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Supervisor’s Foreword

A PhD project in subatomic physics can be like an excursion. At first, it is nothing
more than a vague, sketchy, maybe even crazy and imprecise idea about a
groundbreaking experiment to gain insight into a new or longstanding physics
question. Then the idea gains some traction, preparations start, organization takes
over, but the goal seems too ambitious and out of reach, and briefly takes the wind
out of your sails. However, with a fresh puff the initial excitement comes back as
you take deliberate actions and head off towards uncharted territories. From here
out it is very meticulous work to achieve progress and often you go in the opposite
direction. But, you persevere and ultimately arrive at your new discovery; the initial
question has found its answer and the final publication is submitted. This is the
moment to celebrate; the pinnacle of a student’s education. Dr. Jörg covers pre-
cisely such a journey with his thesis. It starts out with a question, lays the foun-
dation of the known, and describes the measurement, followed by the analysis. As a
reward to the reader, Dr. Jörg shares his first-hand insight of a newly captured
picture of the three-dimensional structure of the proton, never seen before.

Understanding the structure of the proton is a fundamental challenge and one
of the unsolved mysteries that physics faces today. A typical tool for experimentally
accessing the internal structure of the proton is lepton–nucleon scattering. In par-
ticular, deeply-virtual Compton scattering at large photon virtuality and small
four-momentum transfer to the proton provides an excellent tool to obtain a
three-dimensional tomographic picture of the proton. Using clear language, Dr. Jörg
presents the highly complex subject of this pioneering measurement taken at CERN
in a manner suited for freshmen and experts alike. In detail, he provides the
foundations of the measurement, the data analysis, and includes exhaustive studies
of potential systematic uncertainties, which could bias the result.

This thesis is a rare jewel, describing fundamental research in a highly dynamic
field of subatomic physics. It will serve as a map for future followers to travel
similar journeys exploring the structure of the proton and enjoying the beauty of
particle physics.

Freiburg, Germany Prof. Dr. Horst Fischer
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Chapter 1
Preamble

It is an inherent part of human nature to decompose and understand the objects
which surround us. The answer to the question of what matter is made of and how its
macroscopic properties can be explained on a microscopic level pushed the technical
and theoretical boundaries further and further.

The first discovery of what is regarded with today’s knowledge as one of the
elementary constituents of matter was achieved by J. J.Thomson in 1897. Within
cathode-ray-experiments he could proof the existence of the electron [1]. The atom,
which was regarded as the elementary building block of matter so far, started to show
a substructure. It should not take more than 12 years and Thomson’s picture that the
atom is build of electrons, surrounded by a massless positive medium [2], could
be ruled out. The observation of large scattering angles within the scattering of α

particles of gold atoms lead the working group around E.Rutherford to the discovery
of the positively charged nuclear core, consisting of protons [3]. The experimental
proof of the existence of the neutron in 1932 by J.Chadwick [4] completed the picture
of the atom. But this should not mark the end of the story. Nature did not reveal all
its secrets back then and neither does it today.

The deviation of the magnetic moment of the nucleon from a pointlike spin- 12
Dirac particle was the first evidence that the nucleon is not an elementary build-
ing block of matter either [5, 6]. A dedicated study, which marked the beginning
of the age of particle accelerators, reveiled the size of the nucleon in elastic elec-
tron nucleon scattering experiments [7]. The nucleon could clearly not be regarded as
pointlike anymore and the technique of elastic scatteringwas soon extended to inelas-
tic and deep inelastic scattering. This lead to the observation of the so called scaling
behaviour of the measured cross sections [8, 9] and to the discovery of a variety
of new particles during the following years. The structuring of this variety of parti-
cles and the explanation of the scaling behaviour were triggered by M.Gell-Mann,
G.Zweig and A.Peterman who postulated that the nucleon is build of fundamental
pointlike particles [10–12], which are referred to as partons or quarks, antiquarks
and gluons in the modern literature.

© Springer International Publishing AG, part of Springer Nature 2018
P. Jörg, Exploring the Size of the Proton, Springer Theses,
https://doi.org/10.1007/978-3-319-90290-6_1
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2 1 Preamble

Today it is well established that all visible matter is build of baryons and the three
generations of leptons. The baryons are further classified into hadrons and mesons,
which are build of quarks, antiquarks and gluons. Similar to the leptons, quarks are
structured into three generations. The two quarks and antiquarks of each generation
appear in three states of the so called fundamental colour charge and are subject
to the strong interaction via the exchange of gluons. With this in mind, the first
part of the initial question, what matter is made of, seems to have found an answer
and the second part, of how to explain the macroscopic properties of matter on the
microscopic level, can be attacked.

Tremendous efforts have been made to understand the Englert-Brout-Higgs-
Guralnik-Hagen-Kibble mechanism, which led to the successful discovery of the
Higgs Boson [13, 14] and the clarification of the orgin of the mass of fundamental
particles. However, it is often forgotten that the vastmajority of visiblematter is given
by baryons, which gain most of their mass dynamically within poorly known non-
perturbative Quantum Chromo Dynamics processes. The best laboratory to study
the underlying mechanisms of non-perturbative Quantum Chromo Dynamics is still
given by the nucleon and the central question of how the macroscopic properties of
a nucleon like its mass, spin and size can be comprehensively decomposed into the
microscopic description in terms of quarks, antiquarks and gluons remains still open.

Dedicated to the decomposition of the spin of the nucleon several experiments at
CERN,1 DESY2 and SLAC3 have been carried out, while a lot of today’s interest
should still be attributed to the early findings of the EMC4 collaboration. The EMC
collaboration observed that only a small part of the spin of the nucleon is given by
the quarks and antiquarks [15]. These findings are in strong contrast to the naive
quark parton model, which states that the spin of the nucleon is mainly originating
from the spins of its three valence quarks and predicts even in relativistic extensions
a contribution from the valence quarks of about 60 percent. Within the framework
of inclusive and semi-inclusive deep inelastic scattering the qualitative statement of
the EMC was experimentally verified [16, 17] and further decomposed during the
following years. As of today, flavour specific contributions of the different quarks
to the spin of the nucleon are determined [18–21] and the assumption of a very
large contribution of the gluons to the spin of the nucleon is ruled out [22, 23].
Triggered by the findings of the EMC experiment and the recent experimental results,
it also became evident that a one dimensional description of the nucleon in terms of
parton helicity distributions will never lead to a comprehensive picture of its spin
decomposition as for example the concept of orbital angular momenta [24] can not
be in-cooperated in a one dimensional description.

Extending beyond the scope of inclusive and semi-inclusive deep inelastic scat-
tering, so called Generalised Parton Distributions can be accessed in exclusive deep

1Conseil Européen pour la Recherche Nucléaire.
2Deutsches Elektron Synchrotron.
3Stanford Linear Accelerator Center.
4European Muon Collaboration.



1 Preamble 3

inelastic scattering experiments. A major part of the COMPASS-II5 physics pro-
gramme is dedicated to the investigation of Generalised Parton Distributions, which
aim for the most complete description of the partonic structure of the nucleon, com-
prising both, spatial and kinematic distributions. By including transverse degrees
of freedom a three dimensional picture of baryonic matter is created, which will
revolutionise our understanding of what comprises 99 percent of the visible matter.
Generalised Parton Distributions are experimentally accessible via lepton-induced
exclusive reactions, in particular the Deeply Virtual Compton Scattering (DVCS)
and Hard Exclusive Meson Production (HEMP). At COMPASS-II those processes
are investigated using a high intensity muon beam with a momentum of 160GeV/c
together with a 2.5 m-long liquid hydrogen target, surrounded by the target time of
flight system CAMERA6 and an open field two stage spectrometer, to detect and
identify charged and neutral particles.

After a discussion of theoretical and experimental methods related to the structure
of the nucleon within Chap. 2 and a description of the COMPASS-II experiment in
Chap. 3 the actual scientifc contribution of this thesis is outlined. It comprises the
DVCS analysis of the data recorded in 2012 within the framework of a pilot run for
the dedicated 2016/2017 DVCS data taking as well as vital improvements on the
CAMERA prototype used in 2012.

Chapter 4 will summarise the application of a kinematically constrained fit to
the COMPASS-II data, which provides an essential tool within the whole analysis.
Chapter 5 consists of a detailed description of the calibration of the CAMERA
detector. Furthermore, the determination of the luminosity, the application of data
quality criteria and the determination of the efficiency of the CAMERA detector
are described throughout this chapter. An overview of the available Monte Carlo
simulation techniques and a detailed description of the selection of the exclusive
single photon sample is given in Chap. 6. The analysis concludes with Chap. 7,
comprising the extraction of the DVCS cross section and its dependence on the
square of the four-momentum transfer to the target proton as well as the treatment
of the related systematic uncertainties and an interpretation of the results.

Within the concept of Generalised Parton Distributions the square of the four-
momentum transfer to the target proton is closely related to the transverse size of the
nucleon. The pioneering measurement carried out within this thesis will give a first
evaluation of the transverse size of the nucleon as a function of the Bjorken scaling
variable xBj in the uncharted territory of 10−2 < xBj < 0.2.

The exclusive measurement of DVCS demands an efficient and precise detection
of the recoiled target nucleon, which is achieved by the CAMERA detector. The
extensive detector performance studies, carried out within this thesis, lead to vital
improvements on the CAMERA detector prototype used in 2012. The application of
these improvements, resulting in the successful detector commissioning during the
beginning of the dedicated DVCS measurement, are discussed in Chap. 9.

5COmmon Muon Proton Apparatus for Structure and Spectroscopy.
6COMPASS Apparatus for Measurements of Exclusive ReActions.
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Chapter 2
Introduction to Theory

This chapter is supposed to give an overview of the theoretical and experimental
knowledge on the structure of the nucleon. After a short introduction to elastic scat-
tering and the topic of Form Factors, inclusive and semi-inclusive deep inelastic
scattering techniques are explained. The focus is put on the spin decomposition of
the nucleon, whichwill motivate the subject of Generalised PartonDistributions. The
chapter concludes with the introduction of Generalised Parton Distributions and the
description of a particular exclusive deep inelastic scattering process, Deeply Virtual
Compton scattering, which is the most clean channel to constrain Generalised Parton
Distributions experimentally.

2.1 Elastic Scattering and Form Factors

Since the first measurement of the magnetic moment of the proton by O.Stern [1]
the hypothesis of the proton being a pointlike particle could be excluded, due to the
significant deviation of the experimental result to the magnetic moment of a spin-
1
2 Dirac particle. M.N.Rosenbluth was the first one, who discussed the possibility
that an electron, being elastically scattered of a proton, is influenced by reduced
charges and reduced magnetic moments. He connected this to the fact that the proton
is build by a neutron core and a positively charged meson cloud [2]. Though his
picture of the proton itself did not establish, the idea of reduced effective charges
and magnetic moments was carried on by R.Hofstadter. He explained the results
of Ref. [3] for the differential ep cross section with the Mott cross section, being
modified by a phenomenological Form Factor F(q). This Form Factor is related to
the charge distribution ρ(r) of the proton by a Fourier transformation [4]. In modern
notation his approach reads [5]:

© Springer International Publishing AG, part of Springer Nature 2018
P. Jörg, Exploring the Size of the Proton, Springer Theses,
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dσ

d�
=

(
α2(�c)2

4E2 sin4 ( θ
2 )

)
·
(
1 − β2 sin2

(θ

2

))
· |F(q)|2

:=
(
dσ

d�

)
Rutherford

·
(
1 − β2 sin2

(
θ

2

))
· |F(q)|2

:=
(
dσ

d�

)∗

Mott

· |F(q)|2 =
(
dσ

d�

)∗

Mott

∣∣∣∣
∫

volume
ρ(�r)ei�q�rd3�r

∣∣∣∣,

while the incident electron energy is denoted by E, the electromagnetic coupling
constant by α, the electron velocity in units of the speed of light c by β, the Planck
constant by �, the magnitude of the centre of mass momentum transfer between
the incident and scattered electron by q = |�q| and the polar scattering angle of the
electron by θ. The “∗” emphasises the fact that the recoil of the target is not taken
into account within this formula. Assuming an exponential distribution for ρ(r), this
phenomenological ansatz described the data quite well. However, as the proton has
a charge and a magnetic distribution, it is easy to judge with today’s knowledge that
a single Form Factor can not give a complete description.

It is shown from first principles within the one-photon-exchange approximation
that the calculation of the cross section of elastic electron proton scattering can
be separated into a leptonic and a hadronic part. A complete description of the
latter, satisfying Lorentz invariance, symmetry under space reflection and charge
conservation, is given by two real functions [6]. In modern notation the cross section
of elastic electron-proton scattering is given by [5]:

dσ

d�
=

(
dσ

d�

)∗

Mott

· E
′

E
·
(
G2

E(Q2) + τ

ε
G2

M (Q2)

)
/(1 + τ )

:=
(
dσ

d�

)
Mott

·
(
G2

E(Q2) + τ

ε
G2

M (Q2)

)
/(1 + τ ),

(2.1)

whileQ2 is the negative of the square of the four-momentum transfer to the scattered
electron. Originally the Dirac and Pauli Form Factors F1 and F2 were introduced,
which are related to the electric and magnetic Sachs Form Factors GE and GM [7],
used today, by:

GE = F1 − τF2 and GM = F1 + F2.

The quantity τ is given by τ = Q2

4M 2c2 , while M denotes the mass of the proton or
respectively the neutron. The virtual photon polarisation ε is given by:

ε = (
1 + 2(1 + τ ) tan2 (

θ

2
)
)−1

.

From Eq. 2.1 it is possible to disentangleGE(Q2) andGM (Q2) by building a reduced
cross section

(
dσ
d�

)
r , using the experimentally measured cross section

(
dσ
d�

)
Exp.:
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(
dσ

d�

)
r

= ε(1 + τ )

τ

(
dσ

d�

)
Exp.

/

(
dσ

d�

)
Mott

= G2
M + ε

τ
G2

E .

The linear dependence on ε is exploited, as for a fixed value of Q2 the slope and the
intercept of the reduced cross section are given by 1

τ
G2

E and respectively G2
M . This

technique is commonly known as the Rosenbluth separation.

2.1.1 The Radius of the Proton

Applying the interpretation ofR.Hofstadter to the electric andmagnetic FormFactors
for sufficiently small values of Q2, for which Q2 ≈ �q 2, the Form Factors GE(Q2)

and GM (Q2) can be interpreted as the Fourier transforms of the charge and magnetic
distributions. The assumption of a charge and magnetic distribution, which decrease
exponentially with respect to their centre, leads to the so called standard dipole
parametrisation, Gstd .dipole, of the Form Factors:

GE = GM

μp
= Gstd .dipole =

(
1 + Q2

0.71(GeV/c)2

)−2

. (2.2)

The magnetic moment of the proton divided by the nuclear magneton is denoted by
μp. Measuring the precise dependence ofGE/M onQ2 close to zero, themean electric
and magnetic proton radius squared can be extracted as [8]:

< r2E/M >= − 6�2

GE/M (0)
· dGE/M (Q2)

dQ2
.

Figure 2.1 shows a high precision measurement of the electric Form Factor, per-
formed at theMainz acceleratorMAMI,1 which is compared to recent measurements
and fits.

Within Ref. [8] the Form Factors were extracted by a direct least squares fit of a
variety of different models to the measured ep cross section data and cross checked
within the Rosenbluth separation technique, mentioned in Sect. 2.1. The extracted
values of the electric rE and magnetic rM radii are given as:

√
< r2E > = 0.879(5)stat(4)sys(2)model(4)group fm,

√
< r2M > = 0.777(13)stat(9)sys(5)model(2)group fm,

1MAinzer MIkrotron.
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Fig. 2.1 The Form Factor GE normalised to the standard dipole Gstd .dip. according to Eq. 2.2 as
measured by Ref. [8]. Black line: Best fit to the Mainz data. Blue area: Statistical 68% point wise
confidence band. Light blue area: Experimental systematic error. Green outer band: Variation of
the Coulomb correction by ±50%. The indicated references are given within Ref. [8]

while the group error refers to a deviation between the two groups of models using
spline and polynomial techniques.

The technique of elastic scattering is not the only way to determine the charge
radius of the proton though. An alternative approach lies within the measurement of
the hyperfine structure and the lamb shift of hydrogen atoms,whichhas been extended
in 2010 by measuring the energy difference between the 2S1/2 and 2P1/2 states of
muonic hydrogen [9]. Table 2.1 shows a comparison of the electric charge radius of
the proton, using different measurement techniques. While the measurements using
an electron seem to be compatible between each other, there is an obvious discrepancy
with respect to the muonic measurements. This is commonly known as the “Proton
Radius Puzzle”.

A recent measurement of the 2S-2P transition in muonic deuterium [11] yields
also a large discrepancy with respect to Ref. [10] for the mean deuterium radius
squared. The obtained value of 2.12562(78) fm is six σ smaller than the CODATA
value of 2.1413(25) fm. This indicates that the “puzzle” is not limited to the proton.

Table 2.1 Comparison of different experimental values for the RMS radius of the proton

Determination type
√

< r2E >/fm References

Mainz form factor measurement: 0.879(8) [8]

CODATA: H and D spectroscopic value:
(no ep scattering data, no muonic hydrogen)

0.8759(77) [10]

CODATA: recommended value:
(spectroscopy, e p/e d scattering data, no
muonic hydrogen )

0.8751(61) [10]

Muonic hydrogen (Lamb shift) 0.84184(67) [9]



2.1 Elastic Scattering and Form Factors 11

As one combines the measured mean deuterium radius squared of Ref. [11] with the
electronic isotope shift to determine a mean proton radius squared of 0.8356(20) fm,
the value seems to be in agreement with the one obtained from the muonic hydro-
gen measurement. This even amplifies the “Proton Radius Puzzle”, which is still
unsolved.

2.2 Deep Inelastic Scattering (DIS)

Deep inelastic lepton nucleon scattering (DIS) is one of the most fundamental tools
of high energy physics. Studying the inclusive, semi-inclusive or exclusive cross
sections of a lepton l with four-momentum k being scattered of a nucleon N with
four-momentum p, allows probing the structure of the nucleon and the interaction
mechanismswithin. As in the case of the elastic scattering themediator of the interac-
tion between the lepton and the nucleon is a virtual photon γ∗ with four-momentum
q = k − k ′. Effects of the weak interaction are neglected in the following, since the
center ofmass energy atCOMPASS-II of

√
s ≈ 17.4GeV is not sufficient to produce

a Z0 boson.
In contrast to elastic scattering, the final state of an inelastic scattering process

consists of more than the scattered lepton l′ with four-momentum k ′ and the recoiled
target nucleonwith four-momentum p′. It is characterised by the fact that the invariant
mass W 2 of the γ∗p system is greater than the mass of the proton M :

W 2c2 = (q + p)2 = p2 + 2pq + q2 = M 2c2 + 2M ν − Q2 > M 2c2. (2.3)

Looking at Eq. 2.3 several things should be noted, yielding the following definitions
of Lorentz invariant inclusive scattering variables:

• The quantity ν is given by:

ν := pq

M
lab= E − E′.

Another frequently used variable in this context is:

y = pq

pk
lab= M (E − E′)

ME
= (E − E′)

E
.

• The quantity Q2 is defined as the negative square of the four-momentum of the
virtual photon:

Q2 = −q2
lab≈ 4EE′

c2
sin2 (

θ

2
).

• Transforming the inequality on the right side of Eq. 2.3 yields:
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xBj := Q2

2M ν
< 1.

The inelasticity of the process is thus characterised by the dimensionales Bjorken
scaling variable xBj being smaller than one. In case of W 2 = M 2 it follows from
Eq. 2.3 that xBj = 1, which accounts for the elastic case.

The equations marked with “lab” can be derived by taking into account the def-
inition of the corresponding four-vectors in the laboratory system: k = (E/c, �k),
k ′ = (E′/c, �k ′) and p = (M c, �0), while E and E′ denote the initial and respectively
final lepton energy and θ the angle between �k and �k ′, the momenta of the in- and
outgoing lepton.

With these definitions in mind deep inelastic lepton nucleon scattering can be
cha-racterised as the process of lepton nucleon scattering in the limit:

Q2, ν → ∞, xBj = fixed < 1.

In case of inclusive DIS only the final state lepton is of interest. It should be dis-
tinguished from semi-inclusive and exclusive DIS, for which at least one final state
hadron or respectively the complete final state is considered. It is often said that in
deep inelastic scattering the target nucleon is destroyed and that it fragments into
a shower of hadrons. This may be true for most of the processes being considered.
But, as it will be discussed in Sect. 2.3, the final state proton may well stay intact,
while the creation of an additional real photon or meson accounts for the inequality
of Eq. 2.3.

2.2.1 Inclusive DIS

Within the one-photon-exchange approximation the cross section for inclusive deep
inelastic scattering can be written as [13, 14]:

dσ

dxBjdy
∝ LμνW

μν

=
[
L(S)

μν (k, k ′)W μν(S)(q, p) + L(A)
μν (k, sl, k

′)W μν(A)(q, p, sN )
]
.

(2.4)

The calculation of the cross section is separated into the leptonic tensor L, which
describes the electromagnetic interaction at the upper vertex of Fig. 2.2 and the
hadronic tensor W , which accounts for the non perturbative QCD structure of the
nucleon at the lower “blob” of Fig. 2.2. Within the second line of Eq. 2.4 both tensors
have been decomposed into a symmetric (S) and an antisymmetric (A) part. The spin
four-vector of the initial lepton l and nucleon N , denoted by sl and sN , appear only
within the antisymmetric part, which describes the polarised cross section.
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Fig. 2.2 Feynman diagram
of the deep inelastic
scattering process [12]

The structure of the hadronic tensor is restricted by symmetry and conservation
laws of the strong interaction. Its antisymmetric part can be parametrised by two real
functions g1(xBj,Q2) and g2(xBj,Q2), while its symmetric part is given by two real
structure functions F1(xBj,Q2) and F2(xBj,Q2).

2.2.2 Unpolarised Inclusive DIS

The unpolarised cross section of lepton nucleon scattering can be parametrised as
follows [13, 14]:

d2σ

dxBjdy
= 4πα2

Q2xBjy

[
xBjy

2F1(xBj,Q
2) +

(
1 − y − γ2y2

4

)
F2(xBj,Q

2)

]
, (2.5)

while γ is given by γ = 2MxBj
Q .

Figure 2.3 shows theworld data on the experimentally extracted structure function
F2 in dependence of Q2 and xBj. In contrast to the elastic scattering cross section,
which showed a strong Q2 dependence, F2 depends very weakly on Q2. This was
a first hint that pointlike particles are involved in the scattering process, as naively
speaking the Fourier transform of a constant function is a δ-distribution. It is this
astonishing result, which gave rise to the quark parton model.

In the quark parton model the proton is assumed to be build of pointlike partons,
the quarks, antiquarks and gluons. The cross section of Eq. 2.5 can be interpreted as
a sum of incoherent elastic lepton quark scattering processes for all possible types
of quarks and antiquarks with fractional electric charge ef . The structure functions
F1 and F2 can then be expressed in the naive parton model as [15]:

F1(xBj) = 1

2

∑
f

e2f
(
qf (xBj) + q̄f (xBj)

)
, (2.6)
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Fig. 2.3 The proton structure function F2 in dependence of Q2 and xBj as extracted by various
experiments. For the purpose of plotting Fp

2 has been multiplied by 2ix, where ix denotes the
number of the x-bin, ranging from ix = 1 (x = 0.85) to ix = 24 (x = 0.00005). The corresponding
references are given in Ref. [13]

F2(xBj) = xBj
∑
f

e2f
(
qf (xBj) + q̄f (xBj)

)
. (2.7)

In a fast moving frame with respect to the virtual photon axis the Bjorken variable xBj
can be interpreted as the longitudinal momentum fraction of the parton with respect
to the momentum of the proton. The term (qf (xBj)dxBj) yields the probability of
probing a quark of flavour f within the interval [xBj, xBj + dxBj]. This holds likewise
for the antiquarks denoted by the “bar” sign.

From Eqs. 2.6 and 2.7 the master equation of the quark parton model is obtained:

2xBjF1(xBj) = F2(xBj). (2.8)
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As in the derivation of Eqs. 2.6 and (2.7) the quarks and antiquarks are assumed to
have spin �/2, the experimental confirmation of the Callan Gross equation (2.8) [16]
confirms the spin- 12 nature of the quarks.

Equations (2.6), (2.7) and (2.8) are valid up to logarithmic corrections in Q2.
The intuitive picture of this so called scaling violation is as follows: With increasing
resolving powerQ2 the fact that a quark emits a gluon,which can in turn split into a qq̄
pair, is observed. Thus, as Q2 increases the probability to probe a quark or antiquark
with a smaller value of xBj increases, as it is visible in Fig. 2.3. The precise evolution
of the structure functions from one scale, given byQ2 in this case, to another is given
by the DGLAP2 equations [17–20], while in the kinematic region of very small xBj
it may be more appropriate to sum leading terms in ln (1/xBj), which is achieved by
the so called BFKL3 equations [21–24].

2.2.3 Longitudinally Polarised Inclusive DIS

In order to determine the polarised structure functions, cross section differences with
different target polarisation states are used. In case the incoming lepton is polarised
antiparallel to the beam direction (−) and the target is longitudinally polarised either
parallel (+) or antiparallel (−) to the beam direction, the cross section difference
reads [14]:

d3σ−+

dxBjdydφ
− d3σ−−

dxBjdydφ
=

4α2

Q2

[(
2 − y − γ2y2

2

)
g1(xBj,Q

2) − γ2y2g2(xBj,Q
2)

]
.

(2.9)

The structure function g2 is suppressed by 1
Q2 , which allows for an almost direct

experimental extraction of g1 with a longitudinally polarised target. In most cases
the experimental observable is not the cross section itself, but rather an asymmetry.
In this context the directly observable asymmetry A|| is given by the cross section
difference, according to Eq.2.9, divided by the unpolarised cross section, according
to Eq. 2.5:

A|| = dσ−+ − dσ−+

dσ−+ + dσ−+ ,

while dσ is short for d3σ
dxBjdydφ

. One usually relatesA|| to the virtual Compton scattering
asymmetry A1 via the optical theorem [15]:

2Dokshitzer Gribow Lipatow Altarelli Parisi.
3Balitskii Fadin Kuraev Lipatov.
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Fig. 2.4 Spin-dependent structure function g1 of the proton (p), deuteron (d) and neutron (n),
extracted with polarised deep inelastic scattering at different fixed target experiments. The corre-
sponding references are given in Ref. [13]

A|| ≈ DA1 := D

(
dσ1/2 − dσ3/2

dσ1/2 + dσ3/2

)
.

The quantities dσ1/2 and dσ3/2 are the virtual photoabsorption cross sections, in case
the projection of the total angular momentum of the γ∗p system along the incident
lepton direction is 1/2 or respectively 3/2. As a virtual photon can have three helicity
states the depolarisation factor D, given e.g. in Ref. [15], describes the loss of the
incident lepton polarisation due to longitudinal virtual photon polarisation.4 The
asymmetry A1 has a simple expression in terms of g1 and g2 [15]:

A1 = (g1 − γ2g2)/F1 ≈ g1/F1. (2.10)

Figures 2.4 and 2.5 show the current status of the extraction of g1.

4In case the spin and momentum vector of a virtual photon are perpendicular, it is called longi-
tudinally polarised. For historic reasons this is contrary to the usual convention used for massive
particles.
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Fig. 2.5 World data on the spin-dependent structure function g
p
1 as a function of Q2 for various

values of xBj. The lines represent the Q2 dependence for each value of xBj, as determined from a
NLO QCD fit [30]

Within the naive quark parton model g1(xBj) is given by [15]:

g1(xBj) = 1

2

∑
f

e2f
(
�qf (xBj) + �q̄f (xBj)

)
, (2.11)

while the helicity distribution of a quark with flavour f is denoted by:

�qf (xBj) = q⇒
f (xBj) − q⇐

f (xBj).

The polarised parton distribution functions q⇒
f (xBj) and q⇐

f (xBj) denote the proba-
bility densities to probe a quark with same and respectively opposite spin direction
with respect to the longitudinally polarised nucleon. They are also logarithmically
dependent on Q2 with the same remarks being valid as for the unpolarised case.

A particular intriguing quantity in spin physics is the first moment of g1. It is given
in leading order by [25]:

∫ 1

0
g1(xBj,Q

2) = 1

12

(
a3 + 1

3
a8

)
+ 1

9
a0, (2.12)
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and is linked to the isovector charge a3, the octed charge a8 and the flavour-singlet
charge a0. In terms of flavour composition a3 and a8 are given for the proton by:

a3 = �u − �d + (a.q.), a8 = �u + �d − 2�s + (a.q.), (2.13)

while the abbreviation (a.q) denotes the same terms for the corresponding antiquarks
and the notation:

�qf =
∫ 1

0
�qf (xBj)dxBj,

is used. The isovector charge a3 is equal to the weak coupling constant | gA
gV

|, while the
octed charge a8 is known from hyperon decay and the assumption of SU(3) flavour
symmetry. The contribution of the quarks and antiquarks to the spin of the nucleon
is given by:

a0 = �� =
∑
f

�qf + (a.q.). (2.14)

For higher orders in QCD �� becomes Q2 dependent and Eq. 2.12 is modified by
corrections at the order of the strong coupling constant. In the MS renormalisation
scheme the singlet axial charge a0(Q2) is still identical to ��(Q2) [26], while in the
off shell scheme it is shown that the gluon polarisation �g can also contribute to a0
[27]:

a0(Q
2) = ��off − 3

αs(Q2)

2π
�g(Q2). (2.15)

A historic measurement was the EMC result for the first moment of g1 for the
proton. Using Eq. 2.12 and (2.13) together with the measured moment over g1 and
the known values of a3 and a8, the EMC deduced a singlet axial charge a0 compatible
with zero and a sizeable negative strange quark contribution (�s + �s̄) [28]. The
identification of a0 with ��, using Eq. 2.14, lead to the conclusion that a negligible
amount of the proton spin originates from the quarks and antiquarks.

These findings are in strong contrast to the static quark parton model, which
predicts that the proton spin originates solely from the spins of the valence quarks.
Even in relativistic parton models a contribution of 60% of the quarks and antiquarks
is expected.

While the value of a0 is somewhat larger with today’s knowledge and at the
order of 0.3, the basic conclusions of the EMC stay unchanged. In particular, the
sizeable negative contribution of the strange quarks, which is historically related to
the breaking of the Ellis–Jaffe sum rule [29], could be confirmed within modern
inclusive DIS experiments (see e.g. Refs. [30, 31]).
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2.2.4 Longitudinally Polarised Semi-Inclusive DIS

To shed more light on the decomposition of the proton spin, semi-inclusive mea-
surements have to be performed. These measurements allow for a somehow direct
access to the individual helicity distributions of quarks, antiquarks and gluons, In
fact, in some sense Eq. 2.15 gave birth to the COMPASS experiment. COMPASS
was expected to measure a large contribution of �g at the order of 2-3, which was
believed to mask the true value of ��.

Flavour Specific Helicity Distributions

It is worth recalling the expression of the inclusive asymmetry A1 by using Eq. 2.10
together with the expressions (2.11) and (2.6) of g1 and F1 in the simple parton
model:

A1(xBj) =
∑

f e
2
f

(
�qf (xBj) + �q̄f (xBj)

)
∑

f e
2
f

(
qf (xBj) + q̄f (xBj)

) , (2.16)

In complete analogy to Eq. 2.16 one defines the asymmetry [32]:

Ah
1(xBj, z) =

∑
f e

2
f

(
�qf (xBj)Dh

f (z) + �q̄f (xBj)Dh
f̄
(z)

)
∑

f e
2
f

(
qf (xBj)Dh

f (z) + q̄f (xBj)Dh
f̄
(z)

) , (2.17)

in case a hadron h is observed in addition to the scattered muon. It is valid in the
leading order QCD parton model under the assumption of independent quark frag-
mentation and in case the hadrons are produced in the current fragmentation region
[32]. The fragmentation functions Dh

f (z) and Dh
f̄
(z) are quite similar to the parton

distribution functions. But they describe in turn the probability that the struck quark
or antiquark of flavour f fragments into a hadron h with energy Eh, carrying the
energy fraction z = Eh/ν of the struck quark.

Using the fragmentation functions and parton distribution functions extracted for
example from unpolarised semi-inclusive deep inelastic scattering experiments, one
can disentangle the parton specific helicity distributions from Eq. 2.17. The reason
one gains sensitivity to the individual helicity distributions is easy to understand
since for example an observation of a kaon in the final state directly points to the fact
that the struck quark was most likely an s quark. A similar simple intuition can be
gained for charged pions, as a π+ is more likely originating from an up quark than a
π− and vice versa for the down quark.

Figure 2.6 shows a recent leading order extraction of the quark helicity distri-
butions at the COMPASS experiment. It is interesting to note that the helicity dis-
tribution of the strange quarks is compatible with zero. This is in contrast to the
xBj integrated inclusive determination described in the last section and explains the
recent efforts in the validation of the kaon fragmentation functions [33]. In Ref. [32]
two values for �� at Q2

0 = 3 (GeV/c)2 are given:

��extrap = 0.32 ± 0.03 ± 0.03, ��DSSV = 0.22 ± 0.03 ± 0.03.
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Fig. 2.6 Quark helicity distributions at Q2 = 3(GeV/c)2 [32]

The value for ��extrap is extracted by using a linear interpolation of the data for the
xBj integration, while��DSSV uses the DSSV [34, 35] parametrisation of the helicity
distributions. The disagreement is again tracked down to the strange quark helicity
and still under investigation. In any case, regardless of the strange quark helicity, this
independent determination of �� supports the qualitative statement of the EMC,
regarding the small quark and antiquark contribution to the spin of the proton.

The Gluon Helicity Distribution

The gluon helicity can not be probed in DIS via the leading order virtual photon
absorption, shown at the left side of Fig. 2.7, because there is no direct coupling of
the virtual photon to the gluon. The higher order process of photon-gluon-fusion,
shown at the right side of Fig. 2.7, gives access to the gluon helicity though. A very
clean way to gain sensitivity to the photon-gluon-fusion process is via so called open
charm production. The selection of two charmed mesons such as D0 and D0 in the
final state is an almost direct experimental signature of the photon-gluon-fusion since
for most kinematics the charm content in the nucleon is negligible and the production
of charmed mesons within the fragmentation from light quarks is highly suppressed.
The downside is that due to the large mass of the charm quark the production of
charmedmesonswithin the photon-gluon-fusion process is highly suppressed, which
leads to the very limited statistical accuracy in this channel. For more details on the
open charm production at COMPASS it shall be referred to Ref. [36].
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Fig. 2.7 Feynman diagrams for virtual photon nucleon scattering. Left: Leading order process
(LP). Middle: Gluon radiation respectively QCD Compton scattering (QCDC). Right: Photon-
gluon-fusion (PGF). Picture adopted from Ref. [37]

The question of how to increase the statistical accuracy in probing the gluonic con-
tent of the nucleon lead to the idea that the requirement of high transverse momenta
of two final state hadrons also enhances the sensitivity on the photon-gluon-fusion
process. The transverse momentum of hadron pairs produced in the leading order
virtual photon absorption ismainly originating from the intrinsic transversemomenta
of the quarks in the nucleon together with the transverse momenta produced within
the fragmentation process. In case of the photon-gluon-fusion process and the QCD
Compton scattering process, shown in the middle of Fig. 2.7, the transverse momenta
of the final state hadrons mainly originate from the hard process and are supposed to
be significantly larger. The sensitivity of the extraction of the gluon helicity thus relies
on the distinct behaviour of the transversemomenta of the final state hadrons between
the leading order virtual photon absorption and the two higher order processes. At
leading order in QCD and under the assumption of spin independent fragmentation
the experimentally observable longitudinal double spin asymmetry is given by [37]:

A2h
|| (xBj) = RPGFa

PGF
||

�g

g
(xg) + RLPDA

LP
1 (xBj) + RQCDCa

QCDC
|| ALP

1 (xC).

The quantity ALP
1 is given at leading order by Eq. 2.16. The quantities R{PGF,LP,QCDC}

are the fractions of the corresponding process illustrated in Fig. 2.7 and are usually
estimated by Monte Carlo techniques. The quantities aPGF

|| and aQCDC|| are the asym-
metries of the partonic cross section, which are often referred to as analysing power
[38]. In case of the inclusive asymmetry ALP

1 the analysing power is given by the
depolarisation factorD introduced in Sect. 2.2.1. The variables xBj, xg and xC denote
the quark momentum fraction, the gluon momentum fraction and the quark momen-
tum fraction in the QCD Compton scattering process. Though further peculiarities
have to be considered, which are related to the fact that the QCD Compton scattering
process and the photon-gluon-fusion process are also present within ALP

1 and that the
variables xg and xc are not directly accesible, the principle knowledge of the inclusive
asymmetry ALP

1 together with the fractions of the corresponding processes and the
analysing powers allow for an extraction of �g

g
(xg).
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Fig. 2.8 Left: Comparison of the leading order results for �g/g(xg) with a COMPASS NLO QCD
fit [30]. Right: World data on �G/G(xg). The corresponding references are given within Ref. [39]

Figure 2.8 shows a recent extraction of �g
g

(xg), which seems to favour a positive

but small value for�g in case solely the COMPASS data is used. Recent results from
RHIC5 confirm the small contribution of �g, but they may indicate that there is still
a sizeable contribution of the gluon to the spin of the nucleon. This is mainly related
to the poorly known region of xBj < 0.05 [40]. In any case it seems very unlikely
with the current knowledge that the contribution of �g within Eq. 2.15 is sizeable
enough to explain the “small” value for ��.

2.3 Generalised Parton Distributions

One of the many theoretical attempts to explain the “small” experimental value of
�� was the spin decomposition proposed by Jaffe and Manohar [41]:

1

2
= 1

2
�� + �g + Lq + Lg.

From this it became evident that a comprehensive picture of the spin of the nucleon
must take into account the orbital angular momentum Lq of quarks and antiquarks
together with the orbital angular momentum Lg of the gluons. As there are measure-
ments of�� and�g, discussed in Sect. 2.2, there is no experimental prescription so
far of how to access the contribution originating from the orbital angular momenta
of the partons.

In 1997 a completely independent and comprehensive approach to the spin decom-
position of the nucleon was proposed. The Ji sum rule [42]:

5Relativistic Heavy Ion Collider: RHIC performs polarised pp collisions in Brookhaven.
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J f = 1

2
lim
t→0

∫ 1

−1

[
Hf (x, ξ, t) + Ef (x, ξ, t)

]
x dx,

J g = 1

2
lim
t→0

∫ 1

0

[
H g(x, ξ, t) + Eg(x, ξ, t)

]
dx,

(2.18)

connects so called Generalised Parton Distributions H and E to the total angular
momentumof gluons g and quarks of flavour f . It is this relation, which triggered a lot
of the experimental and theoretical interest inGeneralisedPartonDistributions during
the following years. The following chapter will define the kinematic variables used in
Eq. 2.18 and summarise the current knowledge on Generalised Parton Distributions.

2.3.1 Introduction

Generalised PartonDistributions (GPDs) provide a comprehensive three dimensional
picture of the nucleon, encoded in their dependence on the three kinematic variables
x, ξ and t and a weak dependence on Q2 describing the QCD evolution. It is most
illustrative to explain the kinematic variables in the picture of a particular process.
Figure 2.9 shows a so called handbag diagram for the Deeply Virtual Compton
scattering process (DVCS). In the Bjorken limit the process can be factorised into
a hard and a soft part in case the ratio of the magnitude of the square of the four-
momentum transfer to the proton and the photon virtuality, |t|/Q2, is sufficiently
small [44].

The hard part consists of a quark carrying longitudinal momentum fraction x + ξ,
which interacts with the virtual photon and returns into the nucleon with longitudinal
momentum fraction x − ξ under the emission of a real photon at a different transverse
position. In this context the variable x is a loop variable, describing the momentum
fraction carried by the quark with respect to the mean longitudinal momentum of
the nucleon throughout the process. It is not accessible within the measurement. The
variable ξ is related to xBj by [45, 46]:

Fig. 2.9 Handbag diagram
for the DVCS process [43]
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ξ = xBj
1 + �2

2Q2

2 − xBj + xBj
�2

Q2

≈ xBj
2 − xBj

.

The finite four-momentum transfer necessary to force the virtual photon on its mass
shell is given by:

t = (p − p′)2 = −�2,

while p and p′ denote the four momenta of the initial and final nucleon.
The soft part is given by the emission and reabsorption of the quark within the

nucleon. It can be parametrised by four process independent non perturbative objects
for the gluon g and each quark flavour f , the GPDs Hf ,g , H̃ f ,g , Ef ,g , Ẽf ,g . The GPDs
H and E do not depend on the helicity of the struck quark, while the GPDs H̃ and Ẽ
are dependent on the quark helicity. The latter two can thus be probedmost effectively
with a polarised target. The nucleon helicity is conserved by the GPDs H and H̃ ,
while it is flipped by the GPDs E and Ẽ.

As the quantities x and ξ are limited to the interval x ∈ [−1, 1] and ξ ∈ [0, 1],
there are in principle two cases to distinguish:

For x ∈ [−ξ, ξ] the momentum transfer x + ξ is positive, while the momentum
transfer x − ξ is negative. This so called ERBL region6 corresponds to the emission
of a quark antiquark pair. There is no correspondence in the forward limit, when
ξ = 0, and in this case GPDs behave rather like a meson distribution amplitude and
can be interpreted as the probability amplitude to find a quark antiquark pair within
the nucleon.

In case x lies in the interval [ξ, 1] ([−1,−ξ]) both momentum fractions x + ξ and
x − ξ are positive (negative) and the GPDs describe the emission and reabsorption
of a quark (antiquark), as it is shown in Fig. 2.9. This is commonly referred to as
the DGLAP region and there is a correspondence to the usual parton distribution
functions in the forward limit

2.3.2 Forward Limit

In the forward limit, defined by the condition:

t → 0 and ξ → 0,

the GPDsH and H̃ are related to the ordinary parton distribution functions as follows
[46]:

6Efremov,Radyushkin,Brodsky,Lepage region: The termoriginates from the correspondingERBL
evolution equations [47, 48].
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Hf (x, 0, 0) = q(x), H̃ f (x, 0, 0) = �q(x) for x > 0,

Hf (x, 0, 0) = −q(−x), H̃ f (x, 0, 0) = �q(−x) for x < 0,

H g(x, 0, 0) = xg(x), H̃ g(x, 0, 0) = x�g(x) for x > 0, (2.19)

while in this limit x coincides with xBj. For the GPDs E and Ẽ there is no relation
to the parton distribution functions in the forward limit as they describe a nucleon
helicity flip, which is not possible for a vanishing four-momentum transfer of the
nucleon. They contain unique information about the spin of the nucleon (see Eq.
2.18), which is only accessible within exclusive processes.

2.3.3 Sum Rules

The most popular sum rule for GPDs has already been stated in the introduction
in Eq. 2.18. Furthermore, the first moments of GPDs are linked to the elastic Form
Factors [42]:

∑
f

zf

∫ 1

−1
dxH f (x, ξ, t) = F1(t),

∑
f

zf

∫ 1

−1
dxH̃ f (x, ξ, t) = gA(t),

∑
f

zf

∫ 1

−1
dxEf (x, ξ, t) = F2(t),

∑
f

zf

∫ 1

−1
dxẼf (x, ξ, t) = hA(t). (2.20)

The quantities gA and hA denote the axial and pseudoscalar Form Factors, while
the Dirac and Pauli Form Factors F1 and F2 are discussed in Sect. 2.1. The GPDs
thus describe the contribution to the corresponding Form Factor for a given mean
longitudinal momentum fraction x. It is quite revealing that the ξ dependence drops
out in the Eq. 2.20, as the integration over x removes all reference to the longitudinal
direction, which is used for the definition of ξ. In Ref. [42] X. Ji even used the term
“luckily” related to this fact.

One can consider even higher moments in x. This leads to the so called polynomi-
ality feature of GPDs, which states that the n-thmoment of theGPDs are polynomials
in ξ maximally of the order n + 1. For the quark GPDs Hf and Ef it reads [46]:

∫ 1

−1
dx xnHf (x, ξ, t) =

{
an0(t) + an2(t)ξ

2 + an4(t)ξ
4 + . . . + ann(t)ξ

n, n even,

an0(t) + an2(t)ξ
2 + an4(t)ξ

4 + . . . + c
f
n+1(t)ξ

(n+1), n odd,

and

∫ 1

−1
dx xnEf (x, ξ, t) =

{
bn0(t) + bn2(t)ξ

2 + bn4(t)ξ
4 + . . . + bnn(t)ξ

n, n even,

bn0(t) + bn2(t)ξ
2 + bn4(t)ξ

4 + . . . − c
f
n+1(t)ξ

(n+1), n odd.
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It originates from the time reversal invariance that only even powers in ξ appear
[46]. The relations look similar for the GPDs H̃ f and Ẽf , apart from the fact that the
highest power in ξ is given by n in case it is an even number and by (n − 1) in case it
is an odd number. Furthermore, neither of the coefficients would cancel if one takes
the sum of the n-th moments of H̃ f and Ẽf .

In case of the gluonGPDsH g andEg the above relations for the (n − 1)-thmoment
read [46]:

∫ 1

0
dx xn−1Hf (x, ξ, t) =

{
0, n even,
dn0 (t) + dn2 (t)ξ2 + dn4 (t)ξ4 + . . . + cgn+1(t)ξ

(n+1), n odd,

and

∫ 1

0
dx xn−1Ef (x, ξ, t) =

{
0, n even,
en0(t) + en2(t)ξ

2 + en4(t)ξ
4 + . . . − cgn+1(t)ξ

(n+1), n odd,

with the same remarks being valid as for the quark GPDs, with the exception that
in case of n being an even number, the moments of H̃ g and Ẽg vanish. The fact that
the (n − 1)-th moments of H g and Eg vanish for n being odd and the ones of H̃ g and
Ẽg for n being even, is related to the symmetry properties of the gluon GPDs. Since
the gluon is its own antiparticle, H g and Eg are even functions in x while H̃ g and Ẽg

are odd in x.
The relations (2.19) and (2.20) provide valuable constraints for GPD models,

while the polynomiality feature allows to restrict the class of usable functions within
a particular model. A very elegant way to satisfy polynomiality is the so called
double distribution ansatz [49–51]. It was observed though that within the double
distribution ansatz the coefficients cfn+1 and respectively cg

n+1 always vanish. This
incompleteness of the double distribution ansatz then lead to the introduction of the
so called D-term [52], which is added to the double distribution ansatz to generate
the highest power of ξ for the moments of H , E and n being odd.

2.3.4 Impact Parameter Space

In Sect. 2.3.1 GPDs have been introduced in momentum space. A very intuitive
three dimensional picture of the nucleon arises in the so called mixed representation
of longitudinal momentum and transverse position. In case ξ = 0, the longitudinal
momentum fraction of the quark in the initial and final state is equal and the four-
momentum transfer to the nucleon is aligned purely in the transverse direction�2 =
�2

⊥. In this particular situation it is shown that the Fourier transform of the GPD H
with respect to �⊥ has a density interpretation. The quantity:

qf (x, b⊥) =
∫

d2�⊥
(2π)2

Hq(x, 0,−�2
⊥)e−ib⊥�⊥ ,
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gives the probability density to probe a quark with longitudinal momentum fraction
x at the transverse distance b⊥ with respect to

R⊥ =
∑
i

xi r⊥,i,

the centre of momentum of the nucleon in the transverse plane [53]. The longitudinal
momentum fractions of the partons are denoted by xi, while i runs over all partons
in the nucleon. Here and in the following two dimensional transverse vectors are
written in bold face, while three dimensional vectors are indicated by an arrow.
The transverse centre of momentum R⊥ plays the role of the centre-of-mass in a
nonrelativistic many body system, with masses mi corresponding to the longitudinal
momentum fractions xi.

This interpretation of GPDs plays an import role in the modelling of GPDs at
ξ = 0. For illustration purposes Fig. 2.10 shows a model ansatz for the GPD H :

Hq(x, 0,−�⊥2) = q(x) exp
(
−a�2

⊥(1 − x) ln(1/x)
)
, (2.21)

transformed to the impact parameter space:

Fig. 2.10 Impact parameter dependent parton distribution for the u quark according to the simple
model following Eq. 2.21 and respectively (2.22). Picture adopted from Ref. [54]
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q(x, b⊥) = q(x)
1

4πa(1 − x) ln(1/x)
exp

(
− b2

⊥
4a(1 − x) ln (1/x)

)
. (2.22)

This ansatz is in agreement with several facts. The integration over x evaluated at
�2

⊥ = 0 of Hq(x, 0,−�⊥2) yields the parton distribution function q(x). The trans-
verse width of the impact parameter version q(x, b⊥) converges to zero as x → 0,
which is in agreement with the fact that for x = 0 the transverse centre of momentum
R⊥ is given by the struck quark alone. Last but not least as expected from a density
q(x, b⊥) satisfies the relation:

q(x, b⊥) ≥ 0 for all x > 0.

In practice it is not possible to measure GPDs at ξ = 0, as it will be demonstrated
within the example of the DVCS process in Sect. 2.4. Thus, the density interpretation
can not be applied directly to the measured data. Though theoretical constraints, like
in particular the polynomiality feature of Sect. 2.3.3, facilitate the extrapolation to
ξ = 0, it is still almost impossible to quantify the model uncertainties introduced
within this extrapolation.

From an abstract point of view it is quite easy to understand why the above
interpretation can not be extended to non zero skewness ξ. GPDs are defined as
transition matrix elements. In order to provide a density interpretation the initial and
final state have to coincide. For the case ξ = 0 the longitudinal momenta of the initial
and final state already coincide. Hence, the main task in order to provide the density
interpretation of Ref. [53] is to show that the Fourier transformation with respect
to the transverse momentum transfer also yields identical initial and final states in
terms of transverse position. This is achieved by introducing the transverse centre of
momentum in close analogy to the centre of mass being a conserved quantity in the
nonrelativistic case. However, for a finite longitudinal momentum transfer ξ the fact
that the initial and final longitudinal momenta of the nucleon do not coincide can not
be overcome. This restricts the density interpretation to the case of ξ = 0.

Nevertheless, proceeding in this direction, within Ref. [55] it is shown that in the
case ξ �= 0 also in the impact parameter space the initial and final states are not equal.
As the struck quark looses part of its longitudinal momentum, the transverse centre
of momentum is shifted between the initial and final state by an amount of order ξb⊥,
as illustrated in Fig. 2.11. Since the four-momentum transfer is not purely transverse
in the case of ξ �= 0, the quantity b⊥ is the Fourier conjugate to the transverse part
of � given by �⊥ according to [56]7:

�2 = −t0 + 1 + ξ

1 − ξ
�2

⊥ = 4ξ2M 2

(1 − ξ)(1 + ξ)
+ 1 + ξ

1 − ξ
�⊥2. (2.23)

The quantity t0 refers to the minimum value of the square of the four-momentum
transfer to the nucleon. Though it is argued that for small ξ the shift in the trans-

7See Eq. (13) in [57] and use ζ = 2ξ
1+ξ and t0 = − ζ2M 2

1−ζ .
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Fig. 2.11 Representation of a GPD in the impact parameter space for the region ξ ≤ x ≤ 1. Picture
adapted from Ref. [55]

verse plane is almost irrelevant, one can change to the centre of momentum of the
spectators. This centre of momentum is conserved throughout the process because
it is not connected to the struck quark. The distance of the struck quark to the cen-
tre of momentum of the spectators r⊥ is Fourier conjugate to b⊥ in the particular
interesting case of x = ξ [56]. Thus, assuming the transition matrix element behaves
exponential as a function of �2

⊥ with a slope B�2⊥ , its transverse size is given by:

< r2⊥ >= 4B�2⊥ = 4

(
1 + ξ

1 − ξ

)
Bt . (2.24)

The second equality in Eq. 2.24 refers to the fact that usually in measurements the
so called t-slope parameter Bt is reported, which parametrises the |t| dependence of
the DVCS cross section. The relation between the two slopes B�2⊥ and Bt arises from
Eq. 2.23.

To summarise, measurements at x = ξ allow studying the transverse size of the
transition matrix element, defining GPDs, as a function of the longitudinal momen-
tum fraction of the struck quark. This is often referred to as nucleon tomography.

2.4 Deeply Virtual Compton Scattering

Deeply Virtual Compton Scattering (DVCS):

l + N → l′ + N ′ + γ,

describes the scattering of a high energy lepton of the nucleon via the exchange of a
virtual photon in the limit:

Q2, ν → ∞, xBj = fixed, |t|/Q2 < 1.



30 2 Introduction to Theory

Fig. 2.12 Leading-order processes for leptoproduction of real photons. Left: DVCS. Middle and
right: Bethe-Heitler (BH) process. Picture adopted from Ref. [54]

It can be accessed within exclusive measurements. Thus, for a clean experimental
signature it is mandatory to also detect the recoiled target nucleon, apart from the
scattered lepton and the real photon.

The DVCS process offers a way to experimentally constrain GPDs, which
parametrise the soft part of the left diagram in Fig. 2.12, as described in Sect. 2.3.1.
It is the most pure channel to study GPDs since in contrast to the hard exclusive
production of a meson no final state interaction and no meson wave function have to
be taken into account.

However, DVCS is not the only process, which describes the reaction 1.4. The
initial and final states of the Bethe-Heitler process, illustrated in themiddle and on the
right side of Fig. 2.12, are indistinguishable from DVCS. The Bethe–Heitler process
describes elastic scattering of the lepton of the nucleon, while both the incoming and
outgoing lepton can emit a real photon.

The twoprocesses interfere on the amplitude level and the differential cross section
can be written schematically as [45, 54]:

d4σ

dxBj dQ2 d|t| dφγ∗γ
∝ |TBH |2 + |TDVCS |2 + I,

with:
I = T ∗

BHTDVCS + TBHT ∗
DVCS .

The angle φγ∗γ denotes the angle between the leptonic plane and the plane spanned
by the real and the virtual photon, as illustrated in Fig. 2.13. The complex scattering
amplitudes of the respective process are depicted by T .

Changing the charge and polarisation of the lepton beam and using unpolarised,
longitudinally or transversely polarised proton or deuteron targets, a variety of exper-
imental observables such as cross section differences, sums and asymmetries of the
different configurations can be accessed within DVCS. A complete description of the
theoretical formalism, which provides the connection between the different observ-
ables within different experimental setups and GPDs is given in Ref. [45], while the
two cases which are of particular interest for the COMPASS-II experiment shall be
discussed in the following.
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Fig. 2.13 Definition of the
angle φγ∗γ . Picture adopted
from [58]

The COMPASS-II experiment has the unique feature to change simultaneously
the charge andpolarisation of themuonbeam.Within the recentDVCSmeasurements
an unpolarised liquid hydrogen target is used. The differential cross section reads in
this case [43]:

d4σ

dxBjdQ2d|t|dφγ∗γ
= dσBH +

(
dσDVCS

unpol + Pμdσ
DVCS
pol

)
+ eμ

(
ReI + PμImI

)
.

(2.25)
On the right side of Eq. 2.25 and in the following the abbreviation:

dσ = d4σ

dxBjdQ2d|t|dφγ∗γ
,

will be used. The polarisation and charge in units of the elementary charge e are
denoted by Pμ and eμ respectively and the remaining terms are defined in the fol-
lowing sections.

The main observables of interest in case of the COMPASS-II DVCS programme
are thus given by the unpolarised beam charge and spin sum or difference of DVCS
cross sections, which will be discussed in the following, after a short introduction to
the subject of Compton Form Factors has been given.

2.4.1 Compton Form Factors

The variable x, describing the mean longitudinal momentum fraction of the struck
quark throughout the process, can not be accessed directly by a measurement of
DVCS. This fact is encoded in so called Compton Form Factors. A Compton Form
Factor is connected to the respective GPD via a convolution integral in x, taking
into account the hard scattering kernel, originating from the virtual photon quark
interaction. In case of the Compton Form FactorH the relation explicitly reads [45]:
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H(x, ξ, t) =
∑
f

e2f

∫ 1

−1
dx C−

c (x, ξ)Hf (x, ξ, t),

while C±
c (x, ξ) is given in leading order of the strong coupling constant by [45]:

C±
c (x, ξ) = 1

ξ − x − iε
± 1

ξ + x − iε
.

Making use of the real version of the Sokhotski-Plemelj theorem:

∫ 1

−1
dx

H f (x, ξ, t)

ξ ± x − iε
= P

∫ 1

−1
dx

H f (x, ξ, t)

ξ ± x
+ iπHf (∓ξ, ξ, t),

the Compton Form Factor H can be divided into its real and imaginary part:

H =
∑
f

e2f

[
P

∫ 1

−1
dx H f (x, ξ, t)C−(x, ξ) + iπ

(
Hf (ξ, ξ, t) − Hf (−ξ, ξ, t)

)]
,

while P denotes a principal value integral and:

C±(x, ξ) = 1

ξ − x
± 1

ξ + x
, (2.26)

has been introduced. In many applications the integration over x is converted to the
interval [0, 1], which leads to the connection of the four so called singlet GPDs,
denoted by the subscript +:

{H+,E+}(x, ξ, t) =
∑
f

e2f
(
{Hf ,Ef }(x, ξ, t) − {Hf ,Ef }(−x, ξ, t)

)
,

{H̃+, Ẽ+}(x, ξ, t) =
∑
f

e2f
(
{H̃ f , Ẽf }(x, ξ, t) + {H̃ f , Ẽf }(−x, ξ, t)

)
, (2.27)

to the real and imaginary parts of the four Compton Form Factors:

{HRe, ERe}(ξ, t) = P
∫ 1

0
dx {H+,E+}(x, ξ, t) C−(x, ξ),

{H̃Re, ẼRe}(ξ, t) = P
∫ 1

0
dx {H̃+, Ẽ+}(x, ξ, t) C+(x, ξ),

{HIm, EIm}(ξ, t) = π{H+,E+}(ξ, ξ, t),
{H̃Im, ẼIm}(ξ, t) = π{H̃+, Ẽ+}(ξ, ξ, t). (2.28)

The imaginary parts of theCompton FormFactors provide direct access to the respec-
tive singlet GPDs at the particular kinematic situation x = ξ.
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2.4.2 The Beam Charge and Spin Difference

The beam charge and spin difference of cross sections for an unpolarised target and
a polarised lepton beam reads:

DCS,U = dσ
+← − dσ

−→ = 2
(
|Pμ|dσDVCS

pol + |eμ|ReI
)
,

while the beam charge and polarisation are denoted by+− and→←. The remaining
two terms are explicitly given by [45]:

dσDVCS
pol = e6

y2Q2

{
sDVCS1 sin φγ∗γ

}
, (2.29)

and

ReI = e6

xBjy3tP1(φγ∗γ)P2(φγ∗γ)(
cI0 − cI1 cosφγ∗γ +

{
cI2 cos 2φγ∗γ − cI3 cos 3φγ∗γ

})
.

(2.30)

Kinematically suppressed factors are denoted by {} and the φγ∗γ dependence of the
Bethe-Heitler lepton propagators are depicted by P1 and P2 according to Ref. [45].
The analysis of the φγ∗γ dependence8 will thus be most sensitive to the coefficients
cI0 and c

I
1. Neglecting again kinematically suppressed factors9 within the coefficients

cI0 and c
I
1, one observes that they are mostly sensitive to the real part of the Compton

Form Factor H [45]:
cI0, c

I
1 ∝ Re(F1H),

which provides information on the GPD H in the sense of Eqs. 2.27 and 2.28.

2.4.3 The Beam Charge and Spin Sum

The beam charge and spin sum of cross sections for an unpolarised target and a
polarised lepton beam reads:

SCS,U = dσ
+← + dσ

−→ = 2
(
dσBH + dσDVCS

unpol + |eμ||Pμ|ImI
)
.

8The notation of the coefficients si and ci follows Ref. [45], where the complete expansion of the
coefficients can be found. The difference in the defintion of the φγ∗γ angle within this thesis and the
φ angle within Ref. [45] leads to sign changes in the angular modulations. The angles are related
via π − φ = φγ∗γ and this is taken into account within Eqs. 2.29, 2.30 and (2.31).
9This refers to terms which are kinematically suppressed with respect to the COMPASS kinematics
and not in general suppressed.
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The terms dσBH, dσDVCS
unpol and ImI are given as follows [45]:

dσBH = e6

xBjy2(1 + ε2)2tP1(φγ∗γ)P2(φγ∗γ)

(
cBH0 − cBH1 cosφγ∗γ + cBH2 cos 2φγ∗γ

)
,

dσDVCSunpol = e6

y2Q2

(
cDVCS0 −

{
cDVCS1 cosφγ∗γ − cDVCS2 cos 2φγ∗γ

})
,

ImI = e6

xBjy3tP1(φγ∗γ)P2(φγ∗γ)

(
−sI1 sin φγ∗γ +

{
sI2 sin 2φγ∗γ

})
, (2.31)

with ε2 given by:

ε2 = 4x2Bj
M 2

Q2
.

The coefficients marked with the superscript BH are calculable within QED, while
the well measured Form Factors F1 and F2 are the only experimental input needed.
Again kinematically suppressed terms are marked with {}. After a subtraction of the
Bethe-Heitler contribution the analysis of the angular φγ∗γ dependence can provide
the coefficient sI1, which is given in terms of the Compton Form Factors as follows
[45]:

sI1 ∝ Im
(
F1H + xBj

2 − xBj
(F1 + F2)H̃ − �2

4M 2
F2E

)
∝ Im(F1H),

and one gains sensitivity to the Compton Form Factor HIm, which is connected to
the GPD H in terms of Eq. 2.27 and (2.28).

The extraction of the leading twist-2 quantity cDVCS0 is achieved by the subtrac-
tion of the Bethe-Heitler contribution and an integration in φγ∗γ , which causes the
cancellation of all φγ∗γ dependent terms. The coefficient cDVCS0 reads explicitly in
terms of the Compton Form Factors [45]:

cDVCS0 = 2(2 − y + y2)
1

(2 − xBj)2

{
4(1 − xBj)

(
HH∗ + H̃H̃∗

)
−x2Bj

t

4M 2
Ẽ Ẽ∗

− x2Bj
(
HE∗ + EH∗ + H̃Ẽ∗ + ẼH̃∗

)
−

(
x2Bj + (2 − xBj)

2 t

4M 2

)
EE∗

}
.

(2.32)

Neglecting again kinematically suppressed terms and the contribution of H̃ the coef-
ficient cDVCS0 provides mainly information on the real and imaginary part of the
Compton Form Factor H:
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cDVCS0 ∝ H2
Re + H2

Im.

The extraction of the t-dependence of the quantity cDVCS0 is the main focus of this
thesis.

2.4.4 DVCS in the Valence Quark Region

Recently an application of the nucleon tomography described in Sect. 2.3.4 was
performed within Ref. [59]. The combined DVCS observables from HERMES,10

CLAS11 and Hall A12 were used in order to extract simultaneously all eight Compton
FormFactors at a given value of ξ and t with a least squaresmethod, incorporating the
eight Form Factors as free parameters. Since the experimental observables receive
in general contributions from several Compton Form Factors (see e.g. Eq. 2.32) the
problem is in principle underconstrained and model dependent limits have to be
imposed on the variation of the Compton Form Factors. Imposing these limits in a
conservative way and in case an observable is dominated by a certain Compton Form
Factor, the Form Factor can be extracted with a finite error bar. Figure 2.14 shows the
extracted values of the imaginary part of the Compton Form Factor H as a function
of ξ and −t. The Compton Form Factor is denoted byHIm according to Eq. 2.28.13

For each set of HIm at a certain value of ξ the |t| dependence of HIm is extracted
according to an exponential law:

HIm(ξ, t) ∝ eB(ξ)t, (2.33)

which leads to the results of B(ξ) shown on the left side of Fig. 2.15. The right side
of Fig. 2.15 shows the conversion of B(ξ) into < b2⊥ > (x) using the relation

< b2⊥ > (x) = 4B0(x) ≈ k 4B(ξ). (2.34)

The correction factor k accounts for the following facts. The extracted quantities
are the t-slopes B(ξ) of the imaginary part of the Compton Form Factor H, given
according to Eq. 2.28 by the singlet GPD H+ at x = ξ. The quantity < b2⊥ > (x)
denotes in contrast the mean valence quark radius squared, which is related to B0(x)
the t-dependence of the valence GPD:

10HERA MEasurement of Spin: Fixed target experiment at DESY’s HERA facility to explore the
nucleon spin.
11CEBAF Large Acceptance Spectrometer: Fixed target experiment located at the experimental
Hall B at Jefferson Laboratory.
12Fixed target experiment located at the experimental Hall A at Jefferson Laboratory.
13Note that the authors of Ref. [59] do not absorb the factor of π within the definition ofHIm. Thus,
the factor π has to be removed in Eq. 2.28 to be in accordance with Ref. [59].



36 2 Introduction to Theory

Fig. 2.14 t-dependence of the Compton Form Factor (CFF) Him. Open squares: Results of the
CLAS σ and �σ fits with eight CFFs as free parameters. Solid circles: results of the fit to CLAS σ
and �σ, as well as longitudinally polarised target and double beam-target polarised asymmetries,
with the eight CFFs as free parameters. Solid triangles: results of the Hall A σ and �σ fit with the
eight CFFs as free parameters. Stars: VGG reference DFFs. The solid curve shows an exponential fit
of the open squares according to Eq. 2.33 (see Ref. [59] and references within for the experimental
input)

Hf
−(x, ξ, t) = Hf (x, ξ, t) + Hf (−x, ξ, t),

at ξ = 0. The difference between the two slopes B0 and B is studied in several models
and a single correction factor k = B0/B = 0.925 ± 0.025 is applied by the authors
of Ref. [59], in order to convert the left side of Fig. 2.15 into the right side via Eq.
2.34.

The prediction inside the right plot of Fig. 2.15 corresponds to a Regge type ansatz
for B0:

B0(x) = aB0 ln 1/x. (2.35)



2.4 Deeply Virtual Compton Scattering 37

Fig. 2.15 Left: t-slopeB ofHIm as a function of ξ. The theory curves correspondwith the dualmodel
and the double distribution (DD) model for three choices of the valence (sea) profile parameters
bv (bs), as indicated. Right: x-dependence of < b2⊥ >. The band corresponds to the ansatz given
by Eqs. 2.35 and 2.36. The data points correspond to the plot on the left side, using Eq. 2.34. The
outer error bars take the model uncertainty introduced by the factor k of Eq. 2.34 into account. (see
Ref. [59] and references within for the experimental input)

This yields a similar form for the valence GPD Hf
− as discussed in Eq. 2.21 for the

GPD Hf , which reads:
Hf

−(x, 0, t) = qfv(x)e
aB0 ln 1/x.

Assuming the same x-dependence ofB0 for the up and down quark flavours f , exploit-
ing the connection to the known Form Factor F1 via Eq. 2.20 by using the valence
quark distributions qfv(x), the parameter aB0 is estimated to [59]:

aB0 = (1.05 ± 0.02)GeV−2. (2.36)

2.4.5 DVCS in the Region of Sea Quarks and Gluons

The H114 and ZEUS15 experiments at the HERA16 collider have measured the pure
DVCS cross section, which is directly proportional to the contribution cDVCS0 , as
described in Sect. 2.4.3. This procedure is feasible as soon as the DVCS process

14Experiment using the general purpose detector H1 build around one of the ep collision points of
HERA.
15ZEY�: Zητησις καϑ′ Eνρετης Yπφκειμενης �υμμετ�ιας . Greek for “Search for enlightment
related to fundamental symmetries”: Experiment around another ep collision point of HERA.
16Hadron Elektron Ring Anlage: Particle accelerator at DESY (Deutsches Elektron SYnchrotron).
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Fig. 2.16 DVCS diagram
for two gluon exchange [60]

(a)

(b)

(c)

Fig. 2.17 Left: The DVCS cross section, differential in t, for three values of Q2 expressed at W
= 82 GeV/c2. The curves correspond to a fit of the form dσ ∝ eBt . Right: The values of B as a
function of Q2 (top) and W (bottom) [63]

becomes dominantwith respect to theBethe-Heitler process, which is the case for the
high centre ofmass energy achieved at HERA in the collider mode, where an electron
beam with a momentum of 27 GeV/c collides with a proton beam of 160 GeV/c. It
is also feasible with the high energy muon beam at the COMPASS-II experiment, as
it will be demonstrated throughout this thesis. The range in xBj covered by H1 and
ZEUSgoes from10−4 to 10−2. At such small values of xBj the gluon exchange, shown
in Fig. 2.16, plays also an important role in addition to the leading order process of
the quark photon interaction, shown in Figs. 2.9 and 2.12.
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Fig. 2.18 Blue and Green: The parameter B of the DVCS cross section, according to Eq. 2.37, for
the three lowest bins inQ2, asmeasured byH1 and Zeus [64–66]. Red: COMPASS-II projections for
measuring the xBj dependence of the t-slope parameterB(xBj) of the DVCS cross section, calculated
for 1 (GeV/c)2 < Q2 < 8 (GeV/c)2. The left vertical error bar on each data point indicates the
statistical error only, while the right one includes also the quadratically added systematic uncertainty
[43]. The black lines correspond to an ansatz of the form B(xBj) = B0 + 2α′ ln ( x0

xBj
)while the value

for α′ = 0.26 (GeV/c)−2 is inspired by the value obtained for Pomeron exchange in soft scattering
processes [61]

The t-dependence of the DVCS cross section measured at H1 and ZEUS was
found to be in agreement with a Regge behaviour of the form:

dσ

dt
∝ eBt, (2.37)

as shown on the left side of Fig. 2.17. For exclusive meson production it is observed
that B is dependent onW [61, 62]. For decreasingW the value of B decreases, which
means that the size of the scattering object becomes smaller. This so called shrinkage
effect was not observed for DVCS, as it can be seen within the bottom right plot of
Fig. 2.17. In case of DVCS the parameter B shows a weak dependence onQ2 though,
as illustrated on the top right side of Fig. 2.17.

The values of the slope parameter B measured at H1 and ZEUS for the lowest
Q2 bins are summarised within Fig. 2.18 and shall be confronted with the findings at
COMPASS-II in the xBj region of 10−2 to 0.2, within the DVCS pilot run (Sect. 7.7)
and with the future results of the dedicated DVCS data taking in 2016 and 2017.
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Chapter 3
The COMPASS-II Experiment

The COMPASS-II experiment is a fixed target experiment, located at the CERN
Prevessin area at the end of the M2-beamline of the Super Proton Synchrotron. The
scattering of high energy leptons or hadrons of a nucleon target allows studying the
spin structure of the nucleon and performing hadron spectroscopy. This chapter is
supposed to give an overview of the COMPASS-II experimental setup, while the
focus is put on the experimental tools necessary to investigate the spin structure of
the nucleon. The major upgrades of COMPASS, dedicated to the Deeply Virtual
Compton Scattering measurement, are a third electromagnetic calorimeter, ECal0,
and the proton recoil detector CAMERA.

3.1 The Beam

TheCOMPASS-II experiment can switch easily between electron, muon and hadron
beams. The beam itself is generated by proton collisions with a beryllium target (T6)
of variable length, to adjust for different intensities of the secondary, respectively
teriary beams.

Apart from the energy scale and luminosity the production of the tertiary muon
beam shows quite some similarity with the mechanisms involved in the creation of
cosmic muons. Protons with an energy of up to 450GeV, extracted from the Super
Proton Synchrotron, are scattered of a beryllium material block. The parity violating
decay of the pions and kaons, produced in this collision, into μ+ and ν (respectively
μ− and ν) allows for a polarised muon beam. The beam polarisation is dependent
on the ratio of the meson and muon momenta. Thus, in order to reach a polarisation
of (80 ± 5)%, it is mandatory to perform a momentum selection. The momentum
selection is achieved by bending magnets within a 600m long tunnel. The fraction of
hadrons which did not decay is filtered by a second hadron absorber.Within an 800m
long tunnel the beam is then injected into the COMPASS-II experiment. The spill
structure, which consists of an on- and off-spill phase, may vary depending on other
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Fig. 3.1 Positioning of the Beam Momentum Stations (BMS) [1]

consumers of the Super Proton Synchrotron. During the 2012 DVCS measurement
the on-spill phase was set to 9.6 s1 with an off-spill phase of 38.4 s.

Since the beam particles are created in decays, an overall beammomentum spread
of approximately five percent is tolerated. However, to guarantee a precise measure-
ment of the beam momentum, a momentum measurement of each individual beam
particle is performed. This is particularly important since the beam polarisation
depends on the muon momentum. The momentummeasurement is realised by the so
called Beam Momentum Stations (BMS). As shown in Fig. 3.1, by placing a bend-
ing magnet (B6) between two scintillating fiber detectors (BM05, BM06) and four
hodoscopes (BM01-BM04), the momentum of the beam particle is measured from
the radius of curvature of the particle in the magnetic field of the bending magnet
with an uncertainty of about one percent.

The beam, which is accompanied by a so called halo, is then focused on the target.

3.2 The Target

In the framework of the muon programme polarised NH3 and LID targets were
used in the past. In 2012 for the first time a detection of the recoiled target proton
was realised. An unpolarised LH2 target, surrounded by the proton recoil detector
CAMERA, was installed in the target region. A schematic drawing of the target is
shown in Fig. 3.2. To achieve a luminostiy of 1033 1

cm2s with the anti-muon beam, a
target length of 2.5m was chosen. While the target is coverd in detail in Ref. [2], it
is worth to outline the two major technical challenges of the target construction:

• Aminimum amount of material: From the “physics” point of view there is a partic-
ular interest in small momentum transfer to the target proton. In order to measure
the recoiled target proton down to a momentum of 260 MeV/c, its absorption

1This value corresponds to the amount of time during which a beam hits the COMPASS-II target.
Technically, the begin of spill signal arrives 1 s in advance of the beam. Furthermore, to guarantee
a good beam quality within the analysis, a window between 1 and 10.4 s with respect to the begin
of spill signal is used later. This window is 0.2 s shorter than the value given above.
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Fig. 3.2 Aschematic side view of the target cell and vacuumchamber (picture adapted fromRef. [2]
by Ref. [3])

within the target material has to be avoided. Hence, the target cryostat material
had to be minimised drastically.

• Homogeneous LH2 density: To achieve a precise measurement of the luminosity,
a homogeneous density of the LH2 inside the target volume with a minimal gas
phase has to be realised. Together with a precise knowledge of the muon flux a
measurement of the luminosity within an uncertainty of a few percent will then be
realised.

3.3 The Spectrometer

The COMPASS-II spectrometer is shown in Fig. 3.3. It extends over a length
of approximately 60m and measures in a sophisticated manner the mass, energy
and momentum of elementary particles. For a full description of a particles four-
momentum it is of course sufficient to measure only two of the three properties,
since they are correlated by the relation pν pν = m2c2. The quantity pν indicates the
ν component of the particle four-momentum, m the particle mass and c the speed
of light. The spectrometer is divided into two stages. Each stage comprises one of
the two spectrometer dipole magnets (SM1, SM2). The particle momentum can be
determined from the radius of curvature of the particle trajectory together with the
precise knowledge of the magnetic field, interacting with the particle at each space
point. The first spectrometer stage (LAS2) is designed for large scattering angles up

2Large Angle Spectrometer.
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Fig. 3.3 The COMPASS-II spectrometer [3]

to 180 mrad and is located close to the interaction vertex. The second spectrometer
stage (SAS3) allows for a scattering angle acceptance below 30 mrad.

3.3.1 Track Reconstruction

For the track reconstruction the use of the appropriate detector technology depends
on the distance to the beam and the interaction vertex. Close to the beam axis, a high
rate stability as well as high time and spatial detector resolutions are necessary. At a
larger distance to the beamaxis the requirements on rate stability and resolution canbe
relaxed, while putting the focus on large area coverage. Table 3.1 shows the spatial
coverage and resolution of the different detector types used in the COMPASS-II
experiment. A detailed description of the different detector technologies can be found
in Ref. [1].

3Small Angle Spectrometer.
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Table 3.1 Overviewof the different track reconstruction detectors at theCOMPASS-II experiment.
The quantity A denotes the active detector area, δx and δt the achievable spatial and time resolution
of the detectors [4]

Class Type A/cm2 δx/µm δt/ns

VSAT SCIFIa 3.92–12.32 130–210 0.4

SILICON
detectors

5 × 7 8–11 2.5

Pixel-GEMb 10 × 10 95 9.9

SAT GEMb 31 × 31 70 12

MicroMegasc 40 × 40 90 9

LAT MWPC d 178 × (90–120) 1600

DCe 180 × 127 190–500

Strawf 280 × 323 190
aSCIntillating FIbers
bGas Electron Multiplier
cMicro-Mesh Gaseous Structure
dMultiWire Proportional Chambers
eDrift Chambers
fdue to the visual similarity between kapton tubes and straws

3.4 Particle Identification

The particle identification can be seperated into three parts: the muon filters, the
calorimeters and the RICH detector.4

• Muon Filters: The principle for the identification of muons with a momentum
of 160GeV/c relies on the comparably large lifetime of the muon, its low energy
loss in matter due to electromagnetic effects and the fact that it is not a strongly
interacting particle. The identification is achieved by so called muon walls. The
muon walls are absorbers only the muon can pass. Muon walls, accompanied by
tracking detectors before and after, are placed in both spectrometer stages.
At the end of the LAS spectrometer stage the Muon Wall I is placed. It is build of
a 60cm thick iron absorber with four drift chamber planes placed before and after
the absorber. Particles with a small scattering angle can pass the absorber through
a hole in the centre and can thus reach the SAS spectrometer stage.
The Muon Wall II, which is a 2.4m concrete material block is placed in the SAS
spectrometer stage. A particle is identified as a muon in case its track parameters,
given by the corresponding tracking detectors before and after the muon filter, are
compatible.

• Calorimeters: An electromagnetic calorimeter (ECal1,2) as well as a hadronic
calorimeter (HCal1,2) is placed in each spectrometer stage. In 2012, dedicated to
theDVCSmeasurement, a third electromagnetic calorimeter (ECal0) was installed

4Ring Imaging CHerenkov.
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right after the target and in front of the RICH detector. It was build to improve the
acceptance for photons leaving the target under large polar angles.
The electromagnetic calorimeters aremainlymade of lead glass or so called shash-
lik modules. In case of the lead glass modules the incoming photon produces
showers of e+e− pairs within the lead glass. The emmited Cherenkov light is then
detected by photomultiplier tubes. The intensity of the photomultiplier signals is
proportional to the energy deposit of the photon. A shashlik module consists of
a stack of alternating layors of lead and scintillating material. The e+e− pairs
produced in the lead layors radiate visible light within the layors of scintilla-
tor material. The visible light is detected by Micro-pixel avalanche photodiodes
(MAPD). The energy deposit of the incoming photon is proportional to the col-
lected scintillation light in the various scintillator slices. ECal0 and the centre of
ECal2 consist solely of shashlik modules. With both the lead and the shashlik
module techniques one can determine 99% of the initial photon energy.
The hadronic calorimeters show quiet some simularity to the shashlik design. They
are also so called sampling calorimeters. Build out of alternating layers of iron
and scintillator material, the hadronic calorimeters detect the incoming hadron by
measuring the showers created in the iron layers within the scintillator material.
The relative energy resolution of the electromagnetic calorimeters is ten times
better than the resolution of the hadronic calorimeters.

• RICH: The RICH detector is a Ring Imaging Cherenkov detector. The angle of
the light cone of the Cherenkov light emitted by a charged particle within the
RICH gas volume is related to the particle velocity. A measurement of the angle
thus allows for a measurement of the particle velocity. In combination with a
precedingmomentummeasurement a particle identification is achieved. A detailed
description of the RICH detector can be found within Ref. [5].
In Ref. [6] the application of the RICHdetector for an identification of the outgoing
muon was studied. The results suggest that a reasonable identification probability
of the muon can only be achieved for a muon momentum below approximately 10
GeV/c, which is not within the DVCS analysis range (see Sect. 7.4). Thus, for an
analysis of the DVCS process the RICH can not be used.

3.5 The CAMERA Detector

TheCAMERA detector is dedicated tomeasure themomentumof the slowly recoiled
proton in exclusive processes. A photography of the detector is shown in Fig. 3.4. It
is build out of two concentric rings of scintillators. Each of the rings itself consists
of 24 elements, which are placed concentrically around the liquid hydrogen target.
The inner ring will be denoted as ring A, while the outer ring will be denoted as ring
B. Each element detects particles inside an azimuthal interval of 15◦. To increase the
azimuthal resolution, the elements of ring A are displaced by 7.5◦ with respect to the
elements of ring B. A schematic front view of the detector is given in Fig. 3.7. The
properties of ring A and B are as follows:
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Fig. 3.4 Picture of the CAMERA detector looking into the beam direction. The liquid hydrogen
target is placed into the centre, while the carbon tube is removed. The short light guides and the
photomultipliers of the inner ring at the upstream end are visible. The scintillators and light guides
of the outer ring are visible [7]

• Ring A: The scintillating material elements are build out of BC408. The dimen-
sions of each of the elements are (275 × 6.3 × 0.4) cm3. The scintillators are
connected to a approximately 107cm long light guide at the downstream end and
to a 54cm short light guide at the upstream end. The light guides are connected
to photomultiplier tubes of type ET9813B, which have a photocathode of 51mm
diameter. The long light guide is bend by an angle of 45◦ to improve the photon
acceptance, while the short one possesses an angle of 90◦.

• Ring B: The scintillating elements are build out of BC408 with the dimensions
beeing (360 × 30 × 5) cm3. The geometrical properties of the “fishtail” shaped
light guides at both ends are equal. The light guides have a length of approximately
59cmandare bendby an angle of 90◦. They are connectedwith twophotomultiplier
tubes of type ET9823B, providing an active area with a diameter of 130mm.

The scintillatingmaterialBC408, used for both types of scintillators, emits itsmain
amount of light with a wavelength of 430nm. The maximum quantum efficency of
the photomultiplier tubes lies between 350nm and 450nm.

It may seem striking that the thickness of the ring A elements is much smaller
than in case of ring B. The reason is, that in order to measure the proton trajectory,
it is necessary to observe a signal in ring B. Thus, the proton has to pass ring A and
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Fig. 3.5 Schematic side
view of two corresponding
ring A and B scintillators of
the CAMERA detector

must not be stopped within. This becomes especially critical in case of small values
of |t |. The quantity t denotes the square of the four momentum transfer to the proton.
However, a thin ring A decreases the amount of scintillating light and thus reduces
the time resolution dramatically. In 2012 it was aimed for a certain tradeoff, which
allowed a measurement of the proton momentum down to a four-momentum transfer
squared |t |min = 0.06 (GeV/c)2 with a time resolution of the ring A elements at the
order of 300ps. Due to bad material quality of the ring A elements, this goal could
not be reached. The degraded time resolution of ring A at the order of up to 400ps,
was one of the reasons for its exchange before the two years of data taking in 2016
and 2017. The exchange of ring A will shortly be covered in Chap. 9.

Figure 3.5 illustrates the measurement principle of the CAMERA detector. The
trajectory of the recoiling proton, leaving the target, intersects ring A and B. At the
points of intersection a spherical wave of scintillating light is created. It propagates
through the scintillator, being reflected at the horizontal scintillator surfaces, until
it reaches the vertical end points. At the vertical end points it is transported by
light guides to the photomultipliers, where it is converted into a current pulse. The
analogue signal of this current pulse is transmitted to the readout electronics. The
detector readout is performed by the GANDALF5 Framework, comprising pipelined
sampling ADCs,6 which convert the analogue photomultiplier signals into digital
signals. A time-stamp and the maximum amplitude information of each of these
digitised photomultiplier signals is extracted inside in total 12 GANDALF modules
and transfered to the data acquisition system.

Apart from overall calibration constants kzA and k
z
B , with respect to the COMPASS

coordinate system, the z-positions zA and zB of the intersection points are given by
half the difference of the up- and downstream time-stamps times the effective speed
of light cA;B within the corresponding element. Denoting the time-stamp itself with
t , using (u, d) for the up- respectively downstream photomultiplier and (A, B) for
the scintillator type, this can be summarised in Eq. (3.1).

5Generic Advanced Numerical Device for Analog and Logic Functions. For a dense description
and the related references see Sect. 9.2.1.
6Analogue to Digital Converter.
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zA = 1

2
cA(t

u
A − tdA) + kzA,

zB = 1

2
cB(t

u
B − tdB) + kzB .

(3.1)

Using zA and zB the distance of flight D is calculated as follows:

D =
√
(zB − zA)2 + R2

AB, (3.2)

while RAB denotes the shortest distance between ring A and B. The time of flight
T is given by the difference of the mean time values between corresponding ring B
and A elements, taking the offset kT into account:

T = tuB + tdB
2

− tuA + tdA
2

+ kT . (3.3)

The velocity of the proton between ring A and B in units of the speed of light c
follows as:

βAB = D/T . (3.4)

Applying the relationsβ = p/E andγ = E/M themomentumof the proton between
ring A and B follows as:

pAB = mp βAB γAB = mp
βAB√
1 − β2

AB

, (3.5)

while mp denotes the mass of the proton.
In order to combine the momentum pAB with the COMPASS-II spectrometer

measurement of other particles involved in a certain exclusive reaction, the momen-
tum has to be translated into a momentum at the interaction vertex. Hence, one has
to take into account energy loss effects inside the material traversed during the flight
along the given trajectory. The determination of the calibration constants kzA, k

z
B , cA,

cB and kT as well as the momentum determination will be part of Sect. 5.1.

3.6 The Trigger System

For the 2012 DVCS data taking period it is convenient to divide the trigger decision
into three categories: The muon trigger, the proton trigger and the random trigger.
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Fig. 3.6 Placement of the trigger hodoscopes for the creation of the muon trigger [8]

3.6.1 The Muon Trigger

In order to identify scattered muons inside a large region of xBj and Q2, criteria
for the creation of the trigger signal have to be formulated and technically realised.
This is achieved with a system of hodoscopes, providing in total a large angular
coverage. The common idea is to place one hodoscope upstream and a second one
downstream of a muon filter. With this technique it is ensured that the time and space
like coincidence at both hodoscopes are related to a muon rather than to a secondary
particle or to random noise. The further differentiation of the trigger decision then
mainly relies on two methods:

• Horizontal Target Extrapolation: Hodoscopes, which are placed horizontally in
the x-direction, detect the y-coordinates of the scattered muon at two different z
positions. This leads to a determination of the scattering angle between the x-z
plane, which is perpendicular to the magnetic field direction, and the plane of the
muon trajectory. Using this scattering angle an extrapolation to the y coordinates
of the trajectory at the end points of the target can be performed. This method will
only work for large scattering angles

• VerticalTargetExtrapolation: Thismethod relies on the fact thatmuons scattered
inside the target have lost a part of their initial energy. The radius of curvature of
their trajectory along the x-z plane will thus be larger compared to an unscattered
muon. The combination of two vertically displaced hodoscopes uses this fact for
a trigger decision.

Figure 3.6 shows the positions of the different hodoscopes along theCOMPASS-II
spectrometer. Five different types of triggers can be distinguished.

• Inner Trigger: For very small scattering angles vertical target extrapolation
together with the hodoscopes H4I and H5I creates the Inner Trigger.
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• Ladder Trigger: The Ladder Trigger is supposed to detect muons with small
scattering angles, large energy deposit and high values of Q2. The hodoscopes
H4L and H5L together with the horizontal target extrapolation method are used.

• LAS Trigger: Providing sensitivity for values of Q2 up to 20 (GeV/c)2, the LAS
Trigger uses the hodoscopes H1 and H2.

• Middle Trigger: For small scattering angles a combination of vertical and hor-
izontal target extrapolation, using the hodoscopes H4M and H5M, the Middle
Trigger is sensitive to the relative energy transfer y in the region 0.1< y <0.7.

• Outer Trigger: The Outer Trigger, consisting of the hodoscopes H3O and H4O,
covers the full range of the relative energy transfer y and a four-momentum transfer
Q2 of up to 10 (GeV/c)2.

Apart from these types of triggers a veto system located upstream of the target
filters the final trigger signal for trigger attempts created by halo particles. A detailed
description of the muon trigger system is given in Ref. [8].

3.6.2 The Proton Trigger

The first stage of the proton trigger is shown in Fig. 3.7. An interaction inside one
of the ring A elements is combined with all possible interactions within the two
corresponding B elements. The combinations are filtered for interactions, which
correspond to a longitudinal position within the physical boundaries of the three
scintillators. If the time of flight associated to the track lies within −5 ns and 40ns,
the first trigger stage is passed. Figure A.61 shows the signature of recoiled protons,
detected within elastic pion proton scattering, using the first stage of the proton
trigger. The main challenges for the creation of the proton trigger signal are:

• A continous calculation of the time-stamps and amplitudes of each of the 96
photomultiplier signals of the detector [4].

• A high-speed data transfer from the frontend electronics to the trigger electronics
[9].

• The generation of the final trigger signal by processing the information of the 96
detector channels on a single module [10].

For the 2017 DVCS measurement it is planed to implement a second trigger stage,
which is supposed to make use of the transmitted signal amplitude information.
Including for example the correlation between the corresponding amplitudes in the
inner and outer ring of the detector into the trigger decision, the purity of the trigger
signal is supposed to increase dramatically [11].
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Fig. 3.7 Schematic front view of the CAMERA detector, which illustrates the first stage of the
trigger decision (picture adapted from Ref. [9])

3.6.3 The Random Trigger

The random trigger signal is generated by a radioactive 22
11Na source. To avoid a

contamination of the signal by beamparticle interactions, it is placed in great distance
to the beam line. A clean experimental signature of the dominant β+ decay of 22

11Na
to the exited 10

22Ne
∗ state is achieved by a coincidence measurement of two photons.

These photons are produced as the decay positron annihilates with a nearby low
energetic electron. The logical signal characterising the two photon coincidence is
connected to theCOMPASS trigger control systemvia a 1km long cable. The random
trigger is crucial for the measurement of the beam flux, as it will be discussed in
Sect. 5.2.
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3.7 Data Acquisition and Reconstruction

The data acquisition system realises the readout of over 250,000 detector channels.
Until the end of 2012 this was achieved by a modular design, according to Fig. 3.8,
which will be outlined in the following.

In order to ensure the best possible signal integrity, the first stage of the readout
electronics is placed as close as possible to the respective detector. Within this stage
the analogue signals of the individual detector channels are digitised. It comprises
mainly TDC7 and ADC modules.

The second stage of the data acquisition is connected to the trigger control system.
To guarantee a synchronous digitisation, it provides the global 38.88MHz readout
clock to the ADC and TDC modules. But it also collects and serialises the digitised
information of the individual detector channels within a certain time window with
respect to the trigger signal. The first and second stage are either realised on a single
readout module or physically separated into two modules.

The serialised data, which is already sorted in an event by event order according
to the S-LINK protocol [12], is then either directly transmitted to the spillbuffer
computers or multiplexed in an additional stage via the SMUX or TIGER8 modules.
The transmission to the spill buffer computers, which are located more than 50m
away, is achieved by glass fibres with a theoretical data rate of 160MB/s (in reality
<100MB/s).

The TIGER module was used for the first time in 2012 as a multiplexer. It is
capable of concentrating the data of up to 18 GANDALF modules. For the readout
of the CAMERA detector it is multiplexing the data of 12 GANDALF modules and
thus allows for the readout of 96 channels via a single SLINK fibre. In comparison,
the SMUX module is capable to concentrate the data of up to four modules.

The data received by the spillbuffer computers is passed to so called event builder
computers. A single event builder receives the information of a complete event of
all detector channels of the experiment, which is sorted into one data package and
transmitted via Gigabit LAN9 to the CERN main area for long term storage.

The analysis of the raw data, stored on CASTOR,10 is performed in several steps.
First the raw data is decoded using the DDD11 library and then processed for track
and vertex reconstruction as well as particle identification by the reconstruction soft-
ware CORAL.12 This step is commonly called the data production stage. In case of
the determination of a charged track this comprises the track reconstruction, using a
Kalman filter algorithm [14]. The charged tracks are then combined within a vertex
fit,which is alsomaking use of theKalmanfilter technology. TheKalmanfilter has the
purpose to decide wheter certain tracks (hits) belong to the same vertex (track). The

7Time to Digital Converter.
8Trigger Implementation for GANDALF Electronic Readout [13].
9Local Area Network.
10CERN Advanced STORage Manager.
11DAQ Data Decoding.
12COmpass Reconstruction and AnaLysis [1].
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reconstructed charged tracks and vertices together with the reconstructed calorime-
ter cluster information and specific information related to particle identification as
well as the respective estimated uncertainties on this information are stored in the
mDST13 format. The final data analysis is performed on the mDST level, using the
software PHAST.14 PHAST provides a tool-kit for often used functions to access
the information stored inside the mDST files on the basis of the ROOT15 software
framework.
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Chapter 4
The Kinematically Constrained Fit

The measurements of exclusive single photon or hard exclusive meson production at
the COMPASS-II experiment are in general over-constrained. This can be exploited
to improve the resolution on the measured kinematic quantities by the usage of a
kinematically constrained fit. The chapter is supposed to describe the procedure
of a kinematically constrained fit and to give an overview of its application to the
experimental situation atCOMPASS-II. After a short introduction to the basic math-
ematical framework, it is shown how the measurements of charged particles, neutral
particles and a recoiled target particle are introduced into the procedure and which
kind of constraints can be applied.

Later, in Sect. 5.1 the kinematic fitting procedure is applied to the beam and spec-
trometer measurements of exclusivemuoproduction of a ρ0, to predict the kinematics
of the recoiled proton. This allows for the calibration of the longitudinal positions
of the scintillators of the CAMERA detector. Finally, in Sect. 7 the full potential of
the kinematic fit is exploited. It is applied to the beam, spectrometer and CAMERA
measurement of exclusive single photon production.

4.1 Mathematical Description

Technically, a kinematic fit is a constrained minimisation of a scalar function χ2(�k)
for a set of non-linear constraints of the form �g(�k, �h) = �0I , while:

�g ∈ R
I , �k ∈ R

J , �h ∈ R
L .

The real vector space of dimension M is depicted by R
M with its neutral element

given by �0M . Using the abbreviation:

��k = �k − �kinit ,
© Springer International Publishing AG, part of Springer Nature 2018
P. Jörg, Exploring the Size of the Proton, Springer Theses,
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where �kinit denotes a vector of measured values with its corresponding covariance
matrix Ĉ , the least squares function can be written as:

χ2
(�k

)
:= ��kT Ĉ−1��k. (4.1)

Its minimisation with respect to the constraints �g
(�k, �h

)
can be summarised in a

minimisation of the Lagrange function:

L
(�k, �λ

)
= χ2

(�k
)

+ 2
I∑

i=1

λigi

(�k, �h
)
.

This is an application of the Lagrange multiplier method, for which the following
set of non-linear equations has to be solved:

∂L
(�k, �λ

)

∂λi
= 0 (derivatives w.r. to Lagrange multipliers),

∂L
(�k, �λ

)

∂k j
= 0 (derivatives w.r. to measured parameters),

∂L
(�h, �λ

)

∂hl
= 0 (derivatives w.r. to unmeasured parameters),

∀ i ∈ {1, . . . , I }; ∀ j ∈ {1, . . . , J }; ∀ l ∈ {1, ..., L}.

The set of equations can be linearised by a Taylor approximation of the constraints:

gi

(�k(n+1), �h (n+1)
)

≈ gi

(�k(n), �h (n)
)

+
J∑

j=1

∂gi

∂k j

∣∣∣∣(�k(n),�h (n)

)
(
�k(n+1)

j − �k(n)
j

)

+
L∑

l=1

∂gi

∂hl

∣∣∣∣(�k(n),�h (n)

)
(
�h(n+1)

l − �h(n)
l

)
= 0.

The measured and unmeasured quantities of iteration (n), are given by:

�k(n)
j =

(
k(0)
j − k(n)

j

)
=

(
kinit, j − k(n)

j

)
,

and respectively:

�h(n)
l =

(
h(0)
l − h(n)

l

)
=

(
h≈,l − h(n)

l

)
.
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The starting points of the iterative procedure are denoted by the measured quanti-
ties �k0 := �kinit and by estimates of the unmeasured quantities �h0 := �h≈. In more
convenient matrix notation the linearisation reads:

�g(n+1)
i = �g(n)

i + K̂ (n)
(
��k(n+1) − ��kn

)
+ T̂ (n)

(
��h (n+1) − ��h (n)

)

= K̂ (n)��k(n+1) + T̂ (n)��h (n+1) − �c (n) = 0,

with the quantities of iteration (n) given by:

K̂ (n) = ∂�g
∂�k

∣∣∣∣
(�k(n),�h (n))

, T̂ (n) = ∂�g
∂t

∣∣∣∣
(�k(n),�h (n))

, �c (n) = K̂ (n)��k(n) + T̂ (n)��h (n) − �g(n),

(4.2)
while matrices are denoted with a hat.
Now L can be written as:

L =
(
��k(n+1)

)T
Ĉ−1��k(n+1) + 2�λT

(
K̂ (n)��k(n+1) + T̂ (n)��h (n+1) − �c (n)

)
,

and the equations to solve are linear in terms of �λ, ��k(n+1) and ��h (n+1):

Ĉ−1��k(n+1) +
(
K̂ (n)

)T �λ = 0, (J equations for the measured parameters),

(
T̂ (n)

)T �λ = 0, (L equations for the unmeasured parameters),

K̂ (n)��k(n+1) + T̂ (n)��h (n+1) − �c (n) = 0, (I equations for the constraints).

Solving this linearised system of equations yields:

��k(n+1) = Ĉ
(
K (n)

)T
Ĉ (n)

K

[
1 − T̂ (n)

(
Ĉ (n)

T

)−1
Ĉ (n)

K

(
T̂ (n)

)T
Ĉ (n)

K

]
�c (n),

��h (n+1) =
(
Ĉ (n)

T

)−1(
T̂ (n)

)T
Ĉ (n)

K �c (n),

�λ(n+1) = Ĉ (n)
K

[
T̂ (n)

(
Ĉ (n)

T

)−1
(T̂ (n))T Ĉ (n)

K − 1
]
�c (n),

while Ĉ (n)
K =

[
K̂ (n)Ĉ

(
K̂ (n)

)T ]−1
and Ĉ (n)

T =
(
T̂ (n)

)T
Ĉ (n)

K T̂ (n) have been used for

better readability.

The full covariancematrix for the vector ofminimised parameters
(�k(n+1), �h (n+1)

)

is derived by Gaussian error propagation to be:
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Ĉ (n)
f =

⎛
⎜⎝

(
Ĉ (n)
11

) (
Ĉ (n)
21

)T

(
Ĉ (n)
21

) (
Ĉ (n)
22

)

⎞
⎟⎠ ,

with the abbreviations:

Ĉ (n)
11 = Ĉ

[
1 −

(
K̂ (n)

)T
Ĉ (n)
K K̂ (n)Ĉ +

(
K̂ (n)

)T
Ĉ (n)
K T̂ (n)

(
Ĉ (n)
T

)−1(
T̂ (n)

)T
Ĉ (n)
K K̂ (n)Ĉ

]
,

Ĉ (n)
21 = −

(
Ĉ (n)

T

)−1(
T̂ (n)

)T
Ĉ (n)

K K̂ (n)Ĉ,

and

Ĉ (n)
22 =

(
Ĉ (n)

T

)−1
.

The convergence of the procedure is achieved in case the following two criteria are
satisfied:

χ2
(�k(n+1)

)
− χ2

(�k(n)
)

nd f
< εχ,

I∑
i=1

∣∣∣gi
(�k(n+1), �h (n+1)

)∣∣∣ < εg,

The abbreviation nd f denotes the number of degrees of freedom, which is given by
the difference between the number of constraints I and the number of free parameters
J . The quantities εχ and εg denote two real parameters.

A comprehensive andmore detailed description of themathematical framework is
given in [1]. The procedure developed during this thesis is making use of the publicly
available software of [2], which provides the minimisation procedure described in
this section and a basic set of momentum, energy and mass constraints.

4.2 Definition of the Input Covariance Matrix

The input covariance Ĉ in Eq.4.1 is a block diagonal matrix:

Ĉ =

⎛
⎜⎜⎜⎜⎜⎜⎝

Ĉ1 0 . . . 0
0 Ĉ2 . . . 0
. . . .

. . . .

. . . .

0 0 . . . ĈN

⎞
⎟⎟⎟⎟⎟⎟⎠

. (4.3)
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For each of the N particles, which enter the kinematic fit, a matrix Ĉi enters the
diagonal of Ĉ . Hence, the measured track parameters of one particle are assumed to
be independent with respect to the ones of another particle. It shall be emphasised
that a correlation amongst the track parameters of the different particles will appear
in case the parameters are already the result of a vertex fit. Thus, in the following
the raw track parameters, not corrected by a vertex fit, are used and the vertex fit is
incorporated in the kinematic fit by adding vertex constraints.

Correlations amongst the determined track parameters of one particle are taken
into account within the corresponding covariance matrices Ĉi . Due to the experi-
mental situation the dimension and the most appropriate choice of coordinates for
the Ĉi can differ. The three cases described in the following three sections should be
distinguished.

4.3 Treatment of Charged Tracks

The helix of a charged track is represented in the reconstruction software CORAL
as:

�S =

⎛
⎜⎜⎜⎜⎝

x
y
X
Y

| �p|−1

⎞
⎟⎟⎟⎟⎠

.

The quantities X and Y are short-handed for dx
dz and

dy
dz , while x and y are the trans-

verse coordinates of the charged particle with momentum �p at a given longitudinal
coordinate z. A covariance matrix Ĉ for the coordinates of this track representation
is derived by a track fit during the reconstruction process and available in the anal-
ysis software PHAST. In order to formulate momentum conservation constraints in
Cartesian coordinates, a transformation into the track representation,

�S′ =

⎛
⎜⎜⎜⎜⎝

x
y
px
py
pz

⎞
⎟⎟⎟⎟⎠

, (4.4)

has to be performed. The relation between the two representations is the following:

�S′ =

⎛
⎜⎜⎜⎜⎝

x
y
0
0
0

⎞
⎟⎟⎟⎟⎠

+ | �p|√
1 + X2 + Y 2

⎛
⎜⎜⎜⎜⎝

0
0
X
Y
1

⎞
⎟⎟⎟⎟⎠

. (4.5)
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Hence the Jacobi matrix Ĵ = ∂ �S′
∂ �S , describing the transformation between the two

representations, is given by:

Ĵ = 1

w3| �p|−1

⎛
⎜⎜⎜⎜⎝

w3| �p|−1 0 0 0 0
0 w3| �p|−1 0 0 0
0 0 w2 − X2 −XY −w3 px
0 0 −XY w2 − Y 2 −w3 py
0 0 −w| �p|−1 px −w| �p|−1 py −w3 pz

⎞
⎟⎟⎟⎟⎠

,

while the abbreviationw = √
1 + X2 + Y 2 has been used. The covariance matrix Ĉ ′

in the Cartesian representation is finally related to the covariance matrix Ĉ , available
in the analysis software, by basis transformation:

Ĉ ′ = Ĵ Ĉ Ĵ T . (4.6)

The initial quantity �S is given by an extrapolation of the track parameters at the
z-position of the first measured point to the z-position of the interaction vertex. The
z-position of the interaction vertex is taken from the vertex fit of the reconstruction
software CORAL. The extrapolation through the magnetic-field is performed by
the analysis software PHAST. It takes into account energy loss effects and multiple
scattering uncertainties inside the covariance matrix Ĉ . It shall be emphasised that
the track parameters at the first measured point are not corrected by the vertex fit,
performed inside CORAL. The z-position of the vertex given by CORAL is simply
used in order to have a good estimate of energy loss effects and multiple scattering
uncertainties within �S and Ĉ .

The advantage of this approach is that �S′ and Ĉ ′ from Eqs. 4.5 and 4.6 can now be
used to find a common vertex within the kinematic fit procedure, using a straight line
approximation for the vertex constraints inside the field free region. This allows to
calculate the derivatives of Eq.4.2 with respect to the vertex constraints analytically.

To summarise, the input parameters �Sin for each charged particle into the kine-
matic fit procedure are given by �S′:

�Sin := �S′. (4.7)

The input covariance matrix Ĉmeas is given by:

Ĉmeas := Ĉ ′, (4.8)

It is Ĉmeas which enters the diagonal in Eq.4.3.
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4.4 Treatment of Photons

In case of a neutral cluster1 the cluster position �r is reconstructed inside one of
the three electromagnetic calorimeters. This is performed by the clusterisation algo-
rithms inside the reconstruction software CORAL. Furthermore, as a result of a final
calibration of the calorimeters, the photon momentum | �p| at the interaction vertex
is also available. Due to the experimental situation it is then appropriate to choose a
track parametrisation as follows:

�S =

⎛
⎜⎜⎜⎜⎜⎜⎝

x

y

| �p|
θp

φp

⎞
⎟⎟⎟⎟⎟⎟⎠

.

The quantities x and y denote the transverse coordinates of the cluster at the z-
position of the respective calorimeter and φp, θp the azimuthal and polar angle of the
cluster momentum �p. Since the constraints are formulated in Cartesian coordinates,
one has to perform the basis transformation into the Cartesian representation �S′. The
relation between the two representations is the following:

�S′ =

⎛
⎜⎜⎜⎜⎝

x
y
0
0
0

⎞
⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎝

0

0

| �p| sin θp cosφp

| �p| sin θp sin φp

| �p| cos θp

⎞
⎟⎟⎟⎟⎟⎟⎠

.

The Jacobi matrix Ĵ = ∂ �S′
∂ �S , describing the transformation between the two represen-

tations, is thus given by:

Ĵ =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0

0 1 0 0 0

0 0 sin θp cosφp | �p| cos θp cosφp −| �p| sin θp sin φp

0 0 sin θp sin φp | �p| cos θp sin φp | �p| sin θp cosφp

0 0 cos θp −| �p| sin θp 0

⎞
⎟⎟⎟⎟⎟⎟⎠

.

At this point one could imagine to proceed as described in Sect. 4.3. However, the
situation is different since in case of a neutral cluster the photon momentum is not

1A neutral cluster is defined as a reconstructed calorimeter cluster with no charged track pointing
to its location in the electromagnetic calorimeter.
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fullymeasured and the unmeasured quantities θp andφp have to be determined by the
kinematic fit. Thus, the derivatives in Eq.4.2 for a certain constraint i are evaluated
using the chain rule:

∂gi

∂ �S = ∂gi

∂ �S′
∂S′

∂ �S = ∂gi

∂ �S′ Ĵ =: �b,

and there are only derivatives with respect to the Cartesian representation S left to
calculate:

∂gi

∂ �S′ =
(

∂gi
∂x ,

∂gi
∂y ,

∂gi
∂ px

,
∂gi
∂ py

,
∂gi
∂ pz

)
.

The derivatives in Eq.4.2 are now explicitly given in case of the measured quantities
�k = (x, y, | �p|)T by:

∂gi

∂�k =
(

∂gi
∂x ,

∂gi
∂y ,

∂gi
∂| �p|

)
= (

b1, b1, b3
)
,

and in case of the unmeasured quantities �h = (φ, θ)T by:

∂gi

∂ �h =
(

∂gi
∂θp

,
∂gi
∂φp

)
= (

b4, b5
)
.

The input parameters to the kinematic fitting procedure �Smeas for each neutral cluster
are then given by the measured quantities according to:

�Smeas :=
⎛
⎝

x
y

| �p|

⎞
⎠ , (4.9)

while the input covariance matrix Ĉmeas , entering the diagonal in Eq.4.3, has the
following form:

Ĉmeas :=
(
Ĉxy 0
0 σ2

| �p|

)
. (4.10)

The quantity Ĉxy takes the correlation between the x and y position of the cluster
into account and is given as a result of the clusterisation algorithms for the different
calorimeters. The photon momentum resolution is denoted by σ| �p|. It is also given
by the clusterisation algorithms. The correlation between | �p| and x or y is assumed
to vanish.

The parameters φp and θp are free parameters to be determined by the kinematic
fit and are closely connected with the fact that the photon will be constrained to have
its origin at the interaction vertex.
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4.5 Treatment of the Recoiled Target Particle

For a recoiled target particle, measured by the CAMERA detector, the hit positions
�rA = (rA,φA, zA) and �rB = (rB,φB, zB) inside the inner and outer ring of scin-
tillators are known, while the momentum | �p| is reconstructed by a time of flight
and distance of flight measurement. An appropriate description of the measurement,
reflecting the barrel shaped detector, is thus given by:

�S =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

rA
φA

zA
rB
φB

zB
| �p|
θp

φp

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (4.11)

The quantities φp and θp denote the azimuthal and polar angle of the proton momen-
tum �p. The relation with a Cartesian representation �S′ is the following:

�S′ =

⎛
⎜⎜⎝
rA cosφA

rA sin φA

zA
�06

⎞
⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎝

�03
rB cosφB

rB sin φB

zB
�03

⎞
⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎝

�06
| �p| sin θp cosφp

| �p| sin θp sin φp

| �p| cos θp

⎞
⎟⎟⎠ .

The Jacobi matrix Ĵ = ∂ �S′
∂ �S , describing the transformation between the two represen-

tations, is given by:

Ĵ =
⎛
⎝

ĴA 0 0
0 ĴB 0
0 0 Ĵp

⎞
⎠ ,

while the following abbreviations have been used:

ĴA;B =
⎛
⎜⎝
cos (φA;B) −rA;B sin (φA;B) 0

sin (φA;B) rA;B cos (φA;B) 0

0 0 1

⎞
⎟⎠ ,

Ĵp =
⎛
⎜⎝
sin θp cosφp | �p| cos θp cosφp −| �p| sin θp sin φp

sin θp sin φp | �p| cos θp sin φp | �p| sin θp cosφp

cos θp −| �p| sin θp 0

⎞
⎟⎠ .
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As described in Sect. 4.4 the derivatives in Eq.4.2 for a certain constraint i are
evaluated using the chain rule:

∂gi

∂ �S = ∂gi

∂ �S′
∂S′

∂ �S = ∂gi

∂ �S′ Ĵ =: �b,

and there are only derivatives with respect to the Cartesian representation S left to
calculate:

∂gi

∂ �S′ =
(

∂gi
∂xA

,
∂gi
∂yA

,
∂gi
∂zA

,
∂gi
∂xB

,
∂gi
∂yB

,
∂gi
∂zB

,
∂gi
∂ px

,
∂gi
∂ py

,
∂gi
∂ pz

)
.

The derivatives are then explicitly given in case of the measured quantities �k =
(rA,φA, zA, rB,φB, zB, | �p|)T by:

∂gi

∂�k =
(

∂gi
∂rA

,
∂gi
∂φA

,
∂gi
∂zA

,
∂gi
∂rB

,
∂gi
∂φB

,
∂gi
∂zB

,
∂gi
∂| �p|

)
= (

b1, . . . , b7
)
,

and in case of the unmeasured quantities �h = (θp,φp)
T by:

∂gi

∂ �h =
(

∂gi
∂φp

,
∂gi
∂θp

)
= (

b8, b9
)
.

The parameters φp and θp of Eq.4.11 are free parameters to be determined by the
kinematic fit and not part of the input parameters.

The input parameters Smeas to the kinematic fitting procedure for each track,
detected inside the CAMERA detector, are then given according to:

Smeas :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

rA
φA

zA
rB
φB

zB
| �p|

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (4.12)

The input covariancematrix Ĉmeas , entering the diagonal in Eq.4.3, has the following
form:

Cmeas :=
⎛
⎝
ĈA 0 0
0 ĈB 0
0 0 σ2

p

⎞
⎠ . (4.13)
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The quantity ĈA,B is given by:

ĈA,B =
⎛
⎝

σ2
r (A; B) 0 0

0 σ2
φ(A; B) 0

0 0 σ2
z (A; B)

⎞
⎠ .

The values σr (A; B) denote the uncertainties on the shortest distance of a ring A or
B counter to the centre of the CAMERA detector. They have been chosen to be at
the order of the width of the two different types of counters:

σr (A) = 0.4 cm; σr (B) = 5 cm.

The values σφ(A; B) denote the azimuthal uncertainty on the measurement, due to
the discrete number of counters of ring A and B. They have been chosen to be:

σφ(A; B) = 2π

24
√
12

rad.

The uncertainties σz(A; B) denote the resolutions of the longitudinal hit positions
of ring A and B. They are given by:

σz(A) = 4.1 cm; σz(B) = 2.9 cm. (4.14)

The quantity σz(A) is the same as it is stated in Eq.5.7, which corresponds to the
assumption that the resolution on the interaction vertex and the resolution of ring B
have a negligible impact compared to the “true” resolution of ring A.

The quantity σz(B) is changed slightly with respect to Eq.5.6, in order to account
for the fact that Eq.5.6 states the resolution of ring Bwith respect to the spectrometer
and beam measurement. The estimate for the ring B resolution is chosen such that a
consistent picture between data and Monte Carlo with respect to Figs. 6.9 and 6.15
arises.

Finally, the value of σp in Eq.4.13 denotes the experimental resolution on the
magnitude of the momentum of the recoiled proton. It is estimated by means of a
Monte Carlo simulation. A detailed description of the introduction of the CAMERA
detector to the Monte Carlo simulations is given in Sect. 6.1. In this context the
introduction procedure essentially corresponds to a transformation of σz(A; B) to a
resolution of the corresponding time stamps at the up- and downstream side of each
counter. Since the time of flight of a recoiled particle is calculated directly from these
time-stamps, one gains insight into the momentum resolution within the simulations.

Figure4.1 shows the resolution on the magnitude of the proton momentum using
a single photon Monte Carlo yield. From this simulation σp is estimated according
to the red line of Fig. 4.1.
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Fig. 4.1 Measured
momentum resolution of
protons. The quantity �p
denotes the reconstructed
proton momentum, given by
the hit information of the
CAMERA detector, the
quantity t the square of the
four-momentum transfer to
the proton. These data have
been taken from Monte
Carlo simulations of single
photon production
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The fact that the red line overestimates the momentum resolution of CAMERA in
the region of large proton momenta or large values of |t |, the magnitude of the four
momentum transfer to the proton squared, is not too much of a problem. As it will
be shown in Sect. 6.3, the determination of |t | above 0.4 (GeV/c)2 by a kinematic
fit which combines beam spectrometer and CAMERA measurements is completely
dominated by the beam and spectrometermeasurement. Thus, a slight overestimation
of the resolution of the proton momentum measured by CAMERA corresponds to a
negligible loss of precision in the region of large |t |. Or to put it in other words, in the
region of |t | above 0.4 (GeV/c)2 the resolution on |t | reconstructed by CAMERA is
much worse compared to the resolution of the beam and spectrometer measurement.
Hence, a slight overestimation of the CAMERA resolution in the region of large
|t | will have no noticable impact on a combined beam spectrometer and CAMERA
determination.

4.6 Constraints

In this section the different types of constraints are discussed. The constraints are
formulated in Cartesian coordinates, while the input quantities and the correspond-
ing uncertainties are given in the experimentally most applicable coordinates. The
translation between the different coordinates is explicitly shown in Sects. 4.3–4.5.

4.6.1 Energy and Momentum Constraints

The momentum constraints for N incoming and J outgoing particles have the fol-
lowing form:
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gk( �p [1], . . . , �p [N ], �p′ [1]
, . . . , �p′ [J ]

) =
n=N∑
n=1

( �p [n])�ek −
j=J∑
j=1

( �p′[ j])�ek = 0,

k ∈ {1, 2, 3},

where �ek denotes the unity vector into the x-, y- or z-direction and the outgoing
particles have been denotedwith a slash. The derivatives necessary to evaluate Eq. 4.2
are thus given by:

∂gk

∂ p[n]
l

= δl,k p[n]
l and

∂gk

∂ p′ [ j]
l

= −δl,k p′ [ j]
l .

Denoting the mass of the nth particle by m[n], the energy constraint for N incoming
and J outgoing particles has the following form:

gE (E [1], . . . , E [N ], E ′ [1], . . . , E ′ [J ]) =
n=N∑
n=1

E [n] −
j=J∑
j=1

E ′ [ j] = 0.

The derivatives needed in Eq.4.2 are thus given by:

∂gE

∂ p[n]
l

= ∂gE

∂E [n]
∂E [n]

∂ p[n]
l

= ∂E [n]

∂ p[n]
l

= p[n]
l c2√∑3

i=1(p
[n]
i c)2 + (m[n]c2)2

= p[n]
l c2

E [n] ,

and respectively for an outgoing particle:

∂gE

∂ p′ [ j]
l

= − p′ [ j]
l c2

E ′ [ j] .

All remaining derivatives of the above constraints with respect to parameters which
are not part of the respective constraint are equal to zero.

4.6.2 Vertex Constraints

The track of a particle in the absence of a magnetic field can be parametrised by a
straight line:

�r(η) = �a + η �p,
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while �a denotes a known point on the track, �p its momentum and η a free parameter.
Writing the equation for the z-component yields:

rz = az + η pz ⇒ η pz = rz − az . (4.15)

For the x-component one finds:

rx = ax + η px ⇒ rx pz = ax pz + η px pz . (4.16)

Inserting η pz from Eqs. 4.15 into 4.16, it follows:

pz(rx − ax ) − px (rz − az) = 0. (4.17)

An analogue procedure for the y-component yields:

pz(ry − ay) − py(rz − az) = 0. (4.18)

Hence, a point �r can be found on the track in case Eqs. 4.17 and 4.18 are simulta-
neously satisfied, or in other words a line is constrained by two planes. In case one
imagines to only have one fully measured track, the problem is underconstrained
since one can not determine the three components of the vertex with only two equa-
tions. As soon as a second track is measured the problem immediately becomes
over-constrained and this fact is then commonly used to improve resolutions on the
track parameters itself. Thus, for N particles constrained to a common vertex �v the
equations:

g[i]
1 = p[i]

z (vx − a[i]
x ) − p[i]

x (vz − a[i]
z ) = 0, (4.19)

and
g[i]
2 = p[i]

z (vy − a[i]
y ) − p[i]

y (vz − a[i]
z ) = 0, (4.20)

have to be satisfied for all i ∈ {1, . . . , N }.
The derivatives needed in Eq.4.2 are thus explicitly given by:

∂g[i]
1

∂ p[ j]
x

= −δi, j (vz − a[i]
z ),

∂g[i]
1

∂ p[ j]
y

= 0,
∂g[i]

1

∂ p[ j]
z

= δi, j (vx − a[i]
x ),

∂g[i]
1

∂a[ j]
x

= −δi, j p
[i]
z ,

∂g[i]
1

∂a[ j]
y

= 0,
∂g[i]

1

∂a[ j]
z

= δi, j p
[i]
x ,

∂g[i]
1

∂vx
= p[i]

z ,
∂g[i]

1

∂vy
= 0,

∂g[i]
1

∂vz
= −p[i]

x ,
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and
∂g[i]

2

∂ p[ j]
x

= 0,
∂g[i]

2

∂ p[ j]
y

= −δi, j (vz − a[i]
z ),

∂g[i]
2

∂ p[ j]
z

= δi, j (vy − a[i]
y ),

∂g[i]
2

∂a[ j]
x

= 0,
∂g[i]

2

∂a[ j]
y

= −δi, j p
[i]
z ,

∂g[i]
2

∂a[ j]
z

= δi, j p
[i]
y ,

∂g[i]
2

∂vx
= 0,

∂g[i]
2

∂vy
= p[i]

z ,
∂g[i]

2

∂vz
= −p[i]

y ,

∀ i, j ∈ {1, . . . , N }.

Similar to Sect. 4.6.1 all remaining derivatives of the respective constraints with
respect to parameters which are not part of the constraints, are equal to zero.

4.6.3 Extrapolation Constraints

The extrapolation constraint is very much similar to a vertex constraint. The idea
is to assume that a particle originates from the interaction vertex and to constrain
it to a set of measured positions on its track. Applying subsequently the following
substitutions to the set of Eqs. 4.19 and 4.20:

�v → �r [i],

�a[i] → �v,

�p[i] → �p,

the extrapolation constraints read:

g[i]
1 = pz(r

[i]
x − vx ) − px (r

[i]
z − vz) = 0,

and
g[i]
2 = pz(r

[i]
y − vy) − py(r

[i]
z − vz) = 0.

In this context �p denotes the momentum of the particle, �v the interaction vertex,
�r [i] the available reconstructed hit positions with i ∈ {1, . . . , N } and N the number
of available position measurements along the track. For completeness the required
derivatives inEq.4.2 are listed in case of the interpolation constraints in the following:

∂g[i]
1

∂ px
= −(r [i]

z − vz),
∂g[i]

1

∂ py
= 0,

∂g[i]
1

∂ pz
= (r [i]

x − vx ),
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∂g[i]
1

∂r [ j]
x

= δi, j pz,
∂g[i]

1

∂r [ j]
y

= 0,
∂g[i]

1

∂r [ j]
z

= −δi, j px ,

∂g[i]
1

∂vx
= −pz,

∂g[i]
1

∂vy
= 0,

∂g[i]
1

∂vz
= p[i]

x ,

and
∂g[i]

2

∂ px
= 0,

∂g[i]
2

∂ py
= −(r [i]

z − vz),
∂g[i]

2

∂ pz
= (r [i]

y − vy),

∂g[i]
2

∂r [ j]
x

= 0,
∂g[i]

2

∂r [ j]
y

= δi, j pz,
∂g[i]

2

∂r [ j]
z

= −δi, j py,

∂g[i]
2

∂vx
= 0,

∂g[i]
2

∂vy
= −pz,

∂g[i]
2

∂vz
= py,

∀ i, j ∈ {1, . . . , N }.

Similar to Sects. 4.6.1 and 4.6.2 all remaining derivatives of the respective constraints
with respect to parameters which are not part of the constraints, are equal to zero.

The extrapolation constraint is explicitly designed for the experimental situation
of the CAMERA detector. Hence, in the following the set of hit positions is given
by the reconstructed hit positions inside ring A and B of the CAMERA detector
implying N = 2.
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Chapter 5
The 2012 DVCS Data

The 2012 DVCS run was performed as a pilot run for the dedicated DVCS beam
time through 2016 and 2017. The charge and polarisation of the muon beam were
changed nine times during five weeks, such that five periods for each beam charge
and polarisation are recorded. The data taken with the μ+ and respectively the μ−
beam will be denoted as the μ+ or μ− data yield in the following. Between μ+ and
μ− data taking periods the magnetic fields of the two spectrometer dipole magnets
were inverted. The first part of this chapter is supposed to explain the calibration
procedure of the CAMERA detector. The second part deals with the extraction of
the luminosity, the application of stability criteria to the data and the determination
of the efficiency of the CAMERA detector.

5.1 Calibration of the CAMERA Detector

The CAMERA detector is supposed to measure the momentum and direction of the
recoiled target proton, as it is described in Sect. 3.5.During the 2012 data taking it was
used for the first time as a part of the COMPASS apparatus. The calibration procedure
of the time and distance of flight measurement of the recoiled target particles is
described throughout this section.

5.1.1 The Exclusive ρ0 Sample

In order to calibrate the time of flight and distance of flight measurement of the
CAMERA detector, exclusive ρ0 muoproduction is used. After its production the ρ0

decays almost instantly into two charged pions. The cross section of the reaction
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μp → μ′ p′ ρ0 → μ′ p′ π+ π− is large enough to provide reasonable statistics for a
separate calibration of each of the 48 scintillating counters of theCAMERA detector.
Due to the exclusive character of the reaction, the measurement of the beam and
scattered muon together with the two charged pions allows for a prediction of the
momentum and the interaction points of the recoiled proton within the CAMERA
detector. The selection of exclusive ρ0 events is kept close to Ref. [1], while certain
criteria of the selection were changed in order to gain statistics (Table5.1).

Table 5.1 Overview of the selection of exclusive ρ0 events necessary for the calibration of
CAMERA

• Best primary vertexa

• One incident muon: μ
• One outgoing charged track with same charge

than incoming: μ′
• Two outgoing charged tracks with opposite

charge: h+, h−

Topology selections

• Outgoing muon identification:
is_mu_prime_phast() routine

• Traversed radiation lengths:
X/X0(μ

′) > 30,
X/X0(h+, h−) < 10

• First/last measured track point:
z f irst (h+, h−, μ′) < 350 cm,

zlast (h+, h−, μ′) > 350 cm
• Momentum determination of μ:

≥ 3 hits in BMS2

• Inclusive scattering variables:
Q2 > 0.7 (GeV/c)2,
0.05 < y < 0.9

Track ID and track quality selections

• Mass selection Mh+h− ,
assuming h+h− = π+π−:
0.5GeV/c2< Mh+h− < 1.1GeV/c2

ρ0 selection

• Missing energy3:
−4GeV < Emiss < 4GeV

• Convergence of the kinematic fit
• χ2

red,KinFit < 10

Exclusivity selections

aA primary vertex denotes a vertex which includes the beam particle. In case there is more than one
primary vertex within a single event, the best primary vertex denotes the one which possesses the
largest number of outgoing tracks.
bBeam Momentum Stations: See Sect. 3.1.
cThe missing energy Emiss is given by: Emiss = (p+q−κ)2−M2

p
2Mp

, while Mp denotes the mass of the

proton and p, q, and κ the four-momenta of the target proton, the virtual photon and the ρ0 candidate
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5.1.2 The Kinematic Fit for the Calibration of the
CAMERA Detector

In order to calibrate the longitudinal position of each of the 48 counters of the
CAMERA detector with respect to the spectrometer coordinate system, the longitu-
dinal hit position of the recoiled target particle in ring A and B has to be predicted
from beam and spectrometer measurements only. As one knows the position of the
interaction vertex, one has to predict the polar angle of the recoiled proton. The most
naive approach to calculate the polar angle makes use of the momentum balance of
the reaction μp → μ′ p′ρ0:

tan θS = ( �pp′)T

( �pp′)L
= ( �pμ′ + �pρ0 − �pμ)T

( �pμ′ + �pρ0 − �pμ)L
. (5.1)

The subscripts T and L denote the transverse and respectively longitudinal com-
ponents of the momentum vectors. The upper left distribution of Fig. 5.1 shows the
quantity θS as a function of the same polar angle θC , but using only the hit information
of the CAMERA detector. It is clearly visible that there is no correlation between the
two computations of the polar angle.While the quantity θC seems to populate the area
at around1.2 rad, the naive calculation of θS ends uppredicting recoiled particleswith
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Fig. 5.1 Upper Left: The polar angle of the recoiled proton θS , calculated according to Eq. (5.1) as a
function of the reconstructed polar angle θC inside the CAMERA detector. Upper Right: Projection
of the upper left distribution on the θS axis. Bottom left: A simple toy Monte Carlo study, supposed
to reproduce the behaviour of the upper right distribution



80 5 The 2012 DVCS Data

a polar angle being dominantly close to zero or in the unphysical backward scattering
region.

This behaviour can be explained qualitatively. If one evaluates Eq. (5.1) within
a small toy Monte Carlo study for a typical longitudinal beam and spectrometer
momentum resolution of approximatelly 2GeV/c, a mean longitudinal proton mo-
mentum of approximately 140MeV/c and a mean transverse proton momentum of
approximately 350MeV/c, one arrives at the bottom left distribution of Fig. 5.1.
These assumptions correspond to a mean polar angle of the proton of approximately
1.2 rad. Furthermore, the transversemomentum resolutionwas neglected for simplic-
ity. The similarity between the top right and the bottom left distributions of Fig. 5.1
clarifies the observed behaviour and leaves the conclusion that Eq. (5.1) alone does
not provide sensitivity to the polar angle of the proton.

While Eq. (5.1) makes use of the momentum balance only, it does not necessarily
force the proton on its mass shell. In other words, the situation is over-constrained
as the energy balance of the reaction must also be satisfied. Hence, the most clean
solution of the problem is given by a kinematically constrained fit.

The measured beam and spectrometer quantities for the kinematic fit are:

�k =

⎛
⎜⎜⎜⎜⎝

k1
.

.

.

k23

⎞
⎟⎟⎟⎟⎠

:=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�aμ

�pμ

�aμ′

�pμ′

�aπ+

�pπ+

�aπ−

�pπ−

�pp

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The quantities (�aμ, �pμ)
T and (�aμ′ , �pμ′)T denote the track parameters of the beam

and scattered muon, the quantities (�aπ+ , �pπ+) and (�aπ− , �pπ−)T the parameters of the
charged tracks. The latter are assumed to be the π+π− pair. The target proton at rest
is given by �pp. Details on the definition of the track parameters and the treatment of
charged tracks with respect to the kinematic fit procedure can be found in Sect. 4.3.

The unmeasured quantities are:

�h =

⎛
⎜⎜⎜⎜⎝

h1
.

.

.

h6

⎞
⎟⎟⎟⎟⎠

:=
( �pp′

�v
)

, (5.2)

where �pp′ denotes the momentum of the outgoing proton and �v is shorthand for the
position of the vertex.
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The kinematic fitter then calculates corrections ��k to the measured quantities �k
such that the corrected measurements:

�k f it = �k + ��k,

together with the unmeasured quantities �h minimise the least squares function of
Eq. (4.1). This minimisation is performed with respect to the constraints listed in the
following.

The energy and momentum conservation constraints are given, according to
Sect. 4.6.1, by:

gi = (p f it
μ )i − (p f it

μ′ )i − (p f it
π+ )i − (p f it

π− )i − (p f it
p′ )i = 0,

g4 = E f it
μ + mpc

2 − E f it
μ′ − E f it

π+ − E f it
π− − Ep′ = 0,

∀ i ∈ {1, 2, 3}, while the index denotes Cartesian components of the three-vectors.

The variables denoted with the superscript “fit” emphasise the fact that the quantities
corrected by the kinematic fit have to satisfy the constraints. Apart from the energy
and momentum conservation all tracks except the initial and final state proton must
join in a common vertex:

g4+i = (p f it
μ )3

(
vi − (a f it

μ )i

)
− (p f it

μ )i

(
v3 − (a f it

μ )3

)
= 0,

g6+i = (p f it
μ′ )3

(
vi − (a f it

μ′ )i

)
− (p f it

μ′ )i

(
v3 − (a f it

μ′ )3

)
= 0,

g8+i = (p f it
π+ )3

(
vi − (a f it

π+ )i

)
− (p f it

π+ )i

(
v3 − (a f it

π+ )3

)
= 0,

g10+i = (p f it
π− )3

(
vi − (a f it

π− )i

)
− (p f it

π− )i

(
v3 − (a f it

π− )3

)
= 0,

∀ i ∈ {1, 2}, while the index denotes Cartesian components of the three-vectors.

For each charged track two vertex constraints are entering the system of equations.
They are explained in Sect. 4.6.2. The initial and final state proton are not constrained
to the vertex. Since for either of them there is no measurement of their two transverse
coordinates at a certain longitudinal position, one would have to introduce two free
parameters, which are then trivially fixed by the two additional vertex constraints.
This “zero-sumgame”of adding twoconstraints,while at the same timebeingobliged
to include two free parameters, is not “played”.

In total 12 constraints are introduced into the procedure, while according to
Eq. (5.2) six free parameters have to be determined. Hence, the number of degrees
of freedom is six.
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In this context the most important feature of the kinematic fit is that it provides
a precise determination of the polar angle of the recoiled particle, using beam and
spectrometer quantities only. This allows for a calibration of the longitudinal po-
sitions of the scintillating counters. The calibration procedure of the longitudinal
positions of the 48 scintillating counters is described in Sect. 5.1.4.

5.1.3 Calibration of the Azimuthal Angle

In order to calibrate the azimuthal position of the 48 scintillating counters of ring A
and ring B with respect to the spectrometer coordinate system, the azimuthal angle φ
of the recoiled particle determined by the kinematic fit is used. This determination of
φ relies solely on the measurement of the beam and scattered muon tracks together
with the two charged pion tracks and the assumption of exclusivity. It is independent
of the collected hit information of the CAMERA detector.

Within the first step of the calibration procedure the distribution of the φ angle
is separated for each of the 48 counters of the CAMERA detector. A distribution
similar to the right side of Fig. 5.2 or Fig. 5.3 results. For each reconstructed hit in a
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Fig. 5.2 Upper left: Azimuthal angle φ as a function of the reconstructed z-position of the hits
detected inside the B0 counter of CAMERA. The red line indicates a function of the form φ(z) =
�B0 = const . The value of the extracted parameter�B0 gives the azimuthal position of the counter
B0 with respect to the spectrometer coordinate system. Upper right: Projection of the upper left
distribution on the φ-axis. Lower left: Distribution of�φ = φ − φC as a function of z. Lower right:
Projection of the lower left distribution on the �φ-axis. The variable φ denotes the azimuthal angle
of the recoiled particle, determined according to Sect. 5.1.2 by spectrometer measurements only,
while φC denotes the azimuthal angle of the counter B0, using the calibration values indicated by
the red line



5.1 Calibration of the CAMERA Detector 83

z (cm)
300− 200− 100− 0

 (r
ad

)
φ

1.4
1.6
1.8

2
2.2
2.4
2.6
2.8

 (rad)φ
1.4 1.6 1.8 2 2.2 2.4 2.6 2.8

E
nt

rie
s

0

50

100

z (cm)
300− 200− 100− 0

 (r
ad

)
φ

Δ

−0.8
−0.6
−0.4
−0.2

0
0.2
0.4
0.6
0.8

 (rad)φΔ
0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8

E
nt

rie
s

0

50

100

Fig. 5.3 Upper left: Azimuthal angle φ as a function of the reconstructed z-position of the hits
detected inside the A0 counter of CAMERA. The red line indicates a function of the form φ(z) =
mA0z + �A0. The values of the extracted parameters mA0 and �A0 give the azimuthal position
of the counter A0 as a function of the reconstructed z-position with respect to the spectrometer
coordinate system. Upper right: Projection of the upper left distribution on the φ-axis. Lower left:
Distribution of�φ = φ − φC as a function of z. Lower left: Projection of the lower left distribution
on the �φ-axis. The variable φ denotes the azimuthal angle of the recoiled particle determined by
spectrometer measurements only according to Sect. 5.1.2, while φC denotes the azimuthal angle of
the counter A0 using the calibration indicated by the red line

certain counter the determined φ angle enters the respective φ-distribution associated
to this counter. The central values of these distributions correspond to the azimuthal
positions of the counters and are regarded as calibration constants of the first iteration.
Using these constants, the background in the sample can be further suppressed by
applying a soft cut on coplanarity according to a distribution similar to Fig. 5.4. This
allows for a first calibration of the longitudinal hit position, according to Sect. 5.1.4.
Furthermore, by analysing the width of the rectangular shaped φ distributions a
transverse displacement of ring A and B with respect to the transverse origin is
observed. The detailed analysis of the φ distributions can be found within Ref. [2].

The second step of the calibration is to replace the cut on the coplanarity, useful
in case of the longitudinal hit position calibration, with a soft vertex pointing cut,
according to Fig. 5.9. Next, the value of φ is correlated with the reconstructed z-
position inside the counters for eachof the counters individually. The twodimensional
distributions, illustrating the correlation of φ and z, are shown on the left side of
Figs. 5.2 and 5.3 for ring B and A. In case of ring B no correlation between the
two quantities is observed and the single calibration constant �Bi represents the
azimuthal position of the i th counter. The calibrated φ angle of a recoiling particle
traversing a ring B element i is thus given by:

φi (z) = �Bi = const i ∈ {0, . . . , 23}.
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Fig. 5.4 The distribution of �φAB = φAB − φ, indicating an upper limit for the resolution of the
azimuthal angle of the recoiled particle achievable by CAMERA. The quantity φAB is calculated
according to Eq. (5.3), while φ denotes the azimuthal angle of the recoiled particle determined by
spectrometer measurements only according to Sect. 5.1.2. The full width at half the maximum value
is given by σFWHM = 8.9◦

In case of ring A a correlation between φ and z is observed and parametrised by a
linear function. It is related to a slight twist of the thin and deformable scintillating
counters of ring A, introduced during its assembly. The calibrated φ angle of a recoil-
ing particle traversing the i th element of ring A is thus given by the two calibration
constants mAi and �Ai , according to:

φi (z) = mAi z + �Ai i ∈ {0, . . . , 23}.

The functional formof the parametrisations is indicated on the top left side of Figs. 5.2
and 5.3 by the red lines. At the bottom of these figures the difference �φ of the az-
imuthal angle given by the kinematically constrained fit and the azimuthal anglemea-
sured by CAMERA is shown after the application of the calibration constants. These
distributions should serve as a visual proof of concept. Figures A.2 and A.1 inside
AppendixA.1.1 show the top right distribution of Figs. 5.2 and 5.3 for all 48 counters.

Since the counters of ring A are displaced by 7.5◦ with respect to the counters of
ring B, the azimuthal resolution of a recoiling particle, can be increased by using the
following definition of the azimuthal angle:

φAB = φA + φB

2
. (5.3)

Fig. 5.4 shows the achievable azimuthal resolution of CAMERA with respect to the
spectrometer and beam measurements. The full width at half the maximum value is
given by:

σFWHM = 8.9◦.

The bare full azimuthal width of a counter corresponds to 360◦
24 = 15◦. By using

Eq. (5.3) a full azimuthal width of 7.5◦ degrees is expected in case one would
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assume a negligible φ resolution of the beam and spectrometer measurement. How-
ever, a negligible beam and spectrometer resolution is already ruled out by the non
rectangular shape of the distribution.

5.1.4 Calibration of the Longitudinal Position

As described in Sect. 5.1.2, the calibration of the longitudinal hit positions of the 48
scintillating counters of CAMERAwith respect to the COMPASS coordinate system
strongly relies on the kinematically constrained fit.

In case of the calibration of the ring B elements the position of the interaction
vertex �v, the polar angle θ of the recoiled proton and the distance of the ring B
element with respect to the z-axis rB are used. The longitudinal hit position can be
predicted as illustrated in Fig. 5.5. The z-position z′

B , with respect to the interaction
vertex, at which the recoiling particle intersects ring B is calculated as follows:

z′
B = r ′

B

tan (θ)
,

while the quantity:

r ′
B = rB − d = rB −

√
v2
x + v2

y,

denotes the transverse distance between the interaction vertex and ring B. The abso-
lute z-position, with respect to the COMPASS coordinate system, follows as:

zB = vz + z′
B .

Fig. 5.5 Schematic illustration of the longitudinal hit position calibration of the ring B elements



86 5 The 2012 DVCS Data

 (ns)dwn-tupt
20− 10− 0 10 20

 (c
m

)
Bz

400−

300−

200−

100−

0

100

 (cm)B zΔ
40− 20− 0 20 40

E
nt

rie
s

0

20

40

60

80

100

120

Fig. 5.6 Left: Distribution of the predicted z-position zB of the recoiled particle inside the B0
counter of CAMERA as a function of (tu − td ), the difference of the up- and downstream time-
stamps measured with the two photomultiplier tubes of the B0 counter. According to Eq. (3.1) of
Sect. 3 a function of the form zB0(�t) = 1

2 cB0(t
u
B0 − tdB0) + kzB0 is shown in red, which illustrates

the determination of the calibration parameters cB0 and kzB0. Right: Distribution of �zB = zB −
zC,B , the difference between the predicted z-position zB , using the kinematically constrained fit,
and the reconstructed z-position zC,B after the application of the calibration constants cB0 and k

z
B0

The left distribution of Fig. 5.6 shows zB as a function of the difference between the
up- and downstream time-stamps (tu − td), measured at the two sides of an exemplary
ring B element. The slope 1

2cBi and the offset kzBi of the distribution are extracted
as indicated by the red line. Hence, the z-position of a particle traversing the i th
element of ring B is given according to Eq. (3.1) by:

zC,Bi = 1

2
cBi (t

u
Bi − tdBi ) + kzBi , i ∈ {0, . . . , 23}. (5.4)

To make use of the good position resolution of the ring B elements, a slightly
different approach is chosen for the longitudinal hit position calibration of ring A.
The hit position inside ringA is calculated by an interpolation between the interaction
vertex and z′

C,B , the reconstructed hit position in ring Bwith respect to the interaction
vertex. As illustrated in Fig. 5.7, the z-position z′

A at which the recoiling particle
intersects ring A, is calculated with respect to the interaction vertex as follows:

z′
A = r ′

A

r ′
B

z′
C,B,

while the quantity:

r ′
A = rA − d = rA −

√
v2
x + v2

y,

denotes the transverse distance between the interaction vertex and ring A. The abso-
lute z-position, with respect to the COMPASS coordinate system, follows as:

zA = vz + z′
A.
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Fig. 5.7 Schematic illustration of the longitudinal hit position calibration of the ring A elements

As in case of the ring B calibration Fig. 5.8 shows zA as a function of the difference
between the up- and downstream time-stamps (tu − td), measured at the two sides of
an exemplary ring A element. The z-position of a particle traversing the i th element
of ring A is thus given according to Eq. (3.1) by:

zC,Ai = 1

2
cAi (t

u
Ai − tdAi ) + kzAi , i ∈ {0, . . . , 23}. (5.5)

The distributions of the left side of Figs. 5.6 and 5.8 for each of the 48 scintillating
counters are shown in Appendix A.1.2 inside Figs. A.3 and A.4. The right sides
of Figs. 5.6 and 5.8 show the distributions of the difference �zB and �zA for an
examplaric ring B and A counter. As illustrated in Figs. 5.5 and 5.7, the quantities
�zB and �zA represent the difference between the predicted and the reconstructed

 (ns)dwn-tupt
20− 10− 0 10 20

 (c
m

)
Az

400−

300−

200−

100−

0

100

 (cm)A zΔ
40− 20− 0 20 40

E
nt

rie
s

0

20

40

60

80

100

Fig. 5.8 Left: Distribution of the predicted z-position of the recoiled particle inside the A0 counter
of CAMERA as a function of (tu − td ), the difference of the up- and downstream time-stamps
measured with the two photomultiplier tubes of the A0 counter. According to Eq. (3.1) of Sect. 3
a function of the form zA0(�t) = 1

2 cA0(t
u
A0 − tdA0) + kzA0 is shown in red, which illustrates the

determination of the calibration parameters cA0 and k
z
A0. Right: Distribution of �zA = zA − zC,A,

the difference between the predicted z-position zA, using an interpolation between the interaction
vertex and the hit position in ring B, and the reconstructed z-position zC,A after the application of
the calibration constants cA0 and kzA0
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Fig. 5.9 Distributions of the difference �zA;B = zA;B − zC,A;B between the predicted z-position
zA,B of the recoiled particle and the reconstructed z-position zC,A;B inside CAMERA after appli-
cation of the respective calibration constants. All counters of ring B, respectively ring A, of the
CAMERA detector are shown inside these distributions. Left: The quantity zC,B is calculated using
the kinematically constrained fit described in Sect. 5.1.2. Right: The quantity zC,A is calculated
using an interpolation between the interaction vertex and the hit position in ring B. The red lines
show Gaussian fits applied to the distributions

longitudinal hit positions. As one accumulates these distributions for all scintillating
counters of ring B and A, the left and right side of Fig. 5.9 result.

From Fig. 5.9 an upper limit on the position resolution of ring B and A is deter-
mined by a Gaussian fit. In case of ring B this results in:

σB = 3.3 cm, (5.6)

while in case of ring A a value of:

σA = 4.1 cm, (5.7)

is extracted. It should be emphasised that these values are extracted with respect
to the θ and vertex resolution in case of ring B and with respect to the vertex and
ring B resolution in case of ring A. They do not reflect the bare resolutions of the
counters. Nevertheless these resolutions serve as a starting point for the kinematic
fitting procedure and for the simulations, as it is explained in detail in Sects. 4.5
and 6.1.3.

5.1.5 Momentum Calibration

After the calibration of the azimuthal positions of the scintillating counters and
the longitudinal hit position within the counters, the distance of flight of a particle
traversing ring A and B of CAMERA is determined by Eq. (3.2). Hence, a calibration
of the time of flight, given by Eq. (3.3), can be attacked.

As illustrated in Fig. 3.7, one counter of ring A corresponds to two counters of
ring B, which results from the azimuthal shift of 7.5 degrees between the inner and
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outer ring of CAMERA. Thus, in order to calibrate the time of flight, 48 calibration
constants:

kTlm with l ∈ {0, . . . , 23} and m ∈ {l, (l + 1) mod 24},

have to be determined. In analogy to Eq. (3.3) the calibrated time of flight for the
counters Bl and Am is then explicitly given by:

Tlm = tul + tdl
2

− tum + tdm
2

+ kTlm .

Due to instabilities within the readout electronics during the 2012 run, these
constants had to be determined on a run by run basis. The method relies on particles
traversing CAMERA with the speed of light. Using the value of the speed of light
and the reconstructed distance of flight, the time of flight of these particles can be
predicted. A comparison with the reconstructed time of flight yields the offsets kTlm .
The detailed procedure is described in Ref. [2]. It includes run by run stability checks,
which show a clear correlation with clock instabilities caused by firmware reloads
of the CAMERA readout electronics.

Fig. 5.10 The mean value μ and the width σ of the distribution of the quantity (pC − pSpectr.).
The quantity pC denotes the magnitude of the reconstructed momentum using CAMERA, the
quantity pSpectr. the magnitude of the momentum of the recoiled target proton determined within
the exclusiveρ0 sample and the hypothesis of exclusivity frombeamand spectrometermeasurements
only. The data is shown in red and yields the convoluted momentum resolution of CAMERA and
the beam and spectrometer prediction. A ρ0 Monte Carlo sample is shown in black, from which the
momentum resolution of a pure Beam and Spectrometer measurement is estimated
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The momentum between ring A and B is determined via Eq. (3.5) from the ex-
tracted set of constants kTlm . In order to translate the momentum between ring A and
B to the momentum at the interaction vertex, energy loss corrections of the proton
within the target and ring A have to be applied. These corrections are calculated as
described in Ref. [3] and are reviewed in Ref. [2].

Finally, the reconstructed proton momentum at the interaction vertex determined
by CAMERA is compared to the proton momentum predicted by the kinematic fit
within the exclusive ρ0 sample. The comparison is shown in Fig. 5.10 and illustrates
that the momentum is well calibrated.

Within the upper plot of Fig. 5.10 one observes a slight bias appearing at momenta
below 0.28GeV/c. As one translates thismomentum to the square of the fourmomen-
tum transfer to the proton, it corresponds to a value of |t | below 0.08 (GeV/c)2, which
is the lower bound on the extraction region of the DVCS cross section (see Chap. 7).
Thus, the bias is not further taken into account. From the lower part of Fig. 5.10
it is evident that the measured resolution is almost purely given by the beam and
spectrometer measurement at small momenta, while at large momenta the extracted
resolution is governed by the CAMERA detector. This emphasis why a kinemat-
ically constrained fit including both the CAMERA detector and the spectrometer
will yield the best possible resolution for the momentum of the recoiled proton. The
combination of the beam, spectrometer and CAMERAmeasurements within a kine-
matically constrained fit will be performed within the analysis of exclusive single
photon production, discussed from Chap.6 onwards.

5.2 Luminosity Determination

The integrated luminosity L± for the μ+ and the μ− data yield, denoted by ±, is
calculated according to Eq. (5.8):

L± = ρLH2Nal

m p
�±

e f f . (5.8)

The quantity mp = 1.0078 g
mol denotes the molar proton mass, the quantity ρLH2 =

0.0704 g
cm3 the density of protons inside the liquid hydrogen target,

Na = 6.022 · 1023 1
mol the Avogadro constant, l = 240 cm the effective target length

and �±
e f f the total effective number of muons traversing the target during the μ+ or

respectively the μ− data taking periods. In order to determine the quantity φ±
e f f two

different methods have been used and cross checked amongst each other.
Both methods require the same definition of a beam track. In order to have a

precise measurement by the beam telescope, a “good” beam track is required to have
at least two hits in the scintillating fibre detectors and at least three hits in the silicon
detectors. Furthermore, since the analysis of exclusive reactions demands a precise
determination of the beam momentum, it is required to observe at least three hits
in the beam momentum stations. Finally, the track has to traverse the full target,
as it will be described in Sect. 6.2.1. In order to make use of the flux values in the
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analysis of exclusive reactions, exactly the same conditions have to be applied in the
corresponding event selections.

The first method relies on the analysis of random trigger events. The number of
beam tracks during a spill is counted for pure random trigger events. A beam track is
identified in case the time of the beam particle, measured by the beam telescope, is
compatible with the time of the trigger within a time window of ±8ns. The number
of beam tracks within this time window of 16ns is then extrapolated to the total
duration of a spill, which yields the flux �. It shall be emphasised that in contrast to
the physical triggers, the random trigger is not connected to the beam veto system.
Thus, a correction taking into account theVetoDeadTime cvdt , according toEq. (5.9),
must be applied. This is necessary in order to compare the results with the second
method and to calculate the luminosity for the extraction of a cross section:

�e f f = (1 − cvdt )�. (5.9)

The veto lifetime, cvlt = (1 − cvdt ), describes the probability that the trigger signal
is not coincidentally suppressed by the veto system. It is determined by the fraction
of trigger attempts for which a time shifted veto is applied in coincidence with the
physics-trigger signal and the overall number of trigger attempts. For the overall
number of trigger attempts no veto has been applied [4]. The shift in time is usually
around 35–40ns and ensures that the veto and the trigger signal are uncorrelated. For
the 2012 data taking the time period, for which the attempts are counted, is chosen to
be the duration of the spill and the correction for the veto dead time has been taken
into account on a spill by spill basis.

The second method relies on the good knowledge of the structure function F p
2 .

The integrated luminosity is calculated according to Eq. (5.10):

L = 1

σ�

Nmeas∈�∑
i=1

η(Q2
i , (xBj)i )

A(Q2
i , (xBj)i )

, (5.10)

while σ�, the integrated differential cross section over the phase space element �,
is given by [5]:

σ� =
∫
�

4πα2

Q4

F p
2 (xBj, Q

2)

xBj

(
1 − y − Q2

E2
l

+
(
1 − 2m2

l

Q2

)
y2 + Q2

2E2
l

(
1 + R(xBj, Q2)

)
)
dxBjdQ

2.

Hence, a typical measurement of F p
2 is reversed. The luminosity is calculated from

the known values of F p
2 , given by the Tulay’s fit [6], R the ratio of the longitudinal and

transverse cross sections [7] and the experimentally measured number of scattered
muons Nmeas into the phase space element�, taking into account radiative corrections
η(Q2, xBj) and experimental acceptance A(Q2, xBj). The detailed procedure of the
second method is described in Ref. [8].

Using the second method together with Eq. (5.8), the number of muons traversing
the target during each spill of the 2012 data taking can be extracted. It is compared
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Table 5.2 Integrated muon flux �, integrated effective muon flux �e f f and the integrated lumi-
nosityL for the 2012 data taking period. The values have been calculated according to Sect. 5.2 and
the stability criteria of Sect. 5.3 are taken into account

Data yield μ+ and μ− μ+ μ−

�/1012 5.203 2.582 2.622

�e f f /1012 4.201 1.871 2.330

L/(pb−1) 42.38 18.88 23.51

with the result given by the first method, using Eq. (5.9). In Ref. [8] it is shown that
the results of the two methods agree well. The statistical error of the second method
exceeds the one of the first method. Hence, the first method is used for the extraction
of the DVCS cross section and it is decided to consider a systematic effect of three
percent on the flux determination. The lists containing the flux and the veto dead
time correction for each spill have been provided by Ref. [9].

Table5.2 shows the integrated muon flux �, the integrated effective muon flux
�e f f and the integrated luminosity L for the 2012 data taking period. The stability
criteria of Sect. 5.3 are taken into account.

5.3 Data Quality

Several spill by spill stability checks have been applied to the data (see Table5.3).
They can be divided into six categories:

• Spectrometer stability:
Studying several meaningful variables, like the number of tracks per primary ver-
tex1 or the number of primary vertices per event as a function of the spill number,
suspicious spills are excluded from the physics analysis. The decision, if a spill is
excluded, is based on the number of neighbouring spills. Neighbouring spills are
defined as spills which show values for the investigated set of variables compatible
within a window of several standard deviations with respect to the values of the
investigated spill. The number of standard deviations and the number of required
neighbouring spills in order to classify a spill as good or bad depends on the set of
variables. A detailed description of the method can be found in Ref. [10], while for
the actual production of the bad spill list for 2012 it shall be referred to Ref. [11].

• Internal synchronisation of the CAMERA readout:
The synchronisation state of the operating clock of the CAMERA readout with
respect to the clock provided by the trigger control system was monitored con-
tinuously during the 2012 data taking. In case the synchronisation was lost the
corresponding spills were excluded from the analysis.

1A primary vertex denotes a vertex which includes the beam particle.
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Table 5.3 Lost percentage of the accumulated muon flux after a successive application of the
stability criteria. The numbers of each column include the application of the criteria above the
respective column

Stability criterion All data (%) μ+ data (%) μ− data (%)

Time of Flight
calibration for the
CAMERA detector

0.6 0.9 0.2

Internal
synchronisation of the
CAMERA readout

1.8 2.9 0.6

Hit rate stability for
the CAMERA detector

2.7 4.1 1.0

Time synchronisation
of fibre station 2
readout

5.1 7.5 2.3

Spectrometer stability 9.3 12.1 6.1

Synchronisation of the
CAMERA readout to
the trigger signal

15.6 22.0 8.2

• Time of Flight calibration for the CAMERA detector:
Asmentioned in Sect. 5.1.5, the time of flight calibration of theCAMERA detector
is performed on a run by run basis. For certain runs the time of flight calibration
constants were found to change within a single run. In these cases the spills were
omitted. The detailed procedure is explained in Ref. [2].

• Synchronisation of the CAMERA readout to the trigger signal:
In order to provide a time measurement within CAMERA with respect to the
trigger signal, the time of the trigger signal is measured by the so called Master
Time clock. At the beginning of a data recording phase the time measurement of
the CAMERA readout has to be synchronised with the time measurement of the
Master Time clock. It was observed that in certain cases this synchronisation failed
and the corresponding spills were excluded from the physics analysis.

• Hit rate stability for the CAMERA detector:
The number of hits observed in ringA and ringBnormalised to the flux are checked
for each spill. Certain spills, differing largely from the average,were excluded from
the measurement, as it can be seen in Appendix A.3 inside Fig.A.25.

• Time synchronisation of fibre station 2 readout: During the 2012 data taking
the readout of fibre station 2 was performed with the M1 TDC [12]. The syn-
chronisation of the M1 readout electronics with the trigger control system was
done spill by spill. For certain spills time jumps of the measured hit time of fibre
station 2 with respect to the trigger signal were observed and excluded from the
measurement [13].
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Furthermore, an additional problem with the CAMERA readout in 2012 was
observed. It is related to the sampling of the ADC information. Each bit of the
digitised analog signals of the 96 photomultipliers is transmitted from the ADCs
to the GANDALF main FPGA. After the data taking sticky bits and random bit-
flips were identified. They are related to the initialisation state of the FPGA as it
is explained in Sect. 9.2.2. Thus, certain elements of the CAMERA detector are
excluded from the analysis for certain runs. The method to detect these runs is based
on a Fourier transformation of the up- and downstream time difference spectra of the
scintillating counters. It is described in detail in Ref. [2]. In order to account for this
data loss in the analysis and to prevent an azimuthal systematic distortion, the effect
is introduced into the simulations as follows.

For each pair of corresponding ring A and ring B scintillators (i, j) a probability
p(i, j) is calculated, according to Eq. (5.11):

p(i, j)± =
∑

m∈M±
∑

l∈L±
i j

�lδlm∑
m∈M± �m

=
∑

l∈L±
i j

�l∑
m∈M± �m

. (5.11)

The quantity M± denotes the set of all run numbers considered in the analysis for
the corresponding beam charge ±, while L±

i j denotes the runs for which the segment
(i, j)was operational for the corresponding beam charge±. The quantity�m denotes
the total number of muons, which traversed the target during the run number m. The
Kronecker delta is depicted by δ. Inside the Monte Carlo simulations the percentage
(1 − p(i, j)±) of the data for the segment (i, j) is rejected. Table A.1 in Appendix
A.3 shows the calculated values for p(i, j) for each segment. Assuming no azimuthal
systematic effects, the overall data loss due to the “bit-flip issue” is approximately
11%. This value agrees for the overall data taken with the μ+ and the μ− beam on
the level of 0.5%.

5.4 Determination of the Efficiency of CAMERA

The technique to determine the efficiency of the CAMERA detector relies on the
relation:

E = NS

NO
. (5.12)

The quantity E denotes the efficiency, NO the number of observable events and NS

the number of observed events within NO . The idea is to produce a data sample NO

by using the exclusive ρ0 channel in order to provide an efficiency separately for
each side of the scintillating counters of the CAMERA detector. This is achieved by
checking which fraction of the observable events NO is actually observed by either
side of the counter. To minimise the amount of background events within the NO

sample, the full hit information within the recoil detector apart from the information
of the side which is under investigation is used.
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In the following the details of the procedure are explained, using the upstream
side determination of the efficiency of ring A as an example. In this case the beam
and spectrometer measurements together with the hit information observed in ring
B and at the downstream side of ring A are combined to build the NO sample. The
generation of the NO sample can be split into two stages:

The first stage combines the measured time-stamps tuB , t
d
B and the measured sig-

nal amplitudes Au
B , A

d
B , given at the up-(u) and downstream (d) side of ring B. The

momentum vector of the proton deduced by the kinematically constrained fit togeth-
er with the interaction vertex is used to pinpoint the expected azimuthal angle and
z-position zPB of the recoiled proton within ring B. Using the prediction of the proton
azimuth, the corresponding counter is selected. Next, a sharp cut on the distribution
of the difference between zPB and zB is performed. The latter quantity denotes the
z-position in ring B reconstructed by the measured time-stamps tuB and tdB . The dis-
tribution and the applied cut are shown on the left side of Fig. 5.11. In addition, the
inter-calibration of one of the fibre stations (start counter), comprising the time mea-
surements of the incoming muon and ring B [2], is exploited. It yields the magnitude
of the proton momentum denoted as pSC

B . The quantity pSC
B is compared with pF , the

magnitude of the proton momentum predicted by the kinematic fit. The distribution
of (pF − pSC

B ) and the applied cut are shown on the right side of Fig. 5.11. Finally,√
Au
B A

d
B as a function of pF results in the distribution shown in Fig. 5.12 and allows

for a further cut on the proton signature.
The second stage uses the information given by ringB togetherwithmeasured time

stamps tdA and the measured signal amplitudes Ad
A of the downstream (d) side of ring

A. Since two A counters correspond to one B counter, the selection of the A counter
is again based on the proton azimuth predicted by the kinematic fit. To determine
the predicted z-position zPA within ring A, an interpolation between the measured hit
within ring B together with the interaction vertex is used. Solving Eq. (3.1) for tuA,
using the measured value for tdA and zA = zPA , the time-stamp of the upstream side
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Fig. 5.11 Left: Distribution of the difference between the predicted z-position zPB in ring B using
the kinematically constrained fit and the reconstructed z-position zB determined by the up and
down time-stamps of ring B. Right: Distribution of the difference between the proton momentum
deduced with the kinematically constrained fit and the proton momentum reconstructed with the
time-stamps of ring B and the time-stamp of the incoming muon passing the startcounter. The blue
lines indicate the cuts applied in order to select the NO sample, corresponding to Eq. (5.12)
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Fig. 5.12 Distribution of the energy loss in ring B, Eloss,B =
√
Au
B A

d
B , as a function of the proton

momentum pF deduced with the kinematically constrained fit. The blue polygon indicates the cut
applied in order to select the NO sample, corresponding to Eq. (5.12)

is predicted. This time-stamp shall be denoted as tu,P
A in the following, to underline

the fact that it is not a directly measured quantity. It is used within Eqs. (3.3) and
(3.5) to determine the proton momentum pC . The distributions of (pSC

B − pC) and
(pF − pC) are shown in Fig. 5.13 togetherwith the applied cuts. In addition, using the
amplitude Ad

A together with the hit position zPA , the signal amplitude at the upstream
side can be predicted by the relation:

Au,P
A = Ad

A exp

(−(zPA − zuE )

L

)
, (5.13)
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Fig. 5.13 Left: Distribution of the difference between the proton momentum pSCB , deduced with
the startcounter and ring B, and the proton momentum pC , deduced with the time-stamps of ring
B together with the z-position and the downstream time-stamp of ring A. Right: Distribution of the
difference between the proton momentum pF given by the kinematically constrained fit and the
proton momentum pC . The blue lines indicate the cuts applied in order to select the NO sample,
corresponding to Eq. (5.12)
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Fig. 5.14 Distribution of the energy loss Eloss,A =
√
Au,P
A Ad

A as a function of pF , the proton

momentum deduced with the kinematically constrained fit. The quantity Au,P
A denotes the predicted

upstream amplitude in ring A, given by Eq. (5.13), while Ad
A denotes the measured downstream

amplitude in ring A. The blue polygon indicates the applied cut in order to select the NO sample,
corresponding to Eq. (5.12)

while L is the attenuation length of the counter and zuE the z-position of the upstream
end of the counter. Themeasured downstream amplitude Ad

A, the predicted amplitude
at the upstream end Au,P

A and pF are combined to procude the distribution shown in
Fig. 5.14. It is also used to further suppress the background within the NO sample,
according to the indicated two dimensional cut.

So far, no measured information of the upstream side of ring A has been used. In
order to build the NS sample, the time-stamp tuA is checked for compatibilitywith tu,P

A .
Figure5.15 shows the distribution of (tuA − tu,P

A ). The corresponding distributions of
several bins in the longitudinal position are shown in Appendix A.2.1 inside Fig.A.5.
In case of the downstream side efficiency determination of ring A the procedure
is analogue. The corresponding distributions are shown in AppendixA.2.1 inside
Figs.A.9–A.12.

For the determination of the ring B efficiency the procedure is almost analogue.
Due to the high background rate in ring A, no inter-calibration between ring A and
the startcounter was produced. Thus, no counter parts to the right side of Fig. 5.11
and the left side of Fig. 5.13 exist. The corresponding distributions are shown in
Appendix A.2.2 inside Fig.A.14 for the selection of the NO sample using ring A,
inside Figs.A.15–A.19 for the upstream side and inside Figs.A.20–A.24 for the
downstream side efficiency determination of ring B.

Table5.4 lists the efficiency of ring A for the different bins in t , the square of the
four-momentum transfer to the proton, which are later used in Sect. 7. No noticeable
trend is observed for the efficiency as a function of t . Thus, it is decided to parametrise
the efficiency for the up- and downstream side of ringA as a function of the z-position
of the recoiled particle inside the scintillators of ring A.

Figure5.16 shows the dependence of the efficiency on the z-position. It is clearly
visible that the efficiency decreases with increasing distance of the hit position to the
ends of the scintillators. This is a direct result of low photo-electron statistics in case
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Fig. 5.15 Distribution of the difference between the measured upstream time-stamp tuA and the

predicted time-stamp tu,P
A , deduced using Eq. (3.1) together with the measured downstream time-

stamp and the expected z-position in ring A. The blue line indicates the applied cut in order to select
the NS sample, corresponding to Eq. (5.12). It should be underlined that this cut is the first one,
which is supposed to select the full signal in order to not artificially decrease the efficiency. The
corresponding distributions of several bins in the longitudinal hit position are shown in Fig.A.5 and
separated for the data yields taken with the μ− and μ+ beam inside Figs.A.6 and A.7

Table 5.4 Ring A efficiencies as a function of t , the square of the four-momentum transfer to the
proton

|t | range in (GeV/c)2 Upstream efficiency Downstream
efficiency

Ring A efficiency

]0.08, 0.22] 0.956 ± 0.001 0.930 ± 0.001 0.889 ± 0.002

]0.22, 0.36] 0.955 ± 0.003 0.928 ± 0.003 0.886 ± 0.005

]0.36, 0.5] 0.941 ± 0.008 0.946 ± 0.009 0.89 ± 0.01

]0.5, 0.64] 0.95 ± 0.02 0.92 ± 0.02 0.87 ± 0.03

of the thin ring A elements. The efficiency drop at the far end is more pronounced
in case of the downstream side, for which the light guide is significantly longer
compared to the upstream side.

For the upstream side efficiency a drop close to the upstream end of ring A is
observed. This is related to the high voltage setting of the photomultipliers, for which
a certain trade-off had to be found during the hardware commissioning procedure.
Setting the high voltage too low, causes a loss of signals at the far end, while setting
the voltage too high, causes the signals at the near end to exceed the dynamic range of
the electronics. In case the dynamic range of the electronics is exceeded, a clipping of
the signals is observed. This causes an unpredictable distortion of the time-stamps of
the processed photomultiplier signals and results in a decreasing efficiency. Looking
at Fig. 5.17 one can observe that this drop is more severe for the scintillators marked
as “bad quality”.

During the assembly of ring A each scintillator was tested for its attenuation
length and it was observed that certain scintillators possess much smaller values for
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Fig. 5.16 The efficiency of ring A as a function of the z-position, given by an interpolation be-
tween the reconstructed hit position in ring B and the interaction vertex, separated for the up- and
downstream side of the ring A counters in the kinematic range 0.08 (GeV/c)2< t < 0.64 (GeV/c)2.
The quantity t denotes the square of the four-momentum transfer to the proton deduced with the
kinematically constrained fit. The points of the upstream (downstream) side are artificially shifted
by 2cm to the right (left) for the purpose of visualisation. The horizontal error bars indicate the bin
size in z
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Fig. 5.17 The efficiency of ring A as a function of the z-position, given by an interpolation between
the reconstructed hit position in ring B and the interaction vertex, for the upstream side (left) and
the downstream side (right). The scintillators were separated according to high (good quality) or
low (bad quality) attenuation lengths in the kinematic range 0.08 (GeV/c)2< t < 0.64 (GeV/c)2.
The quantity t denotes the square of the four-momentum transfer to the proton, deduced with the
kinematically constrained fit. The points of the bad (good) scintillators are artificially shifted by
2cm to the right (left) for the purpose of visualisation. The horizontal error bars indicate the bin
size in z

the attenuation length than others. These scintillators were marked of “bad quality”
in the very beginning of the 2012 measurement. In order to account for this fact in
the analysis, the efficiency is parametrised for each counter separately. The corre-
sponding results can be seen in Appendix A.2.1 inside Figs.A.8 and A.13. A low
attenuation length makes the adjustment of the high voltage in terms of the trade-off
mentioned above very difficult. This fact was the major argument for the exchange
of ring A for the 2016/2017 measurement, which is shortly covered in Chap. 9.

The dependence of the ring A efficiency on the beam charge is shown in Table5.5.
For the overall ring A efficiency a five percent effect is visible, which is taken into
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Table 5.5 Ring A efficiencies for the two data yields of different beam charge integrated over the
range 0.08 (GeV/c)2< t < 0.64 (GeV/c)2

Upstream efficiency Downstream
efficiency

Ring A efficiency

μ+ and μ− yield 0.951 ± 0.001 0.927 ± 0.001 0.882 ± 0.002

μ+ yield 0.935 ± 0.003 0.901 ± 0.003 0.842 ± 0.004

μ− yield 0.957 ± 0.001 0.935 ± 0.002 0.895 ± 0.002

account in Chap. 7 as a correction factor for the two independent data yields of
different beam charge. There is no reason why the beam charge itself could have an
impact on the efficiency. However, the fact that the beam flux of the μ+ beam was
higher by about a factor of two compared to the μ− beam might give an explanation.
Regarding in addition the fact that Table5.7 shows no such effect in case of ring B,
the high occupancy in ring A, related to its close position to the beam, most likely
causes a decrease of the efficiency as one increases the beam flux.

The efficiencyof ringBas a functionof t is shown inTable5.6. The slight statistical
tention with respect to the first bin in case of the upstream side determination is not
further taken into account. The evolution of the ringB efficiencywith the longitudinal
hit position in Fig. 5.18 shows some slight trend for the downstream side and for this
reason the z-dependence of the ring B efficiency is extracted for each counter of ring
B separately, like it is done for ring A. The corresponding distributions are shown
in Appendix A.2.2 inside Figs.A.19 and A.24. Furthermore, as mentioned above
Table5.7 shows no difference for the μ+ and the μ− data yield in case of ring B.

Table 5.6 Ring B efficiencies as a function of t , the square of the four-momentum transfer to the
proton

|t | range in (GeV/c)2 Upstream efficiency Downstream
efficiency

Ring B efficiency

]0.08, 0.22] 0.994 ± 0.001 0.990 ± 0.001 0.984 ± 0.002

]0.22, 0.36] 0.998 ± 0.001 0.992 ± 0.003 0.990 ± 0.002

]0.36, 0.5] 0.998 ± 0.001 0.994 ± 0.002 0.992 ± 0.003

]0.5, 0.64] 0.995 ± 0.003 0.990 ± 0.004 0.985 ± 0.004

Table 5.7 Ring B efficiencies for the two data yields of different beam charge integrated over the
range 0.08 (GeV/c)2< t < 0.64 (GeV/c)2

Upstream efficiency Downstream
efficiency

Ring B efficiency

μ+ and μ− yield 0.995 ± 0.001 0.991 ± 0.001 0.986 ± 0.002

μ+ yield 0.993 ± 0.003 0.991 ± 0.003 0.984 ± 0.004

μ− yield 0.996 ± 0.001 0.991 ± 0.002 0.988 ± 0.002



References 101

z (cm)
−300 −250 −200 −150 −100 −50 0

E
ffi

ci
en

cy
0.96

0.98

1

upstream side

downstream side

Fig. 5.18 The efficiency of ringB as a function of the z-position pinpointed by the interaction vertex
and the proton momentum deduced by the kinematically constrained fit, separated for the up- and
downstream side of the ring B counters in the kinematic range 0.08 (GeV/c)2< t < 0.64 (GeV/c)2.
The quantity t denotes the square of the four-momentum transfer to the proton, deduced with the
kinematically constrained fit. The points of the upstream (downstream) side are artificially shifted
by 2cm to the right (left) for the purpose of visualisation. The horizontal error bars indicate the bin
size in z
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Chapter 6
Event Selection and Simulations

After a short introduction to the available simulation techniques the event selection
of single exclusive photon production events is described. The chapter concludes
with the application of the kinematically constrained fit to the single photon sample.

6.1 Overview of the Monte Carlo Simulations

Several Monte Carlo samples are available to describe the 2012 data. With respect
to the nomenclature of Ref. [2, 10] the Monte Carlo productions, used in Sect. 6.2
and Chap.7, are given by:

• LEPTO sample: Production_16-02 v1, LEPTO.
• Single photon sample: Production_16-02 v1, DVCS/BH.
• Exclusive π0 sample: Production_16-02 v1, Pi0.

The production of aMonte Carlo sample at theCOMPASS-II experiment can be split
into three distinct steps: The event generation, the particle tracking through detector
geometries and the treatment of Monte Carlo information and reconstruction.

6.1.1 Event Generation

The first step of the production of a Monte Carlo sample at the COMPASS-II exper-
iment is the event generation. It involves the different types of event generators. The
event generators produce the full set of kinematic variables for a given reaction,
according to the underlying production mechanisms. Two different event generators
are used throughout this thesis:
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LEPTO 6.1:
LEPTO 6.1 generates a variety of different particles produced in deep inelastic scat-
tering processes and their corresponding kinematic properties. It accounts for semi-
inclusive production mechanisms. The events are not weighted and the number of
events in a certain region of the phase space is directly proportional to the cross
sections of the individual processes. A complete description of the LEPTO generator
can be found in Ref. [1]. The LEPTO Monte Carlo sample is used in this thesis to
describe the semi-inclusive background contribution to the data. This background
originates mainly from the production of π0, decaying into two photons.

HEPGen++:
This generator has been specifically developed for the COMPASS-II experiment in
order to account for different exclusive production mechanisms. A detailed descrip-
tion of the event generator can be found in Ref. [2]. It is a weighted event generator.
Though the number of produced events inside a certain phase space element is kept
close to the expected number of real data events, it is the event weight which accounts
for the shape of the underlying cross section. Throughout this analysis HEPGen++
is used for the generation of an exclusive single photon and an exclusive π0 Monte
Carlo sample.

For the pure Bethe-Heitler cross section there is a precise calculation available,
which includes the mass of the muon in the propagator [3]. The formula was devel-
oped by P.A.M.Guichon and cross checked with an analytic and a numeric approach.
The corresponding eventweightwas introduced intoHEPGen++ and shall be referred
to as wP.A.M. in the following.

In case of the full exclusive single photon cross section, including the DVCS pro-
cess and the interference term, three weighting factors are available. Each generated
event is assigned a weight, which accounts for the DVCS (wDVCS) and the Bethe-
Heitler process (wBH) as well as the interference term (wI). The final weight w is
then given by:

w = wBH + wDVCS + wI. (6.1)

The calculation of theseweighting factors goes back to theDVCSmodel of Frankfurt,
Freund and Strikman [4, 5]. It has been adapted by A.Sandacz [6] to introduce the
Bethe-Heitler calculations from Ref. [7], while the propagators were recalculated
by P.A.M.Guichon, to include the lepton/muon mass. The t-dependence B of the
DVCS cross section has been parametrised in the following way:

B(xBj) = B0 + 2α′ ln
(
x0
xBj

)
,

The parameters (B0,α
′, x0) describe the xBj-dependence of B. They have been cho-

sen as follows:

(B0,α
′, x0) = (

4.942 (GeV/c)−2, 0.8 (GeV/c)−2, 0.042
)
.
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It is the only available calculation, which accounts for the full cross section of exclu-
sive single photon production, including the mass of the muon at least in an approx-
imate way.

The basic difficulty within a calculation of the full exclusive single photon cross
section occurswithin theBethe-Heitler cross section. TheBethe-Heitler cross section
changes very rapidly in case the photon is emitted along the direction of the incident
or in the opposite direction of the scattered muon, which is known as s and p peak
in the literature [8]. The underlying problematic is related to helicity conservation.
It can be illustrated by imagining a massless lepton with helicity 1

2 in the initial
state, which radiates a real photon in the very same direction it is travelling. Helicity
conservation would force the photon to have a helicity of zero. This is forbidden for
a real photon and would cause a singularity in the cross section. Especially when it
comes to the calculation of the interference term between the DVCS and the Bethe-
Heitler process, it is a non trivial issue to introduce the muon mass into the different
calculations of the exclusive single photon cross section available on the market.
These calculations have neglected the lepton mass so far, due to the fact that all
DVCS experiments apart from COMPASS-II are making use of an electron beam.

The event by event weights for the exclusive π0 Monte Carlo sample are gener-
ated with HEPGen++ according to the model of Goloskokov and Kroll. A detailed
description of the model and the used GPD parameters are given in Refs. [2, 9]. The
corresponding weighting factors shall be denoted as wπ0 in the following.

6.1.2 Particle Tracking Through Detector Geometries

During the step of particle tracking through Detector Geometries the precise descrip-
tion of the detector geometries and material composition is introduced into the simu-
lations. Basically, vertices inside the target are created,while the kinematic properties
of the beam particle are taken from a so called beam file and passed to the event gen-
erator. The event generator creates the outgoing particles which traverse a complete
Geant41 simulation of the COMPASS-II spectrometer. This simulation accounts for
effects such as e+e− pair production, energy loss of charged particles in the mate-
rials, bending of charged tracks in a magnetic field and hadronic interactions, just
to mention a few. The hit positions and depending on the detector type the energy
deposit of particles within the variety of detectors of the COMPASS-II spectrometer
is collected. While a complete description of the TGEANT2 software is given within
Ref. [10], a few aspects dedicated to the 2012 data taking shall be highlighted at this
stage:

• Each scintillator of the CAMERA detector is aligned within the simulations
according to the calibration constants extracted from the 2012 data.

1GEometry ANd Tracking.
2Total GEometry ANd Tracking.
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• As it will be shown in Sect. 6.2.1 the liquid hydrogen target was slightly declined
along the beam axis, which is also taken into account in the simulations.

• The extraction of a beam file from real data, which describes the full phase space
of the μ+ and respectively μ− beam, has been performed.

• The pile up and halo contribution was extracted from real data and introduced into
the simulations according to the measured beam flux, which differs for the μ+ and
μ− data taking periods.

6.1.3 Treatment of Monte Carlo Information
and Reconstruction

The final step of a Monte Carlo production can be separated into the treatment of
Monte Carlo information and the reconstruction.

After the particle tracking stage in Monte Carlo is completed, the intersection
points and the energy deposit in the various detectors are digitised to form so called
hits. Furthermore, uncertainties and efficiency corrections [2] are added in order
to account for the different detection mechanisms of the various detector types. In
certain cases information can also be added at this stage, as it is the case for the
introduction of a noise contribution into the collected calorimeter data [2]. In the
COMPASS-II collaboration these steps are not performed atMonte Carlo generation
level, but later during the reconstruction of Monte Carlo data. This provides the
advantage that one can easily change the uncertainties and efficiency corrections
without a time consuming reproduction of the Monte Carlo information. The final
reconstruction step is completely analogue for real andMonte Carlo data. It is shortly
covered in Sect. 2.7.

In the following the treatment of theMonteCarlo information in case ofCAMERA
shall be demonstrated. Because the scintillators of the detector were placed accord-
ing to the calibration constants extracted from the 2012 data, the treatment is straight
forward. It shall be explained for an exemplary ring B scintillator i . The particle
tracking stage provides the absolute longitudinal hit position zBi of particles travers-
ing the scintillator together with the absolute time TBi at which the particle has
crossed the element. For the real data reconstruction the longitudinal hit position zBi
is constructed from the time-stamps tu,d

Bi of a photomultiplier signal at the upstream
(u) and downstream (d) side of the scintillator as follows:

zBi = 1

2
cBi (t

u
Bi − tdBi ) + kzBi . (6.2)

The effective speed of light cBi and the calibration constant k
z
Bi are given according

to Sect. 5.1.4. Solving Eq. (6.2) together with:

TBi = (tuBi + tdBi )

2
,
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for the time-stamps tu,d
Bi yields:

tuBi = zBi − kzBi
cBi

+ TBi and tdBi = − zBi − kzBi
cBi

+ TBi . (6.3)

The uncertainties on the time-stamps σ(tu,d
Bi ) can be calculated from Eq. (6.2) as

follows:

σ(tu,d
Bi ) =

√
2

cBi
σz(B), (6.4)

For this the assumption σ(tuBi ) = σ(tdBi ) := σ(tu,d
Bi ) has been made. The same rela-

tions hold for the inner ring of scintillators by replacing Bi with Ai in Eqs. (6.2)–(6.4).
The quantities σz(A) and σz(B) coincide with the values given in Sect. 4.5.

The time-stamps tu,d
Bi and tu,d

Ai of Eq. (6.3) are smeared randomly for each Monte
Carlo hit according to a Gaussian distribution. The width of this distribution is given
by Eq. (6.4). The fact that certain segments of the CAMERA detector had to be
disabled during the data taking, is taken into account in the simulations by disabling
a segment of the detector with the probability given by Eq. (5.11). Furthermore, the
efficiency of each of the 48 scintillators is introduced individually as a function of
the longitudinal hit position, according to Sect. 5.4.

The resulting time-stamps can be treated in the same way as the corresponding
time-stamps for real data. The only exception is that the time of flight calibration
constants of Sect. 5.1.5 are put to zero by default in case of the reconstruction of
Monte Carlo data.

6.2 Event Selection of Exclusive Single Photons

The event selection is supposed to be sensitive on exclusive single photon production,
μp → μ′γ p′, without excluding events associated with background due to pile up.
A summarised presentation of the event selection is given in Table6.1.

To guarantee a stable beam, events occurring within 1 and 10.4 s with respect to
the begin of a spill are considered. Furthermore, only those events, which have been
triggered by the Middle, Ladder or Outer trigger are considered within the analysis.3

The further event selection can be split into the following three main steps:

• Muon and vertex selection:
For each event all primary vertices, which satisfy the criteria of Sect. 6.2.1, are
considered. A primary vertex denotes a vertex which includes the beam particle

• Photon selection:
If the event contains a single neutral cluster, which satisfies the criteria of
Sect. 6.2.2, the event is further considered.

3These are all the relevant physics triggers being active for the 2012 data taking apart from the LAS
trigger, which was strongly prescaled.
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Table 6.1 Overview of the selection of exclusive single photon events

Events with: General event criteria

• Time in spill: 1 s < T < 10.4 s

• Considered trigger types:
Middle Trigger (MT) or
Ladder Trigger (LT) or
Outer Trigger (OT)

Primary vertices with: (1) Muon and vertex selections

• Vertex z-position: −311.2 cm < vz < −71.2 cm

• Vertex distance from target centre: d < 1.9 cm
(see Sect.6.2.1)

• One incoming charged track μ with:
>2 hits in the Beam Momentum Stations (BMS),

>1 hit in the Scintillating Fibre detectors (Fi),
>2 hits in the Silicon detectors (Si),
beam momentum: 140GeV/c < pμ < 180GeV/c,
beam track traverses the full target volume
(see Sect.6.2.1)

• One outgoing charged track μ′ with:
same charge than incoming track,
traversed radiation lengths: X/X0 > 15,
z-position of first measured point: z f irst < 350 cm,
z-position of last measured point: zlast > 350 cm,

• Inclusive scattering variables:
energy loss: 10GeV < ν < 32GeV,

photon virtuality: 1 (GeV/c)2 < Q2 < 5 (GeV/c)2

Exactly one neutral cluster γ with:
• A valid cluster time (see Sect.6.2.2)
• A reconstructed cluster energy:

Eγ > 4, 5, 10GeV in ECal0, 1, 2

(2) Photon selections

Reconstructed CAMERA tracks with:
• Longitudinal hit position z inside ring A and B:

−366.19 cm < zA < 8.81 cm,
−338.94 cm < zB < 71.06 cm

• Velocity of reconstructed recoiling particle:
0.1 < β := v

c < 1

(3) CAMERA selections

All combinations of (1), (2) and (3) which satisfy:
• |�pT | < 0.3GeV/c
• |�φ| < 0.4 rad
• |�zA| < 16 cm
• |M2

X | < 0.3
(
GeV/c2

)2 (see Sect.6.2.3)
• Exactly one combination must be left
• Square of the proton four-momentum transfer:

0.08 (GeV/c)2 < t < 0.64 (GeV/c)2

• Remove visible leaking π0 contribution:
mγγ < 115 (MeV/c2) or mγγ > 155 (MeV/c2)
(see Sect.7.2)

Exclusivity selections
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• Proton selection and application of the exclusivity cuts:
In case there is at least one vertex, satisfying themuon and vertex selection criteria,
and exactly one neutral cluster, satisfying the photon selection criteria, all combi-
nations with the reconstructed tracks inside CAMERA are considered. For each
of those combinations the exclusivity variables described in Sect. 6.2.3 are calcu-
lated. If a single combination remains after cutting on the exclusivity variables,
the event is considered to be an exclusive single photon event.

In the following plots data from the 2012 run are shown and compared toMonteCarlo
samples. The distributions denoted with “π0 background” are estimated according
to Sect. 7.2. If not denoted otherwise, the overall Monte Carlo prediction, indicated
by the red shaded distributions, is the sum of the π0 background estimate and the
single photon Monte Carlo yield.

The single photon Monte Carlo yield is normalised to the luminosity of the 2012
data. To achive this, the Monte Carlo luminosity LMC has to be calculated according
to:

LMC =
∑

�� wDVCS∫
��

(
dσDVCS

HEPGen++
d�

)
d�

(6.5)

Here,
(
dσDVCS

HEPGen++
d�

)
denotes the differential DVCS cross section as it is included in

HEPGen++. The phase space region �� is given by (�Q2�ν�t�φγ∗γ). It can
be choosen arbitrarily. However, the crucial point is that the sum over the generated
eventweights in the numerator ofEq. (6.5) covers exactly the samephase space region
�� as the integration in the denominator. In principle one can replace “DVCS” by
“BH” or “P.A.M.” in Eq. (6.5). The outcome would be the same, because the weights
in the numerator are calculated according to the differential cross section of the
denominator. Thus, in order to normalise Monte Carlo to data the Monte Carlo has
to be scaled by:

NMC = L
LMC

, (6.6)

while L denotes the luminosity of the data. The calculation of L is outlined in
Sect. 5.2.

After this normalisation procedure the following event weight is used:

w = wBH + 0.6 wDVCS + √
0.6 wI. (6.7)

Equation (6.7) is modified by a fudge factor of 0.6 with respect to Eq. (6.1). This
accounts for the fact that the DVCS contribution is overestimated by the used DVCS
model. It should be emphasised that this rescaling of the DVCS model is not used
for the extraction of any “physics” quantity. It has the simple purpose to get a better
visual agreement between data and Monte Carlo, by using one single normalisation
procedure. Furthermore, all following distributions show the resulting quantities
corrected by the kinematically constrained fit, which will be described in Sect. 6.3.
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The only exception is given by the exclusivity distributions of Sect. 6.2.3, which
would simply be zero after the application of the fitting procedure.

6.2.1 Muon and Vertex Selection

All interaction vertices of the beam particle within the liquid hydrogen target, which
provide a single in- and outgoing track of equal charge, are considered.

The precise location of the target cell has been extracted using a dedicated event
selection of vertices with more than two outgoing particles. With this requirement
it was possible to extract the position of the target window mylar directly from the
data. The procedure is described in detail in Ref. [11] and the final parametrisation
shown in the right graph of Fig. 6.1 was provided by Ref. [12]. It shows the extracted
x and y-position of the target cell centre together with the extracted target cell radius
r as a function of the longitudinal z-coordinate.

In the analysis all vertices within a radius of 1.9cm with respect to the target cell
centre are considered. The left distribution of Fig. 6.1 shows the distribution of the
longitudinal vertex position vz of the final event sample. Vertices which satisfy the
condition indicated by the blue dotted lines:

−311.2 cm < vz < −71.2 cm,

are considered.
For a correct determination of the luminosity it is also required that the extrapo-

lation of the incoming beam track crosses the full target volume. Figure6.2 shows
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Fig. 6.1 Left: Distribution of the longitudinal vertex position vz of the final event sample, used to
extract the DVCS cross section. Vertices which satisfy the condition indicated by the blue dotted
lines are considered. Right: Parametrisation of the target cell extracted from the data and provided
by Ref. [12]. The extracted x- and y-position of the target cell center together with the extracted
target cell radius r as a function of the longitudinal z-coordinate are shown. The left distribution is
shown after the full event selection, disabling the cut on vz . The corresponding distributions for an
extended kinematic range are shown in Fig.A.26
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Fig. 6.2 The x and y-position of the interaction vertex �v before (right) and after (left) the application
of the target crossing requirement for data (top) and Monte Carlo (bottom). All distributions are
shown after the full event selection disabling the cut on the respective variable if applicable. The
corresponding distributions for an extended kinematic range are shown in Fig.A.26

the x- and y-position of the interaction vertex �v before and after the application of
the target crossing requirement for data and Monte Carlo.

In order to provide a precise measurement of the momentum vector of the beam
particle by the so called “Beam Telescope”, it is ensured that at least three hits in the
Beam Momentum Stations (BMS), at least three hits in the Silicon detectors, and at
least two hits in the Scintillating Fibre detectors upstream of the target have been
measured. Furthermore, the momentum of the incoming beam particle, pμ has to
satisfy the condition:

140GeV/c < pμ < 180GeV/c,

indicated by the blue lines inside the top left distribution of Fig. 6.3.
The outgoing charged particle is required to have traversed more than 15 radiation

lengths to be identified as a muon. For a precise determination of the momentum of
the scatteredmuon at least one hit is required on either side upstream and downstream
of the first spectrometer dipole. The momentum of the outgoing particle pμ′ , its polar
angle θμ′ and its azimuthal angleφμ′ in the laboratory frame are shown in Fig. 6.3. The
hole at φμ′ ≈ ±π and the decrease at φμ′ = 0 in case of the bottom left distribution
of Fig. 6.3 are related to the kinematic coverage of the trigger hodoscopes. The
positioning of the trigger hodoscopes is described in Sect. 3.6.1.

The Lorentz invariant quantity ν, which coincides with the energy loss of the
muon in the laboratory system, is shown in Fig. 6.4. In order to select a phase space
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Fig. 6.3 Distributions of the in- and outgoing muon. Top left: Distribution of the momentum of the
incoming muon pμ. Top right: Distribution of the momentum of the outgoing muon pμ′ . Bottom
left: Distribution of the polar angle θμ′ of the momentum vector of the outgoing muon. Bottom
right: Distribution of the azimuthal angle φμ′ of the momentum vector of the outgoing muon. All
distributions are shown after the full event selection disabling the cut on the respective variable if
applicable. The corresponding distributions for an extended kinematic range are shown in Fig.A.27

region for which the DVCS process becomes sizeable, small values of ν have to be
considered. This will be demonstrated in detail in Sect. 7.3. The selected ν-region, for
which the DVCS cross section is extracted, is indicated by the blue lines of Fig. 6.4.
The blue lines satisfy the condition:

10GeV < ν < 32GeV.

The distributions of Q2 and the Bjorken scaling variable xBj are shown in Fig. 6.5.
The selected region of Q2 is illustrated by the blue lines and satisfies the condition:

1 (GeV/c)2 < Q2 < 5 (GeV/c)2.

The lower boundary for Q2 is motivated by “physics”, in order to apply the factori-
sation theorem, mentioned in Sect. 2.3.1. For the upper boundary condition, it is in
principle desirable to enlarge the analysis range to larger Q2. In Sect. 7.4 it is shown
that this is unfortunately not possible for the 2012 data.
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Fig. 6.4 Distributions of the Lorentz invariant quantity ν, which coincides with the energy loss
of the muon in the laboratory system. Left: Distribution for the full single photon sample. Right:
A zoom on the region indicated by the blue lines inside the left distribution. In order to select a
phase space region for which the DVCS process becomes sizeable, small values of ν have to be
considered, which are indicated by the blue lines. All distributions are shown after the full event
selection disabling the cut on the respective variable if applicable. The corresponding distributions
for an extended kinematic range are shown in Fig.A.28
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Fig. 6.5 Distributions of the photon virtuality Q2 (left) and the Bjorken scaling variable xBj (right).
The applied cut is indicated by the blue lines. All distributions are shown after the full event selection
disabling the cut on the respective variable if applicable. The corresponding distributions for an
extended kinematic range are shown in Fig.A.28

6.2.2 Photon Selection

All clusters measured by the three electromagnetic calorimeters which are not asso-
ciated to a charged track are considered to be photons. For the single photon selection
the reconstructed cluster energy Eγ has to satisfy the relation:

Eγ > 4, 5, 10GeV in ECal0, ECal1, ECal2,

while “ECal n” denotes one of the three electromagnetic calorimeters of the
COMPASS-II spectrometer. The values of the thresholds have been evaluated using
the distributions shown in Fig. 6.6. These distributions have been derived by apply-
ing the event selection, without the application of a photon threshold, to a single
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Fig. 6.6 Distributions showing the reconstructed photon energy in ECal0 (top left), ECal1 (top
right) and ECal2 (bottom left), derived by applying the event selection to a single photon Monte
Carlo yield, while no threshold for the photon was applied. The event weight is given by wDVCS ,
which corresponds to the hypothesis of a pure DVCS cross section. The photon energy threshold
is shown by the blue lines. The enlarged kinematic range for this study is: 0.08 (GeV/c)2 < |t | <

0.64 (GeV/c)2, 8GeV < ν < 32GeV, 1 (GeV/c)2 < Q2 < 20 (GeV/c)2

photon Monte Carlo yield. In this case the event weight was chosen to accord to the
hypothesis of a pure DVCS cross section.

The time of the neutral cluster with respect to the trigger time is examined as a
function of the cluster energy. In case the cluster timing is outside the blue bands,
shown in Fig. 6.7, the cluster is rejected. The blue bands have been extracted using a
dedicated event selection, which provides a large amount of reconstructed calorime-
ter clusters. The parametrisations correspond to three sigma bands and have been
provided by Ref. [13].

The distributions of themagnitude and the polar and azimuthal angle of the photon
momentum in the laboratory frame are shown in Fig. 6.8. The hole at φγ = 0 and
the decrease at φγ ≈ ±π in the top right distribution of Fig. 6.8 are directly related
to the corresponding distribution of the scattered muon. For exclusive single photon
production most of the outgoing momentum is carried by the scatterd muon and the
photon. Apart from the small contribution of the recoiled proton, the photon travels
in the opposite hemisphere of the scattered muon. Thus, shifting the distribution of
the scattered muon (bottom left side of Fig. 6.3) by π results approximately in the
top right side of Fig. 6.8.
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Fig. 6.7 Two dimensional distributions of the time of the reconstructed neutral calorimeter cluster
with respect to the trigger time as a function of the reconstructed cluster energy for the differ-
ent calorimeter cell types of the three electromagnetic calorimeters. The different cell types and
calorimeters are indicated within the distributions. The blue three sigma bands indicate the applied
cuts. All distributions are shown after the full event selection disabling the cut on the calorimeter
timing. The corresponding distributions for an extended kinematic range are shown in Fig.A.29
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Fig. 6.8 Distributions of the magnitude pγ (top left), the azimuthal φγ (top right) and polar θγ

(bottom left) angle of the photon momentum after the application of the full event selection. The
corresponding distributions for an extended kinematic range are shown in Fig.A.30

6.2.3 Proton Selection and Application of the Exclusivity
Cuts

All reconstructed tracks inside the CAMERA detector which provide a longitudinal
hit position zA;B in ring A and ring B of:

−366.19 cm < zA < 8.81 cm,

−338.94 cm < zB < 71.06 cm,

are considered. In addition, the reconstructed velocity in units of the speed of light
associated to these tracks has to satisfy:

0.1 < β := v

c
< 1.

The remaining tracks are combined with all vertices, passing Sect. 6.2.1 and the
single photon of Sect. 6.2.2. Denoting the four-momenta of the beam and scattered
muonas pμ = (Eμ/c, �pμ) and pμ′ = (Eμ′/c, �pμ′), the four-momenta of the initial and
final state proton as pp = (mpc, �0) and pp′ = (Ep′/c, �pp′) and the four-momentum
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of the photon as pγ = (Eγ/c, �pγ), the hypothesis of exclusivity for the reaction
μp → μ′ p′γ is tested with the following exclusivity variables.

• Reverse vertex pointing:
The reconstructed interaction vertex together with the longitudinal hit position in
the outer ring of the CAMERA detector allows for an interpolation, which yields
the longitudinal hit position zA,interp. in the inner ring. The interpolated hit position
is compared to zA,reco, the reconstructed hit position in the inner ring. This yields
the quantity:

�zA = zA,interp. − zA,reco, (6.8)

and the following cut is performed:

|�zA| < 16 cm.

The procedure is analog to the calibration of the longitudinal position of the ring
A counters. It is schematically illustrated in Fig. 5.7.

• Missing mass: The detection of the proton in the CAMERA detector allows per-
forming a cut on the square of the missing mass M2

X of an additional particle.
This corresponds essentially to a check of the exclusivity by exploiting the four-
momentum balance of the reaction:

M2
Xc

2 = (pμ′ + pp − pμ′ − pp′ − pγ)
2 = 2(mpc

2 − Ep′)(ν − Eγ − Ep′) + tc2,
(6.9)

and the following cut is performed:

|M2
X | < 0.3

(
GeV/c2

)2
.

It is worth to emphasise that the quantities t = (pp − pp′)2 and Ep′ are calculated
from the reconstructed proton momentum insideCAMERA by assuming the mass
of the proton.

• Coplanarity:
Using the beam and spectrometer measurements, the momentum of the recoiled
particle can be predicted as:

�ppred = �pμ − �pμ′ − �pγ . (6.10)

This yields the predicted azimuthal angle of the momentum of the recoiled par-
ticle φpred.. It is compared to the reconstructed azimuthal angle φreco. within the
CAMERA detector. Thus, the following exclusivity variable allows performing a
test on the coplanarity of the exclusivity hypothesis:

�φ = φpred. − φreco., (6.11)
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and the following cut is performed:

|�φ| < 0.4 rad.

• Transverse momentum balance:
The transverse component ( �ppred)T according to Eq. (6.10) is used. It is com-
pared to ( �preco.)T , the transverse component of the reconstructed momentum of
the recoiled particle within the CAMERA detector. The result is the following
exclusivity variable:

�pT = ( �ppred)T − ( �preco.)T , (6.12)

and the following cut is performed:

|�pT | < 0.3GeV/c.

The distributions of the four exclusivity variables are shown in Fig. 6.9. After the
exclusivity cuts have been applied, it may happen in rare cases that a single event
possesses stillmore thanone combinationof a vertex, aCAMERA track and the single
photon. These ambiguous events are rejected. The number of ambiguous events with
respect to the final event yields are between one and two percent with no noticeable
difference for the beam charge. As one applies the same cuts to a single photonMonte
Carlo sample, the number of ambigious events is also approximately two percent.

The square of the four-momentum transfer to the proton t and the polar angle of
the proton momentum vector θp are shown in Fig. 6.10. It should be emphasised that
the exact evolution as a function of |t |, corrected for the amount of the Bethe-Heitler
contribution and the π0 contamination, is unknown and subject to the next chapter.
The comparison of data and Monte Carlo is shown at this stage to demonstrate a
sufficient agreement in order to compute acceptance correction factors as a function
of |t |. The calculation of the acceptance will be demonstrated in Sect. 7.4.

Themeasurement of the azimuthal angle of the recoiled protonwith theCAMERA
detector is achieved by 48 scintillating counters. Hence, it is more meaningfull to
show Fig. 6.11. It illustrates the number of events in each of the 24 scintillating
counters of ring A and ring B separately. As demonstrated in Sect. 5.4, the efficiency
of CAMERA is extracted for each scintillator individually. Furthermore, as shown in
Sect. 5.3, certain scintillators had to be excluded for certain runs, due to bit-flips on
the ADCs of the readout electronic. Both effects were included in the simulations and
explain the large fluctuations for the data and the Monte Carlo yield. Furthermore,
in order to overcome statistical fluctuations the full single photon yield, including
large values of ν, is shown in Fig. 6.11.
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Fig. 6.9 Distributions of the exclusivity variables defined in Eqs. (6.8)–(6.12). The applied cuts are
indicated by the blue lines. All distributions are shown after the full event selection disabling the cut
on the respective variable if applicable. The corresponding distributions for an extended kinematic
range are shown in Fig.A.31
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Fig. 6.10 Left: Distribution of the square of the four-momentum transfer to the proton t . Right:
Distribution of the polar angle of the momentum vector of the recoiled proton with respect to the
spectrometer coordinate system. All distributions are shown after the full event selection disabling
the cut on the respective variable if applicable. The corresponding distributions for an extended
kinematic range are shown in Fig.A.32
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Fig. 6.11 Number of events detected in each of the 24 scintillating counters of ring A (left) and
ring B (right). An extended kinematic range is shown: 10GeV < ν < 144GeV, 1 (GeV/c)2 <

Q2 < 20 (GeV/c)2. The distribution in the kinematic range, used for the extraction of the DVCS
cross section is shown in Fig.A.33

6.3 The Kinematic Fit for DVCS

With increasing values of |t | the resolution of CAMERA gets worse quiet rapidly,
while the resolution of the spectrometer improves. That is why there is a particu-
lar interest in a kinematic fit to provide a consistent solution to the most precise
determination of |t |, measured by CAMERA together with the spectrometer.

The measured beam, spectrometer and CAMERA quantities for the kinematic fit
are:

�k =

⎛
⎜⎜⎜⎜⎝

k1
.

.

.

k23

⎞
⎟⎟⎟⎟⎠ :=

( �pp
�020

)
+

⎛
⎜⎜⎝

�03
�aγ

| �pγ |
�014

⎞
⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎜⎜⎝

�06
�aμ

�pμ

�aμ′

�pμ′
�07

⎞
⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�016
rA
φA

zA
rB
φB

zB
| �pp′ |

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The unmeasured quantities are:

�h =

⎛
⎜⎜⎜⎜⎝

h1
.

.

.

h7

⎞
⎟⎟⎟⎟⎠ :=

( �v
�04

)
+

⎛
⎜⎜⎝

�03
�γ

φγ

�02

⎞
⎟⎟⎠ +

⎛
⎝ �05

�p′

φp′

⎞
⎠ . (6.13)

The used abbreviations are explained in the following:

• The neutral element of RN is depicted by �0N .
• The target proton is assumed to be at rest and its momentum is denoted by �pp = �0.
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• The transverse coordinates and the magnitude of the momentum of the photon
are given by (�aγ, | �pγ |)T , which are treated together with the unmeasured photon
parameters (�γ,φγ)

T according to Sect. 3.4.
• The quantities (�aμ, �pμ)

T and (�aμ′ , �pμ′)T denote the track parameters of the beam
particle and the scatterd muon. They are treated as described in Sect. 3.3.

• The parameters (rA,φA, zA, rB,φB, zB, | �pp′ |)T together with the unmeasured
quantities (�p′ ,φp′)T describe the final state proton as explained in Sect. 3.5.

• The vertex position is depicted by �v.
The kinematic fitter then calculates corrections��k to the measured quantities �k such
that the corrected measurements:

�k f it = �k + ��k,

together with the unmeasured quantities �h minimise the least squares function of
Eq. (4.1). The minimisation is performed with subject to the constraints listed in the
following:

The energy and momentum conservation constraints are given, according to
Sect. 4.6.1, by:

gi = (p f it
μ )i − (p f it

μ′ )i − (p f it
γ )i − (p f it

p′ )i = 0,

g4 = E f it
μ + mpc

2 − E f it
μ′ − E f it

γ − E f it
p′ = 0,

(6.14)

∀ i ∈ {1, 2, 3}, while the index denotes Cartesian components of the three-vectors.

The variables denoted with the superscript “fit” emphasise the fact that the quantities
corrected by the kinematic fit have to satisfy the constraints. Apart from the energy
and momentum conservation all tracks except the initial and final state proton must
originate from a common vertex:

g4+i = (p f it
μ )3

(
vi − (a f it

μ )i

)
− (p f it

μ )i

(
v3 − (a f it

μ )3

)
= 0,

g6+i = (p f it
μ′ )3

(
vi − (a f it

μ′ )i

)
− (p f it

μ′ )i

(
v3 − (a f it

μ′ )3

)
= 0,

g8+i = (p f it
γ )3

(
vi − (a f it

γ )i

)
− (p f it

γ )i

(
v3 − (a f it

γ )3

)
= 0,

∀ i ∈ {1, 2}, while the index denotes Cartesian components of the three-vectors.

For each track two vertex constraints enter the system of equations. They are treated
according to Sect. 4.6.2. Again, the initial state proton is not bound to the vertex for
the same reason as in Sect. 5.1.2.
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In case of the final state proton a special treatment is chosen to reflect the experi-
mental situation of the CAMERA detector in the most adequate way. The role of the
vertex constraint is taken by the interpolation constraints described in Sect. 4.6.3:

g10+i = (pp′)3

(
(rA)i − (v)i

)
− (pp′)i

(
(rA)3 − (v)3

)
= 0,

g12+i = (pp′)3

(
(rB)i − (v)i

)
− (pp′)i

(
(rB)3 − (v)3

)
= 0,

∀ i ∈ {1, 2}, while the index denotes Cartesian components of the three-vectors.

For each of the two hits, reconstructed in the inner and outer ring of the CAMERA
detector, two extrapolation constraints enter the minimisation procedure.

In total 14 constraints are introduced into the procedure, while according to
Eq. (6.13) seven free parameters have to be determined.Hence, the number of degrees
of freedom is seven.

Looking at the difference of the longitudinal momentum between the initial beam
and spectrometer measurement and the result of the kinematic fitting procedure, a
shift is observed. It may be argued that at first order it is correct to compensate this
shift by the kinematic fit, according to Fig. 6.12. On the other hand, the procedure is
not designed to eliminate a bias on the measurement. The origin of this discrepancy
between the measurement of the beam and the scattered muon is unknown. It is
decided to modify the energy and momentum conservation constraints, to allow for
a shift in the longitudinal momentum measurement:

g3 ≈ −0.9GeV/c (−0.34GeV/c for the Monte Carlo),

g4 ≈ −0.9GeV (−0.34GeV for the Monte Carlo),
(6.15)

The influence on the results of Chap. 7 between Eqs. (6.14) and (6.15) is absorbed
into the systematic error. This is demonstrated in Sect. 7.7.4.

Figures6.13, 6.14 and 6.15 show the pull distributions of all input quantities with
respect to the output quantities of the kinematic fitting procedure, taking Eq. (6.15)
into account. The corresponding distributions without the division by the uncer-
tainties are shown in Appendix A.4.4 inside Figs.A.34–A.36 and for an extended
kinematic range inside Figs.A.40–A.42. The distributions without the application of
Eq. (6.15) are shown inside Figs.A.37–A.39 and in case of an extended kinematic
range inside Figs.A.43–A.45. Though the agreement between data and Monte Carlo
is quite satisfactory, there are still visible deviations. This prevents the application
of a single cut on the p-value of the kinematic fit, which would result in a far more
elegant event selection.



6.3 The Kinematic Fit for DVCS 123

) (GeV/c)fit
μz,p-meas

μz,p(
3− 2− 1− 0 1 2 3

En
tri

es

20

40

60

80 Data
Monte Carlo

 background0π

σ) / fit
μz,p-meas

μz,p(
8− 6− 4− 2− 0 2 4 6 8

En
tri

es

50

100
Data
Monte Carlo

 background0π

) (GeV/c)fit
'μz,

p-meas
'μz,

p(
3− 2− 1− 0 1 2 3

En
tri

es

50

100

Data
Monte Carlo

 background0π

σ) / fit
'μz,

p-meas
'μz,

p(
8− 6− 4− 2− 0 2 4 6 8

En
tri

es
50

100

Data
Monte Carlo

 background0π

Fig. 6.12 Pull distributions of the longitudinal momentum of the incoming and outgoing muon,
using strict energy andmomentumbalance: For better readability the abbreviations p f it

z,μ and p f it
z,μ′

have been used for the longitudinal muon momenta, corrected by the kinematic fit. The measured
longitudinal momenta of the in- and outgoing muon are denoted by pmeas

z,μ and respectively pmeas
z,μ′

and are part of the track parameters defined in Eq. (4.7) of Sect. 4. The quantity σ is given by the

respective elements of the in- and output covariancematrix by σ =
√
Cmeas
5,5 − C f it

5,5 , while the input
covariance matrix is defined according to Eq. (4.8) of Sect. 4

Apart from the shift in the longitudinal momentum measurement the pull distri-
butions are well centred around zero and show a slightly too large RMS value at the
order of 1.2 in case of the data. Furthermore, it is interesting to see that for a single
photon selection the π0 background is almost not distinguishable from the signal.

Asmentioned above, in case of the DVCSmeasurement themain advantage of the
kinematic fit is to provide the most precise determination of t , the square of the four-
momentum transfer to the proton. Figure6.16 shows the achievable accuracy for |t |,
given by the measurement of the CAMERA detector, a pure beam and spectrometer
measurement and a combined measurement, making use of the kinematic fitting
procedure. The values are extracted from a single photon Monte Carlo yield within a
comparison with the generated values. The resolution of |t | in case of the kinematic
fitting is clearly improved compared to the two individual approaches. Especially for
large values of |t |, where the resolution of the CAMERA detector gets worse quite
rapidly, the spectrometer provides valuable information. The calculation of t by the
beam and spectrometer measurement has been performed with Eq. (6.16), which is
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Fig. 6.13 Pull distributions of the track parameters for the in- and outgoingmuon, using Eq. (6.15):
The measured input track parameters of the incoming muon to the kinematic fitting procedure,
defined according to Eq. (4.7) of Sect. 4.3, are denoted by

(
xmeas
μ , ymeas

μ , pmeas
x,μ , pmeas

y,μ , pmeas
z,μ

)
and

the determined output parameters by
(
x f i t
μ , y f i t

μ , p f it
x,μ, p f it

y,μ, p f it
z,μ

)
. In case of the outgoing muon μ

is replaced by μ′. The quantity σ is given by the respective elements of the in- and output covariance

matrix C by σ =
√
Cmeas
i,i − C f it

i,i . The input covariance matrix is defined according to Eq. (4.8) of
Sect. 4.3 and the index i satisfies i ∈ {1, . . . , 5}

known as “constraint t” in the literature. It avoids the influence of the bad resolution
of the measured photon energy on the determination of t . The derivation of Eq. (6.16)
is shown in AppendixA.5.2.

tSpec. =
−Q2 − 2(ν/c)

(
(ν/c) − √

Q2 + (ν/c)2 cos θγ∗γ

)

1 + 1
mpc2

(
ν/c − √

Q2 + (ν/c)2 cos θγ∗γ

) . (6.16)
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Fig. 6.14 Pull distributions of the track parameters of the photon, using Eq.6.15: The measured
input track parameters of the photon to the kinematic fitting procedure, defined according to Eq. (4.9)
of Sect. 4.4, are the x- and y-positon of the reconstructed calorimeter cluster xmeas

γ and ymeas
γ and

the reconstructed cluster energy Emeas
γ . The output parameters are denoted with the superscript

“fit”. The quantity σ is given by the respective elements of the in- and output covariance matrix C

by σ =
√
Cmeas
i,i − C f it

i,i . The input covariance matrix is defined according to Eq. (4.10) of Sect. 4.4
and the index i satisfies i ∈ {1, . . . , 3}
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Fig. 6.15 Pull distributions of the proton track parameters, using Eq.6.15: The measured input
track parameters of the proton to the kinematic fitting procedure, defined according to Eq. (4.12)
of Sect. 4.5, are given by (φmeas

a,b , Rmeas
a,b , zmeas

a,b ) the reconstructed hit positions in ring A and B and
the magnitude of the reconstructed proton momentum pmeas

p . The output parameters are denoted
with the superscript “fit”. The quantity σ is given by the respective elements of the in- and output

covariance matrix C by σ =
√
Cmeas
i,i − C f it

i,i . The input covariance matrix is defined according to
Eq. (4.13) of Sect. 4.5 and the index i satisfies i ∈ {1, . . . , 7}
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Fig. 6.16 Relative resolution on t , the square of the four-momentum transfer to the proton, as a
function of |t |. The black line corresponds to a determination of t by using the CAMERA detector
only. The blue line corresponds to a determination of t using the combined beam and spectrom-
eter measurement of the in- and outgoing muon, according to Eq. (6.16). The red line shows the
most accurate determination of t by combining the beam and spectrometer measurement with the
CAMERAmeasurement, using the kinematic fitting procedure. The resolutions have been extracted
by comparing reconstructed and generated values of |t |, using a single photon Monte Carlo yield
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Chapter 7
The Cross Section and Its t-Dependence

During this chapter the DVCS cross section and its exponential t-dependence are
extracted. The exponential t-dependence is denoted as the t-slope or simply by the
symbol B in the following. The first part of the chapter describes the cross section
extractionmethod, the background estimation, the normalisation of theBethe–Heitler
contribution and the acceptance correction. Finally, the extractedDVCS cross section
is presented and the t-slope is determined. Within the second part of the chapter
systematic uncertainties on the measurement are discussed. The chapter concludes
with an interpretation of the results.

7.1 Extraction Method for the DVCS Cross Section

The aim is to extract the t-dependence of the pure DVCS cross section of the process:

γ∗ p → γ p′,

from count rates of the process:

μp → μ′ p′γ,

in the kinematic range:

0.08 (GeV/c)2 < |t | < 0.64 (GeV/c)2,

1 (GeV/c)2 < Q2 < 5 (GeV/c)2,

10GeV < ν < 32GeV.
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Table 7.1 The four bins in t

Bin t1 t2 t3 t4

Range in (GeV/c)2 ]0.08, 0.22] ]0.22, 0.36] ]0.36, 0.5] ]0.5, 0.64[

Table 7.2 Bins in Q2 and ν

Bin Q2
1 Q2

2 Q2
3 Q2

4

Range in (GeV/c)2 ]1, 2] ]2, 3] ]3, 4] ]4, 5[
Bin ν1 ν2 ν3 … ν9 ν10 ν11

Range in GeV ]10, 12] ]12, 14] ]14, 16] … ]26, 28] ]28, 30] ]30, 32[

Four bins in |t |, according to Table 7.1, are used. The mean cross section in these
four bins is constructed as follows:

〈dσ
γ∗ p→γ p′
DVCS

d|t |
〉±
n

=
∑

i j

〈
dσ

γ∗ p→γ p′
DVCS
d|t |

〉±
i jn

�Q2
i �ν j

∑
i �Q2

i

∑
j �ν j

. (7.1)

Here n denotes the index for the bin in |t |, i the index for the bin in Q2, j the index for
the bin in ν and± the beam charge. Equation (7.1) states that the average differential
cross section in each of the four bins in t is given as a weighted mean over the
differential cross sections extracted in bins of Q2 and ν, according to Table 7.2.

Since it is necessary to correct the data for theBethe–Heitler contribution (BH) and
a possibleπ0 contamination, the differential cross section of the processμp → μ′γ p′
in a certain bin of t , Q2 and ν is given by the following relation:

〈dσ
μp→μ′γ p′
DVCS

d|t |dQ2dν

〉±
i jn

=
〈dσ

μp→μ′γ p′
data

d|t |dQ2dν

〉±
i jn

−
〈dσ

μp→μ′γ p′
BH

d|t |dQ2dν

〉±
i jn

−
〈dσ

μp→μ′γ p′
π0

d|t |dQ2dν

〉±
i jn

. (7.2)

However, to extract a cross section for virtual-photon proton scattering from muon
proton scattering, relation (7.3) is used. It contains the transverse virtual-photon flux
�(Q2, ν):

〈dσ
γ∗ p→γ p′
DVCS

d|t |
〉± =

〈 1

�(Q2, ν)

dσ
μp→μ′γ p′
DVCS

d|t |dQ2dν

〉±
, (7.3)

while1:

1Replacing the convention dependent factor within Ref. [1] by k = ν(1 − xBj), according to the
Hand convention [2], yields the quoted expression.
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�(Q2, ν) = αem(1 − xBj)

2πQ2yE

⎡
⎢⎢⎣y2

(
1 − 2m2

μ

Q2

)
+ 2

1 +
(

Q2

ν2

)
(
1 − y − Q2

4E2

)
⎤
⎥⎥⎦ ,

according to the Hand convention. Using Eq. (7.2) together with (7.3) results in:

〈dσ
γ∗ p→γ p′
DVCS

d|t |
〉±
i jn

=
〈 1
�

dσ
μp→μ′γ p′
data

d|t |dQ2dν

〉±
i jn

−
〈 1
�

dσ
μp→μ′γ p′
BH

d|t |dQ2dν

〉±
i jn

−
〈 1
�

dσ
μp→μ′γ p′
π0

d|t |dQ2dν

〉±
i jn

.

Transforming this equation one can see how the acceptance enters and what is tech-
nically done during the extraction procedure:

〈dσ
γ∗ p→γ p′
DVCS

d|t |
〉±
i jn

= (a±
i jn)

−1

L±�tn�Q2
i �ν j

(N data,±
i jn∑
e=1

1

�(Q2
e, νe)

− c±
BH

NBH,±
i jn∑
e=1

(wP.A.M)e

�(Q2
e, νe)

− c±
π0

γ

N
π0γ ,±
i jn∑
e=1

(wπ0
γ
)e

�(Q2
e, νe)

)
.

(7.4)

The intermediate steps are displayed in Sect.A.5.3. The first term in Eq. (7.4) states
that one has to sum the factor 1

�(Q2
e ,νe)

of each event inside the bin (i jn) and divide

this sum by the bin width (�tn�Q2
i �ν j ) corrected by the acceptance a

±
i jn times the

luminosity L±. In this sense �(Q2
e, νe) can be regarded as a weight for each event e

or in other words as an event by event kinematic pre-factor.
The last two terms in Eq. (7.4) are estimated by Monte Carlo. The number of

events inside the bin (i jn) are denoted as N data,±
i jn for the data, NBH,±

i jn for the Bethe–

Heitler Monte Carlo and N
π0

γ ,±
i jn for the π0 Monte Carlo. The factors c±

BH and c±
π

γ
0

account for the correct normalisation of the Monte Carlos to the measured data. The
normalisation of the Bethe–Heitler Monte Carlo will be described in Sect. 7.3. The
event weight of the π0 Monte Carlo is generically denoted aswπ0

γ
. It accounts for two

different types ofπ0 backgroundMonteCarlos generated byLEPTOandHEPGen++.
The estimation of the π0 background is the topic of the following section.

Inserting Eq. (7.4) into (7.1) results in:

〈dσ
γ∗ p→γ p′
DVCS

d|t |
〉±
n

= 1

L�tn�Q2�ν

∑
i j

[
(a±

i jn)
−1

(N data,±
i jn∑
e=1

1

�(Q2
e, νe)

− c±
BH

NBH,±
i jn∑
e=1

(wP.A.M)e

�(Q2
e, νe)

− c±
π0

γ

N
π0γ ,±
i jn∑
e=1

(wπ0
γ
)e

�(Q2
e, νe)

)]
.

(7.5)
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Here�Q2 = ∑
i �Q2

i = 4 (GeV/c)2 and�ν = ∑
j �ν j = 22GeVdenote the total

width of the extraction regime in Q2 and ν. Finally, the contribution of both muon
charges are summed:

〈dσ
γ∗ p→γ p′
DVCS

d|t |
〉
n

= 1

2

(〈dσ
γ∗ p→γ p′
DVCS

d|t |
〉+
n

+
〈dσ

γ∗ p→γ p′
DVCS

d|t |
〉−
n

)
. (7.6)

Equation (7.6) represents the differential cross section in the nth bin of |t |.

7.2 Estimation of the π0 Background

The production of π0, which decay into two photons, is the major background source
for a detection of exclusive single photon production. Two cases have to be distin-
guished:

• Additional photons of π0 decays are detected in the electromagnetic calorimeters
which have an energy below the thresholds used for the single photon reconstruc-
tion (see Sect. 6.2.2). This will be denoted as the π0

γγ background contribution and
will be discussed in Sect. 7.2.1.

• The additional photon of a π0 decay could escape detection. This contribution
shall be denoted as the π0

γ background contribution. It is estimated by Monte
Carlo techniques as it will be described in Sects. 7.2.1 and 7.2.2.

In both cases the energy of the additional photon is rather low.Otherwise, the polluted
events would not have passed the exclusivity cuts of Sect. 6.2.3.

Neither the semi-inclusive π0 production cross section close to z = Eπ0/ν = 1
nor the exclusive π0 production cross section are well constrained within the kine-
matical region of COMPASS-II. Thus, data driven methods together with Monte
Carlo predictions have to be used to estimate the π0 contamination. These methods
will be described in the following two sections.

7.2.1 The π0
γγ and π0

γ Background

The π0
γγ background contribution to the single photon sample of Sect. 6.2 can be

directly identified within the data. For each event of the final sample photon pairs are
created by combining all additionally detected photonswith the single photon. Figure
7.1 shows the mass distribution of these photon pairs, separated for the overall and
the two data yields of different beam charge. A clear peak at the nominal π0 mass is
visible. The events within this peak comprise the π0

γγ background. As it was already
indicated in Table 6.1, these events are rejected from the final sample by applying
the cut:
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Fig. 7.1 Invariant mass of the two γ system: The DVCS photon is combined with all other photons
below the DVCS energy thresholds detected in ECal0 or ECal1. The LEPTO andHEPGen++Monte
Carlos are individually normalised to the amount of visible leaking π0 in the data. The HEPGen++
Monte Carlo is denoted with the term “(exclusive π0)” within the plot. ECal2 is excluded from the
selection since there is no visible π0 mass peak. Top Left: Combined μ+ and μ− data yield. Top
Right: μ− data yield. Bottom Left: μ+ data yield

|mγγ − mπ0 | > 20MeV/c2, (7.7)

while mπ0 denotes the nominal mass of the π0.
However, the very same events are also used to estimate the amount of π0

γ back-
ground. Therefore, the two differentMonte Carlo yields of Fig. 7.1 are used. They are
normalised to the observed π0

γγ yield in the data. In order to increase the statistical
robustness of this normalisation, the kinematic range for the detection of the π0

γγ

contribution is given by:

1 (GeV/c)2 < Q2 < 20 (GeV/c)2, 0.08 (GeV/c)2 < |t | < 0.64 (GeV/c)2

and 8GeV < ν < 144GeV.

In Fig. 7.1 the LEPTO Monte Carlo yield is shown in blue. It accounts for the con-
tribution of semi-inclusive π0 production. The Monte Carlo yield used to estimate
the contribution of exclusive π0 production is shown in black. It is produced by the
event generator HEPGen++, using the event weight wπ0 of Sect. 6.1.1.



134 7 The Cross Section and Its t-Dependence

The estimation of the π0
γ background relies on the HepGen++ and the LEPTO

Monte Carlos. As one applies the event selection of Sect. 62 to the two normalised
Monte Carlos, the π0

γ background contribution of each Monte Carlo is given by the
remaining yields. However, before one can use the two Monte Carlos to correct the
data, it has to be clarified which amount of the π0

γγ contribution in the data is given
by either of the two Monte Carlo predictions. It is clear that they can not both be
normalised to the observed π0

γγ contribution in the data, which would lead to double
counting of the estimated π0

γ yield. This is taken into account by the parameter rH .
It describes the contribution of the HEPGen++ Monte Carlo to the π0

γγ background.
The last term in Eq. (7.4) can thus be written as:

c±
π0

γ

N
π0γ ,±
i jn∑
e=1

(wπ0
γ
)e

�(Q2
e, νe)

= c±
H (rH )

NH,±
i jn∑
e=1

(wπ0)e

�(Q2
e, νe)

+ c±
L (1 − rH )

NL ,±
i jn∑

e=1

1

�(Q2
e, νe)

(7.8)

The normalisations c±
H of the HEPGen++ and c±

L of the LEPTOMonte Carlos to the
observed π0

γγ yield in the data are taken as illustrated in Fig. 7.1, while the number

of events of the two Monte Carlos are denoted by NH,±
i jn and NL ,±

i jn . The estimation
of the parameter rH is the topic of the next section.

7.2.2 Normalisation of the LEPTO and HEPGen++ π0

Monte Carlos

For the estimation of the parameter rH the event selection of Table 7.3 is used.
The selection is optimised to select exclusive π0 events and is described in detail in
Ref. [3].

Figure 7.2 shows the invariant mass of the photon pairs, remaining after the event
selection. The LEPTO Monte Carlo is shown in green, while the HEPGen++ Monte
Carlo is shown in blue. Both Monte Carlos are normalised to the number of detected
π0 events in the data within the peak around the nominal π0 mass. The peak region
is indicated by the red lines.

The basic idea to separate the contributions of the two Monte Carlos relies on the
shape of the distributions of the exclusivity variables outlined in Table 7.3.3 These
variables are particular sensitive to semi-inclusive background. The procedure goes
as follows: The normalisation shown in Fig. 7.2 is used, while one of the exclusivity
cuts is removed from the event selection and finally the cut shown in Fig. 7.2 is
applied. The distribution of the removed exclusivity variable for the data is compared
to the distributions of the two Monte Carlo yields. Denoting the three distributions

2This includes in particular Eq. (7.7), which removes the π0
γγ contribution from the samples.

3The exclusivity variables can be found within the block called “exclusivity selections”.
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Table 7.3 Overview of the selection of exclusive π0 events

Events with: General event criteria

• Time in spill: 1 s < T < 10.4 s

• Considered trigger types:
Middle Trigger (MT) or
Ladder Trigger (LT) or
Outer Trigger (OT)

Primary vertices with: (1) Muon and vertex selection

• Vertex z-position: −311.2 cm < vz < −71.2 cm

• Vertex distance from target centre: d < 1.9 cm
(see Sect.6.2.1)

• One incoming charged track, μ with:

>2 hits in the Beam Momentum Stations (BMS),

>1 hit in the Scintillating Fibre detectors (Fi),

>2 hits in the Silicon detectors (Si),
beam momentum: 140GeV/c < pμ < 180 GeV/c, beam
track traverses the full target volume (see Sect.6.2.1)

• One outgoing charged track μ′ with:
same charge than incoming track,

traversed radiation lengths: X/X0 > 15,

z-position of first measured point: z f irst < 350 cm,

z-position of last measured point: zlast > 350 cm

• Inclusive scattering variables:

energy loss: ν > 8GeV,

photon virtuality: Q2 > 1 (GeV/c)2

Neutral clusters γi with: (2) Photon selection

• A detection in ECal0 or ECal1

• A valid cluster time
(see Sect.6.2.2)

• A reconstructed cluster energy: E(γi ) > 0.3GeV, ∀i
• ∃ l : E(γl ) > 1Gev for Ecal0

or ∃ l : E(γl ) > 2Gev for Ecal1

Reconstructed CAMERA tracks with: (3) CAMERA selections

• Longitudinal hit position z inside ring A and B:
−366.19 cm < zA < 8.81 cm,

−338.94 cm < zB < 71.06 cm

• Velocity of reconstructed recoiling particle:
0.1 < β := v

c < 1

(continued)
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Table 7.3 (continued)

All combinations of (1), (2) and (3) which satisfy: Exclusivity selections

• |�pT | < 0.3GeV/c

• |�φ| < 0.4 rad

• |�zA| < 16 cm

• |M2
X | < 0.3

(
GeV/c2

)2
(see Sect.6.2.3 for the definitions,
replace pγ with (pγ,i + pγ, j ) for i �= j )

• Exactly one combination must be left

Fig. 7.2 Invariant mass of
the two γ system after the
application of the cuts
described in Sect. 7.2.2. The
applied cut in order to select
the π0 contribution is shown
in red. The exclusive π0

Monte Carlo (HepGen++)
and the LEPTO Monte Carlo
have been normalised to the
data

representing the data, the LEPTO and the HEPGen++ Monte Carlo by the set V , a
least squares function χ2 is constructed as follows:

χ2
V (a, b) =

NV
bins∑
i=1

(
ND
i − aN H

i − bN L
i

)2

(
σD
i

)2 +
(
aσH

i

)2 +
(
bσL

i

)2 . (7.9)

The set V is explicitly given by V = { �ND, �σD, �NH , �σH , �NL , �σL}. The bin con-
tents of the respective distributions and their statistical uncertainties are depicted
by �ND;L;H and �σD;L;H for the data (D), the LEPTO (L) and the HEPGen++ (H )
Monte Carlos, while NV

bins denotes the number of bins. The parameters for which
the least squares function will be minimised are given by a and b. They describe the
contribution of the two Monte Carlo yields in order to fit the data best. In particular,
the following three methods are applied to the exclusivity distributions:
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Method1:

The parameters a and b are chosen according to Eq. (7.10), while rH denotes the
contribution of the HEPGen++ Monte Carlo and the index S the set of the three
distributions of the respective exclusivity variable:

a = rH , b = (1 − rH ). (7.10)

Hence, a single parameter rH is used in order to describe the data:

χ2(rH ) := χ2
S(rH , (1 − rH )) (using V = S in Eq. 6.9).

Figure 7.3 shows the fit result for the distribution of the undetected mass squared.
The data is shown in yellow, the sum of the two Monte Carlo yields in red and the
HEPGen++ Monte Carlo in blue.

Method2:

In order to gain confidence in the estimate given by the first method, a different
approach uses in addition to S the set of background like distributions B. The set B
denotes the three distributions (data, LEPTO, HEPGen++) of a exclusivity variable
in case there is more than one π0 candidate4 left after applying the event selection.
These events are most likely of semi-inclusive origin and make the background like
set S particular sensitive on the contribution of the LEPTO Monte Carlo. Surely, in
this case the very last cut of Table 7.3 has to be removed.

Fig. 7.3 Distribution of M2
X for Method1 of Sect. 7.2.2. The blue histogram describes the overall

Monte Carlo estimate given by the exclusive π0 (HEPGen++) and the LEPTO Monte Carlo yields,
while the red histogram displays the fraction described by the exclusive π0 Monte Carlo yield

4The π0 candidates are denoted as combinations at the very bottom of Table 7.3.
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Fig. 7.4 Distribution of M2
X for Method2 (top row) andMethod3 (bottom row) of Sect. 7.2.2 for

NB < 3. The blue histogram describes the overall Monte Carlo estimate given by the exclusive π0

(HEPGen++) and the LEPTO Monte Carlo yields, while the red histogram displays the fraction
described by the exclusive π0 Monte Carlo yield. Left: Set of signal distributions S. Right: Set of
background like distributions B

The least squares function is build from the two sets S and B. It has the following
form:

χ2(rH ) := χ2
S(rH , (1 − rH )) + χ2

B(rH , (1 − rH )).

For the background like distributions a further distinction has to be made. As the
number of final π0 candidates is greater than one, it must be at least one after the
π0 mass region of Fig. 7.2 has been selected. The number of π0 candidates after the
event selection and the final mass selection is denoted as the background multiplicity
NB . The top row of Fig. 7.4 shows the fit result in the same fashion as for Method1 in
case of NB < 3. One can observe that the agreement between data and Monte Carlo
is quite unsatisfactory.

Method3:

Method3 is almost similar to Method2 apart from the fact that in this case the
χ2 function depends on two parameters. In addition to the parameter rH a second
parameter r BL is introduced:

χ2(rH , r BL ) := χ2
S(rH , (1 − rH )) + χ2

B(rH , r BL ).
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Fig. 7.5 Comparison of the fraction rH for the three methods described in Sect. 7.2.2 for dif-
ferent background multiplicities NB after the cut on the π0 mass and different background
sensitive variables. The variables are explained in Table 7.3, apart from Emiss . The quantity

Emiss := (p+q−pπ0 )2−M2
p

2Mp
is the missing energy, while Mp denotes the mass of the proton and

p, q, pπ0 the four-momenta of the initial proton, the virtual photon and the π0 candidate

The idea behind is that the LEPTO Monte Carlo is most likely not providing a
good absolute description of the background multiplicity NB and thus a second
parameter is needed for the normalisation of the background like LEPTO Monte
Carlo distributions. It should be emphasised, that in case of both sets of distributions
the same parameter for the HEPGen++ Monte Carlo yield is used. The bottom row
of Fig. 7.4 shows the fit result in the same fashion as for Method2.

A comparison of the results of the three methods is shown in Fig. 7.5 for different
values of the background multiplicity NB and different exclusivity variables. The
distributions of the remaining exclusivity variables in case of NB < 3 are shown in
Appendix A.5.1. One clearly observes that in case of Method2 the resulting value
of rH depends strongly on the multiplicity requirement NB . This fact was already
remarked above where it served as the motivation of Method3.

Considering the results of Method1 and Method3, the value of rH in Eq. (7.8)
is chosen to be at the order of rH = 0.1, while a systematic uncertainty of 0.2 is
considered in Sect. 7.6.2. For completeness it should be noted that this estimate of
rH takes also into account that the event selection of theπ0

γγ contribution of Sect. 7.2.1
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differs from the event selection of this section. As one applies the selection of the
π0

γγ contribution to the two normalised Monte Carlo yields of this section, a slight
increase of rH at the order of one percent is observed.

7.3 Normalisation of the Bethe–Heitler Contribution

As stated in Sect. 7.1, the Bethe–Heitler yield needs to be subtracted from the data
inside the extraction region of the DVCS cross section. This is achieved by Monte
Carlo. A single photon Monte Carlo sample with the weight wP.A.M.

5 is used. It is
normalised to the luminosity of the 2012 data according to Eq. (6.6) and shall be
denoted as the Bethe–Heitler Monte Carlo in the following.

In order to estimate systematic effects on the cross section measurement, the
Bethe–Heitler Monte Carlo together with the πγ background Monte Carlo are used.
Both Monte Carlo predictions are compared to the measured data as a function of
φγ∗γ

6 in three kinematically different regions:

• The “reference region” of (80GeV < ν < 144GeV):
In this region the Bethe–Heitler process completely dominates the exclusive single
photon yield while a negligible π0 contamination is estimated. The data yield is
supposed to agree with the hypothesis of a pure Bethe–Heitler contribution on the
percent level. Thus, this region is supposed to be described by the Bethe–Heitler
Monte Carlo only.

• The “interference region” of (32GeV < ν < 80GeV):
For this region the Bethe–Heitler cross section is still dominant, but the DVCS
contribution becomes sizeable and is boosted by the interference term, as described
in Sect. 2.4. Due to the interference between the DVCS and the Bethe–Heitler
process a slight asymmetry of the φγ∗γ distribution is expected.

• The “DVCS extraction region” of (10GeV < ν < 32GeV):
In this region the DVCS amplitude is sizeable. A significant difference between
the sum of the Bethe–Heitler and the π0

γ Monte Carlo in contrast to the extracted
amount of single photon events in the data is expected.

The comparison of data and Monte Carlo for the three regions is shown in Fig. 7.6
separately for the data yields taken with the μ− and the μ+ beam and the sum of
both.

For the “reference region” one clearly observes that there is a loss of Bethe–Heitler
events at the order of 20% in the data taken withμ+ beam and an excess of about 10%
for theμ− beam compared to theBethe–HeitlerMonte Carlo yields. This discrepancy
might get smaller or vanish for small values of ν, but unfortunately there exists no
reference yield in this region. Despite all efforts the source of the uncertainty in

5The weight wP.A.M. represents the Bethe–Heitler calculation including the muon mass in the
propagator (see Sect. 6.1).
6For the definition of φγ∗γ see Fig. 2.13.
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Fig. 7.6 Distributions of φγ∗γ for
(
0.08 (GeV/c)2 < |t | < 0.64 (GeV/c)2

)
in three regions of ν.

Top row: The “reference region” of
(
80GeV < ν < 144GeV

)
. Middle row: The “interference

region” of
(
32GeV < ν < 80GeV

)
. Bottom row: The “DVCS extraction region” of

(
10GeV <

ν < 32GeV
)
. TheBethe–HeitlerMonteCarlo (MC(BH)) has beennormalised to the total integrated

luminosity of the 2012 data for the overall μ+ and μ− data yield (left column), the μ− data yield
(middle column) and theμ+ data yield (right column). Theπ0

γ background (π
0 bgd.MC) is estimated

according to Sect. 7.2. The sum of the Bethe–Heitler Monte Carlo and the π0
γ background estimate

(BH + π0) is shown in blue. The data and either of the Monte Carlo yields are not corrected for
acceptance effects. The top andmiddle row correspond to

(
1 (GeV/c)2 < Q2 < 20 (GeV/c)2

)
, while

the bottom row corresponds to
(
1 (GeV/c)2 < Q2 < 5 (GeV/c)2

)

the “reference region” of large ν is unknown. Therefore, a conservative approach is
chosen, to absorb the influence of an equally large discrepancy inside the “extraction
region” of small ν into the systematic error on the cross section and its t-dependence.
This approach is detailed in Sect. 7.6.1.

7.4 Acceptance Corrections

The acceptance correction factors are extracted by applying the event selection of
Sect. 6.2 to a single photonMonteCarlo sample using the event generatorHEPGen++
and the DVCS event weight wDVCS. Denoting Ng(��) the sum of DVCS weights of
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the generated Monte Carlo events in the phase space �� and Nr (��r ) the sum of
reconstructed DVCS event weights, the acceptance correction factor a for the phase
space element ��r is given by:

a(��r ) = Nr (��r )

Ng(��)
.

The index r emphasises the fact that the quantity Nr (��r ) is increased by the respec-
tive event weight in case the values of the reconstructed kinematic variables are found
to be within the phase space element �r . Hence, this definition of the acceptance
is also taking into account kinematical smearing effects, due to the experimental
resolution on the reconstructed kinematic variables.7

Figure 7.7 shows the acceptance for the DVCS process as a function of Q2,
ν and φγ∗γ individually for both beam charges. One can clearly observe that for
the region of (8GeV < ν < 10GeV) and (Q2 > 3 (GeV/c)2) and for the region of
(10GeV < ν < 12GeV) and (Q2 > 5 (GeV/c)2) the acceptance tends to drop to
zero as one approaches φγ∗γ close to ±π. However, for the extraction of the DVCS
cross section a single bin in Q2 and ν, avoiding regions of zero acceptance, has to
be chosen. This is why the extraction region is limited to:

(10GeV < ν < 32GeV) and (1 (GeV/c)2 < Q2 < 5 (GeV/c)2).

Figure 7.8 shows the acceptance as a function of Q2, |t | and φγ∗γ . A rather flat and
symmetric behaviour with respect to φγ∗γ = 0 of the acceptance as a function of
φγ∗γ is observed. According to Eq. (2.31) the interference term between the DVCS
and the Bethe–Heitler process is odd with respect to φγ∗γ . Hence, it cancels naturally
for an even acceptance in φγ∗γ , without parametrising the acceptance as a function
of φγ∗γ .

In order to make the best use of the available Monte Carlo statistics, it is thus
decided to parametrise the acceptance for the extraction of the DVCS cross section
as a function of |t |, Q2 and ν as shown in Fig. 7.9.8 This particular choice of the
acceptance binning is motivated by the dependence of the transverse virtual photon
flux on Q2 and ν, as it is described in Sect. 7.1.

7Within Figs. 7.7, 7.8 and 7.9 the kinematic quantities, determined by the kinematic fit, are used.
8With this choice of the acceptance parametrisation, the φγ∗γ modulations of the coefficients cDVCS1
and cDVCS2 of Eq. (2.31) would only cancel for a flat acceptance. However, the coefficients are
strongly suppressed. The influence of a different acceptance parametrisation is tested in Sect. 7.6.4.
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Fig. 7.7 Acceptance for the DVCS process, shown as a function of Q2, ν and φγ∗γ : Each plot in
a bin of Q2 and ν shows the acceptance on the ordinate in eight equidistant bins of φγ∗γ on the
abscissa
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Fig. 7.8 Acceptance for the DVCS process, shown as a function of Q2, |t | and φγ∗γ : Each plot
in a bin of Q2 and |t | shows the acceptance on the ordinate in 10 equidistant bins of φγ∗γ on the
abscissa

Fig. 7.9 Acceptance for the DVCS process, shown as a function of Q2, |t | and ν: Each plot in a
bin of Q2 and |t | shows the acceptance on the ordinate in 11 equidistant bins of ν on the abscissa
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7.5 The DVCS Cross Section and the Extraction
of the t-Slope

The DVCS cross section is shown in Fig. 7.10. It is extracted according to Sect. 7.1.
The values9 of the cross section in the four bins of |t | and the corresponding mean
kinematic quantities are presented in Table A.2.

To extract the parameter of the t-slope, a binned maximum likelihood fit has been
used with the following log-likelihood function:

log L(B) =
4∑

n=1

σn log νn(B), (7.11)

where νn is given by:

νn(B) = σtot

∫ tmax
n

tmin
n

1

N
e−B|t |dt.

Here tmin
n and tmax

n denote the edges of the four bins in |t |, σn the measured cross
section in a certain bin n:

σn =
〈dσ

γ∗ p→γ p′
DVCS

d|t |
〉
n
· �tn (see Eq. 6.6), (7.12)

and σtot = ∑4
i=n σn the total measured cross section. The normalisation N is given

by:

N =
∫ 0.64 (GeV/c)2

0.08 (GeV/c)2
e−B|t |dt.

Fig. 7.10 Virtual-photon
proton DVCS cross section
in the four bins of |t|. Only
the statistical errors of the
cross section values and the
t-slope B are shown within
this plot. After a discussion
of systematic uncertainties
the final result is presented in
Fig. 7.25

2|t| (GeV/c)
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→
*pγ(σd 1
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-2 0.62 (GeV/c)±B = 4.31 

 = 0.056〉Bj x〈
2 = 1.8 (GeV/c)〉2 Q〈 2 = 5.8 GeV/c〉 W 〈

 = 19.2 GeV〉ν〈  = 0.029〉ξ〈

2 < 5 (GeV/c)2 < Q21 (GeV/c)
 < 32 GeVν10 GeV < 

9The values of the cross section have been cross checked in Ref. [4]
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Since one is assuming multinomial statistics within Eq. (7.11), but is dealing with
a sum of weights inside each bin instead of a raw number of events, the following
error correction has to be applied in order to get correct results for the statistical
uncertainty on the t-slope:

VB = (V∑
w)

1

(V∑
w2)

(V∑
w),

The quantity VB denotes the final variance on the t-slope, (V∑
w) the variance given

by minimising the log-likelihood using Eq. (7.12) and (V∑
w2) the variance under the

exchange:

σn →
(∑

w2
)
n
,

while
(∑

w2
)
n
has to be calculated according to Eq. (7.6) as follows:

(∑
w2

)
n

= 1

4

[(∑
w2

)+
n

+
(∑

w2
)−
n

]
,

where:

(∑
w2

)±
n

= 1

(L±�tn�Q2�ν)2

∑
i j

[
a−2
i jn

(N data,±
i jn∑
e=1

1

�(Q2
e, νe)

2

+ (cBH)2 ·
NBH,±
i jn∑
e=1

(wP.A.M.)
2
e

�(Q2
e, νe)

2
+ (cπ0

γ
)2 ·

Nπ0 ,±
i jn∑
e=1

(wπ0
γ
)2e

�(Q2
e, νe)

2

)]
,

(7.13)

with
n ∈ {1, 2, 3, 4},

representing the four bins in t . In Appendix A.5.6.1 a toy Monte Carlo study is pre-
sented, which illustrates the quality of the estimator for the t-slope and the necessity
of the error correction in case of weighted events. Furthermore, it shows that the cal-
culated statistical errors are very reasonable. The almost perfect agreement between
the data and the exponential fit in Fig. 7.10 may look striking. The p-value, which is
in this case the probability to get a better agreement between the data and the model
than the present one, is 7%. Appendix A.5.6.1 also shows the χ2 distribution for
a toy MC, which illustrates that the p-value given is correctly calculated. Further-
more, in Appendix A.5.6.2, Fig. 7.10 is shown separately for the two beam charges
and for a ν-range from 10 to 20GeV and 20 to 32GeV, where one can see statistical
fluctuations on a reasonable scale.
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7.6 Systematic Uncertainties

Within this section the influence of several systematic effects on the extracted cross
section and the t-slope parameter B are studied. The section concludes with a sum-
mary and comparison of the different systematic uncertainties.

7.6.1 Variation of the Absolute Normalisation Scale

As shown in Sect. 7.3, a loss of approximately 20% of events for the μ+ data yield
in the region of (80GeV < ν < 144GeV) is observed, when comparing to the pure
contribution of the Bethe–Heitler process. Thus, a conservative approach is chosen
and it is considered that this loss of events may also be present in the region of
(10GeV < ν < 32GeV). Figure 7.11 shows the influence on the extracted value
of the t-slope, when one scales the number of measured μ+ events. It should be
emphasised, that this scaling also influences the amount of visible leakingπ0 and thus
the amount of π0 background. However, the amount of the subtracted Bethe–Heitler
contribution stays unchanged. In this way it is somehow equivalent to changing the
amount of Bethe–Heitler relative to the data and the estimated π0 contribution. From
this a systematic effect on the t-slope s+↓:

s+↓ = 2%,

which preferably lowers the extracted value, is concluded. Figure 7.12 shows the
influence of the loss of events in case of the μ+ data on the extracted cross section
in the four bins of t . The systematic effects on the extracted cross section s+

i are
summarised in Table 7.4.

Furthermore, inSect. 7.3, in case of theμ− data yield, an excess of events compared
to the Monte Carlo prediction in the region of (80GeV < ν < 144GeV) is detected.

Fig. 7.11 Influence on the
result of the extracted value
for the t-slope when one
rescales the amount of
measured events for the μ+
data. B0 denotes the
preferred value of the
t-slope. The plot is
normalised to this value. The
green band shows the
relative statistical uncertainty
on the extracted value for the
respective scenario



148 7 The Cross Section and Its t-Dependence

Fig. 7.12 Influence on the result of the measured cross section in the four bins of t when one
rescales the amount of measured events for the μ+ data. σ0

ti denotes the preferred value of the
extracted cross section in the corresponding t-bin with i ∈ {1, 2, 3, 4}. Each plot is normalised to
this value. The green band shows the relative statistical uncertainty on the extracted value for the
respective scenario

Table 7.4 Summary of the estimated systematic uncertainties on the cross section in the four bins
of t , originating from the uncertainty on the number of measured events in case of the μ+ data yield.
The effect is considered to preferably cause a higher value of the extracted cross section

Bin σt1 σt2 σt3 σt4

Relative sys. error s+↑
i 13% 15% 13% 19%

Since the source of this discrepancy is not yet understood, the associated systematic
uncertainties are estimated by two different methods:

1. Varying the overall Monte Carlo normalisation.
2. Scaling the μ− data sample.

For the first method, the influence is comparable to down-scaling the flux since the
Monte Carlo is used to calculate the acceptance. This approach leaves the relative
amount of the DVCS contribution with respect to the Bethe–Heitler contribution
unchanged and simply describes an overall scaling of the extracted cross section.
Figure 7.13 shows that the effect is negligible in case of the t-slope extraction. For
the cross section in the four bins of t a variation at the order of 10% is considered.
Figure 7.14 shows the influence on the cross section when one rescales the flux for
the μ− data. Thus, the following systematic effect on the cross section in the four
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Fig. 7.13 Influence on the result of the extracted value for the t-slope when one rescales the
integrated beam flux for the μ− data. B0 denotes the preferred value of the t-slope. The plot is
normalised to this value. The green band shows the relative statistical uncertainty on the extracted
value for the respective scenario
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Fig. 7.14 Influence on the result of the measured cross section in the four bins of t when one
rescales the integrated beam flux for the μ− data. σ0

ti denotes the preferred value of the extracted
cross section in the corresponding t-bin with i ∈ {1, 2, 3, 4}. Each plot is normalised to this value.
The green band shows the relative statistical uncertainty on the extracted value for the respective
scenario



150 7 The Cross Section and Its t-Dependence

Fig. 7.15 Influence on the
result of the extracted value
of the t-slope when one
rescales the amount of
measured events for the μ−
data. B0 denotes the
preferred value of the
t-slope. The plot is
normalised to this value. The
green band shows the
relative statistical uncertainty
on the extracted value for the
respective scenario
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Fig. 7.16 Influence on the result of the measured cross section in the four bins of t when one
rescales the amount of measured events for the μ− data. σ0

ti denotes the preferred value of the
extracted cross section in the corresponding t-bin with i ∈ {1, 2, 3, 4}. Each plot is normalised to
this value. The green band shows the relative statistical uncertainty on the extracted value for the
respective scenario

bins is concluded:
s−↓
i = 6%, i ∈ {1, 2, 3, 4},

which preferably lowers the extracted cross section.
The second method to treat the excess of the data observed in case of the μ−

yield corresponds to a scaling of the μ− data sample. A background effect in the
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data is assumed and in this case one has to down-scale the number of measured μ−
events, as it was done in the opposite direction for the μ+ scenario. Figures 7.15 and
7.16 show the influence on the t-slope and the extracted values of the cross section.
For the t-slope the effect is again negligible. Considering a down-scaling of 10%,
the following systematic uncertainties are concluded for the four values of the cross
section:

s−↓
i = 9%, i ∈ {1, 2, 3, 4},

which preferably lower the extracted values. It is not surprising that within the second
scenario the systematic uncertainty is larger, compared to the first scenario, since a
scaling of the events leaves the estimate of theBethe–Heitler contribution unchanged.
Hence the Bethe–Heitler process has a larger relative impact during the subtraction
of its contribution.

The first hypothesis seems to be more plausible. But as one can not be convinced
about that, the worst case is absorbed into the systematic uncertainty, which is given
by the second scenario. Thus, a nine percent systematic effect on the cross section
in the downward direction is assumed.

7.6.2 The π0 Background Subtraction

In Sect. 7.2 the amount of background, originating from the production of π0 within
the single photon sample, is estimated. This background has two contributions: exclu-
sively produced π0, described by HEPGen++ and semi-inclusively produced π0,
described by LEPTO. This section evaluates the influence on the results for a varia-
tion of the overall π0 contribution and the fraction of the two production mechanisms
within.

Looking at Fig. 7.17, one can see that the systematic effect on the t-slope, origi-
nating from the normalisation between the LEPTO and the HEPGen++Monte Carlo
is negligible.

Figure 7.18 shows the influence on the extracted values of the cross section in the
four bins of t , originating from the normalisation between LEPTO and HEPGen++.
Regarding the summarised results shown in Fig. 7.5, the uncertainty on the contri-
bution of HEPGen++ is considered to be at the order of 20%. The estimates for the
systematic error on the cross section in the four bins of t are summarised in Table 7.5.

One of the main systematic uncertainties on the extracted value of the t-slope
originates from the absolute normalisation of the total amount of the π0 background.
As described in Sect. 7.2.1 the twoMonte Carlo yields describing the π0 background,
are normalised in the first place to the number of visible leaking π0 in the data. In this
case, as described in Sect. 6.2.2, a low energy threshold for the low energetic photons
is applied. Figure 7.19 shows the ratio of the number of visible leaking π0 between
data andMonte Carlo as a function of the threshold of the low energy photon after this
first normalisation step. From this figure it seems that the Monte Carlo overestimates
the π0 background by up to 30%. Thus, in Figs. 7.20 and 7.21 the influence of a
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Fig. 7.17 Influence on the extracted value of the t-slope, caused by the ratio between the twoMonte
Carlos describing the π0 background. The favoured numbers are taken from Sect. 7.2 and give a
contribution from HEPGen++ of 10% and a contribution from LEPTO of 90%. The contribution
fromHEPGen++, cHEPGen++, andLEPTO, cLEPTO, is then varied such that cHEPGen++ + cLEPTO = 1.
B0 denotes the preferred value of the t-slope. The plot is normalised to this value. The green band
shows the relative statistical uncertainty on the extracted value for the respective scenario

Fig. 7.18 Influence on the extracted value of the cross section in the four bins of t , caused by the
ratio between the twoMonte Carlos describing the π0 background. The favoured numbers are taken
from Sect. 7.2 and give a contribution from HEPGen++ of 10% and a contribution from LEPTO
of 90%. The contribution from HEPGen++, cHEPGen++, and LEPTO, cLEPTO, is then varied such
that cHEPGen++ + cLEPTO = 1. σ0

ti denotes the preferred value of the extracted cross section in the
corresponding t-bin with i ∈ {1, 2, 3, 4}. Each of the plots is normalised to this value. The green
band shows the relative statistical uncertainty on the extracted value for the respective scenario
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Table 7.5 Summary of the estimated systematic uncertainties on the cross section in the four bins
of t , originating from the normalisation between the LEPTO and the HEPGen++ Monte Carlo
yields, used to describe the π0 background. The effect is considered to preferably cause a higher
value of the extracted cross section

Bin σt1 σt2 σt3 σt4

Relative sys. error sL ,H↑
i 2% 0% 0% 1%

Fig. 7.19 Ratio for the
number of visible leaking π0

events between data and
Monte Carlo as a function of
the threshold of the low
energy photon

) (GeV)
low

γ E(
0.0 0.5 1.0 1.5 2.0

da
ta

 / 
M

C

0.4

0.6

0.8

1.0

1.2
data / LEPTO

data / HEPGen

Fig. 7.20 Influence on the extracted value of the t-slope, caused by the normalisation of the π0

background. B0 denotes the preferred value of the t-slope. The plot is normalised to this value.
The green band shows the relative statistical uncertainty on the extracted value for the respective
scenario

possible overestimation of the π0 background by the Monte Carlo on the t-slope and
the extracted values of the cross section is studied. Furthermore, since one observes
116 visible leaking π0 in the data, and since this number gives the normalisation, the
overall statistical uncertainty on the π0 normalisation is approximately nine percent
and has an influence on the extracted values in both directions.
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Considering Fig. 7.20 one comes to the following estimates of the systematic
uncertainties for the t-slope sπ0↓ and sπ0

:

sπ0↓ = 5%,

and
sπ0 = 2%,

while sπ0↓ denotes the relative systematic uncertainty due to the definition of the
threshold for the low energy photon and sπ0

the relative systematic uncertainty due
to the statistical uncertainty on the number of visible leaking π0. The uncertainties
on the cross section for the four bins in t , based on Fig. 7.21, are summarised in
Tables7.6 and 7.7.
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Fig. 7.21 Influence on the extracted value of the cross section in the four bins of t , caused by the
normalisation of the π0 background. σ0

ti denotes the preferred value of the extracted cross section in
the corresponding t-bin with i ∈ {1, 2, 3, 4}. Each plot is normalised to this value. The green band
shows the relative statistical uncertainty on the extracted value for the respective scenario

Table 7.6 Summary of the estimated systematic uncertainties on the cross section in the four bins
of t , originating from the uncertainty on the normalisation of the π0 background, related to the
uncertainty on the threshold for the low energy photon. The effect is considered to cause preferably
a higher value of the extracted cross section

Bin σt1 σt2 σt3 σt4

Relative sys. error sπ0↑
i 6% 8% 10% 12%
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Table 7.7 Summary of the estimated systematic uncertainties on the cross section in the four bins
of t , originating from the statistical uncertainty on the normalisation of the π0 background

Bin σt1 σt2 σt3 σt4

Relative sys. error sπ0

i 2% 3% 4% 5%

7.6.3 Radiative Correction Effects

Since radiative corrections are small for the measurement of exclusive single photon
production, they are taken into account in the systematic error. A calculation of radia-
tive corrections for COMPASS kinematics of P.A.M.Guichon is used [5]. It provides
a reduction of the cross section by factors slightly varying with t , which are reported
in Table 7.8. The calculation is done in the one-photon-exchange approximation.
However, it is known that the two-photon-exchange will give an opposite effect for
μ+ and μ−, which cancels for the sum of the two contributions. The application of
the factors reported in Table 7.8 to the data provides a slight reduction of the t-slope,
as it can be seen in Fig. 7.22.

Table 7.8 Summary of the estimated systematic uncertainties on the cross section in the four bins
of t , originating from one-photon-exchange radiative corrections [5]

Bin σt1 σt2 σt3 σt4

Relative sys. error sr,↓i 5.8% 4.7% 4.1% 3.6%
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Fig. 7.22 Virtual photon proton DVCS cross section in the four bins of |t |, without any influence
of radiative corrections (left) and using the estimates of radiative corrections shown in Table 7.8
(right)
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7.6.4 Further Scenarios

In this section the influence on the results for different variations of the extraction
method is studied. Figure 7.23 shows the influence of different scenarios on the
extracted value of the t-slope, while Fig. 7.24 shows the influence on the extracted
values of the cross section. The scenarios for which no kinematic fit is used surely
should not contribute to the systematic error. In case of the scenarios for which the
acceptance binning is changed to a four dimensional binning, including equidistant
bins in φγ∗γ , variations of up to four percent can be observed. Since these variations
are not consistent between the scenarios of four and five bins in φγ∗γ , it is assumed
that the effect is rather originating from the fact that the statistics of the Monte Carlo
sample, used to calculate the acceptance correction factors, are getting sparse and
introduce fluctuations. Thus, it is also not included into the final systematic error.

However, the difference between the kinematic fit with strict energy and momen-
tum balance, denoted by “1phi_fit_!shift”, and a shifted energy and momentum
balance, denoted by “1phi_fit_shift”, should be absorbed into the systematic error
since the origin of the shift is unclear (see Sect. 6.3). For the t-slope this is fortunately
negligible. In case of the cross section in the four bins of t , the following estimates

Fig. 7.23 Influence on the extraction of the t-slope for different scenarios: The abbreviation “nphi”
denotes the number n of equidistantφγ∗γ bins used to extend the acceptance correction factors shown
in Fig. 7.9 to a four dimensional acceptance. The fact whether the kinematic quantities corrected
by the kinematic fit have been used for the cross section extraction or not is denoted by “fit”
and respectively “!fit”. In case the kinematic quantities corrected by the kinematic fit have been
used for the extraction, it is distinguished, whether the routine is constraint to a strict energy and
momentum balance, which is depicted by “!shift” or to a shifted energy and momentum balance,
which is depicted by “shift” (see Sect. 6.3). In case of the scenarios “fit”, “!fit”, “shift” and “!shift”
the kinematic quantities Q2, ν, φγ∗γ and t of each event of the final sample have slightly changed
and thus the acceptance is individually recalculated for each scenario from a Monte Carlo sample,
which has been analysed under the appropriate conditions of the respective scenario. B0 denotes
the preferred value of the t-slope. The plot is normalised to this value. The green band shows the
relative statistical uncertainty on the extracted value for the respective scenario



7.6 Systematic Uncertainties 157

1p
hi

_f
it_

!s
hi

ft

5p
hi

_!
fit

1p
hi

_!
fit

4p
hi

_!
fit

4p
hi

_f
it_

sh
ift

4p
hi

_f
it_

!s
hi

ft

1p
hi

_f
it_

sh
ift

5p
hi

_f
it_

sh
ift

5p
hi

_f
it_

!s
hi

ft

0 1tσ)/0 1tσ- 1tσ(

0.15−

0.1−

0.05−

0
0.05

0.1
0.15

1p
hi

_f
it_

!s
hi

ft

5p
hi

_!
fit

1p
hi

_!
fit

4p
hi

_!
fit

4p
hi

_f
it_

sh
ift

4p
hi

_f
it_

!s
hi

ft

1p
hi

_f
it_

sh
ift

5p
hi

_f
it_

sh
ift

5p
hi

_f
it_

!s
hi

ft

0 2tσ)/0 2tσ- 2tσ(

0.2−

0.1−

0

0.1

0.2

1p
hi

_f
it_

!s
hi

ft

5p
hi

_!
fit

1p
hi

_!
fit

4p
hi

_!
fit

4p
hi

_f
it_

sh
ift

4p
hi

_f
it_

!s
hi

ft

1p
hi

_f
it_

sh
ift

5p
hi

_f
it_

sh
ift

5p
hi

_f
it_

!s
hi

ft

0 3tσ)/0 3tσ- 3tσ(

0.6−
0.5−
0.4−
0.3−
0.2−
0.1−

0
0.1
0.2

1p
hi

_f
it_

!s
hi

ft

5p
hi

_!
fit

1p
hi

_!
fit

4p
hi

_!
fit

4p
hi

_f
it_

sh
ift

4p
hi

_f
it_

!s
hi

ft

1p
hi

_f
it_

sh
ift

5p
hi

_f
it_

sh
ift

5p
hi

_f
it_

!s
hi

ft

0 4tσ)/0 4tσ- 4tσ(

0.4−

0.2−

0

0.2

0.4

0.6

0.8

Fig. 7.24 Influence on the extraction of the cross section in the four bins of t for different scenarios.
σ0
ti denotes the preferred value of the extracted cross section in the corresponding t-bin with i ∈

{1, 2, 3, 4}. Each plot is normalised to this value. The green band shows the relative statistical
uncertainty on the extracted value for the respective scenario. For the explanation of the ordinate
see Fig. 7.23

of the systematic errors are concluded:

sKi = 3%, i ∈ {1, 2, 3, 4}.

7.6.5 Summary of Systematic Effects

The systematic effects on the cross section in the four bins of t are summarised in
Tables 7.9 and 7.10. They are added in quadrature to estimate the final systematic
error. The systematic effects on the t-slope are summarised in Tables7.11 and 7.12.
They are added in quadrature to estimate the final systematic error.

This results in the following error bars shown in Fig. 7.25. The inner error bar
illustrates the statistical uncertainty, while the outer error bar shows the quadratic
sum of the statistical and the systematic uncertainty.
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Table 7.9 Summary of the systematic uncertainties on the extracted values of the cross section in
the four bins of t , which cause an upward uncertainty

Sections Effect σt1 σt2 σt3 σt4

7.6.1 Event loss for μ+ data s+↑
i = 13% 15% 13% 19%

7.6.2 Norm. of π0

LEPTO/HEPGen++
sL ,H↑
i = 2% 0% 0% 1%

7.6.2 Threshold uncertainty
on π0

sπ0↑
i = 6% 8% 10% 12%

7.6.2 Statistical uncertainty
on π0

sπ0

i = 2% 3% 4% 5%

7.6.4 Muon kinematic
uncertainty

sKi = 3% 3% 3% 3%

5.2 Uncertainty on the flux
det.

s f
i = 3% 3% 3% 3%

∑
s↑
i = 15% 18% 17% 23%

Table 7.10 Summary of the systematic uncertainties on the extracted values of the cross section
in the four bins of t , which cause a downward uncertainty

Sections Effect σt1 σt2 σt3 σt4

7.6.1 MC event
loss for μ−
data

s−↓
i = 9% 9% 9% 9%

7.6.3 Radiative
corrections
estimate

sr↓i = 6% 5% 4% 4%

7.6.2 Statistical
uncertainty
on π0

sπ0

i = 2% 3% 4% 5%

7.6.4 Muon
kinematic
uncertainty

sKi = 3% 3% 3% 3%

5.2 Uncertainty
on the flux
det.

s f
i = 3% 3% 3% 3%

∑
s↓
i = 12% 12% 11% 12%
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Table 7.11 Summary of the systematic uncertainties on the extracted value of the t-slope, which
cause a downward uncertainty

Sections Effect B

7.6.1 Event loss for μ+
data

s+↓ = 2%

7.6.2 Norm. of π0

LEPTO/HEPGen++
sL ,H↓ = 0%

7.6.2 Threshold
uncertainty on π0

sπ0↓ = 5%

7.6.3 Radiative corrections
estimate

sr↓ = 1%

7.6.2 Statistical
uncertainty on π0

sπ0
= 2%

7.6.4 Muon kinematic
uncertainty

sK = 0%

∑
s↓ = 6%

Table 7.12 Summary of the systematic uncertainties on the extracted value of the t-slope

Sections Effect B

7.6.2 Statistical uncertainty on π0 sπ0
= 2%

7.6.4 Muon kinematic uncertainty sK = 0%∑
s = 2%
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Fig. 7.25 Virtual photon proton cross section in the four bins of t . An exponential fit has been
applied from which the t-slope parameter is extracted. The p-value of the exponential fit is 7% and
yields in this case the probability to get better agreement than the observed one. The inner error
bar illustrates the statistical uncertainty, while the outer error bar shows the quadratic sum of the
statistical and the systematic uncertainty. No radiative corrections are applied but an estimate
is included into the systematics
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7.7 Interpretation of the Results

The DVCS cross section has been measured as a function of t . An excellent expo-
nential behaviour of the form:

dσ(γ∗ p → γ p′)
d|t | ∝ eBt , (7.14)

is observed within Fig. 7.25. The t-slope parameter B is compared to the H1 and
ZEUS measurements, mentioned in Sect. 2.4.5, within Fig. 7.26. The measurements
are compatible within the statistical and systematic uncertainties. However, the
HERAmeasurement is muchmore sensitive on the higher order two gluon exchange,
shown in Fig. 2.16, and the comparison might not be completely appropriate. The H1
measurement of B as a function of Q2, shown in the top right of Fig. 2.17, suggests
that the parameter B increases with decreasing values of Q2. Thus, theCOMPASS-II
measurement of B, performed at a significantly smaller value of Q2, might indicate a
decrease of B with increasing xBj. This fact would be in accordance with the reason-
ing of Sect. 2.3.4 and might give an indication that the transverse size of the nucleon
decreases with increasing values of xBj or ξ ≈ xBj

2−xBj
respectively.

To bemore precise, according to Sect. 2.4, the beamcharge sum ismainly sensitive
to the real and imaginary part of the Compton Form Factor H:

dσ(γ∗ p → γ p′)
d|t | (ξ, t) ∝ SCS,U (ξ, t) ∝ cDVCS

0 (ξ, t) ∝ H2
Re(ξ, t) + H2

Im(ξ, t).

Both, the real and the imaginary part of the Compton Form FactorH receive most of
their contribution from the singlet GPD H+ at x = ξ in the sense of the Eq. (2.28).
Within Sect. 2.3.4 the t-slope B�2⊥ of the GPD H at x = ξ is related to < r2⊥ >,
the transverse size of the transition matrix element with respect to the centre of
momentum of the spectators. Using Eq. (2.24), the measured parameter B can be

Fig. 7.26 Comparison of the
t-slope B, given by
Eq. (7.14), extracted by H1
and ZEUS with the result
obtained at COMPASS-II.
The inner error bars illustrate
the statistical uncertainty,
while the outer error bars are
given by the square root of
the quadratic sum of the
statistical and systematic
uncertainties
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Fig. 7.27 Comparison of the
transverse size of the
nucleon

√
< r2⊥ >, given by

Eq. (7.15), extracted by H1
and ZEUS with the result
obtained at COMPASS-II.
The inner error bars illustrate
the statistical uncertainty,
while the outer error bars are
given by the square root of
the quadratic sum of the
statistical and systematic
uncertainties
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transformed to < r2⊥ >:

< r2⊥ >= 4�
2B�2⊥ = 2�

2

(
1 + ξ

1 − ξ

)
B = 2�

2

(
B

1 − xBj

)
. (7.15)

It should be noted that the quantity B in Eq. (7.15) is related to Bt from Eq. (2.24) by
B = 2Bt . This arises from the fact that Eq. (2.24) is valid on the level of amplitudes,
while Eq. (7.15) is valid on the level of the cross section.10 Figure 7.27 shows the
conversion of Fig. 7.26 using this reasoning.

In Sect. 2.4.4 the extraction of the proton radius in the valence quark region,
according to Ref. [6], is discussed. For this extraction the reasoning is somewhat
different. The extracted t-slope values Bt of the imaginary part of the Compton
Form Factor H or respectively the singlet GPD H+ at x = ξ is mapped to the slope
B0 of the valence GPD H− at ξ = 0 via a correction factor. This correction factor
is determined from GPD model studies. The mean valence quark radius squared
< b2⊥ > is given by Eq. (2.34).11 As the extracted values Bt at x = ξ are extrapolated
to ξ = 0, the authors of Ref. [6] apply the density interpretation of Sect. 2.3.4, which
legitimates the statement of calling < b2⊥ > a mean proton RMS valence radius. On
the left side of Fig. 2.15 the authors compare the extracted radii < b2⊥ > at different
values of x with a Regge inspired ansatz, constraint by the Form Factor F1 via
Eq. (2.20), and state that the data follows the Regge ansatz.

A comparison of the left plot of Fig. 2.15 with the COMPASS-II result on the
amplitude level:

Bt (ξ = 0.029) = 2.15 ± 0.31 +0.05
−0.13 (GeV/c)−2,

10This originates essentially from the following: (eBt t )2 = e2Bt t := eBt .
11To distinguish the amplitude level from the cross section level, the value Bt in this section
corresponds to B of Sect. 2.4.4.
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Fig. 7.28 Comparison of the t-slope Bt on the amplitude level extracted by COMPASS-II, H1 and
ZEUS with the results of Ref. [6]. The inner error bars of the blue, red and green points illustrate the
statistical uncertainty, while the outer error bars are given by the square root of the quadratic sum of
the statistical and systematic uncertainties. The black points correspond to the left side of Fig.2.15.
The error bars of the black points mainly originate from the extraction procedure of the imaginary
part of the Compton Form FactorsH and not from experimental uncertainties. For a more detailed
explanation see Ref. [6]

is shown in Fig. 7.28. The extracted values of Bt are compatible. This is mainly due
to the large uncertainties of the black points in Fig. 7.28. It is nevertheless inter-
esting to compare the Regge ansatz, shown within the right plot of Fig. 2.15 with
the COMPASS-II result. Several peculiarities arise when one tries to achieve this
comparison:

1. To calculate the value < b2⊥ > in case of the COMPASS-II data, no correction
factor for the extrapolation to ξ = 0 is available yet. Thus, inspired by the rather
small correction factor of Ref. [6], the ad hoc assumption that the correction
factor is small and can be neglected for a first order comparison is made.

2. The COMPASS-II value is in the region of x where the sea quark parton distri-
butions become sizeable with respect to the valence distributions. Thus, in the
case of the COMPASS-II data it might be more appropriate to refer to a sea
quark radius, given by the singlet GPD H+.

3. The COMPASS-II result is sensitive to both, the real and the imaginary part
of the Compton Form Factor, whereas in case of Ref. [6] a pure contribution
from x = ξ is taken into account. As the imaginary part ofH is purely given by
the singlet GPD at x = ξ, the real part receives contributions from a larger x-
region, which is due to the integrationwithin Eq. (2.28). Though the denominator
within Eq. (2.26) emphasises the region of x = ξ, the real part HRe can at least
in principle even pick up contributions from the ERBL region.

4. The COMPASS-II result is not corrected for radiative effects. However, an esti-
mate is included into the systematic uncertainty on B and the effect of a dedicated
treatment of the radiative effects is assumed to be even smaller than the current
estimate.
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Fig. 7.29 Comparison of the mean transverse nucleon radius squared < b2⊥ > of Eq. (7.16) with
the Regge Ansatz for valence quarks of Ref. [6]. The red band shows the ansatz of Eqs. (2.35) and
(2.36). This ansatz is illustrated together with the black data points by the authors of Ref. [6] in the
right plot of Fig. 2.15. The inner error bars of the blue, red and green points illustrate the statistical
uncertainty, while the outer error bars are given by the square root of the quadratic sum of the
statistical and systematic uncertainties. For the black points only the outer error bars of the right
side of Fig. 2.15 are illustrated here

Proceeding nevertheless with the simple ansatz:

< b2⊥ >= 2B0�
2 != 2B�

2, (7.16)

the result of Fig. 7.29 is achieved.
With the above remarks in mind, one would be tempted to conclude that the sea

quark radius seems to be smaller than the valence quark radius. Regarding addition-
ally the fact that the black data points of Fig. 7.29 do not quantitatively constrain
the Regge Ansatz within their large uncertainties, this statement is on a rather weak
footing at the moment and future measurements will hopefully give clarification.

Future measurements at JLab 12GeV will provide more complete information
on the eight Compton Form Factors in the valence region. Since the uncertainties
extracted in Ref. [6] do not reflect the precision of the measured observables but
rather the lack of information on the eight Compton Form Factors, the errors are
expected to shrink dramatically.

On the other hand, the 2016/2017DVCSmeasurements atCOMPASS-IIwill give
complementary information, approaching the valence quark region from the region
of the sea quarks. The statistical accuracy in case of the 2016/2017 measurement
will increase by approximately a factor of 15 compared to the 2012 pilot run. This
will allow to perform the measurement of B for several values of xBj. Furthermore,
a separate measurement of the real and the imaginary part of the Compton Form
Factor H will become feasible as described in Sects. 2.4.2 and 2.4.3 and might give
some clarification on the third remark above.
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Chapter 8
Summary

The structure of the nucleon and in particular its spin decomposition is still puzzling.
Though the beautiful concept of Generalised Parton Distributions provides a path
to a comprehensive description of the nucleon, these non perturbative, multidimen-
sional objects can only be constrained experimentally. Most of the information on
Generalised Parton Distributions is gained within themeasurement of Deeply Virtual
Compton scattering (DVCS) and Hard Exclusive Meson Production (HEMP). The
demanding experimental requirements of high luminosity and a precise detection of
all initial and final state particles make the information on Generalised Parton Dis-
tributions rather sparse. This opens pioneering ground for experimental physicists.

Within the COMPASS-II programme DVCS and HEMP reactions are currently
measured. Themost crucial upgrade to the existing COMPASS spectrometer is given
by theCAMERA detector, which reconstructs the track of the recoiled target particle
and thus ensures the exclusivity of the measurement.

The CAMERA detector was used for the first time as a part of the COMPASS-II
spectrometer during a pilot run in 2012. A deep understanding and a precise cal-
ibration of the detector prototype is achieved throughout this thesis. The detailed
performance studies lead to the exchange of the inner ring of scintillators, which
ultimately resulted in an increase of the detector efficiency and a better time res-
olution. In addition, instabilities within the time synchronisation of the front end
electronics with respect to the COMPASS trigger control system and the appearance
of random bit-flips within the transmission of the digitised detector signals were
identified in the 2012 data. These problems have been tracked down to a particular
synchronisation method in the firmware of the GANDALF readout modules. The
synchronisation method was successfully reimplemented and the result is a smooth
operation of CAMERA since its first commissioning after the 2012 pilot run.

The DVCS analysis of the 2012 data required themost precise and comprehensive
determination of the square of the four-momentum transfer to the target proton,which
lead to the development of a kinematically constrained fit. This fit makes full use of
the exclusive nature of the DVCS and HEMP reactions, providing the most precise
determination of the kinematic properties of all involved particles. It is used in many
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ongoing COMPASS-II analysis of exclusive reactions and has become an inevitable
part of the longitudinal hit position calibration of the CAMERA detector.

The extraction of the pure DVCS cross section from the data of the 2012 pilot
run demands an optimised selection of a single photon sample, the estimation of
background contributions originating mainly from π0 → γγ, the subtraction of the
Bethe–Heitler contribution, the calculation of acceptance correction factors and a
careful study of systematic uncertainties. All these steps have been developed and
carried out explicitly within this theses.

The final result is shown in Figs. 7.25 and 7.26. It comprises the world’s first
measurement of the pure DVCS cross section and its exponential dependence B on
the square of the four-momentum transfer to the target proton in the region of:

1 (GeV/c)2 < Q2 < 5 (GeV/c)2, 10GeV < ν < 32GeV,

0.08 (GeV/c)2 < |t | < 0.64 (GeV/c)2,

at:

< Q2 > = 1.8 (GeV/c)2, < xBj >= 0.056,

< W > = 5.8GeV/c2, < ν >= 19.2GeV.

The measurement not only provides valuable data to constrain Generalised Parton
Distributions in an uncharted region of xBj, but one also gains first insight into the
evolution of the transverse size of the nucleon on the partonic level, as shown in
Fig. 7.27. The extracted t-slope parameter B reads:

B(xBj=0.056) = 4.31 ± 0.62 +0.09
−0.25 (GeV/c)

−2.

It corresponds to a transverse extension < r2⊥ > of the nucleon of:

√
< r2⊥ >(xBj=0.056) = 2�

2

(
B

1 − xBj

)
= 0.60 ± 0.04 +0.01

−0.02 fm.

Further data taking of DVCS reactions through 2016 and 2017 at COMPASS-II
will yield approximately a factor of 15 more statistics compared to the 2012 pilot
measurement. Hence, the full data set together with the analysis methods developed
throughout this thesis will provide the possibility to easily extend the extraction to
several values of the parameter B as a function of xBj. This will reveal the evolution
of the transverse size of the nucleon within the COMPASS-II kinematical coverage.
In addition, a separate extraction of the real and the imaginary part of the Compton
Form Factor H will become feasible by studying the azimuthal modulations of the
cross section.



Chapter 9
Epilog

The detector performance studies in the course of the analysis of the 2012 data lead to
vital improvements on the CAMERA prototype in the years following the pilot run.
This chapter is supposed to give an overview of the most important improvements
applied to the CAMERA detector between 2012 and 2016. The result was the suc-
cessful detector commissioning during the beginning of the 2016/2017 DVCS data
taking, outlined in Appendix A.7, and a smooth operation without any problems
since then.

9.1 Replacement of the Inner Scintillators
of the CAMERA Detector

As shown in Sect. 5.4, in 2012 a critical compromise had to be made for the high
voltage settings of the photomultipliers of the 4mm thick ring A elements. Setting
the high voltage to rather low values causes a decrease of the efficiency at the far
end. Since the propagation length of the scintillation light through the scintillator is
large, the signals become too small to be detected by the readout electronics. Trying
to compensate for the loss on the far end and setting the high voltage to rather large
values causes a decrease of the efficiency at the near end, which is due to the fact that
the photomultiplier signals become too large and exceed the dynamic range of the
readout electronics. This loss in efficiency was the main argument for the exchange
of the ring A scintillators. It is a direct consequence of the rather low attenuation
lengths of the counters, as it was already detected during their characterisation prior
to the 2012 pilot run. The low attenuation lengths are related to defects of the scin-
tillation material, introduced during the manufacturing process. At the time the bad
counter performance was detected it was too late though to order a new batch of
scintillators for the 2012 pilot run.

© Springer International Publishing AG, part of Springer Nature 2018
P. Jörg, Exploring the Size of the Proton, Springer Theses,
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Fig. 9.1 Comparison of the attenuation length of the ring A elements used in 2012 and currently
being in use during the 2016/2017 data taking: The ordinate shows the yield of ring A scintillators
versus the attenuation length in bins of 10cm. The values for the attenuation length of the 2012
counters were taken from Ref. [4], while the values for the 2016 counters were taken from Ref.
[3]. For the elements used during the 2012 pilot run a large spread of the distribution is visible and
during the assembly of ring A in 2012 counters with a rather large attenuation length were placed
next to counters showing a rather small value of the attenuation length (see Sect. 5.4)

However, for the 2016measurement a new batch of scintillatorswas ordered. Each
scintillator was tested individually for its attenuation length1 during manufacturing
and prior to its installation. An element was rejected in case its attenuation length
was measured below 150cm. The measurement of the attenuation length was based
on placing a 90

38Sr source
2 on different positions along the scintillators. Analysing the

digitised signal amplitude spectra at the different measurement positions allows for
an extraction of the attenuation length of a counter. The details of the measurement
of the attenuation lengths are given within Refs. [1, 2]. Subsequent to this quality
selection a new ring Awas assembled and inserted intoCAMERA. During the detec-
tor commissioning phase the attenuation lengths of each counter were remeasured,
using cosmic muons traversing the detector. The results for the attenuation length
given by the measurement with the 90

38Sr source and the results obtained with cosmic
muons were found to be in excellent agreement [3]. Figure 9.1 shows a comparison
of the extracted attenuation lengths for the ring A counters used in 2012 and cur-
rently being in use in the 2016/2017 data collecting period. It is clearly visible that
the attenuation length has significantly improved, which allowed for a more optimal
setting of the high voltage and will finally lead to an overall increase of the efficiency
of ring A. Furthermore, the spread of the distribution could be reduced by almost

1In this context the attenuation length λ is given by the exponential dependence of the photo-
multiplier amplitudes Aup,dwn as a function of the longitudinal hit position z inside a scintillator:
Aup,dwn = A0 exp(±z/λ), while A0 is directly proportional to the energy loss of the particle,
traversing the scintillator.
2Strontium decays into 90

38Y via a β− decay with a half life of 28.5y and an average electron energy
of 0.196MeV. 9039Y decays into 90

40Zr via a β− decay with a half life of 64.1h with an average electron
energy of 0.934MeV. The source was chosen because of the rather high average electron energy of
the decay into 90

40Zr, necessary to traverse the plastic shielding of the scintillators.
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a factor of two, which will lead to more stable values of the efficiency between the
different counters.

Though there is no doubt that the efficiency of ring A will increase in 2016, no
quantitative results for the increase can be shown here since the analysis of the 2016
data is still in a very early stage.

9.2 Improvements on the CAMERA Readout Electronics

This section will give a short introduction to the readout electronics of theCAMERA
detectorwith the purpose to quickly focus on the improvements to the existing system,
developed during this thesis.

9.2.1 Overview

The readout electronics of the CAMERA detector should be capable of instantly
extracting signal features, like time-stamp and amplitude information of the analogue
photomultiplier pulses, detected at each of the two sides of the 48 scintillators of
ring A and B. This has to be achieved for a very wide dynamic range of more than
10bit for signals from 0 up to −4V, providing an intrinsic time resolution of the
extracted times-stamps at the order of 50ps.3 These requirements were the reason
for the development of the GANDALF module. Due to its high modularity it is not
restricted to the readout of theCAMERA detector, but can also be used as a TDC [5],
a scaler [6], a meantimer [7], or a data collector [8]. The basic idea is to divide the
module into a powerful mainboard equipped with a Virtex5 SXT FPGA4 as well as
modular mezzanine cards, depending on the specific application. The most complete
description of the GANDALF module can be found in Ref. [9].

In case of the CAMERA readout the module is used as a transient recorder and is
equipped with two ADCmezzanine cards [10], which provide a 12bit digitisation of
four incoming photomultiplier signals per card with a sampling rate of 933,12MHz.
The digitised data stream is processed on the mainboard and condensed to amplitude
and time information [11], which is transmitted to theCOMPASS-II data acquisition
in case a time correlated trigger signal has been detected. In parallel it is also used
for the generation of an independent proton trigger signal [11–13].

Since in total twelve modules are needed for the readout of the detector, the
GANDALF modules are operated in a single VXS/VME64x-Crate5 together with
two VXS switch modules, the TIGER modules. The TIGER module consists of

3This value does not take into account the uncertainty at the order of 300ps introduced by a
photomultiplier together with a ring A or B scintillator. It refers to the achievable resolution of the
electronics for an ideal Landau distributed signal generated by e.g. a function generator.
4Field-Programmable Gate Array.
5VME: Versa Module Europa bus, a computer bus standard; VXS: VME Bus Switched Serial, a
computer bus standard which improves the performance of the VME bus.
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a custom maid mainboard which comprises amongst other components a Virtex-6
SX315T FPGA, a COM Express CPU, two SFP6 transceivers, two LEMO outputs
and a VXS switch connector. Its FPGA is connected via the VXS backplane to in
total 18 payload modules (GANDALF) by 2 · 8 differential signal pairs per payload
module [14].

One of the TIGER modules is used to extract information from the data stream to
generate a proton trigger signal,which is crucial for the calibration of the detector. The
purpose of the second TIGERmodule is twofold. First, it transmits the information of
the COMPASS trigger control system (TCS [15]) via the VXS backplane to each of
the GANDALF modules. Second, it functions as a data concentrator of GANDALF
readout.

On each of the GANDALF modules the TCS clock is routed to the main FPGA
and both of the twomezzanine cards. Before the 38,88MHzTCS clock can be used to
operate the ADCs on amezzanine card it is filtered by a clock cleaning andmultiplier
chip (Si5326 [16]), localised on each of the mezzanine cards. The eight ADCs on
one mezzanine card are operated with a 466,56 MHz clock, provided by the Si5326
chip. This results in an effective digitisation of 466,56GS/s per ADC. To digitise one
analogue signal, two ADCs are used in interleaved mode with clocks shifted by π.
Thus, a final digitisation of 933,12GS/s is reached.

Combined with a data ready signal the 12bit data word from each digitisation
step is passed to the GANDALFmain FPGA for further processing of the data. This
processing has to happen synchronous to a single clock. We have chosen the data
ready signal of the first ADC on the upper mezzanine card. In the following, the data
ready signal of the upper of the two mezzanine cards will be denoted as SiA data
ready signal and respectively in case of the lower mezzanine card as SiB data ready
signal.

The crucial ingredients for a correct sampling of the 12 bits per ADC are:

• A fixed phase relation between the output clocks of the Si5326 chips, operating
the ADCs on the two mezzanine cards.

• A correct setting of the I/O delays7 of the FPGA for each of the 16 · 12 bits per
module.

The first point is a necessity for the second one. Otherwise, the I/O delay values of
the lower card will change from one initialisation to another.

Different from what has been claimed in Ref. [17] a readout of the ADCs free
from errors was not possible. Therefore we had to develop a new method to achieve
the time synchronisation of the 16 ADC chips. The details and the new method will
be explained in the following section.

6Small Form-factor Pluggable: A specification of a generation of modular optical or electronical
transceivers.
7An I/Odelay element is a commonbuilding block inside anFPGA. It delays the Input/Output signal
accessing or leaving the FPGA. It is adjusted to guarantee that the in/output signal is synchronous
to the sampling clock.
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9.2.2 Time Synchronisation

During the analysis of the 2012 data it turned out to be necessary to calibrate the
bias of the time of flight between an inner and outer scintillator for each of the
48 scintillator combinations run by run. This is related to the fact that inner and
outer scintillators are read out by different GANDALF modules, which have to be
synchronised in a correct way. Furthermore, approximately 10 percent of the data had
to be excluded from the analysis, due to biterrors in the sampling process within the
data transfer from ADC to FPGA. The fact that the time of flight offset can change
after a restart of the FPGAs and the appearance of biterrors in the data transfer are
closely connected.

Figure 9.2 defines8 on the left side an ideal initialisation of the GANDALF FPGA.
TheTCS clock, provided by theCOMPASS trigger control system, is exactly in phase
with the two data ready signals of the upper ADCon each of the twomezzanine cards.
The time measurement is uniquely synchronised to the rising edge of the TCS clock.

Looking at the right side of Fig. 9.2, a typical initialisation without any synchro-
nisation mechanism is shown. The phase of the two data ready signals of the ADCs
with respect to the TCS clock and with respect to each other is arbitrary. The time
measurement will thus have an arbitrary offset after each reinitialisation, which is
denoted as �tA,B . But even more severe is the fact that, depending on the arbitrary
phase, it may happen that the bits transmitted from the ADCs to the FPGA are
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Fig. 9.2 Time synchronisation and sampling of the data transmitted from the ADCs to the GAN-
DALFmain FPGA. The left side defines an ideal FPGA initialisation, for which the internal operat-
ing clock of the FPGA is given by the SiA data ready signal, which is synchronised to the TCS clock
transmitted by the COMPASS trigger control system. The data of both ADCs is correctly sampled
with the SiA data ready signal. The chronological order of the data is depicted by the time-stamps
ti . The right side shows a typical initialisation without any synchronisation mechanism applied.
The time synchronisation shows an offset �tA/�tB for both data ready signals and the SiB data is
sampled outside its data eye by the SiA data ready

8It is not necessary that the rising edge of the TCS clock is exactly aligned to the rising edges of
the SiA/B data ready signals. This scenario is simply chosen for pedagogical reasons. The crucial
point is that the phase is fixed from one initialisation to another and that the I/O delays are correctly
chosen for each of the 8 · 12 bits per module, according to this fixed phase relation.
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wrongly sampled. Figure 9.2 shows the corresponding scenario on the right side for
the SiB data, which is sampled with the SiA data ready outside its data eye, causing
arbitrary bit-flips. The appearance of this scenario is due to the fact that in contrary to
the statement in the first data sheet of the chip, from one initialisation to another the
Si5326 chip can not provide a fixed phase between its input (TCS) and output (SiA/B)
clock. It provides however the possibility to shift the output clock with respect to the
input clock in steps of 4.06ps. This gives rise to the new synchronisation method.

New Synchronisation Method

The steps of the new synchronisation method are shown schematically in Fig. 9.3.
A combination of a VHDL9 module implemented inside the FPGA firmware [18]
and computations on the CPU in the VXS/VME64x-Crate is used. The basic idea to
achieve the clock synchronisation after a reload of the FPGA firmware is illustrated
within the blue box of Fig. 9.3. Two flip-flops10 inside the FPGA are driven with the
TCS clock itself. The flip-flops can be regarded to have a fixed latency with respect

determine 
rising edge of SiA/B

data ready signal
from yields

set phase value
(shift Si5326 output clock 

N steps backwards )

calculate 
phase value N

FPGACPU

start 
shift procedure

shift Si5326 output clock
by 4.06 ps

sample SiA/B data ready
signal with two 

flip-flops repeatedly

collect yields for each state
(x,y) of the two flip-flops :

(x=low V high, y=low V high)
transmit yields

transmit phase 
value 

start signal

shift procedure

repeat N
tim

es

phase alignment procedure

Fig. 9.3 Schematic illustration of the clock synchronisation method of a GANDALFmodule. The
number of shifts steps N within the blue box is set such that more than two clock periods of the
SiA/B data ready signals are covered by the procedure (see e.g. top right and left distributions of
Fig. 9.4)

9Very High Speed Integrated Circuit Hardware Description Language.
10A flip-flop is a bistable multivibrator being a fundamental building block of digital electronics.
Inside an FPGA it is driven by a clock sampling the state of an input signal. During each cycle of
the driving clock the output of the flip-flop yields the current state (low or high) of the input signal.
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to the TCS clock and thus with respect to each other. The SiA/B data ready is used
as the input signal for the two flip-flops. Shifting the SiA/B clock, the output clock
of the Si5326 chip, and as a consequence the SiA/B data ready signals in steps of
4.06ps, one observes different scenarios for the state of the two flip-flops. For each
4.06ps step a large amount of statistics is taken and the yields for which the state of
the two flip-flops was either (low, low), (high, high), (high, low) or (low, high) are
transmitted to the CPU. This marks the beginning of the phase alignment procedure,
illustrated by the red box within Fig. 9.3. The analysis of the transmitted yields on the
CPU allows for a precise determination of the phase between the TCS clock and the
SiA/B data ready signal, as it will be described in detail within the next paragraph.
The appropriate number of shift steps, which is given by the value of the phase in
units of 4.06ps, is then transmitted back to the FPGA. Next, the correct phase for
the SiA/B clock is set by the FPGA firmware to bring the system to a state as shown
on the left side of Fig. 9.2.

Phase Alignment Procedure

Details on the determination of the phase between the SiA/B data ready signals and
the TCS clock as well as the accuracy of the method are illustrated in Fig. 9.4. The
top left distribution shows the number of occurrences in shaded grey for which both
flip-flops detected a high state of the SiA/B data ready signal. The grey distribution
and the red fit function show the number of occurrences for which the two flip-flops
detected either a (low, high) or a (high, low) state of the SiA/B data ready signal while
sampling a rising edge. The top right distribution shows the number of occurrences
of (low, high) or (high, low) states, while the first two distributions corresponding to
a rising edge are marked by a red fit function. The middle left distribution shows a
zoom on the second of these two distributions. It gives a precise characterisation of a
rising edge of the SiA/B signal. Since the rectangular shape might not be completely
intuitive its emergence is described in Appendix A.6 inside Fig.A.59.

The goal of the procedure is to determine the value of the phase between the
SiA/B data ready signal and the TCS clock. As shown within the blue box of Fig. 9.3
in total N shift steps have been performed inside the FPGA. Denoting the location of
the rising edge shown in the middle left plot of Fig. 9.4 by S, the value of the phase
in units of the 4.06ps steps is given by11:

Nφ = S − N .

This corresponds to performing Nφ shift steps backwardswithin the FPGA to achieve
the phase alignment. The problem of the determination of the phase value is thus
reduced to a determination of a unique time-stamp S of a rising edge of the SiA/B
data ready signal, which is explained in the following:

The red fit function, shown within the upper three distributions of Fig. 9.4 has the
following form:

f (x; N ,μ1,σ1,μ2, σ2) := M
(
R(x;μ1, σ1) + F(x;μ2, σ2) + �(x − μ1)�(μ2 − x)

)
,

11One could have chosen equally well the first or last rising edge within the top right plot of Fig. 9.4,
since Nφ has to be determined only up to multiples of the SiA/B signal period.
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Fig. 9.4 Illustration of the steps performed for the detection of a rising edge of the SiA/B data
ready signals: Top left: Occurrenceswhen both flip-flops, sampling the SiA/Bdata ready signal, have
detected a high state (grey shaded), occurrences when the two flip-flops have detected a different
state of the SiA/B data ready signal and a rising edge is identified (grey and red fit). Top right:
Occurrences when both flip-flops have detected a different state of the SiA/B data ready signal
(see Fig.A.59). The rising edges are marked by a red fit function. Middle left: Zoom on one of the
rising edges of the top right distribution. The different time-stamps of the distribution for different
values of the fraction c are shown by the black dots in the centre of the distribution. The fit function
and the fraction c are explained in detail inside the text of Sect. 9.2.2. Middle right: Width of the
distributions of the SiA/B data ready signal period for different values of c. Bottom left: Distribution
of the SiA/B data ready signal period for c = 0.2. Bottom right: Distribution of the mean value of
the time of flight spectra between ring A and B of the CAMERA detector. The gaussian fit has a σ
of 12.6ps. Details on this measurement can be found inside the text of Sect. 9.2.2

while the functions R and F are defined as follows:

R(x;μ1,σ1) := exp

(
−

( x − μ1

σ1

)2
)

�(μ1 − x),

F(x;μ2,σ2) := exp

(
−

( x − μ2

σ2

)2
)

�(x − μ2).
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The Heaviside function is denoted �, while μ1,2 and σ1,2 denote the mean values
and standard deviations of the two Gaussian functions R and F . The normalisation is
given by the parameter M . Instead of simply choosing μ1 or μ2 as the time-stamp it
has been found that a more precise time-stamp S can be extracted using the following
definitions:

S := TR + TF

2
,

TR := R−1(c;μ1,σ1),

TF := F−1(c;μ2,σ2).

The functions R−1 and F−1 denote the numerically calculated inverse functions of
R and F defined on the interval [−∞,μ1[ and respectively ]μ2,∞].

The role of the position c at which the functions R−1 and F−1 are evaluated is
also shown in the middle left plot of Fig. 9.4. Basically the values TR and TF denote
the positions on the abscissa for which the value of the function f on its rising or
respectively falling edge equals the fraction c of the maximum plateau value M . The
time-stamp S for a given value of c is shown by the black point in the middle of the
distribution. In order to find the value of c, which yields the most precise time-stamp
S, the synchronisation procedure of Fig. 9.3 has been repeated a few 100 times. For
each cycle two time-stamps S1 and S2, characterising two subsequent rising edges,
have been extracted. The distribution of T = S2 − S1, which characterises the inverse
clock frequency of the SiA/B data ready signal in units of the Si5326 shift steps for a
c-value of 0.2 is shown at the bottom left of Fig. 9.4. The c-value has been determined
by studying thewidth of the distributions of T for different values of c as shown in the
middle right plot of Fig. 9.4. From this point of view the precision of the alignment
of a rising edge of the SiA/B data ready signal, σ1(S), is at the order of one Si5326
step, which corresponds to:

σ1(S) ≈ 4.06 ps√
2

≈ 2.9 ps.

The factor
√
2 arises from the fact that σ(T ) = √

σ(S2)2 + σ(S1)2 = √
2 σ(S) has

been measured.
To get an ultimate confirmation that the whole synchronisation procedure is suf-

ficiently precise and reliable, the final setup used for the readout of the CAMERA
detector in 2016 has been tested with a laser system. A laser pulse is injected simul-
taneously in the middle of all the ring A and ring B scintillators of the CAMERA
detector. By measuring the time of flight (TB − TA) as defined in Sect. 2.5, the mean
values μ(TB − TA) of the time of flight spectra for a sequence of reloads can be
extracted. They are shown in the bottom right distribution of Fig. 9.4. The resolution
of the time of flight offset σToF := σ

(
μ(TB − TA)

)
from one initialisation of the

system to another is given by:

σToF ≈ 12.8 ps.
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Considering the fact that bothendsof a scintillator are influencedbyasingle alignment
procedureandthatringAandBelementsaresubjecttodifferentphasealignmentproce-
dures, thedistributionof the timeofflightoffset is sensitive to twoindividualalignment
procedures.Thus,σToF corresponds toanuncertaintyona singlephasealignmentpro-
cedure of:

σ2(S) ≈ σToF√
2

≈ 9.0 ps.

The discrepancy to σ1(S) might be due to systematic effects on the extraction of the
mean values of the time of flight spectra, caused by instabilities of the laser system.
It has not been further investigated since for a time of flight resolution at the order
of 300ps, an offset from one initialisation procedure to another of 12.8ps is suffi-
ciently precise. Furthermore, it is worth mentioning that there are no measurements
outside the range of the bottom right distribution of Fig. 9.4, which confirms that the
procedure has not failed once.
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Appendix A

A.1 CAMERA Calibration

A.1.1 Azimuthal Angle Calibration

See Figs.A.1 and A.2.
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Fig. A.1 Azimuthal angle φ as a function of the reconstructed z-position of the hits detected inside
the 24 B counters of CAMERA. The counter number is indicated inside the respective distribution
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Fig. A.2 Azimuthal angle φ as a function of the reconstructed z-position of the hits detected inside
the 24 A counters of CAMERA. The counter number is indicated inside the respective distribution
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A.1.2 Calibration of the Longitudinal Position

See Figs.A.3 and A.4.
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Fig. A.3 Distribution of the predicted z-position zB of the recoiled particle inside the 24 B counters
of CAMERA as a function of (tu − td ), the difference of the up- and downstream time-stamps
measured with the two photomultiplier tubes of the respective counter. The quantity zB has been
predicted by the usage of the kinematically constrained fit of Sect. 5.1.2. The counter number is
indicated inside the respective distribution
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Fig. A.4 Distribution of the predicted z-position zA of the recoiled particle inside the 24 B counters
of CAMERA as a function of (tu − td ), the difference of the up- and downstream time-stamps
measured with the two photomultiplier tubes of the respective counter. The quantity zA has been
predicted by using an interpolation between the interaction vertex and the hit position in ring B.
The counter number is indicated inside the respective distribution
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A.2 CAMERA Efficiency

A.2.1 Ring A Efficiencies

Upstream Side

See Figs.A.5, A.6, A.7 and A.8.
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Fig. A.5 Distributions corresponding to Fig. 5.15 for several bins in the longitudinal hit position
z. The range in z is indicated within the distributions
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Fig. A.6 Distributions corresponding to Fig. 5.15 for several bins in the longitudinal hit position
z. The range in z is indicated within the distributions. Only the data yield taken with the μ− beam
is used
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Fig. A.7 Distributions corresponding to Fig. 5.15 for several bins in the longitudinal hit position
z. The range in z is indicated within the distributions. Only the data yield taken with the μ+ beam
is used
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Fig. A.8 Distributions corresponding to Figs. 5.16 and 5.17, showing the efficiency of the upstream
side of ringA individually for each scintillator, as indicated inside the distributions. The black curves
show the parametrisations used to include the efficiency into the simulations

Downstream Side

See Figs.A.9, A.10, A.11, A.12 and A.13.
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Fig. A.9 Distributions corresponding to Figs. 5.13 and 5.14 for the selection of the N0 sample
described in Sect. 5.4, but in case of the extraction of the downstream efficiency of ring A, using
the measured upstream time-stamp
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Fig. A.10 Distributions corresponding to Fig. 5.15 for several bins in the longitudinal hit position
z and in case of the downstream side efficiency determination of ring A. The range in z is indicated
within the distributions
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Fig. A.11 Distributions corresponding to Fig. 5.15 for several bins in the longitudinal hit position
z and in case of the downstream side efficiency determination of ring A. The range in z is indicated
within the distributions. Only the data yield taken with the μ− beam is used
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Fig. A.12 Distributions corresponding to Fig. 5.15 for several bins in the longitudinal hit position
z and in case of the downstream side efficiency determination of ring A. The range in z is indicated
within the distributions. Only the data yield taken with the μ+ beam is used
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Fig. A.13 Distributions corresponding to Figs. 5.16 and 5.17, showing the efficiency of the down-
stream side of ring A individually for each scintillator, as indicated inside the distributions. The
black curves show the parametrisations used to include the efficiency into the simulations
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A.2.2 Ring B Efficiencies

See Fig.A.14.

 (cm)Az - A
Pz

−20 −15 −10 −5 0 5 10 15 20

En
tri

es

1000

2000

3000

4000

 (Gev/c)
F

p
0 0.2 0.4 0.6 0.8 1 1.2

 (a
rb

. u
ni

ts
)

lo
ss

,A
E

0

2

4

6

8

10

Fig. A.14 Distributions corresponding to Figs. 5.11 and 5.12, in case of the ring B efficiency deter-
mination, while no inter-calibration with the startcounter is available in this case. Left: Distribution
of the difference between the predicted z-position zPA in ring A using the kinematically constrained
fit and the reconstructed z-position zA determined by the up and down time-stamps of ring A. Right:

Distribution of the energy loss in ring A, Eloss,A =
√
Au
A A

d
A, as a function of the proton momentum

pF deduced with the kinematically constrained fit. The blue polygon indicates the cut applied in
order to select the NO sample corresponding to Eq. (5.12). The blue lines indicate the cuts applied
in order to select the NO sample corresponding to Eq. (5.12)

Upstream Side

See Figs.A.15, A.16, A.17, A.18 and A.19.
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Fig. A.15 Distributions corresponding to Figs. 5.13 and 5.14, in case of the determination of the
efficiency of the upstream side of ring B, while no inter-calibration with the startcounter is available
in this case. Left: Distribution of the difference between the proton momentum pF given by the
kinematically constrained fit and the proton momentum pC , defined in Sect. 5.4. Right: Distribution

of the energy loss Eloss,B =
√
Au,P
B Ad

B as a function of pF , the proton momentum deduced with

the kinematically constrained fit. The quantity Au,P
B denotes the predicted upstream amplitude in

ring B given by Eq. (5.13), while Ad
B denotes the measured downstream amplitude in ring A. The

blue lines indicate the cuts applied in order to select the NO sample corresponding to Eq. (5.12)
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Fig. A.16 Distributions corresponding to Fig. 5.15 for several bins in the longitudinal hit position
z, in case of the determination of the efficiency of the upstream side of ring B. The range in z is
indicated within the distributions
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Fig. A.17 Distributions corresponding to Fig. 5.15 for several bins in the longitudinal hit position
z, in case of the determination of the efficiency of the upstream side of ring B. The range in z is
indicated within the distributions. Only the data yield taken with the μ− beam is used
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Fig. A.18 Distributions corresponding to Fig. 5.15 for several bins in the longitudinal hit position
z, in case of the determination of the efficiency of the upstream side of ring B. The range in z is
indicated within the distributions. Only the data yield taken with the μ+ beam is used



194 Appendix A

z (cm)
300− 250− 200− 150− 100− 50− 0

Ef
fic

ie
nc

y

0.75

0.8

0.85

0.9

0.95

1
upstream side: B element 0

z (cm)
300− 250− 200− 150− 100− 50− 0

Ef
fic

ie
nc

y

0.75

0.8

0.85

0.9

0.95

1
upstream side: B element 1

z (cm)
300− 250− 200− 150− 100− 50− 0

Ef
fic

ie
nc

y

0.75

0.8

0.85

0.9

0.95

1
upstream side: B element 2

z (cm)
300− 250− 200− 150− 100− 50− 0

Ef
fic

ie
nc

y

0.75

0.8

0.85

0.9

0.95

1
upstream side: B element 3

z (cm)
300− 250− 200− 150− 100− 50− 0

Ef
fic

ie
nc

y

0.75

0.8

0.85

0.9

0.95

1
upstream side: B element 4

z (cm)
300− 250− 200− 150− 100− 50− 0

Ef
fic

ie
nc

y

0.75

0.8

0.85

0.9

0.95

1
upstream side: B element 5

z (cm)
300− 250− 200− 150− 100− 50− 0

Ef
fic

ie
nc

y

0.75

0.8

0.85

0.9

0.95

1
upstream side: B element 6

z (cm)
300− 250− 200− 150− 100− 50− 0

Ef
fic

ie
nc

y

0.75

0.8

0.85

0.9

0.95

1
upstream side: B element 7

z (cm)
300− 250− 200− 150− 100− 50− 0

Ef
fic

ie
nc

y

0.75

0.8

0.85

0.9

0.95

1
upstream side: B element 8

z (cm)
300− 250− 200− 150− 100− 50− 0

Ef
fic

ie
nc

y

0.75

0.8

0.85

0.9

0.95

1
upstream side: B element 9

z (cm)
300− 250− 200− 150− 100− 50− 0

Ef
fic

ie
nc

y

0.75

0.8

0.85

0.9

0.95

1
upstream side: B element 10

z (cm)
300− 250− 200− 150− 100− 50− 0

Ef
fic

ie
nc

y

0.75

0.8

0.85

0.9

0.95

1
upstream side: B element 11

z (cm)
300− 250− 200− 150− 100− 50− 0

Ef
fic

ie
nc

y

0.75

0.8

0.85

0.9

0.95

1
upstream side: B element 12

z (cm)
300− 250− 200− 150− 100− 50− 0

Ef
fic

ie
nc

y

0.75

0.8

0.85

0.9

0.95

1
upstream side: B element 13

z (cm)
300− 250− 200− 150− 100− 50− 0

Ef
fic

ie
nc

y

0.75

0.8

0.85

0.9

0.95

1
upstream side: B element 14

z (cm)
300− 250− 200− 150− 100− 50− 0

Ef
fic

ie
nc

y

0.75

0.8

0.85

0.9

0.95

1
upstream side: B element 15

z (cm)
300− 250− 200− 150− 100− 50− 0

Ef
fic

ie
nc

y

0.75

0.8

0.85

0.9

0.95

1
upstream side: B element 16

z (cm)
300− 250− 200− 150− 100− 50− 0

Ef
fic

ie
nc

y

0.75

0.8

0.85

0.9

0.95

1
upstream side: B element 17

z (cm)
300− 250− 200− 150− 100− 50− 0

Ef
fic

ie
nc

y

0.75

0.8

0.85

0.9

0.95

1
upstream side: B element 18

z (cm)
300− 250− 200− 150− 100− 50− 0

Ef
fic

ie
nc

y
0.75

0.8

0.85

0.9

0.95

1
upstream side: B element 19

z (cm)
300− 250− 200− 150− 100− 50− 0

Ef
fic

ie
nc

y

0.75

0.8

0.85

0.9

0.95

1
upstream side: B element 20

z (cm)
300− 250− 200− 150− 100− 50− 0

Ef
fic

ie
nc

y

0.75

0.8

0.85

0.9

0.95

1
upstream side: B element 21

z (cm)
300− 250− 200− 150− 100− 50− 0

Ef
fic

ie
nc

y

0.75

0.8

0.85

0.9

0.95

1
upstream side: B element 22

z (cm)
300− 250− 200− 150− 100− 50− 0

Ef
fic

ie
nc

y

0.75

0.8

0.85

0.9

0.95

1
upstream side: B element 23

Fig. A.19 Distributions corresponding to Fig. 5.18, showing the efficiency of the upstream side of
ring B individually for each scintillator, as indicated inside the distributions. The black curves show
the parametrisations used to include the efficiency into the simulations
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Downstream Side

See Figs.A.20, A.21, A.22, A.23 and A.24.
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Fig. A.20 Distributions corresponding to Figs. 5.13 and 5.14, in case of the determination of the
efficiency of the downstream side of ring B, while no inter-calibration with the startcounter is
available in this case. Left: Distribution of the difference between the proton momentum pF given
by the kinematically constrained fit and the proton momentum pC , defined in Sect. 5.4. Right:
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Eq. (5.12)
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Fig. A.21 Distributions corresponding to Fig. 5.15 for several bins in the longitudinal hit position
z, in case of the determination of the efficiency of the downstream side of ring B. The range in z is
indicated within the distributions
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Fig. A.22 Distributions corresponding to Fig. 5.15 for several bins in the longitudinal hit position
z, in case of the determination of the efficiency of the downstream side of ring B. The range in z is
indicated within the distributions. Only the data yield taken with the μ− beam is used
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Fig. A.23 Distributions corresponding to Fig. 5.15 for several bins in the longitudinal hit position
z, in case of the determination of the efficiency of the downstream side of ring B. The range in z is
indicated within the distributions. Only the data yield taken with the μ+ beam is used
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Fig. A.24 Distributions corresponding to Fig. 5.18, showing the efficiency of the downstream side
of ring B individually for each scintillator, as indicated inside the distributions. The black curves
show the parametrisations used to include the efficiency into the simulations
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A.3 Data Quality

See Fig.A.25 and TableA.1.
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Fig. A.25 Number of hits in ring A (top) and B (bottom) of CAMERA normalised to the muon
flux as a function of the spill number. The excluded spills are marked with the red dots, while the
mean value of a certain number of spills is shown by the red lines. A spill is classified as “bad” in
case it deviates more than 5 sigma from the mean value
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Table A.1 Probabilities that a segment of CAMERA is operational, calculated according to
Eq. (5.11)

Segment (A, B) All data μ+ data μ− data

(0, 0) 0.941 0.956 0.929

(0, 1) 0.954 0.976 0.935

(1, 1) 0.973 0.987 0.961

(1, 2) 0.963 0.947 0.976

(2, 2) 0.928 0.941 0.917

(2, 3) 0.940 0.975 0.911

(3, 3) 0.976 0.987 0.967

(3, 4) 0.981 0.985 0.977

(4, 4) 0.981 0.985 0.977

(4, 5) 0.962 0.949 0.973

(5, 5) 0.962 0.949 0.973

(5, 6) 0.972 0.973 0.970

(6, 6) 0.967 0.971 0.963

(6, 7) 0.970 0.983 0.959

(7, 7) 0.972 0.980 0.965

(7, 8) 0.981 0.990 0.974

(8, 8) 0.983 0.995 0.972

(8, 9) 0.980 0.984 0.976

(9, 9) 0.979 0.984 0.976

(9, 10) 0.773 0.767 0.777

(10, 10) 0.593 0.561 0.616

(10, 11) 0.761 0.693 0.814

(11, 11) 0.963 0.975 0.952

(11, 12) 0.944 0.965 0.927

(12, 12) 0.955 0.965 0.947

(12, 13) 0.972 0.993 0.956

(13, 13) 0.973 0.994 0.956

(13, 14) 0.975 0.982 0.970

(14, 14) 0.729 0.613 0.822

(14, 15) 0.738 0.627 0.825

(15, 15) 0.980 0.996 0.967

(15, 16) 0.972 0.996 0.952

(16, 16) 0.980 0.996 0.967

(16, 17) 0.980 0.987 0.975

(17, 17) 0.972 0.987 0.961

(17, 18) 0.812 0.943 0.705

(18, 18) 0.564 0.561 0.564

(18, 19) 0.622 0.600 0.639

(19, 19) 0.976 0.989 0.965
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Table A.1 (continued)

Segment (A, B) All data μ+ data μ− data

(19, 20) 0.976 0.996 0.960

(20, 20) 0.975 0.996 0.958

(20, 21) 0.952 0.985 0.925

(21, 21) 0.952 0.985 0.926

(21, 22) 0.822 0.777 0.858

(22, 22) 0.642 0.576 0.694

(22, 23) 0.646 0.586 0.694

(23, 23) 0.721 0.607 0.811

(23, 0) 0.700 0.582 0.794
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A.4 Event Selection

A.4.1 Muon and Vertex Selection

See Figs.A.26, A.27 and A.28.
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Fig. A.26 Distributions corresponding to Figs. 6.2 and 6.1 for an extended kinematic range of:
(10GeV < ν < 144GeV) and (1 (GeV/c)2 < Q2 < 20 (GeV/c)2)
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Fig. A.27 Distributions corresponding to Fig. 6.3 for an extended kinematic range of: (10GeV <

ν < 144GeV) and (1 (GeV/c)2 < Q2 < 20 (GeV/c)2)
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Fig. A.28 Distributions corresponding to Figs. 6.4 and 6.5 for an extended kinematic range of:
(10GeV < ν < 144GeV) and (1 (GeV/c)2 < Q2 < 20 (GeV/c)2)
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A.4.2 Photon Selection

See Figs.A.29 and A.30.
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Fig. A.29 Distributions corresponding to Fig. 6.7 for an extended kinematic range of: (10GeV <

ν < 144GeV) and (1 (GeV/c)2 < Q2 < 20 (GeV/c)2)
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Fig. A.30 Distributions corresponding to Fig. 6.8 for an extended kinematic range of: (10GeV <

ν < 144GeV) and (1 (GeV/c)2 < Q2 < 20 (GeV/c)2)

A.4.3 Proton Selection and Application of the Exclusivity
Cuts

See Figs.A.31, A.32 and A.33.
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Fig. A.31 Distributions corresponding to Fig. 6.9 for an extended kinematic range of: (10GeV <

ν < 144GeV) and (1 (GeV/c)2 < Q2 < 20 (GeV/c)2)
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Fig. A.32 Distributions corresponding to Fig. 6.10 for an extended kinematic range of: (10GeV <

ν < 144GeV) and (1 (GeV/c)2 < Q2 < 20 (GeV/c)2)
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Fig. A.33 Distributions corresponding to Fig. 6.10 for the kinematic range, used for the extraction
of the DVCS cross section: (10GeV < ν < 32GeV) and (1 (GeV/c)2 < Q2 < 5 (GeV/c)2)
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A.4.4 The Kinematic Fit for DVCS

See Figs.A.34, A.35, A.36, A.37, A.38, A.39, A.40, A.41, A.42, A.43, A.44 and
A.45.
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Fig. A.34 Pull distributions of the track parameters for the in- and outgoing muon after the event
selection of Chap.6: See Fig. 6.13 for the used abbreviations. The energy andmomentum constraints
have been shifted according to Eq. (6.15). The used kinematic range is: (10GeV < ν < 32GeV)

and (1 (GeV/c)2 < Q2 < 5 (GeV/c)2)
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Fig. A.35 Pull distributions of the track parameters of the photon after the event selection of
Chap.6: See Fig. 6.14 for the used abbreviations. The energy and momentum constraints have
been shifted according to Eq. (6.15). The used kinematic range is: (10GeV < ν < 32GeV) and
(1 (GeV/c)2 < Q2 < 5 (GeV/c)2)
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Fig. A.36 Pull distributions of the proton track parameters after the event selection of Chap.6:
See Fig. 6.15 for the used abbreviations. The energy and momentum constraints have been shifted
according to Eq. (6.15). The used kinematic range is: (10GeV < ν < 32GeV) and (1 (GeV/c)2 <

Q2 < 5 (GeV/c)2)
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Fig. A.37 Pull distributions of the track parameters for the in- and outgoing muon after the event
selection of Chap.6: See Fig. 6.13 for the used abbreviations. No shift for the energy and momen-
tum constraints has been applied. The used kinematic range is: (10GeV < ν < 32GeV) and
(1 (GeV/c)2 < Q2 < 5 (GeV/c)2)
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Fig. A.38 Pull distributions of the track parameters of the photon after the event selection of
Chap.6: See Fig. 6.14 for the used abbreviations. No shift for the energy and momentum constraints
has been applied. The used kinematic range is: (10GeV < ν < 32GeV) and (1 (GeV/c)2 < Q2 <

5 (GeV/c)2)
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Fig. A.39 Pull distributions of the proton track parameters after the event selection of Chap.6:
See Fig. 6.15 for the used abbreviations. No shift for the energy and momentum constraints has
been applied. The used kinematic range is: (10GeV < ν < 32GeV) and (1 (GeV/c)2 < Q2 <

5 (GeV/c)2)
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Fig. A.40 Pull distributions of the track parameters for the in- and outgoing muon after the event
selection of Chap.6: See Fig. 6.13 for the used abbreviations. The energy andmomentum constraints
have been shifted according to Eq. (6.15). The used kinematic range is: (10GeV < ν < 144GeV)

and (1 (GeV/c)2 < Q2 < 20 (GeV/c)2)
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Fig. A.41 Pull distributions of the track parameters of the photon after the event selection of
Chap.6: See Fig. 6.14 for the used abbreviations. The energy and momentum constraints have
been shifted according to Eq. (6.15). The used kinematic range is: (10GeV < ν < 144GeV) and
(1 (GeV/c)2 < Q2 < 20 (GeV/c)2)
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Fig. A.42 Pull distributions of the proton track parameters after the event selection of Chap.6:
See Fig. 6.15 for the used abbreviations. The energy and momentum constraints have been shifted
according to Eq. (6.15). The used kinematic range is: (10GeV < ν < 144GeV) and (1 (GeV/c)2 <

Q2 < 20 (GeV/c)2)
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Fig. A.43 Pull distributions of the track parameters for the in- and outgoing muon after the event
selection of Chap.6: See Fig. 6.13 for the used abbreviations. No shift for the energy and momen-
tum constraints has been applied. The used kinematic range is: (10GeV < ν < 144GeV) and
(1 (GeV/c)2 < Q2 < 20 (GeV/c)2)
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Fig. A.44 Pull distributions of the track parameters of the photon after the event selection of
Chap.6: See Fig. 6.14 for the used abbreviations. No shift for the energy and momentum constraints
has been applied. The used kinematic range is: (10GeV < ν < 144GeV) and (1 (GeV/c)2 <

Q2 < 20 (GeV/c)2)
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Fig. A.45 Pull distributions of the proton track parameters after the event selection of Chap.6:
See Fig. 6.15 for the used abbreviations. No shift for the energy and momentum constraints has
been applied. The used kinematic range is: (10GeV < ν < 144GeV) and (1 (GeV/c)2 < Q2 <

20 (GeV/c)2)
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A.5 The Cross Section and Its t-Dependence

A.5.1 Normalisation of the LEPTO and HEPGen++ π0

Monte Carlos

See Figs.A.46, A.47, A.48, A.49, A.50 and A.51.

 (rad)ϕΔ
1− 0.5− 0 0.5 1

En
tri

es

0

20

40

60

80
Data

 Lepto+ MC 0πExcl

 MC0πExcl

Fig. A.46 Distribution of�φ forMethod1 of Sect. 7.2.2. The blue histogram describes the overall
Monte Carlo estimate given by the exclusive π0 (HEPGen++) and the LEPTO Monte Carlo yields,
while the red histogram displays the fraction described by the exclusive π0 Monte Carlo yield
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Fig. A.47 Distribution of �φ for Method2 (top row) and Method3 (bottom row) of Sect. 7.2.2
for NB < 3. The blue histogram describes the overall Monte Carlo estimate given by the exclusive
π0 (HEPGen++) and the LEPTOMonte Carlo yields, while the red histogram displays the fraction
described by the exclusive π0 Monte Carlo yield. Left: Set of signal distributions S. Right: Set of
background like distributions B
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Fig. A.48 Distribution of �pT for Method1 of Sect. 7.2.2. The blue histogram describes the
overall Monte Carlo estimate given by the exclusive π0 (HEPGen++) and the LEPTOMonte Carlo
yields, while the red histogram displays the fraction described by the exclusive π0 Monte Carlo
yield
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Fig. A.49 Distribution of �pT for Method2 (top row) and Method3 (bottom row) of Sect. 7.2.2
for NB < 3. The blue histogram describes the overall Monte Carlo estimate given by the exclusive
π0 (HEPGen++) and the LEPTOMonte Carlo yields, while the red histogram displays the fraction
described by the exclusive π0 Monte Carlo yield. Left: Set of signal distributions S. Right: Set of
background like distributions B
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Fig. A.50 Distribution of Emiss for Method1 of Sect. 7.2.2. The blue histogram describes the
overall Monte Carlo estimate given by the exclusive π0 (HEPGen++) and the LEPTOMonte Carlo
yields, while the red histogram displays the fraction described by the exclusive π0 Monte Carlo
yield
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Fig. A.51 Distribution of Emiss for Method2 (top row) andMethod3 (bottom row) of Sect. 7.2.2
for NB < 3. The blue histogram describes the overall Monte Carlo estimate given by the exclusive
π0 (HEPGen++) and the LEPTOMonte Carlo yields, while the red histogram displays the fraction
described by the exclusive π0 Monte Carlo yield. Left: Set of signal distributions S. Right: Set of
background like distributions B

A.5.2 The Kinematic Fit for DVCS

In order to derive Eq. (6.16) it is worth looking at the four-momentum balance: The
four-momentum balance for the DVCS process, μp → μ′ p′γ, reads:

pμ + pp = pμ′ + pp′ + pγ .

First a small relation which comes in handy later should be derived:

pγ(pμ′ − pμ) = −
(
Eγ/c

)(
ν/c −

√
Q2 + (ν/c)2 cos θγ∗γ

)
. (A.1)

In order to derive this relation the four vector product is explicitly written:

pγ(pμ′ − pμ) =
(
Eγ/c, �pγ

)(
(Eμ′ − Eμ)/c, ( �pμ − �pμ′ )

)
= −νEγ/c2 + �pγ( �pμ − �pμ′ ),

(A.2)
and the last part �pγ( �pμ − �pμ′) is further simplified:

�pγ( �pμ − �pμ′) = | �pγ || �pμ − �pμ′ | cos θγ∗γ = Eγ/c
√
Q2 + (ν/c)2 cos θγ∗γ, (A.3)
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while:

Q2 = −(pμ − pμ′)2 = −(ν/c)2 + ( �pμ − �pμ′)2 ⇒ | �pμ − �pμ′ | =
√
Q2 + (ν/c)2,

has been used in the last step. Inserting Eq. (A.3) in (A.2) results in:

pγ(pμ′ − pμ) = −ν(Eγ/c
2) + Eγ/c

√
Q2 + (ν/c)2 cos θγ∗γ

= −
(
Eγ/c

)(
ν/c −

√
Q2 + (ν/c)2 cos θγ∗γ

)
,

which coincides with Eq. (A.1). The definition of t the square of the four-momentum
transfer to the proton is:

t := (pp − pp′)2.

Exploiting the four-momentum balance results in:

t = (pμ′ − pμ + pγ)
2 = (pμ′ − pμ)

2+ p2γ +2pγ(pμ′ − pμ) = −Q2+2pγ(pμ′ − pμ).

Inserting (A.1) for the last part, yields a formula for t , which uses the reconstructed
photon energy and thus has a poor resolution:

t = −Q2 − 2
(
Eγ/c

)(
ν/c −

√
Q2 + (ν/c)2 cos θγ∗γ

)
. (A.4)

In order to eliminate the quantity Eγ from the calculation of t , the four-momentum
balance is written in the following way:

pp′ = pμ − pμ′ + pp − pγ,

and the assumption that the recoiling target particle is a proton is exploited:

m2
pc

2 = (pμ − pμ′ + pp − pγ)
2

= −Q2 + (mpc − Eγ/c)
2 − (Eγ/c)

2

+ 2
(
(ν/c)(mpc − Eγ/c) + (Eγ/c)

√
Q2 + (ν/c)2 cos θγ∗γ

)
.

Solving for Eγ yields:

Eγ = Q2c2 − 2mpνc2

2
(
c
√
Q2 + (ν/c)2 cos θγ∗γ − ν − mpc2

)

=
ν − Q2

2mp

1 + 1
mpc2

(
ν − c

√
Q2 + (ν/c)2 cos θγ∗γ

) .

(A.5)
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Inserting (A.5) into (A.4) results in:

t =
−Q2

(
1 + 1

mpc2

(
ν − c

√
Q2 + (ν/c)2 cos θγ∗γ

))

1 + 1
mpc2

(
ν − c

√
Q2 + (ν/c)2 cos θγ∗γ

)

+
(

Q2

mpc
− 2(ν/c)

)(
ν − c

√
Q2 + (ν/c)2 cos θγ∗γ

)

1 + 1
mpc2

(
ν − c

√
Q2 + (ν/c)2 cos θγ∗γ

)

=
−Q2 − 2(ν/c)

(
(ν/c) − √

Q2 + (ν/c)2 cos θγ∗γ

)

1 + 1
mpc2

(
ν/c − √

Q2 + (ν/c)2 cos θγ∗γ

) ,

which coincides with Eq. (6.16).

A.5.3 Cross Section Extraction Method

Starting from:

〈dσ
γ∗ p→γ p′
DVCS

dt

〉
i jn

=
〈 1
�

dσ
μp→μ′γ p′
data

dtdQ2dν

〉
i jn

−
〈 1
�

dσ
μp→μ′γ p′
BH

dtdQ2dν

〉
i jn

−
〈 1
�

dσ
μp→μ′γ p′
π0

dtdQ2dν

〉
i jn

,

the 3 terms are given separately by:

〈 1
�

dσ
μp→μ′γ p′
data

dtdQ2dν

〉
i jn

≈
〈 1
�

〉
i jn

〈dσ
μp→μ′γ p′
data

dtdQ2dν

〉
i jn

,

〈 1
�

dσ
μp→μ′γ p′
BH

dtdQ2dν

〉
i jn

≈
〈 1
�

〉
i jn

〈dσ
μp→μ′γ p′
BH

dtdQ2dν

〉
i jn

,

〈 1
�

dσ
μp→μ′γ p′
π0

dtdQ2dν

〉
i jn

≈
〈 1
�

〉
i jn

〈dσ
μp→μ′γ p′
π0

dtdQ2dν

〉
i jn

.

The beam charge ± is omitted here for clarity. The approximation in these three
equations can either be justified by assuming that the cross section is approximately
constant on the bin or by Sect.A.5.4.



220 Appendix A

Transforming these equations a bit more one can see how the acceptance enters
and what is technically done during the extraction procedure:

〈 1
�

〉
i jn

〈dσ
μp→μ′γ p′
data

dtdQ2dν

〉
i jn

=

〈
1
�

〉
i jn

N data
i jn (ai jn)−1

�tn�Q2
i �ν jL

= (
∑N data

i jn
e

1
�e )(ai jn)−1

�tn�Q2
i �ν jL

,

〈 1
�

〉
i jn

〈dσ
μp→μ′γ p′
BH

dtdQ2dν

〉
i jn

= cBH ·

〈
1
�

〉
i jn

WBH
i jn (ai jn)−1

�tn�Q2
i �ν jL

= cBH · (
∑NBH

i jn
e

(wP.A.M.)e
�e )(ai jn)−1

�tn�Q2
i �ν jL

,

〈 1
�

〉
i jn

〈dσ
μp→μ′γ p′
π0

dtdQ2dν

〉
i jn

= cπ0
γ
·

〈
1
�

〉
i jn

W
π0

γ

i jn(ai jn)
−1

�tn�Q2
i �ν jL

= cπ0
γ
· (

∑Nπ0
i jn

e
(w

π0γ
)e

�e )(ai jn)−1

�tn�Q2
i �ν jL

,

while the abbreviations:

W
π0

γ

i jn :=
Nπ0
i jn∑
e

(wπ0
γ
)e and WBH

i jn :=
NBH
i jn∑
e

(wP.A.M.)e,

have been used.

A.5.4 Event by Event Calculation of the Transverse Virtual
Photon Flux

The following term has to be evaluated:

〈 1
�

dσ

d�

〉
��

.

while �� = (�Q2
i �ν j ) and σ is short-handed for σμp→μ′γ p′

. If one subdivides the
bin �� in sub bins ��k one can write:

〈 1
�

dσ

d�

〉
��

=
∑

k

〈
1
�

dσ
d�

〉
��k∑

k ��k
,

which is simply the weighted mean over the sub bins.
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If one now chooses the sub binning such that one finds exactly one or zero events
in each sub bin ��k , and if one lets the sub bins where one has observed an event
being sufficiently small, one can transform the term above as follows:

∑
k

〈
1
�

dσ
d�

〉
��k∑

k ��k
=

∑
e

1
�(Q2

e ,νe)
1

��eL��e∑
k ��k

=
∑

e
1

�(Q2
e ,νe)

��L =
∑

e
1

�(Q2
e ,νe)

N��

N��

L��

=
〈 1
�

〉
��

〈 dσ

d�

〉
��

Thus, one can see that the approximation of Sect.A.5.3 can be justified in the discrete
case, which is unavoidable for a binned cross section extraction.

A.5.5 Cross Section Extraction Using a Binned Calculation
of the Transverse Virtual Photon Flux

In Sect. 7.1 the background and Bethe–Heitler correction was treated on the level of
cross sections. In this approach the number of events in each bin is corrected for the
Bethe–Heitler contribution and the π0 contamination:

N±
i jn = N data,±

i jn − NBH,±
i jn − Nπ0,±

i jn .

The DVCS cross section of the bin (i, j, n) now reads:

〈dσ
γ∗ p→γ p′
DVCS

d|t |
〉±
i jn

= N±
i jn(a

±
i jn)

−1

�tn�Q2
i �ν jL±

( 1

�MC
DVCS(Q̂

2, ν̂)

)
.

This is summed according to Eqs. (7.1) and (6.6). The factor
(

1
�MC
DVCS(Q̂

2,ν̂)

)
, which

is the virtual-photon flux evaluated at the mean Q2 and mean ν of each bin, using
a model dependant MC for the DVCS process, is used to transform from a muon
proton to a virtual-photon proton cross section. It should be emphasised that this is
not the favoured procedure due to its model dependence, but should rather be seen
as a consistency check of the procedure, described in Sect. 7.1.

A.5.6 The DVCS Cross Section and the Extraction
of the t-Slope

See TableA.2.
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TableA.2 Values of the extractedDVCS cross section andmean kinematic quantities: The quantity
dσ
d|t | denotes the mean differential DVSCS cross section in the indicated |t |-bin. The statistical

uncertainty is denoted by S, while the systematic uncertainties are denoted by S↑ and S↓. The
arrow indicates the direction of the systematic uncertainties

|t |-bin/(Gev/c)2 ]0.08, 0.22] ]0.22, 0.36] ]0.36, 0.5] ]0.5, 0.64[ ]0.08, 0.64[
dσ
d|t | /nb(GeV/c)

−2 24.54 12.58 7.40 4.05 12.14

S↑/nb(GeV/c)−2 3.73 2.24 1.29 0.95 1.16

S↓/nb(GeV/c)−2 2.89 1.45 0.85 0.48 0.84

S/nb(GeV/c)−2 2.82 1.98 1.55 1.32 1.00

< W >/GeV/c2 5.89 5.79 5.70 5.99 5.84

< Q2 >/(Gev/c)2 1.79 1.77 1.91 1.77 1.80

< xBj > 0.054 0.055 0.065 0.055 0.056

< ν >/GeV 19.48 18.82 18.56 20.14 19.22

< ξ > 0.028 0.028 0.0634 0.029 0.029

A.5.6.1 Toy Monte Carlo Check for the t-Slope Estimator

The purpose of this section is to check if the binned maximum likelihood fit gives
a good estimator for the t-slope and if the statistical error given on the t-slope is
at a reasonable scale. In the signal region one detects in total 649 events. From the
Monte Carlo one estimates that 278 events are due to the Bethe–Heitler process and
the π0 background. Thus, one has 371 events left, which are to be considered as
signal. If one assumes that the Monte Carlo statistics is sufficiently large such that
the background correction does not introduce further statistical fluctuations, one is
left with a relative statistical error on the number of signal events as follows:

Sr =
√
649

371
,

which would correspond to measuring

N = 1

S2r
= 212

events if one assumes to have no background. Thus, in the following a toy Monte
Carlo study is presented for which 212 random exponentially distributed events with
a t-slope value of 4.3 are generated 10000 times. Each sample is fitted with a χ2 fit,
a maximum likelihood fit included in ROOT and the binned Maximum Likelihood
procedure described in Sect. 7.5.

Looking at Fig.A.52 one observes that the χ2 fit is biased and tends to have larger
statistical errors on the result for the slope. Furthermore, one observes that both
maximum likelihood fits give valid estimators for the slope parameter.
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Fig. A.52 The quantity sg is the generated value of the slope, s f the estimator for the slope, σ(SF )

the estimated error on the slope, given by the different procedures. Upper left: Pull distribution
for the different fitting procedures; Upper right: Distribution of σ(SF ) for the different procedures
Lower left: The χ2 distribution of the binned maximum likelihood procedure described in Sect. 7.5
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Fig. A.53 The quantity sg is the generated value of the slope, s f the estimator for the slope, σ(SF )

the estimated error on the slope, given by the different procedures. For these distributions each
event was scaled by a factor of 5. Upper left: Pull distribution for the different fitting procedures;
Upper right: Distribution of σ(SF ) for the different procedures Lower left: The χ2 distribution of
the binned maximum likelihood procedure described in Sect. 7.5
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For Fig.A.53 each event was scaled by a factor of 5. The purpose of this exercise
is to see if the different estimators given for the slope are still valid if one scales
the events as it has to be done during the extraction procedure of the t-slope. One
observes that the behaviour of the estimator given by the χ2 fit does not change.
The maximum likelihood estimator given by ROOT seems to produce errors which
tend to be too small, which can be seen by looking at the RMS of the red pull dis-
tribution. Furthermore, the maximum likelihood estimator constructed as described
in Sect. 7.5 without the correction of the statistical error gives completely unreason-
able uncertainties. However, after applying the error correction it becomes a valid
estimator.

Figures A.52 and A.53 show the corresponding χ2 values which nicely follow a
χ2 distribution with two degrees of freedom. Thus, one can conclude that the χ2 is
constructed correctly in both cases.

Finally, looking at the statistical errors shown in Figs.A.52 and A.53 one can see
that one would estimate a statistical error at the order of 0.6–0.7 for the t-slope. This
is in reasonable agreement with the statistical error given in Sect. 7.5, which is in
case of the kinematic fit 0.62.

A.5.6.2 Statistical Fluctuations for the Extracted DVCS Cross Section

See Figs.A.54, A.55 and A.56.

Fig. A.54 Figure 7.10
separated for the two beam
charges
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Fig. A.55 Figure 7.10 in the
range
(10GeV < ν < 20GeV)

Fig. A.56 Figure 7.10 in the
range
(20GeV < ν < 32GeV)

A.5.7 Impact of a Binned Calculation of the Transverse
Virtual Photon Flux

This section does not contribute to the systematic error. It has the purpose to gain
confidence in the extractionmethod. FiguresA.57 andA.58 show the influence on the
extracted values when one uses the alternative extraction method of Sect.A.5.5 for
which the virtual photon flux is not calculated event by event from the data but taken
from the Monte Carlo resp. the DVCS model included in HEPGen++ in a binned
fashion. This is a strong evidence that the DVCS model in HEPGen++ describes the
data very reasonably and that one observes no strong influence on the way one treats
the virtual photon flux for the transition from muon proton to virtual photon proton
cross section.



226 Appendix A

Fig. A.57 Influence on the extraction of the t-slope for different scenarios. The alternative extrac-
tion method of Sect.A.5.5 is used: nphi denotes the number of equidistant φγ∗γ bins used for a 4
dimensional acceptance binning, fit/!fit denotes if the kinematic fit is used or not, shift/!shift denotes
if the energy and momentum conservation of the kinematic fit is strictly zero or put to the values of
Sect. 6.3. B0 denotes the preferred value of the t-slope. The plot is normalised to this value
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Fig. A.58 Influence on the extraction of the cross section in the four bins of t for different scenarios.
The alternative extraction method of Sect.A.5.5 is used: nphi denotes the number of equidistant
φγ∗γ bins used for a 4 dimensional acceptance binning, fit/!fit denotes if the kinematic fit is used
or not, shift/!shift denotes if the energy and momentum conservation of the kinematic fit is strictly
zero or put to the values of Sect. 6.3. σ0

ti denotes the preferred value of the extracted cross section
in the corresponding t-bin with i ∈ {1, 2, 3, 4}. Each plot is normalised to this value
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A.6 Time Synchronisation of the GANDALF Module

See Fig.A.59.

Fig. A.59 Illustration of the emergence of the grey distribution used to align the phase of the
SiA/B data ready signals to the clock provided by the COMPASS trigger control system (TCS):
Two flip-flops, shown in magenta and green, are driven with the TCS clock and can thus be regarded
to have fixed latency with respect to the TCS clock, indicated by the constant time offsets c1 and c2.
Three states should be distinguished: For a shift of the SiA/B data ready signal of �t0 or �t4 both
flip-flops detect a (high, high) respectively (low, low) state of the SiA/B data ready signal since
the rising edge of the SiA/B data ready signal is far enough away from the sampling region of the
flip-flops, taking into account the jitter on the signals, shown by the transparent areas. For a shift
of �t1 or �t3 one of the two flip-flops samples the edge of the SiA/B data ready signal, while the
other one samples a pure high or respectively low state of the signal. Since the state of the flip-flop,
sampling the rising edge, can be either low or high, a different state of the two flip-flops is observed
with a certain probability. In case of a shift of�t2 both flip-flops are sampling the rising edge of the
SiA/B data ready signal within the jitter and a plateau like behaviour is observed within the grey
distribution, shown at the top right. Each of the scenarios corresponding to a shift �ti is recorded
∼6 · 104 times and the number of occurrences of mixed flip-flop states, either (high,low) or (low,
high) is shown within the grey distribution
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A.7 CAMERA Detector Commissioning 2016

In order to monitor the operation of the CAMERA detector during the data taking,
a first calibration of the detector has to be achieved. Furthermore, to correctly set
the high voltage of the ring A photomultipliers, a good knowledge of the amplitude
spectra as a function of the longitudinal hit position within ring A is crucial.

These tasks have been achieved by combining the data given by a laser system,
which simultaneously injects a light pulse in the middle of the 48 scintillators, with a
measurement of cosmic muons traversing the detector. In addition, the good knowl-
edge about the response of the outer ring of scintillators, which was not touched
between 2012 and 2016, can be exploited. A detailed description of the procedure is
layed down in Ref. [1]. It shall only be briefly summarised here.

To ensure a fixed reference point of the time measurements, the first step is to
determine the laser reference constants cAi , cBi , kAi and kBi with the laser system:

• Laser reference constants for the time difference:

< tuAi − tdAi > + cAi = 0,

< tuBi − tdBi > + cBi = 0.

• Laser reference constants for the absolute time measurement:

< (tuAi + tdAi )/2 > + kAi = 0,

< (tuBi + tdBi )/2 > + kBi = 0.

The mean values of the respective distributions are denoted by <>. The index i ∈
{0, . . . , 23} indicates the scintillator number and tuAi;Bi , t

d
Ai;Bi the measured time-

stamps of the photomultiplier pulses, detected at the up- or downstream side of a
ring A or B scintillator. The constants cAi , cBi , kAi and kBi might change if one
exchanges a photomultiplier or a signal cable between photomultiplier and digitiser.
In case the internal offsets of the readout electronics like e.g. the time-stamp S, given
by Eq. (9.2.2), have to be changed, the constants kAi and kBi must be reextracted
from laser data.

The next step is more time consuming, but has to be performed only once. Cosmic
muons, traversing subsequently a ring B(A) and a ring A(B) element perpendicular
to the surface of the scintillator, are selected. Denoting the measured time-stamps in
ring A and B with respect to the laser reference constants above as:

tAi := (tuAi + tdAi )/2 + kAi ,

tBi := (tuBi + tdBi )/2 + kBi ,
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the offset kToFl,m is determined by requiring:

ToF := dAB/cμ =< tBl − tAm > ±kToFl,m .

The± ensures the correct chronological order, as shownon the left schematic drawing
of Fig.A.60. The quantity dAB denotes the shortest distance between ring A and B,
the quantity cμ the speed of a cosmic muon, assumed to be the speed of light. The
indices l,m satisfying:

l ∈ {0, . . . , 23} and m ∈ {l, (l + 1) mod 24} for a given l,

indicate the 48 different possible combinations of ring A and B elements. It was
found that the values of kToFl,m are at the order of 9ns, which shows that it is not
possible to perform the time calibration of the detector using the laser system only.

The high voltage calibration was also achieved by measuring cosmic muons. The
procedure is illustrated by the right schematic drawing of Fig.A.60. Here, �tBi and
�tAi are defined with respect to the laser reference constants:

�tAi := tuAi − tdAi + cAi ,

�tBi := tuBi − tdBi + cBi .

In this case it was required that the muon traverses two ring B elements opposite to
each other. The knowledge of the longitudinal hit positions,

zBi = 1

2
cBi�tBi ,

Fig. A.60 Illustration of the first order time and distance of flight calibration of the CAMERA
detector in 2016. Left: The time of flight calibration is achieved by a selection of cosmic muons
traversing the detector perpendicular to the surface of the scintillators. Right: The distance of flight
calibration is achieved by an interpolation between the longitudinal positions zBi of ring B. The
digitised amplitudes Aup and Adwn of the photomultipliers have been studied as a function of the
interpolated longitudinal hit positions in ring A in order to set the most appropriate values of the
high voltage for the photomultipliers. Variables are defined according to Sect.A.7
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within the ring B elements relies on the time difference calibration with the laser
system and the effective speed of light cBi within ring B. By interpolating between
the two longitudinal hit positions of the ring B elements the hit position inside ring
A is determined. An analysis of the signal amplitudes Aup and Adwn as a function of
the interpolated longitudinal hit positions allows to extract the attenuation length of
the counters. Thus, the values of the high voltage of the ring A elements can be set
to the desired mean signal amplitude a minimal ionising particle would cause at a
certain longitudinal position. Furthermore, analysing the measured time differences
in ring A as a function of the interpolated longitudinal positions, the effective speed
of light cAi and the absolute longitudinal hit position inside a ring A element with
respect to ring B:

zAi = 1

2
cAi�tAi + kzAi ,

can be determined. The sets of constants cAi and kzAi are necessary to calculate the
distance of flight of a particle traversing ring A and B according to Eq. (3.2).

Subsequent to this calibration procedure a pion beam was used at the COMPASS
facility, in order to fine-tune the high voltage calibration of the detector. In contrast to
ameasurementwithmuon beam this allows to quickly accumulate a lot of statistics of
recoiling target protons. Figure A.61 shows the energy loss in ring B as a function of
β, given according to Eq. (3.4), for an exemplary ringA and ring B combination. This
was recorded with the online monitoring system during the first pion run in 2016.

Fig. A.61 Energy loss of a proton in ring B of the CAMERA detector as a function of β, given
according to Eq. (3.4). The quantities �EB,up and �EB,down are directly proportional to the mea-
sured signal amplitudes at the up- and downstream side of ring B. They are scaled arbitrarily within
this figure. The data has been recorded, using a pion beam centred on a liquid hydrogen target
surrounded by the two rings of scintillators of the recoil detector CAMERA. The rising edge of
the signal describes protons being stopped in ring B, while the falling edge corresponds to protons
traversing ring B and leaving the detector
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