


The Mathematics and Topology of Fullerenes



CARBON MATERIALS: CHEMISTRY AND PHYSICS

A comprehensive book series which encompasses the complete coverage of carbon materials
and carbon-rich molecules from elemental carbon dust in the interstellar medium, to the
most specialized industrial applications of the elemental carbon and derivatives. A great
emphasis is placed on the most advanced and promising applications ranging from electronics
to medicinal chemistry. The aim is to offer the reader a book series which not only consists
of self-sufficient reference works, but one which stimulates further research and enthusiasm.

Series Editors

Dr. Prof. Franco Cataldo
Via Casilina 1626/A

00133 Rome
Italy

Professor Paolo Milani
University of Milan

Department of Physics
Via Celoria, 26

20133, Milan, Italy

VOLUME 4:
THE MATHEMATICS AND TOPOLOGY OF FULLERENES

Volume Editors

Dr. Franco Cataldo
Prof. of Chemistry

Dept. of Materials Science
Tor Vergata University

Rome, Italy

Prof. Ante Graovac
Faculty of Science, University of Split

Nikole Tesle 12
HR-21000 Split, Croatia

NMR Center
The “Rud–er Bošković” Institute
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Foreword

A Quintessential Aspect of the Human Condition – The
Appreciation of Beauty in All Its Forms

It is a pleasure to write the foreword for this book probing relationship between
mathematics and chemistry as well as computing as I am very conscious of the
fact that mathematics made some extremely important and elegant contributions to
the story of C60 Buckminsterfullerene. Indeed in some ways the C60 story epito-
mizes many aspects of the ways mathematics and science as well as art, architecture
and engineering interplay to mix-and-match and inspire sensations of beauty which
are at one and the same time complex in deeper aspects and yet simple to appre-
ciate visually. It is not only children that appreciate the elegant beauty of highly
symmetric structures such as the one epitomized in the magnificent drawing above
by Leonardo. More complex appreciation is engendered in the minds of people
who have some familiarity with mathematics which enables them to appreciate the
elegance of the general equation governing such structures polyhedral structures:

12 = 3 × n3 + 2 × n4 + 1 × n5 + 0 × n6 − 1 × n7 − 2 × n8 . . .

vii



viii Foreword

In this equation nm is the number of m-sided polygons in a closed network with
trivalent interconnections; when limited to hexagons and pentagons (i.e., only n5
and n6 may be non zero) the equation indicates that the network must contain 12
pentagons but there is no limitation on the number of hexagons. Note however that in
this case n6 �= 1. The juxtaposition of Leonardo’s drawing with this generalized form
of Euler’s Equation encapsulates almost the complete spectrum of what it means
to be human. The motivation for such a selection of articles as this one reflects
perfectly the way in which the patterns of the physical world, often buried deeply in
mathematical concepts can be revealed by the combined drives of human curiosity
allied with the desire for the cathartic experience of recognizing such patterns for
the first time.

Tallahassee, Florida Harold Kroto



Preface

This book has been conceived during the 24th MATH/CHEM/COMP MCC
Conference in Dubrovnik, placed along the beautiful and inspiring coast of Croatia
in June 2009, and involves some of the most authoritative experts in this elegant
field of nanoscience, placed at the border between mathematics and chemistry.

Since their discovery, fullerenes molecules are intimately connected to math-
ematics. Geometry, topology, number theory and other mathematical instruments
greatly assist researchers to classify fullerenes structures and to predict their unique
physical and chemical properties. The name itself of these hollow molecules of pure
carbon is rooted in geometry, homage to Richard Buckminster Fuller and to his
geodesic dome, the inspiring structure of the “buckminsterfullerene” C60 discov-
ered by Robert Curl, Harold Kroto and Richard Smalley in 1985. This epochal, and
in somehow epical, discovery has been awarder by 1996 Nobel Prize for Chemistry.

The amplitude of the topics and the level of the contributions are prominent char-
acters of this scientific book that will help researchers in studying and understanding
fullerenes properties. For this, we are fully indebted with all authors for their com-
petent and patient works and with Prof. Harold Kroto for his introduction to this
monograph that, in many pages, shows that beauty is present in science. We would
also like to thank Springer for the opportunity to publish this book and Springer
people who allowed all our efforts to become a real text.

Dubrovnik, Croatia Ante Graovac
Ottorino Ori

Franco Cataldo
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Chapter 1
Omega Polynomials of Fullerenes
and Nanotubes

Ali Reza Ashrafi, Modjtaba Ghorbani, Mircea V. Diudea, and Ante Graovac

Abstract A counting polynomial C(G, x) is a sequence description of a topolog-
ical property so that the exponents express the extent of its partitions while the
coefficients are related to the occurrence of these partitions. Basic definitions and
properties of the Omega polynomial �(G, x) and Sadhana polynomial Sd(G, x) are
presented. These polynomials for some infinite classes of fullerenes and nanotubes
are also computed.

1.1 Introduction

A graph can be described by: a connection table, a sequence of numbers, a single
derived number (called sometimes a topological index), a matrix, or a polynomial
(Diudea et al. 2001).

A finite sequence of some graph-theoretical categories/properties, such as the
distance degree sequence or the sequence of numbers of the k-independent edge
sets, can be described by so-called counting polynomials:

P(G, x) =
∑

k
p(G, k) · x k (1.1)

where p(G, x) is the frequency of occurrence of the property partitions of G, of
length k, and x is simply a parameter to hold k.

Counting polynomials were introduced, in the Mathematical Chemistry litera-
ture, by Hosoya with his Z-counting (independent edge sets) and the distance degree
polynomials, initially called Wiener and later Hosoya polynomials (Hosoya 1971,
1988). Their roots and coefficients are used for the characterization of topological
nature of hydrocarbons.

Hosoya also proposed the sextet polynomial (Hosoya 1990; Ohkami et al. 1981;
Ohkami and Hosoya 1983) to count the resonant rings in a benzenoid molecule.

A.R. Ashrafi (B)
Faculty of Science, Department of Mathematics and Computer Science, University of Kashan,
Kashan 87317-51167, Iran
e-mail: ashrafi@kashanu.ac.ir

1F. Cataldo et al. (eds.), The Mathematics and Topology of Fullerenes,
Carbon Materials: Chemistry and Physics 4, DOI 10.1007/978-94-007-0221-9_1,
C© Springer Science+Business Media B.V. 2011



2 A.R. Ashrafi et al.

The sextet polynomial is important in connection to the Clar aromatic sextets (Clar
1964, 1972) expected to stabilize the aromatic molecules.

The independence polynomial (Gutman and Hosoya 1990; Gutman 1991a, b,
1992; Stevanović 1998) counts the number of distinct k-element independent vertex
sets of G. Other related graph polynomials are the king, color and star or clique
polynomials. (Motoyama and Hosoya 1977; Balasubramanian and Ramaraj 1985;
Farrell 1978, 1989, 1994; Farrell and De Matas 1988a, b, c; Hoede 1994; Stevanović
1997). More about polynomials the reader can find in (Diudea et al. 2001).

Vertex contributions to a polynomial P(G, x), based on distance counting, can be
written as:

P(i, x) = (1/2)
∑

k
p(i, k) · xk (1.2)

where p(i, k) is the contribution of vertex i to the partition p(G, k) of the global
molecular property P = P(G). Note that p(i, k)’s are just the entries in Layer LM or
Shell SM matrices, more exactly 1/2 the value because each vertex contribution is
counted twice, (Diudea et al. 2003).

Usually, the vertex contribution varies from one atom to another, so that the
polynomial for the whole graph is obtained by summing all vertex contributions:

P(G, x) =
∑

i
P(i, x) (1.3)

In a vertex transitive graph, the vertex contribution is simply multiplied by N:

P(G, x) = N · P(i, x) (1.4)

Hence, P(G) is easily obtained as the polynomial value in x = 1:

P(G) = P(G, x)|x=1 (1.5)

A distance-extended property D_P(G) can be calculated by the first derivative
of the polynomial in x = 1 (Konstantinova and Diudea 2000; Diudea 2002a, b)

D_P(G) = P′(G, x) =
∑

k
k · p(G, k) · xk−1|x=1 (1.6)

In Sagan et al. (1996), the authors presented a treatment apparently independent
of Hosoya’s. Perhaps the most interesting property of H(G, x) is the first derivative,
evaluated at x = 1, which equals the Wiener index: H′(G, 1) = W(G). One of us
(ARA) continued the line of the mentioned paper of Sagan et al. to introduce the
notion of PI polynomial of a molecular graph G as:

PI(G, x) =
∑

(u,v) = e∈E(G)
xN(u,v) (1.7)

where N(u, v) = neu(e|G) + nev(e|G) and neu(e|G) is the number of edges lying
closer to u than v (i.e., the non-equidistant edges) while the number of edges
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equidistant to the edge e = uv ∈ E(G) is given by: N(e) = |E(G)| − N(u, v), where
E(G) denotes the set of all edges of the graph G. In (Ashrafi et al. 2006) the authors
have shown that this new polynomial has the same basic properties as the Wiener
polynomial. Thus, its first derivative gives the PI index, which can also be calcu-
lated by subtracting the total number of equidistant edges in G from the square of
the edge set cardinality:

PI(G) = PI′(G, 1) = (|E|)2 −
∑

e
N(e) (1.8)

relation also find in (John et al. 2002) to calculate the PI index.
The interested readers can consult some recent papers (Ashrafi and Mirzargar

2008c; Ashrafi and Shabani 2009a; Ashrafi et al. 2006, 2007, 2008a, b; 2009b, c, d;
2010; Ghorbani et al. 2009; Manoochehrian et al. 2007). There are four important
softwares for such calculations. These are TopoCluj, Omega 1.1, HyperChem and
GAP (Diudea et al. 2002; Cigher and Diudea 2005; HyperChem package Release
7.5 for Windows 2002; The GAP Team 2005). Our notations are standard and taken
from (Gutman and Polansky 1986; Trinajstić 1992).

The basic definitions and properties of the Omega polynomial �(G, x) are pre-
sented in the second section. In the third section, the Omega polynomials of some
well-known graphs are computed. A forth section will present our latest results in
computing Omega polynomials of some infinite classes of fullerenes. Conclusions
and references will close this chapter.

1.2 Omega Polynomial

The Omega polynomial is a counting polynomial introduced by one of the present
authors MVD (Diudea 2006, 2008, 2009). In recent years, several papers on methods
for computing Omega polynomial of molecular graphs have been published (Diudea
et al. 2008, 2011; Vizitiu et al. 2007).

Let G be a connected bipartite graph with the vertex set V = V(G) and edge set
E = E(G), without loops. Two edges e = ab and f = xy of G are called co-distant
(briefly: e co f) if for k = 0, 1, 2, . . ., there exist the relations: d(a, x) = d(b, y) = k
and d(a, y) = d(b, x) = k + 1 or vice versa. For some edges of a connected graph G
there are the following relations satisfied:

e co f (1.9)

e co f ⇔ f co e (1.10)

e co f and f co g ⇒ e co g (1.11)

though, the relation (1.11) is not always valid.
Let C(e) : = {e′ ∈ E(G); e′ co e} denote the set of all edges of G which are

co-distant to the edge e. If all the elements of C(e) satisfy the relations (1.9), (1.10),
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and (1.11) then C(e) is called an orthogonal cut oc of the graph G. The graph G is
called a co-graph if and only if the edge set E(G) is the union of disjoint orthogonal
cuts: C1 ∪ C2 ∪ ... ∪ Ck = E and Ci ∩ Cj = ∅ for i �= j, i, j = 1, 2, ..., k.

We now assume that G has a plane representation F. If S is the set of all faces
forming the interior regions then every edge appears in at most two members of S.
Suppose T denotes the outside edges of G. Start with an edge e of G. If there is
not an edge e1 different from e with the property that e co e1 and {e, e1} lie in the
same face of G then we define H = {e1} and choose another edge f of G. Otherwise,
there exists the edge e1 such that e co e1. Continue this process by e1 to construct the
sequence e co e1 co e2 co . . . co er. If e ∈ T then define H = {e, e1, e2, . . . , er}. If
not, there exists an edge f1 of G different from e1 such that f1 co e and {e, f1} lie in the
same face of G. By this algorithm a sequence H = {ft, . . . , f1, e, e1, e2, . . . , er}
is constructed. H is called a quasi-orthogonal cut or a qoc strip or also an opposite
edge strip ops, because the co-relation, applied inside a polyhedral face accounts
for opposite edges, which are topologically parallel to each other. It is an easy fact
that the relation ops is not necessarily transitive. In the case that G is bipartite, then
every member of S have an even number of edges and so ft, er ∈ T . Notice that an
ops strip starts and ends either out of G (at an edge with endpoints of degree lower
than 3, if G is an open lattice,) or in the same starting polygon (if G is a closed
lattice). Any ocs set is an ops strip but the reverse is not always true.

Suppose E1, E2, . . . , Er are qoc/ops strips of a connected planar bipartite graph
G. We claim that X = {E1, E2, . . . , Er} is a partition of E = E(G). To do this we
assume that e ∈ E is an arbitrary edge of G. Using a similar argument as those given
above one can find a sequence ft co ft−1 co . . . co f1 co e co e1 . . . co er. Therefore
there exists j, 1 ≤ j ≤ r, such that {ft, . . . , f1, e, e1, . . . , er} ⊆ Ej. This implies
that e ∈ Ej and so E = E1 ∪ E2 ∪ . . . ∪ Er. To complete our claim, we must prove
Ei ∩ Ej = ∅ for 1 ≤ i �= j ≤ r. Suppose Ei = {e1, e2, . . . , en}, Ej = {f1, f2, . . . , fm}
and e ∈ Ei ∩Ej. Then there are r, s, 1 ≤ r ≤ n, 1 ≤ s ≤ m such that e = er = fs. But
every edge appears in at most two members of S, so by using an inductive argument
Ei = Ej. Therefore, X is a partition of E.

The Omega Ω(G, x) polynomial, accounting for ops strips in G is defined as:

Ω(G, x) =
∑

s
m(G, s) · xs (1.12)

with m(G, c) being the number of strips of length s. The summation runs up to the
maximum length of ops in G.

If G is bipartite, then an ops starts and ends out of G and so Ω(G, 1) = r/2, in
which r is the number of edges in out of G. On the other hand, one can easily seen
that �′(G, 1) = ∑

s m · s = e = |E(G)|. Two single number descriptors are derived
from Ω(G, x) as:

CI(G) = (Ω ′(1))2 − (Ω ′(1) + Ω ′′(1)) (1.13)

IΩ (G) = (1/Ω ′(G, 1)) ·
∑

d
(Ωd(G, 1))1/d (1.14)
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Fig. 1.1 Two graphs G1 (left) and G2 (right)

In case of IΩ , summation runs over all possible derivatives d in the corresponding
polynomial. When one or more edges do not belong to a counted strip, such edges
are added as “strips of length 1”.

It is easily seen that, for a single ops, one calculates the polynomial: �(G, x) = xs

and CI(G) = s2 − (s + s(s − 1)) = 0. There exist graphs for which CI equals PI. In
fact, the two indices CI and PI will show identical values if the edge equidistance
evaluation in the graph involves only the locally parallel edges. This is occurred for
example in partial cubes. In this case, we have:

CI(G) =
(∑

s
m · s

)2 −
[∑

s
m · s +

∑
s

m · s · (s − 1)
]

= e2 −
∑

s
m · s2 = PI(G)

(1.15)

This counting polynomial is useful in topological description of benzenoid struc-
tures as well as in counting some single number descriptors, i.e., topological indices.
The ops strips could give account for the helicity of polyhex nanotubes and nanotori.
The Omega 1.1 software program includes the ops strips procedure.

In the end of this section a simple counterexample for Eqs. (1.9), (1.10), and
(1.11) is given in Fig. 1.1. In the graph G1; {a} and {c} are oc sets; {b} and {d}
do not have all elements co-distant to each other, so that {b} and {d} are qoc strips
but all are ops strips. In the graph G2; {a} and {b} and {c} are oc strips; {f} and
{c2} are equidistant but {f} and {c1 or c3} do not obey the symmetry relation (1.8)
(and do not belong to one face) thus {f} does not belong to the strip {c}. Therefore,
Ω(G1, x) = x2 + 2x4 + x6 and Ω(G2, x) = 5x + 2x2 + x3.

1.3 Examples

In this section the Omega polynomial of some well-known graphs are computed. A
general formula for computing Omega polynomial of the graph product is presented;
in this way, it is possible to compute the Omega polynomials of nanotubes and
nanotori covered by C4. We begin by some well-known graphs.

Example 1 Suppose Tn, Cn and Kn denote the an arbitrary tree, cycle and complete
graph on n vertices, respectively. Then by simple calculations, one can see that
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�(Kn, x) =

⎧⎪⎪⎨⎪⎪⎩
n

2

(
x

n
2 + x

n
2 −1

)
2|n

nx
n−1

2 2� |n
, �(Cn, x) =

⎧⎪⎨⎪⎩
n

2
x2 2|n

nx 2� |n
and � (T, x) = (n − 1)x.

The Cartesian product G × H of graphs G and H is a graph such that V(G×H) =
V(G)×V(H), and any two vertices (a,b) and (u,v) are adjacent in G × H if and only
if a = u and b is adjacent with v, or b = v and a is adjacent with u. The following
properties of the Cartesian product of graphs are crucial:

(a) |V(G × H| = |V(G)| |V(H)| and |E(G × H)| = |E(G)| |V(H)| + |V(G)| |E(H)|;
(b) G × H is connected if and only if G and H are connected;
(c) If (a, x) and (b, y) are vertices of G × H then dG×H((a, x), (b, y)) = dG(a, b) +

dH(x, y);
(d) The Cartesian product is associative.

Theorem 1 Let G and H be bipartite connected co-graphs. Then

Ω(G × H, x) =
∑

s1
m(G, s1) · x|V(H)|s1+

∑
s2

m(H, s2) · x|V(G)|s2

Proof Suppose that for an edge e = uv of an arbitrary graph L, NL(e) = |E| −
(nu(e) + nv(e)). Then by definition,

NG×H ((a, x), (b, y)) =
{

|V (G)| N (f) for a = b and x y = f ∈ E(H)
|V (H)| N (g) for x = y and ab = g ∈ E(G).

By the above paragraph and definition of the Omega polynomial, we have:

Ω(G × H, x) = ∑
s m(G × H, s) · xs = ∑

s1
m(G, s1) · x|V(H) | s1

+ ∑
s2

m(H, s2) · x|V(G)| s2

which completes the proof. �

Corollary 1 Let G1, G2, . . . Gn be bipartite connected co-graphs. Then we have:

Ω(G1×G2× · · · ×Gn,x) =
n∑

i=1

∑
si

m(Gi, si) · x

n∏
j=1
j �=i

|V(Gj)|si

.

Proof Use induction on n. By Theorem 1, the result is valid for n = 2. Let n ≥ 3
and assume the theorem holds for n − 1. Set G = G1 × . . . × Gn−1. Then
we have

Ω(G × Gn, x) =
∑

s
m(G, s) · x|V(Gn)|s +

∑
sn

m(Gn, sn) · x|V(G)|sn
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=
n−1∑
i=1

∑
si

m(Gi, si) · x

n∏
j=1
j �=i

|V(Gj)|si

+ ∑
sn

m(Gn, sn) · x|V(G)|sn

=
n∑

i=1

∑
si

m(Gi, si) · x

n∏
j=1
j �=i

|V(Gj)|si

. �

Example 2 In this example the Omega polynomial of nanotubes and nanotori cov-
ered by C4 are calculated. By definitions of Cartesian product of graphs and Omega
polynomial, one can easily prove:

Ω(G × H, x) =
∑

s1
m(G, s1) × x|V(H)|s1+

∑
s2

m(H, s2) × x|V(G)|s2 . (1.16)

Suppose R and S denote a C4 tube and torus, respectively. Then by definition
R ∼= Pn × Cm and S ∼= Ck × Cm. Apply Theorem 1 to deduce that �(Pn × Pm, x) =
(n − 1)xm + (m − 1)xn. On the other hand, we have:

�(Pn × Cm, x) =
{

(n − 1)xm + m

2
x2n 2|m

(n − 1)xm + mxn 2� |m ,

�(Cn × Cm, x) =

⎧⎪⎪⎨⎪⎪⎩
nxm + mxn 2� |m, 2� |n
nxm + m

2 x2n 2|m, 2� |n
n
2 x2m + mxn 2� |m, 2|n
n
2 x2m + m

2 x2n 2|m, 2|n

.

Note, these formulas calculate Omega strips including the tube cross-section.
Usually, the Omega polynomial calculations are specified by the Facemax or Ringmax
considered.

Example 3 Consider the graph of a nanocone C[a, n], Fig. 1.2.

Fig. 1.2 The carbon
nanocone C[4,4]
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This graph has exactly a(n + 1)2 vertices, a being the apex polygon while n is
the number of hexagon rows around the apex. Function of apex a-parity, there are
different formulas, as shown in Table 1.1.

Table 1.1 Formulas to calculate omega polynomial in nanocones

Formulas

Case: a = even

�(C(aeven, n), x) = (a/2) · x2(n+1) +
n+1∑
k=2

a · xn+k

�′(C(meven, n), 1) = (m/2)(3n2 + 5n + 2)
CI(C(aeven, n)) = (1/12)a(n + 1)(27an3 − 28n2 + 63an2 + 48an + 12a − 50n − 24)

Examples
C(4, 3): 4x5 + 4x6 + 4x7 + 2x8; CI = 7176
C(8, 4) : 8x6 + 8x7 + 8x8 + 8x9 + 4x10; CI = 76160

Case: a = odd

�(C(aodd , n), x) =
n+1∑
k=1

a · xn+k

�′(C(aodd , n), 1) = (a/2)(3n2 + 5n + 2)
CI(C(aodd , n)) = (1/12)a(n + 1)(27an3 − 28n2 + 63an2 + 48an + 12a − 38n − 12)
CI(C(aodd , n)) = CI(C(aeven, n)) + a(n + 1)2

Examples
C(3, 5) : 3x6 + 3x7 + 3x8 + 3x9 + 3x10 + 3x11; CI = 22056
C(5, 3) : 5x4 + 5x5 + 5x6 + 5x7; CI = 11470
C(7, 4) : 7x5 + 7x6 + 7x7 + 7x8 + 7x9; CI = 58240

Example 4 In the end of this section, the Omega polynomial in Du (Med(6,6))
TiO2 pattern, embedded as nanotube and nanotorus are computed, Figs. 1.3 and
1.4. The corresponding graphs of these structures are denoted by G and H,

1 2 3 4 . . . . p

1

2

3

q

.

.

.

e1

e2

Fig. 1.3 The ops of the nanotube G = TU[p,q] in Du(Med(6,6)) TiO2 pattern
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1 2 3 4 . . . . p

1

2

3

q

.

.

.

e1

e2

Fig. 1.4 The ops of the nanotorus T[p,q] in Du(Med(6,6)) TiO2 pattern

respectively. From these figures, one can see that there are two different cases of
ops strips. Suppose e1 and e2 are representatives of the different cases. In the graph
G, |s(e1)| = 2p and |s(e2)| = 2q + 1. On the other hand, there are q(e1) and 2p(e2)
similar edges. This leads to the formula �(G, x) = q ·x2p + 2p ·x2q + 1. For the graph
H, |s(e1)| = 2p and |s(e2)| = 2pq. On the other hand, there are 2q similar edges
for each of e1, e2, respectively. With the above considerations we have the following
formula �(H, x) = qx2p+2x2pq.

1.4 Omega Polynomial of Fullerenes

In this section, the Omega polynomials of some classes of infinite fullerenes
are investigated. Our method is simple. We first draw our molecular graph by
HyperChem, then compute its adjacency and distance matrices by TopoCluj, then
calculate the Omega polynomials by GAP.

Let’s begin by small fullerenes C20 and C30 fullerenes, as depicted in Fig. 1.5.

a b

Fig. 1.5 Fullerene graphs: C20 (a) and C30 (b)
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Then by our method �(C20, x) = 30x and �(C30, x) = 20x + 10x2 + x5. We
now compute the Omega polynomial of an infinite family of fullerene graphs with
exactly 40n + 6 vertices, Fig. 1.6. The expansion in made by prolonging the tube
TUH[20, n] between the two caps (of 44 and 42 atoms, respectively).

Theorem 2 The Omega polynomial of fullerene graph G = C40n + 6(n ≥ 2) is
computed as follows:

�(G, x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
a(x) + 4x2n + 4x2n+1 + 4x4n−1 + 2x4n 5|n
a(x) + 2x4n+3 + 8x2n−2 + 2x4n+4 + 2x4n+1 5|n − 1
a(x) + 8x2n + 4x2n−1 + 2x4n + 2x4n+2 5|n − 2
a(x) + 4x2n−2 + 4x2n+2 + 4x4n−1 + 2x4n+2 5|n − 3
a(x) + 4x2n−2 + 4x2n−1 + 4x2n + 2x4n+3 + x8n+6 5|n − 4

,

where a(x) = x + 9x2 + 4x3 + 2x4 + (2n − 3)x10.

Proof From Fig. 1.6, one can see that there are ten distinct cases of ops in G. We
denote the corresponding edges by e1, e2, . . . , e10. By using calculations given in
Table 1.2 and the Fig. 1.7, the proof is completed. �

Next, we consider a class of fullerenes Gn with exactly 10n vertices, Fig. 1.8.
Such a fullerene consists of two symmetric caps as halves of the dodecahedron and
a distancing “zig-zag” tube TUH[10,n].

e1

e4

e5

e6

e7

e8

e9

e10

e2

e3

e11

Fig. 1.6 The graph of fullerene C40n+6, when n = 2
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Table 1.2 The number of co-distant edges of ei, 1 ≤ i ≤ 10

No. Number of co-distant edges Type of edges

1 1 e1
9 2 e2
4 3 e3
2 4 e4
2n−3 10 e5

2

⎧⎪⎪⎨⎪⎪⎩
2n + 1 5|n
4n + 3 5|n − 1
2n 5|n − 4, n − 2
2n + 2 5|n − 3

e6

⎧⎨⎩ 2
4
4

⎧⎨⎩ 4n − 1 5|n − 3
2n 5|n, n − 2
2n − 2 5|n − 1, n − 4

e7

⎧⎨⎩ 4
4
2

⎧⎨⎩ 2n − 2 5|n − 1, n − 3
2n − 1 5|n − 2, n − 4
4n − 1 5|n

e8

⎧⎪⎪⎨⎪⎪⎩
1
2
2
2

⎧⎪⎪⎨⎪⎪⎩
8n + 6 5|n − 4
4n + 2 5|n − 3
4n + 4 5|n − 1
4n 5|n, n − 2

e9

2

⎧⎪⎪⎨⎪⎪⎩
4n − 1 5|n, n − 3
4n + 1 5|n − 1
4n + 2 5|n − 2
4n + 3 5|n − 4

e10

2

⎧⎨⎩ 2n + 1 5|n
2n 5|n − 2, n − 4
2n + 2 5|n − 3

e11

It is easily seen that there are six distinct cases of qoc strips as follows:

Theorem 3 The Omega polynomial of Gn(n ≥ 2) is computed as follows:

�(Gn, x) = 20x + (n − 2)x5 + 10xn−1

Proof We denote the representatives of edges regarding to co-distant relation by
e1, e2, . . . , e6. Then |s(e1)| = |s(e2)| = |s(e3)| = |s(e6)| = 1, |s(e4)| = 5 and
|s(e5)| = n − 1. On the other hand there are five similar edges for each of edges e1,
e2, e3 and e6, n − 2 edges similar to e4 and 10 edges similar to e5. Therefore,

�(Gn, x) = 20x + (n − 2)x5 + 10xn−1�

In Table 1.3, we list the Omega polynomial of Fn for n ≤ 9.
In what follows, new classes F10n of fullerenes with 10n carbon atoms are

considered. This series has two symmetric caps as [5:65] flower/circulene and a
distancing “armchair” TUV[10,n].
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The fullerene graph 

C40n+6
Edges co-distant to e1 Edges co-distant to e2

Edges co-distant to e3 Edges co-distant to e4 Edges co-distant to e5

Edges co-distant to e6 Edges co-distant to e7 Edges co-distant to e8

Edges co-distant to e9 Edges co-distant to e10 Edges co-distant to e11

Fig. 1.7 Different cases of C40n+6 fullerene with co-distant edges
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Fig. 1.8 The fullerene graph
Gn, n = 8

e1 e2 e3

e4 e5 e6

Fig. 1.9 The ops of edges e1, e2, . . . , e6 in Gn

Theorem 4 The Omega polynomial of F10n is computed as follows:

�(F10n, x) =
{

10x3 + 10x
n
2 + 10xn−3 2|n

10x3 + 5x
n−3

2 + 5x
n+3

2 + 10xn−3 2� |n . (1.17)
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Table 1.3 The omega
polynomial of F10n for n ≤ 9 Fullerenes Omega polynomials

F20 30X1

F30 20X1 + 1X5 + 10X2

F40 20X1 + 2X5 + 10X3

F50 20X1 + 3X5 + 10X4

F60 20X1 + 4X5 + 10X5

F70 20X1 + 5X5 + 10X6

F80 20X1 + 6X5 + 10X7

F90 20X1 + 7X5 + 10X8

Proof To compute the Omega polynomial of F10n, it is enough to calculate s(e)
for every e ∈ E(G). In Tables 1.4 and 1.5, the number of co-distant edges of this
fullerene, are computed.

Table 1.4 The number of
co-distant edges, when 2|n Type of edges Number of co-distant edges No

e1 3 10
e2 n/2 10
e3 n − 3 10

Table 1.5 The number of
co-distant edges, when 2� |n Type of edges Number of co-distant edges No

e1 3 10

e2
n − 3

2
5

e3
n + 3

2
5

e4 n − 3 10

From calculations given in Tables 1.4 and 1.5 and Figs. 1.10 and 1.11 the
Eq. (1.17) is obtained which completes the proof.

Theorem 5 Suppose G is the molecular graph of a fullerene having the cap
[Cor:(5,6)6], where Cor=[6:66] and the distancer is now TuV[12, n]. It corresponds
to the formulas: C12(2n+1) and C24n, if the two caps are glued to the tube sym-
metrically (h-symmetry) and twisted (d-symmetry), respectively. Then the Omega
polynomial of G is

�(G, x) = 12x3 + 12x2n−2 + 6xn−1 + 3x2n+4 , n ≥ 2

�(G, x) = 6x2n + 12x2n−3 + 12x3; n ≥ 3
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e4

e
2

e1
e3

Fig. 1.10 The fullerene
graph F10n (n is odd)

e1

e2

e3

Fig. 1.11 The fullerene
graph F10n (n is even)

Proof It is easy to see that there are four different type of edges, f1, f2, f3 and f4,
Fig. 1.12. One can see that |s(e1)| = 3, |s(e2)| = 2n − 2, |s(e3)| = 2n + 4 and
|s(e4)| = n − 1. On the other hand, there are 12, 12, 3, and 6 similar edges for each
of edges e1, e2, e3, and e4, respectively, then we have

�(G, x) = 12x3 + 12x2n−2 + 6xn−1 + 3x2n+4 , n ≥ 2
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f1

f3

f4

f2

Fig. 1.12 The ops of edges in graph of fullerene C12(2n+1)

In the second case (Fig. 1.13) the number of edges co-distant to f1, f2, and f3 are
2n, 2n − 3 and 3 respectively. On the other hand, there are 6 edges similar to f1, 12
edges similar to f2, 12 edges similar to f3, therefore,

�(G, x) = 6x2n + 12x2n−3 + 12x3; n ≥ 3

.

.

.

.

.

.

.
.

.

.
.

.

.
.

.

.
.

.

Fig. 1.13 The Schlegel graph of C24n fullerene
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Fig. 1.14 The molecular graph of C12n+4 fullerene

Theorem 6 The Omega polynomial of fullerene graph C12n+4 is as follows:

�(C12n+4,x) = 14x + 4x2 + (n − 2)x6 + 4xn−1 + 8xn; n = 3, 5, 9, 11, 5 . . .

�(C12n+4,x) = 14x + 4x2 + (n − 2)x6 + 8xn−1 + 4xn+1; n = 7, 13, 19, 25, . . .

Proof From Figs. 1.14 and 1.15, one can see: The cage is made by a symmetric cap
and a TUH[12,n]. There are five distinct cases of ops. We denote the correspond-
ing edges by e1, e2, . . ., e5. By Table 1.6, we can see that |s(e1) = 2| , |s(e2)| =
n − 1, |s(e3)| = n, |s(e3)| = n, |s(e4)| = 1 and |s(e5)| = 6. On the other hand,
there are 4, 8, 4, 18 and n − 2 similar edges for each of edges e1, e2, e3, e4 and e5,
respectively. So, we have

�(C12n+4,x) = 14x + 4x2 + (n − 2)x6 + 4xn−1 + 8xn; n = 3, 5, 9, 11, 15, . . .

�(C12n+4,x) = 14x + 4x2 + (n − 2)x6 + 8xn−1 + 4xn+1; n = 7, 13, 19, 25, . . .

e2

e1
e4

e3

e5

Fig. 1.15 The ops of edges
e1, e2, . . . , e5 in C12n+4
fullerene
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Table 1.6 The number of
co-distant edges
of ei, 1 ≤ i ≤ 5 No.

Number of co-distant
edges Type of edges

4 2 e1
8 n − 1 e2
4 n e3
18 1 e4
n − 2 6 e5

This completes the proof. �
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Chapter 2
Wiener Index of Nanotubes, Toroidal Fullerenes
and Nanostars

Ali Reza Ashrafi

Abstract A topological index for a molecular graph is a number correlated some
physic-chemical properties of the molecule under consideration. The Wiener index
is the first reported distance based topological index applicable in chemistry. It is
defined as half sum of the distances between all the pairs of vertices in a molecular
graph. In this survey article a brief account on the development of the Wiener in the
fascinating field of nanoscience are discussed

2.1 Introduction

Mathematical chemistry is a branch of theoretical chemistry for discussion and pre-
diction of the molecular structure using mathematical methods without necessarily
referring to quantum mechanics (Gutman and Polansky 1986; Cyvin and Gutman
1988; Gutman 2006). Chemical graph theory is a branch of mathematical chem-
istry concerned with the study of chemical graphs. Chemical graphs are models
of molecules in which atoms are represented by vertices and chemical bonds by
edges of a graph. The basic idea of chemical graph theory is that physico-chemical
properties of molecules can be studied by using the information encoded in their cor-
responding chemical graphs (Balaban 1976; Bonchev 1983; Trinajstić 1992). This
theory had an important effect on the development of the chemical sciences. The
pioneers of the chemical graph theory are Alexandru Balaban, Ivan Gutman, Haruo
Hosoya, Milan Randić and Nenad Trinajstić. Nowadays hundreds of researchers
work in this area producing thousands articles annually.

A molecular graph is a simple graph such that its vertices correspond to the
atoms and the edges to the bonds. Note that hydrogen atoms are often omit-
ted. By IUPAC terminology, a topological index is a numerical value associated
with chemical constitution purporting for correlation of chemical structure with
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various physical properties, chemical reactivity or biological activity (Kier and Hall
1976). There is not a one-to-one correspondence between chemical structures and
topological indices, because several graphs may have the same topological index.

A graph is a collection of points and lines connecting a subset of them. The
points and lines of a graph also called vertices and edges of the graph, respectively.
If e is an edge of G, connecting the vertices u and v, then we write e = uv and say
“u and v are adjacent”. Let G be a graph. The vertex and edge sets of G are denoted
by V(G) and E(G), respectively. A path P in a graph G is a sequence v1, v2, . . . , vr

of vertices such that vi and vi+1 are adjacent, 1 ≤ i ≤ r − 1. A path graph is
a graph consisting of a single path. A cycle graph Cn of order n is a graph with
V(G) = {v1, v2, . . . , vn} and E(G) = {v1v2, v2v3, . . . , vn−1vn, vnv1}. An acyclic
graph or tree is a graph without a subgraph isomorphic to cycle graphs. A connected
graph is a graph such that there exists a path between all pairs of vertices. The
distance d(u, v) = dG(u, v) between two vertices u and v is the length of a shortest
(u,v)-path in G.

The Wiener index is the first distance-based topological index introduced by
chemist Harold Wiener (Wiener 1947). It is widely used in QSPR and QSAR
models, and it still represents an important source of inspiration for defining new
topological indices. A tentative explanation of the relevance of the Wiener index
in research of QSPR and QSAR is that it correlates with the van der Waals sur-
face area of the molecule. The Wiener defined his index as the sum of all distances
between any two carbon atoms in the molecule, in terms of carbon–carbon bonds.
The Wiener index is principally defined for acyclic graphs (trees). It was in 1972
that Hosoya (Hosoya 1971) described its calculation using the distance matrix and
proposed the name “Wiener index”, see also (Hosoya 1988).

In recent years, several papers on methods for computing Wiener index of molec-
ular graphs have been published. We encourage to interested readers to consult
papers (Mohar and Pisanski 1988; Gutman et al. 1994; Gutman and Körtvélyesi
1995; Dobrynin et al. 2001, 2002) and references therein for background materials
as well as basic computational techniques.

2.2 Wiener Index of Nanotubes

A nanostructure is an object of intermediate size between molecular and micro-
scopic structures. It is a product derived through engineering at the molecular
scale. The most important of these new materials are carbon nanotubes (Iijima
1991). Carbon nanotubes can be imagined as rolled sheets of graphite about
different axes. There are three types of nanotubes: armchair, chiral and zigzag struc-
tures. Furthermore, nanotubes can be categorized as single-walled and multi-walled
nanotubes. It is very difficult to produce the former type of nanotubes. Carbon nan-
otubes were discovered in 1991 by Iijima and Ichlhashi (1993) as multi walled
structures and in 1993 as single walled carbon nanotubes (briefly denoted SWNT)
independently by Iijima’s group (Iijima and Ichlhashi 1993) and Bethune’s group
(Bethune et al. 1993) from IBM. SWNTs
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The problem of computing Wiener index of nanotubes began by publishing two
papers by M. V. Diudea and his co-workers (John and Diudea 2004; Diudea et al.
2004). In these papers, the authors gave closed formulas for the sum of all distances
in “armchair” and “zig-zag” polyhex nanotubes, see Figs. 2.1 and 2.2. Diudea and
his team continued their works towards the general form of nanostructures (Diudea
and John 2001; Diudea and Kirby 2001; Diudea et al. 2003; Diudea 2002a, b).

Fig. 2.1 An “armchair”
polyhex nanotube

Fig. 2.2 The “zig-zag”
polyhex nanotube

We begin by describing a method for calculation of the Wiener index of an arm-
chair polyhex nanotube T = TUVC6[m, n], where n is twice the number of vertical
crenels and m is the number of rows, see Fig. 2.3. This method can be applied to
compute also the Wiener index of an achiral polyhex nanotorus. Let us consider
an armchair lattice, as illustrated in Fig. 2.3. We first choose a base vertex b from
the 2-dimensional lattice of T, Fig. 2.3, and assume that x(1,1)

i,j denotes the distance
between (1,1) and (i,j). This defines a matrix

X(1,1)
m×n = [x(1,1)

i,j ] where x(1,1)
1,1 = 0, x(1,1)

1,2 = x(1,1)
2,1 = 1. (2.1)
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It is clear that by choosing different base vertices, we find different distance
matrices for T. Suppose s(p,q)

k is the sum of kth row of X(p,q)
m×n, where (p,q) is the

base vertex. Then s(p,1)
k = s(p,q)

k , 1 ≤ k ≤ m, 1 ≤ p ≤ m and 1 ≤ q ≤ n. On the
other hand, by Eq. (2.1) and choosing a fixed column, we have:

s(i,j)
k =

{
s(1,1)

i−k+1 1 ≤ k ≤ i ≤ m, 1 ≤ j ≤ n

s(1,1)
k−i+1 1 ≤ i ≤ k ≤ m, 1 ≤ j ≤ n

. (2.2)

Fig. 2.3 The 2-dimensional fragments of an “armchair” polyhex nanotube and the scheme of its
base vertex

We now define two new matrices A(n/2+1)×n and B(n/2+1)×n by a1,1 = 0, a2,1 = 1
and the following equations:

a1,j =
{

a1,j−1 + 1 j ≤ (
n
/

2
) + 1

a1,j−1 − 1 j >
(
n
/

2
) + 1

; a2,j =
{

a1,j + 1 j ≤ (
n
/

2
) + 1

a1,j − 1 j >
(
n
/

2
) + 1

2|j,

a2,j =
{

a2,j−1 + 1 j ≤ (
n
/

2
) + 1

a2,j−1 − 1 j >
(
n
/

2
) + 1

; a1,j =
{

a2,j + 1 j ≤ (
n
/

2
) + 1

a2,j − 1 j >
(
n
/

2
) + 1

2 � |j.

Other entries of this matrix is obtained from the first two rows by ai,j = a1,j, i is
odd, and ai,j = a2,j, i is even. Define:

bn/2+1,j =
{

n/2 + j − 1 j ≤ n/2 + 1
3n/2 − j + 1 j > n/2 + 1

.

Other entries of B is defined by bi,j = bi+1,j − 1, i < n/2 + 1. Therefore,

x(1,1)
i,j =

{
ci,j i ≤ (

n
/

2
) + 1

x(1,1)
i−1,j + 1 i >

(
n
/

2
) + 1

,
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where ci,j = Max{ai,j, bi,j}. This computes the distance matrix X(p,q)
m×n related to the

vertex (p,q). Suppose s(p,q)
i is the sum of ith row of X(p,q)

m×n. Then by our calculations
given above, we have:

s
(1,q)
i =

⎧⎪⎪⎨⎪⎪⎩
(n2/2) + i2 − 2i +(1/2)

(
1 − (−1)

(n/2−1
))

i ≤ n/2 + 1

(n2/4) + n (i − 1) i > n/2 + 1

, 1 ≤ i ≤ m ; 1 ≤ q ≤ n.

Suppose Sp is the sum of all entries of distance matrix X(p,q)
m×n. Then S1 =

m∑
i=1

s(1,q)
i

and Sp = S1 +
p∑

i=2
s(1,q)

i −
m∑

i=m−p+2
s(1,q)

i . Thus

S1 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(m/6)

(
3n2 + 2m2 − 3m − 2

) +
[
(−1)(n/2) /4

] [
1 − (−1)m]

m ≤ n/2 + 1

(n/24)
(
n2 + 12m2 + 6mn + 3n − 12m − 4

) + (1/4)
[
(−1)(n/2) − 1

]
m > n/2 + 1

.

If m ≤ n/2 + 1 then a direct calculation shows that

Sp = (m/6)
(
3n2 + 2m2 + 3m − 2

) − mp (m − p + 1)

−(1/4)
[
(−1)+(n/ 2p)

] [
1 − (−1)m]

.

Therefore, it is enough to consider case that m > n/2 + 1. To complete this case,
we consider three sub cases as follows:

(I) p ≤ n/2 + 1, p ≤ m − n/2 + 1. In this case, we have:
Sp = (n/24)

(
n2 + 12m2 + 6mn − 3n + 12m − 4

) + (p2/2) (n − 1)

+(p/12)
(
3n2 − 6n − 12mn − 4

) + (p3/3) + (1/4)
[
1 − (−1)(n/ 2+p)

]
.

(II) m − n/2 + 1 < p ≤ n/2 + 1. In this case, we have:
Sp = (m/6)

(
3n2 + 2m2 + 3m − 2

)
−mp (m + 1) + mp2 − (1/4)

[
(−1)n/ 2+p] [

1 − (−1)m]
.

(III) p > n/2 + 1. In this case, Sp = (n3/12) − (n/3) + (mn/4) (n + 2m + 2)

−np (m + 1) + np2.

Suppose Wm×n denotes the Wiener index of the armchair polyhex nanotube T.
We apply our calculations given above to compute the Wiener index of this
nanotube. We have:
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Wm×n =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
n

(
(m−1)/2∑

i=1
Si + (1/2)S(m+1)/2

)
2|m

n
m/ 2∑
i=1

Si 2 � |m

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(m2n/12)

(
3n2 + m2 − 4

) + (n/8) (−1)(n/2)
[
1 − (−1)m]

m ≤ n/2 + 1

(mn2/24)
(
n2 + 4m2 + 3mn − 8

) − (n3/192)
(
n2 − 16

)
+(n/8)

[
(−1)(n/2) − 1

]
m > n/2 + 1

Therefore, we prove the following theorem:

Theorem 1 (Yousefi and Ashrafi 2008a) The Wiener index of T is computed as
follows:

Wm×n =

⎧⎪⎪⎨⎪⎪⎩
m2n
12

(
3n2 + m2 − 4

) + n
8 (−1)(n/2)

[
1 − (−1)m]

: m ≤ n
2 + 1

mn2

24

(
n2 + 4m2 + 3mn − 8

)
− n3

192

(
n2 − 16

) + n
8

[
(−1)(n/2) − 1

]
: m > n

2 + 1

We now compute the distance matrix and Wiener index of the molecular graph of
an zig-zag polyhex nanotube S = TUHC6[m, n], Fig. 2.2. Here m is the number of
horizontal zig-zags and n is the number of columns. It is obvious that n is even and
|V(T)| = mn. We first choose a base vertex b from the 2-dimensional lattice of T and
assume that xij is the (i,j)th vertex of T, Fig. 2.4.

(1 ,1 )

(1 ,1 )x

1 ,3

2 ,2

x
B a se

B a se

(a )

(b )

Fig. 2.4 Two basically
different cases for the
vertex b

Define D(1,1)
m×n = [d(1,1)

i,j ], where d(1,1)
i,j is distance between (1,1) and (i,j), i =

1, 2 . . . , m and j = 1, 2, . . . , n. From Fig. 2.4, one can see that there are two separates
cases for the (1,1)th vertex. For example in the case (a) of Fig. 2.4, d(1,1)

1,1 = 0,
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d(1,1)
1,2 = d(1,1)

2,1 = 1 and in case (b), d(1,1)
1,1 = 0, d(1,1)

1,2 = 1, d(1,1)
2,1 = 3. In general,

we assume that D(p,q)
m×n is distance matrix of T related to the vertex (p,q) and s(p,q)

i

is the sum of ith row of D(p,q)
m×n. Then there are two distance matrices related to the

vertex (p,q) such that s(p,2k−1)
i = s(p,1)

i ; s(p,2k)
i = s(p,2)

i ; 1 ≤ k ≤ n/2, 1 ≤ i ≤ m,
1 ≤ p ≤ m.

By Fig. 2.4, if b varies on a column of T then the sum of entries in the row
containing base vertex is equal to the sum of entries in the first row of D(1,1)

m×n . On
the other hand, one can compute the sum of entries in other rows by distance from
the position of base vertex. Therefore,

s(i,j)
k =

{
s(1,1)

i−k+1 1 ≤ k ≤ i ≤ m, 1 ≤ j ≤ n

s(1,2)
k−i+1 1 ≤ i ≤ k ≤ m, 1 ≤ j ≤ n

If 2| (i + j)

s(i,j)
k =

{
s(1,2)

i−k+1 1 ≤ k ≤ i ≤ m, 1 ≤ j ≤ n

s(1,1)
k−i+1 1 ≤ i ≤ k ≤ m, 1 ≤ j ≤ n

If 2 � |(i + j)
We now describe our algorithm to compute the distance matrix of a zig-zag poly-

hex nanotube. To do this, we define matrices A(a)
m×(1/2+1) = [aij], Bm×(n/2+1) = [bij]

and A(b)
m×(n/2+1) = [cij] as follows:

a1,1 = 0 a1,2 = 1 ai,j =
{

ai,1 2 � |j
ai,2 2 � |j ;

ai,1 = ai−1,1 + 1,
ai,2 = ai−1,2 + 1,

ai,2 = ai,1 + 1 ; 2|i
ai,1 = ai,2 + 1 ; 2 � |i

c1,1 = 0 c1,2 = 1 ci,j =
{

ci,1 2 � |j
ci,2 2|j ;

ci,2 = ci−1,2 + 1,
ci,1 = ci−1,1 + 1,

ci,1 = ci,2 + 1 ; 2|i
ci,2 = ci,1 + 1 ; 2 � |i

bi,1 = i − 1 ; bi,j = bi,j−1 + 1

For computing the distance matrix of this nanotube we must compute matrices
D(a)

m×n = [da
i,j] and D(b)

m×n = [db
i,j]. But by our calculations, we can see that

da
i,j =

{
Max{ai,j, bi,j} 1 ≤ j ≤ n/2
di,n−j+2 j > n/2 + 1

and db
i,j =

{
Max{ai,j, ci,j} 1 ≤ j ≤ n/2
di,n−j+2 j > n/2 + 1

.

This completes our calculations for the distance matrix of S. Suppose s(p,q)
i is

the sum of ith row of D(p,q)
m×n. Then s(p,2 k−1)

i = s(p,1)
i and s(p,2 k)

i = s(p,2)
i , where

1 ≤ k ≤ n/2, 1 ≤ i ≤ m and 1 ≤ p ≤ m. On the other hand,
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s(1,2 k−1)
i =

⎧⎪⎪⎨⎪⎪⎩
n2

4
+ (n + i − 2)(i − 1) i ≤ n

2
+ 1

n

2
(4i − 5) i ≥ n

2
+ 1

, 1 ≤ i ≤ m , 1 ≤ k ≤ n

2
.

s(1,2 k)
i =

⎧⎪⎪⎨⎪⎪⎩
n2

4
+ (n + i)(i − 1) i ≤ n

2
+ 1

n

2
(4i − 3) i ≥ n

2
+ 1

Suppose S(a)
p and S(b)

p are the sum of all entries of distance matrix D(p,q)
m×n in two

cases (a) and (b). Then

S(a)
1 =

{
(mn/4)(2m + n − 2) + (m/3)(m − 1)(m − 2) m ≤ n/2 + 1

(mn/ 2)(2m −3) + (n/24)(n+2)(n+4) m ≤ n/2 + 1
,

S(b)
1 =

{
(mn/4)(2m + n − 2) + (m/3)(m2 − 1) m ≤ n/2 + 1

(mn/ 2)(2m −1) + (n/24)(n2 − 4) m ≤ n/2 + 1
.

If p is arbitrary then one can see that:

S(a)
p = S(a)

1 +
p∑

i=2
s(1,2)

i −
m∑

i=m−p+2
s(1,1)

i

S(b)
p = S(b)

1 +
p∑

i=2
s(1,1)

i −
m∑

i=m−p+2
s(1,2)

i

.

Thus it is enough to compute S(a)
p and S(b)

p . When m ≤ n/2, one can see that:

S(a)
p = (mn/4)(2m + n + 2) + (m/3)(m2 − 1) − p(m2 + mn + n) + p2(m + n)

S(b)
p = (mn/4)(2m + n + 2) + (m/3)(m + 1)(m + 2) − p(m2 + mn + n + 2m)

+p2(m + n).

To complete our argument, we must investigate the case of m > n/2 + 1. To do
this, we consider three cases that m > n/2+1; m ≤ n+1, m−n/2+1 < p ≤ n/2+1
and m > n + 1; p > n/2 + 1.

(I) p ≤ n

2
+ 1 and p ≤ m − n

2
+ 1. In this case we have:

S(a)
p = mn

2
(2m + 1) + n

24

(
n2 − 4

) + p

12

(
3n2 − 24mn − 12n − 4

) + 3n

2
p2 + p3

3

S(b)
p = mn

2
(2m + 3) + n

24
(n − 2) (n − 4) + p

12

(
3n2 − 24mn − 24n + 8

)
+p2

2
(3n − 2) + p3

3
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(II) m ≤ n + 1 and m − n

2
+ 1 < p ≤ n

2
+ 1. Therefore,

S(a)
p = mn

4
(2m + n + 2) + m

3

(
m2 − 1

) − p
(
m2 + mn + n

) + p2 (m + n)

S(b)
p = mn

4
(2m + n + 2) + m

3
(m + 1) (m + 2) − p

(
m2 + mn + n + 2m

)
+p2 (m + n)

(III) m > n + 1 and p >
n

2
+ 1. In this case,

S(a)
p = n

12

(
n2 − 4

) + n

2
(m − 2p) (2m + 1) + 2np2

S(b)
p = n

12

(
n2 + 8

) + n

2
(m − 2p) (2m + 3) + 2np2

We assume again that Wm×n = W(TUHC6[m, n]). Then,

Wm×n =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(n/2)

[
(m−1)/2∑

i=1

(
S(a)

i + S(b)
i

)
+ (1/2)

(
S(a)

(m+1)/2 + S(b)
(m+1)/2

)]
2 � |m

(n/2)

m/2∑
i=1

(
S(a)

i + S(b)
i

)
2|m

.

We now substitute the values of S(a)
p to compute the Wiener index of S, as follows:

Theorem 2 (Ashrafi and Yousefi 2007a) The Wiener index of S is computed as
follows:

Wm×n =
⎧⎨⎩

mn2

24 (4m2 + 3mn − 4) + m2n
12 (m2 − 1) m ≤ n

2 + 1

mn2

24 (8m2 + n2 − 6) − n3

192 (n2 − 4) m > n
2 + 1

.

We now present an algebraic method for computing Wiener index of molecular
graphs. Let us recall some definitions and notations. An automorphism of a graph
G is a permutation g of the vertex set V(G) with the property that, for any vertices
u and v, g(u) and g(v) are adjacent if and only if u is adjacent to v. The set of
all automorphisms of G, with the operation of the composition of permutations, is a
permutation group on V(G), denoted by Aut(G). Suppose G is a group and X is a set.
G is said to act on X when there is a map φ : G×X → X such that all elements x ∈ X
(i) ϕ(e, x) = x, where e is the identity element of G, and, (ii) ϕ(g, ϕ(h, x)) = ϕ(gh, x)
for all g, h∈G. In this case, G is called a transformation group on X, X is called a
G-set, and ϕ is called the group action. For simplicity we define gx = ϕ(g, x). In a
group action, a group permutes the elements of X. The identity does nothing, while
a composition of actions corresponds to the action of the composition. For a given
X, the set {gx | g ∈ G}, where the group action moves x, is called the group orbit



30 A.R. Ashrafi

of x. If G has exactly one orbit, then G is said to be vertex transitive. The following
simple lemma is crucial for our algebraic method.

Lemma 1 Suppose G is a graph, A1, A2, . . . , Ar are the orbits of Aut(G) under its

natural action on V(G) and xi ∈ Ai, 1 ≤ i ≤ r. Then W(G) = ∑r
j=1

|Aj|
2 d(xj),

where d(x) denotes the summation of topological distances between x and all ver-
tices of G. In particular, if G is vertex transitive then W(G) = |V(G)|

2 d(x), for every
vertex x.

Proof It is easy to see that if vertices u and v are in the same orbit, then there is
an automorphism ϕ such that ϕ(u) = v. So, by definition of an automorphism, for
every vertex x,

d(u) =�x∈V(G)d(x, u) = �x∈V(G)d(ϕ(x), ϕ(u))

=�x∈V(G)d(ϕ(x), v) = �y∈V(G)d(y, v) = d(v)

Thus, W(G) = W(G) = ∑r
j=1

|Aj|
2 d(xj). If G is vertex transitive then r = 1 and

|A1| = |V(G)|. Therefore, W(G) = |V(G)|
2 d(x), for each vertex x.

Apply our method on an toroidal fullerene (or achiral polyhex nanotorus) R =
R[p, q], Figs. 2.5 and 2.6. To compute the Wiener index of this nanotorus, we first
prove its molecular graph is vertex transitive.

Lemma 2 The molecular graph of a polyhex nanotorus is vertex transitive.

Proof To prove this lemma, we first notice that p and q must be even. Consider
the vertices uij and urs of the molecular graph of a polyhex nanotori T = T[p, q],
Fig. 2.6. Suppose both of i and r are odd or even and σ is a horizontal symmetry
plane which maps uit to urt, 1 ≤ t ≤ p and π is a vertical symmetry which maps
utj to uts, 1 ≤ t ≤ q. Then σ and π are automorphisms of T and we have πσ(uij) =
π(urj) = urs. Thus uij and urs are in the same orbit under the action of Aut(G) on
V(G). On the other hand, the map θ defined by θ(uij) = θ(u(p+1−i)j) is a graph
automorphism of T and so if “i is odd and r is even” or “i is even and r is odd” then
again uij and urs will be in the same orbit of Aut(G), proving the lemma.

Fig. 2.5 A toroidal fullerene
(or achiral polyhex
nanotorus) R[p,q]
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Fig. 2.6 A 2-dimensional
lattice for an achiral polyhex
nanotorus R[p,q]

We now apply Lemma 2, to compute the Wiener index of an achiral polyhex
nanotorus. By Lemmas 1 and 2, in a polyhex nanotorus T = T[p, q] we have W(T) =
(pq/2)d(x), for a fixed vertex x of T.

Theorem 3 (Yousefi et al. 2008c) The Wiener index of an achiral polyhex nanotube
R = R[p, q] is computed as follows:

W(R) =
⎧⎨⎩

pq2

24 (6p2 + q2 − 4) q < p

p2q
24 (3q2 + 3pq + p2 − 4) q ≤ p

.

Using methods presented in this section, it is possible to compute the Wiener
index of some other nanotubes as TUC4C8(R) and TUC4C8(S) nanotubes and nan-
otori, see (Ashrafi and Yousefi 2007b, c; Yousefi and Ashrafi 2006, 2008b, Yousefi
et al. 2008d; Iranmanesh and Ashrafi 2007) for more information on the problem.

2.3 Wiener Index of Nanostar Dendrimers

The nanostar dendrimer is part of a new group of macromolecules that appear
to be photon funnels just like artificial antennas. The topological study of these
macromolecules is a new problem began by the present author (Ashrafi and Saati
2007; Ashrafi and Mirzargar 2008a, b, c; Karbasioun and Ashrafi 2009, Karbasioun
et al. 2010). In this section two methods for computing Wiener index of nanostar
dendrimers are presented.

Suppose G[n] denotes the molecular graph of nanostar dendrimer depicted in
Figs. 2.7 and 2.8. We first calculate the distance matrix of the graph G[n] and then
compute its Wiener index. At first, we introduce two concepts which are important in
our calculations. Suppose G and H are graphs such that V(H) ⊆ V(G) and E(H) ⊆
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Fig. 2.7 The molecular
graph of G[1]

Fig. 2.8 The core of G[n]

E(G). Then we call H to be a subgraph of G. H is called isometric, if for each
x, y ∈ V(H), dH(x, y) = dG(x, y).

In Fig. 2.9, four isometric subgraphs of G[n] are depicted. From this figure, it
is clear that G[n] is constructed from the subgraphs isomorphic to B and the core,
Fig. 2.8. To compute the Wiener index of G[n], we calculate matrices WA1, WA2,
WA3 and WB which are the Wiener matrices of the subgraphs A1, A2, A3 and B,
respectively. Suppose Di and Di’ are 8 × 8 and 8 × 60 matrices in which each entry
is equal to i and M is the distance matrix of the core.

To construct the Wiener matrix of G[n], it is enough to calculate the distance
matrix between a subgraph isomorphic to B and core, distance matrix between two
subgraphs isomorphic to B (see A2 and A3 in Fig. 2.9) and the distance matrix of
the core. The distance matrix between a subgraph isomorphic to B and core is equal
to the sum of the distance matrix of the subgraph A1, WA1, and the matrix Di’,
where i = l(P) − 1 such that P is a minimum path connecting a vertex of core to a
vertex of B and l(P) denotes the length of P. We now calculate the distance matrix
between two subgraphs isomorphic to B. To do this, we assume that B1 and B2 are
two subgraphs isomorphic to B and P is a minimum path connecting a vertex of
B1 to a vertex of B2. Obviously, there are two separate cases that one of the end
vertices of P is a vertex of a hexagon of G[n] or two end vertices of P are not belong
to a hexagon. In the first case, the distance matrix D(B1, B2) between B1 and B2 is
equal to WA3 + Di and for the second D(B1, B2) = WA2 + Di. From Fig. 2.7, one
can partition the molecular graph of G[n] into a core together with six isomorphic
subgraphs M1[n], . . . , M4[n]. We name each of M1[n], . . . , M4[n], to be a branch of
G and M[n] = M1[n]∪ . . .∪M4[n].. Obviously, each of branches Mi[n], 1 ≤ i ≤ 4,
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A1 A2

A3 B

Fig. 2.9 Some subgraphs of
G[n]

has exactly two isomorphic components M1
i [n] and M2

i [n]. Moreover, the core and
branches constitute a partition for G[n]. Every subgraph Mi[n], 1 ≤ i ≤ 4, has
exactly 2n+1 − 2 subgraphs isomorphic to B such that degree of vertices of their
hexagons are 2. We name these subgraphs by Yi

1 k, 1 ≤ i ≤ 2n−1, 1 = 1, 2 and
k = 1, 2, 3, 4. We now define s1, . . . , s8 as follows:

• s1 is the summation of distances between vertices of Yi
11, Yj

21 and Yi
12, Yj

22, as

well as Yi
13, Yj

23 and Yi
14, Yj

24, for each of i and j, 1 ≤ i �= j ≤ 2n−1,

• s2 is the summation of distances between vertices of Yj
23, Yi

13 and Yi
11, Yj

21 ; Yj
23,

Yi
13 and Yi

12, Yj
22 ; Yi

14, Yj
24 and Yi

11, Yj
21 ; Yi

14, Yj
24 and Yi

12, Yj
22, for each of i

and j, 1 ≤ i �= j ≤ 2n−1,
• s3 is the summation of distances between vertices of Yi

1 k and Yj
2 k, for each of i,

j and k, 1 ≤ i �= j ≤ 2n−1 and k = 1, 2, 3, 4,
• s4 is the summation of distances between the vertices of M1

i [n] and M2
i [n − 1],

• s5 is the summation of distances between vertices of Yi
1 k and Yj

2 k in Mk[n − 1],

• s6 is the summation of distances between vertices of Yi
13, Yj

23 from M1 [n − 1]

and Yi
14, Yj

24 from M2[n − 1],
• s7 is the summation of distances between vertices of M2[n] and M1[1], as well as

M3[n] and M4[1],
• s8 is the summation of distances between other vertices of M1

i [n] and M2
i [1].
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By definition of s1, . . . , s8, one can prove the following equalities:

s1 =
n∑

i=1
22i+1.(10i + 3) = −8

9
.4n + 80

3
.4n.n + 8

9

s2 =
n∑

i=1
22i+2.(10i + 18) = 704

9
.4n + 160

3
.4n.n − 704

9

s3 =
n∑

j=1

j∑
i=1

4.2j−2+i.(10i − 7) = 80

3
.4n + 68.2n − 124

9
− 488

9
.4n

s4 =
n∑

l=3

l−1∑
k=2

l−k∑
i=1

2l+i+1.(5(l + i) − (5k + 2))

= −968

9
.4n + 80

3
.4n.n − 56.2n + 156.2n.n − 20.2n.n2 + 1472

9

s5 =
n∑

j=2

j−1∑
i=1

2i+j+1.(5(i + j) − 7) = 136.2n − 40.2n.n − 488

9
.4n + 80

3
.4n.n − 736

9

s6 =
n∑

j=2

j−1∑
i=1

2i+j+3.(5.(i + j) + 18)

= 448

9
.4n + 320

3
.4n.n − 256.2n − 160.2n.n + 1856

9

s7 =
n∑

j=3

j−2∑
i=1

3.2j+1.(5i) =
n∑

j=2

j−1∑
i=1

2i+j+2.(5(i + j) + 3)

= −496

9
.4n + 160

3
.4n.n + 112.2n − 80.2n.n − 512

9

s8 =
n∑

l=3

l−1∑
k=2

l−k∑
i=1

3.2l+i.(5(l + i) − (5k + 2))

=
n∑

j=3

j−2∑
i=1

2j+2.(5i) = 160.2n − 100.2n.n + 20.2n.n2 − 160

By a simple calculation with Maple, one can see that s1 + s2 + ... + s8 =
320.4n.n + 164.2n − 144.4n − 224.2n.n − 20. Therefore we prove the following
theorem,

Theorem 4 The Wiener index of G = G[n] is computed as follows:

W(G) = −55424.2n + 4480.2n.n + 4096.4n + 20480.4n.n + 9048.2n+3 + 502.

We now present our final method for computing Wiener index of dendrimers.
Let T[L] be a triangulane molecule containing λL = 1 + 3 × 1 + 3 × 2 + 3 ×
22 + · · · + 3 × 2L−1 triangles. Then, λL = 1 + 3(2L − 1) = 3.2L − 2. We introduce
an algorithm for constructing T[L] which is crucial in our calculations. Suppose
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Fig. 2.10 Two shapes of the molecular graph of triangulane molecule T[4] and its associated
dendrimer

K3 denotes the graph of a triangle. In what follows, we assume that K3
∼= Kmn

3 ,
where m and n are positive integers. At first consider K11

3 and connect two new
triangles K21

3 and K22
3 to two vertices of K11

3 and label the third vertex of K11
3 by X.

Then we connect four triangles K31
3 , K32

3 , K33
3 and K34

3 to the vertices of degree 2
other than X of the graph constructed in last step. Continue this process to connect
KL1

3 , . . . , KL2L−1

3 to vertices of degree two in the graph constructed in the (L−1)th
step of our algorithm. Thus, we obtain a graph called GL. Suppose Gu[L], Gv[L]
and Gw[L] are three copies of GL and Xu, Xv and Xw are vertices corresponding to
X. We now join Gu[L], Gv[L], Gw[L] by vertices Xu, Xv, Xw to a triangle K3 and
denote this new graph by T[L], L < 0, and T[0] = K3. By this process, two graphs
isomorphic to GL−m will join to two vertices of Kmn

3 , 0 < n ≤ 2m−1 and
m < L. We notice that the vertices correspond to X are denoted by Xmn1, Xmn2 and
their graphs by Ghmn1 and Ghmn2.

Lemma 3 Let T[L] denotes the molecular graph of a triangulane given above. Then,

(a) Ghmn1, Ghmn2 are isometric subgraphs of T[L].
(b) If a ∈ Gu[L] and b ∈ Gv[L] then dT[L](a,b) = dGu[L] (a, Xu) +

dGv[L] (b, Xv) + 1.
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Proof Since a minimum path between two vertices of Ghmn1(or Ghmn2) contains
only edges from Ghmn1(or Ghmn2), the part (a) is trivial. For part (b), we notice that
by our construction algorithm, there is no edge between vertices Gu[L] and Gv[L]
except edge connecting Xu and Xv.

Lemma 4 W(T[L]) = 3W(Gu[L])+2L+1−1)×(
2dGu[L](Xu, Gu[L]) + (2L + 1 − 1)

)
.

Proof By our construction, V(T[L]) is partitioned by V(Gu[L]), V(Gv[L]) and
V(Gw[L]) and by Lemma 3(a), these are isometric subgraphs of T[L]. On the other
hand,

Gu[L] ∼= Gv[L] ∼= Gw[L]. (2.3)

Therefore, W(T[L]) = W(Gu[L]) + W(Gv[L]) + W(Gw[L]) +
dT[L](Gu[L], (Gv[L]) + dT[L](Gu[L], (Gw[L]) + dT[L](Gw[L], (Gv[L]). We now
apply Eq. (2.3) to prove W(T[L]) = 3W(Gu[L]) + 3dT[L](Gu[L], (Gv[L]).
Set V(Gu[L]) = {u1, u2, . . . , um} and V(Gv[L]) = {v1, v2, . . . , vm}, where
m = 2L+1 − 1. Then by definition and Lemma 3, we have:

dT[L](Gu[L],Gv[L]) =
∑m

i=1
∑m

j=1 dT[L](ui, vj)

=
∑m

i=1
∑m

j=1

[
dGv[L](ui, Xv)

+dGu[L](vi, Xu) + 1
]

= 2mdGu[L](Xu, Gu[L]) + m2,

which proves the lemma.

Lemma 5 dGu[L](Xu, Gu[L]) = (L − 1)2L+1 + 2.

Proof Induct on L. The case of L = 1 is trivial. Suppose A ={
XL,1,1, XL,1,2, XL,2,1, XL,2,2 , . . . , XL,2L−1,1 , XL,2L−1,2

}
is the set of all vertices of

degree 2 of the graph Gu[L]. Obviously, |A| = 2L. By our construction, 2L graphs

KL+1,1
3 , KL+1,2

3 , KL+1,3
3 , ..., KL+1,2L

3 are connected to the vertices of A, respectively.
Since the vertices of degree 2 in Gu[L+1] other than Xu are connected only to one
of XL,i,j, distances of them from Xu is L+1. On the other hand, there are 2L+1 such
vertices, and so dGu[L+1](Xu, Gu[L + 1]) = dGu[L](Xu, Gu[L]) = (L + 1)2L+1 + 2 =
L2L+2 + 2.

Lemma 6 W(Gu[L]) = (2L + 5)22L+1 + (4L + 9)2L + 1.

Proof By Lemma 3, Gh111 and Gh112 are isometric subgraphs of T[L]. Hence these
are isometric in Gu[L]. By our construction, vertices of Gh111 and Gh112 are dis-
joint and there is a unique edge of T[L] connecting X111 ∈ V(Gh111) to X112 ∈
V(Gh112). By a similar argument as Lemma 4 and formula given in Lemma 5, we
have:
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W(Gu[L]) = 2 W(Gu[L − 1]) + dGu[L](Gh111,Gh112)
+ dGu[L](Xu,Gu[L] )

= 2 W(Gu[L − 1]) + (2L − 2)[(L − 2)2L]
+ (2L − 1)2 + (L − 1)2L+1 + 2

= 2 W(Gu[L − 1]) + (n − 3/2)22n+1

+2n+2 − 1.

After solving this recurrence relation, W(Gu[L]) = (2L − 5)22L+1 + (4L + 9)
2L + 1, proving the lemma.

We end this chapter by the following theorem:

Theorem 5 W(T[L]) = (18L − 21)22L+1 + 51 × 2L − 6.

Proof The proof is follows from Lemmas 4-6.
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Chapter 3
C60 Structural Relatives – An Omega-Aided
Topological Study

Aniela E. Vizitiu and Mircea V. Diudea

Abstract It was shown that the covering of C60 “Buckminsterfullerene” is basically
sumanenic, with the empty π-electron faces being only pentagons. Four series of
cages, tessellated by sumanenic patterns S[r] = [r:(5, 6)r/2], were generated by
sequences of map operations, and their topology described. Among these cages,
which all show all_R[5] 2-factors, those belonging to the series designed on the
dual pair Dodecahedron/ Icosahedron by iterating the P5 operation and closing by
Le operation, show a unique term Omega signature, thus being classified as the C60
series. C60 itself also shows the unique signature and all the members of its family
show large HOMO-LUMO gap values, larger than of the cages belonging to the
other three series herein built up. Coverings are given in terms of circulenes/flowers
and the relation with the Omega and Ring polynomials is evidenced. Analytical
formulas for the net parameters and for the used polynomials are given.

3.1 Introduction

Since the very beginning of the fullerene science (Endo et al. 1996; Fowler and
Manolopolous 1994; Dresselhaus et al. 1996; Tanaka et al. 1999; Balaban 1997;
Kroto et al. 1985; Kraetschmer et al. 1990) the aim of synthesis by “wet chemistry”
of fullerenes with controlled tessellation has been a constant desiderate. Notably, in
this respect, is the synthesis of dodecahedrane by Paquette et al. (1981).

The direct synthesis of fullerenes with desired covering, from appropriate pre-
cursors by pyrolysis, has been recently performed (Amsharov and Jansen 2008,
2009).

The idea of increasing aromaticity/stability of fullerenes tessellated by disjoint
circulenes/flowers originates in the classical texts of Clar (1964, 1972), which
postulated disjoint benzenoid rings (i.e., rings having six π-electrons localized in
double-simple alternating bonds and separated from adjacent rings by formal single

M.V. Diudea (B)
Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, 400028 Cluj, Romania
e-mail: diudea@chem.ubbcluj.ro

39F. Cataldo et al. (eds.), The Mathematics and Topology of Fullerenes,
Carbon Materials: Chemistry and Physics 4, DOI 10.1007/978-94-007-0221-9_3,
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bonds) as a criterion for the full aromatic conjugation (i.e., double-simple bond
alternation).Molecular structures, showing such fully resonant sextets are expected
to be extremely stable, according to the VB theory (Fowler and Pisanski 1994; Dias
1999; Cyvin and Gutman 1988).

A flower is symbolized as [r:pi]Fw, with r, pi being the folding of the polygonal
core and its surrounding petals, respectively. Such flowers could appear either as
intersect, joint or disjoint units.

A tiling is called Platonic if it consists of a single type of faces (see the Platonic
solids). Archimedean is that tiling consisting of more than one type of faces. Platonic
and Archimedean will refer here only to tessellation by flowers.

A set of disjoint faces, built up over all atoms of the molecule, is called a 2-factor.
It is known (Clar 1964) that fullerenes showing a 2-factor structure also possess a
Fries structure (Fries 1927), which is a Kekulé structure with the maximum possible
(v/3) number of benzenoid faces. A Kekulé structure (Hosoya 1986; Veljan 2001;
Zhang and Yan 2003; Shiu et al. 2002; John et al. 1995; Cyvin and Gutman 1988),
or a perfect matching, is a set of pair-wise disjoint bonds, defined over all atoms
of the molecule. The associate Fries structure will ensure the total resonance (i.e.,
conjugation) of the molecule.

Among several circulene/flower units so far reported (Sakurai et al. 2003, 2005;
Yamamoto 1993) sumanene S[6]= [6:(5,6)3] is of higher interest; Fig. 3.1 illustrates
the sumanenic patterns S[r] = [r : (5, 6)r/2]; r = 6, 8 and 10. Covering of the sphere
by various polyhedral faces was achieved by means of operations on maps (Diudea
et al. 2003; Diudea 2006, Vizitiu et al. 2006) as implemented in our original software
CageVersatile (CVNET) (Stefu and Diudea 2005).

Note that any supra-face or Fw has its own intersected/superposed “counterpart”,
called here co-Fw. Of course, the attribute Fw and co-Fw are interchangeable. The
covering by a sequence of operations is given in terms of flower patterns.

S[6] = [6:(5,6)3]  

R(x) = 3x5+4x6

S[8] = [8:(5,6)4]  

R(x) = 4x5+4x6+x8

S[10] = [10:(5,6)5]

R(x) = 5x5+5x6+x10

Fig. 3.1 Sumanenic circulene/flower patterns: ring polynomials are given in the top of figures

The symbols used for naming cages in the hereafter text will include the actual
number of atoms, the starting Platonic cage and the map operation sequence (by its
m-factor, multiplying the Platonic pattern) used in their construction. When obtained
by the Stone-Wales (Stefu and Diudea 2005) SW edge-rotation, the suffix RO is
added.
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Recall the five Platonic polyhedra and their symbols herein used: T (tetrahedron),
O (octahedron), C (cube), D (dodecahedron, and I (icosahedron). The dual pairs are:
T&T (self-dual); O&C and D&I.

It was shown (Stone and Wales 1986) that the covering of “Buckminster-
fullerene” C60 is basically sumanenic, with the empty π-electron faces being only
pentagonal. The immediate consequence is the corresponding Fries structure will
include all the hexagonal faces of the molecule. The higher hypothetical analogues
with sumanenic tessellation must also show only pentagonal empty π-electron
faces. Recall that the structure of sumanene molecule was explicitly related to the
“Buckminsterfullerene” tessellation (Sakurai et al. 2003, 2005).

The structure of the paper is as follows. The second section gives definitions
and examples of the main map operations used within this work. The third section
gives a panel of the most used sequences of map operations leading to sumanenic
covering/tessellation. The fourth section introduces in the theory of counting poly-
nomials while the fifth section presents in detail the topology of the C60 family and
its structural relatives. Conclusions and references will close the paper.

3.2 Operations on Maps

A map M is a combinatorial representation of a (closed) surface (Pisanski and
Randić 2000; Fowler and Manolopolous 1994). Operations on maps are topological-
geometrical transformations allowing to transform or to relate a given polygonal
structure. Several operations on maps are known and used for various purposes.

Dualization Du of a map starts by locating a point in the center of each face
(Fig. 3.2a) (Diudea 2003; Pisanski and Randić 2000; Diudea 2004). Next, two such
points are joined if their corresponding faces share a common edge (Fig. 3.2b).

Fig. 3.2 Dualization of a
fullerene patch

It is the (Poincaré) dual Du(M). The vertices of Du(M) represent the faces of
M and vice-versa (Pisanski and Randić 2000). Thus the following relations exist:
Du(M); v = f0; e = e0; f = v0.

Dual of the dual returns the original map: Du(Du(M)) = M. Tetrahedron is
self dual while the other Platonic polyhedra form pairs: Du(Cube) = Octahedron;
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Du(Dodecahedron) = Icosahedron (Fig. 3.3). It is also known the Petrie dual
(Pisanski and Randić 2000).

Note that all the operation parameters herein presented refer to regular maps (e.g.,
the Platonic solids); a subscript zero indicates a parent map parameter.

Fig. 3.3 The duals of the five platonic polyhedra

Polygonal Pk mapping (k = 3, 4, 5) of a face is achieved as follows: (Diudea
2004; Diudea and Nagy 2007) add a new vertex in the center of the face. Put k–3
points on the boundary edges (Fig. 3.4). Connect the central point with one vertex
(the end points included) on each edge. In this way the parent face is covered by
triangles (k = 3), quadrilaterals (k = 4) and pentagons (k = 5). The P3 operation is
also called stellation or (centered) triangulation. The resulting map shows the rela-
tions: Pk(M), v = v0 + (s − 3)e0 + f0; e = se0; f = s0f0, so that the Euler’s relation
holds (see below). Figure 3.5 gives examples of the Pk operations realization.

(c)(b)(a)

Fig. 3.4 Polygonal mapping of a fullerene patch; P3 (a); P4 (b) and P5 (c)

(b) (c)(a)Fig. 3.5 Polygonal mapping
of the dodecahedron by P3(D)
(a); P4(D) (b) and P5(D) (c)
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Medial Med of a map is achieved (Diudea 2003; Pisanski and Randić 2000;
Diudea 2004) by putting a new vertex in the middle of each original edge. Join
two vertices if the original edges span an angle (and are consecutive within a rota-
tion path around their common vertex in M), Fig. 3.6. Medial is a 4-valent graph
and Med(M) = Med(Du(M)). The transformed parameters are: Med(M); v = e0;
e = 2e0; f = f0 + v0.

(b)(a)Fig. 3.6 Medial of a
fullerene patch

Medial operation rotates parent s-gonal faces by π /s. Points in the medial repre-
sent original edges, thus this property can be used in topological analysis of edges
in the parent polyhedron. Similarly, the points in dual give information on the topol-
ogy of parent faces. Figure 3.7 illustrates the medial operation performed on the five
Platonic polyhedra.

Fig. 3.7 The medials of the five platonic polyhedra

Truncation Tr is achieved (Pisanski and Randić 2000; Vizitiu et al. 2009) by
cutting off the neighborhood of each vertex by a plane close to the vertex, such that
it intersects each edge incident to that vertex (Fig. 3.8).

Truncation is similar to the medial, the transformed parameters being: Tr(M);
v = 2e0 = d0v0; e = 3e0; f = f0 + v0. This was the main operation used by
Archimedes in building up the well-known 13 (Archimedean) solids (Vaissiere et al.
2001). Figure 3.9 illustrates the realization of this operation on the icosahedron.

Snub Sn is a composite operation that can be written as: (Stone and Wales 1986;
Diudea 2004) Sn(M) = Du(P5(M)). The dual of a snub is the P5(M) transform:
Du(Sn(M) = P5(M). Similar to the medial operation, Sn(M) = Sn(Du(M)). In case
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(b)(a)Fig. 3.8 Truncation of a
patch of a fullerene

Fig. 3.9 Truncation of the icosahedron

of M = T, the snub Sn(M) = I. The snub Sn(M) is always a pentavalent graph. The
transformed parameters are: Sn(M); v = s0f0 = d0v0; e = 5e0; f = v0 + 2e0 + f0.
Figure 3.10 presents the realization of this operation on the Dodecahedron.

Fig. 3.10 Snub of the
dodecahedron

Leapfrog Le is a composite operation, (Fowler 1986; Fowler and Steer 1987;
Fowler and Rogers 1998a, b; Eberhard 1891) which can be written as: Le(M) =
Du(P3(M)) = Tr(Du(M)). A sequence of stellation (i.e., P3)-dualization rotates the
parent s-gonal faces by π/s. Leapfrog operation is illustrated, for a fullerene patch,
in Fig. 3.11.

Quadrupling Q (i.e., Chamfering (Goldberg 1937)) is another composite oper-
ation, achieved by the sequence (Diudea 2004): Q(M) = RE(TrP3 (P3(M))), where
RE means the (old) edge deletion (the blue lines, in Fig. 3.12) of the truncation TrP3
of each central vertex introduced by P3 capping. Q insulates the parent faces always
by hexagons.
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(b)(a)Fig. 3.11 Stellation (a) and
dualization (b) of a patch of a
fullerene

Fig. 3.12 Chamfering of a
patch of a fullerene

Capra Ca – the goat, is the Romanian corresponding of the leapfrog English
children game. It is a composite operation (Stone and Wales 1986; Goldberg 1937;
Diudea 2003), necessarily coming from the Goldberg’s (1937) multiplying factor
m = (a2 + ab + b2); a ≥ b; a + b > 0, predicted as follows: Le: (1,1); m = 3; Q:
(2,0); m = 4; Ca: (2,1); m = 7.

The transformation can be written as: Ca(M) = TrP5 (P5(M)) with TrP5 being the
truncation of each central vertex introduced by P5 mapping. Ca insulates any face
of M by its own hexagons, which are not shared with any old face (in contrast to
Le or Q). It is an intrinsic chiral operation (Fig. 3.13). It rotates the parent edges by
π/(3s/2).

Fig. 3.13 Chiral lattices
performed by the Ca
operation
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Its realization on the Dodecahedron is illustrated in Fig. 3.14, along with Le
and Q operations; the cages are also given in the Schlegel projection (Schlegel
1893).

Ca is also called S1 (Septupling) operation, differing from its S2 twin operation
(see below) (Diudea 2005a).

C60(Ih)   =  Le(D) C80(Ih)  =  Q(D) C140(I)  =  Ca(D)

Fig. 3.14 Molecular realization of the three main composite map operations, given both as 3D
objects and schlegel projections (the bottom row)

The S2 operation (Diudea et al. 2007, 2004, 2005) is a simpler one (Fig. 3.15);
it can be achieved by putting four vertices on each edge of the parent map M (E4
operation) and next join these new vertices in order (−1, +3): S2 = J(−1,+3)(E4(M)).

It insulates the double sized parent faces by pentagons and parent vertices by
pentagon d0-multiples; the transformed object is non-chiral.

E4(M) S2(M) Op2a(S2(M)) Fig. 3.15 Septupling S2
operation on a square face, up
to the open structure

Chirality in S2 can be obtained by the opening operation Op2a, achieved by
putting two points on alternative edges of the double sized parent face boundary
(Fig. 3.15).
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In case of a closed cage, the transformed lattice parameters are identical to those
of S1: S1(M) & S2(M); v = v0(2d0 + 1); e = 7e0; f = f0(s0 + 1), differences
appearing in case of open objects. Observe that both the septupling operations keep
the parent vertices.

1. The iterative application of S2 reveals the fractal fashion of the covering
(Fig. 3.16). The fractal characteristic can be seen even in the algebraic form
of lattice parameters (Diudea and Nagy 2007).

(a) S2(D); v = 140 (two-fold axis) (b) (S2)
3(D); v = 6860 (five-fold axis)

Fig. 3.16 Iterative S2 operation on dodecahedron: observe the fractal covering in case of 3-times
repetition (b)

The only fullerene constructible by S2 is C28, when applied on the Tetrahedron.

3.3 Coverings by Sequences of Map Operations

Sumanenic flowers S[r] can be generated by several sequences of map operations,
as follows (Diudea 2005b).

3.3.1 Sequence Tr5(Caf (Q(M)))

In the above sequence, Q is the quadrupling map operation, Caf represents Capra
operation performed so that the original faces of M remain untransformed and Trs is
the truncation of selected vertices. The sequence leads to a Platonic disjoint corazu-
lenic [r:(7(5d))r]Fw, chiral (by virtue of Ca/S1) covering; the co-Fw is a sumanenic
pattern S[r] = [r:(5, 6)r/2]Fw which forms an Archimedean covering with R[p]
rings (Diudea and Nagy 2007; Schlegel 1893).

The above sequence shows a multiplication factor m = 8d, where d is the vertex
degree in the parent Platonic. As an example of molecular realization, the covering
of 96T-8d is a disjoint Platonic of [3:(7(5d))3]Fw (Fig. 3.17a) while the co-Fw forms
a disjoint Archimedean covering: S[6]&R[3] (Fig. 3.17b).
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Another example is the stable corazulenic cage: C192 = 192O-8d. It shows
a Platonic, disjoint corazulenic [4:(7(5d))4]Fw covering of which co-Fw forms a
disjoint Archimedean S[6]&R[4] covering. One of the most important of its valence
structure shows the maximum possible 32 Kekulé benzenoid rings, thus being
identified as the Fries valence structure (Fries 1927).

(a)  96T-8d; Platonic [3:(7(5d))3]Fw (b)  96T-8d; Archimedean S[6]&R[3]co-Fw,  

Fig. 3.17 Corazulenic disjoint pattern and its co-Fw; cage designed by the sequence
Trs(Caf (Q(M)))

Notably is the alternation, with respect to the vertices of the cube, of triph-
enylenic and tripentylenic types of S[6]Fws, as shown by the length of bonds in
the optimized molecular structure (Fig. 3.18). The tripentylene [6:(0,5)3]Fw can
be viewed as an analogue of the triphenylene [6:(0,6)3]Fw. The numerical Kekulé
count (John et al. 2007a; Diudea 2006; Diudea et al. 2007, 2009; Euler 1758; Randić
2004; Nagy et al. 2009) of π-electrons are given in the top of figures.

(a) Triphenylenic sumanene S[6]: 
(3(0,3)3) (gray) 

(b) Tripentylenic sumanene S[6] : 

(3(1,2)3)v/2 (yellow) 

Fig. 3.18 The “Sumanenic-Kekulé” valence structure of C192 with two distinct alternating S[6]Fw
and their π-electron population; cage designed by the sequence Trs(Caf (Q(M)))

3.3.2 Sequence Trs(Ca3,2c(M))

In the above sequence, Ca3,2c is the generalized Capra operation Ca3,2
with the faces of original map cut-off. It provides joint corazulenic flowers
[r:(7(5c))r]Fw, which can also read [r:(7(5d))r]Fw; the co-Fw is of corazenic type
[r:(5, 7)r/2]Fw. The two corazulenic patterns of this covering both transforms, by
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SW, into sumanenic joint patterns. The multiplication factor is m = 5d; when
applied on the medial Med, m = 10d. The sequence is exemplified for the cage
120O-5d (Figs. 3.19 and 3.20) (Diudea and Nagy 2007; Schlegel 1893).

(a) 120O-5d; 6[4:(7(5c/d))4]Fw (b) 120O-5d; 8[6:(5,7)3]co-Fw 

Fig. 3.19 The two corazulenic flowers tessellating the 120O-5d cage, designed by Trs(Ca3,2c(M))

(a)120O–5dRO; 6S[8]&8R[6] (b) 120O–5dRO; 6R[8]&8S[6] co–Fw  

Fig. 3.20 Two sumanenic patterns S[r] in the SW edge-rotated 120O-5dRO cage, designed by
Trs(Ca3,2c(M))

In the case of 60T-5d, the two sumanenes are identical and the result is 60T-5dRO
which is just C60 Buckminsterfullerene.

3.3.3 Sequence Le(S2(T))

This sequence is non-commutative (because of the S2 operation) and provides a
disjoint sumanenic pattern S[r], in a Platonic covering (Diudea and Nagy 2007;
Schlegel 1893).

The co-Fw forms an Archimedean joint of coronenic [r:6r]Fw, and pentylenic
[p:(0, 5))p/2]Fw, patterns. The multiplication factor is m = 7d or, in case of the
sequence involving the medial operation, m = 14d). Figures 3.21 and 3.22 illustrate
the above covering.

These cages are relatively stable structures, with the most one being 168O-3d, an
almost spherical cage (Fig. 3.22b).
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(a) 84T–7d; 4S[6]
Platonic

(b) 84T–7d; [(6:66)&(6:(0,5)3]co–Fw
 Archimedean

Fig. 3.21 Platonic disjoint
sumanenic S[6] covering
(a) and archimedean joint
coronenic and pentylenic
co-Fw

(a) 168C–7d; 8S[6]
Platonic

(b) 168O–7d; 6S[8]
Platonic

Fig. 3.22 Platonic disjoint
sumanenic covering S[r] on
the transforms of cube (a) and
octahedron (b) by the
sequence Le(S2(T))

The above sequences can be applied on coverings embedded in any type of
surface, an example being given for the toroidal surface (Fig. 3.23).

Fig. 3.23 Sumanenic disjoint
S[8] covering by Le(S2(M);
64S[8]; v = 1792; M = T(4,4)
[4,16]

3.3.4 Sequence Le(P5(M))/Le(P5(Med(M)))

These sequences show a multiplication factor of m = 5d (or m = 10d, in case
the medial operation Med(M) is included) (Diudea 2008). Note Le(P5(Med(M))) =
RO(TRs(Ca3,2c(M))), so that the SW operation is already included. Also note
Le(P5(M)) = Tr(Sn(M), Sn being the Snub operation. The Med(M) operation
induces a four-valent atom and further the derived cages will contain structural
features originating in this type of atom (see below).
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Because the sequence is commutative, a dual-pair will provide one and the
same transform by Le(P5(M))/Le(P5(Me(M))). In the above series, the P5-operation
can be iterated k-times: Le((P5(M))k)thus generating series of cages of similar
tessellation.

The most important, in the sumanenic covering, is the corresponding 2-factor,
consisting of only pentagons (Diudea and Nagy 2007, 2008). It means that the empty
faces (in the most important Kekulé valence structure) are only pentagons while the
hexagonal ones will all participate to the Fries (most benzenoid) structure. This
aspect, we believe, is one of the structural characteristics of the C60 family (see
below). This is supported by the large HOMO-LUMO gap of all the cages belonging
to this family. Figures 3.24 and 3.25 illustrate the sumanenic tessellation of C60 and
300D/I-5d, which is the next member of the C60 family.

(a) 4S[6]; K:(3(0,3)3)   (b) 4S[6]&4R[6] (c) 4R[6]; K:(3)

Fig. 3.24 C60; Sumanenic S[6] patterns in a tetrahedral embedding

12S[10]&20R[6] 12R[10]&20S[6] All R[5] 2-factor 

Fig. 3.25 Tessellation of 300D/I-5d cage, designed by Le(P5(M)); S-core in color/black

3.4 Counting Polynomials

A counting polynomial (Diudea et al. 2007) is a representation of a graph G(V , E),
with the exponent k showing the extent of partitions p(G), ∪ p(G) = P(G) of a graph
property P(G) while the coefficient p(k) are related to the occurrence of the partition
of extent k.
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P(x) =
∑

k
p(k) · xk (3.1)

Let G be a connected graph, with the vertex set V(G) and edge set E(G). Two
edges e = (u, v) and f = (x, y) of G are called codistant (briefly: e co f ) if the
notation can be selected such that (John et al. 2007a, b)

d(v, x) = d(v, y) + 1 = d(u, x) + 1 = d(u, y) , (3.2)

where d is the usual shortest-path distance function. The above relation co is reflex-
ive (e co e) and symmetric (e co f) for any edge e of G but in general is not
transitive.

A graph is called a co-graph if the relation co is also transitive and thus an
equivalence relation.

Let C(e) := {f ∈ E(G); f co e} be the set of edges in G that are codistant to
e ∈ E(G). The set C(e) can be obtained by an orthogonal edge-cutting procedure:
take a straight line segment, orthogonal to the edge e, and intersect it and all other
edges (of a polygonal plane graph) parallel to e. The set of these intersections is
called an orthogonal cut (oc for short) of G, with respect to e.

If G is a co-graph then its orthogonal cuts C1, C2, ..., Ck form a partition of E(G) :
E(G) = C1 ∪ C2 ∪ ... ∪ Ck, Ci ∩ Cj = ∅, i �= j.

A subgraph H ⊆ G is called isometric, if dH(u, v) = dG(u, v), for any (u, v) ∈ H;
it is convex if any shortest path in G between vertices of H belongs to H. The n-cube
Qn is the graph whose vertices are all binary strings of length n, two strings being
adjacent if they differ in exactly one position (Harary 1969). The distance function
in the n-cube is the Hamming distance: the distance between two vertices of Qn

is equal to the number of positions in which they differ. A hypercube can also be
expressed as the Cartesian product: Qn = �n

i=1K2.
For any edge e = (u, v) of a connected graph G let nuv denote the set of ver-

tices lying closer to u than to v: nuv = {w ∈ V(G)|d(w, u) < d(w, v)}. It follows
that nuv = {w ∈ V(G)|d(w, v) = d(w, u) + 1}. The sets (and subgraphs) induced by
these semicubes vertices, nuv and nvu, are called semicubes of G; the semicubes are
opposite and disjoint ones (Diudea 2008).

A graph G is bipartite if and only if, for any edge of G, the opposite semicubes
define a partition of G: nuv + nvu = v = |V(G)|.

The relation co is related to ∼ Djoković and Combin (1973), and � (Winkler
1984) relations (Klavžar 2008): in aconnected bipartite graph, co =∼= �. For
two edges e = (u, v) and f = (x, y) of G the theta relation is defined as: e�f if
d(u, x) + d(v, y) �= d(u, y) + d(v, x). A connected graph G is a co-graph if and only
if it is a partial cube, and all its are convex; relation co/� is then transitive (Diudea
et al. 2009).

Two edges e and f of a plane graph G are in relation opposite, e op f, if they
are opposite edges of an inner face of G. Then e co f holds by the assumption that
faces are isometric. The relation co is defined in the whole graph while op is defined
only in faces/rings (see below), thus being included in relation co. Note that John
et al. (Diudea et al. 2008; John et al. 2007a, b) implicitly used the “op” relation
in defining the Cluj-Ilmenau index CI. Also note that in the previous papers, ops
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were denoted qoc (quasi orthogonal cuts) to say the transitivity relation is not, in
general, obeyed.

Relation op will partition the edges set of G into opposite edge strips ops, as
follows. (i) Any two subsequent edges of an ops are in op relation; (ii) Any three
subsequent edges of such a strip belong to adjacent faces; (iii) In a plane graph, the
inner dual of an ops is a path, an open or a closed one (however, in 3D networks, the
ring/face interchanging will provide ops which are no more paths); (iv) The ops is
taken as maximum possible, irrespective of the starting edge. The choice about the
maximum size of face/ring, and the face/ring mode counting, will decide the length
of the strip.

The �-polynomial (Diudea 2006) is defined on the ground of opposite edge strips
ops S1, S2, ..., Sk in the graph. Denoting by m, the number of ops of cardinality/length
s=|S|, then we can write

�(x) =
∑

s
m · xs (3.3)

The set of rings in a molecular structure can be represented by a counting poly-
nomial which we call here the Ring polynomial, R(x): in this case, p(k) of relation
(1) represents the number of k-fold rings (Diudea 2008).

The first derivative (in x = 1) can be taken as a graph invariant or a topological
index:

�′(1) =
∑

s
m · s = e = |E(G)| (3.4)

R′(1) = 2e (3.5)

In a set of isomeric cages, the number of edges is constant, so that in view of
discriminating such cages, the second derivative is recommended. In this respect,
an index, called Cluj-Ilmenau (John et al. 2007a)CI(G), was defined on �(x):

CI(G) = {[�′(1)]2 − [�′(1) + �′′(1)]} (3.6)

1. In tree graphs, the Omega polynomial simply counts the non-opposite edges,
being included in the term of exponent c = 1. The coefficient of the term of expo-
nent c = 1 has found applications as a topological index, called np, the number
of pentagon fusions, appearing in small fullerenes as a destabilizing factor. This
index accounts for more than 90% of the variance in heat of formation HF of
fullerenes C40 and C50 (Diudea and Nagy 2007; Diudea et al. 2007, 2009).

3.5 Topology of the Le((P5(M))k) Designed Cages

There are four series of structures showing an all_R[5] 2-factor and all are des-
ignable by the Le((P5(M))k)/Le((P5(Med(M)))k)sequences (see Table 3.1). The
criterion which enabled discrimination of these series was the Omega polynomial
(Diudea 2008).
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The first term of the series Le((P5(M))k); M = D/I, is just 60T-5d = C60
Buckminsterfullerene. It is covered by four joint sumanenic S[6] flowers, in
a tetrahedral Archimedean disposition 4S[6]&4R[6] (Fig. 3.24). It is counted
at iteration k = 0 (Table 3.1) because the series is referred to the pair
Dodecahedron/Icosahedron while Tetrahedron T precedes D by just one P5 itera-
tion (i.e., P5(T = D)). The dual pair D/I gives identical objects under this operation
sequence and this is also true for the pair Cube/Octahedron C/O.

Since P5 is a pro-chiral operation (Stone and Wales 1986), the objects designed
at k > 0 all show chiral pairs, which is not the case for k = 0. This operation
introduces vertices of degree d = 5 which provide 2 × d = 10 fold polygons by the
consecutive Le operation.

The Omega polynomial shows a unique term for the series Le((P5(M))k);
M = D/I, this fact being singular among the four series herein discussed. The
polynomial coefficient p(x3; �) is related to the number of hexagons in the suma-
nenic covering, as provided by the coefficients of Ring polynomial, p(x6; R(x)):
p(x3; �(x)) = 2p(x6; R(x)) − 10.

Analytical formulas for the counting polynomials are given in Table 3.1, which
also includes the number of atoms/vertices v, formula of counting, function of the
k iteration. The number of edges e comes immediately from the first derivative of
Omega polynomial in x = 1 (relation 4). Next, the lattice parameters can be checked
for consistency according to the theorem of Euler (Diudea et al. 2009):

v − e + f = 2(1 − g) (3.7)

where v, e, f, and g being the number of vertices, edges, faces, and genus, respec-
tively. The genus is the number of handles attached to the (or holes performed
in a) sphere to make it homeomorphic to the actual surface; g = 0 for the graphs
embedded on the sphere, and 1 for those embedded in the torus or tube. The faces f
are identical to the rings in case of convex polyhedra. An embedding is the represen-
tation of a graph on a surface such that no crossing lines appear (John et al. 2007a).
Examples for some lower terms of the series of the discussed structures are listed.

The cage tessellation is given in terms of flower covering: Tess(k) is the tessel-
lation of the actual iteration of (P5(M))k and is deducible from the (k−1)th ring
polynomial. Patterns represent joint flowers and are completed by some rings, in an
Archimedean covering. For any Tess(k) two complementary coverings can be fig-
ured out; they are derivable from each other by simply changing R by S (i.e., “ring”
by “sumanene”) together with their counting. The number of involved faces always
fits that given by the ring polynomial. Note that the symmetry of Fw-covering in
C60 is tetrahedral while in the higher terms is icosahedral, the relation being dis-
cussed above. Tessellations for some lower terms of the series, for which the ring
polynomial is also given, are listed in Table 3.1 (Diudea 2005).

The π-electron local distribution of C60, in terms of numerical Kekulé valence
structure (Euler 1758), is K: (3(0,3)3)&(3). This electronic distribution corresponds
to the most important geometric Kekulé valence structure, as evaluated from the
optimized inter-atomic distances by our Nano Studio software (Nagy et al. 2009).
For the higher terms, the counting is K: (3(0,3)3)&(5).
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At the level of the simple Hűckel theory, the members of C60 family (i.e., the
series designed by Le((P5(M))k); M = D/I) are closed π-electron shells, showing
well defined HOMO-LUMO gaps (in β units). The gap is the highest for C60 and
decreases slowly to the higher terms of family. At comparable number of atoms, the
cages of the other three series show a lower gap (Table 3.1, the next last column).

The other three related series, all showing an all_R[5] 2-factor, resents a more
complicated Omega signature (see Table 3.1). The series #2 is derived from the
dual pair C/O by the general sequence Le((P5(M))k). Because of d(O)=4, by Le six
octagons will appear in the resulting covering, in addition to the decagons induced
by the P5 operation. Thus, the Omega polynomial consists of three terms, the cor-
responding analytical formula, at various k values being given in Table 3.1. In fact,
the building of series #1 and #2 follow the same rule: Le((P5(M))k) and the dif-
ference in Omega signature is due to octagons. This also caused the drop in the
HOMO-LUMO gap. At least the terms at k = 1, in both series, show all equivalent
sumanenic flowers of a given folding.

Apparition of octagons can be induced by the medial Med operation; in case
of M = D/I, by applying the sequence Le((P5(Med(M)))k) results in the series #3,
which shows a translation of the #2 Omega signature by a factor of 5, also evident
in the number of vertices and multiplication factor m (Table 3.1, last column).

Finally, the sequence Le((P5(Med(M)))k) applied to the pair C/O results in the
#4 series, with an even more complicated Omega signature (see Table 3.1).

The first terms of the last three series show the LUMO orbital as being a non
bonding orbital NBO (Table 3.1, last column).

The counting polynomials were performed by our original Nano Studio software
(Nagy et al. 2009).

3.6 Conclusions

Four series of cages, tessellated by sumanenic flowers/circulenes were generated by
sequences of map operations and their topology was analyzed in terms of Omega
and Ring counting polynomials. Among these cages, all showing all_R[5] 2-factors,
those belonging to the series designed on the dual pair Dodecahedron/Icosahedron
by iterating the P5 operation and finally closed by Le operation, show a unique term
Omega signature, thus being classified as the C60 family. C60 also shows the unique
signature and all the members of its family show large HOMO-LUMO gap values,
larger than those of the cages belonging to the other three series herein discussed.
The unique Omega signature and the large gap value we consider as pertinent cri-
teria for the members of C60 family. However, the series #1 and #2 are built up
by the same sequence Le((P5(M))k) of map operations, thus no essential structural
difference exists between the two series, except the Omega signature.

Coverings were given in terms of sumanenic flowers and the relation among
the Ring and Omega polynomials was evidenced. Analytical formulas for the net
parameters and polynomials were presented.
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Cages consisting of a number of Carbon atoms larger than 100 have been detected
experimentally. We believe the newly proposed fullerene structures (even of non-
classical tessellation), can be of interest in the future experiments.
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Chapter 4
Local Combinatorial Characterization
of Fullerenes

Tamás Réti, István László, and Ante Graovac

Abstract We present a general method which enables a possible classification
of fullerenes by means of local topological invariants. In this study fullerenes
are considered as bifaced simple (trivalent) polyhedra. The method proposed is
based on the combinatorial analysis of the first neighbor environments (coronas)
of vertices and/or edges of bifaced simple polyhedra. For this purpose, we used
the so-called line-corona detectors (LC detectors) which are simple connected
acyclic graphs (trees) having only 1- and 3-valent vertices. It is demonstrated that
by performing certain matching operations with appropriately defined LC detec-
tors, a finite set of local, algebraically independent topological invariants can be
obtained by which various fullerene structures can be partitioned into disjoint
classes of equivalence. We found also linear interdependencies between similar
parameters previously defined in the scientific literature. Discriminating perfor-
mance of computed topological descriptors have been tested on the set of C40
fullerene isomers.

4.1 Introduction

Methods for topological characterization of fullerene isomers have made steady
progress over the past decade. This can be explained by the fact that combinato-
rial properties of fullerenes play a key role in classifying their structures and in
predicting their various physical and chemical properties.

This study was motivated primarily by the concept outlined in two papers
(Balaban et al. 1995; Alcami et al. 2007). Both of them are focused on the combi-
natorial characterization and the classification of fullerenes using local topological
parameters (graph invariants).
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Balaban et al. (1995) reported extensive computations of a number of topological
parameters, and as a result, a classification of 1812 C60 isomers into disjoint
subclasses has been performed on the basis of 4 different vertex types. Alcami
et al. classified the traditional fullerene isomers by partitioning their edges, tak-
ing into considerations 9 possible distinct arrangements of 5- and 6-gons adjacent
to end-vertices of a given edge (Alcami et al. 2007).

Starting with the extension of the concept detailed in Balaban et al. (1995)
and Alcami et al. (2007), the aim of our investigations was to develop a general
method which enables a more efficient classification of fullerenes by means of
local topological invariants. It will be demonstrated that analyzing the first neigh-
bor environments of vertices and/or edges, it is possible to generate a finite set of
algebraically independent, local topological descriptors satisfying the requirements
formulated.

4.2 Basic Notions and Definitions

Although we are primarily interested in bifaced simple polyhedra (trivalent poly-
hedra having only two types of faces), some of our results hold for 3-valent
2-connected finite graphs embedded on a surface (an orientable compact two-
dimensional manifold 	) such that every face has at least 3 sides (sphere, torus,
double torus).

For easier formulation of our results we need to introduce some definitions and
recall some known equations (Grünbaum 1967; Brehm and Schulte 2004; Fowler
and Manolopoulos 1995; Deza et al. 2000). We start by recalling the Euler’s equa-
tion given as V − M + F = 2 − 2G where G is the genus of the orientable compact
two-dimensional manifold, V, M and F stand for the number of vertices, edges and
faces of the embedded graph, respectively (Brehm and Schulte 2004). The num-
ber of faces is F = ∑

Fn where Fn is the number of n-gonal (n-sided) faces, for
n ≥ 3. There exist polyhedra whose vertices do not all have the same valency.
Consequently, we may define an average valency [r] as follows:

[r] = 1

V

∑
r

rVr (4.1)

where Vr is the number of vertices having valency r, and V = ∑
Vr. The number

M of edges is related to the number Fn of n-sided faces, the number V of vertices,
and the average valency [r]

2M =
∑

n

nFn =
∑

r

rVr =[r]V (4.2)

From the Euler formula and Eq. (4.2) it follows that

2
∑
r≥3

(3 − r)Vr = 12(1 − G) +
∑
n≥3

(n − 6)Fn (4.3)
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For G = 0, by Steinitz’s Theorem, � is combinatorially isomorphic to a
3-dimensional convex polytope, if and only if the graph of 	 is 3-connected. This
implies that for simple polyhedra (if G = 0 and Vr = 0 for r > 3 hold) from
Eq. (4.3) one obtains

3F3 + 2F4 + F5 = 12 +
∑
n≥7

(n − 6)Fn ≥ 12 (4.4)

From the previous considerations it follows that any polyhedron contains at least
a triangle, or a quadrilateral or a pentagon, i.e. there is no polyhedron whose faces
are all hexagons, or polygons with six or more sides. Moreover, for a simple poly-
hedron containing triangles, or quadrilaterals, or pentagons or hexagons, equality
3F3 + 2F4 + F5 = 12 holds, independently of the number of hexagonal faces.
Consequently, the set of simple polyhedra composed of triangles, or quadrilater-
als, or pentagons is finite. It is easy to see that there exist only six bifaced simple
polyhedra including triangles, or quadrilaterals or pentagons (Grünbaum 1967).

In a simple (trivalent) polyhedron a q-gonal face is called isolated, if it is sur-
rounded only by non-q-gonal faces. Let IS(q) denote the number of q-gonal isolated
faces. It is obvious that IS(q) is a topological invariant for which 0 ≤ IS(q) ≤ Fq
holds. A simple polyhedron is called q-isolated, if its all q-gonal faces are adjacent
only to non-q-gonal faces. In this particular case IS(q) = Fq. A simple polyhedron is
called completely isolated, if equality

∑
IS(q) = ∑

Fq = F is fulfilled. There exist
several completely isolated trivalent polyhedra. A simple example is the great rhom-
bicosidodecahedron (truncated icosidodecahedron), which is 4-, 6- and 10-isolated.
The great rhombicosidodecahedron has 62 faces: 30 squares, 20 hexagons and 12
decagons, consequently IS(4) + IS(6) + IS(10) = 62 holds.

In what follows, we do not distinguish between the polyhedron and its corre-
sponding finite 3-connected planar graph.

4.3 Fullerenes, Fulleroids and Bifaced Polyhedra – Classification

Polyhedra are generally used as geometric models for carbon molecules called
fullerenes consisting only of pentagons and hexagons (Fowler and Manolopoulos
1995). In chemistry, according to the classical definition, a fullerene is an all-carbon
molecule where vertices represent the atoms of carbon, and edges between vertices
realize the bonds between pairs of carbon atoms. Fullerenes Ck with vertex number
k exist for all even k ≥ 20 except k = 22, where the number of pentagons is 12
(F5 = 12) and the number of hexagons is F6 = (V/2) − 10.

Call bifaced (two-faced) any polyhedron, whose faces are Fα α-gons and Fβ

β-gons only, where 3 ≤ α < β, Fα > 0 and Fβ > 0. An important consequence
of Eq. (4.4) is that if a bifaced polyhedron is simple, this implies that α can be only
3 or 4, or 5. In the following the set of bifaced simple polyhedra (BS polyhedra)
consisting of α- and β-gons is denoted by S(α, β) where 3 ≤ α ≤ 5 and α < β.

A bifaced simple polyhedron is called α-isolated, (β-isolated) if each α-gons
(β-gons) is isolated, that is each of them is surrounded only by β-gons (α-gons),
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respectively. For example, the Buckminster fullerene represents the smallest
5-isolated S(5,6) polyhedron with 60 vertices. Since there are no edge-neighbor tri-
angular faces in BS polyhedra, this implies that all S(3, β) polyhedra are 3-isolated.

It is also obvious that there are no completely isolated S(α, β) polyhedra com-
posed only of α-isolated and β-isolated faces. From this it follows that for BS
polyhedra the inequality 0 ≤ IS(α) + IS(β) < F holds.

In Fig. 4.1, Schlegel diagrams of six different BS polyhedra are shown, they are
denoted by Hv(α, β). As can be seen, polyhedra H6(3, 4), H12(3, 5) and H12(3, 6)
are 3-isolated, H24A(4, 6) is 4-isolated, while H10(4, 5) is 5-isolated. Polyhedra
H24A(4, 6) and H24B(4, 6) are so-called structural isomers. Since there are only six
BS polyhedra including triangles, or quadrilaterals, or pentagons, in the following
we assume that 3 ≤ α ≤ 5 and β ≥ 6 (Fowler and Manolopoulos 1995).

From geometric point of view, there exist several generalizations of conven-
tional fullerenes (Deza et al. 2000; Laszlo and Rassat 2001; Fowler et al. 1996,
2001; Fowler and Heine 2001; Albertazzi et al. 1999; Dress and Brinkmann 1996;
Delgado-Friedrichs and Deza 2000; Jendrol’ and Trenker 2001; Deza et al. 1998;
Gan et al. 2009). Deza et al. (2000) defined a fullerene in a wider sense as a
finite, trivalent map on a closed, unbounded surface with a non-negative Euler-
characteristic, where faces are pentagons and hexagons. According to this concept,
the only surfaces admitting finite fullerene maps are as follows: the sphere, the torus,
the Klein bottle and the real projective plane (Deza et al. 2000).

Using semi-empirical models, Fowler et al. (1996, 2001; Fowler and Heine 2001)
calculated the relative energies of hypothetical C40 cages (generalized polyhedral

Fig. 4.1 Schlegel diagrams
of six bifaced simple
polyhedra (a) H6(3, 4),
(b)H12(3, 5), (c) H12(3,6), (d)
H10(4, 5), (e) H24A(4, 6) and
(f) H24B(4, 6)
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fullerenes with 40 vertices) that can be assembled from square, pentagonal, hexag-
onal and heptagonal faces. It has been pointed out that it is possible to reduce the
number of pentagons by introducing some square faces or heptagonal faces into a
fullerene. Calculations performed have suggested that whilst introduction of square
faces is highly unfavorable, carbon cages including a heptagonal face fall within the
traditional fullerene energy range (Albertazzi et al. 1999).

Dress and Brinkmann (1996) introduced the notion of fulleroid defined as fol-
lows: a fulleroid is a tiling of the sphere such that all its vertices have valency 3,
while all its faces are pentagons (α = 5) and β-gons, where β > 5. It follows that
fulleroids are BS polyhedra of type S(5, β).

During the last two decades, the combinatorial structure and symmetry of
fullerenes and of fulleroids has been studied deeply (Dress and Brinkmann 1996;
Delgado-Friedrichs and Deza 2000; Jendrol’ and Trenkler 2001; Deza et al. 1998;
Babić et al. 1993; Graver 2005; Jendrol’ and Kardoš 2007; Kardoš 2007; Fowler
2003, 2002; Austin et al. 1995; Fajtlowitz and Larson 2003; Zhang and Zhang 2001;
Torrens 2002; Došlić 2002a, b; 2007; 2008; Hu 2003; Reti and Bitay 2007). Babić
et al. studied fullerenes with up to 70 vertices and divided them according to the
symmetry group (Babić et al. 1993). Graver published a catalogue of all fullerenes
with ten or more symmetries and verified that there are infinitely many fullerenes
with icosahedral or tetrahedral symmetry (Graver 2005). Jendrol’ and Kardoš found
a necessary and sufficient condition for existence of Oh(5, β) fulleroids, where Oh
stands for the full symmetry group of regular octahedron (Jendrol’ and Kardoš
2007). Recently, Kardoš presented a necessary and sufficient condition for exis-
tence of fulleroids characterized by tetrahedral symmetry types (Kardoš 2007).
Detailed investigations have been performed to find graph theoretical descriptors
by which the relative stability of fullerene isomers can be more efficiently predicted
(Balaban et al. 1995; Alcami et al. 2007; Albertazzi et al. 1999; Austin et al. 1995;
Fajtlowitz and Larson 2003; Zhang and Zhang 2001; Fowler 2002; Torrens 2002;
Došlić 2002a, b, 2007, 2008; Hu 2003; Reti and Bitay 2007).

Similarly, there are also many interesting results concerning bifaced simple poly-
hedra. A systematic investigation of BS polyhedra was inspired by Grünbaum’s
book “Convex Polytopes” (Grünbaum 1967). Since then, the subject has grown into
an active field of research (Goldberg 1937; Grünbaum and Zachs 1974; Deza and
Grishukhin 2001; Brinkmann and Deza 2000; Deza and Dutour 2005; Deza and
Grishukin 2002; Dutour-Sikiric et al. 2008; Deza et al. 2009; Deza 2000).

It is known that the sets of BS polyhedra of types S(3,6), S(4,6), S(5,6), S(4,β)
and S(5,β) are infinite (Grünbaum 1967; Deza et al. 1998; Dutour-Sikiric et al.
2008). Moreover it has been verified that there are infinitely many BS polyhedra
of types S(5,7) and S(5,8) (Delgado-Friedrichs and Deza 2000).

In this study fullerenes are considered as a subset of BS polyhedra. In order
to investigate their local combinatorial structure, we introduce the notion of the
line-corona detector (LC detector), which serves as an efficient tool to analyze
the correspondences between the first neighbors of vertices, edges and faces,
respectively.
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4.4 Line-Corona Detectors

The objective of using LC detectors is to analyze the intrinsic, local topological
properties of BS polyhedra and to obtain new topological invariants designated
primarily to classification purposes.

It will be demonstrated that by means of LC detectors it is possible to generate
a set of topological invariants (graph invariants) by which BS polyhedra of type
S(α,β) can be classified into a finite number of equivalence classes.

An LC detector is a simple connected acyclic graph (tree) having only 1- and
3-valent vertices. In order to obtain topological invariants some matching operations
should be carried out by an appropriately defined LC detector.

As a result of matching operations performed on trivalent polyhedral graphs,
the edges of a selected LC detector will be incident (adjacent) exactly to P faces
(denoted by D1, D2, . . . DP) of the trivalent polyhedron investigated. For trivalent
bifaced polyhedra, faces Dj(j = 1, 2, ..P) can be α- and β- gons, only. By definition,
the set of actual faces D1, D2, .. Dj . . . DP (where Dj are α-gons or β-gons) is called
a line corona generated by the selected LC detector. It is easy to see that the possible
number of different line coronas can not be larger than 2P.

Various LC detectors represented by acyclic graphs of small size can be eas-
ily constructed. Let L(ν,P) denote a LC-detector characterized by ν vertices and a
P-component vector of faces [D1, D2, . . . DP]. In Fig. 4.2, four different LC detec-
tors (namely L(4,3), L(6,4), L(10,6) and L(14,8)) can be seen. The simplest type
L(4,3) shown in Fig. 4.2a includes 4 vertices and 3 edges. The corresponding 4 line
coronas denoted by Cα,α,α, Cα,α,β , Cα,β,β and Cβ,β,β are depicted in Fig. 4.3. For
C60 fullerene isomers (case of α = 5 and β = 6) the properties of line coronas
C5,5,5, C5,5,6, C5,6,6 and C6,6,6 were investigated by Balaban et al. (1995). It was
verified that the 1812 structural isomers of C60 fullerenes could be partitioned into

Fig. 4.2 LC-detectors of
types L(4,3) (a), L(6,4) (b),
L(10,6) (c) and L(14,8) (d)
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Fig. 4.3 Four possible types
of vertex coronas for case of
α = 5 and β = 6

42 equivalence classes on the basis of two vertex coronas C5,5,5 and C5,5,6 (Balaban
et al. 1995).

Figure 4.2b shows a LC detector of type L(6,4) with 6 vertices and 5 edges. It
is easy to see that in this case, due to the symmetry of face arrangements, 9 differ-
ent line coronas can be obtained. Figure 4.4 indicates the 9 different line coronas
denoted by E1, E2 . . . E9. Starting with the concept outlined in Ref. (Cioslowski
et al. 2002) Alcami et al. developed a model by which the enthalpy of formation
(QE) of traditional fullerenes Ck(k ≤ 72) can be estimated as a multi-linear func-
tion of topological invariants characterizing the 9 line corona configurations (Alcami
et al. 2007).

Fig. 4.4 Nine types of
edge-coronas for case of
α = 5 and β = 6
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In the following, our investigations will be focused on the analysis of
interdependence between line coronas of types L(4,3) and L(6,4) depicted in
Fig. 4.2a and b.

For the sake of simplicity, line coronas Cα,α,α, Cα,α,β , Cα,β,β and Cβ,β,β are called
vertex-coronas, and line coronas E1, E2 . . . E9 are called edge-coronas, respec-
tively. These definitions are based on the following observations: For any trivalent
bifaced polyhedron (trivalent polyhedral graph) the LC detector L(4,3) makes it
possible to partition the vertices into 4 disjoint classes, while the LC detector L(6,4)
provides a partition of edges into 9 disjoint subsets. It should be noted that LC detec-
tors of type L(10,6) and L(14,8) are also applicable to classify vertices and edges
into subsets (See Fig. 4.2c and d).

4.5 Some Combinatorial Properties of Polyhedra

In what follows some propositions are presented. As we have mentioned, they con-
cern primarily the intrinsic relationships between vertex- and edge-coronas of BS
polyhedra (trivalent bifaced polyhedral graphs).

Proposition 1 For any polyhedral graph∑
n

nj+1Fn =
∑

n

∑
k≤n

e(n, k)W(n, k, j) (4.5)

where e(n,k) stands for the number of common edges between n- and k-sided neigh-
bor faces, j is an arbitrary integer, W(n,k,j) are positive edge weights, defined as
W(n, k, j) = nj + kj.

Proof Since e(n, k) = e(k, n) we have

M =
∑

n

e(n, n) + 1

2

∑
n,k

n �=k

e(n, k) =
∑

n

∑
k≤n

e(n, k) (4.6)

On the other hand, ∑
n

nj+1Fn =
∑

n

njAn (4.7)

where An = nFn is the total number of edges of n-sided cells, for which∑
n

An = 2M. (4.8)

Since

An = 2e(n, n) +
∑
k�=n

e(n, k). (4.9)
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this implies that

∑
n

nj+1Fn =
∑

n

nj

⎧⎨⎩2e(n, n) +
∑
k�=n

e(n, k)

⎫⎬⎭ =
∑

n

∑
k≤n

e(n, k)
{

nj + kj
}

(4.10)

Corollary 1.1 Consider a BS polyhedron including α- and β-sided faces, and denote
by mk = m(Ek) the number of different coronas Ek(k = 1, 2, . . . 9) for which∑

mk = M holds (See Fig. 4.4) From Eq. (4.10), if j = 1, one obtains

α2Fα + β2Fβ = 2αe(α, α) + (α + β)e(α, β) + 2βe(β, β) (4.11)

Moreover, from Fig. 4.4 it is easy to see

e(α, α) = m1 + m2 + m3 (4.12)

e(α, β) = m4 + m5 + m6 (4.13)

e(β, β) = m7 + m8 + m9 (4.14)

and

M =
9∑

k=1

mk = e(α, α) + e(α, β) + e(β, β) (4.15)

Remark 1.1 It is obvious that a BS polyhedron is α-isolated if and only if e(α, α) =
m1 + m2 + m3 = 0 holds. (If e(α, α) = 0 this implies that m4 = m5 = 0.) Similarly,
a BS polyhedron is β-isolated if and only if e(β, β) = m7 +m8 +m9 = 0 is fulfilled.

Remark 1.2 Parameter e(α,α) is considered as a generalization of the pentagon
adjacency index NP which is generally used for stability prediction of traditional
fullerene isomers consisting of pentagons and hexagons. The pentagon adjacency
index NP = e(5, 5) is equal to the total number of fused pentagon pairs (Fowler and
Manolopoulos 1995; Albertazzi et al. 1999; Campbell et al. 1996).

Remark 1.3 Based on the concept outlined in Campbell et al. (1996), it is easy
to show that the topological invariant e(α,α) can be decomposed in the following
form:

e(α, α) = 1

2

α∑
j=0

jp(j) (4.16)

where p(j) stands for the number of those α-faces that have exactly j edge-neighbor
α-faces, for j = 0, 1, 2, . . . α. From the definition it follows that

∑
p(j) = Fα . A

similar linear decomposition can be performed for parameter e(β,β).
Proposition 2 For any trivalent polyhedral graph∑

n

nj+1Fn =
∑

n

∑
k≤n

g(n, k)W(n, k, j) (4.17)
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where g(n,k) is the total number of edges whose end-vertices incident to n-sided and
k-sided faces, j is an arbitrary integer, W(n, k, j) = nj + kj are positive edge weights.

Proof The proof is an exact analogue of the proof of Proposition 1.

Remark 2.1 Formulas (4.5) and (4.17) are of similar form. The main difference
between them is that identity represented by Eq. (4.5) holds for any polyhedra, but
Eq. (4.17) is valid only for simple polyhedra.

Remark 2.2 It is easy to see that Eqs. (4.5) and (4.17) are the generalizations of the
well known identity

∑
nFn = 2M.

Corollary 2.1 Consider a BS polyhedron including α- and β-sided faces. If j = −1,
then from Eq. (4.17) it follows that

F = M + 6

3
= 2

α
g(α, α) +

(
1

α
+ 1

β

)
g(α, β) + 2

β
g(β, β) (4.18)

where

g(α, α) = m1 + m4 + m7 (4.19)

g(α, β) = m2 + m5 + m8 (4.20)

g(β, β) = m3 + m6 + m9 (4.21)

and

M =
9∑

k=1

mk = g(α, α) + g(α, β) + g(β, β) (4.22)

Proposition 3 (Jucovič 1974) For simple (trivalent) polyhedra the following
inequality is valid:

120 ≤ 20e(3,3) + 25e(3,4) + 16e(3,5) + 10e(3,6) + (20/3)e(3,7)
+ 5e(3,8) + (5/2)e(3,9) + 2e(3,10) + 20e(4,4) + 11e(4,5) + 5e(4,6)
+ 5e(4,7) + 5e(4,8) + 3e(4,9) + 8e(5,5) + 2e(5,6) + 2e(5,7) + 2e(5,8)

(4.23)

Proof Inequality (4.23) represents a reformulated form of Jucovič result which is
based on the extension of Kotzig’s theorem to simplicial polyhedra. Consequently,
using the duality concept, formula (4.23) is a simple corollary of Jucovič inequality
(Jucovič 1974).

Remark 3.1 The only simple polyhedron for which e(3,3) is a positive integer, is the
tetrahedron, where M = e(3,3) = 6.
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Corollary 3.1 Consider BS polyhedra of types S(3,6), S(3,7), S(3,8), S(3,9), S(3,10),
S(4,6), S(4,7), S(4,8), S(4,9), S(5,6), S(5,7), and S(5,8). From Eq. (4.23) it follows
that for these BS polyhedra

120 ≤ 10e(3, 6), 120 ≤ (20/3)e(3, 7), 120 ≤ 5e(3, 8), 120 ≤ (5/2)e(3, 9),
120 ≤ 2e(3, 10), 120 ≤ 20e(4, 4) + 5e(4, 6), 120 ≤ 20e(4, 4) + 5e(4, 7),
120 ≤ 20e(4, 4) + 5e(4, 8), 120 ≤ 20e(4, 4) + 3e(4, 9), 120 ≤ 8e(5, 5) + 2e(5, 6),
120 ≤ 8e(5, 5) + 2e(5, 7), 120 ≤ 8e(5, 5) + 2e(5, 8). (4.24)

hold.

4.6 Characterization of Combinatorial Structure
of BS Polyhedra

In this section we restrict our considerations to BS polyhedra.

Proposition 4 (Jendrol’ 1977; Jendrol’ 1999; Jendrol’ and Skupien 2001)

(a) There exists no BS polyhedron of type S (3, β) with β > 10,
(b) There exists no 4-isolated BS polyhedron of type S(4, β) with β > 7,
(c) There exists no 5-isolated BS polyhedron of type S(5, β) with β > 6.

Proof This statement follows immediately from a strengthening of Kotzig’s theo-
rem. In a trivalent polyhedron a common edge incident to a-sided and b-sided faces
(where b ≥ a ≥ 3) is called the (a,b)-edge. It has been proved (Jendrol’ 1977, 1999;
Jendrol’ and Skupien 2001) that every trivalent polyhedron contains an (a,b)-edge
where a = 3, 3 ≤ b ≤ 10, or a = 4, 4 ≤ b ≤ 7, or a = 5, 5 ≤ b ≤ 6.

Remark 4.1 There exists a 3-isolated BS polyhedron of type S(3, 10), a known
example is the truncated dodecahedron composed of 20 triangles and 12 decagons.
Similarly, there exist 4-isolated BS polyhedra of type S(4, 7) (Deza 2000).

Remark 4.2 There are infinitely many 3-isolated BS polyhedra of types S(3, 6)
with four triangular faces, consequently, for these S(3, 6) polyhedra IS(3)=4 holds
(Grünbaum 1967; Deza et al. 1998). It is conjectured that the set of BS polyhedra
of type S(3, β) is finite if β �=6.

Remark 4.3 There are infinitely many BS polyhedra of types S(4, β). A classical
example is the family of β-isolated β-gonal prisms with β quadrangular faces and
two β-gonal faces. There exists another infinite set of S(4, β) polyhedra composed of
four β-gonal faces and F4 = 2β − 6 quadrangular faces, for which IS(4)=IS(β)=0
holds (Dutour-Sikiric et al. 2008).

Remark 4.4 The number of 5-isolated S(5,6) polyhedra (fullerenes) is infinite.
These are the so-called IPR fullerenes, for which IS(5)=12 is fulfilled (Fowler and
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Manolopoulos 1995). It is easy to prove that the set of 6-isolated S(5,6) polyhedra
(fullerenes) is finite. It is also known that there exists an infinite family of β-isolated
S(5, β) polyhedra with 2β pentagonal faces and two β-gonal faces.

Proposition 5 Denote by Vααα , Vααβ , Vαββ and Vβββ the number of vertices
belonging to vertex coronas Cα,α,α , Cα,α,β , Cα,β,β and Cβ,β,β of a BS polyhedron
(See Fig. 4.3). Then we have for Vααα , Vααβ , Vαββ and Vβββ

Vααα = (2m1 + m2)/3 (4.25)

Vααβ = m2 + 2m3 (4.26)

Vαββ = 2m7 + m8 (4.27)

Vβββ = (m8 + 2m9)/3 (4.28)

Proof The edge number M of any BS polyhedron having α- and β-sided faces can
be partitioned into 4 disjoint sets, and calculated as a sum of four terms as follows:

M = m(α, α, α) + m(α, α, β) + m(α, β, β) + m(β, β, β) (4.29)

where

m(α, α, α) = 3Vααα/2 (4.30)

m(α, α, β) = 3Vααβ/2 (4.31)

m(α, β, β) = 3Vαββ/2 (4.32)

m(β, β, β) = 3Vβββ/2 (4.33)

by definition. From Fig. 4.4 it is clear

3Vααα/2 = m1 + m2/2 (4.34)

3Vααβ/2 = 3m2/2 + 3m3 (4.35)

3Vαββ/2 = 3m7 + 3m8/2 (4.36)

3Vβββ/2 = m8/2 + m9 (4.37)

From Eqs. (4.30), (4.31), (4.32), (4.33), (4.34), (4.35), (4.36), and (4.37), we obtain
formulas (4.25), (4.26), (4.27), and (4.28).

Corollary 5.1

e(α, α) = (3Vααα + Vααβ )/2 = m1 + m2 + m3 (4.38)
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e(β, β) = (3Vβββ + Vαββ )/2 = m7 + m8 + m9 (4.39)

e(α, β) = M − e(α, α) − e(β, β) = Vααβ + Vαββ (4.40)

Corollary 5.2

e(β, β) = M + e(α, α) − (3Vααα + 2Vααβ + Vαββ ) (4.41)

Proof

e(β, β) = M − e(α, α) − e(α, β) = M + e(α, α) − 2e(α, α) − Vααβ − Vαββ

= M + e(α, α) − (3Vααα + Vααβ ) − Vααβ − Vαββ

(4.42)
The following three lemmas also concern BS polyhedra.

Lemma 1

α2Fα + β2(F − Fα) = 3αVααα + (2α + β)Vααβ + (α + 2β)Vαββ + 3βVβββ (4.43)

Proof By substituting parameters e(α, α), e(α, β) and e(β, β) represented by
Eqs. (4.38), (4.39), and (4.40) into Eq. (4.11) we have Eq. (4.43)

Lemma 2

(β2 − 6α)Vααα + (β2 − 4α − 2β)Vααβ + (β2 − 2α − 4β)Vαββ

+(β2 − 6β)Vβββ = 2Fα(β2 − α2) − 4β2 (4.44)

Proof Consider Eq. (4.43) and identity given by

2F − 4 = V = Vααα + Vααβ + Vαββ + Vβββ (4.45)

By eliminating F from Eqs. (4.43) and (4.45), this leads to identity Eq. (4.44).

Lemma 3

Fα = 4β + (β − 6)V

2(β − α)
= (β − 6)

3(β − α)
M + 2β

β − α
(4.46)

Proof Taking into consideration that F = Fα + Fβ = 2 + V/2, 3V = 2M =
αFα + αFβ and F − M + V = 2, we have

3V = αFα+β(F−Fα) = αFα+β(2−Fα+V/2) = (α−β)Fα+2β+βV/2
(4.47)

From this, Eq. (4.46) yields. A consequence of Eq. (4.46) is that there are only 3
exceptional cases when Fα is independent of V. The 3 particular cases are as follows:
i) α = 3, β = 6 with F3 = 4, ii) α = 4, β = 6 with F4 = 6, iii) α = 5, β = 6 with
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F5 = 12. This implies that, BS polyhedra of type S(3,6), S(4,6), and S(5,6) contain
4 triangles, 6 quadrilaterals, and 12 pentagons, respectively.

Proposition 6

3Vααα + 2Vααβ + Vαββ = αFα (4.48)

Proof Eq. (4.44) can be rewritten in the following form:

6(β−α)Vααα+4(β−α)Vααβ+2(β−α)Vαββ+V(β2−6β) = 2(β−α)(β+α)Fα−4β2

(4.49)
From this one obtains

3Vααα + 2Vααβ + Vαββ = 2(β − α)(β + α)Fα − 4β2 − Vβ(β − 6)

2(β − α)
(4.50)

By using formula (4.46), we have

3Vααα + 2Vααβ + Vαββ = (β + α)Fα − 4β2 + Vβ(β − 6)

2(β − α)
= αFα (4.51)

Remark 6.1 If 3 ≤ α ≤ 5 and β ≥ 6, the minimum value of αFα is equal to 12. For
example, this is fulfilled for polyhedron H12(3, 6) shown in Fig. 4.1c.

Corollary 6.1 Using Eqs. (4.25), (4.26), (4.27), and (4.28) we obtain

αFα = 3Vααα + 2Vααβ + Vαββ = 2m1 + 3m2 + 4m3 + 2m7 + m8 (4.52)

This implies that

m8 = αFα − 2m1 − 3m2 − 4m3 − 2m7 (4.53)

Corollary 6.2 Because 2M = 3V = αFα + αFβ , this implies that

βFβ = 3V−αFα = Vααβ +2Vαββ +3Vβββ = m2 +2m3 +4m7 +3m8 +2m9
(4.54)

Corollary 6.3 Since M = (αFα + αFβ )/2, from Eqs. (4.52) and (4.54) one obtains

M = m1 + 2m2 + 3m3 + 3m7 + 2m8 + m9 (4.55)

Corollary 6.4 Using Eqs. (4.53) and (4.55) we have

m9 = M − m1 − 2m2 − 3m3 − 3m7 − 2m8
= M − 2αFα + 3m1 + 4m2 + 5m3 + m7

(4.56)
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Proposition 7 For any BS polyhedron

e(β, β) = M + e(α, α) − αFα = M − αFα + m1 + m2 + m3 (4.57)

Proof This results follows directly from Eqs. (4.12), (4.41), and (4.51).

Corollary 7.1 From Eqs. (4.12), (4.13), (4.15), and (4.57) we have

m4 + m5 + m6 = e(α, β) = M − e(α, α) − e(β, β)
=αFα − 2e(α, α) = αFα − 2m1 − 2m2 − 2m3

(4.58)

This implies that

m6 = αFα − 2m1 − 2m2 − 2m3 − m4 − m5 (4.59)

Proposition 8 For any BS polyhedron

g(β, β) = M + g(α, α) − αFα = M − αFα + m1 + m4 + m7 (4.60)

Proof Starting with Eq. (4.18), one obtains on the one hand,

βM = 6βg(α, α)

α
+ 3β

(
1

α
+ 1

β

)
g(α, β) + 6g(β, β) − 6β. (4.61)

On the other hand, from Eq. (4.22)

6M = 6g(α, α) + 6g(α, β) + 6g(β, β) (4.62)

Now, by eliminating g(β, β) from Eqs. (4.61) and (4.62) we have

g(α, β) = α

3(α − β)
{(6 − β)M − 6β − 6g(α, α)(1 − β/α)} . (4.63)

Since M = (3/2)V, now, using the relation between V and Fα represented by
formula (4.46), Eq. (4.63) can be transformed into the following form:

m2 + m5 + m8 = g(α, β) = α(6 − β)

3(β − α)
M + 2αβ

β − α
− 2g(α, α)

= αFα − 2g(α, α) = αFα − 2m1 − 2m4 − 2m7

(4.64)

From this

m8 = αFα − 2m1 − m2 − 2m4 − 2m7 − m5 (4.65)

This implies that

m3 + m6 + m9 = g(β, β) = M − g(α, α) − g(α, β)
= M + g(α, α) − αFα = M − αFα + m1 + m4 + m7

(4.66)
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Proposition 9 For any BS polyhedron

m5 = 2m2 + 4m3 − 2m4 (4.67)

Proof From Eqs. (4.53), and (4.65) one obtains

m8 = αFα − 2m1 − 3m2 − 4m3 − 2m7 (4.68)

m8 = αFα − 2m1 − m2 − 2m4 − 2m7 − m5 (4.69)

From the formulas above it follows the identity (4.67).

Corollary 9.1 From Eqs. (4.59) and (4.67) we have

m6 = αFα − 2m1 − 2m2 − 2m3 − m4 − m5
= αFα − 2m1 − 4m2 − 6m3 + m4

(4.70)

Now, we introduce two definitions concerning the notions of independent and
maximal finite sets of edge parameters.

Definition 1 A subset S of edge parameters with K ≤ 9 elements is called an inde-
pendent subset if any mj in S can not be expressed as a function of parameters mk
included in S, where k = 1, 2, . . . K and k �= j. Consequently, this means that all
elements of S are algebraically independent.

Definition 2 An independent subset ST of edge parameters with K elements is called
maximal if each edge parameter which is not included in ST can be generated as a
function of independent parameters in ST. This means that for any mj /∈ ST, ST

⋃
mj

is not an independent set.

Proposition 10 Consider a set of BS polyhedra of type S(α, β). If α, β, M are fixed,
then parameters (m1, m2, m3, m4 and m7) represent an independent and maximal
subset. This implies that knowing parameters α, β, M, m1, m2, m3, m4, m7, from
these data edge parameters m5, m6, m8, and m9 can be computed.

Proof

(i) As we have shown, from edge parameters (m1, m2, m3, m4 and m7) the remain-
ing four parameters can be generated. Parameter m5 can be calculated using the
general formula (4.67) which is valid for any BS polyhedra, independently of
α, β and M. Moreover, from Eqs. (4.53) and (4.70) it follows that

m8 = αFα − 2m1 − 3m2 − 4m3 − 2m7

= α(β − 6)

3(β − α)
M + 2αβ

β − α
− 2m1 − 3m2 − 4m3 − 2m7

(4.71)
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m6 = αFα − 2m1 − 4m2 − 6m3 + m4

= α(β − 6)

3(β − α)
M + 2αβ

β − α
− 2m1 − 4m2 − 6m3 + m4

= m4 + 2m7 + m8 − m2 − 2m3

(4.72)

Finally, according to Eq. (4.56)

m9 = M −
8∑

k=1
mk =M − 2αFα + 3m1 + 4m2 + 5m3 + m7

= M − 2α(β − 6)

3(β − α)
M − 4αβ

β − α
+ 3m1 + 4m2 + 5m3 + m7

(4.73)

(ii) Now, we verify that the five edge parameters (m1, m2, m3, m4, m7) form an
algebraically independent and maximal set for BS polyhedra of type S(α, β)
having a fixed edge number M = 3V/2.

To prove this, consider the three C40 fullerene isomers C40: 10, C40: 12 and
C40: 13 whose Schlegel diagrams are illustrated in Fig. 4.5. Their edge-parameters
are summarized in Table 4.1. As can be stated, in all cases, there are only two iso-
mers having 4 identical edge parameters from set (m1, m2, m3, m4, m7), and there
exists a fifth one which is different. This means that the set of five independent edge
parameters is maximal in the sense that their numbers (K = 5) can not be decreased
(or increased).

Fig. 4.5 Schlegel diagrams
of three C40 isomers

Table 4.1 Topological parameters of five C40 fullerene isomers

Topological parameters

Isomer m1 m2 m3 m4 m5 m6 m7 m8 m9 Np

C40:10 1 7 5 8 18 8 5 7 1 13
C40:12 1 7 5 7 20 7 5 7 1 13
C40:13 1 7 5 8 18 8 4 9 0 13
C40:35 0 0 11 10 24 4 5 6 0 11
C40:36 0 0 11 10 24 4 5 6 0 11
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Corollary 10.1 For BS polyhedra of types S(α,6) where α = 3, 4 and 5 we have

m6 = 12α

6 − α
− 2m1 − 4m2 − 6m3 + m4 (4.74)

m8 = 12α

6 − α
− 2m1 − 3m2 − 4m3 − 2m7 (4.75)

m9 = M − 24α

6 − α
+ 3m1 + 4m2 + 5m3 + m7 (4.76)

Corollary 10.2 As a particular case, for traditional fullerene isomers (where α = 5
and β = 6) we have

m5 = 2m2 + 4m3 − 2m4 (4.77)

m6 = 60 − 2m1 − 4m2 − 6m3 + m4 (4.78)

m8 = 60 − 2m1 − 3m2 − 4m3 − 2m7 (4.79)

m9 = M − 120 + 3m1 + 4m2 + 5m3 + m7 (4.80)

4.7 Application

4.7.1 Energetic Characterization of Fullerenes

Alcami et al. developed a model devoted to estimate the enthalpy of formation (the
energetic parameter QE) of traditional fullerenes Ck(k ≤ 72) on the basis of 9 edge
parameters generated from edge coronas (Alcami et al. 2007).

In this model it was assumed that (i) every edge (i.e. every bond between two
neighbor carbon atoms) represents a specific edge-energy value, (ii) edge energies
are determined only by the edge-types, more exactly, by the local configurations of
pentagons and hexagons occurring in edge coronas, (iii) QE can be estimated as a
weighted linear function of edge-parameters (m1, m2, . . . , m9), where the positive
weights are identical to the specific edge-energy values εj(1 ≤ j ≤ 9) belonging to
the 9 distinct edge-coronas (See Fig. 4.4).

From the model outlined it follows that QE can be calculated as

QE = ε1m1 + ε2m2 + ... + ε9m9 (4.81)

Specific edge–energy values εj given in Alcami et al. (2007) are as follows: ε1 =
19.8, ε2 = 17.6, ε3 = 10.3, ε4 = 15.7, ε5 = 12.4, ε6 = 7.8, ε7 = 6.2, ε8 =
4.7 and ε9 = 1.7.

By using formulas (4.77), (4.78), (4.79), and (4.80) linear interdependencies can
be found between these nine parameters, and QE can be calculated by the following
simplified equation:
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QE = μ01 + μ02M + μ1m1 + μ2m2 + μ3m3 + μ4m4 + μ5m7 (4.82)

where

μ01 = 60ε6 + 60ε8 − 120ε9 = 546 (4.83)

μ02 = ε9 = 1.7 (4.84)

μ1 = ε1 − 2ε6 − 2ε8 + 3ε9 = −0.1 (4.85)

μ2 = ε2 + 2ε5 − 4ε6 − 3ε8 + 4ε9 = 3.9 (4.86)

μ3 = ε3 + 4ε5 − 6ε6 − 4ε8 + 5ε5 = 2.8 (4.87)

μ4 = ε4 − 2ε5 + ε6 = −1.3 (4.88)

μ5 = ε7 − 2ε8 + ε9 = −1.5 (4.89)

We can conclude that for Ck fullerene isomers the energetic parameter QE can
be directly calculated by a multi-linear function of 6 variables instead of 9 ones. If
the number of edges is fixed by M (for example, in the case of C60 isomers, where
M = 90) the number of independent variables will be equal to 5.

Assuming that values of QE are known for a given set of fullerene isomers,
the coefficients of Eq. (4.82) can be easily estimated by means of a multi-linear
regression analysis. Consequently, Eq. (4.82) can be used to predict the stability of
fullerene isomers on the basis of edge parameters mk.

It should be noted that there are some limitations concerning the discriminating
power of edge parameters. In practice, this means that there exist fullerene isomers
for which the set of edge parameters is identical, although their combinatorial struc-
tures are different. For example, among the forty C40 isomers, fullerenes isomer
pairs C40:35 and C40:36 have identical edge parameters. See Table 4.1. A simi-
lar problem arises for the combinatorial characterization of so-called IPR fullerenes
where all pentagons are isolated (Fowler and Manolopoulos 1995).

4.7.2 A Case Study Concerning the Classification of C40 Isomers

We investigated and compared the discriminating performances of four different
types of topological descriptors (invariants) designated to classify fullerene isomers
into a finite number of equivalence classes. For this comparative test the set of C40
isomers has been selected. It is interesting to note that a special property of the forty
C40 isomers is that equalities Np = e(5, 5) = e(6, 6) and g(5, 5) = g(6,6) hold for
them.
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To rank the selectivity of various topological descriptors quantitatively, we intro-
duced a discriminating index ID. By definition, ID = 100∗NC/Nt where NC and
Nt are the number of equivalence classes and the total number of fullerene iso-
mers, respectively. (In this case, Nt = 40). Using Density Functional Tight-Binding

Table 4.2 Topological parameters of forty C40 isomers

Topological parameters

Isomer m1 m2 m3 m4 m7 Np V555 V556 �

Energy,
(eV)

C40:38 0 0 10 8 10 10 0 20 2.727 –342,031
C40:39 0 0 10 10 10 10 0 20 2.727 –341,631
C40:31 0 6 5 5 11 11 2 16 2.500 –341,438
C40:29 0 6 5 6 11 11 2 16 2.500 –341,345
C40:26 0 3 8 8 8 11 1 19 2.250 –341,094
C40:24 0 3 8 9 8 11 1 19 2.250 –341,022
C40:37 0 0 11 10 6 11 0 22 2.083 –340,636
C40:40 0 12 0 0 12 12 4 12 2.308 –340,580
C40:14 1 7 4 5 9 12 3 15 2.077 –340,476
C40:36 0 0 11 10 5 11 0 22 2.000 –340,431
C40:30 0 9 3 6 9 12 3 15 2.077 –340,304
C40:25 0 6 6 8 7 12 2 18 1.923 –340,277
C40:22 0 6 6 9 6 12 2 18 1.846 –340,230
C40:35 0 0 11 10 5 11 0 22 2.000 –340,196
C40:21 0 6 6 10 7 12 2 18 1.923 –340,151
C40:27 0 6 6 8 6 12 2 18 1.846 –340,126
C40:15 1 4 7 6 6 12 2 18 1.846 –339,943
C40:17 1 10 2 3 7 13 4 14 1.714 –339,884
C40:34 0 3 9 10 4 12 1 21 1.692 –339,827
C40:28 0 6 6 9 7 12 2 18 1.923 –339,777
C40:16 2 8 3 2 7 13 4 14 1.714 –339,645
C40:20 0 3 9 12 3 12 1 21 1.615 –339,627
C40:9 2 8 3 4 8 13 4 14 1.786 –339,614
C40:10 1 7 5 8 5 13 3 17 1.571 –339,558
C40:12 1 7 5 7 5 13 3 17 1.571 –339,370
C40:13 1 7 5 8 4 13 3 17 1.500 –339,347
C40:19 1 10 2 4 7 13 4 14 1.714 –339,292
C40:23 0 6 7 12 3 13 2 20 1.429 –338,690
C40:6 2 8 4 7 3 14 4 16 1.267 –338,624
C40:18 1 10 3 6 4 14 4 16 1.333 –338,341
C40:5 3 9 2 5 7 14 5 13 1.533 –338,332
C40:32 0 12 2 8 2 14 4 16 1.200 –338,270
C40:8 4 10 1 2 4 15 6 12 1.188 –338,113
C40:33 0 12 2 8 4 14 4 16 1.333 –337,922
C40:4 3 9 3 6 3 15 5 15 1.125 –337,348
C40:7 2 11 2 6 3 15 5 15 1.125 –337,330
C40:11 2 8 5 8 1 15 4 18 1.000 –336,642
C40:2 4 10 2 6 2 16 6 14 0.941 –336,489
C40:3 6 12 0 4 0 18 8 12 0.632 –335,193
C40:1 10 10 0 0 0 20 10 10 0.476 –333,806
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(DFTB) method (Porezag et al. 1995) we calculated the total energy values QC
characterizing the relative stability of isomers. These energies and the correspond-
ing topological parameters are summarized in Table 4.2. From the comparative
investigation the following conclusions can be drawn:

(a) By using the traditional pentagon adjacency index Np, (Np = m1 + m2 + m3 =
(3V555 + V556)/2) it is possible to classify the 40 isomers into 9 subclasses,
consequently the discriminating performance is ID = 100∗9/40 = 22.5%.

(b) Performing the classification by two independent vertex numbers (V555, V556)
where V555 = (2m1+m2)/3 and V556 = m2+2m3, we have ID = 100∗19/40 =
47.5%.

(c) The third topological descriptor � was defined as

� = 31 + m7

1 + Np
− 1 = 31 + m7

1 + m1 + m2 + m3
− 1 (4.90)

Using parameter � we obtain ID = 100∗24/40 = 60.0%. As shown in Table 4.2,
� correlates highly with the calculated total energy values QC characterizing
the relative stability of isomers. Additionally, it is worth noting that for the
topological parameter � the inequality 0 ≤ � ≤ 60 holds. Since 0 ≤ Np ≤ 30
and 0 ≤ m7 ≤ 30, this implies that � = 0 for fullerene C20 (dodecahedron) and
� = 60 for the Buckminster fullerene, only.

(d) Finally, we have the best result when the vector ν = [m1, m2, m3, m4, m7]
of five independent edge-parameters was selected for classification purposes. In
this case, ID = 100∗39/40 = 97.5% yields.

4.8 Final Remarks, Conclusions

We have developed general relations between local combinatorial parameters of
fullerenes represented by bifaced polyhedral graphs and we obtained the following
properties.

(i) Edge-parameters mk can be easily calculated using a simple computer program
designated to the structural analysis of Schlegel diagrams of S(5,6) polyhedra.

(ii) The 5 component vector ν = [m1, m2, m3, m4, m7] of edge-parameters
offers a better discrimination than the single-valued graph invariants (Np, �)
when partitioning the fullerene isomers.

(iii) The structural similarity (or dissimilarity) of fullerene isomers can be quanti-
tatively measured by introducing a distance function d(νA, νB) where νA and
νB stand for the corresponding edge-parameter vectors of isomers HA and HB,
respectively. (It follows that fullerene isomers HA and HB belong to the same
class of equivalence if and only if d(νA, νB) = 0.)
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(iv) Because the 5 edge parameters included in vector ν are algebraically indepen-
dent and have a high discriminating performance, it is expected that a function
of 5 variables can be constructed by which the relative stability of fullerene
isomers can be more efficiently predicted.

Acknowledgements I. L. thanks for the support of the Hungarian state grant OTKA K73776.
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Jucovič E (1974) Geom Dedicata 3:233
Kardoš F (2007) J Math Chem 41:101
Laszlo I, Rassat A (2001) Int J Quant Chem 84:136
Porezag D, Frauenheim T, Köhler T, Seifert G, Kashner R (1995) Phys Rev B 51:12947
Reti T, Bitay E (2007) Mater Sci Forum 537–538:439
Torrens F (2002) Internet Electron J Mol Des 1:351
Zhang H, Zhang F (2001) J Math Chem 30:343



Chapter 5
Computation of Some Topological Indices of C60
and C80 Fullerenes by GAP Program

Ali Iranmanesh

Abstract In this chapter, we give a GAP program for computing the Schultz index,
Modified Schultz index, Wiener index, hyper Wiener index, Balaban index and
Zagreb indices for any graph and by this algorithm we compute the Schultz polyno-
mial and Schultz index of C60 and C80 fullerene by GAP program. Also we compute
the Wiener index, hyper Wiener index and Wiener polynomial of C80 fullerene
by this program and finally we compute Balaban and Zagreb indices for IPR C80
fullerene isomers by GAP program.

5.1 Introduction

One of the main distinctive characteristics of modern chemistry is the use of the-
oretical tools for the molecular modeling of physicochemical processes, chemical
reactions, medicinal and toxicological events, etc., in which chemicals are involved.
The success of the molecular modeling is judged by the insights that it offers on the
nature of the processes studied, which permit better comprehension and a rational
modification of them. These properties, measured experimentally, are almost invari-
ably expressed in quantitative terms, think for instance of boiling point, refraction
index, transition state energy, percentage of inhibition of some enzymatic activ-
ity, lethal dose, and so forth. The paradigm for the modeling of such properties is
the relationship that exists between them and the molecular structure of chemical.
This fact presupposes for the first challenge in the molecular modeling: the prop-
erties are expressed as numbers while the molecular structure is not. The way to
solve this problem is by using molecular descriptors that are numbers represent-
ing information about different molecular features, to describe quantitatively the
properties under study. These models are known as quantitative structure-property
(QSPR) and quantitative structure-activity relationships (QSAR), depending on the
physicochemical or biological nature of the properties studied, respectively.
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Topological indices are numerical descriptors derived from the associate graphs
of chemical compounds. Some indices based on the distances in graph are widely
used in establishing relationships between the structure of molecules and their
physico-chemical properties. Usage of topological indices in chemistry began in
1947 when the chemist Harold Wiener introduced Wiener index to demonstrate cor-
relations between physicochemical properties of organic compounds and the index
of their molecular graphs (Wiener 1947). Wiener originally defined his index (W)
on trees and studied its use for correlations of physicochemical properties of alka-
nes, alcohols, amines and analogous compounds (Khadikar and Karmarkar 2002).
Starting from the middle of the 1970s, the Wiener index gained much popular-
ity and, since then, new results related to it are constantly being reported. For a
review, historical details and further bibliography on the chemical applications of the
Wiener index see (Gutman 1994; Gutman and Potgieter 1997; Nikolić et al. 1995).

Let G be a connected graph. The vertex-set and edge-set of G denoted by V(G)
and E(G) respectively. The distance between the vertices u and v, d(u, v), in a graph
is the number of edges in a shortest path connecting them. Two graph vertices are
adjacent if they are joined by a graph edge. The degree of a vertex i ∈ V(G) is the
number of vertices joining to i and denoted by δi.

The Wiener index of G is

W(G) = 1

2

∑
{u, v}⊆V(G)

d(u, v) (5.1)

The Wiener polynomial of G is

W(G, x) = 1

2

∑
{u, v}⊆V(G)

xd(u, v) (5.2)

The Hyper Wiener index of G is

WW(G) = 1

2

∑
{u,v}⊆V(G)

d(u, v) + d(u, v)2 (5.3)

Wiener polynomial was first introduced by Hosoya (1988). Some authors call
these Polynomials Hosoya’s polynomials as an honor of Haruo Hosoya. Many
papers have been devoted to compute the Wiener polynomial for different types
of graphs. More information can be found in Gutman (1999), Lepovic and Gutman
(1998), and Sagan et al. (1996).

Observe that the degree of the Wiener polynomial is equal to the diameter of G.
Also, notice that

W(G) = W ′(G, 1), WW(G) = W ′(G, 1) + W ′′(G, 1) (5.4)

The Balaban index of a molecular graph G is defined by Balaban (1982, 1983).
The Balaban index of a graph G is denoted by J(G) and defined as J(G) =
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m
μ+1

∑
ij ∈ E(G)

1√
d(i)d(j)

, where m is the number of edges of G and μ(G) is the cyclo-

matic number of G. Note that the cyclomatic number is the minimum number of
edges that must be removed from G in order to transform it to an acyclic graph; it
can be calculated using μ(G) = m − n + 1 where n is the number of vertices and
d(i) is the sum of distances between vertex i and all other vertices of G, and the
summation goes over all edges from the edge set E(G). The Balaban index appears
to be a very useful molecular descriptor with attractive properties (Diudea et al.
2006; Trinajstic 1992). The connectivity indices are extensively used as molecular
descriptors in predicting the retention indices in chromatographic analysis of vari-
ous isomeric aliphatic, aromatic and polycyclic hydrocarbons (Ehrman et al. 1981;
Ringo 1996; Spieth and Ringo 1983).

In a series of papers, Balaban index of some nanotubes are computed
(Iranmanesh and Ashrafi 2007; Yousefi-Azari et al. 2008; Zhou and Trinajsti 2008).

Another topological index is Schultz index. This index was introduced by Harry
Schultz in 1989 (Schultz 1989). This molecular topological index studied in many
papers (Dobrynin 1999; Gutman 1994; Schultz 2000).

The Schultz index is defined as:

S(G) =
∑

{u,v}⊆V(G)

(δu + δv) d(u, v)

Klavžar and Gutman (1997) defined the Modified Schultz index as:

M S (G) =
∑

{u,v}⊆V(G)

(δuδv) d(u, v)

In Hosoya (1988), Haruo Hosoya used polynomials to generate distance distri-
butions for graphs.

The Schultz polynomial of G is:

H1(G, x) =
∑

{u,v}⊆V(G)

(δu + δv) xd(u,v)

Also the modified Schultz polynomial of G is defined as:

H2(G, x) =
∑

{u,v}⊆V(G)

(δuδv) xd(u,v)

Observe that the degree of the Schultz polynomial and the modified Schultz
polynomial is equal to the diameter of G. Also, notice that

H′
1(G, x) = S(G) (5.5)

H′
2(G, x) = M S(G)
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In a series of papers, the Schultz and the modified Schultz indices for some
fullerene and nanotubes are computed (Alizadeh et al. 2009; Heydari and Taeri
2007a, b; Iranmanesh and Ashrafi 2007; Iranmanesh et al. 2009).

Another topological indices are Zagreb indices. These indices have been intro-
duced more than 30 years ago by Gutman and Trinajestic (1972). They are
defined as:

M1(G) =
∑

v ∈V(G)

deg(v)2,

M2(G) =
∑

uv ∈E(G)

deg(u) deg(v).

We refer the reader to consult (Braun et al. 2005; Gutman and Das 2004; Nikolic
et al. 2003; Zhou 2004; Zhou and Gutman 2004, 2005) for historical background,
computational techniques and mathematical properties of Zagreb indices. In a series
of papers, these topological indices are computed (Behtoei et al. 2009; Khalifeh
et al. 2009; Sun and Chen 2009; Taherkhani et al. 2009).

GAP stands for Groups, Algorithms and Programming (Schonert et al. 1992).
The name was chosen to reflect the aim of the system, which is theoretical software
for solving computational problems in group theory. The last years, a rapid spread of
interest in the understanding, design and even implementation of group theoretical
algorithms was recorded. GAP software was built by GAP’s team in Aachen. We
encourage the reader to consult (Dabirian and Iranmanesh 2005; Trinajstic 1992)
for background materials and computational techniques related to applications of
GAP in solving some problems in chemistry and biology.

In this chapter, at first, we give an algorithm for computing the Schultz and
modified Schultz polynomials for any graph and by this algorithm we compute the
Schultz polynomial and Schultz index of C60 Fullerene by GAP program. Then we
compute the Schultz and the modified Schultz polynomials of C80 fullerene by GAP
program. In continue, we give a GAP program for computing the Wiener polynomial
of any graph. Also we compute the Wiener index, hyper Wiener index and Wiener
polynomial of C80 fullerene by this program. In Section 5.4, we give an algorithm
for computing the Balaban index of any simple connected graph. Also we compute
this index for IPR C80 fullerene isomers by GAP program. In last section, we give
an algorithm that enables us to compute the Zagreb indices of any graph. Also by
this algorithm, we compute the Zagreb indices for C80 fullerene.

5.2 Computing Schultz Polynomial, Schultz Index of C60
Fullerene by GAP Program

According to the Eq. (5.5), we can obtain the Schultz index of the graph by the
Schultz polynomial.

In this section, we give an algorithm for obtaining Schultz and modified Schultz
indices for any graph. For this purpose, the following algorithm is presented:
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At first, we label the vertices of the graph, then we determine all of adjacent
vertices set of the vertex u, u ∈ V(G), and this set is denoted by N(u).

The set of vertices that their distance to vertex u is equal to t, (t ≥ 0), is denoted
by Dt(u) (or Du, t).

• Du, t=Dt(u) = {v| d(u, v) = t}
• D0(u) = {u}
• D1(u) = N(u)

The distance between each vertex of set N(v)\(Dt(u) ∪ Dt−1(u)) and the vertex u
is equal to t + 1, thus we have:

Di, t+1 = ∪j∈D i, t (N(j)\(Di, t ∪ Di, t−1), t ≥ 1.

We have the following relations:

• V(G) = ⋃
t≥0

Dt(u) , ∀ u ∈ V(G)

• H1(G, x) =
∑

{u,v}⊆V(G)

(δu + δv) xd(u,v)

= 1

2

n∑
i=1

n∑
i �=j=1

(δi + δj) xd(i,j)

= 1

2

n∑
i=1

∑
j∈Dt(i)

(δi + δj) xt

• H2(G, x) =
∑

{u,v}⊆V(G)

(δuδv) xd(u,v)

= 1

2

n∑
i=1

n∑
i �=j=1

(δiδj) xd(i,j)

= 1

2

n∑
i=1

∑
j∈Dt(i)

(δiδj) xt

5.2.1 Schultz Polynomial and Schultz Index of C60 Fullerene

In this part,we compute the Schultz polynomial and Schultz index of C60 fullerene
by GAP program. Fullerenes are cage-like molecules formed as a twenty-sided geo-
metric shape. In order to name fullerenes, letter C is followed by the number of
carbon atoms existent in the networks of fullerenes. (e.g. C60). Fullerenes consist of
the networks of pentagons and hexagons. To be a closed shape, a fullerene should
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Fig. 5.1 C60 fullerene

Table 5.1 The schultz polynomial and schultz index of C60 fullerene

H(C60, x) 540x+1080x2 +1440x3 +1800x4 +1800x5 +1800x6 +1440x7 +540x8 +180x9

SG(C60) 50040

exactly have 12 pentagon sides, but the number of hexagon sides can be extremely
variable. Fullerenes were discovered in 1985 by Robert Curl, Harold Kroto and
Richard Smalley at the University of Sussex and Rice University, and are named
after Richard Buckminster Fuller (Fig. 5.1).

The following program computes the Schultz polynomial’s coefficients of C60
fullerene (Table 5.1).

n:=60; k:=[];N:=[];
k[1]:=[1..5]; k[2]:=[6..20]; k[3]:=[21..40];
k[4]:=[41..55]; k[5]:=[56..60];
for i in [1..5] do

y:=Size(k[i]);
for j in [1..y] do

x:=k[i][j];
N[x]:=[x-1,x+1];
od;

od;

D1:=[9,12,15,18];
for i in [1..4] do

x:=D1[i]; N[i][3]:=x; N[x][3]:=i;



5 Computation of Some Topological Indices of C60 and C80 Fullerenes 91

od;

D2:=Difference(k[2],Filtered(k[2],i->(i mod 3)=0));
D3:=Filtered(k[3],i->(i mod 4) in [1,2]);

for i in [1..9] do

x:=D2[i]; N[D3[i+1]][3]:=x; N[x][3]:=D3[i+1];
od;

D4:=Difference(k[3],D3);
D5:=Filtered(k[4],i->(i mod 3)<>1);

for i in [1..9] do

x:=D4[i]; N[D5[i+1]][3]:=x; N[x][3]:=D5[i+1];
od;

D6:=Difference(k[4],D5);
for i in [1..4] do

x:=D6[i]; N[k[5][i+1]][3]:=x; N[x][3]:=k[5][i+1];
od;

N[1]:=[2,5,9];N[5]:=[1,4,6];N[6]:=[5,7,20];N[20]:=[19,21,6];
N[21]:=[20,22,40]; N[40]:=[39,41,21]; N[41]:=[40,42,55];
N[55]:=[54,56,41]; N[56]:=[55,57,60];N[60]:=[52,56,59];
md:=1; v:=[]; D:=[];
for i in [1..n] do

D[i]:=[]; u:=[i]; D[i][1]:=N[i]; v[i]:=Size(N[i]);
u:=Union(u,D[i][1]); r:=1; t:=1;
while r<>0 do

D[i][t+1]:=[];
for j in D[i][t] do

for m in Difference (N[j],u) do

AddSet(D[i][t+1],m);

od; od;

u:=Union(u,D[i][t+1]);
if D[i][t+1]=[] then r:=0;fi;
t:=t+1; od;

md:=MaximumList([md,Size(D[i])]);
od;

p:=[];
for i in [1..md] do p[i]:=0; od;

for t in [1..md] do

for i in [1..n] do

x:=0;
for j in D[i][t] do

x:=x+Size(N[j]); od;

p[t]:=p[t]+((Size(D[i][t]))∗v[i]+x);
od;od;

p:=p/2;#(p is the set the Schultz polynomial’s coefficients

of C60 fullerene)
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5.2.2 Computing Schultz and the Modified Schultz Polynomials
of C80 Fullerene

In this part, we compute the Schultz and the modified Schultz polynomials of C80
fullerene by GAP program. There are 120 edges in the molecular graph of C80
fullerene (Fig. 5.2). There are seven IPR-satisfying isomers for C80. For these seven
isomers, the Schultz and the modified Schultz polynomials are computed by the
following GAP program in Table 5.2.

The following program computes the Schultz and the modified Schultz polyno-
mials of C80 fullerene:

n:=80; k:=[]; N:=[];
k[1]:=[1..5]; k[2]:=[6..20]; k[3]:=[21..40];
k[4]:=[41..60]; k[5]:=[61..75]; k[6]:=[76..80];
for i in [1..6] do

y:=Size(k[i]);
for j in [1..y] do

x:=k[i][j];
N[x]:=[x-1,x+1];
od;od;

D1:=[9,12,15,18];
for i in [1..4] do

x:=D1[i]; N[i][3]:=x; N[x][3]:=i;
od;

D2:=Difference(k[2],Filtered(k[2],i->(i mod 3)=0));
D3:=Filtered(k[3],i->(i mod 2)=1);
for i in [1..9] do

x:=D3[i+1]; N[D2[i]][3]:=x; N[x][3]:=D2[i];
od;

D4:=Difference(k[3],D3); D5:= Filtered(k[4],i->i mod 2=1);
for i in [1..9] do

x:=D5[i+1]; N[D4[i]][3]:=x; N[x][3]:=D4[i];
od;

D6:=Difference(k[4],D5);
D7:= Filtered(k[5],i->(i mod 3)<>2);

for i in [1..9] do

x:=D7[i+1]; N[D6[i]][3]:=x; N[x][3]:=D6[i];
od;

D8:=Difference(k[5],D7);
for i in [1..4] do

x:=k[6][i+1]; N[D8[i]][3]:=x; N[x][3]:=D8[i];
od;
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N[1]:=[2,5,9]; N[5]:=[1,4,6]; N[6]:=[5,7,20];
N[20]:=[6,19,21]; N[21]:=[20,22,40];
N[40]:=[21,39,41]; N[41]:=[40,42,60]; N[60]:=[61,59,41];
N[61]:=[60,62,75];
N[74]:=[73,75,76]; N[75]:=[58,61,74]; N[76]:=[74,77,80];
N[80]:=[71,76,79];
v:=[]; D:=[]; md:=1;
for i in [1..n] do

D[i]:=[]; u:=[i]; D[i][1]:=N[i]; v[i]:=Size(N[i]);
u:=Union(u,D[i][1]);
r:=1; t:=1;
while r<>0 do

D[i][t+1]:=[];
for j in D[i][t] do

for m in Difference (N[j],u) do

AddSet(D[i][t+1],m);

od; od;

u:=Union(u,D[i][t+1]);
if D[i][t+1]=[] then r:=0;fi;
t:=t+1;
od;

md:=MaximumList([md,Size(D[i]-1)]);
od;

C:=[];MC:=[];
for k in [1..md] do

C[k]:=0; MC[k]:=0;
od;

Deg:=[];
for i in [1..n] do

Deg[i]:=Size(N[i]);
od;

for i in [1..n] do

for t in [1..Size(D[i])-1] do

for j in D[i][t] do

C[t]:=C[t]+(Deg[i]+Deg[j]);
MC[t]:=MC[t]+(Deg[i]∗Deg[j]);
od;od;od;

C:=C/2; #(C is the Schultz polynomial’s coefficients of C80
Fullerene)

MC:=MC/2;#(MC is the modified Schultz polynomial’s

coefficients of C80 Fullerene)
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Fig. 5.2 C80 fullerene

Table 5.2 Schultz and modified Schultz polynomials of C80 fullerene’s isomers

Isomers of
C80 fullerene Schultz polynomials Modified Schultz polynomials

N0.1-D5d 720x + 1440x2 + 1980x3 + 2520x4 +
2700x5 + 2520x6 + 1980x7 +
1440x8 + 720x9 + 240x10

1080x + 2160x2 + 2970x3 + 3780x4 +
4050x5 + 4050x6 + 3780x7 +
2970x8+2160x9+1080x10+360x11

No.2-D2 720x + 1440x2 + 1980x3 + 2520x4 +
2700x5 + 2880x6 + 2640x7 +
2100x8 + 1500x9 + 420x10 + 60x11

1080x + 2160x2 + 9720x3 + 3780x4 +
4050x5 + 4320x6 + 3960x7 +
3150x8 + 2250x9 + 630x10 + 90x11

No.3-C2v 720x + 1440x2 + 1980x3 + 2520x4 +
2700x5 + 2844x6 + 2610x7 +
2106x8 + 1494x9 + 546x10

1080x + 2160x2 + 2970x3 + 3780x4 +
4050x5 + 4266x6 + 3915x7 +
3159x8 + 2241x9 + 819x10

No.4-D3 720x + 1440x2 + 1980x3 + 2520x4 +
2700x5 + 2796x6 + 2574x7 +
2052x8 + 1470x9 + 624x10 + 84x11

1080x + 2160x2 + 2970x3 + 3780x4 +
4050x5 + 4194x6 + 3861x7 +
3078x8 +2205x9 +936x10 +126x11

No.5-C2v 720x + 1440x2 + 1980x3 + 2520x4 +
2700x5 + 2868x6 + 2628x7 +
2088x8 + 1488x9 + 516x10 + 12x11

1080x + 2160x2 + 2970x3 + 3780x4 +
4050x5 + 4302x6 + 3942x7 +
3132x8 + 2232x9 + 774x10 + 18x11

No.6-D5h 720x + 1440x2 + 1980x3 + 2520x4 +
2700x5 + 2832x6 + 2598x7 +
2058x8 + 1470x9 + 582x10 + 60x11

1080x + 2160x2 + 2970x3 + 3780x4 +
4050x5 + 4248x6 + 3897x7 +
3087x8 + 2205x9 + 873x10 + 90x11

No.7-lh 720x + 1440x2 + 1980x3 + 2520x4 +
2700x5 + 2760x6 + 2550x7 +
2040x8 +1470x9 +660x10 +120x11

1080x + 2160x2 + 2970x3 + 3780x4 +
4050x5 + 4140x6 + 3825x7 +
3060x8 +2205x9 +990x10 +180x11
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5.3 Computing Wiener Polynomial, Wiener Index and Hyper
Wiener Index of C80 Fullerene by GAP Program

In this section, we give a GAP program for computing the Wiener polynomial of
any graph. Also we compute the Wiener index, hyper Wiener index and Wiener
polynomial of C80 fullerene by this program.

In Section 5.2.1, we introduce some notations. According to these notations and
relation (5.1),

we have the following relations:∑
v ∈ V(G)

d(u, v) =
∑
t ≥1

t × ∣∣Du, t
∣∣, ∀u ∈ V(G)

W(G, x) = 1

2

∑
{u,v}⊆ V(G)

xd(u, v) = 1

2

∑
u∈ V(G)

∑
t≥1

∣∣Du, t
∣∣ xt

According to the above relations, by determining Du, t , t ≥ 1, we can obtain the
Wiener polynomial of the graph G.

The following program computes the Wiener polynomial’s coefficients of C80
fullerene (Table 5.3).

n:=80; k:=[]; N:=[];
k[1]:=[1..5]; k[2]:=[6..20]; k[3]:=[21..40];
k[4]:=[41..60]; k[5]:=[61..75]; k[6]:=[76..80];
for i in [1..6] do

y:=Size(k[i]);
for j in [1..y] do

x:=k[i][j];
N[x]:=[x-1,x+1];
od;

od;

D1:=[9,12,15,18];
for i in [1..4] do

x:=D1[i]; N[i][3]:=x; N[x][3]:=i;
od;

D2:=Difference(k[2],Filtered(k[2],i->(i mod 3)=0));
D3:=Filtered(k[3],i->(i mod 2)=1);
for i in [1..9] do

x:=D3[i+1]; N[D2[i]][3]:=x; N[x][3]:=D2[i];
od;

D4:=Difference(k[3],D3);
D5:= Filtered(k[4],i->i mod 2=1);
for i in [1..9] do

x:=D5[i+1]; N[D4[i]][3]:=x; N[x][3]:=D4[i];
od;

D6:=Difference(k[4],D5);
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D7:= Filtered(k[5],i->(i mod 3)<>2);

for i in [1..9] do

x:=D7[i+1]; N[D6[i]][3]:=x; N[x][3]:=D6[i];
od;

D8:=Difference(k[5],D7);
for i in [1..4] do

x:=k[6][i+1]; N[D8[i]][3]:=x; N[x][3]:=D8[i];
od;

N[1]:=[2,5,9]; N[5]:=[1,4,6]; N[6]:=[5,7,20];
N[20]:=[6,19,21];N[21]:=[20,22,40];
N[40]:=[21,39,41]; N[41]:=[40,42,60];N[60]:=[61,59,41];
N[61]:=[60,62,75];
N[74]:=[73,75,76]; N[75]:=[58,61,74]; N[76]:=[74,77,80];
N[80]:=[71,76,79];
md:=1; v:=[]; D:=[];
for i in [1..n] do

D[i]:=[]; u:=[i]; D[i][1]:=N[i]; v[i]:=Size(N[i]);
u:=Union(u,D[i][1]);
r:=1; t:=1;
while r<>0 do

D[i][t+1]:=[];
for j in D[i][t] do

for m in Difference (N[j],u) do

AddSet(D[i][t+1],m);

od; od;

u:=Union(u,D[i][t+1]);
if D[i][t+1]=[] then r:=0;fi;
t:=t+1;
od;

md:=MaximumList([md,Size(D[i])]);
od;

p:=[];
for i in [1..md] do p[i]:=0; od;

for t in [1..md] do

for i in [1..n] do

p[t]:=p[t]+Size(D[i][t]);
od;od;

p:=p/2;#(p is the set the Wiener polynomial’s coefficients of

C80 fullerene)

Table 5.3 The Wiener
polynomial, Wiener index
and hyper Wiener index of
C80 fullerene

W(C80,x) 120x + 240x2 + 330x3 + 420x4 + 450x5 +
450x6 +420x7 +330x8 +240x9 +120x10 +40x11

W(C80) 17600
WW(C80) 66900
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5.4 Balaban Index of IPR C80 Fullerene Isomers

In this section, we give an algorithm for computing the Balaban index of any graph.
Also we compute this index for isolated pentagon rule (Hirsch 1994; Kroto 1987;
Schmalz et al. 1988) (IPR) C80 fullerene isomers by GAP program.

In Section 5.2.1, we introduced some notations. According to these notations, we
have the following relations:

• V(G) = ⋃
t≥0

Dt(u), ∀ u ∈ V(G)

• d(u) = ∑
v ∈ V(G)

d(u, v) = ∑
t ≥1

t × |Dt(u)|, ∀u ∈ V(G)

• δu = |N(u)|

According to the above relations, we can obtain the Balaban index by determin-
ing Dt(u) for every vertex u.

For computing this index for IPR C80 fullerene isomers, at first we assign to any
vertex of the graph one number (Fig. 5.2) and then according to the above algorithm,
we write a GAP program to determine N(i) and Di,t.

For these seven isomers, Balaban index is computed by the following GAP
program in Table 5.4:

n:=80; k:=[]; N:=[];
k[1]:=[1..5]; k[2]:=[6..20]; k[3]:=[21..40];
k[4]:=[41..60]; k[5]:=[61..75]; k[6]:=[76..80];
for i in [1..6] do
y:=Size(k[i]);
for j in [1..y] do
x:=k[i][j];
N[x]:=[x-1,x+1];
od;
od;
D1:=[9,12,15,18];
for i in [1..4] do
x:=D1[i]; N[i][3]:=x; N[x][3]:=i;
od;
D2:=Difference(k[2],Filtered(k[2],i->(i mod 3)=0));
D3:=Filtered(k[3],i->(i mod 2)=1);
for i in [1..9] do
x:=D3[i+1]; N[D2[i]][3]:=x; N[x][3]:=D2[i];
od;
D4:=Difference(k[3],D3);
D5:= Filtered(k[4],i->i mod 2=1);
for i in [1..9] do
x:=D5[i+1]; N[D4[i]][3]:=x; N[x][3]:=D4[i];
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od;
D6:=Difference(k[4],D5);
D7:= Filtered(k[5],i->(i mod 3)<>2);
for i in [1..9] do
x:=D7[i+1]; N[D6[i]][3]:=x; N[x][3]:=D6[i];
od;
D8:=Difference(k[5],D7);
for i in [1..4] do
x:=k[6][i+1]; N[D8[i]][3]:=x; N[x][3]:=D8[i];
od;
N[1]:=[2,5,9]; N[5]:=[1,4,6]; N[6]:=[5,7,20];
N[20]:=[6,19,21];N[21]:=[20,22,40];
N[40]:=[21,39,41]; N[41]:=[40,42,60];
N[60]:=[61,59,41];N[61]:=[60,62,75];
N[74]:=[73,75,76]; N[75]:=[58,61,74]; N[76]:=[74,77,80];
N[80]:=[71,76,79];
v:=[]; D:=[];
for i in [1..n] do
D[i]:=[]; u:=[i]; D[i][1]:=N[i]; v[i]:=Size(N[i]);
u:=Union(u,D[i][1]);
r:=1; t:=1;
while r<>0 do
D[i][t+1]:=[];
for j in D[i][t] do
for m in Difference (N[j],u) do
AddSet(D[i][t+1],m);
od; od;
u:=Union(u,D[i][t+1]);
if D[i][t+1]=[] then r:=0;fi;
t:=t+1;
od;od;
m:=(1/2)∗Sum(v)-n+1;
d:=[];deg:=[];
for i in [1..n] do
d[i]:=0;
deg[i]:=Size(N[i]);
for t in [1..Size(D[i])] do
d[i]:=d[i]+t∗Size(D[i][t]);
od;od;
B:=0;R:=0;
for i in [1..n] do
for j in N[i] do
B:=B+ER(1/((d[i]∗d[j])));
Od; od;
B:=m∗B/2;#(this value is equal to Balaban index of the graph)
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Table 5.4 Balaban index of
IPR C80 fullerene isomers IPR C80

fullerene isomers Balaban index

No.1-D5d 0.81074
No.2-D2 0.80994
No.3-C2v 0.80701
No.4-D3 0.80915
No.5-C2v 0.80499
No.6-D5h 0.80281
No.7-lh 0.79822

5.5 Computing Zagreb Indices of C80 Fullerene

In this section, we give an algorithm that enables us to compute the Zagreb indices of
any graph. Also by this algorithm, we compute the Zagreb indices for C80 fullerene.

For this purpose, the following algorithm is presented:

• We assign to any vertex one number (Fig. 5.2).
• We determine all of adjacent vertices set of the vertex i, i ∈ V(G) and this set is

denoted by N(i).

The degree of any vertex i equal to the number of adjacent vertices to i. Therefore,
by determining the adjacent vertices of each vertex; its degree can also be
obtained.

In the start of program, we set M1 = 0, M2 = 0, then we perform the
following operation for each vertex i:

• We add (deg(i))2 to M1, then for each vertex j in the set of adjacent vertices to
vertex i, we add the value (deg(i)). (deg(j)) to M2.

At the end of this operation, M1 and M2 are equal to the values of the first and the
second Zagreb indices respectively. Therefore, by determining the vertices adjacent
to the vertex of each graph and the above operation, the Zagreb indices of that graph
can be obtained.

Now, we compute the Zagreb indices of C80 Fullerene by GAP program.
The following program computes the Zagreb indices of C80 Fullerene (Table 5.5).

n:=80; k:=[]; N:=[];
k[1]:=[1..5]; k[2]:=[6..20]; k[3]:=[21..40];
k[4]:=[41..60]; k[5]:=[61..75]; k[6]:=[76..80];
for i in [1..6] do y:=Size(k[i]);
for j in [1..y] do x:=k[i][j]; N[x]:=[x-1,x+1];
od;

od;
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D1:=[9,12,15,18];
for i in [1..4] do x:=D1[i]; N[i][3]:=x; N[x][3]:=i;
od;

D2:=Difference(k[2],Filtered(k[2],i->(i mod 3)=0));
D3:=Filtered(k[3],i->(i mod 2)=1);
for i in [1..9] do x:=D3[i+1]; N[D2[i]][3]:=x; N[x][3]:=D2[i];
od;

D4:=Difference(k[3],D3); D5:= Filtered(k[4],i->i mod 2=1);
for i in [1..9] do x:=D5[i+1]; N[D4[i]][3]:=x; N[x][3]:=D4[i];
od;

D6:=Difference(k[4],D5); D7:= Filtered(k[5],i->(i mod 3)<>2);

for i in [1..9] do x:=D7[i+1]; N[D6[i]][3]:=x; N[x][3]:=D6[i];
od;

D8:=Difference(k[5],D7);
for i in [1..4] do x:=k[6][i+1]; N[D8[i]][3]:=x; N[x][3]:=D8[i];
od;

N[1]:=[2,5,9]; N[5]:=[1,4,6]; N[6]:=[5,7,20];
N[20]:=[6,19,21]; N[21]:=[20,22,40];
N[40]:=[21,39,41]; N[41]:=[40,42,60]; N[60]:=[61,59,41];
N[61]:=[60,62,75];
N[74]:=[73,75,76]; N[75]:=[58,61,74]; N[76]:=[74,77,80];
N[80]:=[71,76,79];
deg:=[];
M1:=0;
M2:=0;
for i in [1..n] do

deg[i]:=Size(N[i]);
od;

for i in [1..n] do

M1:=M1+(deg[i])ˆ2;
for j in N[i] do

M2:=M2+deg[i]*deg[j];
od;

od;

M1; #(the value of M1 is equal to the first Zagreb index)

M2:=M2/2; #(the value of M2 is equal to the second Zagreb

index)

Table 5.5 The Zagreb
indices of C80 fullerene The first Zagreb index The second Zagreb index

720 1080
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Chapter 6
4-Regular and Self-Dual Analogs of Fullerenes

Mathieu Dutour Sikirić and Michel Deza

Abstract An i-hedrite is a 4-regular plane graph with faces of size 2, 3 and 4.
We do a short survey of their known properties (Deza et al. Proceedings of ICM
Satellite Conference On Algebra and Combinatorics, 2003b; Deza et al. J Math Res
Expo 22:49,2002; Deza and Shtogrin, Polyhedra in Science and Art 11:27, 2003a)
and explain some new algorithms that allow their efficient enumeration. Using this
we give the symmetry groups of all i-hedrites and the minimal representative for
each. We also review the link of 4-hedrites with knot theory and the classification of
4-hedrites with simple central circuits. An i-self-hedrite is a self-dual plane graph
with faces and vertices of size/degree 2, 3 and 4. We give a new efficient algorithm
for enumerating them based on i-hedrites. We give a classification of their possible
symmetry groups and a classification of 4-self-hedrites of symmetry T, Td in terms
of the Goldberg-Coxeter construction. Then we give a method for enumerating
4-self-hedrites with simple zigzags.

6.1 Introduction

A fullerene is a 3-regular plane graph whose faces have size 5 or 6. As a consequence
of Euler’s formula any fullerene has exactly 12 5-gonal faces. For a 3-regular plane
graph G and a r-gonal face F of G, the quantity 6 − r is called curvature and Euler’s
formula is then a statement about the curvature on the sphere. A natural generaliza-
tion of fullerene is the class of 3-regular plane graphs with faces of size between 3
and 6 (see, for example, Deza et al. (2009)).

Here we consider another generalization, that is a suitable k-regular plane graph.
The Euler formula V − E + F = 2 becomes then

∞∑
j=2

pj(s − j) = 4k

k − 2
with s = 2k

k − 2
; (6.1)
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we will permit 2-gons (doubled edges) but not 1-gons. The only integral pairs (s, k)
are (6, 3), (4, 4) and (3, 6). We will permit only s- and (s−1)-gonal faces. So, ps−1 =

4k
k−2 and ps is not bounded. The number n of vertices is

n = 4(k + 2)

(k − 2)2
+ ps

2

k − 2
. (6.2)

For k = 3, 4 and 6 we get spherical analogs of the regular partition of the Euclidean
plane E2: {63}, {44} and {36}, respectively, where 12 pentagons, 8 triangles and
6 doubled edges play role of “defects”, disclinations needed to increase the cur-
vature to the one of sphere S2. The graphs with smallest number n of vertices
have only (s − 1)-gons; they are Dodecahedron, Octahedron and Bundle6 (2 ver-
tices connected by 6 edges) for k = 3, 4, 6, respectively. The case k = 3 gives
fullerenes. The case k = 4, i.e., of 4-regular plane graphs with faces of size 3 or 4,
gives octahedrites treated in the foundational paper Deza et al. (2003b). Let us call
graphs in the remaining case k = 6 (6-regular plane graphs with faces of size 2
or 3) bundelites. Thurston’s work (Thurston 1998) implies that fullerenes can be
parametrized by 10 Eisenstein integers and the number of fullerenes with n vertices
grows as n9; those results can be generalized to octahedrites and bundelites. The ring
of definition for octahedrites, respectively bundelites, is the Gaussian, respectively
Eisenstein integers. Those cases belong to two of 94 cases enumerated in Thurston
(1998).

We present here a short review of known facts about octahedrites as established
in Deza et al. (2002, 2003b) and Deza and Shtogrin (2003a) and present a few new
facts and applications. We give the possible symmetry groups of octahedrites and
the graphs of minimal vertex-sets realizing them. Then we show how octahedrites
can be used for the enumeration of all i-hedrites, i.e. 4-regular plane graphs with
faces of size 2, 3 or 4 and p2 + p3 = i.

Then we consider central circuit partition of the edge-sets of octahedrites and
the corresponding knot-theoretic notions, that is alternating knot, Borromean link,
and equivalence.

A i-self-hedrite is a plane graph with vertices and faces of size 2, 3 or 4 that is
isomorphic to its dual with p2 + p3 = i. Such graphs have 2p2 + p3 = 4 and i-self-
hedrites can be enumerated effectively by using 2i-hedrites with a method detailed
below. We determine their possible symmetry groups and we list the minimal rep-
resentatives for each of them. We characterize the 4-self-hedrites of symmetry T
or Td in terms of the Goldberg-Coxeter construction for octahedrites. Then we
give a method based on 2i-hedrites for determining the i-self-hedrites with simple
zigzags.

The computations of this paper were done using the GAP computer algebra sys-
tem and the computer packages polyhedral, plangraph of the first author.
The enumeration of octahedrites was done using the ENU program by O. Heidemeier
(Heidemeier 1998; Brinkmann et al. 2003) and the program CaGe (Brinkmann et al.
1997) was used for making the drawings.



6 4-Regular and Self-Dual Analogs of Fullerenes 105

6.2 Structural Properties

A plane graph is a graph drawn on the plane with edges intersecting only at ver-
tices. A graph G is 3-connected if after removing any 2 vertices of G the resulting
graph is connected. A 3-polyhedron is a 3-dimensional polytope, its skeleton defines
a 3-connected plane graph and it is known that this characterizes the skeleton of
3-polytopes. Furthermore (Mani, 1971), a 3-connected plane graph G can be repre-
sented as a skeleton of a 3-polytope P such that any symmetry of G is realized as a
isometry of the polytope P. We refer to Deza et al. (2008) for more details on such
questions.

It is proved in Deza et al. (2003b) that any octahedrite is 3-connected which
implies that its symmetry groups is realized as isometry of 3-space. Since those
group have been classified long ago and are much used in chemistry, we can
use the chemical nomenclature here (see, for a possible presentation, Dutour
(2004)).

An octahedrite exists for any n ≥ 6 except n = 7 (see Grünbaum 1967, p. 282).
For a 4-regular graph with pj denoting the number of faces of size j, the classical
Euler formula V − E + F = 2 can be rewritten (see Deza and Dutour-Sikirić 2008,
Chapter 1, for the details) as

∞∑
j=2

(4 − j)pj = 8. (6.3)

For octahedrites this directly implies p3 = 8. Octahedron is the unique octahedrite
with n = 6.

Theorem 1 The only symmetry groups of octahedrites are: C1, Cs, C2, C2v, Ci,
C2h, S4, D2, D2d, D2h, D3, D3d, D3h, D4, D4d, D4h, O, Oh. The minimal possible
representative are given in Fig. 6.1.

The proof that the list of groups is complete is given in Deza et al. (2003b), but
the minimal possible representatives were not determined at the time. The method
is first to go through the restrictions that vertex degree and face size impose. An
m-fold axis of rotation has necessarily m = 4 (passing though a face of size 4 or a
vertex), m = 3 (axis passing through a face of size 3), or m = 2 (axis passing though
an edge, a vertex of degree 4 or a face of size 4). Then the classification of point
groups gives a list of possible candidates. Some candidates are excluded for reason
of orbit size and other similar simple arguments. But some groups are excluded for a
subtler reason: the existence of a symmetry implies another symmetry. For example
a 3-, 4-fold axis of symmetry, i.e. C3, C4 implies actually at least D3, D4 for possible
symmetry groups. See Deza et al. (2003b) for details.

On the other hand, finding the minimal possible representative is done in a very
non-clever way: we look at all the generated octahedrites and select the representa-
tives with minimal vertex-sets. The enumeration of octahedrites was done by using
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Oh,
n = 6 D4d, n = 8 D3h, n = 9 D4h, n = 10

C2v, n = 11 D2,n = 12 D3d,n = 12 D3, n = 12

C2, n = 12 D2d, n = 14 Cs,n = 14 C1, n = 16

D4, n = 18 C2h, n = 18 D2h, n = 22 O, n = 30

Ci, n = 34 S4, n = 38

Fig. 6.1 Minimal representatives for each possible symmetry group of an octahedrite

the program ENU (see Heidemeier 1998; Brinkmann et al. 2003) by O. Heidemeier,
that enumerates classes of 4-regular graphs with constraint on the size of their faces,
fairly efficiently.

6.3 Generation of i-Hedrites

Define an i-hedrite to be a 4-regular n-vertex plane graph, whose faces have size
2, 3 and 4 only and p2 + p3 = i (see, for more details, Deza et al. (2003b)).
Using Formula 3, we get for an i-hedrite 2p2 + p3 = 8 and the only solutions are
i = 4, 5, 6, 7, 8, which have, respectively, (p2, p3)=(4, 0), (3, 2), (2, 4), (1, 6) and
(0, 8). So, 8-hedrites are octahedrites. We will be concerned here only about the
generation of i-hedrites. Actually, 4-hedrites admit a reasonably simple explicit
description, see Deza et al. (2003b, 2008), Chapter 2. So, it remains to find efficient
methods for the enumeration of 5-, 6- and 7-hedrites. The program ENU cannot deal
with faces of size 2; so, we sought a method that allows for reasonable enumeration
of such graphs. See Table 6.1 for the number of i-hedrites with at most 70 vertices.
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Table 6.1 Number of i-hedrites, 4 ≤ i ≤ 8, with 2 ≤ n ≤ 70

n 4 5 6 7 8 n 4 5 6 7 8 n 4 5 6 7 8

2 1 0 0 0 0 25 0 12 85 107 51 48 21 45 613 1574 2045
3 0 1 0 0 0 26 5 16 119 126 109 49 0 40 614 1751 1554
4 2 0 1 0 0 27 0 21 105 142 78 50 10 54 771 1874 2505
5 0 1 1 0 0 28 8 18 134 179 144 51 0 66 704 1963 1946
6 2 2 2 0 1 29 0 16 135 198 106 52 13 58 771 2247 3008
7 0 3 1 1 0 30 8 24 187 216 218 53 0 48 788 2419 2322
8 4 1 5 1 1 31 0 32 149 257 150 54 12 66 989 2511 3713
9 0 2 5 1 1 32 12 24 189 304 274 55 0 92 849 2735 2829

10 3 3 9 3 2 33 0 18 197 329 212 56 18 68 938 3041 4354
11 0 5 7 4 1 34 6 26 251 382 382 57 0 49 1005 3187 3418
12 5 3 14 5 5 35 0 37 218 431 279 58 9 71 1175 3453 5233
13 0 4 14 7 2 36 13 23 278 483 499 59 0 98 1038 3659 4063
14 3 7 23 9 8 37 0 24 275 547 366 60 22 70 1215 3954 6234
15 0 10 17 12 5 38 6 38 354 601 650 61 0 63 1193 4315 4784
16 7 6 28 18 12 39 0 45 313 643 493 62 9 96 1440 4526 7301
17 0 6 27 22 8 40 15 37 361 764 815 63 0 104 1328 4674 5740
18 5 7 44 25 25 41 0 30 359 838 623 64 21 92 1378 5248 8514
19 0 12 35 36 13 42 10 33 472 889 1083 65 0 74 1440 5600 6631
20 7 9 54 46 30 43 0 52 405 998 800 66 14 80 1751 5741 10103
21 0 8 57 48 23 44 11 44 480 1134 1305 67 0 122 1531 6159 7794
22 4 15 77 62 51 45 0 34 511 1197 1020 68 16 98 1675 6730 11572
23 0 20 59 76 33 46 7 56 609 1324 1653 69 0 72 1792 7005 9097
24 11 11 87 88 76 47 0 69 519 1435 1261 70 14 120 2066 7465 13428

Easy to check that an n-vertex i-hedrite exists for even n ≥ 2 if i = 4, n ≥ 5 (and
n = 3) if i = 5, n ≥ 4 if i = 6, n ≥ 7 if i = 7, n ≥ 8 (and n = 6) if i = 8.

Take an i-hedrite G with i ∈ {5, 6, 7}. Then, if F is a face of size 2, we reduce it
to a vertex by using the following reduction operation:

F1

F2

G1

G2

vv wF

and get a graph denoted by RedF(G). During this operation the vertices v and v′
are merged into one vertex w and the faces F1 and F2 are changed into G1 and
G2 with one edge less. Thus, it is possible that G1 and/or G2 are themselves of
size 2. We apply the reduction operation whenever, by doing it, the reduced graph is
still an i-hedrite. Eventually, since every application of the technique diminish the
vertex-set one obtains a graph, denoted by Red∞(G) for which we cannot apply the
reduction operation anymore.

We call a graph unreducible if we cannot apply to it any reduction operation. Let
G′ be an unreducible graph. If G′ has no faces of size 2, then it is an 8-hedrite, i.e.
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Fig. 6.2 Infinite family of
unreducible 4-hedrites

an octahedrite. If G′ has a face F of size 2, then denote by e1, e2 the two edges of F.
Since G′ is unreducible, F is adjacent on e1 or e2, say e1, to another face of size 2.

If e2 is incident to another face of size 2, then G′ is actually 21, i.e. the unique
graph with two vertices, and four faces of size 2, i.e. the 1st one on Fig. 6.2. It is
easy to see that e2 cannot be incident to another face of size 3, but it can be incident
to another face of size 4 and in that case G′ is not 3-connected and thus (see Deza
et al. 2003b) it belongs to the infinite family depicted in Fig. 6.2.

Call expansion operation the reverse of the reduction operation. The generation
method of i-hedrite is to consider all unreducible i-hedrites and all possible ways of
expanding them. For an unreducible graph G denote by Exp(G) the set of all possible
i-hedrites that can be obtained by repeated application of the expansion operation.
For the graphs of the infinite family of Fig. 6.2 no expansion operation is possible
and thus no i-hedrite is obtained from them. A priori, the set Exp(G) can be infinite
but, as far as we know, for any 8-hedrite G the set Exp(G) is finite although we have
no proof of it. It turns out that Exp(21) is infinite but it has a simple description.

Theorem 2

(i) The only symmetry groups of 4-hedrites are D4h, D4, D2h, D2d and D2.
(ii) The only symmetry groups of 5-hedrites are: D3h, D3, C2v, Cs, C2 and C1.

(iii) The only symmetry groups of 6-hedrites are: D2d, D2h, D2, C2h, C2v, Ci, C2,
Cs, C1.

(iv) The only symmetry groups of 7-hedrites are: C2v, C2, Cs and C1.

The theorem is proven in the same way as for octahedrites. Minimal representative
for each symmetry groups are given in Figs. 6.3, 6.4, 6.5 and 6.6.

Further generalization of octahedrites are 4-regular plane graphs with 4-,
3-, 2- and 1-gonal faces only. Then, besides i-hedrites, we get graphs with
(p1, p2, p3)=(2, 1, 0), (2, 0, 2), (1, 2, 1), (1, 1, 3), (1, 0, 5). The enumeration method
is then to use i-hedrites and to add a 1-gon when we have a pair of 2-gon and 3-gon
that are adjacent in all possible ways. This is simlar to the strategy of squeezing of
2-gons used for the enumeration of i-hedrites.

D4h, n=2 D2h, n = 4 D2d, n = 6 D4, n = 10 D2, n = 12

Fig. 6.3 Minimal representatives for each possible symmetry group of a 4-hedrite
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D3h, n = 3 C2v, n = 5 Cs, n = 7 C2, n = 8

C1, n = 10 D3, n = 15

Fig. 6.4 Minimal representatives for each possible symmetry group of a 5-hedrite

D2d, n = 4 C2v, n = 5 D2h, n = 6 C2, n = 6

Cs, n = 9 C1, n = 9 C2h, n = 10 D2, n = 12

1

1

aa

2

2

Ci, n = 30

Fig. 6.5 Minimal representatives for each possible symmetry group of a 6-hedrite

C2v, n = 7 Cs, n = 8 C2, n = 11 C1, n = 11

Fig. 6.6 Minimal representatives for each possible symmetry group of a 7-hedrite
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6.4 Central Circuits and Alternating Knots

The edges of an octahedrite, as of any Eulerian plane graph, are partitioned by its
central circuits, i.e. those which are obtained by starting with an edge and continuing
at each vertex by the edge opposite the entering one. The central circuits of an
octahedrite can define circle in the plane or have self-intersections.

If C1, C2 are two (possibly, self-intersecting) central circuits of an octahedrite
G, then they are called parallel if they are separated by a sequence of faces of
size 4 (such pair is called railroad in Deza et al. (2003a) and Deza and Shtogrin
(2003)). It is possible to reduce those two central circuits into just one and thus
get an octahedrite with less vertices. We call an octahedrite irreducible if it has
no parallel central circuits. Of course, the reverse operation is possible, i.e. split a
central circuit into two or more parallel central circuits. In this way every octahedrite
is obtained from an irreducible octahedrite.

It is proved in Deza et al. (2003a) that an irreducible octahedrite has at most 6
central circuits and in Deza et al. (2003a) that an irreducible i-hedrite has at most
i − 2 central circuits. All irreducible octahedrites with non self-intersecting central
circuits have been classified in Deza et al. (2003a) (see, for another presentation,
Deza et al. 2003b).

Theorem 3 There are exactly eight irreducible octahedrites with simple central
circuits (see Fig. 6.7).

A link is a set of circles embedded in 3-space that do not intersect; a link can be
represented with its overlapping and underlapping on the plane. A link with only one
component is called a knot and Knot Theory is concerned with characterizing differ-
ent plane presentations of links (see Lickorish (1997) for a pleasant introduction).
A link is called alternating if it admits a plane representation in which overlappings

Oh, n=6 Oh, n=12 D3h, n=12 D4h, n=14

D2d, n=20 D2h, n=22 O, n=30 D4h, n=32

Fig. 6.7 The irreducible octahedrites with simple central circuits
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Fig. 6.8 The link
corresponding to the
octahedron

Fig. 6.9 A Borromean link

and underlappings alternate. For a 4-regular plane graph we can define a correspond-
ing alternating link, where the central circuits correspond to the components of the
link (see an example on Fig. 6.8). It is interesting that there is no known topological
characterization of alternating links.

Since an octahedrite with n vertices is 3-connected, there is no disjointing vertex
and thus (Lickorish 1997, Chapter 5) the corresponding alternating link cannot be
represented with less than n crossings. But it can happen that two octahedrites that
are not equivalent as graphs give rise to equivalent alternating links. A link with
m components is called Borromean if after removal of any m − 2 components the
remaining two components can be separated one from the other. It is conjectured in
Deza et al. (2003a) that an alternating link obtained from a 4-regular 3-connected
plane graph is Borromean if and only if for any two central circuits the distance
between any two of its consecutive points of its intersection is even. This condi-
tion is, of course, sufficient but there are reasons to think that it is not necessary
since there exist 4-regular plane graphs (but not 3-connected) which are Borromean
without satisfying the specified condition, see Fig. 6.9.

6.5 Self-Dual Graphs

A graph G is called self-dual if it is isomorphic to its dual G∗. The medial graph
Med(G) of a plane graph G is the plane graph obtained by putting a vertex on any
edge with two edges adjacent if they share a common vertex and are contained in
a common face. One has Med(G) = Med(G∗). The graph G′ = Med(G) is always
4-regular and its dual (Med(G))∗ is bipartite, that is the face-set F of Med(G) is
split into two sets F1(G′) and F2(G′), which correspond to the vertices and faces of
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Table 6.2 Number of i-self-hedrites with 4 ≤ n ≤ 40 and 2 ≤ i ≤ 4

n 2 3 4 n 2 3 4 n 2 3 4 n 2 3 4

2 1 0 0 12 4 29 24 22 10 90 191 32 9 239 584
3 1 1 0 13 6 30 33 23 7 119 198 33 9 256 631
4 2 1 1 14 5 42 40 24 7 131 234 34 14 232 748
5 2 4 1 15 5 47 48 25 10 124 276 35 10 290 760
6 3 6 2 16 8 48 69 26 10 162 304 36 14 308 857
7 3 7 4 17 5 64 73 27 8 170 332 37 16 286 956
8 3 11 6 18 6 72 92 28 12 158 407 38 11 342 1002
9 3 16 8 19 8 70 114 29 10 190 421 39 11 359 1070

10 5 16 15 20 6 89 130 30 9 210 476 40 16 332 1239
11 4 26 16 21 8 104 148 31 14 202 550

the graph G. The bipartition F1(G′), F2(G′) can be computed easily from a given
4-regular plane graph, i.e. one can compute easily from a graph G′ the two dual
graphs G1 and G2 such that G′ = Med(G1) = Med(G2).

Call G a i-self-hedrite if it is a self-dual plane graph with vertices of degree 2, 3
or 4 with v2 +v3 = i and, consequently, faces of size 2, 3 or 4. If G is a i-self-hedrite
then Med(G) is a 2i-hedrite.

The Euler formula V − E + F = 2 for a self-dual plane graph is, clearly:
∞∑

j=2

pj(4 − j) = 4; (6.4)

we again permit 2-gons but not 1-gons. Define an i-self-hedrite to be such a graph
with faces of size 2, 3, 4 only and p2+p3 = i. So, 2p2+p3 = 4 and p4 is not bounded;

also n = p4+ p3

2
+2 = p4−p2+4. Clearly, an i-self-hedrite can have i = 2, 3, 4 only

with (p2, p3) = (2, 0), (1, 2), (0, 4), respectively. The i-self-hedrites with smallest
number n of vertices have no 4-gons; they are Bundle2 (2 vertices connected by 2
edges), triangle with one doubled edge and Tetrahedron, respectively. Easy to check
that n-vertex an i-self-hedrite exists if n ≥ i.

Thus our enumeration method for i-self-hedrites is to consider all 2i-hedrites G′,
determine for them the graphs G1, G2 such that G′ = Med(G1) = Med(G2) and keep
the ones that have G1 isomorphic to G2. We denote by Med−1(G′) = G1 � G2 the
obtained plane graph if it exists. Using the enumeration of 2i-hedrites, we can derive
the i-self-hedrite, see Table 6.2. Another method would be possible with the results
of Archdeacon and Richter (1992) (but it would require more hard programming
work and the speed gain is uncertain).

Theorem 4

(i) The possible symmetry groups of 2-self-hedrites graphs are C2, C2v, C2h, D2
and D2h. Minimal representatives are given in Fig. 6.11.

(ii) The possible symmetry groups of 3-self-hedrites graphs are C1, C2, Cs and
C2v. Minimal representatives are given in Fig. 6.12.



6 4-Regular and Self-Dual Analogs of Fullerenes 113

(iii) The possible symmetry groups of 4-self-hedrites graphs are C1, C2, C2h, C2ν ,
C3, C3ν , C4, C4ν , Ci, Cs, D2, D2d, D2h, S4, T, Td. Minimal representatives are
given in Fig. 6.13.

Proof If G is a 4-self-hedrite then G′ = Med(G) is an octahedrite. If Γ , Γ ′ are the
symmetry groups of G, G′, then the self-duality of G becomes a symmetry in G′ that
exchanges F1(G′) and F2(G′). Thus Γ is identified with the subgroup of Γ ′ formed
by the transformations preserving the bipartition. Obviously, the order of Γ is half
the one of Γ ′. The possible groups of G′ are known (see Theorem 1). So, we set out
to enumerate the index 2 subgroups of each of the 18 groups and found, besides the
groups in the statement, the groups D3, D4, C4h, C3h, S6, S8 and Th.

The graph G has 4 vertices of degree 3 and 4 faces of size 3; both should be
partitioned in the same number of orbits and this excludes D4, D3, C3h, S6 and
Th. Suppose G has symmetry C4h. Due to the plane of symmetry, the 4-fold axis
pass through, either two vertices of degree 4, or through two faces of size 4. But
self-duality requires that it passes through a vertex and a face. The same argument
excludes S8.

For 2-self hedrites, using the known groups for 4-hedrites gives candidates C2,
C2h, C2v, C4, C4h, C4v, D2, D2d, D2h, D4, S4. Same kind of orbit reasons exclude
C4, C4h, C4v, D2d, D4, S4. A 3-self-hedrite has only one vertex of degree 2 that has
to be preserved by any symmetry. So, the symmetry is a subgroup of C2v and all
possible subgroups do occur. �

It is known (Deza et al. 2003b; Dutour and Deza 2004) that all octahedrites of
symmetry O or Oh are obtained from the Goldberg-Coxeter construction, i.e. they
are of the form GCk,l(Octahedron) for some integer 0 ≤ l ≤ k. The pairs (k, l)
correspond to the relative position of the triangles; see Fig. 6.10 for the smallest
such graphs and Dutour and Deza (2004) for more details on the construction itself.

Theorem 5 All 4-self-hedrites of symmetry T or Td are obtained by the Goldberg
Coxeter construction as Med−1(GCk,l(Octahedron)) with k + l odd.

Proof If G is a 4-self-hedrite of symmetry T or Td then its medial G′ = Med(G) is an
octahedrite of symmetry O or Oh. So, G′ = GCk,l(Octahedron) for some (k, l). The

(k, l) = (1, 0) (k, l) = (1, 1) (k, l) = (2, 0) (k, l) = (2, 1)

Fig. 6.10 First examples of octahedrites of symmetry O or Oh expressed as GCk,l(octahedron)
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D2h, n = 2 C2v, n = 3 D2, n = 6 C2, n = 7 C2h, n = 16

Fig. 6.11 Minimal representatives for each possible symmetry group of 2-self-hedrites

C2v, n = 3 C1, n = 4 Cs, n = 6 C2, n = 7

Fig. 6.12 Minimal representatives for each possible symmetry group of 3-self-hedrites

Td , n = 4 C4ν , n = 5 C2, n = 6 D2h, n = 6 C1, n = 7

C3ν , n = 7 D2d , n = 8 C3, n = 10 Cs, n = 10 D2, n = 10

C2ν , n = 11 C2h, n = 12 S4, n = 12 C4, n = 13 Ci, n = 16

T , n = 16

Fig. 6.13 Minimal representatives for each possible symmetry group of 4-self-hedrites



6 4-Regular and Self-Dual Analogs of Fullerenes 115

G Med(G)

Fig. 6.14 Example of a
zigzag in a plane graph G and
the corresponding central
circuit in Med(G)

automorphism group of the plane graph GCk,l(Octahedron) is transitive on triangles;
so, we only need to determine when the triangles are not all in F1(G′) or F2(G′).
Clearly, this correspond to k + l odd. �

For a plane graph G a zigzag is a circuit of edges, such that any two but no
three, consecutive edges belong to the same face. Zigzags of G correspond to cen-
tral circuits of Med(G), see an example on Fig. 6.14. So, if G is a 4-self-hedrite
with simple zigzags, then Med(G) is an octahedrite with simple central circuits.
By Section 6.4, octahedrites G′ with simple central circuits are obtained by tak-
ing the ones of Fig. 6.7 and splitting each central circuit Ci into mi parallel central
circuits. Then we have to determine for which m = (mi) the triangles are in two
parts F1(G′) and F2(G′) which are equivalent under an automorphism of G′. This
requires a detailed analysis of the automorphism and a search of the necessary rela-
tions between mi and parity conditions. The details are very cumbersome but in
principle we can get a classification of the 4-self-hedrites with simple zigzags.

In particular, 1, 3, 4, 5, 6, 7th irreducible octahedrites in Fig. 6.7 are the medial
graphs of 1, 6, 7, 11, 13, 16th 4-self-hedrites in Fig. 6.13, respectively; they are all
irreducible 4-self-hedrites with simple zigzags.

6.6 Going on Surfaces

In Deza et al. (2000) was considered a generalization of plane fullerenes on any irre-
ducible surface. Similarly, it is easy to see that any generalized octahedrite, i.e., a
4-regular map on an irreducible surface, having only 3- and 4-gonal faces, is either
an octahedrite on sphere S2, or a partition of torus T2 (or Klein bottle K2) into
4-gons, or the antipodal quotient of a centrally symmetric octahedrite on the pro-
jective plane P2 (having 4 3-gonal faces). Maps on surfaces of high genus can be
very complicated. Actually, there are examples with the genus being about half
the number of vertices. Here, for the sake of simplicity and the search of more
complex examples, we limit ourselves to graphs with no loops or multiple edges.
The minimal, i.e. with minimal number of vertices, generalized octahedrite on S2 is
Octahedron K2,2,2; on P2 it is the antipodal quotient of Cube with two opposite faces
triangulated in their center, that is K5. On T2 it is K5, and on K2 it is again K2,2,2 (but
embedded as a quadrangulation); see Fig. 6 in Nakamoto (2001).

Finally, it is easy to check that any generalized 4-self-hedrite, i.e., self-dual map
on an irreducible surface, having only 3- and 4-gonal faces, is either a 4-self-hedrite



116 M. Dutour Sikirić and M. Deza

on sphere S2, or a 4-regular partition of torus T2 (or Klein bottle K2) into 4-gons,
or the antipodal quotient of a centrally symmetric 4-self-hedrite on the projective
plane P2 (having 2 3-gonal faces). The minimal generalized 4-self-hedrite graph on
S2 is Tetrahedron; on P2 it is the antipodal quotient of the 12th graph on Fig. 6.13,
that is complete graph K6 with disjoint 2- and 4-vertex paths deleted. On T2 it is
K5, and on K2 it is again K2,2,2 (see Fig. 6 in Nakamoto (2001)) embedded as a
quadrangulation.

Similar results hold for generalization of i-hedrites and i-self-hedrites from
sphere on any irreducible surface. On T2 and K2 it gives the 4-regular quadrangula-
tions. On P2 they are the antipodal quotients of such centrally symmetric graphs on
S2. So, 2p2 + p3 becomes 4 for i-hedrites and 2 for i-self-hedrites on P2.
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Chapter 7
Endohedral Fullerene Complexes and In-Out
Isomerism in Perhydrogenated Fullerenes

Why the Carbon Cages Cannot Be Used
as the Hydrogen Containers?

Helena Dodziuk

Abstract As shown by our group (Dodziuk and Nowinksi, 1998; Dodziuk et al.,
manuscript in preparation, 2011) endohedral fullerene complexes are objects of
nontrivial topology. An insertion of a guest (atom, ion, or molecule(s)) inside the
fullerene cage usually changes properties of both host and guest. Due to their
size and complexity, predicting properties of the complexes is a difficult task. For
instance, the numbers of endohedral hydrogen molecules in C60 and C70 have
only recently been correctly determined by calculations in agreement with exper-
imental results on the existence of only one hydrogen molecule inside the former
molecule and one or two of them (in 96:4 proportion) in the C70 cage (Korona et al.
2009). Fullerenes are studied because of their exciting structure and prospects of
applications. However, their use for hydrogen storage seems highly improbable.

7.1 Serendipidous Development of Topological Chemistry

The development of topological chemistry is full of peculiarities and surprises.
For more than 100 years chemists thought that topology is of no use in chemistry
and the first paper by van Gulick considering the possibility of the synthesis of
molecules with distinct topological properties was not accepted by a respectable
chemical journal Tetrahedron in 1960. The paper circulated widely as cited
preprint and has been published with preface 33 years later in New Journal of
Chemistry (Gulick 1993). Interestingly, it is still stimulating today 50 years after
it has been written. Even more exciting is the fact that the first synthesis of a
molecule with distinct topological properties, catenane 1, has been described
in the same year 1960 (Wasserman 1960) as the rejected van Gulick paper
has been submitted. The syntheses of other molecules with distinct topological
properties followed. In particular, molecules like 2 (Walba 1985) mimicking

H. Dodziuk (B)
Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224
Warsaw, Poland
e-mail: dodziuk@ichf.edu.pl

117F. Cataldo et al. (eds.), The Mathematics and Topology of Fullerenes,
Carbon Materials: Chemistry and Physics 4, DOI 10.1007/978-94-007-0221-9_7,
C© Springer Science+Business Media B.V. 2011



118 H. Dodziuk

what is called Möbious strip have been obtained. Such objects bear this name
although it was not Möbius who first proposed them judging either by the
publication date or the date of the first discovery; precedence goes to Johann
Benedict Listing (http://www.gap-system.org/~history/Biographies/Mobius.html).
Numerous molecules with nontrivial topological properties have been synthesized
since then and obtaining lanthanum inside the C60 cage (Heath et al. 1985) (just
after fullerene discovery in 1985) marked the beginning of endohedral fullerene
chemistry which for long time has not been recognized as a part of topological
chemistry.
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In addition to catenanes and Möbius strip, knots like 3 (Dietrich-Buchecker and
Sauvage 1989; Dietrich-Buchecker et al. 2005; Ashton et al. 1997; Carina et al.
1996; Vögtle and Lukin 2005) and rotaxanes 4 (Schill 1971) have been synthesized
and the latter have been often discussed together with catenanes (for instance, in
the special issue of New Journal of Chemistry where the van Gullick paper was
published (thematic issue, 1993). However, following the strict mathematical def-
inition they have been treated as objects having no distinct topological properties
since a separation of the two fragments forming 4 can be achieved by a consider-
able enlargement of the central rotaxane ring, allowed in topology for ideal objects.
However, such an unlimited distortion cannot be forced on the real chemical enti-
ties, molecules, in which the deformations would cause huge energy losses and
finally bond breaking. Thus, the generally adopted approach has been questioned
by Dodziuk and Nowiński (1998) and Dobrowolski (2003) who argued that, con-
trary to the ideal mathematical concepts, the barrier for bond breaking has to be
taken into account. (Interestingly, for specific ratios of sizes of the ring and block-
ing groups at the axle ends there is a possibility of slippage of the ring from the
axis at elevated temperatures (Agam et al. 1976; Agam and Zilkha 1976; Amabilino
et al. 1998; Heim et al. 1999).)

Discovering that relatively simple cyclic DNAs, that can be found in living crea-
tures, are objects with distinct topological properties has shown that topological
chemistry is also of interest in biochemistry. However, as noticed by Francl (2009)
the term “topological” is often applied by biochemists when they discuss geomet-
rical, rather than topological, properties of proteins. Intriguingly, cyclic DNAs (the
objects having nontrivial topological properties themselves) have been established
to form structures of higher topological complexity, i.e. catenanes, knots and the
figure-of-eight, which role in nature is still to be cleared. The existence of special
enzymes, topoisomerases, (Champoux 2001; Corbett and Berger 2004) involved in
the syntheses of such molecules should be mentioned here. A polycatenated net built
of the cyclic DNAs mimicking hauberk, an idealized form of which is presented in
Fig. 7.1 seems to be one of the most complicated existing chemical structures with
distinct topological properties (Chen et al. 1995).

At the very beginning, molecules belonging to topological chemistry were syn-
thesized using the so-called statistical approach. In his first catenane synthesis,
Wasserman (1960) carried out cyclization of long chain molecules having reac-
tive groups at their ends. During this synthesis, sometimes a ring was created by
a chain threaded through another, earlier formed ring. The statistical probability
of such an event is low but, taking into account the multitude of molecules in a
reaction vessel, not negligible. Of course, such a method (bearing the name “statis-
tical approach”) enabled one to synthesize only very simple molecules with distinct
topological properties in quite low yields. Making use of the preorganization phe-
nomenon, typical of supramolecular chemistry, drastically changed the situation
(Amabilino and Stoddart 1995; Dodziuk, 2002a; Reymo and Stoddart 1999). This
phenomenon consists in the orientation of reagents in an appropriate way before
the ring(s) closure by making use of complexation of reagents with an appropri-
ate cation (Fig. 7.2), (Carina et al. 1996) π-stacking interactions, (Claessens and



7 Endohedral Fullerene Complexes and In-Out Isomerism 121

Fig. 7.1 DNA net mimicking hauberk

Stoddart 1997) hydrogen bonds (Schalley et al. 2004) or weak but numerous non-
bonding interactions (Yamaguchi et al. 2006). Such a procedure not only allowed
one to obtain highly complicated molecules having distinct topological properties
but it also leads to considerably higher reaction yields. At present, the synthetic
methods applied to obtain these systems have been extended to include dynamic
covalent chemistry (Haussmann and Stoddart 2009; Rowan et al. 2002; Stoddart
2009). Using one of these approaches olympiadane 5, (Amabilino et al. 1994) dou-
ble knot 6, (Carina et al. 1996) Borromean rings 7, (Cantrill et al. 2005) Solomon
link 8 (Nierengarten et al. 1994; Peinador et al. 2009; Pentecost et al. 2007) (dubbed
“Solomon knot” long before establishment of topology) and other more compli-
cated systems (Pentecost et al. 2006; Williams et al. 2006) have been synthesized.
Although there are still several relatively simple structures with nontrivial topology
that await their syntheses (some of which are presented in a manuscript prepared for

N

N
N

N

M

Fig. 7.2 Metal complexation
forcing the perpendicular
arrangement of the
phenanthroline units
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publication Dodziuk et al. 2011 and in Fenlon paper (Fenlon 2008)) today molecules
with nontrivial topological properties are synthesized mainly to analyze the possi-
bilities of their applications as parts of molecular devices (Fang et al. 2010; Stoddart
and Colquhoun 2008). In particular, several derivatives of molecules with nontrivial
topological properties involving fullerenes have been reported (Gibson et al. 2009).

A special position in the domain of the syntheses of molecules with distinct
topological properties occupy works by Seeman group which synthesized a knot,
figure-of-eight and Borromean rings from a single DNA strand (Seeman 1998a, b;
Seeman et al. 1998).

The main object of this review are endohedral fullerene complexes, (Akasaka and
Nagase 2002) like 9, (Komatsu et al. 2005b) 10, (Murata et al. 2008b) 11, (Goedde
et al. 2001) and 12 (Murata et al. 2006) that is fullerenes (Dresselhaus et al. 1995a)
that have atoms, ions or molecules inside the cage. In the nomenclature used in
supramolecular chemistry, the fullerene cage plays a role of the host H while what
is inside is treated as a guest G and the complex is denoted as G@H. As will be
discussed in more detail below, such objects have nontrivial topological properties
since dissociating them into constituent parts (that is transporting the guest from
inside into outside of the cage) requires bond(s) breaking. Topology and the rela-
tion of chemistry to this branch of mathematics is discussed in the paper now in
preparation (Dodziuk et al. 2011).

Sometimes, the term “chemical topology” is used incorrectly when chemistry
of molecules with nontrivial topology is discussed (Fenlon 2008; Frisch and
Wasserman 1961; McArdle et al. 2000; Siegel 2004). To be precise, I believe that
the term chemical topology is appropriate when one discusses nontrivial topological
properties of molecules. Thus, all questions related to topological indices as well
as analysis of molecular graphs belong to chemical topology whereas syntheses of
molecules with distinct topological properties and analysis of their physicochemical
properties are the subjects of topological chemistry. As always happens with closely
related sciences, sometimes these domains overlap.

H
H

9
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13

The fascinating idea of an empty space inside the C60 cage that could be filled
with atoms or molecules has been recognized from the early stage of fullerene study
(Heath et al. 1985) (a compendium of atoms that have been inserted until 2007
is given in http://homepage.mac.com/jschrier/endofullerenes_table.html). However,
similarly to rotaxanes endohedral fullerene complexes, nested fullerenes like
C60C240 13 and in-out isomers of hydrogenated fullerenes presented in Fig. 7.3
(briefly discussed in Section 7.5) have been analyzed as objects of nontrivial topol-
ogy only in works of our group (Dodziuk et al. 2000, 2001, 1999; Dodziuk and
Nowinski 1996). Noteworthy, inserting an atom, a molecule or an ion into a molec-
ular cage (discussed in some extent below) or aggregation (Lee and Kim 2008) can
lead to spectacular changes of the host and/or guest properties. As briefly discussed
below, it can even stabilize a non-IPR fullerene isomer (Campanera et al. 2002; Cao
et al. 2004; Rapta et al. 2008; Shi et al. 2006; Shustova et al. 2007; Takata et al.
2003; Tan et al. 2009; Yang et al. 2007b) or another short-lived species (Cai et al.

H

H

Fig. 7.3 Perhydrogenated fullerene C60H60 with one CH bond pointing inside and all other outside
(not shown, left) and the one with all hydrogen atoms pointing outside (only the one that points
inside in the left formula is shown, right)
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2007; Jimenez-Vazquez et al. 1994) or, as shown for instance in case of Y@C82,
change the fullerene symmetry upon the guest inclusion (Takata et al. 1995). The
isolation of atomic nitrogen (Lips et al. 2000) or diatomic van der Waals molecules
of noble gases He2 in C60 and C70 cages as well as of atomic nitrogen inside the C60
dimer 11 and Ne2 in the C70 cage (Sternfeld et al. 2002) illustrates radical changes
in the guests properties due to its encapsulation into the fullerene cage. Other exam-
ples of short-lived species stabilized in “molecular flasks” are briefly reviewed by
Dodziuk (2002c).

It should be stressed that although C60 is the most common fullerene, it does
not form numerous endohedral complexes because of its small internal cavity. As
pointed out by Dodziuk et al. (2001) to obtain endohedral complexes with fairly
large guest molecules suitable for applications one has to master the synthesis and
purification of much larger fullerenes.

Today, endohedral fullerene complexes are studied by several groups not only
because they are exciting objects but also in view of their future applications. With
a metal guest, so called endohedral metallofullerenes, EMFs, can be metal, small-
gap semiconductors or insulators depending upon the fullerene size and the kind and
number of encapsulated metal atoms. MEFs applications in medicine among others
as radiotracers, (Cagle et al. 1999) MRI contrast agents, (Bolskar 2008; MacFarland
et al. 2008), drugs (Bakry et al. 2007; Wilson et al. 1999) (in particular, HIV-1
protease inhibitors (Ibrahim et al. 2010)) in electronics, (Kobayashi et al. 2003; Ross
et al. 2009; Shibata et al. 2004; Yasutake et al. 2005) in particular, as single-molecule
transistor for quantum computing, (Twamley 2003) and in solar cells (Zhang et al.
2008b) have been proposed. Noteworthy, the application of so-called peapods that
is carbon nanotubes filled with endohedral fullerenes encapsulating metal atoms in
the latter devices seems promising (Kurokawa et al. 2005).

7.2 Endohedral Fullerene Complexes and In, Out Isomers
of Fullerene Derivatives as a Specific Domain
of Topological Chemistry

Endohedral fullerene complexes and hypothetical in, out isomers of hydrogenated
fullerenes occupy a special position in topological chemistry from both points
of view of chemistry and topology. As mentioned earlier, concerning chemistry
(contrary to organic molecules with distinct topological properties such as 1–8)
endohedral fullerene complexes 9–12 are not obtained by taking advantage of the
preorganization (Dodziuk 2002a, b) or dynamic covalent chemistry (Haussmann and
Stoddart 2009; Rowan et al. 2002; Stoddart 2009). They are manufactured by apply-
ing completely different procedures. Those having metal cations inside are obtained
in an arc reactor or via laser evaporation during the process of fullerene formation
(Nishibori et al. 2006) while the ones with noble gas guests are produced by heating
fullerenes in the nobel gas atmosphere at high pressure using Krätschmer-Huffmann
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procedure (Krätschmer et al. 1990; Saunders et al. 1993). Endohedral fullerene com-
plexes of few simple molecules inside the fullerene cage were obtained by so-called
molecular surgery approach consisting in making a hole in the cage chemically,
inserting a guest inside the cage (for instance, one (Komatsu et al. 2005b) or two
(Murata et al. 2008a) hydrogen molecules) and closing the hole chemically. On the
other hand, different nitride cluster fullerenes, like Sc3N@C80, Sc3−xErxN@C80
(x = 1, 2, 3), Sc3N@C78, Y3N@C80, Ho3N@C80 and Tb3N@C80, were obtained
by a reactive gas addition to the cooling gas of the arc burning process (Yang and
Dunsch 2006). It should be stressed that the main effort in studying endohedral
fullerene complexes seems to be focused on group 2 and 3 metallofullerenes involv-
ing Sc, Y, La, Ca, Sr, Ba and lanthanide (Ce – Lu) metallofullerenes (Stevenson
et al. 2000) for which exciting applications are expected. Considerable computa-
tional effort centered on hydrogen molecules inserted into the C60 cage summarized
in Dodziuk (2007) has been triggered by the hope to use fullerenes for hydrogen
storage. This idea (presented in few details later) in its pure shape is unreason-
able since the guest can be released from C60 only as a result of cage breaking. As
will be discussed later, the synthetic efforts resulted in putting hydrogen molecule
inside C60 cage, (Komatsu et al. 2005b) one or two of them inside C70 one
(Murata et al. 2008a) as well as two hydrogen molecules inside C120 (Murata et al.
2006).

As mentioned before, the topological nontriviality of endohedral fullerene com-
plexes has been largely overseen although we studied this phenomenon for several
years (Dodziuk 2007; Dodziuk and Dolgonos 2002; Dodziuk et al. 2001; Dodziuk
and Nowinski 1998). The hypothetical at present “in”, “out” isomers of hydro-
genated fullerenes (Fig. 7.3) or, more generally of fullerene derivatives, are also
topological isomers (Dodziuk et al. 1999; Dodziuk and Nowinski 1996). From topo-
logical point of view both endohedral fullerene complexes and the isomers differ
from aforementioned catenanes (links), rotaxanes, möbiusanes and knots 1–8 since
the fullerene cage separates 3D space into the “in” and “out” regions. For them,
contrary to the latter molecules, it is not sufficient to break and then restore one
bond to obtain the separated systems: much larger two-dimensional holes have to
be created. Similarly to the rotaxanes case, a condition of bond(s) breaking should
be included for these complexes since an included atom, ion or molecule cannot, in
general, escape the C60 cage without breaking bond(s) which cannot be extended
over a certain, very narrow limit.

Interestingly, few, but revolutionary proposals to apply the endohedral complexes
have been published soon after the C60 discovery (Stoddart 1991) (one of them con-
sisted in using an endohedral fullerene with a door enabling the guest drug escape
in appropriately controlled conditions). Some of them have been mentioned above.
Until now very few fullerenes applications have been commercialized. The idea
of using fullerenes for hydrogen storage also looked promising. However, as men-
tioned above placing H2 molecules inside the cage seems impractical for such a
purpose since, even if we do not bother for a moment how to put hydrogen inside,
one has to destroy the cage irreversibly to release it. Some other possibilities, e.g.,
enhancing exohedral hydrogen binding electrochemically, or by forming composites
either by placing a metal cation inside the fullerene cavity, or by coating fullerene
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with Ca have been proposed (Arai et al. 2009; Lan et al. 2009; Liu et al. 2009; Yoon
et al. 2007, 2009) but their feasibility for practical uses is still unclear.

A special group of endohedral fullerene complexes – nested or onion-like
fullerenes like 13 is built of fullerene cages buried inside one another like Russian
dolls. Discovered earlier than C60 itself, (Iijima 1980) they may consist of two,
three (Mordkovich 2000) or several hundred layers (Ugarte 1992). They can be
not only spheroidal but also assume different shapes (Terrones and Terrones 1997).
Obtaining nested fullerene noncarbon analogues has also been reported (Drummond
et al. 1999). Dodziuk et al. have shown that formation of nested fullerenes (Dodziuk
et al. 2000) is driven by weak but very numerous nonbonding attractions.

As mentioned before, the topological nontriviality of endohedral fullerene com-
plexes has been overseen although we studied this phenomenon for several years
(Dodziuk 2007; Dodziuk et al. 2001; Dodziuk and Nowinski 1998). It is obvi-
ous that hypothetical at present “in” isomers of hydrogenated fullerenes (Fig. 7.3)
are also topological isomers of the “out” ones (Dodziuk et al. 1999; Dodziuk
and Nowinski 1996). Endohedral fullerene complexes form a specific domain of
topological chemistry since they not only are obtained in a different way than cate-
nanes, knots and other organic molecules of nontrivial topology but also are 2D
objects while catenanes, rotaxanes, knots, Möbious strips, etc. are objects of a lower
dimensionality.

7.3 Types of Endohedral Fullerene Complexes

The possibility to include something inside the fullerene cage was first proposed
as early as in 1985 (Heath et al. 1985). Depending on the guest character, endohe-
dral fullerenes can be divided into those having an atom(s) or molecule(s) inside
their cages. The guest can be metal or nonmetal (or even tritium) (Jimenez-Vazquez
et al. 1994; Khong et al. 2000) or muonium (Kiefl et al. 1992; Tan et al. 2006). As
mentioned before, multishell so-called nested fullerenes can have two (Mordkovich
2000) or more fullerene cages buried inside one another (Iijima 1980; Ugarte 1992).
As mentioned above, various types of endohedral fullerenes are also produced using
different procedures.

Endohedral fullerene complexes are often so stable that several their derivatives
have been synthesized (Cai et al. 2007, 2008; Cardona et al. 2005; Chaur et al.
2009; Komatsu and Murata 2004; Yamada et al. 2010). Interestingly, the guest can
influence the shape of the host cage. To our best knowledge, no endohedral fullerene
complex with an isolated hydrogen atom as the guest has been detected. However, as
mentioned earlier Cross et al. reported a tritium guest inside C60 (Jimenez-Vazquez
et al. 1994; Khong et al. 2000).

7.3.1 Endohedral Metallofullerenes

Endohedral metallofullerenes (Akasaka and Nagase 2002; Chaur et al. 2008b, 2009;
Kato et al. 2003; Yamada et al. 2010) are probably the most extensively studied
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today since they are thought to bring marketable applications as e.g advanced mate-
rials (Kobayashi et al. 2003; Ross et al. 2009; Yasutake et al. 2005) and in medicine
(Cagle et al. 1999; Ji et al. 2006; Murthy and Geckeler 2006; Watanabe et al. 2005).
The most abundant classical EMFs are M@C82 (Akasaka and Nagase 2002; Kitaura
and Shinohara 2007; Liu and Sun 2000; Shinohara 2000a, b) and the most abundant
metal guests are lantanides. If one or more atoms of metal reside inside a fullerene
then electrons are transferred from the guest to the host cage. However, the amount
of the charge transfer is not always simple to be determined. For La2@C80 it is, as in
most cases, between 2 and 3. However, the number reaches 6 in case of Sc3N@C80,
which should better be denoted as [Sc3N]+6@[C80]–6 (Iezzi et al. 2002). It should
be mentioned that endohedral metallofullerenes represent untypical salts since they
cannot be dissociated into the cation and anion without the fullerene cage breaking.
Sc3N@C78 should also be mentioned since, contrary to typical endohedral complex
Sc3N@C80 (in which the guest rotates freely inside the host), the Sc3N cluster occu-
pies a defined position inside the host cavity (Campanera et al. 2002). It should be
stressed that, contrary to expectations in both structures the cluster is planar. Both
structures are also noteworthy in this respect that the former one is stable although
non-IPR C78 is not while in the latter the C80 cage isolated host is of Ih symmetry
which is the least stable for the empty fullerene.

As mentioned earlier, fullerenes doped with metals are obtained by laser (Wilson
et al. 2002) or arc vaporization (Afanas’ev et al. 1997) of metal-graphite composites
in a rare gas atmosphere followed by tedious purification (Komatsu 2009; Komatsu
et al. 2007; Nagata et al. 2005). As proven by mass spectroscopy, the larger fullerene
cages can contain up to 4 metal ions (Shinohara 2000b). The largest clusters inside
a fullerene cage reported are probably Sc4(μ3-O)2 inside Ih-C80·NiII(OEP)·2C6H6
fullerene adduct (Stevenson et al. 2008b) and Sc4(μ3-O)3 inside Ih-C80 (Mercado
et al. 2010). Today methods (as of 2010) allow one to obtain at best no more
than 10% of fullerenes (empty and endohedral) in the raw soot. Therefore, stren-
uous purification procedures involving extraction with organic solvents followed by
multi-step HPLC chromatographic separations are applied to obtain the total yield
of purified metallofullerenes generally lower than 1% (Yamada et al. 2010).

As concerns classical EMFs, sometimes, the guest influences considerably the
host cavity. For instance, C66 does not have IPR isomers. However, Sc2@C66
obtained by Shinohara’s group has been found to be a non-IPR stable fullerene
(Wang et al. 2000). Later it was shown that even those fullerenes that can form
IPR structures are sometimes stabilized as non-IPR ones, e.q. La2@C72, (Kato et al.
2003) Sc2C2@C68, (Shi et al. 2006) and others. Today non-IPR isomers have been
isolated for many cages built of less than 60 carbon atoms (like U@C28 (Guo et al.
1992)), and those containing 60, (Löffler et al. 2009; Zettergren and Martin 2008)
66, (Wang et al. 2000) 68, (Park et al. 2005; Rapta et al. 2008; Stevenson et al.
2000) 70, (Yang et al. 2007b; Zettergren and Martin 2008) 72, (Dunsch et al. 2001;
Kato et al. 2003; Wakahara et al. 2006) 74, (Rappoport and Furche 2009) 76, (Yang
et al. 2007a) 78, (Beavers et al. 2009; Park et al. 2005; Popov et al. 2007) 82, (Fu
et al. 2009; Mercado et al. 2008) 84 (Beavers et al. 2006; Fu et al. 2009; Zuo et al.
2008) carbon atoms with one to three ions or an anionic cluster, (Shinohara 2000b)
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metal nitrides (M3N) (Chaur et al. 2009) or metal carbides (M2C2) (Shi et al. 2006)
serving as guests. A guest can also stabilize a less stable IPR isomer (Olmstead et al.
2003). On the basis of semiempirical quantum chemical and DFT calculations for a
large number of IPR and non-IPR (having less than four adjacent pentagons), Popov
and Dunsch (2007) have found that for the cages smaller than C84, non-IPR isomers
of hexaanions C2n

–6 are comparable or even more stable than the neutral species.
They have also predicted the most stable such complexes for C68 – C98 fullerenes.
One of the largest identified EMF seems to be Gd2@C106 (Yang et al. 2008). On
the basis of DFT calculations, Scuseria group (Infante et al. 2008) have obtained
a stable U2@C60 complex. Contrary to the experimental finding of U2@C58 (also
coauthored by Scuseria (Guo et al. 1992)), they claimed that it is an artefact since
C60 cavity is too small to host this guest.

The EMF family is constantly increasing; the complex having Sc3CH in the C80
cage (Krause et al. 2007) has been recently obtained as well as EMF in the C106
cage (Chaur et al. 2008b). Echegoyen and coworkers (Chaur et al. 2009) divided
recently endohedral metallofullerenes into four groups:

1. Classical EMFs (M@C2n and M2@C2n, M = metal and 60 ≤ 2n ≥ 88). They
include mainly alkali metal atom(s) (K@C44 and Cs@C48, (Weiss et al. 1988)
K@C60, Rb@C60, Cs@C60, (Curl 1992) Cs@C82, (Anderson et al. 2000)) alkali
earth metal Ca, (Wan et al. 1998; Zhang et al. 2006) transition metals, (Bohme
2008; Chaur et al. 2009; Suzuki et al. 1996; Wang et al. 2000; Yamada et al.
2008b) lantanides, (Lu et al. 2008; Wang et al. 1997; Xu et al. 2006a; Yamada
et al. 2008a, 2010) iron, (Pradeep et al. 1992) cobalt (Bethune et al. 1993) and
uranium (Guo et al. 1992). Not mentioned in (Chaur et al. 2009), there are also
such complexes involving three metallic guests M3@C2n (Yang and Dunsch
2006; Yannoni et al. 1992).
The last three groups, not classical EMFs, are listed below.

2. Metallic carbides EMFs (M2C2@C2n, and M3C2@C2n, M = metal and 68 ≤
2n ≥ 92) (Iiduka et al. 2005; Wakahara et al. 2004; Wang et al. 2001). In their
review published in 2006, Dunsch and Yang (2006) asked why metallic carbides
EMFs are formed only with scandium or ittrium metals (Iiduka et al. 2006; Wang
et al. 2001). Recently, a carbide structure have been proven by X-ray also for
Gd2C2@D3(85)-C92 (Yang et al. 2008). As with numerous other endohedral
fullerenes, also in this case the guest can stabilize a non-IPR structure (Wang
et al. 2001).

3. Metallic nitrides EMFs (M3N@C2n, M = metal and 68 ≤ 2n ≥ 96) (Chaur
et al. 2008a, b, 2009; Yang et al. 2009) They include, among other, mixed
ErxSc3–xN@C80 (x = 0 – 3) (Campanera et al. 2002; Stevenson et al. 1999),
unusual mixed lutetium/yttrium nitride metallofullerenes (Tarabek et al. 2009)
and CeSc2N@C80, (Wang et al. 2006), Gd2ScN@C80, and TbSc2N@C80,
(Stevenson et al. 2008a) Tb3N@C80, Tb3N@C86 and Tb3N@C88, (Zuo et al.
2007) Gd3N@C78, (Beavers et al. 2009) and Sc3N@C68. (Olmstead et al. 2003)
have been proven to have non-IPR structures. On the basis of quantum chemical
calculations, Poblet, Echegoyen et al. (Chaur et al. 2008c) have found that redox
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properties of metallic nitride endohedral fullerenes do not depend on the cage
size supporting the ionic model of binding in these complexes.

4. Metallic oxide EMFs (M4O2@C80) or M4O3@C80 (Mercado et al. 2010).

The EMF structures were extensively studied using numerous physicochemical
methods, (Chaur et al. 2009; Guha and Nakamoto 2005; Popov 2009; Popov and
Dunsch 2009) among others X-ray, (Campanera et al. 2002; Mercado et al. 2010;
Wang et al. 2000; Zuo et al. 2007) NMR, (Heine et al. 2004; Iiduka et al. 2006;
Koltover 2003; Koltover et al. 2003; Reveles et al. 2005) EPR, (Dresselhaus et al.
1995b; Koltover et al. 2000, 2003; Tagmatarchis et al. 2002) XAFS, (Kubozono
et al. 2001) electrochemical, (Chaur et al. 2009) IR and Raman methods, (Guha and
Nakamoto 2005; Popov 2009) as well as computational approaches (Campanera
et al. 2002; Guha and Nakamoto 2005; Iiduka et al. 2007; Popov and Dunsch 2009).
Of particular interest were free movement of guest(s) (Akasaka et al. 1997) or its
(their) specific position in the cavity and the nature of host-guest bonding in EMF
(Popov 2009). A covalent character of the bond between the C66 cage and the cova-
lently bound scandium dimer yielding the trivial topological structure are especially
interesting with this respect (Takata et al. 2003).

7.3.2 Group V Endohedral Fullerenes

To our best knowledge, only N, N2 and P of this group have been found to form
the complexes. Interestingly, although in Nature nitrogen is found only in the form
of a diatomic molecule, it has been encapsulated as monoatomic radical in C60 and
C70 as well as in four C60 adducts. N@C60 (Jakes et al. 2002; Mauser et al. 1997;
Naydenov et al. 2006; Pietzak et al. 1998; Suetsuna et al. 2002) N@C70, (Lips
et al. 2000) N2@C60, (Suetsuna et al. 2002) N@C70 (Cao et al. 2006) and P@C60
(Knapp et al. 1998; Naydenov et al. 2006) together with its two adducts (Scheloske
et al. 2006) and a N@C60–C60 dimer 11 in which only one of the connected C60
cages is filled, (Goedde et al. 2001) have been reported.

The N@C60 complex is so stable at ambient conditions that it survives
exohedral addition reactions. As such it produces a very characteristic, very
clear hyperfine split EPR signal with sharp lines even in the solid state and
has been proposed as ideal probe for monitoring chemical reactions of C60
via changes of the signal (Pietzak et al. 1998). In particular, the effects of
cage variation in the series N@C60, N@C61(COOC2H5)2, N@C66(COOC2H5)12,
N@C66(COOC2D5)12, N@C61(COOC2D5)2 and N@C70 have been examined with
this respect (Dietel et al. 1999).

The system built of an isolated nitrogen atom and fullerene represents a
nanomagnet manipulation of which may enable novel devices for high-density infor-
mation storage and quantum-state control (Grose et al. 2008). Due to the spin to
charge conversion in thin N@C60 films at room temperature, the possibility of
application of these endohedral fullerene (N@C-60) spin qubits has been proposed
(Scheloske et al. 2006).
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7.3.3 Nested Fullerenes and Analogous Structures

As mentioned earlier, nested or onion-like fullerenes are built of two or more
fullerene cages buried inside one another. The number of fullerene cages in such
complexes can be as high as several hundreds (Ugarte 1992). As mentioned before,
the latter have been discovered long before C60 itself (Iijima 1980). Non-spheroidal
nested fullerenes has also been reported (Terrones and Terrones 1997). Dodziuk
et al. have shown that the driving force for the formation of nested fullerenes
is due to small but very numerous nonbonding attractions (Dodziuk et al. 2000).
Mordkovitch reported obtaining two- and three-layered C60@C240, C240@C560 and
C80@C240@C560 (Mordkovich 2000). We believe that what he really had observed
were complexes involving the C540 cage not the C560 one (Dodziuk et al. 2000).

An interesting type of clusters in which fullerene forms the core are multi-
layered metal (Ca, Sr, Ba) structures grown over a fullerene such as C60@M32,
C60@M32@M72, C60@M32@M72@M132, and C60@M32@M72@M132@M212
(Zimmermann et al. 1994). As evidenced by C60@M32 and C70@Ba37, in the first
layer one metal atom is placed over each of the 12 pentagonal faces and over each
of 20 (or 25 for the larger cage) hexagonal faces.

7.3.4 Fullerenes with Noble Gas Atom(s) or Molecule(s)
as Guest(s)

Fullerenes (C60 to C400) have not only been found in nature but also their endohedral
complexes with noble gases have been detected in the Allende and Murchison mete-
orites and some sediment samples in deposites associated with two separate events
involving the impact of a large bolide (asteroid or comet) with the Earth (Becker
et al. 2000). Similarly to fullerene itself (which happily could not be patented
because it has been found in Nature), endohedral fullerenes with nobel gas guests
are not only man-made.

Similarly to fullerenes themselves, endohedral fullerenes are obtained by heating
in the noble gas atmosphere at high pressure using Krätschmer-Huffmann proce-
dure (Krätschmer et al. 1990; Saunders et al. 1993). The C60 cage has been shown
to be large enough to enclose all the noble gases helium, neon, argon, krypton, and
xenon (Rubin et al. 2001; Saunders et al. 1994) and the barrier for the helium atom
for the penetration of six-membered fullerene ring has been calculated to be larger
than 200 kcal/mol. Although model calculations (Event et al. 2005) indicated that
four He atoms inside C60 are close to the packing limit, only very small amount
of 2He@C60 have been detected (Sternfeld et al. 2002). Slightly larger amount of
2He@C70 (Khong et al. 1998) and 2Ne@C70 (Laskin et al. 1998) have been found.
This triggered a discussion whether the noble atoms in the last complexes are present
in atomic or molecular form. Krapp and Frenking carried out quantum chemical
calculations using DFT (BP86) and ab initio methods (MP2, SCS-MP2) for the
endohedral fullerenes Ng2@C60 (Ng = He - Xe) to elucidate the nature and mere
existence of the Ng-Ng bond (Krapp and Frenking 2007). The authors state that the
Ng-Ng distances in Ng2C60 are much shorter than in free 2Ng. However, they claim
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that Ng-Ng bond is present only in Xe2@C60 while He2@C60 and Ne2@C60 are
weakly bonded van der Waals complexes. In the former case of the heavy noble gas,
there is a considerable charge transfer between the guest and the host cavity. This
effect, which is thought to be resonsible for the bonding in endohedral metal com-
plexes, is considered to be responsible for the Xe-Xe bonding in the complex with
C60. In view of a relatively close distance between He and Ne atoms inside C60 and
changes in properties of the host and guests after complexation one often speaks
about the He2@C60 (Sternfeld et al. 2002) and Ne2@C70 (Laskin et al. 1998) com-
plexes in which the noble gases form weakly bound van der Waals molecules. In any
case, the latter complexes ilustrate the impact the encapsulation can have on a guest.

As stated above, endohedral complexes with nobel gas guests are obtained using
a modified Krätschmer-Huffmann procedure (Krätschmer et al. 1990; Saunders
et al. 1993). Obtaining argon and krypton in opened fullerene cage (Stanisky et al.
2009) has to be acknowledged here since it may pave the way for a synthesis of
Xe2@C60 allowing one to check the Krapp and Freking prediction (Krapp and
Frenking 2007) of a real Xe2 molecule inside the C60 cage.

NMR studies of endohedral fullerenes labeled with 3He showed that the magnetic
field inside the cage is altered by aromatic ring current effects (Ruttimann et al.
1997) each chemical derivative of a fullerene has given a distinct 3He NMR peak
(Cross et al. 1996). Thus, this technique, using this and other noble gases, plays an
important role in fullerene studies.

7.3.5 Fullerenes with Neutral or Slightly Polar Molecule(s)
as Guest(s)

Only few endohedral fullerenes with neutral or slightly polar molecules (other than
noble gases) as guests have been reported. They encompass H2@C60, (Komatsu
et al. 2005b, 2007) D2@C60, (Tanabe et al. 2006) H2@C70, and 2H2@C70, (Murata
et al. 2008b) 13CO@C60, (Peres et al. 2001), and nitrogen molecule buried in C60
(Suetsuna et al. 2002) and nitrogen atom in C70 (Jakes et al. 2002) as well as two
hydrogen molecules and atomic nitrogen inside the C60 dimer 11 (Murata et al.
2006) and 12 (Goedde et al. 2001), respectively. One hydrogen molecule put sep-
arately into one of the C60 cages of the dimer, N2 inserted into one of the C60
cages of the dimer as well as two N atoms or two nitrogen molecules inserted into
two C60 cages of C120 still await their synthesis. CO and N2 have been inserted
into the fullerene cages by more standard procedures during the fullerene manu-
facturing while hydrogen molecules have been inserted into the fullerene cages by
so-called “molecular surgery”, that is by chemical opening the cage, carrying out
the guest insertion and chemical closing the cage. As mentioned before, this method
of obtaining fullerene complexes with molecular guests has been proposed earlier
independently by Patchkovskii and Thiel (1996) and Dodziuk et al. (2001).

H2, (Rubin et al. 2001) D2, (Tanabe et al. 2006) H2O, (Iwamatsu and Murata
2004; Iwamatsu et al. 2004; Xiao et al. 2007) CO, (Iwamatsu et al. 2006; Stanisky
et al. 2009) N2, (Stanisky et al. 2009) NH3, (Whitener Jr. et al. 2008) and CH4
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(Whitener Jr. et al. 2009) have been inserted inside an “opened” fullerene, mainly
C60. Whether those involving water, carbon monoxide, ammonia and methane can
be closed without losing the guest remains to be seen. Our recent SAPT calculations
indicate that these complexes should be stable (Korona and Dodziuk 2011).

7.4 Unusual Properties of Endohedral Fullerenes

Formation of a topologically nontrivial molecule is known to change its properties
as compared with the trivial one. These changes are less pronounced for catenanes,
rotaxanes, knots, etc. than for molecules that are endohedral complexes of cage
compounds such as endohedral fullerene complexes. The former ones are charac-
terized by a considerable restriction of molecular dynamics. Worm-like movement
of knots (Sauvage and Dietrich-Buchecker 1999) or catenanes and rotaxanes
(Watanabe et al. 2001) has to be mentioned with this respect. Dynamic properties
of mechanically interlocked molecules and their manifestations in NMR spectra are
presented in a very detailed review, mainly based on Stoddart group works (Vignon
and Stoddart 2005).

One of the most interesting problems in the structure of fullerene complexes
is whether there is a bonding of included atom(s) or molecule(s) to the cage. A
covalent bond between the C66 cage and the endohedral scandium dimer creates
a molecule with exciting but topologically trivial structure (Takata et al. 2003).
In La2@Ih−C80 (Akasaka et al. 1997) and Ce2@Ih−C80 complexes, the guest(s)
do not occupy a specific position but circulate three-dimentionally executing large
amplitude movements (Yamada et al. 2010). Such a movement was also docu-
mented in Sc3N@C80 complex in which the guest rotates freely inside the host
while dynamic motion of ytterbium ion in the complex Yb@C74 has been reported
by Xu et al. (2006b).

Encapsulating one or more atoms or molecules in a fullerene can significantly
change properties of both host and guest. For instance, in Nature noble gases exist
as monoatomic species but the weakly bonded van der Waals diatomic molecules
of noble gases He2 in C60 (Sternfeld et al. 2002) and of Ne2 in C70 (Laskin et al.
1998) have been reported. On the other hand, nitrogen is usually present in form
of diatomic molecules. However, monoatomic nitrogen radical inside C60, C70 and
C120 dimers (Dietel et al. 1999; Goedde et al. 2001; Naydenov et al. 2006; Pietzak
et al. 1998; Suetsuna et al. 2002; Zhang et al. 2008a) and in the C61(COOC2H5)2,
C66(COOC2H5)12, C66(COOC2D5)12, C61(COOC2D5)2 cages (Dietel et al. 1999).

“Empty” C2n fullerenes are known to obey the Isolated Pentagon Rule, IPR, stat-
ing that the most stable are those in which pentagons do share at least one common
atom. This rule holds for empty fullerene cages larger than C60 since there are no
IPR structures for fullerenes smaller than this cage. There is only one IPR isomer
for C60 and C70, and the number of isomers increases rapidly with the increase of
the cage. It can be shown that there are only 450 IPR isomers of C100 while the
number of all possible isomers (enantiomers excluded) for this molecule equals 285
913 (Fowler and Manolopoulos 1995). However, a guest can invalidate this rule and
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several stable non-IPR endohedral fullerene isomers (Rapta et al. 2008; Shi et al.
2006; Shustova et al. 2007; Stevenson et al. 2000; Takata et al. 2003; Tan et al.
2009) have been observed. Interestingly, as shown for instance in case of Y@C82
the cage symmetry can change upon the guest inclusion (Takata et al. 1995).

In agreement with the “induced fit” mechanism, (Koshland 1994) not only are
the non IPR isomers Sc2@C66 (Takata et al. 2003) and Sc3N@C68 (Stevenson et al.
2000) stable but they also were isolated in spite of the fact that neither the C66 and
C68 hosts nor the latter guests are stable molecules. Noteworthy, Sc3N@C78 does
not represent a “real” endohedral complex since there is a considerable bonding
between three Sc and cage carbon atoms (Campanera et al. 2002) whereas in the
Sc3N@C80 complex the nonbonded guest rotates freely inside the cage.

Fullerenes act as Faraday cage isolating the guest from the outside and/or sup-
pressing the influence of the guest on the whole system (Delaney and Greer 2004;
Lips et al. 2000; Zope 2008) For instance, the DFT calculations of the electronic
structure and static dipole polarizability of C60@C240 13 have shown practically
identical values of dipole polarizability of the complex and that of the isolated C240
(449 3 vs. 441 3). This means that the outer shell almost completely shields the
inner one (Zope 2008). At low temperatures, hydrogen molecules can exist in form
of para- and ortho-allotropes which interconvert when H2 is immersed inside C60
(Turro et al. 2008).

Another interesting property of endohedral fullerenes is a very strong sensivity
of the NMR signals of the host and encapsulated guest to the charge distribution
enabling isomers identification, (Peera et al. 2003) probing fullerene reactivity,
(Rosenthal et al. 2006) and internal magnetic field in the cage (Sternfeld et al. 2002)
or its aromaticity (Sternfeld et al. 2003).

7.5 “In”-“Out” Isomerism of Hydrogenated Fullerenes

Saunders was the first to notice that not only there is enough space inside fully
hydrogenated C60H60 to allow for the inward orientation of some CH bonds
(Saunders 1991) but also that in this case the molecule becomes much less strained.
By applying a simple molecular mechanics, MM, model Saunders has found that
the most stable is a unsymmetrical isomer with 10 bonds pointing inside. He
also proposed heating as a method which, by breaking and restoring CC bonds,
should lead to “in” isomers of hydrogenated fullerenes. To our best knowledge, the
most hydrogenated fullerene up-to-date is C60H52 (Darwish et al. 2000). C60H60
is a hypothetical molecule. As shown by model calculations by Saunders (1991)
and Dodziuk and Nowiński (1996) it is highly strained and this explains diffi-
culties in its obtaining. Interestingly, perfluorinated C60F60 has been synthesized
(Taylor et al. 1992). However, it proved highly unstable producing by decompo-
sition on air the strongest acid HF. Thus, the prospects of its application as an
ideal lubricant that should revolutionized whole industry (Stoddart 1991) have to
be abandoned. Dodziuk and Nowiński MM calculations (Dodziuk and Nowinski
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1996) carried out using a similar procedure as that applied by Saunders (1991)
also found the isomer with ten CH bonds pointing inside to be the most stable
but in this case it was a symmetrical isomer. Similar but less definite conclusion
on the larger stability of “in” isomers of C60H60 having several CH bonds point-
ing inside the cage have been drawn by Dunlap et al. (1991) and Yoshida with
coworkers (Yoshida et al. 1993). Taking into account that C60H60 is a hypotheti-
cal molecule and that the MM calculations applied by Saunders and Dodziuk and
Nowiński can yield semiquantitative results at best, one can conclude that an iso-
mer with 10 “in” CH bonds is most probably the most stable. However, the crude
methods used today do not allow one for any conclusion concerning the symme-
try of such isomer. The dependence of the calculated steric energy on the number
of “in” CH bonds is shown in Fig. 7.4. Not only 10 CH bonds were found to be
the most stable but also the methyl or ethyl groups pointing inside were calcu-
lated to be more stable than when they pointed outside. Moreover, C60H58(CH3)2
with the methyl groups situated at opposite sides of the cage and pointing inside
were predicted to be more stable than when one of them pointed outside and, in
turn, the latter isomer was more stable than the one with both Me groups point-
ing outside. Contrary to Saunders opinion on heating as the method of obtaining
the “in” isomers, Patchkovski and Thiele (1996) and independently Dodziuk et al.
(2001) advocated that only aimed synthesis can lead to such topologically nontriv-
ial systems. Buchachenko and Breslavskaya (2007) recently reported the B3LYP/
6-31G∗ DFT calculations for two paramagnetic C59X (X = B, P) heterofullerenes
and found that the systems with CH bonds pointing inside are characterized by the
energy lower by 40–50 kcal/mol as compared to the values for the structures with
CH bonds pointing outside.
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7.6 Hydrogen Molecule Inside C60: One or More? Can
Fullerenes Be Applied for Hydrogen Storage?

Numerous experimental and theoretical papers have been devoted to studies of endo-
hedral fullerene complexes involving guest hydrogen molecule(s). These studies can
be divided into syntheses and physicochemical studies on the experimental side and
molecular mechanics, MM, and quantum chemical, QC, calculations on the other,
with few dynamic simulations in between. In addition to the “in” isomers of hydro-
genated fullerenes discussed in Section 7.5, hydrogen can also be present inside the
fullerene cage bonded to it, as is the case of Sc3CH@C80 mentioned earlier. Of
course, with hydrogen covalently connected to the cage the latter compound is not
an object with distinct topological properties.

7.6.1 Hydrogen Storage

It should be stressed that hydrogen as fuel has some important advantages:

a. It is an alternative to coal, oil and gas present in huge amount mainly in H2O and
clathrate hydrates (Dodziuk 2002d).

b. It can easily and effectively be transformed into other forms of energy.
c. It does not create pollution since the only product of its burning is H2O.

However, hydrogen as fuel has also several disadvantages limiting its applica-
tions:

a. As gas, it requires very heavy containers.
b. As liquid, it is very expensive and its use is characterized by huge losses.
c. As metal hydrides, it has a small energy content and is sensitive to impurities

(Liu et al. 2010; Sakintuna et al. 2007).

In view of the above arguments, there is a massive search for hydrogen con-
tainers. Among others carbon nanotubes, CNTs, (Arai et al. 2009; Becher et al.
2003; Geetha and Gayathri 2010; Hirscher et al. 2001), and fullerenes (Pupysheva
et al. 2008) have been considered one of the most promising targets and fullerenes
use in hydrogen storage is one of the most hot topics in their applications (Denis
2008; Pupysheva et al. 2008; Shin et al. 2006). Hydrogen can be captured by these
molecules either by physisorption or chemisorption. The latter process, which will
be not discussed here (see, however, an interesting proposal, (Zhao et al. 2007)) con-
sists in CH bonds formation which can point either outside or inside the carbon cage
(Dodziuk et al. 1999; Dodziuk and Nowinski 1996; Saunders 1991) (so called in-
out isomerism discussed in Section 7.5). As concerns physisorption, it consists in the
endohedral complex formation, that is placing an H2 molecule inside the C60 cage
without covalent bond formation (Komatsu et al. 2005a) (the external complexation
to a fullerene molecule does not lead to a stable complex). The first report about the
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nanotubes application for hydrogen storage by Dillon et al. (1997, 1999) seemed
very promising but turned out erroneous since absorbance of hydrogen by single
wall nanotube bundles was measured without purifying the sample which contained
metal catalyst and/or several other impurities. Thus, in spite of several attempts no
one could repeat the results by Dillon et al. (Becher et al. 2003; Hirscher et al.
2001) and, to our best knowledge, materials other than carbon nanotubes for hydro-
gen storage seem more promising. Some nontrivial materials, other than CNTs
and fullerenes (such as graphene, (Du et al. 2010) neon hydrate, (Hakim et al.
2010) and nanoporous carbon (Gao et al. 2010)), are also considered for hydrogen
storage.

Moreover as mentioned earlier, even if hydrogen would be put inside a fullerene
cage it could not be released without the cage breaking. Thus, fullerenes are not
suitable for repeated usage as hydrogen container. However, numerous, especially
computational works have been carried out with such proclaimed purpose. A
recent idea, to store hydrogen in an chemically opened fullerene cages (Hu and
Ruckenstein 2005) could be a route to overcome this obstacle. Other approaches to
the fullerenes usage for hydrogen storage explored by Yoon (2007) and Kuc et al.
(2007) and Patchkovskii and Heine (2007) have consisted in taking advantage of
exohedral complex formation involving hydrogen molecules, for instance in the
solid or porous state. In spite of the fact that fullerenes cannot serve as hydrogen
containers, numerous calculations researchers have been carried out with the aim to
determine how many hydrogen molecules can be hosted by C60 and C70 cages.

7.6.2 Modeling Fullerene Endohedral Complexes with Hydrogen
Molecule(s) Guests

Interest in endohedral fullerene complexes involving hydrogen guests arouse long
before their experimental observations. Therefore, molecular modeling has been
applied in these studies. However, few words on the limitations of fullerenes model-
ing should be said before discussing them. The molecules are large and difficult
to study both experimentally and theoretically. A very revealing assessment of
the difficulties encountered by the experimental determination of bond lengths in
14 and 15 and their comparison with the calculations has been given some time ago
by Andreoni (1998). Her statements “Many aspects of the physics and chemistry of
fullerenes are understood by now but many others still constitute an open question.
In a number of cases, we seem to have contrasting but still coexisting views.” seem
valid today. This opinion is even more valid for the number of hydrogen molecules
that can be hosted by a fullerene C2n cage which will be discussed in detail later
in this section. In spite of a low reliability of quantum chemical calculations for
fullerenes discussed in some detail below, fullerene cages attract numerous theoreti-
cians which often publish calculations using unreliable and/or unchecked methods,
e.g., on relative stabilities of fullerene C2n isomers which have not yet been detected
thus without a possibility of any check against experiment.
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13

14

The title of this section suggests that it deals only with hydrogen molecules
inside a fullerene cage. However, few words should be said about a possibility of
the hydrogen atom or ion enclosed in C60 since in few theoretical papers stability
of such complexes have been analyzed. Such systems are unknown and it is not
clear how they could be obtained experimentally. H2@C60 has been obtained. Thus,
if there is enough room for H2 inside the cage then it is too much room for the
atomic hydrogen and the fullerene complex with atomic or ionic hydrogen would
not be energetically favored. This very simple reasoning indicates that it will be
very difficult, if possible, to obtain H, H+ or H– inside C60. Of course, once such a
system has been formed (how?) it would be stable. This argument refers to all, also
to quantum chemical, theoretical papers, discussed in Section 7.6.2.2 dealing with
such complexes.

7.6.2.1 Molecular Mechanics Calculations

As early as in 1993 Williams et al. have analyzed stability and dynamics of some
isomers of C60 and C70 with H2, F2 and other diatomic, triatomic and larger
guests using a very simple model of atom-atom potential energies (Williams et al.
1993). They have found that not only diatomic molecules H2, F2, etc. but even the
pentaatomic CH4 molecule is stabilized inside the host cage.

In 2001, Dodziuk and coworkers (2001) carried out MM calculations of sta-
bilization energies (defined as a difference between the steric energies of the
complex minus the sum of the energies of its constituent parts) of several endo-
hedral fullerene complexes using three different force fields (CFF91, (Maple et al.
1988) ESFF (Barlow et al. 1996) and CVFF (Dauber-Osguthorpe et al. 1988))
with the aim to qualitatively analyze which molecules could be hosted by C60
(Ih), C70 (D5h), C76 (D2, Td), C80 (C2v(3)), C80 (C2v’(5), D2(2), D3(4), D5d(1),
D5h(6), Ih(7) (Fig. 7.5) and C82 (C2v(9), C3v(7), C3v(8), C2(1), C2(3), C2(5), Cs(6),
Cs(2), Cs(4)) cages (the numbers in parentheses give the symmetry and isomers
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D3 D5d D5h

C2V C2V
' D2

C80

I h 

Td

C60 C70 C76

I h D5h D2

Fig. 7.5 IPR isomers of C60, C70, C76 and C80 fullerenes and their symmetries



140 H. Dodziuk

notation according to The Atlas of Fullerenes (Fowler and Manolopoulos 1995).
The guest considered have been linear (H2, HCN, ClCN, C2H2), planar (H2O, CO2,
C2H4, CH2O, HCONH2, H2S) or three dimensional (NH3, CH4, CH3Cl, C2H6,
CH3OH, CH3NH2, CH3COH). The idea has been to check on the basis of a very
simple model, only slightly more complicated than the one taking into account van
der Waals radii of the atoms involved, which molecules could be hosted in which
fullerenes. Thus, only physisorption has been analyzed there.

The main conclusions from those calculations are:

1. In general, both force fields exhibit similar trends but not the concrete values.
We believe that at the time of this study (Dodziuk et al. 2001) no other method
could give more reliable results at the time of the calculations.

2. Only H2, H2O and, maybe, NH3 have been found to be stabilized in C60. This
conclusion has far reaching consequences concerning the applications of endohe-
dral fullerene complexes, namely, if endohedral fullerenes are to be used, e.g. as
drug carriers, methods of production and purification of fullerenes considerably
larger than C60 should be mastered.

3. Almost all guest molecules have been stabilized in isomers of C82.
4. The stabilization energy depends on the host and guest symmetry.

Let us look at the stabilization energies for H2 inside C60, C70, C76, C80 cages cal-
culated using CVFF force field (Table 7.1). As mentioned above, hydrogen molecule
is stabilized inside all cages under study (also inside C82 cages for which very close
values of 6.3–6.6 kcal/mol of the energy have been found). Interestingly, the sta-
bilization of H2 inside C60 is larger than that in C70 and higher fullerenes studied.
This, purely supramolecular effect is due to the fact that the distance between the
guest hydrogen atoms and the host carbon ones is close to the sum of their van der
Waals radii. However, the fact that the stabilization of water molecule in this cage
is higher indicates that C60 is probably slightly too small for the most efficient H2
stabilization.

As mentioned earlier, H2, (Murata et al. 2008a; Rubin et al. 2001) H2O,
(Iwamatsu and Murata 2004; Iwamatsu et al. 2004; Xiao et al. 2007) CO, (Peres
et al. 2001; Stanisky et al. 2009) N2, (Peres et al. 2001; Stanisky et al. 2009)
NH3, (Whitener Jr. et al. 2008) and CH4 (Whitener Jr. et al. 2009) have been
inserted inside an “opened” fullerene, mainly C60. However, except H2 inside C60
9 (Komatsu et al. 2005a) one and two hydrogen molecules in C70 (Murata et al.

Table 7.1 Steric energy of the complexes of H2, H2O and NH3 with fullerenes calculated with
CVFF (Dauber-Osguthorpe et al. 1988) force field

C60 C70 C76 C76 C80 C80 C80 C80 C80 C80 C80

Ih D5h D2 Td C2v(3) C2v’(5) D2(2) D3(4) D5d(1) D5h(6) Ih(7)

H2 −7.7 −7.2 −6.8 −6.6 −6.5 −6.4 −6.7 −6.5 −6.9 −6.2 −6.4
H2O −10.9 −11.2 −10.6 −11.1 −10.6 −10.5 −10.5 −10.2 −10.5 −10.4 −10.7
NH3 −0.3 −8.0 −8.0 −11.7 −11.5 −12.0 −9.1 −9.0 −7.5 −12.2 −12.3
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2008a) and in the C60 dimer (Murata et al. 2006) as well as nitrogen atom in C60
(Suetsuna et al. 2002) and in the C60 dimer 11, (Goedde et al. 2001) N2 inside C60
(Suetsuna et al. 2002) and C70 (Peres et al. 2001) other attempts to close the cage
have proven unsuccessful until now.

After learning about observation of two H2 molecules inserted into an opened
C70 cage at a conference, (Komatsu 2005a) Dodziuk has carried out the MM cal-
culations for one to four hydrogen molecules inside the IPR isomers of C60, C70,
C76, C78, and C80 (Dodziuk 2005). This modeling has shown that both one and
two hydrogen molecules could be stabilized inside a closed C70 cage. However,
the absolute value of the stabilization energy for one H2 guest is larger than the
corresponding value for two guests (–4.8 kcal/mol vs −3.0 kcal/mol, respectively).
Thus, on the basis of this modeling Dodziuk concluded that it will be very diffi-
cult to close the C70 cage with both guests inside. Later results by Murata et al.
(2008a) confirmed these predictions. Namely, the nonseparated mixture of H2@C70
and 2H2@C70 was obtained in the proportion 96:4 somewhat accidentally exactly
corresponding to the energy difference of 1.8 kcal/mol calculated by Dodziuk using
the MM method (Dodziuk 2005). In addition, the calculations indicated that of
the fullerenes studied C76 of D2 symmetry seems to be the smallest for which the
endohedral complex with two hydrogen molecules should be the most stable.

Two general conclusions have been drawn from the calculations by Dodziuk et al.
(2001). First, to be able to apply endohedral fullerene complexes in reality chemists
have to master obtaining and purification of larger fullerenes. Secondly, knowing
that most endohedral fullerene complexes have been obtained during the syntheses
of the parent cage, we foresaw that the most prospective method to obtain H2@C60
would be a chemical opening of the cage, followed by the guest insertion with a
subsequent chemical closure of the opening (Dodziuk et al. 2001). This conclusion
was independent on the earlier one published by Patchkovskii and Thiele (1996)
Insertion of H2 into the cage has been realized in this way (there is only one report
using another approach (Oxengorn 2003) that has never been followed). Rubin and
coworkers (Rubin et al. 2001) have reported opening the C60 cage and inserting
helium atom or H2 into it. Analogous procedure has been developed in the Komatsu
group (Murata et al. 2003; Sawa et al. 2005) (summarized in Hara et al. 2009) who
succeeded in closing the cage with hydrogen molecule remaining inside thus gen-
erating H2@C60 9 (Komatsu et al. 2005a) using this method. As mentioned above,
Komatsu, Murata et al. group succeeded in obtaining not only the latter complex
but also H2@C70 (Komatsu et al. 2005a, b) 2H2@C70 10 (Murata et al. 2008b)
and 2H2@C120 12 (Murata et al. 2006) while Goedde et al. obtained N@C120 11
(Goedde et al. 2001). The method was dubbed “molecular surgery”.

The results of MM modeling, as well as simple arguments on the basis of van der
Waals radii limiting the closest approach of the hydrogen and carbon atoms, cast
doubts in the results of papers claiming, on the basis of semiempirical, ab initio, or
DFT calculations, that more than one molecule of hydrogen, (Barajas-Barraza and
Guirado-Lopez 2002; Ganji 2008; Shigeta and Saito 2003; Shigeta and Takatsuka
2005; Turker and Erkoc 2003) water, (Ramachandran and Sathyamurthy 2005) or
ammonia (Erkoc and Turker 2003) can be hosted by the C60 cage.
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7.6.2.2 Quantum Chemical Calculations of Fullerene Complexes

Putting hydrogen inside a fullerene was first studied by quantum chemical calcula-
tions as early as in 1991 by Cioslowski (1991) who carried out the ab initio quantum
chemical calculations for the frozen geometry of an empty C60 cage using 4–31G
basis set for the cage and DZP basis set for the optimized included guest (H2, N2,
CO, HF, LiH and LiF). As usually, stabilization energies of the complexes under
investigation have been defined as the differences between the energies of a complex
and its free constituent parts. The results obtained (for two different symmetries of
the C60 cage for H2 and HF guests) shown in Table 7.2 indicate that the purely quali-
tatively the method yielded stabilization of the complexes with strongly polar guests
and destabilization in case of nonpolar H2 and N2 and slightly polar CO included
molecules. H2@C60, (Komatsu et al. 2005b) N2 (Peres et al. 2001; Suetsuna et al.
2002) and CO@C60 (Peres et al. 2001) have been obtained later proving the inade-
quacy of the pure Hartree-Fock approach for description of dispersion interactions.

The largest endohedral content of 29 hydrogen molecules has been reported by
Yang (2007) and Pupysheva et al. (2008) on the basis of DFT calculations which
are known to inadequately describe nonbonding interactions (Bartlett et al. 2005;
Kamiya et al. 2002). If, according to Yang, Pupysheva et al. the hydrogen content is
high, then in addition to physisorption, chemisorption, that is formation of CH bonds
pointing inside, takes place. Taking into account that “C60 has a relative large and
robust cage structure”, Yang concluded that “as many as 29 hydrogen molecules
can be stored without rupturing the cage” although it should lead to unphysically
close location of hydrogen and carbon nonbonded atoms. The latter value is even
higher than 24 H2 molecules inside the cage claimed by Turker and Erkoc (2003)
discussed earlier. The situation analyzed in both studies is not the same since in
the latter work only physisorption has been analyzed while in Yang work some
CH “in” bonds are formed. However, the hydrogen atoms involved in these bonds
occupy a considerable part of the inside volume. Then, according to simple argu-
ments similar to those given in the former section when discussing Turker and Erkoc
(2003) work there is no space even for one physisorped hydrogen molecule inside
the hydrogenated fullerene with some CH bonds buried inside the cage. The critique
of Yang paper and its conclusions has been published by Dolgonos (2008) who has
repeated his (Dolgonos 2005) and Dodziuk (2006) earlier arguments on the unrelia-
bility of Turker and Erkoc paper (Turker and Erkoc 2003) (in which, as discussed in
section II.1, “only” 24 hydrogen molecules had been found to be hosted by the C60
cage) on the basis of the pure geometrical considerations but rather disclaimed the

Table 7.2 Calculated stabilization energies of endohedral complexes

Molecule �E (kcal/mol) Molecule �E (kcal/mol)

H2 (D5d) 1.22 HF (C5v) −1.94
H2 (D3d) 1.22 HF (C3v) −1.96
N2 (D5d) 9.60 LiH −2.39
CO 11.20 LiF −14.94
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methodology applied by Yang. The reply (Yang 2008) to the latter commentary has
been unsubstantial.

Similarly, contrary to the results of DFT calculations, (Jin et al. 2008) there
is no sufficient room inside the C60 cage to host even one acetylene, ethylene or
ethane molecule. Since MP2 calculations are known to overestimate the attractive
dispersion interactions (Sponer et al. 1996).

To overcome the limitations of the classical DFT method, either special function-
als like modified Perdew-Wang and Becke functional, MPWB1K, (Zhao and Truhlar
2004) or explicit inclusion of London dispersion term into the model (DFT-D
method) (Grimme 2004) have been developed. The former method has been applied
to H2@C60, He@C60, and N2@C60 by Slanina et al. (2006) to check the applica-
bility of the method to such systems. The latter authors have found that their values
of stabilization energy are close to the MP2 or SCS-MP2 (spin-component scaled
MP2). Taking into account that MP2 method is known to overestimate the values of
nonbonding interactions, (Hobza et al. 1996) a real check of the method would be
showing that 2H2@C60 is not stable. The latter conclusion is corroborated not only
by simple model considerations on the basis of van der Waals radii and the results
of MM calculations by Dodziuk et al. (2001) but also by recent quantum chemical
calculations by Symmetry-Adapted Perturbation Theory, SAPT, by Korona et al.
(2009). Kruse and Grimme (2009) came to the same conclusion on the 2H2@C60
instability on the basis of quantum chemical calculations involving double-hybrid
density functionals. However, their conclusion (and that by Pupyshva et al. 2008)
on the larger stability of 2H2@C70 than that of H2@C70 seems incompatible with
the larger content of the former molecule than the latter one in the mixture obtained
by Murata et al. (2008a). Interestingly and somewhat accidentally, the 96:4 rela-
tive content of the complexes in the mixture corresponds to the energy difference of
1.8 kcal/mol estimated by Dodziuk using the MM calculations (Dodziuk 2005).

On the basis of a generalized gradient approximation of the DFT method, Bai and
coworkers (Bai et al. 2008) correctly found stabilization of one hydrogen molecule
in C60 and its dimer and a free guest rotation inside the cage. As mentioned earlier,
the erroneous conclusion on the possibility of several clusters of molecular hydrogen
inside C60, C82 and some nanotubes drawn by Barajas-Barraza and Guirado-Lopez
(2002) who used semiempirical MNDO and DFT calculations is based on the
deficiencies of the applied methods. Similarly, semiempirical PM3 and DFT calcu-
lations by Ren et al. (2006) on the configurations of hydrogen molecules inside C60
could not bring reliable results. Taking into account that no more than one hydrogen
molecule can be housed by the C60 cage, we strongly believe that studying catalytic
activity of C60 on enclosed two to five hydrogen molecules (Lee and McKee 2008) is
a purely in silico experiment on the highly strained hypothetical systems the results
of which have no chances to be compared with experiment.

7.7 Conclusions

The studies of endohedral fullerene complexes are booming due to their unusual
properties and prospective applications. Larger fullerenes are obtained and more
guests are inserted into the fullerene cages producing exciting complexes. The
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practical applications are still in statu nascendi. They will most probably include
uses in medicine, molecular devices (e.g. as single-molecule transistor for quantum
computing, (Twamley 2003) in solar cells, (Zhang et al. 2008b) etc. One of the most
exciting is a prospective application of so-called peapods that is carbon nanotubes
filled with endohedral fullerenes encapsulating metal atoms (Kurokawa et al. 2005).
However, using hydrogen filled fullerenes for the gas storage seems at the moment
highly unlikely. Further development of theoretical methods is needed for a reliable
description of endohedral fullerene complexes.
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Chapter 8
Detailed Atlas of Kekulé Structures
of the Buckminsterfullerene

Damir Vukičević and Milan Randić

Abstract Buckminsterfullerene has 12500 Kekulé structures grouped in 158 iso-
morphic classes. In this paper we reproduce the results of paper (Vukičević et al.
Croatica Chemica Acta 78: 223, 2005) with some extensions. Namely, for each
Kekulé structure we provide: number of structures isomorphic to it, the average
number of π -electrons that belong to hexagon, the average number of π -electrons
that belong to pentagon, the number of conjugated cycles of lengths 6, 10 and
14, the number of all conjugated cycles, degree of freedom, maximum number
of independent conjugate cycles and maximum number of independent conjugated
hexagons.

8.1 Introduction

Buckminsterfullerene, C60, is the first fullerene that was theoretically conceived and
experimentally obtained (Kroto et al. 1985). Theoretically, C60 may be viewed as
being constructed by the leap-frog transformation of the fullerene C20. The leap-frog
transformation (Fowler 1986; Manolopulos et al. 1992; Fowler and Manolopoulos
1995) is the transformation in which the dual of the original fullerene is formed and
then truncated on all vertices.

It is highly symmetric fullerene and it has 158 automorphism. Among its 12500
Kekulé structures, there are only 158 non-isomorphic ones (Klein et al. 1986). These
Kekulé structures have been recently extensively studied in the series of papers
(El-Basil 2000; Vukičević et al. 2005; Vukičević and Randic 2005; Randić et al.
2007). In this paper, we extend results of the paper (Vukičević et al. 2005) in
which atlas of Kekulé structures has been presented. Here, we extend this atlas by
providing some additional data and reorganize presentation in such a way that all
data is given next to the figure that represents corresponding Kekulé structure.
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The following parameters are presented:

(1) Number of structures isomorphic to the presented one
We are interested in invariant values of Kekulé structures. Since they are equal
for all isomorphic structures we do not need to present all 12500, but only 158
non-isomorphic ones.

(2) Degree of freedom (forcing number)
Let K be any Kekulé structure and let S be the set of its double bonds. We say
that S is the forcing set of K if K is the only Kekulé structure that contains S.
Cardinality of the smallest set forcing set S is called forcing number (or degree
of freedom). Alternatively, we could say that degree of freedom is the smallest
number of double bonds that determines the Kekulé structure completely (Klein
and Randić 1987). It is expected that the significance of the Kekulé structure
increases as the degree of freedom increases.

(3) The average number of π -electrons that belong to the hexagon and the average
number of π -electrons that belong to the pentagon
Recently, the concept of algebraic Kekulé structures of bezenoids has been pre-
sented (Balaban and Randić 2004a, b). Namely, let K be any Kekulé structure.
π -electron content of the hexagon H is the number K (H) of π -electrons of
K that belong to H. K (H) is calculated in the following way: every double
bond of K that belong exclusively to H contributes 2 to K (H) and every double
bond shared by H and another hexagon contributes one to K (H). The func-
tion that assigns to each H value K (H) is the algebraic Kekulé structure that
corresponds to H. Analogous concept can be applied to fullerenes, too. Just
note that here we observe both hexagons and pentagons; and that each dou-
ble bond is shared between two faces. Now, we can calculate for each face
F its average π -electron content APEC (F) = ∑

K∈KS
K (F)

/
card (KS), where

KS is the set of all Kekulé structures and card (KS) is their number. Further
let us denote set of all pentagons by SP and set of all hexagons by SH. The
average number of π -electrons that belong to the hexagon AH is calculated
by AH = ∑

F∈SH
K (F)

/
card (SH) and the average number of π -electrons that

belong to the hexagon AP is calculated by AP = ∑
F∈SP

K (F)
/

card (SP). It can

be easily seen that it holds 20·AH+12·AP = 60, hence increment of AH implies
decrement of AP and vice versa. It is expected that the significance of Kekulé
structure increases with the increment of AH and decreases with the increment
of AP.

(4) Numbers of conjugated cycles (of lengths 6, 10 and 14; and total number)
The cycle is called conjugated cycle is the cycle in which double and single
bonds alternate. It is known that resonance energy of benzenoids can be esti-
mated from the numbers of conjugated cycles of length 6, 10 and 14. Several
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formulas for such calculations are given in Fries (1927). Hence, here we give
for the each Kekulé structure numbers of conjugated cycles of lengths 6, 10 and
14. Also we provide a total number of conjugated cycles. Especially significant
value is the value of the number of conjugated cycles of length 6. The struc-
tures with the largest number of conjugate hexagons are called Fries structures
(Fries et al. 1935; Randić 2003). It is expected that the importance of the Kekulé
structure increases with the increment of the number of conjugated hexagons,
i.e. that Fries structures (usually) correspond to the most important Kekulé
structures.

(5) Maximum number of independent conjugated hexagons and maximum number
of independent conjugated cycles
Two cycles are independent if they do not share a common vertex. The set
of the cycles is the set of independent cycles if they are pairwise indepen-
dent. Structures with the largest number of independent conjugated hexagons
are named Clar’s structures and it is expected that (usually) these are the
most important Kekulé structures (Randić 2003). Hence, it is expected that
importance of Kekulé structure increases with the increment of the number
of independent conjugated hexagons. Analogous claim holds for independent
conjugated cycles also.

In this paper, similarly as in paper (Vukičević et al. 2005) we present 158
non-isomorphic Kekulé structures in the same ordering as there. The additional
parameters given here are: number of conjugated cycles, number of independent
conjugated hexagons and the number of independent conjugate cycles. The results
are given in the table form and organized as follows:

Drawing
of the
Kekulé
structure

Its number
(coinciding with
the number in
paper (Vukičević
et al. 2005)

The number of
Kekulé
structures
isomorphic to
the observed
one

The average
number of
π -electrons
that belong to
the hexagon

The average
number of
π -electrons
that belong to
the pentagon

Number of
conjugated
hexagons

Number of
conjugated
cycles of
length 10

Number of
conjugated
cycles of
length 14

Number of
conjugated
cycles

Degree of freedom Maximum
number of
independent
conjugated
hexagons

Maximum
number of
independent
conjugated
cycles
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Atlas of Kekulé Structures

0.2502.8502020.0003.00011

59603175420020

10 8 8 9 8 8

1.0002.40012040.5002.700603

91336116921415

9 8 8 8 7 7

1.2502.2506061.2502.250125

1066551010725510

8 7 7 8 7 7

1.2502.2506081.0002.4001207

113736109511711

8 7 7 8 7 7

0.7502.550120100.7502.5501209

83317128031712

8 7 7 8 8 8

1.0002.400120120.7502.5506011

95736118511712

8 7 7 8 7 7
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0.7502.55060141.0002.4003013

760171210382810

8 8 8 8 7 7

0.7502.550120161.0002.40012015

79925139913611

8 8 8 8 8 8

1.0002.400120181.2502.25012017

94428101215479

8 8 8 8 8 8

1.0002.40030201.2502.25012019

964442111755510

8 8 8 8 8 8

1.5002.10020221.5002.1006021

15416681492749

8 8 8 8 8 8

1.0002.40040241.2502.2504023

91836111067398

8 8 8 8 8 8
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1.7501.95040261.5002.1006025

18669381419668

8 8 8 8 8 8

0.7502.55020282.0001.800527

832061324061208

8 8 8 8 7 7

0.5002.70030300.5002.7006029

69706146590614

8 8 8 8 7 7

1.0002.40060320.5002.7001031

96136117330614

8 8 8 8 7 7

1.0002.40001340.7502.5504033

81201287310911

8 8 8 8 8 8

0.7502.55060360.8332.500635

792251310830010

8 5 4 8 7 7
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1.5002.100120381.0002.4006037

137866810222810

7 7 7 7 7 7

1.2502.250120401.2502.25012039

10433981093479

7 7 7 7 7 7

1.2502.250120421.2502.25012041

11454791120479

7 7 7 7 7 7

1.0002.400120441.2502.25012043

87911091116398

7 7 7 7 7 7

1.3332.20060461.0002.4006045

14751279472810

7 7 7 7 5 4

1.2502.250120481.2502.2506047

116428912081108

7 7 7 7 7 7
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1.0002.400120501.5002.1006049

97028101333478

7 7 7 7 7 7

1.5002.100120521.0002.4006051

12676689152810

7 7 7 7 7 7

1.0002.400120541.0002.4006053

91728019382810

7 7 7 7 7 7

1.5002.10060561.5002.10012055

13484781409397

7 7 7 7 7 7

1.5002.100120581.2502.2506057

13294781149479

7 7 7 7 7 7

1.7501.95060601.7501.95012059

17256671588667

7 7 7 7 7 7
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1.2502.250120621.5002.1006061

11464791368668

7 7 7 7 7 7

1.7501.95040641.7501.9506063

14646671556477

7 7 7 7 7 7

1.2502.250120661.5002.10012065

10882891356478

7 7 7 7 7 7

1.083053.206861.0832.35012067

12190281369028

7 5 4 7 5 4

1.0002.40020701.0002.4006069

106609109850910

7 7 7 7 7 7

1.4172.15060721.2502.25012071

187000511091018

7 7 7 7 4 2
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0.8332.50030741.0832.3506073

110500101303037

7 5 4 7 5 4

1.2502.250120761.2502.2506075

11982891144289

7 7 7 7 7 7

1.5002.100120781.5002.1004077

13173971245397

7 7 7 7 7 7

0.7502.55060801.5002.10012079

76809111373478

7 7 7 7 7 7

1.5002.10030821.2502.25012081

14132881164479

7 7 7 7 7 7

1.8331.90030841.0002.4006083

21472449892810

7 7 7 6 5 4
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1.3332.20060861.5832.0506085

17200461921045

6 5 4 6 5 4

1.3332.200120881.3332.20012087

15261271720046

6 5 4 6 5 4

1.3332.20060901.3332.20012089

16930461687046

6 5 4 6 5 4

1.3332.200120921.0832.35012091

15950551371028

6 5 4 6 5 4

1.3332.20060941.6672.00012093

14680462508023

6 4 2 6 5 4

1.5832.050120961.3332.2003095

18921451404046

6 5 4 6 5 4
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1.3332.20060981.6672.00012097

13590462409023

6 4 2 6 5 4 

1.5832.0501201001.8331.9006099

19221452237244

6 5 4 6 5 4 

1.5002.100011021.8331.900120101

152301262169244

6 5 4 6 6 6 

1.6672.000601041.3332.20060103

21590231768046

6 5 4 6 4 2 

1.3332.200301061.2502.25060105

41430042558005

6 4 2 6 4 2 

1.6672.00061081.4172.15060107

79180003604004

6 4 2 6 4 0 
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2.0001.800301101.3332.200120109

46590001656136

6 5 4 6 4 0

1.5832.0501201122.0001.80010111

21072355884000

6 4 0 6 5 4

1.8331.900601141.5832.050120113

17282441857145

6 5 4 6 5 4

1.3332.2001201161.5832.050120115

16711361557145

6 5 4 6 5 4

1.5832.0501201181.5832.050120117

18682351501145

6 5 4 6 5 4

1.8331.900301201.3332.20060119

16852441297127

6 5 4 6 5 4



166 D. Vukičević and M. Randić

1.5832.0501201221.7501.95060121

19141453738122

6 4 2 6 5 4 

1.8331.900601241.8331.90060123

18312442212244

5 5 4 5 5 4 

1.5002.100601261.9171.850120125

34920234195112

5 4 2 5 4 2 

1.5832.0501201281.9171.850120127

19661452733122

5 4 2 5 5 4 

1.5832.050601301.5832.050120129

16391451973145

5 5 4 5 5 4 

1.8331.900601321.5832.050120131

43870222019154

5 5 4 5 4 2 
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1.5832.0501201341.8331.90060133

41510134229022

5 4 2 5 4 2 

1.6672.000301361.9171.850120135

98940003534011

5 4 1 5 4 0 

1.9171.850601381.8331.90060137

38640226296000

5 4 0 5 4 2 

1.5832.0501201401.5002.10020139

20991548173002

5 4 2 5 5 4 

1.9171.8501201422.0001.80060141

29411225129000

5 4 0 5 4 2 

1.6672.000601441.8331.90060143

31330026310000

5 4 0 5 4 1 
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1.8331.9001201461.7501.950120145

22123343858122

5 4 2 5 5 4

1.5832.0501201481.5002.100120147

19902353402023

5 4 2 5 5 4

2.0001.800201501.6672.000120149

55090023758013

5 4 2 5 4 2

1.9171.850601521.7501.95040151

30201226796002

5 4 2 5 4 2

1.8331.9001201541.3332.20060153

24363341764046

5 5 4 5 5 4

1.8331.9001201561.7501.950120155

22871444240122

5 4 2 5 5 4
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1.6672.0001201581.5002.100120157

44070223198023

5 4 2 5 4 2 
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Randić M, Kroto H, Vukičević D (2007) J Chem Inf Model 47:897
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Vukičević D, Randić M (2005) Chem Phys Lett 401:446



Chapter 9
A Graph Theoretic Approach to Atomic
Displacements in Fullerenes

Ernesto Estrada, Naomichi Hatano, and Adelio R. Matamala

Abstract The recently developed idea of analyzing complex networks in terms
of node displacement due to vibration (Estrada and Hatano, Chem Phys Lett
486:166–170, 2010a) is applied to fullerenes. The fact that the ramafullerenes
(fullerenes of Ramanujan graphs) are limited to fullerenes with relatively small
number of C atoms is explained from the point of view of the node displace-
ment. The node displacement is also shown to indicate the stability of isomers of
C40 fullerenes. It is suggested from the analysis of local node displacement that
instability of fullerenes mainly comes from pentagon-rich areas of the molecules.

9.1 Introduction

Most of us have been aware of graphite since we were children. We can remem-
ber how useful our pencils were in learning to write and the advantage of deleting
our errors simply by using rubber erasers. Fewer, however, have had the opportu-
nity of admiring the bright and perfection of diamond. For people involved in the
study of molecular structures, nothing has been more wonderful than contemplat-
ing the structure of fullerenes (see Fig. 9.1). The simplicity, elegance and beauty of
this molecular structure have captivated many natural scientists and mathematicians
in the last decades (Aldersey-Williams 1995). These three allotropes of carbon:
graphite, diamond and fullerenes, are examples of how the combinatorial orga-
nization of atoms can produce very different structures with remarkable distinct
properties (Pierson 1993).

More formally, fullerenes are 3-regular polyhedral graphs. A graph is an object
formed by a set of nodes, which are joined together by links or edges. Regular

E. Estrada (B)
Department of Mathematics and Statistics, Department of Physics, Institute of Complex
Systems, University of Strathclyde, Glasgow G1 1XQ, UK
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Fig. 9.1 Illustration of the
molecular structure of
buckminsterfullerene, C60

graphs, in particular, are those having the same number of links per node. In
“classical” fullerenes only pentagons and hexagons form the structure, while in
the non-traditional ones cycles of other sizes are also allowed. Due to the many
interesting mathematical results existing for regular graphs, it is not surprising that
many researchers have paid attention to the graph-theoretic properties of fullerenes
(Fajtlowitz and Larson 2003; Doslić 2005, 2008; Fowler, 2002, 2003; Manolopoulos
et al. 1991; Zhang and Balasubramanian 1993). Many invariants, old and new, have
been studied for this family of molecules, and many important conclusions about
their structure, stability, function and reactivity have been obtained on the basis of
such topological ideas.

Here we propose the study of atomic displacements in fullerenes due to small
vibrations in the molecule as a whole. We use a graph-theoretic approach based on
physically sounded ideas taken from mechanics. For the first time we show here a
connection between some isoperimetric properties of graphs and vibrational proper-
ties and we extract important conclusions about the stability of these molecules. We
also give a theoretical justification for the empirical evidence that the most stable
fullerenes are those displaying the smallest number of adjacent pentagons. What we
show here is that such pentagonal isolation confers more vibrational rigidity to the
molecule, which is translated in larger stability.

9.2 Preliminary Definitions

Let G be a connected graph without loops or multiple links having n nodes. Then
the adjacency matrix of G, A(G) = A, is a square, symmetric matrix of order n,
whose elements Aij are ones or zeroes if the corresponding nodes are adjacent or
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not, respectively. The sum of a row or column of this matrix is known as the degree
of corresponding node i and designated here by δi. This matrix has n (not necessarily
distinct) real-valued eigenvalues, which are denoted here by λ1, λ2, . . . , λN . The i th
component of the j th eigenvector of the adjacency matrix are designated here by
ϕj (i). Here the eigenvalues are usually labelled in a non-increasing manner:

λ1 > λ2 ≥ · · · ≥ λn. (9.1)

The Laplacian matrix of a graph is defined as L = D−A, where D is the diagonal
matrix of degrees δi and A the adjacency matrix of the graph. The eigenvalues of
the Laplacian matrix are ordered here as follows:

0 = μ1 < μ2 ≤ · · · ≤ μn−1 ≤ μn. (9.2)

The i th component of the j th eigenvector of the Laplacian matrix are designated
here by Uj (i).

The Moore-Penrose generalised inverse (or the pseudo-inverse) L+ of the graph
Laplacian L has been proved to exist for any connected graphs. Using L+ a graph
metric known as the resistance distance can be computed. The resistance distance
(Klein and Randić 1993) between a pair of nodes can be obtained by using the
following formula (Xiao and Gutman 2003):

�ij = (
L+)

ii + (
L+)

jj − (
L+)

ij − (
L+)

ji (9.3)

for i �= j.

9.3 Atomic Displacements in Molecules

Let us consider a molecular graph in which atoms represent unit mass balls and
bonds are identified with springs of a common spring constant k (Estrada and Hatano
2010a, b). The vibrational potential energy from the static position of the molecule
can be expressed as

V (�x) = k

2
�xTL�x, (9.4)

where �x is the vector whose i th entry xi is the displacement of the atom i from its
equilibrium position.

Under these assumptions two of the present authors (EE and NH) have derived
a topological formula for the mean displacement of a node i when the molecule
is immersed into a thermal bath of inverse temperature β = 1/kBT , where
kB is the Boltzmann constant. The procedure followed by Estrada and Hatano
(Estrada and Hatano 2010a, b) is sketched below. First we can express the atomic
displacements as
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�xi ≡
√〈

x2
i

〉 =
√∫

x2
i P (�x) d�x, (9.5)

where 〈· · · 〉 denotes the thermal average and P (�x) is the probability distribution of
the displacement of the nodes given by the Boltzmann distribution. The normaliza-
tion factor that appear in the expression of P (�x) represents the partition function of
the molecule and can be expressed as

Z =
∫

d�y exp

(
−βk

2
�yT��y

)

=
n∏

μ=1

∫ +∞

−∞
dyμ exp

(
−βk

2
λμy2

μ

)
.

(9.6)

It is well known that the smallest eigenvalue of the discrete Laplacian matrix
is equal to zero, μ1 = 0. This is interpreted in this context as the translational
movement of the molecule as a whole, the coherent motion in one direction. Here
we remove this motion of the centre of mass and focus on the relative atomic motion
only. In this case we obtain the following modified partition function

Z̃ =
n∏

μ=2

∫ +∞

−∞
dyμ exp

(
−βk

2
μμy2

μ

)

=
n∏

μ=2

√
2π

βkμμ

.

(9.7)

Then, after some algebraic manipulation we finally arrive at the expression for
the topological atomic displacement:

�xi ≡
√〈

x2
i

〉 =
√√√√ n∑

ν=2

[Uν (i)]2

βkμν

, (9.8)

We have also shown that the topological atomic displacements can be obtained
directly from the Moore-Penrose generalized inverse of the Laplacian matrix
(Estrada and Hatano 2010a, b).

In our previous works we also showed that the Kirchhoff index of a molecule
can be expressed as the sum of the squared atomic displacements produced by small
molecular vibrations multiplied by the number of atoms in the molecule:

Kf = n
n∑

i=i

(�xi)
2 = n2(�x)2. (9.9)
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Furthermore, the sum of resistance distances for a given atom and any other atom in

the molecule Ri =
n∑

j=1
�ij, can be expressed in terms of the atomic displacements as

Ri = n (�xi)
2 +

n∑
i=1

(�xi)
2 = n

[
(�xi)

2 + (�x)2
]
.

On the other hand, the mean square displacement of a node i is given by

(�xi)
2 ≡

〈
x2

i

〉
=

∫
x2

i P (�x) d�x (9.10)

and the correlation between the displacements of nodes i and j is given by

〈
xixj

〉 =
∫

xixjP(�x)d�x, (9.11)

where 〈· · · 〉 denotes the average with respect to P(
⇀
x). The function (11) can be

represented using the Moore-Penrose generalized Laplacian as follows:

〈
xixj

〉 = 1

βk

(
L+)

ij . (9.12)

Finally, Eq. (9.11) is followed by the thermal average of the vibrational potential
energy Eq. (9.6) in the form

〈V (�x)〉 = 1

2

n∑
i=1

ki

〈
x2

i

〉
−

∑
i,j∈E

〈
xixj

〉 = 1

βk

n∑
i=1

ki
(
L+)

ii −
∑
i,j∈E

(
L+)

ij. (9.13)

9.4 Atomic Displacements and Expansion in Regular Graphs

In a regular graph it is known that the following relationship exists between the
eigenvalues of the Laplacian and the eigenvalues of the adjacency matrix of a graph
(ordered as in Section 9.2):

μj = λ1 − λj.

It is also known that for these graphs the eigenvectors of the adjacency and Laplacian
matrix coincide. Then it is straightforward to realise that the atomic displacements
in molecules whose graphs are regular can be written in terms of the spectra of their
adjacency matrix as follow:
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(�xi)
2 = 1

βk

n∑
j=2

[
ϕj (i)

]2

λ1 − λj
. (9.14)

Let us consider for the sake of simplicity, the case where βk ≡ 1 and let � =
λ1 − λ2 be the spectral gap of the graph. Then, we can write (10) as follows

(�xi)
2 = [φ2 (i)]2

�
+

n∑
j=3

φj(i)2

λ1 − λj
. (9.15)

Then, the average atomic displacement in a molecule can be expressed as

(�xi)
2 = 1

n

n∑
i=1

⎛⎝ [φ2 (i)]2

�
+

n∑
j=3

φj(i)2

λ1 − λj

⎞⎠ = 1

n

⎛⎝ 1

�
+

n∑
j=3

1

λ1 − λj

⎞⎠ . (9.16)

Obviously, the first term of the RHS of Eq. (9.15) has the largest contribu-
tion to the atomic displacements of a given molecule. Then, for a given regular
molecule the magnitude of the atomic displacements due to molecular vibra-
tion/oscillations depends very much on the magnitude of the spectral gap. Those
molecules having large spectral gaps are expected to display the smallest atomic
displacements.

There is a family of graph named good expansion (GE) graphs. A graph is con-
sidered to have GE if every subset S of nodes (|S| ≤ 1/2 |V|) has a neighborhood
that is larger than some “edge expansion ratio” h (G) multiplied by the number of
nodes in S. A neighborhood of S is the set of nodes which are linked to the nodes
in S. Formally, for each vertex v ∈ V (where V is the set of nodes in the network),
the neighborhood of v, denoted as �(v) is defined as: �(v) = {u ∈ V |(u, v) ∈ E }
(where E is the set of edges in the graph). Then, the neighborhood of a subset S ⊆ V
is defined as the union of the neighborhoods of the nodes in S: �(S) = ⋃

v∈S �(v)
and the network has GE if �(v) ≥ h(G)|S| ∀S ⊆ V .

The edge expansion ratio h (G) of a graph is defined as (Hoory et al. 2006)

h(G)
def= min

S ⊆ V , |E(S)| ≤ |E|/2

∣∣E (
S, S̄

)∣∣
|S| , (9.17)

where
∣∣E (

S, S̄
)∣∣ denotes the number of links that have one endpoint in S and another

endpoint in S̄. The connection between good expansion and algebraic graph the-
ory comes from the celebrated Alon-Milman theorem (Alon and Milman 1985),
which states that for a finite, connected δ-regular graph G, with spectral gap �, the
expansion constant is bounded as follows:

�

2
≤ h(G) ≤ √

2δ�. (9.18)
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Accordingly, high expansion necessarily means large spectral gap �.
Consequently, we can resume our results concerning atomic displacements and good
expansion as follows:

Among all graphs with n nodes, those having good expansion properties
display the smallest topological displacements for their nodes.

In order to illustrate our results for some artificial graphs we selected the set of
all cubic graphs with 10 nodes. These graphs are illustrated in Fig. 9.2

Fig. 9.2 Illustration of all cubic graphs (δ = 3) with 10 nodes. The last graph depicted is known
as the Petersen graph
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When we plot the values of the average node displacement (�xi)
2 against the

inverse spectral gap 1/� for these 3-regular graphs with 10 nodes we obtain a
straight line of slope 0.093 and intercept 0.271 as illustrated in Fig. 9.3. As can be
seen the graph displaying the smallest average displacement of nodes in the Petersen
graph (last graph in Fig. 9.2), which has the largest spectral gap � among all cubic
graphs of 10 nodes.

Fig. 9.3 Illustration of the linear regression between the average node displacement and the
inverse spectral gap 1/� for the 19 cubic graphs with 10 nodes

9.5 Atomic Displacements in Ramafullerenes

A decade ago, Fowler et al. (1999) studied empirically which fullerenes display
the property of Ramanujan graphs, or ramafullerenes. The Ramanujan graphs
(Lubotzky et al. 1988; Ram Murty 2003) are formally defined as a δ-regular graph
for which

λ(G) ≤ 2
√

δ − 1, (9.19)

where λ(G) is the maximum of the non-trivial eigenvalues of the graph

λ(G) = max|λi|<δ
|λi| . (9.20)
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In the case of fullerenes, λ(G) ≤ 2
√

2. It has been proved that Ramanujan graphs
are good expanders. Using the Alon-Boppana theorem (Alon 1986) it can be shown
that for a δ-regular graph with n nodes,

λ2 ≤ λ(G) ≤ 2
√

δ − 1, (9.21)

which shows that Ramanujan graphs are good expanders. In the mentioned paper of
Fowler et al. (1999) it was found that a relatively large number of ramafullerenes
exists among fullerenes having between 50 and 76 atoms. The distribution of rama-
fullerenes is displayed in Fig. 9.4 for fullerenes having between 20 and 100 atoms.
Based on these empirical finding it was conjectured that there is no ramafullerene
for n > 84.

Fig. 9.4 Distribution of the number of ramafullerenes as a function of the number of atoms
(Fowler et al. 1999)

A plausible explanation for this finding is that the spectral gap decays very fast
with the number of atoms in the fullerenes. For instance, in Fig. 9.5 we plot the
spectral gap of some fullerenes having between 20 and 540 atoms, where we also
show the line below which no ramafullerene exists, i.e., � > 3 − 2

√
2.

The immediate implication of this decay of the spectral gap with the number of

nodes is that the average atomic displacement (�xi)
2 in fullerenes increases as a

power law with the number of atoms. This situation is illustrated in Fig. 9.6, where

the best fit obtained indicates that (�xi)
2 ∼ n0.042.
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Fig. 9.5 Decay of the spectral gap as a function of the number of atoms in the fullerenes

Fig. 9.6 Power law increase of the average atomic displacement as a function of the number of
atoms in the fullerenes
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9.6 Atomic Displacements in Isomers of Fullerene C40

In order to understand in a better way the relation among the spectral gap, the atomic
displacements and the energetics of fullerenes we are going to study 40 isomers of
C40. When plotting the inverse of the spectral gap for these fullerenes versus the
vibrational potential (see Fig. 9.7) or the average atomic displacements (graphic not
displayed) we observe that the smallest value of 1/�, i.e., the largest spectral gap,
corresponds to the fullerene C40:40. Here we denote fullerenes by C40:X, where
X corresponds to the labeling given by Fowler and Manolopoulos in their Atlas
of Fullerenes (Fowler and Manolopoulos 1995). The smallest vibrational potential,
however, corresponds to C40:38 followed by C40:39. The isomer C40:38 has been
identified by 11 out of 12 computational methods as the most stable one among C40
fullerenes (Albertazzi et al. 1999), while C40:39 has been identified as the second
most stable by 9 of these methods.

Fig. 9.7 Increase of the thermal average of the vibrational potential energy as a function of the
inverse of the spectral gap in C40 fullerenes

In Fig. 9.8 we plot the thermal average of the vibrational potential 〈V (�x)〉 of
all C40 isomers versus the relative energy calculated by a hybrid density func-
tional method with a minimal STO-3G basis as reported by Albertazzi et al. (1999).
A good correlation exists between both magnitudes with a correlation coefficient
r = 0.961 and equation: E = 5851.99 (−0.4933 + 0.00916 〈V (�x)〉)0.2 − 1532.
The importance of this relationship goes beyond the possibility of predicting sta-
bility of fullerenes. For instance, this relationship indicates a possible cause for
the difference in stability of fullerene isomers. That is, the largest the rigidity of
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Fig. 9.8 Relationship between the mean vibrational potential energy 〈V (�x)〉 (Eq. (9.13)) and the
relative energy calculated by density functional theory for C40 fullerenes. B3LYP energies are
relative to fullerene C40:38 as taken from Albertazzi et al. (1999)

a fullerene the largest its stability. The rigidity here is measured by the average
atomic displacements or the thermal average vibrational potential energy.

In agreement with this observation is the fact that the largest atomic displace-
ments in fullerenes are observed for atoms in pentagonal rings. That is, atoms in
pentagonal rings display in general more atomic displacements than atoms in hexag-
onal cycles. Among those atoms in pentagonal rings the ones fusing together show
the largest flexibility, i.e., the largest displacements. In Fig. 9.9 we illustrate the
atomic displacements for two isomers of C40 with the lowest (top) and largest (bot-
tom) stability according to B3LYP energies. As can be seen in the least stable C40
isomer (C40:1) there are two regions of large flexibility which are located at the
left and right part of the figure (top-left image). These two regions are formed com-
pletely by fused pentagons in which a central pentagon is surrounded by other six.
This central pentagon has the largest flexibility among all cycles in this molecule
(see Fig. 9.10a). In the case of the most stable C40 fullerene, C40:38 the largest
atomic displacements are observed for the atoms in the very centre of six fused pen-
tagonal rings as can be seen in Fig. 9.10b. Such flexibility decreases as soon as the
atoms are far from the centre of this system, which implies that they are in contact
with hexagonal rings.

An interesting conclusion that we can extract from these findings is that there
is not a plausible geometric explanation for why pentagonal rings are more flex-
ible than hexagonal ones. That is, from geometric intuitive reasoning we could
expect that hexagons are more flexible than pentagons. As we have not considered
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Fig. 9.9 Illustration of the atomic displacements (left graphics) for the isomers C40:1 (top) and
C40:38 (bottom) with the lowest and largest stability, respectively, according to B3LYP energies.
The graphics at the right hand side are three-dimensional embeddings of these fullerenes. The radii
of the nodes in the graphics on the left-hand side are proportional to the atomic displacements

Fig. 9.10 Illustration of the atomic displacements of fused pentagonal rings in C40 fullerenes.
(a) System of seven fused pentagonal rings in C40:1, the least stable C40 isomer. (b) System of
six fused pentagonal rings in C40:38, the most stable C40 isomer. The radii of the nodes in both
graphics are proportional to the atomic displacements

any geometric or electronic characteristic of fullerenes in deriving our atomic
displacement measures, we can conclude that the cause of the observed differ-
ences in flexibility/rigidity between pentagonal and hexagonal rings is a purely
topological one.

Finally, we would like to remark that our current findings support the hypothesis
that the pentagon adjacency number is a good predictor of the stability of fullerenes.
It has been shown in several studies (Balaban et al. 1995; Campbell et al. 1996;
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Albertazzi et al. 1999) that the most stable fullerene isomers contain the least num-
ber Np of adjacent pentagons in their structures. We have observed here that such
pentagon isolation confers more rigidity to the fullerenes and this produces larger
energy stabilization. However, as we can see in Fig. 9.11 isomers with the same
number of adjacent pentagons display different thermal average of the vibrational
potential energies, which indicate that not only the adjacency between such rings
is important but also the position that certain rings occupy in the structure of the
fullerene (see Fig. 9.10).

Fig. 9.11 Relationship between the thermal average of the vibrational potential energy 〈V (�x)〉
(Eq. (9.13)) and the number of adjacent pentagons in C40 fullerenes. The values of Np are taken
from Réti and László (2009)

9.7 Conclusions

In the present article, we applied to fullerenes, a recently developed idea of ana-
lyzing complex networks in terms of the vibrational potential energy of the atomic
displacements. After defining the mean atomic (or node) displacement, we argued
that a small atomic displacement means a large spectral gap of the graph (Fig. 9.3),
which in turns means that the graph has good expansion.

We demonstrated these relations in fullerenes. Fullerenes with the property of
Ramanujan graphs, or ramafullerenes, are good expanders. The ramafullerenes are
limited to fullerenes with relatively small numbers of C atoms. We explained this
fact from the above two points of view, namely, the spectral gap and the atomic
displacement. We demonstrated that as the number of atoms increases, the spectral
gap decreases (Fig. 9.5) and the atomic displacement increases (Fig. 9.6).
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As another application of the atomic displacement, we examined isomers of
fullerenes C40. We showed that the thermal average of the vibrational potential
energy of our simple definition has strong correlation with the energy obtained from
elaborate calculation of density functional theory. Since the latter tells us the stabil-
ity of each isomer, we claim that our vibrational energy also indicates the isomers’
stability. We went further and showed that the atomic displacement is generally
larger in the area of pentagons than in the area of hexagons. This suggests that the
instability of a fullerene isomer is originated in pentagon-rich areas confirming the
pentagon isolation rule.
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study. EE thanks New Professor’s Fund of the University of Strathclyde for partial financial
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Chapter 10
Counting Spanning Trees in Toroidal Fullerenes

E.C. Kirby, R.B. Mallion, and P. Pollak

Abstract The Cycle Theorem was introduced under that name by Kirby, Klein,
Mallion, Pollak and Sachs in 2004. It provides a formula for calculating how many
spanning trees a graph has (its complexity) but, for some graphs, even quite small
ones, the calculation is a laborious and error-prone process to do by hand. A simple
algorithm for computer application is developed, which uses the Cycle Theorem to
calculate the complexities of some non-planar graphs that can be embedded on a
torus, forming symmetrical trivalent tessellations on that surface.

10.1 Introduction

Kirby et al. (2004) introduced what they called the Cycle Theorem. Applicable to a
graph of any genus, this theorem provides an expression for calculating how many
spanning trees that graph has (a number that will subsequently be referred to as the
graph’s complexity). However, actually applying the Cycle Theorem to any graph
that is of a size likely to be of interest within the field of fullerene chemistry would
be a daunting and rather error-prone task using “pencil & paper” methods. In this
chapter, we develop and present an algorithm suitable for implementation as a com-
puter program that uses the Cycle Theorem to calculate the complexities of some
non-planar graphs that can be embedded in a torus to form symmetrical trivalent
tessellations on that surface.
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10.2 The Cycle Theorem

The Cycle Theorem states that the number of spanning trees, t(G), in a graph G is
given by the expression

t(G) = (det Z)(det ZT)

(det U)(det UT)
(10.1),

in which (Kirby et al. 2004) Z is a (μ × e) cycles → edges incidence-matrix and U
is a non-singular (μ × μ) sub-matrix of Z, where μ is the circuit rank of G and e is
the number of edges in G. U is selected from Z in such a way that the edges that do
not correspond to the columns of U form a spanning tree of G: those edges that do
correspond to the columns of U are said to form a set of chords. There is a (1 – 1)
correspondence between spanning trees and the non-singular (μ × μ) matrices U.
The determinants of all matrices U of this kind have the same absolute value (Kirby
et al. 2004). We may define

M = Z.ZT (10.2),

and since, obviously,

(det U)(det UT) = (det U)2, and

(det Z)(det ZT) = det Z.ZT (10.3),

Equation (10.1) may also conveniently be written

t(G) = det M
(det U)2

(10.4).

As Kirby et al. (2004) observed, one of the attractive features of the theorem of
Gutman et al. (1983) – which has as a drawback the limitation that it is applicable
only to planar graphs – is that the data needed for its implementation can be “seen”
in the drawn (embedded) graph. In particular, the matrix M = Z.ZT can be com-
piled, without first devising Z, by inspecting the cycles of the graph that form a basis
(Kirby et al. 2004) and the edges that are common to pairs of such cycles.

Likewise, we feel that the more elegant form of the theorem of Kirby et al. (2004)
is the one in which it can be expressed in terms of interpreting M as a “cycle-
overlap” matrix. When two cycles of a graph G have an edge in common and at that
edge their orientations agree (see Kirby et al. 2004), we say that there is a “match”;
if they disagree, there is a “mis-match”. Having identified μ cycles of G that form
a basis (see Kirby et al. 2004), we can compile the (symmetrical) matrix M directly
from the following definitions of its elements, mij (1 ≤ i, j ≤ μ):

mii = number of edges in cycle i,

and, for i �= j,
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mij = {(number of matches) − (number of mis-matches)}, in cycles i and j. From
this point of view, M is indeed aptly called a “cycle-overlap matrix”.

Finally, Pollak (2010) has re-examined the Cycle Theorem from the point of view
of Duality and, following the “cycle-overlap” approach, has replaced Eq. (10.4) with

t(G) = det M
det M∗ (10.5),

where M∗ is a new cycle-overlap matrix of G in which only those edges that are the
chords of some spanning-tree of G are taken into account. It is immaterial which
spanning tree is used. This is, again, a statement of the general Cycle Theorem
(Kirby et al. 2004): however, just as Kirby et al. (2004) showed that it was possible
to arrange matters so that | det U| = 1, so Pollak (2010) has demonstrated that it
is always possible, in a systematic way, to ensure that det M∗ = 1. When this
occurs, Eqs. (10.4) and (10.5) reduce to the elegantly simple expression embodied in
Eq. (10.6):

t(G) = det M (10.6).

10.3 Generic Circuits

Graphs of genus 1, which can be embedded without self-crossings in a torus, can
also be represented in the plane with no self-crossings if some suitable convention
is adopted, such as repeating certain labelled vertices and edges, or, equivalently,
by drawing an appropriate edge outwards to the edge of a rectangle on one side.
The edge is then treated as having circled (invisibly) “behind” the diagram and so
reappears on the opposite side to connect with its other vertex. Such conventions are
amongst those described in detail in, for example, the paper of Kirby et al. (2004).
For our purpose here, we adopt the former method, where it is sufficient to say that,
in a plane – e.g., on a page – the torus is shown as a parallelogram whose oppo-
site sides are identified, point by point. More physically, we may think of the torus
as having been cut to form a tube and this tube then being cut open: the resulting
object is flattened out. The parallelogram so formed may then be repeated indefi-
nitely often, in both directions, to form a grid in the plane. Within this grid, it is
relatively easy to follow the connections “by eye”.

When a planar graph G is presented as a diagram on a sheet of paper, it is,
ipso facto, embedded in a plane (or, what is topologically equivalent, on a sphere
(O’Leary and Mallion 1987; Brown et al. 1991)). Circuits bounding empty areas
of the plane are among the circuits that we need in order to count the number of
spanning trees. We call such circuits rings, in accordance with the standard terminol-
ogy of organic chemistry. These rings are then equipped with a sense of circulation.
Such cycles do not, in general, supply elements of a suitable set of cycles, called
a fundamental cycle-base (Kirby et al. 2004). Note that this definition intention-
ally includes the circuit that separates the entire embedded graph from the (empty)
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(a) (b)

Fig. 10.1 The naphthalene
graph (a) embedded in the
plane, and (b) with its central
edge (bond) distorted out of
the plane for a possible
near-spherical embedding

rest of the plane or sphere, i.e., its “periphery”. In strictly chemical usage, when
the embedding is in the plane, rather than in the surface of a sphere, this periphery
would usually not be considered to be a ring. For example, Fig. 10.1a shows a rep-
resentation of the hydrocarbon naphthalene, and there is no difficulty in viewing the
two hexagons as rings from either standpoint (mathematical or chemical), but the
“peripheral case” is less obvious to a chemist. If one distorts the central edge/bond
out of the plane (Fig. 10.1b) the periphery does indeed become an obvious “ring”,
as described above. In terms of molecular geometry, however, this is a preposterous
notion. The periphery of a larger structure – say a planar graphite sheet – may, per-
haps, more easily be seen as a ring, especially if it is distorted towards becoming
hemispherical in shape. There will then be many hexagons, and one large ring.

However, with some molecules that are, by their geometrical nature, three-
dimensional, there is no problem at all – for example, Buckminsterfullerene
(Fig. 10.2) – because, here, it is in the planar embedding that edges appear distorted
and unreal in a chemical sense.

The Euler-Poincaré Theorem (Wilson 1972) states that f +v−e = 2(1−g), where
f is the number of faces, e is the number of edges, v is the number of vertices, and g
is the genus, of a graph G. Euler’s Theorem is a special case of the Euler-Poincaré

(a)  (b)

Fig. 10.2 (a) A Schlegel (geometrically planar) diagram of Buckminsterfullerene, and (b) the
same object after anchoring the blue pentagon while lifting the rest of the network out of the plane
of the paper to embrace a spherical space. The red pentagon, which in (a) formed the periphery,
has, in (b), become indistinguishable from other any other pentagon, and is thus an obvious ring
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Theorem and it can be applied to the torus (see, for example, László 2009), for
which g = 1: it then becomes f = e − v. For a graph of genus 1, embedded in a
torus, we then have that μ = e − v + 1 = f + 1. It is clear that only (f–1) rings of
G are independent, so that a cycle-base for G (Kirby et al. 2004) must include two
cycles in addition to the (f –1) that are sited in the set of rings and are easy to select
“by eye”. These two cycles must, of course, be independent of those in the rings
and of each other. They can be chosen from amongst the so-called “generic” cycles
(Kirby et al. 2004) of the embedded graph, namely, those that cannot be shrunk to
a point without leaving the surface of the torus. More generally, a generic circuit,
on any surface, does not divide it into two parts. To be independent of each other,
one of them must “go through the hole” of the torus and the other must “go around
the hole”. It is further convenient (with future regard to values of det M∗ and/or
det U) that each be simple. This means that they do not wind needlessly round the
torus: when shown on the parallelogram diagram, each contains just one pair of
identified points. One generic cycle will have this pair of identified points on one
pair of opposite sides, and the other on the other pair. In passing, we mention that
similar considerations can be extended to more complicated surfaces.

When such a cycle-base has been selected for G, it can be shown (Kirby et al.
2004; Pollak 2010) that det M∗ = 1 and that, once again, as per Eq. (10.6),

t(G) = det M (10.6).

It is immaterial how senses are allocated to the cycles in this procedure (Kirby
et al. 2004), although for the purpose of computation it may be more convenient to
specify a convention.

10.4 An Algorithm

We now develop a computer-applicable approach for the calculation of the complex-
ities of certain graphs embedded, without self-crossings, in a torus. In general, these
are graphs of genus 1, but, as will be seen later, in Section 10.5, planar graphs –
which are, of course, of genus 0 – such as the cube, may also be embedded in a
torus in a “generic” way, if at least one of each kind of generic circuit (Section 10.3)
is present.

The graphs that we have selected are, at least potentially, of chemical interest.
All are regular, of degree 3; the advantage that the Cycle Theorem has in respect of
the order of the determinants that need to be evaluated can be exploited, especially
if the graph (molecule) contains many vertices (atoms) – see Pollak (2010).

We adopt Eq. (10.5)

t(G) = det M
det M∗ (10.5),

but it reduces, in fact, to

t(G) = det M (10.6),
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as shown in Section 10.2, above. The challenge is, therefore, how to compile the
matrix M in a “computer-friendly” manner.

10.5 Toroidal Polyhexes

10.5.1 General Considerations

In this section we consider the class of toroidal polyhexes (TPHs); (Kirby 1993;
Kirby et al. 1993; Kirby and Pollak 1998; Ceulemans et al. 2000, 2002; Fowler et al.
2000; John and Sachs 2009). These are symmetrical tessellations of the torus by
means of hexagons. In the way described in Section 10.3, they may be represented
as an unlimited bi-periodic pattern in the plane. As was shown by Kirby et al. (1993),
three integers, a, b and d (a ≥ 1, 0 ≤ b < a, d ≥ 1), suffice to specify the structure’s
connectivity. Note, however, that, while an ordered trio of (a, b, d) values specifies
a unique TPH, there may be up to six trios that are equivalent (Kirby et al. 1993;
Kirby and Pollak 1998), and reflect different ways of making an excision from the
imagined lattice. Even then, given any specific ordered trio, (a, b, d), there are a
number of ways in which an excision may be made to illustrate the information
pictorially. Here, as elsewhere, we adopt the convention shown in Fig. 10.3.

The form of Fig. 10.3 is standard and, across the whole class of TPHs, the
integers a, b and d are the only variables, and can account for all possible con-
nectional isomers (but note that, in a few cases, more than one mapping can be
distinguished for a given TPH; see Kirby et al. 1993, 2009, “Unpublished work”).
This immediately suggests how we may choose a cycle base in a way that is both
convenient for matrix compilation by hand and is also suitable for implementation as
computer code.

Consider, again, Fig. 10.3. This shows this particular TPH as (a-b-d) = (5-3-2),
but since, as emphasised above, there may be up to six equivalent trios, we need
a rule that defines a unique trio, for reference. To arrive at this we choose (a-b-d)-
trios with the smallest d-value, and from these pick out the smallest value for b. No
attention to a is necessary because, as can be seen from Fig. 10.3, ad represents the
number of hexagons, and is constant for a given TPH.

a

b

d

0

00

Fig. 10.3 The notation used
in this paper and elsewhere,
e.g., Kirby and Pisanski
(2007). The hexagons
labelled “0” define a TPH,
and this particular example
represents TPH (a-b-d) =
(5-3-2)
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As a first step we note that Fig. 10.3 can be read backwards, i.e., right-to-left, to
give an equivalent code (5-4-2). Furthermore, by extending the pattern of Fig. 10.3
in the way that has been described above, similar patterns emerge that perhaps yield
different values of a, b and d. These can be seen by considering the other two possi-
ble axes for a; there are, of course, three ways in which a line can be drawn to bisect
opposite edges of a hexagon, and, in this case, we note that Fig. 10.3, which rep-
resents code TPH(5-3-2), is exactly equivalent to five other trios; namely (10-3-1),
(10-8-1), (5-4-2), (10-4-1) and (10-7-1). Thus, the reference-code for cataloguing is
TPH (10-3-1), as shown in Kirby and Pollak (1998).

10.5.2 Generating an Extended TPH Bi-Periodic Pattern

By hand, but with computer assistance, it is intuitive and straightforward to extract
a suitable tile. This is a drawing of a single graph that contains every hexagon just
once (one of which is labelled zero, as explained above) and is of a suitable shape,
usually quadrilateral. By “suitable”, we mean one where, if multiple copies of such
a tile are made, they can be joined seamlessly in such a way as to reproduce a section
of the potentially infinite bi-periodic pattern representing the TPH in question. This
bi-periodic pattern can be built up on-screen, to the extent required, by simple “copy,
drag & drop” methods. However, devising instructions for an automatic generator
of TPH patterns on-screen by use of (a-b-d) keyboard-input is more convenient, and
is not very complicated to write.

Figure 10.3 contains ad hexagons, together with some periodic repeats. Of these,
(ad – 1) will be chosen to form a full set of independent ring-cycles; by this, we mean
any set of rings that contains all but one of the hexagons. (Recall that when we use
the method of Gutman et al. (1983) for calculating the complexity of a finite planar
polyhex, all the rings that might be regarded as obvious are used, but not the periph-
ery, because that is defined by other rings and so is not independent of them – see,
for example, Fig. 10.2, above.) Any one of the rings (hexagons in this case) on the
surface of the torus (Fig. 10.3) may be chosen as being the excluded, dependent one,
and the one selected is labelled “0”. A recipe for hand-generating a more-extensive
sample of the bi-periodic pattern is as follows. Given a two-dimensional grid of
fused regular-hexagons (on-screen or printed out), any hexagon may be marked as
the first hexagon to be given the label “0”, and it is then a simple matter to identify,
and mark, all the places where such a “0”-marked hexagon of a specific toroidal-
polyhex, encoded as TPH(a-b-d), repeats itself within a planar bi-periodic projection
of its pattern. To do this –

(1) Label the first hexagon of the first row as “0”. We shall subsequently refer to
such a hexagon as a “zero-hexagon”. Then label every ath -hexagon to the right
as “0” until the limit of the grid is reached.

(2) From one or more zero-hexagons, count d hexagons down the 60◦ diagonal.
At this point, both the bth hexagon to the left, and the (a − b)th one to the
right, will be zero hexagons. These new zero-hexagons define where every
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other zero-hexagon within this row should be marked because, within any
horizontal row, all zero-hexagons must be a hexagons apart. This follows from
the definition (see Fig. 10.3) recalling that, on the bi-periodic diagram, every
zero-hexagon is not only identical but represents the same hexagon within the
toroidal embedding. (This is also true of every other distinct hexagon, of course,
whether or not it is so-labelled.)

Repetition of this second step quickly brings a large enough section of the
bi-periodic pattern into view. However, if any straight-line zero-hexagon-to-zero-
hexagon distances are too large to be accommodated within the boundaries of the
pattern on display, then non-pictorial methods must be used to generate all the pos-
sible TPH equivalents and isomers (such as the program described in Kirby and
Pollak 1998). In the course of generating these equivalents it should be borne in
mind that there will always be six to be determined, but that some of the six may
be repeats, thus giving a set containing fewer distinct-but-equivalent trios that all
represent the same TPH (in terms of connectivity).

The algorithm just described is a digression as far as the counting of spanning
trees is concerned. The point of our drawing attention to it is that a sufficiently large
sample of the repetitive pattern can provide an alternative, pictorial, method for
picking out the different members of this small set (up to six) of TPH (a-b-d)-trios.

Each set of equivalent trios represents a single graph, but, for a given torus, there
are a number of what we refer to as connectional isomers, which may be envisaged
as being produced by cutting the torus tube, twisting it, and then reconnecting it.
The pairing of vertices/atoms connected across the plane of the cut will then be
different. It will be a different isomer, in the original chemical sense that bonds will
connect different pairs of atoms. However, if, before re-joining the tube ends, we
imagine twisting more than one complete revolution, we shall have duplicated one
of the previous isomers in a connectional sense, but still have a different structural
isomer because of its twist. There would, in principle, be an infinite number of
these – although, obviously, not in practice. A third possibility is of conformational
isomerism without any cutting, should there be any energy minima when one simply
twists the torus, but whether any of this has significance in practice is unknown at
present, as far as we are aware.

10.5.3 Counting the Spanning Trees

To return to our main task, we require only the parallelogram described earlier
(Fig. 10.3), which can be seen as a planar representation − what might be thought
of as a “cut & skinned-torus”. Note, however, that, for computational convenience,
the diagram that we actually use is Fig. 10.4 (on the next page). Like Fig. 10.3,
this has the first column repeated as the last column, and the top row is the same
as the bottom row, but displaced b columns to the right in a cyclic permutation, in
order to show information on its twist. If b = 0 there is no twist in a connectional
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Fig. 10.4 A ring- and
generic-cycle labelled TPH
(in this case (5-3-2))
exemplifying the standard
conventions adopted
(Cf. Fig. 10.3)

sense although, from that, we cannot be certain that there is no simple physical twist
(in a real molecule). What is new about Fig. 10.4, compared with Fig. 10.3, is that
we have labelled all the rings and added all the circuits that we need in order to
compile an overlap matrix, and we have chosen a specific convention that is simple
to apply to any toroidal polyhex.

The two generic cycles will be called “red” and “blue” (“R” and “B” for brevity).
They must, of course, satisfy the criteria set out in Section 10.3. R must traverse the
representative parallelogram from left to right, just once, and B from top to bottom,
just once, as in Fig. 10.4.

Having arrived at a fully ring-labelled TPH diagram, we may map this onto a
square matrix for computer manipulation. A labelled diagram such as Fig. 10.4 is
convenient for computation of complexity by hand, and it also illustrates the con-
ventions that we adopt while writing an algorithm for implementation as computer
code.

When compiling M, there are six kinds of (symmetrical) overlap to consider:
(a) ring-ring pairs, (b) red-circuit and rings, (c) blue-circuit and rings, (d) red-circuit
and blue-circuit, (e) red-circuit and red-circuit, (f) blue-circuit and blue-circuit. Note
that each leading-diagonal element may be thought of as representing the overlap
of a circuit with itself. Consequently, such overlaps are always positive. The first,
(a), forms a sub-matrix of size (ad − 1) × (ad − 1) − i.e., (9 × 9) in the exam-
ple of Fig. 10.4 – that can easily be compiled, since the leading-diagonal elements
will all be 6 and, for each edge that a given ring-pair has in common, – 1 will be
contributed to the corresponding matrix-element. This follows from our convention
that every ring-circuit is traversed in the same (anti-clockwise) sense. Note that if
a ≤ 2 and/or d ≤ 2, two hexagons may have more than one common edge, as
in Fig. 10.5. Overlaps (b) to (d) (as mentioned and labelled above) involving the
generic cycles, may be compiled by inspection. These compilations need particular
care: they are surprisingly error-prone to write by hand, since every overlap-entry for
the matrix may be the sum of several specific overlap-components (Section 10.2),
each of which may be positive or negative. (This is the case, for example, for the ele-
ment in Row 2, Column B in the matrix featuring in Fig. 10.5a and for those in Row
1, Column B and Row 2, Column B in the matrix depicted in Fig. 10.5c.) However,
such a compilation, once written in generalised terms as computer code, generates
any cycle-overlap matrix within the computer’s capacity, virtually instantaneously.

We emphasise again that the red and blue paths represent the two “generic” ones
that we use, and there is no particular merit in choosing any specific route, so long
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Fig. 10.5 Three of the
several ways of calculating an
overlap matrix for the cube
embedded in a torus as a
boundless polyhex. (a) and
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four-hexagon embedding
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different generic-circuits. (c)
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(Kirby et al. 1993). The
determinant of all three
overlap-matrices is 384, as
expected, for example, from
Kirby et al. (2004)

as each of them starts and finishes at the same vertex (and so is a circuit), and that
they are independent and simple in the sense that one goes through, and one goes
around, the “hole” of the torus just once.

The toroidal-polyhex networks are, of course, particularly easy to deal with –
they are regular tessellations of hexagons, and all connectional isomers can be
described by the three integer parameters a, b, and d. The same general principles
can also be applied to other networks of interest.

10.6 Application to Pentaheptite (Azulenoid) Networks

Pentaheptite (or azulenoid) networks have been the subject of some attention;
(Crespi et al. 1996; Deza et al. 2000; Diudea et al. 2003). These consist solely of
pentagons and heptagons in equal numbers, and can often be generated by the well-
known Stone-Wales rearrangement of pyrene units (Stone and Wales 1986; Kirby
and Pisanski 2007).

As we have seen above, in Fig. 10.5, the cube, which, as a polyhedron, has six
square faces, can be represented as a toroidal embedding of four hexagons. On the
boundless surface of a torus, this can equally well be seen as two naphthalene-units
or one pyrene unit – the latter being amenable to a Stone-Wales (1986) transforma-
tion into two fused azulenes. As chemical entities, the azulenes were first named –
after the colour of azulene itself – in 1864, by Piesse, but more than 70 years then
elapsed before the essential structure was established (St. Pfau and Plattner 1936).
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Fig. 10.6 A pentaheptite analogue of the cube (cf. Fig. 10.5), but, unlike the corresponding
toroidal-polyhex embedding, this is not topologically planar. Rather, it can be seen as a “cube”
where one of its faces has a Möbius twist. Note that this should not be confused with the iso-
merism possible in certain toroidal polyhexes, including the cube, where a four-ring can be rotated
around a diagonal axis, giving rise to a different embedding, that leaves connectivity unchanged
(Kirby et al. 1993, 2009, “Unpublished work”). The complexity of this structure, calculated as
the determinant of the overlap matrix shown (and confirmed by application of the Matrix Tree
Theorem – see, for example, Mallion 1974/1975; Mallion 1975), is 392

Ever since then, however, chemists have been intrigued by the many ways in which
azulenes and benzenoids are, as the pre-Socratic philosopher Parmenides (ca. 475
BC) might have put it, “the same and yet not the same”. Here we show another
(graph-theoretical) instance where they differ. The pyrene graph and its azulenic
analogue may both be embedded without crossings in the surface of the torus; (see
Fig. 10.6).

However, while the embedded pyrene-graph is equivalent to the (six-faced) cube,
a topologically planar object that can equally be considered to be a band of four
squares (Fig. 10.7a), this is not the case for the corresponding azulenic object. This
is not planar: rather, it can seen as being embedded on a twisted – i.e., Möbius –
band. (See Fig. 10.7b, and the Appendix). A Klein Bottle embedding is also possible
in concept.

(a)(a) (b)

Fig. 10.7 (a) The cube, which, as noted in Fig. 10.5, above, can also be embedded as a network
of four hexagons in the surface of the torus. The cube is a polyhedron with six square faces, but
here we treat it as a band of four squares, coloured grey on the outside, while inner “surfaces” are
blue. The cube is topologically planar. In (b) we have cut the bottom of the nearest face, twisted it
by 180◦, and re-joined it, thus forming a Möbius band. This (now non-planar) object is isomorphic
with the torus tiled with two azulenes shown in Fig. 10.6 (See also the Appendix.)
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(b)(a)

Fig. 10.8 The two types of
pentaheptite (azulenic)
network that are possible
above a certain size. In order
to show the distinction, only
the five-membered rings are
coloured

Note also that, for larger pentaheptite networks, there are two possible arrange-
ments (see Fig. 10.8), and, in addition, the workings will clearly be a little more
intricate since, for example, the ring sizes alternate between 5 and 7 along any
horizontal sequence.

Another group of networks, of especial interest to one of us (Kirby 2006), con-
sists of those that are fully-azulenoid (Fig. 10.9, whose defining characteristic is that
all vertices can be accounted for by a set of disjoint pentagon-heptagon pairs that
have a common edge, and are thus analogous to Clar structures).

(a) (b)

Fig. 10.9 Two types of fully resonant azulenoid-network. There are many possible arrangements
(Kirby 2005; Brinkmann et al. 2009) – 1274 if the largest “empty” ring (that is, a ring that is not
part of an azulene moiety) is 16-membered. In structure (a), the azulene moieties are depicted
in a parallel configuration whilst, in structure (b), the azulenes are arranged in a boustrophedon
manner. The latter represents the only pattern within this class where all non-azulenic (empty)
rings are hexagons

10.7 Notes on Writing an Algorithm for Determining the
Complexity of a Toroidal Polyhex or Other Network

10.7.1 Terminology

Here, we use the traditional terminology for navigation using “points of the com-
pass” as abbreviations for spatial relationships on the page: N = north = up; S =
south = down; E = east = right; W = west = left. Similarly, NE = up & right; SW
= down & left, and so on.
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These eight possible directions conveniently describe the positions of the eight
neighbours of any matrix element within the interior of a rectangular matrix. The
polyhex section of a TPH, such as that shown in Fig. 10.4, can be regarded merely
as a distorted version of a rectangular matrix, where all the columns have been
“pushed over”, from the right, like a row of dominoes − although not to the ground.
Note again that, when Fig. 10.4 is treated in this way, the first and last columns are
identical, and the top row is the same as the bottom one, but displaced towards the
right. This means that every labelled ring has six neighbours, although the identity
of some of these for peripheral rings must be sought towards the opposite side of
the matrix of rings.

10.7.2 An Outline Algorithm for Counting the Number
of Spanning Trees (The Complexity) of a Toroidal Polyhex

For manual investigation of very small systems it is easier to work with a stan-
dard, ring-labelled, polyhex-section, but, if the process is to be automated, it is more
convenient to transcribe the overlap information to a simple square-matrix, which
we term a ring-adjacency matrix. This holds all the ring labels, except “0”, of the
defining structure-diagram, such as is shown in Figs. 10.4 and 10.5, as well as path
labels “R” (red) and “B” (blue). Horizontal spatial-relationships within rows remain
exactly as before, but strips of rings in the polyhex with a NW-SE alignment become
the columns of the ring-adjacency matrix.

The complete algorithm has three stages. First, the ring-adjacency matrix is
derived from the chemical graph. This ring-adjacency matrix is then used to
construct a cycle-overlap matrix, and, finally, the complexity is evaluated as the
determinant of that cycle-overlap matrix.

Consider, for example, a ring-adjacency matrix for Fig. 10.4. For each element,
up to six out of the eight surrounding elements may be adjacent. A rule is provided
for deciding which six of an element’s neighbours are potentially adjacent. There
are fewer than six if one or more of them is labelled “0”, and therefore treated as the
zero-hexagon. In practice, for most of the networks that, currently, are of the greatest
chemical interest, this apparent limitation is no great privation. A systematic search
of this ring-adjacency matrix gives the information needed to complete all entries of
the cycle-overlap matrix. This is followed by a search for all overlaps involving the
two generic cycles (red and blue).

At this stage, all off-diagonal elements are in place. It remains to fill the ele-
ments of the leading diagonal of the overlap matrix. For a TPH, each has a value
of 6, except the last two, which vary according to the size of the generic cycles, but
which are easily computed from a, b and d (see Section 10.5). This procedure, which
sounds rather complicated when described, is in practice quite simple to encode.

For this first stage we have a comprehensive, compact and efficient method for
characterising and encoding the toroidal polyhexes (Kirby et al. 1993; Kirby and
Pollak 1998). Other networks with reasonably simple patterns could obviously be
encoded in a similar way, albeit with less elegance. The nearer that the set of rings
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approaches an aperiodic spatial-distribution, the more complicated, and the less use-
ful, will any such encoding method be. By an “aperiodic distribution” is meant an
array of rings for which no sub-group of them can be defined as a tile that can
be repeated to reproduce the whole entity. Thus, the polyhexes are not random
or aperiodic (they are tiled with hexagons), nor are the pentaheptites – Figs. 10.6
and 10.8a – which may be tiled with pentagon-heptagon pairs. The Penrose tilings
(Klee and Wagon 1991) represent the infinite case but, for finite ones, the complete
ring-set may be the only tile. Either such a case could not be encoded in the way
in which a TPH is encoded, or an attempt to do so would be no less compact than
just describing the whole entity as a matrix. The second stage, generation of a cycle-
overlap matrix, described earlier (Section 10.5), is one of the subjects of this chapter
and, provided that we can obtain a ring-adjacency matrix that fully characterises the
toroidal graph, we can always use it to generate the corresponding cycle-overlap
matrix, adopting a “mechanised” version of the technique described earlier. To eval-
uate the required determinant, many well-known routines are available. We prefer
to use one that involves manipulation only of integers but, with increasing size,
the number of bits allocated to the storage of an integer on a modestly sized com-
puter is soon exceeded, and the memory allocation for that integer overwhelmed, so
that complete accuracy is then lost. The use of products of powers of prime num-
bers (Brown et al. 1991; John and Mallion 1994) is being investigated as a way of
postponing the occurrence of this problem.

As noted, this approach can be adapted to include non-hexagonal rings, although
passing all necessary structural information in concise form, and constructing the
cycle-overlap matrix, will both be more complicated.

10.8 Concluding Remarks

As described in the body of this chapter, this work arose from the wish to be able
to apply the quite-complicated procedure described in our earlier paper (Kirby et al.
2004) by, where possible, specifying conventions and then outlining an algorithm
that can be implemented as a computer program. We have successfully done this,
and have tested it. A number of results (while running under Windows XP) were
checked against those obtained by other standard methods. However, for extensive
use of the program, further attention to such matters as Windows-version com-
patibility, precise size-limit checking, general ease of use, and so on, would be
desirable.

In the approach presented here, we have specifically and deliberately emphasised
what we consider to be the intuitively appealing “cycle-overlap” aspects of the
theorem that we proposed (on p. 267) in Kirby et al. 2004, rather than the formalism
based on the Z-matrix, also described (on p. 266) in that paper. The “cycle-overlap”
concept, which we and others (e.g., Klein 1994, Personal discussions with R.B.M.,
Department of Theoretical Chemistry, University of Oxford; Haigh 2004, Personal
correspondence with R.B.M) consider to be much the most elegant part of the
whole method, arises in the version of our theorem embodied in Eq. (10.6) of the
present chapter.
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Finally, it might be appropriate to conclude with some remarks about the pro-
posed algorithm’s range of validity. As is well known, the numerical value of a
graph’s complexity – which is, of course, an exact integer – increases very rapidly
with the number of vertices in the graph (see, for example Haigh 1996; Brown et al.
1996; Mallion and Trinajstić 2003) while, with structures like fullerenes etc., the
sizes of molecule that are of potential interest are becoming larger and larger. Most
Personal Computers (PCs) now deal in 32 bits to the byte, giving an accessible
positive-integer range of 0 to (232 − 1). PCs with 64 bit-bytes are steadily spreading,
but, even so, given the rapidity, referred to above, with which complexity escalates
as the size of molecule increases, there will continue to be a relatively modest limit
on the maximum size for which an exact value can be derived. If difficulties like
this are encountered in the future it is just possible that larger numbers than might
normally be expected might be teased out of a given PC by the adoption of devices
such as operating in integers expressed to a given (prime) modulus and by the judi-
cious exploitation of theorems in Number Theory such as the Chinese Remainder
Theorem, as was demonstrated in, for example, Brown et al. 1991. At the other end
of the size range, it is noteworthy that, even with small molecules, a well-tested
machine-algorithm can be of great help. The authors of this chapter have learned
by bitter experience how surprisingly error-prone a pencil & paper computation can
prove to be – even, for example, for a system as small as the cube.

Acknowledgement One of us (ECK) is grateful to Professors T. Pisanski and P.W. Fowler for
help in attending the 6th Slovenian International Conference on Graph Theory − held at Bled,
Slovenia in June 2007 – where a preliminary account of the work described in this chapter was
presented.

Appendix: The Relationship of a Toroidal Embedding
of a Double-Azulene to the Cube

For a section of the pentaheptite pattern (shown in Fig. 10.10) we label all rings
with numbers in the range 0−3, in such a way that the infinitely repeating tile rep-
resents a fused double-azulene (i.e., a pyrene after having undergone a Stone-Wales

Fig. 10.10 A ring-labelled
(3×3) tile-excerpt from the
bi-periodic pattern of a
double-azulene embedded in
the surface of the torus. This
allows the central, blue, tile to
be fully viewed within the
context of surrounding
repeats of itself
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transformation). One such tile is coloured blue in order to distinguish it from all its
reproductions.

We must now label the vertices of this tile. A unique vertex is identified as such,
by being common to a trio of rings with a specific orientation. As expected by com-
parison with the cube, there are eight distinct vertices. Also as expected – since this
is a toroidal embedding – most vertices (those labelled 1, 2, 3, and 5) on the periph-
ery of a tile appear twice, but two of them (those labelled 4 and 8) appear thrice,
while internal vertices (the ones labelled 6 and 7) appear just once.

In Fig. 10.11, we give an “exploded” view of Fig. 10.10, for clarity – with vertex
labelling extended throughout the diagram

We now compile the Connection Table of the azulene tile, and conduct obvious
arithmetical checks.

Vertex Connections

1 3 7 8
2 4 5 7
3 1 4 6
4 2 3 8
5 2 6 8
6 3 5 7
7 1 2 6
8 1 4 5

17 36 55 108

Check: Sum of vertex labels as integers 1 . . . 8 = 36.
Sum of the three connection-columns = 108 (= 3 × 36).

Fig. 10.11 An “exploded” view of Fig. 10.10, with full labelling of both rings and vertices
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Fig. 10.12 A Möbius Band
related to the cube. This is the
same as Fig. 10.7b, but with
its vertices labelled, and it is
isomorphic to the toroidal
embedding of a double-
azulene shown in Fig. 10.6

Finally, we first use pencil & paper to draw a (literally) planar graph with these
connections, but pay minimal attention to the occurrence of crossings. If we then
examine this rough drawing and experiment with trying to redraw it with a three-
dimensional perspective, it soon becomes apparent that it will not fit a cube; (again,
this is only to be expected). On the other hand, a little more manipulation by trial &
error reveals that if we (a) treat the cube as a band with four square-faces, (b) cut an
internal edge of one of these faces and then (c) twist it by 180◦ before re-joining, the
connections do fit, and the structure is isomorphic with a Möbius Band (Fig. 10.12)
that is closely related to the cube.
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Mallion RB, Trinajstić N (2003) MATCH Comm Math Comput Chem 48:97
O’Leary B, Mallion RB (1987) In: King RB, Rouvray DH (eds) Graph theory and topology in

chemistry; a collection of papers presented at an international conference at the University of
Georgia, Athens, Georgia, 16–20 March 1987. Stud Phys Theor Chem 51:544

Piesse S (1864) Compt Rend Acad Sci (Paris) 57:1016
Pollak P (2010) Work in progress on aspects of Duality in the Cycle Theorem
Stone AJ, Wales DJ (1986) Chem Phys Lett 128:501
St. Pfau A, Plattner PL (1936) Helv Chim Acta 19:858
Wilson RJ (1972) Introduction to graph theory. Oliver & Boyd, Edinburgh, p 70



Chapter 11
Topological Determination of 13C–NMR Spectra
of C66 Fullerenes

Ottorino Ori, Franco Cataldo, Damir Vukičević, and Ante Graovac

Abstract This article presents a general topological computational method for the
exact determination of the number of 13C–NMR resonance peaks and their relative
intensities and applies it to the case of C66 isomers. Heuristically, the joint usage
of Wiener-based topological invariants of dual and direct molecular graphs pro-
vides quick simulations of its 13C–NMR spectrum of a given fullerene. Topological
tools confirm their power by studying the automorphisms of the fullerene molec-
ular graphs to determine molecular symmetry and 13C–NMR resonance pattern of
C66 cages. Computations produce eight molecules with the proper C2v symmetry
among 4478 distinct C66 isomers, including the C66–C2v isomer with two pairs of
fused pentagons experimentally detected in metallofullerenes synthesis.

11.1 Introduction

Fullerenic Cn cages are hollow carbon molecules formed by 12 pentagons and
n/2 − 10 hexagons and usually respect the well known isolated pentagon rule [IPR]
stating that, for stable fullerenes, each pentagon has to be surrounded by one or
more rings of hexagons (Kroto 1987). Many observed fullerenes like C60, C70, C76,
C78, etc. strictly obey to this IPR topological constraint in such a way that stable
fullerenic surfaces may be assimilated to closed networks of nanocones somehow
interconnected by distorted portions of graphenic lattice.

This IPR rule applies to all the Cn molecules with n = 60 or n = 70 + 2 k
for k > 0; for the intermediate cases C62–C68 it is impossible that all the pen-
tagons remain isolated, originating a group of fullerenes with non-IPR isomers
only (Fowler and Manolopoulos 1995). IPR prevents excessive strain of chemi-
cal carbon bonds shared by touching pentagons that, in turn, would require very
high deformations to form the fullerenic closed carbon cage. Generally, fullerenes
that violate IPR are then highly reactive and difficult to synthesize as standalone
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e-mail: ottorino.ori@alice.it

205F. Cataldo et al. (eds.), The Mathematics and Topology of Fullerenes,
Carbon Materials: Chemistry and Physics 4, DOI 10.1007/978-94-007-0221-9_11,
C© Springer Science+Business Media B.V. 2011



206 O. Ori et al.

molecules. Theoretical principles leading to the chemical stabilization of fused-
pentagon fullerene molecules are extensively treated in several recent relevant
reviews (Tan et al. 2009; Cui et al. 2010). Schematically, non-IPR fullerenes may
be favored by two basic chemical mechanisms: (i) forming fullerenic endohedral
structures (endoclusters) encapsulating metal clusters in the fullerene cages with
strong coordination of the metal ions to fused-pentagons regions or, alternatively
(ii) forming exohedral hydrogenated or chlorinated fullerenic derivatives. The sta-
bility of non-IPR exoderivatives fullerenes involves both principles, the strain-relief
generated by the sp3 partial hybridization of the carbons of the fused pentagons and
the local-aromaticity of the alternationg single/double bonds C–C/C=C persisting
also after exoderivatization (Tan et al. 2009).

Experimentally, non-IPR C66 fullerenes have been synthesized in quantities suf-
ficient for characterization as stable metallofullerene endoclusters Sc2@C66 (Wang
et al. 2000) and, more recently (Tan et al. 2009), in the exohedral chlorinated forms
C66Cl6 and C66Cl10, evidencing outstanding violations of IPR. Significantly, above
products are moreover based on two symmetry-distinct C66 isomers, having differ-
ent touching pentagons topology able to favor their formation and chemical stability.
The isomeric space of the C66 fullerene accounts in fact for 4478 possible (non-
IPR) symmetry-distinct isomers 2 × D3, 1 × C3v, 18 × C2v, 112 × Cs, 211 ×
C2 and 4134 × C1 (Fowler and Manolopoulos 1995) with different configurations
of adjacent pentagons. Considering the observed 19-lines (5×2; 14×4) in the high
resolution 13C–NMR pattern of Sc2@C66 endocluster (Wang et al. 2000), only
8 structural C66–C2v symmetry cages are compatible with the resonance spectra
and with synchrotron radiation powder data (Takata et al. 2001). This observed
C66–C2v cage has two pairs of fused pentagons and conventionally is called here
C66–C2v

#0011 fullerene according to the exhaustive studies in Cui et al. (2010); this
specific molecule (Fig. 11.1) is similarly represented as (C66–C2v) (5,6) fullerene
in the IUPAC recommendations about fullerenes numbering (Cozzi et al. 2005).
It coincides with the isomer #C66:4348 of other scientific reports (Réti and László

Fig. 11.1 C66–C2v
#0011

fullerene in the direct space;
bonds connecting dashed
atoms evidence two pairs of
touching pentagons
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2009; Tan et al. 2009). X-ray crystallography data on C66Cl6 and C66Cl10 exhoedral
clusters show that these molecules derive from a topologically distinguished C66–Cs
cage, featuring a surprising single chain of three sequentially-fused pentagons; the
asymmetric chlorination pattern chosen by both chlorinated forms transform the
overall symmetry of the structures to be chiral (Tan et al. 2009).

Above experimental findings show that C66 isomers with different fused pen-
tagons topologies apply distinct chemical strategies to form stable complexes,
sharpening the need for researchers to fully understand non-IPR fullerene forma-
tion mechanisms, in the attempt to produce the same kind of chemically exotic
molecules in pure-carbon cage form. Also properties of graphene may be influenced
by presence of fullerene fragments in the lattice describable as local nanocones
(Cataldo et al. 2010). This chapter contributes to this search by determining the
very basic topological parameters that influence the final structure of the C66 iso-
mers and their properties. Particular focus is given to the relationships between
molecular topological properties of fullerene isomers and their geometrical proper-
ties, like the measurable symmetry of the isomers detected in the resonance spectra.
Computational results of the present topological methods applied to the symmet-
ric C66–C2v fullerenes coherent with the 19-lines resonance spectra will follow in
details. Preliminary pure-topological indications on relative stability of some C66
isomers are also presented.

Chemical graphs store the fundamental adjacency information of C66 molecules
in their molecular graph made by 66 3-connected nodes or, in the dual repre-
sentation, presenting 12 nodes with 5 edges (describing the pentagons) and 23
6-connected nodes (the C66 fullerene hexagons). Figure 11.2 provides a nice view
of dual diagram for the C66–C2v

#0011 fullerene, properly evidencing the C2v sym-
metry of the corresponding molecular geometry. Table 11.1 gives the connectivity
list of its dual graph being Vi nodes labeled as in Fig. 11.2 and sorted by connec-
tivity values ci (5 or 6); connected vertices Vj are shown. The two fused pentagons
pairs characterizing the C66–C2v

#0011 isomer are topologically represented by the
2 bonds between V1 –V2 and V3 –V4 dual nodes. The connectivity of the actual
molecule is described by listing in the last column of Table 11.2 fullerene molec-
ular sites (numbered from 1 to 66) belonging to a given ring (pentagonal or
hexagonal).

Based on adjacency properties we will initially show how to reach, with certain
approximations, a fast topological determination of the 13C–NMR resonance spectra
of a given fullerene by computing the contribution to its Wiener index W(N), defined
as the sum of the lengths of all minimum paths in the graph, in both the direct and
the dual spaces.

Original topological tools for computing the automorphism group of a molecu-
lar graph, determining its symmetry without limitations, are finally described and
applied to C66 fullerene, and provide a perfect match with resonance experimental
data and previous theoretical studies.

Original considerations about topological stability (based on maximization of
molecular compactness and topological efficiency) of some C66 isomers are finally
proposed.
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Fig. 11.2 C66–C2v
#0011 fullerene in the dual space; dashed 5-edged nodes evidence the two pairs

of touching pentagons

Table 11.1 C66–C2v
#0011 connectivity list for the dual graph GD (Fig. 11.2) with 35 vertices Vi

with connectivity ci 5 (6) for pentagons (hexagons); connected nodes V1 –V2 and V3 –V4 are the
two non-IPR pairs of pentagons. Last column lists nodes 1 to 66 of the direct graph belonging to
the same face

Vi ci GD Connected vertices Direct graph nodes

1 5 2 14 21 31 35 1 2 3 4 5
2 5 1 13 21 33 35 3 4 6 7 8
3 5 4 14 22 32 35 9 10 11 12 13
4 5 3 13 22 34 35 11 12 14 15 16
5 5 16 25 29 30 33 17 18 19 20 21
6 5 18 26 29 30 34 22 23 24 25 26
7 5 15 23 27 28 31 27 28 29 30 31
8 5 17 24 27 28 32 32 33 34 35 36
9 5 15 16 19 23 25 37 38 39 40 41

10 5 17 18 20 24 26 42 43 44 45 46
11 5 19 20 23 24 27 47 48 49 50 51
12 5 19 20 25 26 30 52 53 54 55 56
13 6 2 4 29 33 34 35 6 7 15 16 57 58
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Table 11.1 (continued)

Vi ci GD Connected vertices Direct graph nodes

14 6 1 3 28 31 32 35 1 2 9 13 59 60
15 6 7 9 16 21 23 31 29 30 37 41 61 62
16 6 5 9 15 21 25 33 17 21 40 41 63 62
17 6 8 10 18 22 24 32 34 35 43 44 65 66
18 6 6 10 17 22 26 34 22 23 44 45 64 65
19 6 9 20 12 11 23 25 38 39 49 50 52 56
20 6 10 11 12 19 24 26 49 52 48 42 46 53
21 6 1 2 15 16 31 33 4 5 8 63 61 62
22 6 3 4 17 18 32 34 10 11 14 64 65 66
23 6 7 9 11 15 19 27 30 31 37 38 50 51
24 6 8 10 11 17 20 27 35 36 42 43 48 47
25 6 5 9 12 16 19 30 17 18 39 40 55 56
26 6 6 10 12 18 20 30 26 22 53 54 45 46
27 6 7 8 11 23 24 28 27 32 36 47 31 51
28 6 7 8 14 27 31 32 27 28 32 33 59 60
29 6 5 6 13 30 33 34 19 20 24 25 57 58
30 6 5 6 12 25 26 29 19 25 18 55 26 54
31 6 1 7 14 15 21 28 1 5 28 60 29 61
32 6 3 8 14 17 22 28 9 10 33 59 34 66
33 6 2 5 13 16 21 29 7 8 20 58 21 63
34 6 4 6 13 18 22 29 14 15 24 57 23 64
35 6 1 2 3 4 13 14 2 13 12 16 3 6

Table 11.2 Top: coordination strings {bim} of 66 vertices of C66–C2v
#0011 mono-chromatic direct

graph are grouped in 14 equivalence classes p with cardinality kp, producing a – wrong – resonance
spectra (5×2; 5×4; 3×8; 1×12) with degeneracy of lines p = 11,12,13,14 (shaded). Bottom: coor-
dination dual strings {bim}D solve this degeneracy reproducing the correct 13C–NMR spectrum of
the molecule with 19 lines (5×2; 14×4) for isomer C66–C2v

#0011

p kp Symmetry-equivalent sites Vi wi/2 {bim} M = 9

1 2 V62 V65 157.5 3 6 9 11 10 11 9 4 2
2 2 V41 V44 159 3 6 8 11 11 10 9 6 1
3 2 V11 V4 164 3 6 7 10 11 10 9 7 2
4 2 V49 V52 164.5 3 6 8 10 10 10 8 6 4
5 2 V12 V3 170 3 6 7 10 9 9 9 6 6
6 4 V61 V63 V64 V66 158 3 6 9 10 11 11 8 6 1
7 4 V21 V23 V29 V34 158.5 3 6 8 11 11 11 9 4 2
8 4 V20 V24 V28 V33 159.5 3 6 8 11 11 10 9 5 2
9 4 V17 V22 V30 V35 160 3 6 8 10 11 11 9 6 1

10 4 V2 V6 V13 V16 165.5 3 6 8 9 10 10 9 7 3
11 8 V19 V25 V27 V32 V37 V40 V43 V45 160.5 3 6 8 10 11 11 9 5 2
12 8 V5 V8 V10 V14 V57 V58 V59 V60 161.5 3 6 8 10 11 10 9 6 2
13 8 V18 V26 V31 V36 V38 V39 V42 V46 162.5 3 6 8 10 10 11 9 5 3
14 12 V1 V7 V9 V15 V47 V51 V54 V55 V48 V50 V53 V56 163.5 3 6 8 10 10 10 9 6 3
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Table 11.2 (continued)

p kp Symmetry-equivalent sites Vi {bim}D MD = 5

1 2 V62 V65 6 10 10 7 1 6 10 10 7 1 6 10 11 6 1
2 2 V41 V44 5 10 11 7 1 6 10 10 7 1 6 10 10 7 1
3 2 V11 V4 5 9 10 8 2 5 9 10 8 2 6 10 11 6 1
4 2 V49 V52 5 10 10 8 1 6 9 9 7 3 6 9 9 7 3
5 2 V12 V3 5 9 10 8 2 5 9 10 8 2 6 8 10 8 2
6 4 V61 V63 V64 V66 6 10 10 7 1 6 10 11 6 1 6 10 10 7 1
7 4 V21 V23 V29 V34 5 10 11 7 1 6 10 10 7 1 6 10 10 7 1
8 4 V20 V24 V28 V33 5 10 11 7 1 6 10 11 6 1 6 10 10 7 1
9 4 V17 V22 V30 V35 5 10 11 7 1 6 10 10 7 1 6 9 10 7 2

10 4 V2 V6 V13 V16 5 9 10 8 2 6 10 10 7 1 6 8 10 8 2
11 4 V19 V25 V27 V32 5 10 11 7 1 6 10 11 6 1 6 9 10 8 1
12 4 V37 V40 V43 V45 5 10 11 7 1 6 10 10 7 1 6 9 10 7 2
13 4 V5 V8 V10 V14 5 9 10 8 2 6 10 11 6 1 6 10 10 7 1
14 4 V57 V58 V59 V60 6 10 10 7 1 6 10 11 6 1 6 10 10 7 1
15 4 V18 V26 V31 V36 5 10 11 7 1 6 9 10 7 2 6 9 10 8 1
16 4 V38 V39 V42 V46 5 10 11 7 1 6 9 9 7 3 6 9 10 7 2
17 4 V1 V7 V9 V15 5 9 10 8 2 6 10 10 7 1 6 10 10 7 1
18 4 V47 V51 V54 V55 5 10 10 8 1 6 9 10 7 2 6 9 10 8 1
19 4 V48 V50 V53 V56 5 10 10 8 1 6 9 9 7 3 6 9 10 7 2

11.2 Heuristic Topological Model

This paragraph shows a simple way for computing the number of molecular inde-
pendent sites of a fullerene molecule starting just from its connectivity data based
on molecular topological invariants.

Molecular graph G with N vertices offer a parade of topological invariants
(Todeschini and Consonni 2000); among the most celebrated we have the Wiener
index W(N), the integer number defined as the semi-sum of the minimum distances
dij between all couples of vertices Vi and Vj:

W(N) = 1/2 �i wi i = 1, . . . , N (11.1)

The invariant wi expresses the contribution to W(N) coming from vertex Vi:

wi = �m mbim m = 1, . . . , M (11.2)

Wiener coefficient bim gives the number of nodes in the m-coordination shell
of site Vi and M is the maximum distance present in the graph M = max{dij}.
The topological index wi is called Wiener-weight (WW) of vertex Vi. All nodes
in a fullerene direct graph have bi1 = 3; the dual graph of a fullerene shows the
connectivity among its faces then it has bi1 = 5 for pentagons and bi1 = 6 in case
of hexagons. The ordered string is called the coordination string of site Vi:

{bim} = {bi1bi2 . . . . . . bim . . . . . . biM−1biM} m = 1, . . . , M (11.3)
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of vertex Vi naturally group symmetry-equivalent molecular sites, since equivalent
atoms should have the same string. The opposite statement may be invalid since
accidental degeneracy may affect this fast sorting method as shown by the earliest
applications of topological invariants to C76, C78 fullerenes molecules (Ori et al.
1992, 1993) reporting also the first calculations of the Wiener indices of C60–Ih
and C70–D5h fullerenes. Colored direct graphs represent very good tool to solve
the accidental degeneracy (Ori et al. 1992, 1993) and correctly reproduces, from
topology, the 13C–NMR experimental patterns for the C76, C78 molecules.

According to the scheme given in Fig. 11.3, we introduce a new topological
method, still very fast and intuitive, that avoids any graph-coloring by simulating
resonance spectra using only a coordination strings {bim} and {bim}D coming from
direct (G) and dual (GD) mono-chromatic graphs. The relationship among nodes
of G and dual GD reflects the natural topological correspondence among fullerene
vertices and faces. In the fullerene molecular graphs G each atom Vi is represented
by a 3-connected node with a given coordination string {bim}. Vi stays on the corner
among three faces Ap, Aq, Ar that, in turn, are also vertices of the dual graph GD

with coordination strings {bpm}D, {bqm}D, {brm}D. This triplet of strings, indicated
by the short-hand notation {bim}D, represents the dual coordination string of Vi.

Coordination strings {bim} and {bim}D carry-on a valuable amount of topologi-
cal information that, in many cases, solves the degeneracy among symmetry-distinct
molecular sites. The heuristic validity of this approximated algorithm is shown
hereunder by the application to C66–C2v

#0011 fullerene (Figs. 11.1 and 11.2) char-
acterized by a 19-lines 13C–NMR spectrum with (5×2; 14×4) relative intensities,
as observed on metallofullerene Sc2@C66 (Wang et al. 2000). The isomer repre-
sented in Fig. 11.1 has 66 carbon atoms, the first 16 of them conventionally placed
on the two pairs of fused pentagons, other 40 on the 8 IPR pentagonal faces and the
remaining 10 at the interceptions of three hexagons. The topological determination

Fullerene Cn

Direct graph G

Computing {bim} for Vi Computing {bim}D for Ap, Ap, Ar 

Sorting independent vertices by {bim} and by {bim}D 

13C-NMR experimental patterns
(good approximation) 

Ap

Vi

Aq

Ap

Ar

ArVi

Aq

Dual graph GD

Fig. 11.3 Topological approximate method combines WW strings values from direct and dual
graphs and correctly approximates independent molecular sites of a given fullerene just from
adjacency data
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of WW sets, according to Eq. (11.2), is represented in Table 11.2, where accidental
degeneracy of {bim} strings is quite evident. WW values in fact group the 66 nodes
in 14 distinct sets (called p, as resonance peak) of symmetry-equivalent sites Vi with
multiplicity kp ranging from 2 to 12, producing a wrong 14-peaks resonance spec-
tra (5×2; 5×4; 3×8; 1×12) compared to the experimental 19-lines pattern (5×2;
14×4). To solve this error in predicting molecular symmetry, our heuristic method
just requires a further fast sorting of the 66 molecular nodes by taking in consider-
ations the dual coordination strings {bim}D values, according to the computational
scheme given in Fig. 11.2. It is in fact immediately evident from Table 11.2 that
shaded lines with multiplicity 8 and 12 get split in quartets by the action of the
{bim}D values reproducing the 19-lines (5×2; 14×4) 13C–NMR spectrum experi-
mentally measured. For example, the set of 8 vertices V19 V25 V27 V32 V37 V40 V43
V45 (see Table 11.2 shaded line 11) are grouped in two independent sets respec-
tively made by V19 V25 V27 V32 and V37 V40 V43 V45 carbon atoms. In a similar
way, the remaining shaded lines are resolved and the 13C–NMR spectrum for this
C66–C2v

#0011 isomer is correctly interpolated, as shown in Table 11.2 bottom. Sum
of wi/2 column entries gives the Wiener index W = 10674 of the C66–C2v

#0011

fullerene, whereas its dual graph (Fig. 11.2) has WD = 1595.
This effective topological algorithm exploits the structural information present

in the topological coordination strings {bim} and {bim}D allowing a quick prediction
of molecular symmetry and resonance lines. Possible approximations, originated
by accidental degeneracy of {bim} and {bim}D numerical values, are however possi-
ble. These limitations are resolved by the more evolute, but still purely topological,
method which is described in the next paragraph based on the generation of the
automorphisms of C66 fullerenes. It is nevertheless worth to remark that coordina-
tion strings effectively reduce the number of fullerenes for which complete set of
automorphism operators will be generated.

11.3 Fullerene Automorphisms and Topological Orbits

In this paragraph, we analyze graph-theoretical automorphisms of the fullerenes
C66.

Let G be a graph corresponding to one C66 fullerene. The function f : V (G) →
V (G), where V (G) is the set of vertices of graph G is an automorphism if and
only if the following holds for every two vertices u and v: u is adjacent to v if
and only of f (u) is adjacent to f (v). Let us denote by ∼ the relation on V (G)

such that u ∼ v if and only if there is the automorphism of G that maps u to
v. It can be easily checked that relation ∼ is the relation of equivalence (i.e. it is
symmetric, reflexive and transitive). Therefore, it induces the partition of V (G)

in the set of (disjoint) classes. These classes are called orbits and the vertices of
the graph G belonging to a given orbit correspond to symmetry-equivalent carbon
atoms.

In chemical studies of the fullerene C66, it is shown that particularly interesting
fullerenes are those whose graphs have 19 orbits such that 14 of them consist of four
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vertices each and 5 of them consist of two vertices each. As mentioned, it is well
known that there are 8 such fullerenes (Wang et al. 2000). Our aim is to give the
procedure for fast identification of these fullerenes. Since, there are 4478 fullerenes,
it would be unpractical to precisely calculate orbits for each of them. Therefore,
we propose the solution that operates in two stages which will be explained in more
details in the next paragraphs. In the first stage, it calculates the coarser classification
of the vertices of the observed fullerene graph. It checks if the fullerene can be
immediately eliminated as the possible candidate. If not, then orbits are calculated
and the precise check is done. Let us denote by G1, G2, ..., G4478 corresponding
graphs of these 4478 fullerenes and let us observe one of these graphs Gi, where
1 ≤ i ≤ 4478. First we use Dijkstra algorithm for calculation of all distances in
G. Dijkstra algorithm for finding the distance from one fixed vertex (called initial
vertex) to all other vertices is given by the following procedure (Dijkstra 2010):

1. Assign a distance value to every vertex. Set it to zero for the selected initial
vertex and to infinity for all other vertices.

2. Mark all vertices as unvisited. Set initial vertex as current.
3. For current vertex, consider its all unvisited neighbors and calculate their tenta-

tive distance (from the initial vertex). If this distance is less than the previously
recorded distance (infinity in the beginning, zero for the initial vertex), overwrite
the distance.

4. When we finish considering all neighbors of the current vertex, mark it as visited.
A visited vertex will not be checked ever again; its distance recorded now is final
and minimal.

5. If all vertices have been visited, finish. Otherwise, set the unvisited vertex with
the smallest distance (from the initial vertex) as the next “current vertex” and
continue from step 3.

It can be shown that good implementation of this algorithm works in linear time.
Since, we need to use every vertex as initial vertex in order to obtain distance matrix,
we can do this in quadratic time. Now, let us assign each vertex its distance code
dc (v) = (x1, x2, ..., x65), where xi is the number of vertices on the distance i from v
(distance code generalizes coordination string of Eq. (11.3). Obviously, if vertices
u and v are in the same orbit, then dc (u) = dc (v). Now, we can introduce the
equivalence relation �

dc
on V (Gi). Let us call its classes of equivalence super-orbits.

Each super-orbit is in general the union of orbits, see as an example the shaded lines
p = 7,8,9,10 in the top of Table 11.2. Let us denote sij the number of super-orbits of
cardinality j corresponding to Gi. If Gi has 19 orbits such that 14 of them consist of
four vertices each and 5 of them consist of two vertices each, then it must hold:

si1 = 0 and si3 = 0 and si2 + si6 ≤ 5 (11.4)

These three simple conditions immediately reduce the number of potential can-
didates from 4478 to only 13. For these 13, we explicitly construct their orbits.
Probably the fastest general purpose algorithm for finding orbits has been developed
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(McKay 2010). Also, there are more specialized procedures for analyses of trivalent
graphs (Galil et al. 1987). However, we shall use very simple recursive algorithm.
Since it solves our problem for each fullerene in less than 0.02 second for each of
these 13 fullerenes, it was not necessary to use faster, but more complicate algo-
rithms. Let us assume that vertices in Gi are denoted by v1, ..., v66 and let d (u, v)
denotes the distance of vertices u and v. The algorithm for finding automorphisms is
presented by the following pseudo code. The following recursion is called by rec (1)

(it is assumed that initially all vertexes are considered to be free):

rec(int loc)
If loc = 67 then f is automorphism

Else

For each free vertex u
if dist(vi, vloc) = dist(f(vi),u)
for all i = 1,...,loc − 1

put f(vloc) = u and set u is non-free vertex

rec(loc + 1)

set u is free vertex

After all automorphisms are found, it is relatively simple to determine all
orbits. Alternative algorithms for generating automorphism groups of fullerenes are
recently reported in literature (Ashrafi and Ahmadi 2005).

11.4 Results and Conclusions

The graph automorphisms generation method presented in this article correctly
sieves eight C66 molecules with proper orbits among the 4478 fullerene isomers
in a very effective way.

All these molecules in Table 11.3 have C2v molecular symmetry and exactly
reproduce the 13C–NMR resonance spectrum with the observed 19-lines (19-orbits)
and multiplicity (5×2; 14×4). In Table 11.3 they are identified by the values of
their topological graph invariants, the Wiener index W and the topological efficiency
index ρ = wave/wmin being the average wave and minimum wmin quantities easily
computed from Eq. (11.2). Current computations produces an interesting isomer,
molecule d in Table 11.3, that is connected to the stable C66–C2v

#0011 by a Stone-
Wales rotation (SW) of the 4 faces 19,20,11,12 located along graph external border
that correspond, one may say, to the south-pole of the actual molecule. Starting from
isomer a of Fig. 11.2, SW rotates the edge 19–20 and transforms pentagons 11,12
and hexagons 19, 20 in two new hexagons 11,12 and pentagons 19,20 of isomer d.
In Fig. 11.4 it shows two more pairs of fused pentagons, maintaining C2v symmetry
of C66–C2v

#0011 fullerene.
We remark that the stable isomer C66–C2v

#0011 tends to minimize both the molec-
ular Wiener index W = 10674 and the topological efficiency index ρ = 1,0268,
pointing out the role of topological efficiency in predicting stable isomers of a given
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Table 11.3 Topological invariants of the eight C66–C2v isomers with 19-orbits (5×2; 14×4); C66–
C2v

#0011 stable isomer (molecule a), has low values of both indices W and ρ; dual graph indices
WD, ρD are also listed

Mol WD ρD W ρ

a 1592 1.0338 10674 1.0268
b 1588 1.0803 10687 1.0347
c 1584 1.0776 10696 1.0456
d 1586 1.0538 10713 1.0241
e 1590 1.1217 10723 1.0868
f 1583 1.0769 10723 1.0868
g 1583 1.0518 10745 1.0304
h 1588 1.1343 10761 1.0979
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Fig. 11.4 Dual space graph of the C66 isomer derived from C66–C2v
#0011 by Stone-Wale rotation

of faces 19,20,11,12; dashed 5-edged nodes evidence its four pairs of touching pentagons

Cn fullerene, as studies on C28 suggest (Ori et al. 2009). Cataldo et al. (2010) also
reported topological efficiency effects to explain the relative chemical stability of
graphite lattice portions and fullerene fragments (nanocones) built around a pentag-
onal face. This original topological concept is currently under deeper investigations
and its applications on chemical stability of fullerene will be the matter of forth-
coming papers, with the aim to shed new lights on formation mechanism of the
interconnected fullerenes and graphene.
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Chapter 12
The Topological Background
of Schwarzite Physics

Giorgio Benedek, Marco Bernasconi, Eugenio Cinquanta,
Luca D’Alessio, and Marzio De Corato

You see things and you say “Why?”
But I dream things that never were and I say “Why not?”

(George Bernard Shaw, Back to Mathusalem)

Abstract About 10 years ago the synthesis of random carbon schwarzites by
supersonic cluster beam deposition has endowed the rich sp2 carbon family with
its three-dimensional member. Its reluctance to grow as a three-periodic minimal
surface according to topological and physical predictions still prevents schwarzites
from being a hot topic, although spongy carbon is already having countless appli-
cations. Understanding the links between topology and quantum structure, possibly
with the help of large-scale quantum molecular dynamics simulations should trace
the route to the synthesis of periodic schwarzites. In this perspective, after a brief
account on the growth and characterization of spongy carbon, we review the elemen-
tary topology of schwarzites, their stability and growth conditions as derived from
pure topological arguments, the electronic structure and the electron-phonon inter-
action of the smallest periodic schwarzites and what can be learnt by the topological
monitoring of quantum molecular dynamics.

12.1 Introduction

The investigation of new sp2-bonded carbon architectures, marked by the dis-
covery of fullerenes (Kroto et al. 1985) and nanotubes (Iijima 1991), and more
recently by the synthesis of spongy carbon (Donadio et al. 1999; Barborini et al.
2002a; Benedek et al. 2003) and the isolation of single graphite layers (graphene)
(Novoselov et al. 2004, 2005a, b; Geim and Novoselov 2007; Castro Neto et al.
2009), is opening fascinating perspectives for nanostructured carbon as a novel

G. Benedek (B)
Donostia International Physics Centre (DIPC), 20018 Donostia-San Sebastián, Spain;
Dipartimento di Scienza dei Materiali, Universitá di Milano-Bicocca, 20125 Milano, Italy
e-mail: giorgio.benedek@mater.unimib.it

217F. Cataldo et al. (eds.), The Mathematics and Topology of Fullerenes,
Carbon Materials: Chemistry and Physics 4, DOI 10.1007/978-94-007-0221-9_12,
C© Springer Science+Business Media B.V. 2011



218 G. Benedek et al.

all-purpose material (Benedek and Bernasconi 2004). The early observation of
superconductivity in alkali metal-doped fullerenes (Rotter et al. 1992), field-
emission (Wang et al. 1998), and supercapacitance (Niu et al. 1997) from arrays
of nanotubes, the extraordinary transport (Geim and Novoselov 2007; Castro Neto
et al. 2009; Seol et al. 2010), electrical (Stoller et al. 2008) and electro-mechanical
(Cadelano et al. 2009; Li et al. 2010) properties of graphene, and the unconven-
tional magnetism of spongy carbon (Rode et al. 2004; Arčon et al. 2006) are just a
few examples of the vast areas of application of the most versatile among elemen-
tal materials. While fullerenes, nanotubes, and graphite layers aggregate through
comparatively weak van der Waals forces, spongy carbon constitutes a fully cova-
lent highly-connected three-dimensional (3D) form of sp2 carbon, which combines
many valuable properties of fullerenes, nanotubes and graphene with a robust 3D
architecture. Triply periodic minimal surfaces (Lenosky et al. 1992; Townsend et al.
1992) have been theoretically suggested as possible model structures for spongy
carbon, which has since termed schwarzite, after the name of the mathematician
Hermann Schwarz (Schwarz 1890) who first investigated that class of surfaces.

Schwarzites synthesized by supersonic cluster beam deposition (SCBD)
(Barborini et al. 2002; Milani and Iannotta 1999) are characterized by a nanometric
porosity and, as suggested by numerical simulations of the TEM images (Benedek
et al. 2003), by the structure of a random schwarzite (Lenosky et al. 1992) which
grows in the form of a self-affine minimal surface (Bogana et al. 2001; Benedek
et al. 2005). Thus, besides offering appealing technological perspectives, this novel
material shows intriguing aspects of differential geometry and topology.

It is somewhat surprising that carbon schwarzites, despite their very interesting
structural properties and viable applications in efficient supercapacitors (Diederich
et al. 1999) and field emitters (Boscolo et al. 2000; Benedek et al. 2001a; Ferrari
et al. 1999), did not receive yet much attention. It is therefore convenient to
spend first a few words about the growth method of carbon schwarzites by SCBD
(Section 12.2), also because their growth and structural properties appear to be
closely related to their topological features. After introducing some elementary con-
cepts on the topology of sp2 carbon forms, and illustrating the class of three-periodic
P- and D-type schwarzites and the effects of self-affine distortion (Section 12.3),
it is shown (Section 12.4) that the stability and growth of sp2 carbon in the form
of random schwarzites, rather than as nanotubes or fullerenes, is actually deter-
mined by simple initial topological conditions (Benedek et al. 2003). The surface
minimality has direct implications on the growth kinetics, which may present a
quasi-deterministic character. It is also shown that, unlike fullerenes where abut-
ting five-fold rings are unfavoured, in schwarzites seven-fold rings tend to aggregate
thus preventing the formation of crystalline three-periodic structures. A calculation
of the free energy of schwarzites including the entropic vibrational and configura-
tional contributions allows to estimate the average porosity in thermal equilibrium
as a function of the deposition energy (Section 12.5). The existing calculations of the
electronic structure and electron-phonon interaction of the smallest schwarzites, and
the possible links between certain topological features and the electronic properties,
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are discussed in Section 12.6. Finally the predictions of relevant structural, ther-
mal and electronic properties based on quantum molecular dynamics simulations
are briefly discussed in Section 12.7. The reader should be advised that the present
review is restricted to the small class of schwarzite structures which are accessi-
ble to quantum simulations and ab-initio calculations and may help understanding
some features observed in spongy carbon. The vast number of sp2 forms and fan-
tastic structures which can be generated by complex mathematical algorithms and
their intriguing topological aspects, though absolutely relevant for the analysis of
the spongy forms of carbon and the future construction of regular architectures, are
not discussed here, being found in the other chapters of this volume.

12.2 The Birth of Random Schwarzites

Nanostructured sp2 carbon-based solids represent a class of materials where the
surface curvature and the structural organization on the nanometric scale, ranging
from less than 1 nm to a few hundreds of nanometres, dramatically influence the
mechanical, chemical and physical properties (Rao and Dresselhaus 2001). Porous
carbon networks are of great importance in many areas of science and technology
including catalysis, energy storage, chromatography, gas and liquid purification and
molecular sieving (Lu and Chung 1997; Kyotani 2001). The high specific surface
area, chemical inertness and large pore volumes are the important parameters for
these applications. The complexity of the carbon structure makes the control of the
pore size and structure a difficult technological problem. Many synthetic techniques
have been proposed for the production of meso- and macroporous carbon (Lu and
Chung 1997; Kyotani 2001; Ryoo et al. 2001; Kajii et al. 2000), but more intriguing
is the creation of nanoparticles with a specific surface curvature which can be used
to control the porosity of the material.

Total energy calculations show that carbon schwarzites are in general more sta-
ble than fullerenes with a similar absolute value of the Gaussian curvature (Lenosky
et al. 1992; Vanderbilt and Tersoff 1992). Nevertheless schwarzite-like materials
have not been observed during carbon-arc synthesis of fullerenes and nanotubes,
suggesting that a new technique should be implemented for the production of such
exotic carbon structures. An effective production technique for random carbon
schwarzites was found to be a bottom-up approach based on the assembling of sp2

nanometric clusters. This was achieved by means of SCBD of carbon clusters pro-
duced by a Pulsed Microplasma Cluster Source (PMCS) (Barborini et al. 1999;
Piseri et al. 2001) and assembled onto a substrate.

The source chamber consists of a ceramic cavity hosting along a vertical axis two
cylindrical electrodes separated by a gap a few millimeters wide. One of the elec-
trodes, the cathode, is made of graphite and constitutes the target of a pulsed helium
beam, which is injected into the source chamber through a solenoid valve along a
horizontal axis. On the opposite side of the horizontal axis there is a nozzle which
allows for the supersonic molecular beam expansion outside the source chamber into
vacuum. The helium pulse directed against the graphite cathode is ionized, after a
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fixed delay of a few hundreds microseconds, by an intense pulsed discharge (V ∼
750 v). The helium plasma ablates the cathode surface removing carbon atoms via
sputtering; then cluster aggregation occurs at low temperature (T ∼ 100 K) in the
high pressure region in front of the cathode. These particular thermodynamic con-
ditions allow for the formation of full sp2 fullerene-like carbon clusters with a mass
distribution peaked around 600 atoms/cluster (Barborini et al. 2002). Since in the
supersonic cluster beam the spread in the kinetic energy per atom is much smaller
than the atom binding energy, the clusters reach the substrate with their initial mor-
phology and size distribution, thus leading to the synthesis of nanostructured pure
sp2 carbon films under controlled conditions (Milani et al. 1999; Barborini et al.
2002; Donadio et al. 1999). It should be noted, however, that the carbon atoms
impact the substrate surface with a translational kinetic energy of 0.1–0.4 eV/atom.

The film growth via SCBD can be viewed as a random stacking of particles as
for ballistic deposition. The resulting material is characterized by a low density as
compared to that of films assembled atom by atom and it shows different degrees
of order depending on the scale of observation (Milani et al. 1999; Barborini et al.
2002). The characteristic length scales are determined by the deposition energy,
the cluster dimensions and by their fate after deposition. Carbon cluster beams are
characterized by the presence of a finite mass distribution and by the presence of iso-
mers of different stability and reactivity. Once on the substrate, stable clusters can
survive almost intact while reactive isomers can coalesce to form a more disordered
phase (Barborini et al. 2002; Milani et al. 1997). A transmission electron microscope
(TEM) analysis of nanostructured carbon films shows that, at this scale, the mor-
phology is reminiscent of the precursor clusters (Milani et al. 1999; Lenardi et al.
1999). TEM micrographs show the presence of an amorphous matrix with small
closed shell particles and bundles of graphene sheets (Fig. 12.1). Large onion-like
and tubular particles have also been observed.

Fig. 12.1 TEM micrograph
showing closed graphitic
particles and graphene sheets
dispersed among amorphous
material (adapted from Milani
et al. 1999)

In the case of cluster assembling one should recall that, due to finite cluster mass
distribution, relatively large clusters are somehow “diluted” among small particles.
Large clusters can act as seeds for the formation of nodular defects, which evolve
like isolated structures protruding from the average thin film surface. Depending
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on the initial density of defects, there is a critical film thickness where the nodular
structures start to merge. These defects have a profound influence on the evolution
of the surface morphology. Roughness, scale invariance, and spatial correlation of
the film surface depend on the cluster precursor size and film thickness. In general
the surface spatial correlation and its dependence on the film thickness show the
characters of a fractal self-affine growth (Barabàsi and Stanley 1995). The surface
corrugation can be described by a function h(r, t) expressing the height of the sur-
face at position r with respect to the average surface plane, when the film has a
thickness t. For a steady deposition rate, t can be interpreted as a time coordinate.
At a given t the height-height correlation function is defined as

w(r, t) ≡
√〈

[h(r + r′, t) − h(r′, t)]2
〉
r′ , (12.1)

where the average is taken over all the surface positions r′. For an isotropic surface
this function only depends on the distance r ≡ |r| and grows with r as long as
it is smaller than a correlation length ξ , then it saturates to a value w(∞, t) which
defines the surface roughness for a thickness t. Self-affinity is characterized by two
power-laws (Barabàsi and Stanley 1995)

w(r, t) ∝ rα, r << ξ , (12.2)

w(∞, t) ∝ tβ, (12.3)

which express a scale invariance in the directions normal and parallel to the growth
direction through the roughness exponent α and the growth exponent β, respectively.
The evolution of the roughness during deposition and the extension of spatial corre-
lation on the surface plane turn out to be peculiar of the particular growth mechanism
and largely independent of the nature of the physical system. In other words the
growth mechanisms can be ascribed to certain universality classes with well defined
exponents α and β. In SCBD experiments growing nanostructured carbon described
in this chapter the exponents derived with atomic force microscopy (AFM) (Buzio
et al. 2000) are

α = 0.66 ± 0.02, β = 0.50 ± 0.03. (12.4)

These exponents can be ascribed to the class of processes described by the Kardar-
Parisi-Zhang (KPZ) equation with spatially correlated noise (see Barabàsi and
Stanley 1995, chapter 22). They roughly agree also with the renormalization-group
results for the isotropic growth model within the quenched noise regime (Barabàsi
and Stanley 1995, chapter 10).

Scale invariance is seen to extend over up to three decades in the thicker films.
This allows to compare the results of molecular dynamics simulations, which nec-
essarily are performed on the nanometric scale, to experiments made on a larger
length scale (Fig. 12.2). An example is shown in Fig. 12.3, where the calculated
AFM image for a film obtained from a molecular dynamics simulation is compared
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to the AFM image of a real SCBD carbon film (Bogana et al. 2001). The morphol-
ogy of the surface looks very similar in the two images, although the are obtained
on length scales which differ by more than two orders of magnitude.

The typical correlation lengths ξ for films assembled by small clusters range from
50 to 7 nm. The lowest value refers to film where the density of nodular defects is
low and their coalescence has not taken place. These films are very uniform and flat.
Apart from isolated nodules, large structures are not present and consequently the
correlation length closely reflects the size of the basic morphological units. As long
as the morphology develops and larger and larger features appear, correlation length
increases. A similar behavior is seen for films assembled by large clusters and it is
observed at considerably lower thickness.

Fig. 12.2 The surface roughness of SCBD carbon films depends on the average size of the pre-
cursor clusters. It is defined by the height-height correlation function w(r, t) which grows with
the distance r as rα for r much smaller than a correlation length ξ, and reaches a saturation value
w(∞, t) for r >> ξ. The latter grows with the film thickness t as tβ. Experiment gives a roughness
exponent α = 0.66 ± 0.02 ∼= 2

3 and a growth exponent β = 0.50 ± 0.03 ∼= 1
2

Fig. 12.3 Visual comparison of the simulated AFM image on the nanometric scale (a) with an
experimental AFM image at the scale of 200 nm (b), as reported by Lenardi et al. (1999) (adapted
from Bogana et al. 2001)

By adding a metal catalyst during the cluster formation, either by bubbling the He
gas stream with a metallic precursors through a liquid metal-organic compound prior
to the injection into the PMCS (Fig. 12.4a) or by using mixed cathodes, it is possible
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to control to some extent the cluster formation inside the source and the composition
of the supersonic beam so as to obtain fairly pure schwarzitic structures (Fig. 12.4b).
The metal-organic molecules in the buffer gas are cracked by the electric discharge,
thus providing metal atoms and highly reactive radicals to the condensing carbon
cloud. By using Molybdenum (V) isopropoxide Mo(OC3H7)5 in isopropanol and
Cobalt (II) methoxyethoxyde Co(OCH2CH2OCH3) in 2-methoxyethanol as cata-
lysts and PMCS in the standard operational mode, it was possible to obtain spongy
schwarzite-like carbon films like the one shown in the TEM picture of Fig. 12.5.
The material looks like a free-standing film made by several interconnected undu-
lated foils. In high resolution scanning electron micrograph, the contrast created by
secondary electrons shows that voids are present in the bulk of the sample indicating
that the material has a complex three-dimensional porous structure. The structure of
spongy carbon consists of thin carbon layers (1–2 nm thick) interconnected to form
a network with overall thickness up to micrometers. A crucial role is played by the
metal-organic catalyst whose concentration and dispersion seem to determine the
final curvature and morphology of the material.

Fig. 12.4 Catalytic growth of carbon schwarzites can be obtained either by passing the carrier
He gas through a bubbler containing a metalorganic compound (a) or by using a mixed elec-
trode containing the needed amount of catalytic metal nanoparticles. (b) A schwarzites grows
from a molybdenum catalyst nanoparticle, apparently as a self-affine structure with pore diameters
increasing with the distance from the catalyst

The formation of the spongy carbon is assisted by the presence of metal cat-
alyst nanoparticles, as clearly appears in Fig. 12.4b. The size, concentration and
dispersion of catalyst nanoparticles are believed to determine the final morphol-
ogy and curvature of the material. By comparing the material obtained with mixed
cathodes with that obtained with metal-organics, it has been verified that the pres-
ence of large catalyst concentrations (several percent) in the form of relatively large
clusters favours the production of carbon nanoparticles, whereas a finely dispersed
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Fig. 12.5 A transmission
electron microscope (TEM)
image of a random carbon
schwarzite obtained by
supersonic cluster beam
deposition with a deposition
energy of 0.1 eV/atom
(Barborini et al. 2002a).
Raman and near-edge x-ray
absorption fine structure
(NEXAFS) spectra indicate a
pure sp2 bonding structure,
suggesting a single, highly
connected graphene sheet
with an average pore diameter
in the range of 100 nm

catalyst at a low concentration drives the growth to the formation of spongy net-
works. Generally, the physical vapour deposition of carbon nanostructures uses
mixed cathodes, which gives a high local concentration of catalyst particles. By
changing the metallic precursors, it is also possible to control the porosity of the
material. For example, cobalt leads to networks of narrower pores than those formed
with molybdenum. The spongy carbon obtained in this way consists of a fully sp2

three-dimensional structure, as confirmed by Raman and near-edge x-ray absorp-
tion fine structure (NEXAFS) spectroscopy (Barborini et al. 2002b). The TEM
images (Fig. 12.5) suggested a topological structure like that of random schwarzites
(Lenosky et al. 1992), characterized by a porosity in the range of 102 nm and by
surface minimality.

12.3 Schwarzite Topology

The aim of this section is to show how topology alone can help one to predict the
structure and some relevant physical properties of sp2 carbon on the mesoscopic
scale from parameters which are supposed to be known on the atomic scale, such as
the bond strengths and the surface stiffness constants. A basic question is whether a
graphite sheet can be transformed into a surface characterized by a negative Gauss
curvature everywhere through the creation of a sufficient number of negative discli-
nations, which occur wherever a 6-membered ring is replaced by a larger ring. A
special case of negative Gauss curvature occurs when the mean curvature is zero
everywhere, which corresponds to a minimal surface. The conjecture that a minimal
surface is particularly stable has stimulated much theoretical work on hypothetical
graphite sheets (graphenes) with the structure of a periodic schwarzite (Fig. 12.6)
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Fig. 12.6 The carbon schwarzite fcc-(C84)2 obtained from a tiling with carbon hexagonal and
heptagonal rings of a three-periodic D-type minimal surface (Schwarz 1890). The unit elements
of a D-type schwarzite are centred at the sites of a diamond lattice. Each unit cell contains two
elements and each element is made of 12 heptagons and any number h (�=1) of hexagons. Here
h = 28. This is the smallest schwarzite with non-abutting heptagons (equivalent to C60 which is
the smallest fullerene with non-abutting pentagons and has h = 20). Ab-initio calculations show
however that, unlike fullerens where abutting pentagons are less stable, in schwarzites abutting
heptagons are more stable, which favours non-periodic schwarzites

(McKay and Terrones 1991; Terrones and McKay 1993). Similar theoretical sp2 car-
bon structures like polybenzenes (O’Keeffe et al. 1992), hollow graphites (Benedek
et al. 1997a, b; Coté et al. 1998) and plumber’s nightmares (Vanderbilt and Tersoff
1992), which have been investigated theoretically, can be assigned to the general
family of schwarzites.

From the topological point of view graphenes like fullerenes, graphite sheets,
nanotubes and schwarzites are described as a polygonal tiling of the surface, where
each vertex corresponds to a carbon atom, each edge to a covalent bond and each
polygon to a carbon ring. Moreover each atom has a three-fold coordination. The
surface covered by the polygonal tiling of carbon rings is characterized by its con-
nectivity or order of connection k. According to Hilbert and Cohn-Vossen (1932) the
order of connection is the number plus one of the closed cuts which can be made
on the given surface without breaking it apart in two pieces. The surface topology
can be alternatively characterized either by the Euler-Poincaré characteristic χ or
by the genus g, which are related each other and to k by the equations
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χ = 3 − k = 2(1 − g), g = 1

2
(k − 1) = 1 − χ

2
. (12.5)

For example a sphere, or the equivalent projective plane with one point at infin-
ity, is split into two parts when cut along one single closed line and therefore
k = 1 (g = 0, χ = 2) (Fig. 12.7a, b). A simple (one-hole) torus, or a plane closed
by cyclic boundary conditions, can be cut along two closed lines without splitting it
in two pieces, whereas a third cut would split it apart, so that k = 3 (χ = 0, g = 1)
(Fig. 12.7a, c). Similarly for an n-hole torus k=1 + 2n, χ=2(1 − n) and g=n
(Fig. 12.7e). Thus the genus represents the number of “holes” (or “handles”) of
a generalized torus. The notion of connectivity includes one-face surfaces, cor-
responding to even values of k (semi-integer g, odd χ ): the Möbius ring has
k = 2 (g = 1/2, χ = 1) (Fig. 12.7f), the Klein bottle k = 4 (g = 3/2, χ = −1)
(Fig. 12.7h), and so on.

Fig. 12.7 Surfaces of different topology supporting sp2 carbon. A graphene sheet (a) can be
closed assuming either the topology of a sphere (fullerenes: (b)) or of a one-hole (-handle) torus
(a nanotube with a cyclic boundary condition or a toroidal fullerene: (c)). The element of D-type
schwarzite (d) after being closed on itself (broken lines) is topologically equivalent to a two-hole
(-handle) torus (e). In principle a closed sp2 carbon form can extend over a one-face surface, like a
Möbius ring (f) or a Klein bottle (h). Each form is identified by its Euler-Poincaré characteristic χ

or equivalently by the connectivity k or genus g (see text). Within the restricted class of sp2 carbon
with only 6-, 5- and 7-rings, the tiling of these forms require a prevalence of 5- (7-) fold rings for
positive (negative) χ. For the Möbius ring the saturation of all bonds implies a minimum tiling
with seven 5-rings and one 7-rings (g)
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While fullerenes are represented by a closed surface topologically equivalent to
a sphere (k = 1), uncapped nanotubes, graphene sheets and schwarzites are open
surfaces with an infinite extension in one, two or three dimensions, respectively.
However sp2 surfaces characterized by a periodic atomic structure can be reduced
to a closed surface by applying cyclic boundary conditions. In this way uncapped
nanotubes and graphene become topological equivalent to an ordinary (one-hole)
torus (k = 3) (Fig. 12.7a, c). On the other hand periodic infinite surfaces like
schwarzites would have an infinite connectivity. However, similarly to the proce-
dure for crystalline lattices in solid state physics, cyclic boundary conditions may
be applied on a finite portion of the periodic surface, so as to make k, g and χ finite
and linearly dependent on the actual number of unit cells. It is therefore convenient
to define the corresponding parameters for the unit cell, kcell, gcell and χcell. Their
values are obtained by closing the portion of surface contained in the unit cell on
itself as implied by the cyclic boundary conditions, and the number gcell of handles
generated by the closure operation gives χcell = 2(1 − gcell) and kcell = 2 gcell + 1.

For a three-periodic surface having the periodicity of the simple cubic lattice
(P-type gyroid [21], Fig. 12.8a) the unit cell contains one element, whereas the one
having the structure of the diamond lattice, (D-type gyroid (Lenosky et al. 1992),
Fig. 12.8b) has two elements per unit cell. The two elements may differ just for
an inversion operation (as in diamond) or have a different size (as in the sphalerite
lattice), but they are topologically identical since they coordinate the same number
(four) of neighbor elements. In this case the closure operation may be applied to a
single element (Fig. 12.7d), which gives gel = 2 (χel = −2 and kel = 5), equivalent
to that of a two-handle torus (Fig. 12.7e). Note that for both D- and P-type gyroids
gcell = 3 (χcell = χel = −4 and kcell = kel = 7). It is important to remark that
the genus of a cell (e.g., a simulation cell, which may contain several unit cells of
the lattice) is always less than the genus per element times the number of elements
contained in the cell due to the internal connections.

Fig. 12.8 The tiling with 6- (light grey) and 7- (dark grey) rings of the unit cell of a P-type (a) and
D-type (b) schwarzite, both having 216 atoms per unit cell. The 7-rings are 24 per unit cell in both
cases. The unit cell of the D-type schwarzite is made of two identical but inequivalent elements,
containing twelve 7-rings each, joined in the staggered position as atoms are in the diamond lattice
(Lenosky et al. 1992)



228 G. Benedek et al.

The polygonal tiling of a surface is subject to Euler’s theorem linking the num-
bers of atoms (v), of bonds (e) and of rings (f) to the connectivity by the equation
(Hilbert and Cohn-Vossen 1932), also known as Poincaré’s formula:

v − e + f = χ

= 3 − k = 2(1 − g).
(12.6)

Note that for the three-fold coordination implied by sp2 hybridization

e = 3

2
v (12.7)

For periodic schwarzites it may be convenient to refer all quantities in Eq. (12.6)
to the unit cell, or to the unit element, when a comparison is needed to closed sp2

forms like fullerenes and capped nanotubes, whereas for the statistical arguments of
Section 5, Eq. (12.6) shall refer to a large number of unit cells with cyclic boundary
conditions. By calling fn the number of n-membered rings (hereafter called n-rings)
and inserting Eq. (12.7) into (12.6) it is found

6χ =
∑

n
(6 − n)fn. (12.8)

Note that this conditions on the numbers of different rings is independent of the
number of 6-rings, which can therefore be any natural number (except 1 (Meija
2006)).

Hereafter we shall restrict to the class of sp2 structures with only 5-, 6- and
7-rings (5-6-7 class), unless the cases of schwarzites with 8- or 9-rings are explicitly
stated. From the pure topological standpoint the extension to other possible struc-
tures with larger or smaller rings is indeed straightforward. For 5-6-7 structures it is

f7 − f5 = −6χ. (12.9)

For fullerenes (χ = 2) with no 7-rings the well known result f5 = 12 is obtained. For
open nanotubes and graphene sheets f5 = f7: in perfect structures this number can
be zero, whereas in defective graphene or nanotubes 5- and 7-rings always occurs
in pairs, e.g., through the Stone-Wales transformation which converts four adja-
cent 6-rings into two 5–7 ring pairs. For D- and P-type schwarzites with no 5-rings
f7 = 24 in each unit cell (f7 = 12 per element for the D-type schwarzite)
(Fig. 12.8a, b). The smallest D-type schwarzite in this class has twelve 7-rings per
element and no 6-ring, which makes 28 atoms per element, to be compared with
the smallest fullerene C20. This schwarzite, denoted fcc-(C28)2, together with the
fullerene C20, are examples of platonic tiling, made of only one kind of polygons.
Larger D-type schwarzites of the 6–7 class are obtained by adding 6-rings and have
the formula fcc-(Cm)2 where m = 28 + 2f6 (f6 �= 1) is the number of atoms per
element, while the simple-cubic P-type schwarzites of the 6–7 class shall be denoted
by sc–Cm with m = 56 + 2f6. Schwarzites as well all fullerenes with two kinds of
polygons are examples of archimedean tiling.
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Equation (12.8) holds also for odd values of χ, i.e., for a steric distribution of
bonds and rings lying on a one-face surface, e.g., a Möbius ring (χ = 1, Fig. 12.7f).
In this case f5 − f7 = 6. An example of tiling is shown in Fig. 12.7g, where the two
edges 1–2 are supposed to be joined and a bond 3–4 is added. With the rule that
adjacent rings have only one edge in common, the bond distribution of Fig. 12.7g
yields f5 = 7 and f7 = 1.

D-type schwarzites of the 6–8 class have, according to Eq. (12.7), six 8-rings
per element and the general formula fcc-(Cl)2 with l = 16 + 2f6 (f6 �= 1). The
smallest (platonic) form has 16 atoms per element. The polybenzenes studied by
O’Keeffe et al. (1992) belong to this class and are obtained by inserting one 6-ring
in each plane normal to a three-fold {111} axis. Another example, obtained by
the insertion of three 6-rings in each plane normal to a {111} axis – altogether
24 6-rings to give fcc-(C64)2 – is briefly discussed in Section 12.6. According to
Eq. (12.7), also schwarzites of the 6–9 class can exist, the smallest of which is made
of four 9-rings and 12 atoms per element. The general formula is fcc-(Cj)2 with
j = 12 + 2f6 (f6 �=1). To our best knowledge no specific study on the stability of
these structures is available.

The minimal gyroid surfaces which support the above schwarzite structures can
be analytically described by the Weierstrass-Enneper representation in the complex
plane (Hyde 1999; Hoffman 1996). The P- and D-type gyroids are just two special
cases, where one can be continuously transformed into the other by the Bonnet trans-
formation (Hyde 1999). Thus the simulations of TEM images with deformed P- or
D-type gyroids, discussed in the next section, can be easily extended to any interme-
diate case obtained by a Bonnet transformation. The shapes of P- and D-type gyroids
(Fig. 12.8a, b) are well approximated by the lowest terms of a Fourier expansion as

cos x + cos y + cos z = 0, (12.10)

cos x cos y cos z + sin x sin y sin z = 1, (12.11)

respectively, where the coordinates x, y, z are in units of some conventional length,
say a0 = 1 nm. The spongy carbon structures like those shown in Figs. 12.4b
and 12.5) are examples of random schwarzites, which can be obtained from a numer-
ical simulation, as done, e.g., by Lenosky et al. (Lenosky et al. 1992; Townsend
et al. 1992). Another method to generate images of apparently random schwarzites
is to simulate their growth processes by applying to a three-periodic gyroid sur-
face a continuous scale change along the growth direction (z axis), so as to mimic
the observed self-affinity. This can be done for a P-type schwarzite by introduc-
ing in Eq. (12.10) a scaling factor zβ so as to give a distorted surface obeying the
equation

cos(xz−β) + cos(yz−β) + cos

(
z1−β

1 − β

)
= 0, (12.12)
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with β = 1/2 taken from experiment. A comparison of a portion of the TEM image
of Fig. 12.5 with a portion of the surface given by Eq. (12.10) plotted with a con-
trast and field depth similar to that of the TEM image is shown in Fig. 12.9; a
similar comparison between another portion of the TEM image and a small part of
two compenetrating distorted D-type schwarzites is shown in Fig. 12.10. A visually
similar image could be obtained with a single D-type surface with a longer field
depth. There is a clear visual resemblance between the experiment and the distorted
P-type simulation, whereas the comparison with the image of the compenetrating
D-type surfaces is less convincing. The latter, however, shows certain quasi-circular
features which are seen in the TEM image but not in the P-type simulation.

Fig. 12.9 Comparison between a portion of a distorted (β = 1/2) P-type schwarzite, Eq. (12.12)
(a) and of a random carbon schwarzite as observed by TEM (b). The contrast of the simulated
image has been chosen so as to give a field depth comparable to that of the TEM image (Barborini
et al. 2002a)

Fig. 12.10 Comparison between a portion of two compenetrating distorted (β = 1/2) D-type
schwarzites (a) and another portion of a random carbon schwarzite as observed by TEM
(b). The contrast of the simulated image has been chosen so as to give a field depth compara-
ble to that of the TEM image. A similar correspondence would be obtained with a single distorted
D-type surface with either longer field depth
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A brief discussing on whether the scale distortion preserves minimality is in
order. The minimality condition for a surface represented by the equation x = x(y, z)
is fulfilled when (Osserman 1986)[

1 +
(

∂x

∂z

)2
]

∂2x

∂y2
− 2

∂x

∂y

∂x

∂z

∂2x

∂y∂z
+

[
1 +

(
∂x

∂y

)2
]

∂2x

∂z2
= 0, (12.13)

which corresponds to a vanishing mean curvature at any point of the surface. The
transformation in Eq. (12.12), defined by

x′ = xz−β, y′ = yz−β, z′ = z1−β/(1 − β) (12.14)

is seen to violate Eq. (12.13) by terms of order β/z because

∂x

∂y
= ∂x′

∂y′ ,
∂x

∂z
= ∂x′

∂z′ + o(βz−1),
∂2x

∂y2
= ∂2x′

∂y′2 z−β, (12.15)

∂2x

∂z2
= ∂2x′

∂z′2 z−β + o(βz−1)z−β,
∂2x

∂y∂z
= ∂2x′

∂y′∂z′ z
−β + o(βz−1)z−β, (12.16)

whereas the principal curvatures decrease like z−β. Thus for β<1 the minimal-
ity condition is slowly recovered in the distorted schwarzite model at sufficiently
large z.

12.4 Schwarzite Stability

Once established the forms of pure sp2 carbon which are allowed by topology, the
second general question is under which conditions schwarzites, rather than nan-
otubes or fullerenes, are produced in a catalyzed SCBD experiments. To answer this
question one needs first to consider the total energy of a curved single-walled sp2

carbon as a function of its geometry. In a previous study (Benedek et al. 2003) it has
been suggested that a good approximation to the total energy of sp2 carbon surfaces
is provided by the Helfrich’s form for membranes and foams (Helfrich 1973; Oguey
1999; Sullivan 1999):

E =
∫

A
dA(γ + κH2 − κK), (12.17)

where A is the (portion of the) surface which the total energy refers to,

H = 1

2

(
1

R1
+ 1

R2

)
K = 1

R1R2
, (12.18)

are the mean and gaussian curvatures, respectively, with R1 and R2 the princi-
pal radii of curvature, γ = 2.82 eV/Å2 is the energy for unitary flat surface
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(a free-standing graphene sheet) (Sullivan 1999), κ and κ are stiffness constants
associated with cylindrical and elliptical/hyperbolic deformations of the surface,
respectively.

Since both H2 and K are inversely proportional to a square length, only the term
in γ in Eq. (12.17) is extensive, whereas the two curvature terms depend on the
aspect ratio and the connectivity, respectively, and not on the length scale. The lat-
ter property is a consequence of the Gauss-Bonnet theorem (Osserman 1986). A
corollary of this theorem states that for any closed orientable surface S of genus g
for which a representation of class r > 3 exists the surface integral of the Gaussian
curvature K is given by ∫

A
K dA = 2πχ. (12.19)

Minimal surfaces are characterized by R1 = −R2 at all positions, and therefore the
total energy of a schwarzite is readily obtained from Eq. (12.19) as

Eschw = γA − 2πχκ. (12.20)

Density functional (DF) calculations for single-walled nanotubes of variable radius
(Sullivan 1999; White et al. 1993), and C60 (Sullivan 1999) yield for all structures
about the same stiffness constants: κ ∼= 3.1 eV and κ ∼= 1.7 eV. Other calculations
for graphene (Cadelano et al. 2009; Lu et al. 2009) and nanotubes (Kudin et al.
2001) give κ ranging from 2.80 to 2.92 eV. Consistently a value of κ = 1.5 eV can
be extracted by means of Eq. (12.20) from the available calculations of the cohesive
energy of schwarzites (Lenosky et al. 1992; Vanderbilt and Tersoff 1992; O’Keeffe
et al. 1992; Gaito et al. 2001). This shows that the Helfrich’s form for the total
energy approximately holds also for all forms of pure sp2 carbon with universal
values of the stiffness constants.

The total energy expressed by Eq. (12.17) has the important property, if κ is
constant, of having a stable local minimum for a minimal surface, since for κ > 0
the integral on H2 is always positive unless H = 0, while the integral over the
Gaussian curvature K is, according to Gauss-Bonnet theorem, independent of any
small continuous deformation of the surface. Thus sp2 carbon taking the shape of a
minimal surface like schwarzites are stable forms (up to effects of the contour where
κ may change, as discussed below). If the negative disclinations yielding a negative
Gauss curvature are exclusively due to heptagons, the number of disclinations Nd is
fixed by the Euler-Poincaré characteristic as Nd = 6(2 − χ) independently of the
length scale of the surface (Sadoc 1997).

For a free-standing surface the stiffness constants κ and κ exclusively depend
on the electronic structure associated with the sp2 hybridization, but they can be
modified locally at the edges of the carbon surface or along the line where it docks
at the substrate or, more significantly, at a catalyst nanoparticle. It is argued that
such local values of κ and κ, and the initial values of the curvature radii as deter-
mined by any local geometric constrain may give general indications about whether
the growth process of sp2 carbon will preferentially lead to fullerenes, nanotubes
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or schwarzites. A local energy minimum with respect to the local aspect ratio,
expressed by R1/R2, implies a relationship between the ratios of the curvature radii
and of the stiffness constants:

R1

R2
= 2κ

κ
− 1. (12.21)

The surface deformation energy densities for (spherical) fullerenes (R1 = R2 ≡ R),
straight nanotubes (R1 ≡ R, R2 → ∞) and schwarzites (R1 = − R2 ≡ R) are
(κ − κ)/R2, κ/4R2 and κ/R2, respectively, and therefore for any given R1 the values
of κ and κ define three different topological domains: schwarzites are favored for
κ < 1/4κ, nanotubes for 1/4κ < κ < 3/4κ and fullerenes for κ > 3/4κ (Fig. 12.11).
From Eq. (12.21) it is seen that in each domain the surface energy minimum lines
are κ = κ for spherical fullerenes, κ = κ/2 for straight nanotubes (Fig. 12.11,
broken lines) and κ = 0 for minimal schwarzites. Arguably away from the broken
lines or κ = 0 non-spherical fullerenes, bent nanotubes or non-minimal schwarzites
are favored. The calculated values of κ and κ (Fig. 12.11, red cross) fall in the nan-
otube/graphene domain close to the κ = κ/2 line, thus explaining why it is relatively
easy to grow straight nanotubes.

It should be remarked that the local values of κ and κ, either at the surface ter-
mination into vacuum, where the growth takes place by cluster addition, or at the
contact with a catalyst, are likely to be different from the calculated values for the
free-standing structures. One should consider that the local change in the electronic
structure, e.g., a π bond-charge depletion or accretion, can substantially modify κ.
The charge redistribution produced by a catalyst depends on the actual size of cat-
alyst nanoparticles, which may explain why the growth of schwarzites supersedes
that of nanotubes when metallorganic precursors are used. In this case the metallic
particles are in general very small and highly dispersed, which can preserve over
an extended region the value of κ appropriate to grow schwarzites. Another impor-
tant remark is that once the growth has started in one domain it is very unlikely
that the system jumps into another domain since this would require, for topolog-
ical reasons, a prohibitive reshuffling of bonds. For example, jumping from the
fullerenes (schwarzite) to the nanotube domain implies the annihilation of twelve 5-
(7-) membered rings, which makes the energy hills between valleys rather high.

Fig. 12.11 The stability
regions of sp2 carbon surfaces
as functions of the two
stiffness constants. The
broken lines indicate the
minima of the surface energy
for quasi-spherical fullerenes
and nanotubes. The minimum
surface energy for
schwarzites would occur at
κ = 0
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According to this picture an initial κ < 1/4κ at the catalyst-carbon contact line
determines the growth of a schwarzite, which continues despite the gradual change
of the ratio κ/κ. It may be thought that during the sequential addition of fragments to
the edge of the growing schwarzite atoms adjust so as to fulfill as much as possible
the minimality condition R1 = −R2, which means to keep as close as possible to
the bottom of the surface energy valley. Would the local property H = 0 be exactly
fulfilled at each addition of material, the growth could be viewed in this particu-
lar case as a deterministic process with the minimum production of entropy. This
descends directly from the beautiful Euler theorem linking an extensive property,
such as the area of a surface, to an intensive one, the differential conditions H = 0
(i.e., Eq. (12.13)), and may apply to any other physical problem whose total (free)
energy minimum can be represented by the area of a minimal surface.

These arguments only tell about the topology of the growing structures with
no information about shape, order and symmetries. This requires a thermodynamic
approach where the appropriate thermodynamic potential is considered. The order-
ing depends very much on the mutual interactions between rings of different sizes. In
fullerenes abutting 5-rings are not favored; it may be said that they repel each other,
which makes the single isomer of C60 with no abutting 5-rings particularly stable,
beautifully ordered and highly symmetrical. On the other hand total energy calcula-
tions on schwarzites (Gaito et al. 2001; D’Alessio 2007) show that the bond energy
between two 7-rings is ε77 = −5.107 eV, between a 6- and a 7-ring ε67 = −5.181 eV
and between two 6-rings ε66 = −5.587 eV. Thus the separation of two abutting
7-rings costs 0.332 eV and therefore abutting 7-rings are favored (D’Alessio 2007).
Figure 12.12 shows a small region of a schwarzite where some re-shuffling of bonds

Fig. 12.12 Two abutting
7-rings (a, dark polygons) are
separated by a re-shuffling of
bonds at the cost of the
creation of a 5–7 ring pair
(b,c; dark-green pair of
polygons). This occurs within
a small schwarzite region
with no change of its contour.
When two 5–7 ring pairs
generated in two different
regions get adjacent they can
annihilate each other through
a Stone-Wales
transformation, leaving four
6-rings. The net result is a
migration of a 7-ring
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leads to the separation of two initially abutting 7-fold rings with no change of the
contour. This costs the formation of a 5–7 ring pair. However two 5–7 ring pairs
formed in two different regions of the sample which become adjacent can annihilate
through a Stone-Wales transformation leaving four 6-rings. The net result is a sep-
aration of two 7-rings. This process, however, is energetically less favored than the
coalescence of two separated 7-rings, which may explain why random schwarzites
seem to be more likely than well ordered three-periodic structures. The bond re-
shuffling implies however a change of configurational entropy, which requires some
further discussion.

12.5 Thermodynamics

As a simple example, the configurational entropy associated with all possible
distributions of a fixed number f7 of 7-rings in a schwarzite of given χ can
be estimated for a restricted class of schwarzites, for example for the D-type
(χel = −2). The number of possible configurations is given by the number
of isomers within this restricted class. The calculation for the smallest D-type
schwarzites ((C28)2 to (C40)2) has been approached (D’Alessio 2007) by adapt-
ing to schwarzite elements the spiral sequencing method originally developed for
fullerenes by Manolopoulos, Fowler et al. (Yoshida and Fowler 1992; Manolopoulos
and Fowler 1992; Fowler et al. 1995; Manolopoulos and Fowler 1997; Achida
et al. 1998; Làszlò et al. 2001) for the enumeration of isomers and spectral anal-
ysis. The results for small schwarzites can be extrapolated to larger samples by
means of some simple combinatorial argument subject to the further restriction that
the D-type elements are connected by six-atom necks, so that an isolated element
only contains 6- and 7-rings. This is clearly a crude approximation which retains
however a tutorial value and is worth discussing here. For a D-type element of fcc-
(Cm)2 with f6,el ≡ (m − 28)/2 and f7,el = 12, the number Wel(f6,el) of isomers
per element grows like the number of combinations of 7- and 6-rings (the latter
being f6,el + 2 for including one half of the four necks), divided by the number
of permutations of the four necks, by the number (3) of possible ways of clos-
ing the element on itself (Fig. 12.7d) and by 2, since the distinction between the
internal and external surfaces of a schwarzite (extroversion isomery) is irrelevant.
This gives

Wel(f6,el) ≈ 1

144

(
14 + f6,el

12

)
(12.22)

For example, for f6,el = 2, 4, 6 Eq. (12.22) gives Wel(f6,el) = 12, 128, 874 which
compare fairly well with the exact figures 11, 125 and 893 (D’Alessio 2007).

Consider now a D-type schwarzite of N elements closed by cyclic boundary
conditions. It has a Euler-Poicaré characteristic χ = − 2(N − 1) and a total area
A = N(f6,elA6 + 12A7), where An is the area of an n-ring. The total number of
configurations is then W = (Wel)N , which gives an entropic contribution
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Sc/kB = ln W =
(

1 + 1

2
|χ|

)
ln Wel(f6,el). (12.23)

By introducing via the Gauss-Bonnet theorem, Eq. (12.19), the average Gauss
curvature

K ≡ 2πχ/A (12.24)

and assuming a constant area and temperature T, the corresponding (configurational)
Helmholtz free energy per unit area can be written via Eq. (12.20) as

Fc

A
= γ + κ

∣∣K∣∣ − kBT

f6,elA6 + 12A7
ln Wel(f6,el) (12.25)

Since the mean pore radius R = K
−1/2

depends on the number of 6-rings, one can
obtain R at thermal equilibrium by setting (∂Fc/∂f6,el)A,T = 0, which gives for large
f6,el and β ≡ 1/kBT:

f6,el ≈ exp(βπκ/3), R ≈ (A6/4π)1/2 exp(βπκ/6). (12.26)

These equations show that for increasing temperature R decreases which means that
the porosity increases. The present equilibrium description can hardly adapt to the
SCBD process, unless it is assumed that at the spot hit by the beam there is a defined
average temperature proportional to the flux and to the energy per atom. Although
the travelling clusters in the supersonic beam are very cold, at the impact on the
surface their translational kinetic energy shares among all degrees of freedom. Thus
the vibrational contribution to the free energy has to be added. This amounts to
(Horton and Maradudin 1975)

Fv

A
= kBT

f6,elA6 + 12A7

∑
j
[xj coth xj − ln(2 sinh xj)], xj ≡ 1

2
β�ωj, (12.27)

where �ωj are the phonon energies of an element. Since only sums over the whole
phonon spectrum are of interest in the present discussion, the same average set
of frequencies is used for all elements, and the four elements coordinated by the
central one are assumed to be rigid. The last condition ensures a finite energy for
all the acoustic modes of the whole schwarzite, whose branches are replaced by
the respective top energies. This treatment of the acoustic modes is similar to a
Debye approximation, which works quite well in the calculation of thermodynamic
functions at comparably high temperatures as in the present case.

The phonon spectrum has been calculated for the smallest D-type schwarzites
with a simple nearest-neighbour force constant model with radial and shear force
constants, which are taken the same for all bonds and equal to those of graphite
(Benedek and Onida 1993; Benedek et al. 1993). In this case the dynamical matrics
can be block-diagonalized into three adjacency matrices (Manolopoulos et al. 1991;
Manolopoulos and Fowler 1992; Fowler et al. 1995; Achida et al. 1998) whose
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Fig. 12.13 Mean radius (on a logarithmic scale) of the pores of a d-type schwarzite with a ran-
dom distribution of the twelve 7-rings per element calculated as a function of the dimensionless
parameter κβ = κ/kBT temperature from the Helmholtz free energy including both configura-
tional and vibrational contributions (curve) or the configurational contribution only (straight line).
When phonon contributions are included the mean radius shows a minimum of about 15 nm
for T ∼= κ/2kB and a rapid increase above this temperature. According to molecular dynamics
simulations (Section 12.7) this behaviour can be interpreted as due to a rapid graphitization that
schwarzite undergoes above 3500 K, before melting. This temperature corresponds to κ ∼= 0.6 eV
which is less than one half of the ab-initio value but falls into the schwarzite domain (Fig. 12.11)

eigenvalues give the phonon energies for the different polarizations. Model force
constants for sp2 carbon given as functions of the bond length are available for a
more precise calculation of the phonon energies (Benedek et al. 1993). This however
is not needed at the level of approximation adopted in this discussion.

Figure 12.13 displays the mean pore radius calculated as a function of the dimen-
sionless parameter κβ = κ/kBT from the Helmholtz free energy including both
configurational and vibrational contributions (curve) or the configurational contri-
bution only (straight line). When the phonon contributions are included the mean
radius shows a minimum for T ∼= κ/2kB corresponding to about 15 nm, and a rapid
increase above this temperature. According to molecular dynamics simulations
described below this behaviour can be interpreted as due to a rapid graphitization
that schwarzite undergoes above 3500 K, before melting. This temperature corre-
sponds to κ ∼= 0.6 eV which is less than one half of the ab-initio value but falls into
the schwarzite domain (Fig. 12.11). It is also noted that the experimental schwarzite
shown in Fig. 12.5 has pore radii in the range of 100 nm, which corresponds to a
formation temperature of 500 K for κ ∼= 0.6 eV or 1170 K for κ ∼= 1.4 eV. Both
values are reasonable in view of the fact that the incident energy per atom, initially
associated with one translational degree of freedom, is subsequently distributed over
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the three vibrational degrees of freedom of each atom. For the present example the
vibrational contribution was calculated for a single element size corresponding to
m = 36; for consistency a larger element should have been used so as to have a
mean curvature radius corresponding to the minimum R. Nevertheless the molec-
ular dynamics simulations of the thermal evolution of a three-periodic schwarzite
qualitatively confirm the present analysis.

In principle the present model can be extended to the case of self-affinity. It is
found (Benedek et al. 2005) that mean Gauss curvature decreases for increasing
thickness t as (Benedek et al. 2005)

∣∣K∣∣ = ∣∣Ko
∣∣ 1 + β

1 − β
t−2β, (12.28)

and Ko is the average initial Gauss curvature. Thus for the quasi-equilibrium growth
regime discussed above the mean pore radius from the pure configurational part,
Eq. (12.26), is corrected by a factor

√
(1 − β)/(1 + β)tβ ≈ tβ/

√
3.

12.6 Electronic Structure and Electron-Phonon Interaction

The band structure of electrons freely moving on a periodic minimal surface has
been investigated by Aoki et al. (2001). When the actual sp2-bonded atomic struc-
ture is considered, schwarzites, like nanotubes, are either metals or insulators,
depending on the topological structure and element size. Tight-binding calculations
of the band structure have been performed for the smallest D-type schwarzites fcc-
(Cm)2 of tetrahedral symmetry (m = 28, 36 and 40) (Gaito et al. 2001; Benedek et al.
1997, 2001). More recent ab-initio calculations of the electronic band structure of
fcc-(C28)2 are also available (Spagnolatti et al. 2003). The structure of fcc-(C28)2
exists in two enantiomers of opposite chirality (Fig. 12.14a, b), having however
the same band structure (Fig. 12.14c). As also seen in the density of electron states
(DOS) (Fig. 12.14d), rather large gaps occur between the valence as well as between
the conduction bands. The Fermi level (EF) crosses the lowest conduction band,
which confers to fcc-(C28)2 a metallic character. The DOS’s of the next tetrahe-
dral schwarzites fcc-(C36)2 and fcc-(C40)2 as obtained by tight-binding calculations
(Gaito et al. 1998) are displayed in Fig. 12.15. The occurrence of many sharp peaks
in the DOS of both schwarzites is indicative of rather flat bands due to the existence
of localized electronic states within each element, notably at the 7-rings, due to the
absence of conjugation.

There is an interesting alternation in the conducting properties: while fcc-(C28)2
is metallic, the next one, fcc-(C36)2, having four 6-rings per element, is an insulator
and fcc-(C40)2, with six 6-rings per elements, is metallic. For increasing m larger
and larger portions of the surface acquire a graphene-like structure with, however,
a slight negative Gaussian curvature, similar to graphene subject to a shear strain.
The effects of a shear strain on the electronic structure of graphene have been the-
oretically investigated in a recent paper by Cocco et al. (2010), who show that a
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Fig. 12.14 (a,b) The two enantiomers of the D-type schwarzite fcc-(C28)2 made of only 7-rings,
here shown in the conventional cubic cell with four formula units. The chirality is evidenced by
the directions of three bonds and the lack of mirror symmetry with respect to the (110) plane. The
two enantiomers have the same electronic band structure (c) obtained from an ab-initio calculation
(Spagnolatti et al. 2003). Comparatively large gaps occur between valence as well between con-
duction bands, as also seen in the density of electron states (DOS). The Fermi level (EF) cuts the
lowest conduction band, which confers to fcc-(C28)2 a metallic character

Fig. 12.15 Density of the electronic states (DOS) of the D-type schwarzites fcc-(C36)2 (a) and
fcc-(C36)2 (b) a tight-binding calculation (Gaito et al. 2001). As seen from the position of the
Fermi level (EF), the former schwarzite is an insulator with a gap of 1.34 eV, the latter is a metal.
The presence of many sharp peaks in the DOS is indicative of bands of states strongly localized
within each element. The insets show the element atomic structures

shear strain opens a gap at the Dirac points, with the intriguing consequence that
a band-gap engineering based on the application of suitable stress field would be
possible (Cocco et al. 2010). The data of Table 12.1 show that schwarzites are par-
ticularly stable, with a cohesive energy per atom which rapidly increases in absolute
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Table 12.1 Cohesive energy per atom (Ecoh), density, bulk modulus (B), bond strength (b) and
conductive property for the smallest D-type schwarzites with tetrahedral symmetry, as compared
to fullerite and diamond (Gaito et al. 2001; Benedek et al. 1997, 2001)

D-type
schwarzite

Ecoh
(eV/atom)

Density
(g/cm3) B (Mbar) b (Mbar Å3)

fcc-(C28)2
fcc-(C36)2
fcc-(C40)2

−7.66
−7.71
−7.92

1.33
1.05
1.60

1.58
1.26
1.92

16.12
16.20
16.25

Metal
Insulator
Metal

fullerite
diamond

−7.99
−8.36

1.71
3.52

0.14
4.42

−
16.71

Insulator
Insulator

value, tending for large m to that of diamond and graphite. The density is compara-
tively low and oscillating with m, but must tend to zero for m→∞ as expected for a
two-dimensional surface filling a three-dimensional space.

The search of superconductivity in exotic carbon forms, e.g., in clathrates (Blase
et al. 2010), has stimulated an ab-initio study of the vibrational structure and of
the electron-phonon coupling in fcc-(C28)2 of the 6–7 class and fcc-(C64)2 of the
6–8 class (Spagnolatti et al. 2003). Figure 12.16 shows the calculated phonon den-
sity of states at the �-point of fcc-(C28)2 with indications of the even-symmetry
optical modes which mostly contribute to the electron-phonon interaction. Their
electron-phonon coupling is explicitly indicated in meV units (if larger than 2 meV).
It appears that the largest contribution comes from phonons which deform the nar-
row necks joining two neighbour elements. Here the Gauss curvature is the largest,
which supports the conjecture made for clathrates (Blase et al. 2010) that a larger
Gauss curvature should favour superconductivity. The calculation yields however a

Fig. 12.16 The ab-initio density of phonon states at the �-point (zone center) of fcc-(C28)2. Some
of the phonon peaks are labelled by the corresponding calculated values of the electron-phonon
coupling (in meV units), if larger that 2 meV (adapted from (Spagnolatti et al. 2003))
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Fig. 12.17 The fcc-(C64)2 belongs to the class of schwarzites made of 8- and 6-rings and has,
according to Eq. (12.8), six 8-rings per element (a). The appreciable conjugation which is allowed
by the even-ring structure removes the localization effects seen in schwarzites of the 6–7 class:
no gap is found in the band structure (b), the resulting solid is metallic with a comparatively low
density at the Fermi level (EF), and the electron-phonon interaction is small

discouraging λ = 0.116 for the overall electron-phonon coupling parameter, which
is quite smaller that that of doped fullerenes. Nevertheless it is conjectured that dop-
ing, by shifting EF to regions of much higher density of states, could increase λ

up to a factor five (Spagnolatti et al. 2003). For comparison a similar analysis has
been carried out for the schwarzite fcc-(C64)2 of the 6–8 class, which has larger
and much less curved necks due to the insertion of 6-rings. The structure and the
ab-initio electronic bands are shown in Fig. 12.17a, b (Spagnolatti et al. 2003). The
first important difference with respect to the schwarzites of the 6–7 class is the disap-
pearance of gaps. This is attributed to the appreciable conjugation which is allowed
by the even-ring structure and removes the localization effects seen in 6–7 class
schwarzites. The resulting metallic solid has however a comparatively low density
at the Fermi level (EF), and the resulting electron-phonon interaction is even smaller
than in fcc-(C28)2.

12.7 Quantum Molecular Dynamics Simulations

Thanks to the development of efficient tight-binding molecular dynamics (TBMD)
methods (Colombo 2005), there have been also a few TBMD simulations of the
growth and temperature evolution of low-coordinated carbon structures from cluster
assembling, aiming at clarifying the conditions for schwarzite formation (Spadoni
et al. 1997; Benedek et al. 1998; Yamaguchi et al. 2007; Bogana and Colombo 2007;
Rosato et al. 1999, 2001; Donadio et al. 1999). In particular it has been investigated
how the size distribution of clusters, their density and kinetic energy are effective
in the growth of sp2 schwarzitic material rather than mixed sp2-sp3 carbon or less-
coordinated forms like carbynes (Rosato et al. 2001; Bongiorno et al. 2005; Agarwal
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Fig. 12.18 The cell with
periodic boundary conditions
made of 32 unit cells of the
D-type schwarzite fcc-(C36)2
for a tight-binding molecular
dynamics simulation (Rosato
et al. 1999, 2001)

et al. 2010). Here we briefly discuss just one particular simulation which shows
the useful information which topology can provide in the molecular dynamics of a
complex structure.

A D-type fcc-(C36)2, represented in Fig. 12.18 inside a simulation cell of 32
unit cells (64 elements) with cyclic boundary conditions, is gradually heated from
room temperature to 4250 K. The evolution is monitored through the topological
connectivity (Fig. 12.19a), evaluated over a subunit of five unit cells (10 elements).
As shown in Fig. 12.19b, the initial connectivity of the subunit is k = 19 and is
slowly reduced by increasing the temperature down to 16 due to some bond breaking
and reshuffling. Just above 3800 K the connectivity drops to 3, thus signalling a
rapid graphitization of the schwarzite. It would be quite hard to visualize what looks
to be a topological phase transition by just examining the simulation snapshots. On
the contrary the change of connectivity, as derived from Eq. (12.6) by counting at
each time the numbers of bonds and rings, constitutes a sort of topological order
parameter which allows to monitor the phase change from an ordered schwarzite to
a disordered graphite-like material.

Further examples of TBMD simulations illustrating the dependence of the output
on the temperature variation protocol can be found in Refs. (Spadoni et al. 1997;
Benedek et al. 1998). A mixture of large clusters (C39 fragments) dispersed in a
gas of C2 dimers, under a gradual increase of temperature from 1500 to 3500 K
starts coalescing until they form a single connected cluster. The structure, remind-
ing of a random schwarzite, shows the formation of some 7-ring associated with
a negative Gaussian curvature. For comparison the cluster coalescence at constant



12 The Topological Background of Schwarzite Physics 243

Fig. 12.19 (a) Tight-binding molecular dynamics simulation of the graphitization of the
schwarzite fcc-(C36)2 (Fig. 12.14). The evolution for increasing temperature is monitored by the
connectivity of a subunit of eight elements (four molecules) (b). Since nine handles are required
to close the eight-element subunit on itself (by joining the corresponding numbers in (b)), the
low-temperature connectivity is 19. The graphitization occurs slightly below 4000 K, where the
connectivity suddenly drops from k = 16 to the graphene value k = 3, thus depicting a topological
phase transition (adapted from Rosato et al. 1999, 2001)

temperature of 3500 K leads instead to a graphite-like structure dominated by 6-
membered rings. Other simulations starting from a gas of only carbon dimers yield
open tubular structures with the corresponding connectivity k = 3. It is hoped that
larger and larger-scale quantum simulations will help finding a viable route to the
new world of crystalline schwarzites.

12.8 Conclusion

Although schwarzitic carbon sponges did not know the glamour of the ordered
forms of sp2 carbon, they have nevertheless led to important applications, some of
which have been mentioned in the introduction. Countless examples may be found
in the literature, ranging from the engineering of SCBD carbon-based composites
(Bongiorno et al. 2005) to biological applications, one for all the recent demonstra-
tion of interfacing live cells with nanocarbon substrates (Agarwal et al. 2010). The
path towards low-dimensional carbon for nanotechnologies has now reached the still
poorly known world of pure carbon chains, carbynes, which were looked for since
the time of fullerene discovery (Kroto et al. 1985). The recent production of car-
bynes by SCBD (Ravagnan et al. 2002, 2007) and from graphene (Jin et al. 2009) is
calling for new theoretical investigations (Ravagnan et al. 2009). However the real
challenge for possible developments on more fundamental questions is, in our opin-
ion, the synthesis of ordered three-periodic schwarzites or even supported planar
architectures formed by two-periodic schwarzites, eventually obtained by joining
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nanotubes, as it would be made by a nano-plumber. Such a new class of ordered
sp2 carbons would represent a natural extension to curved highly connected two-
dimensional spaces of what has been learnt from and about graphene (Novoselov
et al. 2004, 2005; Geim and Novoselov 2007; Castro Neto et al. 2009). The fasci-
nating mutual implications linking graphene and Dirac fermion physics would be
greatly enriched by the exploration of periodic curved carbon surfaces once their
topology can be designed and controlled.

Another intriguing aspect related with the growth of minimal surfaces is the one-
to-one correspondence between global and local minimal conditions which may
allow for a deterministic growth along the valley floor of the energy landscape. In
principle any global thermodynamic potential which can be represented as a surface
integral has minima which can be determined from local conditions, and allows for
a deterministic growth process.

Carbon, as the most versatile element of the periodic table, keeps stimulating
the ingenuity of versatile scientists. The invention of new possible sp2 structures
by means of powerful mathematical tools, like, e.g., those recently investigated by
Diudea (2005) (Fig. 12.20), as well as the great excitement started with the isolation
of a single graphene sheet (Novoselov et al. 2004, 2005; Geim and Novoselov 2007;
Castro Neto et al. 2009), now raised to the rank of paradigm linking distant areas
of physics, suggest that fantasy joined to the rigorous thought are the lifeblood of
science.

Fig. 12.20 A few examples of nanoporous carbon allotropes designed by Mircea Diudea (2005)
by septupling map operations
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Chapter 13
High π-Electronic Stability of Soccer Ball
Fullerene C60 and Truncated Octahedron C24
Among Spherically Polyhedral Networks

Haruo Hosoya

Abstract By using the technique of topological symmetry the characteristic poly-
nomials of highly symmetrical π-electron carbon networks of regular and semi-
regular polyhedra were factored out, and their stability on MO basis was analyzed
and discussed. Besides the soccer ball-shaped C60 fullerene, a π-electron system
of truncated octahedron-shaped C24 was suggested to be a candidate for a stable
spherical carbon network. Mathematical basis and explanation for the high stabil-
ity of these two substances among other polyhedral carbon networks with highly
degenerate molecular orbitals were obtained.

13.1 Introduction

It has been established that irrespective of the grade of accuracy of the theory
adopted, the soccer ball-shaped fullerene C60 has exceedingly high stability of con-
jugated π-electron network among the 1812 spherical isomers composed of 20
hexagons and 12 pentagons with all the same vertex-degree of three (Fowler and
Manolopoulos 1995; Cioslowski 1995; Osawa et al. 1998). However, this conclu-
sion has been derived from the results of a huge number of calculations. On the
other hand, very few discussions have been given not only on the possibility of
other types of polyhedral π-electron networks of carbon (Glukhovtsev et al. 1990;
Liu et al. 1991; Sokolov and Stankevich 1993; King 1998; Ceulemans et al. 2002),
but also on the mathematical and chemical ground for the stability of these types of
molecules.

With regard to these problems, the present author has developed the theory of
topological symmetry by which the secular determinant of a highly symmetrical
π-electron network can be factored out according to a simple recipe (Hosoya and
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Tsukano 1994). This theory can be extended to the density of states of infinitely
large network of graphite, or graphene, easily by solving 2 by 2 determinant
followed by simple manipulation of taking its limit to infinity (Hosoya et al. 1995).
In this paper, although giant fullerenes and nanotube structures are not treated, this
technique is applied to various spherically polyhedral π-electron networks mostly
of regular and semi-regular polyhedra. Those networks were also treated as in
formal discussion, in which the degrees of the vertices of the networks exceed
three.

Although the high stability of the soccer ball-shaped C60 fullerene was ascer-
tained as has been expected, truncated octahedron-shaped C24 was suggested also
to be a candidate for a stable spherical π-electron network of carbon. The results of
this study might be helpful for designing new types of stable spherical π-electronic
networks.

13.2 Spherically Polyhedral Networks

Among the five Platonic solids, or regular polyhedra, the following two pairs, cube
43 and octahedron 34, and dodecahedron 53 and icosahedron 35, are duals with each
other, while the dual of tetrahedron 33 is tetrahedron itself, where the symbols for
these polyhdera are taken from Cundy and Rollett (1952); Williams (1979). From
these regular polyhedra almost all the Archimedean solids, or semi-regular polyhe-
dra, can be derived and classified into three groups as in Figs. 13.1, 13.2, and 13.3.

regular
icosahedron

35

truncated
icosahedron

5.62

icosi-
dodecahedron

(3.5)2

regular
dodecahedron

53

truncated
dodecahedron

3.102

rhombicosi-
dodecahedron

3.4.5.4

truncated
icosidodecahedron

4.6.10

Fig. 13.1 Perspective views and codes of regular and semi-regular polyhedra of icosahedral
symmetry
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cube

43

regular
octahedron

34

truncated
octahedron

4.62

cubocta-
hedron
(3.4)2

truncated
cube
3.82

truncated
cuboctahedron

4.6.8

rhombi-
cuboctahedron

3.43

Fig. 13.2 Perspective views and codes of regular and semi-regular polyhedra of octahedral
symmetry

regular
tetrahedron

33

truncated
tetrahedron

3.62

Fig. 13.3 Perspective views
and codes of regular and
semi-regular polyhedra of
tetrahedral symmetry

The first group polyhedra belong to Ih (icosahedral) symmetry and can be gen-
erated by symmetrical truncation of either of dodecahedron and icosahedron. The
most popular one is truncated icosahedron, or soccer ball-shape, 5.62. Namely, a
regular pentagon and a pair of consecutive hexagons are surrounding each vertex
of this polyhedron, which can be obtained by truncating all the vertices of regular
icosahedron in such a manner that each edge is trisected. Icosidodecahedron (3.5)2

can be obtained either by bisecting each edge of 35 or 53. Truncated dodecahedron
3.102 can be obtained from proper truncation of 53. Truncated icosidodecahedron
4.6.10 and rhombicosidodecahedron 3.4.5.4 are generated from the intersection of
three polyhedra, i.e., 35, 53, and rhombic tricontahedron, which is not shown here
but is the dual of cuboctahedron (3.4)2 (See later). Among these five semi-regular
polyhedra of icosahedral symmetry, the three truncated polyhedra, i.e., 5.62, 3.102,
and 4.6.10 are cubic graphs, the degrees of whose vertices are all three, and are
potentially capable of forming π-electron networks of carbon atoms. On the other
hand, the degrees of all the vertices of 3.4.5.4 and (3.5)2 are four, thus suggesting
rare chance of forming a π-electron network of carbon.
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Similarly from the pair of 34 and 43, five semi-regular networks of octahe-
dral symmetry (Oh), i.e., truncated octahedron 4.62, truncated cube 3.82, truncated
cuboctahedron 4.6.8, and cuboctahedron (3.4)2 and rhombicuboctahedron 3.43 can
be generated. Among them (3.4)2 and 3.43 have the least possibility of forming a
π-electron network of carbon, because their vertex-degrees are all four.

From tetrahedron 33 one can obtain truncated tetrahedron 3.62, which is a
candidate of a π-electron network of carbon atoms.

Among the family of semi-regular polyhedra there are two peculiar entities, snub
cube 34.4 and snub dodecahedron 34.5, where six squares and twelve pentagons are,
respectively, isolated in the spherical sea composed of 32 and 80 triangles. Further,
the vertex-degree of both of them is five. Thus there seems to be no possibility
for the existence of conjugated π-electron network of carbon with these polyhedral
structures. They are excluded from the discussion in this analysis.

Then the main targets are selected as the following eight semi-regular polyhe-
dra: truncated icosahedron, truncated dodecahedron, truncated icosidodecahedron,
rhombicosidodecahedron, truncated octahedron, truncated cube, truncated cuboc-
tahedron, and truncated tetrahedron. Beside them regular polyhedra were also
supplementarily discussed.

13.3 Topological Symmetry

The general theory of the analysis using topological symmetry has already been
given in our earlier paper with the soccer ball-shaped C60 fullerene as an exam-
ple (Hosoya and Tsukano 1994). Then only the results of this fullerene will be
given later. In this paper truncated dodecahedron is chosen as an example to demon-
strate how the topological symmetry is obtained and taken into consideration for an
efficient factorization of the secular determinant of the Hückel molecular orbitals.

13.4 Icosahedral Symmetry

The Schlegel diagram of truncated dodecahedron of D5h geometrical symmetry is
given in Fig. 13.4b, where one can easily find eleven decagons of two different sizes
and also a larger icosagon by tracing the circle loop joining the central five small
decagons. The periphery of this diagram forms the twelfth decagon. Suppose that
all the edges in Fig. 13.4b are made of flexible rubber bands. Then one can pick
up the above-mentioned icosagon, and enlarge it to form a large periphery as in
Fig. 13.4c. Then the ten figures as in Fig. 13.4d composed of a pair of triangles are
automatically pendent to the inward of the big icosagon as seen in Fig. 13.4c with a
high D10h topological symmetry.

This means that the 60 by 60 determinant of this network can be factored out into
the product of ten six by six determinants of the cyclic unit of Fig. 13.4d, where a
denotes
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Fig. 13.4 (a) Perspective view, (b) Schlegel diagram, (c) topological symmetry diagram, (d) cyclic
unit, (e) and HMO energy level diagram of truncated dodecahedron

a = exp(2kπi/10) = exp(kπi/5) (k = 1,2, . . . , 10). (13.1)

Then according to the standard recipe (Hosoya et al. 1987) for solving a deter-
minant of cyclic symmetry the following six by six determinant can be obtained:

PG(k, x) =

∣∣∣∣∣∣∣∣∣∣∣∣

−x 1 + a2 1 0 0 0
1 + a∗2 −x 1 0 0 0

1 1 −x 1 0 0
0 0 1 −x 1 1
0 0 0 1 −x 1 + a
0 0 0 1 1 + a∗ −x

∣∣∣∣∣∣∣∣∣∣∣∣
, (13.2)

where a∗ denotes the complex conjugate of a, or simply a−1.
Then one can obtain the HMO energy level diagram as shown in Fig. 13.4e in

a highly degenerate fashion. By putting 60 electrons into the lowest 30 orbitals
one gets a closed shell structure. However, the HOMO’s are NBMO’s with tenfold
degeneracy, suggesting a highly reactive electronic structure.
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Fig. 13.5 Truncated icosahedron. Captions are the same as that of Fig. 13.4

In contrast to this network the soccer ball-shaped C60 fullerene has the highest
stability among all the regular and semi-regular polyhedron networks (Hosoya and
Tsukano 1994). In Fig. 13.5 the perspective view (a), Schlegel diagram (b), topo-
logical symmetry diagram (c) of D10h symmetry, cyclic unit (d), and HMO energy
level diagram (e) of this network are shown. In what follows except for a few cases,
(a)~(e) are assigned to the figures in the above categories.

From Fig. 13.1 the third icosahedral network of truncated icosidodecahedron can
be chosen as a candidate for a possible π-electron network with a semi-regular
polygonal skeleton. The Schlegel diagram with fivefold symmetry can be drawn
as Fig. 13.6b, where eleven decagons of three different sizes can be seen and the
periphery is found to be the twelfth decagon. In this case it is not difficult to find
the tenfold rotational “topological symmetry” by noticing the topological structure
of Fig. 13.6b’, which can be obtained by deforming Fig. 13.6b in a plane so that
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Fig. 13.6 Truncated icosidodecahedron. Captions are the same as that of Fig. 13.4

the pair of “five octagon cycles” symmetrically face with each other. Then one can
easily draw Fig. 13.6c with D10h topological symmetry, where a unit structure is
composed of a pair of hexagons jointed through a square as shown in Fig. 13.6d.
Then the 120 by 120 determinant can be factored into a product of ten 12 by 12
determinants. Since it is not a difficult task to write its explicit expression by fol-
lowing the unit structure of Fig. 13.6d with the same expression of (1) for a, the
determinant is not given here. In this case, although the obtained HMO energy lev-
els are generally highly degenerate, HOMO and LUMO are not degenerate but with
a very narrow energy gap of x = ±0.1569 in β unit. In Fig. 13.6e only the energy
level diagram in the region near HOMO and LUMO is given. From this diagram
subtle possibility of closed shell structure of this π-electron system is suggested.

In this way the order of the characteristic polynomials of the three π-electronic
systems, 5.62, 3.102, and 4.6.10, of icosahedral symmetry could be reduced by a fac-
tor of ten. However, the most dramatic simplification by the technique of topological
symmetry can be demonstrated in the case of regular octahedron.

See the topological structure of the Schlegel diagram of octahedron in Fig. 13.7.
The bold lines form a hexagonal cycle, each of whose vertex, say number n (=1~6),
is connected to n−1 and n+1. Further, each n is also connected to n−2 and n+2.
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Fig. 13.7 Schlegel diagram, cyclic unit, characteristic polynomial, and HMO energy level diagram
of regular octahedron

Then by running through from n=1 to 6, one gets the complete structure of the
Schlegel diagram of regular octahedron. This bonding mode at each vertex is drawn
as in the upper right of the figure.

The reduced characteristic polynomial PG(k,x) of a vertex of unit order gives the
rigorous expression of x, and accordingly the general expression of the energy level
of regular octahedron can be obtained as

x = 2(cos kπ/3 + cos 2 kπ/3) (k = 1,2. . . . , 6), (13.3)

leading to all the integer eigen values as in the table in Fig. 13.7 without solving the
secular determinant of the order of six. The HMO energy level diagram is obtained
as shown there, but HOMO’s are open at NBMO’s. Moreover the degrees of the
vertices of this network are four. Thus there is no possibility for the existence of
regular octagonal π-electronic system.

On the other hand, the regular dodecahedron network is a cubic graph, whose
vertex-degrees are all three, as shown in Fig. 13.8, which is a candidate for a spher-
ical unsaturated π-electronic system. In this case the 20 by 20 determinant can be
factored into a product of ten 2 by 2 determinants by using the tenfold rotational
symmetry as shown in Fig. 13.8c with the cyclic unit of Fig. 13.8d. In this case
deformation of Fig. 13.8b into 8b’ is helpful for obtaining Fig. 13.8c. Also in this
case the π-electronic system becomes open at quadruply degenerate NBMO’s as
shown in Fig. 13.8e, suggesting again no possibility for its existence.
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13.5 Octahedral and Tetrahedral Symmetry

Now turn to the networks of octahedral symmetry picked out from the three can-
didates, i.e., truncated octahedron, truncated cube, and truncated cuboctahedron, as
given in Fig. 13.2.

All the materials regarding truncated octahedron are given in Fig. 13.9. The
Schlegel diagram of Fig. 13.9b has D3h symmetry. However, notice that the arrange-
ment of the six isolated squares is topologically the same as that of the six vertices of
the octahedron shown in Fig. 13.7. Then by numbering the vertices in each square
as in Fig. 13.9b, one can rearrange the squares so that they have D6h topological
symmetry as in Fig. 13.9c, where the six unit structures of Fig. 13.9d are circularly
joining with each other. By solving the 4 by 4 determinant the energy level dia-
gram can be obtained as in Fig. 13.9e, predicting a stable closed shell structure with
x = ±0.4142 in β unit for HOMO and LUMO.

The HOMO-LUMO gap of 0.8284β is a little larger than 0.7566β of soccer ball-
shaped C60 fullerene. Although the torsional energy of the σ-skeleton of truncated
octahedron seems to be larger than that of C60 fullerene, this substance needs to be
studied as a candidate for a stable spherical carbon allotrope.

For truncated cube two different Schlegel diagrams can be drawn as Figs. 13.10b
and b’. In this case rather than the conventional octagon-shaped one the triangular
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Fig. 13.9 Truncated octahedron. Captions are the same as that of Fig. 13.4

diagram of Fig. 13.10b’ is superior for obtaining the topological symmetry diagram
of Fig. 13.10c with higher symmetry (D6h), where the unit structure of Fig. 13.10d
has a key role in representing the topological symmetry of the whole network. By
putting 24 electrons into the energy level diagram of Fig. 13.10e, HOMO’s are
found to be open at NBMO’s, leading negative conclusion for the existence of this
π-electron network.

The next candidate is truncated cuboctahedron (Fig. 13.11). By deforming the
octagonal Schlegel diagram of Fig. 13.11b into b’, it is not so difficult to draw the
topological symmetry diagram of Fig. 13.11c with D6h symmetry using the octagon
in Fig. 13.11d as a cyclic unit. However, by putting 24 π-electrons into the energy
level diagram one gets open HOMO’s at NBMO’s (Fig. 13.11e). Then truncated
cuboctahedron drops out.

One can enjoy the three D6h diagrams of topological symmetry, namely,
Figs. 13.9c, 13.10c, and 13.11c of the topological symmetry for these networks
of Oh symmetry, which effectively factor out the determinant of the whole
graph by a factor of ten yielding highly degenerate MO’s for these π-electron
networks.
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The situation is almost the same for the case with Ih symmetry. Namely, the
diagrams of topological symmetry in Figs. 13.4c, 13.5c, 13.6c, and 13.8c have D10h
symmetry.

There exists only one entity for semi-regular polyhedral networks of tetrahe-
dral (Td) symmetry. Either from the two kinds of Schlegel diagrams as shown
in Figs. 13.12b and b’. One can draw the D4h topological symmetry diagram of
Fig. 13.12c, which yields a closed shell ground state as in Fig. 13.12e. However,
HOMO’s are doubly degenerate NBMO’s, and stable ground state cannot be
expected.

13.6 Networks with High Vertex-Degree

In Figs. 13.1, 13.2, and 13.3 four semi-regular polyhedra, (3.5)2, 3.4.5.4, (3.4)2, and
3.43, are found to be 4-regular graphs, where the vertex-degrees are all four. Among
the regular polyhedra, octahedron 34 also belongs to this group. Although these
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Fig. 13.11 Truncated cuboctahedron. Captions are the same as that of Fig. 13.4

polyhedra are not qualified to become a candidate for a stable π-electron network,
let us obtain their orbital energy level diagrams as a formal discussion. The essence
of the results are given in Fig. 13.13, where N denotes the number of vertices, or
number of π-electrons, and n the degree of degeneracy of topological symmetry.
That is, N/n gives the size of the cyclic unit. The value of a is expressed by

a = exp(2 kπi/n), (13.4)

and k runs from 1 to n.
If N electrons are put into the MO’s from the bottom, the (formal) ground

state will be open for all these networks as shown in Fig. 13.13. The least stable
“π-electron network” will be icosidodecahedron, because its HOMO’s are open
anti-bonding MO’s, while the HOMO’s of the rest are open NBMO’s. Further, it
is interesting to observe that the two pairs of cyclic units, i.e., icosidodecahedron
and cuboctahedron, and rhombicuboctahedron and rhombicosidodecahedron, are,
respectively, very similar with each other.
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13.7 Summary of the Results

Remember that HOMO’s of all the networks with the vertex-degree of four are open,
and cannot be expected to have stable ground state. Then the results of only the ten
cubic graphs are compared in Table 13.1. By seeing the fourth and fifth columns
those three networks are selected whose marks are both ©, namely, truncated icosa-
hedron 5.62, truncated icosidodecahedron 4.6.10, and truncated octahedron 4.62.
They have closed-shell structure with HOMO’s of bonding character. Their HOMO-
LUMO gap is in the following order, 4.62 > 5.62 >> 4.6.10. The first inequality
sign will be reversed if some strain energy for making their ball-shaped structures
are duly taken into consideration. Among all the polyhedral networks, stable or
unstable, 4.6.10 has such a peculiar property that its HOMO is not degenerate. Due
to their high topological symmetry, the MO’s of all the polyhedral networks, irre-
spective of their stability, are highly degenerate. Then their high degeneracy is not
the cause of high stability of the two networks of 4.62 and 5.62. On the other hand,
these two stable networks have such a common property that polygons other than
a hexagon is systematically scattered in the spherical sea of hexagons. Then it is
plausible that they have a high possibility to be ejected from graphene sheets when
exposed by a strong impulse of radiation or particles.

Although this analysis cannot give quantitative conclusion, the direction of the
discussion is believed to be qualitatively correct. Of course, there must be the effect
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of destabilization by six squares in the conjugated π-electron network, and the tor-
sion energy caused by the tetragonal skeleton is also expected to be large to some
extent. However, if some optimistic discussion might be allowed to be developed,
among the 169 Kekulé structures of this π-electron network (Hosoya 1986) the
following one is expected to play dominant contribution to well pay off the above-
mentioned destabilization factors. More sophisticated calculation is needed to be
performed.
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Table 13.1 Comparison of the various properties of regular and semi-regular polyhedra whose
vertex degrees are all three

Polyhedron Code |V|
Open(×)
Closed(©)

HOMO
character

HOMO
degeneracy cf

Ih symmetry

Dodecahedron 53 20 × � 4 Fig. 13.8
Truncatede icosahedron 5.62 60 © © 5 Fig. 13.5
Truncated dodecahedron 3.102 60 © � 10 Fig. 13.4
Truncated

icosidodecahedron
4.6.10 120 © © 1 Fig. 13.6

Oh symmetry

Cube 43 8 © © 3
Truncated cube 3.82 24 × � 5 Fig. 13.10
Truncated octahedron 4.62 24 © © 3 Fig. 13.9
Truncatede cuboctahedron 4.6.8 48 × � 4 Fig. 13.11

Td symmetry

Tetrahedron 33 4 × × 3
Truncated tetrahedron 3.62 12 © � 2 Fig. 13.12

HOMO character: × anti-bonding, � non-bonding, © bonding
Degeneracy: degree of degeneracy of HOMO
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Chapter 14
The Estrada Index and Fullerene Isomerism

Patrick W. Fowler and Ante Graovac

Abstract Estrada Index, EE(G), defined as the sum of exponentials of the eigen-
values of the adjacency matrix of graph G, is calculated for sets of general cubic
polyhedra, and for general and isolated-pentagon fullerenes. Amongst small cubic
polyhedra, the “near-fullerenes” and fullerenes minimise EE. Amongst fullerenes,
the isolated-pentagon fullerenes minimise EE. The preference for fullerenes over
non-fullerenes is significant, but the relative variation of EE with fullerene isomer is
tiny (parts per million for general fullerenes, parts per billion for isolated-pentagon
fullerenes) and is essentially tracking the number of pentagon adjacencies (and
hence overall stability).

14.1 Introduction

The Estrada Index of G, a graph with n vertices and m edges, is defined as the sum
of exponentials

EE(G) =
n∑

i=1

eλi , (14.1)

where
{
λi, i = 1, . . . n

}
are the eigenvalues of A(G), the adjacency matrix of G

(Estrada 2000, 2002, 2004). In the bio-informatics context for which it was orig-
inally devised, the index is applied to a vertex-weighted graph G, constructed to
incorporate 3D-structural information relevant to protein folding. Weighted graphs
are also employed in an application of EE(G) to characterisation of molecular
branching (Estrada et al. 2006). However, in applications of the Estrada Index and
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related centrality (Estrada et al. 2005a), bipartivity (Estrada et al. 2005b; Došlić
2005) and thermodynamic (Estrada and Hatano 2007) indices to networks and
chemical graphs, G is usually taken to be unweighted. We will be concerned here
exclusively with unweighted chemical graphs capable of representing conjugated
networks of carbon atoms, i.e., G will be simple, connected, and of maximum degree
�(G) ≥ 3.

For a simple graph, the adjacency matrix has entries Aij = 1 if there is an edge
between vertices i and j, and Aij = 0 otherwise. The eigenvalues of A(G) for a chem-
ical graph G defined as above lie in the range from +3 to –3 and are conventionally
ordered such that

+ 3 ≥ λ1 > λ2 ≥ λ3 . . . ≥ λn ≥ −3. (14.2)

In view of the well known series expansion, convergent for all x,

ex =
∞∑

j=0

xj

j ! , (14.3)

an alternative expression for the Estrada Index is

EE(G) =
∞∑

j=0

μj(G)

j ! , (14.4)

where μj(G) is the j-th moment of the eigenvalue spectrum of A(G),

μj(G) =
n∑

i=1

λ
j
i = Tr

[
A(G)j]. (14.5)

The moments count the self-returning walks of each length j in the graph, and so
provide a useful link between the structure of the graph and its spectrum. The coef-
ficients of the characteristic polynomial, whose roots are the eigenvalues of A(G),
depend on the counts of structural components of G, and can be reconstructed from
the moments (Schwenk 1979).

It has been shown that the Estrada Index is well approximated for several impor-
tant classes of chemical graphs by simple analytical expressions (Gutman and
Graovac 2007c; Ginosar et al. 2008). For the cycle on n vertices, Cn, the index
is remarkably well represented by

EE(Cn) ≈ nI0, (14.6)

and for the path on n vertices, Pn, by

EE(Pn) ≈ (n + 1)I0 − cosh (2), (14.7)
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where

I0 =
∞∑

k=0

1

(k !)2
= 2.27958530 . . . (14.8)

An approximation for general graphs, derived with the help of simple assump-
tions about the distribution of eigenvalues (Gutman et al. 2007f), is

EE ≈ n

k
sinh (k), (14.9)

where k = √
6m/n. This approximation works well for benzenoid graphs (See

also Gutman and Radenković 2007d). Upper and lower bounds on EE(G) have
been established for various classes of simple graphs (Gutman et al. 2007a; de la
Peña et al. 2007). Approximations connecting EE(G) with spectral radius (Gutman
et al. 2007b) and other topological indices (Gutman et al. 2007e) have also been
investigated.

The related quantity known as the bipartivity index β(G) is a measure of how
closely the spectrum of G approaches the paired structure characteristic of a bipartite
graph. It is defined as

β(G) =
n∑

i=1

(eλi + e−λi )/
n∑

i=1

2eλi =
n∑

i=1

cosh(λi)/EE(G) (14.10)

with β(G) = 1 for a bipartite graph (Došlić 2005).
The present survey is mainly concerned with the Estrada Index EE(G) for graphs

belonging to a well-known class of chemical graphs, the fullerenes. A fullerene
is an all-carbon molecule for which the graph is the skeleton of a cubic polyhe-
dron on n vertices with exactly 12 pentagonal faces and all other faces hexagonal.
Fullerene graphs exist for n = 20, and for all even n > 22 (Grünbaum and
Motzkin 1963), and typically have large numbers of isomeric forms. Complete sets
of fullerene graphs for chemically interesting values of n are readily generated using
the face-spiral algorithm (Manolopoulos et al. 1991; Fowler and Manolopoulos
1995, 2006) or the pent-hex puzzle (Brinkmann and Dress 1997, 1998) algorithm
embodied in the fullgen program. Complete sets of graphs of general cubic poly-
hedra, without restriction on face size, can be generated for small values of n
using the plantri program. (Both fullgen and plantri programs are available from
http://cs.anu.edu.au/~bdm/plantri/).

Two natural questions with reference to EE(G) of fullerenes are: Does the Estrada
Index have a simple approximation also for these graphs? Does it distinguish well
between isomers (and so have some possible correlation with physical stability or
properties of these molecules)? As examples of “near-bipartite” graphs, fullerenes
have been studied with the aid of β(G), and similar questions can be asked (Došlić
2005). It is also of interest to place the trends for fullerenes in the wider context of
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cubic polyhedral graphs, as this family provides candidates for small carbon cages
below the fullerene threshold of n = 20.

14.2 Calculations

Estrada indices were calculated by diagonalisation of adjacency matrices con-
structed using the previously mentioned programs for three sets of graphs: (i) the
149,960,273 cubic polyhedra with 4 ≤ n ≤ 30, (ii) the 30579 general fullerenes
with 20 ≤ n ≤ 70, (iii) the 167299 isolated-pentagon fullerenes with 60 ≤ n ≤ 130.
Tables 14.1, 14.2, and 14.3 show statistical summaries of the results.

14.2.1 Cubic Polyhedra

The values in Table 14.1 illustrate several points. The Estrada Index grows essen-
tially linearly with n for cubic polyhedra, though with a significant spread (±5%
of the mean, or more) between maximum and minimum at each n. Equation (14.9),
with m = 3n/2 (and hence k = 3) for cubic graphs, predicts EE ≈ (n/3) sinh (3) ≈
3.339n. This estimate is based on a two-term approximation to the eigenvalue distri-
bution that implies eigenvalues spread from +3 to −3, an approximation well suited
to cubic graphs. Taking further terms does not appear to improve the quality of the
estimate (Gutman et al. 2007f). As Fig. 14.1 shows, the plots of maximum and min-
imum Estrada indices for the cubic polyhedra, after initial curvature settle down to
approximately linear growth with slopes bracketing the estimate of 3.339.

Table 14.1 Estrada Index of cubic polyhedral graphs with up to 30 vertices

n N EEmin EEmax EEmean ΔEE

4 1 21.18918 −
6 1 25.07449 −
8 2 29.39381 30.97135 30.18258 1.57754

10 5 35.47908 38.01880 36.97973 2.53972
12 14 41.66461 45.76235 43.77900 4.09774
14 50 47.86854 52.82970 50.70732 4.96116
16 233 54.11469 60.49693 57.66026 6.38224
18 1249 60.64827 68.50431 64.64812 7.85604
20 7595 66.60833 75.62884 71.60423 9.02051
22 49566 73.43659 83.30237 78.57197 9.86577
24 339722 79.69093 91.31446 85.53704 11.62353
26 2406841 86.23227 98.44361 92.50600 12.21134
28 17490241 92.77361 106.14180 99.47755 13.36819
30 129664753 99.31596 114.15836 106.45206 14.84240

n is the number of vertices, N is the number of non-isomorphic graphs of order n in the class,
EEmin, EEmax and EEmean are the minimum, maximum and mean values of the Estrada Index for
the N graphs, and �EE is the difference EEmax − EEmin
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Table 14.2 Estrada Index of fullerene graphs with up to 70 vertices

n N Nmin EEmin EEmax EEmean ΔEE

20 1 1 66.60833 –
24 1 1 79.69093 –
26 1 1 86.23227 –
28 2 2 92.77361 92.77461 92.77411 0.00100
30 3 3 99.31596 99.31747 99.31663 0.00151
32 6 6 105.85782 105.85930 105.85879 0.00149
34 6 5 112.40016 112.40155 112.40071 0.00139
36 15 14 118.94203 118.94479 118.94312 0.00277
38 17 17 125.48438 125.48755 125.48555 0.00317
40 40 38 132.02672 132.03121 132.02803 0.00449
42 45 45 138.56907 138.57214 138.57033 0.00307
44 89 89 145.11142 145.11579 145.11294 0.00437
46 116 116 151.65417 151.65764 151.65536 0.00347
48 199 199 158.19652 158.20128 158.19796 0.00476
50 271 271 164.73847 164.74496 164.74047 0.00649
52 437 422 171.28122 171.28677 171.28308 0.00555
54 580 540 177.82357 177.82863 177.82561 0.00506
56 924 913 184.36632 184.37228 184.36827 0.00596
58 1205 1205 190.90867 190.91412 190.91082 0.00545
60 1812 1812 197.45023 197.45870 197.45348 0.00848
62 2385 2378 203.99416 204.00052 203.99608 0.00636
64 3465 3451 210.53651 210.54326 210.53875 0.00675
66 4478 4348 217.07926 217.08511 217.08136 0.00585
68 6332 6073 223.62201 223.62876 223.62405 0.00676
70 8149 8149 230.16396 230.17245 230.16667 0.00849

Column headings as in the note of Table 14.1. Nmin is the fullerene isomer (labelled by position
in the spiral order) that has EE = EEmin

In the range of our calculations, the spread ΔEE therefore also grows roughly
linearly with n. Published bounds for EE(G) are not of practical use for estimating
ΔEE for the cubic polyhedra: for example, with n = 20, m = 30, Theorem 1 (de
la Peña et al. 2007) gives 22.80 < EE < 2332, which as the graphs are regular
can be improved by Theorem 2 to 39.17 < EE < 1302, whereas direct calculation
(Table 14.1) gives the far tighter spread of 66.60 < EE < 71.60.

An intriguing feature of the data for small n is that the cubic polyhedron achiev-
ing the minimum value of EE(G), in the range 4 ≤ n ≤ 30, also has the minimum
value of the parameter F (Domene et al. 1997) where

F(G) =
∑

r

(6 − r)2fr ≥ 12, (14.10)

and fr is the number of faces of size r in the given polyhedral graph (see Fig. 14.2).
This simple invariant has been used to quantify the proximity of a cubic polyhedron
to a fullerene (amongst cubic polyhedra, F = 12 if and only if G is a fullerene graph)
and is found to pick out structures that are good candidates for stable polyhedral
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Table 14.3 Estrada Index of isolated-pentagon fullerene graphs with up to 130 vertices

n N EEmin EEmax EEmean ΔEE

60 1 197.450227717 –
70 1 230.163963285 –
72 1 236.706711578 –
74 1 243.249457368 –
76 2 249.792204338 249.792205412 249.792204875 0.000001074
78 5 256.334951308 256.334953509 256.334952490 0.000002200
80 7 262.877697417 262.877700820 262.877699285 0.000003403
82 9 269.420445785 269.420447540 269.420446679 0.000001755
84 24 275.963193579 275.963195939 275.963194345 0.000002360
86 19 282.505940762 282.505942660 282.505941687 0.000001898
88 35 289.048688019 289.048690666 289.048689253 0.000002647
90 46 295.591435526 295.591438620 295.591436694 0.000003093
92 86 302.134182890 302.134185680 302.134183976 0.000002791
94 134 308.676930540 308.676932794 308.676931488 0.000002254
96 187 315.219677579 315.219680800 315.219679024 0.000003221
98 259 321.762425464 321.762427967 321.762426334 0.000002503

100 450 328.305172487 328.305176420 328.305173878 0.000003933
102 616 334.847920281 334.847923230 334.847921378 0.000002949
104 823 341.390667501 341.390671040 341.390668826 0.000003539
106 1233 347.933415295 347.933418101 347.933416304 0.000002806
108 1799 354.476162658 354.476166160 354.476163820 0.000003502
110 2355 361.018910022 361.018914220 361.018911286 0.000004198
112 3342 367.561657725 367.561661280 367.561658807 0.000003555
114 4468 374.104405142 374.104408840 374.104406305 0.000003698
116 6063 380.647152543 380.647156400 380.647153798 0.000003857
118 8148 387.189900050 387.189903461 387.189901324 0.000003411
120 10774 393.732647663 393.732652019 393.732648828 0.000004357
122 13977 400.275395064 400.275398581 400.275396331 0.000003517
124 18769 406.818142571 406.818146640 406.818143859 0.000004069
126 23589 413.360890184 413.360893701 413.360891376 0.000003517
128 30683 419.903637691 419.903641760 419.903638888 0.000004069
130 39393 426.446385092 426.446389819 426.446386417 0.000004727

Column headings are as in the note of Table 14.1

carbon cages in that they have low total energies according to quantum-mechanical
estimates. For n = 20, 24 and 26, the cubic polyhedron of minimum EE is the unique
fullerene of that order, and the fullerene isomer(s) at n = 28 and 30 have lower EE
than all other cubic polyhedra. For n = 22, the cubic polyhedron of minimum EE is
the edge-truncated dodecahedron (f4 = 1, f5 = 10, f6 = 2, F = 14), the closest
approximation to a fullerene at this vertex count, and the skeleton of the C22 carbon
cage of lowest energy (Domene et al. 1997). Figure 14.3 shows a scatter-plot of
EE and F for n = 20, illustrating the way that minimisation of EE picks out the
fullerene from the pack of cubic polyhedra.

It seems a plausible conjecture that the cubic polyhedron of minimum Estrada
Index is also of minimal F index (a “near fullerene”), and in particular, therefore,
for n = 20 and n ≥ 24, is a fullerene. The rationale underlying the conjecture
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Fig. 14.2 Cubic polyhedra with minimal Estrada Index for n ≤ 22 vertices. These are all “near-
fullerenes” in that they also minimise the F function, which describes the summed-square deviation
of the face recipe from that of an idealised all-hexagonal polyhedron. The polyhedra can be iden-
tified by labels n:p, where n is the vertex number, and p is the order of generation by the plantri
program. They are: 4:1, 6:1, 8:2, 10:4, 12:14, 14:50, 16:233, 18:746 and 22:25920. At n = 20 and
n ≥24, the minimising polyhedra are fullerenes
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is that some small (sub-hexagonal) faces are inevitably present in cubic polyhedra
(f3 + f4 + f5 ≥ 4) and so contribute leading terms +2fr/(r − 1)! to the moment
expansion for EE. Large (super-hexagonal) faces also contribute indirectly to the
expansion at low order, as their presence implies increased numbers of small faces,
through

3f3 + 2f4 + f5 = 12 + f7 + 2f8 + 3f9 + . . . (14.11)

Thus, restriction to face sizes 5 and 6 gives the smallest possible n-independent
leading term in EE. Note that this is not yet a full proof of the conjecture since,
beyond the positive leading term, there are contributions of small faces to higher
moments that have negative signs.

Within the studied range, the cubic polyhedra that maximise EE(G) can be pre-
dicted by first maximising f3, then if there is a tie, maximising f4, then f5, and so on;
the moment expansion again provides the rationale for this observation. The cubic
polyhedra that maximise EE have large F values but, for n ≥ 12, they do not pre-
cisely maximise F. Figure 14.4 illustrates the cubic polyhedra of maximum EE(G)
for 4 ≤ n ≤ 30. The conjecture implies that the cubic polyhedron with maximum EE
has �n/3� triangular faces. When n is divisible by 6, such polyhedra can be obtained
by omni-truncation of a smaller structure (which is itself a cubic polyhedron for
n > 6), as illustrated by the examples for n = 12, 18, and 24 in the figure.

Clearly, then, the Estrada Index has some power to discriminate between cubic
polyhedra, even though, as the graph parameters n and m determine a large part of
EE(G), it cannot be expected to be sensitive to the finer details of structure (Gutman
et al. 2007f). From a practical viewpoint, it should be noted that the information
about face signatures provided by the extrema of EE could of course also be obtained
by direct inspection without calculation of eigenvalues.
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Fig. 14.4 Cubic polyhedra with maximal Estrada Index for 8 ≤ n ≤ 24 vertices. All have the
maximum possible number of triangular faces. The polyhedra are shown as Schlegel diagrams.
In the n:p labelling used in Fig. 14.2 they are 8:1, 10:3, 12:8, 14:26, 16:104, 18:489, 20:2521,
22:14019 and 24:81880

14.2.2 Fullerenes

When the class of target graphs is restricted to the fullerenes (See Tables 14.2
and 14.3 for general and isolated-pentagon fullerenes, respectively), the variabil-
ity in EE(G) all but disappears. Figure 14.5 shows the variation of Estrada index for
respectively the general fullerenes with up to 70 vertices and the isolated-pentagon
fullerenes with up to 130 vertices. All fit smoothly on the same curve. It is impos-
sible, on the scale of the plot, to see the isomer variations in EE(G), even though
all isomers within the respective classes are included as separate data-points. So,
for example, 8149 isomers, all with slightly different EE, are comprehended within
the single dot shown for n = 70, and 10774 isomers lie behind the single dot for
n = 120. At fixed n, the range �EE is a few parts per million of the mean EE for
general fullerenes, and a few parts per billion for isolated-pentagon fullerenes. The
plot of EE against n is therefore dominated by the linear term, and has a slope only
about 1% smaller than the predicted sinh(3)/3 ≈ 3.339 obtained from Eq. (14.9).
this gives an answer to our first question of finding a simple approximation for EE
of fullerenes.

Variation with fullerene isomer, though small, is systematic. At each n, the
minimum value of EE is associated with an isomer that also has the smallest possi-
ble number of pentagon adjacencies, Np. The isomer numbers given in the Nmin
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column of Table 14.2 can be compared with those in published tabulations of
minimal-adjacency fullerenes (e.g. Table 14.1 in the Atlas of Fullerenes (Fowler
and Manolopoulos 1995)). In some cases (n = 30, 32, 34, 38, 42, 50, 52, 54, 58,
60, 70), the minimum-Np isomer is uniquely defined and in others there are several
minimal-Np isomers, but in all cases the isomer with minimum EE has minimum
Np. Furthermore, as Fig. 14.6 shows for n = 40, 60 and 70, plots of the Estrada
Index versus the number of pentagon adjacencies, are approximately linear, with
slopes of ∼4 × 10−4. This observation is readily rationalised on the basis of the
expression for EE in terms of moments of the eigenvalue spectrum. The first few
moments for a general fullerene on n vertices are linear functions of n alone, and
hence independent of isomer. They are:

μ0 = n, μ1 = μ3 = 0, μ2 = 3n, μ4 = 15n, μ5 = 120, μ6 = 93n−120, μ7 = 1680.
(14.12)

The presence of the pentagonal defects gives rise to constant corrections of the
moments μ5 and μ7 that would vanish for an (unrealisable) all-hexagonal tessel-
lation of the sphere. The influence of the degree of aggregation of the pentagonal
defects appears first at μ8. Pentagon pairs introduce 8-cycles, and fused pentagon
triples introduce extra 9-cycles, and these influence μ8 and μ9 in the obvious
ways. Pentagon pairs also affect μ9 indirectly as they reduce the number of pos-
sible pentagon-hexagon contacts and hence remove possible 9-cycles. The resulting
expressions are

μ8 = 639n − 1920 + 16NP (14.13)
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Fig. 14.6 Variation of Estrada Index with pentagon-adjacency count in fullerenes (a) C40, (b) C60
and (c) C70. The excess Estrada Index δEE is defined with respect to the isomer that minimises
both EE and pentagon adjacency count, NP

and

μ9 = 18360 − 36NP + 18NT , (14.14)

where NP is the number of edges common to two pentagons and NT is the number
of vertices common to three pentagons, i.e., the numbers of (possibly overlapping)
fused pentagon pairs and fully fused pentagon triples. These moments make small
and opposed contributions of +16/8! ∼ +4 × 10−4, and −36/9! ∼ −1 × 10−4,
respectively, to the slope (∂EE/∂NP), and there are further contributions of each
sign from higher moments.

Although the moment expansion (4) is not well converged, in the sense that the
absolute error incurred by truncation at μ8 is not small compared to the range
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of variation of EE with NP, numerical experiments suggest that the leading non-
vanishing term (1/8!)(∂μ8/∂NP) is already a reasonable approximation to the slope
(∂EE/∂NP), underestimating it by only ~5–10% in the three cases n = 70, 60 and
40. Convergence is oscillatory, and inclusion of μ9 takes the slope further from the
calculated value, but truncation at successive even orders μ2r seems to converge
rapidly.

The even smaller isomer variation of EE for isolated-pentagon fullerenes is
also rationalised with a similar argument. In isolated-pentagon fullerenes, the first
moments that can reflect differences in the distribution of pentagons are μ12 and
μ13, which are quoted as (Zhang and Balasubramanian 1993)

μ12 = 35169n + 120p + 24q − 240120 (14.15)

and

μ13 = 1790880 − 260p − 52q, (14.16)

where p and q are the respective numbers of motifs of types I and II (Fig. 14.7),
both capped at 30. These expressions are compatible with the tiny relative variation
of EE amongst the isolated-pentagon fullerenes as illustrated by Table 14.3.

Although the discrimination amongst fullerenes is weak, it seems still true at
the larger values of n that the Estrada Index separates fullerenes from other cubic
polyhedra. For example, at n = 60, the truncated dodecahedron, with the maximum
20 triangles, has an EE of 228.1096, some 16% greater than the C60 fullerene value.

The bipartivity index (10) does not show such regular behaviour for the small
cubic polyhedral graphs. Maximum β(G) is achieved for bipartite polyhedra, and
when β(G) is restricted to non-bipartite graphs it is not well correlated with
EE or F, although it does show some intriguing clustering patterns. (Fig. 14.8).
Amongst small fullerenes, the spread of values of β(G) is again of the order of ppm
(Table 14.4), but there is a general tendency of β(G) to rise with NP (Fig. 14.9).
Minimisation of β(G) selects minimum-NP fullerenes, though not always the same
isomers as chosen by minimisation of EE (compare the Nmin columns of Tables 14.2
and 14.4). The (very small) positive gradient can be understood in terms of the con-
tribution of μ8 and the intuition that fullerenes with more 8-cycles are “more nearly
bipartite”. This correlation with overall stability has been noted before (Došlić
2005), though again it is dependent on a very small part of the total β(G) function,
and duplicates information that could be obtained in other ways.
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Table 14.4 Bipartivity Index
of fullerene graphs with up to
60 vertices

n Nmin βmin βmax 108Δβmax

20 1 0.9791852
24 1 0.9825995
26 1 0.9839181
28 2 0.9850507 0.9850509 19
30 3 0.9860343 0.9860346 26
32 6 0.9868962 0.9868976 13
34 5 0.9876579 0.9876591 124
36 14 0.9883357 0.9883380 228
38 17 0.9889429 0.9889460 312
40 39 0.9894898 0.9894948 499
42 45 0.9899852 0.9899889 372
44 89 0.9904359 0.9904412 530
46 99 0.9908485 0.9908527 423
48 171 0.9912262 0.9912318 565
50 271 0.9915731 0.9915809 774
52 422 0.9918950 0.9919017 668
54 540 0.9921925 0.9921989 643
56 843 0.9924696 0.9924764 689
58 1205 0.9927270 0.9927336 663
60 1812 0.9929660 0.9929757 964

n is the number of vertices, βmin, βmax and Δβmax are the
minimum, maximum and range of the index within the set of
fullerenes. Nmin is the fullerene isomer (labelled by position in
the spiral order) that has β = βmin. For 62 n ≤ 70, the iso-
mers of minimum β are 62:2194, 64:3451, 66: 4169, 68: 6073,
respectively
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Fig. 14.9 Variation of bipartivity index with pentagon-adjacency in fullerenes (a) C40 and (b)
C60. The excess, δβ, is defined with respect to the fullerene isomer that the minimises β and the
pentagon adjacency count, NP
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14.3 Conclusion

As a potential index of carbon cage stability, the Estrada Index does show some
selectivity in picking out fullerenes and near-fullerenes from the general cubic poy-
hedra, and its extremal values can be interpreted in terms of the face recipes of
the polyhedra. This discriminatory power arises from the link between eigenvalues
and circuit structure, through the spectral moments. The same link gives rise to the
(very small) variation with fullerene isomer, which edges the Estrada Index into
the company of indices such as Resistance Distance, Wiener Index, Balaban Index
and Complexity/spanning tree count (Fowler 2002, 2003). All these quantities show
trends with the number of pentagon adjacencies, a simple invariant which remains
the most straightforward indicator of fullerene overall stability.
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indices of, 85–88
Balaban index of IPR C80 fullerene

isomers, 97–99
computing Schultz/modified Schultz

polynomials of C80 fullerene,
92–94

computing Schultz polynomial/index of
C60 fullerene by GAP program,
88–89

computing Wiener polynomial/index and
hyper Wiener index of C80 fullerene
by GAP program, 95–96
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computing Zagreb indices of C80 fullerene,
99–100

Schultz polynomial/index of C60 fullerene,
89–91

C66–C2v isomers, topological invariants of,
215

Central circuits, 110
and alternating knots, 110–111
Borromean link, 111
link corresponding to octahedron, 111
of octahedrite

irreducible, 110
parallel, 110

zigzag in plane graph and corresponding,
115

C60 fullerene, 90
lanthanum inside C60 cage, 118
Schultz index of, 89–91
Schultz polynomial of, 89–91

coefficients of, program, 90–91
C40 fullerene isomers, topological parameters

of, 77
Chamfering, 44

of patch of fullerene, 45
Chemical graph theory, 21
“Chemical topology,” 122
Chinese Remainder Theorem, 201

connection table of azulene tile, 202
“exploded” view, 202
Möbius Band related to cube, 203
ring-labelled, 201

Chirality in S2, 46
C40 isomers

case study concerning classification of,
79–81

schlegel diagrams of three, 77
topological parameters of, 80

Classical EMFs, 128–129
Cluj-Ilmenau index (CI), 52–53
13C–Nmr spectra of C66 fullerenes, topological

determination of, 205–209
C66–C2v#0011 fullerene in direct space,

206
C66–C2v#0011 fullerene in dual graph,

208–210
chemical graphs/molecular graph, 207
fullerene automorphisms and topological

orbits, 212–214
heuristic topological model, 210–212
topological tools/topological stability, 207

3-Connected, 105
Connected graph, 3, 22, 52, 86
“Convex Polytopes,” 65

Counting polynomials, 1, 51–53
analytical formulas for, 54
codistant, 52
co-graph, 52
isometric, 52
partial cube, 52
semicubes, 52

Counting spanning trees in toroidal fullerenes,
187

algorithm, 191–192
application to pentaheptite (azulenoid)

networks, 196–197
cycle theorem, 188–189
determining complexity of toroidal

polyhex/other network
outline algorithm for of toroidal

polyhex, 199–200
terminology, 198–199

generic circuits, 189–191
toroidal polyhexes, 192–193

counting spanning trees, 194–196
generating extended TPH bi-periodic

pattern, 193–194
C60 structural relatives, 39–41

counting polynomials, 51–53
operation on maps, 41–47

sequence Le(P5(M))/Le(P5(Med(M))),
50–51

sequence Le(S2(T)), 49
sequence Tr5(Caf (Q(M))), 47–48
sequence Trs (Ca3,2c(M)), 48–49

topology of, 55–57
Le((P5(M))k ) designed cages, 53–54

Cubic graphs, illustration of, 177
Cubic polyhedra, 268–272
Cuboctahedron, 262
Curvature, 103
Cycle graph, 22
“Cycle-overlap” approach, 189
“Cycle-overlap” matrix, 188
Cycle theorem, 187–189

graph’s complexity, 187
Cyclic DNAs, 120

D
Density Functional Tight-Binding (DFTB)

method, 80–81
Dijkstra algorithm, 213
2-Dimensional lattice for achiral polyhex

nanotorus, 31
Disjoint benzenoid rings, 39
Distance-extended property, 2
DNA net mimicking hauberk, 121
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Dodecahedron, 46, 257
snub of, 44

Double-azulene to cube, relationship of
toroidal embedding of, 201–203

D-type schwarzite, 229–230, 235
density of electronic states (DOS) of, 239
element of, 226
enantiomers of, 239
pores of, 237
unit cell, 227

Dualization Du, 41
Dualization of fullerene patch, 41, 45
Dual space graph of C66, 215

E
Edge-coronas, 67–68
“π-Electron network,” 249–252, 254, 259–263
Electron-phonon interaction, 218, 241

electronic structure and, 238–241
cohesive energy per atom, 240
density of electron states (DOS), 238
enantiomers of D-type schwarzite, 239
Fermi level (EF ), 238
Gauss curvature, superconductivity, 240

“Empty” C2n fullerenes, 133
Endohedral fullerene complexes, 122, 125–127

hydrogen molecule inside C60, 136
hydrogen storage, 136–137
modeling fullerene endohedral

complexes with hydrogen
molecule(s) guests, 137–143

in, out isomers of fullerene derivatives
as specific domain of topological
chemistry, 125–127

and in-out isomerism, 117–144
serendipidous development of

topological chemistry, 117–125
“in”-“out” isomerism of hydrogenated

fullerenes, 134–135
types of, 127

endohedral metallofullerenes, 127–130
fullerenes with neutral or slightly polar

molecule(s) as guest(s), 132–133
fullerenes with noble gas atom(s) or

molecule(s) as guest(s), 131–132
group V endohedral fullerenes, 130
nested fullerenes and analogous

structures, 131
unusual properties of, 133–134

Endohedral metallofullerenes (EMF), 125,
127–130

groups, 129
Estrada index and fullerene isomerism,

265–268

alternative expression, 266
bipartivity index of fullerene graphs with

up to 60 vertices, 277
calculations, 268

cubic polyhedra, 268–272
fullerenes, 272–278

consolidated plot of near-linear variation,
274

of cubic polyhedral graphs, 268
cubic polyhedra with, 271
cubic polyhedra with maximal, 273
eigenvalue spectrum of, 266
of fullerene graphs, 269
isolated-pentagon fullerene graphs, 270
isomer variation of higher spectral

moments of isolated-pentagon
fullerenes, 276

scatter-plot of, 272
scatter-plot of bipartivity index, 277
trends for cubic polyhedral graphs, 271
variation of, 275
variation of bipartivity index with

pentagon-adjacency in, 278
Euler-Poincaré Theorem, 190–191
Euler’s equation/formula, 62, 103, 105, 112
Euler Theorem, 54, 190, 228, 234
Expansion operation, 108

F
Fullerene(s), 134

atomic displacements in, 171–172
“classical,” 172
combinatorial structure/symmetry, 65
definition, 64, 103

chemistry, 63
direct synthesis of, 39
energetic characterization of, 78–79
estrada index and fullerene isomerism,

calculations, 272–278
with neutral or slightly polar molecule(s)

as guest(s), 132–133
with neutral/slightly polar molecule(s) as

guest(s), 132–133
with noble gas atom(s)/molecule(s) as

guest(s), 131–132
with noble gas atom(s) or molecule(s) as

guest(s), 131–132
omega polynomials of, 9–18
patch of

chamfering of, 45
dualization of, 45
stellation of, 45

as subset of BS polyhedra, 65
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Fullerene(s) (cont.)
truncation of patch of, 44
“wet chemistry” of, 39

Fullerene automorphisms and topological
orbits, 212–214

algorithm for finding automorphisms,
214

Dijkstra algorithm, 213
distance code, 213
initial vertex, 213

Fullerene isomerism, estrada index and,
265–268

alternative expression, 266
bipartivity index of fullerene graphs with

up to 60 vertices, 277
calculations, 268

cubic polyhedra, 268–272
fullerenes, 272–278

consolidated plot of near-linear variation,
274

of cubic polyhedral graphs, 268
cubic polyhedra with, 271, 273
eigenvalue spectrum of, 266
of fullerene graphs, 269
isolated-pentagon fullerene graphs, 270
isomer variation of higher spectral

moments of isolated-pentagon
fullerenes, 276

scatter-plot of, 272
bipartivity index, 277

trends for cubic polyhedral graphs, 271
variation of, 275
variation of bipartivity index with

pentagon-adjacency in, 278
Fullerene patch

dualization of, 41
medial of, 43

Fullerenes, local combinatorial characterization
of, 61–62

application
case study concerning classification of

C40 isomers, 79–81
energetic characterization of fullerenes,

78–79
basic notions and definitions, 62–63
characterization of combinatorial structure

of BS polyhedra, 71–78
combinatorial properties of polyhedra,

68–71
fullerenes, fulleroids and bifaced

polyhedra, 63–65
line-corona detectors, 66–68

Fullerenic Cn cages, 205

Fulleroid, 65
combinatorial structure/symmetry, 65

G
GAP program, 88

computing
Balaban index, isomers, 97
hyper Wiener index of C80 fullerene,

95–96
Schultz index of C60 fullerene, 88–89
Schultz polynomial C60 fullerene by,

88–89
Wiener index of C80 fullerene, 95–96
Wiener polynomial C80 fullerene by,

95–96
Zagreb indices of C80 fullerene, 99–100

Gauss-Bonnet theorem, 232, 236
Generic circuits, 189–191
Goldberg-Coxeter construction, 103–104, 113
Graph

fullerenes, 22, 171
describing, 1
vertices/edges, 22

Laplacian matrix of, 173
Group V endohedral fullerenes, 130

H
H2@C60 complex, 132, 138, 141–143
4-Hedrites

representatives for symmetry group, 108
unreducible, infinite family of, 108

5-Hedrites, representatives for symmetry group
of, 109

6-Hedrites, representatives for symmetry group
of, 109

7-Hedrites, representatives for symmetry group
of, 109

Heuristic topological model, 210–212
colored direct graphs, 211
coordination string, 210
dual coordination string, 211–212
as resonance peak, 212
topological approximate method combines

WW strings values, 211
High π-electronic stability, 249–250

icosahedral symmetry, 252–256
networks with high vertex-degree, 259–260
octahedral and tetrahedral symmetry,

257–259
regular and semi-regular polyhedra whose

vertex degrees are all three, 263
spherically polyhedral networks, 250–252
topological symmetry, 252

HOMO-LUMO gaps, 58
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Hosoya polynomials, see Counting
polynomials

Huckel theory, 58
Hydrogenated fullerenes, “in”-“out” isomerism

of, 134–135
Hydrogen molecule inside C60, 136

hydrogen storage, 136–137
hydrogen as fuel, advan-

tages/disadvantages, 136
modeling fullerene endohedral complexes

with hydrogen molecule(s) guests,
137–143

calculated stabilization energies of
endohedral complexes, 142

IPR isomers of C60, C70, C76 and C80
fullerenes and their symmetries, 139

molecular mechanics calculations,
138–141

physisorption, 140
quantum chemical calculations of

fullerene complexes, 142–143
steric energy of complexes of H2, H2O

and NH3 with fullerenes, 140
Hyper Wiener index, 86, 88

of C80 fullerene, 96
by GAP program, computing, 95–96

I
Icosahedral symmetry, 250–256

cyclic unit, 253
HMO energy level diagram, 256

of truncated dodecahedron, 253
perspective view, 253
reduced characteristic polynomial, 256
Schlegel diagram, 253
topological symmetry diagram, 253
Truncated icosahedron, 254

Icosahedron, truncation of, 44
Icosidodecahedron, 262
i-hedrites (lower case i), 103

generation of, 106–108
method, 108

number of, 107
Independence polynomial, 2
“Induced fit” mechanism, 134
i-self-hedrite (lower case i), 103–104

enumeration method for, 112
number of, 112
simple zigzags, 104

Isolated-pentagon fullerenes, 265, 273–274,
276

Isolated pentagon rule (IPR), 79, 133, 205
Isomers of fullerene C40, atomic displacements

in, 181–184

illustration of atomic displacements for
isomers, 183

illustration of atomic displacements of
fused pentagonal rings, 183

increase of thermal average of vibrational
potential energy, 181

relationship between mean vibrational
potential energy, 182

thermal average of vibrational potential
energy/number of adjacent
pentagons, 184

Iterative S2 operation on dodecahedron, 47

K
Kardar-Parisi-Zhang (KPZ) equation, 221
Kekulé structures, 40, 153

atlas of, 156–169
of buckminsterfullerene, detailed atlas of,

153–155
conjugated cycle, 154
non-isomorphic, 155

Kekulé valence structure, 54
Kirchhoff index, 174

L
Laplacian matrix of graph, 173
Layer LM/Shell SM matrices, 2
Leapfrog Le, 44
Le((P5(M))k ) designed cages, topology of,

53–54
tetrahedral Archimedean disposition

4S[6]&4R[6], 54
Le(P5(M))/Le(P5(Med(M))) sequence, 50–51

sumanenic S[6] patterns in a tetrahedral
embedding, C60, 51

tessellation of 300D/I-5d cage, 51
Le(S2(T)) sequence, 49

archimedean joint
coronenic and pentylenic co-Fw, 50

2-factor, consisting of only pentagons, 51
octahedron by, 50
platonic disjoint

sumanenic S[6] covering, 50
sumanenic S[r] covering on transforms

of cube, 50
Sumanenic disjoint S[8] covering by, 50

Linear regression, illustration of, 178
Line-corona detector (LC detector), 61, 65–68

edge-coronas, 68
nine types of edge-coronas, 67
of types L(4,3)/L(6,4)/L(10,6)/L(14,8), 66
vertex-coronas, 68

LUMO orbital, 58
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M
Mathematical chemistry, 21
Medial Med, 43
Medial operation, 43

medials of five platonic polyhedra, 43
Med(M) operation, 50
Metal complexation forcing perpendicular

arrangement of phenanthroline
units, 121

Metallic carbides EMFs, 129
Metallic nitrides EMFs, 129
Metallic oxides EMFs, 129
Möbious strip, 118
Molecular realization, 46
Molecular structures, resonant sextets, 40
“Molecular surgery,” 132
Molecular theory, 21
Moore-Penrose generalised Laplacian, 175

N
Nanoporous carbon allotropes, 244
Nanostar dendrimers, 31

Wiener index, 31–37
Nanostructure, 22, 219–220
Nanotubes

omega polynomials of fullerenes and, 1–3
ops of

G = TU[p,q] in Du(Med(6,6)) TiO2
pattern, 8

T[p,q] in Du(Med(6,6)) TiO2 pattern, 9
Wiener index of, 22–31

N@C60 complex, 130
Near-edge x-ray absorption fine structure

(NEXAFS) spectroscopy, 224
Nested fullerenes and analogous structures,

131
New Journal of Chemistry, 117, 120
Non-IPR exoderivatives fullerenes, stability of,

206
strain-relief/local-aromaticity, 206

Non-IPR fullerenes, 206
chemical mechanisms, 206

Number Theory, 201

O
Octahedral and tetrahedral symmetry, 257–259
Octahedrites, 104

examples of octahedrites of symmetry
O or Oh expressed as GCk,l
(octahedron), 113

generalized, 115
representatives for symmetry group of, 106

Omega polynomials, 3–5, 53
co-graph, 4

examples, 5–9
Cartesian product, 6

in nanocones, formulas to calculate, 8
ops strips, 4
orthogonal cut, 4
quasi-orthogonal cut/qoc strip, 4

Omega polynomials of fullerenes, 9–18
co-distant edges, number of, 14, 18
F10n for n ≤ 9, 14
graphs

C20 and C30, 9
C40n+6, 10
C40n+6 with co-distant edges, 12
F10n (n is odd/even), 15
Gn , n = 8, 13

HyperChem, 9
molecular graph of C12n+4 fullerene, 17
and nanotubes, 1–3

examples, 5–9
number of co-distant edges of ei , 11
ops of edges

e1, e2, . . . , e5 in C12n+4 fullerene, 17
e1, e2, . . . , e6 in Gn , 13
in graph of fullerene C12(2n+1), 16

Schlegel graph of C24n fullerene, 16
TopoCluj, 9
“zig-zag” tube TUH[10,n], 10

Omega signature, 58
Omega 1.1 software program, 5
“Op” relation, 52–53

P
Pentagon fusions, 53
Pentaheptite (azulenoid) networks, 196

analogue of cube, 197
application to, 196–197
fully-azulenoid, 198
Klein Bottle embedding, 197
pyrene graph and azulenic analogue, 197
resonant azulenoid-network, 198
types of, 198

Perhydrogenated fullerene C60H60, 124
PI index, 3
PI polynomial, 2
Plane graph, 105
Platonic cage, 40
Platonic polyhedra

duals of five, 42
medials of five, 43

Polygonal Pk mapping, 42
Polyhedra, 63

bifaced, 63
combinatorial properties of, 68–71

for any polyhedral graph, 68–69
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for any trivalent polyhedral graph,
69–70

for simple (trivalent) polyhedra the
following inequality, 70–71

See also Bifaced simple polyhedra (BS
polyhedra)

Polyhedral, plangraph, 104
Polyhedral π-electron networks of carbon, 249
3-Polyhedron, 105
P-type schwarzite, 228, 230
Pulsed Microplasma Cluster Source (PMCS),

219, 222

Q
Quadrupling Q, 44
Quantitative structure-activity relationships

(QSAR), 85
Quantitative structure-property (QSPR), 85
Quantum molecular dynamics simulations,

241–243
cell with periodic boundary conditions,

242
D-type fcc-(C36)2, 242

R
Ramafullerenes

atomic displacements, 178–180
as function of number of atoms, 179

Ramanujan graphs, 178
Random carbon schwarzites, 219, 230
Random schwarzites, 218

birth of, 219–224
roughness exponent α/growth exponent

β, 221
self-affinity, 221
visual comparison of simulated AFM

image on nanometric scale, 222
Reduction operation, 108
δ-Regular graph, 178
4-Regular/self-dual analogs of fullerenes,

103–104
central circuits and alternating knots,

110–111
generation of i-hedrites, 106–109
going on surfaces, 115–116
self-dual graphs, 111–115
structural properties, 105–106

Resistance distance, 173, 175
Rhombicosidodecahedron, 63, 251,

262
Rhombicuboctahedron, 251–252, 262
Ring-adjacency matrix, 199–200
Ring polynomial, 30, 40, 53–54

S
Schultz index, 87

of C60 fullerene, 89–91
by GAP program, computing, 88–89

Schultz polynomials, 87
of C60 fullerene, 89–91

by GAP program, computing, 88–89
of C80 fullerene, computing,

Schultz/modified, 92–94
and modified Schultz polynomials of C80

fullerene, computing, 92–94
Schwarzite, 218
Schwarzite physics, topological background

of, 217–219
ab-initio density of phonon states at

Γ -point, 240
abutting 7-rings, separated by re-shuffling

of bonds, 234
birth of random schwarzites, 219–224
catalyst-carbon contact line, 234
catalytic growth of carbon schwarzites, 221
electronic structure and electron-phonon

interaction, 238–241
minimality condition for surface, 231
quantum molecular dynamics simulations,

241–243
Schwarzite stability, 231–235
Schwarzite topology, 224–231
thermodynamics, 235–238

Schwarzite stability, 231–235
Gauss-Bonnet theorem, 232
stability regions of sp2 carbon surfaces, 233
surface deformation energy, 233
surface which total energy refers, 231
total energy expressed, 232

Schwarzite topology, 224–231
carbon schwarzite fcc-(C84)2, 225
independent of number of 6-rings, 228
platonic tiling/archimedean tiling, 228
Poincaré’s formula, 228
surfaces of different topology supporting

sp2 carbon, 226
surface topology, 225
tiling with 6-/7-rings of unit cell of P-type,

227
Self-affine minimal surface, 218
Self-dual graphs, 111–115
4-Self-hedrite, generalized, 115
2-Self-hedrites, representatives for symmetry

group of, 114
3-Self-hedrites, representatives for symmetry

group of, 114
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4-Self-hedrites, representatives for symmetry
group of, 114

Septupling S2 operation, 46
Sextet polynomial, 1–2
Simple polyhedron, q-isolated, 63
Simple (trivalent) polyhedron, q-gonal face, 63
Single walled carbon nanotubes, 22
Snub of dodecahedron, 44
Snub Sn, 43
“Solomon knot,” 121
Spherically polyhedral networks, 250–252

regular and semi-regular polyhedra of
icosahedral symmetry, 250

regular and semi-regular polyhedra of
octahedral symmetry, 251

regular and semi-regular polyhedra of
tetrahedral symmetry, 251

semi-regular polyhedra, 252
Spongy carbon

formation of, 223
structures, 229

Statistical approach, 120
Steinitz’s theorem, 63
Stellation triangulation, 42
Steric energy of C60H60, dependence of, 135
Stone-Wales rearrangement of pyrene units,

196
Sumanenic circulene/flower patterns, 40
Supersonic Cluster Beam Deposition (SCBD),

219–220, 236
carbon films, surface roughness of, 222

T
Tetrahedral symmetry, octahedral and,

257–259
Tetrahedron (chemical journal), 117
Thermodynamics, Schwarzite physics,

235–238
D-type schwarzite, 235

pores of, 237
Gauss-Bonnet theorem, 236
Gauss curvature decreases, 238
Helmholtz free energy, 236–237
phonon spectrum, 236
vibrational contribution to free energy, 236

Tight-binding molecular dynamics (TBMD),
241

simulation of graphitization of schwarzite
fcc-(C36)2, 243

Topological background of Schwarzite physics,
217–219

electronic structure and electron-phonon
interaction, 238–241

quantum molecular dynamics simulations,
241–243

Schwarzite stability, 231–235
Schwarzite topology, 224–231
thermodynamics, 235–238

Topological background of schwarzite physics
birth of random schwarzites, 219–224

Topological indices, 1, 86
for molecular graph, 21

Topological symmetry, 252, 254
Toroidal embedding of double-azulene to cube,

relationship of, 201–203
Toroidal fullerenes, 30

Wiener index, 21–22
Toroidal fullerenes, counting spanning trees in,

187
algorithm, 191–192
application to pentaheptite (azulenoid)

networks, 196–197
calculating overlap matrix for cube, 196
cycle theorem, 188–189
generic circuits, 189–191
naphthalene graph, 190
toroidal polyhexes, 192–193

counting spanning trees, 194–196
generating extended TPH bi-periodic

pattern, 193–194
writing algorithm for determining com-

plexity of toroidal polyhex/other
network

outline algorithm for counting number
of spanning trees (complexity) of
toroidal polyhex, 199–200

terminology, 198–199
Toroidal polyhexes, 192–193

counting spanning trees, 194–196
generating extended TPH bi-periodic

pattern, 193–194
writing algorithm for determining

complexity of
outline algorithm for, 199–200
terminology, 198–199

Toroidal-polyhex networks, 196
TPH bi-periodic pattern, generating extended,

193–194
planar bi-periodic projection pattern,

193–194
ring- and generic-cycle labelled, 195

Transmission electron microscope (TEM)
image of random carbon schwarzite, 224
micrograph, 220

Tr5(Caf (Q(M))) sequence, 47–48
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corazulenic disjoint pattern and its co-Fw,
48

“Sumanenic-Kekulé” valence structure of
C192, 48

Triangulane molecule T[4] and its associated
dendrimer, molecular graph of, 35

Trs (Ca3,2c(M)) sequence, 48–49
corazulenic flowers tessellating 120O-5d

cage, 49
sumanenic patterns S[r] in SW edge-rotated

120O-5dRO cage, 49
Truncated cube, 259
Truncated cuboctahedron, 260
Truncated icosidodecahedron, 255
Truncated octahedron, 258
Truncated tetrahedron, 261
Truncation

of icosahedron, 44
of patch of fullerene, 44

V
Valency, average, 62
Vertex contributions, 2

to polynomial, 2
Vertex-coronas, 68
Vertex transitive graph, 2

W
“Wet chemistry” of fullerenes, 39
Wiener index, 2, 21–22, 86, 207

achiral polyhex nanotube, 31
of C80 fullerene, 96

by GAP program, computing, 95–96
molecular graph

of polyhex nanotorus is vertex
transitive, 30

of zig-zag polyhex nanotube, 26
nanostar dendrimers, 31–37

molecular graph, 32
molecular graph of triangulane

molecule T[4] and its associated
dendrimer, 35

subgraph, 33
of nanotubes, 22–31

toroidal fullerenes and nanostars, 21–22
Wiener matrix, constructing, 32
Wiener polynomials, 86

of C80 fullerene, 96
by GAP program, computing, 95–96
program, computing coefficients of,

95–96
See also Counting polynomials

Z
Zagreb indices, 88

of C80 fullerene, 100
algorithm, 99
computing by GAP program, 99–100

Zero-hexagons, 193
“Zig-zag” polyhex nanotube, 23
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