, this
was interpreted as two different repetitions giving the same enantiomeric excess
values, one favor of the R, the other for the S enantiomer. This technique made sure
that the predicted final distribution shows the required symmetry independently of
the number of repetitions carried out. With the combination of these techniques,
successful prediction for the distribution of enantiomeric excesses was made based
on the presented 18-step model [47]. With a suitable selection of parameter values,
the experimental observations of the absolute asymmetric Soai reaction [176] could
be fully interpreted as shown in Fig. 3.16.

3.9 Parameter Estimation in Stochastic Kinetic Models

3.9.1 Estimation of Rate Constants from Equilibrium
Fluctuations

As we saw in Sect. 1.3.1.2, fluctuations around equilibrium are interconnected to
the dissipative relaxation process to equilibrium. Fluctuations may be interpreted
as spontaneous perturbations and relaxations, so in principle, they can be used
to obtain kinetic information without perturbing the system externally, so they
seemed to be advantageous comparing to the celebrated relaxation method [52].
Equilibrium concentration (better saying, number of particles) fluctuations served
as a source of information by using methods of light scattering [19, 20], and
conductance measurements [59]. For the association-dissociation reaction of the
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beryllium sulfate described by the reaction X
k1�*)�
k�1

Y, the spectrum of the electric

fluctuation (which reflects the concentration fluctuation) was found to be

S� D const

1C .2��.k1 C k2//2
: (3.167)

Since from deterministic equilibrium the ratio k1
k�1

is given; therefore, the individual
rate constants can be calculated.

Electrical noise in biological membrane systems emerges in consequence of
opening and closing of ion channels and membrane noise analysis was used to
estimate the stoichiometric and kinetic details and discriminate among concurrent
transport mechanisms [45,55,64,74,86]. Neher and Sakmann [136], by developing
the patch clamp technique, were able to record small ionic currents that flow through
a single ion channel in neuronal membranes, so they could obtain more direct
information on the kinetics of channel gating.

Fluorescence spectroscopy proved to be the main experimental technique to
study fluctuations, as a source of information. Single point measurements can
investigate small volumes containing only few molecules. Fluorescence corre-
lation spectroscopy is able to measure the fluctuation of the concentration of
fluorescent particles (molecules). Temporal changes in the fluorescence emission
intensity caused by single fluorophores are recorded. The autocorrelation func-
tion C.t/ WD EŒ�.t/�.t � �/� of the signal �.t/ is calculated, and from their
time-dependent decay of the fluorescence intensity, the rate parameters can be
calculated. Higher order correlations Cmn.t/ WD EŒ�.t/m�.t � �/n� [140,150] were
used to study the details of molecular aggregation. To extract more information from
the available data beyond average and variance, at least two efficient methods were
suggested. Fluorescence-intensity distribution analysis [85] is able to calculate
the expected distribution of the number of photon counts, and the photon counting
histogram [130] gives an account of the spatial brightness function. Forty years
after, fluorescence fluctuation spectroscopy still is a developing method [186], for a
very readable short review, see [144].

3.9.2 Parameter Estimation for Stochastic Kinetic Models:
Beyond the Fluctuation-Dissipation Theorem

While the fluctuation-dissipation theorem, as a relationship between fluctuations
around the equilibrium state and the dissipative relaxation process leading to it,
offers a method to obtain information on the rate constants, a more general method,
i.e. the parameter estimation of stochastic processes exploits information from
time-dependent data. Interestingly, during the late 1960s and early 1970s, when
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the first reviews on stochastic kinetics were written, only a very few and rather
unnoticed paper dealt with the parameter estimation problems of stochastic models
of chemical reactions.12

In the rather unnoticed papers of Mulloolly [131–133], Bartlett’s techniques
were applied to study the maximum likelihood estimator for the rate constant of
the first order, and r th order stochastic irreversible reactions. Among others, an
approximate expression for the maximum likelihood estimator of the rate constant

for the stochastic r th order reaction was derived. For the reaction rX
k! Y starting

from a molecules, and assuming error-free measurements, the asymptotic form
for a!1

Ok D .1=t/
rŠ

r2ar�1
ln

"
a � 1

2
r.r � 1/

a � 1
2
r..2nC 1/r � 1/

#
(3.168)

was derived.
Since the kinetic parameters of biochemical reactions, such as gene regulatory,

signal transduction and metabolic network, generally cannot measured directly,
parameter estimation techniques are developed and applied much more exten-
sively [27, 147, 155, 187]. A number of methods, based on maximum likelihood,
density function distance, cumulative density function and global optimization
algorithms were adopted. Parameter estimation techniques minimize the distance
measures between model predictions and the experimental data, while global
optimization algorithms search for the global optima to the minimization problems.

The majority of applications are based on some version of the maximum
likelihood method, and estimation criterion is the likelihood function given by

L.k/ D
mY

jD1

nY

iD1

f .oj
i ; ti Ik/; (3.169)

where the j th experimental replicates oj
1 ; oj

2 ; : : : oj
n are taken at time points t1, t2,

. . . tn for j = 1, 2, . . . , m (i.e. the experiments are done in m replicates). f .oj
i ; ti Ik

is the likelihood function determined by the density function histogram constructed
from the realizations of the stochastic process specified by the master equation.

The maximization of the likelihood function (actually for numerical reasons,
the minimization of the negative log-likelihood function) gives the best estimated

12The techniques of statistical parameter estimation based on the method of maximum likelihood
initiated by Ronald Fisher [61] was extended to stochastic (mostly for Gaussian and Markovian)
process among others by Ulf Grenander [67], Maurice Bartlett [15] and Patrick Billingsley [21].
The two-volume monograph by Liptser and Shiryayev (English translation: 1977, 1978 [110,111])
describes developments in sequential estimation problems for stochastic processes. For more
history see [16, 92].
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parameters (i.e. it gives the greatest possible probability to the given data set):
training data.

k� D argmin
k
� logL.k/ D argmin

k

mX

jD1

nX

i�1

� logP.o
j
i ; ti /; (3.170)

where P.o
j
i ; ti / is the conditional probability density function reconstructed from

the simulated realizations.
Most recently, there is a extensive progress in the application of parameter esti-

mation techniques for stochastic models of biochemical reactions, and a wide range
of optimization methods (such as derivative based methods, global optimization
and Bayesian techniques) were applied, and we cannot attempt to review here the
newer development. Probably it would be timely to write a monograph, and give a
systematic analysis of the methods and applications.

3.10 Stochastic Resonance in Chemical Systems

3.10.1 General Remarks

Broadly speaking, stochastic resonance is a mechanism by which a system in a noisy
environment shows an enhanced sensitivity towards small external time-dependent
forcing, when the noise intensity reaches some threshold. To put in another way,
the performance of a system is improved by adding some noise to it. According to
the original, narrower definition, SR considered only systems where the input was
a combination of a periodic single frequency signal and broadband noise. In such
systems, a natural measure of system performance is the output signal-to-noise ratio
(SNR) [120]. In linear systems, noise never has a “beneficial” effect, for certain
combinations of nonlinearity and noise, the response of the system undergoes
resonance-like behavior as a function of the noise level; hence the name stochastic
resonance, see Fig. 3.17.

The curve has a similar form for frequency-dependent systems. However,
frequency-dependent systems the signal/noise ratios shows maximum for a resonant
frequency, here the resonance is “noise-induced”.

3.10.2 Stochastic Resonance in One- and Multi-parameter
System

Stochastic resonance seems to occur everywhere in nature from lasers and
semiconductors, via ion channels and sensory systems via climate. Here, of
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Fig. 3.17 A typical curve of
stochastic resonance shows a
single maximum of the output
performance as a function of
the intensity of the input noise

Fig. 3.18 The Langevin potential in its symmetric configuration. x D b=V is the intensive
variable (From [107])

course, stochastic resonance in chemical systems is reviewed. Of course, as we
know, chemical noise can be generated internally, and it may interact with
nonlinearity. Specifically, the cubic Schlögl reaction was supplemented by the
periodic perturbation of a the external component C [107]. A Langevin potential
is defined, and as Fig. 3.18 shows, it is a quartic, double-well potential. For the
symmetric case !=V measures the distance from the central barrier at x0; here
! is the potential width and V is the volume. The periodic forcing � induces
the asymmetric rise and fall of the two minima.

The numerical solution of the assigned master equation results probability
distributions with different shape by changing w. For intermediate w, there is a
periodic transition between two extreme states. Figure 3.19 shows a detailed picture
of the SNR, as the characteristic feature of stochastic resonance.
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Motivated by the experimental behavior of the photosensitive BZ reaction, [1]
studied two-parameter stochastic resonance. It obviously shows characteristic fea-
tures not observed in one-parameter systems, as it was demonstrated, see Fig. 3.20.

3.10.3 Stochastic Resonance of Aperiodic Signals

Not only periodic, but aperiodic signals might be the subject of amplification
by noise, as it was demonstrated by [141] both in experimental (actually
electrochemical) and model studies. Information transfer is quantified by the C0

cross correlation function

C0 D h.x1 � hx1it /.x2 � hx2it /it ; (3.171)

where x1 and x2 represent the time series of the aperiodic input signal, and the
noise induced response of the electrochemical system, respectively. hi denotes the
respective time averages.

Figure 3.21 illustrates the existence of optimal noise level for information
transfer.

3.11 Computation with Small Stochastic Kinetic Systems

While the main field of application of stochastic chemical kinetics is mostly related
to systems biology, it emerged also as a possible model of computation in which
information is stored and processed in the integer counts of molecules in a well-
mixed solution [40, 181].
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The applicability of chemical systems to serve as computing elements have been
suggested in several different contexts. The realizability of logical functions by
chemical bistable systems was suggested by Otto Rössler [160]. The combination of
the fundamental logical elements can lead to complex logical networks. Chemical
reactions may implement efficient computing devices [115]. However, computation
with logic circuits would require more and more species – need a finite machine that
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Fig. 3.21 Cross-correlation
as a function of noise level
(From [141])

can do infinite computation. It is a model of the so-called non-uniform computation:
a different “program” is necessary for each input size.

Particularly, there were two questions to be answered. First, it turned out that
the reachability question – i.e. whether state B can be reached from state A is
decidable. The problem was formulated in a specific field of computer science
called Vector Addition Systems (VASs) [84]. Second, the probability of the
transition from A to B is undecidable.

A computation is uniform if the same program runs for all (the infinitely many)
inputs. It was shown that a canonic model of computation, i.e. a Register Machine is
a simple uniform model of computation. An algorithm was given [181] to show how
a stochastic chemical reaction network implement (or simulate) Register Machine
(a very simple universal Turing Machine) efficiently within a known error bound.13
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Chapter 4
The Book in Retrospect and Prospect

In Chap. 1 we introduced the topic from different perspectives.
We started the book with the general features of chemical kinetics. The mass

action type kinetic is a postulate in the phenomenological, deterministic model
of chemical reaction kinetics. While we restricted ourselves to deal with spatially
homogeneous systems only, what we see for the future is that systems biological
applications due to the heterogeneous nature of the cell will require the consid-
eration of spatial events, too. Macroscopic theories of chemical reactions cannot
take into account the spatial course of reactions, though it is obviously relevant
from a microscopic point of view. (Microscopic simulation of chemical reactions
proved to be very successful [12, 15].) Therefore, a chemical reaction is handled
as interactions among components being present at the “same place”. (The “same
place” is considered as the region of space that is sufficiently large to make possible
the underlying mechanism of reaction, but sufficiently small to be able to assume
that it is a “point”.) A chemical reaction has no spatial “cause”, and it can be
considered as the rearrangement of a “point having internal structure”. Traditional
chemical kinetics uses the concept of concentration, which is defined asymptotically
for infinite systems (N ! 1 and V ! 1 and n

V
D const). As we see

now, random fluctuations occur as a consequence of the small number of reacting
molecule. As it was shown (e.g. [31]), stochastic models of in vivo reactions
should “. . . include the fluctuation effects caused by the structural organisation
of the cytoplasm and the limited diffusion of molecules due to macromolecular
crowding.” The fundamental problem of chemical kinetics is establishing rate
laws based on experimental observations and interpret them on a molecular level.
While continuous state space deterministic kinetic models are still very useful in
chemical kinetics, there are situations, predominantly but not exclusively in “small
systems” [14], where stochastic modeling is a must. “. . . If the number of particles of
the components is small, the fluctuations taken into consideration by the stochastic
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model only, cannot be neglected even in “zeroth approximation”, because they
are not superimposed upon the phenomenon but they represent the phenomenon
itself” [29].

The main ancestor of any stochastic models occurring in physical, even financial
(!) systems is related to Brownian motion. Theoretical works led (i) via the Einstein
theory to fluctuation-dissipation theorems, (ii) via Langevin equations to the theory
of stochastic differential equations, (iii) via the connection between the stochastic
differential equations and the evolution equation for the probability density function
to theory of diffusion processes, and (iv) more generally to the establishment of the
foundations of stochastic processes, (v) to the experimental determination of the
Avogadro number.

The spirit and techniques of using stochastic models in chemical kinetics arrived
to chemistry by physicists (Leontovich [20] in the Soviet Union, and Delbrück
[7] in the USA) but remained generally unknown for chemists. They worked on
specific problems, and used analytic methods. The first complete treatment of a
second-order reaction was given by the Hungarian mathematician A. Rényi [26].
This paper gives evidence that the differential equation for the expectation of the
stochastic model cannot be identified with the differential equation associated with
the usual deterministic model. The remaining part of Chap. 1 is a preview of three
big questions: How to define the model? How to solve models analytically and
by simulations? How the emergence of systems biology implied the renaissance
of stochastic kinetics?

Chapter 2 starts with a brief summary of the mathematical foundations of
stochastic processes. The most important processes for us are the continuous time
discrete Markov processes. The state of the system is characterized by the absolute
state probabilities (also called as absolute distribution). By using also transition
probabilities and the Chapman-Kolmogorov equation, the master equation can
be derived. It is interesting to see that important classes of Markov processes,
such as birth-and-death process, Poisson process, can be implemented by chemical
reactions.

The standard stochastic model of homogeneous reaction kinetics is defined and
studied in Sect. 2.3. Specifically, the size and enumeration of the state space was
discussed. We feel that the potential applicability of the analysis of the enumeration
of state space is underestimated, and it may help to find solutions of the master
equation. It is an open problem for these authors, but the whole concept is related
to topic discussed in Sect. 3.11. In addition to the derivation of the master equation
in the general case, we showed in some simple examples how does it works in the
practice.

Since historically deterministic models preceded stochastic ones, early investi-
gators gauged the quality of a stochastic model by the proximity of its behavior to
that of the corresponding deterministic one. If one considers that the CDS model
takes into consideration the discrete character of the of the state space and it does
not neglect fluctuations than the appropriate question asks whether in what sense
and what extent can the deterministic model be considered as a good approximation
of the stochastic one?
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The deepest and most far-reaching results on the relationship of the CDS and
CCD models are due to Kurtz [17] and were extended by L. Arnold [2] to cell
models of reaction diffusion systems. Since, in general, only (loosely speaking)
linear systems have the property of consistency in the mean (that the mean of
the stochastic process satisfies the equations of the associated deterministic model)
other relationships were proven. Roughly speaking, they gave theorems for a large
class of (i.e. conservative and reversible) reactions, where the stochastic model tends
to the corresponding deterministic model in thermodynamic limit. This expression
means that the number of particles and the volume of the vessel tend to infinity at
the same time and in such a way that the concentration of the individual components
(i.e. the ratio of the particle number and the volume) tends to a constant and the two
model will be close to each other. The law of large numbers proved to be also valid.
One of us (G.L.) developed the method of stochastic map to delimit the parameter
space where the only stochastic models lead pragmatically acceptable results, but
the result obtained so far should be generalized and proven [19].

Section 2.4 is about the solution of master equations. First we discussed the scope
and limits of obtaining analytical and symbolic solutions. One of us (G.L) intro-
duced the concept of time-independent Q functions to characterize the probability
of a given state ever occurring during the entire course of the reaction. The method
proved to be useful for calculating the distribution of chiral molecules. Laplace
transform was used in [26] followed by [18] for a reversible bimolecular reaction.
Generating functions are particularly useful to study compartmental systems, since
the absolute distribution function can be expressed for every time instant as a
function of rate constants and the initial conditions. The Poisson representation
technique using so-called “quasi-probabilities” is based on the assumption that state
probabilities are given as a superposition of uncorrelated Poisson distributions. The
original [9] goal was to transform master equations to Fokker-Planck equations for
giving simpler characterization of equilibrium states. A very important feature of
stochastic models is related to their multiple time scales. Since the master equation
is a linear equation, the eigenvalues of the coefficient matrix give direct information
about the parameters of the multi-exponential time course.

Section 2.5 is about stationary and transient distributions. Historically, the
role of the Poissonian distribution was overemphasized, and it turned out to
have restricted significance. Stationary distributions are generally finite, while
the Poisson distribution is of course continuous. Loosely speaking, we see now
that unimodal stationary distributions are far from being always Poissonian. As
concerns the connection between multistationarity in deterministic models, and
multimodality in stochastic models, the trivial assumption is valid asymptotically
with increasing volume. Stochastic simulation is the most important methods for
solving stochastic models, and the Gillespie method (with its variations) is the only
game in the village. (The senior author already psychically processed the missed
opportunity mentioned in a previous footnote :-)). As concerns approximative
solutions, deterministic continuation is particularly useful in situations when initial
fluctuations are the subject of amplification. Even 25 years ago, we saw that “One
of the most extensively discussed topics of the theory of stochastic physics is
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whether the evolution equations of the discrete state space stochastic processes, i.e.
the master equations of the jump processes, can be approximated asymptotically
by Fokker-Planck equations when the volume of the system increases. . . ”. The
accuracy of the approximations is still subject of ongoing debates [10], as even the
title of the paper tells: “How accurate are the nonlinear chemical Fokker-Planck and
chemical Langevin equations?”

Non-Markovian models are occasionally used, and two examples, one in polymer
kinetics and one in gene expression model were given. Generally, the stochastic
counterparts of biochemical reactions with time delay are naturally lead to non-
exponential inter-event time distributions, so non-markovian process.

Chapter 3 gives a condensed overview about selected applications. The selection
is obviously somewhat arbitrary, we tried to illustrate the diversity of topics and
methods by alloying historically important and actually main stream applications.

In Sect. 3.2, examples are given for the particularly important role of fluctuations
around instability points. First we gave a constructed reaction scheme, where
the expectation coincides with the deterministic value, and for some particular
relationship for the rate constants, it is constant over time, while the variance
linearly increases with time. Keizer’s paradox is a paradigmatic example for finding
dramatic differences between deterministic and stochastic descriptions. Careful
analysis should be based on the description of the metastable states and the
relaxation times from them.

The motivation for studying bistable reactions came from two directions. First, a
model of a Brownian particle moving in a potential well was adopted by Kramers
[16] to reformulate the diffusion model of chemical reactions at the microscopic
level. Second, as we briefly reviewed, how diffusion in bistable potential can
be described by Fokker-Planck equation. The lac operon genetic network is a
paradigmatic example of bistable systems, where fluctuations may play a major role
for transitions among phenotypes.

Compartmental systems are often used frameworks in biomathematics, as models
of spatially discrete transport processes, and they time-dependent solutions can be
determined, i.e. the probability distribution can be expressed as the function of the
rate constants and the initial conditions.

From the perspective of formal chemical reactions, autocatalytic reactions can
be considered as a chemical implementation of positive feedback (economists like
to use the term “increasing returns”), a mechanism that is appropriate to amplify
microscopic fluctuations. Autocatalysis is assumed to be involved in abiogenesis as
well, and is the basis of clock reactions, when classically, a change in the color of the
solution occurs after a certain time delay. Under certain conditions, this time delay
showed fluctuations [24, 25]. From a chemical point of view, there is also another
reaction (“initiating process”) that provides a (usually slow) way of forming the
first molecules of the product. Autocatalytic extinction and autocatalytic runaway
emerges if the initiating process is neglected. Autocatalytic cycle processes (which
might have an important role in primordial organisms) are related to discreteness-
induced transitions.
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While enzyme kinetics is conceptually nothing else than conventional catalytic
reactions, the specific nature of the catalyst explains the specific role of enzyme
kinetics in chemical kinetics per se and its low concentration justifies the impor-
tance of the stochastic approach in biochemistry. The master equation for a single
enzyme molecule (e0 D 1) was solved by Arányi and Tóth [1].1

The stochastic map of the now 101 years old Michaelis–Menten mechanism
helps to identify the parameter regions when the use of CDS model is a must.

Probably the most visible development in the application of stochastic chemical
kinetics is the extensive use of the concept of signal processing. Chemical reaction
systems can be considered as devices which convert (in the general case time-
dependent and noisy) inputs to output. Filtering is a general concept to eliminate
some unwanted components of the input, and a very important class is frequency
filtering, and the whole procedure came from the engineering literature. The
efficiency of signal processing is characterized by several statistical measures, such
as mutual information and Fisher information.

Section 3.6.2 is about signal processing in biochemical networks. While bio-
chemical networks are able to perform computations, similarly to electronic circuits,
the mechanisms are rather different, and the main point is to understand how
chemically interacting molecules perform these calculations? Probably there is no
general theory to describe the effects of the structure of signaling reactions on the
reliability of information transmission (characterized by gain-to-noise ratio). We
reviewed a number of specific examples (such as reversible binding, deactivation
upon detection, autoregulation, certain feedback steps). In certain situations the

1Its significance now noticed [11], as we cite it almost verbatim. As they basically write, Arányi
and Tóth were the first to systematically study the master equation for enzyme kinetics. They
considered the special case in which there is only one enzyme molecule with several substrate
molecules in a closed compartment and showed that the master equation can then be solved
exactly. The exact solution consists of the probability distribution of the state of the system at
any time point. This is remarkable when one considers that it is impossible to solve the CCD
model without imposing restrictions on the reaction conditions such as pseudo-first-order kinetics,
or applying an approximation. From the exact solution of the probability distribution, Arányi and
Tóth derived exact expressions for the time course of the mean substrate and enzyme concentrations
and compared them with those obtained by numerical integration of the CCD model. Interestingly,
they found differences of 20–30 % between the average substrate concentrations calculated using
the CCD and CDS models for the same set of rate constants and for the case of one enzyme
reacting with one substrate molecule. If the initial number of substrate molecules is increased
to five, whilst keeping the same rate constants, then one notices that the difference between the
CCD and CDS results becomes negligibly small. In general, it can be shown that the discrepancy
between the two approaches stems from the fact that the mean concentrations, in chemical
systems involving second-order reactions, are dependent on the size of the fluctuations in a CDS
description and independent in the CCD description. The discrepancies become smaller for larger
numbers of substrate molecules because fluctuations roughly scale as the inverse square of the
molecule numbers. This important contribution by Arányi and Tóth went largely unnoticed at the
time, because experimental approaches did not have the resolution for measuring single-enzyme-
catalysed experiments to test the theoretical results.
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response to the signal shows bistability, and this phenomenon is noise-induced, so
no deterministic counterpart exists.

The concept of kinetic independence was offered as a framework for analyzing
information encoding and propagation in biochemical networks to remedy at least
partially the lack of general theory [4,5]. Probably it is too early to see the scope and
limits of the new approach, which uses conditional independence among realization
of the individual chemical components, but looks very interesting.

Odor information is processed at the early stages of olfactory system by odor-
receptor interactions. Papers which presented simpler and more complex stochastic
kinetic models of some odor intensity detection schemes were reviewed. Several
criteria for the estimation of optimal olfactory signal (i.e. odorant concentration)
exists, one of them is the Fisher information. (We have not found any paper which
used mutual information to characterize the efficiency of the odor information
processing.) There were some reaction schemes, where the deterministic and the
stochastic model led different optimal signals.

Stochastic models are extensively used and proved to be very useful in describing
intracellular calcium signaling. Noisy environment and low particle number implies
the necessity of using CDS models. Calcium signaling is related to a hierarchy of
spatiotemporal events from localized single channel gating to global spatiotemporal
pattern formation. A new, excellent paper [27] gives a summary of stochastic
models of intracellular calcium signaling. After reviewing the general modeling
concepts for intracellular biochemical reactions, the author describes process at
different hierarchical levels starting from microscopic events (such as kinetic
models of gating) via mesoscopic processes (such as reaction-diffusion models
and nonequilibrium dynamic description of single IP3 channels) where calcium
ion feedback for a single stochastic channel is a very important step – and spatial
modeling of clustered channels to macroscopic scale (such as whole-cell oscillations
and waves).

Gene expression is maybe the most active field of applied stochastic chemical
kinetics. Protein (and somewhat mRNA) fluctuations reflect the inherent random
character of the translation (and transcription) process. Noise in gene regulatory
networks were analyzed [21]. Related to the lac operon model, which is the
first workhorse of gene regulation, the differences in the switching behavior in
deterministic and stochastic models were pinpointed.2 Generally, relatively simple,

2It was interesting too see, how the relationship between bistability (i.e. three-stationarity) and
bimodality was commented by [21]:“. . . It is often assumed that bistability of deterministic mass
action kinetics is associated with bimodality in the steady-state solution to the master equation.
However, this is often not the case-we can have bistability without obvious bimodality and
bimodality without bistability. In fact, steady-state solutions to either the mass action kinetics or
the master equation can be very misleading-we cannot ignore the dynamics.. . . ” Cobb illustrated in
1978 [6] with the aid of a non-kinetic model that there is no one-to-one correspondence between
the location of the equilibrium points and of the extrema of stationary distributions. Somewhat
artificial kinetic examples were constructed [8] to support the view that all the four possible cases
among uni- and multistationarity and uni- and bimodality may occur.
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weakly realistic stochastic kinetic models have been studied analytically, much more
by simulations. We might be wrong, but probably we are not too far from the reality
to state that a general study of stochastic gene expression model from the perspective
of the theory of stochastic kinetic is missing. Separation of intrinsic and extrinsic
(“internal” and “external” in the older kinetic literature) is an important topic [13].
There are admitted mathematical difficulties in the case of multiplicative noise
and for reactions, when the deterministic model describes nonlinear kinetics. (The
neglect of the latter in stochastic gene expression model is somewhat unjustified.)

Section 3.8 investigates the stochastic kinetic aspects of chiral symmetry (i.e.
associated with the lack of certain symmetry elements). Due to its remarkable
importance in biochemistry, the formation of homochirality was extensively
studied. Many biological macromolecules have this property, i.e. when mirror image
counterparts have very different roles: typically, only one of them is abundant and it
cannot be exchanged with the other one.

In racemic mixtures, the two mirror-image pairs (enantiomers) occur in equal
quantities (in deterministic approximation), or characterized by a binomial distribu-
tion by using statistical approach. In (even not too) large systems the fluctuations
are below the detectability threshold. The basic question was to find kinetic
schemes which generate non-binomial stationary distributions of the enantiomers.
Enantioselective autocatalysis (where both words are emphasized) is supposed to
be a chemically realistic amplifying mechanism to produce homochirality. A simple
enantioselective autocatalysis model was first presented followed by the description
of the celebrated (originally purely deterministic) Frank model (1953). Finally, a
chemically realistic system, namely the Soai reaction was briefly reviewed. The
origin of biological homochirality is still under extensive investigations (see e.g.
[3, 23], and the appearance of more realistic mechanisms for the amplification of
small initial deviations due to fluctuations can be expected.

Since there were relatively few measurements for chemical fluctuations, the
development of techniques of parameter estimation for stochastic models was a
neglected fields. The spirit of the fluctuation-dissipation theorem was used to
calculate individual rate constants from equilibrium fluctuations. Since fluctuation
is much better visible in 2D systems, it is understandable that noise analysis was
much more frequent related to cell membrane gating processes than to reactions in
conventional chemical solutions. With the appearance of time-dependent fluctuation
data obtained by high resolution fluorescence microscopy parameter estimation
techniques for stochastic models of biochemical reactions are developing rapidly.
There is active research on both derivative based and derivative free methods [30].
While some methods seem computationally effective and more reliable than
others :-), the computational problem is difficult. Probably there is a long way to
go from toy models to real life problems to prove the pleasant features of the new
methods.

Stochastic resonance is a mechanism by which a system in a noisy environment
shows an enhanced sensitivity towards small external time-dependent forcing, and
the optimal performance of certain nonlinear systems happens at a certain larger-
than-zero noise intensity. While there are misconceptions and debate about use and
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misuse of the concept of stochastic resonance [22] some evolved version of the
concept [32] might be useful also in (chemical) signal detection.

The very last Sect. 3.11 briefly reviews a fascinating and very original idea, the
use of stochastic kinetics in the theory of computation. It was demonstrated that it is
possible to design chemical computers that to implement Turing-universal compu-
tation. We (the authors!) don’t know, however, whether or not there are any studies
about the eventual super-Turing character, as neural networks have [28]. It is too
early to see the details of the intimate relationship between the computational power
of stochastic chemical reaction networks and its role in biological computation. But
this is a story of the future.
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