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INTRODUCTION

As a technology platform, microarrays have been transformed into a funda-
mental component of modern biological research. Laboratory methods have
continually improved, but many of the most important advances in the field
have come from the development of enhanced analysis methods. The evolu-
tion of microarray data analysis is brought into sharp focus on an annual basis
by the Critical Assessment of Microarray Data Analysis (CAMDA) Confer-
ence, with the fifth edition taking place during November of 2004. Like previ-
ous gatherings, CAMDA 2004 featured a melange of disciplines — biologists,
statisticians, bioinformaticians, computer scientists and mathematicians were
all in attendance — and had an international flavor, with researchers from 11
countries joining in the discussion.

The subject of this year’s contest dataset was the intraerythrocytic develop-
mental cycle of Plasmodium falciparum, the most deadly of malarial parasites,
and was kindly provided by the DeRisi lab at UCSF. Malaria infections num-
ber 300-500 million every year, and result in 1-2 million deaths, 90% of which
occur in sub-Saharan Africa. It is estimated that upwards of 40% of the world’s
population is threatened by malaria, and that malaria is responsible for perhaps
20% of childhood deaths before the age of 5 in Africa. Thus, the potential im-
pact of research into the life cycle of Plasmodium cannot be overstated.

CAMDA participants were treated to an excellent keynote address from
Dr. Manuel Llinds, an author of the originating work. His address set the stage
for a lively debate on the merits of 16 papers presenting innovative methods
for the analysis of these data. Importantly, the emphasis this year was on the
application of these methods towards the elucidation of biological questions.
In the end, attendees split the vote for best presentation between two equally
deserving groups:

J. Barrera, R.M. Cesar Jr., D.C. Martins Jr., E.F. Merino, R.Z.N. Vencio,
F.G. Leonardi, M.M. Yamamoto, C.A.B. Pereira, and H.A. del Portillo, Uni-
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versity of Sao Paulo, Sao Paulo, Brazil, “A New Annotation Tool for Malaria
Based on Inference of Probabilistic Genetic Networks”

and

J.B. Christian, C. Shaw, J. Noyola-Martinez, M.C. Gustin, D.W. Scott, and
R. Guerra, Rice University and Baylor College of Medicine, “Spatial Correla-
tion of Expression in P. falciparum”

In addition to these presentations, The CAMDA Scientific Committee has
compiled a number of outstanding papers into this volume. We hope that you
find the insights presented useful, and that you join us for the next CAMDA
Conference, which is itself evolving from the analysis of only microarray data
into a forum for the integrative analysis of multiple data streams.

Patrick McConnell
Simon M. Lin
Patrick Hurban
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Chapter 1

Data Mining of Malaria Parasite Gene
Expression for Possible Translational
Research

Raphael D. Isokpehi
Department of Biology, Jackson State University, Jackson, MS 39217, USA

Abstract Malaria is a caused by protozoan parasites of the genus Plasmodium
where the host is a vertebrate and the vector is a mosquito. Over 1 mil-
lion deaths are attributed to malaria each year. Drug-resistant parasites,
insecticide-resistant mosquitoes, and the lack of an effective vaccine to
protect the host are major impediments to the prevention and control
of malaria. Genome-wide microarray experiments on malaria parasites
have provided new insights into the transcription of genes and gene net-
works during parasite development stages. This overview article presents
basic information on malaria parasites, their hosts and vectors; life cycle
of human malaria parasites; and gene content of malaria parasites. Math-
ematical and statistical methods presented at conferences on Critical As-
sessment of Microarray Data Analysis (CAMDA) could be integrated
into malaria parasite databases as tools for widespread use thereby ac-
celerating the characterization of biological processes that are basis for
better drugs, effective vaccines and easy-to-use diagnostics.

1. INTRODUCTION

Malaria is a mosquito-transmitted parasitic disease of major global public
health concern. Annually, there are at least 300 million acute illnesses and
over 1 million deaths from the disease (Breman et al., 2004; Snow et al.,
2005). Malaria kills a child every 30 seconds (Webster, 2001). Transmission of
malaria occurs in at least 107 countries and territories with 3.2 billion people
at risk (WHO, 2005). Countries at risk are in tropical regions of Africa, the
Americas and Asia. Transmission is highest in sub-Saharan Africa because of
the warm climate that encourages the survival of the mosquitoes that carry the
parasites. Children under the age of 5 years and pregnant women are the popu-
lations at highest risk of malaria because of their inability to mount an effective
immune defense response to the parasite infection. Travelers from malaria-free
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countries to disease-endemic countries are also at risk of contracting malaria
because of naive immunity to malaria infection.

In the past 7 years substantial progress has been made by global private
and governmental initiatives to control and prevent malaria (Narasimhan and
Attaran, 2003; Nwaka, 2005; Olliaro, 2005; Olumese, 2005; WHO, 2005).
However, there are still challenges in making further progress such as par-
asite resistance to inexpensive malaria drugs; lack of an effective vaccine;
the need for inexpensive easy-to-use diagnostics that will prevent misuse of
malaria drugs and an effective spraying method in the environment to pre-
vent mosquito larva from hatching. From a basic research perspective, the
availability of the genome sequences of malaria parasites, their hosts and vec-
tors (Carlton et al., 2002; Gardner et al., 2002; Hall et al., 2005; Hoffman
et al., 2002; Mongin et al., 2004) as well as measurements of gene and pro-
tein expression levels of parasite developmental stages (Bozdech et al., 2003;
Daily et al., 2004; Florens et al., 2002; Hall et al., 2005; Khan et al., 2005;
Lasonder et al., 2002; Le Roch et al., 2004, 2003; Silvestrini et al., 2005;
Young et al., 2005) provides unprecedented research resources to identify bio-
logical process that could be targeted for development of new drugs, effective
vaccines, diagnostics and treatment strategies.

The Fifth International Conference for the Critical Assessment of Microar-
ray Data Analysis (CAMDA 2004; http://www.camda.duke.edu/camda04) fea-
tured presentations on sophisticated mathematical and statistical methods en-
coded in computer programs that were applied to microarray gene profiling
datasets on the 48-hour asexual blood stage development of a malaria para-
site Plasmodium falciparum (Llinas and del Portillo, 2005). The articles from
CAMDA 2004 reported in this volume of Methods in Microarray Data Analy-
sis represent a major contribution to data analysis of the ever growing datasets
from studies on malaria parasite genes. This overview article aims to com-
plement the conference articles by presenting basic information on (i) malaria
parasites, their hosts and vectors; (ii) life cycle of human malaria parasites;
and (iii) gene content of malaria parasites. The overview concludes on how
the computational methods from CAMDA 2004 may find widespread use in
malaria research.

2. MALARIA PARASITES, HOSTS AND VECTORS

Parasitic protozoa of the genus Plasmodium (P.) cause malaria. Malaria par-
asites can grow and develop within host cells with a complex life cycle involv-
ing multiple stages in an invertebrate insect vector and a vertebrate host (Baton
and Ranford-Cartwright, 2005). Vertebrate hosts of malaria parasites include
humans, non-human primates, rodents, birds and reptiles (Table 1).



Data Mining of Malaria Parasite Gene Expression 3

Table 1. Malaria parasites and hosts

Human Non-human Primate Rodent Avian

Plasmodium falciparum  Plasmodium cynomolgi Plasmodium berghei Plasmodium
gallinaceum

Plasmodium malariae Plasmodium fieldi Plasmodium chabaudi ~ Plasmodium
elongatum

Plasmodium ovale Plasmodium inui Plasmodium yoelii

Plasmodium vivax Plasmodium knowlesi

Plasmodium reichenowi
Plasmodium simiovale
Plasmodium simium

Table 2. Geographical distribution of selected Anopheles mosquitoes known to
transmit human malaria parasites

Africa Asia Pacific area Americas
Anopheles gambiae  Anopheles culicifaciens  Anopheles farauti Anopheles albimanus
Anopheles funestus  Anopheles dirus Anopheles maculatus ~ Anopheles darlingi

Anopheles sinensis
Anopheles miminus

Four species Plasmodium falciparum, Plasmodium vivax, Plasmodium
ovale and Plasmodium malariae are known to naturally infect humans. Two
human parasites P. falciparum and P. vivax are the two most commonly en-
countered. Both species can invade liver and red blood cells resulting in clin-
ical manifestations that can range from asymptomatic to death depending on
a combination of host, parasite, geographical and social factors (Miller et al.,
2002). The most deadly of the human malaria parasites is Plasmodium falci-
parum being responsible for 90% of malaria cases and deaths in Africa. Hu-
man malaria parasites are able to evade the host immune response by diverse
mechanisms including antigen polymorphism, antigenic variation and immune
modulation (Ferreira et al., 2004; Hisaeda et al., 2005).

Non-human malaria parasites such as P. berghei, P. chabaudi, P. knowlesi
and P. yoelii have been useful as models for studying malaria infection in hu-
mans (Carlton and Carucci, 2002). The rodent malaria parasites have been par-
ticularly useful for studying parasite stages in the mosquito and liver as well
as drug resistance (Cravo et al., 2003).

Female mosquitoes of the genus Anopheles are the principal vector of hu-
man malaria parasites (Kiszewski et al., 2004). Anopheles gambiae which is
major vector of P. falciparum in Africa is a complex of sibling species. Ta-
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ble 2 shows geographical distribution of selected Anopheles species known to
transmit human malaria parasites.

3. LIFE CYCLE OF HUMAN MALARIA PARASITES

The major components of a parasite’s life cycle are growth, develop-
ment, transmission and reproduction. The life cycle of malaria parasites is
complicated because of multiple stages and varying duration in the host
and the vector (Baton and Ranford-Cartwright, 2005; Kappe et al., 2004;
Talman et al., 2004). There are three critical invasive stages in the life cycle
of human malaria parasites that lead to parasite multiplication and destruction
of host cells. These invaded cells are the hepatocytes (exoerythrocytic or liver
stage) and erythrocytes (intraerythrocytic or blood stage), and the mosquito
midgut epithelium (sporogonic stage). Parasite forms in the life cycle could
either be produced by asexual replication or sexual reproduction. The exo-
erythrocytic development involves only asexual replication while the intraery-
throcytic development involves asexual replication as well as the formation of
male and female gamete precursors or gametocytes. The asexual intraerythro-
cytic stage is responsible for the clinical symptoms of the disease such as fever,
weakness, pains and chills. Complications of infection by P. falciparum in hu-
mans include severe anemia and cerebral malaria. Gametocytes continue the
cycle in the mosquito by maturing to male and female gametes. The mature
gametes that are fertilized eventually develop to sporozoites that can invade
liver cells.

4. GENE CONTENT OF MALARIA PARASITES

The landmark publications in October 2002 of the A-T rich (~80%) genome
sequences of P. falciparum and P. yoelii revealed new insights and new re-
search resources to study the biology of malaria parasites (Carlton et al., 2002;
Gardner et al., 2002). The genome sequence of P. vivax has been determined
(Carlton, 2003). The available P. vivax genome data has already shown novel
genes shared with P. falciparum that can be used to study immune responses
to P. vivax during liver stages in malaria endemic settings (Wang et al., 2005).

The integration of data from the genomes of P. falciparum and P. yoelii with
partial genome sequence information, gene microarrays and protein expres-
sion studies of two rodent malaria parasites P. berghei and P. chabaudi has en-
riched the understanding of stage-specific genes in the Plasmodium life cycle
(Hall et al., 2005). Major observations from these studies on the gene content
of malaria parasites are that their nuclear genome is about 23 megabases dis-
tributed over 14 chromosomes. Furthermore, the total number of genes is over
5,000 with about 4,500 genes shared by P. falciparum, P. yoelii, P. berghei
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and P. chabaudi (Carlton et al., 2002; Hall et al., 2005). Thus, data collection
from studies employing non-human malaria parasites may be extrapolated to
malaria infection in humans.

As of the time of publishing the genome of P. falciparum, about 60% of
the parasite’s genes could not be assigned a function. The proportion of genes
of unknown function is likely to have reduced because of the availability of
additional genomes of malaria parasites, high-throughput gene and protein ex-
pression assays as well as powerful methods for detecting orthologous and
paralogous genes. These methodological approaches have improved the anno-
tation of P. falciparum genome (Li et al., 2003b; Sam-Yellowe et al., 2004;
Yeh et al., 2004). For example, Yeh et al. (2004) used computational meth-
ods to improve the annotation of 956 hypothetical proteins. Furthermore,
Sam-Yellowe et al. (2004) used shared stretches of amino acid sequences
from proteomics experiments to manually re-annotate 10 genes (PFA0680c,
PFA0065w, PFB0985c, PFC1080c, MAL6P1.15, MAL7P1.5, MAL7P1.58,
PF10_0390, PF11_0014 and PF11_0025) as members of a gene family. The
gene list obtained by Sam-Yellowe et al. (2004) also agrees with the predicted
orthologous—paralogous grouping of Li et al. (2003b). All these reports il-
lustrate how multiple approaches can provide evidence for gene function in
malaria parasites.

S. INTEGRATION OF METHODS FROM CAMDA
CONFERENCES INTO MALARIA PARASITE
DATABASES

Knowledge about stage and time a parasite gene is expressed could aid
in identifying novel biological processes that are candidate drug, diagnostic
and antigenic targets. The generation of Expressed Sequence Tags (ESTs) and
Genome Survey Sequences (GSS) from cDNA libraries derived from parasite
stages allowed the survey of gene expression as well as initial microarray-
based gene expression profiling (Ben et al., 2001; Carlton et al., 2001;
Hayward et al., 2000; Li et al., 2003a). Furthermore, the availability of
genome sequences of malaria parasites has facilitated the genome-wide mea-
surement of mRNA levels during the life cycle stages (Bozdech et al., 2003;
Daily et al., 2004; Florens et al., 2002; Hall et al., 2005; Khan et al., 2005;
Lasonder et al., 2002; Le Roch et al., 2004, 2003; Silvestrini et al., 2005;
Young et al., 2005). Thus, various methodological breakthroughs have allowed
for new datasets from parasite stages which previously where difficult study.

Powerful computational methods are vital to predicting the biological sig-
nificance of expression profiles observed from gene expression experiments.
The selection of microarray experiments of the Intraerythrocytic Development
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Table 3. Rank Correlation Coefficients of gene
expression profiles for three strains of Plasmodium

falciparum®
HB3 3D7 Dd2
HB3 1
3D7 0.97 1
Dd2 0.92 0.94 1

4Rank Correlation Coefficients of gene expression during intraerythro-
cytic development cycle was calculated using expression correlation
tool on PlasmoDB.

Cycle (IDC) (Bozdech et al., 2003) for data analysis by the organizers of the
Fifth International Conference for the Critical Assessment of Microarray Data
Analysis (CAMDA 2004) has allowed for a variety of mathematical and sta-
tistical techniques to be applied to a dataset on the 48-hour asexual devel-
opment of P. falciparum in red blood cells. Novel insights into the biology
of P. falciparum reported in the conference articles include (i) how periodi-
cally expressed genes are distributed on chromosomes; (ii) potential transcrip-
tion factor binding motifs; (iii) additional genes with periodic expression; (iv)
merozoite invasion genes showing anomalous peaks of expression during the
time course; (v) gene hubs of essential or lethal genes in gene networks; (vi)
regulatory system of glycolysis; (vii) co-expressed genes with same combina-
tion of protein domains; and (vii) sequence motifs that may regulate oxidative
stress genes.

The complex life cycle of malaria parasites, drug resistance, lack of an effec-
tive vaccine and insecticide resistance necessitates the discovery of additional
biological insights. The methods described in the CAMDA 2004 conference
articles could be integrated as tools in database resources that provide access
to genome and genome-derived datasets on malaria parasites.

To illustrate the usefulness of such integration, a researcher could ask: What
is the correlation of gene expression profiles for a predicted gene across para-
sites strains? To answer this question, the researcher could use the expression
profile correlation tool on the Plasmodium Genome Resource (PlasmoDB;
http://plasmodb.org/) to obtain Rank Correlation Coefficients (RCC) for the
expression of the gene during intraerythrocytic development across three par-
asite strains HB3, 3D7 and Dd2 (Bozdech et al., 2003). The strains originate
from different regions of the world and have known drug resistance to chloro-
quine, sulfadoxine and pyrimethanine. Information that a gene is expressed in
a similar manner in all strains may support the essentiality of gene for parasite
survival.
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As an example to elucidate on the need to integrate CAMDA methods
into malaria databases, the expression profile correlation across the strains
for the nuclear gene PFO7_0087 was determined to further characterize the
gene as a possible drug target. The protein product of PFO7_0087 is targeted
to the apicoplast (Foth et al., 2003) and is differentially expressed in asexual
blood stages compared to gametocyte blood stages (Isokpehi and Hide, 2003).
The apicoplast is an essential organelle present in malaria parasites and other
apicomplexan parasites such as Cryptosporidium, Eimeria and Toxoplasma
(Waller and McFadden, 2005). The metabolic pathways in the apicoplasts are
targets for new antimalarial drug development (Sato and Wilson, 2005). The
RCC for the gene from pairwise comparison of strains is close to 1.00 (Ta-
ble 3) indicating similar gene expression profiles of PFO7_0087 during IDC
for the three strains. Since the calculation of the RCC statistic is available in
PlasmoDB as a tool, the results can be integrated with those from other tools
thereby enhancing the understanding of the gene or sets of genes being inves-
tigated.
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The completion of the genome sequence of Plasmodium falciparum re-
vealed that close to 60% of the annotated genome corresponds to hy-
pothetical proteins and that many genes, whose metabolic pathways or
biological products are known, have not been predicted from sequence
similarity searches. Recently, using global gene expression of the asexual
blood stages of P. falciparum at 1 h resolution scale and Discrete Fourier
Transform based techniques, it has been demonstrated that many genes
are regulated in a single periodic manner during the asexual blood stages.
Moreover, by ordering the genes according to the phase of expression,
a new list of targets for vaccine and drug development was generated.
In the present paper, genes are annotated under a different perspective:
a list of functional properties is attributed to networks of genes repre-
senting subsystems of the P. falciparum regulatory expression system.
The model developed to represent genetic networks, called Probabilistic
Genetic Network (PGN), is a Markov chain with some additional prop-
erties. This model mimics the properties of a gene as a non-linear sto-
chastic gate and the systems are built by coupling of these gates. More-
over, a tool that integrates mining of dynamical expression signals by
PGN design techniques, different databases and biological knowledge,
was developed. The applicability of this tool for discovering gene net-
works of the malaria expression regulation system has been validated
using the glycolytic pathway as a “gold-standard”, as well as by creat-
ing an apicoplast PGN network. Presently, we are tentatively improving
the network design technique before trying to validate results from the
apicoplast PGN network through reverse genetics approaches.
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1. INTRODUCTION

Malaria remains the most devastating parasitic disease worldwide, and every
year is responsible for 300-500 million clinical cases and 1-2 million deaths,
mostly in children below 5 years old [http://www.who.int/tdr/diseases/malaria/
default.htm]. Furthermore, the appearance of drug-resistant parasite strains to
most antimalarial drugs and of insecticide-resistant Anopheles mosquitoes, in
addition to the global warming, all have exacerbated this public health situa-
tion.

The advent of genomics into malarial research is significantly accelerat-
ing the discovery of control strategies. Indeed, the first draft of the complete
genome sequence of Plasmodium falciparum, the most deadly human malaria
parasite, was released only three years ago [9], but it has substantially modified
the way of thinking for the development of new vaccines, drugs and alterna-
tives of control strategies. Moreover, it has allowed the initiative for global
scale studies on the transcriptome [1,4,10,12,16], proteome [7,10,14,15] and
metabolome [23] of the parasite in different developmental stages.

Recent experimental evidence indicates that malaria parasites present
unique mechanisms for control of gene expression: data from SAGE analysis
has demonstrated that approximately 17% of abundant tags correspond to anti-
sense transcripts of annotated genes [17], that suggests that these anti-sense
transcripts might be involved in post-transcriptional regulation; reverse genet-
ics approaches have shown that introns co-regulate expression of variant genes
[2]; although promoters seem to be bi-partite, it is postulated that there must
be unique sets of malarial transcription factors due to the high AT-content of
intergenic regions and absence of recognized regulatory transcription factors
[3,13].

Progressing the research effort, dynamical global gene expression measures
of the intraerythrocytic developmental cycle (IDC) of the parasite at 1 h-scale
resolution were recently reported [1]. Moreover, using Discrete Fourier Trans-
form (DFT) based techniques, researchers verified that, during this life stage,
the parasite seems to follow a rigid clockwise program where genes with
common functions are transcribed at similar times. This study recognized
73% of the quality controlled (QC) dataset available for the CAMDA contest
(http://www.camda.duke.edu/camda(04/datasets/). The QC dataset comprises
3719 elements with relative expression signals with almost sinusoidal shape in
the logarithmic scale or, equivalently, pulse like shape in the original relative
expression scale. By ordering these signals by phase, they constructed a wave
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of signal propagation and ordered genes. Analysis of ordered genes throughout
the asexual blood stages provided a comprehensive and biologically meaning-
ful list of genes with putatively similar functions [1]. This analysis, however,
did not include the elements that did not have almost sinusoidal shape and
which, however, represented 27% of the QC dataset (i.e., 1361 elements).

In this paper, a list of functional properties is attributed to networks in-
stead of individual genes. To do so, a tool was created that integrates mining
procedures of dynamical expression signals and conventional databases (i.e.,
genome, proteome, metabolome, and clinical data).

This annotation approach may be applied to all spotted oligonucleotides of
the QC set, despite the shape of their dynamical signals being sinusoidal or not.
Subsystems of the malaria expression regulation system are modeled as prob-
abilistic genetic networks (i.e., a stochastic process that is a specialization of a
Markov chain) [20]. These networks are designed from the observed dynami-
cal signals. The designed subsystems are annotated using conventional public
databases and biological knowledge. The subsystems to be designed are de-
fined from seed genes of particular biological interest, i.e. the subsystems are
composed by genes that predict or are predicted by seed genes [11]. For exam-
ple, some genes analyzed by the DFT approach were used as seeds to discover
other non-sinusoidal genes associated to the same phase of the parasite life
cycle.

Following this Introduction, Section 2 presents the concept of probabilistic
genetic network (PGN). Section 3 describes the technique used for designing a
PGN. Section 4 describes the developed software tools. Section 5 gives results
of the application of the design techniques to simulated PGNs and presents
preliminary biological results obtained by applying the proposed technique.
Finally, the results and future steps of this research are discussed in the Con-
cluding Remarks.

2. PROBABILISTIC GENETIC NETWORKS

The life of an organism depends on many metabolic pathways that are reg-
ulated by gene expression networks. The mechanism of pathways regulation
involves a complex system with many forward and feedback signals. These
signals are RNA, produced by gene expression, and protein complexes, pro-
duced by interaction of proteins built by translation of mRNA. Protein com-
plexes act as feedback signals that control gene transcription. Forward signals,
in the form of enzymes, act as control metabolic pathways. In such networks,
the expression of each gene depends both on its own expression and on the ex-
pression levels of other genes at previous time instants. This complex network
of interactions can thus be modeled by a dynamical system.
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Finite dynamical systems, discrete in time and finite in range, can model
the behavior of gene expression networks. In such model, we represent each
transcript by a variable that takes the expression value of that transcript. All
these variables, taken collectively, are the components of a vector called the
state of the system. Each component (i.e. transcript) of the state vector has an
associated function that calculates its next value (i.e. expression value) from
the state at previous time instants. These functions are the components of a
function vector, called transition function, which defines the transition from
one state to the next and represents the gene regulation mechanisms. In order
to formalize these ideas, we introduce some definitions and notation. Let R be
the range of all state components. For example, R = {0, 1} in binary systems,
and R = {—1,0, 1} in three levels systems. The transition function ¢, for a
gene network of n genes, is a function from R” to R". A finite dynamical
system is given by

xlt 411 = ¢(x[1]),

where x[t] € R", for every t > 0. A component of x[7] is a value x;[7] € R.

Systems defined as above are time translation invariant, i.e. the transition
function is the same for all discrete time . When ¢ is a stochastic function (i.e.
for each state x[z], the next state ¢»(x[¢]) is a realization of a random vector),
the dynamical system is a stochastic process.

In this paper, we represent gene expression networks by stochastic processes.
The stochastic transition function is a particular family of Markov chains called
probabilistic genetic network (PGN).

Consider a sequence of random vectors Xg, X1, X2, ... assuming values in
R™ and its realizations denoted, respectively, x[0], x[1], x[2],.... A sequence
of random states (X t)?io is called a Markov chain if, for every f > 1,

P(X,=x[t1|Xo=x[0], ..., X;—1 = x[t — 1])
= P(X; =x[1]|X,—1 =x[t — 1]).

The significance of a Markov chain lies in the fact that the conditional probabil-
ity of the future event, given the past history, depends only upon the immediate
past and not upon the remote past.

A Markov chain is characterized by a transition matrix 7y|x of conditional
probabilities between states, whose elements are denoted py|,, and an initial
condition random vector of states mg. The stochastic transition function ¢ at
the time ¢ is given by

P(x[t]) =y,
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for every t > 1, where y is a realization of a random vector with distribution
P-|x[1]-

A Probabilistic Genetic Network (PGN) is a Markov chain (7y|x, 70)
such that

(i) my|x is homogeneous, i.e. py|y is not a function of 7.
(ii) pyx > 0, for every pair of states x, y € R".
(iii) my|x is conditionally independent, i.e. for every pair of states x, y €
R",

Py =[ [ pGil®).

i=1

(iv) my|x is almost deterministic, i.e. for every state x € R", there exists a
single state, y € R" such that py, ~ 1.

(v) For every gene j there exists a vector a/ of integer numbers such that
forevery x,z € R" and y; € R,

n n
if ) alxi=) alz then p(yjlx)=p(y;l2).

i=1 i=1

These axioms imply that each gene is characterized by a vector of coeffi-
cients a and a vector stochastic function g; from Z, the set of integers num-

bers, to R. If a is positive then the target gene J is excited by gene i. If a

is negative then it is inhibited by gene i. If al. is 0, then it is not affected by
gene i. We say that gene j is predicted by the gene i when al.j is different of 0.
The component j of the stochastic transition function ¢, denoted ¢, is built

by the composition of g; with the linear combination of a’ and the previous
state x[¢], i.e. forevery t > 1,

N x[l <Za x,[t)

i=1

where g (Z?Zl a;’ x;[t]) is a realization of a random variable in R, with distri-
bution p(-| Y1 al x;[1]).

The axioms that define the PGN model are inspired in biological phenom-
ena or mandatory simplifications due to the usual lack of data for the model
estimation. The main hypothesis adopted is to choose a discrete model. This
is justified because transcription and translation are discrete phenomena. The
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levels of quantization are chosen according to the available data for model pa-
rameters estimation.

Axiom (i) is a constraint just to simplify the estimation problem, but it could
be generalized easily. Axiom (ii) imposes that all states are reachable, that is,
noise may lead the system to any state. It is a quite general model that reflects
our lack of knowledge about the kind of noise that may affect the system. Ax-
iom (iii) means that the expression of a gene at a given time instant ¢ does not
depend on the expression of other genes at ¢. This happens when the time step
of the model is less than the time spent for transcription-translation. Axiom (iv)
means that the system has a main structural dynamics that is subject to small
noise. This is what happens in practically all known engineering systems de-
signed by man. Axiom (v) means that genes act as a non linear gate triggered
by a balance between inhibitory and excitatory inputs, analogous to neurons.

It is important to recall that axiom (iii) might no be verified due to the 1h
time resolution limitation of the available experimental data. However, this
axiom was adopted in our model to allow statistical tractability. Of importance,
using this axiom, we were able to generate biologically meaningful results (see
below).

3. DESIGN OF PGNS

The goal of this research is to estimate a PGN representing a subsystem
of the malaria parasite gene expression network from dynamical microarray
relative expression measures and biological knowledge. In the following the
procedure adopted for PGN estimation is described.

The entropy H(X) of a random variable X is a measure of its distribution

{pi}, given by

n
H(X)=—Y_pilogp;.
i=1

The entropy has some remarkable properties: (i) all the distributions formed
by permutations of p; have the same entropy; (ii) concentrating the probability
mass of a distribution implies in decreasing its entropy. As a corollary of prop-
erty (ii), the uniform distribution presents maximum entropy and those with
minimum entropy have the total probability mass concentrated in one point.

The mutual information [5] between two random variables X and Y is the
measure defined by

[(X,Y)=H(Y) - HY|X).
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It measures the probability mass concentration of P(Y) in P(Y|X) by the
observation of X. The expectation E[I (X, Y)] of (X, Y) is given by

E[I(X,Y)]=H(Y)—E[HYI|X)].

When E[I(X,Y)] =0, X and Y may be independent variables and the condi-
tion P(Y) = P(Y|X) should be tested. In case this condition is true, then X
and Y are independent, otherwise, they have dependence.

The expectation of the mutual information is used to estimate the PGN. The
random variable Y will be the gene value y;[7 + 1] to be predicted and the given
random variable X will be the vector of genes x[¢] weighted by an integer
vectora, associated to gene y;. For each vector a, with a; € {—1, 0, +1} and at
most three values different from 0, the mean mutual information is estimated.
The first vectors a, that have larger mutual information, are selected. These
vectors indicate the connection between genes and the kind of connection:
excitatory or inhibitory.

4. DEVELOPED SOFTWARE TOOLS

The designed software system estimates gene networks from dynamical ex-
pression measures and represents them as graphs linked to malaria databases.
Firstly, the system receives the raw fluorescence intensity measures as input
and applies a quality control procedure that generates a new dataset. Then, the
signals of this dataset are normalized and quantized into three expression levels
{—1,0,+1}.

Some target genes together with the quantized signals are provided to the
main module of the system, which is responsible for computing the best pre-
dictors set for each target (based on the PGN design techniques described in
the last section).

A user-friendly graphical interface was implemented to facilitate the bio-
logical interpretation of the results. The table of predictors, the file of func-
tional groups annotated by Bozdech et al. [1] and the Overview dataset (http:
/Iwww.camda.duke.edu/camda04/datasets) are organized and given as input
for the GraphViz (a package to visualize graphs, http://www.research.att.com/
sw/tools/graphviz). A color code was assigned to each node of the network (i.e.
oligo) according to the functional biological categories defined in [1]: tran-
scriptional machinery (pink), cytoplasmic translation machinery (blue), gly-
colitic pathways (yellow), etc. (see Figure 2). Besides, the node shape indi-
cates if the oligonucleotide is present in the Overview set or not: a square
indicates that it is present and a circle that it is not. Each node has a link to a
page with pointers to three public databases: PlasmoDB (http://plasmodb.org),
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Metabolic Pathways (http://biocyc.org/PFA/) and DeRisi’s transcriptome data-
base (http://malaria.uscf.edu/). The output including the graph and links to
public databases is fully generated in HTML.

Thus, this software allows easy access to different information of each target
gene and can help in the annotation of hypothetical proteins and null elements.
Figure 1 represents a scheme of the data analysis pipeline used in this study.

S. EXPERIMENTAL RESULTS

5.1. Simulations

For validating the proposed PGN estimation technique, artificial networks
that satisfy the PGN definition were created, simulated and estimated. These
simulated networks have 12 genes that may be predicted from one to five
genes or may even be independent. All network genes are ternary (values in
{—1,0,+1}) and p(y;|X) has at least 80% of concentration mass. The sim-
ulations were just 48 iterations long (i.e. the number of iterations present at
an 1 h-scale resolution observation of the asexual blood stages of P. falcipa-
rum). For each target gene, the five best tuples (individual, pairs, triples)
of predictors were computed according to the mutual information criterion.
The quality of a predictor g was defined as the addition of the mutual in-
formation of all tuples of predictors in which g appears. Finally, the predic-
tors were ordered by their quality. In the performed experiments, the genes
with greater quality were almost always exactly the predictors for the tar-
get gene. Some of these experiments can be found at the following site
http://www.vision.ime.usp.br/CAMDA2004/simulations/.

5.2 Pre-processing

We performed standard pre-processing procedures in the contest dataset
such as filtering low-intensity unreliable spots and dye bias normalization.
Moreover, we checked the normalization procedure described by Bozdech
etal. [1] and found that they used an overall global normalization factor to
normalize the expression ratios. There are known concerns in using global
normalization procedures since it could represent clear systematic non-linear
dependence between expression ratio and fluorescence intensities [18]. How-
ever, we verified that non-linear dependences were negligible in the complete
dataset available for CAMDA.

Bozdech et al. [1] excluded the low hybridization intensity signals since
they received the same treatment as blobs or blotches. However, important bio-
logical information may be hidden in genes that are not expressed during some
part of the intraerythrocytic developmental cycle of malaria parasites. We con-
structed a different dataset from the original output of GenePix. Original flags
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for blobs or blotches were kept, whereas non-detectable expression values of
low intensity signals were set to zero. We classified a spot as non-detectable if
the mean intensity measurement in Cy3 or CyS5 is below to some local thresh-
old value. This threshold is calculated from the distribution of pixel intensities
of the background surrounding the spot. The 90% quantile of the local back-
ground distribution was used to define the intensity threshold. Spot’s mean
intensities below to this threshold were truncated to 0. This simple rule can nat-
urally exclude unreliable signals, since the hybridization log-ratio log2(0/0)
is not defined. However, this rule preserves the potentially relevant situations
when a signal is transcriptionally inactive only in a fraction of the time-course,
since the expression becomes log 2(0/reference) = —oo. Although this is not
a numerical ratio, the result can be incorporated in our Markovian approach
because of the quantization step. As a result of this pre-processing step the
USP-dataset used for the contest contained 6532 oligos, including 1361 oligos
with not almost sinusoidal expression, as opposed to the 3719 oligos used in
the overview dataset used by Bozdech et al. [1] to generate the phaseogram of
the IDC malaria cycle.

5.3. Signal Normalization and Quantization

In order to validate the proposed methodology, the well known glycolytic
pathway was studied. Before applying the predictor estimation techniques the
signal was normalized and quantized. The signals were normalized by the nor-
mal transformation n given by, for every signal g(¢), n[g()] = %,
where E[g(¢)] and o[g(¢)] are, respectively, the expectation and standard de-
viation of g (7).

The normal transformation has two important properties: (i) E[n[g(¢)]] =0
and o[n[g(t)]] = 1, for every random variable g(¢); (i) nlg(¢#)] = An[g(?)],
for every real number A. The quantization of a gene at a given instant is a map-
ping from the continuous expression log-ratio into three qualitative expression
levels {—1, 0, +1} (i.e. down, null and up regulated in relation to the reference,
respectively). The quantization of a gene signal g is performed by a threshold
mapping given by

+1 ifg(r) > h,
gy=10 ifl<g()<h,
~1 ifg)<l,

for every t > 0, where

_ Zg(t)<0 8(1) and _ Zg(t)>0 g()
I{g(1): g(t) <O} l{g(t): g(t) >0}|
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Normalization and quantization have the effect of creating equivalence classes
between signals, thus decreasing estimation errors due to lack of data.

54. Glycolytic PGN Network

During the asexual blood stages, malaria parasites rely entirely on gly-
colysis for its ATP production [21]. Thus, we chose target genes that code
for all the 10 enzymes pertaining to the glycolytic pathway (hexokinase,
phosphohexose isomerase, phosphofructokinasel, aldolase, triose phosphate
isomerase, glyceraldehide 3 phosphate dehydrogenase, phosphoglycerate ki-
nase, phosphoglycerated mutase, enolase, and pyruvate kinase) to test our
model. Significantly, an interconnected glycolytic PGN network was gener-
ated by using the first five genes with the lowest entropic values associated
to each glycolytic enzyme (Figure 2). Moreover, analysis of 40 best predic-
tors for each glycolytic target (289 distinct oligos in total) revealed that most
of them (96%) corresponded to hypothetical proteins genes related to tran-
scription, translation, DNA and RNA synthesis, actin myosin motors and ki-
nases (http://www.vision.ime.usp.br/CAMDA?2004/Table1S.html). Remaining
genes encoded surface antigens and thus, a priori, can be considered false-
positives. Worth mentioning, similar results were obtained from a list of 400
genes expressed in-phase with glycolysis obtained from data of Bozdech et al.
[1] (not shown). As expected, no genes of the TCA cycle were found in the gly-
colytic PGN network further corroborating the lack of a functional TCA cycle
during the asexual blood stages of malaria parasites [21]. Of relevance, several
oligonucleotides not included in the overview dataset due to low hybridization
intensity or non-sinusoidal signals, were included in the PGN network (Fig-
ure 2). Of relevance, two oligonucleotides (opff72413 and m11919_1) corre-
sponding to two glycolytic enzymes, hexokinase and aldolase, respectively,
excluded from the phaseogram of Bozdech et al. [1], were included in the gly-
colitic PGN network. Together, this data demonstrates the value of the PGN
model in generating a biologically meaningful glycolytic network that includes
genes not included by the Fourier approach [1].

Next, we attempted to create an apicoplast PGN network. Enzymes from
this organelle are becoming new targets for malaria since there is no homolo-
gous organelle in the human host [19,22]. Of relevance, two different computa-
tional algorithms have been developed to predict apicoplast proteins. In the first
one, a genome-wide scan of P. falciparum revealed over 550 nuclear genes that
encoded a consensus bi-partite peptide signal sequence [8]. In the second one,
genes expressed in-phase with the plastid genome and containing the bi-partite
peptide signal sequences narrowed the list of apicoplast nuclear-encoded genes
from over 550 to 156 [1]. In order to apply our algorithm, oligonucleotides rep-
resenting each of the 20 putative apicoplast genome-encoded proteins listed
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from DeRisi’s laboratory (http://malaria.ucsf.edu/) were fed to our program
and an apicoplast PGN network was generated (Figure 2). Analysis of the
results clearly indicated that our method is capable of interconnecting genes
that have been experimentally demonstrated to be part of the apicoplast (acyl-
carrier protein and ribosomal protein S9), whereas many other genes lack pre-
dicted bi-partite peptide signal sequences. These results are difficult to recon-
cile with our present knowledge of the predicted malaria apicoplast proteome.
Reverse genetics approaches similar to the ones used to define the importance
of the bi-partite peptide signal sequences [8] can now be envisioned to validate
some of these genes. Alternatively, our model describes genes not only related
to the apicoplast proteome but genes whose expression is essential to create
such network.

As our program creates PGN networks, a negative control was idealized to
further validate the biological value of our findings. Thus, eight genes, four
from glycolysis and four from the apicoplast organelle, were chosen randomly
and used together as seed genes to create PGN networks based on single-gene
and two-gene predictions. The results clearly demonstrated that the glycolysis
and apicoplast PGN networks based on single-gene predictions were not in-
terconnected (http://www.vision.ime.usp.br/CAMDA?2004/ga.html). Based on
two-gene predictions, with the exception of two genes from the glycolytic
PGN network that inter-connected with the apicoplast PGN network, remain-
ing genes were not connected (http://www.vision.ime.usp.br/CAMDA2004/
ga2.html). It is important to recall that two-gene predictions are based on
21,330,246 calculations further reinforcing the value of these results. Together,
this data demonstrates the value of the PGN model in generating biologically
meaningful networks and which include genes not included by the Fourier ap-
proach [1].

An ideal PGN network will include interconnectivity networks based on
interactions of several genes. Unfortunately, the “limited” amount of data
presently available from the IDC transcriptome of P. falciparum, precludes
such analyses without introducing a large degree of error. Regardless, this data
demonstrates that the PGN model and program presented here are capable of
constructing biologically meaningful networks of malaria from dynamical ex-
pression signals of the asexual blood stages and that it can be used as a com-
plementary computational approach to Fourier analysis by including genes that
are not periodically expressed.

6. CONCLUDING REMARKS

In order to advance our knowledge on the biology of P. falciparum, we have
designed PGNs from dynamical expression signals of the asexual blood stages
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reported by Bozdech et al. [1]. Unlike their DFT approach, PGN design al-
lowed us to use all the elements available in the dataset. Significantly, this tech-
nique was applied to target genes that code for enzymes of the glycolytic path-
way and a biologically meaningful glycolytic network was obtained. Next, we
applied this algorithm to construct an apicoplast PGN network and although
“signature” apicoplast genes were found, many other genes lack the consensus
bipartite peptide signal sequence.

These results were obtained without considering the equivalence between
linear combinations of inputs, what should improve the results, since the es-
timation errors will diminish and the hypothesis is quite consistent with ob-
served gene dynamics. Besides, this model will permit to distinguish between
inhibitory and excitatory signals. Although the normal transformation creates
equivalence classes that diminishes the estimation errors, it amplifies noise in
housekeeping genes that have almost constant expression signals. One way of
circumventing this problem is to detect and exclude the housekeeping genes of
the regulatory systems study before signal quantization.

The next steps of this research include mainly improving the network de-
sign technique and validation through reverse genetics approaches of some of
the genes previously unpredicted by other algorithms as being part of the api-
coplast. If validated, the PGN approach could thus be used to annotate genes
not considered by the DFT approach and to accelerate the discovery of new
targets against malaria.
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Abstract Given a set of gene expression time series obtained by a microarray ex-
periment, this work proposes a novel quality control procedure that ex-
ploits six analytical methods, each of which allows for the identification
in an automated way of genes that have expression spikes within nar-
row time-windows and over a chosen amplitude threshold. The output
of these methods, suitably combined in an automated way, provides an
exhaustive list of genes and time points in which abrupt variations have
been detected. The quality control on these genes is then performed by
a biologist, who classifies the spikes either as biologically relevant or as
artifacts. In the latter case, spikes must be eliminated by a smoothing
procedure. In this chapter, we first describe the six methods and their
iterative and automated implementation. As a case study, we discuss the
application of the panel of these six methods to the transcriptome of
Plasmodium falciparum intraerythrocytic developmental cycle. Assum-
ing that spikes detected in this set have been labeled as artifacts by a
biologist, in the second part of the chapter we discuss the effect of our
smoothing procedure for different types of data analysis.

Keywords: malaria, DNA microarray, discrete mathematics, support vector machine
(SVM), quality control

1. INTRODUCTION

To develop new drugs and vaccines that disable the malaria parasite Plas-
modium falciparum (P. falciparum) [19], researchers need a better understand-
ing of the regulatory mechanisms that drive the malarial life cycle. In [2], the
first comprehensive transcriptome analysis of the P. falciparum asexual cycle,
or intraerythrocytic developmental cycle (IDC), which is associated with the
clinical symptoms of malaria, is provided. Data in [2] show that: (1) at least



28 A. Sboner et al.

60% of the genome is transcriptionally active during this stage, and (2) P. fal-
ciparum has developed an extremely specialized mode of transcriptional reg-
ulation. A continuous cascade of gene expression is produced, beginning with
genes corresponding to general cellular processes, and ending with Plasmod-
ium-specific functionalities, most of which are poorly understood. In other
recent works on the biology of P. falciparum [3,15], attention is mainly de-
voted to the poor knowledge of the P. falciparum gene functionalities. In fact,
the malaria genome sequencing consortium estimates that more than 60% of
the 5,409 predicted open reading frames (ORFs) lack sequence similarity with
genes from any other known organism [8].

The simple program regulating the life of P. falciparum may hold the key
to its downfall, as any perturbation of the regulatory program may have harm-
ful consequences for the parasite [20]. The simple cascade of gene regulation
that directs the asexual development of P. falciparum is unprecedented in eu-
karyotic biology [2]. The transcriptome of the IDC resembles a “just-in-time”
manufacturing process, whereby induction of any given gene occurs once per
cycle and only at specific time points when required [2].

Quality control in microarray data analysis aims at discarding flawed data
at an early stage of the analysis. The typical quality control procedure is per-
formed after measurements on the raw digital image, in order to ensure that the
measurements are not affected by image artifacts and thus increasing signal-
to-noise ratio. However, given the experimental structure of present datasets,
namely the time series component, it is possible to use such temporal infor-
mation in order to further detect expression points that could be still affected
by noise. Abrupt variations in the transcriptional profile can indicate anom-
alous behavior that needs to be assessed by a biologist as (a) being artifacts,
or (b) carrying relevant biological information. Among abrupt variations, we
were particularly interested in peaks and valleys, as they preserve signal peri-
odicity, which (as shown in [2]) is an IDC transcriptome characteristic. Usu-
ally, time-series analysis [1,5,6] first approximates temporal signals by a con-
tinuous interpolating function. However, in this study we chose to preserve the
actual information contained in each time point. In fact, our goal is to identify
ORFs that show a relevant variation with very short duration with respect to
the overall length of IDC (48 hours). To achieve this goal, we set up five differ-
ent simple methods based on the discrete derivative and integral operators. An
additional sixth method directly matches abrupt variations on transcriptional
profiles. These six methods separately perform gene expression investigation
in an iterative and automated way, thus avoiding time-expensive, direct visual
inspection of all available time series microarray data. The output lists of de-
tected genes and time points from the six methods generally overlap but are
not coincident because the six methods are concerned with different behaviors
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in the temporal signal. Therefore, by merging in an automated way the six dif-
ferent output lists (see Section 3.1), a more comprehensive list of genes and
time points at which relevant peaks and valleys are present can be obtained.
As mentioned, the detected spikes can be classified by the biologist either as
biologically relevant or as artifacts. In the former case, further analysis for bi-
ological interpretation of the results is required. In the latter case, peaks and
valleys are artifacts that were not detected by conventional quality control pro-
cedures. They are therefore removed and substituted by a smoothing procedure
that preserves the periodic nature of the overall signal.

The first part of the chapter is devoted to the description of our procedure
for peak and valley detection. We discuss the application of the panel of the
six methods to the transcriptome of P. falciparum IDC. Assuming that any bi-
ological relevance of the abrupt variations in this set is ruled out by a biologist,
in the second part of the chapter we check whether the smoothing procedure
influences further analysis. We find that our smoothing procedure changes the
data analysis results. Our quality control procedure can therefore be effective
either in further improving the signal to noise ratio of time series microarrays
data or in highlighting possible biologically important time points in the same
data.

2. PRELIMINARY ANALYSIS

Given the intrinsic complexity of the experiments involving DNA microar-
ray (see for example [10,17]), we investigated thoroughly the reliability of
the contest datasets [2,4]. In particular, on a selected sample set of available
data, we: (1) performed a visual inspection of microarray images (the “Pri-
mary Data” in [4]), (2) used TIGR SpotFinder [12] to analyze these images,
and finally, (3) checked the results of GenePixPro3.0 quality control algo-
rithm. GenePixPro3.0 [9] is the software used in [2] to acquire and analyze
the DNA microarray data. The results and considerations obtained from this
step of our work suggested us to use the “QC_dataset” [2,4]. This is the set of
oligonucleotides that passed all quality control filters and was obtained from
the “Complete_Dataset” [2,4]. This choice presents some positive aspects: oli-
gos with many missing data, which may affect the results of our methods, are
not present; gene expression values obtained from corrupted images are also
not included. Moreover, this choice allows us to prove that our quality control
procedure is able to further increase the signal to noise ratio. The “QC_dataset”
contains 5080 of the 7091 oligonucleotides provided by Bozdech et al. [2].
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3. METHODS OF ANALYSIS

3.1. Detection Methods

Following [13], we considered the “QC_dataset” as the matrix depicted in
Table 1. We label this matrix E, denoting with E(o, t) an element of E. The
variable o indexes the oligos from Oligo; to Oligosogg, and for the variable ¢,
t € TP, where TP = {TPy, ..., TPy, TP4, ..., TP2g, TP3g, ..., TPsg}. TPy3
and TP»9 were not provided by [2,4]. Missing values in Table 1 were imputed
with the “loess()” local regression function, provided by the “stats” package
of R (version 2.01) [11,2]. The local weighting parameter was reduced to 12%.

In order to find within the E matrix gene expressions with rapid changes
in time (in particular, candidate peaks and valleys), we exploited six different
methods (labeled M;, i = 1,...,6), concisely reported in Table 2. They can
be split into three main classes: derivative methods (M|, M», M3), integral
methods (M4, M5), and other methods (Mg).

3.1.1. Method Description. Each method can be described at abstract
level as follows. For each transcriptional profile, method M; detects a time
point 7; in which the expression variation occurs. This is accomplished by
means of the score S,. For methods M, M3, M4, Ms and Mg, the higher the
score S,, the higher the probability to find a significant peak (or valley) with
respect to the average signal amplitude. Contrary to the other five methods,
for method M3 the closer to zero is S,, the higher is the probability to find a
significant peak (or valley).

All methods M; differ in the way they calculate S,. Method M; proceeds
for each oligo o as described in Figure 1:

Step 1: M| computes at each time point ¢ the discrete derivative, calculated
as the ratio of finite differences of width one;

Step 2: the maximum absolute value of the discrete derivative of Step 1 is
calculated. This value is S,.

The same procedure characterizes method M, with the discrete derivative
calculated as the ratio of finite differences of width two.

Method M3 proceeds for each oligo o as follows:

Table 1. The data matrix E obtained by QC_dataset

Oligo TP, ... TP

Oligo; log, (Cy5/Cy3) ... log, (Cy5/Cy3)

Oligospgo  logr(Cy5/Cy3) ... logy(Cy5/Cy3)
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Given in input matrix E,
Do V oligo o,

{
Step 1. (Discrete derivative). V¢ € TP compute:

AE(o,t) _ E(o,t+1)— E(o,1)
At (t+1)—t
Step 2. (Score). Compute:

=AE(o,1)

max |AE(o,t)| =S,
teTP

Figure 1. The derivative method M.

Step I: the discrete derivative AE (o, t) is calculated at each time point ¢, as
in My;

Step 2: the maximum and minimum values of A E (o, t) are calculated;

Step 3: S, is calculated as reported in Table 2. As already pointed out, the
smaller is S, the higher is the probability to find a significant peak (or val-
ley). This formula allows us to discriminate between spikes and unit-step like
behavior of the signal.

Method My is reported in Figure 2. For each oligo o it proceeds as follows:

Step I: a normalization is performed, by subtracting from each element
E (o, t) the arithmetic mean computed on the whole temporal signal;

Step 2: the discrete integral A of the absolute value of the normalized signal
is calculated;

Step 3: the discrete derivative (width one) A E(o, t) of the original signal is
calculated;

Step 4: the maximum value of AE (o, t) is calculated and the time point ©
at which it occurs is stored;

Step 5: the positive integral A, of the normalized signal of width two
around t is calculated;

Step 6: the fraction of area S, = A, /A is calculated.

The same procedure as in My characterizes method Ms, except for Step 4,
in which the minimum value of AE (o, t) is calculated. In other words, My
detects peaks while Ms detects valleys.

Methods Mg, reported in Figure 3, proceeds for each oligo o as follows:

Step I: time points ¢, t + 1, t + 2 are considered (for each r € TP) and
the values « and $ are calculated (see Figure 3). In case of a perfect spike,
o = B. For afirst type discontinuity (a unit-step function) « or 8 is zero. There-
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Given in input Matrix E,
Do V oligo o,

{
Step 1. (Normalization). Compute: Vt € TP

E(o,1) = E(0,t) —mean(E (o, 1))
teTP

where mean is the arithmetic mean over time
Step 2. (Integral). Compute:
> |E.n| =4,
teTP
Step 3. (Discrete derivate), compute:
AE(o,t) E(o,t+1)—E(o,1)
At G+D)—t

Step 4. (Maximum localization). Find:

=AE(o,1)

T =arg max(AE(o, t))
teTP

Step 5. (Local integral). Compute:
T+1

Z {E_‘(O,t)‘ = A

t=1—1

A
Step 6. (Score). Compute A—2 =S,
1

Figure 2. The integral method M.

fore SV(E (o, t)) yields one in the first case, and zero in the second. The term
(o + B)/2 weights the asymmetry of non perfect spikes;

Step 2: the properly normalized maximum value of SV(E(o,t)) gives
score S,.

Method Mg, therefore, looks for three-point structures in each gene profile,
weighting their possible asymmetry and selecting that structure for which the
area is maximal.

3.1.2. Spike Detection. In order to single out peaks and valleys in tem-
poral signal, an amplitude threshold, called pv, must be given. The spike de-
tection procedure identifies in an automated way those expression variations
which are greater than pv. In this procedure, each method M; is separately and
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Given in input Matrix E,

Do V oligo o,

{
Step 1. (Spike value detection). V¢ € TP compute:

a=|E(o,t +1)— E(0,1)|
B=|E(o,t+2)—E(o,1+ 1)
min{a, B} o+ B
max{a, B} 2
Step 2. (Score). Compute:
max;etpSV(E (0, 1)) _
Y erp SV(E(0,1))

SV(E(o,t)) =

4

}
Figure 3. The method Mg.
Table 2. The methods M; for spike detection
Methods Description
Derivative
M; Figure 1
M, As M1, with Step 1 in Figure 1 replaced by:
AE(o,t) _ E(o,t+2)—E(o,t) __
Ar = ip-r = DM2E(.D)
M3 As M1, with Step 2 in Figure 1 replaced by:
[l tn;%}g(AE(o, )l - Itrg%l)(AE(O, )l - [trg%g(AE(o, 1) — EIT?D(AE(O’ )=S0
Integral
My Figure 2
M5 As My, with “argmax” replaced by “argmin” (Step 3, Figure 2)
Other methods
Mg Figure 3

iteratively applied to each expressionary time series of the considered dataset.
Each method M; provides its final list of genes and time points at which the
expression values are greater than pv. In other words, for each method M; the
iterative procedure can be schematized as follows: (i) For each expressionary
time series E (o, t), the time point 7; is found for which the maximum value
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of S, occurs (or minimum value S, for method M3); (ii) if the expression value
E (o, 7;) is greater than pv, E (o, 1;) is substituted by applying in t; the “loess()”
function with local weighting parameter reduced to 15%, and the value t; is
stored; (iii) steps (i) and (ii) are repeated until no new 7; is found in which the
expression value is greater than pv; (iv) a set of oligos for which at least one
spike is found, and the list of the corresponding time points t; (i =1,...,k
with k = number of detected spikes) is provided as output. This iterative and
automated procedure for each method M; is implemented in R [11].

The lists of oligos and time points provided by the six methods are not nec-
essarily the same, as S, is differently calculated for each method. Therefore,
a more comprehensive list is obtained by merging the six contributes and dis-
carding redundancies in the merged list. This combination is performed in an
automatic way.

The final number of affected oligos and of detected time points depends
on the threshold value (pv) chosen. Therefore, the spike detection is carried
out for different pv values. A small value of pv (with respect to the average
signal amplitude) does not allow us to discriminate between simple amplitude
fluctuations and abrupt variations, while too large a pv value may miss spikes
which could be relevant for the quality control procedure (see as an example
Section 4). Therefore, by analyzing the obtained numbers and performing a vi-
sual inspection of the correspondingly identified expression profiles, the most
appropriate pv value can be chosen (see as an example Table 3, Figures 4.A1
and 4.B1).

3.1.3. Smoothing Procedure. At this point, the list of oligos and time
points related to the chosen pv value is passed on to a biologist. If he/she does
not assign any biological importance to the detected peaks and valleys, the
expressionary time series of the original dataset carrying those spikes are sub-
stituted by the corresponding smoothed profiles. These smoothed profiles are
obtained by applying the “loess()” function, with local weighting parameter
reduced to 30%, to each previously detected time point. Figure 4 presents
two examples of expression time series identified by the iterative procedure,
performed with pv equal to 2. Expression data before and after the described
smoothing are reported therein.

3.2. Evaluation of the Detection Methods

In the case of artifact detection, it is necessary to provide evaluation meth-
ods in order to assess the impact that their smoothing-out can have on further
analysis. In other words, it is necessary to check if the smoothing procedure
has some effect on the results of data analysis. We considered a functional
classification with support vector machine and the power spectrum analysis.
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Figure 4. Example of expression time series detected by the iterative procedure, performed with
pv = 2. Profiles before (Al and B1 panels) and after (A2 and B2) the described smoothing are
reported. Genes reported in A and B are respectively b541 (detected time points: TP;5, TP1¢,
TP17, TP1g) and 71224 _1 (detected time points: TP3g9, TP4g, TP41, TP43).

In the following, we discuss the application of our quality control proce-
dure to the QC_dataset described in [2,4]. The application of the spike de-
tection method to the QC_dataset, and the subsequent evaluation performed
by biology experts, led to the smoothing of the original expressionary time
series in the time points detected by the methods. Therefore a new dataset,
QC_dataset_smooth, was built.

3.2.1. Effect of Spike Smoothing on a MSVM Functional Classifica-
tion. Support vector machine (SVM) is a state-of-the-art classifier which has
been widely used in the analysis of microarray data [7,14,18]. We studied the
effect of spike smoothing on a multi-class SVM (MSVM) classifier [13] pro-
vided by the package “e1071” of R [11] by considering its influence both on
model selection and on functional class prediction. In particular, we adopted
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the pair-wise classification approach, where for each possible pair of functional
classes an SVM classifier is trained. For N classes, this resultsin (N —1)- N /2
binary classifiers, and the resulting class is chosen by majority voting, i.e. the
class with the highest number of votes gives the label. We chose a linear kernel
for the MSVM algorithm.

In SVM, model selection the choice of the cost parameter C is required,
which sets the trade-off between model complexity and generalization error.
Usually, the best cost parameter C is estimated through a cross validation pro-
cedure, as in our case a leave-one-out (LOO) cross validation.

For the model selection analysis, as a training set we first used the dataset
provided in TableS2 [2,4], hereafter called “raw_dataset”. TableS2 describes
the known functional classification of 530 genes belonging to the QC_dataset.
Afterwards, the second dataset, hereafter called smooth_dataset, in which the
same genes are extracted from QC_dataset_smooth, was considered.

We evaluated the effect of the smoothing procedure on model selection,
namely the selection of the cost parameter C, by fixing different values
of C and computing the LOO accuracy both on the raw_dataset and the
smooth_dataset. This analysis aims at verifying if the smoothing procedure
changes the LOO accuracy on each C parameter, therefore affecting model se-
lection and thus classification task. Our aim is not at evaluating the predictive
accuracy of the model built after smoothing the spikes, for which the small
degree of bias (many cases and few parameters) should be instead considered
as in [21]. Assuming that the choice of the cost parameter C is performed by
selecting the best LOO accuracy, this analysis shows that the smoothing pro-
cedure will lead the experimenter to choose a different value of C, and thus
different MSVM models for the subsequent analysis.

Afterwards, to assess the impact of the smoothing procedure on func-
tional classification, we trained the MSVM on the raw_dataset and on the
smooth_dataset, and used the obtained models to predict the genes without
functional annotation in the QC_dataset, and in the QC_dataset_smooth, re-
spectively. Given the raw_dataset and the smooth_dataset, in both cases the
parameter C maximizing LOO accuracy was chosen to build the correspond-
ing model. Any two C parameters showing similar LOO accuracy could be
used instead. In fact, we do not aim at selecting the two models with highest
predictive accuracy; but we want to point out the differences in the functional
classification of the two MSVM models due to our smoothing procedure. The
idea is to isolate the effects of the smoothing procedure on the functional clas-
sification results. However, our choice for the C parameters is that correspond-
ing to the maximum LOO accuracy, thus resembling the standard choice for
model selection.

The result shows that even two MSVM models showing similar LOO ac-
curacy classify differently the unknown oligos. We do not know which is the
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“right” classification, but we point out that the smoothing procedure plays a
great role for the subsequent biological investigations.

3.2.2. Effects on Power Spectrum. We assessed how our smoothing
procedure affects the power spectrum used in [2] to select the genes that have
a definitely periodic time course. We thus repeated the computational steps
therein described to obtain the power spectrum, using the QC_dataset as well
as the QC_dataset_smooth, and compared the differences.

4. RESULTS

Table 3 reports, for different values of pv, the number of oligos having at
least one spike. For each value of pv, the list of oligos and time points were
obtained as described in Section 3.1 by merging the results obtained by the
different six methods M; and considering only once the time points which are
identified highlighted by more than one method.

Table 3 illustrates that the value pv equal to 2 sensibly discriminates between
irrelevant time variations (pv < 2) and too-stringent spike-detection conditions
(pv > 2). This choice was confirmed by visually inspecting a number of se-
lected expressionary profiles, as those reported in Figures 4.A1 and 4.B1. As
reported in Table 3, for pv = 2 the automated procedure identified 334 oligos,
each presenting abrupt expression variation in at least one time point. Accord-
ingly, a new dataset, “QC_dataset_smooth”, was obtained by substituting in the
original QC_dataset the 334 transcriptional profiles obtained by our procedure
with their smoothed version. For the sake of simplicity, Table 4 only reports
those 56 genes with the functional annotation. The complete list is available
upon request.

Table 3. Number of oligos with at least
one spike detected by the iterative
procedure for different values of pv

pv # oligos
1 3305
2 334
3 28
4 8
5 2
6 1
7 0
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Table 4. Genes with functional annotation which present at least one detected spike
in their expression (see Supplemental table for class acronym definition)

oligo_ID Class  oligo_ID Class  Oligo_ID Class  oligo_ID Class
al0325_30 ER £739_1 Ml 11_28 ER optblob0060  AM
al0325_32 ER i10472_1 MI m14235_3 CT opfblob0092  MI
al2696_3 MI 11225 2 MI m33088_2 AM opfk12894 ER
al718_1 DR 1149751 Ml m36656_1 MI opfl0013 AM
b218 MI i8675_1 AM m54626_4 CT opfl0022 AM
b230 MI jl1e_7 MI m60464_2 MI opfl0029 M
b391 oT j170_10 Ml nl31_10 oT opfl0141 AM
b444 MI kn9335_1 DR nl32_124 MI opfm60467 MI
d49942_9 MI kn973_2 DR nl32_125 MI ptrgln PG
el5509_11 AM ks1030_4 OT nl34_78 DR ptrgly PG
el8550_1 MI ks26_17 AM nl37_2 CT z_4 50 MI
e24991_1 MI ks48_18 ER nl38_34 M z_4_50 MI
f12313_1 MI ks510_10 MI nl4l_14 MI

27464 _2 oT ks510_8 MI opfb0671 MI

f49857_1 MI ks75_15 ER opfblob0020  ER

We first assessed the distribution of those time points by computing the
histogram reported in Figure 5. We can note that the methods identified more
than 100 spikes at time point 18.

In this section we first discuss how the smoothing procedure affects MSVM
model selection and functional classification. Consistency considerations are
also reported.

Concerning the model selection, Table 5 reports the LOO accuracy values
for different values of the cost parameter C.

From Table 5 it is evident that selecting the parameter with maximal LOO
accuracy, using the raw_dataset the best parameter should be C = 0.1, while
using the smooth_dataset the chosen parameter should be C = 1.0. Hence,
despite of the very few modifications induced by the smoothing procedure (56
out of 530 genes of the training set), two different models should be selected.

We then predicted the functional class of genes without annotation in
the QC_dataset as well as in the QC_dataset_smooth, as described in Sec-
tion 3.2.1. In the confusion matrix we obtained 970 off-diagonal elements (out
of 4550), i.e. 970 elements were classified differently by the two classifier ob-
tained by raw_dataset and smooth_dataset. The confusion matrix regarding the
prediction of functional expression of unknown genes between the two MSVM
models, selected for C = 0.1 and C = 1.0 respectively, is provided as supple-
mental material.

Concerning the power spectrum analysis, the smoothing procedure, by elim-
inating abrupt changes in the signal, removes high frequency components in
the Fourier space. Therefore, as expected, the power spectrum shifts towards
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Figure 5. Spike temporal distribution.
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Table 5. LOO accuracy values of MSVM for different values of cost parameter C
using raw_dataset and smooth_dataset

C LOO accuracy raw LOO accuracy smoothed
0.001 56.4 56.8
0.01 69.4 69.6
0.1 72.5 71.9
1 72.1 72.5
10 69.2 69.4
100 67.4 67.4
1000 67.0 64.3
10000 64.7 66.8
100000 66.6 66.8
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higher percentage. About 50 more genes have a power spectrum greater than
90% in the smoothed dataset. Concerning the cut-off value of 70%, which was
used in [2] to select periodic genes, 12 more genes have a power spectrum
greater than 70%.

S. DISCUSSION

The study described in this paper can be divided into two conceptually dis-
tinct parts. In the first part we perform an automated quality control procedure
by detecting anomalously rapid changes in the gene expression time series.
Biologists need to assess whether these represent artifacts or are biologically
relevant. In the former case, such anomalous rapid changes have to be properly
accounted. In the latter case, further biological investigation on those spikes
and on the temporal distribution of their positions should be performed.

The detection of these spikes is achieved by exploiting six different sim-
ple methods in an automated and iterative way, and then suitably combining
their results. The choice of the pv parameter permits to control the amplitude
and number of detected spikes, therefore allowing the biologist to control the
smoothing procedure based on his/her own personal knowledge of the expected
dynamics of the temporal series.

In the case of the P. falciparum asexual cycle, assuming that these peaks
are artifacts, we discuss the effects of their substitution with smoothed values
on a popular analysis technique such as supervised functional classification by
means of MSVM. The greater number of valleys with respect to peaks seems
to indicate that they are artifacts. In fact, in the case of low signals the relative
noise is higher, so it seems reasonable to detect more valleys than peaks. We
found that removing artifacts detected by our methods affects both the results
of the MSVM model selection procedure and the MSVM functional classifi-
cation of genes without annotation. In the latter case, 970 genes are differently
classified before and after the smoothing procedure. It is worth noting that we
do not discuss the degree of reliability of either classification. Our aim is to
show that our quality control procedure influences data analysis results. It is
also worth noting that the smoothing procedure we propose is locally applied
only to the temporal points in which artifacts occur. Therefore, it preserves
the overall temporal profile. This strengthens the effectiveness of our quality
control procedure.

Concerning power spectrum computation, the smoothing procedure con-
firms and enhances the periodicity of the expression profiles used for subse-
quent analysis in [2]. This result is consistent with the aim of our quality con-
trol procedure at preserving as much as possible signal periodicity. However,
though preserving periodicity, our approach may affect functional analysis.
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In the temporal distribution of spike positions as reported in Figure 5, the
most crowded channel is located at time steps 18. The result of Kolmogorov—
Smirnov test performed on this distribution allows us to state with a high level
of confidence (p < 0.0005) that this spike position distribution does not come
from a uniform distribution, suggesting that spikes, if considered artifacts, are
not due to random experimental errors. This analysis may suggest to biol-
ogists, aware of the performed experimental procedure, the possible causes
of artifacts. In this way, improvements of the experimental process could be
achieved.
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Abstract

Keywords:

Entry of Plasmodium falciparum into human red blood cells is a stress-
ful event for both the host and the parasite. Conversion of hemoglobin
into usable food by P. falciparum is accompanied by the production
of chemically reactive and toxic molecules called oxidants. Examina-
tion of the temporal sequence of gene expression during the intraery-
throcytic development cycle (IDC) [Bozdech, Z., et al., PLoS Biology,
1(1) (2003), 1-16] can help elucidate how Plasmodium responds to
these self-generated harmful chemicals while proceeding through its
normal developmental program. Our study has three parts: identifica-
tion of temporally-defined sets of co-regulated oxidative stress response
genes in this parasite; comparison of the temporal patterns of the ox-
idative stress response to that of co-regulated gene sets involved in other
processes; and identification of putative transcription factor binding sites
by finding DNA motifs unique to the upstream regions of co-regulated
oxidative stress response genes.

malaria, oxidative stress, microarray, time-course, clustering, motif

1. INTRODUCTION

Plasmodium falciparum is a virulent pathogen that is the major cause of the
human malaria epidemic seen in developing tropical countries. P. falciparum
utilizes mosquitoes as a vector to enter the host body and invade red blood
cells. Once inside the erythrocytes, Plasmodium will replicate, utilizing the
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host’s hemoglobin as a source of amino acids. After replication, the red blood
cells are lysed, releasing parasites, toxic heme groups and parasitic proteins
into the host’s blood plasma causing the characteristic fever. The parasites will
then re-enter new red blood cells and the cycle will continue, or they will be
picked up by feeding mosquitoes, and will go on to infect another host.

Because of its importance as a possible Achilles heel, the P. falciparum
oxidative stress response (OSR) has been heavily studied and many of the key
proteins and enzymes have been identified [2].

After attachment and entry into the red blood cell, the parasite uses its food
vacuole to engulf the concentrated hemoglobin and break the protein down
into usable amino acids and leftover heme. Most of the heme forms an inert
pigmented polymer inside the vacuole. However, a small amount of free heme
becomes a major iron-based catalyst for formation of superoxide and other
oxidants such as hydrogen peroxide. These highly reactive oxidants form co-
valent bonds with proteins, nucleic acids, and lipids, thereby impairing their
function. The parasite defends itself against these oxidants with enzymes that
convert the oxidants into less reactive chemicals and with enzymes that re-
pair the damaged cell molecules. Without the function of these enzymes, the
genome and lipid membranes of P. falciparum are vulnerable to devastating
oxidative damage. Although oxidative stress proteins have been used as a drug
target for many years, the expression of the genes for these proteins has not
been studied. Understanding the transcriptional activity of genes that respond
to oxidative stress may be crucial to developing new drugs and gaining a better
understanding of how current drugs function.

In microbes such as yeast or E. coli, exposure to oxidants produces a well-
characterized whole genome transcriptional response [6—8,10,11]. Genes in-
duced by oxidants include those that encode oxidant-scavenging proteins and
enzymes that repair oxidant-damaged proteins, DNA, and lipid. But most of
the yeast genes modulated by oxidants such as hydrogen peroxide are also
regulated in the same fashion by other stressful conditions such as heat, star-
vation, or an increase in osmolarity caused by high sugar concentrations. This
common response, termed the environmental stress response or ESR, is char-
acterized by an increase in mRNA for stress response genes and a reduction
in mRNA for genes involved in nucleic acid and protein synthesis, i.e., cell
growth and division. Another striking feature of the oxidative stress response
is that the increase in ESR gene mRNA is transient, falling back to control lev-
els in less than one hour after adding hydrogen peroxide to cells. This decrease
in mRNA occurs even though the stimulus, the hydrogen peroxide concentra-
tion, stays constant for a 2-hour period [8].

A potentially important difference between Plasmodium and other microbes
concerns the timing of oxidative stress in the normal life cycle. For yeast and
bacteria, a low level of oxidants is produced during normal oxygen-dependent
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metabolism. Immune cells and even plants attack invading microbes by pro-
ducing large quantities of superoxide and hydrogen peroxide. However, the
timing of this oxidative assault is highly variable and genome responses are
triggered by the oxidant per se. On the other hand, for an invading Plasmodium,
production of large amounts of oxidants (from the breakdown of hemoglobin)
would occur at a fairly predictable interval after entry of the parasite. Thus,
there could be two strategies in mounting an effective defense. Either the par-
asite is like yeast in using the oxidant as the direct inducer of oxidative stress
responses of the genome. Or the protozoan would induce oxidative stress re-
sponse genes as part of its developmental cycle.

From our initial analysis, we propose here a novel biological mechanism
for dealing with stress. Our model is that P. falciparum does not initiate a gen-
eral stress response during oxidative stress, but rather their stress reaction is
specific and anticipatory. That is, the parasite will initiate transcription of ox-
idative stress response genes such as glutathione transferase and peroxiredoxin
prior to the onset of that stress. This model is more probable for P. falciparum
than it is for yeast since Plasmodium makes use of host hemoglobin proteins,
even at the expense of having to dispose of self-generated toxic heme groups.
As this metabolic process is an inherent part of the P. falciparum life cycle, the
strategy of anticipating the accompanying oxidative stress may have a selective
advantage over reacting to stress. One prediction of this model is that the in-
crease in oxidative stress response gene expression would be co-regulated with
genes involved in normal developmental processes such as making protein or
RNA.

Whatever the strategy employed, the physiological situation in parasite-
infected red blood cells appears very different from yeast exposed to oxidants.
Oxidants cause yeast to stop making protein and RNA, to stop growing and
dividing while it adapts to stress. Plasmodium is initiating large-scale protein
and nucleic acid synthesis — using red blood cell nutrients — during oxidative
stress. Expression of oxidative stress response genes continues for many hours,
rather than falling as they do in yeast. This difference in timing suggests very
different control mechanisms in the parasite, which may be critical to drug
development.

Analytical Objective: 1dentifying genes co-regulated with known oxidative
stress response (OSR) genes, as well as DNA sequence elements common to
the upstream regions of OSR genes will be an important step forward in defin-
ing the pathways and signals that control this response. To this end, we re-
port on a statistical analysis that identifies several promising genes and motifs
that may underlie the oxidative stress mechanism in P. falciparum. A novel
proposal is made for (1) defining selected features of time-course profiles for
classification and (2) defining control groups for subsequent motif discovery.
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2. METHODS

2.1. Study Design and Data

Bozdech et al. grew a large-scale culture of P. falciparum (HB3 strain) for
RNA sample isolation, cDNA synthesis, labeling, and DNA hybridization with
a long-oligonucleotide microarray [4]. Samples for 48 individual (hourly) time
points (Cy5) corresponding to the intraerythrocytic development cycle were
hybridized against a reference pool (Cy3) comprised of RNA samples rep-
resenting all developmental stages (48 time points) of P. falciparum. In the
present analysis we used the Quality Control (QC) dataset that included the set
of oligonucleotides that passed all quality control filters as specified by [4] and
were normalized by a linear scalar (global normalization).

2.2. Statistical Methods

Gene profiles represented by multiple oligos were summarized by averag-
ing the individual oligos pointwise. The QC dataset was missing time-points
23 and 29 h. Imputation for these time points, as well as for randomly missing
individual points, was by averaging flanking time points. The two major ana-
lytical steps were (1) finding expression profiles similar to the OSR genes and
(2) finding sequence motifs in the upstream region of all ORF’s belonging to a
cluster set.

Step 1: Classifying profiles by OSR genes. The objective of this step is to find
genes that are potentially co-regulated with OSR genes. Having done so allows
further consideration of common function and/or motifs. The approach used
the entire profiles in determining similarity between OSR expression profiles
and other genes. Given a reference profile (e.g., one of the OSR genes) x =
(x1,x2,...,xr) we classify all others y = (y1, y2, ..., yr) as “close” to x if
the Pearson correlation between x and y is at least 0.9. Alternative distance
measures, such as Euclidean distance, are possible.

A different approach is to use hierarchical clustering to let genes group nat-
urally using Euclidean distance to agglomerate them. After the clusters were
found we identified those that included the various OSR genes. These clusters
can serve as the group(s) closely co-regulated with OSR genes. This second
approach confirmed that genes classified by Pearson correlation are not an ar-
tifact of the reference profiles.

Step 2: Motif searching within clusters. Given gene clusters defined by the
OSR genes, each is then partitioned into a training set and a testing set. The
training set is generated by using a higher correlation threshold of 0.95 to our
reference profile x, and the testing is composed of the genes that remain. Once
the training set is established the software program MEME [1] is used to dis-
cover motifs in the training set only. MEME is not used on the testing set.
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Although it’s possible to find motifs in the original cluster the results would
be more difficult to interpret without a valid test group. We restrict the MEME
motif search to 6-—8 nucleotides, since known motifs in other organisms are in
this size range.

To assess the statistical significance of motifs found in the training set we
developed an algorithm using R. This new algorithm interprets the MEME-
motif information found in the training set and then finds the frequency of
these motifs in each of the various test sets. Each motif is defined by a position-
specific probability matrix (PSPM), which for each position in the sequence
gives the probabilities of each possible nucleotide occurring at that position.
For each motif found by MEME, our algorithm uses the PSPM to calculate
P1 = probability of the observed sequence given the PSPM (i.e. it’s a motif)
and P2 = probability of the observed sequence given the background probabil-
ities of A, C, G, T (i.e. it’s not a motif ). We take the ratio of P1/P2 and compare
it against a threshold calculated by MEME via a Bayesian method. If the ratio
is greater than (less) than the threshold we accept (reject) the sequence as a
matched motif. The algorithm also calculates the average motif occurrence per
testing set and compares testing sets via a ¢-test.

Our reasoning behind all this is to verify whether motifs occurring in a given
group are unique to that group. For example, given two gene clusters ¢/ and
c2, each has an associated training set c/-training and c2-training as well as
a testing set c/-testing and c2-testing. MEME-motifs believed to be unique
to cluster c/ are discovered using c/-training and, our algorithm interrogates
cl-testing and c2-testing to find if these motifs are truly unique to c/. If the
average occurrence of motifs in c/-testing is greater than in c2-testing than it
would be reasonable to propose these motifs as possible transcription binding
sites unique to cluster c¢/. However, before coming to such a conclusion we
must also verify that these motifs are not due to chance; therefore, we also
make a comparison to a control group containing genes neither in ¢/ nor c2.
Once we determine that the motifs still occur more frequently in ¢/ than in the
control we are more confident about their possible candidacy for transcription
control sites to any other group but c¢/. The same can be done using c2-training
to identify possible transcription control sites unique to cluster c2.

2.3. Considerations

To address the issue of whether the parasite responds or anticipates oxida-
tive stress we considered expression patterns of genes known to be involved
with hemoglobin (Hb) degradation, hemozoin sequestration/degradation and
FP-binding proteins. Indeed, since Hb is the major source of oxidative stress,
the expression pattern of Hb degradation-related genes in relation to antiox-
idant stress response genes would help confirm if the antioxidants are up-
regulated in response to stress or it is an anticipated response. If the OSR genes
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are up-regulated before the Hb digestion related genes that would indicate an-
ticipation of oxidative stress; up-regulation after expression of the Hb genes
would signify a response to the oxidative stress.

3. RESULTS

3.1. Expression of Oxidative Stress Genes

P. falciparum protects itself against oxidants [2] by releasing (1) oxidant-
consuming enzymes, including superoxide dismutase, peroxiredoxin, glu-
tathione S-transferase and (2) enzymes involved in the repair of oxidized pro-
teins and lipids reductant synthesis, including thioredoxin peroxidase, glu-
tathione reductase, and glutathione synthetase. Figure 1 shows the time-course
expression profiles for eight oxidative stress response OSR genes. The same
data have also recently been used by Bozdech and Ginsburg [3] to examine the
expression profiles of these and other genes in antioxidant defense in P. falci-
parum. Using the three stages of the IDC the genes may be classified according
to where they (approximately peak): Ring: glutathione S-transferase, perox-
iredoxin; Ring/Trophozoite: glutathione synthetase; Trophozoite: glutathione
reductase, superoxide dismutase; Trophozoite/Schizont: ribonucleotide reduc-
tase, glutathione peroxidase; Schizont: thioredoxin peroxidase.
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Figure 1. Oxidative stress genes.
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The parasite begins significant digestion of the host hemoglobin (Hb) at
the boundary between the Ring and Trophozoite stages, roughly between 12
and 18 hours into the 48-hour IDC. Therefore, relative to the digestion of Hb
it may be conjectured that glutathione S-transferase and peroxiredoxin, in-
volved in H>O», dismutation, are anticipating the endogenous generation of
oxidants; we call these Early OSR genes. Glutathione synthase, involved in re-
duced glutathione (GSH) synthesis, may be activated in response to utilization
of GSH in initial response. Glutathione reductase, ribonucleotide reductase,
and thioredoxin reductase react to the stress of accumulation of oxidized glu-
tahione (GSSG) and thioredoxin (TrxS,) and thus glutathione reductase may
be reacting to, instead of anticipating, the oxidative stress as indicated by their
sharp increase in expression coincidental with intense hemoglobin digestion.
Glutathione peroxidase and catalase (both dismutate HyO2) may then consti-
tute the secondary defense mechanism against oxidative stress. The remaining
genes are a bit more ambiguous.

Additional information pertaining to the anticipation/reaction conjecture
may be obtained by considering the expression profiles of Hb degradation-
related genes. Indeed, since Hb degradation is the major source of oxidative
stress the expression pattern of OSR genes in relation to those of Hb-related
genes will help confirm if the antioxidants are up-regulated in response to
stress or if it is an anticipated response. Here we consider vacuolar proteins
which maintain the acidic environment within the food vacuole and proteases
which break down hemoglobin. Figures 2 and 3 show vacuolar proteins and
proteases, respectively, in relation to the Early OSR genes. The vacuolar genes
are generally increasing over the Ring Stage but at a lower level than the two
Early OSR genes, again supporting the hypothesis that they are anticipatory.
Three of the proteases (falcipain 2 precursor, falcipain 2 precursor putative,
plasmepsin 2 precursor) increase in expression over the Ring stage but the
curves appear to follow the OSR genes, which also have higher levels of ex-
pression. Two proteases (plasmepsin putative, plasmepsin 1 precursor) show
no change in expression and then begin to decrease at about the time that the
OSR genes peak, which again seems to support a readiness by the OSR genes.
All but one (falcipain 3) protease drops precipitously beginning at ~18 h
through ~32 h. The remaining six OSR genes peak after both the vacuolar
and protease genes indicating a reaction to the oxidative stress. On balance,
the data support that glutathione S-transferase and peroxiredoxin anticipate
oxidative stress as they peak before HB digestion and they peak or express
themselves at higher levels relative to Hb-related genes.

3.2. Classification

As described in the Methods section, genes are clustered into groups based
on their tight correlation to OSR genes. Specifically four OSR genes are of
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Figure 2. Protease and Early Oxidative Stress Genes. Proteases — Plasmepsin 2 precursor =
red; Plasmepsin 1 precursor = green; Plasmepsin putative = dark blue; Falcipain 2 precursor
= light blue; Falcipain 3 = pink; Falcipain 2 precursor putative = yellow; OSR — Glutathione
Transferase = light black; Peroxiredoxin = heavy black.

interest: (1) glutathione S-transferase, peroxiredoxin which are primarily ex-
pressed early in the 48 cycle, and (2) thioredoxin peroxidase and ribonu-
cleotide reductase which are primarily expressed late in the cycle. We propose
that the two sets of Early and Late genes have different modes of transcrip-
tion and that genes clustered with the Early genes have distinct transcription
factors from those clustered to the Late genes. This thesis is dependent on our
assumption that genes clustered to Early genes share a common transcription
factor with the Early genes, and genes clustered to Late genes also share com-
mon transcription factors with the Late genes.

The Early and Late clusters, their associated training and testing groups, as
well as the control set are listed below:

1. Early: n = 157 genes matched (r > 0.9) to the average profile of the two
Early OSR genes (Figure 1, glutathione transferase and peroxiredoxin).

2. Late: n =289 genes matched (r > 0.9) to the average profile of the two
Late OSR genes (Figure 1, ribonucleotide reductase and thioredoxin per-
oxidase).
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Figure 3. Vacuolar and Early Oxidative Stress Genes. Vacuolar — V. ATP Synthase = brown;
V. Proton Translocation ATPase = gray; V. ATP Synthase Subunit F = purple; V. ATP Syn-
thase Catalytic Subunit A = blue; V. ATP Synthase Subunit H = light blue; V. ATP Synthase
Subunit D = red; V. ATP Synthase Subunit B = dark green; V. ATP Synthetase = light green;
V. ATP Synthase Subunit E = yellow; V. ATP Synthase Subunit G = orange; OSR — Glutathione
Transferase = light black; Peroxiredoxin = heavy black.

. Early-Training: n = 25 genes matched (r > 0.95) to the average profile

of the two Early OSR genes (Figure 1, glutathione transferase and per-
oxiredoxin).

. Late-Training: n = 27 genes matched (r > 0.97) to the average profile of

the two Late OSR genes (Figure 1, ribonucleotide reductase and thiore-
doxin peroxidase). We used a threshold of 0.97, instead of 0.95, to have
similar sample sizes for the training sets in the Early and Late groups.

. Early-Testing: n = 132 genes. These genes are obtained by taking the

difference between the Early and Early-Training sets (157-25).
Late-Testing: n = 262 genes. These genes are obtained by taking the
difference between the Late and Late-Training sets (289-27).

Control: n = 188 genes. These genes are mainly expressed in the middle
of the 48 hour cycle so we can think of them as the Middle set.

Note that over the first 10 hours of the IDC the Early genes monotonically

increase in relative expression, while the Late genes decrease in relative ex-
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pression. Therefore, we surmised, that different motifs would be acting on
these genes.

The Early and Late clusters listed above were obtained by using OSR genes
as the reference for correlation. We also obtained Early (n = 654) and Late
(n = 1220) clusters based on hierarchical clustering and these turned out to
largely include the original Early and Late sets, respectively, based on Pear-
son correlation. Of the 157 genes found in the “Early-correlation” clusters,
131 appeared in the “Early-hierarchical” group; of the 289 “Late-correlation”
genes, 274 were present in the “Late-hierarchical” set. We take these results
as confirming our selection of Early and Late clusters based on the 2-gene ref-
erence sets described above. For this reason the Early and Late clusters based
on correlation with the 2-gene reference sets were used in the remainder of the
analysis.

3.3. Motif Discovery

To further characterize the oxidative stress response genes we conducted
a motif search of the 1000bp upstream and 1000bp downstream sequences
of gene groups defined by OSR genes. The Early group was defined by the
n = 157 genes that were highly correlated (r > 0.9) with the average profile of
the two Early OSR genes (glutathione S-transferase, peroxiredoxin). The Late
group of n = 289 genes was similarly defined for the two Late OSR genes
(thioredoxin peroxidase, ribonucleotide reductase). Since no a priori informa-
tion concerning expected motifs was available, the two groups and a control
group were used in evaluating the biological significance of a putative motif.
The E-value from MEME was used as the initial screen for putative motifs and
the control group was used as confirmation that a given motif was specific to
a set of genes with similar expression profiles. The confirmation in the con-
trol group was carried out by our algorithm to compare motif occurrence and
frequencies.

Table 1 shows the seven motifs found in the “Late-Training” group which
demonstrated a significantly greater abundance in the “Late-Testing” set com-
pared to the “Early-Testing” set. We clearly see that the average number of
occurrences per motif is larger in the “Late-Testing” set. The seven motifs
shown are the best examples after using a Bonferroni correction for multiple
comparisons. From these results it is tempting to conclude that this method
indeed selects motifs in the expected manner: MEME finds motifs in the Late-
Training set, which if real should result in higher frequencies in the Late testing
set than the Early testing set. Table 1 shows results supporting this expectation.
However, when we used the Early-Training set to generate motifs we found no
difference between Early and Late test sets. Additionally, when assessing the
presence of the motifs shown in Table 1 in the control group we found that
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Table 1. Motifs that statistically differentiate Early-Testing genes from Late-Testing
genes based on a MEME search! of the 1000bp upstream regions of 27 genes
correlated with Late? expression OSR genes

Ave. motif occurrence per gene

Motif Early (n = 132) Late (n = 262) t p-value?
1 CACAT 2.08 3.37 —6.72 5.82E-09
2 ATATGTAT 1.85 3.16 —6.34 5.23E-08
3 GTGGG 1.24 1.92 —4.61 4.96E-04
4 GGGTG 1.10 1.78 —4.79 2.12E-04
5 CTTTGCA 0.80 1.51 —6.16 1.60E-07
6 GGAGTAC 0.32 0.57 —4.03 6.04E-03
7 AAAGGG 2.92 3.87 —4.04 5.95E-03

IDefault background rates were assumed in the MEME search.
2See Figure 1 for Early and Late expression OSR genes.
3Adjusted p-values based on the Bonferroni correction are reported.

none of these motifs occurred with more frequency in the Late test group.
These results were largely unexpected and made us re-evaluate our approach.
Our initial method only made use of sequences in the upstream region of
the genes to find candidate motifs. In our revised approach we also considered
downstream sequences. However, candidate motifs found downstream were no
more abundant in either the Early or Late test sets. To try and understand this
phenomenon we explored the nucleotide content in the upstream and down-
stream regions of both the Late and Early sets and found the following:

AT/CG content (%)

Upstream Downstream Genome

AT CG AT CG AT CG
Early  88.1 11.9 84.9 15.1
Late 86.3 13.7 84.3 15.7 80.6 194

The AT content in the entire genome is substantially larger than the CG
content. Similar proportions are observed in the Late and Early genes in both
upstream and downstream regions. Of particular interest to this study is that
the AT/CG distributions are more similar between Late and Early genes in
the downstream region than in the upstream region. Although the discrepancy
between the Early and Late AT/CG distributions in the upstream region may
seem small, it turns out that the MEME motif search is quite sensitive to such
differences. Therefore, we adjusted our MEME background model to reflect
the observed proportions of nucleotides. The updated results are shown in Ta-
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Table 2. Motifs that statistically differentiate Early-Testing genes from Late-Testing
genes based on a MEME search! of the 1000bp upstream regions of 25 genes
correlated with Early? expression OSR genes

Ave. motif occurrence per gene
Motif Early (n = 132) Late (n = 262) t p-value?

1 TATAATAT 8.12 4.94 7.81 3.24E-11

1Observed background rates were assumed in the MEME search.
2See Figure 1 for Early and Late expression OSR genes.
3Adjusted p-values based on the Bonferroni correction are reported.

Table 3. Motifs that statistically differentiate Early-Testing genes from Late-Testing
genes based on a MEME search! of the 1000bp upstream regions of 27 genes
correlated with Late? expression OSR genes

Ave. motif occurrence per gene

Motif Early (n = 132) Late (n = 262) t p-value3
1 ACACACAT 1.20 2.66 —8.21 2.60E-13
2 TGTGTGTA 0.71 243 —-10.42 0
3 GTGGG 1.24 1.92 —4.61 4.96E-04
4 CCTTGCG 0.08 0.26 —4.66 3.90E-04
5 GGGTG 1.10 1.78 —4.79 2.12E-04

10bserved background rates were assumed in the MEME search.
2See Figure 1 for Early and Late expression OSR genes.
3Adjusted p-values based on the Bonferroni correction are reported.

bles 2 and 3. Table 2 shows the motif (TATAATAT) found in the Early-Training
set which is also more abundant in the Early-Testing set than the Late-Testing
set. Table 3 shows five motifs found in the Late-Training set, which occur more
frequently in the Late-Testing set than the Early-Testing set. Note that motifs
3 and 5 of Table 3 are also present in Table 1. Comparison of the motifs in
Tables 2 and 3 to the Control group resulted in only one significant differ-
ence, reported in Table 4. Taken together, we were able to identify one motif
(TATA ATAT) that appears to be unique to the Early genes.

4. DISCUSSION

When P. falciparum invades red blood cells it is subject to constant oxidative
stress largely stemming from its digestion of host hemoglobin, as well as from
reactive oxygen and nitrogen species arising from the host immune system.
Using the time-course microarray data of Bozdech and Ginsburg [3] the work
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Table 4. Motifs that statistically differentiate Early-Testing genes from
Control-Testing genes based on a MEME search! of the 1000bp upstream regions of
25 genes correlated with Early® expression OSR genes

Ave. motif occurrence per gene
Motif Early (n = 132) Control (n = 188) ' p-value?

1 TATAATAT 8.12 4.79 7.99 8.49E-12

Observed background rates were assumed in the MEME search.
2See Figure 1 for Early and Late expression OSR genes.
3Adjusted p-values based on the Bonferroni correction are reported.

reported in this paper examined and characterized the gene expression profiles
of eight oxidative stress response genes, the detection of other genes possibly
co-regulated with these genes, and discovery of sequence motifs that may play
arole in their regulation.

Our proposed model is that control of expression of oxidative stress re-
sponse genes in P. falciparum is mediated not by an induced response to oxi-
dants, but as a part of the normal developmental sequence important for asexual
reproduction of the parasite in red blood cells. The analysis so far supports this
model. The two OSR genes for peroxiredoxin and glutathione transferase in-
crease in expression relatively early in the infection cycle, before expression of
many of the enzymes needed for hemoglobin digestion. These two genes are
co-expressed with genes needed for mRNA synthesis and translation. Thus,
the shared function of this gene set is clearly related to the products of Hb
breakdown: amino acids and oxidants. One wrinkle is that not all of the OSR
genes are expressed in this Early set. For example, mRNAs for glutathione
peroxidase and glutathione reductase appear later in the infection cycle. One
possible explanation for different waves of OSR gene expression is that dif-
ferent oxidants may appear at different times. The early appearance of both
peroxiredoxin and glutathione transferase mRNAs makes sense because these
two enzymes are the major route for elimination of hydrogen peroxide, the
most abundant oxidant appearing during Hb digestion in the Plasmodium food
vacuole.

Our analysis of the upstream region of the Late OSR genes set revealed sev-
eral closely related motifs (Tables 1 and 3) that are more abundant in this set
than in the Early OSR genes set; for example, ACACACAT and CACAT that
include CA pairs, and GTGGG, AAAGGG, GGGTG that include GGG. The
biological significance remains under study, but these motifs could be binding
sites for a repressor that prevents early gene expression or an activator that
positively regulates gene expression at later times in the infection cycle. Our
search also led to the identification of a single motif (TATAATAT) that was
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more abundant in the Early gene set than in both the Late gene set and con-
trol gene set. Our motif analysis is nevertheless preliminary, using a standard
set of search parameters in only one program (MEME) to search for motifs.
Additional motif analyses using MEME and other programs based on differ-
ent search algorithms will be required for a more comprehensive identification
of motifs or combinations of motifs that are uniquely correlated with the dif-
ferent OSR gene sets. The results of our study provide new insights into the
biology of P. falciparum. We present an approach based on biological and sta-
tistical reasoning that together lead to promising areas of inquiry. Key to motif
assessment in this and similar applications are (1) careful selection of classi-
fication features from the time-course profiles (e.g., time of peak expression),
(2) defining appropriate control groups.
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The identification of stage-specific genes in the malaria parasite Plas-
modium falciparum may provide a starting point to identify key ele-
ments for the malaria parasite to complete its life cycle. In this study,
we address this question through the combined analysis of gene expres-
sion data collected from two distinct microarray platforms. Although
it is intuitive that a joint analysis is likely to be more informative
than that based on a single source, such analysis faces many statisti-
cal challenges in addition to the fact that different sets of genes may
be probed on different platforms. First, the platforms are sufficiently
different that it is difficult to correlate expression levels measured on
different platforms. Second, the time resolution of the two data sets
differs. To address these challenges, we have developed novel statis-
tical methods to integrate these two distinct platforms. Based on our
methods, we have identified genes that are either uniquely expressed
or differentially expressed at the sporozoite and gametocyte stages.
Some of these genes are known to be specific at these two stages
and some are novel, providing potential candidates for transmission-
blocking vaccine development. We also analyze the functions of the
identified genes based on Gene Ontology (GO) classification and investi-
gate the predicted interacting proteins. The detailed results are available
at http://bioinformatics.med.yale.edu/CAMDA2004.

microarray, Sporozoite, gametocyte, nonparametric regression, gene on-
tology, ortholog
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1. INTRODUCTION

DNA microarray technology allows the transcription levels of many genes
to be measured simultaneously, and different microarray platforms are com-
monly used in gene expression studies. For example, in the analysis of Plas-
modium falciparum, the DeRisi group used microarrays based on long (70-
nucleotide) oligonucleotides to quantify the relative mRNA levels of 4,488
predicted Plasmodium falciparum genes at 46 time points across the com-
plete asexual intraerythrocytic developmental cycle (IDC) or asexual blood
stages at a 1-hour resolution [2]. Independently, the Winzeler group employed
the Affymetrix (25-nucleotide) array to examine the gene expression pro-
files at 6 periodic asexual blood stages, including early ring, late ring, early
trophozoite, late trophozoite, early schizogony, and late schizogony stages.
The parasite samples were synchronized by two independent methods: a 5%
D-sorbitol treatment and a temperature cycling incubator. Besides the asex-
ual blood stages, the gene expression levels were also measured at the ga-
metocyte and sporozoite stages [7]. Our objective in this study is to identify
genes either uniquely or differentially expressed in sporozoites and gameto-
cytes. In our study, the genes not expressed at the asexual blood stages but
expressed in sporozoites/gametocytes are defined as the genes uniquely ex-
pressed at these two stages, while the genes differentially expressed in sporo-
zoites/gametocytes represent the genes constitutively expressed at the blood
stages and up-regulated in sporozoites/gametocytes. Although the Winzeler
data itself can be used alone to address this question, the higher resolution of
the DeRisi data may offer additional information on gene expression during
the asexual stages. Therefore, we have developed statistical methods to com-
bine information from these two studies to fully exploit the expression data
from these two different data sources. Although our methods are developed in
the context of analyzing these two specific data sets, the general approach may
prove useful for other similar studies in order to discover novel gene regulation
patterns and to validate previous gene expression profiles. The genes identified
to be uniquely or differentially expressed at the sporozoite and gametocyte
stages may lead researchers to identify potential candidates for transmission-
blocking vaccine development because the sporozoites are the infectious form
injected to human blood by mosquitoes, and the gametocytes are the form by
which the parasite is transmitted from human to mosquitoes.

2. METHODS

2.1. Pre-processing of the Data

For the Winzeler data, the 17 CEL files are processed using Affy R [6]. The
intensity levels of the two sporozoite replicates are averaged after normaliza-
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tion. For the DeRisi data, in which the expression values were obtained from
two-color microarray experiments with a common reference used on all the ar-
rays, we perform the print-tip group loss normalization method within arrays
by using the Limma package [5,10]. After normalization, the intensity values
and log ratio values are averaged for a subset, including 8 time points that had
more than one hybridization result.

2.2. Identification of Genes Uniquely Expressed at the
Sporozoite/Gametocyte Stages

Our first objective is to identify genes uniquely expressed at the sporo-
zoite/gametocyte stages, i.e. genes that are not expressed across the asexual
blood stages but expressed at the sporozoite/gametocyte stages. Because the
DeRisi data did not cover the sporozoite/gametocyte stages, it is not informa-
tive on its own for the identification of these genes. On the other hand, al-
though the Winzeler data can be used to address this question, some genes that
are expressed at the asexual blood stages data may be missed due to the lower
resolution throughout the asexual stages in the Winzeler data. Our strategy is
to first use the DeRisi data to identify genes not expressed at the asexual stages
and then use the Winzeler data to examine, among this set of genes, which
genes are expressed at the sporozoite/gametocyte stages. First, we need to de-
fine an objective criterion to infer whether a gene is expressed or not across the
blood stages based on the DeRisi data. To achieve this goal, we utilize the 281
“EMPTY” spots on the DeRisi arrays as negative controls. For each channel,
the intensities of all the “EMPTY” spots are standardized to have a mean of 0
and variance of 1 through linear transformation. The standardized intensities
across all the 46 time points are then summarized. The density distributions
of the standardized intensity levels for the red channel and the green channel
have very similar patterns (Figure 1). Because some of the “EMPTY” spots
may hybridize and yield positive signals (as suggested by the long right tails in
Figure 1), we remove the spots corresponding to the upper 10% of the distribu-
tion, leaving 252 “EMPTY” spots serving as negative controls in our following
analysis.

For each time point ¢, we calculate the mean empMean, and variance
empVar, of the red channel intensities of the 252 “EMPTY” spots, and then
we standardize the intensities for all other spots on the arrays by

R; ; — empMean,
v empVar, ’

where R;; represents the intensity value of spot i at time point ¢. The stan-
dardized intensities are summarized across all the 46 time points, so we get the

Ri,t,std =
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Figure 1. Density plot of the intensities in red and green channels of the “EMPTY” spots. The
intensities of the 281 “EMPTY” spots have been transformed to a common distribution with
mean 0 and variance 1 and summarized across all the 46 time points.

value of R; g4 = Z?il R; ¢ stq for each “EMPTY” spot. The 95% percentile of
these values was chosen as the expression cutoff. The genes corresponding to
the spots that have summarized intensities across all the 46 time points below
this cutoff are considered as genes not expressed at the blood stages.

For the Winzeler data, we need to identify genes expressed at the sporo-
zoites/gametocyte stages. Similar to the DeRisi data, we need to choose an
intensity value as cutoff to infer whether a gene is expressed or not at a spe-
cific stage. Because there are no “EMPTY” spots that we can use to derive an
expression cutoff for the Winzeler data, we have to resort to other methods in
our analysis. To this end, we assume that the proportion of genes not expressed
at the blood stages based on the Winzeler data is the same as that based on the
DeRisi data. Our previous analysis on the DeRisi data yield the result that 17%
of genes are not expressed at the blood stages. Based on our assumption, we get
the maximum value of the 17% percentile of gene expression levels for each of
the 6 blood stages obtained from the Winzeler data and increase the value to a
certain extent so that 17% of the genes can be identified as not expressed at the
blood stages with taking the adjusted value as the cutoff. The genes with in-
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tensity values in the sporozoites/gametocytes above the expression cutoff are
considered as genes expressed at the sporozoite/gametocyte stages. Among
this set of genes, those not expressed at the blood stages are identified as genes
uniquely expressed at these two stages.

2.3. Identification of Genes Up-regulated at the
Sporozoite/Gametocyte Stages

In contrast to the identification of genes uniquely expressed at the sporo-
zoite/gametocyte stages where only a cut-off is needed to infer whether a given
gene is expressed or not at a given stage, the inference of expression level
changes from the combined analysis of two distinct platforms is more diffi-
cult. This requires the establishment of correspondence of measured intensity
levels between the two platforms. If the two sets of data had been collected at
the same time points, such analysis would be relatively straightforward if we
assume that the expression level of the same gene is rather similar in the two
experiments. However, the DeRisi data and the Winzeler data have rather dif-
ferent resolutions with 46 time points in the DeRisi data and only 6 time points
in the Winzeler data across the asexual stages. To address this problem, we first
identify a set of “invariant” genes, which are constitutively expressed at the
asexual stages and use the measured expression levels of these genes to derive
the correspondence of measured expression levels between the two datasets.
For the DeRisi data, the variances of the log-ratio values log,(Cy5/Cy3) are
calculated for each expressed gene and the set of genes with a variance below
a specific cutoff, 0.2 in this study, are considered as the “invariant” gene set.
Similarly, the “invariant” gene set for the Winzeler data can be identified after
the variances of the intensity values at the 6 blood stages are calculated. Genes
common in both invariant gene sets are then selected. As the expression levels
of these genes were relatively constant across the blood stages in both datasets,
we calculate the mean of the gene expression values at the blood stages for
each gene both based on the DeRisi data and the Winzeler data. We then apply
the local linear regression method to capture the relationship between the gene
expression values obtained from the DeRisi data and those obtained from the
Winzeler data through migl Z;l:l{yi —a— B — X)Yw(x; —x; h).

o,

Here, the kernel function w(x; — x; ) ensures that the observations whose
covariate values x; close to the point x are given the most weights in deter-
mining the estimate, and the smoothing parameter 4 controls the degrees of
smoothing applied to the data [1]. The local linear estimator is

m?x) - Xn: {sa(xs ) — s1(x5 h) (xi — ) }w(xi — x5 h)yi
o s2(x; h)so(x; h) — s1(x; h)? ’

1=
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Figure 2. The nonparametric regression curve for the log intensities of all the “invariant” genes
at the blood stages obtained from the DeRisi data and the Winzeler data. The smoothing pa-
rameter /2 used for control the degrees of smoothing is 1. The log intensities of “invariant”
genes obtained from the Winzeler data are based on one synchronization method that uses a 5%
D-sorbitol treatment.

where s, (x; h) = {d_(x; — x)"w(x; — x; h)}/n. The results are shown in Fig-
ure 2.

Based on this nonparametric regression model, we may use the gene in-
tensities at the sporozoite/gametocyte stages obtained from the Winzeler data
to predict the values that would have been collected through the DeRisi plat-
form. These predicted values are then compared to the measured intensities
throughout the blood stages in the DeRisi data to identify genes differentially
expresses at these two stages. In our study, the genes with constant expression
levels at the blood stages and expression levels increased at least 1.5 fold at the
sporozoite/gametocyte stages compared to the blood stages are considered as
genes up-regulated at these two stages. Down-regulated genes are not consid-
ered at the two stages because we are only interested in identifying the genes
directly related to the transmission between human and mosquitoes.

24. Gene Ontology Analysis

Gene Ontology (GO) annotations are downloaded from PlasmoDB (http://
plasmodb.org). There are 2,199 gene products (about 41% of the whole pro-
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teome) that have been assigned GO terms. We map the GO terms to the more
generalized or high-level terms (GO slim terms) to gain a high-level view of
gene functions. The sporozoite and gametocyte stage-specific genes are com-
pared to the overall genes based on GO annotations using GO slim terms,
and the comparisons are performed in the three GO ontologies: “molecular
function”, “biological process” and “cellular component”. As not all the gene
products were assigned a GO term, we rescale the percentages of the proteins
in each GO category so that the total is 100%.

To assess the statistical significance for the GO term enrichment of the
sporozoite and gametocyte stage-specific genes, we investigate whether the
list of identified genes have any GO term overrepresented in their annotation
compared to what would be expected by chance from the population of all
the genes in P. falciparum. The p-value is calculated from the hypergeometric
distribution as following:

p-value = Xx: (X)((+):X),

where N represents the total number of genes in the population in which N
has a particular GO term annotation. n and x represent the number of genes
in the list of interest and the number of genes in the list annotated with the
particular GO term, respectively. The p-value is corrected for multiple testing
using Bonferroni correction, a conservative approach. There are 9 GO slim
terms tested for both the “molecular function” and “biological process” terms,
and 7 GO slim terms tested for “cellular component” ontology. These numbers
are used for correcting the p-values. The list of sporozoite/gametocyte stage-
specific genes are considered as have a GO term overrepresented compared to
the overall genes if the corrected p-value is less than 0.05.

2.5. Protein—Protein Interaction Pairs in P. falciparum

To study whether proteins coded by genes uniquely/differentially expressed
at the sporozoite/gametocyte stages interact with each other, we utilize the in-
teraction data from yeast because there is a lack of data for P. falciparum.
More specifically, we perform “all-against-all” BLASTP comparisons of se-
quences of the Sacchromycces cerevisiae and P. falciparum proteomes, and
the program INPARANOID [9] is applied on the BLASTP results to identify
orthologous groups. Sequence pairs with reciprocal best hits are identified as
putative ortholog pairs, and the sequences from the same species that are more
similar to the putative orthologs than to any other sequences are considered
as “paralogs”, belonging to the same group of orthologs. Based on the con-
cept of “interolog” [11], we assume that if protein A and protein B interact
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in S. cerevisiae and have corresponding orthologs A" and B’ in P. falciparum,
then A’ and B’ would form an interacting protein pair in P. falciparum. We
use the interaction dataset for S. cerevisiae in the MIPS [8] database to predict
interacting protein pairs in P. falciparum by transferring the protein interaction
information between the two species.

3. RESULTS

3.1. Genes Uniquely or Differentially Expressed at the Sporozoite
and Gametocyte Stages

The Winzeler data includes results generated from two different proce-
dures to synchronize P. falciparum. We identify sporozoite/gametocyte stage-
specific genes using data generated from both synchronization procedures. Ta-
ble 1 summarizes the results of our study. As shown in Table 1, both syn-
chronizations yield similar results with an almost complete overlap between
different synchronizations.

A total of 408 genes are found to be expressed at the sporozoite stage but
not expressed at the asexual blood stages, and 118 genes are constitutively ex-
pressed at the asexual blood stages and up-regulated at the sporozoite stage.
Among these genes, some of them are experimentally known to be sporo-
zoite specific. For example, the sporozoite surface protein 2 and the circum-
sporozoite surface protein are well-known markers of the sporozoite stage and
are included in our identified gene set.

Similarly, a total of 124 genes constitutively expressed at the asexual blood
stages are up-regulated at the gametocyte stage. An additional set of 335 genes
is identified as expressed at the gametocyte stage but not at the asexual stages.
Included in this list are well-known gametocyte-specific genes, such as those
encoding meiotic recombination protein DMC1 and 25kDa ookinate surface
antigen. Compared with the results in the Winzeler study, our gene set in-

Table 1. The number of sporozoite and gametocyte stage-specific genes. In the
category of “Constitutively expressed”, the genes up-regulated at the
sporozoites/gametocyte stages are listed. In the category of “Not expressed”, the
genes uniquely expressed at the sporozoite/gametocyte stages are listed

Expression pattern at the Sporozoite Gametocyte
asexual blood stage

Syncl  Sync2  Overlap Syncl  Sync2  Overlap

Constitutively expressed 120 139 118 124 140 124
Not expressed 418 411 408 346 339 335
Total 538 550 526 470 479 459
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cludes 76% of 61 genes identified as sporozoite specific and 69% of 210 genes
identified as gametocyte specific in the Winzeler study, respectively.

Besides genes that are known to be stage-specific, we have also iden-
tified some genes that have not previously been shown as sporozoite- or
gametocyte-specific in the Winzeler study. For example, the protein encoded
by MAL13P1.304 is a potential malaria surface antigen and was identified as
up-regulated at the sporozoite stage in our results. In addition, MAL6P1.195,
encoding a RNA-binding protein MEI2, has been found to be specifically ex-
pressed in gametocytes in our analysis. Although the proteins encoded by these
genes have been identified as sporozoite/gametocyte specific in the proteomics
study based on mass spectrometry data [3], these genes were not identified
as sporozoite- or gametocyte-stage specific in the Winzeler study. Therefore,
our methods may provide a more comprehensive list of stage-specific genes
that are worthy of further investigation and may represent potential candidate
targets for the development of transmission-blocking vaccines.

3.2. Gene Ontology Classification

The comparisons of GO annotations with high-level GO terms between the
sporozoite/gametocyte stage-specific genes and the overall genes are shown in
Figures 3a—c, and the list of GO terms associated with a significant p-value
are provided in Table 2.

In the “molecular function” ontology, a higher percentage of proteins en-
coded by the sporozoite/gametocyte uniquely expressed genes are assigned to

Table 2. The list of GO terms overrepresented by sporozoite and gametocyte
stage-specific genes. The p-values are calculated from hypergeometric distributions
and corrected for multiple testing using Bonferroni correction. The GO terms
associated with a corrected p-value less than 0.05 along with the corresponding gene
set are listed. The full list of GO terms associated with their p-values is available

online
GO term Gene set Corrected
p-values
Molecular function Defense/immunity protein Sporozoite expressed 1.24E-11
Gametocyte expressed 1.40E-9
Cell adhesion Sporozoite expressed 5.91E-12
Gametocyte expressed 5.75E-10
Biological process Cell communication Sporozoite expressed 2.60E-13
Gametocyte expressed 5.05E-7
Cell adhesion Sporozoite expressed 5.91E-12

Gametocyte expressed 5.75E-10

Cellular component Extracellular Sporozoite expressed 9.46E-13
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the “defense/immunity protein” and “cell adhesion™ categories compared to
the overall gene products. And the statistical analysis provides the evidence
that the sporozoite/gametocyte uniquely expressed genes have these two GO
terms overrepresented (Table 2). This result is reasonable as the genes specific
in sporozoites/gametocytes are involved in the evasion of the host immune sys-
tem and the cell communication process.

Among all the categories in the “biological process” ontology, the identified
stage-specific genes, including 34% of sporozoite specifically expressed genes
and 24% of gametocyte specifically expressed genes are over-represented in
the “cell communication” category with p-values of 2.60E-13 and 5.05E-7,
respectively. These cell communication related genes are known to be invol-
ved in “host-pathogen interactions” or “cell-cell adhesion™ processes, which
may reflect the specific processes relevant to the sporozoite and gametocyte
stages [4].

In the “cellular component” ontology, a higher percentage of sporozoite spe-
cific gene products belong to the “extracellular” category (with p-value of
9.46E-13). More detailed analyses reveal that this is mainly due to the large
number of erythrocyte membrane protein 1 and rifin genes in our identified
gene set, and these genes have been shown as sporozoite/gametocyte specific
in previous studies [3,7].

We also compare the GO enrichment of our identified genes with the results
from the Winzeler study. We select the genes identified as gametocyte spe-
cific in the Winzeler results but are not included in our identified gene set and
perform GO analysis on these genes (Figure 4). According to the “molecular
function” and “biological process” ontologies, these genes do not show differ-
ent GO term enrichment compared to the overall gene products (with p-values
larger than 0.05, supplementary data online). This suggests that these genes as
a group are different from the genes identified from our set.

3.3. Correlate Protein Interaction with Gene Expression

Based on comparative study, only 935 P. falciparum proteins have corre-
sponding S. cerevisiae orthologs, and a total of 646 interacting protein pairs
among these 935 proteins are predicted based on the ortholog list. There may
be correlation between expression patterns among the interacting protein part-
ners because the functionality of the interacting pairs depends on the presence
of two proteins participating the interaction. To test our hypothesis, we study
the number of interacting protein pairs among the sporozoite and gametocyte
stage-specific genes and the results are summarized in Table 3.

Because there are 15 proteins having more than 5 interacting partners, we
evaluate the statistical significance of the observed number of interacting pairs
through simulations after removing these so-called “hub” proteins. Specifi-
cally, we randomly select the same number of proteins from the ortholog list
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Figure 4. Comparisons between the genes identified as gametocyte specific in the Winzeler
results but not included in our identified gene set and all genes according to the “molecular
function” and “biological process” ontologies of the GO system.

Table 3. Interacting protein pairs in sporozoites and gametocytes. The empirical

statistical significance is calculated as the fraction of the 10,000 permutations having

a larger number of protein pairs than that based on the observed data

Number of proteins Number of protein pairs ~ Empirical statistical

having yeast orthologs ~ within the gene set significance
Sporozoites 62 5 0.0405
Gametocytes 54 5 0.0396

Whole Proteome 935 646
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(e.g., 62) and record the number of interactions among these randomly selected
proteins. This procedure is repeated 10,000 times and the statistical signifi-
cance of the observed number of interacting pairs can be estimated based on
the 10,000 simulated results. As shown in Table 2, there is marginal evidence
suggesting that the proteins in the list are more likely to interact with each
other than expected by chance.

Only a small number of genes with orthologs in S. cerevisiae are found
to be sporozoite/gametocyte stage-specific, resulting in the identification of
only a few protein—protein interactions at these two stages. Of the 5 interacting
protein pairs found in gametocytes or sporozoites, 4 were found to be com-
mon at both gametocyte and sporozoite stages (MAL7P1.50 and PF07_0139,
PF00_0002 and MAL7P1.145, PF10_0258 and PF11_0481, PF10_0258 and
PF14_0030). Among them, both PF00_0002 and MAL7P1.145 play a role in
DNA mismatch repair, an important process for P. falciparum reproduction at
the gametocyte stages and perhaps required in sporozoites in preparation for
extensive DNA replication and schizogony, which occurs following the inva-
sion of hepatocytes.

4. CONCLUSIONS AND DISCUSSION

The identification of stage-specific genes provides a starting point to iden-
tify key regulatory elements essential for the malaria parasite to complete its
life cycle. In this article, we have developed statistical methods to combine
information from two datasets generated under different microarray platforms
to identify genes either uniquely expressed or differentially expressed at the
sporozoite/gametocyte stages compared to the asexual stages. Our identified
genes show significant enrichment for certain Gene Ontology categories re-
lated to the functions and processes involved in the sporozoite/gametocyte
stages. Although the genes identified in our study have a high degree of overlap
with those from the Winzeler study, we did not observe any functional enrich-
ment for those genes identified in the Winzeler study but not in our analysis,
suggesting that our methods have a higher degree of specificity. By combin-
ing information for two different sources, we were able to take advantage the
higher resolution of the DeRisi data (as compared to the Winzeler data) to
study gene expression patterns at the two stages that were only collected in
the latter study. This combined analysis allowed us to identify a larger number
of genes that are up-regulated at the gametocyte and sporozoite stages than
that based on one data source where the time resolution is low. It is conceiv-
able that even more information can be extracted from other data sources, if
they become available, to better understand the mechanisms responsible for
the transmission of this protozoan malaria.
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Only a small number of genes with orthologs in S. cerevisiae were found to
have different expression patterns in gametocytes and sporozoites, resulting in
the identifications of only a small number of protein—protein interactions. Our
simulation results indicated marginal evidence of increased likelihood of inter-
actions among stage specific proteins. These interacting proteins may serve as
effective targets for blocking transmission by anti-malaria drug or vaccine de-
velopment, as they are likely to be involved in both sexual stage development
as well as invasion of the human host.
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In this paper we model the gene expression network of Plasmodium fal-
ciparum using the time-course microarray dataset [Bozdech, Z., et al.,
PLoS Biol., 1(1) (2003), ES] A gene expression network is constructed
based on a novel method that combines two types of correlations be-
tween each pair of genes: standard Pearson and partial correlations.
A link is established between two genes if both correlation coefficients
are higher than their corresponding thresholds. The values for thresholds
are sought so that the topology of the resulting network satisfies sev-
eral criteria. The sought network has to be sparse, small-world (with any
two genes being connected by a path of a few links only), scale-free-like
(wherein a small number of genes have a large number of links and many
genes have only a few connections). Similar to gene networks of other
organisms the highly connected genes (hubs) in the constructed network
tend to have essential cell functions. To verify the proposed method and
to compare the results, a scale-free-like, small-world gene expression
network was also constructed using another dataset [Le Roch, K.G.,
et al., Science, 301(5639) (2003), 1503-1508], confirming the lethality
and centrality property of malaria hubs.

gene expression network, partial correlation, scale-free-like network

1. INTRODUCTION

The objective of this study is to construct a gene expression network of Plas-
modium falciparum using the time-course microarray data-set from Bozdech
et al. [3]. Unravelling the topology of the malaria gene network is relevant to
understanding cell function and the invasion cycle of the parasite. We use a
graph-theoretical approach where nodes in the network stand for genes and
edges between two nodes stand for links representing relationships or associa-
tions between the two genes. In the network, the genes (nodes) are connected
if certain criteria, such as co-expression, are satisfied.
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Analyses of gene co-expression networks have shown a correlation between
the essentiality of a gene and the number of connections that the gene has:
highly connected genes (hubs) are often essential (involved in central bio-
logical functions) and evolutionarily conserved [2,16]. For Plasmodium fal-
ciparum more than 60% of predicted 5409 open reading frames lack sequence
similarity to genes from any other known organism [3]. In addition, 65% of
all annotated genes encode hypothetical proteins of unknown functions. This
makes ascribing putative roles for such genes a challenging task. One of the
potential benefits of gene network analysis is to obtain clues on the putative
roles of such genes of unknown function based on the gene connectivities,
positions in the network, and the other genes with which they have links.

It is of some interest to see whether the gene network analysis can give some
support to the hypothesis advanced in [3] on a regulatory network wherein a
comparatively small number of transcription factors with overlapping binding
site specificities could account for the entire cascade. The authors speculated
further that disruption of a key regulatory element (lethal gene) might have a
profound inhibitory effect on the entire network [3]. Such lethal genes are most
likely to be among the highly connected nodes in the malaria network.

For the study of the malaria gene regulatory network, we used two datasets.
The first is the overview dataset from the complete intra-erythrocytic develop-
mental cycle (IDC) transcriptome of Plasmodium falciparum measured at 46
time-points [3]. To verify results, we have also used a time-course dataset mea-
sured at nine time-points in human and mosquito stages of malaria parasite’s
life-cycle [10]. We will further refer to this dataset as the validation dataset.

2. NETWORK CONSTRUCTION FROM
TOPOLOGICAL CONSTRAINTS

We aim to construct a network of malaria gene interactions, using global
topology constraints, which have been found to be characteristic for other bi-
ological networks. These constraints include network sparseness, the small-
world property, and the existence of a few highly connected nodes and many
genes with a few connections.

An important measure of networks topology is the distribution of the num-
ber of connections per node. The number of connections per node is often
called the connectivity of a node or its degree. Therefore, the distribution is
referred to as the connectivity (or degree) distribution. Previously studied bio-
logical networks of interactions, including gene expression networks of other
organisms, have shown to have many nodes with few connections and a few
nodes with many connections (hubs) [1,2,11,16]. The existence of hubs has
often been cited as the most characteristic feature of biological networks and
in particular of the scale-free networks [1,2,16].
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Although, the networks are commonly referred as being scale-free, it is their
connectivity distribution that is considered to be scale-free. Precisely, distrib-
ution is defined as scale-free if its relative frequency distribution is given by a
power-law, p(k) ~ k™7, k > 1, where k stands for the connectivity of a node
and y is the power-law exponent. It has recently been reported that the ev-
idence collected to support the scale-free property of biological networks is
questionable [15]. It has also been found that the connectivity distribution in
many inferred biological networks differs in a statistically significant way from
the power-law, and these networks are, strictly speaking, not scale-free [9]. In
addition, a plausible evolutionary mechanism such as evolutionary drift is not
compatible with scale-free distribution [13]. However, certain characteristics
of a scale-free network, such as a small-world property and the existence of
hubs, are valid for real genetic networks, and in the absence of consensus on an
alternative distribution, the power-law can be used for modelling purposes as a
first-order approximation. In particular, the connectivity distribution described
by a power-law can be useful for construction of global gene regulatory net-
works, whose structure is mainly unknown. In this paper, we will be looking
for the network connectivity distribution that resembles a power-law. We will
refer to such networks as scale-free-like.

A chi-squared statistic 7 = Z],i*:l (O — Ek)2 JEj ~ X;?*_z has been used as
a measure of closeness of a network’s connectivity distribution to scale-free be-
haviour. Here Oy are the observed (constructed) values of connectivities from
the data, and Ej are the values estimated from the power-law, with y estimated
by the maximum likelihood method as described below. The connectivity val-
ues over k*, for which the expected number of connections is less than 5, are
pooled together. The smaller the value of the chi-squared statistic 7 the closer
the connectivity distribution resembles a power-law.

For several gene co-expression networks, whose connectivity distribution
has been modelled by the power-law, the power exponent y has been reported
to be of the order of 1.0 [2,16]. We have determined the power-exponent, 7,
of the network under consideration, by the maximum likelihood method from
fitting the power-law distribution p(k) = é‘(;yy) to the constructed connectivities
(or degrees). Here ¢(y) is the (truncated) Riemann zeta-function and k£ > 1.
The number of connections (connectivity), x;, for a node i is often obtained
from experimental or simulated data.

In a large network the number of connections of different nodes can be as-
sumed to be approximately independent. We have shown elsewhere [9] that
the assumption of independence of connectivities of all nodes in the network
can be weakened by assuming independence of connectivities of nodes in a
smaller sub-network. As a result, the likelihood function can be written as

L(ylx) = ]_LN=1 x; 7 /¢(y), where N is the maximum connectivity. The log-
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likelihood I(y |x) = —y ZINZI logx; — N log ¢ (y) is maximized by finding ze-
ros of its derivative using the standard Newton—Raphson method for finding
roots of the function.

Another important property gene expression networks have been shown to
possess is a small-world property. In simple terms, this property implies that
any two nodes can be connected with a path of only a few links. The small-
world property is often quantitatively characterized by a large average clus-
tering coefficient, C, which reflects the connectedness of the neighbours of a
given node between themselves. The clustering coefficient of a gene i is com-
puted by ¢; =2n;/k; (ki — 1), where n; is the number of links connecting the
k; neighbours of gene i forming triangles and k; (k; — 1) /2 is the total number
of triangles that could pass through the node i. The average clustering coef-
ficient, C, of small-world networks is typically several orders of magnitude
higher than that of a random network of equivalent average connectivity and
size Cr ~ k/Ngenes-

In addition, gene regulatory networks are known to be sparse because genes
influence and/or are being influenced by a limited number of other genes
[1]. This implies that average number of connections (connectivity) per gene
(node), k is not large. Theoretical studies found the values for average connec-
tivity in gene expression networks of different organisms to be of the order of
10-30 [11,16]. In this work, we will be looking for a network with the average
connectivity in this range.

3. METHOD FOR THE CONSTRUCTION OF
EXPRESSION NETWORK

The main thrust of this paper is to construct a malaria gene expression net-
work based on thresholding pairwise Pearson correlations and partial correla-
tions of gene profiles.

The threshold parameters were sought so that the constructed network satis-
fies four global topological criteria, described above. (1) The network is sparse,
with an average connectivity, k, of the order of magnitude of 10; (2) the net-
work has the small-world property such that is characterized by a clustering
coefficient which is much higher than that of a random network with the same
average connectivity and size, C, = 10/3000 = 0.003; (3) the connectivity
distribution is scale-free-like, i.e. it is as close as possible to the power-law, as
seen in yeast and other organisms [2,4,11,16]; and (4) the power-law exponent
y of the connectivity distribution is close to 1.0 as has been reported for other
gene expression networks [2,11,16].
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3.1. Pearson Correlation

There have been a number of studies where global gene networks are con-
structed from microarray data based on the Pearson correlation coefficients.
Two genes are considered linked in the co-expression network if their correla-
tion is higher than the threshold [2,16]. Sometimes one also takes into account
empirically calculated p-values for the correlations between two genes [4].
The Pearson correlation has been shown to play an important role in inferring
interactions between genes [7]. However, methods that are based only on stan-
dard correlations are too simplistic and inevitably overestimate the number of
links (connectivity) per gene. It is common knowledge that a high correlation
coefficient is indicative not only of nodes that have direct connections but also
of nodes with indirect connections. It is also plausible that some important true
connections are left out if the threshold is not low enough. However, lowering
the correlation threshold will significantly increase the number of potential
links, including many random ones.

In the case of the malaria time-course dataset, the problem of including too
many random links becomes even more transparent due to a very highly co-
ordinated expression of genes [3]. A network constructed from the overview
malaria dataset by thresholding correlations, while restricting the average con-
nectivity per node, k, results in very high threshold values, R. For example, to
obtain a network with k£ = 50 the threshold R = 0.935 is required. Restricting
the average connectivity to a lower value, k = 30, results in an even higher
value of threshold, R = 0.95. This is an unreasonably high value. Given the
noisy data, missing values and the complexity of biological networks, many
biologically relevant connections will not be included in such network.

For a slightly lower value of Pearson correlation cut-off, R = 0.8, the con-
structed network ceases to be sparse. In addition, its connectivity distribution
is not scale-free-like (Figure 1). In fact, this co-expression network includes
about 15% of all possible links, with an average number of links per node,
k = 470, being more than ten times higher than the average connectivity for
the gene networks of other organisms constructed by the same method. For
example, with k = 32, the sparse scale-free network of yeast was constructed
with only R = 0.6 [16].

3.2. Partial Correlation

Here we propose to use partial correlations to filter the more likely links
out of a much larger set of potential links with high standard correlations.
The partial correlation coefficient of two genes measures the strength of rela-
tion between these genes after the effect of other genes is removed or fixed,
therefore indicating whether two genes are directly or indirectly linked. The
partial correlations of different orders have been used in Gaussian Graphical
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Figure 1. Histogram of connectivities in a malaria co-expression network constructed with a
threshold P = 0.8 from overview dataset [3]. The average connectivity per node is k = 470
and the network is not scale-free. There are several highly connected genes and a much larger
number of genes links with connectivities in the medium range.

Models (GGM) to characterize strength of correlations between pairs of genes
in regulatory networks [12,14,17]. First-order partial correlations have been
used to elucidate the regulatory network of Arabidopsis thaliana [17] and Sac-
chromycces cerevisiae [12]. These authors consider all possible triangles of
three genes to explore the dependence between two of the genes conditioned
on the third. All these triangles are then combined to make inferences on the
complete network using either frequentist or latent random graph approaches.
Second-order partial correlations, conditioning each pair of genes on every
other pair of genes, have been applied to computer simulated networks and to
yeast gene expression data [5]. Another method uses full-order partial corre-
lations (conditioned on all other genes in the network) and the false discovery
rate (FDR) approach to infer edges of the gene network from both simulated
and real microarray data [14].

We propose to construct a gene expression network from a large gene
dataset by using both Pearson and (full-order) partial correlation coefficients
for each pair of genes. Namely, for each pair of genes (7, j) we compute the
Pearson correlation of their profiles, r;; , and their partial correlation coeffi-
cient, g;; . The partial correlation of genes i and j with respect to other genes
whose effect is removed (fixed) is given by

a)ij

J@iiwf;

qij =
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Figure 2. Schematic figure of the drawbacks of a representation of gene regulatory relationships
by an undirected network. If in the inferred network, gene g3 is connected to genes gl and g2
by undirected links (left), then it is impossible to distinguish between several scenarios in the
real network. For example, gene g1 regulates gene g3, which in turn regulates gene g2 (middle),
or gene g3 regulates genes gl and g2 (right). Two other variants are possible.

where w;; = {r; j}_l is the inverse of the Pearson correlation matrix, {r;;}. To
overcome the degeneracy problem of the correlation matrix {r;;} for small
samples, partial correlation estimators based on the Moore—Penrose pseudo-
inverse of correlation matrix were introduced in [14]. In our work we follow
this approach and compute partial correlations by using the Moore—Penrose
pseudo-inverse of the correlation matrix via the cor2pcor() function from R-
package GeneTS [14]. Two genes (i, j) are connected by a link if their Pear-
son correlation is higher than a cut-off value, R, and their partial correlation is
higher than (or equal to) a cut-off value, Q:

i(—)j: r,-jZRandq,-jZQ.

The general drawback of any inference approach that results in an undi-
rected network (such as a GGM) is that it gives no indication of causality.
A link connecting two genes does not indicate which gene in the pair is the
regulator and which is the regulated one, as illustrated in Figure 2. Although
lacking causality information, undirected networks are a very useful first level
representation of gene regulatory relationships on a genome wide level. Fur-
ther levels of representations are directed networks, where the direction of the
regulatory relationship is specified. This can eventually be extended by quan-
titative information, such as probabilities of connection in Bayesian networks
or kinetic parameters of regulation.

4. RESULTS

For the overview dataset, the values from multiple oligonucleotides repre-
senting the same gene were averaged, resulting in expression values for 3048
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Figure 3. Connectivity distribution of nodes in a malaria gene network constructed from the
overview dataset for different values of thresholds. (A), (B) Log distribution of connectivities
for r =0.45;0.5;0.55 and P = 0.7 (A) and P = 0.8 (B). (C), (D) Distribution of observed
connectivities and fitted power-law N (k) ~ kY for r =0.5 and P = 0.8, y =0.91 (C) and
P=0.7,y =0.84 (D).

genes. In the rest of the paper we will concentrate on reporting the results
for the overview dataset. The topology of the network constructed using the
validation dataset is very similar (see Tables S5 and S6 on the supplemental
web-page: www.stats.gla.ac.uk/~raya/Malaria/suppldata.html).

We have performed a grid search for the threshold values R and Q based on
topological criteria. We have found a range 0.45 < 0 <0.6and 0.7 < R < 0.8
for which all four topological constraints are satisfied. The qualitative topolog-
ical properties of the malaria network are insensitive to the precise thresholds
within this range of values. Taking the thresholds within this range yields a
scale-free-like distribution of connectivities, which are qualitatively similar.
Figure 3 shows connectivity distributions, N (k), for several values of thresh-
olds R and Q. Values outside this region result in other types of networks.
0O < 0.4 results in networks whose connectivities do not obey a power-law
(Figure 4); while Q > 0.6 and/or R > 0.8 yield too few links (not shown).

Values of y are within the range 0.6—1.4 for different values of thresholds
Q and R. y = 0.6 for the parameters R = 0.7, O = 0.45 produce a network
with an average connectivity per node of k£ = 28 and maximum connectivity
kmax = 133, and y = 1.4 is for R = 0.8, Q = 0.6 with k = 4, kynax = 30. Other
values of parameters resulted in networks with average connectivities between
these two values (see Table S1 on the supplemental web-page).
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Figure 4. Histogram of connectivities in a malaria co-expression network constructed with
thresholds P = 0.7, r = 0.4 from overview dataset [3]. Lowering one of the thresholds outside
the accepted region results in a network whose behaviour is very different from scale-free.

The clustering coefficients have been found to be within the range C =
0.195 for R =0.7, Q =0.45 and C = 0.443 for R = 0.8, Q = 0.6. These
values are much higher than the value for random networks of equivalent aver-
age connectivity and size (C = 0.003), and they are consistent with the values
reported for other organisms (e.g., C = 0.6 for yeast [16] and other organ-
isms [2]).

4.1. Statistical Validation

To find whether a network constructed by thresholding the two types of
correlation coefficients is statistically meaningful or whether it can easily be
found by chance, we performed a permutation test. For each gene we reshuffle
the values at each time-point, constructing a gene profile of the same length,
with the same values but with a different time-order of these values. We then
recompute the correlation and partial correlation matrices and establish a link
between genes i and j if the thresholding conditions (R = 0.7, Q = 0.5) are
satisfied. In 100 permutation networks, two links are found on average for each
network (estimated standard error = 0.14) compared to several thousands in
the network inferred from the original dataset. This allows us to conclude that
the network inferred by the thresholding method is unlikely to have arisen by
chance.



84 R. Khanin and E. Wit

4.2. Biological Validation

The expression network constructed by the proposed method in Section 4.1
is worth investigating further for some proof-of-principle results. In the next
section we report results for the threshold values R = 0.7, Q = 0.5. These
parameters yield network statistics that are similar to previously studied net-
works with a maximum connectivity kmax = 101, average connectivity per
node k = 15, and the power-law exponent y = 0.84.

4.2.1. Lethality and Centrality of Malaria Genes. It has been previ-
ously reported that high degree nodes in gene expression networks constructed
for other organisms are more likely to correspond to essential and conserved
genes, i.e. to be involved in central biological functions of the cell [2]. In the
constructed network, among the top 66 hubs with connectivities from kp,x /2
there are 13 genes with no manual annotation, 7 genes belong to the Plas-
tid genome, and 30 genes code for proteins with unknown functions (hypo-
thetical proteins). Therefore, only 16 hub-genes code for proteins with some
identifiable functions. Among them, 7 genes (PFI1340w, PFI1360c, PFI0385c,
PF13_0229, PF14_0373, PFA0345w, PF11_0298) are known to have essential
functions in cell growth, maintenance, and metabolism (according to GO an-
notation). In addition, a rhoptry protein (PFI0265c¢), a papain family cysteine
protease (PFI0135¢), and an early transcribed membrane protein (PF10_0019)
are also in the list of the hub-genes. Among 5 hubs on chromosome 9, three
(PFI1340w, PFI1360c, and PFI0385¢) are prescribed functions in cell growth,
maintenance and metabolism, and they are all connected among themselves
forming a triangular network motif. The largest reported ORF (MAL6P1.147)
also has a large number of links, half of maximum connectivity. Other 8 anno-
tated hubs out of 30 that code for hypothetical proteins are either conserved or
have homologues/similar to proteins in other organisms.

The list of 66 top hubs for the network constructed from the validation
dataset with R = 0.8, Q = 0.5 contains 20 genes (virtually all annotated hubs)
with cell growth/maintenance, cell communication, and other central cell func-
tions. For a full list of hubs in networks constructed for the overview and the
validation datasets see Tables S2 and S6 on the supplemental webpage.

As another proof-of-principle, we looked at how many hubs are in the set
of only 6% of all genes in the genome of Plasmodium falciparum that were
found to be common to all four stages of the parasite life cycle (supplemen-
tary Table 1 in [6]). This list contains primarily housekeeping genes and their
products, such as ribosomal proteins, transcription factors, and cytoskeletal
proteins. It turned out that 15 hubs from our list are among this set of common
genes found in [6]. This is about 30% of all hubs with manual annotation.

It is of interest to see whether genes with unknown functionality among the
hubs belong to classes of essential genes. We looked at how hubs that code
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for protein with unknown functions in the overview network clustered in the
experiments of Le Roch et al. [10], as it has been demonstrated for various or-
ganisms that genes that cluster together are more likely to have similar biolog-
ical functions. We found that among 25 genes coding for hypothetical proteins
that are present in the validation dataset, 10 genes belong to cluster 13, 5 to
cluster 12, and 5 to cluster 15 of [10]. Le Roch et al. [10] reported that genes
of known functions in clusters 12, 13 are mainly involved in cell-cycle regu-
lation and progression at trophozoite stage, while cluster 15 is characterized
as having genes with roles in cell invasion that are under evaluation as blood-
stage vaccine. Therefore, hubs of unknown functions in those clusters are more
likely to be of these essential functions. It is worth mentioning that, according
to the authors of [10], genes from clusters 12 and 13 may represent potential
targets for drugs focused on disruption of the highly replicating trophozoite
stage of the parasite, while additional candidate vaccine antigens could come
from the yet uncharacterized genes of cluster 15. This gives further support
to our conjecture that the hubs of unknown functions might be of important
biological functions and therefore warrant further investigation.

We believe that the above mentioned evidence demonstrates that the hubs
in the constructed malaria gene network tend to be essential. It will also be
interesting to investigate those genes among hubs that have not been manu-
ally annotated (see Table S3 that contains oligonucleotides of hubs from the
overview network with no manual annotation).

4.2.2. Some Sub-networks in Malaria Gene Network. It might be
interesting to investigate further some sub-networks of the large malaria gene
network. As an example, we had a closer look at the glycolytic pathway, as it is
mentioned in [3] as the one that is well-preserved in malaria parasite. Among
9 genes from the microarray dataset that belong to this pathway as taken from
the http://plasmodb.org database, we found that they share 5 links among them-
selves. In fact, the probability of 9 randomly picked genes to have 5 links is
0.01% given the connectivity matrix. Given that some of the genes in this path-
way are not present in the dataset, this result is encouraging. Our analysis did
not pick up MAL61.160 as part of the glycolytic pathway. Instead, another pu-
tative copy, PF10_0363, was identified as a part of it, having 2 connections, as
well as gene PF10_0155 that has 4 connections.

As another example, we had a look at all major candidates for vaccination
(AMAL1, EBA175, MSP1, MSP3, MSP7, RAP1, RESA1) studied in [3]. All
these genes are very well positioned in the network, having connectivities be-
tween 20 and 40, well above the average connectivity of k = 15. Interestingly,
these vaccine candidates are connected among themselves as well as with some
other merozoite invasion proteins (MSP6, MSPS). In addition, the neighbours
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Figure 5. Sketch of a sub-network of seven major malaria vaccine candidates. The sub-network
contains major vaccine candidates (AMA1, EBA175, MSP1, MSP3, MSP7, RAPI1, RESA1)
that have been studied in [3] and some genes/proteins or groups according to our model. Small
boxes contain one gene/protein and larger boxes contain two or more related genes/proteins.
Only some links are shown. For a full list of links of the seven major malaria vaccine candidates
according to our model see Tables S4 on supplemental page.

of these vaccine candidates are enriched with myosin-like proteins, erythro-
cyte associated proteins, reticulocyte binding proteins, and zinc finger pro-
teins among others (Figure 5). For example, the erythrocyte-related group con-
tains erythrocyte binding antigenes (PF07_0128, MAL13P1.60), erythrocyte
surface antigene (PFAO110w), and erythrocyte binding proteins (PFO8_0142,
PF08_0147). The myosin-like proteins group contains 4 genes (PF13_0233,
PFL225w, MALG6P1.286, PFL1435c¢). There are 4 genes in the reticulocyte-
binding proteins group (PF13_0198, PFL2520w, MAL13P1.176, PFD0100w).
The protein-kinase group includes PF130815w, PFC0945w, PFB00150c, and
Ser/Thr protein-kinase PFB0665w. The zinc-finger related group contains one
zinc-finger protein (PFE0895) and a cell-cycle regulator with zinc-finger do-
main (PFE1415w). There are a large number of hypothetical proteins that are
linked to the vaccine candidates in our network. Several of the hypothetical
proteins from the list are linked to two major vaccine candidates, while some
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hypothetical proteins (e.g., PF10_0352, PF07_0127, PFE0365c, PFC1045c,
PFDO0715c) have links with three major vaccine candidates and are probably
worth having a closer look at. For a full list of the neighbours of these major
vaccine candidates see Table S4.

S. CONCLUSIONS

In this paper we have constructed a model of malaria gene expression net-
work by a novel method of thresholding two types of pair-wise correlation
coefficients: the Pearson correlation and the full-order partial correlation co-
efficients. The values for thresholds were determined by topological consid-
erations. Both types of correlations are essential in revealing the connections
of genes in the network. The constructed small-world, scale-free network has
hub-genes that tend to have essential cell functions, similar to other biological
networks. We propose that hubs with unknown functions warrant further in-
vestigation in the search for malaria vaccine. Finding hubs in the malaria gene
network is extremely important in guiding the search for the malaria vaccine.
Targeting a highly connecting node with a drug will result in inactivation of
a protein that could be fatal to the whole life-cycle of the malaria parasite,
whereas removing a less connected node will barely affect the whole system.

This model of malaria gene network is worth investigating further by look-
ing at various sub-networks consisting of genes that are known to be involved
in the same biological processes. Alternatively, one might want to look at the
neighbours of genes with unknown functions. This might help the process of
assigning putative functions to these genes. The links adjacency matrix of the
network studied in this paper can be found on the supplemental web-page:
www.stats.gla.ac.uk/~raya/Malaria/suppldata.html. To summarise, the thresh-
olding approach of two correlation coefficients that is proposed in this paper
suffices for the goal of studying statistical properties of a biological network
and also gives encouraging proof-of-principle results.
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Biological networks can be broken down into modules, groups of inter-
acting molecules. To uncover these functional modules and study their
evolution, our research groups are developing graph-theory based strate-
gies for the analysis of gene expression data. We are looking for groups
of completely connected subgraphs (e.g., cliques) in co-expression net-
works in which corresponding members (genes) encode proteins with
the same combination of protein domains. The common pattern shown
by a group of such cliques is a “network motif” that may be reused mul-
tiple times within organisms. We have developed algorithms for con-
structing gene co-expression networks labeled with corresponding pro-
tein sequence domain combinations, and then detected recurring net-
work motifs with similar protein domain memberships within these la-
beled networks. The statistical significance of detected network motifs
is evaluated by comparing results with those from randomized networks.
Also the biological relevance of network motifs is evaluated for shared
Gene Ontology annotations on biological processes. We applied our
approach to the malaria transcriptome and found many network mo-
tifs with three, four, or five members. Many predicted network motifs
were further supported by their existence in yeast protein interaction
networks. These results illustrate a new strategy for studying the mod-
ularity of biological networks by integrating different types of data and
cross-species comparisons. A full description of results is available at
http://mouse.ornl.gov/~xpv/camda04/.

graph algorithms, microarray analysis, clustering, network motif, gene
expression, protein domain, protein interaction, data integration



90 X. Peng et al.

1. INTRODUCTION

Gene expression microarrays provide a revolutionary approach for measur-
ing the mRNA levels of thousands of genes at the same time. Systematic analy-
sis of genome-wide expression profiles across multiple conditions, together
with integration with other kinds of data, should help us gain insight into bio-
logical networks. Functionally related genes could be clustered together based
on similar expression profiles. Additional information such as Gene Ontol-
ogy (GO) can typically be exploited to help further biological interpretation of
obtained clusters if the target organism is well studied such as yeast, mouse
and human, but this data is often not sufficiently available for other important
organisms. General clustering algorithms, moreover, produce clusters of rela-
tively large size, making it difficult to test the clusters of interest using wet-lab
experiments. In addition, general clustering algorithms do not provide reason-
ably detailed information about the relationship among genes in a cluster, such
as if some genes directly interact with each other and how. This makes it even
more difficult for individual researchers to verify the associations among genes
predicted by clustering algorithms experimentally.

Additional independent information is needed to break big clusters into
smaller ones and thereby provide more detailed insights into relationships
among genes within subclusters. Protein sequence information is a good can-
didate. Proteins can be decomposed into protein domains, both the units of
protein function and evolution. More importantly, there is considerable evi-
dence that biological systems build various functional units by reusing protein
domains in different combinations [10]. We can hence attempt to decode the
common mechanisms used in biological systems through studying protein do-
mains.

Duplication and divergence are important components in the evolution of
genomes and biological complexity. Duplicated genes can retain or change
their interaction partners. They may, over time, replace interaction partners,
but the duplicated gene might still interact directly or indirectly with a part-
ner having similar characteristics to the original partner. Multiple instances of
MAP3K-MAP2K-MAPK three-tiered cascades constitute a well studied ex-
ample [4]. It is still unknown whether it is a general principle in biology that
different genes form instances of common patterns such as in MAPK path-
ways.

In this study, we developed novel algorithms to decompose the clusters of
genes into smaller ones by integrating protein domain information into the
clustering algorithm. Our algorithm is able to provide more detailed informa-
tion about putative relationships among genes within clusters by examining
corresponding protein domain functions. In addition, we provide evidence that
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some units of similar function are temporally regulated differently at the tran-
scriptional level. To increase confidence, our approach is able to integrate ad-
ditional information, such as protein interaction data from different species.
Yeast is a good source because rich information has been already collected.

2. MATERIALS AND METHODS

2.1. Co-expression Networks

In a co-expression network, the genes are represented by vertices (nodes).
An unweighted and undirected edge (connection) is placed between two genes
if they are co-expressed, as determined by having a correlation higher than
some specified threshold. A malaria transcriptome expression data set [3]
was downloaded from the CAMDAO4 website (http://www.camda.duke.edu/
camda04/datasets/) and the Complete Dataset was used in this study. All
Cy5/Cy3 ratio intensities were log2 transformed. For ORFs represented by
multiple oligonucleotides on the DNA microarray, the expression ratios were
averaged. Gene pairwise correlation coefficients were calculated using the
standard Pearson method. Correlation coefficients between pairs of genes com-
puted with fewer than 33 of 46 timepoints (approximately 75%) due to missing
values were discarded. The final correlation matrix had 3,842 unique ORFs
after removing those genes which did not share 33 or more non-missing data-
points with at least one other gene. Based on a selected cutoff value, the calcu-
lated correlation matrix was converted into a binary symmetric matrix of the
same size. An entry in this matrix was set to 1 if the corresponding correlation
coefficient was greater than or equal to the cutoff value, otherwise the entry
was set to 0. Rows (columns) with all-zero entries were deleted from the bi-
nary matrix, corresponding to the elimination of isolated vertices in the graph
associated with such a matrix.

2.2. Protein Domain Annotation

Plasmodium falciparum protein sequences and GO annotations were down-
loaded from PlasmoDB (http://plasmodb.org). To get protein domain annota-
tions, all protein sequences were searched against Pfam HMM library (Re-
lease 14.0, global, Is mode, Pfam-A HMMs with a total of 7459 families)
using hmmpfam, a program provided by HMMER package. The trusted cut-
offs built in Pfam library were employed. The HMM library was down-
loaded from Pfam website (http://www.sanger.ac.uk/Software/Pfam). HM-
MER 2.3.2 was downloaded from http://hmmer.wustl.edu. The computa-
tion was done on the OIT Cluster of 32 nodes of the SInRG project
(http://icl.cs.utk.edu/sinrg/index.html).
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2.3. Network Motif Discovery

The concept of “network motifs” was first proposed by Alon’s group in
studying various real world networks including biological networks [8,11].
Network motifs were defined as patterns of interactions recurring more fre-
quently in a network than in randomized networks. Here we extended the con-
cept of network motif to labeled graphs by studying patterns of vertex labels
(Figure 1). As shown in Figure 1A, a hypothetical network motif might be a
clique of three genes. These genes are highly co-expressed as required by the
correlation cutoff to create an edge. In addition, each gene has its own charac-
teristic protein domain information as reflected in its label. Figure 1B shows 7
hypothetical genes in a co-expression network forming three distinct instances
of the network motif as described in Figure 1A. In each of the instances, three
genes are highly correlated with each other as indicated by the edges, and their
protein domain information maps one-to-one to the specified network motif
based on rules as described below. Among the three instances, instances I and
III share at least one gene (here two genes) and we say these two instances are
“overlapping”. On the other hand, instance I does not share any genes with in-
stance 11, so these two are “non-overlapping”. Instances I and III form another
pair of non-overlapping instances. In general, we insist that in a network motif

A. Network Motif
’ Protein domain A

/ \ . Protein domain B and C

wm—s & Protein domain D
B. Instances
Gene 1 Gene 4 Gene 7
B2 e B & & =

Gene2 Gene3 Gene5 Geneb Gene3 Geneb
I II 11

Figure 1. Schematic of network motif. (A) A network motif is a pattern as a complete connected
subgraph (e.g., cliques) of certain size k (k = 3 here) and the vertices are labeled as reflected
by the shapes and shadings. Here vertices represent genes and the vertex labels are the protein
domain information of the proteins encoded by the corresponding genes. (B) Seven hypothet-
ical genes in a co-expression network forming three distinct instances of the network motif as
described in (A). In each of the instances, three genes are highly correlated with each other as
indicated by the edges, and their protein domain information maps one-to-one to the network
motif. Instances II and III share at least one gene (here two genes) and we say these two in-
stances are “overlapping”. Instance I does not share any genes with instance II, so these two are
“non-overlapping”. Instances I and III form another pair of non-overlapping instances.
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of size k (k =3 in the above example) every pair of vertices is joined by an
edge, that is, the network motif forms a clique.

Starting from the above calculated P. falciparum co-expression network, we
converted it into a labeled graph whose vertices (genes) were labeled with their
corresponding annotated Pfam protein domain information. The clique-based
clustering algorithm of [6] was applied to this labeled co-expression network to
search for patterns of highly co-expressed genes or network motifs (Figure 1).
For a specified k, we scanned all k-vertex cliques and grouped all cliques found
based on the protein domain information. Within a group of cliques, protein do-
main information in each clique can match one-to-one against protein domain
information of genes in any other clique. These groups of cliques are called
“putative network motifs”. Next, a parameter f specifying the minimum num-
ber of mutual non-overlapping instances in a network motif was used to trim
the list of putative network motifs. Only putative network motifs having at least
f non-overlapping instances were kept as network motifs.

To account for the abundances of different domains in the whole genome,
we further assessed the statistical significance of each detected network motif
by comparison to randomized networks. Starting from the real co-expression
network, we generated a randomized network by randomly permuting the do-
main labels of all genes while leaving the connection structure of the graph
untouched, and then ran the same network motif detection procedure on the
resulting randomized network. This process was repeated 1,000 times. The
fraction of times the same network motif was found in the randomized net-
works was defined as the p-value for the network motif.

Matching of protein domain information between two genes can be clas-
sified into many possible levels, but here we propose only domain matching
levels A and B. Level A requires that two proteins have the exact same type of
domain, the same number of each type of domain and all domains in the same
order in the respective protein sequences from N-terminal to C-terminal. Do-
main matching level A is a global alignment that suggests that the two proteins
are essentially the same in terms of domain architecture. Domain matching
level B only requires the same types of domain, with no constraints on the
number and the order of domains in the proteins. At this level, the domain du-
plication and domain shuffling during evolution are permitted while suggest-
ing that the basic molecular functions of each protein might be similar. The
network motif detection procedure was run separately using different domain
matching levels.

24. Protein Interaction Networks

A yeast protein interaction dataset was downloaded from the BIND web-
site (http://www.blueprint.org/bind/bind.php). In this protein interaction net-
work, genes were again represented by vertices (nodes). An un-weighted and
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undirected edge (connection) is placed between two genes if there is a doc-
umented interaction between these two genes. Since the topologies of most
protein complexes are unknown at this time, we converted protein complexes
into binary interactions using the “matrix” model, which put edges between all
possible pairs of genes in the same protein complex [1]. The use of the ma-
trix model facilitates searching for possible instances of network motifs found
in co-expression networks in protein complexes. Yeast GO annotations were
downloaded from SGD (http://www.yeastgenome.org/).

2.5. Data Visualization

Detected network motifs are presented on the web using ALIVE (http://
mouse.ornl.gov/alive). Expression plots were drawn using R (http://www.
r-project.org).

3. RESULTS

3.1. Co-expression Networks

To convert a correlation matrix into a corresponding binary co-expression
network, a suitable cutoff value for the correlation coefficient must be cho-
sen. Based on the previous reports that biological networks, including co-
expression networks, follow a scale-free distribution of connectivities [2,7],
we chose a cutoff value which gave fewer vertices with higher degree (con-
nectivity). Plots of the degree distribution for graphs generated under a series
of cutoff values suggest that a correlation cutoff value of 0.95 is appropriate
through visual inspection (Figure 2).

This value was surprisingly higher than our expectation. We compared the
distribution of correlation coefficients of this dataset with those of several
cell/life cycle gene expression datasets and found the distribution of corre-
lations in this dataset showed a characteristic bimodal shape while others had
bell-like shape (data not shown). One of the possible reasons is that the ma-
jority of genes in this dataset exhibit periodicity [3]. Within this data set and
others, we observed that genes which exhibit periodicity tend to shift the dis-
tribution toward higher correlations. When the genes in the Overview Dataset
that were selected based on their strong periodic behavior were removed, the
degree distributions of those resulting networks did tend to have fewer vertices
of higher degrees compared to the original networks (see online supplement).
We further verified that the resulting co-expression network (R > 0.95) were
enriched (p-value < 0.001, chi-square test) with genes of periodic behavior.
About 93% (2,124 of 2,292) of unique ORFs in the co-expression network
(R > 0.95) are in the Overview Dataset of 2,714 ORFs (about 78%) while
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Figure 2. Degree distribution of co-expression networks generated under different cutoff val-
ues of correlation coefficient (R). For each cutoff value (shown at the bottom of each plot), a
co-expression network was generated (see the main text for details), and the histogram of the
degrees of all vertices (the numbers of connections of vertices) was plotted using R with default
settings. The horizontal axis is the vertex degrees and the vertical axis is the relative frequencies.

only about 36% (559 out of 1550) of those genes removed by this cutoff were
in the Overview Dataset.

3.2. Prediction of Network Motifs

Using a series of values for parameters &, the size of network motifs and
f, the minimum number of non-overlapping instances, we found a number of
putative network motifs under different domain matching levels (Table 1). As
shown in Table 1, both increasing k and f decrease the number of network
motifs detected (first number in each cell). More network motifs were found
at domain matching level B than at level A with the same corresponding para-
meter values for k and f, probably because of the less stringent constraints on
matching protein domain information. More studies are needed to check if a
better coverage is achieved at domain matching level B by including more dis-
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Table 1. Summary of the number of putative network motifs detected with different
set of parameter values

Domain matching level A

k=3 k=4 k=5 k=6
f=2 88,25 18, 11 6,5 1,1
f=3 3,2 0,0 0.0 0,0
Domain matching level B

k=3 k=4 k=5 k=06
f=2 197, 53 87,29 32,17 9,6
f=3 17,13 6,6 0,0 0,0
f=4 5,5 0,0 0,0 0,0

k: the size of network motifs to search for. f: the minimum number of mutual non-overlapping
instances for a network motif. Within each cell the first number is the number of network motifs
found in malaria co-expression network (R > 0.95) with the corresponding parameter values,
and the second number is the number of those network motifs having at least one instance in the
yeast protein interaction network.

tantly related genes, or it just simply adds more noises. The majority (>95%)
of putative network motifs have p-values less than 0.05 in all cases.

We assumed that genes in the same instance of a network motif should share
the same biological process if they are indeed functionally related, though each
gene may have different molecular functions. Therefore, the biological rele-
vance of the putative network motifs was evaluated by simply counting the
number of genes within an instance that share the same GO terms in a bio-
logical process category. Although the GO annotations on malaria genes are
relatively limited, we can still observe that genes with GO annotations in the
same motif instance did tend to share similar terms. We also used the func-
tional gene groups as provided in [3] to check the similarity of functions of
genes in the same instances, and this gave similar results.

Figure 3A shows a putative network motif detected under domain match-
ing level A, k =6 and f = 2. This motif consists of six highly co-expressed
genes. Three of six genes have the same domain combination as two domains
ordered from N-terminal to C-terminal, DEAD/DEAH box helicase (PF00270)
and Helicase conserved C-terminal domain (PF00271). These genes are in-
volved in various aspects of RNA metabolism as suggested by the Pfam do-
main annotation. One of the six genes has three WD domains, G-beta re-
peats (PF00400), one has a Brix domain (PF04427) and the last one has
GTPase of unknown function (PF01926). The protein domain functions sug-
gest that this network motif is involved in ribosome biogenesis [5,9]. Fig-
ure 3B shows the P. falciparum genes form various instances of the net-
work motif through different combinations of genes. (Genes are shaded in
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Figure 3. An example network motif. (A) A putative network motif detected at domain match-
ing level A with parameter values k = 6 (size) and f = 2 (minimum number of mutual
non-overlapping instances). This network motif consists of six highly co-expressed genes and
three of them have the same domain combination as two domains ordered from N-terminal
to C-terminal, DEAD/DEAH box helicase (PF00270) and Helicase conserved C-terminal do-
main (PF00271). One of the six genes has three WD domains, G-beta repeats (PF00400), one
has a Brix domain (PF04427) and the last one has GTPase of unknown function (PF01926).
(B) Thirteen P. falciparum genes form various instances of the network motif through different
combinations of genes. Genes are shaded in the same way as those Pfam accession numbers
shown in (A) to indicate their corresponding domain information. (C) The expression profiles
of those 13 genes.

the same way as those Pfam accession numbers shown in Figure 3A to in-
dicate their corresponding domain information.) Only 5 of 13 genes were
assigned with functional group annotation and all of these five genes were
in Cytoplasmic Translation Machinery functional group [3]. Only 3 of the
13 genes have GO annotations. Significantly, these three genes are a sub-
set of the group of five and they all were assigned with the same GO terms
as RNA metabolism (GO:16070), nucleobase, nucleoside, nucleotide and nu-
cleic acid metabolism (GO:6139), cell growth and/or maintenance (GO:8151)
and metabolism (GO:8152). These GO annotations are very broad, but agree
with the more specific hypothesis that these genes are related to ribosome bio-
genesis. This group of 13 genes may potentially work together in some way,
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since they all had very similar expression profiles under these diverse devel-
opmental stages. It is also possible that these genes were organized as several
small functional units. More information is needed to dissect this cluster of
genes, but this analysis might suggest some initial inferences to guide experi-
ments.

3.3. Confirmation of Prediction by Yeast Protein Interactions

We hypothesized that a predicted network motif would be more likely to be
true if it appears in other independent datasets. It will provide further support to
those predicted network motifs if they appear in a dataset from other species,
since protein—protein associations may be transferred across organisms [12].
One of the advantages of treating protein domains as functional units of pro-
teins and labeling genes with their protein domain information is the flexibility
of doing cross-species comparisons across significant evolutionary distances.
To gain further confidence in our predictions, we used yeast protein interaction
data that includes rich protein complex information, and searched for instances
of putative malaria network motifs. The second number in each cell of Table 1
shows the number of malaria network motifs having instances in yeast protein
interaction network. We can see that relatively more malaria network motifs
were supported by yeast interaction data as the parameters became more strin-
gent. The matrix model increased the coverage of the yeast proteome by in-
cluding all possible true interactions within the experimental data, but some
false interactions were also added [1]. We felt this model was the best com-
promise for module discovery. The results from the protein interaction data
should be further studied individually, especially when there is better experi-
mental verification.

Figure 4 shows the instances formed by different combinations of 27 genes
detected in the yeast protein interaction network for the malaria network motif
shown in Figure 3. Forty-five protein complexes stored in the BIND database
have at least two members belonging to this group of 27 genes. This strongly
suggests that these gene products directly interact with each other under differ-
ent conditions in various ways. One extreme example is that protein complex
11635 contains six genes forming an exact instance of the predicted network
motif. The two largest groups of genes sharing a common GO annotation in
this group of 27 genes are a group of 9 genes annotated as ribosomal large
subunit assembly and maintenance (GO:27) and the other 8 genes as 35S pri-
mary transcript processing (GO:6365). These two groups totally cover 13 out
of 27 genes. All of the evidence above suggests that this particular network
motif represents a core interaction unit for various protein complexes involv-
ing cytoplasmic translation, or even more specifically as ribosome biogenesis.
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FFO0400- PFO0400-FF 00400

Complex 11635

Figure 4. Instances found in the yeast protein interaction network for the network motif shown
in Figure 3. (A) The similar yeast network motif as shown in Figure 3. (B) A subgraph of the
yeast protein interaction network was shown, and only included vertices (genes) forming at
least one instance of the network motif. Yeast genes are shaded in the same way as in Figure 3A
to indicate their corresponding domain information. Highlighted is an instance of the network
motif in which all six proteins present in the protein complex 11635 in BIND database.

This hence supports tentative functional assignment of all the involved malaria
genes that had no prior annotation. The strength of our strategy is both to clus-
ter functionally related genes and to provide more detailed information about
relationships among these genes by integrating information from multiple or-
thogonal sources.

34. Prediction of Complementary Functional Units

A network motif represents a specific combination of individual protein do-
mains, and this combination can carry out a special function shared by individ-
ual instances as relatively independent subsystems. We hypothesized that in-
dividual instances of a network motif could function in different locations and
times, dependent upon regulation. The malaria time series data enables us to
test this hypothesis by examining the temporal expression profiles of instances
of network motifs. Figure 5 shows such an example network motif detected at
domain matching level B with parameter values k = 3 and f = 2. This network
motif represents a combination of three independent domains, AhpC/TSA fam-
ily (PF00578), protein kinase domain (PF00069) and Calcineurin-like phos-
phoesterase (PF00149) (Figure 5A). Six P. falciparum genes form two inde-
pendent instances of this network motif (Figure 5B). The AhpC/TSA family
contains Peroxiredoxins (Prxs), a ubiquitous family of antioxidant enzymes
and Prxs can be regulated by phosphorylation [13]. The paired kinase and



100 X. Peng et al.

A Network Motif D. Instances in yeast

Network motif Instances
B. Instances C. Expression profiles

PRFACII0W.

[ProoBEsC — PFog, 0131]]

PF4.0142 o NARASY S s

[PEcoTsEC |—{PFLOTZoW | .l , , —
[~+- Proao1at | [+~ pr1aorez| [+ praozsou| [~ prcorssc| [+ prooessc] [~ prLovesu]

Figure 5. Instances of a network motif showing different expression profiles. (A) A network
motif detected at domain matching level B with parameter values k = 3 and f = 2. This network
motif represents a combination of three independent domains, AhpC/TSA family (PF00578),
protein kinase domain (PF00069) and Calcineurin-like phosphoesterase (PF00149). (B) Six P.
falciparum genes form two instances of this network motif. (C) Expression profiles of these six
genes. (D) Instances of the network motif were found in yeast protein interaction network.

phosphatase may reflect that these two Prxs are tightly controlled through
phosphorylation and dephosphorylation. Of striking interest is that apparently
these six genes all have similar expression profiles and the only major differ-
ence is the timing. There is a phase difference between two instances while
all three genes within each of two instances have very similar timing. When
these expression profiles are compared with morphological data [3], we would
conclude that one instance (PFO8_0131, PFD0865¢c, PFA0390w) functions at
trophozoite stage and another (PF14_0142, PFC0775¢c, PFLO725w) at sch-
izont stage based on their peak expression values. Having instances in yeast
protein interaction data provides further support that these genes do interact
directly (Figure 5D). It is worth mentioning that none of these genes were
assigned to a functional group [3] and these six genes share very broad GO an-
notations such as cell growth and/or maintenance (GO:8151) and metabolism
(GO:8152).
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4. DISCUSSION

With the rapid development of high-throughput methods such as microar-
rays in recent years, massive amounts of experimental data have been collected
for different species under various conditions. New computational approaches
are needed to analyze these data in an integrative way and provide more re-
liable results with finer resolution for experimental verification. Here we pro-
pose a new strategy to analyze gene expression data by integrating a diversity
of additional information, such as primary sequence information and protein
interaction data. Though the present study starts with a dataset from a single
species, our approach is used here to look for patterns in other species and can
be easily generalized to begin with information from multiple species.

The strategy of integrating protein domain information into expression data
analysis was based on our hypothesis that genes/proteins form relatively inde-
pendent functional modules. Gene expressions in these modules will be well
coordinated because of selective forces or functional constraints. The possible
origins of these modules are gene duplication and reuse of protein domains.
This then implies that these modules might form some common patterns at
protein domain level that we can observe in experimental data. Our relatively
detailed predictions of association among genes as shown in Figure 5 pro-
vide rich information for experimental verification and elucidation by examin-
ing other data in light of these presumptive network motifs, including studies
of networks under other conditions. Several things can be done to refine the
analyses. For example, we might be able to combine instances of these motifs
together toward building up larger network components such as large pathways
or protein complexes. We should be able to loosen the strict requirements for
exact cliques for motifs of interest, as evolution will not always preserve ex-
act co-expression matches and not all members of a motif will duplicate. The
general approach that we have begun to outline here, we believe, can become
a useful tool to ask a number of other interesting research questions about how
networks work in the present time and how they arose to work that way over
evolutionary time.

An older version of this paper, but with color figures, is available as a tech-
nical report as University of Tennessee Computer Science Technical Report
UT-CS-05-545. See: http://www.cs.utk.edu/~library/tech_reports.php.
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Identification of periodically expressed genes (PEGs) has been widely
studied, but understanding how PEGs are distributed along chromo-
somes is largely unexplored. In this study we investigated chromoso-
mal clusters of PEGs in stages of intraerythrocytic developmental cycle
(IDC) of Plasmodium falciparum using the cDNA microarray data pro-
vided by the organizers of the Critical Assessment of Microarray Data
Analysis (CAMDA) 2004 competition. To this end, we implemented an
analysis consisting of three stages: first, fitting sinusoidal curves to the
46 time points to identify periodically expressed oligonucleoitides, sec-
ond, using a support vector machine (SVM) to assign the periodically ex-
pressed oligonucleoitides to the four known developmental stages of the
IDC, and third, defining stage-specific physically adjacent clusters and
evaluating through permutation whether there were more clusters than
expected by chance. We identified 2949 periodically expressed oligo-
nucleoitides (2204 genes) where periodicity explained at least 70% of
the variation over time, and 718, 624, 141, and 167 genes were assigned
to the ring/early trophozoite, trophozoite/early schizont, schizont, and
early ring stages, respectively, with at least 80% probability for stage
prediction. Finally, we identified 312 clusters of two or more adjacent
genes assigned to the same stage. Using a permutation-based method,
we found that we observed more clusters of size five than expected by
chance (p = 0.04). There was also a suggestion (p ~ 0.10) of more clus-
ters than expected for other cluster sizes. Our findings suggest that the
expression of periodically expressed genes may be coordinated locally
on chromosomes where there are clusters of genes within same stage,
suggesting cis-regulation.

asexual intraerythrocytic development cycle, multiple linear regression
model, support vector machine, class probability, chromosomal clusters
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1. INTRODUCTION

Plasmodium falciparum is one of the organisms that cause human malaria.
The 22.8 Mb genome of P. falciparum is comprised of 14 linear chromosomes.
Understanding the genome of P. falciparum will hopefully provide a founda-
tion for prevention and treatment of the disease. The complete P. falciparum
life cycle includes three major developmental stages: the mosquito, liver and
blood stages. In order to try and identify which genes are active in influenc-
ing the development cycle (called the asexual intraerythrocytic development
cycle (IDC)), it has been postulated genes that exhibit periodic patterns of ex-
pression are likely to be involved in regulating the IDC. Several papers have
presented methods for identifying periodically expressed genes (PEGs). For
example, Bozdech et al. [4] and others [3,16,19] quantified the periodicity of
the expression profile of each gene by using Fourier analysis. Booth et al. [3]
implemented a one-component Fourier analysis by using a linear model con-
taining sine and cosine waves. The procedure emphasized the use of standard
statistical methods, such as multiple linear regression, together with the R?
measure of goodness of fit, and F-tests for significance. Lu et al. [12] pro-
posed a more general mixture model where a periodic function (modeled with
sine and cosine waves) is convoluted with a normal distribution that allows dif-
ferent cells to be in different phases of the cell cycle. Furthermore, they used a
2-component beta-mixture to model the residual sums of squares and to obtain
the probability that a gene is periodically expressed. The straightforward lin-
ear model with sine and cosine waves used by Booth et al. [3] provides an easy
way to model a periodic function, and the R? summary succinctly summarizes
how much of the periodicity is explained by the model.

There have been several proposals for assigning PEGs to different cell-cycle
stages. Two studies have used unsupervised clustering methods to classify
genes into cell cycle phases [16,19]. However, these methods require an ar-
bitrary specification of the number of clusters in a dataset, and furthermore
cannot use prior information. Since, for Plasmodium falciparum, the stage of
action is known for several hundred genes, this information could be better
used by a good supervised classification method. Lu et al. [12] calculated the
Pearson correlations between gene profiles and “typical” transcription profiles
of genes of known stages in order to assign PEGs into stages. Booth et al.
[3] grouped the genes by comparing the ratios of the coefficient for the sine
wave divided by the coefficient for the cosine wave to genes whose phase was
known.

Bozdech et al.’s study [4] showed that the PEGs in Plasmodium falciparum
are likely to be co-regulated. Previous studies on Saccharomyces cerevisiae [ 7],
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Homo sapiens [5] and Caenorhabditis elegans [15] have demonstrated that co-
regulated genes often cluster together on chromosomes. Proteomic analysis of
the three developmental stages of P. falciparum also revealed the presence of
chromosomal clusters encoding co-expressed proteins [9]. However, the num-
ber and composition of clusters will vary substantially with the cluster defini-
tion and the experimental design (e.g., marker density) of each study. Ad hoc
criteria have been mainly used for identifying chromosomal clusters of coreg-
ulated genes, either based on a sliding window of a given distance [4,15] or
on a given number of adjacent genes [9]. Interpreting the significance of an
observed cluster is therefore challenging.

In this study, we first applied linear model used in Booth et al. [3] to identify
periodically expressed oligonucleoitides. Secondly, we assigned oligonucle-
oitides into IDC stages by using support vector machines (SVMs), a widely
used supervised classification algorithm, combined with a statistically rigorous
approach for converting the SVM results into probabilities of stage member-
ship [14]. Thirdly, we define stage-specific clusters of genes and use a stage-
specific permutation approach to examine whether more clusters, following
our definition, are observed than expected by chance. The second and third
steps of our analyses provide new insights and analytic strategies that have not
been explored in other previous studies.

2. MATERIALS AND METHODS

2.1. Data Source and Preprocessing

The organizers of CAMDA 2004 provided three datasets: the complete raw
data set, a quality controlled data set and an overview data set. In this study
we used the quality-controlled data set to simplify the preprocessing and to
facilitate comparisons with the original work on this dataset [4]. The data set
includes 5080 oligonucleotides measured at 46 time points spanning 48 hours.
The data was originally normalized using the NOMAD (Normalization of Mi-
croArray Data) database system. 243 of the oligonucleotides had a missing
value at one or more time points. We imputed missing values in the dataset
using the 10-nearest neighbor averaging method [18]. This imputation method
can be summarized as follows: if oligonucleotide x has one missing value at
time point j, the approach first finds 10 other oligonucleotides that have a
value measured at time point j, with expression most similar to x at all other
45 time points using a Euclidean metric. Then the weighted average of expres-
sion values for time point j from these 10 similar oligonucleotides is used as
an estimate of the missing intensity value in oligonucleotide x. The inverse of
the Euclidean distance was used to weight the average.
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2.2. Identification of Periodically Expressed Oligonucleotides

Since many genes were measured by more than one oligonucleotide, we
fitted a linear model for the expression profile of each oligonucleotide. For
oligonucleotide i at time point j, the variation in log expression ratios over the
course of the study was modeled as a linear combination of sine—cosine waves
as follows:

yij = boi + b1j cosQmt;j/T) + by sinQQwt;/T) + e;j, (D)

where T is the period for the cyclically expressed oligonucleotides. We
estimated the period by minimizing the sum of squared errors (SSE) of
least squares fits of known periodically expressed oligonucleotide profiles to
model (1), over different values of T'.

Equation (1) is a standard multiple linear regression model, so the regres-
sion parameters bg;, b1;, by; can be estimated using the least squares method,
for fixed T'. In order to evaluate whether an oligonucleotide is periodically ex-
pressed in the intraerythrocytic development cycle, the goodness-of-fit of the
linear model for each oligonucleotide’s expression profile was measured by
R?. The R? value quantifies the “proportion of variance explained (PVE)” by
the periodicity. The PVE falls between zero and one, and values close to one in-
dicate greater periodicity for a given T'. The statistical significance of each R?
can be determined by the F-statistic [3], F = (J — p)R*/((p — 1)(1 — R?)).
Here J is the number of time points and p = 3 is the number of parameters in
the linear model.

Selecting periodically expressed oligonucleotides based on F -statistics in-
volves multiple testing as described by Dudoit et al. [8]. The false discovery
rate (FDR) [2] has become a popular error measure for controlling the false
positive and false negative errors in this situation. We applied Taylor et al.’s al-
gorithm [17], a column-wise permutation-based method (that is, we permuted
the times in the data) to calculate the FDR. In their method, T -statistics were
used since they were testing for differences between two experimental condi-
tions. To apply a conceptually similar approach to our F-statistics is straight-
forward, and proceeds as follows:

1. Create B column-wise permutations of the times, fit the linear model

in Equation (1), and obtain F-statistics Fjp,..., Frp testing for
periodicity, for oligonucleotide i = 1,2, ...,/ and permutations b =
1,2,...,B.

2. Let F;o be the F-statistics for oligonucleotide i in the original data,
let F, be a chosen cutoff, let R = ZI'I=1 I(|F;o| = F.), and let V=

/B p i I(|Fipl = Fo).
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3. Estimate the FDR by mg V/ R, where ) is the true proportion of oligo-
nucleotides without periodicity among all the oligonucleotides 1.

We followed Taylor et al.’s methods [17] to calculate mg. Statistically signif-
icant oligonucleotides were chosen by comparing the F-statistic Fj o with a
given cutpoint F, at the estimated FDR.

2.3. Classification of Periodically Expressed Oligonucleotide

In this study, the IDC is known to contain 4 stages, namely, ring/early
trophozoite, trophozoite/early schizont, schizont and early ring, and a total
of 472 oligonucleotides (351 genes) are known to be expressed in one of
these stages [4]. Based on Table S2 and Figure 2 of the Bozdech study [4],
there are 214, 93, 131 and 34 periodically expressed oligonucleotide in these
four stages respectively. Therefore, to classify the oligonucleotides identified
in Section 2.2 into the four stages with high confidence, we used a pairwise
coupling method to solve this multi-class classification problem [11]. This in-
volves estimating class probabilities for each pair of classes, and then coupling
the estimates together for each oligonucleotide.

We employed support vector machines (SVM) with a radial basis function
(RBF) kernel as our base classifier for each pair of classes. SVM is a core
machine learning technique with a strong theoretical basis and excellent em-
pirical success [20]. Generally speaking, given a periodically expressed oligo-
nucleotide x, the SVM outputs a decision value fi; for each pair of classes k
and /. While the sign and magnitude of fi; can be used to determine the class
prediction and the confidence level of that prediction, the SVM decision value
fx1 is an uncalibrated value that does not always translate directly to a proba-
bility value useful for estimating confidence. Platt [14] proposed a parametric
model for calibration in which the class probability ry; for each pair of classes
k and [ was estimated based on: 7y = W, where A and B are estimated
by minimizing the negative log-likelihood function.

A common way to combine pairwise comparison scores ry; is through a ma-
jority voting method described by Friedman [10]. The voting method selects
the class label with the most winning two-class decisions. In our study, how-
ever, we required a confidence level in order to assign a periodically expressed
oligonucleotide into a stage. Hastie and Tibshirani [11] proposed an algorithm
to calculate coupled class probabilities for this task. For the periodically ex-
pressed oligonucleotide x, the pairwise calibrated SVM computes estimates
i for classes k, [ =1, ...,4, k # 1. Assume that ny; is the number of genes in
the training set for the classifier trained on classes k and /. We wish to estimate
{ pk}izl, where py = p(class = k|x). The algorithm of Hastie and Tibshirani
works as follows:
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1. Start with some initial p; > 0, and corresponding iix; = pr/(px + Pr)-

2. Repeat (k=1,...,4,1,...) until convergence:
A A Zk# NgiFkl R 1
“«— pp—~t—, = —
e Zk;ﬁ[ k1Kl M= + eAfu+B

4
peb/ D be b=(pr b b3 bo)
k=1

recompute the ;.

3. The final class prediction y is based on the maximum, p, <«
argmaxy(pr), and so we assign p, as the probability that the oligo-
nucleotide x falls into the predicted stage y € {1, 2, 3, 4}.

After training, class predictions were estimated for all periodically ex-
pressed oligonucleotides (identified using the methods described in Sec-
tion 2.2) that were not included in the training data. We assigned the peri-
odically expressed oligonucleotides to stage y if the maximum probability p,
was greater or equal to 0.8.

2.4. Clustering of Periodically Expressed Genes on Chromosomes

From this point onwards, we worked with genes rather than with oligo-
nucleotides. We used the Plasmodium Genome Resource (www.PlasmoDB.
org) to obtain physical locations and ordering of all genes, and marked the
stage assigned to each gene (if any). When different oligonucleotides from the
same gene were assigned to more than one stage, we assigned the gene to the
stage with the highest confidence estimate p,. Then we examined the patterns
of periodically-expressed, stage-assigned genes along the 14 chromosomes.
Using the chromosomal positions obtained, we defined a cluster as two or more
consecutive loci whose expression patterns were matched to the same stage.
Based on this definition, we could identify chromosomal clusters for each stage
for a given cluster size. Figure 1 visually shows how the chromosomal clusters
are defined based on the patterns of PEGs for a fictitious chromosome. On
this fictitious chromosome, there are 30 genes of which 20 are periodically
expressed. Solid blue, yellow, green and red colors represent PEGs assigned
to stages 1-4 (ring/early trophozoite, trophozoite/early schizont, schizont and
early ring stages), solid black symbols represents genes that are periodically
expressed but were not assigned to a particular stage and open circles are genes
that were not periodically expressed. It can be seen that there is one cluster of
size 3 in stage “blue” and one yellow cluster of size 2 for the PEGs on this
fictitious chromosome.
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Original Data

Figure 1. Patterns of stage-specific periodically expressed genes in relation to chromosomal
location. (See text for details.)

Original Data

Permuted Data Sets

Figure 2. Assessment of significance of chromosomal clustering. In the original data there is
one cluster of size 3 in stage “blue” and one yellow cluster of size 2. Three sample permutations
are shown above, and one of the permutations gives a blue cluster of size 2.

In order to evaluate the statistical significance of stage-specific chromoso-
mal clusters identified by previous algorithm, we propose a simple permuta-
tion test for this purpose. For each chromosome, we first randomly permuted
the order of all the genes, but kept the assignment of periodicity and staging
“attached” to each gene, then we counted the number of stage-specific clusters
observed in the permuted datasets with a given cluster size. Figure 2 illustrates
how the permutations were performed.

For a given number of permutations, B, we can calculate permutation
p-values pj, . for a given cluster size s, chromosome m and stage n as

B

Pran =Y _1(Njyn = Nomn)/B, )
b=1

where [ (-) is the indicator function, which equals 1 if the condition in paren-
theses is true and 0 otherwise. N, is the number of clusters on chromosome
m and in stage n with cluster size s in the permutated data b. Ny, is the num-
ber of clusters on chromosome m and stage n with cluster size s in the original
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Figure 3. The relationship between the SSE and period.

data. We also calculated the statistical significance associated with the number
of clusters on a particular chromosome, for a given cluster size, as

B 4
p;‘m=21<Zmen>ZNsmn>/B. 3)
b=1

n=1 n=1

Equation (3) does not require matching the number of clusters assigned to
each stage. For example, suppose the original data contained two clusters
in stage 1 and one cluster in stage 3, for cluster size s on chromosome m.
A permutation containing three clusters in stage 2 would be considered to have
as many clusters as the original data. The permutation p-value p}, counting the
number of stage-defined clusters of a given cluster size across all chromosomes
and stages is given as

B 14 4 14 4
ZE (3 ITHED 3 AP @
b=1 m=1n=1 m=1n=1

Similar to Equation (3), Equation (4) does not require exact matching of the
number of clusters of each stage.

3. RESULTS

3.1. Estimation of the Cycle of Periodically Expressed Genes

We used the 472 oligonucleotides (351 genes) whose staging is known to
estimate the period 7T by fitting Equation (1). Bozdech et al. [4] found that the
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Figure 4. Examples expression profiles for 4 genes shown with a least-square fit of the data
(curved line).

majority of gene profiles exhibited an overall expression period of 0.75-1.5
cycles per 48 h. For this reason we fitted Equation (1) over a range of 100 T
values evenly spaced from 1 hour to 100 hours. As can be seen in Figure 3, the
sum of squared errors over the 351 genes was minimized at 50 hours. There-
fore, we selected T = 50 for subsequent analysis.

3.2. Identification of Periodically Expressed Oligonucleotides

After fitting Equation (1), there were 2949 oligonucleotides (2204 genes)
which showed evidence for periodic expression with PVE > 0.7 (F -statistic >
50.2). Figure 4 shows examples of expression profiles for 4 genes, PFL2355w,
PFA0285¢, PFCO185w and PF11_0231. These genes were selected because
they represent four distinct sine—cosine wave profiles in the dataset. The first
peaks of the sine—cosine wave forms of these four genes were about 15 hours,
36 hours, 43 hours and 5 hours, respectively.

We observed that most of the genes which passed the PVE filtering criteria
had one of these four profiles. This suggested that there were four dominant
expression patterns in the selected periodically expressed genes.
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Figure 5. Heat map of periodically expressed genes predicted in four stages of IDC.

10,000 permutations of the data over the time points resulted in an estimated
FDR was only 0.00003, based on the F-statistic cutoff of 50.2 (PVE > 0.7),
strongly suggesting that the randomized datasets do not demonstrate periodic-

1ty.

3.3. Classification of Stage Group for Periodically Expressed
Oligonucleotides

As previously noted, there are 472 oligonucleotides (351 genes) whose stag-
ing was known. These were used as the training samples in the SVM. Ex-
cluding these oligonucleotides, we had 2545 oligonucleotides (1918 genes)
for testing. (It should be noted that some of the oligonucleotides in the train-
ing sample had PVE values less than 0.7, which explains why the number
of oligonucleotides in the combined training and testing samples does not
equal the number of periodically expressed oligonucleotides selected.) The
pairwise binary SVM classifiers with the RBF kernel generated the 6 pairwise
predictors. The 10-fold cross-validation error was 3.4%. For the 2545 oligo-
nucleotides (1918 genes) of unknown stage, we assigned 923 oligonucleotides
(718 genes) into ring/early trophozoite stage, 835 oligonucleotides (624 genes)
into trophozoite/early schizont stage, 186 oligonucleotides (141 genes) into
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Figure 6. Meta-gene expression profiles of 4 stages. Sine—cosine curves were then fitted to the
meta-expression profiles using Equation (1).

schizont stage and 199 oligonucleotides (167 genes) into early ring stage, each
with an estimated class probability p, of at least 0.8. Another 402 oligonucle-
otides (268 genes) that had class probabilities less than 0.8 were not assigned
into any of these four stages.

Figure 5 shows the stageogram of the IDC transcriptome based on the
2143 classified oligonucleotides (1650 classified genes) which had class prob-
ability at least 0.8 and the 472 oligonucleotides (351 genes) in training set
for which stage was known (class probability 1). First, the oligonucleotides
were ordered by predicted stage; from top to bottom the ordering is ring/early
trophozoite, trophozoite/early schizont, schizont and early ring, respectively.
Secondly, within each stage, oligonucleotides were sorted by probability in
descending order.

As can be seen in Figure 6, meta-expression profiles of each stage, calcu-
lated by averaging the expression values of all oligonucleotides predicted to
be in the same stage over the 46 time points, are very similar to the profiles
of the 4 representative genes shown in Figure 4. Our proposed method clearly
identifies stage-specific patterns.
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Table 1. Total number of clusters, summed over the four stages, (and empirical
p-values) on each chromosome, by different cluster sizes. Permutation of gene
order on the chromosomes was used to assess statistical significance of the
number of clusters observed of a given cluster size, on each chromosome using
Equation (3). For the total number of clusters observed across all
chromosomes, p-values are based on Equation (4)

# of adjacent loci predicted to belong to the same stage in a cluster

Chromosome 2 3 4 5

Chr-1 4(0.133) 1 (0.136) 0 0

Chr-2 15 (0.0014) 2(0.231) 1(0.117) 1 (0.018)
Chr-3 14 (0.060) 2(0.434) 2 (0.022) 1 (0.038)
Chr-4 9 (0.238) 3(0.044) 2 (0.0037) 1(0.014)
Chr-5 19 (0.034) 1 (0.870) 1(0.259) 0

Chr-6 13 (0.0025) 0 0 0

Chr-7 15 (0.016) 5 (0.0026) 1(0.114) 0

Chr-8 14 (0.080) 1(0.732) 0 0

Chr-9 16 (0.159) 2(0.509) 0 0

Chr-10 12 (0.818) 5(0.064) 1(0.319) 1 (0.076)
Chr-11 13 (0.579) 7 (0.0005) 1(0.194) 0

Chr-12 18 (0.330) 3(0.347) 1(0.248) 0

Chr-13 33 (0.150) 15 (<0.0001) 2 (0.180) 0

Chr-14 43 (0.0173) 8 (0.167) 3 (0.067)

Total 238 (0.066) 55 (0.091) 15 (0.106) 4 (0.040)

Total number of clusters: 312

34. Chromosomal Clustering

In the remaining analysis, we focused on the 351 genes with known staging,
together with the 1650 genes whose estimated class probabilities were at least
0.8, for a total of 2001 genes. There were 990 genes which were measured
by more than one oligonucleotide. Table 1 shows the number of clusters on
each chromosome of different cluster sizes. A total of 238 clusters containing
2 loci, 55 clusters containing 3 loci, 15 clusters containing 4 loci and 4 clusters
containing 5 loci were identified. It should be noted that since the chromosomal
clusters were defined in a stage dependent way, the number of clusters for
each chromosome and cluster size in Table 1 is the total number of clusters
over all four IDC stages. For example, on chromosome 1 for cluster size 2, we
identified 2 clusters at trophozoite/early schizont stage, 1 cluster at schizont
stage and 1 cluster at the early ring stage, so the total number of clusters on
this chromosome is 4.
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Figure 7. Whole chromosome view of 74 large clusters distributed on 14 chromosomes.

Figure 7 shows a whole genome view of the 74 larger clusters (where 3
or more adjacent genes were mapped to the same stage). Blue, yellow, green
and red colors represent clusters identified at ring/early trophozoite, tropho-
zoite/early schizont, schizont and early ring stages, respectively; circle, di-
amond and triangle symbols denote cluster sizes from 3 to 5, respectively.
It can be seen that most large clusters were identified at ring/early trophozoite
and trophozoite/early schizont stages with cluster size 3.

Our permutation analysis gave empirical p-values for each cluster size,
within each stage and chromosome. We used 20,000 permutations to generate
the empirical p-values. For these stage-specific results (Equation (2)), partic-
ularly small permutation p-values were associated with one stage 4 cluster of
size 4 on chromosome 2 (p = 0.00045), two stage 3 clusters of size 3 on chro-
mosome 2 (p = 0.0002), and two stage 4 clusters of size 3 on chromosome 11
(p = 0.00065). Since p-values were estimated for 14 chromosomes, 4 stages,
and 4 cluster sizes (224 tests), these values should be interpreted cautiously
and adjusted for multiple testing; a Bonferroni adjustment for p = 0.05 would
consider only p = 0.0002 as significant. Therefore, we used the permutation
analysis to also obtain summary p-values for the total number of clusters over
all stages, and over all chromosomes. The total number of stage-specific clus-
ters of size five (Equation (4)) was greater than the number expected by chance
(Table 1; p = 0.040); for smaller clusters, the number of observed clusters also
appeared to be slightly larger than expected (Table 1; size 2: p = 0.066, size 3:
p = 0.091, size 4: p = 0.106). For the four chromosomes where clusters of
size 5 were observed, chromosome-specific estimated p-values (Equation (3))
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for the number of clusters observed were less than 0.04 for three of these four
chromosomes (and p = 0.076 for the fourth). Empirical significance level es-
timates that required matching the number assigned to each stage (rather than
the total number of clusters across all stages) were much smaller than the val-
ues shown in Table 1, and indicated many significant patterns among cluster
sizes of 2 and 3. It is worth noting that the significance of larger cluster lengths
does not have be smaller than the significance of shorter cluster lengths, since,
following our definition, a cluster of size 5 is not also counted as two clusters
of size 4.

4. DISCUSSION

In this study we proposed a comprehensive procedure with solid statistical
basis to identify periodically expressed oligonucleotides, classify these oligo-
nucleotides into different stages of the intraerythrocytic developmental cycle of
P. falciparum and map them to chromosomes to detect chromosomal clusters.

We identified 2949 oligonucleotides (2204 genes) were periodically ex-
pressed in Plasmodium falciparum by our definition, suggesting that almost
half of the Plasmodium falciparum genes (2204 out of 4488) are transcrip-
tionally involved in stage-specific activities. For comparison, Spellman et al.
[16] identified only 800 PEGs out of 6178 yeast genes. Most of the PEGs
were assigned to either the ring/early trophozoite or the trophozoite/early sch-
izont stages of the IDC. Our IDC stageogram demonstrates clear boundaries
among the four IDC stages, unlike Bozdech’s study [4] where the stageogram
showed a cascade of continuous expression. Due to our selection criteria of (a)
at least 70% of variation explained by the periodicity, and (b) stage classifica-
tion probability of at least 80% the oligonucleotides in our stageogram were
highly selected for clear and consistent periodic signatures.

We identified many more clusters than Bozdech et al.’s study [4]. They de-
fined a chromosomal cluster as a region in which the correlation of 70% of the
possible pairs of adjacent genes on the same chromosome was greater than or
equal to 0.75. Based on this criterion, they found only 37 clusters consisting
of 3 genes and 14 clusters consisting of more than 3 genes. In our study, there
were 55 clusters with 3 genes and 19 clusters consisting of more than 3 genes.
Many clusters detected in their study were also found in our study. For exam-
ple, 34 of 51 larger clusters (3 genes or larger) identified in their study were
also found in the 74 larger clusters we detected. The seven genes of the SERA
family that they found on chromosome 2 [13] were observed in two of our clus-
ters. The first SERA gene cluster contained two genes in the trophozoite/early
schizont stage, and a second SERA gene cluster contained 5 genes in the sch-
izont stage. Based on our study and that of Bozdech et al. [4], it appears that
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there were few large clusters in the P. falciparum genome. Most (94%) of the
chromosomal clusters that we identified were of size 2 or 3. It is also interest-
ing to note that there was no obvious difference in cluster-distribution across
the chromosomes; for example, approximately 33% of the clusters were on the
two longest chromosomes 13 and 14, and these chromosomes form approxi-
mately 35% of the total genome length.

In addition, we downloaded gene annotations with GO terms and EC for
P. falciparum strain 3D7 from www.PlasmoDB.org. Our primary analysis
showed that some PEGs with similar functions are clustered together. For the
larger clusters, where there are 3 or more adjacent genes in a cluster, Bozdech
et al.’s study [4] found only two clusters (SERA gene cluster and ribosomal
protein gene cluster) out of the 51 large clusters where the genes were known
to have a functional relationship. However, we found 11 clusters (including
the above two) out of our 74 larger clusters that contained at least two loci
whose annotation clearly indicated that the genes are functionally related.
For example, we identified an energy gene cluster (PF10_0121, PF10_0122
and PF10_0123) assigned to the ring/early trophozoite stage on chromo-
some 10. An RNA processing gene cluster (MAL13P1.322, MAL13P1.323
and PF13_0340) and an ATP binding gene cluster (PF13_0177, PF13_0178,
PF13_0179 and PF13_0180), both assigned also to the ring/early trophozoite
stage, were found on chromosome 13. The permutation p-values for these
three clusters are 0.275, 0.0018 and 0.045, respectively. This information may
be useful when annotating the function of the many unknown gene products in
the P. falciparum genome.

It should be noted that there are some limitations in this analysis. The choice
of a single value for the period T for all oligonucleotides may not be opti-
mal, and therefore there may be additional PEGs with shorter or longer cycles.
Furthermore, the sinusoidal model in Equation (1) will not do a good job of
identifying “spikes”, or genes whose action is of short duration that may ini-
tiate stage-specific patterns of expression. Therefore, such genes will be left
out of the identified clusters. Another concern is that our estimate of the FDR
for identifying periodically expressed oligonucleotides was very small, which
gives rise to concern about underestimation. One possible reason for a down-
ward bias in FDR is that there were significant serial correlations in the expres-
sion levels of a given gene over time due to the slowly varying nature of the
cell culture. Anderson et al. [1] pointed out that permutation of raw data under
the full model will not maintain type I error close to a nominal ewhen there is
collinearity among the independent variables. They suggested that permutation
of residuals under a serial correlation model would be a better choice in this
case.

The definition of a gene “cluster” is inherently somewhat ad hoc. Our defin-
ition is quite restrictive, since only adjacent PEGs with the same assigned stage
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are called clusters. In fact, some of these clusters may represent tandem gene
duplications. Our definition leaves out genes whose periodicity may be harder
to detect, clusters made up of genes acting in different stages but in the same
functional capacity, or clusters where there are one or more unrelated genes
lying within the cluster. Following the latter idea, clusters could be defined by
estimating the density, along the chromosome, of genes that are predicted to be
related [6]. Nevertheless, our approach identified several clusters that seemed
to be functionally important when gene function was examined.

Our permutation analysis gave empirical significance levels associated with
each stage, each cluster size, and each chromosome. We also estimated, for a
given cluster size, the significance levels for the total number of clusters in any
stage on each chromosome, and the number across all chromosomes, and these
empirical p-values are intrinsically adjusted for the multiple testing involved.
The results suggest a small excess of clusters over the number that might be
expected by chance, but in fact we can expect these results to reflect a conserv-
ative estimate of the number of real stage-specific clusters due to the imperfect
prediction of PEGs and stages, and the strictness of our definition of a cluster.
Hence, our analysis provides evidence for stage-specific cis-regulation within
functional clusters.
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Abstract

Keywords:

There is very little information available with regard to gene regulatory
circuitries in Plasmodium falciparum. In an attempt to discover tran-
scription factor binding motifs (TFBMs) in P. falciparum, we consid-
ered two approaches. In the first approach, gene expression data from
asexual intraerythrocytic developmental cycle generated every hour for
48 hour post-infection were fed into the ISA (Iterative Signature Al-
gorithm), which outputs modules composed of sets of genes associated
with co-regulating conditions. Putative TFBMs were discovered by ap-
plying the AlignACE program on the resulting gene sets. In the sec-
ond approach, the MotifRegressor program was used to predict potential
motifs associated with induced and repressed genes for each time point
and then clustered based on the strength of their correlation to the gene
expression (i.e., motif coefficients) across different time points. A total
of 637 and 840 putative motifs were predicted by the MotifRegressor
and ISA-AlignACE programs, respectively. All this information was up-
loaded into a database, thus making it easy to devise complex queries.
Using published information on known motifs, we were able to validate
some of our results. In addition, modules consisting of putative tran-
scription factors and related genes were also investigated. This work pro-
vides a bioinformatics methodology to analyze transcription regulation
and TFBMs across the whole genome. By constructing a comprehen-
sive relational database and an intelligent, user-friendly query system,
biologically meaningful conclusions can be drawn easily even by an in-
vestigator with no prior knowledge of databases.

transcription factor, regulatory elements, motifs, G-box, SPE elements,
CPE elements, var genes, heat shock protein, SERA, EBA140, Plas-
modium falciparum
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1. INTRODUCTION

The challenge of CAMDA’04 was to analyze the gene expression data,
which was generated by DeRisi’s laboratory using transcripts from the or-
ganism Plasmodium falciparum, harvested at 46 different time points during
its intraerythrocytic developmental life cycle (Bozdech et al., 2003). P. falci-
parum is one of four species of the parasitic protozoan genus Plasmodium,
and is responsible for the vast majority of malaria episodes, affecting 200—
300 million individuals and causing 0.7-2.7 million deaths per year worldwide
(http://www.who.int/malaria).

In this paper, we focused on mining for information related to gene reg-
ulation and transcription factor binding motifs (TFBM), which is important
considering the fact that direct experimental identification of TFBMs is slow
and laborious. We used two recently developed algorithms to predict potential
TFBMs: AlignACE (Hughes et al., 2000; Roth et al., 1998) and MotifRegres-
sor (Conlon et al., 2003; Liu et al., 2002). Using the limited information on
known motifs, we were able to validate some of our results.

The AlignACE (Aligns Nucleic Acid Conserved Elements) program is
best applied on sets of co-regulated genes. Standard clustering tools such as
hierarchical, K-means clustering, and self-organizing maps assign genes to
unique clusters by relying on the similarity of the expression profiles of the
co-regulated genes across all conditions for their identification (Han and Kam-
ber, 2001). However, many genes play multiple roles under various conditions
in complex, interrelated biological processes. We, therefore, obtained clusters
of potentially co-regulated genes by using the Iterative Signature Algorithm
(ISA), which (a) allows for clustering of genes that exhibit similarity of the
expression profiles only at specific sets of time points, and (b) allows for genes
to be part of multiple clusters (Ihmels et al., 2002). This permits the ISA ap-
proach to explore complex interrelationships among genes. It outputs a set of
transcription modules, each of which is a self-consistent unit consisting of po-
tentially co-regulated genes and the regulating conditions (Ihmels et al., 2004).

One of the difficulties with the motif discovery programs is that they pro-
duce a large number of predicted TFBMs along with associated scores repre-
senting the statistical significance of the predictions. However, drawing biolog-
ically useful inferences or conjectures remains a difficult problem. In this pa-
per, we present a new approach that will facilitate the process of drawing mean-
ingful conclusions that are likely to be useful to a biologist. This is achieved by
constructing a comprehensive relational database for Plasmodium falciparum
with the predicted Transcription Factor Binding Motifs called PlasmoTFBM
(Figure 1), and an intelligent, user-friendly query system.
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Figure 1. Flowchart for mining TFBMs for P. falciparum.

The PlasmoTFBM database contains the following information:

1. All the discovered TFBMs, along with their significance scores, the soft-
ware using which they were found, and the genes whose upstream se-
quences contained them along with their location in those upstream se-
quences.

2. Clusters of co-regulated genes (referred to as transcription modules, or
simply modules), and the time points at which they were found to be
co-regulated.

3. All genes and ORFs in the genome, their chromosomal location, their
functional annotation, and their expression information at all the time
points during the development of the parasite.

We show, with examples, how an investigator can generate “conjectures”
using this database, which could then be used to perform directed laboratory
experimentation.

The only other related work on studying genome-wide TFBMs in P. falci-
parum is by Militello et al., where they applied the AlignACE software to the



124 C. Yang et al.

upstream sequences of heat shock proteins (Militello et al., 2004). The current
work provides a more comprehensive analysis by using gene expression data
to support the results. While our extensive results are available at our website
(http://biorg.cs.fiu.edu/CAMDA?2004), because of space-limitations, in this pa-
per we will confine our discussions to a few select examples.

In Section 2, we introduce some of the methods used in this paper. In Sec-
tion 3, we briefly describe the experiments that were performed and present a
small cross-section of the results. In Section 4, we conclude with some discus-
sions.

2. METHODS

2.1. Transcription Modules

For this paper, we define a transcription module (or simply, module) as a set
of co-regulated genes along with a set of conditions (time points) during which
they appear to be co-regulated. We started with three collections of genes that
were known to be (or conjectured to be) co-regulated (described in detail in the
following paragraph). These collections were then refined using the ISA. The
modules output by this algorithm satisfy a self-consistency property, which
implies that the set of genes and the set of conditions show a strong correlation
with each other.

Transcription modules were generated in several different ways, each
time by applying the ISA algorithm (Bergmann et al., 2003; Ihmels et
al., 2002). A first set was generated by starting from a specific interesting
gene. For this paper, 13 putative transcription factors were chosen. They
are MAL13P1.213, MAL7P1.86, MALS8P1.131, PF07_0057, PF10_0143,
PF13_0043, PF14_0469, PFA0525w, PFB0290c, PFB0730w, PFE0305w,
PFEO415w, and PFI1260c. A second set of modules was generated by starting
from collections of genes known to be involved in the same function (e.g.,
heat shock proteins); such sets were obtained from the PlasmoDB website
(http://www.plasmodb.org) (Bahl et al., 2003). A third set was generated by
starting from random initial sets. User-defined thresholds for the ISA method
were chosen as follows: gene thresholds were selected from 1.0 to 2.5 with
a step of 0.1, and condition threshold was fixed at 2 (it was held constant
because its choice had a negligible effect on the output over a compara-
ble range, as was also observed in Thmels et al., 2004). In total 217 tran-
scription modules were obtained with gene sets ranging in size from 10
to 500. All the 217 modules can be found on the supplemental website at
(http://biorg.cs.fiu.edu/CAMDA2004/).
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2.2, AlignACE

AlignACE is a Gibbs sampling algorithm for detecting motifs that are
over-represented in a set of DNA sequences (Hughes et al., 2000; Roth
et al., 1998). A C++ implementation was downloaded from their website
[http://atlas.med.harvard.edu]. The upstream sequences of co-regulated genes
obtained from the transcription modules (described above) were downloaded,
and AlignACE was used to search for motifs in them. For our experiments with
AlignACE, the GC content was set at 19.36%, the GC-content of the P. falci-
parum genome (Gardner et al., 2002).

2.3. MotifRegressor

MotifRegressor is a second motif-detection tool used in this work. It first
uses MDscan as a feature extraction tool to construct candidate motif matrices
and then applies regression analysis to select motifs that are strongly correlated
with changes in gene expression (Conlon et al., 2003; Liu et al., 2002). For our
experiments, the upstream sequences were cleaned up so that single repeats
of at least 10 bases and double repeats of at least 16 bases were removed. As
mentioned below, MotifRegressor was applied separately on gene expression
data from the 46 time points. MotifRegressor has the advantage of using a
more sophisticated background model (third-order Markov model), and selects
for motifs that explain the data and correlate with the expression behavior of
interest. It also provides significance scores for the discovered motifs.

For most part, we used the default settings for MotifRegressor. In this pro-
cedure, upstream sequences are first ordered by their relative gene expression
values, then the top 50 sequences are chosen as a seed to obtain matrices
for w-mer motifs (here we used 5 < w < 15). Using a semi-Bayesian scor-
ing function, the 50 highest-scoring motifs are obtained and then refined by
using the 250 sequences with the highest relative gene expression values. Se-
quence Motif-Matching Score is generated in this step to determine how well
the upstream sequence of a gene g matches a motif m. For motifs reported by
MDscan, gene expression values were regressed on sequence motif matching
score using a stepwise linear regression procedure. The candidate motifs with
a significant p value (p < 0.01) are retained.

24. Data

The gene expression data that passed all quality control filters (QC data)
were downloaded form the CAMDA website. The gene expression data was
available for every hour up to 46 hours post-infection (hpi). Standard R pack-
age routines (based on the K nearest neighbor method) were used to im-
pute missing values (Troyanskaya et al., 2001). Regulatory Sequence Analysis
Tools were used to extract upstream sequences for the ORFs (van Helden,
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2003). For the analysis, the length of the upstream sequences used was
2000 bp.

2.5. Generating Potential TFBMs

The QC data and the corresponding upstream sequences were analyzed. The
ISA algorithm was applied on available collections of related genes. The re-
sulting transcription modules were used as initial sets to run AlignACE re-
sulting in one set of motifs. Then, the MotifRegressor software was ran on
the gene expression data for each of the 46 time points separately, to obtain
46 sets of significant motifs. Motifs with identical consensus sequences were
merged using Perl scripts (the cleaning step). There were 1077 motifs gener-
ated from MotifRegressor and 936 from AlignACE. After the cleaning step,
637 MotifRegressor and 840 AlignACE motifs remained.

2.6. Database

A relational database called PlasmoTFBM was designed and implemented
using MySQL to store all the available information. This includes the gene
expression data, generated significant motifs and modules, gene annotation in-
formation including the functional information and the chromosomal location.
Figure 1 shows the scheme used for the analyses of the data.

2.7. Web Query and Visualization

Web query interface was implemented using PHP (PHP: Hypertext Prepro-
cessor). Although it is possible to design complex queries for the Plas-
moTFBM database using Perl DBI, it requires non-trivial expertise to be able
to use it effectively. The motivation for the query system was as follows. Most
biologists perform research on a small set of genes, usually a set of genes that
are involved in a specific function or a specific pathway. Such a biologist would
be interested in knowing whether this database has results that are relevant to
their genes of interest, i.e., what other genes are co-regulated with the ones in
questions, what motifs might they share, what developmental stage or func-
tional pathway might they be involved in, what transcriptional factors may be
regulating the genes of interest, and finally, what biologically meaningful con-
jectures can result from the analyses and that may be relevant to the genes of
interest. Answers to such questions may be the starting point for further inves-
tigations for the biologist. A handy web-based query system could automate
some of the analyses.

Consider the following example. Assume that the genes of interest are
MALI3P1.60 and MAL7P1.86. The MALI3P1.60 encodes the protein erythro-
cyte-binding antigen 140 (EBA140), which is implicated in merozoite invasion
using a sialic-acid-dependent receptor on human erythrocytes (Baum et al.,
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Figure 2. Motifs visualized in the upstream sequence of all the SERA genes of interest. The line
indicates the upstream sequence with the translation start site at the right end. Motifs labeled as
MO, M1, M2, M3, and M4 correspond to motifs Motif.P29.5.3BG, Motif.N29.6.15BG, Mo-
tif. P31.5.22BG, Motif.P33.5.10BG, and Motif.P35.6.3BG, respectively. Red color represents
motifs in the forward direction while blue color represents those in the reverse direction.

2003; Bozdech et al., 2003; Thompson et al., 2001). The open reading frame,
MAL7P1.86, codes for a putative alpha subunit of transcription initiation factor
IIE (TF IIE). In addition, both genes are expressed highly during the merozoite
stage of the parasite’s development. A biologist may be interested in studying
their relationship: Are they co-regulated (i.e., is there a transcription module
that contains both of them, is there a set of time points or conditions under
which their expression profiles are correlated)? Do they share any motifs in
their upstream regions? Can any other relationships be conjectured?

In the first step, all transcription modules that include some subset of the
genes of interest are computed, sorted by the number of genes of interest that
they contain. Next, the user may choose a subset of the generated modules
for further exploration. Suppose that the user decides to explore the module
MAL7P1.86_g2_c6, which contains both the genes of interest. The query sys-
tem also outputs the conditions (hpi 1, 27, and 41-45 in this example) and gene
sets associated with the selected module. The user could then ask for the list of
all the motifs found in the module MAL7P1.86_g2_c6, and under the selected
conditions (say, hpi 27, 42 and 45 in this example).

Visualization tools are provided to visualize the final results in a more mean-
ingful way. All motifs of interest are displayed using the WebLogo notation
(Crooks et al., 2004). The user may select a specific set of genes, and the
motifs for each gene of interest is then displayed in a graphical manner by
showing their location as a function of their distance from the translation start
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site (ATG) in the upstream sequence of the gene. See Figure 2 for an exam-
ple, where we looked at group of genes that code for serine-repeat antigens
(SERA) (Rosenthal, 2004). The average gene expression profile along with
the standard deviation is also displayed for the selected genes. All images are
generated dynamically using PHP and the GD graphics library. Thus, the web
interface makes it possible to mine information and visualize some interesting
results simply through a series of mouse clicks, and without the user having to
learn a complicated database or a query language.

3. EXPERIMENTAL RESULTS

There are very few regulatory elements in P. falciparum that have been
reported (Horrocks et al., 1998). We sought to validate our results using the
known motifs. We discuss some of the interesting motif groups found.

3.1. G-Box Motifs

Recently, a novel G-rich regulatory element named G-box was identified
upstream of several P. falciparum hsp genes (Militello et al., 2004). Since the
genome of P. falciparum is AT-rich (only 19.36% GC content), the G-box is
considered a unique regulatory element. We investigated motifs in seven genes
corresponding to heat-shock proteins (Hsp) or putative Hsps. The G-box was
also found by our analyses in all these seven Asp genes (Figure 3). Furthermore,
our analysis showed that the G-box motif was found to be significant at all 46
time points, and was not confined to just the isp gene family, suggesting that
the G-box is a common regulatory element, and is not stage-specific.

Next, we compared the motif sequences found by our analyses with the
published sequence, (A/G)NGGGG(C/A) (Militello et al., 2004). However,
the AlignACE method found several longer motifs containing the published
sequence for G-box. The variants of these motifs found are shown in Figure 3.

3.2. Motifs in var genes

It is known that there are nearly 50 diverse var genes distributed throughout
the parasite genome coding for variants of P. falciparum erythrocyte membrane
protein 1 (PfEMP1); they are responsible for both antigenic variation and cy-
toadherence of infected erythrocytes in malaria (Voss et al. 2000, 2003). The
ability of the parasite to switch the expression of PFEMP1 allows it to escape
specific immune responses, and changes in its antigenic phenotype correlate
with the altered properties of PFEMP1 (Voss et al. 2000, 2003). Thus under-
standing the regulatory mechanisms of PfEMP1 variants and other genes is
very critical.
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Figure 3. G-box motifs appeared in the upstream sequences of the Asp genes given in column 1.
The motifs shown using the WebLogo format (Crooks et al., 2004) were obtained by using
AlignACE on modules that included the hpi mentioned in the second column. The AlignACE
method provided the motif scores mentioned in the last column (Hughes et al., 2000).

It was observed previously that most of the var genes were expressed in the
early ring stage, but only one var gene variant is induced in the trophozoite
stage, while the others are silent. We queried our database to find the motifs
contained in the var genes. Our analysis showed the presence of two signif-
icant motifs (Figure 4): one was observed in a cluster of var genes at hpi 11
associated with inducing effect, while another motif at hpi 38 associated with
repressing effect.

Previous studies of var genes have shown that nuclear proteins bind to con-
served sequence motifs called SPE/ (CACGGACACATGCAGTAACCGA-
GAATTATTATATATAAATAT) and SPE2 (TGTGCATAGTGGTGCG) and
CPE (ATGTTGTACAT) (Voss et al., 2003). These were found by transfec-
tion experiments, and not by the use of sequence analysis or motif prediction
software (Voss et al., 2003).

We used the motif sequence information and queried our database. We
found motifs in our database that were subsequences of the SPE2 and CPE ele-
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Locus Stage Motif effect WebLogo Motif Score
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Figure 4. Some significant motifs from the var genes. The first one contains part of the CPE
motif, while the second one contains a part of the SPE2 motif (Voss et al., 2003). WebLogo
was used to display the motif. The motif scores are the result of using MotifRegressor program
(Conlon et al., 2003).

ments reported previously (Figure 4). The portions of SPE2 and CPE that over-
lapped with our motifs are underlined above. In addition, our analysis showed
that similar motifs were significant in a group of var genes that were induced
at the ring stage. In contrast, the extended SPE?2 element was found in a group
of var genes that were repressed at the schizont stage. However, these motifs
were not unique to the group of var genes, but were also present in other genes
at the ring and schizont stages. The analysis of the SPEI sequence did not
generate any potentially useful interpretations.

3.3. Discovery of Multiple Motifs

The MotifRegressor program predicted a total of 637 significant motifs
across the 46 time points. The motifs were then clustered by motif coef-
ficients, as suggested by Conlon et al. (2003). In brief, for each motif, at
each time point, the gene expression values were regressed against the up-
stream sequence motif-matching scores (reported by the MDscan component
of MotifRegressor). Consequently, each motif can be represented by a vec-
tor of 46 simple regression coefficients. The 637 motifs were then hierarchi-
cally clustered into 12 groups based on the Euclidean distances between their
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Figure 5. Motif clusters from cell cycle expression time series experiments. The 637 significant
motifs reported by MotifRegressor over one cell cycle are clustered by motif coefficients over 46
time points. This figure was produced using Genesis software package by applying hierarchical
clustering with Euclidean distance metric on the motif coefficient data (Sturn et al., 2002). Red
shades correspond to positive motif coefficients (and, therefore positive correlations with the
expression of the downstream genes), while green shades correspond to negative coefficients.
The figures indicate the stages of the parasite (R — Ring, T — Trophozoite, S — Schizont, M —
Merozoite) and the 12 clusters of motifs obtained.

coefficient vectors. The motif coefficients can be interpreted as the putative
influence of a particular motif on the expression of downstream genes. Fig-
ure 5 shows the clusters of motifs with the plot on the left showing the mo-
tif coefficients across all time points. The plot on the right side shows the
time points when the corresponding motifs were discovered as being signif-
icant. As can be seen in the figure, a majority of the motifs showed a periodic
behavior, indicating that they are regulated periodically during the P. falci-
parum IDC. The above analysis showed that many motifs were found at the
time points at which they were known to have the strongest effect (see sup-
plemental material “Time point distribution of motif clusters” at the website
[http://biorg.cs.fiu.edu/CAMDA2004/]).
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34. Motifs of EBA140

Next, we analyzed the motifs in the gene for erythrocyte-binding anti-
gen 140 (ebal40 or MALI3PI.60) that lies in P. falciparum chromosome 13
(Gardner et al., 2002). As described before, this is a particularly interesting
gene, since the corresponding protein shares structural features and homol-
ogy with EBA175 which, in turn, is implicated in merozoite invasion using
a sialic-acid-dependent receptor on human erythrocytes (Baum et al., 2003;
Bozdech et al., 2003; Thompson et al., 2001). Eight significant motifs were
identified in the upstream region of ebal40. The adjacent gene on chromo-
some 13 is MALI3PI.61 encoding a hypothetical protein that is divergently
transcribed, and therefore share the upstream promoter region with ebal40.
Analysis suggests that both these genes are tightly co-regulated, and it is not
clear which of the genes (or both) is regulated by the putative motifs reported
in their common upstream regions.

Querying the database helped us to locate a module that contained ebal40
and a putative transcription factor, MAL7P1.86, which has a peak expression
at hpi 42 (early merozoite stage). AlignACE, when applied to this module
had discovered a motif shared by the upstream sequences of the genes ebal40
and MAL7P1.86. At the spanned time period, this MAL7P1.86 and the ebal40
genes were co-expressed; they also shared common motifs, which were at
upstream locations —752 and —1330 in ebal40 (Figure 6). These two ele-
ments have very similar core sequence (“ACACA”). These two motifs were
also shared by 77 other genes that are highly expressed at 41 hpi. One possible
conjecture is that these genes are regulated by MAL7P1.86 by interacting with
these two TFBMs. This would then suggest that MAL7P1.86 is auto-regulated.
Alternatively, one could also conjecture that these genes are activated by an
unknown transcription factor that interacts at these motifs.

It is worth pointing out that the above analysis on ebal/40 and MAL7P1.86
was easily performed as a sequence of straightforward queries of our data-
base. Our belief is that with the help of domain-specific experts we can easily
generate more biologically meaningful conjectures using a database such as
PlasmoTFBM.

4. DISCUSSION AND CONCLUSIONS

Using the ISA approach, transcription modules were generated. Each mod-
ule consists of a set of potentially co-regulated genes along with a set of time
points at which the regulation is potentially occurring. Correlation and depen-
dencies between the conditions can be used to elucidate system-level transcrip-
tional relationships. Compared to other existing clustering approaches (Eisen
et al., 1998; Tamayo et al., 1999), the ISA algorithm does not require the genes
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Figure 6. Motifs found in upstream of gene ebal40. Boxed motifs are motifs shared by genes
ebal40 and the divergently transcribed MAL7P1.86 encoding a putative transcription factor (as
well as other 77 other genes). Motif scores were as reported by the MotifRegressor program.
The gene score shown on the last column indicates how well the upstream sequence of a gene
matches a motif in terms of both degree of matching and number of sites (Conlon et al., 2003).

in a cluster to be correlated under all the conditions. It also allows genes to be
part of multiple modules, which is a likely event since many genes are involved
in different pathways at different time points.

We applied two existing motif detection tools on the CAMDA data sets.
Both methods found a large number of potential transcription factor binding
motifs. Our results on the G-box motifs support the conclusion that this organ-
ism may have unique regulatory mechanisms different from other known eu-
karyotic organisms (Militello et al., 2004). By design, the two approaches will
find sequence motifs that are enriched in the input sequences (AlignACE) or
best match the expression pattern (MotifRegressor). However, false positives
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are inevitable. AlignACE, in particular, is prone to give high scores to over-
represented sequences in low-complexity regions, even though more stringent
clusters from the ISA approach were used. Mechanisms to remove spurious
results are extremely critical, but difficult and are themselves error-prone. In
this current work, we rely on the significance scores provided by AlignACE
(MAP Scores) and MotifRegressor (Sequence Motif-Matching Score) to pro-
vide the necessary guidance to decrease the number of false positives. More
sophisticated mechanisms to improve the quality of the results are planned for
the future.

We have implemented a novel database called PlasmoTFBM containing in-
formation relating to P. falciparum regulatory elements in IDC, which can be
a useful tool to facilitate further biological research on the organism. Some
sample questions that can be answered with relative ease with the use of our
database include: (a) Find the set of genes X on chromosome A between loci
L; and L. (b) Find motifs that are significant for set X during the schizont
stage. (¢) Locate a transcription factor Y co-regulated with X during the early
merozoite stage or late schizont stage. (d) Does transcription factor Y share
any motifs that are significant during hpi 18-21? Thus, it is possible to “boot-
strap” any information available from the biological experiments to generate
new and useful (and plausible) conjectures that can then drive future directed
laboratory experiments.

Considering that very few regulatory elements were previously known for
P. falciparum, the PlasmoTFBM database provides a useful pool of potential
targets for investigators. It is well known that genes can be regulated both at
the transcriptional and the translational stages. Recent research has suggested
that the post-transcriptional gene regulation may be a predominant mechanism
used by P. falciparum (Coulson et al., 2004; Hall et al., 2005). However, this
does not diminish the importance of transcriptional regulation. Thus our data-
base could still play an important role in revealing the putative regulatory ele-
ments involved in the transcriptional stage.

We provide a website (http://biorg.cs.fiu.edu/CAMDA2004), which will
contain all the motifs and modules discovered by our analyses. We also provide
a website (http://biorg.cs.fiu.edu/TFBM/) for web query and data visualization.
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Elucidation of the genome sequence of P. falciparum, the primary
causative agent of human malaria, has opened new avenues for explor-
ing the biology of this important microorganism. The CAMDA 2004
dataset offers a detailed view of mRNA transcript levels during the intra-
erythrocyte stage of the parasite life cycle. Using Bayesian Decomposi-
tion to model expression patterns in the time series data, we examined
the results over a range of potential solutions with the goal of choosing
a number of patterns that modeled the experimental data faithfully, with
genes in the patterns linked to biological processes. When the data was
modeled with seven or eight patterns, each pattern represented a smooth
temporal expression pattern whose contributing genes were enriched for
Gene Ontology (GO) terms. As control of gene expression has not been
elucidated in P. falciparum, we must work backwards from microarray
profiles that represent the output of the transcriptional program. We use
the upstream genomic sequences of genes linked by Bayesian Decompo-
sition to uncover elements related to stage-specific transcriptional con-
trol. Sequence analysis revealed many motifs enriched in the temporal
gene sets, but simulations revealed that enriched motifs are readily found
in random sets of P. falciparum promoters. We therefore employed an
enrichment factor ranking to focus on those motifs correlated with tem-
poral phases. This analysis reveals a handful of candidate binding sites
for transcription factors driving the P. falciparum erythrocytic cycle.

microarray, gene expression, transcriptional regulation, Bayesian meth-
ods

1. INTRODUCTION

Malaria is caused by Plasmodium parasites that infect and destroy sev-
eral human cell types during their life cycle. The global effort to reduce the
impact of malaria is intimately tied to the study of the complex biology of
this protozoan parasite. The genome sequence for P. falciparum, the species
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responsible for the majority of malaria cases, was released in 2002 (Gard-
ner et al., 2002), permitting genome-scale efforts to catalog the proteome
and transcriptome of Plasmodium (Florens et al., 2002; Bozdech et al., 2003;
Le Roch et al., 2003). One fundamental area of Plasmodium biology that re-
mains poorly characterized is the control of gene expression, including regu-
lation of gene transcription. The CAMDA 2004 dataset provides a high qual-
ity representation of the transcriptional behavior for most of the known and
predicted genes of P. falciparum during the intra-erythrocyte development cy-
cle (IDC). We wish to discover patterns in the expression data that are likely
to reflect the action of biochemical mechanisms that generate biological co-
regulation by affecting the expression of many genes. Such groups of co-
regulated genes can then be used to explore regulatory features of the linked
genes as an approach to refine understanding of the transcriptional control
logic of Plasmodium. A better understanding of the biological processes that
Plasmodium uses during the IDC should lead to improved therapeutics and
eventual amelioration of this devastating disease.

The microarray data of Bozdech et al. (2003) and Le Roch et al. (2003)
reveal robust variation in transcript levels through the IDC. Microarray re-
sults provide the transcriptional program output, yet we know very little
about the inputs directing transcription in this organism. At the genomic
level, the transcriptional profiles of the vast majority of Plasmodium genes
do not show a discernable relationship to chromosome position, which sug-
gests that regulatory mechanisms act on individual genes. Several promoters
have been studied to determine which regions in the sequence control ex-
pression of a reporter transcript, and upstream control regions required for
gene expression have been identified (Osta et al., 2002; Voss et al., 2003;
Militello et al., 2004). In addition, several of these studies have detected
DNA-binding activities from Plasmodium nuclear extracts (Osta et al., 2002;
Voss et al., 2003). The proteins providing the basal transcription machinery
are present in the genome, as are chromatin components and proteins contain-
ing motifs commonly associated with chromatin regulation. Sequence analysis
of the P. falciparum genome, however, has exposed a conspicuous paucity of
recognizable transcription factors (Aravind et al., 2003; Coulson et al., 2004).

The most conservative model drawn from the available data is that P. falci-
parum uses a set of DNA-binding proteins to control gene expression, but that
these factors have not yet been identified experimentally or observed in the
genome sequence. Indeed, a recent report describes a P. falciparum transcrip-
tion factor identified based on distant protein similarity (Boschet et al., 2004).
It has been suggested that Plasmodium relies heavily on post-transcriptional
mechanisms to control protein expression. The most direct support for this
notion is the discrepancy between the stage-specific qualities of the proteome
(Florens et al., 2002) and the expression of the majority of genes in a single life
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cycle phase (Bozdech et al., 2003). Post-transcriptional control would have to
operate in addition to the robust transcriptional control revealed by microarray
studies, and should not interfere with our goal of identifying regulatory DNA
sequences associated with co-expressed genes that may function in transcrip-
tional control.

2. METHODS

2.1. Bayesian Decomposition

Analysis of the microarray data was done with Bayesian Decomposition
(BD) (Moloshok et al., 2002) in order to identify key regulatory time points
within the data. BD is a data analysis technique that decomposes a data matrix
into an amplitude matrix and a pattern matrix such that the product of the two
matrices models the input data. BD employs a computationally-intensive ap-
proach that samples many possible configurations of the amplitude and pattern
matrices, and migrates towards solutions that best model the data. For gene
expression data, each row of the pattern matrix represents a pattern of gene
expression across the experimental conditions, and each row of the amplitude
matrix indicates the loading applied to each pattern such that the weighted
sum of the patterns approximates the observed expression for that gene. The
number of patterns is defined by the user for each run of the algorithm. BD
allows the identification of overlapping patterns within the data (here, overlap-
ping times of expression) linked to specific genes. This permits the algorithm
to both identify groups of genes that initiate expression, while other genes con-
tinue ongoing expression, and to identify genes that are regulated at multiple
points during the parasitic life cycle. This is critically important for promoter
analysis, since the limits of the genetic alphabet (G, A, T, C) make identifica-
tion of DNA binding motifs difficult. The inclusion of promoter regions not
truly involved in transcription factor binding quickly leads to loss of signal
for identification of promoter elements and identification of additional false
positives, a well known problem with promoter analysis (Bulyk, 2003).

BD was applied to the Overview data set comprising measurements of
mRNA levels for 3719 oligos at 46 separate time points varying from 1 to 48
hours post infection (hpi). Expression levels were provided as ratios between
the mRNA level at the time point and a pooled reference sample composed
of a mixture of mRNA from all time points. Time points at 23 and 29 hours
were removed by Bozdech et al. (2003) due to quality control problems. BD
was run positing 3 to 12 patterns to permit analysis across a range of solu-
tions. Duplicate modeling runs were performed using different random seeds
in the Markov chain sampler. Results from the two independent runs were vir-
tually identical except for the eight pattern condition; additional modeling runs
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with eight patterns were performed, and the two stable solutions were recov-
ered multiple times (not shown). Computation time for a BD run depends on
the size of the data matrix and the number of solution patterns; the range of
analysis run times in this study was approximately 30 minutes to 16 hours. We
estimated the noise at 20% of signal (i.e., a multiplicative noise). This esti-
mate is higher than the variations observed in the limited number of replicates
performed by Bozdech et al. (2003), but within a range where BD results are
not sensitive to the value of the noise estimate (Moloshok et al., 2002). Miss-
ing values were assigned a ratio of 1 with an uncertainty of 100, allowing the
algorithm to essentially ignore their contribution during modeling.

2.2. Pattern Visualization

Output files from BD analyses were imported into the ClutrFree (Bidaut and
Ochs, 2004) program to visualize the expression pattern elements and to ana-
lyze the relationships between the patterns. ClutrFree was also used to export
the membership matrices describing the weights of each pattern assigned to
each oligo element to reconstitute its overall expression profile.

The published Gene Ontology (GO) term annotations for the P. falciparum
genome (Ashburner et al., 2000; Gardner et al., 2002) were combined with
the member lists for each pattern determined by BD. For each set of patterns,
the ClutrFree program displays the enrichment of GO terms in each pattern
and an associated p-value based on a hypergeometric distribution (Bidaut and
Ochs, 2004). A simple metric was devised to track the GO term enrichment
strength for each pattern: Process and Function terms enriched with p-values
less than 0.01 were assigned two points, and those with p-values between 0.01
and 0.05 were assigned one point, and the sum of the points was defined as
the enrichment score for the pattern. The average score per pattern was used
to compare enrichment strength for a range of fitted patterns. The metric used
here is not intended as a thorough analysis of GO enrichment, since it does
not use particularly stringent p-value cutoffs and does not consider that many
genes are annotated at several GO levels. It is a valid tool to compare different
analyses of this data, however, since annotation bias and false positives should
apply similarly to each condition.

2.3. Identification of Regulatory Sequences

To discover potential regulatory DNA sequences related to temporal gene
expression, we used the pattern information from BD to place genes into co-
regulation groups. A list of oligos with strong membership in each of eight pat-
terns was converted to a gene list, and the genomic sequence near the annotated
gene sequence was extracted from PlasmoDB data files (Bahl et al., 2003). In
some cases, two or more oligos map to the same gene. For these genes, the
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Figure 1. Diagram of the workflow to define sequence motifs associated with expression pat-
terns in P. falciparum IDC gene expression. Gene lists were generated by association with BD
expression patterns, or randomly selected from the bulk set of promoter region. Details for each
step are found in the text.

average membership percentage was used unless the membership percentages
differed by more than 20%, in which case the higher values were used. The
ATG translational start codon documented on PlasmoDB was used as a refer-
ence point since very few transcription start sites have been mapped. A larger
set of upstream DNA sequences was generated from a list of all genes repre-
sented in the Overview dataset. After excluding rRNA, tRNA and organelle-
encoded genes, this control set of upstream regions contains 2683 sequences.
The upstream sequences were oriented in the direction of gene transcription
prior to sequence analysis. Connections between the pattern detection and mo-
tif detection steps of our strategy are outlined in Figure 1.

The AlignACE program was used to analyze promoter sets to find enriched
sequences. AlignACE is an implementation of a Gibbs sampling approach that
finds motifs that are found more often than expected based on nucleotide fre-
quencies (Roth et al., 1998; Hughes et al., 2000). For the 2 kb upstream se-
quences, GC content was modeled as 0.15 to match the actual GC content of
the 2683 two kilobase promoter regions represented in the overview dataset.
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Other parameters used were AlignACE default values, including column width
setting of 10 nucleotides. The ten nucleotide positions that provide the best
score make up each motif; the positions are not constrained to be contiguous,
but must be near each other to form a high-scoring motif.

Motif searches were performed on the input promoter sets. AlignACE iden-
tifies multiple motifs from each input set by repeating the motif search after
masking the nucleotides of previously selected motifs. The motifs are ranked
by MAP score (the maximum a priori log-likelihood), with higher scores indi-
cating greater enrichment of the motif relative to the expected number based on
the background nucleotide frequency. To determine how many times a given
motif, as defined by a pattern weighted matrix, occurs in the Plasmodium
genome, ScanACE (Hughes et al., 2000) was used to search for motifs in the
upstream sequence library representing the overview dataset genes. The ratio
of the number of motif instances in the test subset versus the expected num-
ber based on the total number of sites in upstream regions was used as the
enrichment factor. To include only strong sites in these comparisons, a score
cutoff was applied to the motif hits in the bulk promoter set and the subset in
question. The cutoff applied for inclusion was an alignment score greater than
a value 0.5 standard deviations less than the average score for the set used by
AlignACE to construct the motif matrix.

Simulations were performed on random promoter sets to estimate the sig-
nificance of the enrichment factors determined for the promoter sets linked
by co-expression. For several different group sizes, random sets were assem-
bled from the bulk promoter sequences, disallowing a sequence to occur more
than once in a given random group. These groups were then analyzed by
AlignACE to identify motifs, and the enrichment factors were determined fol-
lowing ScanACE analysis of the bulk promoter set. WebLOGO representations
of the top motifs were generated from the Web server (Crooks et al., 2004).

3. RESULTS

3.1. Temporal Expression Peaks

BD was performed to find the prominent component patterns in the expres-
sion profiles of the oligo elements in the overview dataset of Bozdech et al.
(2003). Although the appropriate number of patterns to fit for a particular data
set can only be judged retrospectively (see below), we initially chose a range
of 3 to 12 patterns to carry out the analysis. The lower number is based on the
expectation that there is at least one regulatory phase for each major morpho-
logical stage of Plasmodium during the blood cell cycle, and the upper number
is arbitrary but comfortably above the 6 patterns used in the BD analysis of the
yeast cell cycle (Moloshok et al., 2002). Figure 2 shows a pattern tree represen-
tation from ClutrFree that diagrams the correlations across the patterns. In this
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Figure 2. Pattern tree relating expression patterns found by BD for the IDC gene expression
cycle. Shown here for 3 to 12 patterns, the ClutrFree tree links the most related gene expression
patterns, providing a way to visualize the stability and splitting of the patterns as the number
of fitted patterns is increased. Moving vertically down a chain, a single connection indicates
two patterns are similar in two modeling runs. A branch indicates that two gene expression
patterns are most similar to a single pattern among those determined for a smaller number of
patterns. The branch points serve to highlight the main difference in the result when an additional
expression pattern is allowed during the modeling run.

depiction, linked spots represent the gene expression patterns that are most
similar to each other between different BD runs. Branch points highlight sig-
nificant changes between modeling runs. The pattern tree representation thus
serves as a navigation tool that allows the examination of the shapes of indi-
vidual gene expression patterns as well as the differences between solutions
with different number of patterns. This analysis permits a qualitative overview
of how BD mathematically models the Plasmodium gene expression data.
The majority of the individual expression patterns appear as unimodal
curves distributed along the time course, despite the fact that no smoothing
function was used by the algorithm (examples shown in Figure 3). Patterns
with peaks closest to the first and last time points have a single peak if the pat-
tern is considered to wrap to the next cycle of the IDC. Visual analysis of the
patterns revealed that as the number of patterns fit by the algorithm increased,
“parent” patterns split into two patterns, each with temporal peaks offset to
either side of the peak of the parent pattern. An example is shown in Figure 3,
comparing one of six patterns to the two most related of seven patterns. As the
number of patterns increased beyond eight, they began to exhibit features that
are unlikely to reflect true temporal gene expression patterns. For example, one
of the nine patterns has a broad peak composed of amplitudes that are erratic
from hour to hour. Biological patterns are expected to be smooth because the
cell cycle synchrony of Plasmodium cells in the raw biological material is not
exact, so the erratic peaks almost certainly reflect overfitting by the algorithm.
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Figure 3. Representative patterns showing relationship between “parent” and “children” tem-
poral patterns. In this example, an expression pattern from the 6 pattern set (top graph) and two
patterns from the 7 pattern set (middle and bottom graphs) are shown. The pattern numbers are
arbitrary in the sense that the patterns are found de novo during each BD run, but they corre-
spond to patterns 6 of 6, 7 of 7 and 1 of 7 on the pattern tree in Figure 2, where they occupy a
branch point in the tree. The peak centered near 8 hpi splits into two peaks near 4 and 12 hpi
when an additional pattern is fit by BD. The shaded bar is at the same position of each plot to
highlight peak shifts.

Our conclusion is that fewer than nine patterns should be used to fit the data
since some of the additional patterns are less likely to represent true biology.
For three through seven patterns, different simulation runs yielded virtually
identical results, indicating that the solutions are robust (i.e. the same stable
solution is reached starting from different random starting points in the model
space). The stable positions and shapes of the temporal patterns indicate that
the individual expression patterns are not uniformly distributed across the IDC
time course. With eight patterns, however, one solution invoked a pattern re-
sembling the “noisy” pattern from the 9 pattern set, but another solution split a
temporal peak into smooth daughter peaks, as was observed for pattern num-
ber increases in the lower range. This indicates that the sampling algorithm
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is able to identify two mathematically acceptable solutions, as seen in some
other contexts (Ochs et al., 1999). In summary, the fit patterns are stable over
different runs out to seven patterns, and above this number, alternate solutions
become possible and thus are found in different fitting runs. This observation
suggests that 7 or 8 patterns is the appropriate range to take advantage of the
robust temporal patterns in the data without including redundant or artifactual
expression patterns.

3.2 Gene Ontology Enrichment

In addition to the visual inspection of pattern features described above, we
considered how well the various patterns clustered genes with related gene
functions. Approximately 40% of P. falciparum genes have GO annotations
that indicate their biological roles (Gardner et al., 2002). We examined the
GO terms that are enriched (i.e. found more often than expected based on
frequency of the GO term in the entire genome) for the expression patterns
modeled by BD to determine if they represent meaningful biological themes.
For example, many of the enriched terms derived from the solution with seven
solution patterns make sense in terms of the invasion, replication, and matu-
ration cycle that occurs inside the erythrocytes. Genes related to metabolism,
energy generation, and protein synthesis dominate immediately after invasion,
followed by DNA replication prior to cell division, and finally the schizonts
express transporters, kinases, and surface molecules in preparation for the next
round of invasion. Enrichment of other features, such as RNA binding and
mRNA processing terms, is not easily explained, but suggests broad areas of
study that may provide insight into Plasmodium replication during the IDC.

GO term enrichment has been noted for temporal gene expression groups in
the published CAMDA data set (Bozdech et al., 2003) and in clustered gene
expression profiles detected with a short-oligo array set (Le Roch et al., 2003).
Collectively, these results support the notion that the control of gene expres-
sion in P. falciparum leads to frequent co-regulation of related genes. We de-
termined the number of GO terms enriched above significance thresholds for
each pattern in each set of pattern solutions. Many GO terms are enriched re-
gardless of the number of patterns. In order to use this information to guide the
selection of the number of expression patterns to fit, we calculated the average
number of enriched terms per pattern, over the range of 3 to 12 patterns. A plot
of this GO enrichment score versus number of expression patterns (Figure 4)
shows that the enrichment per pattern peaks at 7 to 8 patterns, and becomes
erratic with higher pattern numbers. To the extent that GO term clustering rep-
resents meaningful co-regulation, this analysis suggests that 7 or 8 patterns
present biologically motivated solutions. This consideration is especially im-
portant if the groups defined by clustering will be used to search for novel
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Figure 4. GO term enrichment as a function of the number of basic vectors in Bayesian Decom-
position. The average GO enrichment per pattern increases as additional patterns are allowed
from 3 to 8 patterns, indicating that the newly formed patterns better fit the biological group-
ing of the genes. At 9 patterns and above, the average enrichment declines, indicating that the
additional finer patterns have less correspondence to biological groups. Seeds a and b indicate
different random starting points for fitting the same data.

shared features such as regulatory DNA sequence elements in co-regulated
genes. For promoter region analysis, we chose the 8 pattern BD solution that
consisted entirely of smooth temporal peaks and had the highest average GO
term enrichment, since this single solution best fulfilled both of the selection
criteria.

3.3. Pattern Membership Distributions

The eight expression patterns provide coverage for the entire 48 hour exper-
imental time course of the IDC. This is expected since all points along the time
course feature expression of many oligo elements, and the algorithm seeks to
find patterns that can model all of the input data. In the phasogram presented in
Figure 2 of Bozdech et al. (2003), the expression peaks appear to be smoothly
distributed along the IDC time course. The expression motif peaks modeled
by BD, however, are not evenly distributed (Table 1). Furthermore, the extent
that each pattern is used in the BD amplitude matrix varies from 5% for the
47 hpi pattern to 24% for the 25 hpi pattern (Table 1). Our central hypothesis
is that a limited set of transcriptional regulation phases drive the expression
behavior. Since the eight expression patterns produced by BD are derived di-
rectly from the data, we chose these patterns as the source for gene groups to
discover regulatory elements, rather than selecting arbitrary or evenly-spaced
time windows within the IDC.
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Table 1. Genes and motifs associated with the eight temporal expression patterns
determined by Bayesian decomposition. The peaks are arranged chronologically in
the IDC according to the approximate midpoints of the pattern peak. The total weight
of a pattern represents the cumulative usage of that pattern to explain the gene
expression profiles, with values reported as per cent of total. The number of genes
strongly linked to each pattern is shown, using three different cutoffs for inclusion.
The >60% group, where each gene tallied has more than 60% of its behavior
explained by a pattern, was primarily used to search for promoter sequence motifs.
Motifs represents the number of high-scoring motifs identified by AlignACE. Blank
entries indicate that AlignACE analysis was not performed on a promoter list.

A subset of these motifs passes the significance filters described in the text

Peak: 4hpi  11hpi 18hpi 25hpi 33hpi 38hpi 43hpi 47 hpi

Total weight 0.10 0.16 0.10 0.24 0.17 0.11 0.08 0.05
of pattern

Genes, >50% 31 97 58 460 328 128 85 10
Motifs 13

Pass filters 0

Genes, >60% 14 32 28 276 177 72 62 4
Motifs 4 7 9 50 29 12 15 4
Pass filters 0 0 2 2 1 3 3 0
Genes, >75% 8 9 12 84 41 30 25 3
Motifs 25

Pass filters 1

For each of the eight expression patterns, strong member genes were se-
lected based on the percentage of gene expression behavior explained by each
pattern. We considered different stringencies for defining the representative
genes for each pattern. Table 1 shows how many genes have greater than 50, 60
or 75% behavior explained by one of the 8 patterns. For each cutoff, the num-
ber of surviving genes in each pattern varies widely. For example, at the 60%
cutoff, two patterns have fewer than 20 strong member genes, whereas two of
the patterns have more than 150 strong members. The statistical strength of
the AlignACE algorithm is best utilized with a moderate number of input se-
quences, in the range of several dozen to several hundred (Hughes et al., 2000).
In practice, computation time slows dramatically when hundreds of long input
sequences are used. We therefore chose to perform the main analysis on the
60% membership cutoff.

34. Enriched Sequence Motifs

We used AlignACE to search for motifs in the sets of upstream sequences
of strong member genes for each BD pattern. Table 1 shows the number of
motifs with a MAP score greater than 10 for each pattern. A MAP score of 10
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was chosen for the cutoff based on extensive tests performed in yeast (Hughes
et al., 2000) where known biological sites have scores greater than 10. The
number ranges from 4 motifs for the 4 hpi and 47 hpi patterns, to 50 motifs for
the 25 hpi pattern. It is expected that there are many false positives motifs in
this group, so an important phase of the analysis is applying filters and criteria
to select the most reasonable set of motifs.

The top scoring motifs for each pattern were AT repeats and poly-A tracts,
which is not surprising since these simple repeats are common in the P. falci-
parum genome. Since AlignACE models the background sequence as a simple
A/T percentage (i.e. a zero order relationship between positions), these se-
quences score well, despite their obvious lack of specificity to a given input
set of promoters. Additional motifs found by AlignACE showed greater se-
quence variety, and represent more plausible transcription factor binding sites.
Another feature of the motifs identified by AlignACE is that some of the mo-
tifs retrieved from an input set are similar or nearly identical to each other.
This situation can be addressed by clustering similar motifs to avoid redun-
dancy in later analysis steps (Hughes et al., 2000). We found that a simple
filter based on group specificity addressed both of these concerns since the
motifs showing intra-group similarity tended to be the same motifs found in
multiple groups.

The key variable in our analysis is variation in gene expression over time,
so the primary goal of the sequence analysis is to identify motifs associated
with the various temporal expression patterns. To determine the extent of en-
richment of a motif for an input set, we compared the number of occurrences
of that motif in the set to the expected number of occurrences. The expected
number was determined by scanning the promoter regions for all genes in the
overview data set, and calculating the enrichment factor as the observed num-
ber of motifs divided by the expected number for an input set of that size. To
determine the number of motif instances, we included only strong motifs by
applying a consistent motif score cutoff to the motif hits for the bulk promoter
set and the promoter subset related to the motif.

3.5. Significance of Motif Enrichment Factors

The majority of motifs identified from the pattern promoter sets have low
enrichment factors, but a number of the motifs have high enrichment values. Of
the 106 (unclustered) motifs under consideration, 79 have enrichment values
less than 2, 10 have values between 2 and 4, and 16 have values greater than 4.
To estimate the significance of these values, we simulated the analysis using
sets of random promoter sequences derived from the overview gene set. The
length of sequence in the original search groups varied because we used the
BD pattern strength to select the groups. It is clear even from the eight groups
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tested that the range of enrichment values tends towards smaller values for the
larger input sets. We therefore considered the size of the input sequence set as
a key parameter in simulations of motif discovery and enrichment calculations.

Promoter sets of 14, 32, 50, and 72 sequences were chosen randomly from
the bulk list of promoters represented in the overview dataset. For each set
size, 24 groups were analyzed by AlignACE, and the motifs with MAP scores
greater than 10 were carried through the ScanACE and enrichment factor cal-
culations. Some of the motifs from random input sets had extreme enrichment
factors (in the neighborhood of 50 fold enrichment over expected). Inspection
of several of these motifs revealed that they were dominated by short direct
repeats found in one or two promoters. These motifs have few hits in genomic
upstream sequences, and very few hits at the gene level. To remove these ap-
parently spurious motifs, we applied a cutoff requiring a motif to be found
in more than 50 genes in the 2683 overview promoters. (50 genes would be
a respectable number of targets, but even for known factor binding sites, the
number of sequence occurrences is much larger than the number of functional
regulatory sites.) The filtered enrichment values were pooled for each condi-
tion, and plotted versus the percentile rank. Figure 5 shows that the size of the
input sequence set has a strong effect on the spectrum of enrichment scores.
Enrichment scores were very high for the 14 and 32 sequence sets, such that
the majority of enrichment values were greater than 4. The plots for input sets
of size 50 and 72 are similar to each other, and have fewer motifs with very
high enrichment scores. For example, only 15 per cent of the motifs are en-
riched more than four fold in the data from the promoter sets with 50 or more
members.

We used the information from the random promoter set simulations to assign
a percentile rank to the motifs mined from the temporal expression groups. The
47 hpi peak pattern was excluded for lack of member genes. For the 4 hpi and
11 hpi patterns represented by 14 and 32 genes, we used the respective per-
centile scales from the randomized sets. No motif from these groups ranked
in the top quintile. The 18 hpi peak group had 28 promoter sequences in the
selection group; the 32 promoter scale was used as an approximation but the
concern remains than the limited number of input sequences undercuts the sig-
nificance of these motifs. For the remaining groups, the sample size ranges
from 62 to 276. We extrapolated from the behavior of the plots in Figure 5
that sets with greater than 50 input sequences should have similar profiles of
enrichment values. While we did not simulate enough cases to verify this as-
sumption, it fulfills the primary purpose of eliminating over-interpretation of
motifs derived from small sample sets. The 50-promoter percentile scale was
therefore applied to the remaining motifs. For each group, we selected the top
motifs with enrichment factor percentile ranks in the top quintile as the best
candidates for stage-specific regulatory elements. The final number of motifs
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Figure 5. Enrichment factors from random groups of promoters. Motif searches were performed
on random promoter sets of the indicated sizes. Results from multiple runs for each condition
were pooled, after removing motifs with low MAP scores and those with very few occurrences.
Enrichment factors are plotted against percentile to indicate how often high enrichment factors
can be expected for input promoter sets of various sizes.

passing the series of filters is shown in Table 1, and illustrates that a minority
of the “high-scoring” sequence motifs fulfill the requirements.

The properties of the top motifs are shown in Table 2. The average number
of motif hits per gene in the input set is presented along with the enrichment
factor for each motif. Note that even for the most significantly enriched mo-
tifs, the hits per gene is less than one. One explanation is that even within
each expression group there is likely to be more than one active factor binding
site, and thus the genes would not be expected to contain any single site. The
motifs themselves are represented as sequence LOGOs (Crooks et al., 2004),
which indicate the nucleotide preference for each position and the height of
the letters reflects the weight of the position in the position weighted matrix.
The width of the motifs varies from 11 to 23 nucleotides because AlignACE
scores the ten strongest positions without requiring them to be contiguous. The
LOGO displays include all positions in the motif, including those interspersed
with the active positions. Some of the motifs have cores of strongly conserved
residues, whereas some of the longer motifs comprise scattered weaker posi-
tions. For example, motif 43hpi-15 is dominated by a consensus sequence of
GTGTGCA. Motif 38hpi-4 features a GTGCAC palindrome sequence consen-



Linking Gene Expression Patterns and Transcriptional Regulation in P. falciparum 151

Table 2. Top sequence motifs associated with expression patterns. The motifs are
labeled by pattern and AlignACE motif number. Hits per gene indicates the average
number of motifs found per gene in the input set of promoters. The rank attached to
each enrichment factor indicates percentile rank relative to simulations with random

promoters, as described in the text. Web logo depictions of each motif display the
preferred nucleotides for each position. Letter height indicates the significance of the

position; letter width varies with motif width

Motif name Hits per gene Enrichment(rank) LOGO
4l |

18hpi-8 0.39 19(1) JASY X Be Vo
il

18hpi-9 0.57 17(1) ,"?\Tg-?- AV - CIQLI
il

25hpi-16 0.64 5.9(6) i CGTCA«‘“ l-s
il

25hpi-31 0.23 5.009) JorresTo¥Es ¢ 5 9e.7Y %

25hpi-29 0.26 4.6(11) SR, errryed 2 T5 VYT

‘A AeATATZACA
38hpi-4 0.50 5.9(7) G nc C_a_-;_s - S
38hpi-7 0.44 5.7(7) 3=§ . AT Ses. g &

3':
38hpi-12 0.21 4.8(10) I _Aéﬁ = Tz.xQA
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Table 2. (Continued)

Motif name Hits per gene Enrichment(rank) LOGO

Patiorn 1 Matif T

43hpi-7 0.37 16(1) Ealss o G oo A
) T CC A A
43hpi-9 0.24 5.7(4) MGE1 A5V RLA

43hpi-15 0.68 4.8(15) iy IT CA 2 TS

sus, which is notable because many known transcription factor binding sites are
palindromes. At the other end of the spectrum, all three of the motifs from the
25 hpi pattern, 38hpi-7, and 43hpi-7 have several strong positions dispersed
among weak positions. These motifs can not be excluded from consideration,
but because they do not resemble features of known binding motifs, we con-
sider them less likely to be genuine regulatory elements. The remaining top
motifs have at least 5 or 6 positions with strong nucleotide preference, and
therefore have enough specificity to potentially serve as regulatory binding
sites for transcription factors.

4. CONCLUSIONS

We used BD to discover gene expression pattern elements in the P. falci-
parum IDC transcriptome. We chose the BD approach over other clustering
and pattern finding algorithms because we are primarily interested in find-
ing gene expression features that may be linked to gene expression regulatory
mechanisms. BD provides these expression features (i.e. solution patterns) as
a primary output, whereas traditional clustering approaches output groups of
genes, often requiring additional clusters to accommodate genes affected by
multiple regulatory mechanisms. Reflecting the nature of the individual input
elements, the most robust expression pattern elements in our results have a
single prominent peak during the IDC. As with any pattern discovery method,
choosing an appropriate number of patterns is not straightforward. We found
that fitting seven or eight patterns produced smooth temporal patterns suffi-
cient to reconstruct the data, and maximized the GO term enrichment of the
patterns. These results are not meant to suggest that there are seven or eight
regulatory events or transcription factors driving gene expression in the IDC,
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but that the identified temporal expression patterns are excellent places to ex-
plore co-regulation mechanisms. This rationale is inspired by the results of
microarray analysis of the yeast cell cycle, where gene expression patterns are
enriched for genes controlled by specific transcription factors that are required
to drive the cell cycle (Spellman et al., 1998).

As one approach to explore potential transcriptional control programs in P.
falciparum, we searched for sequence motifs that correspond to the various
temporal expression patterns. Using the AlignACE program to detect over-
represented sequences, we were able to find many sequence motifs from the
promoters of genes in each pattern. Motif discovery approaches in other organ-
isms historically detect many false positive motifs. We addressed this concern
for P. falciparum by performing a series of sequence motif mining simulations
on random promoter sets. Over-represented motifs were readily detected from
any collection of input sequences, indicating that merely finding a sequence
motif is not meaningful. To highlight motifs that are specifically enriched in
certain temporal expression patterns, we determined for each motif an enrich-
ment factor comparing the number of motif occurrences in the group of interest
to the number of occurrences expected based on the frequency in all promoter
regions. Enrichment factor analysis of the motifs from random promoter sets
led us to exclude motifs discovered from small input sets, as well as motifs
that were very rare in all genomic promoter sequences. The handful of motifs
that pass all these criteria represent our candidate list of binding sites for fac-
tors driving temporal gene expression. This approach is not designed to detect
common or core promoter elements, since they are not expected to be enriched
in specific expression profiles. A search for common elements associated with
promoters would require comparing sequence from different positions with re-
spect to genes.

There are a number of factors that confound the prediction of transcrip-
tion factor binding sites. In this study we seek over-represented sequence mo-
tifs found in gene expression patterns because we expect transcription factor
binding motifs to have this property. It is important to note that the motifs
identified by sequence analysis alone are not constrained to match the se-
quence features recognized by a binding factor, and should therefore be ex-
pected to be loose, overlapping representations. Computational predictions of
binding sites can be refined by considering clustering of motifs, and evolu-
tionary conservation of homologous promoter sequences (Bulyk, 2003). These
approaches should prove useful for sequence analysis in P. falciparum since
a handful of Plasmodium genomes are being sequenced (Carlton et al., 2002;
Hall et al., 2005). Another concern, clearly evident from the random promoter
set simulations, is that detected motifs may be an artifact of the particular in-
put sequences used for motif discovery. We used a simple analysis to gauge
whether our top-scoring motifs were associated with the temporal patterns
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from which they were derived. For each of our top ten motifs, we found that
genes linked to the pattern from which the motif was identified were more
likely to contain the motif than a randomly chosen gene (not shown). The
genes used as the original input for motif discovery were excluded since they
were already known to be enriched for the motif. This trend is consistent with
the hypothesis that there are sequence features that are enriched in groups of
temporally co-expressed genes.

Validation of the motif sequences will require biological experiments to de-
termine if they are required for transcriptional regulation, and to identify the
transcription factors that bind the sites. Gene expression reporter assays that
compare the activity of sequences with intact and disrupted motifs can be used
to ascertain which motifs are functional. Nuclear extracts of P. falciparum pro-
teins can be used to detect binding to various sequences. These approaches
remain laborious, but it would be feasible to apply them to directly study the
handful of candidate motifs associated with specific gene expression profiles
in the IDC presented here. Motifs identified in this manner would contribute to
our nascent understanding of transcription in Plasmodium. Additionally, posi-
tive results for some of the motifs would demonstrate the usefulness of motif
prediction from sequence analysis, which will be particularly useful for or-
ganisms where genomic data is available but molecular biological studies are
impractical.
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Malaria is responsible for half a billion infections and two million deaths
each year. Understanding the biology of Plasmodium falciparum is crit-
ical if effective vaccines are to be developed to fight against this aggres-
sive parasite. New information about the regulatory mechanisms of P.
falciparum promotes the elucidation of the fundamental metabolic and
transcriptional pathways which we must understand to design vaccines
and better treatments. Of particular importance is the intraerythrocytic
development cycle (IDC), the part of the P. falciparum life cycle spent in
the blood stream of host mammals and that is responsible for the physical
symptoms of malaria. The goal of this investigation is to examine spa-
tially dependent co-regulation of gene expression over the 48-hour IDC.
Correlation between gene expression and gene location over a few genes
demonstrates evidence of co-regulated genes or operons, while corre-
lation over many genes may provide evidence for some other transcrip-
tional regulation mechanism such as chromatin remodeling or enhancers.
We develop and apply a visualization and statistical testing methodology
to examine expression—location correlation in a time-course microarray
study of the IDC transcriptome. Contrary to the current paucity of evi-
dence, our findings show evidence for spatial correlation. The biological
implications of detected blocks of moderate but consistent spatial corre-
lation provide novel insights into the transcriptome of P. falciparum.

co-regulation, spatial correlation, DNA sequence data, microarray data,
integration of data sources, visualization, permutation tests
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1. INTRODUCTION

Understanding the regulatory mechanisms in P. falciparum helps identify
new targets for both preventing or stopping malaria infections. The study of
transcriptional regulation is paramount to achieving these goals, and there are
many interesting transcriptional phenomena in Plasmodium. With secondary,
tertiary and quaternary levels of structure in the DNA, there is much specu-
lation about the randomness of the ordering of genes. Operons, chromatin re-
modeling and enhancers can affect gene transcription over short, mid and long
distances, respectively, along the chromosome. In addition, protozoa such as
Plasmodium are capable of regulating gene expression by altering their chro-
mosome structure. For example, expression of the var cell surface protein of
Plasmodium is regulated by a silencing mechanism [7]. In other eukaryotes,
gene silencing and related epigenetic phenomena are typically mediated by
covalent modification of histones that can spread along chromosomes, altering
the accessibility of genes to the transcription apparatus [ 14]. Whether this type
of regulation extends beyond the var genes to other genetic loci remains to be
determined. This investigation explores the basic properties of location depen-
dent transcriptional regulation by searching for both small and large chromo-
somal areas with correlated gene expressions.

The data we analyzed were collected by Bozdech et al. [5] who also consid-
ered the problem of spatial correlation. They reported finding a few regions of
2-7 genes each showing spatial correlation among the 14 linear chromosomes
of P. falciparum. One limitation of their approach is that the search was based
on correlated expression of adjacent genes independent of the physical distance
between them. Thus, neighboring genes may be close or far apart. This ap-
proach might lead to a loss of power in detecting spatial correlation. Aburanti
et al. [1] found correlations in E. coli by similar methods. In both investiga-
tions the main results were largely descriptive without a formal framework for
statistical significance, especially with respect to the multiple testing aspects.
One important observation made in this problem was by Balazsi et al. [2] who
discuss the potential for spurious spatial correlation on the chromosome due to
the spatial arrangement of probes on the microarrays themselves. In addition
to suggesting detection methods for such artifacts, they also propose numeri-
cal methods to minimize this type of experimental bias. Kluger et al. [17] also
report similar cautionary measures. Using signal processing methods, Jeong,
Ahn, and Khodursky [16] report a thorough investigation of spatial chromoso-
mal patterns in E. coli and provide convincing evidence of higher-order orga-
nization of transcription in bacteria.

Analytical Objective. The overall objective of our work was to develop a vi-
sual and statistical framework to examine the correlation between gene expres-
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sion and gene location. To this end, we develop methods to (1) explore general
correlation patterns through a formal covariogram function, (2) assess regional
correlation along each chromosome, and (3) assess and account for possible
spatial trends throughout the array slide that may lead to spurious correlation
between gene expression and gene location on the chromosome. Formal infer-
ence for significance is jointly accomplished with a permutation method and
an adjustment for multiple testing via the false discovery rate method.

2. METHODS

The data used in this investigation were collected by Bozdech et al. [5].
Briefly, a 48-hour time-course expression study was conducted using long-
oligonucleotide arrays. At each time point the reference sample was a mixture
of DNA from all 48 time points. For our own analysis we constructed an av-
erage profile for each gene by taking the pointwise average of all probes for a
given gene.

2.1. Data Pre-Processing

To perform our analysis it was necessary to create a data matrix that com-
bined information from both gene expression and gene location. The normal-
ized quality-control microarray data produced by Bozdech et al. [5] was com-
bined with annotated nucleotide sequence information [13] to create a joint
dataset. We achieved this by matching the gene identifiers from the gene ex-
pression dataset with the annotations from the sequencing centers contributing
to the sequence data (version 2, October 3, 2002). Unique gene identifiers were
found at plasmodb.org. The matching process resulted in the creation of a data
matrix for 3495 unique genes. The data matrix was comprised of gene iden-
tifiers (rows) and gene information, including location, length, direction, and
time-course expression. The start of a gene was defined as the end of the open
reading frame closest to the 5’ end of its strand. For example, an open reading
frame over base-pairs 100200 would start at base-pair 100 if it were located
on the Watson strand and at base-pair 200 if it were located on the Crick strand.
For this investigation, the Watson strand is the reference strand, with all chro-
mosomal locations listed with respect to the Watson strand.

To allow for the possibility of artifactual correlation between expression and
chromosome location due to experimental design, we generated a time-course
dataset that was adjusted for microarray probe location. We used a 2-dimen-
sional nonparametric regression method (loess with f = 0.05, in the statistical
package R [21]) to adjust the raw log-ratios (at the probe level) by regressing
them on the (x,y)-coordinates of their array location. We then centered and
scaled the adjusted ratios [24]. The resulting adjusted data correlated well with



160 J.B. Christian et al.

the quality control data of Bozdech et al. and the conclusions based on the two
datasets were also similar. As such, the results reported here are limited to our
adjusted data.

2.2, Correlation Analysis

In this investigation we used Pearson correlation as a measure of distance
between two expression profiles.

2.2.1. Covariogram. To examine the overall relationship between ex-
pression and chromosome location we used a covariogram, a correlation mea-
sure as a function of distance [11]. A covariogram function (y) gives the cor-
relation between genes x and y given that they are dy base-pairs apart:

y(x, y;5do) = r(x, y | distance(x, y) = do)-

One typical assumption is that y is homogeneous with respect to location; that
is, we assume a constant correlation between genes x and y that are dy base-
pairs apart, no matter where the genes may be located on the chromosome,
the only important factor being that they are dy bp apart. We view distance
symmetrically in the 3'-5" and 5'-3’ directions, and ignore strand information.
A consequence of the homogeneity assumption is that we average correlations
across the entire chromosome, which are based on pairs of genes d bp apart.
A covariogram was created for each chromosome.

We also constructed covariograms giving correlations based on the physi-
cal location of genes on the microarray chip. This chip covariogram helps us
interpret any observed correlations between expression and chromosome lo-
cation. Having both types of covariograms can help us decide if the source
of chromosomal correlation is due to biological phenomenon or is perhaps an

0.4

Correlation
0.2

0.0

100 350 600 850 1100 1350

Gene Distances (kb)

Figure 1. Covariogram by chromosomal distance for chromosome 6 (dotted), chromosome 4
(dashed) and chromosome 10 (solid).
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Figure 2. Correlation statistics calculated for chromosome 6 on a 40 kb interval.

artifact of chip design. For example, if the microarray is printed in gene or-
der, then chromosomal correlations and printing errors, such as carryover, are
likely confounded.

2.2.2. Chromosomal Correlation Statistic. It is important to directly
account for the distance between adjacent genes when evaluating spatial corre-
lation. To this end, we have partitioned each chromosome into non-overlapping
contiguous intervals of resolutions 10, 20, 40, 60, 80 and 100 kb, and summa-
rized pairwise correlations within each interval. Thus if two genes are adjacent
neighbors 75 kb apart, neither one will influence measures of spatial correla-
tion when small (e.g., 20 kb) regions are being explored. The notion of neigh-
bor is therefore restricted to physical distance and not adjacency. Formally, we
choose a partition size, p (bp), which for each chromosome yields 7, contigu-
ous non-overlapping intervals. For each of the i = 1,2,...,n, intervals we
calculate the average pairwise Pearson correlation, r;, among the n; genes in
the given interval:

k;
l ¢ n;
4:_2 . ki = L)
" kij=1rj l <2)

For example, in an interval with 7 genes there are 21 pairwise correlations
averaged to get r;. This is repeated for every interval of each resolution on
each chromosome. The results for chromosome 6 using a 40 kb partitioning are
shown in Figure 2; significance is discussed below. To investigate possible bias
due to starting the partition at the beginning of each chromosome we started at
four different points. No obvious bias was observed; results with (Figure 4) and
without (Figure 5) multiple starting locations are shown for chromosome 4.

2.2.3. Permutation Test to Assign Significance. To test the null hy-
pothesis of no correlation between gene expression and gene location we de-



162 J.B. Christian et al.

Density
3
|

i
I
1
N
H
IH
IH
I

Correlation

Figure 3. Null distribution for the statistic calculated from 2 (solid), 6 (long dash), 9 (short
dash), and 12 (dotted) genes in different 40 kb intervals on chromosome 6.

veloped a permutation test [9,23]. For each chromosome and partition size (p)
the gene orderings were kept fixed and the gene expression profiles were per-
muted to give observed values of r; under the null hypothesis. The permuta-
tions are performed independently within each chromosome. Repeating this
process B = 1000 times generated a null distribution for r;, for each inter-
val within each chromosome. To visualize the null distributions we used a
kernel density estimate with a biweight kernel and the default bandwidth pro-
vided by R [21]. Examples for chromosome 6 are given in Figure 3. The ob-
served statistic for a 9 gene interval based on a 40 kb partition was 0.49. Out of
B = 1000 permutations a more extreme correlation occurred only two times,
giving an approximate p-value of 0.002. Although we visualize the null dis-
tribution with smooth kernel density estimates, we directly compute p-values
using the B = 1000 observed values of r;: estimated p-value = #{r, > r;}/B,
whereb=1,..., B.
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Figure 4. Significant intervals before correction for multiple testing on chromosome 4 at reso-
Iutions of 10, 20, 40, 60, 80 and 100 kb. Here the pointwise type I error level is 0.005. Note that
at each resolution there were 4 equally spaced starting points resulting in overplotting of some
intervals; compare with Figure 5, which has only one starting point for each resolution.
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Figure 5. Significant intervals before (dark black line) and after (open boxes) correction for
multiple testing on chromosome 4 at resolutions of 10, 20, 40, 60, 80 and 100 kb. Here the type
I error level is 0.005 before multiple testing and after correcting there is an FDR of 0.05. In
this partitioning scheme we have removed the overlapping intervals; there is one partitioning for
each resolution which begins at 0 kb.

To correct for multiple testing we chose to control the false discovery rate
(FDR) [3] for each partition (p) for each chromosome. Therefore, we account
for multiple testing for each chromosome separately. This accommodates the
independence of chromosomes with respect to correlation, which is supported
by the covariograms. For each chromosome the algorithm orders the p-values,
pi) (i=1,...,np,),and for achromosome-wide level « a cutoff (k) is chosen,
k =max{i: pi) < ai/np}, to determine significance at each interval. The &
hypotheses H?l), .. .H(()k) corresponding to the k lowest p-values are rejected.
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3. RESULTS

3.1. Global Patterns: Covariograms

To explore global trends of spatial correlation on each chromosome we con-
structed covariograms. Figure 1 shows three sample covariograms correspond-
ing to chromosomes 6, 4, and 10. We find no apparent trend in chromosome
10, while chromosomes 4 and 6 show moderate but consistent correlation of
approximately 0.2 throughout the distances up to three-fourths of their chro-
mosome length. Covariograms for chromosomes 2, 4, 5, 9 and 10 also sug-
gest correlation over large portions of their chromosomes. On balance, this
exploratory data analysis indicates that there may be regions of spatial corre-
lation.

To investigate spatial printing effects we also constructed covariograms
based on microarray distance between the (x, y) coordinates of the probes
for each gene. We found no evidence of correlation on the microarray. Co-
variograms of chromosomes 6 and 10 using microarray distance are seen in
Figure 7.

3.2. Local Patterns: Regional Correlation

The results of the permutation tests identify intervals with significant
p-values. Figure 4 shows results for chromosome 4. Here we found several
areas of significance at multiple resolutions at a type I error level of 0.005
before correcting for multiple testing and with four equally spaced starting po-
sitions. There are three main regions showing significance. One region is at
120-160 kb, which shows significant intervals at the 10, 20 and 40 kb resolu-
tions. The second region is at 600—660 kb and has significant intervals at the
40 and 60 kb resolutions, and the third one is at 1080-1140 kb with significant
intervals at all resolutions. After correcting for multiple testing and restricting
to only one starting position, which yields a single partitioning of the chromo-
some, we arrive at the intervals in Figure 5. Boxed intervals are still significant
after multiple testing. To further examine the data in these significant intervals,
we plotted (Figure 6) the expression profiles corresponding to three different
significant intervals. The left-hand panel shows four profiles from a region at
120-160 kb that was significant at resolution p = 40 kb. Below this panel is
a diagram showing the physical array location of the probes corresponding to
the time-course profiles. The middle panel shows six profiles from a region at
600-660 kb that was significant at resolution p = 60 kb. The right panel shows
eight profiles from a region at 1080-1140 kb that was significant at resolution
p = 60 kb. No obvious patterns of spatial correlation on the array chip were
detected for two of these examples, however there may be spurious correlation
at the region 120-160 kb due to printing artifacts. Other significant intervals
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Figure 6. The results for chromosome 4 from Figure 5 are continued here. The left-hand panel
shows four profiles from a region at 120-160 kb that was significant at resolution p = 40 kb.
Below this panel is a diagram showing the physical array location of the probes corresponding
to the time-course profiles. The middle panel shows six profiles from a region at 600-660 kb
that was significant at resolution p = 60 kb. The right panel shows eight profiles from a region
at 1080-1140 kb that was significant at resolution p = 60 kb.

showed (data not shown) the same “random” spatial arrangements on the array
slide. This means that findings of spatial correlation on the chromosome are
likely not confounded with printing artifacts, and thus point to biological ex-
planations. Significant p-values for all chromosomes before and after multiple
testing are available at ftp://ftp.stat.rice.edu/pub/blairc/CAMDA/.

These results were also corrected for multiple testing. We found 17 signifi-
cant intervals with an FDR of 0.05. Five of these significant intervals occurred
on chromosome 4, two each on chromosomes 5, 8, 9, 14, and one each on
chromosomes 1, 10, 12 and 13. There were no significant intervals found on
chromosomes 2, 3, 6, 7 and 11. The counting of significant intervals depends
on the partition resolution. In Figure 5, for example, there are two significant
intervals at ~150 kb of chromosome 4, one at 20 kb partitions and another at
40 kb partitions. However, the 20 kb interval is nested within the 40 kb inter-
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Figure 7. Covariogram for chromosome 6 (top) and chromosome 10 (bottom), measuring cor-
relation between gene expression and microarray location.

val. Similarly, the significant 40 kb interval at location ~1100 kb of chromo-
some 4 is nested within the 60 kb interval. This phenomenon did not occur on
any other chromosome. Therefore, if we exclude the nested intervals we have
15 significant intervals. In our discussion (below) of biological interpretation
we refer to the 15 significant intervals.

3.3. Interpretation of Results

A statistical finding does not guarantee a biological finding. It is there-
fore necessary to consider possible biological explanations. To this end, we
examined ontology information for the significant regions. Gene Ontology
(GO) is a formalized approach to organize information concerning gene prod-
ucts. The GO itself is a directed acyclic graph. Nodes in the graph are con-
nected to each other hierarchically and represent terms to which individ-
ual gene products can be annotated. There are three main branches to the
GO system: biological process, molecular function and cellular component.
These main branches describe the main role of a gene product in the cell
and downstream branches give more detailed characteristics. We mapped the
plasmodium array onto the GO data structure using source information pro-
vided in a flat file (Pfa3D7_2002.10.03_Annotated_Annotation-v1.tab) from
www.plasmodb.org. This gave a mapping from PFA gene IDs to GO nodes
(terminal GO annotations). From this mapping we are able to recover full path
information for all genes.
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Table 1. Application of gene ontology information to significant intervals. Below are
the chromosomal location (1-2), categories of GO similarities (3), number of genes
annotated/total number of genes (A/T) in the interval (4) and description of
similarities (5)

Chr  Location GO A/T  Details
similarity

1 190-200 kb Function  2/2 2 genes coding for transcriptional regulation

4 140-160 kb Location, 2/3 2 genes annotated as cell surface proteins
Function

4 1080-1140 kb  Location, 5/8 4 genes annotated as cell surface proteins
Function

4 600-660 kb Function 4/6 3 genes related to chromatin binding,
5 500-600 kb Function = 9/21 3 genes are GTP related
5 80-90 kb Tandem 2/2 2 genes appear as tandem repeats of rhoptry-
Repeat associated protein
8 300-400 kb Function ~ 8/18 6 genes associated with RNA processing
8 120-180 kb Function  6/14 5 genes associated with protein synthesis
10 1400-1440 kb  Location, 3/6 3 genes annotated as cell surface proteins

Function
12 1620-1680 kb  Function  3/6 3 genes associated with mitochondrial develop-
ment
14 280-290 kb Tandem 2/2 2 genes appear as tandem repeats of plasmepsin
Repeat

Examination of the ontology information for the significant regions indi-
cates that the proposed statistical methodology is able to detect possible bi-
ological relationships among the genes in the interval. In 11 of the 15 sig-
nificant intervals we find biological similarities in putative function or in the
cell location among the gene products (within each interval). In the remaining
four significant intervals, three lacked ontology information and one showed
no obvious similarities in cell location or function. Among the genes within
each of the 11 significant intervals we found various biological similarities
(Table 1), including those defined by possible tandem repeats, cell surface lo-
cation of proteins, and similar function. The possible tandem repeats were ob-
served on chromosomes 5 and 14, and clusters of surface proteins were seen
on chromosomes 4 and 10. There were 6 intervals within which each contained
genes annotated with similar function. These include a pair of transcriptional
regulation genes on chromosome 1, chromatin binding genes on chromosome
4, small GTPase related genes on chromosome 5, RNA processing genes on
chromosome 8, protein synthesis genes on chromosome 8 and mitochondrial
development genes on chromosome 12.

To examine the sensitivity of our analysis to the choice of designed time
points, we performed the identical analysis on only the even time points and
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on a random selection of 33 (70%) time points sampled without replacement.
In the even (random 70%) time point analysis we found 16 (11) significant
intervals with 11 (8) coinciding with the original 15 significant intervals based
on all the time points. Most of the overlaps were on chromosomes 4 and 8. The
original results do not appear to be an artifact due to time point design since
we tend to detect a common pool of intervals in the three different analyses.

4. CONCLUSIONS

Spatial correlation between gene expression profiles and chromosomal lo-
cation may be defined in several ways. Considering adjacent pairwise correla-
tions ignores inter-gene distance and thus may result in a loss of power to de-
tect spatial correlation. Accounting for distance by restricting adjacent genes
to be within a certain distance (bp) or through a formal covariogram function
should provide more meaningful results and increase power. We have consid-
ered and compared the three approaches in the context of the P. falciparum
time-course array study of Bozdech et al. [5]. Unlike previously reported find-
ings we do find evidence of spatial correlation after accounting for inter-gene
distance. Critical to the findings is a measure of statistical inference which we
have implemented with a permutation approach.

Covariograms can be used as an exploratory tool to investigate correlation at
small to large distances in one snapshot. Several chromosomes indicated short-
range correlation as might be expected. However, we also found long-range
moderate but consistent correlation ( ~ 0.2) in some chromosomes. This ob-
servation led us to examine larger window widths in our distance-based cor-
relation investigations, resulting in several relatively long “blocks” of spatial
correlation. This indicates that there may be some related function in these re-
gions, or perhaps that there are silenced regions [7] along the chromosome. Af-
ter correcting for multiple testing we still maintain several regions with strong
evidence of spatial correlation, which we believe to be free of printing effects.
Detecting spatial correlation due to biological function is the primary appli-
cation of the methodology. However, an added benefit is the ability to detect
possible errors in annotation as may occur when a single gene is accidentally
annotated as multiple neighboring genes. In this case we would expect strong
spatial correlation.

Considering more closely at each chromosome we found several areas
throughout the genome that have significance at several resolutions of inter-
val partitioning. At a nominal level of 0.005 we find several consistent results
across resolution levels as indicated by the appearance of ‘tornado’ patterns
(Figure 4, ~1.1 Mb). Having annotation is crucial in assessing the biologi-
cal significance of these findings. The Shaw lab generated a gene ontology
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(GO) database for P. falciparum that allowed us to annotate our spatial corre-
lation findings. Some of the most interesting results were gene similarities in
function (e.g., transcriptional regulation, RNA processing, chromatin binding,
mitochondrial development) and location of gene products on the cell surface.
These types of result can help assess which regions are worth pursuing for fur-
ther investigation. Although there are many annotations, many more of these
potentially interesting intervals still lack annotation. Also interesting are in-
tervals that have genes residing on the same DNA strand as they may provide
clues to polycistronic regions, and several of these were also detected.

The notion that a chromosomal segment can have correlated gene expres-
sion has only recently been proposed for larger eukaryotic genomes [4,8,18,19,
22]. Bacteria and a few eukaryotes have operons in which multiple protein cod-
ing regions share a single upstream promoter from which a single polycistronic
mRNA is initiated. However, the best characterized mechanism of expression
control for eukaryotic genes involves locally acting regulatory DNA motifs
called by different names such as upstream activating sequences [15] or en-
hancers [25]. Enhancers can act at some distance from the RNA polymerase
binding site or promoter, but in almost all cases, enhancers regulate just one
gene, typically by a looping mechanism that allows proteins bound at a distant
enhancer to interact with the basic transcription apparatus at the promoter el-
ements. The distance-correlated expression we find at several locations in the
Plasmodium chromosomes cannot be due to a single enhancer, defined as de-
scribed above. Instead, there must be a locally repeated regulatory motif [4], or
a single regulatory motif that acts at a varying distance from the several local
genes. One precedent for the latter model is the locus control region (LCR)
that mediates coordinate regulation of the 8-globin gene cluster in the mouse
genome [6]. The LCR and similarly acting motifs are proposed to help organize
dynamic domains of gene expression through localization of looped chromo-
somal segments in specific territories of the nucleus where gene expression is
more active [18,19]. Whether similar mechanisms are present in Plasmodium
remains to be determined.

This investigation provides evidence of chromosomal spatial correlation in
gene expression in P. falciparum, and this correlation appears to be due to
biological phenomena. There appear to be multiple levels of correlations, oc-
curring at both small, mid and large scale. To the best of our knowledge ours is
the first formal inferential method for statistically analyzing spatial correlation
based on sequence and gene expression data.

ACKNOWLEDGEMENTS

This study was partially supported by NSF grant MCB 0091236 to M.C.G.;
a training fellowship from the Keck Center for Computational and Structural



170

J.B. Christian et al.

Biology of the Gulf Coast Consortia (National Library of Medicine Grant No.
5T15LMO07093) to J.B.C.; NIH training grant T32CA096520 to J.N.-M. and
R.G.

REFERENCES

(1]

(2]

(3]

(4]

(5]

(6]
(7]

(8]

(9]
(10]
[11]
[12]
[13]
(14]

[15]

[16]

[17]

Aburatani, S., Sugaya, N., Murakami, H., Sato, M., and Horimoto, K., Statistical analysis
of the relationship between gene expression and location, Genome Informatics, 14 (2003),
306-307.

Baldzsi, G., Kay, K.A., Barabdsi, A., and Oltvai, A.N., Spurious spatial periodicity of
co-expression in microarray data due to printing design, Nucleic Acids Research, 31(15)
(2003), 4425-4433.

Benjamini, Y. and Hochberg, Y., Controlling the false discovery rate: A practical and pow-
erful approach to multiple testing, Journal of the Royal Statistical Society B, 57 (1995),
289-300.

Boutanaev, A.M., Kalmykova, A.I., Shevelyov, Y.Y., and Nurminsky, D.I., Large clusters
of co-expressed genes in the Drosophila genome, Nature, 420 (2002), 666—669.

Bozdech, Z., Llinas, M., Pulliam, B.L., Wong, E.D., Zhu, J., and DeRaisi, J.L., The tran-
scriptome of the intraerythrocytic development cycle of Plasmodium falciparum, PLoS
Biology, 1 (2003), 1-16.

Bulger, M. and Groudine, M., Looping versus linking: Toward a model for long-distance
gene activation, Genes & Development, 13 (1999), 2465-2477.

Calderwood, M.S., Gannoun-Zaki, L., Wellems, T.E., and Deitsch, K.-W., Plasmodium fal-
ciparum var genes are regulated by two Regions with separate promoters, one upstream of
the coding region and a second within the intron, Journal of Biological Chemistry, 278(36)
(2003), 34125-34132.

Caron, H., van Schaik, B., van der Mee, M., Baas, F., Riggins, G. et al., The human tran-
scriptome map: Clustering of highly expressed genes in chromosomal domains, Science,
291 (2001), 1289-1292.

Churchill, G.A. and Doerge, R.W., Empirical threshold values for quantitative trait map-
ping, Genetics, 138 (1994), 963-971.

Cohen, B.A., Mitra, R.D., Hughes, J.D., and Church, G.M., A computational analysis of
whole-genome expression data reveals chromosomal domains of gene expression, Nature
Genetics, 26 (2000), 183-186.

Cressie, N.A.C., Statistics for Spatial Data, J. Wiley, New York, 1993.

Dever, T.E., Translation initiation: Adept at adapting, Trends in Biochemical Sciences, 10
(1999), 398-403.

Gardner, M.J., et al., Genome sequence of the human malaria parasite Plasmodium falci-
parum, Nature, 419(6906) (2002), 498-511.

Grewal, S.I.S. and Moazed, D., Heterochromatin and epigenetic control of gene expres-
sion, Science, 301(5634) (2003), 798-802.

Guarente, L. and Ptashne, M., Fusion of Escherichia coli lacZ to the cytochrome ¢ gene of
Saccharomyces cerevisiae, Proceedings of the National Academy of Science of the USA,
78 (1981), 2199-2203.

Jeong, K.S., Ahn, J., and Khodursky, A.B., Spatial patterns of transcriptional activity in
the chromosome of Escherichia coli, Genome Biology, 5 (2004), R86.

Kluger, Y., Yu, H., Qian, J., and Gerstein, M., Relationship between gene co-expression
and probe localization on microarray slides, BMC Genomics, 4(1) (2003), 49.



Chromosomal Spatial Correlation of Gene Expression in P. falciparum 171

[18]
[19]
[20]
[21]
[22]
[23]

[24]

[25]

Kosak, S.T., and Groudine, M., Form follows function: The genomic organization of cel-
lular differentiation, Genes & Development, 18 (2004), 1371-1384.

Kosak, S.T. and Groudine, M., Gene order and dynamic domains, Science, 306 (2004),
644-647.

Neter, J., Kutner, M.H., Nachtsheim, C.J., and Wasserman, W., Applied Linear Statistical
Models, The McGraw-Hill Companies, Inc., Boston, MA, 1996.

R Development Core Team, R: A Language and Environment for Statistical Computing, R
Foundation for Statistical Computing, Vienna, Austria, 2004.

Spellman, P.T. and Rubin, G.M., Evidence for large domains of similarly expressed genes
in the Drosophila genome, Journal of Biology, 1 (2002), 5.

Wan, Y., Cohen, J., and Guerra, R., A permutation test for the robust sib pair linkage
method, Annals of Human Genetics, 61 (1997), 79-87.

Yang, Y.H., Dudoit, S., Luu, P., Lin, D.M., Peng, V. et al., Normalization for cDNA mi-
croarray data: A robust composite method addressing single and multiple slide systematic
variation, Nucleic Acids Research, 30(4) (2002), el5.

Yaniv, M., Enhancing elements for activation of eukaryotic promoters, Nature, 297 (1982),
17.



Index

AlignACE 122, 123, 125, 126, 128, 132,
133, 141, 142, 147, 149, 150
Anopheles gambiae 3
asexual intraerythrocytic development cycle
104
average
clustering coefficient 78
connectivity 82, 84
number 150
Bayesian Decomposition 139, 140, 145, 146
binding factor 153
biological process 65, 71, 166
biological validation 84
biology of malaria parasites 4

cell communication 71

cellular component 65, 71, 166

chromosomal
clustering
clusters
location

clustering 145

clustering coefficient 78

co-expressed genes 154

co-regulated genes 105, 125, 126, 132, 145

co-regulation mechanism 153

computational algorithm 22

conditional probability 14

connectivity distribution 76, 77, 79

connectivity of anode 76

cost parameter 36, 38

covariogram 160, 164, 168

covariogram function 159, 160, 168

CPE elements 130

Crick strand 159

114
105, 108, 114, 117
160, 168

database
DeRisi’s transcriptome 20
Metabolic Pathways 20
PlasmoDB 17

density distribution 61

DeRisi data 60, 61, 63

derivative method 30

discrete derivative 30, 31
discrete Fourier transform (DFT) 12
DNA microarray 29

dynamical system 13, 14

early-training set 54

EBA140 126, 132

entropy 16

environmental stress response 46
excitatory 17
experimental data 16, 77
expression value 34, 105

false discovery rate (FDR) 80, 106
finite dynamical system 14
full-order partial correlation 80, 87
G-box 128,133

gametocyte 60, 61, 63-66

Gaussian graphical model (GGM) 80

gene 12-24
clusters 48, 49
expression 28-30, 60, 90, 94, 101,

124-126, 138, 139, 143, 145, 147,
148, 152, 154, 158, 159, 161, 168
13,75

expression profile 60

159, 161

network analysis 76

ontology 64, 67,90, 140, 145, 166, 169

expression network

location

ordering 162
regulation 28, 60, 122, 134
regulatory networks 77,78
sequence 140
transcription 158
value 17
general clustering algorithms 90
general mixture model 104

Gibbs sampling 141



174

Gibbs sampling algorithm 125

GraphViz 17

heat-shock proteins 128
human malaria parasites 2

inhibitory 17

integral method 30

interolog 65

intraerythrocytic developmental cycle (IDC)
12,138

invariant genes 63

ISA algorithm 132

iterative signature algorithm (ISA) 122

late OSR genes 52, 54, 57

late-training set 54

least squares method 106

likelihood function 77

local linear regression method 63

local regression function 30

1,12, 23, 27,45, 67,73, 104, 128,
137, 158
gene expression network 78, 87
gene network 75, 85, 87
genes 84,96
network motifs 98
parasites 2
time-course dataset 79
Markov chain 13, 14
maximal area 32
maximum connectivity 82, 84
maximum value 31-33
microarray 16, 28, 60, 61, 101, 139, 158,
159, 161, 164
data 159
experiments 5
minimum value 31
molecular function 65, 67, 71, 166
MotifRegressor 125, 126, 130, 133
motifs 47, 49, 54, 125-127, 129-134, 138,
139, 141, 142, 147-149, 153, 169
multiple linear regression model 106
mutual information 16, 20

malaria

neighbor averaging method 105
network motifs 92-95, 98, 99, 101
Newton—Raphson method 78
noisy pattern 144

Index

nonparametric regression model 64
normal transformation 21
normalization factor 20
normalization procedure 20

null distribution 162

null hypothesis 162

number of clusters 109, 116

ordering of genes 158

ortholog 71,73

ortholog pairs 65

orthologous genes 5

orthologous groups 65

oxidative stress 46, 47, 49, 51, 56
oxidative stress response (OSR) 46, 47
OSR genes 48, 51, 54, 57

early OSR genes 51,52, 57

pairwise coupling method 107

paralogous genes 5

parent pattern 143

partial correlation 79, 80

partition resolution 165

Pearson correlation 48, 54, 79, 80, 87, 104,
160, 161

Pearson method 91

periodic genes 40

periodically expressed genes 104, 108, 110

periodically expressed oligonucleotides 111,
112

permutation analysis 115

PlasmoDB 140

Plasmodium 122
falciparum 2,3, 12,27, 45, 60, 75, 84,
91, 104, 116, 122, 128, 137, 142,
153, 158, 169
genome resource 6
malariae 3
vivax 3
PlasmoTFBM 122, 126, 132, 134
position-specific probability matrix (PSPM)
49
power spectrum 37

probabilistic genetic network (PGN) 13, 14
promoter regions 148
proportion of variance explained (PVE) 106

protein
domain 90-93, 95, 96, 98, 101
interaction 91, 93,98, 100
interaction network 98
putative network motifs 93, 95, 96



Index

quality control (QC) 28, 29, 34, 35, 40, 48,
125
quality of a predictor 20

quantization 21

rank correlation coefficients 6

regional correlation 164
regulatory motif 169
representative genes 147
ring stage 51

sampling algorithm 144

scale-free-like network 77
self-consistency property 124
sequence analysis 153, 154
serine-repeat antigens (SERA)
significant interval 165
significant peak 31

simulated data 77
small-world property 78
smoothing procedure 36-38, 40
spatial correlation 158, 164, 168
sporozoite 60, 61, 63—-66
stage-defined clusters 110
stage-specific clusters 109, 118

128

175

standard correlation 79

state of the system 14

statistical methods 104

statistical validation 83

stochastic function 14

stochastic process 14

support vector machine (SVM) 35, 105, 107

temporal expression 153

threshold mapping 21

threshold value 34

time-course expression profiles 50

time-course microarray data 56

topological constraint 82

topological criteria 82

transcription factor 124, 152, 154

transcription factor binding motifs (TFBM)
122

transcription module 124, 127

validation dataset 76

var genes 128, 129, 158

Watson strand 159
Winzeler data 60-63




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /DetectCurves 0.100000
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /PreserveDICMYKValues true
  /PreserveFlatness true
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /ColorImageMinDownsampleDepth 1
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /GrayImageMinDownsampleDepth 2
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /CheckCompliance [
    /None
  ]
  /PDFXOutputConditionIdentifier ()
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




