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Foreword

Biological structures can be seen as collections of special devices coordinated by a
matrix of organization. Devices are difficult to evolve and are meticulously conserved
through the eons. Organization is a fluid medium capable of rapid adaptation. The
brain carries organizational fluidity to the extreme. In its context, typical devices
are ion channels, transmitters and receptors, signaling pathways, whole individual
neurons or specific circuit patterns. The border line between what is to be called
device and what a feat of organization is flowing, given that in time organized sub-
systems solidify into devices. In spite of the neurosciences’ traditional concentration
on devices, their aiming point on the horizon must be to understand the principles
by which the nervous system ties vast arrays of internal and external variables into
one coherent purposeful functional whole — to understand the brain’s mechanism of
organization.

For that purpose a crucial methodology is in silico experimentation. Computer
simulation is a convenient tool for testing functional ideas, a sharp weapon for dis-
tinguishing those that work from those that don’t. To be sure, many alternatives can
only be decided by direct experiment on the substrate, not by modeling. However, if
a functional idea can be debunked as flawed once tried in silico it would be a waste
to make it the subject of a decade of experimentation or discussion.

The venture of understanding the function and organization of the visual system
illustrates this danger. Without much exaggeration it can be said that none of the
academically formulated functional ideas could be shown to work on just any visual
input. There is at present growing awareness that that is not due to lack of ingenuity
but rather to a matter of principle: given the tremendous variability of the visual envi-
ronment, no simple, intellectually coherent device can work in all situations. Object
contours cannot be found solely by local contrast detection, the obvious direct mech-
anism, but only by coordination with other subsystems. The ambiguity plaguing the
subsystems individually can be reduced only by global coordination between them.
Thus, without understanding the phenomenon of organization we will not understand
vision.

There is an even stronger reason to study organization. When trying to model
brain function in silico, we have the tendency to first understand and solve the spe-
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cific problem at hand in our own head and then create specific circuits and devices
accordingly. This approach has long dominated the venture of artificial intelligence,
and certainly also the field of computer vision. However, what may in the brain act
like a fixed device may be an artifact of standardized experimental conditions and
may in reality be the result of spontaneous organization. The devices (algorithms) in
our computers are created by a separate process, in the mind of programmers. For
the brain, there is no independent programmer (and evolution should not lightly be
invoked as such). For the brain, there is no clear-cut separation between generation
and execution of “algorithms.” The interdigitated processes of evolution, ontogen-
esis, learning, brain state organization and, in the case of man at least, culture and
education, are autonomously organizing the brain’s functionality. The work of sci-
ence will only have been done once we understand the principles of organization that
not only coordinate subsystems but also create them. Only these principles are fixed,
what they produce may to a large extent be due to accidents and circumstances.

This book is highly relevant to the goal of understanding organization. It summa-
rizes and integrates an important body of work, accumulated over decades, aimed at
describing and understanding the organization of the vertebrate visual system. Maps
and columnar structures are a dominant theme of cortical organization. Due to an im-
portant wealth of experimental work on the substrate and in silico the mechanisms
by which these structures are organized seem now before our eyes. The riddle of
how less than 109 bits of genetic information are able to determine the arrangement
of 1014 synaptic connections in ontogenesis is resolved by the demonstration that
a relatively simple, genetically determined and controlled repertoire of cellular be-
havior is sufficient to understand the ontogenesis of regular connection patterns. The
fundamental motivation behind hundreds of experimental studies of the ontogene-
sis of retinotopic connection patterns and also a sizable part of the work on cortical
maps (on which this book concentrates) is the hope to elucidate the general mech-
anisms behind the development of the brain’s wiring patterns. This work has led to
very clear-cut conclusions painting a convincing and coherent picture. There is a re-
grettable reluctance of neurobiology to broadcast such conclusions as the message of
fundamental importance that they constitute, so that there is a mission still to be ac-
complished here. This book is an important step in that direction. It employs the tool
of computer simulation to show the validity of the principles that have emerged, to
teach them, to develop them further and prepare them for application to novel cases.

Physics has found an ultimate receptacle and means of transmission of its results,
in the form of mathematical descriptions and paradigmatic experiments. In distinc-
tion, biology still has to find the mode of knowledge formulation with which to cap-
ture the essence of the tremendous wealth of detailed results it has produced and is
producing at a prodigious rate, a mode of formulation that makes it possible to close
chapters and transmit conclusions to next generations of biologists. Theoretical bi-
ology is routinely applying mathematics to what I am calling here devices, but these
individual mathematical formulations do not add up to a coherent canon, are rather
as disparate as the devices to which they apply. There is, however, definite hope that
a mathematical framework can be found for the phenomenon of organization. It has
often been remarked that physics is deliberately studying the simple and that biol-
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ogy by force is concerned with the complex. But then, what is irreducibly complex?
Seen under the right perspective even complex matters may come under the sway
of relatively simple conceptual frameworks. Where this is not possible there can be
no science and art must reign. No doubt, there are domains of irreducible complex-
ity, but I doubt that the mechanisms of organization form one. Meticulous study of
paradigmatic cases is necessary to penetrate that domain, and the study of vision at
the cortical level, the focus of a tremendous body of scientific work, is sure to play a
central role here.

The eternal discussion of nature vs. nurture, of prenatal vs. postnatal organiza-
tion, has taken a very interesting turn in the context of cortical map formation. As
will be discussed in these pages, neither side can possibly win. The methods that
life has chosen here give the intriguing feeling that they contain a message of great
importance for organization in general, if only we found the right perspective. It all
gives the impression that evolution, far from having labored to develop and genet-
ically encode specific devices for specific purposes, is just lightly playing its usual
games, that just new tunes are played on a long-existing piano, the behavioral reper-
toire of living cells. Ocularity stripes evidently are not a tremendously clever and
hard-won trick of evolution to exploit some complex vision problem, but turn out to
naturally result from the collision of two retinotopic mappings trying to carve out
common territory. This message is forcefully brought home by the famous experi-
ment of Constantine-Paton and Law, in which this situation was artificially created
in a frog, promptly resulting in ocularity stripes on the tectum for the first time in the
evolution of that frog.

All that organization is about is the coordination of subsystems under a purpose.
It is interesting to see how the conclusions propagated in this book perfectly illus-
trate and concretize that general theme. The function of the primary cortices is not
constructed in isolation, with afferents to be plugged in later, like a fully constructed
computer to which peripherals are connected, but structuring the cortices is more
of an exercise in adaptation to the periphery and to other subsystems. Purpose of a
specific kind may be brought in by the prenatal simulation (within the retina, or in
the pontine region, if the PGO hypothesis advanced here is correct) of biologically
significant stimuli. Here, evolution has to labor and make it clear to the new-born
human baby, for instance, that the face of the mother is a most interesting and im-
portant stimulus. But evolution does so in a parsimonious fashion, laying down a
mere schema of the face, which together with filter properties of the immature visual
system and simple behavioral patterns of the mother suffice to identify examples as
soon as the eyes are open. A possibly very general principle of learning may lie here.
In order to extract essential structure from the environment in learning, it is first nec-
essary to identify and separate from the background what is biologically significant.
The general principle to identify significant patterns might be based on schematic
descriptions of significant structures in the learning brain and its ability to map them
into the environment, schemas being defined by evolution (or as the result of previous
learning). When a pattern has been recognized, it is separated from the background.
The brain thus avoids being swamped by masses of irrelevant information. A likely
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candidate mechanism for this separation is synchrony coding discussed here in the
chapters on perceptual grouping.

It is my impression that the time is ripe for a major attack on the general problem
of organization. Molecular biology and information technology are both hitting a
serious complexity barrier. This can only be overcome by a shift of attention from
the details of large systems to their organizing principles. Science can only conquer
this domain with the help of insight gained on paradigmatic cases. The organization
of visual cortex in perinatal ontogenesis may prove decisive in this role.

Bochum, Christoph von der Malsburg
July 2004 Institut für Neuroinformatik, Ruhr-Universität Bochum;

Departments of Computer Science and Neurobiology,
University of Southern California



Preface

For several decades, the visual cortex has been the source of new theories and ideas
about how the brain processes information. The visual cortex is easily accessible
through a number of recording and imaging techniques and allows mapping high-
level behavior relatively directly to neural mechanisms. It has also been the focal
point in the emerging field of computational neuroscience. Several key ideas, such
as input-driven self-organization, representing information on topographic maps, and
temporal coding, originate from the mechanisms observed in the visual cortex. Un-
derstanding the computations in the visual cortex is therefore an important step to-
ward a general computational brain theory.

Although computational theories of the visual cortex have existed for about 30
years, it has been difficult to test these theories experimentally and computationally.
In the last 10 years or so the situation has finally started to change, for two reasons.
First, it has become technically possible to measure how the visual cortex develops
in response to external input, and how visual functions depend on low-level cortical
mechanisms. Second, the available computational power has increased by several or-
ders of magnitude. This technological confluence makes it possible for the first time
to constrain and test precise computational models about how the visual cortex de-
velops and functions, and why it has the organization it does. Computational models
have gradually become an integral part of neuroscience theory.

The research in this area is far from unified. Several models exist to explain
phenomena such as how ocular dominance and orientation preferences develop, how
visual illusions and aftereffects arise, and how binding and segmentation take place,
but it is not possible to see how they could function together in the visual cortex.
Also, much of the research involves reimplementing ideas that have been around for
several decades. There is no common overview of the field, nor is there a software
framework on which future research could be based. This book is intended to fill
these gaps: It presents a comprehensive, unified computational theory of the visual
cortex as a laterally connected self-organizing map, it puts the theory in the context
of past and current research in the area, and it is accompanied by a major software
tool, Topographica, for modeling computational maps in the cortex in general.
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For more than a decade, our research group at the University of Texas at Austin
has worked on computational modeling of the visual cortex. Our perspective is to
focus not only on the map-like structure of the cortex, but also take into account the
dynamical processes that take place through lateral interaction and synchronization.
It turns out that many developmental and functional phenomena depend on such pro-
cesses, giving the model a unique explanatory power. This level of explanation is
highly appropriate for understanding many visual processing phenomena; it is also
a level where the theories are verifiable, leading to many predictions and proposals
for future biological experiments. The book demonstrates how a number of phenom-
ena follow from these principles, including columnar map organization and patchy
connectivity, recovery from retinal and cortical injury, psychophysical phenomena
such as tilt aftereffects and contour integration, and newborn preference for faces.
Computational models are used to gain a precise understanding of existing data, and
to make specific predictions for future experimental and theoretical research.

Our aim is to use the theory as a launching point to promote further research
in this area. The principles of the models are described in detail, as are the tech-
niques that make them work in practice, including parameter settings and scaling
to different sizes and purposes. Most significantly, the book is accompanied by
software, animations and demonstrations freely available on the Internet through
http://topographica.org. Topographica is a general software tool for simulating cor-
tical maps that allows neuroscientists to put together sophisticated computational
experiments of their own design. As examples, the site contains specific models and
demos described in this book. In this way, the book and the software are designed
to complement each other, serving as a practical and a theoretical foundation for fu-
ture research in computational neuroscience. Such a contribution, we believe, will
significantly facilitate research in this area in the future.

The LISSOM project and the development of Topographica have benefited from
the suggestions and contributions of many researchers, in fact too many to be listed
here. We would especially like to thank Bill Geisler, Teuvo Kohonen, and Christoph
von der Malsburg for substantial contributions of both ideas and critique over the
years. Les Cohen, Larry Cormack, Joydeep Ghosh, Ben Kuipers, Bruce McCormick,
Ray Mooney, Bruce Porter, Eyal Seidemann, Peter Stone, Chris Williams, and David
Willshaw provided inspiration and guidance as doctoral committee members and as
colleagues. Many research ideas were refined in discussions with Mike Arbib, Tony
Bell, David Brainard, Dan Butts, Cara Cashon, Dmitri Chklovskii, Gary Cottrell,
Jack Cowan, Michael Crair, Yang Dan, Peter Dayan, Scania de Schonen, Eizaburo
Doi, Dawei Dong, Shimon Edelman, Steven Eglen, James Elder, Jeff Elman, Jerry
Feldman, David Field, Peter Fox, Uli Frauenfelder, Nigel Goddard, Geoff Good-
hill, Anatoli Gorchetchnikov, Steve Grossberg, Seung Kee Han, Seong-Whan Lee,
Mike Hasselmo, Robert Hecht-Nielsen, Mike Hines, Geoff Hinton, David Horn,
Fred Howell, Patrik Hoyer, Aapo Hyvärinen, Risto Ilmoniemi, Masumi Ishikawa,
Naoum Issa, Mark Johnson, George Kalarickal, Pentti Kanerva, Sami Kaski, Krista
Lagus, Pat Langley, Daniel Lee, Soo-Young Lee, Christian Lehmann, Ping Li, Jyh-
Charn Liu, Xiuwen Liu, Jay McClelland, Brian MacWhinney, Gary Marcus, De-
nis Mareschal, Vinod Menon, Ken Miller, Klaus Obermayer, Erkki Oja, Bruno Ol-
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shausen, Remus Osan, Larry Parsons, Jim Reggia, Pamela Reinagel, Helge Ritter,
Adrian Roberts, Eytan Ruppin, Terry Sejnowski, Lokendra Shastri, Harel Shouval,
Hava Siegelmann, Michael Stryker, Mriganka Sur, John Taylor, Simon Thorpe, Dave
Touretzky, David van Essen, Rufin VanRullen, Thomas Wachtler, DeLiang Wang,
Mike Weliky, and Len White. Several former and current members of the University
of Texas Neural Networks Research Group contributed to the design and implemen-
tation of the models and experiments, including Gautam Agarwal, Justine Black-
more, Judah De Paula, Igor Farkas, Andrea Haessly, Stefanie Jegelka, Amol Kelkar,
Jeff Provost, Joe Reisinger, Yaron Silberman, Yiu Fai Sit, Tal Tversky, and Vinod
Valsalam.

The research was supported in part by the National Institute of Mental Health
(under Human Brain Project grant 1R01-MH66991 through Steven Koslow and
Michael Hirsch), the National Science Foundation (under grants EIA-0303609, IIS-
9811478, and IRI-9309273 through Darleen Fisher, Larry Reeker, and Su-Shing
Chen, as well as by supercomputer grants IRI-94000P and IRI-930005P), and the
College of Natural Sciences, the University of Texas at Austin (under a Dean’s Re-
search Fellowship).

Austin, Edinburgh, College Station, San Diego, Risto Miikkulainen
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1

Introduction

How can a system as complex as the human visual system be constructed? How can
it be specified genetically, still allowing it to adapt to the environment? How can it
perform complicated functions such as recognizing faces and identifying coherent
objects immediately and automatically?

This book aims at developing a computational theory of the visual cortex to an-
swer these questions. While these questions have been open for quite some time,
and much experimental work remains to be done to answer them conclusively, com-
putational models serve an important role in this process: They provide a formal
description of the principles and processes that are going on in biology. It is possi-
ble to use the models in lieu of biology, to test ideas that are difficult to establish
experimentally, and to direct experiment to areas that are not understood well. Once
verified, computational models provide a precise theory of the system.

The computational theory is expressed in detail in LISSOM, a laterally connected
self-organizing map model of the visual cortex. LISSOM models the structure, de-
velopment, and function of the visual cortex at the level of maps and their con-
nections. The theory is based on three computational principles: Cortical columns
constitute the basic computational unit, the units continuously adapt to visual and
internal input, and the units synchronize and desynchronize their activity. Simulated
experiments with LISSOM demonstrate how a wide variety of phenomena follow
from these principles, including columnar map organization and patchy connectiv-
ity, recovery from retinal and cortical injury, psychophysical phenomena such as tilt
aftereffects and contour integration, and newborn preference for faces. The model is
used to gain a precise understanding of existing data, and to make specific predictions
for future experimental and theoretical research.

The LISSOM model therefore suggests specific, computational answers to the
above questions: (1) The cortical structures are constructed through input-driven self-
organization; (2) the self-organization is driven both by external visual inputs and by
genetically determined internal inputs; and (3) perceptual grouping takes place auto-
matically through synchronization of neuronal activity, mediated by self-organized
lateral connections. In this chapter, these three hypotheses are motivated in detail and
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the approach to verifying them computationally is outlined, providing a roadmap for
the rest of the book.

1.1 Input-Driven Self-Organization

Current computing systems lag far behind humans and animals at many important
information-processing tasks. One potential reason is that brains have far greater
complexity, e.g. 1011 neurons and 1014 synapses compared with 108 transistors
(Burger and Goodman 1997; Kandel, Schwartz, and Jessell 2000; Shepherd 2003).
Designing specific blueprints for systems with 1014 components is beyond human
engineering for the foreseeable future. How does nature manage to do it? One clue
is that the genome has fewer than 105 genes in total, which means that any encoding
scheme for the connections must be extremely compact (Lander et al. 2001; Venter
et al. 2001). The first main hypothesis to be tested in this book is that instead of
being specified directly genetically, the structure in the visual cortex is constructed
by input-driven self-organization. Let us review the motivation for this idea in more
detail.

The structure of the mammalian early visual areas is now well understood. Nerve
fibers from the retina project to an intermediate region called the lateral geniculate
nucleus (LGN), from which the fibers project to the primary visual cortex (V1).
The Nobel prize winning studies of Hubel and Wiesel (1959, 1965, 1974) showed
that neurons in the primary visual cortex are responsive to particular features in the
input, such as a line of a particular orientation at a particular location in the visual
field. Together, the locations on the retina to which a neuron responds are called the
receptive field of the neuron. Neurons in a vertical column in the cortex have similar
receptive fields and feature preferences. Vertical groups of neurons with the same
orientation preference are called orientation columns, and vertical groups with the
same eye preference are called ocular dominance columns; such groups may also be
selective for direction of movement, spatial frequency, and color. This organization
is shown schematically in Figure 1.1. The feature preferences gradually vary across
the surface of the cortex in characteristic spatial patterns called cortical feature maps.

Many researchers have argued that such maps develop through self-organization
of input connections from the thalamus and are shaped by visual experience (Shatz
1992). A number of classic experiments by Hubel, Wiesel and other researchers
showed that altering the visual environment can drastically change the organization
of input connections, ocular dominance columns, and orientation columns (Hubel
and Wiesel 1962, 1974; Hubel, Wiesel, and LeVay 1977). The animal is most sus-
ceptible during a critical period of early life, typically a few weeks. For example, if a
kitten is raised with both eyes sutured shut, its cortex will be abnormally organized,
without ocular dominance and orientation columns. If the eyes are opened only after
a critical period of a few weeks, the animal will be blind for life, even though the
eyes and the LGN are perfectly normal. Similarly, if kittens are raised in environ-
ments containing only vertical or horizontal contours, their ability to see other ori-
entations suffers significantly. In the cortex, most cells develop preferences for these
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Fig. 1.1. Columnar organization of the primary visual cortex. This classic diagram illus-
trates an example patch of V1, responsive to one retinotopic location in the visual field. This
patch includes an ocular dominance column for each eye, and a set of orientation columns
within each ocular dominance column. Orientation preference changes along the length of the
area shown, and ocular dominance along its width. Vertically, the receptive field properties are
the same. Structures such as blobs, which analyze color, are scattered throughout the columns.
Reprinted with permission from Kandel et al. (1991), copyright 1991 by McGraw-Hill.

particular orientations, and do not respond well to the other orientations (Blakemore
and Cooper 1970; Blakemore and van Sluyters 1975; Hirsch and Spinelli 1970; Sen-
gpiel, Stawinski, and Bonhoeffer 1999). Such experiments indicate that visual inputs
are crucial for normal cortical organization, and suggest that the cortex tunes itself
to the distribution of visual inputs.

How do such environmentally tuned feature preferences develop, and how do
they become organized across the cortex? Since the 1970s, computational models
have been used to demonstrate that both the preferences and their organization can
result from a statistical learning algorithm that performs a nonlinear approximation
of the distribution of visual inputs. The experiments in this book follow this tradition.
An important, novel part of our theory is that lateral connections between columns
self-organize to establish the competition and cooperation necessary for this process.
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The earlier theories of the visual cortex did not include a significant role for the
lateral connections, which was in line with the original experimental results. Altering
the visual environment of the young animal changes the organization of its afferents;
lateral connections were assumed to be necessary only to provide a stable environ-
ment for the afferent adaptation, and they were assumed to be isotropic, as they are
in the retina. In the adult, the visual cortex was thought to be a collection of filters
for visual input, and the properties of the filters (such as orientation preference) were
thought to be defined by the patterns of afferent synapses. Possible lateral interac-
tions between cells across the cortex were generally not taken into account, partly
for simplicity, and partly because there did not exist sufficient neurobiological data
to form well-defined theories about these interactions.

Over the last decade, however, a number of exciting results about lateral intra-
cortical connectivity and dynamic processes in the visual cortex have emerged: (1)
Lateral connections primarily connect areas with similar properties, such as neurons
with the same orientation preference (Gilbert, Hirsch, and Wiesel 1990; Gilbert and
Wiesel 1989; Löwel and Singer 1992; Weliky, Kandler, Fitzpatrick, and Katz 1995).
(2) The lateral connections are initially uniform, but they become patchy during early
development as a result of neural activity (Callaway and Katz 1990, 1991; Löwel and
Singer 1992; Ruthazer and Stryker 1996). (3) Lateral connections develop at approx-
imately the same time as orientation columns and ocular dominance columns form
(Burkhalter, Bernardo, and Charles 1993; Katz and Callaway 1992). (4) By integrat-
ing information over large portions of the cortex, these connections appear to assist in
the grouping of simple features such as edges into perceptual objects (Singer, Gray,
Engel, König, Artola, and Bröcher 1990; von der Malsburg and Singer 1988). (5)
The visual cortex is not static after maturation, but can adapt rapidly (in minutes) to
retinal lesions and similar changes in the visual input. Several researchers have hy-
pothesized that lateral connections play an important role in this adaptability (Gilbert
and Wiesel 1992; Kapadia, Gilbert, and Westheimer 1994; Pettet and Gilbert 1992).

The new understanding of cortical development and function thus differs dras-
tically from the old. It now appears that the adult visual cortex is a continuously
adapting recurrent structure in a dynamic equilibrium, capable of rapid changes in
response to altered visual environments. The lateral connections develop coopera-
tively and simultaneously with the thalamocortical afferents, and visual experience
dynamically changes the lateral interactions throughout life.

In this book, a unified, dynamic computational model of such mechanisms in
the visual cortex is developed. A single self-organizing process determines how
both afferent and lateral connections develop in early life. This same process also
continuously adapts the adult cortical structure during visual processing and may
play an important role in perception. The model therefore provides strong compu-
tational support for the idea that cortical structure develops based on input-driven
self-organization.
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Fig. 1.2. Spontaneous activity in the retina. Each of the frames shows calcium concentration
imaging of approximately 1 mm2 of newborn ferret retina; the plots are a measure of how
active the retinal cells are. Light gray indicates areas of increased activity. This activity is
spontaneous (internally generated), because the photoreceptors have not yet developed at this
time. From left to right, the frames on the top row form a 4-second sequence showing the
start and expansion of a wave of activity. The bottom row shows a similar wave 30 seconds
later. Later chapters will show that this type of correlated activity can explain how orientation
selectivity develops before eye opening. Reprinted with permission from Feller et al. (1996),
copyright 1996 by the American Association for the Advancement of Science; gray scale
reversed.

1.2 Constructing Visual Function

The experiments with LISSOM will show that the self-organizing algorithm is pow-
erful enough to construct structure from visual inputs starting from an initially uni-
form, unorganized state. However, there are two problems with this result: (1) Self-
organization takes time, and the animal would not be able to act on visual input until
the process is almost complete. (2) The self-organized structure depends critically on
the specific input patterns available: if the visual environment is variable, the organ-
ism may not develop predictably, and what the learning algorithm discovers may not
be the information most relevant to the organism.

In contrast, visual development in nature is highly stable, and the visual cortex
of most animals is partially organized already at birth (or eye-opening). Such robust-
ness could be achieved with a specific, fixed genetic blueprint, but (as was discussed
above) there is not enough information available in the genome to represent it.

Recent experimental findings in neuroscience suggest that nature may have found
a clever way to utilize self-organization to achieve the same result. Developing sen-
sory systems are now known to be spontaneously active even before birth, i.e. before
they could be learning from the environment (see O’Donovan 1999; Wong 1999 for
reviews; Figure 1.2). This spontaneous, internal activity may actually guide the pro-
cess of cortical development, acting as genetically specified training patterns for a
learning algorithm (Constantine-Paton, Cline, and Debski 1990; Hirsch 1985; Jou-
vet 1998; Katz and Shatz 1996; Marks, Shaffery, Oksenberg, Speciale, and Rof-
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fwarg 1995; Roffwarg, Muzio, and Dement 1966; Shatz 1990, 1996; Sur and Leamey
2001). For a biological species, being able to control the training patterns can guar-
antee that each organism has a rudimentary level of performance from the start. Such
training would also ensure that initial development does not depend on the details of
the external environment. Thus, internally generated patterns can preserve the bene-
fits of a blueprint, within a learning system capable of much higher complexity and
performance.

The second main hypothesis tested in this book is that the input-driven self-
organization is based on internally generated patterns as well as external visual
inputs. Internal patterns drive the initial development, and the external environment
completes the process. The result is a compact specification of a complex high-
performance product.

This idea will be implemented in LISSOM, and illustrated on two visual capabil-
ities where both genetic and environmental influences play a strong role: orientation
processing and face detection. At birth, newborns can already discriminate between
two orientations (Slater and Johnson 1998; Slater, Morison, and Somers 1988), and
animals have neurons and brain regions selective for particular orientations even be-
fore their eyes open (Chapman and Stryker 1993; Crair, Gillespie, and Stryker 1998;
Gödecke, Kim, Bonhoeffer, and Singer 1997). Yet, as reviewed above, orientation
processing circuitry in these same areas can also be strongly affected by visual expe-
rience (Blakemore and van Sluyters 1975; Sengpiel et al. 1999). Internally generated
patterns make it easier to build an effective orientation map from later environmental
input, and they are crucial for explaining the experimental data. Similarly, newborns
already prefer facelike patterns soon after birth, but face-processing ability takes
months or years of experience to develop fully (Goren, Sarty, and Wu 1975; Johnson
and Morton 1991; see de Haan 2001 for a review). Pattern generators can be used
to specify such species-specific structure: If the visual system model is trained with
simple three-dot patterns before birth, the newborn system prefers facelike schemat-
ics the same way human infants do, and gradually learns to recognize real faces
through similar developmental phases.

These results suggest that self-organization driven by both internal and external
inputs can be used to build complex, plastic, robust structures that would be too com-
plex to determine directly genetically, and too fragile to learn from external inputs.
Pattern generation is ubiquitous in nature, and could also be utilized in engineering
of complex artificial systems in general.

1.3 Perceptual Grouping

In addition to understanding how the observed structures in the visual cortex emerge,
it is important to understand what role they play in visual processing. Because LIS-
SOM is a functional computational model, it can be tested in simulated neurobio-
logical and psychophysical experiments. It is therefore ideal for testing hypotheses
about the functional phenomena that arise from the self-organized structures.
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(a) Proximity (b) Good continuation (c) World knowledge

Fig. 1.3. Perceptual grouping tasks. Perceptual grouping is the process of identifying con-
stituents in the visual scene that together form a coherent object. Perceptual grouping can
take place at many different levels, from the very low level (a), to the very high level (c). (a)
Grouping by proximity. The two black disks that are close to each other appear to form a unit.
Thus, two groups are perceived: one on the left and another on the right. (b) Grouping by
good continuation. In the random background of oriented edges (or contour elements), it is
easy to notice the long, continuous sequence of edges that runs horizontally from the top-left
of the circular area toward the right and slightly down. The task of detecting such contours
is known as contour integration. (c) Grouping requiring world knowledge. In this seemingly
unintelligible image lurks a Dalmatian dog sniffing on the pavement (a photograph by R. C.
James; the dog is in the top right of the image, facing left). Without world knowledge, e.g.
experience with dogs, leaves, etc., it would be impossible to group together the dots that form
the Dalmatian.

Perhaps the most significant such function is perceptual grouping, or the process
of identifying the constituents in the visual scene that together form a coherent ob-
ject (Grossberg, Mingolla, and Ross 1997; Watt and Phillips 2000; Zucker 1995).
The complexity of such tasks varies widely, and they can take place at various levels
of the visual processing hierarchy (Figure 1.3). Different grouping principles are uti-
lized at the different levels, including those based on spatial, temporal, and chromatic
relationships (Geisler and Super 2000). At the level of orientation maps, perceptual
grouping is manifested in contour integration, and a large body of neurobiological
and psychophysical data is available to constrain, validate, and test the models. In
this book, the LISSOM model will be used to test the hypothesis that contour inte-
gration is an automatic function of the orientation map in the visual cortex, based
on synchronized neuronal activity mediated by self-organized lateral connections.

A typical visual input for the contour integration task is shown in Figure 1.3b.
The input consists of a series of short oriented edge segments (contour elements)
aligned along a continuous path, embedded in a background of randomly oriented
contour elements. The task is to identify the longest continuous contour in this scene.
Contour integration is an appropriate problem for computational analysis because the
relationships between constituents of the image are neither too simple to be interest-
ing (as in Figure 1.3a where the distance between the centers of the disks is the
only grouping criteria), nor too complex to be represented (as in Figure 1.3c where
complex world knowledge is required).
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Most importantly, contour integration is believed to occur relatively early in the
visual system. The response properties and connection patterns found in the primary
visual cortex have exactly the right properties for explaining contour integration per-
formance in terms of neural mechanisms (Field, Hayes, and Hess 1993; Geisler,
Perry, Super, and Gallogly 2001; Li 1998; McIlhagga and Mullen 1996; Pettet, Mc-
Kee, and Grzywacz 1998; Stettler, Das, Bennett, and Gilbert 2002; Yen and Finkel
1997, 1998). The lateral connections run along collinear or cocircular paths, and
these areas are often activated together (Bosking, Zhang, Schofield, and Fitzpatrick
1997; Dalva and Katz 1994; Gilbert 1992; Katz and Callaway 1992; Löwel and
Singer 1992; McGuire, Gilbert, Rivlin, and Wiesel 1991; Weliky et al. 1995). As
discussed above, there is strong evidence that these structures are self-organized,
driven by neural input (Blakemore and Cooper 1970; Blakemore and van Sluyters
1975; Hirsch and Spinelli 1970; Hubel and Wiesel 1962, 1974; Hubel et al. 1977;
Ruthazer and Stryker 1996; White, Coppola, and Fitzpatrick 2001). Such specific
patterns of connectivity are well suited for forming a consistent, coherent activation
in response of a continuous contour.

One major question is how coherent percepts are represented in the cortex. The
task consists of two parts: binding, i.e. grouping together separate constituent repre-
sentations in the visual scene into a coherent object, and segmentation, i.e. segregat-
ing such coherently bound representations into different objects. With static activity,
it is hard to represent binding and segmentation in a constantly changing sensory
environment (von der Malsburg 1981, 1986a). Several researchers have proposed
that temporal coding through synchronization, spike timing, phase differences, or
other temporal information, could solve the problem (Eckhorn, Reitboeck, Arndt,
and Dicke 1990; Horn and Opher 1998; Kammen, Holmes, and Koch 1989; Reit-
boeck, Stoecker, and Hahn 1993; Terman and Wang 1995; von der Malsburg 1986b;
Wang 1995). Indeed, experiments with cats have shown that presentation of coherent
objects gives rise to synchronized firing of neurons in the visual cortex, and pre-
senting separate objects causes no synchronization (Eckhorn, Bauer, Jordan, Kruse,
Munk, and Reitboeck 1988; Gray, Konig, Engel, and Singer 1989; Gray and Singer
1987; Singer 1993). Such coherent firing of neurons may be a possible representation
for grouping.

In this book, the mechanisms of self-organized lateral connections and synchro-
nization between groups of spiking neurons are brought together into an integrated
developmental and functional model of the visual cortex. The results support the hy-
pothesis that much of contour integration is performed in V1, based on these mech-
anisms. The work also suggests that similar mechanisms could be in use at higher
levels, providing insights into perceptual grouping in general.

1.4 Approach

The above three hypotheses will be tested in a computational framework called LIS-
SOM, or laterally interconnected synergetically self-organizing map. LISSOM is a
computational map model of the visual cortex developed in our laboratory over the
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Fig. 1.4. Basic LISSOM model of the primary visual cortex. The core of the model consists
of a two-dimensional array of computational units representing columns in V1. These units
receive input from the retinal receptors through the ON/OFF channels of the LGN, and from
other columns in V1 through lateral connections. The solid circles and lines delineate the
receptive fields of two sample units in the LGN and one in V1, and the dashed circle in V1
outlines the lateral connections of the V1 unit. The LGN and V1 activation in response to a
sample input on the retina is displayed in gray-scale coding from white to black (low to high).
The V1 responses are patchy because each neuron is selective for a particular combination
of image features (Figure 1.1), and only certain combinations exist in the image. This basic
LISSOM model will be used in Part II to understand input-driven self-organization, cortical
plasticity, and functional effects of adapting lateral connections. In Part III, the model is further
extended with subcortical and higher level areas to study prenatal and postnatal development,
and in Part IV, with binding and segmentation circuitry in V1 to model perceptual grouping.

past 10 years, building on about 30 years of map modeling research in the literature.
LISSOM’s core is a two-dimensional array of computational units corresponding to
columns in V1, which receive inputs from the retina through the ON/OFF channels
of the LGN and from other columns in V1 through lateral connections (Figure 1.4).
The units learn through Hebbian adaptation, and compete with other units in a self-
organizing map structure (Hebb 1949; Kohonen 2001; von der Malsburg 1973). The
hypotheses are tested by analyzing the behavior of this model through simulated
neurobiological and psychophysical experiments.

The input-driven self-organization hypothesis is tested in four ways: (1) In a
number of specific experiments where each individual feature of visual inputs to
the cortex, such as topographic order, eye dominance, orientation, and direction of
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movement, is learned and represented in the cortex; (2) in a combined simulation
where a large cortical model self-organizes to represent all these features simultane-
ously; (3) in an adult-plasticity experiment where the cortex repairs itself after retinal
or cortical damage; and (4) in a functional experiment where visual aftereffects are
shown to arise from these same mechanisms in the normal adult system.

The pattern generation hypothesis will be evaluated by building and testing
HLISSOM, a hierarchical model that includes both subcortical and higher visual ar-
eas. The goal is to understand how internal and external inputs affect the organization
and function of the visual cortex. Because the orientation processing circuitry has
been mapped out in detail in animals, it will be used as a verifiable test case for the
pattern generation approach. The same techniques will then be applied to face pro-
cessing, where they will be used as a basis for a unified theory for the phenomenon.
The goal is to demonstrate how internal activity can account for the newborn struc-
ture in each system, and how postnatal experience can complete this developmental
process. In each case, the model is first validated by comparing it with existing ex-
perimental results, and then used to derive predictions for future experiments.

The contour integration hypothesis will be studied in the PGLISSOM model,
where LISSOM is extended to perform perceptual grouping through spiking neurons
and long-range excitatory lateral connections. Grouping is measured as the degree
of synchrony among neural populations, and such synchrony is established through
the lateral connections. This model shows how the statistical structure in the visual
environment determines the structure of the visual cortex, which in turn determines
its grouping performance. The model therefore provides a computational account of
the possible neural mechanisms of contour integration.

In addition to providing computational support for the above three hypotheses,
the LISSOM framework constitutes a general computational theory of representation
and learning in the visual cortex. The learning mechanisms extract correlations in the
input that allow representing visual information efficiently in a sparse, redundancy-
reduced code. Such representations are separable and generalizable, and serve as an
effective foundation for later stages of visual processing, such as pattern recognition.
These computational principles are abstractions of what the cortex is doing, but they
are also general principles that could be used in constructing artificial systems.

The LISSOM approach is intended to serve as a starting point for future explo-
rations in computational understanding of the visual cortex. The models described
in this book are freely available on the Internet under the Topographica project
(http://topographica.org). In this project, a general simulator for computational mod-
eling of cortical maps is being developed, intended to support further research in this
general area. We believe that the current confluence of experimental data on cortical
maps and such newly available computational tools will lead to major progress in
understanding how the brain processes visual information.
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1.5 Guide for the Reader

The book is divided into five parts. First, the biological background is reviewed for
the core constituents of LISSOM, i.e. for self-organization, lateral connections, ge-
netic vs. environmentally driven development, and temporal coding. The computa-
tional foundations of LISSOM, such as the neuron models, synchronization, learn-
ing, and self-organizing maps, are also discussed. However, the specific biological
and psychophysical evidence and prior modeling work for each individual experi-
ment is reviewed in the individual chapters throughout the book.

Part II focuses on mechanisms of input-driven self-organization. The basic archi-
tecture of the LISSOM computational map model of V1 is presented, and demon-
strated to develop a map organization and patchy lateral connections based on regu-
larities in the visual input. The same self-organization processes are shown to account
for plasticity of the adult cortex, and give rise to psychophysical phenomena such as
the tilt aftereffect.

Part III demonstrates how genetic and environmental influences can be combined
in input-driven self-organization. The LISSOM model of V1 is first expanded out-
ward into a multi-level model containing subcortical areas and higher visual maps,
capable of processing both natural images and internally generated input. This model
demonstrates a synergy of nature and nurture in developing orientation preferences,
and allows gaining insight into high-level phenomena such as infant face processing.

Perceptual grouping is studied in Part IV. To gain insight into this process, the
LISSOM model is extended inward to include spiking units and separate excitatory
and inhibitory components in cortical columns. The resulting temporal coding and
self-organization processes are demonstrated in detail, and shown to work together.
The model is shown to account for low-level perceptual grouping phenomena such
as contour integration performance under varying conditions, integration of illusory
contours, and differences in grouping performance across the different areas of the
cortex.

In Part V, laterally connected self-organizing maps are shown to result in effi-
cient visual representations well suited for higher level processing and for practi-
cal applications. Techniques are developed for scaling the approach to very large
maps, including possibly the entire visual cortex. The assumptions and predictions
of LISSOM are reviewed and evaluated in terms of biological research results and
opportunities. Connections are made to related and complementary work in cortical
modeling and cognitive science, and future directions are outlined.



2

Biological Background

In later chapters, computational simulations are presented that describe how the hu-
man visual system develops and functions. In order to make such simulations a useful
tool for understanding natural systems, they are based on detailed anatomical, neu-
rophysiological, and psychological evidence. In this chapter, the organization of the
visual system in humans and higher animals is reviewed, and biological evidence
is discussed for structures and processes that are important for later chapters, such
as lateral connections, externally and internally driven development, and temporal
coding. Computational principles for modeling these phenomena are reviewed in the
next chapter. Biological evidence for each specific phenomenon modeled will be
reviewed in each chapter separately, and the general biological foundations of the
model are evaluated in Chapter 16.

2.1 Visual System Organization

The adult visual system has been studied experimentally in a number of mammalian
species, including human, monkey, cat, ferret, and tree shrew. For a variety of rea-
sons, many of the important results have been measured in only one or a subset of
these species, but they are generally expected to apply to the others as well. This
book focuses on the human visual system, but also relies on data from these animals
where human data are not available.

Figure 2.1 shows a diagram of the main feedforward pathways in the human vi-
sual system (see e.g. Daw 1995; Kandel et al. 2000; Wandell 1995 for reviews). Other
mammalian species have a similar organization. During visual perception, light en-
tering the eye is detected by the retina, an array of photoreceptors and related cells on
the inside of the rear surface of the eye. The cells in the retina encode the light levels
at a given location as patterns of electrical activity in neurons called ganglion cells.
This activity is called visually evoked activity. Retinal ganglion cells are densest in
a central region called the fovea, corresponding to the center of gaze; they are much
less dense in the periphery. Output from the ganglion cells travels through neural
connections to the lateral geniculate nucleus of the thalamus, or LGN, at the base
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Fig. 2.1. Human visual pathways (top view). Visual information travels in separate pathways
for each half of the visual field. For example, light entering the eye from the right hemifield
reaches the left half of the retina, on the rear surface of each eye. The right hemifield inputs
from each eye join at the optic chiasm, and travel to the LGN of the left thalamus, then to
primary visual cortex, or area V1, of the left hemisphere. Signals from each eye are kept
segregated into different neural layers in the LGN, and are combined in V1. There are also
smaller pathways from the optic chiasm and LGN to other subcortical structures, such as the
superior colliculus and pulvinar (not shown).

of each side of the brain. From the LGN, the signals continue to the primary visual
cortex, or V1 (also called striate cortex and area 17) at the rear of the brain. V1 is the
first cortical site of visual processing; the previous areas are termed subcortical. The
output from V1 goes on to many different higher cortical areas, including areas that
underlie object and face processing (see e.g. Merigan and Maunsell 1993; Van Es-
sen, Anderson, and Felleman 1992 for reviews). Much smaller pathways also go
from the optic nerve and LGN to subcortical structures such as the superior collicu-
lus and pulvinar. In humans these subcortical pathways are involved primarily in eye
movements and attention (LaBerge 1995; LaBerge and Buchsbaum 1990; Wallace,
McHaffie, and Stein 1997). The LISSOM model focuses on V1 and the structures to
which it connects, as reviewed below.

2.1.1 Early Visual Processing

At the photoreceptor level, the representation of the visual field is much like an im-
age, but significant processing of this information occurs in the subsequent subcorti-
cal and early cortical stages (see e.g. Daw 1995; Kandel et al. 2000 for reviews).

First, retinal ganglion cells perform a type of edge detection on the input, re-
sponding most strongly to borders between bright and dark areas. Figure 2.2a,b il-
lustrates the two main types of such neurons, ON-center and OFF-center. An ON-
center retinal ganglion cell responds most strongly to a spot of light surrounded by
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(a) ON cell in
retina or LGN

(b) OFF cell in
retina or LGN

(c) 2-lobe V1
simple cell

(d) 3-lobe V1
simple cell

Time 0 Time 1 Time 2 Time 3

(e) Spatiotemporal RF of a V1 cell

Fig. 2.2. Receptive field types in retina, LGN and V1. Each diagram shows a receptive field
on the retina for one neuron. Areas of the retina where light spots excite this neuron are plotted
in white (ON areas), areas where dark spots excite it are plotted in black (OFF areas), and areas
with little effect are plotted in medium gray. The size of the RFs varies, but they all have the
same basic shape and they are all spatially localized, i.e. their ON and OFF areas cover a
small specific portion of the retina. (a) ON cells are found in the retina and LGN, and prefer
light areas surrounded by dark. (b) OFF cells have the opposite preferences, responding most
strongly to a dark area surrounded by light. RFs for both ON and OFF cells are isotropic, i.e.
have no preferred orientation. Starting in V1, most cells in primates have orientation-selective
RFs instead. The V1 RFs can be classified into a few basic spatial types, of which the two
most common are shown above: (c) A two-lobe arrangement, favoring a 45◦ edge with dark in
the upper left and light in the lower right, and (d) a three-lobe pattern, favoring a 135◦ white
line against a dark background. Both types of RF are often represented with Gabor functions
(Daugman 1980; Jones and Palmer 1987). RFs of all orientations are found in V1, but those
representing the cardinal axes (horizontal and vertical) are more common. Many neurons are
also sensitive for the direction of movement of these patterns, i.e. their RFs are spatiotemporal.
For such a neuron, successive snapshots of the spatial RF at different times are shown in (e);
together they form a spatiotemporal RF selective for a vertical light bar moving to the right.
A model for the ON and OFF cells will be introduced in Chapter 4 and for the simple and
spatiotemporal V1 cells in Chapter 5.

dark, located in a region of the retina called its receptive field, or RF. An OFF-center
ganglion cell instead prefers a dark area surrounded by light. The size of the preferred
spot determines the spatial frequency preference of the neuron; neurons preferring
large spots have a low preferred spatial frequency, and vice versa.

Neurons in the LGN have properties similar to retinal ganglion cells, and are
also arranged retinotopically, so that nearby LGN cells respond to nearby portions
of the retina. The ON-center cells in the retina connect to the ON cells in the LGN,
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and the OFF cells in the retina connect to the OFF cells in the LGN. Because of
this independence, the ON and OFF cells are often described as separate processing
channels: the ON channel and the OFF channel.

2.1.2 Primary Visual Cortex

Like LGN neurons, nearby neurons in V1 also respond to nearby portions of the
retina and are selective for spatial frequency. Unlike LGN neurons, most V1 neurons
are binocular, responding to some degree to stimuli from either eye, although they
usually prefer one eye or the other. They are also selective for the orientation of the
stimulus and its direction of movement. In addition, some V1 cells prefer particular
color combinations (such as red/green or blue/yellow borders), and disparity (rela-
tive positions on the two retinas). V1 neurons respond most strongly to stimuli that
match their feature preferences, although they respond to approximate matches as
well (Hubel and Wiesel 1962, 1968; see Ringach 2004 for a review). Figure 2.2c–e
shows examples of typical RFs of V1 neurons for static and moving stimuli. These
neurons are simple cells, i.e. neurons whose ON and OFF regions are located at
specific areas of the retinal field. Other neurons (complex cells) respond to the same
configuration of light and dark over a range of positions. LISSOM models the simple
cells only, which are thought to be the first in V1 to show orientation selectivity.

V1, like the other parts of the cortex, is composed of a two-dimensional, slightly
folded sheet of neurons and other cells. If flattened, human V1 would cover an area
of nearly four square inches. It contains at least 150 million neurons, each making
hundreds or thousands of specific connections with other neurons in the cortex and
in subcortical areas like the LGN (Wandell 1995). The neurons are arranged in six
layers with different anatomical characteristics (using Brodmann’s scheme for num-
bering laminations in human V1, as described by Henry 1989; Figure 2.6). Input
from the thalamus goes through afferent connections to V1, typically terminating
in layer 4 (Casagrande and Norton 1989; Henry 1989). Neurons in the other layers
form local connections within V1 or connect to higher visual processing areas. For
instance, many neurons in layers 2 and 3 have long-range lateral connections to the
surrounding neurons in V1 (Gilbert et al. 1990; Gilbert and Wiesel 1983; Hirsch
and Gilbert 1991). There are also extensive feedback connections from higher ar-
eas (Van Essen et al. 1992). Lateral connections play a central role in the LISSOM
model, and will be discussed in detail in Section 2.2.

At a given location on the cortical sheet, the neurons in a vertical section through
the cortex respond most strongly to the same eye of origin, stimulus orientation, spa-
tial frequency, and direction of movement. It is customary to refer to such a section
as a column (Gilbert and Wiesel 1989). The LISSOM model will treat each column
as a single unit, thus representing the cortex as a purely two-dimensional surface.
This model is a useful approximation because it greatly simplifies the analysis while
retaining the basic functional features of the cortex.

Nearby columns generally have similar, but not identical, preferences; slightly
more distant columns have more dissimilar preferences. Preferences repeat at reg-
ular intervals (approximately 1–2 mm) in every direction, which ensures that each
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Fig. 2.3. Measuring cortical maps. Optical imaging techniques allow neuronal preferences
to be measured for large numbers of neurons at once (Blasdel and Salama 1986). In such ex-
periments, part of the skull of a laboratory animal is removed by surgery, exposing the surface
of the visual cortex. Visual patterns are then presented to the eyes, and a video camera records
either light absorbed by the cortex or light given off by voltage-sensitive fluorescent chemicals
that have been applied to it. Depending on the neural activity, there will be small differences in
the emitted or reflected light, and these differences can be amplified by repeated presentations
and averaging. The results are an indirect measure of the average two-dimensional pattern of
neural activity resulting from a particular stimulus. Measurements can then be compared be-
tween different stimulus conditions, e.g. different orientations, determining which stimulus is
most effective at activating each small patch of neurons. Figure 2.4 and later figures in this
chapter will show maps of orientation preference computed using these techniques. Adapted
from Weliky et al. (1995).

type of preference is represented across the retina. This arrangement of preferences
forms a smoothly varying map for each dimension. For example, stimulus orientation
is represented across the cortex in an orientation map of the retinal input (Blasdel
1992a; Blasdel and Salama 1986; Grinvald, Lieke, Frostig, and Hildesheim 1994;
Ts’o, Frostig, Lieke, and Grinvald 1990). Figure 2.3 shows how such maps can be
measured experimentally in animals, and Figure 2.4 displays an example orienta-
tion map from monkey cortex. In an orientation map, each location on the retina is
mapped to a region on the map, with each possible orientation at that retinal loca-
tion represented by different but nearby orientation-selective cells. Other mammalian
species have largely similar orientation maps, although they differ in details (Müller,
Stetter, Hubener, Sengpiel, Bonhoeffer, Gödecke, Chapman, Löwel, and Obermayer
2000; Rao, Toth, and Sur 1997).

Other stimulus features are represented in a similar fashion as maps, including
those for direction of motion and ocular dominance (left or right eye preference;
Blasdel 1992a; Crowley and Katz 2000; Löwel 1994; Obermayer and Blasdel 1993;
Shatz and Stryker 1978; Shmuel and Grinvald 1996; Weliky, Bosking, and Fitz-
patrick 1996). These maps are overlaid so that a hierarchical representation of the
input features emerges (Figure 2.5). The primary organization in the hierarchy is
retinotopy. Neurons that respond to the same location are divided into those that re-
spond primarily to the left eye and those that respond primarily to the right eye. Each
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(a) Orientation preference (b) Orientation selectivity

Fig. 2.4. Orientation map in the macaque. (a) Orientation preference and (b) orientation se-
lectivity maps in a 7.5 mm× 5.5 mm area of adult macaque monkey V1, measured by optical
imaging techniques. Each neuron in (a) is colored according to the orientation it prefers, using
the color key on top. Nearby neurons in the map generally prefer similar orientations, form-
ing groups of the same color called iso-orientation patches. Other qualitative features are also
found. Linear zones are straight lines along which the orientations change continuously, like
a rainbow; a linear zone is marked with a long white rectangle. Pinwheels are points around
which orientations change continuously. They often occur in matched pairs: such a pair is cir-
cled in white. At saddle points a long patch of one orientation is nearly bisected by another;
one saddle point is marked with a bowtie. Fractures are sharp transitions from one orientation
to a very different one; a fracture between red and blue (without purple in between) is marked
with a white square. Orientation selectivity measures how closely the input must match the
neuron’s preferred orientation for it to respond. As shown in (b), neurons at pinwheel centers
and fractures tend to be less selective (dark areas) in the optical imaging response, whereas
iso-orientation patches, linear zones and saddle points tend to be more selective (light areas).
Reprinted with permission from Blasdel (1992b), copyright 1992 by the Society for Neuro-
science; annotations added and brightness increased.

group is further divided into areas that respond to particular orientations. In turn, each
orientation-selective patch is often further subdivided into two patches, each prefer-
ring opposite directions of motion (Shmuel and Grinvald 1996; Weliky et al. 1996).
Other stimulus features (such as spatial frequency and color) are represented as well,
but are not as well organized at the large scale (Issa, Trepel, and Stryker 2001; Lan-
disman and Ts’o 2002b). Simulations with LISSOM will show how the hierarchical
map-like organization arises automatically from input-driven self-organization, and
how it constitutes an efficient way to represent visual information.

2.1.3 Face and Object Processing

Beyond V1 in primates are dozens of extrastriate visual areas that can be arranged
into a rough hierarchy (Van Essen et al. 1992). The relative locations of the areas
in this hierarchy are largely consistent across individuals of the same species. Non-
primate species have fewer higher areas, and in at least one mammal (the least shrew,
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(a) Orientation preference (b) Ocular dominance

Fig. 2.5. Hierarchical organization of feature preferences in the macaque. The images
illustrate orientation and ocular dominance patches in a 4 mm × 3 mm area of the cortical
surface in the macaque monkey, measured through optical imaging. (a) The cells are colored
according to their orientation preference as in Figure 2.4a. (b) The same cells are colored in
gray scale from white to black according to how strongly they prefer input from the left vs.
the right eye. Each neuron is sensitive to a combination of feature values, in this case a line of
a particular orientation in the left or the right eye at a particular location on the visual field.
These maps are shown superimposed in Figure 5.3, revealing more fine-grained interactions
between the maps. Plot (a) reprinted with permission from Blasdel (1992b) and plot (b) from
Blasdel (1992a), copyright 1992 by the Society for Neuroscience.

a tiny rodent-like creature) V1 is the only visual area (Catania, Lyon, Mock, and
Kaas 1999). Although the higher levels have not been studied as thoroughly as V1,
the basic circuitry within each region is thought to be largely similar to V1. Even so,
the functional properties differ greatly, in part because their connections with other
regions are different. For instance, neurons in higher areas tend to have larger reti-
nal receptive fields, respond to stimuli at a greater range of positions, and process
more complex visual features (Ghose and Ts’o 1997; Haxby, Horwitz, Ungerleider,
Maisog, Pietrini, and Grady 1994; Kandel et al. 2000; Rolls 2000; Wang, Tanaka,
and Tanifuji 1996). In particular, extrastriate cortical regions that respond preferen-
tially to faces have been found both in adult monkeys (using single-neuron stud-
ies and optical imaging; Gross, Rocha-Miranda, and Bender 1972; Hasselmo, Rolls,
and Baylis 1989; Rolls 1992; Rolls, Baylis, Hasselmo, and Nalwa 1989; Wang et al.
1996) and adult humans (using functional magnetic resonance imaging, or fMRI;
Halgren, Dale, Sereno, Tootell, Marinkovic, and Rosen 1999; Kanwisher, McDer-
mott, and Chun 1997; Puce, Allison, Gore, and McCarthy 1995). Any such cell or
region that responds stronger to faces than to other similar stimuli is called face se-
lective.

The face-selective areas receive visual input via V1. They are loosely segregated
into different regions that process faces in different ways. For instance, some ar-
eas perform face detection, i.e. respond unspecifically to many facelike stimuli (de
Gelder and Rouw 2000, 2001). Others selectively respond to facial expressions, gaze
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directions, or prefer specific faces (i.e. perform face recognition; Perrett 1992; Rolls
1992; Sergent 1989; Treves 1997). Whether these regions are exclusively devoted to
face processing, or also process other common objects, remains controversial (Han-
son, Matsuka, and Haxby 2004; Haxby, Gobbini, Furey, Ishai, Schouten, and Pietrini
2001; Kanwisher 2000; Tarr and Gauthier 2000). LISSOM will model areas involved
in face detection (and not face recognition or other types of face processing), al-
though these areas do not have to process faces exclusively.

2.1.4 Input-Driven Self-Organization

The first hints of how these complicated yet orderly structures come about in the cor-
tex were discovered in the 1960s. At that time, Hubel, Wiesel and their colleagues
conducted a number of experiments where they showed that altering the visual envi-
ronment drastically changes the organization of the visual cortex (Hubel and Wiesel
1962, 1974; Hubel et al. 1977). For example, if a kitten’s vision is impaired by su-
turing the eyes shut, the visual cortex becomes disorganized, lacking orientation se-
lectivity and ocular dominance patches. Such an effect is most dramatic during the
critical period, typically within a few weeks after birth: If the eyes are kept shut until
after the critical period, the animal actually becomes blind. If the animal (e.g. a fer-
ret) is reared in the dark instead of suturing the eyes shut, the visual system becomes
similarly impaired, although to a lesser extent (White et al. 2001), suggesting that
abnormal visual stimulation through the closed eyelids is more harmful than receiv-
ing none at all. These results show how important normal visual stimuli are during
the critical period to ensure that the visual system develops normally.

Development has been shown to depend on input in several more specific ex-
periments as well. For example, kittens can be raised in an environment with only
vertical or horizontal features, and as a result, they are unable to respond well to
other orientations (Blakemore and Cooper 1970; Blakemore and van Sluyters 1975;
Hirsch and Spinelli 1970). Similar results have been reported for ocular dominance
in ferrets: If one eye is sutured shut during the critical period, the animal loses the
ability to respond to inputs from that eye as an adult (Issa, Trachtenberg, Chapman,
Zahs, and Stryker 1999). Further, the auditory cortex has been shown to become sen-
sitive to visual inputs when the projections from the retina are surgically connected
to it (Sharma, Angelucci, and Sur 2000; Sur, Garraghty, and Roe 1988).

These experimental results convincingly demonstrate that the connections in the
cortex are shaped by environmental input. Part II of the book focuses on under-
standing the mechanisms underlying this process, showing that input-driven self-
organization is able to construct the observed structures even from an initially uni-
form, unordered starting point, based on suitable input. However, how much of the
organization is indeed due to environmentally driven self-organization and how much
is genetically determined is open to a considerable debate (as will be reviewed in Sec-
tion 2.3). A solution to this question is proposed in Part III, showing how genetically
specified self-organization followed by environmentally driven self-organization can
account for many of the observed phenomena in visual development.
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2.2 Lateral Connections

As was discussed in Section 1.1, the modern understanding of the visual cortex as a
continuously adapting dynamic system has caused us to reconsider the role of lateral
connections in cortical development and function. Lateral interactions seem to play
a much larger role than previously believed, a role that we are only now beginning
to understand. Because complex recurrent systems are difficult to study experimen-
tally, computational models are crucial in developing a detailed theory about lateral
connections in the cortex.

LISSOM is the first computational theory specifically designed for this purpose.
It allows self-organization and analysis of lateral connections to take place in a func-
tioning visual cortex model. The biological foundations of the LISSOM approach
are discussed below, followed by a review of current ideas about the role of lateral
connections in the cortex (for more details, see e.g. Sirosh, Miikkulainen, and Choe
1996b).

2.2.1 Organization

Long-range lateral connections form a dense, highly patterned network within the
cortex. Each connection extends over several millimeters and gives rise to clusters
of axon endings at regular intervals (Figure 2.6; Fisken, Garey, and Powell 1975;
Gilbert and Wiesel 1979; Schwark and Jones 1989). In the primary visual cortex
these connections can be 6–8 mm long, i.e. cover a substantial percentage of the V1
area. They are reciprocal, i.e. if area A connects to B, then B connects back to A.
Long-range connections are found in layers 2, 3, 5, and 6; they are longest in layers
2 and 3. The lateral connection patterns in the different layers are aligned, and the
dendritic arbor of pyramidal cells in layer 3 matches the axonal clusters (Burkhalter
and Bernardo 1989; Gilbert and Wiesel 1989; Katz and Callaway 1992; Livingstone
and Hubel 1984b; Luhmann, Martı́nez Millán, and Singer 1986; Lund, Yoshioka, and
Levitt 1993; Rockland 1985; Rockland, Lund, and Humphrey 1982; see Douglas and
Martin 2004 for a review).

About 80% of the long-range connections synapse on excitatory pyramidal cells,
while the remaining 20% synapse on inhibitory interneurons (Gilbert et al. 1990;
McGuire et al. 1991). Imaging studies and other measurements indicate a substantial
amount of long-range inhibition in the cortex, more than predicted by the above
80–20 distribution; moreover, at high contrasts the net effect is strongly inhibitory
(Section 16.1.4; Grinvald et al. 1994; Hata, Tsumoto, Sato, Hagihara, and Tamura
1993; Hirsch and Gilbert 1991; Weliky et al. 1995). One fundamental assumption
of the LISSOM model is that the lateral excitatory and inhibitory connections serve
different roles in the visual cortex; both kinds of connections are therefore included
in the LISSOM models in this book.

Long-range lateral connections are clustered in patches whose distribution corre-
sponds closely to the organization of receptive fields in the sensory map, especially
orientation. The connections of a given neuron target neurons in other areas that have
similar orientation preferences, aligned along the preferred orientation of the neuron
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Fig. 2.6. Long-range lateral connections in the macaque. Lateral connections, also some-
times called horizontal or intrinsic connections, run parallel to the cortical surface. In the vi-
sual cortex they extend over several millimeters and sprout branches at intervals. The branches
form a local cluster of connections to other cells in the region, as shown for this layer 3 pyra-
midal cell in the macaque visual cortex (injected with horseradish peroxidase: The dendrites
are shown with thick lines and axon collaterals with thin lines, and the horizontal scale is ap-
proximately 2.3mm). Such clusters occur only in regions with similar functional properties as
the parent cell. Reprinted with permission from Gilbert et al. (1990; adapted from McGuire
et al. 1991), copyright 1990 by Cold Spring Harbor Laboratory Press.

(Figure 2.7; Bosking et al. 1997; Fitzpatrick, Schofield, and Strote 1994; Gilbert et al.
1990; Gilbert and Wiesel 1989; Malach, Amir, Harel, and Grinvald 1993; Schmidt,
Kim, Singer, Bonhoeffer, and Löwel 1997; Sincich and Blasdel 2001; Weliky et al.
1995). In the immediate vicinity of each neuron, the connection patterns are rela-
tively unspecific, but over larger distances they closely follow the orientation pref-
erences. To a lesser degree, the patterns are also shaped by other perceptual features
such as ocular dominance and spatial frequency (Bauman and Bonds 1991; De Val-
ois and Tootell 1983; Löwel 1994; Löwel and Singer 1992; Vidyasagar and Mueller
1994).

For computational efficiency, most prior models of self-organization represented
the lateral connections as a simple isotropic function. Later chapters will demon-
strate that specific connection patterns are important for several developmental and
functional phenomena, including self-organization, efficient representations, certain
visual illusions, and perceptual grouping. For this reason, LISSOM will specifically
simulate the development of patchy lateral connectivity.
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(a) Vertical and horizontal orientations (b) All orientations

Fig. 2.7. Lateral connections in the tree shrew orientation map. (a) The vertical and hori-
zontal orientation preferences in a 8 mm × 5 mm section of V1 in the adult tree shrew, mea-
sured using optical imaging. The areas responding to vertical stimuli are plotted in black and
those responding to horizontal stimuli in white. Vertical in the visual field (90◦) corresponds
to a diagonal line at 135◦ in this plot. The small green dot in the middle marks the site where a
patch of vertical-selective neurons were injected with a tracer chemical. The neurons to which
that chemical propagated through lateral connections are colored red. Short-range lateral con-
nections target all orientations equally, but long-range connections go to neurons that have
similar orientation preferences and are extended along the orientation preference of the source
neurons. (b) The same information plotted on a 2.5 mm × 2 mm section of the full orienta-
tion map to the right and below the injection site. The injected neurons are colored greenish
cyan (80◦), and connect to other neurons with similar preferences. Measurements in monkeys
show similar patchiness, but in monkey the connections do not usually extend as far along the
orientation axis of the neuron (Sincich and Blasdel 2001). These results, theoretical analysis,
and computational models suggest that the lateral connections play a significant role in ori-
entation processing (Bednar and Miikkulainen 2000b; Gilbert 1998; Sirosh 1995). Reprinted
with permission from Bosking et al. (1997), copyright 1997 by the Society for Neuroscience.

2.2.2 Development

Lateral connectivity patterns have been found to form gradually during early devel-
opment. Before eye opening, lateral connections grow exuberantly and to long dis-
tances in a short period (Callaway and Katz 1990). The connections are then pruned
into well-defined clusters (Callaway and Katz 1990, 1991; Dalva and Katz 1994;
Gilbert 1992; Katz and Callaway 1992; Löwel and Singer 1992; Luhmann et al.
1986). What process drives such pruning? Enormous amounts of genetic information
would be required to specify each connection and each synaptic weight of the neu-
rons in a cortical map. Instead, lateral connections develop in an activity-dependent
manner. Several observations support this view:

1. When activity in ferret V1 is silenced using tetrodotoxin during early devel-
opment, lateral connections remain broad and unspecific, and do not become
patchy (Ruthazer and Stryker 1996).
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2. If kittens are deprived of visual input during early development, the connec-
tions are much less patchy than normal (Callaway and Katz 1991; Ruthazer and
Stryker 1996).

3. The patchy patterns can be altered by changing the input to the developing cor-
tex. The resulting patterns reflect correlations in the input. For example, when
a kitten is made strabismic, thereby removing correlations between the visual
inputs in the two eyes, the lateral connections in the primary visual cortex orga-
nize differently, linking only the regions responding to the same eye (Löwel and
Singer 1992).

4. In the mouse somatosensory barrel cortex, sensory deprivation (by sectioning
the input nerve) results in shorter and sparser lateral connections compared with
a normally reared animal (McCasland, Bernardo, Probst, and Woolsey 1992).

These observations suggest that lateral connections, like afferent connections,
develop based on correlations in the input. The development of these different types
of connections may actually be strongly related. Lateral connection patterns form ap-
proximately at the same time as the afferent connections organize into topographic
maps (Burkhalter et al. 1993; Dalva and Katz 1994; Katz and Callaway 1992). Al-
though each individual lateral connection is weak, their total effect on neural activity
can be substantial (Gilbert et al. 1990), and they can thereby affect how the afferent
connections develop. Changes in afferent connections then change the activity pat-
terns in the cortex, which in turn influences the organization of lateral connections. In
this manner, the two sets of connections develop synergetically, eventually evolving
to a state of equilibrium in the adult animal. This principle is formalized and tested
in detail in the LISSOM model.

2.2.3 Computational and Functional Hypotheses

Given the above observations, several possible functions have been proposed for the
long-range lateral connections in the cortex. The list below is by no means complete,
but it represents several of the views currently debated, including those put forward
in later chapters of this book.

Modulating and Controlling Cortical Responses

1. Lateral connections may amplify weak stimuli and suppress strong stimuli, thus
normalizing cortical activity (Somers, Toth, Todorov, Rao, Kim, Nelson, Siapas,
and Sur 1996; Stemmler, Usher, and Niebur 1995).

2. They may modulate responses to achieve sharp orientation tuning and hyperacu-
ity (Edelman 1996; Sabatini 1996; Somers et al. 1996).

3. They may combine responses to establish rotational and scaling invariance
(Edelman 1996; Wiskott and von der Malsburg 1996).

4. They may mediate competition and synchronization over large distances of cor-
tex (Taylor and Alavi 1996; Usher, Stemmler, and Niebur 1996; Wang 1996).

5. They may selectively enhance and suppress responses to implement attention
and control (Taylor and Alavi 1996).
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Representing and Associating Information

1. Lateral connections may store information that allows decorrelating visual input
and filtering out known statistical redundancies in the cortical representations
(Barlow and Földiák 1989; Dong 1996; Ghahramani and Hinton 1998; Sirosh,
Miikkulainen, and Bednar 1996a).

2. They may help establish direction selectivity and motion sensitivity (Ernst,
Pawelzik, Sahar-Pikielny, and Tsodyks 2001; Marshall 1990).

3. They alone may be responsible for orientation selectivity in the cortex (Adorján,
Levitt, Lund, and Obermayer 1999; Ernst et al. 2001).

4. They may store information for feature binding and grouping, such as Gestalt
rules (Choe and Miikkulainen 1997; Edelman 1996; Polat, Norcia, and Sagi
1996; Prodöhl, Würtz, and von der Malsburg 2003; Singer et al. 1990; von der
Malsburg and Singer 1988; Wang 1996).

5. They may associate representations at different sensory cortices, serving as a
foundation for multi-modal integration (Choe 2002; Lewis and Van Essen 2000;
Shipp, Blanton, and Zeki 1998).

Mediating Development, Plasticity, and Learning

1. Lateral interactions may play a crucial role in the development of cortical
columns, such as those representing orientation, ocular dominance, spatial fre-
quency, and direction selectivity (Bednar and Miikkulainen 2003b; Dong 1996;
Edelman 1996; Sirosh et al. 1996a).

2. They may mediate reorganization of the cortex in response to drastic changes in
the input environment (such as retinal lesions and input deprivation; Gilbert and
Wiesel 1992; Kapadia et al. 1994; Pettet and Gilbert 1992; Sirosh et al. 1996a).

3. They may mediate the perceptual learning processes observed as early as the pri-
mary visual cortex by encoding local associations (Dong 1996; Edelman 1996;
Usher et al. 1996).

4. They may form the substrate for encoding memories as attractors in the cortical
network (Miikkulainen 1992; Taylor and Alavi 1996).

5. Shared lateral connections may explain how similar orientation maps can de-
velop for both eyes, even if the eyes are alternately sutured shut so that they
never experience similar input (Kim and Bonhoeffer 1994; Shouval, Goldberg,
Jones, Beckerman, and Cooper 2000).

Mediating Visual Phenomena

1. Lateral connections may mediate visual comparisons, such as those necessary
for object recognition, figure-ground discrimination, and segmentation (Edel-
man 1996; Marshall and Alley 1996; Somers et al. 1996; Sporns, Tononi, and
Edelman 1991; Wang 1996; Wiskott and von der Malsburg 1996).
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2. They may mediate perceptual filling in, such as compensating for blind spots,
perceptual completion and illusory contours (Choe 2001; Finkel and Edelman
1989; Grossberg and Mingolla 1985; Li 1998, 1999; Somers et al. 1996; Usher
et al. 1996).

3. They may be responsible for visual illusions, such as the tilt illusion, brightness-
contrast illusion, and Poggendorf illusion, which involve interactions between
neighboring feature detectors (Bednar and Miikkulainen 2000b; Usher et al.
1996; Yu and Choe 2004; Yu, Yamauchi, and Choe 2004).

4. Adaptation of lateral connections may be responsible for temporary, pattern-
specific visual aftereffects, due to increasing lateral inhibition between activated
neurons (Barlow 1990; Bednar 1997; Bednar and Miikkulainen 2000b).

5. Lateral connections between different ocular dominance areas and disparity-
selective neurons may contribute to binocular fusion, depth perception and stereo
vision (Cormack and Riddle 1996; Löwel 1994; Löwel and Singer 1992; Petrov
2002).

The LISSOM model is based on the idea that lateral connections are crucial for
the computations that take place in the visual cortex. In Part II of the book, inhibitory
long-range lateral connections are shown to play a central role in self-organization.
The LISSOM visual cortex is in a dynamic equilibrium, constantly adapting to both
external and internal input. As a result, the observed structures of feature prefer-
ences develop, as well as patchy lateral connectivity between them (Chapter 5). The
mechanisms are also active in the adult, implementing repair after retinal or cortical
damage (Chapter 6), and resulting in psychophysical phenomena such as visual illu-
sions and aftereffects (Chapter 7). The experimental data specific to these phenomena
will be reviewed in the beginning of those chapters. Part IV will focus on excitatory
lateral connections, showing how they can mediate binding and segmentation in a
spiking-neuron model of the visual cortex. Part III, however, will focus on how en-
vironmentally and internally directed self-organization can implement a synergy of
nature and nurture in development. The theoretical and biological foundations for
this idea are reviewed next.

2.3 Genetic Versus Environmental Factors in Development

The LISSOM model will demonstrate how input-driven self-organization can ac-
count for the afferent and lateral connection structures in the visual cortex. As was
discussed in Chapter 1, the most obvious source for such inputs is the visual environ-
ment during early life. However, the visual cortex already has a significant amount
of structure before the visual experience begins, i.e. at birth or at eye opening. Such
structure must be at least partially determined genetically. Why is it useful to include
both genetic and environmental influences in constructing the visual cortex, and how
can a developmental process combine them? These issues will be discussed in this
section, providing the motivation for the computational studies of prenatal and post-
natal development in Part III.
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2.3.1 Bias/Variance Tradeoff

Why did evolution result in a developmental process that utilizes both genetic and en-
vironmental information, as opposed to a pure hardwiring or a pure tabula rasa learn-
ing process? This issue can be understood in terms of the well-known bias/variance
tradeoff in machine learning (Geman, Bienenstock, and Doursat 1992; Utgoff and
Mitchell 1982). Given a set of example inputs and outputs (the training set), a learn-
ing system needs to construct a mapping that produces correct outputs for new ex-
amples (the test set). There is often a very large number of possible mappings consis-
tent with the training set, and they result in different outputs for the same test inputs.
Which mapping will be selected is determined by the bias of the learner. The best
results are obtained if the bias matches the problem and is strong (Haussler 1988).
That way, the outputs for new examples are likely to be correct. Also, the same map-
ping is selected with different training sets and even with noisy training examples,
i.e. the learner will have a low variance.

Unfortunately, it is not usually clear what the right bias is, and it is necessary to
make the bias weaker. Which mapping will be selected will then depend more on
the training data. As a result, the variance is increased: The selection of the mapping
becomes unpredictable, determined based on which examples were included in the
training set and the noise in those examples. Choosing an appropriate point in the
bias/variance tradeoff therefore depends on how much is known about the problem
in advance.

Biological systems face the same tradeoff: Neural structures can be determined
genetically or learned from environmental inputs. A strong genetic bias is appropri-
ate for organisms whose environment is predictable over many individual lifetimes,
such as most invertebrates. For instance, the nematode worm Caenorhabditis ele-
gans develops a nervous system with exactly 302 neurons in the same configuration
in every individual (Sulston and Horvitz 1977). Such a strong bias allows the worm
to function in its environment reliably and immediately.

However, the environment faced by mammals is much more complex and vari-
able, and only the large-scale structures can be specified with a strong bias. The
same sensory and motor areas appear in the same cortical locations in all individ-
uals of the same species (Rakic 1988; Shatz 1996). These structures can still vary,
but only in extreme cases such as prenatal injury (Goldman-Rakic 1980). The small-
scale structures, on the other hand, are constructed primarily through interaction with
the environment, and have a high variance. The number of neurons, their specific ar-
rangements, and the patterns of connections differ between individuals of the same
species (Shatz 1996).

The reason for the lower bias and higher variance in higher animals is that their
environment is less predictable. If the individual were to be constructed with a strong
bias, it would not be able to adapt to the different environments during its lifetime,
and would perform poorly. On the other hand, learning is unreliable; if the right kind
of input is not received at the right time, the individual may not develop a crucial skill
(Blakemore and Cooper 1970; Hirsch and Spinelli 1970; Hubel and Wiesel 1974;
Issa et al. 1999). Evolution has therefore determined a point in the bias/variance
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tradeoff that allows constructing a reliable but flexible system by combining genetic
and environmental information.

How this idea can be utilized in constructing complex natural or artificial sys-
tems in general will be discussed in Sections 16.2.3 and 17.3.5. How it can be imple-
mented specifically to construct the visual system of higher animals will be analyzed
next.

2.3.2 Combining Genetic and Environmental Information

The large-scale structures of the brain, such as the pattern of the different brain areas,
are constructed primarily through chemical gradients (Molnár, Higashi, and López-
Bendito 2003; Rakic 1988; von der Malsburg and Willshaw 1977; Willshaw and
von der Malsburg 1979). These gradients direct the growing connections to a general
location on the cortical sheet. The gradients are largely unaffected by environmen-
tal stimuli, making the bias very strong. Incorporating environmental information
into this process would be difficult, requiring a transduction mechanism between an
environmental stimulus and the developmental hardware.

On the other hand, at the level of individual neurons and connections between
small groups, sensory systems act as just such a transduction mechanism. In a sen-
sory system, patterns in the environment are represented as patterns in neural ac-
tivity, and these patterns in turn change how the orientation, ocular dominance, and
similar map-level organizations in the cortex develop (as discussed above). At this
level, the question becomes how genetic cues could be expressed. First, the system is
structured to utilize information in input activity; second, the amount of information
necessary to specify individual connections may be too large to store genetically.

The recent discovery of spontaneous activation provides an important clue: Much
of the neural activity in developing sensory systems is not caused by the external en-
vironment, but generated internally in many cortical and subcortical sensory areas,
such as the visual cortex, the retina, the auditory system, and the spinal cord (Feller
et al. 1996; Lippe 1994; Meister, Wong, Baylor, and Shatz 1991; Peinado, Yuste, and
Katz 1993; Wong, Meister, and Shatz 1993; Yuste, Nelson, Rubin, and Katz 1995;
see O’Donovan 1999; Sengpiel and Kind 2002; Wong 1999 for reviews). This ac-
tivity may express a genetic bias within a system that is designed to learn from the
environment (Constantine-Paton et al. 1990; Maffei and Galli-Resta 1990; Marks
et al. 1995; Roffwarg et al. 1966; Shatz 1990, 1996). The genetic information is rep-
resented in the same way at the neural level: as patterns of activity in the input seen
by a brain area. The genome thus needs to specify only a pattern generator, a mech-
anism capable of producing visual-like patterns, rather than specifying individual
connections.

The result is a genetic specification of potentially complex neural hardware. Such
a specification is desirable in an evolutionary sense, because different functional ar-
chitectures can be obtained by changing only a small part of the genome (Jouvet
1980). Random mutations in that portion of the genetic code would cause different
patterns to be generated, which might lead to different cortical structures. Such a
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mechanism would facilitate evolutionary search, because it increases the chance that
a chance mutation leads to a meaningful change.

The pattern generation hypothesis can potentially explain much of the experi-
mental data on innate visual capabilities. The following two subsections present ev-
idence that two specific types of internally generated activity patterns, retinal waves
and ponto-geniculo-occipital waves, implement a genetic bias on visual cortex struc-
tures. These patterns will be crucial for the LISSOM model of how V1 and face-
selective cortical areas are constructed, as will be discussed in detail in Part III.

2.3.3 Retinal Waves

In the developing retina of e.g. cats and ferrets, internally generated activity occurs
as intermittent, local waves across groups of ganglion cells (Figure 1.2; Meister et al.
1991; Sirosh 1995; Wong et al. 1993). The waves begin before photoreceptors have
developed (Maffei and Galli-Resta 1990), so they cannot result from visual input.
Instead, they arise from spontaneous recurrent activity in networks of developing
amacrine cells that provide input to the ganglion cells (Catsicas and Mobbs 1995;
Feller et al. 1996; Shatz 1996). Like visual images, these waves are locally coherent
in space and time (i.e. nearby ganglion cells are likely to be active continuously), and
thus they could act as training input for the developing LGN and visual cortex (Shatz
1990).

Several experimenters have shown that interfering with the spontaneous activity
can change how the visual system develops (Grubb, Rossi, Changeux, and Thompson
2003; McLaughlin, Torborg, Feller, and O’Leary 2003; Shatz 1990; Stellwagen and
Shatz 2002). For instance, when the retinal waves are abolished, the inputs from
the two eyes are no longer segregated in the LGN (Chapman 2000; Shatz 1996)).
Similarly, when activity is silenced at the V1 level during early development, V1
neurons in mature animals are much less selective for orientation (Chapman and
Stryker 1993). These results suggest that spontaneous activity is crucial for normal
development of low-level vision.

Recent experiments have focused on whether spontaneous activity is merely per-
missive for development, perhaps by keeping newly formed connections alive until
visual input occurs, or whether it is truly instructive, determining how the structures
develop (Chapman, Gödecke, and Bonhoeffer 1999; Crair 1999; Katz and Shatz
1996; Miller, Erwin, and Kayser 1999; Penn and Shatz 1999; Sur, Angelucci, and
Sharma 1999; Sur and Leamey 2001; Thompson 1997). For instance, Weliky and
Katz (1997) artificially activated a large number of axons in the optic nerve of fer-
rets, thereby disrupting the pattern of spontaneous retinal activity. Even though this
manipulation increased the total amount of activity, thereby making sure it was as
permissive as before, V1 actually became less selective for orientation. Thus, spon-
taneous activity cannot only be permissive; it has at least some specific instructional
role.

Similarly, pharmacologically increasing the number of retinal waves in one eye
has been shown to prevent the LGN from developing normally (Stellwagen and Shatz
2002; cf. Crowley and Katz 2000). Yet, when waves are increased in both eyes, the
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Fig. 2.8. Spontaneous activity in the cat PGO pathway. Each line shows a 65-second elec-
trode recording from a cell in the indicated area during REM sleep in the cat. Spontaneous
REM sleep activation in the pons of the brainstem is relayed to the LGN of the thalamus (bot-
tom), to the primary visual cortex (top), and to many other regions in the cortex. It is not yet
known what spatial patterns of visual cortex activation are associated with this temporal ac-
tivity, or with other types of internally generated activity during sleep. However, such activity
is largely genetically determined and could affect how the visual system develops. Reprinted
with permission from Marks et al. (1995), copyright 1995 by Elsevier.

LGN develops normally, which again shows that the type of activity is important,
not simply whether there is activity or not. However, what features of the activity
are important are not known, because it has not yet been possible to manipulate the
activity precisely. The LISSOM model will be used in Chapter 9 to study this issue
computationally.

2.3.4 Ponto-Geniculo-Occipital Waves

Retinal waves are the best-studied source of spontaneous activity, because they are
easily accessible to experimenters. However, other internally generated patterns may
also be important for the development of the visual cortex. One example is the ponto-
geniculo-occipital (PGO) waves that are the hallmark of rapid-eye-movement (REM)
sleep in at least cats, ferrets, monkeys, and humans (see Steriade, Paré, Bouhassira,
Deschênes, and Oakson 1989 for a review; Figure 2.8).

During and just before REM sleep, PGO waves originate in the brainstem and
travel to the LGN, many areas of the visual cortex, and a variety of subcortical areas
(see Callaway, Lydic, Baghdoyan, and Hobson 1987 for a review). In adults, PGO
waves are strongly correlated with eye movements and with vivid visual imagery in
dreams, suggesting that they activate the visual system as if they were visual inputs
(Marks et al. 1995). Experimental studies also suggest that PGO waves are under ge-
netic control: They elicit different activity patterns in different species (Datta 1997),
and the eye movement patterns that are associated with PGO waves are more similar
in identical twins than in unrelated age-matched subjects (Chouvet, Blois, Debilly,
and Jouvet 1983). Thus, PGO waves are a possible source for genetically controlled
training patterns for the visual system. But do they actually serve this role?

REM sleep has long been believed to be important for development, for two
reasons (Roffwarg et al. 1966): Developing mammalian embryos spend a large per-
centage of their time in states that look much like adult REM sleep, and the duration
of REM sleep is strongly correlated with how plastic the neural system is, both over
development and across different species (also see the more recent review by Siegel
1999, as well as Jouvet 1980). Also consistent with Roffwarg et al.’s hypothesis,
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blocking REM sleep or the PGO waves alone has been found to increase the effect
of visual experience during development (Marks et al. 1995; Oksenberg, Shaffery,
Marks, Speciale, Mihailoff, and Roffwarg 1996; Pompeiano, Pompeiano, and Cor-
vaja 1995). When the visual input to one eye of a normal kitten is blocked for a short
time during a critical period, the cortical and LGN area devoted to signals from the
other eye increases (Blakemore and van Sluyters 1975). When REM sleep (or just
the PGO waves) is interrupted as well, the effect of blocking one eye’s visual input
is even stronger (Marks et al. 1995). This result suggests that REM sleep, and PGO
waves in particular, limits or counteracts the effects of visual experience.

All of these characteristics suggest that PGO waves and other REM-sleep activ-
ity may be instructing development, like the retinal waves do (Jouvet 1980, 1998;
Marks et al. 1995). However, due to limitations in experimental imaging equipment
and techniques, it has not yet been possible to measure their two-dimensional spatial
structure (Rector, Poe, Redgrave, and Harper 1997). Chapters 9 and 10 in Part III
of this book will evaluate different candidates for internally generated activity, in-
cluding retinal and PGO waves, and show what structure they would need to have to
explain how maps and their connections develop in the visual cortex.

2.4 Temporal Coding

Part IV of the book will present a theory of perceptual grouping in the visual cor-
tex, demonstrating that self-organized lateral excitatory connections play a crucial
role in this process. The model assumes that binding and segmentation are based on
temporal coding, i.e. timing of neuronal spiking events. In this section, experimental
evidence for temporal coding will be reviewed. Computational models derived from
these observations will be described and compared in the next chapter.

2.4.1 Binding Through Synchronization

Neurons are cells with the special property of being able to convey information in
terms of electrical pulses, or spikes. Traditional neural network theories have hy-
pothesized that the level of activation, or the spiking rate of neurons, forms the rep-
resentation for perceptual events. However, as von der Malsburg (1981, 1986a,b)
pointed out, such static representations suffer from the superposition catastrophe
(Figure 2.9). This problem arises when distributed neural representations of two (or
more) separate objects overlap: It is no longer clear which neuron represents which
object (Figure 2.9a).

In contrast, if the representations for the individual objects alternate in time, bind-
ing and segmentation can occur naturally through temporal coding (Figure 2.9b). Von
der Malsburg (1986b; 1987) hypothesized that perceptual grouping can be achieved
in this way through synchronized and desynchronized firing of neurons. Temporal
coding is therefore one way in which perceptual grouping can occur in the brain, but
is there reason to believe that it does?
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Fig. 2.9. Solving the superposition catastrophe through temporal coding. If firing rates
of neurons alone are used to represent objects, multiple objects in the scene can result in
confusion. (a) A square and a triangle are presented in the retina. In the cortex plot, the neu-
rons responding to the square are colored gray, and those responding to the triangle white.
When both populations of neurons are active at once, it is impossible to know which neuron
is representing which object. This problem is known as the superposition catastrophe (von der
Malsburg 1981, 1986a,b). One solution is temporal coding, where temporal information is
used to separate the two populations. Neurons representing one object activate at one time
step, and neurons representing the other object activate at the next time step, as shown in (b).

2.4.2 Experimental Evidence

Experimental studies have shown that coherent oscillations do indeed arise within
populations of neurons. Such oscillations are usually observed as synchronized high-
frequency waves near the 40 Hz γ-band (see Buzsáki and Draguhn 2004; Jefferys,
Traub, and Whittington 1996 for reviews). To test whether such temporal represen-
tations are used in the visual system to present grouping, two approaches can be
taken. One way is to present inputs to the visual system and measure the oscillations
that result. The other is to alter the temporal properties in the input, preventing or
enhancing synchronization, and measure the effect on perceptual performance.

Using the first approach, it has been possible to determine that activities of two
populations with similar properties, such as the same orientation preference, do in-
deed synchronize when stimulated with a common input (Eckhorn et al. 1988; Gray
et al. 1989; Gray and Singer 1987; Singer 1993). In one such study, electrical record-
ings were made on two sites in the cat visual cortex with non-overlapping recep-
tive fields, while moving light bar(s) were swept across these receptive fields (Fig-
ure 2.10). When a single long bar was used as the input, the two populations rep-
resenting distant sections of the long bar fired synchronously. However, when two
short bars were swept in the same location as before but in the opposite direction
of each other, the firing of the two populations was no longer synchronized. Inter-
estingly, when two separate short bars were swept in the same direction, the two
populations showed a weak but synchronized activity (Engel, König, Kreiter, and
Singer 1991a; Engel, Kreiter, König, and Singer 1991b; Gray et al. 1989; Singer
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Receptive field
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Fig. 2.10. Synchronization of one and two input objects in the cat. Moving bars of light
were presented on two locations in the cat visual field where the receptive fields had no over-
lap, and the level of synchronization in the corresponding areas in the visual cortex were
measured. (a) A single light bar moving across two receptive fields results in strong synchro-
nization between the two neuronal populations. (b) Two separate bars moving in opposite
directions result in no synchronization. (c) Two separate bars moving in the same direction re-
sult in weak synchronization. These results suggest that synchronization may indeed represent
how likely the inputs are to belong to one and the same object. Adapted from Gray et al. 1989.

1993). These results suggest that synchronized firing of distant populations of neu-
rons may represent the percept of a single coherent object, and desynchronized firing
that of separate objects.

Another piece of evidence for synchronization-based grouping was obtained by
manipulating the temporal properties in the visual input. Usher and Donnelly (1998)
presented inputs where the object to be detected and the background were either
flashed in synchrony (both object and background blink at the same time) or flashed
asynchronously (object and background blink at different phases) over a period of
time. The time-scale of the flashing was shorter than the integration time of the vi-
sual system so that such flashing could not be consciously perceived. Given such
input, the subjects were asked to identify where the object appeared among one of
four areas in the background. The percentage of correct responses turned out to be
consistently higher when the object and background were flashing asynchronously.
The percentage of correct responses increased as the phase difference between the
flashing of object and background was increased. The explanation was that the tim-
ing of the inputs caused the temporal properties of neuronal firing to change and in
turn caused the detection performance to differ. Flashing the object and background
at different times would cause a slight phase shift between the neurons representing
them, and such a shift helped distinguish the object from the background. Similar re-
sults have been reported by Fahle (1993), Lee and Blake (1999, 2001), Leonards and
Singer (1998), Leonards, Singer, and Fahle (1996), Meyerson and Palmer (2004),
Palmer (1999), and Wehrhahn and Westheimer (1993).

These results suggest that synchronization may indeed signal coherence in neural
representations. The next issue is, how this synchronization is represented, i.e. what
exactly is synchronized in the representation?
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2.4.3 Modes of Synchronization

There are two ways in which synchrony can occur: (1) Individual neurons can be
firing at the same time, and (2) population activity, i.e. number of neurons in the
population firing per unit time, can oscillate in synchrony. Population oscillations
are more general and include synchronized firing as a special case. They are also
biologically the more likely candidate for several reasons.

Due to the stochastic nature of neuronal firing, it seems unlikely that individual
neurons could synchronize their actual firing events. However, they could fire within
a short time window so that the spikes are approximately aligned, and the whole
group could exhibit synchrony (Lisman 1998; Menon 1990). Theoretical analysis
also suggests that the oscillations found in the cortex result from a collective behavior
of neurons. Such population oscillations are more robust and tolerant of random
fluctuations (Menon 1990; Wilson and Cowan 1972).

In direct multi-electrode measurements, Eckhorn et al. (1988) discovered that
synchrony in individual neurons is hard to find even when the number units firing
and local field potential shows coherent oscillation, suggesting that population oscil-
lation is the major mode of operation for binding of percepts. There is also indirect
experimental evidence to support this hypothesis. When two almost simultaneous
clicks are presented to a subject, they are initially heard as a single click, but as the
interval between the clicks increases, the subject starts hearing two clicks instead of
one. Interestingly, this transition from one click to two clicks occurs exactly at the
frequency of population oscillations (Joliot, Ribary, and Llinás 1994). Apparently,
the neuronal firing events within a single oscillation cycle are bound together even
though the exact timing does not match, whereas the firings that occur in different
cycles are perceived as separate.

For these reasons, most of the synchronizing models, including the model in this
book, adopt the definition of synchrony in terms of population oscillations rather
than that of individual neurons. Synchronization will be used in LISSOM to explain
binding and segmentation phenomena, especially contour integration performance
in humans. The detailed psychophysical evidence for these phenomena will be re-
viewed in Chapter 13.

2.5 Conclusion

Although the structure of the visual cortex has been well understood for several
decades, the dynamic processes that develop this structure, maintain it, and repre-
sent visual information are still not well known. Lateral connections are believed to
play a large role in all these processes, they may involve a synergy of nature and
nurture through self-organization based on internal pattern generators, and achieve
binding and segmentation through synchronization of activity.

Whereas such hypotheses are difficult to verify directly on biological systems,
they can be implemented in computational models. Computational tests can lead to
concrete predictions, and through further experiments, to a thorough understanding
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of the mechanisms underlying visual perception. Such an understanding is the main
goal of this book. The computational principles and approaches on which it is based
will be outlined in the next chapter.
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Computational Foundations

As seen in the previous chapter, the visual system is a highly complex dynamical
system, and it is difficult to integrate the scattered experimental results into a spe-
cific, coherent understanding of how the system is constructed and how it functions.
A computational model provides a crucial tool for such integration: It constitutes a
concrete implementation of the theory. Because all of its components must be im-
plemented for the model to work, unstated assumptions must be made explicit. The
model then shows what types of structure and behavior follow from those assump-
tions. The model can be tested just like animals or humans can, either to validate the
theory or to provide predictions for future experimental tests.

This book introduces a comprehensive computational model of the visual cortex,
built on findings from the past 30 years of research in computational neuroscience.
These computational foundations are reviewed in this chapter, including the gen-
eral models of neural computation, temporal coding, adaptation, and self-organizing
maps.

3.1 Computational Units

A crucial issue in any computational model is what the appropriate level of abstrac-
tion is. Although in theory we could dissect and model each neuron at the smallest
level of detail allowed by current technology (i.e. at the molecular level), in prac-
tice only a few measurements of the system parameters would be available at that
level, and the resulting model would be largely underconstrained. Superfluous detail
can also make it difficult to understand the model and to generate predictions based
on it. Fortunately, such detailed simulations are often unnecessary for understanding
high-level behavior, and more efficient abstractions can be used.

In this section, the models of computation in neurons and neuronal groups are
reviewed at various levels of abstraction, evaluating which of their properties will
be useful for understanding how the visual cortex develops and functions. Detailed
models of the neuron are reviewed first, followed by gradually higher level abstrac-
tions (shown in Figure 3.1). As was discussed in Section 2.1.2, a cortical column is
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an appropriate computational unit for visual cortex models; the conclusion from this
section is that integrate-and-fire and firing-rate models of the cortical column most
efficiently capture the properties needed to understand their collective behavior.

3.1.1 Compartmental Models

Because neurons are generally believed to communicate through action potentials,
or spikes, the most detailed models of the neuron focus on how spikes are generated
and transmitted. The electrical currents that lead to spike generation are controlled by
various ion channels in the fatty (lipid) membrane that encloses the cell body. The
voltage across the membrane (i.e. the membrane potential) changes as these ions
come in and go out of the neuron through the ion channel, and it is this voltage that
determines whether the neuron generates a spike. Such dynamic change in state over
time gives the neuron rich temporal dynamics that can be used to encode information.

Understanding the behavior of a neuron begins by modeling a small patch of
the neuron membrane. Computational models of such patches are usually based on
the Hodgkin–Huxley model of excitable membranes (Hodgkin and Huxley 1952).
It consists of coupled differential equations for the membrane potential V and the
fraction ci of ion channels open for each channel type i (Gerstner and Kistler 2002;
Rinzel and Ermentrout 1998):

C
dV

dt
= −

∑

i

Ii(ci, V ) + I(t),

dci

dt
= −ci − ci,∞(V )

τi(V )
,

(3.1)

where C is the membrane capacity, Ii(ci, V ) is the current through ion channel i,
and I(t) is the externally applied input current. For a fixed membrane potential V , ci

approaches the steady-state level ci,∞(V ) with the time constant τi(V ).
The Hodgkin–Huxley equation only describes an isolated patch of membrane,

i.e. a single compartment. To model an entire neuron, it is first divided into ma-
jor morphological sections corresponding to the axons, dendrites, and the cell body
(Figure 3.1b). Each section is treated as an electrical conductor, usually represented
as a cylinder or a cable (Rall 1962, 1977; Rall and Agmon-Snir 1998). Equations
for the electrical behavior of a long cable can be solved analytically in simple cases,
but for a realistic neuron model they need to be solved numerically. To do so, the
cylinders are decomposed into smaller discrete compartments, each described us-
ing a membrane equation similar to Equation 3.1. The model for an entire neuron
thus consists of a set of compartments, each with specific membrane properties and
membrane voltage, all connected using electrical circuit theory. These models are
simulated using software like NEURON (Hines and Carnevale 1997) or GENESIS
(Bower and Beeman 1998) that are specifically designed to determine the appropri-
ate compartments and solve the equations governing their electrical behavior (see
e.g. Bower and Beeman 1998; Dayan and Abbott 2001; Lytton 2002 for reviews).
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(a) Neuronal network

(b) Compartmental
neuron model

(c) Coupled oscillator
neuron model

(d) Integrate-and-fire /
firing-rate model

(e) Integrate-and-fire / firing-rate model of the network

Fig. 3.1. Computational abstractions of neurons and networks. Biological neurons can
be modeled at different levels of abstraction depending on the scale of the phenomena stud-
ied. (a) A microscopic image of pyramidal cells in a 1.4 mm × 0.7 mm area of layer III in
macaque temporo-occipital (TEO) area, injected individually with Lucifer Yellow (reprinted
with permission from Elston and Rosa 1998, copyright 1998 by Oxford University Press; cir-
cle added). Although this technique shows only a fraction of the neurons in a single horizontal
cross-section, it demonstrates the complex structure of individual neurons and their connec-
tivity. (b) A detailed compartmental model of the top left neuron (circled). Each compartment
represents a small segment of the dendrite, and connections are established on the small den-
dritic spines, shown as line segments. (c) A coupled oscillator model of the neuron, consisting
of an excitatory and an inhibitory unit with recurrent coupling, and weighted connections with
other neurons in the network. (d) A model where a single variable describes the activation of
the neuron, corresponding to either the membrane potential (in the integrate-and-fire model),
or the average number of spikes per unit time (in the firing-rate model). (e) A high-level model
of a neuronal network. With the more abstract neurons, it is possible to simulate a number of
neurons and connections, allowing us to study phenomena at the level of networks and maps.
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Compartmental models allow neurons to be represented in arbitrarily fine detail.
They can be used effectively when experimental data are available to provide the
parameters for the model, such as the size and shape of compartments and the dis-
tributions of ion channels (Doya, Selverston, and Rowat 1995). In such cases, they
can be used to generate a very close fit to experimental data. For example, there are
detailed models of cortical pyramidal neurons (Mainen and Sejnowski 1998) and
cerebellar Purkinje cells (De Schutter and Bower 1994a,b).

However, large-scale cortical structures such as orientation maps are composed
of millions of neurons, each making thousands of connections (Wandell 1995). De-
tailed data are available for only a very small sample of these neurons, and billions of
parameters would have to be chosen arbitrarily for a compartmental model of such
a map. The large number of components would make it difficult to understand its
behavior, e.g. to determine which components are responsible for particular compu-
tations. Also, currently it is possible to simulate only a few neurons in such detail,
due to limitations on computer memory and processing time.

The structures and phenomena studied in this book, i.e. cortical maps and per-
ceptual behavior, depend crucially on having large numbers of neurons; on the other
hand, they are not assumed to be sensitive to detailed membrane processes of in-
dividual neurons. Models of such phenomena must (and can) therefore use higher
level abstractions of computational units. There are three major classes of such ab-
stract models: coupled oscillators, integrate-and-fire neurons, and firing-rate neurons.
These abstractions allow simulating large numbers of neurons and their connections,
so that they theories about large-scale phenomena in the cortex can be tested. Each
model will be described below in turn.

3.1.2 Coupled Oscillators

Coupled oscillator models focus on the temporal dynamics of pairs of neurons or
neuron groups. The dynamics of each oscillator are determined by two variables x
and y, representing the states of two coupled units, one of which is inhibitory, the
other excitatory (Figure 3.1c; Horn and Opher 1998; Sabatini, Solari, and Secchi
2004; Terman and Wang 1995; von der Malsburg 1987; von der Malsburg and Buh-
mann 1992; Wang 1995, 1996; Wilson and Cowan 1972; some, like Chakravarthy
and Ghosh 1996, use a single complex variable instead). The units are connected
into a recursive loop where the excitatory unit activates the inhibitory unit, which
in turn inhibits the excitatory unit. The activities of the units can be described with
coupled differential equations that can be written in several different forms. In an
example due to Terman and Wang (1995) and Wang (1999),

dx

dt
= f(x) − y + z,

dy

dt
= ε[g(x) − y],

(3.2)

z is the input, ε is the coupling strength between the two units, and the functions
f(x) and g(x) are chosen so that robust oscillation results. For example, with the
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cubical hyperbola f(x) = 3x − x3 + 2, the height a and the slope b of sigmoid
g(x) = a[1+tanh(x/b)] can be tuned to obtain a robust limit cycle. When x rises in
this system (initially due to external input z), f(x), g(x) and y increase. Once f(x)
starts to decrease, inhibition from y effectively turns x off. As a result, y also turns
off, and the cycle repeats.

It is possible to interpret such an oscillator as a single neuron where the excitatory
unit represents the membrane potential, and the inhibitory unit the change in poten-
tial resulting from ionic channel activation and deactivation (Wang 1999). However,
more commonly, each of the units in the oscillator is interpreted as a pooled activity
level of a population of neurons of the same cell type (pyramidal for the excitatory
and stellate for the inhibitory unit), residing in the same cortical column (Menon
1991; Wang 1996). The oscillators can also be connected into a network, and based
on the sign of the connection, their phases can become synchronized or desynchro-
nized. Such coupled oscillator networks have been used in segmentation and binding
tasks. For example, images such as aerial photographs or brain scans can be seg-
mented into homogeneous regions (Liu and Wang 1999; von der Malsburg and Buh-
mann 1992), and speech can be segmented from background noise (Wang and Brown
1999). In each of these applications, desynchronization across oscillators represents
segmentation and synchronization represents binding, establishing a temporal code.

One important advantage of coupled oscillator models is that they include only
two variables, which makes them easier to analyze than compartmental models
(FitzHugh 1961; Nagumo, Arimato, and Yoshizawa 1962). Unit activities can be
represented in two-dimensional phase portraits, and behaviors such as limit-cycle
oscillations identified. Even large-scale phenomena may sometimes be described
theoretically (see Rinzel and Ermentrout 1998; Wang 1999 for reviews).

In summary, the coupled oscillator offers a description of the neuron at a higher
level than the compartmental model does, allowing it to be analyzed more easily and
used in applications. However, a further more efficient abstraction is still possible
without losing the ability to perform temporal coding. Such a model is based on a
single variable describing the membrane potential, as will be described in the next
section.

3.1.3 Integrate-and-Fire Neurons

In the integrate-and-fire approach, a single variable corresponding to the membrane
potential of a neuron is used to describe the state (Figure 3.1d). Such neurons ac-
cumulate the membrane potential from incoming signals, generate a spike when it
exceeds a threshold, and reset the potential after each spike. A typical formulation of
the general idea is

C
dV

dt
= I(t) − V

R
, (3.3)

where V is the membrane potential, C its capacitance, R its resistance, and I(t) is
the input current (Lapicque 1907; see Gabbiani and Koch 1998 for a review). The
effect of the incoming activity I(t) is to build up the membrane potential over time.
The −V/R, the leak term, retards the rise of the potential, and without further input,
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eventually returns it to the baseline level. Consequently, this model is also called the
leaky integrate-and-fire neuron (Campbell, Wang, and Jayaprakash 1999; Nischwitz
and Glünder 1995). When the membrane potential rises to the threshold level, the
neuron spikes, and the potential is reset to the baseline. Such dynamics capture the
aggregate behavior of the compartmental model well, and can be implemented effi-
ciently computationally.

Several variations of the basic integrate-and-fire model have been proposed, and
there are also formulations that unify many of them in a single framework (Gerst-
ner 1998b; Hoppensteadt and Izhikevich 1997; Izhikevich 2003). A particularly effi-
cient variation is the dynamic threshold model (Eckhorn et al. 1990; Reitboeck et al.
1993). The threshold is increased acutely after the neuron fires, and then decayed
over time, simulating the refractory period of the neuron. Both the leaky synapse and
the dynamic threshold are formulated using the same leaky-integration mechanism,
implemented through convolution (∗):

x(t) = X(t) ∗ K(t), (3.4)

where x(t) is the membrane potential or the threshold at time t and X(t) is the
impulse input representing a received or generated spike. The convolution kernel
K(t) is defined as

K(t) =
{

e−λt if t ≥ 0,
0 otherwise,

(3.5)

where λ is the decay rate. A spike generates a single exponentially decaying po-
tential over time, and multiple spikes generate a superposition of multiple decaying
potentials.

The convolution can be calculated using the digital filter equation (Eckhorn et al.
1990) as

x(t) = X(t) + x(t − 1) e−λ, (3.6)

where t increases in discrete time steps. Any input from X(t) causes a jump in
x(t), which then decays over time by the factor e−λ. With this simple recursive
equation, complicated neuron dynamics can be calculated efficiently. The temporal
structure of the events is abstracted into a single variable, without storage or repeated
calculations, which is ideal for large-scale simulations.

The integrate-and-fire model is efficient and theoretically well understood. Closed-
form analytical solutions exist for simple cases, and even large networks can be
analyzed theoretically (Gabbiani and Koch 1998; Gerstner and Kistler 2002; Me-
unier and Segev 2002). It has been used in several applications, including image
segmentation of both static and moving objects, auditory analysis, motor control
and reaching, range-image segmentation, sequence memory, and temporal pattern
recognition (Campbell et al. 1999; Eckhorn et al. 1990; Glover, Hamilton, and Smith
2002; Hugh, Laubach, Nicolelis, and Henriquez 2002; Kuhlmann, Burkitt, Paolini,
and Clark 2002; Rehn and Lansner 2004; Reitboeck et al. 1993; Sohn, Zhang, and
Kaang 1999). It will also be used in Part IV of this book to understand how percep-
tual grouping occurs in the primary visual cortex.
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3.1.4 Firing-Rate Neurons

The unit models reviewed so far can be used to understand the behavior of single
neurons and the temporal coding that could take place in binding and segmenta-
tion. However, much of high-level behavior in the visual cortex (and elsewhere) does
not require such detailed representations: The temporal behavior of the neurons is
often not as important as their overall activity. The individual firing events can be
abstracted into a general level of activation, or firing rate, and the activities of small
groups of neurons can be aggregated into single computational units. For example,
the force applied to a muscle and the firing rate of the muscle spindle are strongly
correlated (Adrian 1926). Similarly, the firing rate of visual cortex neurons codes
orientation and position of visual inputs (Hubel and Wiesel 1962, 1968). Focusing
on firing rates alone leads to a much simpler and computationally tractable model.

The firing-rate model is again loosely based on the membrane potential of the
neuron. This potential s is calculated as a sum of activities ηk of all neurons k that
send their output to the neuron, multiplied by the connection weights wk:

s =
∑

k

ηkwk. (3.7)

Most models further abstract the membrane potential into a firing rate η, using a
logistic (sigmoid) activation function σ:

η = σ(s) = 1/(1 + e−s). (3.8)

In this way, the activation (or firing rate) of the neuron is limited between 0 (i.e. min-
imum firing rate) and 1 (maximum rate), roughly modeling the activation function of
real neurons. A piecewise linear approximation of σ can also be used in many cases,
including the models in this book; it is faster to compute and results in qualitatively
similar behavior.

Even though they are formulated at the single-neuron level, Equations 3.7 and 3.8
constitute a reasonable model for the response of small groups of neurons as well,
such as cortical columns. In this interpretation, the amount of input stimulation (s)
to the group is measured, and the total activation (or response) of the group is a
logistic function of the input, limiting it between a minimum and a maximum value.
Cortical column activation turns out to be a powerful abstraction for understanding
the two-dimensional structure of the visual cortex, and will be used extensively in
this book.

Firing-rate units can be used to simulate very large networks, and thereby even
high-level behavior. Most neural network models in cognitive science and engineer-
ing, especially in natural language processing, reasoning, memory, speech recogni-
tion, and visual pattern recognition, are based on firing-rate units. They will be used
in Parts II and III in this book to understand phenomena such as large-scale organi-
zation of the visual cortex, plasticity, visual illusions, and face detection.
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3.2 Temporal Coding

Having reviewed the models for individual computational units, let us now turn to
behavior in large groups of such units. Group behavior is an important issue for those
models that generate spiking events, because they can form a temporal code through
synchronization and desynchronization of firing events. The conditions under which
synchronization occurs will be described in this section, as well as the computations
and representations that are possible as a result.

In typical a implementation, spiking neurons are arranged into a two-dimensional
topology with local excitatory connections and global inhibition (Terman and Wang
1995; von der Malsburg and Buhmann 1992; Wang 1995, 1996). Local excitation
drives the phases of neighboring units closer to each other. The global inhibitor sums
the activity of all excitatory units and inhibits them proportionally to this sum, thus
implementing segmentation. The network is activated with external input, and after
a while the peaks and valleys of the activity between different areas are compared: If
they are synchronized, the areas are interpreted to represent components of a single
coherent object. For example, Figure 3.2 illustrates how such a network binds the
components of the cup together and those of the lamp together, and at the same time
indicates that these are two separate objects.

Through analytical and computational studies it has been possible to character-
ize the conditions under which such networks synchronize and desynchronize. Even
though synchronization can be most naturally achieved by excitation, and desyn-
chronization with inhibition, the process is quite complex and depends (among other
factors) on whether the connections are excitatory or inhibitory, how long the axonal
conduction delay is, and how much noise there is in the membrane potential.

First, even with the same types of connections (excitatory or inhibitory), either
synchrony or desynchrony can be obtained with appropriate delays. More specifi-
cally, there are four different combinations of connection and delay types: (1) Exci-
tatory connections with no delay cause synchrony. Neurons that fire first cause the
membrane potential of other neurons near threshold to reach the threshold quicker,
thus decreasing the phase difference (Campbell et al. 1999; Gerstner and van Hem-
men 1992; Han, Kim, and Kook 1998; Horn and Opher 1998; Kim 2004; Mirollo
and Strogatz 1990; Terman and Wang 1995; Wang 1995, 1996). (2) Excitatory con-
nections with sufficient delay can desynchronize. If the delay is long enough, it may
take almost a full cycle for the excitatory contributions to get back to those neu-
rons that fired first, causing them to fire even earlier and thus increasing the phase
difference (Nischwitz and Glünder 1995). (3) Inhibitory connections without delay
cause desynchrony. Their contribution keeps neurons near threshold from firing, in-
creasing the phase difference (Han et al. 1998; Horn and Opher 1998; Nischwitz
and Glünder 1995). (4) Inhibitory connections with appropriate delay synchronize.
They delay firing of the other neuron until it coincides with the next spike (Horn and
Opher 1998; Kim 2004; Kirillov and Woodward 1993; Lytton and Sejnowski 1991;
Nischwitz and Glünder 1995; van Vreeswijk and Abbott 1994). These results show
that both the connection type and the various temporal parameters involved in the
neuron dynamics have a strong influence on synchronization behavior.
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(a) Input: Lamp, cup (b) Activity for lamp (c) Activity for cup

cup1

cup2

cup3

lamp1

lamp2

lamp3

0 20 40 60 80 100

(d) Activity of sample neurons over time

Fig. 3.2. Perceptual grouping through temporal coding. This schematic illustration shows
how temporal coding can be used to bind and segment neural activity based on the phase of
the periodic membrane potential. (a) The input image. (b) Activity of the two-dimensional
map when all neurons representing the lamp are synchronized. (c) At a later time, all neurons
representing the cup are synchronously turned on while the other neurons are off. (d) The
membrane potential over time for three neurons representing the lamp and for three neurons
representing the cup. The neurons representing the same object are synchronized and those
representing different objects desynchronized. In this manner, temporal coding can be used to
represent binding and segmentation. Adapted from Wang (1996).

Second, noise has been shown to help desynchronization of separate populations
(Baldi and Meir 1990; Han et al. 1998; Horn and Opher 1998; Terman and Wang
1995; Wang 1995). Even if the neurons start out synchronized, noise causes some of
the neurons to fire earlier or later in a random manner. The lateral interactions will
then magnify these differences, eventually desynchronizing the populations.

Chapter 12 will add considerably to these results, showing that the rate of decay
in the membrane potential also strongly affects synchronization, in the manner simi-
lar to conduction delay. Both binding and segmentation can be achieved at the same
time, as well as simultaneous short- and long-range binding with local connections.
Strong noise can indeed hurt synchronization, but it can be overcome with strong
excitation and a long refractory period.

These rich temporal behaviors have been extensively used in real-world percep-
tual grouping tasks. For example, networks built of coupled oscillators have been ap-
plied to texture segmentation (Baldi and Meir 1990; von der Malsburg and Buhmann
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1992), aerial photograph and brain-scan image segmentation (Wang 1995, 1996),
and cluster analysis (Horn and Opher 1998). Networks of integrate-and-fire units
have also been used in static object segmentation (Campbell et al. 1999; Eckhorn
et al. 1990), moving object segmentation (Reitboeck et al. 1993), and aerial photo-
graph and brain-scan image segmentation (Campbell et al. 1999). Such models both
demonstrate how neural circuits could perform such tasks and serve as a basis for
building practical applications.

However, the lateral connections in these models were limited to relatively short
range, and could not learn input correlations. As a result, grouping was based only on
proximity and similarity. More complicated grouping requires linking features such
as oriented edges, and is not possible in these models. Part IV will demonstrate how
long-range excitatory connections can be included in the model and self-organized
to implement complex grouping phenomena such as contour integration.

3.3 Adaptation

Almost all computational models of the cortex are adaptive, i.e. their computations
change based on the activities of the network. Adaptation is important to make such
models practical; it would be difficult to design networks to perform the desired
task by hand. Most importantly, cortical networks are highly adaptive. In order to
understand how they develop and how they process information, it is necessary to
include adaptation in the model.

Although many models of adaptation exist in artificial neural networks in gen-
eral (such as backpropagation; Chauvin and Rumelhart 1995; Hecht-Nielsen 1989;
Parker 1982; Rumelhart, Hinton, and Williams 1986; Werbos 1974), the models in
computational neuroscience most often use some form of the synaptic adaptation
mechanism proposed by Hebb (1949):

When an axon of cell A is near enough to excite a cell B and repeatedly or
persistently takes part in firing it, some growth process or metabolic change
takes place in one or both cells such that A’s efficiency, as one of the cells
firing B, is increased.

This mechanism is called Hebbian learning, and is implemented in computational
models as a weight update rule of the form

w′
AB = wAB(t) + αηAηB , (3.9)

where wAB is the old and w′
AB the new weight of the connection from cell A to cell

B, ηA and ηB are the activations of the two cells, and α is a parameter determining
the rate of learning.

Typically, Hebbian rules are combined with a mechanism to prevent the connec-
tion weights from increasing indefinitely. For instance, the weights can be decayed
gradually so that the total amount of weight across all connections to or from a
neuron remains approximately constant (Horn, Levy, and Ruppin 1998; Oja 1982;
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Sanger 1989). More directly, the total connection strength can be normalized to
have a constant sum (Rochester, Holland, Haibt, and Duda 1956; von der Malsburg
1973), thereby accurately redistributing the synaptic resources of each neuron. Such
normalization is typically either subtractive or divisive (Elliott and Shadbolt 2002;
Miller and MacKay 1994). In subtractive normalization, each weight is decreased by
an equal amount after the weights adapt, with the amount chosen so that the total
strength remains constant. All weights tend to approach either zero or some max-
imum strength (Miller and MacKay 1994), which does not happen in biology. In
divisive normalization, each weight is instead scaled down in proportion to its origi-
nal strength:

w′
AB =

wAB + αηAηB∑
u(wuB + αηuηB)

. (3.10)

Such a change results in more precise weight values and thereby more precise control
of the behavior of the network. Usually the normalization is done postsynaptically
(i.e. the sum is taken over all input connections, as in Equation 3.10), but presynaptic
normalization is also possible, with slightly different properties (Section 16.1.3).

Hebbian learning is elegant and effective, and also well supported biologically. A
wealth of experimental evidence suggests that activity-dependent, correlation-based
synaptic adaptation processes are involved in neural plasticity (Crair and Malenka
1995; Gustafsson and Wigström 1988; Hebb 1949; Hensch, Fagiolini, Mataga,
Stryker, Baekkeskov, and Kash 1998; Hensch and Stryker 2004; Miller and MacKay
1994; see Tsien 2000 for a review). These processes can be based on long-term po-
tentiation and depression (LTP/LTD) of synaptic connections or on growth of new
connections; Hebbian learning serves as an abstraction of both mechanisms. Normal-
ization terms were first introduced for computational reasons (Rochester et al. 1956),
but recent work has uncovered a number of biological mechanisms within cells that
regulate the overall synaptic strength and neural excitability during adaptation (Bour-
geois, Jastreboff, and Rakic 1989; Hayes and Meyer 1988a,b; Murray, Sharma, and
Edwards 1982; Pallas and Finlay 1991; Purves 1988; Purves and Lichtman 1985;
see Turrigiano 1999 for a review). These “homeostatic” or “neuronal regulation”
processes may implement normalization in biological systems. For instance, Turri-
giano, Leslie, Desai, Rutherford, and Nelson (1998) showed that a change in a single
synapse can cause the efficacy of the other synapses in the cell to change in the oppo-
site direction. These results suggest that local change in the synaptic strength scales
the strength of the other synapses in the same neuron.

Other recent experimental and theoretical work suggests ways in which the
adaptation and normalization rules can be unified, based on findings of spike-
timing-dependent plasticity (STDP; Fu, Djupsund, Gao, Hayden, Shen, and Dan
2002; Markram, Lübke, Frotscher, and Sakmann 1997; Panchev and Wermter 2001;
Saudargiene, Porr, and Wörgötter 2004; Zhang, Tao, Holt, Harris, and Poo 1998).
STDP is a variant of Hebbian learning that depends on the precise timing between
presynaptic and postsynaptic spikes. Specifically, if a presynaptic neuron fires just
before the postsynaptic neuron does, the strength of the connection is increased. If
the presynaptic neuron fires shortly after the postsynaptic neuron, the weight is de-
creased. This rule can be implemented in a network of spiking neurons, but it has
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the disadvantage that it depends crucially on the individual spikes (Bohte and Mozer
2005; Song, Miller, and Abbott 2000). It is expensive to simulate and difficult to jus-
tify it in large-scale models where single units represent neural groups: Such a model
would have to assume that all neurons in the group are firing in synchrony, which is
unrealistic. Thus, STDP is primarily suited to modeling small networks of individual
neurons.

For these reasons, standard Hebbian learning with divisive normalization will
be used in the LISSOM model. It has solid biological support, and is well suited
for learning correlations in visual patterns, which is what the visual cortex seems to
be doing (as was discussed in Section 2.2.2). When each unit in the LISSOM cortex
adapts its behavior based on the Hebbian principle, the entire adapting network forms
a self-organizing map, which will be described next.

3.4 Self-Organizing Maps

As reviewed in Section 2.2, neurons in the cortex do not act in isolation; each neuron
is strongly influenced by lateral inhibition and excitation in the cortical network.
Even though each neuron is adapting its own connections, the activities of other
neurons modulate the learning. Therefore, to understand development and plasticity,
the interactions in the whole cortical network need to be taken into account.

This idea is formalized computationally in self-organizing maps. Competition
and cooperation is introduced between neurons, so that only one or a few units in the
network respond to each input pattern. If only these active neurons adapt, each neu-
ron will learn to respond best to a cluster of similar patterns. Different neurons will
respond to different clusters in the input space, and the network will learn a map-like
representation of the inputs. Such self-organizing maps constitute the most common
and most appropriate computational structure for understanding computations in the
maps of the visual cortex.

The general architecture and computations in self-organizing maps will be out-
lined in this section, and an example of a self-organization process will be given. The
properties of the architecture will be analyzed in the next two sections, focusing on
how the maps represent high-dimensional input in two dimensions.

3.4.1 Variations of Map Models

Self-organizing maps are a general class of learning models, some of which are
strictly directed toward understanding biological maps; others are more abstract and
intended to be used in engineering applications. The general outline of this type of
computational architecture is given in Figure 3.3.

The first self-organizing map model of the primary visual cortex was developed
by von der Malsburg (1973) and simulated on a 1 MHz UNIVAC. He used a small
two-dimensional network of neural units to model the cortex, based on the assump-
tion that cells in a vertical column have the same response properties and can be
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V1

Input

Fig. 3.3. General architecture of self-organizing map models of the primary visual cor-
tex. The model typically consists of two sheets (also called layers, or surfaces) of neural units:
input and V1. Some models also include a sheet of LGN neurons between the input and V1,
or interpret the input sheet as the LGN; however, in most models the LGN is bypassed for
simplicity, and the input sheet represents a receptor surface such as the retina. The input units
are activated with continuous values according to the input pattern. In this example, the acti-
vations represent an elongated Gaussian, as shown in gray-scale coding from white to black
(low to high). The input units are organized into a rectangular 5 × 5 grid; a hexagonal grid
can also be used. Instead of grid input, some models provide the input features such as (x, y)
position, orientation, or ocularity directly as activation values to the input units (Durbin and
Mitchison 1990; Ritter et al. 1991). Others dispense with individual presentations of input
stimuli altogether, abstracting them into functions that describe how they correlate with each
other over time (Miller 1994). Neurons in the V1 sheet also form a two-dimensional surface
organized as a rectangular or hexagonal grid, such as the 7 × 7 rectangular array shown. The
V1 neurons have afferent (incoming) connections from neurons in their receptive field on the
input sheet; sample afferent connections are shown as straight solid lines for a neuron at the
center of V1. In some models the receptive field includes the entire input sheet (e.g. von der
Malsburg 1973). In addition to the afferent input, the V1 neurons usually have short-range
excitatory connections from their neighbors (shown as short dotted arcs) and long-range in-
hibitory connections (long dashed arcs). Most models save computation time and memory by
assuming that the values of these lateral connections are fixed, isotropic, and the same for ev-
ery neuron in V1. However, as will be shown in later chapters, specific modifiable connections
are needed to understand several developmental and functional phenomena. Neurons gener-
ally compute their activation level as a scalar product of their weights and the activation of the
units in their receptive fields; sample V1 activation levels are shown in gray scale. Weights
that are modifiable are updated after an input is presented, using an unsupervised learning
rule. In some models, only the most active unit and its neighbors are adapted; others adapt
all active neurons. Over many presentations of input patterns, the afferent weights for each
neuron learn to match particular features in the input, resulting in a map-like organization of
input preferences over the network like those seen in the cortex.
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treated as a single computational unit. Each unit had fixed excitatory lateral connec-
tions with its neighbors, and fixed inhibitory lateral connections with units farther
away. Whenever an input was presented, the short-range excitation and inhibition
focused activity in the best-responding areas of the network. The afferent weights of
the active units were then modified according to a Hebbian rule, normalized so that
the total weight of each unit was constant. When trained on simple binary patterns
consisting of oriented bars, the units learned to respond preferentially to particular
orientations. Furthermore, neighboring units responded to similar orientations, while
next-to-neighboring units responded to nearly perpendicular orientations, so that the
response profile across the network formed an orientation map qualitatively similar
to that seen in the visual cortex.

Subsequently, dozens of similar self-organizing models have been proposed for
different aspects of cortical self-organization, such as topography, orientation pref-
erence, and ocular dominance (Amari 1980; Ben-Yishai, Bar-Or, and Sompolinsky
1995; Berns, Dayan, and Sejnowski 1993; Bienenstock, Cooper, and Munro 1982;
Bishop, Svensén, and Williams 1998; Cooper, Intrator, Blais, and Shouval 2004;
Dayan 1993; Durbin and Mitchison 1990; Erwin, Obermayer, and Schulten 1995;
Goodhill 1993; Goodhill and Willshaw 1990, 1994; Grossberg 1976; Hurri and Hy-
varinen 2003; Kohonen 1982b; Miller 1994; Miller, Keller, and Stryker 1989; Nass
and Cooper 1975; Obermayer, Blasdel, and Schulten 1992; Obermayer, Ritter, and
Schulten 1990d; Olson and Grossberg 1998; Ruf and Schmitt 1998; Shouval 1995;
Swindale 1980; Tanaka 1990; Willshaw and von der Malsburg 1976, 1979; Yuille,
Kolodny, and Lee 1996). Among them, the self-organizing feature map (SOM; Ko-
honen 1982b, 2001) and the models of visual cortex based on it (Obermayer et al.
1990d, 1992) have been particularly influential, mainly because of their elegance and
simplicity. In this book, “SOM” is used to refer to this particular architecture, and
“self-organizing maps” to refer to the whole class of developmental models of maps.

In most of these models, the lateral interactions between neurons have been sub-
stituted with a simpler and computationally less expensive mechanism. First, each
input is assumed to produce only one maximally active region in the cortex. Then,
instead of using lateral interactions to find the regions of maximum activity, it is pos-
sible to simply search for the maximally active neuron, and adapt the afferent weights
in a circular neighborhood around it. In this way, the models implicitly assume that
the adult cortex is static, and that lateral connections are fixed or change in a simple
and predetermined way. Only recently have models with specific, modifiable lat-
eral connections started to emerge (Alexander, Bourke, Sheridan, Konstandatos, and
Wright 2004; Bartsch and van Hemmen 2001; Bray and Barrow 1996; Burger and
Lang 1999; Kalarickal and Marshall 2002; Weber 2001), beginning with the early
versions of the LISSOM model described in this book (Miikkulainen 1991; Sirosh
1995; Sirosh and Miikkulainen 1993, 1994a). Such models can potentially account
for a wider set of developmental and functional phenomena than self-organizing map
models without explicit lateral connections, as will be shown in later chapters of this
book.
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3.4.2 Architecture and Computations

In this section, the computations that take place in the self-organizing map model
of biological maps are described in detail. The discussion includes elements from
several models in the literature, such as the SOM and von der Malsburg’s model, and
serves to define the foundation on which the LISSOM model in this book is built.

The architecture consists of a two-dimensional array of neurons representing the
cortical surface, connected to an input array that represents a receptor surface such
as the retina (Figure 3.3; the LGN is bypassed in most such models for simplicity).
Each connection has a positive synaptic weight. Initially, these weights are random
and therefore each neuron responds randomly to activity on the receptor surface.
During an adaptation phase, these weights are adjusted, and the neurons gradually
become more and more specific, adjusting their tuning in such a way that each neu-
ron can only be excited by a small and spatially localized set of receptors. In the
final, organized state of the network, the receptive fields of neighboring neurons are
arranged such that the location of the maximal neural excitation varies smoothly
with the stimulus location in the receptor surface. The neural sheet then acts as a
topographic map, representing stimulus location within the receptor surface.

In the adaptation phase, input items are randomly drawn from the input distribu-
tion and presented to the network one at a time. The network responds to each vector
by developing a localized activity pattern. The weight vector of the maximally re-
sponding neuron and each neuron in its neighborhood are changed toward the input
vector, so that these neurons will produce an even stronger response to the same input
in the future.

In other words, the map adapts in two ways at each presentation: (1) The weight
vectors become better approximations of the input vectors, and (2) neighboring
weight vectors become more similar. Together, these two adaptation processes even-
tually force the weight vectors to become an ordered map of the input space.

The process begins with very large neighborhoods, i.e. the weight vectors change
in large areas. This phase results in a gross ordering of the map. The size of the
neighborhood and the learning rate decrease with time, allowing the map to make
finer and finer distinctions between items. Eventually, the distribution of the weight
vectors becomes an approximation of the input vector distribution, and a smooth
topographic map develops.

The self-organizing map can be formalized in a simple set of equations. Let us
assume that there are n receptors. An input pattern consists of a set of positive activity
values on the receptor array, represented as the vector X = {χ1, χ2, . . . , χn}, χk ≥
0. Each neuron (i, j) in the map array receives this same vector as its input. The
neuron has n weights corresponding to the n components of X; these weights form
the vector Wij = {w1,ij , w2,ij , . . . , wn,ij} (some of these weights may be fixed at
zero to represent local receptive fields). The neuron computes its initial response as
the weighted sum of the input vector and its weight vector:

ηij =
∑

k

χkwk,ij = X · Wij . (3.11)
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These initial responses of individual neurons are further modified by lateral inter-
actions in the cortical network. For simplicity, most self-organizing map systems do
not explicitly model these lateral interactions. Instead, the interactions are assumed
to lead very rapidly to a new spatially localized distribution of activities centered
around the neuron with the maximum initial response (called the winning neuron,
e.g. neuron (r, s)). The activity of the winner is assumed to saturate at the maximum
possible activity ηmax. With these assumptions, the activity of the network after the
interactions can be described by a simple function, such as a Gaussian, multiplied by
the maximum activity:

hrs,ij = ηmax exp
(
− (r − i)2 + (s − k)2

σ2
h

)
, (3.12)

where hrs,ij describes the activity of neuron (i, j) when (r, s) is the winning neuron.
The function h is called the neighborhood function, because it describes how the
activity varies in the neighborhood of the winner. Its width, determined by σh, starts
out large at the beginning of the simulation, and gradually decreases to a small value
toward the end. The justification for such a decrease is that in the initial state, the
activity patterns on the network will be random and widespread, because the synaptic
weights are random. To describe such widespread activity, h should be broad as well.
As the weights adapt and form a topographic map, the rough activity pattern will
be more strongly concentrated around the winner; therefore, a narrower function is
required (Erwin, Obermayer, and Schulten 1992a,b; Kohonen 1993, 2001; Sirosh
and Miikkulainen 1997).

The input weights of the neurons are adapted according to the Hebbian rule. The
neighborhood function can be directly substituted for the network activity in this
rule; after this substitution the Hebbian Equation 3.9 becomes

w′
k,ij = wk,ij + αχkhrs,ij . (3.13)

As the normalization mechanism, the divisive process of Equation 3.10 can be used.
It works well with high-dimensional natural inputs such as Gaussians and natural
images, which have approximately constant vector length. In such cases, the response
(Equation 3.11) depends primarily on the angle between the input and the weight
vector, which is an appropriate measure of similarity. Hebbian learning with divisive
normalization will therefore be used in the models described in this book.

However, many experiments with self-organizing maps utilize preprocessed in-
put that tends to be low-dimensional and vary in length. To compensate, the weight
vectors are normalized to constant length, ensuring that the response is not domi-
nated by length. The maximum activity is produced by an input vector that is iden-
tical to the weight vector and the minimum response is produced by an input that is
orthogonal to it (Kohonen 2001; Obermayer, Ritter, and Schulten 1990b; Sirosh and
Miikkulainen 1994a). After including such normalization, the weight adaptation rule
becomes

w′
k,ij =

wk,ij + αχkhrs,ij√∑
u(wu,ij + αχuhrs,ij)2

, (3.14)
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Fig. 3.4. Training a self-organizing map with Gaussian activity patterns. Each training
input is a Gaussian pattern of activation on the two-dimensional array of 24 × 24 receptors.
Four sample such patterns are shown in this figure, represented in gray-scale coding from
white to black (low to high). The only dimensions of variation are the x and y positions
of the Gaussian centers, and the map should learn to represent two-dimensional location, or
retinotopy, as a result.

where the term within the square root represents the sum of squares of all the updated
weights of neuron (i, j).

In practical applications of the self-organizing map, where propagation through
afferent (or lateral) connections is not important, the above processes of response
generation and weight change are often abstracted further. Instead of the weighted
sum, the response is based on the Euclidean distance between the input and the
weight vectors ‖V − Wij‖; instead of Hebbian adaptation with normalization, the
weight vector is changed toward the input vector based on Euclidean difference:

w′
k,ij = wk,ij + α(χk − wk,ij)hrs,ij . (3.15)

This abstracted model is, in essence, what has become known as the SOM artificial
neural network architecture. Kohonen (1982a, 1989) showed that these simplifica-
tions lead to the same self-organizing behavior as the more biologically realistic
version. They are, however, more straightforward to implement and more efficient to
simulate, which has made many engineering applications possible (see Kaski, Kan-
gas, and Kohonen 1998; Kohonen 2001; Oja and Kaski 1999; Oja, Kaski, and Koho-
nen 2003 for reviews).

The processes described above allow organizing a topographic map of the distri-
bution of input vectors. In the next section, this process is described in detail in the
case where the input varies in two dimensions; the way the map represents higher
dimensional input spaces is analyzed in Section 3.5.

3.4.3 Self-Organizing Process

Self-organization of the topographic map can be best visualized when the input is in-
herently two-dimensional, like the map itself. To represent such input on the receptor
surface, single spots of activity with a fixed width are presented at random locations
(Figure 3.4). The activity of each receptor in the spot is described by the unoriented
(i.e. circular) Gaussian function:



56 3 Computational Foundations
C

en
te

r
ne

ur
on

E
dg

e
ne

ur
on

(a) Iteration 0 (b) Iteration 1000 (c) Iteration 5000 (d) Iteration 40,000

Fig. 3.5. Self-organization of weight vectors. The weight vectors of two sample units are
plotted on the receptor array at different stages of self-organization. The weight values are
represented in gray-scale coding from white to black (low to high). Initially (iteration 0) the
weights are uniformly randomly distributed; over several input presentations (such as those
shown in Figure 3.4) the weights begin to resemble the input Gaussians in different locations
of the receptor surface (iterations 1000, 5000, and 40,000). A neuron at the center of the
network (top row) forms a Gaussian weight pattern at the center, while a neuron at the edge
(bottom row) forms one near the edge. Such weight patterns together represent the topography
of the input space, as seen in Figure 3.6.

χk = exp
(
− (x − xc)2 + (y − yc)2

σ2
u

)
, (3.16)

where (x, y) specifies the location of receptor k, (xc, yc) the center of the activity
spot, and σu its width. Trained with such inputs, the map should learn to represent
the two-dimensional locations on the receptor surface. In other words, if the cortical
sheet is interpreted as V1 and the input sheet as the retina, the model should learn a
retinotopic mapping.

Such a mapping will be formed in this section with the abstract (SOM) version of
the self-organizing process, where the map responds and adapts based on Euclidean
distance similarity measure (Equation 3.15). The SOM is the most common version
of self-organizing maps in the literature, and this simulation therefore establishes
a baseline for comparison with LISSOM in the next chapter. The map consists of
40 × 40 units fully connected to 24 × 24 receptors; the weights are initially uni-
formly random. The input Gaussians have a width of σu = 0.1, and their centers are
chosen from a uniform random distribution, so that they are evenly scattered over the
receptor surface. The rest of the parameter values are described in Appendix E.

The weight vectors of each neuron are initially random, i.e. each value is drawn
from the uniform distribution within [0..1] (Figure 3.5). Over several input presen-
tations, they gradually turn into representations of the input Gaussians at different
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locations. For example, the neuron at the center of the network forms a Gaussian
weight pattern at the center of the receptor surface, and a neuron at the edge of the
network one near the edge.

Such weight vectors form a topographic mapping of the input space. This map-
ping can be illustrated by first calculating the center of gravity of each neuron’s
weight vector (as a weighted sum of the receptor coordinates divided by the total
weight; Appendix G.2). The centers can then be plotted as points on the receptor
surface, as is done in Figure 3.6. The square area in each subfigure represents the
receptor surface, and the centers of neighboring neurons are connected by a line to
illustrate the topology of the network. Since the afferent weights are initially ran-
dom, their centers of gravity are initially clustered around the middle. As inputs are
presented and weights adapt, this cluster gradually unfolds, and spreads out into a
smooth grid that covers the receptor surface. In the final self-organized map the topo-
graphic order of the centers matches the topographic order of neurons in the network.
The network has learned to represent stimulus location accurately, and maps the in-
put space uniformly. The plot is slightly contracted because the Gaussian weight
patterns near the edges are truncated: Although the peak of a Gaussian is close to the
edge, its center of gravity is always well inside the edge (Figure 3.5d, bottom row).

More generally, the distribution of the neuron weight vectors in the final map
approximates the distribution of the input vectors (Ritter 1991). A dense area of the
input space, i.e. an area with many input vectors, will be allocated more units in the
map (Figure 3.7; simulation parameters in Appendix E). This means that such areas
are magnified in the map representation, which is useful for data analysis, and also
corresponds to the structure of biological maps.

In these example simulations, the only significant feature of the input is its lo-
cation, and therefore the map learns to represent retinotopy. Retinotopic mappings
consist of two dimensions (x and y), and because the map is also two-dimensional,
such a mapping is straightforward. However, if the input patterns are elongated and
oriented, or originate from two different eyes, the map will also represent those input
features. Such a case is more complicated because the input has more dimensions
than are available in the map. Self-organizing map models of orientation, ocular
dominance, and direction selectivity all have this property, as will be discussed in
Chapter 5. The next section will show how the map represents inputs with more than
two dimensions of variation in a two-dimensional structure. Such an analysis allows
us to understand the organization of biological maps better.

3.5 Knowledge Representation in Maps

When there are more than two dimensions of variation in the input, similar inputs
may not always be represented by nearby locations on the two-dimensional map.
How will the map representation approximate high-dimensional spaces? First, most
often the distribution in the high-dimensional space is not uniform. The map will
form a principal curve through the lower dimensional clusters of data embedded
in the high-dimensional space. Second, when clusters are indeed multidimensional,
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(a) Iteration 0: Initial (b) Iteration 1000: Unfolding

(c) Iteration 5000: Expanding (d) Iteration 40,000: Final

Fig. 3.6. Self-organization of a retinotopic map. For each neuron in the network, the cen-
ter of gravity of its weight vector is plotted as a point on the receptor surface. Each point is
connected to the centers of the four neighboring neurons by a line (note that these connec-
tions only illustrate neighborhood relations between neurons, not actual physical connections
through which activity is propagated). Initially the weights are random, and the centers are
clustered in the middle of the receptor surface. As self-organization progresses, the points
spread out from the center and organize into a smooth topographic map of the input space.

the map will form hierarchical folds in the higher dimensions. The space is covered
roughly uniformly, but not all similarity relations are preserved, resulting in a patchy
map organization. These principles are illustrated in the two subsections below.
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(a) Gaussian distribution (b) Two long Gaussians

Fig. 3.7. Magnification of dense input areas. Whereas in Figure 3.6 the inputs were uni-
formly distributed over the receptor surface, map (a) was trained with inputs appearing more
frequently in the middle, and map (b) with two such high-density areas diagonally from the
middle. More units are allocated to representing the dense areas, which means that they are
represented more accurately on the map. Similar magnification is observed in biological maps.

3.5.1 Principal Surfaces

Often with high-dimensional data, all dimensions do not vary independently, and
only certain combinations of values are possible. For example, in a map represent-
ing (x, y) location, orientation, and direction selectivity, all locations and directions
must be represented at all locations, but only directions that are roughly perpen-
dicular to the orientation can ever be detected. Therefore, even though there are four
dimensions of variation, the data are inherently three-dimensional. The first principle
of dimensionality reduction in self-organizing maps is to find such low-dimensional
structures in the data and map those structures instead of the entire high-dimensional
space.

The standard linear method for such dimensionality reduction is principal com-
ponent analysis (PCA; Jolliffe 1986; Oja 1989; Ritter, Martinetz, and Schulten 1992).
PCA is a coordinate transformation where the first dimension (i.e. first principal
component, or hyperplane) is aligned with maximum variance in the data; the sec-
ond principal component is aligned with the direction of maximum variance among
all directions orthogonal to the first one, and so on (Figure 3.8). If data need to be
reduced to one dimension, the first principal component can be used to describe it.
If two dimensions are allowed, the first two, and so on. In this way, as much of the
variance can be represented in as few dimensions as possible.

The main problem with PCA is that if the data distribution is nonlinear, a low-
dimensional hyperplane cannot provide an accurate description (Hastie and Stuetzle
1989; Kambhatla and Leen 1997; Ritter et al. 1992). This fact is illustrated in Fig-
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Fig. 3.8. Principal components of data distributions. In principal component analysis, the
data originally represented in (x, y) coordinates are transformed into the principal component
coordinate system: The first principal component (PC1) aligns with the direction of maximum
variance in the data, and the second (PC2) is orthogonal to it. The lengths of the axes reflect the
variance along each coordinate dimension. (a) The two-dimensional distribution has a linear
structure, and the first component alone is a good representation. However, with a nonlinear
distribution (b), PCA does not result in a good lower dimensional representation, even though
the distribution lies on a one-dimensional curve.

ure 3.8b: The first principal component misses the main features of the data, and
provides only an inaccurate approximation.

Nonlinear distributions are best approximated by curved structures, i.e. hypersur-
faces rather than hyperplanes. For such distributions, one can define principal curves
and principal surfaces, in fashion analogous to principal components (Hastie and
Stuetzle 1989; Ritter et al. 1992). Intuitively, the principal curve passes through the
middle of the data distribution, as shown in Figure 3.9a. The center of gravity of the
area enclosed by two very close normals should lie on the principal curve.

Let us consider the task of finding a principal curve of a data distribution. Let
X be a data point and f a smooth curve in the input space, and let df (X) be the
distance from the data point to the closest point on the curve. The squared distance
Df of data distribution P (X) to curve f can then be defined as

Df =
∫

d2
f (X) P (X) dX. (3.17)

The curve f is the principal curve of the data distribution P (X) if Df is minimal.
Principal surfaces can be defined in the same way, by replacing curve f with a multi-
dimensional surface.

It turns out that a self-organizing map is a way of computing a discretized ap-
proximation of the principal surface (Ritter et al. 1992). Assume that the principal
surface is discretized into a set of vectors Wi. For a data point X, let Wimg(X) be
the closest vector. Equation 3.17 can then be written as
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Fig. 3.9. Approximating nonlinear distributions with principal curves and folding. (a)
The principal curve passes through the middle of the data distribution, providing a more de-
tailed representation of nonlinear distributions than principal components. Each point on the
curve is positioned at the center of gravity of the part of the distribution enclosed within two
infinitesimally close normals (Ritter et al. 1992). (b) If a more detailed representation of the
thickness of the distribution is desired, the curve can be folded in the higher dimension.

Df =
∫

‖X − Wimg(X)‖2P (X) dX. (3.18)

The problem of finding the principal surface now reduces to finding a set of reference
vectors Wi that minimizes the squared reconstruction error. It can be shown that the
learning rule

W′
img(X) = Wimg(X) + α[X − Wimg(X)] (3.19)

minimizes this error under certain conditions (Ritter et al. 1992). This rule is identical
to the abstract self-organizing map adaptation rule (Equation 3.15) when there is no
neighborhood cooperation (i.e. h equals the delta function). In this case, the map
places each weight vector at the center of gravity of the data points for which it is a
winner. When the neighborhood function is introduced, other data points contribute
also, and the center of gravity is calculated based on this larger volume.

The above analysis explains why the self-organizing map can develop efficient
approximations of nonlinear high-dimensional input distributions. If there is low-
dimensional nonlinear structure in the input, the map can follow the nonlinearities of
the input distribution, and represent local as well as global structure. Perceptual cat-
egories as well as higher-level concepts are generally believed to organize into such
low-dimensional manifolds (Kohonen, Kaski, Lagus, Salojärvi, Honkela, Paatero,
and Saarela 2000; Li, Farkas, and MacWhinney 2004; Ritter et al. 1992; Roweis and
Saul 2000; Seung and Lee 2000; Tenenbaum, de Silva, and Langford 2000; Tiňo and
Nabney 2002). The self-organizing maps in the cortex therefore provide an efficient
mechanism for representing structured sensory information in two dimensions.
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3.5.2 Folding

Even though there is low-dimensional structure in the input, it may not be sufficient
to represent it by a two-dimensional principal surface, i.e. the self-organizing map.
For example, it may not be accurate enough to reduce the entire distribution in Fig-
ure 3.9a to the principal curve; it might also be necessary to represent how far the
points are from the curve. The only way the one-dimensional curve can represent the
entire area is to make tight turns across the width of the area, as well as gradually
progressing along its length (Figure 3.9b). In other words, the map has to fold in the
higher dimensions, in order to represent them as well as possible.

Similar folding of the map occurs when a high-dimensional distribution of points
is mapped using a two-dimensional network. The results are interesting from a bi-
ological standpoint, because they help explain why patchy patterns of feature pref-
erences, such as those for ocular dominance and orientation, form in the primary
visual cortex (Kohonen 1989; Obermayer et al. 1992; Ritter et al. 1991). Let us
use ocular dominance as an example. At each (x, y) location of the visual field,
there are different ocular dominance values that must be represented. Let us assume
that the variance in ocular dominance is smaller than the variance in the length and
width dimensions. The goal is therefore to determine a dimension-reducing mapping
of inputs in a flat box, where the two longer dimensions represent retinotopy, and
the height dimension represents ocular dominance, onto a two-dimensional network
(Figure 3.10; simulation parameters in Appendix E).

As the network self-organizes, it first stretches along the two longest dimensions
of the box, and then folds in the smaller third dimension (Figure 3.10a). The folding
takes place because the network tries to approximate the third dimension with the
two-dimensional surface, analogous to Figure 3.9b. The weight values in the third
dimension can be visualized for every neuron by coloring it with a corresponding
gray-scale value, as in Figure 3.10b. The resulting pattern is very similar to the pat-
tern of ocular dominance stripes seen in the primary visual cortex.

It is also important to understand how the mapping changes with increasing vari-
ation in the third dimension and with increasing number of dimensions. Let us first
examine how the afferent patterns organize when the network is trained with input
distributions of different heights. If the height is zero, all the inputs lie in a plane,
and a smooth self-organized two-dimensional map will develop as in Figure 3.6. As
the height is increased, fluctuations in the third dimension gradually appear, but the
pattern is not stable, and keeps changing as training progresses. Beyond a thresh-
old height zf , however, a spontaneous phase transition occurs, and a stable folding
pattern develops.

When the networks are trained with inputs with more than three dimensions
of variation, the same principle can be observed in a recursive fashion. In a two-
dimensional network, the map stretches along the two dimensions of maximum vari-
ance first, and folds along the dimensions of the next highest variance. A recursive
folding structure then develops: The primary folds represent the dimensions of third
highest variance, subfolds within the primary folds represent the dimensions with
the next highest variance, and so on. Thus, the map develops a representation of the
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(a) Representing the third dimension by folding (b) Visualization of ocular
dominance

Fig. 3.10. Three-dimensional model of ocular dominance. The model consists of a two-
dimensional map of a three-dimensional space. The first two dimensions can be interpreted
as retinotopy and the third dimension as ocular dominance (Ritter et al. 1991,1992). In (a),
the input space is indicated by the box outline, and the weight vectors of the map units are
plotted in this space as a grid (as in Figure 3.6). The map extends along the longer retinotopic
dimensions x and y, and folds in the smaller height dimension to approximate the space. (b)
The weight value for the height dimension is visualized for each neuron: Gray-scale values
from black to white represent continuously changing values from low to high. The resulting
pattern resembles the ocular dominance stripes found in the visual cortex, suggesting that they
too could be the result of a self-organized mapping of a three-dimensional parameter space.

statistically most relevant features of the input space. All the dimensions whose vari-
ance is greater than zf are represented in the map in this recursive fashion. In this
way, it is possible to capture several feature dimensions, such as retinotopy, ocular
dominance, and orientation, in a single two-dimensional map. The computational
model therefore offers a clear explanation for the observed overlapping map struc-
ture of the visual cortex: It is a self-organizing map representing high-dimensional
input in two dimensions.

3.6 Conclusion

In understanding how the maps in the visual cortex develop and function, the cor-
tical column has emerged as the appropriate computational unit. In most cases, the
weighted-sum firing-rate model is sufficient to capture its behavior; when temporal
coding is important (as in segmentation and binding), a leaky integrator model of
the spiking neuron can be used, synchronizing neural activity to represent coherent
bindings. These computational units adapt based on Hebbian learning, normalizing
the total weight by redistributing synaptic resources.

When lateral interactions are established between such units, the self-organizing
map model of the cortex is obtained. This model is a simple yet powerful learn-
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ing architecture for representing the statistical structure of data distributions. If the
dimensionality of the mapping surface (i.e. the network) is less than the dimension-
ality of the data distribution, the surface first extends nonlinearly along the most
dominant dimensions of the data distribution, and then folds in the other dimensions.
The folding process gives rise to local structures, such as alternating stripes resem-
bling ocular dominance and orientation patches in the primary visual cortex. In the
following chapters, such structures are shown to be not just superficially similar, but
in fact good approximations of those seen in the primary visual cortex.

To make computational and mathematical analysis tractable, the self-organizing
map models typically abstract away the lateral interactions in the cortex. These in-
teractions are reintroduced in LISSOM, showing that they play a powerful and so far
largely unrecognized role in cortical processing. Lateral connections between neu-
rons can learn synergetically with the afferent connections and represent higher order
statistical information in the network. This generalization results in a more accurate
model of the visual cortex, accounting for development, plasticity, and many func-
tional phenomena.



Part II

INPUT-DRIVEN SELF-ORGANIZATION
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LISSOM: A Computational Map Model of V1

The neurobiological observations and computational principles from Part I will be
brought together in this chapter to construct a laterally connected map model of the
primary visual cortex. The model is based on self-organizing maps, but its connectiv-
ity, activation, and learning mechanisms are designed to capture the essential biolog-
ical processes in more detail. As will be seen in later chapters of Part II, these mech-
anisms lead to a detailed computational account for how the visual cortex develops,
adapts, and functions. In Part III, this model is further extended to include subcorti-
cal areas and higher visual areas, and in Part IV, a temporal coding mechanism and
connectivity necessary for perceptual grouping. In this chapter, the motivation for
the model is first reviewed, followed by a detailed description of its organization,
activation, and learning processes. A simple example of self-organization is given,
forming a retinotopic map of visual input.

4.1 Motivation: Cortical Maps

As was discussed in Sections 3.4 and 3.5, self-organizing maps are a powerful ab-
straction of learning and knowledge organization in the cortex. However, much of
the behavior of the visual cortex depends on structures and processes (reviewed in
Sections 2.1 and 2.2) that have been abstracted away in many self-organizing map
models. In contrast, the LISSOM model (laterally interconnected synergetically self-
organizing map; Miikkulainen 1991; Miikkulainen, Bednar, Choe, and Sirosh 1997;
Sirosh 1995) is designed specifically to capture those processes. More specifically,
LISSOM is based on five principles:

1. The central layout of the LISSOM model is a two-dimensional array of compu-
tational units, corresponding to vertical columns in the cortex. Such columns act
as functional units in the cortex, responding to similar inputs, and therefore form
an appropriate level of granularity for a functional model.

2. Each unit receives input from a local anatomical receptive field in the retina,
mediated by the ON-center and OFF-center channels of the LGN. Such connec-
tivity corresponds to the neural anatomy; it also allows modeling a large area of



68 4 LISSOM: A Computational Map Model of V1

the visual cortex and processing large realistic visual inputs, which in turn al-
lows studying higher visual function such as visual illusions, grouping, and face
detection.

3. The cortical units are connected with excitatory and inhibitory lateral connec-
tions that adapt as an integral part of the self-organizing process. Before LIS-
SOM, the function of these lateral interactions had not been analyzed in detailed
computational models. They can play a central role in establishing an efficient
visual representation, and in mediating functions such as illusions and perceptual
grouping.

4. The units respond by computing a weighted sum of their input, limited by a
logistic (sigmoid) nonlinearity. This is a standard model of computation in the
neuronal units that matches their biological characteristics well.

5. The learning is based on Hebbian adaptation with divisive normalization. Heb-
bian learning is well supported by neurobiological data, and recent biological ex-
periments have also suggested how normalization could occur in animals. These
mechanisms are found to be computationally both necessary and powerful in
explaining functional phenomena, such as the indirect tilt aftereffect.

In other words, LISSOM takes the central idea of self-organizing maps (1), and
implements it at a level of known visual cortex structures (2 and 3) and processes
(4 and 5). Although each of these principles has been tested in other models (Sec-
tion 3.4.1), their combination is novel and allows LISSOM to account for a wide
range of phenomena in the development, plasticity, and function of the primary vi-
sual cortex. The details of the model are described next, with examples to illustrate
the processing that occurs.

4.2 The LISSOM Architecture

The LISSOM model of V1 is based on a simulated network of cortical neurons with
afferent connections from the external world and recurrent lateral connections be-
tween neurons. These connections adapt based on correlated activity. The result is
a self-organized structure where afferent connection weights form a map of the in-
put space, and lateral connections store long-term correlations in neuronal activity.
In this section, the layout and connectivity of the LISSOM model are described in
detail.

4.2.1 Overview

LISSOM is intended to model accurately the biological structures and processes that
are most important for the observed developmental and functional phenomena. Other
biological features are abstracted in the model, in order to reduce confounding factors
and to make an efficient, systematic analysis possible.

The V1 network in LISSOM is a sheet of N × N interconnected computational
units, or “neurons” (Figure 4.1). Because the focus is on the two-dimensional orga-
nization of the cortex, each neuron in V1 corresponds to a vertical column of cells
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ON OFF

Retina

V1

LGN

Fig. 4.1. Architecture of the basic LISSOM model. LISSOM consists of a hierarchy of
two-dimensional sheets of neural units, including an array of retinal receptors, ON and OFF
channels in the LGN, and a cortical network representing V1. The LGN and V1 activation is
shown in gray-scale coding from white to black (low to high). The activity on the retina (a
single oriented Gaussian) is presented like natural images: Light areas are strongly activated,
dark areas are weakly activated, and medium gray represents background activation. This input
gray scale will be used for all models that include the LGN and which can therefore process
natural images. Sample connections are shown for one unit in each LGN sheet and one in V1.
The LGN afferents form a local anatomical receptive field on the retina, and cause ON-center
LGN units to respond to light areas surrounded by dark, and OFF-center units to dark areas
surrounded by light. Neighboring LGN neurons have different but overlapping RFs. Similarly,
V1 neurons have afferent receptive fields on the LGN sheets. V1 neurons also receive lateral
excitatory and lateral inhibitory connections from nearby V1 neurons; these connections are
shown as dotted and dashed circles around the V1 neuron, respectively. V1 activity is patchy
because only those neurons respond whose feature preferences match the orientation, eye of
origin, and direction of movement of the pattern currently in their receptive fields.

through the six layers of the biological cortex. This columnar organization helps
make the problem of simulating such a large number of neurons tractable, and is
viable because the cells in a column generally fire in response to the same inputs
(Section 2.1.2). The activity of each neuron is represented by a continuous number
within [0..1]; individual spiking is not modeled in basic LISSOM. Therefore, it is im-
portant to keep in mind that LISSOM neurons are not strictly identifiable with single
cells in the biological cortex; instead, LISSOM models biological mechanisms at an
aggregate level.

Each cortical neuron receives external input from two types of neurons in the
LGN: ON-center and OFF-center. The LGN neurons in turn receive input from a
small area of the retina, represented as an R × R array of photoreceptor cells. The
afferent input connections from the retina to LGN and LGN to V1 are all excitatory.
In addition to the afferent connections, each cortical neuron has reciprocal excitatory
and inhibitory lateral connections with other neurons. Lateral excitatory connections
have a short range, connecting only close neighbors in the map. Lateral inhibitory
connections run for long distances, but may be patchy, connecting only selected neu-
rons.
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The ON and OFF neurons in the LGN represent the entire pathway from pho-
toreceptor output to the V1 input, including the ON/OFF processing in the retinal
ganglion cells and the LGN. Although the ON and OFF neurons are not always phys-
ically separated in the biological pathways, for conceptual clarity they are divided
into separate channels in LISSOM. Each of these channels is further organized into
an L × L array corresponding to the retinotopic organization of the LGN. For sim-
plicity and computational efficiency, only single ON and OFF channels are used in
LISSOM simulations in this book, but multiple channels could be included to repre-
sent different spatial frequencies. Also, the photoreceptors are uniformly distributed
over the retina; since the inputs are relatively small in the LISSOM experiments, the
fovea/periphery distinction is not crucial for the basic model.

Each neuron develops an initial response as a weighted sum (scalar product)
of the activation in its afferent input connections. The lateral interactions between
cortical neurons then focus the initial activation pattern into a localized response on
the map. After the pattern has stabilized, the connection weights of cortical neurons
are modified. As the self-organization progresses, these neurons grow more nonlinear
and weak connections die off. The result is a self-organized structure in a dynamic
equilibrium with the input.

The following subsections describe the specific components of the LISSOM
model in more detail. They focus on the basic version of the model trained with un-
oriented Gaussian inputs, to highlight the basic principles as clearly as possible. In
Chapter 5 this model is extended to two retinas, more complex Gaussian inputs, and
natural images, in order to study how orientation preference, ocular dominance, and
direction selectivity develops in the visual cortex. In Chapters 6 and 7, the model is
temporarily abstracted further by bypassing the LGN, and this more efficient model
is used to study plasticity and visual illusions. In Part III, the model is extended to
include subcortical and higher level areas, in order to understand the synergy of ge-
netically and environmentally driven development. Finally, Part IV will describe an
extension that includes spiking neurons and long-range excitatory connections, to
explain how perceptual grouping occurs.

4.2.2 Connections to the LGN

Previous models have explained how the connections from the retina to the LGN
could develop from internally generated activity in the retina (Eglen 1997; Elliott and
Shadbolt 1999; Haith 1998; Keesing, Stork, and Shatz 1992; Lee, Eglen, and Wong
2002a). LISSOM instead focuses on learning at the cortical level, so all connections
to neurons in the ON and OFF channels are set to fixed strengths.

The strengths were chosen to approximate the receptive fields that have been
measured in adult LGN cells, using a standard difference-of-Gaussians model (DoG;
Cai, DeAngelis, and Freeman 1997; Rodieck 1965; Tavazoie and Reid 2000). First,
the center of each LGN receptive field is mapped to the location in the retina cor-
responding to the location of the LGN unit (appendix Figure A.1). This mapping
ensures that the LGN will have the same two-dimensional topographic organization
as the retina. Using that location as the center, the weights are then calculated from
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(a) ON neuron (b) OFF neuron

Fig. 4.2. Afferent weights of ON and OFF neurons in the LGN. The receptive fields of a
sample ON neuron and a sample OFF neuron, both located at the center of the corresponding
36 × 36 LGN sheet, are shown as gray-scale values on a 54 × 54 retina. The jagged black
line traces the anatomical boundary of the RF, that is, connections exist only from retinal
receptors located inside the boundary. Medium gray represents zero weight, dark gray stands
for inhibitory connections, and light gray represents excitatory connections. Each RF shape
is a difference of two Gaussians, the center and the surround. The Gaussians are normalized
to have the same total strength, but the center Gaussian concentrates that strength in a much
smaller region; in this example, σc = 0.5 and σs = 2. ON cells have an excitatory center and
an inhibitory surround (a), and OFF cells have an inhibitory center and an excitatory surround
(b), as in Figure 2.2a,b. These RFs perform edge detection at a spatial frequency determined
by the width of the center; they highlight areas of the input image that have edges and lines,
and do not respond to large areas of constant illumination.

the difference of two normalized Gaussians. More precisely, the weight Lxy,ab from
receptor (x, y) in the receptive field of an ON-center cell (a, b) with center (xc, yc)
is given by
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where σc determines the width of the central Gaussian and σs the width of the sur-
round Gaussian. The weights for an OFF-center cell are the negative of the ON-center
weights, i.e. they are calculated as the surround minus the center. Figure 4.2 shows
examples of such ON and OFF receptive fields.

Note that even though the OFF cells have the same weights as ON cells (differing
only by the sign), their activities are not redundant. Since the firing rates in biological
systems cannot be negative, each cell is thresholded to have only positive activations,
as described in more detail in Section 4.3.2. As a result, the ON and OFF cells will
never be active at the same cortical location. They therefore provide complementary
information, both in the model and in the visual system. Separating the ON and OFF
channels in this way makes it convenient to compare the model with experimental
results.
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(a) Afferent (ON and OFF) (b) Lateral excitatory (c) Lateral inhibitory

Fig. 4.3. Initial V1 afferent and lateral weights. The initial incoming weights of a sample
neuron at the center of V1 are plotted in gray-scale coding from white to black (low to high).
(a) The afferent RF center for each neuron was determined by first finding the location on the
LGN that corresponds to the location of the neuron in V1, then randomly scattering the center
by ±1.2 retinal units (5%) from that location. The neuron was then connected to LGN units
within a radius of 6.5 from the center with random normalized weights. These weights are
shown on the 36 × 36 LGN sheet, with the jagged black line tracing the RF boundary. The
weights from the ON and OFF LGN sheets were initially identical. Plots (b) and (c) similarly
show the lateral weights of this neuron, plotted on the 142 × 142 V1 and outlined with a
black line. The neuron itself is marked with a small white square in the middle. The excitatory
connections were initially random within a radius of 14.2, and inhibitory within 34.5 units.
Later figures will show how these connections become organized through input-driven self-
organization.

4.2.3 Connections in the Cortex

In contrast to the fixed connection weights in the LGN, all connections in cortical
regions in LISSOM are modifiable by neural activity. They are initialized according
to the gross anatomy of the visual cortex, with weight values that provide a neutral
starting point for self-organization.

Each neuron’s afferent receptive field center is located randomly within a small
radius of its optimal position, i.e. the point corresponding to the neuron’s location in
the cortical sheet. The neuron is connected to all ON and OFF neurons within radius
rA from the center (Figures 4.3a and A.1). For proper self-organization to occur, the
radius rA must be large compared with the scatter of the centers, and the RFs of
neighboring neurons must overlap significantly, as they do in the cortex (Sirosh and
Miikkulainen 1997).

Lateral excitatory connections are short range, connecting each neuron to itself
and to its neighbors within a close radius. The extent of lateral excitation should be
comparable to the activity correlations in the input. Lateral inhibitory connections
extend in a larger radius, and also include connections from the neuron itself and
from its neighbors (Figure 4.3b,c). The range of lateral inhibition may vary as long
as it is greater than the excitatory radius. This overall center–surround pattern is
crucial for self-organization, and approximates the lateral interactions that take place
at high contrasts in the cortex (Section 2.2.1). Long-range excitatory connections can
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also be included, as will be done in Part IV when simulating perceptual grouping and
completion phenomena.

Both the afferent and the lateral connection weights are initially unselective. Like
prior work, the simulations in this book are generally based on random (but normal-
ized) initial weight values. To speed up the simulation, values corresponding to a
Gaussian profile are sometimes used as well. Further, to demonstrate that any differ-
ences between the ON and OFF channels (as well as the two eyes and the different
lags in Chapter 5) are learned from the data, all channels of each neuron are initial-
ized with the same set of random weights. As will be shown in Section 8.4, the spe-
cific initial values of these weights have little effect on subsequent self-organization.

4.3 Response Generation

Before each input presentation, the activities of all units in the LISSOM network are
initialized to zero. The system then receives input through activation of the retinal
units. The activity propagates through the ON and OFF channels of the LGN to the
cortical network, where the neurons settle the initial activation through the lateral
connections, as will be described in detail below.

4.3.1 Retinal Activation

An input pattern is presented to the LISSOM model by activating the photoreceptor
units in the retina according to the gray-scale values in the pattern. Figure 4.4a shows
a basic input pattern consisting of multiple unoriented Gaussians. To generate such
input patterns, the activity χxy for photoreceptor cell (x, y) is calculated according
to

χxy = max
k

exp
(
− (x − xc,k)2 + (y − yc,k)2

σ2
u

)
, (4.2)

where (xc,k, yc,k) specifies the center of Gaussian k and σu its width. At each itera-
tion, xc,k and yc,k are chosen randomly within the retinal area; σu is usually constant.

As will be described in later chapters, more complex artificial patterns, with vary-
ing widths and elongations, can be generated in the same way, or input can be formed
by rendering natural images directly on the photoreceptor units. However, unori-
ented, constant-width Gaussians will be used in this chapter to illustrate the basic
properties of the model.

4.3.2 LGN Activation

The cells in the ON and OFF channels of the LGN compute their responses as a
squashed weighted sum of activity in their receptive fields (Figure 4.4b). More pre-
cisely, the response ξab of ON or OFF-center cell (a, b) is calculated as

ξab = σ

(
γL

∑

xy

χxyLxy,ab

)
, (4.3)
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(a) Retinal
activation

(b) LGN
response

(c) Iteration 0:
Initial V1
response

(d) Iteration 0:
Settled V1
response

(e) 10,000:
Initial V1
response

(f ) 10,000:
Settled V1
response

Fig. 4.4. Example input and response. At each self-organization iteration in LISSOM, the
photoreceptors in the retina are activated according to the gray-scale values of the input image
(as described in Figure 4.1). In this example, two unoriented Gaussians with width σu = 3.0
were drawn on random spatially separated locations on a 54 × 54 array of receptors (a). The
36 × 36 ON and OFF cell responses are plotted in the central square of (b) by subtracting
the OFF cell responses from the ON: Dark areas represent higher activity in the OFF channel,
light areas higher activity in the ON channel, and medium gray represents equal activation in
both channels. The LGN responds to edges and lines in the input, with high ON cell activa-
tions where the input is brighter than the surround, and high OFF cell activations where the
input is darker than the surround. Before self-organization (i.e. iteration 0), the 142 × 142
V1 map initially responds broadly and unspecifically to the input patterns (c); V1 activations
are represented in the central square in gray scale from white to black (low to high). The lat-
eral connections focus the response into discrete activity “bubbles” in (d), and connections
are then modified. After 10,000 input presentations and learning steps, the initial and settled
V1 responses are more focused, forming a sparse representation of the input (e and f ). This
figure also illustrates how the retina is mapped to the LGN and the LGN mapped to V1 in
LISSOM. The LGN and V1 networks are drawn to the same scale as the retina (as indicated
by the outside squares), so that activity at a given location in the LGN and V1 corresponds to
a stimulus at the corresponding location in the retina. The retina is larger than the LGN and
the LGN larger than V1 so that all LGN and V1 neurons have complete receptive fields (i.e.
they are not cut off by the network boundary; Figure A.1). In subsequent activity figures, such
padding is omitted and only the retinal and LGN area that matches the V1 network is shown.
An animated demo of the map response can be seen at http://computationalmaps.org.

where χxy is the activation of cell (x, y) in the receptive field of (a, b), Lxy,ab is the
afferent weight from (x, y) to (a, b), and γL is a constant scaling factor. The squash-
ing function σ(·) (Figure 4.5) is a piecewise linear approximation of the sigmoid
activation function mentioned in Section 3.1.4:

σ(s) =

⎧
⎨

⎩

0 s ≤ θl,
(s − θl)/(θu − θl) θl < s < θu,
1 s ≥ θu.

(4.4)

As in other models, this approximation is used because it implements the essen-
tial thresholding and saturation behavior, and can be computed more quickly than a
smooth logistic function.

Changing γL in Equation 4.3 by a factor m is equivalent to dividing θl and θu

by m. Even so, γL is treated as a separate parameter to make it simpler to use the
same values of θl and θu for different networks. The specific value of γL is set man-
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Fig. 4.5. Neuron activation function σ(s). The neuron requires an input as large as the
threshold θl before responding, and saturates at the ceiling θu. The output activation values are
limited to [0..1]. This activation function is an efficient approximation of the logistic (sigmoid)
function.

ually so that the LGN outputs approach 1.0 in the highest-contrast regions of typical
input patterns. This allows each subsequent level to use similar parameter values in
general, other than γL.

Because of its DoG-shaped receptive field, an LGN neuron will respond when-
ever the input pattern is a better match to the central portion of the RF than to the
surrounding portion. The positive and negative portions of the RF thus have a push–
pull effect (Hirsch, Alonso, Reid, and Martinez 1998a; Hubel and Wiesel 1962). That
is, even if an input pattern activates the ON portion of the LGN RF, the neuron will
not fire unless the OFF portion is not activated. This balance ensures that the neurons
will remain selective for edges over a wide range of brightness levels. Section 6.2.3
will show that this push–pull effect is crucial when natural images are used as input
to the model. Overall, the LGN neurons respond to image contrast, subject to the
minimum and maximum activity values enforced by the activation function.

4.3.3 Cortical Activation

The cortical activation mechanism is similar to that of the LGN, but extended to
support self-organization and to include lateral interactions. The total activation is
computed by combining the afferent and lateral contributions. First, the afferent stim-
ulation sij of V1 neuron (i, j) is calculated as a weighted sum of activations in its
receptive fields on the LGN:

sij = γA

(
∑

ab∈ON

ξabAab,ij +
∑

ab∈OFF

ξabAab,ij

)
, (4.5)

where ξab is the activation of neuron (a, b) in the receptive field of neuron (i, j)
in the ON or OFF channels, Aab,ij is the corresponding afferent weight, and γA

is a constant scaling factor. The afferent stimulation is squashed using the sigmoid
activation function, forming the neuron’s initial response as

ηij(0) = σsij , (4.6)
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where σ(·) is a piecewise linear sigmoid as in Equation 4.4.
After the initial response, lateral interaction sharpens and strengthens the cortical

activity over a very short time scale. At each of these subsequent discrete time steps,
the neuron combines the afferent stimulation s with lateral excitation and inhibition:

ηij(t) = σ

(
sij + γE

∑

kl

ηkl(t − 1)Ekl,ij − γI

∑

kl

ηkl(t − 1)Ikl,ij

)
, (4.7)

where ηkl(t − 1) is the activity of another cortical neuron (k, l) during the previ-
ous time step, Ekl,ij is the excitatory lateral connection weight on the connection
from that neuron to neuron (i, j), and Ikl,ij is the inhibitory connection weight. All
connection weights have positive values. The scaling factors γE and γI represent the
relative strengths of excitatory and inhibitory lateral interactions, which determine
how easily the neuron reaches full activation.

The cortical activity pattern starts out diffuse and spread over a substantial part
of the map (Figure 4.4c,e). Within a few iterations of Equation 4.7, it converges
into a small number of stable focused patches of activity, or activity bubbles (Fig-
ure 4.4d,f ). Such settling results in a sparse final activation, which allows represent-
ing visual information efficiently (Section 14.2; Barlow 1972; Field 1994). It also
ensures that nearby neurons have similar patterns of activity and therefore encode
similar information, as seen in the cortex.

While the cortical response is settling, the afferent input remains constant. How-
ever, the lateral interaction is not strong enough to maintain the activity bubble when
the input changes. A change in the input will cause the net input of the neurons (i.e.
the sums of the afferent and lateral activations) to fall below the threshold θl. A new
response will then form with little interference from the previous response. The LIS-
SOM network could therefore be trained even with continuously changing inputs,
without explicitly resetting the network to zero activity in between.

4.4 Learning

Self-organization of the connection weights takes place in successive input iterations,
usually 5000–20,000 in total. Each iteration consists of presenting an input image,
computing the corresponding settled activation patterns in each neural sheet, and
modifying the weights. Weak lateral connections are periodically removed, modeling
connection death in biological systems. In order to achieve smooth maps, the lateral
excitation radius, sigmoid, and learning rate parameters can be gradually adjusted
over the course of learning.

4.4.1 Weight Adaptation

After the activity has settled, the connection weights of each cortical neuron are
modified. Both the afferent and lateral weights adapt according to the same biolog-
ically motivated mechanism: the Hebb rule (Hebb 1949) with divisive postsynaptic
normalization (Section 3.3):
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w′
pq,ij =

wpq,ij + αXpqηij∑
uv(wuv,ij + αXuvηij)

, (4.8)

where wpq,ij is the current afferent or lateral connection weight (either A, E or I)
from (p, q) to (i, j), w′

pq,ij is the new weight to be used until the end of the next
settling process, α is the learning rate for each type of connection (αA for afferent
weights, αE for excitatory, and αI for inhibitory), Xpq is the presynaptic activity
after settling (ξ for afferent, η for lateral), and ηij stands for the activity of neuron
(i, j) after settling, Afferent inputs (i.e. both ON and OFF channels together), lateral
excitatory inputs, and lateral inhibitory inputs are normalized separately.

In line with the Hebbian principle, when the presynaptic and postsynaptic neu-
rons are frequently simultaneously active, their connection becomes stronger. As a
result, the neurons learn correlations in the input patterns. Normalization prevents
the weight values from increasing without bounds; this process corresponds to redis-
tributing the weights so that the sum of each weight type for each neuron remains
constant. As was discussed in Section 3.3, such normalization can be seen as an
abstraction of neuronal regulatory processes.

4.4.2 Connection Death

Modeling connection death in the cortex (Section 2.2.2), lateral connections in the
LISSOM model survive only if they represent significant correlations among neu-
ronal activity. Once the map begins to organize, most of the long-range lateral con-
nections link neurons that are no longer simultaneously active. Their weights become
small, and they can be pruned without disrupting self-organization.

The parameter td determines the onset of connection death. At td, lateral con-
nections with strengths below a threshold wd are eliminated. From td on, more weak
connections are eliminated at intervals ∆td during the self-organizing process. Even-
tually, the process reaches an equilibrium where the mapping is stable and all lateral
weights stay above wd. The precise rate of connection death is not crucial to self-
organization, and in practice it is often sufficient to prune only once, at td.

Most long-range connections are eliminated this way, resulting in patchy lateral
connectivity similar to that observed in the visual cortex. Since the total synaptic
weight is kept constant, inhibition concentrates on the most highly correlated neu-
rons, resulting in effective suppression of redundant activation (Section 14.2). The
short-range excitatory connections link neurons that are often part of the same bub-
ble. They have relatively large weights and are rarely pruned.

4.4.3 Parameter Adaptation

The above processes of response generation, weight adaptation, and connection death
are sufficient to form ordered afferent and lateral input connections like those in the
cortex. However, the process can be further enhanced with gradual adaptation of
lateral excitation, sigmoid, and learning parameters, resulting in more refined final
maps.
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As the lateral connections adapt, the activity bubbles in the cortex will become
more focused, resulting in fine-tuning the map. As in other self-organizing models
(such as SOM), this process can be accelerated by gradually decreasing the excitatory
radius until it covers only the nearest neighbors (Erwin et al. 1992a,b; Kohonen 1993,
2001; Sirosh and Miikkulainen 1997). Such a decrease helps the network develop
more detailed organization faster.

Gradually increasing the sigmoid parameters θl and θu produces a similar effect.
The cortical neurons become harder to activate, further refining the response. Also,
the learning rates αA, αE and αI can be gradually reduced, ensuring that a smooth
global organization and well-tuned receptive fields develop.

Such parameter adaptation models the biological processes of maturation that
take place independently from input-driven self-organization, leading to critical pe-
riods and loss of plasticity in later life. These biological processes are reviewed in
Section 16.1.6, and their effect on self-organization is demonstrated in Sections 9.4
and 13.4.

4.5 Self-Organizing Process

In order to validate the LISSOM model, an example self-organizing process forming
an ordered map of two-dimensional input is presented in this section and compared
with the corresponding simulation with the SOM model of Section 3.4.3.

4.5.1 Method

The model consisted of a 54×54 retina, 36×36 ON and OFF channels, and a 142×
142 V1 network. This network, like other LISSOM networks discussed in this book
(except the scaled-up versions in Chapters 10 and 15) corresponds approximately to
a 5 mm × 5 mm area of macaque V1. The V1 size was first chosen to match the
estimated number of columns in such an area, and the other parameters were then set
to simulate it realistically (Appendices A.2–A.4).

The LGN neurons were set as in Figure 4.2, and the cortical network was initial-
ized with random weight values, as shown in Figure 4.3. The network was organized
in 10,000 presentations of two unoriented Gaussian patterns. Although more than
two Gaussians could be used in principle, they are too large to be distributed uni-
formly on the small retina without overlap (Appendix A.4). An example of these
patterns is shown in Figure 4.4, together with the resulting responses in the initial
and self-organized network.

4.5.2 Afferent Connections

Figure 4.6 illustrates how the afferent weights of the cortical neurons self-organize.
The figure shows an example set of final weight patterns on the ON and OFF
sheets, and their combined effect. The initial rough patterns shown in Figure 4.3a



4.5 Self-Organizing Process 79

(a) ON (b) OFF (c) Combined (ON−OFF)

Fig. 4.6. Self-organized V1 afferent weights. The final afferent weights of the sample neuron
at the center of the V1 network are shown on the (a) ON and (b) OFF sheets as in Figure 4.3a.
(c) Their combined effect is shown by subtracting the OFF weights from the ON. From initially
random weights, a smooth profile emerged on both LGN sheets, reflecting the Gaussian input
patterns. Their combined effect is center–surround, resulting in a focused, edge-enhanced re-
sponse in V1. Because the anatomical RF (shown with the black outline) of this neuron was
positioned slightly left and below its topographically ordered position, the Gaussian weight
patterns formed slightly above and to the right of the RF center. As shown in Figures 4.7a
and 4.8b, these locations represent the retinotopic order well.

evolved into smooth Gaussian profiles, corresponding to the Gaussians used as in-
put. The combined effect of the afferents is center–surround, forming a focused,
edge-enhanced response in V1.

With unoriented Gaussian inputs, the only feature in the input that can be learned
by the map is retinotopy. The weight profiles of different neurons indeed peaked over
different parts of the LGN sheet in topographically correct locations (Figure 4.7a).
As in Section 3.4.3, this organization can be visualized by plotting the center of
gravity of each RF in the retinal space and connecting the centers of neighboring
neurons by a line. The resulting Figure 4.8 shows that the centers organized from
initially scattered positions into a smooth retinotopic map.

4.5.3 Lateral Connections

The lateral connections adapt together with the afferents. As the afferent receptive
fields organize into a uniform map, the activity correlations within the network de-
crease with distance approximately like a Gaussian, with strong correlations to near
neighbors and weaker correlations to more distant neurons. The lateral excitatory
and inhibitory connections therefore acquire a Gaussian shape, and the combined
lateral excitation and inhibition becomes an approximate difference of Gaussians
(Figure 4.9). In the central area of the map, these patterns are unoriented, and be-
come more elongated near the edges (Figure 4.7b).

The DoG organization allows the map to sharpen the initial response and form
more focused activity patterns. As was discussed in Section 4.4.3, this process will
result in gradual fine-tuning of the afferent connections and the retinotopic map.
This process is especially important near the edges of the map, allowing the map
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(a) Afferent (ON−OFF) (b) Lateral inhibitory

Fig. 4.7. Self-organized afferent and lateral weights across V1. The self-organized com-
bined afferent weights (as in Figure 4.6c) and the lateral inhibitory weights (as in Figure 4.9b)
are shown for every 12th neuron horizontally and vertically across the V1 network array,
starting at neuron (5,5) in the top left corner. (a) The Gaussian weight pattern systematically
moves outward away from the center of the anatomical RF the closer the neuron is to the edge
of the network, allowing the map to expand to represent the input space better, as shown in
Figure 4.8. (b) Similarly, the lateral inhibitory weights of units near the edge of the network
are elongated along the edge, allowing sharp responses to form at the edge.

to expand to fill the space. The next chapter will show that when the input consists
of more complex features, such as orientation or ocular dominance, the connection
patterns will further elongate and become patchy, representing activity correlations
in the input. Such connections turn out to be crucial in developing an efficient coding
of visual input (Section 14.2).

4.5.4 Differences Between LISSOM and SOM

It is important to contrast the self-organizing process above with that of the SOM
model of Section 3.4.3. In SOM, each unit receives the same input, consisting of
the entire visual field. The response of the network is assumed to consist of a single
activity bubble. A global supervisor determines its location by finding the maximally
responding unit, and its shape according to a predetermined neighborhood function.
This process makes learning more regular and results in accurate maps, which is
often important in practical applications where biological accuracy is not the goal.

In contrast, the units in a LISSOM map receive inputs from local areas in the
retina, represented in terms of ON and OFF channels, and the response is based on
purely local exchange of activation without any global supervision. Such a process
more accurately models the structure of the visual cortex. Because of this structure,
multiple inputs can be presented to the model simultaneously, and the map organizes
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(a) Initial disordered map (b) Final retinotopic map

Fig. 4.8. Self-organization of the retinotopic map. The center of gravity of the afferent
weights of every third neuron in the 142 × 142 V1 is projected onto the retinal space (rep-
resented by the square outline). As in Figure 3.6, each center is connected to those of the
four neighboring neurons by a line, representing the topographical organization of the map.
Initially, the anatomical RF centers were slightly scattered topographically and the weight
values were random (a). The map is contracted because the receptive fields were initially
mapped to the central portion of the retina so that each neuron has full RFs (Figure A.1).
As self-organization progresses, the map unfolds to form a regular retinotopic map (b). The
map expands slightly during this process, because neurons near the edge become tuned to
the peripheral regions of the input space (Figure 4.7a). The map does not fill the input space
entirely, because the center of gravity will always be located slightly inside the space. These
results show that LISSOM can learn retinotopy like SOM does, but using mechanisms more
close to those in biology.

at multiple locations at the same time. This capability is crucial when modeling nat-
ural inputs and large areas of the visual field (Chapter 10).

Because the receptive fields in LISSOM are local, the map is already partially
topographically ordered in the beginning. If the receptive fields instead covered the
whole retina, LISSOM would self-organize an initially random map very much like
the SOM model in Section 3.4.3; it would also be able to adapt to multiple inputs at
once, unlike the SOM (Sirosh and Miikkulainen 1997). Therefore, the initial order is
not computationally necessary in LISSOM: It is a side effect of a biologically more
realistic architecture.

The LISSOM topographic map may be less regular than that formed with SOM
(compare Figures 4.8 and 3.6). However, the LISSOM map stores more information
about the input: In addition to the topography stored in the afferent connections, the
lateral connections represent feature correlations. Such knowledge allows building
an efficient representation of the input, which makes visual processing more effective
(Chapter 14).
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(a) Lateral excitatory (b) Lateral inhibitory (c) Combined (exc.−inh.)

Fig. 4.9. Self-organized V1 lateral weights. The lateral excitatory (a) and inhibitory (b)
weights for the sample neuron at the center of V1 are plotted on V1 as in Figure 4.3b,c;
the small white square in (b) marks the neuron itself and the jagged black outline traces the
original connectivity before self-organization and pruning. The combined profile (c) shows in-
hibitory weights subtracted from the excitatory, and illustrates the total effect of the lateral con-
nections: Dark indicates a net inhibitory effect, white a net excitatory effect, and medium gray
no net effect. During self-organization, smooth patterns of excitatory and inhibitory weights
emerged, resulting in a DoG lateral interaction profile. Near the edge of the network this pro-
file is elongated along the edge, as shown in Figure 4.7b. Such profiles sharpen the response
of the network and allow an accurate retinotopic organization to develop.

4.6 Conclusion

The LISSOM model is a computational implementation of the basic principles of
information processing in the visual system. It is designed to approximate biological
mechanisms at the columnar level, focusing on properties most important for under-
standing the structure, development, and function of the visual cortex. The model
demonstrates how input-driven Hebbian adaptation of afferent and lateral connec-
tions can account for these phenomena.

In the remaining chapters of Part II, the network begins self-organization in a
naı̈ve state with uniform and unselective connection weights, and is trained with a
range of abstract and natural inputs. This approach allows demonstrating in detail
how the self-organizing process extracts and encodes visual information. Part III
will focus on how the visual system can actually be constructed from realistic inter-
nal and external inputs by combining genetically and environmentally driven self-
organization. In Part IV, LISSOM will be extended to model the low-level time-
dependent behavior of neurons so that perceptual grouping can be studied. Chap-
ter 15 in Part V will further demonstrate how LISSOM can be scaled to model larger
areas, including the entire V1 at the columnar level.

Beyond these specific goals, LISSOM advances understanding of general corti-
cal mechanisms in two important ways. First, because it is a computational model, its
function can be described in precise mathematical terms. Such an analysis is done in
Chapter 14, suggesting that the self-organized structures serve an important function:
They form an efficient representation of the visual information. Second, when build-
ing a computational model, assumptions must be made about biological processes
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that are not well understood. Such assumptions lead to predictions that can be tested
in biological experiments. The LISSOM assumptions will be reviewed in detail in
Chapter 16, evaluating their plausibility and identifying the resulting predictions.



5

Development of Maps and Connections

In this chapter, input-driven self-organization in the LISSOM model will be studied
systematically, showing how features of visual input can become represented in the
cortex. The focus will be on orientation, ocular dominance, and direction selectivity,
where enough constraints exist from biology to constrain the models. The proper-
ties of the input patterns are first varied one dimension at a time, demonstrating that
LISSOM develops maps much like those found in the cortex. In a scale-up simula-
tion, all of these dimensions are then varied simultaneously, resulting in a map with
joint representations for multiple features. Later chapters in Part II will demonstrate
how the same self-organizing principles can operate in the adult, resulting in neural
plasticity and visual aftereffects.

5.1 Biological Background

Computational models can be highly useful for gaining insight into biological mech-
anisms. Before they can be trusted, such models must be validated against biological
data, to make sure their structures and processes are realistic. For maps and their
connections, the biological data can be categorized in several different ways: (1)
qualitative descriptions based on visual plots, vs. quantitative descriptions based on
Fourier transforms, gradient calculations, and histograms (Erwin et al. 1995; Swin-
dale 1996); (2) data on normal animals, vs. animals raised in abnormal visual envi-
ronments and in sensory deprivation; and (3) data on single map features, vs. data
on multiple features and their interactions. Map organization, receptive fields, and
lateral connections were described qualitatively in Sections 2.1 and 2.2, focusing
primarily on normal animals and single map features. This section will complement
that review by describing quantitative results, studies on abnormal animals, and re-
sults on feature interactions.
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(a) Fourier spectrum (b) Gradient

Fig. 5.1. Fourier spectrum and gradient of the macaque orientation map. Plot (a) shows
the two-dimensional Fourier spectrum of the map in Figure 2.4, calculated using methods
described by Erwin et al. (1995) on orientation map data from Blasdel (1992b). In this and
subsequent Fourier spectrum figures, the center represents the DC component and the mid-
point of each edge 1/2 of the highest possible spatial frequency of the image horizontally
and vertically (i.e. the Nyquist frequency; Cover and Thomas 1991); the amplitude is repre-
sented in gray scale from white to black (low to high). As typically found in animal maps, the
spectrum is ring shaped, indicating that the orientations repeat in all directions with a spatial
frequency that corresponds to the radius of the ring. (b) The orientation gradient of the same
map is plotted in gray scale from white to black (low to high; calculated from Blasdel 1992b
as described in Appendix G.6). The high-gradient areas (dark ridges) correspond to fractures;
the pinwheel centers are usually located at the ends of fractures. The gradient map makes the
global arrangement of these features easy to characterize.

5.1.1 Quantitative Descriptions of Maps and Connections

Neurons in the visual cortex respond selectively to a number of input features such as
location, orientation, eye of origin, and direction of movement, and preferences for
these features vary systematically across the cortex. This organization can be visual-
ized in maps, which can then be described qualitatively, as was done in Section 2.1.2.
These same visualizations can also be analyzed numerically, measuring distributions
of features and how they change across the map.

For example, the two-dimensional Fourier transform of an orientation map re-
veals how regular or periodic the map is, e.g. how often patches for each orientation
are repeated across the surface. Biological maps have ring-shaped Fourier transforms
(Figure 5.1a), revealing that in all directions map features repeat regularly, with an
average periodicity corresponding to the radius of the ring. Orientation preference
histograms complement Fourier transforms, measuring how many neurons prefer
each orientation. As will be discussed in Chapter 9, animal maps are slightly biased
toward vertical and horizontal orientations, reflecting the edge statistics of the visual
environment.

The gradient of a cortical map measures how much each point in the map differs
from its neighbors. Regions where map properties change sharply, such as pinwheel
centers and fractures, have a large gradient. As an example, Figure 5.1b displays the
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gradient of the orientation map in Figure 2.4. Fractures are seen as long ridges in this
plot; pinwheel centers are often located at the ends of fractures, or appear as single
dots. Although gradient plots are visually similar to selectivity plots (Figure 2.4b),
it is important to realize that they are measuring two different properties. Low se-
lectivity often coincides with high gradient in such plots, but this result may be an
artifact of averaging the responses of several cells in a high-gradient area (Maldon-
ado, Gödecke, Gray, and Bonhoeffer 1997). Gradient plots could thus be used to
identify where selectivity measurements are unreliable.

Selectivity histograms can display useful information about gross map properties
as well, but they are similarly affected by averaging. Estimates of selectivity obtained
with different techniques, such as optical imaging and microelectrode recordings,
differ widely (Maldonado et al. 1997). Further, as will be shown in Section 13.4,
different types of training patterns result in different selectivity histograms in com-
putational models. This measure is therefore less useful for comparing models with
biological maps.

Histograms can also be used to quantify lateral connectivity patterns. As was
described in Section 2.2, neurons tend to connect roughly symmetrically to their
near neighbors, and to neurons farther away through patchy long-range connections.
The long-range patches link primarily neurons with roughly collinear orientation
preferences. One way to quantify such patterns is by measuring the angles between
the orientation preferences of connected neurons. A histogram of how often various
angles occur demonstrates that lateral connections indeed link neurons with similar
preferences (Section 11.5.3).

5.1.2 Experimental Manipulation of Maps

As was reviewed in Sections 2.1.4 and 2.2.2, disrupting or changing the input pat-
terns to the visual cortex during development can profoundly change the resulting
maps and their connectivity. Of such manipulation studies, ocular dominance is per-
haps the best known, and provides a detailed test case for computational models.

In the medical condition of strabismus (cross-eye), the eyes cannot focus on the
same point in space; this condition can be induced experimentally in animals by
cutting some of the eye muscles. As a result, each eye sees entirely different images,
instead of the highly overlapping images in normal vision.

Under artificial strabismus, ocular dominance maps still develop, but their prop-
erties differ from normal maps (Figure 5.2). Strabismic maps have more sharply
delineated ocular dominance areas, with stripes containing few connections from the
opposite eye (Löwel 1994). The ocular dominance stripes are also significantly larger
in the strabismic maps than in normal maps. Lateral connectivity patterns are also af-
fected: Whereas in normal animals the lateral connections do not significantly favor
one eye over the other (Bosking et al. 1997; Löwel and Singer 1992), in strabismic
animals they become specific to each eye (Figure 5.2; Löwel and Singer 1992). These
differences apparently result from a decrease in correlation between visual activity
patterns between the two eyes.
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(a) Normal cat (b) Strabismic cat

Fig. 5.2. Normal vs. strabismic cat ocular dominance maps and lateral connections. These
plots show corresponding 5 mm × 5 mm portions of the V1 ocular dominance maps from a
normal cat (a) and from a cat raised with artificial strabismus (b). The maps were obtained
using anatomical tracers, which result in categorical eye preferences (represented by light and
dark areas instead of gray scale as in Figure 2.5). Both maps contain patches specific to each
eye, but the patches are larger and more sharply delineated in the strabismic case. In (a), the
green star indicates where fluorescent tracer was injected, and the green dots show where
lateral retrograde transport took them. The lateral connection patterns do not significantly
depend on the ocular dominance patterns. In (b), the red star and the green star (pointed by the
arrow) mark two separate injection sites in right-eye columns (black). The lateral connections
preferentially target neurons with the same eye preference (black patches, marked with red and
green dots), and avoid neurons with the opposite eye preference (white). Each injection killed
the nearby cells as a side effect, and therefore the ocular dominance and connection patterns
are not visible in the areas surrounding the injections. Those areas are likely to be strongly
connected to the neurons at the injection site. Detail of a figure by Löwel and Singer (1992),
reprinted with permission, copyright 1992 by the American Association for the Advancement
of Science.

Other input features have also been manipulated experimentally, with similar re-
sults. For instance, reducing or increasing the range of orientations seen by an animal
can cause corresponding changes in the orientation map (Blakemore and Cooper
1970; Sengpiel et al. 1999). Such cases will be discussed more in detail in Sec-
tion 8.1.

5.1.3 Interactions Between Multiple Maps

Although selectivity to each different input feature can be mapped independently as
described above, all maps in V1 are overlaid onto the same set of neurons. Each neu-
ron thus contributes to multiple maps, and the maps of different feature dimensions
interact with each other. These interactions can be visualized in combined maps of
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Fig. 5.3. Combined OR/OD map in the macaque. The orientation and ocular dominance
maps shown separately in Figure 2.5 are overlaid in this plot. Color encodes OR preference
(according to the key on top; example map features are outlined in white as in Figure 2.4), and
the black outlines represent OD stripe boundaries, obtained as areas of high OD gradient. The
features in the two maps are systematically organized. The OD boundaries intersect the OR
boundaries of linear zones (long rectangle) at right angles, and rarely follow an OR bound-
ary. Pinwheel centers (circles) are usually found well inside the OD stripes, and rarely near
their boundaries. Note that, unlike the small patches seen in the cat OD maps (Figure 5.2),
the OD patches in the monkey typically consist of long stripes (as also shown in Figure 2.5b).
Reprinted with permission from Blasdel (1992b), copyright 1992 by the Society for Neuro-
science; annotations added, OD contours replotted from data by Blasdel (1992a).

orientation, ocularity, and direction; to facilitate discussion of such maps, abbrevi-
ations OR, OD, and DR will be used for these feature dimensions in this and later
chapters.

For instance, Figure 5.3 shows that the boundaries between ocular dominance
stripes tend to intersect the boundaries between orientation patches at right angles
(Blasdel 1992b). Orientation pinwheel centers are also typically found near the cen-
ters of ocular dominance stripes, and rarely intersect their boundaries.

Orientation and direction preferences also interact. Neurons have spatiotempo-
ral receptive fields selective for both orientation and motion direction (Figure 5.4a;
DeAngelis, Ohzawa, and Freeman 1993, 1995; Shmuel and Grinvald 1996). These
RFs are formed by specific excitatory (ON) and inhibitory (OFF) subregions that
vary over time, providing selectivity for both orientation and motion direction.

These preferences are arranged into maps of orientation and direction selectivity
in the cortex. As an example, Figure 5.4 shows such maps in the ferret V1. Di-
rection maps have a similar structure to orientation maps: Nearby neurons prefer
similar directions, and the map has linear zones, pairs of pinwheels, saddle points,
and fractures (Figure 5.4b; Weliky et al. 1996). Moreover, the direction map tends
to be aligned with the orientation map, with orientation and direction preferences
generally meeting at right angles (Figure 5.4c). Iso-orientation patches are also often
subdivided into patches for each direction of motion.
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(a) Cat spatiotemporal RF

(b) Ferret DR map

(c) Ferret OR/DR map

Fig. 5.4. Spatiotemporal receptive fields, direction maps, and combined OR/DR maps in
animals. In addition to orientation and eye of origin, neurons in V1 are selective for direction
of motion. These spatial and motion preferences can be described as spatiotemporal RFs, rep-
resenting the sequence of patterns that would most excite the neuron. (a) A sample such RF
for a V1 cell from the cat, measured through microelectrode recording (DeAngelis, Ghose,
Ohzawa, and Freeman 1999; reprinted with permission, copyright 1999 by the Society for
Neuroscience; gray scale added). Sample RFs in the two-dimensional visual space at times
20, 60, 100, and 120 ms are shown on top, and a continuous integration of the RFs along
the vertical (which is the preferred orientation of the neuron) is drawn in the bottom plane.
The neuron’s spatial preferences change systematically over time, giving it a spatiotemporal
preference for a black vertical line moving horizontally to the right. (b) Spatial arrangement
of such preferences in a 3.2 mm × 1.6 mm area of ferret V1: Nearby neurons prefer simi-
lar directions in a manner similar to orientation maps (measured through optical imaging and
displayed using the color arrow key on top; Weliky et al. 1996, reprinted with permission,
copyright 1996 by Nature Publishing Group; annotations added and DR arrows removed by
interpolation). Example map features are outlined in white as in Figure 2.4. (c) Interaction
of direction preferences with the orientation map (Weliky et al. 1996; reprinted with permis-
sion, copyright 1996 by Nature Publishing Group; arrows changed from black to white). The
1.4 mm × 1.1 mm subarea of V1 around the right edge of the square in (b) is colored accord-
ing to orientation preference (using the color bar key above the plot). Each arrow points in the
preferred direction, and its length indicates how selective the neuron is for that preference. Di-
rection and orientation preferences tend to be perpendicular, and orientation patches are often
subdivided for opposite directions of motion.
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The lateral connections in normal animals follow mostly orientation preferences
(Section 2.2.1). However, as described above, in strabismic animals eye preference
instead becomes the dominant feature, suggesting that the connection patterns de-
velop to reflect the most dominant features of the map. How less prominent input
features, such as direction of motion, interact with the dominant patterns is not yet
known.

The biological observations outlined in this section are constraints that compu-
tational models of the visual cortex must satisfy and explain. Considerable progress
has indeed been made in understanding this data computationally, as will be reviewed
next.

5.2 Computational Models

Computational models have been crucial for understanding how orientation prefer-
ence and ocular dominance maps develop, and they have recently been used to gain
insight into motion preference maps as well. Most such models are based on self-
organizing maps, reviewed in Section 3.4 in the context of computational models
above and below the map level. This section focuses specifically on map-level mod-
els of the visual cortex, outlining how their architectures and predictions differ from
LISSOM’s.

Computational map models range from more realistic to more abstract along
several dimensions, including: (1) models that learn incrementally through individ-
ual image presentations, vs. models that represent long-term development as an ab-
stract process; (2) models that include specific, patchy lateral connections, vs. models
based on abstract lateral interaction functions; and (3) models that can process pho-
tographic images of natural stimuli, vs. models that work only with artificial image
stimuli. Models built so far have represented some of these dimensions realistically
and abstracted others; LISSOM is the first incremental model that develops specific,
realistic patchy lateral connectivity from natural images. The review below is orga-
nized along the first two dimensions, separately identifying models that have been
tested with natural images (see Erwin et al. 1995; Swindale 1996 for further compar-
isons).

5.2.1 Non-Incremental Models

Models that are based on abstract representations of developmental processes can
be conceptually elegant and computationally efficient. On the other hand, it is not
possible to account for the same level of detail as with models that learn from indi-
vidual images. The two main non-incremental approaches are spectral models and
correlation-based learning, both of which suggest that large-scale structures, such as
orientation and ocular dominance patches, may arise as artifacts of neural processing
rather than a principled way of representing visual input.
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Spectral Models

Spectral models of maps do not include neurons or connections. The goal is simply to
reproduce the patterns in biological maps, as opposed to explaining how maps con-
tribute to visual function (Grossberg and Olson 1994; Niebur and Wörgötter 1993;
Rojer and Schwartz 1990). It turns out that patterns similar to ocular dominance
and orientation maps can be obtained by simply filtering two-dimensional random
noise using a well-chosen function. For instance, ocular-dominance-like stripes can
be produced by starting with an array of random numbers, convolving the array us-
ing a band-pass filter, and thresholding the result (Rojer and Schwartz 1990). Thus,
spectral models suggest that orientation and ocular dominance patterns may not be
functionally significant, arising only as an an artifact of biological processes unre-
lated to information processing.

However, the maps derived in this way are only superficially similar to biological
maps, and differ in several crucial respects (Swindale 1996). For instance, in the
orientation maps produced of Rojer and Schwartz (1990) each orientation vector is
perpendicular to the gradient of the map at that location, which is not seen in animal
maps. It is not yet clear whether spectral models could be modified to overcome these
difficulties. It is also not clear what specific biological processes could implement
such highly abstracted computations, making the spectral models difficult to verify
or refute experimentally.

Correlation-Based Learning Models

More closely tied to biological processes are the correlation-based learning (CBL)
models (Erwin and Miller 1998; Linsker 1986a; Miller 1994; Miller et al. 1989;
Tanaka 1990; Yuille, Kammen, and Cohen 1989). Models in this category rely on
the assumption that the visual system is essentially linear. Under this assumption, the
developmental process can be represented as a simple set of functions representing
long-term correlations in the response to input patterns. This approximation speeds
up the calculations considerably compared with incremental learning, and makes it
possible to analyze the model mathematically.

Most CBL models focus on individual neurons or small groups of neurons, with
the exception of those of Miller (1994), Miller et al. (1989), and Erwin and Miller
(1998). The overall architecture of the CBL map models is similar to that of LIS-
SOM, with a retina, LGN with ON-center and OFF-center neurons, and V1. Initially
the afferent connections have random strength within a circular receptive field, and
lateral interactions have a DoG profile. Unlike in LISSOM, however, lateral inter-
actions are fixed and non-recurrent, and weight normalization is subtractive. Also,
because the activation functions are linear, individual image presentations can be
replaced with long-term averages of activity correlations. Instead of implementing
Hebbian learning of individual input patterns, CBL models compute what Hebbian
learning in a linear system would produce over many presentations.

Miller (1994) showed that such correlation-based learning results in maps of oc-
ular dominance and of orientation. Monocular cells develop because subtractive nor-
malization eventually leads to inputs from one eye becoming completely dominant,
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with zero-strength connections from the other eye (Miller and MacKay 1994). These
cells are grouped into ocular dominance stripes because lateral interactions cause
nearby neurons to have similar responses. Orientation selectivity develops due to
similar competition between ON and OFF-center inputs, but within a single cell’s
receptive field. With appropriate parameters and correlation functions, cells develop
both ON and OFF subregions, making them selective for orientation. Lateral inter-
actions then organize these preferences to orientation patches.

However, a number of key predictions of CBL models are inconsistent with re-
cent biological data (Erwin et al. 1995): (1) The width of biological ocular domi-
nance columns does not depend on the width of lateral interactions, but on the input
correlations (Löwel 1994); (2) the RF shapes in CBL are typically only weakly se-
lective for orientation, unlike in animal maps; (3) the Fourier spectrum of the CBL
orientation map is concentrated around the origin, i.e. at low frequencies, instead of
being shaped like a ring (Swindale 1996); (4) the subtractive normalization mecha-
nism in the model forces synapses either to their maximum weight or zero, which
is biologically unrealistic; and (5) the model cannot account for adult plasticity and
dynamic reorganization (as reported by e.g. Gilbert 1998; Pettet and Gilbert 1992);
once the synapses reach the extreme values, further adaptation is very difficult.

In general, CBL models suggest that large-scale features, such as orientation and
ocular dominance maps, develop primarily as artifacts of neural connectivity pat-
terns. In contrast, in the incremental learning approach they emerge as a principled
way of representing visual input. As a result, incremental models are more complex
and computationally intensive, but can produce more realistic results and explain a
broader range of phenomena.

5.2.2 Incremental Models with Fixed Lateral Connections

A large number of incremental models of the visual cortex have been proposed in the
last 30 years; almost all of them are based on fixed, isotropic lateral connectivity. As
was described in Section 3.4.1, the earliest model of this type was built by von der
Malsburg (1973); similar models have since then been developed using the SOM
algorithm, the elastic net algorithm, and similar architectures. Von der Malsburg’s
model developed oriented receptive fields and pinwheels (before such patterns had
been found experimentally), demonstrating the basic computational processes under-
lying development in the visual cortex. Later models have shown how orientation,
ocular dominance, and direction maps can form, and also how receptive fields selec-
tive for each of these dimensions develop (Barrow and Bray 1992; Dong and Hop-
field 1992; Durbin and Mitchison 1990; Elliott, Howarth, and Shadbolt 1996; Elliott
and Shadbolt 1999; Farkas and Miikkulainen 1999; Goodhill 1993; Grossberg 1976;
Grossberg and Olson 1994; Grossberg and Seitz 2003; Hyvärinen and Hoyer 2001;
Miyashita, Kim, and Tanaka 1997; Miyashita and Tanaka 1992; Obermayer et al.
1990d; Obermayer, Sejnowski, and Blasdel 1995; Olson and Grossberg 1998; Osan
and Ermentrout 2002; Piepenbrock and Obermayer 2002; Shouno and Kurata 2001;
Shouval, Intrator, and Cooper 1997; Stetter, Müller, and Lang 1994; Swindale 1992;
Wimbauer, Wenisch, van Hemmen, and Miller 1997b). So far, the SOM and related
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models have produced the best description of such maps, measured by analytical
comparisons with experimentally observed maps (Swindale 1996).

Nearly all of these models have focused only on a single feature dimension (e.g.
orientation or ocular dominance). A few models have included multiple dimensions
in the same simulation, such as OR and OD (Erwin and Miller 1998; Goodhill and
Cimponeriu 2000; Grossberg and Seitz 2003; Obermayer et al. 1995; Olson and
Grossberg 1998; Osan and Ermentrout 2002) or OR and DR (Blais, Cooper, and
Shouval 2000; Farkas and Miikkulainen 1999; Miyashita et al. 1997; Shouno and
Kurata 2001; Wimbauer et al. 1997b). Simulating multiple dimensions at once en-
sures that parameters are not tuned for only one feature, and interactions between
dimensions allow validating the model more extensively. To our knowledge, no pub-
lished model has developed joint OR, OD, and DR maps; the first study of such maps
will be presented in Section 5.6.

Most of these models have been tested only with artificial inputs such as oriented
Gaussian patterns or pure random noise, which can be strictly controlled to obtain
strong results. However, many phenomena studied in later chapters of this book de-
pend crucially on properties of natural images. Such images have wide ranges of
contrast and large areas of activation, and it is therefore necessary to include the pro-
cessing steps in the ON and OFF channels of the retina and the LGN into the model.
Although a few such models have been proposed (Barrow and Bray 1992; Hyvärinen
and Hoyer 2001; Shouval et al. 1997; Weber 2001), most models do not include these
requisite processing stages.

Crucially, it is not yet clear whether the output from the existing natural image
models actually preserves the essential information in the images. So far, the models
have been used only to investigate how the map forms, not how it performs visual
processing. This issue is important because several of the approximations common in
models with fixed lateral connectivity, such as choosing a single winning location for
adaptation across the entire cortex, do not scale up to natural images with a realistic
size. Development is often driven by only a few strong features in each image, but
visual performance requires multiple features of different contrasts to be represented
simultaneously. One important goal of the experiments in Chapter 10 is to verify that
LISSOM indeed preserves the information necessary for higher levels of processing,
such as face perception areas. It is not known whether other models can be used for
such studies.

5.2.3 Incremental Models with Modifiable Lateral Connections

The early map models were developed before specific, patchy lateral connections
were discovered in the visual cortex, and assumed that lateral interactions would
have a fixed, uniform shape. Nearly all subsequent models have relied on similar
assumptions, primarily because it is computationally very expensive to store and
simulate individual connections. However, it is crucial to include such connections
to account for a number of key experimental results (as reviewed in Section 2.2), and
such connections are also important for information processing (as will be demon-
strated in Chapter 14). Explaining how the lateral connections self-organize into the
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characteristic patchy patterns is a crucial part of understanding the development and
function of topographic maps.

After LISSOM was first introduced a decade ago, several models with modi-
fiable lateral connections have been developed (Alexander et al. 2004; Bartsch and
van Hemmen 2001; Bray and Barrow 1996; Burger and Lang 1999; Weber 2001). Of
these, the models by Alexander et al. (2004) and Burger and Lang (1999) form patchy
long-range lateral connections, but the rest do not. The Alexander et al. (2004) model
relies on abstract binary input patterns like those of von der Malsburg (1973), and it
is not clear how to extend it to support gray-scale and natural-image inputs, or to de-
velop multi-lobed receptive fields. The Burger and Lang (1999) model is very similar
to LISSOM, including ON and OFF channels, modifiable lateral connections, and
support for natural images. Mathematically, their most significant difference from
LISSOM is the activation function: The Burger and Lang model includes a linear
function (sum of all inputs), whereas LISSOM’s activation function is nonlinear, and
also iteratively incorporates lateral influences. The nonlinearities make the LISSOM
map more selective for input features and less dependent on contrast, which is crucial
for simulating responses to realistic inputs. The Burger and Lang model is also based
on a different method for normalizing the afferent weights, although both methods
should lead to similar results. So far, only a small range of cortical phenomena have
been investigated with the Burger and Lang model, but with certain modifications it
should be possible to obtain results similar to LISSOM’s. Other models would need
to be extended significantly to study the same range of phenomena, e.g. by including
specific lateral connections and mechanisms for processing natural images.

Although considerable progress has been made in understanding the biological
data reviewed in Section 5.1, most of the models have focused on a limited set of
phenomena. LISSOM is the first where they are all brought together under a single
common principle of adaptation and organization. In this chapter, LISSOM is first
evaluated as a model of each separate abstract input feature dimension, and then
as a joint model that self-organizes to represent multiple features in natural images
together.

5.3 Orientation Maps

In this section, a LISSOM model of how orientation maps and lateral connections
develop based on input-driven self-organization is presented. The model described
in Chapter 4 is extended to oriented input and shown to develop oriented receptive
fields and a global orientation map. The resulting maps and lateral connections are
then analyzed numerically. In later sections, ocular dominance and direction maps
are studied separately, and combined maps of all three input feature dimensions are
developed both from abstract and natural image inputs.

5.3.1 Method

The LISSOM model of orientation maps is otherwise identical to that described in
Chapter 4 (Figure 4.1) except different training inputs are used. In the main sim-
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(a) Afferent (ON and OFF) (b) Lateral excitatory (c) Lateral inhibitory

Fig. 5.5. Initial V1 afferent and lateral weights. These plots show the initial weights of the
V1 neuron at location (79,68) in the 142× 142 V1 map. As in Figure 4.3, each set of weights
is outlined in black and plotted in gray scale on the neural region from which they originate;
however, the padding in the LGN is omitted so that the area of (a) corresponds to that of
Figure 5.6b. The neuron itself is marked with a small white square in (b) and (c). The afferent
RFs were initially random, as shown in (a); the ON and OFF channel weights were identical
for each neuron. Plots (b) and (c) display the lateral weights of this neuron; initially they had a
Gaussian profile. Later figures will show how these connections become selective and patchy
through self-organization.

ulation, the inputs consist of images of elongated Gaussian spots, instead of the
unoriented Gaussians of Equation 4.2. The activity of each retinal receptor χxy is
calculated according to

χxy = max
k

exp
(
− [(x−xc,k) cos(φ)− (y−yc,k) sin(φ)]2

σ2
a

− [(x−xc,k) sin(φ) + (y−yc,k) cos(φ)]2

σ2
b

)
, (5.1)

where σa and σb determine the width along the major and minor axes of the Gaus-
sian, and φ its orientation, chosen randomly from the uniform distribution in the
range 0 ≤ φ < π. Such inputs are abstractions of elongated features in images and
in spontaneous neural activity and allow demonstrating the model properties clearly.
In Section 5.3.5, the model is trained with a range of other patterns, and the resulting
differences in organization analyzed.

The self-organization proceeds as described in Chapter 4. The way the connec-
tions are initialized does not have a large effect, as long as they are roughly isotropic.
Since self-organization of scattered RF centers and random initial lateral weights
was already demonstrated in Section 4.5, to make the results easier to interpret the
afferent connections are initially random around topographically ordered centers,
and the lateral connections have initially a Gaussian profile (Figure 5.5). At each
input presentation, multiple Gaussian spots are presented on the retina at random
orientations and random, spatially separated locations (Figure 5.6a). The activation
propagates through the LGN and the afferent connections of V1 and produces an ini-
tial response in the V1 network (Figure 5.6c). The initial response is typically diffuse
and widespread, but by recurrent lateral excitation and inhibition, it rapidly evolves
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(a) Retinal
activation

(b) LGN
response

(c) Iteration 0:
Initial V1
response

(d) Iteration 0:
Settled V1
response

(e) 10,000:
Initial V1
response

(f ) 10,000:
Settled V1
response

Fig. 5.6. Example input and response. A sample input on the retina, the LGN response, and
the initial and settled cortical response before and after training are shown as in Figure 4.4,
except the padding in retina and LGN is omitted so that all plots represent the same retinal area.
To train the orientation map, two oriented Gaussians were drawn with random orientations and
random, spatially separated locations on the retina (a). As discussed in Appendix A.4, while
more than two spots could be used, they are too large to be distributed uniformly on the small
retina. The LGN responses are plotted in (b) by subtracting the OFF cell responses from the
ON. The LGN responds strongly to the edges of the oriented Gaussians. Initially, the responses
of the V1 map are similar for all orientations (c and d). After 10,000 input presentations, the
V1 response extends along the orientation of the stimulus, and is patchy because neurons that
prefer similar positions but different orientations do not respond (e and f ). An animated demo
of the map response can be seen at http://computationalmaps.org.

into stable, focused patches of activity (Figure 5.6d). After the activity has settled,
the strength of each synaptic connection is updated. A new set of oriented Gaussians
is then generated at random positions and orientations, and the process repeats for
10,000 iterations. Appendix A.5 lists the details of the simulation parameters. Small
variations of the parameters result in roughly similar maps; a representative example
is analyzed in detail in the sections that follow.

5.3.2 Receptive Fields and Orientation Maps

Initially, the activation patterns are very similar even for different orientations, allow-
ing the map to develop a global retinotopic order. Gradually, oriented receptive fields
start to form, and the lateral connections start to follow receptive field properties.
As Figure 5.7 shows, the final RFs and lateral connections are very similar to those
found in biology (Section 2.1.2; Bosking et al. 1997; Hubel and Wiesel 1965, 1968;
Sincich and Blasdel 2001). Afferent RFs are Gabor-shaped with separate ON and
OFF lobes, making them strongly selective for orientation. Lateral connections are
patchy, and the long-range connections originate from neurons with similar orienta-
tion preferences. Across the map (Figure 5.8), the RFs have a variety of shapes; most
are highly selective for inputs of a particular orientation, and others are unselective.
Lateral connections tend to follow the RF shape, linking neurons with similar RFs.

The global organization of the RFs can be visualized similarly to biological ori-
entation maps, by labeling each neuron by the preferred angle and degree of selec-
tivity for inputs at that angle. To determine these labels, responses to sine gratings of
various orientations were measured and recorded (as described in Appendices G.1.3
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(a) Afferent (ON−OFF) (b) Lateral excitatory (c) Lateral inhibitory

Fig. 5.7. Self-organized V1 afferent and lateral weights. The weights of the neuron in Fig-
ure 5.5 are shown after self-organization. In (a), the OFF weights were subtracted from the ON
weights, as in Figure 4.6c. This neuron prefers a line oriented at 60◦, i.e. diagonal from bot-
tom left to top right, and responds most strongly to a white line overlapping the light portion
of its RF, surrounded by black areas overlapping the dark portions. Other neurons developed
similar RFs with different preferred orientations (Figure 5.8). This type of RF structure is
commonly seen in biological V1 neurons (Figure 2.2d; Hubel and Wiesel 1962, 1968). In the
lateral weight figures (b, c, and other later such figures), the following convention is used:
The hue (i.e. color) represents the orientation preference of the source neuron, according to
the key along the top. The saturation of the color (i.e. its fullness, or intensity) represents how
selective the source neuron is for this orientation; unselective neurons are shown in gray. The
value of the color (i.e. its brightness) indicates the strength of the connection, with nonexis-
tent or zero-weight connections shown as white. The jagged black outline traces the original
lateral connections, and a small white square (in c) identifies the neuron itself. Using such a
scale, plot (b) displays the lateral excitatory weights of this neuron. All connected neurons
are strongly colored blue or purple, i.e. orientations similar to the orientation preference of
this neuron. The lateral inhibitory weights are plotted in (c). After self-organization and con-
nection pruning, only connections from neurons with similar orientations remain, and they
are extended along the preferred orientation of this neuron. The connection pattern is patchy,
because connections from neurons with opposite preferences are weak or have been pruned
away entirely. Such patchy, orientation-specific connection patterns are also seen in biological
V1 neurons (Figure 2.7; Bosking et al. 1997; Sincich and Blasdel 2001).

and G.3. These values were then used to plot the orientation map shown in Figure 5.9.
Initially, all the afferent weights are random. As a result, the orientation preferences
of the RFs appear random and unselective (top row). As self-organization progresses
and afferent weights develop oriented receptive fields, a complex orientation map
develops (bottom row). Even with such abstract inputs, the map is a good match to
those measured in animals, and contains structures such as linear zones, pinwheels
that often occur in matched pairs, saddle points and fractures (compare Figure 5.9
with Figure 2.4). The maps can be further analyzed with numerical techniques, show-
ing quantitatively the same structures as the primary visual cortex.
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(a) Afferent (ON−OFF) (b) Lateral inhibitory

Fig. 5.8. Self-organized afferent and lateral weights across V1. This plot shows the range
of afferent and lateral weights developed by the neurons in the orientation map, by plotting
them for every 12th neuron horizontally and vertically, using the conventions introduced in
Figure 5.7. (a) A number of two- and three-lobed receptive fields exist with strong orienta-
tion preferences. Some neurons, however, have ring-shaped RFs and respond to all directions
equally. (b) These neurons receive lateral inhibitory connections from all nearby neurons, but
from distant neurons only if they have similar OR preferences and are located along the pre-
ferred orientation. The lateral excitatory connections of each neuron (not shown) come from
all nearby neighbors, and thus are all nearly circular.

5.3.3 Analysis of the Orientation Maps

The LISSOM orientation map was analyzed using the numerical techniques de-
scribed for biological maps in Section 5.1. The histogram of orientation preferences
is flat (Figure 5.9d), showing that the architecture does not have biases for any partic-
ular orientations (as it would, for instance, if it had square receptive fields). It there-
fore reflects the uniform distribution of orientations during training. If LISSOM was
instead trained with natural images, where certain angles are over-represented, the
resulting histogram would be more similar to those found in animals (Sections 5.3.5
and 9.3).

The Fourier spectrum of the orientation map has the typical ring-shaped structure
of biological maps, indicating that the orientation patches repeat at regular intervals
in all directions (Figure 5.10a). Because the network has fewer units than the animal
optical imaging data have pixels, the plot is fuzzier, but the overall shape is similar.
The map gradient is also similar to that of cortical maps (Figure 5.10b). Disconti-
nuities are represented by high gradient: Pinwheel centers are seen as high points
and fractures as more linear ridges connecting pinwheel centers. In LISSOM, high
gradient generally coincides with low selectivity, because neurons self-organize to
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Fig. 5.9. Self-organization of the orientation map. The orientation preference and selectivity
of each neuron was computed before (top row) and after self-organization (bottom row). The
preferences are color coded and selectivity represented in gray scale as in Figure 2.4. (a)
The orientation preferences were initially random, but over self-organization, the network
developed a smoothly varying orientation map. The map contains all the features found in
animal maps, such as linear zones, pairs of pinwheels, saddle points, and fractures (outlined as
in Figure 2.4). (b) Before self-organization, the neurons are unselective (i.e. dark), but nearly
all of the self-organized neurons are highly selective (light). (c) Overlaying the orientation and
selectivity plots (by representing selectivity with color saturation as in Figure 5.7) shows that
regions of low selectivity in the self-organized map tend to occur near pinwheel centers and
along fractures. (d) Histograms of the number of neurons preferring each orientation (OR H)
are essentially flat because the initial weight patterns were random, the training inputs included
all orientations equally, and LISSOM does not have artifacts that would bias its preferences.
These plots show that LISSOM can develop biologically realistic orientation maps through
self-organization based on abstract input patterns. An animated demo of the self-organizing
process can be seen at http://computationalmaps.org.

respond together with their neighbors. Whether this is true of animal maps as well is
still controversial (as was discussed in Section 5.1.1).

The orientation discontinuities also affect the retinotopic mapping from the retina
to V1 (Figure 5.11). The large-scale organization corresponds to the retina: for exam-
ple, neurons in the upper left of the cortex respond to activity in the upper left of the
retina. On small scales, however, this mapping is distorted because the orientation
map represents both position and orientation smoothly across the same surface. Such
distortions also occur in cat orientation maps, where orientation gradient is found to
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(a) Fourier spectrum (b) Gradient

Fig. 5.10. Fourier spectrum and gradient of the orientation map. (a) The Fourier spectrum
is ring shaped as it is for biological maps (cf. Figure 5.1a), indicating that all directions are
represented at regular intervals. (b) The global arrangement of high- and low-gradient areas
is similar to that in biological maps: Regions with high gradient coincide with discontinuities
such as pinwheel centers and fractures, and the fractures tend to connect the pinwheel centers
(cf. Figure 5.1b).

correlate with distance between RF centers (Das and Gilbert 1997). Such a correla-
tion exists in LISSOM maps as well, although it is weaker and the relationship is
more complex.

The above analytical comparisons demonstrate that the afferent structures in LIS-
SOM essentially replicate the afferent organization in the cortex. The next section
will show that the patterns of lateral connections also compare well to those observed
in biology.

5.3.4 Lateral Connections

The lateral connection weights self-organize at the same time as the orientation map.
Initially, the connections are spread over long distances and cover a substantial part
of the network (Figure 5.5). As the lateral weights self-organize, the connections
between uncorrelated regions grow weaker, and after pruning only the strongest
connections remain (Figure 5.7). The surviving connections of highly orientation-
selective cells, such as the one illustrated in Figure 5.12a, link areas of similar ori-
entation preference, and avoid neurons with different orientation preferences. Fur-
thermore, the connection patterns are elongated along the direction in the map that
corresponds to the neuron’s preferred stimulus orientation. This organization reflects
the activity correlations caused by the elongated Gaussian input pattern: Such a stim-
ulus activates primarily those neurons that are tuned to the same orientation as the
stimulus, and located along its length. At locations such as fractures, where a cell is



102 5 Development of Maps and Connections

Fig. 5.11. Retinotopic organization of the orientation map. The center of gravity of the
afferent weights of every second neuron was calculated and plotted in the retinal space, and
those of neighboring neurons connected with lines (as in Figure 4.8). The overall organization
of the map is an evenly spaced grid with local distortions. These distortions result from map-
ping both orientation and retinal position smoothly into the same two-dimensional surface;
such distortions have been found experimentally on animal maps as well (Das and Gilbert
1997).

sandwiched between two orientation patches of very different orientation preference,
the lateral connections are elongated along the two directions preferred by the two
adjacent patches (Figure 5.12d). The lateral connections of unselective cells, such as
those at pinwheel centers, come from all orientations around the cell (Figure 5.12b).
Connections at saddle points are similar to those at fractures, in that they include the
two orientations of the saddle, but they also include intermediate orientations that
typically match the orientation preference of the saddle neuron itself (Figure 5.12c).
Thus, the pattern of lateral connections of each neuron closely follows the global or-
ganization of receptive fields, and represents the long-term activity correlations over
large areas of the network.

These results were originally discovered independently in the LISSOM model
(Sirosh et al. 1996a), and some of them have already been confirmed in recent neuro-
biological experiments. In the iso-orientation patches of the tree-shrew cortex, hori-
zontal connections were found to be distributed anisotropically, extending farther and
giving rise to more terminals along the preferred orientation axis of the neuron in vi-
sual space (Bosking et al. 1997; Fitzpatrick et al. 1994; Sincich and Blasdel 2001).
Most of these terminals also connected to cells with the same orientation preference.
The connection patterns at pinwheel centers, saddle points, and fractures have not
been studied experimentally so far; the LISSOM model predicts that they will have
unselective, broad unimodal, and biaxial distributions, respectively.
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(a) Connections in
iso-OR patches

(b) Connections in
OR pinwheels

(c) Connections in
OR saddles

(d) Connections in
OR fractures

Fig. 5.12. Long-range lateral connections in the orientation map. The lateral inhibitory
connection weights of four sample neurons from the marked regions in Figure 5.9 are shown
in the top row, situated in the orientation map as shown in the bottom row. The small white
square in both figures identifies the neuron; the black outline on top indicates the extent of
these connections before self-organization, and the white outline on the map plot shows their
extent after self-organization and pruning. On top, the color coding represents the connected
neuron’s orientation, selectivity, and connection strength, as in Figure 5.7; the map encodes
orientation and selectivity as in Figure 5.9c. The connection histogram (CH) in the middle
shows how many connections come from neurons of each orientation. For every neuron, the
strongest connections originate from the neuron’s nearby neighbors, as indicated by the large,
bright central area in each weight plot. The long-range connection patterns differ depending
on where the neuron is located in the orientation map. (a) Neurons in the middle of an OR
patch receive connections from neurons with similar preferences, aligned along the orientation
preference of the neuron (for this neuron, about 65◦, i.e. blue). (b) At pinwheel centers, the
connections come from all directions and orientations and are nearly isotropic. The histogram
is nearly flat, with small peaks near orientations that happen to be overrepresented in the
pinwheel. (c) Connections at saddle points extend along the two orientations of the saddle,
in this case red (0◦) and blue (65◦). The neuron also makes connections with intermediate
orientations and directions; these connections match its own OR preference (30◦, purple), and
result in one broad peak in the histogram. (The connections of this neuron are cut off along
the bottom because it is located near the bottom of the map.) (d) Connections of neurons at
fractures are also elongated along the two directions of the neighboring orientation patches.
The neuron plotted in (d) is on a fracture between yellow–green (130◦) and blue–purple (40◦),
and makes connections with both of these orientations. In contrast to saddle points, it does not
connect with intermediate orientations and directions, resulting in two distinct peaks in the
orientation histogram. While the connection patterns in iso-orientation patches have already
been confirmed in biology, the patterns at the other map features are predictions for future
experiments.
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5.3.5 Effect of Input Types

The preceding analysis focused on a single LISSOM model trained with oriented
Gaussian patterns, which made the results clear and unambiguous. In a series of sim-
ulations, the model was trained with other patterns that have been hypothesized to
contribute to orientation selectivity, including spontaneous neural activity and natural
visual images. Spontaneous activity was modeled after retinal waves and represented
as noisy disk patterns (as will be described in detail in Section 9.2.1). Natural im-
ages included retina-size closeups of natural objects and landscapes closely matched
with natural input (from a dataset by Shouval, Intrator, Law, and Cooper 1996, de-
scribed in Figure 8.4 and Section 9.3.1). The details of these simulations are listed in
Appendix A.5.

The orientation maps that result from each of these training patterns are com-
pared in Figure 5.13. In each case, orientation maps develop, but the maps and RFs
are well ordered only for patterns that contain spatial structure. The Fourier trans-
form of these maps is ring-shaped, as it is of animal orientation maps. Oriented
Gaussians are not required, as long as the inputs have edges that produce elongated
activity patterns at the LGN level. For instance, realistic maps develop from both
natural images and retinal waves. Importantly, the simulations with disks and noisy
disks demonstrate for the first time that full-fledged orientation maps can develop
from large, unoriented activity patterns, which has been believed difficult to achieve
(Miller 1994).

The receptive field types that develop depend strongly on the input patterns. For
instance, if all patterns are brighter than their surround (the row labeled “Gaussians”),
most of the resulting RFs have an ON-center with two flanking OFF lobes. If also
patterns that are darker than the surround are included, both ON and OFF-center RFs
develop (“Plus/Minus”). Note that in either case, the background illumination is not
important, because the LGN responds only to brightness differences, not absolute
levels. With disks, most RFs have two lobes, because the input contained edges but
no thin lines. A variety of RF types develop in simulations with noisy disks and
natural images, reflecting the wide variety of input patterns seen during training.

Orientation maps develop even with random noise inputs, because even random
patterns have local clusters that are brighter or darker than their surround. These
clusters lead to patches of activity in the ON channel adjacent to patches in the OFF
channel, and orientation-selective neurons develop. However, the resulting map is
not well ordered: Many neurons are only weakly selective and the RFs do not have
well-developed profiles. The Fourier transform is disk-shaped, indicating that the
map consists of orientation patches of all sizes, instead of a largely uniform size seen
in animal maps and in maps formed with other input types. The conclusion is that
spatial structure is necessary for realistic orientation maps to form.

Overall, these results suggest that realistic orientation maps can develop based on
a wide variety of spatially coherent stimuli, and that the choice of these stimuli more
strongly affects the RFs than the maps. Thus, LISSOM predicts that the types of RFs
observed in different species are at least partially due to the patterns the animals see
during development.
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Fig. 5.13. Effect of training patterns on orientation maps. In this and later similar figures,
the rows represent different self-organization experiments. Each row typically shows a sam-
ple retinal activation, the LGN response to that activation, final receptive fields (ON−OFF)
of sample neurons, their lateral inhibitory connections (LIs), the orientation preference and
selectivity map, the orientation preference histogram, and the fast Fourier transform (FFT) of
the orientation preferences. The RFs and LIs are drawn to a smaller scale than LGN and V1.
For clarity, most OR models are based on abstract input patterns like the oriented Gaussians
in the top two rows. However, OR maps develop robustly with a wide variety of input pat-
terns, including large circular patterns (middle rows) and natural images (second row from the
bottom; image from a dataset by Shouval et al. 1996, 1997). Maps develop even with random
noise (bottom row), although such maps are relatively unselective and the RFs do not have
realistic profiles. Spatial structure is therefore necessary in LISSOM for biologically realistic
maps to form.
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In Chapter 9, these results are put together into a detailed model of how the orien-
tation maps develop prenatally and postnatally in animals, including how internally
generated activity like retinal and PGO waves and natural images may each con-
tribute. The more detailed model also predicts what RF types are likely to be found
in newborns, and how those will differ from adult RFs.

5.4 Ocular Dominance Maps

In this section, a second retina will be included in the LISSOM model, and it will
be self-organized using unoriented Gaussian-shaped inputs on both retinas. Under
these conditions, the V1 neurons develop either binocular receptive fields, or recep-
tive fields with preference for one of the two eyes. The preferences are arranged into
global maps of ocular dominance, with stripes preferring the left eye alternating with
stripes preferring the right. Simultaneously, the lateral connections organize into pat-
terns that reflect the correlations in the input. If the inputs are uncorrelated, the model
replicates biological data on strabismic animals. The model is also used to study the
effect of disparity more generally on ocular dominance maps.

5.4.1 Method

The LISSOM model of ocular dominance is otherwise identical to the orientation
model from the previous section, except the V1 receives inputs from two retinas
(Figure 5.14). The ON and OFF channels are set up the same way for both retinas,
and the V1 neurons receive afferent connections from both channels through local
receptive fields and topographically ordered RF centers (see Appendix A.1 for the
model equations). The initial values of the afferent weights are random and identical
for both eyes, to show that self-organization is not driven by initial weight differ-
ences.

Ocular dominance in LISSOM develops based on differences in activity patterns
between the two eyes. Such differences are a likely source for ocular dominance in
animals as well, although it is not yet known what types of activity patterns are most
important for normal OD development. Possible candidates include spontaneous reti-
nal waves that occur independently in each eye, correlated LGN activity originating
in the brainstem (e.g. during sleep), position or brightness differences of correspond-
ing visual image features in each eye, or combinations of all these factors. As an
abstraction of a variety of such factors, brightness differences between matching pat-
terns in each eye will be used in the main LISSOM experiment. In Section 5.4.4,
more indirect sources such as small position differences will be evaluated as well.

The training inputs consisted of unoriented (circular) Gaussian spots of Equa-
tion 4.2, multiplied by a brightness factor sb. Two spots were drawn in each eye
in randomly chosen spatially separate locations. In the normal case these locations
were constrained to be the same in the two eyes, and in the strabismic case they
were independent in each eye. The brightness sb of each spot in the left eye was
chosen randomly at each iteration from the range [0..1], and the brightness of the
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Fig. 5.14. LISSOM model of ocular dominance. The architecture is otherwise identical to
that of the LISSOM OR network, except now there are two retinas, leading to two ON and
OFF channels. Each V1 neuron receives afferents from corresponding positions on the ON
and OFF LGN sheets for each eye.

corresponding spot in the right eye was computed as 1.0 − sb so that the total input
activation remained constant. With such input, the LGN responds to both the left
and the right spot, but more strongly to the brighter one. V1 responds as it would to
a bright spot in one eye, but will learn stronger connections from the eye with the
brighter input. The network was trained for 10,000 iterations like the orientation map
of Section 5.3. The rest of the simulation parameters are described in Appendix A.6.

The OD maps that emerged in normal and strabismic self-organization are de-
scribed in the next two subsections, and the effect of input disparity, i.e. the degree
to which the inputs are independent in the two eyes, is analyzed in the last subsection.

5.4.2 Normal Ocular Dominance Maps

Through self-organization, the network developed eye-specific receptive fields and
responses (Figure 5.15). The RFs are not significantly selective for orientation, be-
cause the training inputs were small and unoriented. Different neurons prefer one eye
over the other to different degrees, but as in animals, nearly all neurons are binocular
to some degree.

The global arrangement of the eye preferences was visualized by recording the
response of each neuron to patterns presented in each eye individually, as described
in Appendix G.4. Figure 5.16 shows the resulting ocular dominance map, consisting
of alternating stripes in irregular patterns across the network. Selectivity in that map
measures how strongly the neurons favor inputs from one eye. The most strongly
binocular neurons are found near the OD stripe boundaries and the most strongly
monocular ones are at the center of such stripes. Overall, most neurons are binoc-
ular to some degree. Similar graded functional patterns of OD are seen e.g. in the
macaque monkey using optical imaging techniques (Figure 2.5).
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(a) Initial
Left Right

(b) Final partly monocular
(ON−OFF)

Left Right

(c) Final strongly binocular
(ON−OFF)

Fig. 5.15. Self-organization of afferent weights into OD receptive fields. (a) The affer-
ent weights of a sample neuron, located as shown in Figure 5.17a, are plotted before self-
organization (as in Figure 5.5). Initially these weights are random and identical for both eyes
and both channels in each eye. (b) The final receptive fields of the same neuron are visualized
for each eye by subtracting the OFF weights from the ON weights (as in Figure 5.7). Over the
course of self-organization, most neurons develop a preference for one eye or the other, al-
though they retain significant connections from both eyes. Many of this neuron’s connections
from the left eye are weak (indicated by medium gray), so it responds more strongly to input
in the right eye. (c) On the other hand, neurons near the OD stripe boundaries, like the one in
Figure 5.17b, become strongly binocular, with smooth, isotropic RFs that are nearly identical
in each eye. The ocular dominance stripes shown in Figure 5.16 are based on such subtle eye
preferences, as they are in animal OD maps.

(a) OD preference (b)
OD H

(c) OD selectivity

Fig. 5.16. Self-organized ocular dominance map. Light areas in (a) indicate neurons that
prefer the left eye, dark areas those that prefer the right eye, and medium gray indicates no net
preference. The histogram (b) shows how these preferences are distributed, with left monoc-
ular neurons at the top, binocular neurons in the middle, and right monocular neurons at the
bottom. Most neurons are binocular, slightly preferring one eye or another, as they do in an-
imals (Figure 2.5). Plot (c) illustrates how selective the neurons are for ocularity, with light
areas indicating monocular neurons and dark areas those that are binocular. Less selective
regions fall between ocular dominance stripes, as in animal maps.

The stripes form based on the push–pull effect of the lateral connections: Lo-
cal excitation ensures that nearby neurons will respond to similar stimuli and thus
have correlated activity (causing eye-specific regions to develop), and long-range
inhibition causes activity to be anti-correlated over larger distances (causing the eye-
specific regions to alternate).
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Fig. 5.17. Long-range lateral connections in the ocular dominance map. The inhibitory
lateral connection strengths for the two neurons in Figure 5.15 are plotted on top in gray scale,
and their local neighborhood is shown in the map below (as in Figure 5.12). In both cases the
strongest connections come from the neuron’s near neighbors. The connections of the partly
monocular neuron (a) follow the ocular dominance map structure, with strongest connections
from neurons with the same eye preference (dark). As a result, the connection histogram (mid-
dle) is biased toward the right eye (dark). In contrast, the connections of strongly binocular
neurons (b) are not influenced by the OD map, and their connection histograms mirror the
histogram of the OD map (Figure 5.16b). Similar patterns have been found experimentally in
cats (Löwel 1994; Löwel and Singer 1992).

In the normal OD case, the lateral connections are not particularly patchy, and
most neurons receive connections from neighbors of both eye preferences (Fig-
ure 5.17). Such connectivity arises because most neurons are only partly monocular:
Their activation is correlated even with neighbors that prefer the opposite eye, and
such connections remain active. Only the connections of the most strongly monocu-
lar neurons follow the ocular dominance stripes. Such neurons are activated predomi-
nantly by inputs from one eye, and their activity patterns are more strongly correlated
with other similar neurons.

5.4.3 Strabismic Ocular Dominance Maps

As discussed in Section 5.1.2, the maps and lateral connections in strabismic ani-
mals differ significantly from those of normal animals. Similarly, a LISSOM OD
map organized with uncorrelated inputs is very different from the normal case (Fig-
ure 5.18). By the end of strabismic development, nearly all neurons have become
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Fig. 5.18. Ocular dominance and long-range lateral connections in the strabismic ocular
dominance map. The strabismic simulation was otherwise identical to the normal case of Fig-
ures 5.15–5.17, except the inputs were presented at random positions in each eye. Compared
with the normal case, the OD stripes are wider (c), and nearly all neurons are highly selective
(e) and highly monocular (indicated by the wide separation of the peaks in the histogram d).
As an example, the neuron shown with the small white square in (c) has the receptive fields
shown in (b); the connections from the left eye are poorly organized and weak (indicated by
medium gray). In (c), the white outline delineates the strongest lateral inhibitory connections
to this neuron. Unlike in the normal case, these connections include only monocular neurons
responding to the same eye (visible in the weight histogram in (a)), and strictly follow the oc-
ular dominance stripes. The connections are strongest in the immediate vicinity of the neuron,
but not much weaker even near the stripe boundaries (a). Overall, strabismus changes the map
organization, RFs, and lateral connections much like it does experimentally in animals (Löwel
1994; Löwel and Singer 1992; Figure 5.2).

strongly monocular, and the boundaries between the stripes for each eye are sharply
defined. The lateral connections also correlate strongly with the ocular dominance
stripes, i.e. nearly all of the lateral connections come from neurons that prefer the
same eye. Similar patterns have been found in cats using anatomical tracing tech-
niques (Löwel 1994; Löwel and Singer 1992).

These results are due to the uncorrelated inputs in the two eyes. Correspond-
ing receptive fields on the two eyes are rarely active at the same time, so all active
neurons in a small patch of cortex are likely to be receiving input from the same
eye. Through Hebbian learning, the afferent connections of all these neurons to that
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eye are strengthened, as are the lateral connections between them. Over the course
of self-organization, these weight changes result in sharply defined boundaries be-
tween stripes and between lateral connection patches, each selective for one eye or
the other.

The OD stripes are also significantly wider in the strabismic LISSOM model than
in the normal model, matching experimental findings in cats (Löwel 1994) and in
previous computational models (Goodhill 1993). In LISSOM, nearby neurons learn
similar preferences if they frequently respond to the same inputs. When the inputs
are uncorrelated, two neurons respond together if they prefer the same eye and their
RFs on that eye overlap. Since the RFs of nearby neurons overlap significantly, the
OD stripes tend to be wide, alternating between large groups that prefer one eye or
the other. In the normal case, however, the inputs in the two eyes are correlated. Even
neurons that prefer different eyes often respond together because they represent the
same retinotopic location. As correlation increases, retinotopy determines more of
the response, and the OD stripes become less selective and narrower. In the limit, the
inputs are fully correlated, and the OD stripes disappear altogether.

The strabismic patterns of ocular dominance and lateral connections that LIS-
SOM develops closely match observations in biology. The LISSOM model shows
how such connections and global organization can develop, based on a network that
extracts structure from correlations in the visual input.

5.4.4 Effect of Input Disparity

Abstracting the possible sources of ocular dominance, the LISSOM OD model above
was based on inputs that differ in brightness in the two eyes (like the models of Bauer,
Brockmann, and Geisel 1997; Riesenhuber, Bauer, Brockmann, and Geisel 1998).
Some previous models have shown that OD maps might instead result from retinal
disparity, i.e. differences in feature position in each eye (Burger and Lang 1999;
Sirosh and Miikkulainen 1994a). Disparity itself is a separate feature dimension from
ocular dominance. Neurons can be fully binocular yet prefer different positions in
each eye, which is important for stereo vision. Even so, disparity does reduce the
activity correlations between the eyes, and could thus contribute to ocular dominance
as well.

Disparity was modeled in LISSOM by randomly placing a spot at (x, y) in the
left retina, and then placing a corresponding spot within a radius of ssR of (x, y) in
the right retina, where R is the width of the retina. The scatter parameter ss ∈ [0..1]
specifies the spatial correlations between spots in the two retinas. When ss = 0,
the inputs are in perfectly matched positions, and when ss = 1 they are scattered
independently (as in strabismus). By adjusting ss, it is possible to simulate different
degrees of disparity between the images in the two eyes (see Appendix A.6 for the
rest of the simulation parameters).

In Figure 5.19, networks trained with brightness differences alone (ss = 0), with
mild disparity (ss = 0.2), with moderate disparity (ss = 0.4), and with perfect
strabismus (ss = 1.0) are compared. All these networks developed OD maps, but
those with disparity are less realistic. With only mild disparity, the eye preferences
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Fig. 5.19. Effect of disparity on ocular dominance maps. Each row presents a different sim-
ulation using the same network but a different degree of disparity between the inputs in the
two eyes. From left to right, each row shows a retinal activation (left and right eyes), final RFs
of a set of sample neurons, their lateral connections, the OD preference map, its histogram,
and the OD selectivity map. For comparison, the results from brightness differences are re-
produced in the top row (labeled “Dimming”), and the results from strabismic maps in the
bottom row. The main result is that OD maps can be obtained from disparity differences (with
no brightness differences), but the results do not match animal maps well. Small amounts of
disparity (scatter ss = 0.2) result in unrealistically clear boundaries between stripes even with
relatively weak OD preferences (row “Mild”), as is evident in the histogram. Moderate dis-
parity (ss = 0.4; row “Moderate”) approaches the strabismic results, with strongly monocular
RFs, sharp stripe boundaries, and connections only to neurons that prefer the same eye, un-
like in normal animals. These results suggest that ocular dominance patterns can result from
differences in either position or brightness, but brightness differences lead to maps that more
closely match those found in animals.

are weak, yet there is already a clear boundary between OD stripes, instead of the
smooth boundaries seen in animal OD maps. Lateral connections are also patchy and
specific to one eye, unlike in animals. As the disparity is increased further, the maps
form sharply defined monocular stripes, more closely matching strabismic animal
OD maps than normal maps (compare the moderate case with the strabismic case).

The reason for such sharp stripes is that the neurons have sharply defined ON
and OFF subregions, and are therefore highly sensitive to position. Even a small
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difference in position between the eyes activates entirely different sets of neurons,
and thus responses to each eye are effectively uncorrelated (or even anti-correlated).
These results suggest that input disparities must be small relative to the RF size, or
else strabismic-like OD maps will develop.

Interestingly, realistic maps can be obtained even with disparity-based inputs if
the ON and OFF channels are bypassed (not shown; Sirosh and Miikkulainen 1994a).
In such a case, any input that a V1 neuron receives is excitatory, nearby inputs al-
ways excite nearby V1 neurons, and smooth OD preferences are obtained. Such self-
organization may be possible in early prenatal development, based on internally gen-
erated inputs like those postulated for orientation in Chapter 9. As discussed in more
detail in Section 17.2.3, such computational constraints predict what kind of recep-
tive fields and input pattern correlations are likely to be found in early development.

In this section, LISSOM OD maps were trained based on unoriented Gaussians
only. Most other input types, like those tested in Figure 5.13, would result in an
overlaid OR map as well. The effect of other input types such as natural images on
OD will therefore be studied in Section 5.6 as part of combined OR/OD/DR maps.

5.5 Direction Selectivity Maps

In this section the LISSOM model is extended to moving inputs. Spatiotemporal
receptive fields develop as a result, and they are organized into a map according
to preferred direction of motion. These results show that activity-dependent self-
organization extends to time-varying input as well, which is a crucial step toward
making the model biologically realistic. The last step, organizing multiple stimulus
features at once, will be discussed in the next section.

5.5.1 Method

Direction selectivity in LISSOM arises from LGN output that arrives at the cor-
tex with a variety of delays (as in some previous models, e.g. Wimbauer, Wenisch,
Miller, and van Hemmen 1997a; Wimbauer et al. 1997b). In the LGN, most cells
fire soon after the retinal stimulus. However, other neurons, called lagged cells, re-
spond only after a fixed delay (Saul and Humphrey 1992). The delay times vary
between cells over a continuous range up to hundreds of milliseconds (Mastronarde,
Humphrey, and Saul 1991; Wolfe and Palmer 1998). V1 neurons can use these timing
differences to develop spatiotemporal receptive fields (Humphrey, Saul, and Feidler
1998).

The LISSOM architecture for direction selectivity is shown in Figure 5.20. The
model is similar to those presented in previous sections, consisting of a hierarchy
of two-dimensional sheets of neural units. Retinal receptors feed input to several
paired sheets of ON-center and OFF-center LGN units (with a different lag for each
pair), which in turn activate cortical neurons in V1 (see Appendix A.1 for the model
equations). Because direction preferences are generally defined in terms of oriented
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Fig. 5.20. LISSOM model of orientation and direction selectivity. The architecture is simi-
lar to the LISSOM OR network, except the ON and OFF channels consist of sheets of neurons
with different lag times (from 0 to 3 in this case). Moving input patterns are drawn on the retina
in discrete timesteps, like frames of a movie. At the first timestep, the ON and OFF LGN cells
with time lag 3 compute their activity. At each subsequent timestep, the input pattern is moved
slightly and LGN cells with lags 2, 1, and 0 each compute their activity in turn. Once all LGN
cells have been activated, the initial V1 response is computed based on the responses on the
eight LGN sheets. The activity then spreads laterally within V1 as usual in LISSOM.

lines, the model is self-organized to represent both direction and orientation at once,
using moving oriented patterns as input.

The input consists of short movies of oriented Gaussians moving across the retina
at random locations and directions. Each movie is presented as a sequence of frames.
At each timestep t, the frame t is drawn on the retina, and the activity levels of all
LGN cells with lag t are calculated. After all the LGN neurons have been activated,
each V1 neuron computes its initial response based on the activation on all LGN
sheets. After the initial response, the V1 activity settles through short-range exci-
tatory and long-range inhibitory lateral interaction, and afferent and lateral weights
are modified as described in previous sections. The model is then ready for the next
input movie presentation.

In the experiments in this section, there were four 36 × 36 ON-center and four
36 × 36 OFF-center sheets, and they received input from a single 54 × 54 retina
with a single moving oriented Gaussian pattern. Single inputs were used to avoid
overlap and bias in the input distributions. The network was organized in 20,000
presentations of moving input patterns, so that the total number of inputs was the
same as in OR and OD simulations. The rest of the parameters are described in
Appendix A.7. The orientation and direction maps that resulted are analyzed next,
followed by a comparison of maps obtained at different input speeds.
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Fig. 5.21. Self-organization of afferent weights into spatiotemporal RFs. (a) The lag-
0 weights for a sample neuron, located as shown in Figure 5.24a, are plotted before self-
organization (as in Figure 5.5). Initially, all four lags in both channels have the same random
weights; these weights are different for each neuron. (b) The final afferent weights for the same
neuron are visualized by subtracting the OFF weights from the ON weights (as in Figure 5.7).
Together, these plots show that the most effective stimulus for this neuron is a diagonal light
bar moving diagonally down and to the right. More specifically, this neuron will be highly
active at time t if there was a light bar aligned with the ON subregion in the “Lag 3” RF at
time t − 3, a bright bar aligned with the ON subregion of the “Lag 2” RF at time t − 2, and
so on. Visual cortex neurons in animals have similar spatiotemporal properties (Figure 5.4a;
DeAngelis et al. 1995).

5.5.2 Direction Maps

Figure 5.21 shows the self-organized afferent weights for a representative neuron in
V1. Nearly all neurons developed spatiotemporal receptive fields strongly selective
for both direction and orientation. Each neuron responds best to a line with a particu-
lar orientation moving in a direction perpendicular to that orientation. Such receptive
fields are similar to those found experimentally in the cortex (Section 5.1.3; DeAn-
gelis et al. 1993, 1995).

The orientation preferences form a smoothly varying orientation map (Fig-
ure 5.22). As in the LISSOM OR-only model, the map contains realistic features
such as iso-orientation patches, linear zones, pairs of pinwheels, saddle points, and
fractures. The techniques used to analyze the orientation map in Section 5.3 (selec-
tivity measures, Fourier transform, gradient, retinotopic mapping, and OR preference
histogram), lead to essentially the same results. This outcome verifies that OR-only
simulations are a valid approach to understanding orientation maps.

The same neurons are also selective for motion direction, forming a direction map
(calculated as described in Appendix G.5). Direction preferences are also smoothly
organized across the cortex, and contain similar features. Regions of lower direction
selectivity occur near pinwheel centers and along fractures, as in the OR map. The
orientation and direction preference histograms are essentially the same (i.e. flat),
both reflecting the distribution of edges in the training input.

The interaction between the orientation and direction maps is illustrated in Fig-
ure 5.23, and is similar to what has been observed in animals (Section 5.1.3; Shmuel
and Grinvald 1996; Weliky et al. 1996). For instance, a patch of neurons highly se-
lective for one orientation and direction of motion will usually have an adjacent or
contiguous patch selective for the same orientation but opposite direction. In LIS-
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Fig. 5.22. Self-organized OR/DR map. The orientation (top row) and direction (bottom row)
maps in the LISSOM OR/DR model were computed separately after self-organization. The
orientation preferences are coded using the color bar key on top, and the direction preferences
using the color arrow key in the middle. Selectivity is shown in gray scale in both cases, with
black indicating low selectivity (as in Figure 5.9). (a) The network represents both orientation
and direction in smoothly varying maps that contain all the features found in animal maps,
such as linear zones, pairs of pinwheels, saddle points, and fractures (outlined as in Figure 2.4).
(b) Most neurons become selective for specific orientation and direction of motion, and are
therefore nearly white in the selectivity plots. (c) Overlaying the preference and selectivity
plots shows that regions of low selectivity occur near pinwheel centers and along fractures in
both maps. (d) The histograms are essentially flat because the training inputs were unbiased.
These plots show that LISSOM can develop biologically realistic orientation and direction
maps through self-organization based on abstract input patterns.

SOM, these patterns develop because neurons that prefer similar orientations but op-
posite directions have more similar RFs (and thus responses) than neurons that prefer
different orientations. As a result, opposite direction preferences are often grouped
together on the map.

Lateral connections within the map follow its global organization, primarily link-
ing neurons with similar orientation and direction preferences (Figure 5.24). Such
connection patterns reflect the activity correlations during self-organization. Neu-
rons with similar orientation and direction preferences are often active together, and
become more strongly connected. Connections of neurons that are highly selective
for orientation and direction extend along the orientation preference, not direction,
and avoid orthogonal orientations and opposite directions. Neurons in DR fractures
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Fig. 5.23. Combined OR/DR map. Using the plotting conventions from Figure 5.4, each of
the 142 × 142 neurons in the LISSOM OR/DR map is colored with its preferred orientation,
and the direction preferences for every third neuron are plotted as arrows overlaid on the orien-
tation map. The direction preferences are generally perpendicular to the preferred orientation,
and large iso-orientation patches are often divided into two areas with opposite direction pref-
erences. Such an organization matches experimental data well (Figure 5.4; Weliky et al. 1996).
An animated version of this plot can be seen at http://computationalmaps.org.

connect with neurons of both directions; they all have similar orientation preferences,
and the connections extend along that orientation. At DR pinwheels the connections
come from all direction preferences, and at DR saddles they correspond to the di-
rection preferences in the saddle. Both DR pinwheels and DR saddles can occur at a
variety of OR map features.
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Fig. 5.24. Long-range lateral connections in the combined OR/DR map. The inhibitory
lateral connections of four sample neurons from the marked regions in the DR map of Fig-
ure 5.22 are shown both on the OR (top) and DR (bottom) preference and selectivity maps, as
in Figure 5.12. (a) The neuron from Figure 5.21 receives connections from neurons with sim-
ilar OR and DR preferences, and its connections extend along the OR axis (60◦), not the DR
axis (330◦). (b) Neurons in pinwheels receive connections from neurons of all DR preferences;
their OR histograms vary depending on their location in the OR map. (c) Saddle neurons re-
ceive connections corresponding to the DR preferences of the saddle, and their OR histograms
vary. (d) At fractures, connections originate primarily from neurons of the two fracture pref-
erences, and extend along their common OR preference. These OR- and DR-specific lateral
connections are predictions that can be tested in future biological experiments.



5.6 Combined Maps of Multiple Features 119

While lateral connections are known generally to follow orientation preferences,
how such connectivity is further affected by direction selectivity has not been ana-
lyzed. The LISSOM results constitute predictions for future such biological experi-
ments.

5.5.3 Effect of Input Speed

Compared with the orientation-only simulations, the OR/DR map introduces one
new parameter: the speed of the input patterns, i.e. how many retinal units the pattern
moves between lags. Figure 5.25 shows how this parameter affects the formation of
direction maps.

For speed zero, the inputs are stationary and no direction map develops. The
RFs to each lag become identical, and are essentially the same as in the OR-only
map (Section 5.3). As the speed is increased, the neurons become more selective for
direction of motion. Interestingly, the spacing between DR patches becomes larger
as the neurons become more selective; this trend is also visible in the ring diameter
in the Fourier plots (Figure 5.25). At the same time, the ring diameter in the OR map
increases slightly, and by speed 2 the features in the OR map become smaller than
those in the DR map.

Thus, with fast enough inputs, the DR map becomes the largest-scale organiza-
tion, with smaller patches for orientation. Although the results from speed 1 are most
similar to the existing animal results (from the ferret), the results from higher speeds
are predictions for maps in other species with greater motion sensitivities. LISSOM
also predicts that animals raised in environments with more motion during the ani-
mals’ critical period will develop direction maps whose spatial scale is larger than
that of their orientation maps.

Overall, the results in this section show that LISSOM can account for spatiotem-
poral preferences in addition to spatial ones. Although Gaussian images were used
in this section for clarity, similar results can be obtained with natural images (as will
be demonstrated in the next section).

So far in this chapter we have seen how orientation selectivity, direction selectiv-
ity, and lateral connectivity each develop synergetically in the model, and the results
match data from animal experiments. The next step is to show how they interact in a
single unified model of feature preferences in the cortex.

5.6 Combined Maps of Multiple Features

The LISSOM OR, OD, and DR models introduced in the previous sections are all
based on the same basic architecture, differing only in the number of eyes and LGN
sheets simulated and the type patterns used to train the model. Such uniformity makes
it possible to combine them into a comprehensive model that self-organizes all three
feature preferences at once. The model is first validated against biological data on
how orientation and ocular dominance interact. It is then trained with moving images,
and predictions are made on how all three features self-organize together. In the final
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Fig. 5.25. Effect of input speed on direction maps. From left to right, each row shows a
sample retinal activation at lag 0, final receptive fields to LGN regions with lags 3, 2, 1, and
0 (left to right) of six sample neurons, the inhibitory lateral connections of those six neurons,
the orientation preference and selectivity map, the Fourier transform of the OR preferences,
the direction preference and selectivity map, and the Fourier transform of the DR preferences.
Orientation and direction histograms are not shown because they are all nearly flat. Each
row shows the result from using training inputs moving at a different speed, ranging from
zero (stationary) to moving three retinal units between each group of lagged LGN cells. For
the example input shown, the lag 3 input was always the one shown in the top row (labeled
“Speed 0”), and by lag 0 it had moved to the position shown in each row. When the inputs were
stationary (i.e. all lags had the same input patterns), no direction map or direction-selective
units developed, and the “DR pref. & sel.” map is entirely dark. As the speed increases, more
units become direction selective, and direction becomes the largest-scale organization in the
map. This increase in feature size is visible in the DR Fourier transform plots, where a smaller
spatial frequency (larger feature spacing) leads to smaller rings as speed is increased. These
results are predictions for maps in animals with different retinal motion sensitivities or those
raised in environments with different speeds of visual motion.
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Fig. 5.26. LISSOM model of orientation, ocular dominance, and direction selectivity. The
architecture is a combination of the LISSOM OD network of Figure 5.14 and the DR network
of Figure 5.20. For each input movie, one retina is chosen randomly to be dimmer than the
other. The frames are then drawn on the retina one timestep at a time, and propagated to the
LGN sheets with the appropriate lag. The V1 neurons receive input from all 16 LGN sheets
simultaneously, and settle the activation through lateral connections as usual in LISSOM.

section, the effects of organizing it with natural images instead of oriented Gaussians
are considered. This stepwise approach makes it clear which aspects of the input
patterns and architecture are crucial for each type of feature preference.

5.6.1 Method

The LISSOM model of simultaneous OR/OD/DR is a combination of the ocular
dominance network of Section 5.4 and the direction selectivity model of Section 5.5.
It contains 16 LGN sheets, consisting of four ON and four OFF sheets for each of
the two eyes (Figure 5.26; see Appendix A for the model equations).

The model is trained with moving oriented Gaussian patterns at randomly chosen
locations and directions. As in the DR network, one Gaussian is used per iteration,
but multiple Gaussians would be used for larger retinas. As in the OD network, the
brightness sb of the Gaussian in the left eye is chosen randomly in the range [0..1] for
each movie, and the brightness of the corresponding spot in the right eye is computed
as 1.0 − sb. Also as in the DR network, each of the four sheets in the four LGN
channels receives a frame of the input movie with a different lag. Once all 16 LGN
sheets have been activated, V1 neurons calculate their initial activation based on the
total LGN activation, settle it through lateral connections, and adapt their weights as
in previous models.
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While there are significant biological data on how OR and OD interact in bi-
ological maps, little is known at present on how DR confounds these interactions.
Moreover, although lagged LGN cells have been found in cats (Hubener, Shoham,
Grinvald, and Bonhoeffer 1997; Löwel, Bischof, Leutenecker, and Singer 1988), they
may not exist in monkey LGN (Saul and Humphrey 1992). Therefore, in the first ex-
periment in this section, only the LGN sheets with lag 0 will be used, and the result-
ing OR/OD map will be compared with OR/OD results in monkeys. The parameters
of this experiment are set as in the OD-only simulation (Appendix A.6). In the second
experiment, the full OR/OD/DR model is trained for 20,000 iterations as described
above, and predictions are made on how these features interact in animals like cats.
The parameters for the OR/OD/DR simulation are described in Appendix A.9.

5.6.2 Combined Orientation / Ocular Dominance Maps

Through self-organization, the combined network without lagged inputs developed
realistic maps for both orientation and ocular dominance (Figure 5.27). Both maps
are similar to the single-feature maps of Sections 5.3 and 5.4, and contain the features
typical of animal maps. The OR map contains linear zones, pairs of pinwheels, sad-
dle points, and fractures, and its selectivity, Fourier transform, gradient, retinotopic
mapping, and OR preference histogram are similar to those in previous LISSOM OR
maps. The OD preference histogram and the OD selectivity map are similar to the
previous LISSOM OD map. These results demonstrate that LISSOM is capable of
forming realistic maps of independently varying feature dimensions simultaneously.

The maps interact in patterns similar to those seen in monkeys (compare Fig-
ure 5.27 with 5.3). Pinwheel centers and fractures rarely overlap with the OD stripe
boundaries; ocular dominance boundaries tend to cross orientation patches in lin-
ear zones at right angles, and OD boundaries rarely follow an orientation boundary.
Neurons that are least selective for orientation are thus most selective for the eye of
origin, and vice versa. Such patterns emerge in LISSOM because the self-organizing
process favors an organization where the responses are spread evenly across the cor-
tex (Section 3.4.3). As a result, the different regions of the map become selective
for different features. Overall, these patterns are consistent with biological data, sug-
gesting that LISSOM is a valid model of how such features develop in animals like
monkeys.

Interestingly, when disparity is used to create differences between the eyes (in-
stead of dimming), the joint OR/OD map that develops is not as realistic (not shown).
In this case, each eye develops independent orientation maps, and the boundaries be-
tween orientation patches often follow the OD boundaries (unlike in animals). In
effect, the neurons responding to each eye develop independently, because a given
neuron rarely receives activation from both eyes at once. This result provides further
computational evidence that processes like dimming, not disparity, are the source of
OD maps.

The receptive fields for each eye are similar to those in the LISSOM OR network.
They are all binocular to some degree, with slightly stronger connections from one
eye or the other. The lateral connections are strong locally, and in the longer range
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(a) OR preference & selectivity (b) OD preference

(c) OR preference & OD boundaries (d) OR selectivity & OD boundaries

Fig. 5.27. Self-organized OR/OD map. Based on oriented Gaussian patterns with different
brightnesses in each eye, LISSOM develops realistic orientation (a) and ocular dominance (b)
maps in the same area of cortex. The orientation map features are outlined in (a), (c) and (d)
as in Figure 2.4. In (c), the orientation preferences are overlaid with the ocular dominance
gradient: High gradient (black) marks the boundary between OD stripes. These boundaries
rarely overlap pinwheel centers or fractures, they intersect OR boundaries in linear zones at
right angles, and they rarely follow OR boundaries. These relationships are further highlighted
in (d), where regions of low orientation selectivity (pinwheel centers and fractures) are plotted
in dark gray, overlaid with the ocular dominance boundaries. Again, these features rarely in-
tersect, suggesting that the map organization results from distributing selectivity for different
features evenly across the cortex. Similar interaction between orientation and ocular domi-
nance is seen in biological maps (Figure 5.3; Blasdel 1992b)
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follow the orientation preferences, as they do in animals (Figure 5.28). The neurons
most selective for one eye also prefer connections from that eye, but the preference
is not absolute like it is in strabismic animals (Section 5.4.3). These results show
that the lateral connection patterns seen in the simpler separate maps also exist in the
combined maps, with preferences for multiple features overlaid onto the same set of
neurons.

5.6.3 Combined Orientation / Ocular Dominance / Direction Maps

To model all three feature types in the same network, the entire model of Figure 5.26
was trained with movies of moving oriented Gaussians, randomly dimmed in one
eye. The network developed realistic maps for orientation, ocular dominance, and
direction selectivity (Figure 5.29). The combined map is more complex than those
developed by the single-feature networks, because the network is representing three
overlaid, interacting feature maps.

However, the typical structures of animal maps are still found in this more com-
plex map. The OR, OD, and DR maps have the same features and the same quantita-
tive measures as the individual LISSOM OR, OD, and DR maps. Orientation patches
are often divided into patches selective for opposite directions of motion, and orien-
tation pinwheels and fractures avoid boundaries of the ocular dominance stripes. The
receptive fields are analogous to those in single-feature LISSOM networks, i.e. ori-
ented and binocular, with a slight preference for one eye or the other (Figure 5.32).
The lateral connections are strong in a local neighborhood, but at longer distances
mostly follow the orientation and direction preferences, as was found in the individ-
ual LISSOM OR, OD, and DR networks (Figure 5.32). These results demonstrate
that LISSOM can form realistic maps and lateral connections based on multiple fea-
tures; on the other hand, they also show that the approach of studying each feature
separately is valid and leads to insights that carry over to more complex maps.

Interestingly, some relationships that were clear in the OR/OD network are not as
uniform in the OR/OD/DR network. For instance, the ocular dominance boundaries
in linear zones do not intersect orientation patches at right angles as often, and pin-
wheel centers are not always at the center of OD stripes. Such variation corresponds
to differences between maps in different animal species. The patterns observed in
the OR/OD network have been characterized primarily in monkeys, and it is not
known if monkeys have lagged cells at the LGN level (Saul and Humphrey 1992).
Conversely, the lagged cells in the OR/OD/DR network are similar to those found
in cats, where the OR/OD intersection patterns are less clear (Hubener et al. 1997;
Löwel et al. 1988), similar to the OR/OD/DR LISSOM model. The two versions
of the combined LISSOM model therefore suggest that the differences seen in the
intersection patterns may be due to the differences in how these species represent
time-varying input.

5.6.4 Effect of Input Types

The oriented Gaussians used in the above experiments allow obtaining maps where
the feature interactions are most clear. The last step is to extend these results to
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(a) Connections in
iso-OR patches

(b) Connections in
OR pinwheels

(c) Connections in
OR saddles

(d) Connections in
OR fractures

Fig. 5.28. Long-range lateral connections in the combined OR/OD map. The inhibitory
lateral connections for four sample neurons from the regions marked in Figure 5.27 are shown
situated on the OR preference and selectivity map (top) and the OD map (bottom) as in
Figures 5.12 and 5.17. The connection patterns on the OR map are similar to those in the
orientation-only map. The most selective iso-OR neurons (a) are located near the OD stripe
boundaries, and receive connections equally from neurons of both eye preferences. Neurons in
iso-OR regions away from the OD boundaries connect more strongly to one eye (not shown).
OR fractures (b) and pinwheels (d) tend to occur near the centers of OD stripes and receive
connections primarily from the same eye preference. Saddle points (c) can occur either in the
middle or near the boundaries of OD stripes, and thus can have either monocular or binocular
connection patterns; the example neuron is in a monocular OD region and connects primar-
ily to the left eye. These connection patterns further extend the predictions from Figure 5.12,
showing how the connection patterns are shared between the OD and OR maps.
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Fig. 5.29. Combined OR/OD/DR map trained with Gaussians. Based on oriented, moving
Gaussian patterns with different brightnesses in each eye, LISSOM develops overlaid orien-
tation, ocular dominance, and direction maps simultaneously. This plot shows the orientation
preferences in color coding, the boundaries of the OD stripes in black, and the direction pref-
erences and selectivities as white arrows, as in Figures 5.23 and 5.27. The network develops
a realistic orientation and direction map, with OR patches subdivided into areas preferring
the opposite directions of motion. Ocular dominance boundaries tend to cross linear zones at
right angles, rather than following the orientation map. These results are similar to the ones
with individual input dimensions, complicated by the fact that multiple dimensions are being
mapped at once. Similar results have been observed experimentally with the cat visual cortex
(Hubener et al. 1997; Löwel et al. 1988).
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Fig. 5.30. Example natural image input for training the OR/OD/DR map. The top row
shows a sequence of images presented to the right eye and the bottom row the corresponding
images presented to the left eye. The two sequences are identical except for brightness; in
this example, the right eye was randomly chosen to be darker than the left. The sequence
represents a short movie where the image is moving to the left and slightly downward. The
original image is from a dataset by Shouval et al. (1996, 1997).

other types of inputs, including noisy disks and natural images. These input types
will be used in Part III as internal and external training patterns, in order to obtain
maps most comparable to biology. Identifying how the complexity of natural internal
and external input changes the observed map structures is an important step toward
understanding how biological maps develop.

The simulations were run otherwise with the same parameters as the Gaussian
OR/OD/DR experiment except for the training inputs, which consisted of the noisy
disk and natural image patterns of Section 5.3.5 (see Appendix A.9 for details). A
single noisy disk per iteration was used in the first experiment, located randomly on
the retina and moving in a random direction. In the second, an input pattern was se-
lected randomly from the dataset of images (by Shouval et al. 1996, 1997) and swept
across each eye in a random direction as shown in Figure 5.30. In both simulations,
the left and right eyes had identical inputs, differing only in brightness.

The maps developed with natural image inputs (Figure 5.31) were similar to
the Gaussian input case (Figure 5.29), although more variable and less smoothly
organized. Again, OD boundaries tend to cross OR linear zones at right angles, and
a patch of neurons highly selective for a direction often has a nearby patch selective
for the same orientation but the opposite direction. Neurons highly selective in one
dimension receive connections primarily from neurons with similar preferences for
that dimension, while neurons with low selectivity (e.g. binocular neurons) receive
connections from neurons with a wide range of preferences.
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Fig. 5.31. Combined OR/OD/DR map trained with natural images. The combined LIS-
SOM map from natural images is similar to the one in Figure 5.29. More of the units are
selective for orientations near horizontal and vertical, so the map has more red and cyan than
with artificial training inputs. Not as many neurons are highly selective for direction, but many
of the selective patches are located next to other patches selective for the same orientation but
opposite direction. Overall, these results are similar to those from artificial stimuli, with greater
variability reflecting the more complicated feature correlations in natural images.

Natural image input affects the RFs and lateral connections more strongly than
the maps (Figure 5.32). As in the single-feature simulations, the afferent RFs de-
velop a variety of shapes, including both two-lobe and three-lobe RFs, in contrast
to the uniformly three-lobed RFs of the Gaussian-trained map. Because natural im-
ages have correlations with longer range, the lateral connections are also wider and
patchier, as they are in the single-feature natural image maps.
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Fig. 5.32. Effect of training patterns on OR/OD/DR maps. From left to right, each row
shows a sample retinal activation, final spatiotemporal receptive fields of sample neurons with
lags 3, 2, 1, and 0 from left to right, their inhibitory lateral connections, the orientation prefer-
ence and selectivity map, the ocular dominance map, and the direction preference and selectiv-
ity map. The top row shows a network trained with oriented Gaussians, the middle with noisy
disks, and the bottom with natural images. All networks develop realistic orientation maps.
Maps with Gaussian inputs and noisy disks develop only smooth, two- or three-lobed RFs,
whereas networks with natural images develop a wide variety of RF types, corresponding to
the wide range of patterns seen in natural images. In each case, the lateral connection patterns
follow the features in the map. These results show that joint OR/OD/DR maps can develop
from a variety of abstract and realistic input stimuli.

The simulations with noisy disk patterns show that joint maps of ocular dom-
inance, orientation, and direction can also develop based on spontaneous activity
patterns (Figure 5.32). Again, the RFs and lateral connections differed significantly
from the Gaussians case, with primarily two-lobed RFs and more long-range lateral
connections. The map was less selective for direction than with the other input types,
primarily because the neurons became selective for moving curved edges whereas
selectivity was measured using straight sine gratings. The ocular dominance map is
more sharply delineated (as it is in strabismus) than with other inputs, primarily be-
cause the background noise was often stronger than the dim input in the other eye,
reducing the overall correlation. Overall, these results suggest that if spontaneous
activity patterns have enough motion and differ enough between the eyes, maps of
all three preference types can develop.

Together, the results presented in this section show computationally for the first
time how the OR, OD, and DR input features interact during development, and sug-
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gest a simple explanation for how the combined structures observed in animal maps
can emerge. When multiple maps are overlaid, the global structure becomes more
difficult to interpret, which is why the single-feature maps constitute a useful ab-
straction. The combined results are realistic and allow matching of anatomical dif-
ferences with map organization in different species (as will be discussed in more
detail in Section 17.2.2). The model also suggests which complexities are due to
mapping multiple features and which are a result of complexities in natural inputs.

5.7 Discussion

The LISSOM model shows how a single local and unsupervised self-organizing pro-
cess can be responsible for the development of topographic maps and the lateral
connection structures in the primary visual cortex. The model is the first to account
for the self-organization of lateral connections together with orientation maps, ocu-
lar dominance maps, and direction selectivity maps. Starting from random-strength
connections, neurons develop oriented spatiotemporal receptive fields and lateral in-
teraction profiles cooperatively and simultaneously. When the input varies in several
dimensions at once, the cells and lateral connections become selective for multi-
ple features, using the same architecture and learning rules that apply to individual
feature dimensions. Such self-organization stores long-range activity correlations be-
tween feature-selective cells in the lateral connections. As will be demonstrated in
more detail in Section 14.2, these correlations can be used to eliminate redundant
information during visual processing, and to make cortical cells more selective.

LISSOM makes several testable predictions about specific lateral connection pat-
terns in the cortex. The LISSOM orientation map predicts that the long-range con-
nections at pinwheel centers, saddle points, and fractures have unselective, broad
unimodal, and biaxial distributions, respectively. The direction map predicts that
long-range lateral connections primarily link neurons with similar orientation and
direction preference, extend along the orientation preference, and avoid orthogonal
orientations and opposite directions. At DR fractures they connect with both direc-
tions and extend along their common orientation, in DR saddles they connect with
the directions of the saddle, and in DR pinwheels they connect with all directions.
The OD preferences are overlaid with the OR and DR preferences: The neurons most
selective for one eye prefer connections from that eye, but such a preference is ab-
solute only in strabismic animals. These predictions can be tested experimentally
by combining optical imaging and injected tracers (like Bosking et al. 1997; Löwel
1994; Löwel and Singer 1992; Malach et al. 1993; Sincich and Blasdel 2001), as will
be discussed in Section 16.4.2.

For clarity, the simulations shown in this chapter were each based on a single
type of input pattern, such as Gaussians or natural images. The biological visual
cortex, however, may be exposed to multiple sources of activity during development,
including spontaneous, internally generated patterns and visual, externally evoked
inputs. Biological development is thus likely to depend on a complex combination
of such patterns. As will be shown in detail in Chapter 9, modeling both prenatal
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internal activity and postnatal visual images allows the model to account for both
the primitive orientation maps seen at birth in animals and the more refined adult
maps. Such more complex simulations are a natural extension of the single-input
experiments presented in this chapter, providing a solid basis for understanding how
V1 develops in animals.

LISSOM simulations serve to identify the types of input patterns that lead to
normal and abnormal development of maps and connections, which can in turn help
focus future biological experiments. For instance, realistic LISSOM ocular domi-
nance maps develop from strength or brightness differences between patterns in the
two eyes, but not from large position differences. This result leads to interesting pre-
dictions about the roles of internal and external input in shaping the OD maps. In
newborn mammals, a rudimentary OD map exists at birth, presumably organized
based on prenatal internally generated input such as retinal waves (Crair, Horton,
Antonini, and Stryker 2001; Horton and Hocking 1996). If retinal waves are the only
source, the LISSOM model predicts that the map would be strabismic, because the
retinal waves are uncorrelated between the two eyes. This prediction is difficult to
verify directly, but because normal adult maps are not strabismic, two interesting
possibilities follow: (1) If the newborn maps are not strabismic, the LISSOM results
suggest that the internally generated input that constructs the newborn map must be
correlated between the two eyes. Since the retinal waves are not, there must be some
additional source of internally generated patterns, like the PGO waves, that plays this
role. (2) If newborn maps are indeed strabismic, visual experience must play a crucial
role in shaping a normal adult map. In effect, the OD map is then constructed in two
phases, prenatal and postnatal, like the orientation map. Possibilities for identifying
such patterns and processes experimentally, and for modeling them computationally,
are described in more detail in Section 17.2.3.

The LISSOM direction selectivity model is based on a simple but effective model
of moving inputs, i.e. translation in a random direction within the image plane at each
presentation. In the future it can be made more realistic by interleaving input frames
with propagation and settling. Such a process is more complicated but should lead
to similar results. More importantly, it is not yet clear what types of moving input
drive the development of direction-selective neurons and direction maps in animals.
Possible candidates include drifting retinal waves before birth, moving objects in the
environment (relative to a stationary background), and optic flow due to eye or head
movements. Each of these types of natural motion have different statistical proper-
ties, which is important to take into account in a more detailed model. As suggested
above for OD and OR, multiple types of internal and external time-varying input
are likely to contribute to the developmental process. Future models will depend on
measuring and characterizing sources of these inputs in detail, as will be discussed
in Section 17.2.3.

In addition to the lagged LGN cells modeled in LISSOM, different species may
utilize other mechanisms for establishing direction selectivity and motion prefer-
ences (see Clifford and Ibbotson 2002 for a review). For instance, some connection
pathways within V1 (e.g. between cortical layers in a column) may have delays long
enough to serve as a memory of previous activity levels, much like the lagged af-
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ferent inputs do. Once they are characterized in sufficient detail, such mechanisms
can be implemented in LISSOM, and they can potentially help account for a wider
variety of motion preference results within the same basic framework (as will be
discussed in Section 17.1.5).

In a similar manner, the LISSOM model can be instrumental in understanding
differences between species more generally. The simulations in this chapter were
necessarily based on pooled data from several different species because compara-
ble experimental data do not yet exist across species. As such data are obtained,
the model can be parameterized to account for a specific species in detail. As will
be discussed in Section 17.2.2, such computational experiments should allow us to
understand which differences are significant and what their origins are.

The LISSOM results in this chapter focused on orientation, ocular dominance,
and direction maps, which are experimentally the best understood feature dimen-
sions. Future models may also be trained with input that vary in spatial frequency,
color, and disparity. Such simulations should result in preferences and maps for these
additional features without requiring significant changes to the LISSOM model itself.
Because little is known about these dimensions in biology, the simulations could be
use as a guideline for further experimental studies. Such simulations will be dis-
cussed in more detail in Section 17.2.1.

5.8 Conclusion

The results in this chapter demonstrate that a single local and unsupervised self-
organizing process can develop both the afferent and lateral connection structures in
the primary visual cortex. This model is the most complete computational simulation
of V1 to date. The model suggests that the afferent connections represent visual
features with the highest variance, such as topography, orientation, ocularity, and
direction. The lateral connections represent correlations between such features, and
implement an efficient coding of visual information.

The same self-organizing process may continue to operate in the adult, serving
a different role: It may be responsible for plasticity and adaptation after damage, as
will be described in the next chapter.
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Understanding Plasticity

So far we have seen how LISSOM organizes visual information in the afferent re-
ceptive fields and lateral connections and develops a representation of visual features
and their correlations. The resulting structures are similar to those seen in the visual
cortex, and the model can be used to investigate phenomena in the adult cortex that
are difficult to understand experimentally. One of the most intriguing such phenom-
ena is that the maps in the adult sensory cortex are highly plastic, i.e. adaptable. How
can the cortex stay plastic in the adult, yet maintain the structures necessary for vi-
sual processing? This chapter will demonstrate how the same self-organizing process
that builds the cortical organization during early development can also maintain it in
a state of continuously adapting dynamic equilibrium in the adult.

Two types of cortical plasticity have been observed in biology: reorganization
following lesions in the receptor surface, and reorganization after lesions in the cor-
tex. These experiments will be modeled with LISSOM, showing how the network
compensates for lesions in the retina, why the reorganization behavior after retinal
lesions produces dynamic changes in receptive fields, how the network reorganizes
after cortical lesions, and how the reorganization mechanisms suggest techniques to
accelerate recovery following cortical surgery or stroke. The results suggest that the
same self-organizing mechanism that allows the cortex to learn and represent input
information also makes it robust against damage.

6.1 Biological and Computational Background

Reorganization after retinal and cortical lesions is well documented in biological
experiments, as will be reviewed in this section. A number of modeling studies also
suggest how these processes might take place computationally.

6.1.1 Reorganization After Retinal Lesions

Early studies of cortical development had suggested that most of the cortical struc-
tures develop only during a critical period just after birth and are hardwired afterward
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(a) Penetration site (b) Intact eye (c) Lesioned eye

Fig. 6.1. Reorganization of receptive fields after a retinal lesion. The receptive field distri-
butions in the intact and the lesioned eye of a single adult cat are plotted in visual space 4–8
hours after a retinal lesion in one eye. (a) The electrode penetration site (vertical line) is shown
along with the locations (open circles) of neurons whose receptive fields are plotted in (b) and
(c). The arrows on the left mark the boundary of the cortical region that represents the retinal
lesion. The neurons are labeled “e” to “r” from top to bottom and span a distance of about
5 mm. (b) The receptive fields in the visual space of the intact eye are shown as rectangles
labeled “e” to “r” according to the neuron’s position along the penetration site. The grid lines
are spaced 10◦ apart and the black diamond marks the area centralis. The dashed contour in
the middle marks the area that corresponds to the scotoma in the lesioned eye; the receptive
fields within this region are colored gray. The receptive fields show an orderly progression
from left to right. In another penetration before the lesion (not shown), a distribution similar
to that in (b) was observed in both eyes; therefore, the distribution in the intact eye suggests
how the receptive fields in the lesioned eye were located before the lesion. (c) In the lesioned
eye, the scotoma is shown as a dark gray area. The receptive fields that used to respond to
the area inside the scotoma (the gray rectangles labeled “e” to “o”) have moved outward, and
now represent the perilesion area. Several of them (e.g. “g”, “h”, and “m”) have also aligned
with the scotoma boundary. As a result, the unresponsive area in the cortex (a perceptual blind
spot) has disappeared, even though damage persists in the retina. Reprinted with permission
from Calford et al. (1999), copyright 1999 by the Royal Society of London.

(Albus and Wolf 1984; Bonds 1979; Braastad and Heggelund 1985; Hubel et al.
1977; Wiesel 1982). The unspoken assumption was that all the information-carrying
pathways are firmly and immutably formed during this early period and the plasticity
necessary for learning and compensating for damage exists only in higher cortical ar-
eas. However, subsequent results showed that the primary cortical areas are capable
of substantial change even in the adult brain (see Buonomano and Merzenich 1998;
Chklovskii, Mel, and Svoboda 2004; Kaas 1991 for reviews). For example, after a
small artificial blind spot or a physical lesion (i.e. a scotoma) is induced in the retina,
an unresponsive area appears in the visual cortex. Over time, this area gradually re-
covers function and starts to respond to stimuli outside the scotoma (Figure 6.1; Cal-
ford, Wang, Taglianetti, Waleszczyk, Burke, and Dreher 2000; Chino, Kaas, Smith,
Langston, and Cheng 1992; Chino, Smith, Kaas, and Cheng 1995; Darian-Smith and
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Gilbert 1995; Waleszczyk, Wang, Young, Burke, Calford, and Dreher 2003). Con-
sequently, the blind spot becomes invisible, even though the damage persists in the
retina. The receptive fields on each eye organize largely independently, i.e. monocu-
lar and binocular lesions lead to similar results (Section 6.5).

The cortical changes following a retinal lesion can be quite rapid, as experiments
by Pettet and Gilbert (1992) showed. They simulated a retinal scotoma by artificially
masking a portion of the visual field and stimulating only the surround of the mask.
The mask prevented a part of the cortex from receiving visual stimulation, producing
a corresponding cortical scotoma. After the surround had been stimulated for a pe-
riod of several minutes, the retinal scotoma was removed, and the receptive fields of
the unstimulated neurons were found to have enlarged. Psychophysical experiments
further showed that after removing the scotoma, a stimulus at the edge of the sco-
toma appeared to be shifted toward the center (Kapadia et al. 1994). Similar results
were later observed with physical lesions to the retina, including detaching it par-
tially (Schmid, Rosa, and Calford 1995) and removing photoreceptors with a focal
laser (Calford et al. 1999). In both cases, the receptive fields were observed to expand
rapidly.

Prima facie, such a dynamic expansion of receptive fields of the unstimulated
neurons and the perceptual shift accompanying it appear incompatible with Hebbian
self-organization, which suggests that only active neurons should change substan-
tially. It has therefore been difficult to explain these observations. However, recent
experimental results indicate that corticocortical lateral interactions may play a crit-
ical role in such postlesion reorganization. For example, if the activities of neurons
outside the cortical scotoma are artificially suppressed, the reorganized neurons be-
come silent as well (Calford, Wright, Metha, and Taglianetti 2003), suggesting that
lateral activation may be necessary for reorganization. In this chapter, the LISSOM
model will be used to provide a concrete computational explanation for this phe-
nomenon, based on lateral interactions and the reorganization of afferent receptive
fields.

6.1.2 Reorganization After Cortical Lesions

Lesions to the visual cortex may result, for example, from a stroke or head injury:
Neurons in a small area of the cortex become unresponsive to input. Similar to retinal
lesions, the cortex gradually reorganizes and recovers some of the function that was
initially lost.

Recovery following cortical lesions involves three phases (Merzenich, Recan-
zone, Jenkins, and Grajski 1990):

1. Immediately after the lesion, there is an immediate partial compensation for the
cortical damage, as the receptive fields of neurons surrounding the lesion be-
come larger (Wurtz, Yamasaki, Duffy, and Roy 1990) and expand inward (Sober,
Stark, Yamasaki, and Lytton 1997). As a consequence, less function is lost than
expected based on the prelesion map (Figure 6.2).

2. Over the next several days, the reorganization includes mixed effects: Some re-
ceptive fields shift outward (Merzenich et al. 1990), in addition to those that
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Fig. 6.2. Reorganization of receptive fields after a cortical lesion. The receptive fields mea-
sured through microelectrode recording before and after lesion in the middle temporal (MT)
area of a macaque monkey are shown in visual space; the axes indicate angles in the visual
field. The retinal area represented by the lesioned cortex is shown in gray (labeled “Motion
scotoma”). Before the lesion, receptive fields of neurons immediately outside the cortical le-
sion boundary (dashed rounded rectangles) responded to the lower right corner of the gray
area. However, 3 hours to 3 days after the lesion, the receptive fields (solid rounded rectangles)
became larger and covered a larger portion of the scotoma, suggesting that neurons outside the
lesion boundary were compensating for the loss of function. Reprinted with permission from
Sober et al. (1997), copyright 1997 by the American Physiological Society.

expand inward. Also, in some cases the receptive fields became smaller (Eysel
and Schweigart 1999; Sober et al. 1997) in addition to those that enlarged. Some
of the immediate compensation is lost, because some perilesion neurons do not
respond as strongly as before, and in some cases more function is lost than ex-
pected based on the prelesion map (Merzenich et al. 1990). A similar pattern of
transient performance improvement, followed by a decline, is also seen in motor
cortex (Nudo, Wise, Fuentes, and Milliken 1996), suggesting that it is a general
trend in cortical recovery.

3. Over subsequent weeks, the receptive fields expand inward again, as the per-
ilesion neurons begin to respond to part of the receptor surface that used to be
represented within the lesion (Eysel and Schweigart 1999; Wurtz et al. 1990;
Zepeda, Sengpiel, Guagnelli, Vaca, and Arias 2004). Gradually, the cortex com-
pensates for the lesion and regains much of the lost function.

The mechanisms underlying such reorganization, especially during the regressive
phase in the days following the lesion, are not well understood (Sober et al. 1997;
Zepeda et al. 2004). Apparently, reorganization following cortical lesions is based
on different mechanisms than that following retinal lesions. With retinal lesions, the
distribution of input to the cortex changes, and the recovery consists of reorganizing
the afferents. With cortical lesions, the input distribution remains unchanged but the
local network structure is altered, and this process is likely to depend crucially on
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lateral connections. Using the LISSOM model, this hypothesis will be tested com-
putationally in Section 6.4.

6.1.3 Computational Models

During the last few years, there have been several efforts to develop computational
models of cortical map reorganization (Goodall, Reggia, Chen, Ruppin, and Whitney
1997; Grajski and Merzenich 1990; Kohonen 1989; Obermayer, Ritter, and Schul-
ten 1990a,c; Pearson, Finkel, and Edelman 1987; Sober et al. 1997; Sutton, Reggia,
Armentrout, and D’Autrechy 1994). Most of these were designed either to model
isolated plasticity phenomena or to demonstrate general principles of plasticity, and
did not aim at a computational theory of how the observed cortical structures or-
ganize and reorganize. For example, Sober et al. (1997) showed how changing the
parameters in an otherwise non-adaptive model could induce a variety of changes
with retinal lesions, including both receptive field expansion and contraction.

A more general theory is provided by models based on self-organizing maps (An-
drade, Muro, and Morán 2001; Goodall et al. 1997; Obermayer et al. 1990a,c; Sirosh
and Miikkulainen 1994b, 1996a). For example, Obermayer et al. (1990a,c) used a
SOM-based model to study how the somatosensory cortex reorganizes following the
amputation of a finger. In animal experiments, such a lesion is analogous to reorgani-
zation following retinal lesions: Soon after the amputation, the unresponsive cortical
region gradually regains function and responds to the skin of the remaining digits
(Merzenich, Nelson, Stryker, Cynader, Schoppmann, and Zook 1984). The skin sur-
face was modeled with a set of receptors scattered in the shape of a hand, and the
somatosensory cortex with a SOM network. Circular Gaussian spots were presented
on the receptor surface as input stimuli, and the SOM self-organized into a topo-
graphic map of the hand. Subsequently, the receptors of one digit were deactivated,
and the self-organization continued. Because the input distribution had changed, the
map reorganized based on the stimuli on the remaining fingers. The receptive fields
of the neurons in the inactive region gradually moved outward from the lesioned fin-
ger, and began to respond best to other stimuli. In the end, all neurons that originally
had responded to the lesioned finger represented the surviving fingers.

The SOM-based model illustrates how a topographic map can reorganize, but it
does not account for phenomena such as the dynamic expansion of receptive fields
seen after peripheral lesions. Moreover, if a cortical lesion were to be simulated in
a SOM model, it would reorganize monotonically and recover function completely,
unlike the cortex. In addition, Goodall et al. (1997) demonstrated that for proper
recovery to take place, the area surrounding the cortical lesion needs to activate more
easily than before the lesion. The reason for each of these observations is that the
models are driven by afferent adaptation only; as shown by Andrade et al. (2001) and
Sirosh and Miikkulainen (1994b, 1996a), specifically adapting lateral connections
can overcome these problems in principle, although their models did not include
fully detailed map structures.

Building on these foundations, the remaining sections will demonstrate how a
large-scale orientation map model with explicit, adapting lateral interactions can pro-
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Fig. 6.3. Architecture of the reduced LISSOM model. As long as Gaussian patterns are used
as input, it is not necessary to include separate ON and OFF channels in the model. Instead,
the input can be directly presented as ON channel activations. For simplicity and compatibility
with other similar models, this channel is called the Retina, and its neurons are referred to as
photoreceptors. The afferent connections form a local anatomical receptive field directly on
the redefined retina; the lateral connections are similar to those in other LISSOM models.
The reduced model is more efficient to simulate computationally than the full LISSOM, with
equivalent results (as shown in Figures 6.4 and 6.5).

vide an accurate and general account for the observed reorganizing behavior with
both retinal and cortical lesions.

6.2 The Reduced LISSOM Model

Any of the trained LISSOM networks discussed in Chapters 4 and 5 can be used
to study plasticity. However, the fine details of those maps are not necessary, and a
simplified, computationally more efficient model can be used as well. Since the focus
is on reorganization of the map only, the model can be trained with artificial inputs,
and the ON/OFF channels can be bypassed (Figures 6.3 and 6.4). Such a reduced
model will first be described in detail below, and demonstrated to develop an OR
map equivalent to the LISSOM model of Section 5.3. The role of ON/OFF channels
is then analyzed experimentally, and shown to be important for natural images, but
unnecessary for the artificial inputs used in this chapter.

6.2.1 Method of Self-Organization

As was mentioned in Section 5.3.5, the ON and OFF channels in LISSOM allow
forming similar responses despite differences in background illumination in the in-
put. This property is important with natural images, but not necessary when artifi-
cial patterns such as Gaussians are used as input. In such cases, the model can be
made computationally more efficient by including only the ON channel. Further, this
channel can be combined with the retina into a single sheet of neurons, activated
by the input image like the ON sheet in the LGN. For simplicity and compatibility
with other similar models (Section 3.4.1), this sheet will be called the retina, and its
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Fig. 6.4. Effect of ON/OFF channels on orientation maps. The two rows show the results
for two LISSOM networks trained with the same stream of Gaussian inputs. The top network
is the LISSOM OR map from Section 5.3, and the bottom network is the reduced LISSOM
model of Figure 6.3. As in Figure 5.13, each row includes a sample retinal activation, the LGN
response (for the ON/OFF LISSOM network), the final receptive fields of sample neurons,
their inhibitory lateral connections, the orientation preference and selectivity map, and the
histogram and the Fourier transform of the orientation preferences. For the ON/OFF model,
the inputs consisted of photograph-like images of Gaussians such as those used in Chapters 4
and 5, shown in gray scale from black to white (low to high), with medium gray representing
background activation. In contrast, the reduced LISSOM inputs were similar to the activations
in the ON channel, i.e. gray scale from white to black (low to high), with white background.
The reduced LISSOM RFs are shown in gray scale like ON weights from white to black (low to
high), whereas the ON/OFF LISSOM RFs are combined by subtracting the OFF weights from
the ON, as e.g. in Figure 4.6. The RF orientations, lateral connections, and map organization
are almost identical in the two models. The RFs on the ON/OFF channels have multiple ON
and OFF lobes, and become slightly more oriented. As a result, the ON/OFF map is somewhat
more selective. The histogram of each orientation map is nearly flat for both networks, because
the inputs were uniformly distributed. These results show that as long as the maps are trained
with the same stream of Gaussian inputs, functionally similar maps develop with or without
the LGN. However, Figure 6.5 will show that the ON/OFF channels of the LGN are necessary
for processing natural images.

neurons will be referred to as photoreceptors. The resulting reduced LISSOM archi-
tecture is otherwise similar to that of Section 5.3, except the cortical neurons receive
input directly from such a redefined retina (Figure 6.3).

In the reduced LISSOM simulations, the cortical network consisted of an array of
142×142 neurons, and a retina of 36×36 receptors. The neurons in the cortical sheet
received afferent connections from broad overlapping circular patches on the retina.
The center of the anatomical receptive field of each cortical neuron was placed at the
location in the central 24 × 24 portion of the retina corresponding to the location of
the neuron in the cortex, so that every neuron had a complete set of afferent connec-
tions (Figure A.1). The connection strengths were initially random in a circular area
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within six units from the RF center. The lateral weights were initially set to a smooth
Gaussian profile. The rest of the parameters are described in Appendix B.

The network was organized in 10,000 input presentations of two randomly lo-
cated and oriented Gaussians. The input sequence was exactly the same as for the
LISSOM OR map of Section 5.3. As will be demonstrated in more detail in Sec-
tion 8.4, such identical training makes it possible to compare the two architectures in
detail.

6.2.2 Orientation Maps with and without the LGN

In the self-organizing process, a well-formed orientation map emerged, with the typ-
ical oriented receptive fields, topographic order, and patchy lateral connections (Fig-
ure 6.4). In fact, this map is almost identical to that in Section 5.3, with the same
iso-orientation patches and other map features roughly in the same locations. The
similarities extend to the individual neuron level as well: The RF orientations and
lateral connection patterns are usually very similar between corresponding neurons
in the two maps.

When the inputs consist of oriented Gaussians, the V1 activity patterns are the
same with or without ON and OFF channels (Figure 6.5). Since the self-organizing
process is driven by these activity patterns, the same map results in both networks.
In other words, with such inputs, the reduced model is functionally equivalent to
LISSOM with ON/OFF channels.

This equivalency explains why models with and without ON and OFF cells have
both been able to develop realistic orientation maps. It also suggests that if the com-
putational experiment focuses on the organization of the map and its lateral connec-
tions, and is based on artificial inputs, the simulations can be made more efficient by
bypassing the LGN. This simplification will be utilized in the remainder of Part II,
as well as in Parts IV and V of the book.

6.2.3 The Role of ON/OFF Channels

It is also important to point out how the LISSOM models with and without the
ON/OFF channels differ. Most obviously, although they have the same orientation,
the RF shapes are drastically different. These shapes are determined by both the V1
and LGN activities, and the LGN activities in the OFF channel differ greatly from
those in the ON channel.

The difference is not important as long as the inputs consist of oriented Gaus-
sians: The maps still respond to the same input with a similar activation pattern.
However, the LGN plays a crucial role in suppressing spurious activation with other
types of inputs, such as natural images and retinal wave patterns, which cover sub-
stantial parts of the retina. In such large patterns, there are often large active areas,
large gradual changes in brightness, and nonzero mean levels of illumination. The
ON and OFF cells suppress spurious activation in such cases, and allow the map to
respond based on orientation (Figure 6.5).
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(a) Retina (b) LGN (c) V1 ON/OFF (d)OH (e) V1 reduced (f )RH

Fig. 6.5. Role of ON/OFF channels in processing various kinds of inputs. Each row shows
a sample retinal activation, the LGN response, the V1 response and its histogram (OH) for
the ON/OFF LISSOM network, and the V1 response and its histogram (RH) for the reduced
LISSOM network. The sample inputs are plotted in gray scale from black to white (low to
high) and the LGN activations by subtracting the OFF cell responses from the ON. In the
V1 plots (c,e), orientation preferences of those neurons that respond are color coded accord-
ing to the key on top, and color saturation represents the activation level (selectivity is not
shown to match the perceived orientation measure; Section 7.2.1). The two networks respond
similarly to an oriented Gaussian input on a blank background (top row), which is why very
similar orientation maps developed in Figure 6.4. As seen in the histograms, only neurons with
orientation preferences matching the input line respond. However, the networks behave very
differently for other types of input. The ON and OFF channels filter out nonzero background
levels and smooth, gradual changes in brightness, which ensures that V1 ON/OFF responds
only to oriented patterns and sharp edges (second row; the response is strongest on the bright
side of the edge because only bright Gaussians were used in training, as shown in the top row
of Figure 5.13). In contrast, overall background illumination with no edges is ignored by the
ON/OFF network (third row), whereas it activates nearly all of the V1 neurons in the reduced
model. Without the LGN, the response to most patterns is determined by the total amount of
brightness in the input, rather than by the orientation preference of the V1 neurons. Nonzero
background levels, gradual changes in illumination, and large, bright objects are all common
in natural images (bottom row), and thus the ON and OFF channels are crucial for preserv-
ing orientation selectivity when processing such images. On the other hand, the ON and OFF
channels can be omitted for networks that process only schematic patterns on a blank back-
ground. The natural image is a retina-size detail (as shown in Figure 8.4(e)) from National
Park Service (1995).
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Natural scenes and retinal waves contain many such features, and thus including
ON and OFF cells in LISSOM is crucial for experiments that utilize such inputs, like
those in Chapter 5 and in Part III.

6.2.4 Methods for Modeling Plasticity

The plasticity simulations were performed using the reduced LISSOM orientation
map network described above. After self-organization has reached the settled state
shown in Figure 6.4, both the lateral and afferent connections are in a dynamic equi-
librium with the input distribution. They adapt each time an input is presented, but the
overall organization does not change significantly, as long as the architecture stays
intact and the input distribution does not change. This model forms the foundation
for studying plasticity.

To study the effect of retinal lesions, the dynamic equilibrium is disrupted by
introducing an artificial scotoma: The activity in a square region of the photoreceptor
array is set to zero for all subsequent inputs (Figure 6.6). A cortical lesion can be
introduced in the same way: The outputs of a set of neurons in the middle of the
cortical network are set permanently to zero (Figure 6.9). In both cases, the lesion
disrupts the dynamic equilibrium and forces the network to adapt, as described in
detail in the next two sections.

6.3 Retinal Lesions

As a result of the retinal scotoma, neurons in the center of the corresponding cortical
area no longer receive input (Figure 6.6). Their response is lost, the dynamic equilib-
rium is disturbed, and the self-organizing process adapts the map and the receptive
fields accordingly.

6.3.1 Reorganization of the Map

As shown in Figure 6.7, the reorganization in LISSOM proceeds in the same manner
as observed in the biological cortex (Section 6.1.1; Chino et al. 1992). Initially, the
afferent RFs are laid out across the retina relatively uniformly, with local distortions
due to OR patches (as described in Section 5.3.3). After the lesion, the afferent RFs
of the central, unstimulated neurons remain in the same location as before, but those
of the surrounding neurons move outward. These neurons receive input from the
receptors surrounding the scotoma, but no stimulation from inside it. Through Heb-
bian adaptation, the connections from the outside become stronger and those from
the inside weaker, resulting in the observed shift outward.

Gradually, almost all neurons that receive afferent input shift their afferent
weights outside the scotoma. Most of the initially unresponsive neurons of the net-
work now respond to the periphery of the scotoma. How complete this process is
depends on the size of the scotoma. If the lesion is large enough, a set of central
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(a) Retinal activation (b) Initial V1 response (c) Settled V1 response

Fig. 6.6. Retinal activation and V1 response before and after a retinal scotoma. The initial
and settled responses of the intact network (top row) and the lesioned network (bottom row) to
input in (a) are shown in (b) and (c). The activations are displayed in gray scale from white to
black (low to high; the orientation preferences of active V1 neurons are not shown). The retinal
lesion is simulated by setting the activity of a set of receptors to zero, as shown in the bottom
row of (a). The dotted line in (a) marks the lesioned area on the retina (the retinal scotoma),
and in (b) and (c) marks the corresponding portion of V1 (the cortical scotoma). The cortical
scotoma is approximately as wide as the lateral connections, matching artificial scotomas in
biological experiments. Many of the neurons that responded to the intact input do not receive
sufficient activation in the lesioned network and remain silent (because the topography of the
retinal preferences is not uniform around the edges, some neurons inside the cortical scotoma
still respond). Such changes in activity disrupt the dynamic equilibrium, forcing the network
to reorganize.

neurons are never stimulated again; they retain their old receptive fields (as shown
in Figure 6.7) and appear as a dark area in the visual field. With smaller lesions, the
combined effect of the afferent input and lateral excitation is enough to cause them
to reorganize as well, eventually making the blind spot in the retina invisible. The
LISSOM model therefore suggests a mechanism for the reorganization in response
to the retinal scotoma, and allows predicting its extent.

Corresponding changes can be seen in the orientation map (Figure 6.7). At the
center of the scotoma the map remains unchanged, but near the edge, where the
neurons’ receptive fields have shifted, significant reorganization can be observed.
Many neurons near the boundary of the scotoma become selective for the orientation
of the boundary. In response, the neurons farther away from the boundary adapt so
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Fig. 6.7. Reorganization of the orientation map after a retinal scotoma. In the top row,
the RF centers of every third neuron in the network are plotted as a grid in the retinal space;
the bottom row displays the corresponding map of orientation preferences (selectivity is not
shown). The RF centers in the grids are calculated from the settled response (instead of the
afferent weights as e.g. in Figure 5.11; Appendices G.2 and G.3), because the lesioned map
is not in equilibrium with the input. The dotted white line shows the cortical scotoma, i.e.,
the region of V1 corresponding to the lesioned area of the retina. (a) Before the scotoma,
the RF centers are organized into a retinotopic map with orientation-based distortions, as in
Figure 5.11. (b) Shortly after the scotoma, neurons whose RFs were entirely covered by the
scotoma retain their old RFs, but the surrounding neurons start to reorganize their afferent
weights into the periphery of the scotoma. (c) Five thousand iterations after the scotoma, most
of the receptive fields have moved out into the periphery of the lesion (with corresponding
inward changes in perception as demonstrated in Figure 6.8); how many remain in the center
depends on how large the scotoma is compared with the RFs and the lateral connections. The
orientation map is unchanged within the central region of the scotoma, but along the cortical
scotoma boundary (in white) many neurons have become selective for the orientation of the
boundary, and the rest of the map has adapted to these changes. The reorganization of the
retinotopic map provides a detailed computational account for the outward shift in the RF
center found by Chino et al. (1992; Section 6.1.1), while the changes in the orientation map
constitute predictions for future experiments. An animated demo of the reorganization process
can be seen at http://computationalmaps.org.
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that the orientation map remains smooth. Such reorganization of the orientation map
has not been studied in biology, although the receptive fields have been observed to
align with the lesion boundary (Figure 6.1). The results from the LISSOM model
therefore constitute predictions for future biological experiments.

6.3.2 Dynamic Receptive Fields

As observed in biology (Section 6.1.1; Pettet and Gilbert 1992), the reorganization in
the LISSOM map also causes rapid changes in the receptive field size of the central,
unstimulated neurons. As the neurons surrounding the cortical scotoma reorganize
their RFs to the periphery, they become insensitive to the center of the retinal sco-
toma. If the scotoma is now removed, and an input is presented in the scotoma region,
only the previously unstimulated neurons (which did not reorganize) respond vigor-
ously to the new input; the surrounding ones do not (Figure 6.8c). Therefore, there is
considerably less lateral inhibition from the surrounding neurons to the central neu-
rons. Whereas the central neurons previously responded only weakly to stimuli at
the periphery of the scotoma, such responses are now unmasked. Consequently, their
RFs have become larger. The expansion is greatest along the preferred orientation
because the strongest afferent weights lie in this direction (Figure 5.12a), and any
decrease of inhibition unmasks responses mainly in that direction.

This explanation for dynamic receptive fields could be verified in a simple bi-
ological experiment. If inhibition to the unresponsive region of the cortex were to
be suppressed (by selectively blocking inhibitory neurotransmission using a chem-
ical such as bicuculline), the influence of the surround would be removed from its
response. The receptive fields would then have the same size before and after the
scotoma. On the contrary, if lateral inhibition is not responsible for the expansion,
the dynamic changes of receptive field size would still occur.

The reorganization in LISSOM can account for the psychophysical result of in-
ward shift (Section 6.1.1; Kapadia et al. 1994) as well. The neurons whose receptive
fields have moved outward now respond to inputs farther from the center than before.
Therefore, an input at the edge of the retinal scotoma stimulates many neurons in-
side the cortical scotoma that previously would not have responded, and the response
pattern is shifted inward (Figure 6.8c). After the scotoma is removed and the normal
stimulation reestablished, the reorganized RFs gradually return to the normal state,
and the shift disappears.

The LISSOM model thus shows how the same self-organizing processes and lat-
eral interactions that shape the receptive fields during early development can main-
tain them in a continuously adapting, dynamic equilibrium with the visual environ-
ment in the adult. Damage to such a system then results in map reorganization and
dynamic receptive fields, giving a detailed computational account for these biologi-
cal phenomena.
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(a) Input (b) Intact response (c) Reorganized response

Fig. 6.8. Dynamic RF expansion and perceptual shift after a retinal scotoma. In the top
row, the response of the network to a single vertical input across the bottom edge of the retinal
scotoma (a) is shown before the lesion (b) and after the cortex reorganized and the scotoma
was removed (c). The lower activity patch, due to neurons just outside the cortical scotoma,
has almost disappeared in the reorganized response, because these neurons now prefer hori-
zontal inputs (as seen in the OR map of Figure 6.7c). As a result, these neurons do not inhibit
the neurons inside the scotoma as strongly as before, and the inside neurons now have larger
effective RFs, as indicated by the slightly larger and more intense top activity patch. The in-
ward perceptual shift is most clearly seen when the input is just outside the retinal scotoma
and parallel to its boundary, like the horizontal input below the scotoma in the bottom row.
The reorganized response is much larger than the initial response because most neurons near
the bottom boundary now prefer horizontal inputs. In addition, the RFs of these neurons have
shifted outward (as seen in the retinotopy plot of Figure 6.7c), which results in a correspond-
ing small shift of the response pattern inward. These results replicate the dynamic RF size
expansion and the corresponding inward shift in the perceived location found in biological
experiments (Section 6.1.1; Kapadia et al. 1994; Pettet and Gilbert 1992); the magnification
of boundary orientations is a prediction of the model.

6.4 Cortical Lesions

The reduced LISSOM network of Section 6.2 was used as the starting point for the
cortical plasticity experiments as well. A cortical lesion was induced in the final self-
organized network (Figure 6.9), and the self-organizing process adapted accordingly.
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(a) Retinal activation (b) Initial V1 response (c) Settled V1 response

Fig. 6.9. Retinal activation and V1 response before and after a cortical lesion. The initial
and settled responses of the intact network (top row) and the lesioned network (bottom row)
to the retinal activation in (a) are shown in (b) and (c), as in Figure 6.6. The cortical lesion is
simulated by keeping the input intact but setting the activity of cortical neurons to zero in a
central region of the map (indicated by the dotted line in b and c). As with a retinal scotoma,
the changes in activity disrupt the dynamic equilibrium and force the network to reorganize.

6.4.1 Reorganization of the Map

Three phases of reorganization were observed, as in animal experiments (Sec-
tion 6.1.2; Merzenich et al. 1990). Immediately after the lesion, the receptive fields of
neurons in the perilesion zone became larger. The lesioned neurons no longer inhibit
the surrounding neurons, and activation that was previously suppressed is now un-
masked. This result can be seen by comparing the response to a typical input before
and after the lesion (Figure 6.10a,b). The postlesion activity extends farther outside
the lesioned area than before. In effect, the perilesion neurons now respond to a new
part of the input space: They took over part of the job of the lesioned area, and the
apparent loss of representation is smaller than expected based on the prelesion map.

As soon as the equilibrium was disrupted, both lateral and afferent connections of
the active neurons started to adapt. There is a lopsided distribution of activity close
to the lesion boundary, with no activity inside and normal activity outside. There-
fore, neurons close to the boundary encounter an imbalance of lateral interaction. By
Hebbian adaptation, the lateral weights of these neurons strengthen to the active re-
gions outside the lesion, and eventually become concentrated in the perilesion zone
(Figure 6.11).
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(a) Before lesion: Full representation (b) Immediately after: Unmasked activity

(c) Iteration 750: Increased inhibition (d) Iteration 5000: Partial recovery

Fig. 6.10. Cortical response after a cortical lesion. The settled activity of neurons for the
central 70 × 70 region of V1 is shown for the input in Figure 6.9a before the lesion (a),
immediately after (b), several hundred adaptation iterations later (c), and after complete reor-
ganization, i.e. in the new dynamic equilibrium (d). The lesioned area is marked as a dotted
line in each plot. Immediately after the lesion, the activity spreads out to neurons that were
previously strongly inhibited by the lesioned neurons. For instance, most of the activity just
below the lesioned area in (b) did not exist in (a). These neurons partially compensate for
the loss of function, which is less severe than expected. As lateral connections reorganize
(Figure 6.11), this unmasked activity decreases slightly because lateral inhibition increases:
For example, the active area just below the lesion becomes narrower and lighter (c). In the
long term, after the afferent weights reorganize (Figure 6.12), the activity outside the lesioned
area strengthens again (d). Though lateral inhibition is still stronger in the perilesion area, the
afferent input overcomes the inhibition, and neurons at the boundary of the lesion become
strongly responsive to inputs previously stimulating lesioned neurons. Similar stages are seen
in biological lesion experiments (Section 6.1.2; Merzenich et al. 1990).
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(a) Before lesion (b) Iteration 5000

Fig. 6.11. Reorganization of lateral inhibitory weights after a cortical lesion. The lateral
inhibitory weights of a neuron at the bottom-left corner of the lesion are plotted in gray scale
from white to black (low to high; orientation preferences or selectivity are not shown). The
small white square marks the neuron and the jagged black outline indicates the connectivity
before self-organization and pruning, as in Figure 5.12. (a) The connections before the lesion
follow the neuron’s orientation preference as usual. (b) Through Hebbian adaptation after
the lesion, the connections from neurons in the lesioned area approach zero, because those
neurons are no longer active. Because the total inhibitory weight is kept constant by weight
normalization, the inhibition concentrates in the connections outside the lesioned zone. This
inhibition decreases the responses of the perilesion neurons, giving a computational account
for the regressive phase in biology (Section 6.1.2; Merzenich et al. 1990).

Neurons just outside the lesion are most strongly affected by such reorganization:
Because they have the largest number of connections from the lesion zone, their
lateral inhibition concentrates in the few remaining connections. As a result, during
the second phase of reorganization, the lateral inhibition becomes strong outside
the lesion, and the previously unmasked activity is suppressed again (Figure 6.10c),
resulting in an increased loss of function.

Even after the lateral connections reorganize, the perilesion neurons respond to
inputs previously stimulating the lesioned zone. Therefore, through Hebbian adap-
tation, the afferent weights of these neurons increase in areas that were previously
represented within the lesion. Such a reorganization is clearly seen in the topographic
map of the afferent receptive fields (Figure 6.12). Gradually, the receptive fields move
inward, and the representation of the receptor surface within the lesion zone is par-
tially taken over by the neurons around it. Thus, the network partly compensates
for the cortical lesion, and some of the lost function is regained, as in biology (Fig-
ure 6.10d). The compensation is not uniform but depends on the orientation pref-
erences. The neurons that prefer orientations perpendicular to the lesion boundary
change the most, because they had a large number of lateral connections from the
lesioned area. On the other hand, those with preferences parallel to the boundary
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(a) Self-organized map (b) Immediately after (c) Iteration 5000

Fig. 6.12. Reorganization of the orientation map after a cortical lesion. These plots show
the retinotopic organization (calculated from settled responses as in Figure 6.7) and the orien-
tation preferences of the central 70×70 region of the 142×142 cortex. The dotted white line
in (a) shows the area that will be lesioned. Immediately after the lesion, the map spreads out
slightly into the lesioned area, because the neurons near the lesion boundary respond to inputs
previously represented by the lesioned neurons. This expansion can be observed by compar-
ing corresponding areas around the lesion in (a) and (b), such as the lesion’s top boundary.
Over time (c), the map expands farther into the lesioned area, regaining some of the lost func-
tion. Neurons whose preferred orientations are perpendicular to the lesion boundary change
the most because they have the most connections cropped by the boundary. For example,
along the top of the lesion, the neurons colored cyan and green on the right side (with vertical
preferences) shift their RFs significantly inward, whereas the red, orange, and purple neurons
on the left side (with nearly horizontal preferences) do not change much. Thus, the model
gives a possible computational explanation for the observed reorganization processes in bi-
ology (Section 6.1.2; Merzenich et al. 1990). It further predicts that the specific patterns of
expansion depend on the orientation preferences of the neurons around the lesion, and that
the extent of recovery depends on how large the lesion is compared with lateral excitation and
the afferent receptive fields. An animated demo of the reorganization process can be seen at
http://computationalmaps.org.

are less affected by the lesion. Such effects of orientation have not been studied in
biology, and are predictions of the model.
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6.4.2 Limits of Reorganization

The extent to which the topographic map can reorganize depends on how large the le-
sion is compared with the extent of the lateral excitatory connections and the anatom-
ical receptive fields. If the receptive fields of neurons on each side of the lesion over-
lap and the lateral excitation spans the lesion, the receptive fields can shift all the way
to the center and cover the region completely. Full functionality would be regained
in such a case.

In general, connections passing through the lesioned area do not survive in le-
sions caused by stroke or surgery, and a complete recovery is not possible in these
cases. However, with isolated cell death, such as that in old age, a complete recov-
ery should be expected. This observation could explain why humans can lose a large
fraction of their cortical neurons with age without losing any specific representations
or functions.

The effects of cortical lesions are reversible in LISSOM, and the original topo-
graphic representation will be relearned if the lesioned neurons are restored to nor-
mal. Therefore, just as in the case of retinal lesions, the topographic map is dynamic
and is maintained in a dynamic equilibrium with external inputs.

6.4.3 Medical Implications

Efforts to understand recovery following acute focal brain damage have traditionally
been based on either clinical studies or animal models. LISSOM provides a well-
specified computational model to complement these approaches. The computational
model can be used to elucidate the precise mechanisms of recovery and reorgani-
zation, which otherwise would not be clear from observing the clinical symptoms.
Once these mechanisms are known, it is possible to propose effective treatments and
therapeutic strategies.

The LISSOM model suggests two techniques to accelerate recovery following
surgery or stroke in the sensory cortices. Normally, the recovery time after surgery
would include some immediate recovery, a phase of regression due to reorganized
inhibition, and a gradual and slow compensation for the functional loss afterward.
The regression phase could be ameliorated by reducing the suppression due to lat-
eral inhibition. Such a technique would selectively deactivate inhibitory interactions
around the surgical area using a transient blocker of inhibitory neurotransmitters.
Neurons around the area would then fire intensively because of reduced inhibition,
and the afferent connections would adapt rapidly to compensate for the lesion. By
the time the blocker is absorbed, a substantial number of afferent receptive fields
would have shifted and compensated for the lesion. Although the inhibition would
still strengthen after the blockade, the recovery would be faster.

Second, the receptive fields of perilesion neurons could be forced to shift and
the topographic map reorganized (as in Figure 6.12c) even before surgery. Such an
effect could be achieved by intensive and repetitive stimulation of the area expected
to lose sensation and by the sensory deprivation of its surroundings. Driven by the
excessive stimulation, neurons outside the surgical zone would shift their receptive
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fields inward, and the area expected to lose sensation would be represented in a much
larger area of the cortex. Then, after surgery, the receptive fields would have to move
much less to reach their final state and the recovery would again be faster.

In the future, therapy that anticipates functional loss using computational models
and compensates for it in advance could form a prelude to neurological surgery,
minimizing damage and making recovery as fast and effective as possible.

6.5 Discussion

The LISSOM model shows how receptive fields can be maintained dynamically by
excitatory and inhibitory lateral interactions in the cortex. The combined effect of af-
ferent input, lateral excitation, and lateral inhibition determines the neural responses.
When the balance of excitation and inhibition is disrupted, neural response patterns
change dynamically and receptive fields expand or contract and change their shape.
If the perturbations are transient, the weight changes are minimal, and the receptive
field properties do not change significantly. If the perturbations persist, the weight
changes accumulate and the receptive fields reorganize substantially. Such an ability
to reorganize makes the cortex fault tolerant. Apart from injuries, natural cell death
occurs in the retina and the brain due to age and disease. If the cortical synapses
remain plastic, the remaining neural resources automatically compensate for such
losses.

The LISSOM retinal lesion simulations were based on a single eye only. Strictly
speaking, such results correspond to experiments where lesion is induced in both
eyes (Chino et al. 1995; Gilbert and Wiesel 1992), or in one eye with simultaneous
enucleation of the other eye (Chino et al. 1992; Kaas, Krubitzer, Chino, Langston,
Polley, and Blair 1990). However, in several recent studies, the other eye was left
intact (Calford et al. 1999, 2000, 2003; Waleszczyk et al. 2003), adding an interest-
ing dimension to the experiment and the interpretation of the results. Importantly,
Calford et al. (1999, 2000) showed that with monocular retinal lesions, binocular
neurons in the corresponding cortical scotoma area reorganize their receptive fields
on the lesioned eye as they do with binocular lesions, while their receptive fields
on the intact eye remain largely unchanged. This observation is useful because it is
difficult to measure both prelesion and postlesion receptive fields of the same neu-
rons; comparing the receptive fields in the two eyes allows obtaining an approximate
measure of how they changed. It also suggests that the LISSOM simulations are a
valid approximation of monocular lesions as well. However, the LISSOM plasticity
studies can also be extended to two eyes, using the model of ocular dominance intro-
duced in Section 5.4. Such a model could be instrumental in understanding in detail
how the afferent and lateral contributions from the two eyes interact in the recovery
from monocular retinal lesions.

Consistent with recent biological observations (Buonomano and Merzenich 1998;
Gilbert 1998; Karni and Bertini 1997), the simulations with the LISSOM model sug-
gest that the cortex is continuously learning and adapting to new visual environments.
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Receptive fields and lateral connections constantly adjust in order to match the statis-
tical properties of the visual world. How fast and how locally such adaptation takes
place depends on the survival requirements for the animal. If the statistics of the vi-
sual world are highly nonstationary, it is important for an animal to adapt constantly
to new circumstances, and a high degree of plasticity is required. If the environment
is relatively constant, the cortex is probably less plastic or becomes fixed early on.
Computational simulations help making such theories concrete, leading to specific
predictions that can be tested in further biological experiments.

6.6 Conclusion

The LISSOM model demonstrates that simultaneous adaptation of afferent and lat-
eral connections can explain not only how cortical structures develop, but also how
they remain plastic in the adult. The model shows how phenomena such as map reor-
ganization and dynamic receptive fields are produced by lateral interactions and Heb-
bian learning. The simulated reorganizations are reversible, and demonstrate how a
topographic map can be maintained in a dynamic equilibrium with extrinsic input.
The model allows predicting the extent and time course of the reorganization, and
suggests how recovery after cortical surgery could be hastened by blocking lateral
inhibition locally in the cortex and by forcing the topographic map to reorganize
prior to surgery.

These computational demonstrations are significant because they show that plas-
ticity does not have to be a special mechanism added for the sole purpose of making
the cortex more robust, but can be part of a unified mechanism that the cortex uses
to learn and adapt. The next chapter will show how such adaptation and learning can
also play a role in normal functional phenomena such as illusions and aftereffects.
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Understanding Visual Performance: The Tilt
Aftereffect

The results in the previous chapter suggest that the same self-organization processes
that determine how the visual cortex develops keep it plastic in the adult. This hy-
pothesis is extended further in this chapter: Such adaptation may be part of the nor-
mal function of the visual cortex, resulting in short-term functional phenomena such
as the tilt aftereffect (TAE). In this chapter, the psychophysical data and current the-
ories of the TAE are first reviewed, and the simulation method for testing the TAE in
LISSOM is described. Adapting lateral connections in the model are shown to result
in a TAE that matches human data well, and suggest how the indirect TAE can arise
from synaptic normalization. The conclusion is that the TAE is not a flaw in an oth-
erwise well-designed system, but an unavoidable result of a self-organizing process
that aims at producing an efficient, sparse encoding of the input through decorrela-
tion. This result establishes a crucial link between developmental processes and adult
visual function.

7.1 Psychophysical and Computational Background

In general, humans and animals can accurately estimate the orientation of visual
contours such as lines and edges. However, contours presented close together or one
after the other in the same location can interact, causing distortions in their apparent
orientations. When the lines are presented simultaneously, this effect is known as
the tilt illusion, and when they are presented successively, it is known as the tilt
aftereffect (Gibson and Radner 1937). This chapter will focus on the tilt aftereffect;
possibilities for understanding tilt illusions computationally are briefly discussed in
Section 7.5.

7.1.1 Psychophysical Data

The tilt aftereffect is similar to an afterimage from staring at a bright light, but it is
due to changes in orientation perception rather than in perceived color or brightness.
The effect can be produced in a simple experiment (Figure 7.1). After staring at
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Fig. 7.1. Demonstration of the tilt aftereffect. Fixate your gaze on the circle inside the central
diagram for at least 30 seconds, moving your eye slightly inside the circle to avoid developing
strong afterimages. Now fixate on the diagram at the left. The vertical lines should appear
slightly tilted clockwise; this phenomenon is called the direct tilt aftereffect. If you instead
fixate upon the horizontal lines at the right, they should appear barely tilted counterclockwise,
due to the indirect tilt aftereffect. Adapted from Campbell and Maffei 1971; reprinted from
Bednar and Miikkulainen 2000b.

a pattern of tilted lines (the adaptation stimulus), subsequently viewed lines (the
test stimulus) appear to have a slight tilt. The direction of the tilt depends on the
orientation of the test stimulus: Those with orientations similar to the adaptation
lines appear tilted away from them, while those nearly orthogonal to the adaptation
stimulus appear to be tilted toward them.

The TAE has been studied extensively in the laboratory (Campbell and Maffei
1971; Gibson and Radner 1937; Mitchell and Muir 1976; Muir and Over 1970). The
experimental methods vary somewhat, but subjects are usually tested in a darkened
room using oriented stimuli such as lines, bars, or gratings (i.e. multiple parallel
bars, as in Figure 7.1). In a typical experiment, subjects are first asked to estimate
the orientation of a test stimulus by adjusting another stimulus elsewhere in the visual
field until it appears to have the same orientation. They are then asked to fixate on a
specific point, and shown an adaptation stimulus for 30–45 seconds. Third, they are
shown the test stimulus again, and asked to estimate its orientation. The magnitude
of the TAE at that angle between the adaptation and the test stimulus is the difference
between the estimated orientation of the test stimulus before and after adaptation.

The results of such experiments are consistent overall, although the detailed
shape of the TAE curve varies somewhat between different subjects and different
measurement paradigms (Figure 7.2). The maximum angle expansion, called the di-
rect tilt aftereffect, is usually found between 5◦ and 20◦ of difference between adap-
tation and test stimulus orientations (Howard and Templeton 1966). Larger differ-
ences begin to show less of an effect, and eventually reach zero somewhere between
25◦ and 50◦ (Campbell and Maffei 1971; Mitchell and Muir 1976; Muir and Over
1970). Even larger differences (up to 90◦) result in a less pronounced angle contrac-
tion effect called the indirect tilt aftereffect, which is largest between 60◦ and 85◦

(Campbell and Maffei 1971; Mitchell and Muir 1976; Muir and Over 1970).
The TAE is found at all orientations, although the variance for oblique test angles

is higher than for horizontal and vertical orientations (Mitchell and Muir 1976). The
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(b) Subject DWM
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(c) Subject JH
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(d) Subject AC

Fig. 7.2. Tilt aftereffect in human subjects. These plots show one TAE curve for each of
the four subjects in Mitchell and Muir (1976): (a) DEM, (b) DWM, (c) JH, and (d) AC. The
data were computed by averaging 10 trials before and 10 trials after adaptation. Error bars
represent ±1 standard error of the mean (SEM); none were published for subject AC. Each
trial consisted of a 3-minute adaptation to a sinusoidal grating, followed by a brief exposure to
a test grating. The perceived orientation of the test grating was measured by having the subject
adjust the orientation of a test line (presented in an unadapted portion of the visual field) until
it appeared parallel to the test grating. For a given orientation difference counterclockwise
between test and adaptation gratings, the TAE magnitude was then computed as the difference
between the perceived orientations of the test grating before and after adaptation. In each
case, a 0◦ orientation difference represents the orientation of the adaptation grating. For DEM
the adaptation grating was horizontal, for AC it was vertical, and for DWM and JH it was
oblique (135◦). Similar direct effects were observed in all subjects, i.e. they perceived small
orientation differences larger than they actually were; indirect effects varied more, but all
subjects reported some contraction of large orientation differences.

magnitude of the effect increases logarithmically with increasing adaptation time and
decreases logarithmically with time elapsed since the adaptation period (Gibson and
Radner 1937). The direct effect saturates at approximately 4◦ (Campbell and Maffei
1971; Greenlee and Magnussen 1987; Magnussen and Johnsen 1986; Mitchell and
Muir 1976). The largest documented indirect effect in central (foveal) vision is ap-
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proximately 2.5◦, and reaches up to about 60% of the magnitude of the direct effect
for a given subject and paradigm (Campbell and Maffei 1971; Mitchell and Muir
1976; Muir and Over 1970). The TAE is spatially localized: Adaptation for an in-
put in one retinal location has no measurable effect on test inputs in other locations
sufficiently distant (Gibson and Radner 1937).

The TAE has been studied extensively because it is reliable and easy to measure.
It is also important in that it may provide a window into how V1 adapts to visual
input, as will be reviewed next.

7.1.2 Theoretical Explanations

Over the years, a wide variety of explanations for the TAE have been put forth
(Barlow 1990; Coltheart 1971; Dong 1995; Dragoi, Sharma, Miller, and Sur 2002;
Dragoi, Sharma, and Sur 2000; Field 1994; Földiák 1990; Gibson and Radner 1937;
Köhler and Wallach 1944; Levine and Grossberg 1976; Tolhurst and Thompson
1975; Vaitkevicius, Karalius, Meskauskas, Sinius, and Sokolov 1983). Modern TAE
theories are based on changes in how orientation-selective cells respond in V1 and
other visual cortex areas. Hubel and Wiesel (1959, 1962, 1965, 1968) first observed
that if the same oriented visual pattern is presented repeatedly, the neurons that at first
responded strongly become more difficult to excite. This desensitization, called pat-
tern adaptation, persists even after the pattern is removed. Conversely, neurons with
orientation preferences orthogonal to the adaptation input actually respond below
their resting level during this process, and may therefore become facilitated instead
of desensitized (Hubel and Wiesel 1967). Based on these results, TAE theories have
been developed from two perspectives: (1) neural fatigue, i.e. individual neurons be-
come less responsive, and (2) lateral inhibition, i.e. interactions between multiple
neurons change.

Neural Fatigue

The neural fatigue theory of the TAE is based directly on the results of Hubel and
Wiesel (1959, 1962, 1965, 1968): If neurons with orientation preferences close to the
adaptation input become fatigued, neurons that prefer more distant orientations will
respond most strongly for similar input during testing. Assuming that the perceived
orientation depends on the orientation preferences of the most activate neurons, a
direct TAE results (Sutherland 1961). Similarly, the indirect TAE could be due to the
(weaker) facilitation of neurons orthogonal to the adaptation input (Muir and Over
1970), or to fatigue of neurons with cross-shaped receptive fields (Coltheart 1971).

Although the fatigue theory was plausible originally, cortical neurons do not ac-
tually fatigue in this manner. They can be activated repeatedly in vitro with direct
electrical simulation, without decreasing their output or reducing their sensitivity to
input (Thomson and Deuchars 1994). Moreover, firing is not crucial for pattern adap-
tation: Cells continue to adapt even when their firing is prevented pharmacologically,
and forcing the cells to fire does not cause them to adapt (Vidyasagar 1990). Thus,
pattern adaptation, and therefore the TAE, is unlikely to be caused by fatigue from
repeated firing.
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Lateral Inhibition

In contrast, according to the lateral inhibition theory, pattern adaptation is based
on changes in the lateral interactions between multiple neurons, instead of changes
within single neurons (Barlow 1990; Blakemore, Carpenter, and Georgeson 1970;
Carpenter and Blakemore 1973; Dong 1995; Field 1994; Földiák 1990; Tolhurst and
Thompson 1975). Increasing lateral inhibition would make them appear to fatigue,
yet they would still respond to direct electrical stimulation.

The inhibition theory also accounts for the phenomenon of disinhibition (Mag-
nussen and Kurtenbach 1980). If two adaptation inputs each alone cause a direct TAE
for the same test input, the effect would be expected to be even stronger if they are
presented together during adaptation (Blakemore and Carpenter 1971). More detec-
tors would be activated, and thus more would be fatigued. However, such adaptation
actually reduces the magnitude of the TAE (Magnussen and Kurtenbach 1980). The
inhibition theory predicts that the two inputs inhibit each other, and thus the total
activation near the test line is lower. As a result, less adaptation occurs than before,
and the TAE will be weaker.

The inhibition theory does not specify exactly how the increased inhibition re-
sults in the direct TAE. One possible explanation is that inhibitory transmitters accu-
mulate in the target cell (Gelbtuch, Calvert, Harris, and Phillipson 1986; Masini, An-
tonietti, and Moja 1990; Tolhurst and Thompson 1975). However, Vidyasagar (1990)
was able to excite or inhibit cells in the visual cortex of cats by locally applying ex-
citatory or inhibitory transmitters, but the cells did not show adaptation effects when
tested with a visual pattern. Yet, when the cells adapted to actual visual patterns, the
neighboring cells delivered those same transmitters to the target cell. The adaptation
must therefore occur somewhere else, outside the target cell. As suggested by Barlow
(1990), changing connection strengths between neurons could result in such adap-
tation. The effects would only be seen when multiple nearby neurons are activated
simultaneously, as they would be for the patterns typically used in TAE experiments
(Vidyasagar 1990; Wilson and Humanski 1993).

Also, the theory does not directly suggest how indirect effects could arise from
increased inhibition in V1; such effects have been proposed to occur at higher cor-
tical levels instead (van der Zwan and Wenderoth 1995; Wenderoth and Johnstone
1988). One of the main contributions of this chapter is to show how changes in lateral
inhibition, paired with a local synaptic resource conservation mechanism, can lead to
realistic direct and indirect tilt aftereffects within V1, without involving other visual
areas. In this manner, by filling in missing components of the theory, computational
modeling can play a crucial role in developing a thorough understanding of the TAE.

7.1.3 Computational Models

Because it is difficult to measure the many local changes that contribute directly
to the TAE, computational models have been used to make sense of this process.
However, no model has yet demonstrated how both direct and indirect tilt aftereffects
could arise from local neural processing in V1.
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The most complete previous TAE model was built by Dong (1995, 1996). This
model is formally based on the information processing principle of decorrelation, i.e.
systematically reducing redundancy in images and other sensory data. All natural im-
ages are redundant to some extent, containing components that are highly correlated.
In principle, both components could be represented by just one of them, making the
other redundant. A network or algorithm that compacts the image by removing such
redundancies is said to decorrelate. After full decorrelation, an input image would
consist of purely white noise, where every bit of information is independent of the
others. Dong (1995) showed analytically that decorrelation results in direct tilt af-
tereffects similar to those found in humans. This mathematical result complements
the more detailed LISSOM simulations, which will show how decorrelation can be
implemented in a biologically plausible network.

A more detailed model based on linear differential equations was implemented
by Wilson and Humanski (1993). This model is a proposed circuit for achieving con-
trast independence via divisive inhibitory gain control (similar to that of HLISSOM,
Section 8.2.3). The model had been shown to predict contrast sensitivity before and
after adaptation, and with the same parameters it was found to exhibit direct tilt ef-
fects that have an angular function somewhat similar to the human direct effects.
However, Wilson and Humanski (1993) did not discuss indirect effects, and it is dif-
ficult to see how those would occur in their model.

Thus, although the previous models demonstrated the mathematical principles of
the direct TAE, they did not account for the indirect effect, and did not suggest a
detailed neural processing mechanism that could be responsible for the TAE in V1.
The LISSOM results will show that both effects can arise out of the same processes
responsible for self-organization of orientation-selective neurons in V1. Thus, the
model is not just a mathematical fit to the human data: It establishes a crucial link
between developmental processes and adult function.

7.2 Method

The reduced LISSOM orientation model from Section 6.2 was used for the TAE
experiments as well. As was discussed in Section 6.2, as long as the inputs consist
of elongated Gaussian patterns (as they do in this chapter), the reduced model is
functionally equivalent to the full LISSOM model, but simpler and more efficient to
simulate because it does not include the ON and OFF channels of the LGN. In order
to represent orientation in the cortex more accurately, the V1 network was increased
to 192 × 192 units; other minor parameter differences are listed in Appendix B.2.
Otherwise the same simulation method was used as in studying plasticity. In addition,
a method needed to be developed for measuring perceived orientation and the tilt
aftereffect in LISSOM, as will be described in this section. For historical reasons,
and also to make positive and negative angles more intuitive, in this chapter the
0◦ angle represents the vertical direction (12 o’clock), as opposed to the horizontal
direction (3 o’clock) used elsewhere in the book.
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Fig. 7.3. Measuring perceived orientation as vector sum. The activations and orientations
of three neurons are shown as vectors (solid lines). The angle of each vector is twice the ori-
entation preference of that neuron, in order to make the vector orientation for 0◦ and 180◦

identical. The magnitude of each vector represents the activation level, to ensure that the en-
coding primarily reflects those neurons that are most active. The sum of these vectors is shown
as a dashed line. The perceived orientation is half of the angle of the dashed vector.

7.2.1 Quantifying the Perceived Orientation

To compare the TAE in LISSOM with human psychophysical experiments, it is nec-
essary to determine what orientation the model “perceives” for any given input. That
is, given a set of activation values in V1, a numerical estimate of the input’s orien-
tation needs to be obtained. How this process occurs in humans is not yet known
(Parker and Newsome 1998). However, V1 neurons in monkeys have the right prop-
erties to estimate the orientation nearly statistically optimally (Geisler and Albrecht
1997). For networks like LISSOM, a statistically optimal method is the vector sum,
proposed by Coltheart (1971) and proven optimal by Snippe (1996). The vector sum
will therefore be used with LISSOM, but it is not necessary to assume that this pro-
cess is implemented directly in biological systems; any other nearly optimal method
would lead to similar results.

The vector sum is a weighted average of orientation preferences that takes into
account that orientations repeat every 180◦. For example, two nearly horizontal pref-
erences (e.g. −85◦ and +85◦) should average to represent a horizontal orientation
(±90◦). However, the arithmetic average of −85◦ and +85◦ is 0◦, which is clearly
not perceptually correct. Therefore, each neuron is represented by a vector with its
orientation scaled by a factor of two. Adjacent orientations are thus always repre-
sented as adjacent vector angles. Further, since each neuron should contribute only
to the extent that it is active, vector magnitude is used to represent activation level.
The perceived orientation is then computed as the vector sum of all active neurons,
with its angle divided by two, as shown in Figure 7.3.

Note that the selectivity of the neuron to the orientation is not taken into account
in this calculation. Selectivity could be used to scale the magnitude of the vector fur-
ther, but it is unclear how such scaling should compare to scaling due to activity. In
any case, because most neurons are highly selective in the LISSOM OR map, selec-
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tivity should not have a large effect in perceived orientation; it is therefore ignored
in the vector sum method.

To verify that such measurements lead to accurate results, the perceived orien-
tation of the LISSOM OR map was measured for input lines of every orientation
spaced 5◦ apart; examples are shown in Figure 7.4. The estimates were always cor-
rect to within ±5◦, indicating that the vector sum method is accurate on this LISSOM
model. Further, to make sure that any random biases for particular patterns do not
affect the results, all perceived orientation measurements in this chapter are stated in
terms of differences in perceived angles, rather than in terms of the actual orientation
on the retina.

Based on this method for quantifying the perceived orientation, a method for
measuring the TAE in the model can be developed, as will be described next.

7.2.2 Measuring the Tilt Aftereffect

The TAE in the model can be computed by measuring the responses to different test
lines after briefly training it with an adaptation line. The final, organized state of
the reduced LISSOM model of Section 6.2.1 was taken as a starting point for each
independent experiment in this section, so the results roughly correspond to testing
a single human subject under different conditions.

To simulate adaptation, a single input line was presented to the model and its self-
organizing process was run for a number of iterations. To permit detailed analysis of
behavior at short time scales, the learning rates were reduced from those used during
self-organization to αA = αE = αI = 0.000005. In separate experiments, designed
to illustrate the separate contributions of adapting the afferent, lateral excitatory, and
lateral inhibitory weights, learning was turned off for all but one type of connection
in turn (Section 7.4). All other parameters remained as in Section 7.2, including the
size and shape of the oriented Gaussian inputs.

Before adaptation and as adaptation progressed, test lines at various orientations
were presented without modifying any weights. For each test line, the perceived
orientation was measured as described in Section 7.2.1. The magnitude of the TAE
was defined as the perceived orientation of the test line after adaptation minus the
perceived orientation before adaptation.

This procedure is similar to that used for human subjects, described in Sec-
tion 7.1.1. In human experiments, learning cannot be turned off, and only a single
test input can be used for each adaptation. Any further test inputs would be affected
by adaptation to the first test input. In contrast, learning can be disabled with LIS-
SOM, and multiple test orientations can be presented for each adaptation episode.
As a result, much more comprehensive data can be collected for the model than for
humans, as shown in Section 7.3. Also, in human experiments usually only a single
test stimulus is used, and the adaptation stimulus is varied. Because the angular func-
tion of the TAE has been demonstrated to be similar for all orientations (Mitchell and
Muir 1976), the two procedures should lead to equivalent results.

Because the TAE curves differ substantially between individuals, particularly in
the zero crossing between direct and indirect effects, it can be misleading to average
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Fig. 7.4. Cortical response and perceived orientation. The V1 responses of the LISSOM
orientation map are shown for three oriented Gaussians, at −30◦, 0◦, and +50◦ from verti-
cal. As in the activity plots of Figure 6.5, the colors in the response plots (b,d) represent the
orientation preference of each activated neuron, and the saturation (i.e. brightness) represents
its activation level. The numbers below each of these plots indicate the perceived orientation,
computed from orientation and activation values using the vector sum method. These val-
ues are also shown using black horizontal lines in histograms (c,e). The initial V1 response
(b) is based on the afferent weights only, before the lateral interactions. The initial response
histograms (IH; c) show that a broad range of orientations are activated, and that this distri-
bution is approximately centered around the input’s orientation. The location of the response
in the activity plots corresponds to the location of the pattern on the retina. After settling, the
activity is more focused both spatially and in orientation, as seen in the map activity plots
(d) and their histograms (SH; e). The perceived orientation remains an accurate estimate of
the actual orientation of the input pattern. An animated demo of this process can be seen at
http://computationalmaps.org.

results from different subjects or testing paradigms. For instance, if the zero cross-
ings vary over some range, a null area will show up in the graph around that region,
even though no individual exhibited a null area. However, because the data are gen-
erally too erratic to interpret from a single run, multiple runs from testing the same
individual in a single session are usually averaged (e.g. Mitchell and Muir 1976). To
obtain similar measurements for the LISSOM model, a single orientation map was
tested separately at nine different positions. These positions formed a 3× 3 grid that
covered a retinal area 6 × 6 units wide around the center of the retina, and included
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Fig. 7.5. Tilt aftereffect in humans and in LISSOM. The LISSOM network adapted to a
vertical (0◦) line at the center of the retina for 90 iterations, and the TAE was measured for test
lines oriented at each angle. The thick line shows the average magnitude of the TAE over nine
trials, as described in Section 7.2.2. Positive values of aftereffect denote a counterclockwise
change in the perceived orientation of the test line. The graph is roughly anti-symmetric around
0◦, i.e. the TAE is essentially the same in both directions relative to the adaptation line. The
error bars indicate ±1 SEM; in most cases they are too small to be visible because the TAE
was highly consistent between different runs (Appendix B.2). For comparison, the thin line
with circles represents the TAE, averaged over 10 trials, for the single human subject (DEM)
with the most complete data in the Mitchell and Muir (1976) study. The LISSOM TAE curve
closely resembles the human TAE curve, showing both direct and indirect tilt aftereffects.
Reprinted from Bednar and Miikkulainen (2000b).

many different orientation preferences. Averaging over these positions reduces the
random fluctuations in TAE magnitude, but it does not change the basic shape of
the curves presented in the following sections. This method will therefore be used to
measure the TAE in the experiments that follow.

7.3 Results

The magnitude of the TAE in LISSOM for the various differences between the adap-
tation and the test line orientation is similar to those in humans. The TAE magnitude
also increases over prolonged adaptation as in humans, but does not saturate in the
model.

7.3.1 Magnitude Versus Orientation Difference

In the main LISSOM TAE experiment, the number of adaptation iterations was first
adjusted (to 90) so that the direct TAE magnitude in the model peaked at 3◦, as it
usually does in human subjects. The TAE testing procedure described above was then
used to determine the TAE magnitude for the whole range of differences between
adaptation and testing orientations in the model.

The LISSOM results are strikingly similar to the psychophysical results (Fig-
ure 7.5). For the range 5◦ to 40◦, human subjects exhibit angle expansion effects
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Fig. 7.6. Tilt aftereffect over time in humans and in LISSOM. Each curve in (a) shows the
average TAE of the LISSOM model with a different amount of adaptation. The TAE has the
same S-shape throughout, and its magnitude increases monotonically. Similar comprehensive
data are not available on humans, but a vertical slice corresponding to the peak in this graph
has been measured, as is shown in (b): The thin lines depict the direct TAE for 12◦ orientation
difference vs. adaptation time for two human subjects SM and MWG, averaged over five trials
(Greenlee and Magnussen 1987). For comparison, the thick line shows the corresponding TAE
for the LISSOM model, averaged over nine trials. The adaptation time in LISSOM is measured
in iterations, scaled to match the human plots as well as possible. The direct TAE increases
approximately logarithmically in both LISSOM and humans; however, it does not saturate in
LISSOM like it does in humans, suggesting that human adaptation faces additional limitations
for long adaptation times. Reprinted from Bednar and Miikkulainen (2000b).

nearly identical to those found in the LISSOM model; the subject shown is the one
whose TAE measurements are the most complete. The magnitude of this direct TAE
increases very rapidly to a maximum angle expansion at 8–10◦, falling off somewhat
more gradually to zero as the differences in orientation increase.

The simulations with larger orientation differences (from 40◦ to 85◦) show a
smaller angle contraction, i.e. the indirect effect. Although the magnitude of this
effect varies in human subjects, the LISSOM results are well within the range of
human data. The indirect effect for the subject shown was typical for the Mitchell and
Muir (1976) study, although some subjects showed effects up to 2.5◦ (Figure 7.2).

7.3.2 Magnitude over Time

In addition to the angular changes in the TAE, the magnitude of the TAE in humans
increases regularly with adaptation time (Gibson and Radner 1937). The equivalent
of time in the LISSOM model is an iteration, i.e. a single cycle of input presentation,
activity propagation, settling, and weight modification. Figure 7.6a shows how the
TAE varies for each orientation difference as the number of adaptation iterations
is increased. The TAE curve has the same S-shape throughout, but its magnitude
increases monotonically with adaptation.
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Because obtaining human data for even a single curve is extremely time consum-
ing, equivalently comprehensive data for human subjects are not available. Human
time course data so far consist of only single vertical slices through the direct TAE
region (Gibson and Radner 1937; Greenlee and Magnussen 1987; Magnussen and
Johnsen 1986). Such data are obtained by presenting an oriented adaptation input for
an extended period, interrupted at intervals by presentations of test and comparison
lines. The test presentations are very short to minimize their effect on the TAE.

Such measurements show that the direct TAE in humans increases approximately
logarithmically in time, and eventually reaches saturation (Figure 7.6b). The corre-
sponding curve in LISSOM is similar to the human data, but does not saturate: The
TAE magnitude keeps increasing until eventually the growing inhibition prevents the
network from responding to the adaptation input altogether (the TAE magnitude is
about 20◦ at that point). This difference suggests that biological systems may include
additional constraints that limit the amount of learning that can be achieved over the
time scale of the TAE. This issue is explored further in Section 7.5, and possible
ways to model such saturation in LISSOM are proposed.

7.4 Analysis

The LISSOM TAE must result from changes in the connection strengths between
neurons, because there is no other component of the model that changes as adapta-
tion progresses. In particular, the neurons do not become more difficult to activate,
and their activation levels do not decrease. Thus, there is nothing in the model that
could correspond to single-cell neural fatigue. In this section, lateral inhibitory con-
nections are identified as the source of the TAE in the LISSOM model, and how their
adaptation results in direct and indirect TAE is analyzed.

7.4.1 Afferent and Lateral Contributions

Three sets of weights adapt synergetically in LISSOM: afferent, lateral excitatory,
and lateral inhibitory weights. According to the lateral inhibition theory, the in-
hibitory weights are primarily responsible for the TAE. To test this theory in LIS-
SOM, the contribution of each of the weight types was evaluated in three separate
adaptation experiments (Figure 7.7). In each experiment, one of the weight types was
adapting with an elevated rate (0.00005) and the others were fixed. As predicted, lat-
eral inhibition determines the shape of the TAE curve. Lateral excitation and afferent
contributions have only a minor effect, and it is almost precisely opposite to the
combined TAE curve.

Interestingly, the inhibitory effects dominate even though all of the learning rates
were identical. There are many more inhibitory connections than excitatory connec-
tions, and the combined strength of all the small inhibitory changes outweighs the
excitatory changes. If excitatory learning is turned off altogether, the magnitude of
the TAE increases slightly, but the shape of the curve does not change significantly
(Figure 7.7).



7.4 Analysis 167

-90
o

-60
o

-30
o

0
o

30
o

60
o

90
o

Orientation difference

-6
o

-4
o

-2
o

0
o

2
o

4
o

6
o

A
fte

re
ffe

ct

All weights
Lateral inh. only
Afferent only
Lateral exc. only

Fig. 7.7. Components of the tilt aftereffect due to each weight type. The solid line repre-
sents the magnitude of the TAE for a single trial from Figure 7.5. This trial was at the center of
the retina, and is typical of the effect seen at the other 15 locations. The other curves illustrate
the contribution from each different weight type separately. Other than the learning rates for
these weights, the parameters were identical in each case. The line with short dashes represents
the contribution from the afferent weights (αA = 0.000005; αE = αI = 0). This contribution
is minor and in the direction opposite to the overall TAE curve. The dotted line represents the
contribution from the lateral excitatory weights (αE = 0.000005; αA = αI = 0). It is in the
same direction as that of the afferent weights, but so small it can hardly be seen (the x axis is
not shown because it would have covered up this line). The line with long dashes represents
the inhibitory contribution (αI = 0.000005; αA = αE = 0). These weights clearly determine
the shape of the overall curve, although it is slightly reduced in magnitude by the afferent
contribution.

7.4.2 Mechanisms

How do the adapting lateral connections cause the TAE? To make the analysis clear
and unambiguous, the simplest case that shows a realistic TAE was studied in de-
tail. The analysis focuses on a single trial with a Gaussian adaptation pattern at
the exact center of the retina and only the lateral inhibitory weights adapting (i.e.
αI = 0.00005 and αA = αE = 0). A longer adaptation period (256 iterations) was
also used, in order to exaggerate the effect and make its causes more clearly visible.
The analysis will show that Hebbian adaptation of the lateral inhibitory connection
weights, combined with normalization of their total strength, systematically alters
the response and causes the tilt aftereffects.

Each of the TAE measurements results from changes in many connections in
many different neurons. However, the changes are systematic, and it is possible to
understand the process by following the changes in a single neuron. Figure 7.8 shows
the differences between the inhibitory connections of a typical neuron in the cen-
tral region of the cortical sheet before and after adaptation. Adaptation changes the
weight profile in two ways. First, connections from neurons with orientation prefer-
ences similar to the adaptation line become stronger (the blue areas in Figure 7.8d).
Second, because the total strength for all inhibitory weights is normalized (Equa-
tion 4.8), the connections from other, more distant orientations (the yellow and red
areas) become weaker (Figure 7.8e).
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Fig. 7.8. Changes in lateral inhibitory weights due to adaptation. The strengths of the in-
hibitory weights to the neuron marked with a small black square are shown in color coding as
in Figure 5.12. This neuron prefers an orientation of +15◦, as seen from its RF in (a), plot-
ted in gray scale as in Figure 6.4. Before adaptation, the inhibitory connections mostly come
from neurons with similar preferences along this same orientation (b). As a result of adapting
to the vertical input in the center, the blue areas corresponding to the response to that input
become stronger (c). This effect is summarized in (d), computed by subtracting the weights
in (b) from those in (c), scaling the positive values up to a visible level, then labeling each
connected neuron with the color corresponding to its orientation preference. Connections in-
creased only from neurons with vertical preferences, i.e. those that were active in the settled
response (Figure 7.9c,e, top row). As a result of normalization, the rest of the connections
decreased, as seen by plotting the negative differences in (e). These connections include all
orientations other than vertical. The orientation-specific changes are summarized in the differ-
ence histogram (f ), which shows that the net connection strength to neurons with preferences
around vertical increased, while connections to other orientations decreased. Together these
changes give rise to the direct and indirect TAE, as shown in Figure 7.9.

All neurons that were activated by the adaptation input undergo similar changes.
As a result, they become more strongly connected, and thus their response is lower
than before adaptation. At the same time, other neurons respond more strongly than
before adaptation, because they receive less inhibition. The net result is that the re-
sponse to the adaptation line becomes broader, covering more area and orientations,
but the overall response is still an accurate encoding of the input orientation (first
row of Figure 7.9).

For other input orientations, the perception is no longer accurate. For orientations
close to the adaptation line, the changes result in a shift away from the adaptation
orientation. Neurons that responded during adaptation now respond less, but neurons
with orientations further away respond more strongly: The result is the direct TAE
(second row of Figure 7.9).

The indirect TAE occurs for lines so different in orientation that their response
activates only a few of the neurons activated by the adaptation input (third row of
Figure 7.9). These neurons represent orientations between the test and adaptation
orientations. They respond more strongly than before adaptation, because they now
receive less inhibition from other active neurons than before. As a result, the per-



7.4 Analysis 169
A

da
pt

at
io

n

+90◦

+45◦

0◦

−45◦

−90◦

+90◦

+45◦

0◦

−45◦

−90◦
0.0◦ −0.4◦ −1.1◦ −2.2◦

D
ir

ec
te

ff
ec

t

+90◦

+45◦

0◦

−45◦

−90◦

+90◦

+45◦

0◦

−45◦

−90◦
10.0◦ 11.7◦ 8.8◦ 21.1◦

In
di

re
ct

ef
fe

ct

+90◦

+45◦

0◦

−45◦

−90◦

+90◦

+45◦

0◦

−45◦

−90◦
60.0◦ 59.8◦ 57.4◦ 54.2◦

(a) Retinal
activation

(b) Initial V1
response

(c) Settled V1
response before
adaptation (SB)

(d) SBH (e) Settled V1
response after

adaptation (SA)

(f ) SAH

Fig. 7.9. Cortical response during adaptation and during direct and indirect tilt after-
effect. Using the same plotting conventions as in Figure 7.4, each row shows (a) an example
input, (b) the initial response of the central 64×64 region of V1 to that input (before the lateral
connections), (c) the response of that region settled through the lateral connections but before
adaptation to a vertical input line (SB), (d) the histogram of SB (SBH), (e) the correspond-
ing settled response after a very long period of adaptation (SA), and (f ) the histogram of SA
(SAH). The top row (labeled “Adaptation”) shows these responses to the same input as used
for adaptation. After adaptation, the settled response is weaker, broader, and includes a wider
range of orientations, but the perceived orientation stays approximately the same (compare the
black lines in each histogram). For an input with a slightly different orientation (row “Direct
effect”), more units encode orientations greater than 10◦ (green areas), and fewer encode those
less than 10◦ (blue areas) in the settled response after adaptation than before. The net effect
is a direct TAE, with the perceived orientation shifting away from the adaptation orientation,
from 8.8◦ to 21.1◦ (compare the black lines in each histogram). For an input with an orien-
tation very different from the adaptation pattern, the changes are more subtle (row “Indirect
effect”). Only the neurons around 0◦ were activated during adaptation. Their inhibition from
other vertical-preferring neurons increased, but decreased from those not active during adapta-
tion. As a result, the green-colored neurons nearest 0◦ are now less inhibited by the rest of the
neurons responding than before adaptation, and so they respond more strongly. The net effect
is an indirect TAE, with the perceived orientation shifting toward the adaptation orientation,
from 57.4◦ to 54.2◦ (compare the black lines in each histogram). Animated demos of these
examples can be seen at http://computationalmaps.org.
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ceived angle appears contracted. This effect is smaller than the direct effect because
only a small number of such neurons are activated.

Thus, the LISSOM model shows computationally how both the direct and indi-
rect effects can be caused by the same activity-dependent adaptation process. Further,
this process is the same one that drives the development of the map in the first place,
and its plasticity in the adult. The explanation for the indirect effect is novel and
emerges automatically from the model, which was not tuned in any way to model
the TAE. In this manner, computational modeling in general, and LISSOM in par-
ticular, can be used to obtain insights into functional phenomena that are otherwise
difficult to explain at the neural level.

7.5 Discussion

LISSOM is the first computational model to account for how the complete angular
function of the TAE can arise from interactions between neurons in V1. The model
is also the first to simulate the spatial patterns of activity and connection strengths
that underlie the effect and make it spatially localized. It suggests that the same self-
organizing principles that result in sparse coding and reduce redundant activation
during development may also operate over short time intervals in the adult, affecting
perceptual performance. This finding demonstrates a potentially crucial computa-
tional link between development, structure, and function.

The TAE experiments were based on the reduced version of the LISSOM model,
which allowed demonstrating the main effects clearly and efficiently. Further prop-
erties of the TAE could be replicated using the more complex versions of the model.
For instance, maps trained on natural images would exhibit TAEs with a higher vari-
ance at oblique orientations (Mitchell and Muir 1976), because such maps have fewer
neurons selective for oblique orientations (Section 9.3.2). Maps trained with moving
patterns would result in a TAE that is specific to the direction of motion, and a version
with frequency-selective neurons (to be discussed in Section 17.2.1) should limit the
TAE to the spatial frequency of the adaptation input, both well-known features of the
TAE in humans (Carney 1982; Ware and Mitchell 1974). Orientation maps trained
with multiple retinas would allow transferring the TAE from one eye to the other
(Campbell and Maffei 1971; Gibson and Radner 1937): Because the neurons that are
most selective for orientation are binocular (Section 5.6), adapting one eye causes
equal effects upon test lines in either eye. In each case, the properties of the neu-
rons in the map should directly result in the observed properties of the TAE, without
additional modifications to the model.

The LISSOM explanation of the indirect effect as a result of weight normal-
ization is novel. Although normalization was originally included for computational
reasons, recent experimental work suggests that such processes actually occur in bi-
ological neurons as they adapt (Section 3.3). Such regulation changes the efficacy
of each synapse while keeping their relative weights constant, as in the LISSOM
model. The process depends on adapting connections like the direct effect, but may
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operate at a different time scale (as suggested by psychophysical results; Wenderoth
and Johnstone 1988).

The LISSOM results may also help explain why the shape and magnitude of
the indirect effect varies so much between subjects, compared with the direct effect
(Mitchell and Muir 1976). The TAE in LISSOM depends on how strongly those
neurons activated by the adaptation input are connected to those activated by the
test input. There are many connections between neurons with similar orientation
preferences (Section 5.3), which makes the direct effect reliable. In contrast, there
are fewer such connections between distant orientations, resulting in a less reliable
and more variable indirect effect.

The LISSOM model of the TAE leads to several suggestions for future biologi-
cal experiments. For example, LISSOM predicts that if inhibitory neurotransmitters
are blocked, the sign of the TAE will be reversed and the effect will be significantly
weaker (Figure 7.7). The activity patterns during the TAE could also be observed us-
ing optical imaging, directly verifying the model’s predictions. As will be discussed
in more detail in Section 16.4.3, it may be possible to test these predictions exper-
imentally in the future, establishing a thorough understanding of the mechanisms
underlying the TAE.

As was discussed in Section 7.3.2, the TAE in humans saturates near 4–5◦,
whereas in LISSOM it continues to increase as long as the network responds to
the adaptation input. This difference suggests that adult humans have only limited
ability to adapt to visual patterns. If these limits can be identified and measured elec-
trophysiologically, it should be possible to extend the model to include them so that
it would saturate at similar levels.

The current model also does not recover normal perception in darkness like hu-
mans do (Magnussen and Johnsen 1986). In the model, weights only change when
neurons are active, and thus no recovery can occur without input. In humans, the
TAE adaptation may be temporary, perhaps based on small additive or multiplicative
changes on top of more permanent connection strengths. Such a mechanism could
be simply a fast, limited, and temporary version of the self-organizing process that
captures the long-term correlations (see von der Malsburg 1987; Zucker 1989) for
possible mechanisms and uses for temporary plasticity). Part IV will explore how
such temporary plasticity in the lateral connections could also contribute to percep-
tual grouping and segmentation.

In addition to the tilt aftereffect, the LISSOM model could be used to give a
computational account to tilt illusions between simultaneous inputs, and aftereffects
of other types such as those of motion, spatial frequency, size, position, curvature,
and color, and even aftereffects in other modalities. Opportunities for future work in
this area are outlined in more detail in Sections 17.2.5 and 17.2.6.

7.6 Conclusion

The computational experiments reported in this chapter strongly support the theory
that tilt aftereffects result from Hebbian adaptation of the lateral connections between
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neurons, and provide a novel explanation of the indirect effect based on synaptic
normalization. Importantly, these effects emerge from the same decorrelating process
that determines how the cortex initially develops, and keeps it plastic in the adult.
This process tends to deemphasize constant features of the input, resulting in short-
term perceptual anomalies such as aftereffects.

A crucial component of understanding the TAE in the LISSOM model consisted
of direct visualizations of cortical activity and weight changes as they were occur-
ring in the simulated cortex. This method made it clear exactly which processes con-
tributed to the effect. In general, computational models can demonstrate many visual
phenomena in detail that are difficult to measure experimentally, thus presenting a
view of the cortex that is otherwise not available. Such an analysis can complement
both high-level theories and experimental work with humans and animals, signifi-
cantly contributing to our understanding of the cortex.
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CONSTRUCTING VISUAL FUNCTION
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HLISSOM: A Hierarchical Model

Part II of the book demonstrated how input-driven self-organization can be respon-
sible for the characteristic structure of the visual cortex, including feature-selective
columns and patchy lateral connections, how this same self-organizing process can
adapt to damage to the retina and the cortex, and how it results in functional phenom-
ena such as the tilt aftereffect. In each simulation, the cortex was initially randomly
organized and the complexity of the input patterns was carefully controlled, so that
the properties of the self-organization process could be clearly demonstrated. In this
third part, the time course of cortical development and the source and properties of
the input patterns to the visual system will be analyzed in more detail. Although the
self-organization process is powerful enough to build the necessary structures from
natural input and random starting point, animals are born with significant cortical
structure already in place. The hypothesis, tested computationally in Part III, is that
such structure is due to genetically directed self-organization, which is then refined
by environmentally driven self-organization. Such a synergy of nature and nurture
makes the construction of visual function robust and efficient, and results in species-
specific biases such as the human newborn preference for facelike visual input.

In this chapter, the synergetic approach is motivated and the LISSOM model from
Part II is expanded outward into a multi-level model that allows testing the approach
computationally. This model, HLISSOM (hierarchical LISSOM; Bednar 2002; Bed-
nar and Miikkulainen 1998, 2005), can process both genetically determined internal
input (from the developing retina and the brainstem) as well as external input, and it
includes two areas of cortical processing (V1 and a face-selective area) where their
synergy can be observed. By bringing all these components together, HLISSOM
demonstrates computationally how perceptual abilities may be constructed, and al-
lows detailed comparisons with experimental data.

8.1 Motivation: Synergy of Nature and Nurture

Recent experimental and computational results, such as those reviewed in Sec-
tion 2.1.4 and presented in Part II, suggest that much of the structure and function
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of the visual system is constructed by a general-purpose learning process, driven by
inputs from the environment. On the other hand, there is also considerable evidence
that many aspects of the visual system are hardwired, i.e. constructed from a specific
blueprint encoded in the genome. The conflict between these two positions is gen-
erally known as the nature–nurture debate, which has been raging for centuries in
various forms (Diamond 1974).

The idea of a specific blueprint does seem to apply to the largest scale organi-
zation of the visual system, at the level of areas and their interconnections. These
patterns are largely similar across individuals of the same species, and their devel-
opment does not generally depend on neural activity, visually evoked or otherwise
(Miyashita-Lin, Hevner, Wassarman, Martinez, and Rubenstein 1999; Rakic 1988;
Shatz 1996). But at smaller scales, such as maps and lateral connections within them,
there is considerable evidence for both internally and environmentally controlled
development. Thus, debates center on how this seemingly conflicting evidence can
be reconciled. Orientation processing is the clearest example, and will be the topic
of Chapter 9; in this section, evidence for genetic and environmental influences on
OR is summarized, suggesting how computational modeling can be used to account
for both. Similar evidence for other perceptual features will be discussed in Sec-
tion 17.2.3 and for higher levels such as face detection in Section 10.1.

Experiments since the 1960s have shown that the environment can have a large
effect on the structure and function of the early visual areas (see Movshon and van
Sluyters 1981 for a review). For instance, Blakemore and Cooper (1970) found that
if kittens are raised in environments consisting of only vertical contours during a
critical period, most of their V1 neurons become responsive to vertical orientations.
Similarly, orientation maps from kittens with such rearing devote a larger area to the
orientation that was overrepresented during development (Sengpiel et al. 1999). Even
in normal adult animals, the distribution of orientation preferences is slightly biased
toward horizontal and vertical contours (Chapman and Bonhoeffer 1998; Coppola,
White, Fitzpatrick, and Purves 1998). Such a bias would be expected if the neurons
learned orientation selectivity from typical environments, which have a similar ori-
entation bias (Switkes, Mayer, and Sloan 1978). Conversely, kittens who were raised
without patterned visual experience at all, e.g. by suturing their eyelids shut, have
few orientation-selective neurons in V1 as an adult (Blakemore and van Sluyters
1975; Crair et al. 1998). Thus, visual experience can clearly influence how orienta-
tion selectivity and orientation maps develop.

The lateral connectivity patterns within the map are also affected by visual ex-
perience. For instance, kittens raised without patterned visual experience in one
eye (by monocular lid suture) develop nonspecific lateral interactions for that eye
(Kasamatsu, Kitano, Sutter, and Norcia 1998). Conversely, lateral connections be-
come patchier when inputs from each eye are decorrelated during development (by
artificially inducing strabismus, i.e. squint; Gilbert et al. 1990; Löwel and Singer
1992; Section 5.1.2).

In ferrets it is possible to reroute the connections from the eye that normally go to
V1 via the LGN, so that instead they reach auditory cortex (see Sur et al. 1999; Sur
and Leamey 2001 for reviews). As a result, the auditory cortex develops orientation-
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selective neurons, orientation maps, and patchy lateral connections, although these
structures are not as pronounced as in normal maps. Furthermore, the ferret can use
the rewired neurons to make visual distinctions, such as discriminating between two
grating stimuli (von Melchner, Pallas, and Sur 2000). Thus, afferent input to the
cortex can profoundly affect its structure and function.

Therefore, the evidence from altered environments and rewiring experiments
suggests that the structure and function of V1 could simply be learned from ex-
perience with the visual environment. This experience is presumably mediated by
neural activity, and experiments have shown that blocking neural activity, or block-
ing activity-dependent plasticity, prevents the development of orientation selectivity
(Chapman and Stryker 1993; Ramoa, Mower, Liao, and Jafri 2001). Together, these
findings suggest that the visually driven neural activity patterns in the LGN might be
sufficient to direct the development of V1 and other cortical areas.

However, there is also significant evidence on the contrary, suggesting that visual
cortex structure is genetically determined. For example, it has been known for a long
time that individual orientation-selective cells exist in newborn kittens and ferrets
even before they open their eyes (Blakemore and van Sluyters 1975; Chapman and
Stryker 1993). Psychological studies further suggest that human newborns can al-
ready discriminate between patterns based on orientation (Slater and Johnson 1998;
Slater et al. 1988). Recent advances in experimental imaging technologies have even
made it possible to measure the full map of orientation preferences in young ani-
mals. Such experiments show that large-scale orientation maps exist prior to visual
experience, and that these maps have many of the same features found in adults (Fig-
ure 9.2a; Chapman, Stryker, and Bonhoeffer 1996; Crair et al. 1998; Gödecke et al.
1997). The lateral connections within the orientation map are also already patchy be-
fore eye opening (Gödecke et al. 1997; Luhmann et al. 1986; Ruthazer and Stryker
1996).

Furthermore, the global pattern of orientation preferences in the maps changes
very little with normal visual experience, even as the individual neurons gradually
become more selective for orientation, and lateral connections become more patchy
(Chapman and Stryker 1993; Crair et al. 1998; Gödecke et al. 1997). Thus, de-
spite the clear influence of environmental input on visual cortex structure, normal
visual experience primarily preserves and fine-tunes the existing structures, rather
than drives their development.

How can the same circuitry be both genetically hardwired, yet also capable of
significant learning and adaptation based on the environment? As was discussed in
Section 2.3, new experiments are finally starting to shed light on this question: Many
of the structures present at birth could result from learning of spontaneous, internally
generated neural activity, such as retinal waves and PGO waves. The same activity-
dependent learning mechanisms that can explain postnatal learning may simply be
functioning before birth, driven by activity from internal instead of external sources.
In this way, “hardwiring” may actually be learned. This explanation provides a pos-
sible way to reconcile the evidence in the nature vs. nurture debate in orientation
processing. The answer is not simply that both components have an effect; there is
only one developmental process, and it consists of a synergy of nature and nurture.
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The goal of Part III is to test this hypothesis in detailed computational exper-
iments. Two developmental phenomena are studied: (1) How orientation maps de-
velop, as described above, and (2) how human infants prefer facelike visual input
already at birth and how these preferences change in early life. Although the exper-
imental data about both of these phenomena are rather confusing and even contra-
dictory, they make perfect sense under the synergy hypothesis. The computational
experiments are based on the LISSOM model, expanded outward to include lower
and higher level areas of visual processing.

8.2 The Hierarchical Architecture

HLISSOM consists of the key areas of the visual system that are necessary to model
how orientation and face processing develops based on internal and external inputs.
The architecture is illustrated in Figure 8.1. HLISSOM extends LISSOM in three
ways: (1) It includes input patterns arising from the brainstem (the PGO generator)
in addition to retinal input; (2) it includes a higher level cortical face-selective area
(FSA) in addition to V1; and (3) it includes divisive normalization on the afferent
input. As described in Section 6.2.3, the ON and OFF channels of the LGN are
necessary to process natural images.

8.2.1 Brainstem Input Area

As was reviewed in Section 2.3, the photoreceptors are not the only source of neural
activity in the visual system. Spontaneous waves of activity in the retina and the PGO
waves generated in the brainstem have both been shown to affect the development
of the LGN, and may also influence how V1 develops. To investigate the role of
such patterns, HLISSOM includes the PGO generator as an additional input area
representing spontaneous activity from the brainstem.

The PGO pathway has not yet been mapped in detail in animals, but the activ-
ity that results from the PGO waves appears to be similar to that from visual input
(Marks et al. 1995). Thus, for simplicity, the PGO pathway is modeled with an area
like the retina, connecting to the LGN in the same way (Figure 8.1).

8.2.2 Face-Selective Area

It is easy to see how internally generated patterns could influence how orientation
maps develop. However, behavioral tests with human infants (discussed in detail in
Section 10.1) also suggest that internal activity may be important for the development
of high-level processing, such as face perception. As was reviewed in Section 2.1.3,
in adults there are face-selective cortical regions that receive input from V1. HLIS-
SOM includes such a face-selective region called the FSA so that the development
of face perception can be studied.

The FSA represents the first region in the ventral processing pathway above V1
that has receptive fields spanning approximately 45◦ of visual arc, i.e. large enough
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V1

Face−selective
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generator

Fig. 8.1. Architecture of the HLISSOM model. Each sheet of units in the model visual path-
way is shown with a sample activation pattern and the connections to one example unit. The
activities are shown in gray scale as in Figure 4.1. Visual inputs are presented on the retina, and
the resulting activity propagates through afferent connections to each of the higher levels. In-
ternally generated PGO input propagates similarly to visual input. Activity in the model at any
one time originates either in the PGO sheet or the retina, but not both at once. As in the LIS-
SOM model, the activity in the cortical levels (V1 and FSA) is focused by lateral connections,
which are initially excitatory between nearby neurons (dotted circles) and inhibitory between
more distant neurons (dashed circles). The final patterns of lateral and afferent connections
in the cortical areas develop through an unsupervised self-organizing process, as in LISSOM.
After self-organization is complete, each stage in the hierarchy represents a different level of
abstraction. The LGN responds best to edges and lines, suppressing areas with no information.
The V1 response is further selective for the orientation of each contour; the response is patchy
because neurons preferring other orientations do not respond. The FSA represents the highest
level of abstraction — a neuron in the FSA responds when there appears to be a face in its
receptive field on the retina.
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to span a human face at close range. Although the infant connectivity patterns are not
known, areas V4v (ventral V4) and LO (lateral occipital area) match this description
based on adult patterns of connectivity (Haxby et al. 1994; Kanwisher et al. 1997;
Rodman 1994; Rolls 1990). The generic term “face-selective area” is used rather
than V4v or LO to emphasize that the results do not depend on the region’s precise
location or architecture, only on the fact that the region has receptive fields large
enough to allow face-selective responses. Through self-organization, neurons in the
FSA become selective for patterns similar to faces, and do not respond to most other
objects and scenes.

8.2.3 Afferent Normalization

Compared with LISSOM’s afferent stimulation function (Equation 4.5, Appendix A),
HLISSOM adds an additional parameter γn to allow divisive (shunting) normaliza-
tion:

sij =

γA

(
∑

ab∈ON

ξabAab,ij +
∑

ab∈OFF

ξabAab,ij

)

1 + γn

(
∑

ab∈ON

ξab +
∑

ab∈OFF

ξab

) , (8.1)

where ξab is the activation of neuron (a, b) in the receptive field of neuron (i, j) in
the ON or OFF channels, Aab,ij is the corresponding afferent weight, and γA is a
constant scaling factor. An analogous normalization is done on the inputs from the
V1 to FSA.

Equation 8.1 divides the afferent stimulation of the neuron by the total activa-
tion in its receptive fields, i.e. it normalizes the response according to total input.
If the unit has a strong afferent connection to an input location and that location is
active, the normalization increases the neuron’s overall activation; if it has a weak
connection to that location, it decreases the activation. This push–pull effect is an
abstraction of contrast invariant responses in biology (Sections 16.1.4 and 17.1.2).
As seen in Figures 8.2 and 8.3, afferent normalization helps ensure that the cortex
responds uniformly even to large natural images, which have a wide variety of con-
trasts at different locations. As a result, all afferent weights can be excitatory, and
adapt based on Hebbian learning as in LISSOM.

Artificial input patterns and inputs that cover only a small area of the visual
field have relatively uniform contrasts. In simulations that use such input, afferent
normalization can be omitted and γn left at zero. This was the case for the LISSOM
simulations in Part II, and also for most other self-organizing models of the visual
cortex. In the face perception simulations, however, large natural images are used,
and afferent normalization is necessary.
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(a) Retinal activation (b) LGN response

(c) V1 response:
γn = 0, γA = 3.25

(d) V1 response:
γn = 0, γA = 7.5

(e) V1 response:
γn = 80, γA = 30

Fig. 8.2. Effect of afferent normalization on V1 responses. The LGN response (b) to the
activation in (a) is visualized by subtracting the OFF channel activation from the ON, and
the V1 responses (c–e) by color coding each neuron according to how active it is and what
orientation it prefers (as in Figure 6.5, except this network, from Section 10.2, is much larger).
(c) Without afferent normalization (γn = 0), the network can respond only to the strongest
contrasts in the image (as in Figure 6.5): The low-contrast oriented lines, such as those along
the bottom of the chin, are lost. (d) When the afferent scale (γA) is increased, the network
begins to respond to these lines as well, but its activation resulting from the high-contrast con-
tours becomes widespread and unselective. (e) With normalization (γn = 80, γA = 30), the
responses are largely invariant to input contrast, and instead are determined by how closely the
input pattern matches the receptive field pattern of each neuron. The activations preserve the
important features of the input, and the V1 activation pattern can be used as input to a higher
level map for tasks such as face processing. Afferent normalization is therefore crucial for
producing meaningful responses to natural inputs, which vary widely in contrast. Figure 8.3
shows how afferent normalization affects the responses of single neurons, which underlie these
differences in the V1 response.

8.3 Inputs, Activation and Learning

Let us review the inputs and the activation and learning processes in HLISSOM, fo-
cusing on how they differ from LISSOM. As in LISSOM, learning is driven by input
patterns drawn on the input sheets, which in HLISSOM consist of either the retina
or the PGO generator, but not both at once (Figure 8.1). Since in Part II the goal was
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(b) γn = 80, γA = 30

Fig. 8.3. Effect of afferent normalization on V1 neuron tuning. The differences in V1
population activities shown in Figure 8.2 are due to changes in how individual neurons respond
at different contrasts. These plots show orientation tuning curves of the neuron at the center of
the cortex, which prefers stimuli oriented at 60◦. Each curve shows the peak settled responses
of this neuron to sine gratings whose orientations are indicated in the x-axis and contrast
specified in the legend at right. In each case, the sine grating phase was used that resulted in
the largest response. (a) Without afferent normalization, the neuron becomes less selective for
orientation as contrast increases. Given enough contrast (above 50%), the neuron responds at
full strength to inputs of all orientations, and thus no longer provides information about the
input orientation. (b) With normalization, the tuning curve is the same over a wide range of
contrasts, allowing the neuron to respond only to inputs that match its orientation preference.
The curves are similar at 20% contrast (solid line), but the neuron now responds selectively to
other contrasts as well. Afferent normalization is therefore crucial for preserving orientation
selectivity over a wide range of contrasts.

to demonstrate which essential features of the input are responsible for orientation,
ocular dominance, and direction selectivity, each simulation used only a single type
of input. In contrast, with HLISSOM the goal is to understand the how internally
generated inputs and environmental inputs together influence self-organization, and
thus HLISSOM simulations include the input activity patterns thought to occur at
each developmental age.

Internally generated activity has been observed in several locations in the devel-
oping visual system (Section 2.3). Given the current evidence, retinal waves are the
most likely source for prenatal self-organization of V1 orientation maps (as will be
discussed in Section 16.2.1). One such pattern is reproduced in Figure 8.4a, showing
activity in retinal cells of the ferret before photoreceptors have developed. Although
their precise origin still needs to be determined, retinal waves activate the ON and
OFF neurons differently (Section 16.2.1; Myhr, Lukasiewicz, and Wong 2001). Such
patterns can be modeled as “noisy disks”, i.e. large active areas (modeling ON chan-
nel activation) and large inactive areas (modeling OFF channel activation) with ori-
ented edges in a noisy background (Figure 8.4b). These patterns will be used to
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(a) Retinal waves (b) Noisy disks (c) Three-dot patterns

(d) Nature (e) Landscapes (f ) Faces

Fig. 8.4. Internally generated and environmental input patterns. The three top images de-
pict prenatal input patterns on the retina and the PGO pathway in gray scale from black to
white (low to high). (a) A sample retinal wave pattern from the ferret (see also Figure 1.2) is
used to motivate the actual patterns in HLISSOM experiments. (b) The “noisy disk” represen-
tation of retinal waves is used to organize the orientation map prenatally. A light disk models
activity in the ON channel and a dark disk that in the OFF channel. (c) A PGO activity con-
figuration of three dark noisy disks, corresponding to the two eyes and the nose/mouth area, is
proposed to underlie prenatal development of face preferences. The three bottom images are
samples of visual inputs, including those of (d) nature, (e) landscapes, and (f ) faces. Randomly
located retina-size segments (such as those shown by white squares) are used to train and test
V1, and full face images to train and test the FSA, measuring how the variation in postnatal
training affects the orientation map and how the face preferences develop postnatally. Sources:
(a) Feller et al. (1996), (d) Shouval et al. (1996, 1997), (e) National Park Service (1995), (f )
Achermann (1995), copyright 1995 by University of Bern.

organize the HLISSOM orientation map prenatally, i.e. before the onset of visual
experience. 1

Other sources of internally generated activity share features with retinal waves;
however, their structure has not been characterized in enough detail to date to model
directly. The hypothesis tested in the face preference experiments is that PGO pat-
terns consisting of triplets of such waves (Figure 8.4c), corresponding roughly to the

1 For convenience, the terms “prenatal” and “postnatal” are used to refer to the phases before
and after the onset of visual experience. In humans this onset indeed coincides with birth,
but in animals such as ferrets and cats it roughly matches eye opening, which happens
several days or weeks after birth.
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dark outlines of the two eyes and the nose and mouth area, could explain why human
newborns are drawn to facelike visual inputs. Like retinal waves, PGO waves are
not the only possible source for such patterns, but they are the most likely cause for
prenatal self-organization of higher levels (Section 16.2.2).

Postnatal training, on the other hand, is based on natural visual inputs in the
retina, including photographic images of natural objects, landscapes, and faces (Fig-
ure 8.4d–f ). Each of these datasets has a slightly different distribution of orientations:
Whereas objects have more horizontal and vertical edges than other orientations,
landscapes are predominantly horizontal and faces mostly vertical. Compared with
the prenatal PGO patterns, the face images include strong outlines and more detailed
internal features. While it is difficult to obtain a realistic set of such patterns that
would match the experience of an infant (as will be discussed in Section 17.3.3), it
is possible to demonstrate what effects the variations of such patterns might have.
In several experiments in Chapters 9 and 10, variations of these patterns as well as
the prenatal ones will be tested to evaluate how strongly the developmental process
depends on specific input features.

The ON and OFF sheets of the LGN in HLISSOM are identical to those in LIS-
SOM, with DoG receptive fields (Equation 4.1) that filter out large, uniformly bright
or dark areas, leaving only edges and lines (through Equation 4.3). The cortical
sheets, i.e. V1 and the FSA, are similar to V1 in LISSOM. Each consists of ini-
tially unselective, laterally connected units that become selective through learning.
V1 receives input from the ON and OFF cells of the LGN, while the FSA receives
input from the laterally settled response of V1. The mapping from V1 to the FSA is
constructed just like the mapping from the LGN to V1 in Figure A.1(a), so that no
FSA neuron has a receptive field that is cropped by the border of V1.

HLISSOM simulations with large natural images generally start with an initial
normalization strength γn of zero, because neurons are initially unselective. As neu-
rons become selective over the course of training, γn is gradually increased. To pre-
vent the net responses from decreasing, the scaling factor γA is set manually to com-
pensate for each change to γn. The goal is to ensure that the afferent response ζ will
continue to have values in the full range [0..1] for typical input patterns, regardless
of the γn value. At the same time, γn ensures that the cortex responds to all areas of
the input, not just the areas with the highest contrast.

After the afferent normalization, the initial cortical response is calculated from
the afferent response using a sigmoid activation function (Equations 4.4–4.6). Acti-
vation then settles due to the lateral connections (Equation 4.7), and each weight is
updated as in LISSOM. Through this process, HLISSOM develops realistic ordered
maps, receptive fields, and lateral connections.

8.4 Effect of Input Sequence and Initial Organization

Before analyzing how the different training sequences affect self-organization in
HLISSOM, it is necessary to verify that the resulting organization is indeed primar-
ily determined by the inputs, and not by the initial random state of the network. This
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hypothesis is experimentally verified in this section using HLISSOM, but it applies
to all LISSOM models and also to other similar self-organizing models. There are
two types of variability between runs with different random numbers: the random
order, location, and position of the individual input patterns at each iteration, and
the random initial values of the connection weights. Each one can be independently
varied while the other is kept constant, and the resulting differences can be observed.

A series of orientation map simulations similar to those in Section 5.3 were run
in this way (Figure 8.5; Appendix C.1). The results demonstrate that the map shape
does not depend on the random initial values of the weights, as long as the initial
weights are drawn from the same random distribution. This observation is consistent
with those on the SOM model (Cottrell, de Bodt, and Verleysen 2001), confirming
that self-organization is less sensitive to initial conditions than e.g. backpropagation
learning (Kolen and Pollack 1990). Instead, the self-organized orientation map pat-
tern in HLISSOM depends crucially on the stream of inputs. Two different streams
lead to different orientation maps, even if the streams are drawn from the same distri-
bution. The overall properties of the maps (such as the distance between orientation
patches, the number of pinwheels, etc.) are very similar, but different input streams
lead to different arrangements of patches and pinwheels.

HLISSOM is insensitive to initial weights for three reasons, all of which are com-
mon properties of most incremental Hebbian models. First, because input patterns
vary smoothly, the receptive fields are relatively large, and early in self-organization
the afferent weights are uniformly random, the initial scalar product responses be-
tween the input and weight vectors (Equation 4.5) are similar regardless of the spe-
cific weight values. Second, because these responses settle through lateral excitation
(Equation 4.7), the final activity levels are even more similar. Third, with a high
enough learning rate, the initial weight values are soon overwritten by the Hebbian
learning based on the final responses (Equation 4.8). The net result is that as long
as the initial weights are generated from the same distribution, their precise values
do not significantly affect map organization. Similar invariance to the initial weights
should be found in other Hebbian models that compute the scalar product of the in-
put and a weight vector, particularly if they include lateral excitation and use a high
learning rate in the beginning of self-organization.

In animals, maps are also similar between members of the same species, but they
differ in the specific arrangements of orientation patches and pinwheels (Blasdel
1992b). The HLISSOM model predicts that the specific orientation map pattern in
the adult animal depends primarily on the order and type of activity seen by the
cortex in early development, and not on the details of the initial connectivity. This
result also means that it is very important to study how different input streams affect
the self-organization process, as will be done in the next two chapters.

8.5 Conclusion

The HLISSOM model includes the retina and a brainstem pattern generator, the LGN
(both ON and OFF channels), V1, and a higher level face-selective region. It can be
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(a) Iteration 0 (b) Iteration 50 (c) Iteration 10,000

Fig. 8.5. Effect of different input streams and initial organizations on the self-organizing
process. Using a different stream of random numbers for the weights (top two rows) results in
different initial maps of orientation preference (a), but has almost no effect on the final self-
organized maps (c), nor the lateral connections in them. (The lateral connections are shown in
white outline for one sample neuron, marked with a small white square; orientation selectivity
is not plotted in this Figure to make the preferences visible in the initial map.) The final result
is the same because lateral excitation smooths out differences in the initial weight values,
and leads to similar large-scale patterns of activation at each iteration. This process can be
seen in the early map (b): The same large-scale features are emerging in both maps despite
locally different patterns of noise caused by the different initial weights. In contrast, changing
the input stream (bottom two rows) produces very different early and final map patterns and
lateral connections, even when the initial weights are identical. Thus, the input patterns are the
crucial source of variation, not the initial weights. An animated demo of these examples can
be seen at http://computationalmaps.org.
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trained with both internally generated patterns and natural images, and the resulting
organization depends on the input sequence, not the initial unordered state. These
components and properties allow HLISSOM to simulate developmental processes
crucial for orientation and face processing in young animals and infants, as will be
shown in Chapters 9 and 10. The results can be compared with experimental data
and often lead to specific predictions for future experiments.



9

Understanding Low-Level Development: Orientation
Maps

Using the HLISSOM model introduced in the previous chapter, this chapter will
demonstrate how genetic and environmental influences can interact in developing bi-
ologically realistic orientation maps, V1 receptive fields, and lateral connections. The
focus will be specifically on orientation maps because of the wealth of experimental
data now available about their development. Patterns resembling retinal waves are
first shown to have the right properties for developing rudimentary maps like those
seen in newborns. These maps are then refined in postnatal learning with natural im-
ages, allowing the map to adapt to the statistical properties of the environment. The
simulations show how HLISSOM can account for much of the complex process of
orientation map development in V1, and also serve as a well-grounded test case for
the methods used in the face perception experiments in the next chapter.

9.1 Biological Motivation

The LISSOM simulations in Section 5.3.5 showed that orientation maps can form
based on a variety of input patterns, as long as the patterns have sufficient spatial
structure. The properties of the map are slightly different in each case, reflecting the
features of the input. The first goal of this chapter is to analyze what kind of features
internally generated input should have to explain the rudimentary orientation map
structure seen in newborns.

In particular, Miller (1994) suggested that retinal wave patterns (discussed in
Section 2.3.3) might be too large and too weakly oriented to drive the development
of orientation preferences in V1. However, these patterns contain spots of activity
that have oriented edges. As long as these spots are large relative to V1 receptive
fields, their shape and size should not matter, nor should the background noise; the
oriented edges should be enough for V1 neurons to learn to represent orientation.
This hypothesis is indeed verified in Section 9.2 in computational experiments with
HLISSOM: Retinal waves do have sufficient structure to allow orientation maps and
selectivity to develop; further, training on such patterns results in maps that match
newborn maps better than those trained with idealized inputs or with random noise.
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This result allows asking the next question: How are such internal inputs com-
bined with external ones during development? None of the map models discussed
in Section 5.2 has yet demonstrated how the orientation map can smoothly integrate
information from these two sources. A number of the models have simulated spon-
taneously generated activity (e.g. Burger and Lang 1999; Linsker 1986a,b,c; Mayer,
Herrmann, and Geisel 2001; Miller 1994; Piepenbrock, Ritter, and Obermayer 1996),
and a few models have shown self-organization based on natural images (as reviewed
in Section 5.2). Yet, to our knowledge, the only orientation map model to be tested
on a prenatal phase with spontaneous patterns followed by a postnatal phase is the
Burger and Lang (1999) model. They found that if a map organized based on uni-
formly random noise was subsequently trained on natural images (actually, patches
from a single natural image), the initial structure was soon overwritten. As was dis-
cussed in Section 8.1, this is a curious result because animal maps instead maintain
the same overall structure during postnatal development.

Section 9.3 will demonstrate how the HLISSOM prenatal map is smoothly re-
fined in postnatal training with natural images. The prenatal map organization is not
very different from that of a naı̈ve network, i.e. an initially random map trained only
with natural images. Therefore, postnatal training with natural images will only lo-
cally adjust the map, not replace it with something else. In this way HLISSOM will
show how internal inputs and natural images can interact to construct realistic orien-
tation maps, an important finding that has not been explained by previous models.

After demonstrating that prenatal and postnatal training together can account for
the experimental data, the question is: Why are there two phases? There is indirect
evidence that the visual cortex keeps getting trained with internally generated inputs
at least for several weeks after birth (Crair et al. 1998). Would it be possible to obtain
the refined adult orientation map in such continued training with internal inputs?
Conversely, is the prenatal phase necessary, or would an adult map form just as well
through postnatal training with natural images only?

Further simulations in Section 9.4 demonstrate that accurate adult maps can be
obtained with internally generated patterns alone, and with natural images alone.
However, there are good reasons why both phases exist: Prenatal training is an ad-
vantage because it allows the animal to have a functional visual system already at
birth, and its further development will be more robust. Postnatal adaptation, on the
other hand, allows it to form an accurate representation of the environment that it
actually encounters during its life. Therefore, both phases serve a distinctly differ-
ent role in constructing the visual system. How these two processes could continue
interacting throughout the animal’s life, balancing the need to adapt to the environ-
ment and the need to maintain stable visual abilities, is in important further research
question, discussed in Section 17.2.4.

9.2 Prenatal Development

In this section, HLISSOM is trained with internally generated patterns to develop a
rudimentary orientation map similar to e.g. those of newborn kittens. Maps trained
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with the noisy disks model of retinal waves match biological data better than maps
trained with idealized versions of internal inputs and inputs consisting of only noise.

9.2.1 Method

The prenatal HLISSOM network consisted of a 96×96 cortex, 36×36 LGN, 54×54
PGO sheet, and 108 × 108 retina. In three separate experiments, this same network
was trained with three different kinds of inputs to match the newborn orientation
maps as well as possible. The goal was to understand whether the large, noisy spots
seen in retinal waves are sufficient for forming newborn orientation maps, and what
role spatial correlation and noise might each play in their self-organization.

In the main experiment, retinal waves were modeled with light and dark noisy
disks (Figure 8.4a; Section 8.3). To generate such input, a spot-like structure was
first rendered based on a circular disk with smooth Gaussian fall-off in brightness
around the edges. Although the retinal wave patterns are often elongated, making
them circular in this experiment shows that elongation is not necessary for orientation
selectivity to develop. Uniformly distributed random noise was added to represent
neural activities realistically. Although some of the noise in the observed retinal wave
patterns is most likely due to measurement error, it is reasonable to assume that at
least some of it is due to genuine neural activity, and should be included in the model.

More specifically, each input pattern contained one noisy disk, and was specified
by the brightness of the disk related to the background (either light or dark), the
location of the disk center (xc, yc), the radius rd of the full-intensity central portion
of the disk, and the width σd for Gaussian smoothing of its edge. To calculate the
activity for each retinal location (x, y), the Euclidean distance d of that location from
the disk center is first measured as

d =
√

(x − xc)2 + (y − yc)2, (9.1)

and the activity χ for receptor (x, y) is then calculated as

χxy =

{
1.0 if d < rd,

exp
(
− (d−rd)2

σ2
d

)
otherwise.

(9.2)

The centers (xc, yc) were chosen randomly and the brightness of each pattern was
either positive or negative relative to the mean brightness, chosen randomly. Noise
was then included in this disk pattern by adding a uniformly distributed value in the
range ±0.5 to each pixel.

To evaluate the contributions of spatial correlations and noise in the results, in
two separate experiments a similar network was trained with the disk-like patterns
without the added noise, and with patterns that consisted of noise only (with each
input pixel a random number within [0..1]).

In each experiment, the network was trained for 1000 iterations, since this
amount of training was found experimentally to represent prenatal self-organization
well. If the prenatal phase was concluded earlier and training continued with natu-
ral images, the postnatal training would override the prenatal organization; if instead
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the prenatal phase lasted longer than 1000 iterations, the postnatal phase would have
little effect in refining the maps. The rest of the simulation parameters are detailed in
Appendix C.1.

In the next two subsections, the map organization, receptive fields, and lateral
connections resulting from noiseless and noisy disks and from noise alone will be
compared.

9.2.2 Map Organization

The main result from the prenatal experiments is that the HLISSOM model trained
with patterns modeling retinal waves develops an orientation map very similar to
that found in newborn ferrets and binocularly deprived kittens (Figures 9.1 and 9.2;
Chapman et al. 1996; Crair et al. 1998). This result shows that even simple inter-
nally generated inputs can be responsible for the observed prenatal self-organization.
This result also explains how identical orientation maps can form for both eyes even
without shared visual experience (using reverse lid suture; Gödecke and Bonhoeffer
1996). The development is driven by the orientations of small patches around the
edge of the circular spots. These oriented edges are visible in the LGN response to
the disk pattern in Figure 9.1.

The map develops lateral connection patterns that are oriented and patchy, al-
though to a lesser extent than in the adult. They are a good match with animal data
(such as those of Ruthazer and Stryker 1996). Oriented receptive fields with ON and
OFF subregions also develop. Both two-lobed and three-lobed receptive fields are
common for simple cells in adult V1 (Hubel and Wiesel 1968), but the RF types in
newborns are not known. In the HLISSOM simulation with noisy disks, most neu-
rons develop two-lobed receptive fields because the input patterns consisted of edges
only (and no lines or bars). These results suggest that if orientation map develop-
ment in animals is driven by large, spatially coherent spots of activity, newborns will
primarily have two-lobed V1 receptive fields.

9.2.3 Effect of Training-Pattern Variations

Comparing the above results with noiseless and noise-only versions of the retinal
wave patterns leads to several insights. The noiseless patterns result in a more regular
map and smoother RFs, making the neurons highly selective (as seen in the middle
row of Figure 9.1). They are actually more selective than newborn maps. Adding
spatially uncorrelated noise, as was done in the “Noisy disks” simulation (top row),
makes it harder for the neurons to become highly selective, resulting in maps that
faithfully replicate newborn maps.

Interestingly, orientation maps develop even from uniformly random noise (bot-
tom row; this result and the longer simulation in Section 5.3.5 replicate that of
Linsker (1986a,b,c) in a biologically more detailed model). However, the resulting
V1 map is significantly less organized than typical animal maps, even at birth. Most
neurons are also only weakly selective for orientation, as can be seen in the sample
RFs, most of which would be a good match to many different oriented lines. These
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Fig. 9.1. Effect of internally generated prenatal training patterns on orientation maps.
Three different networks were trained for 1000 iterations to match newborn orientation maps
as well as possible. The networks and training parameters were otherwise identical except
different training inputs were used. As in Figure 5.13, the columns show a sample retinal acti-
vation, the LGN response to that activation, self-organized receptive fields for sample neurons,
lateral inhibitory weights of these same neurons, the organization of the orientation map with
selectivity superimposed in gray scale, and the histogram and the Fourier transform of the
OR preferences. Overall, the features seen in the corresponding fully organized maps of Fig-
ure 5.13 have already started to emerge in each of these maps, although they are less distinct
at this stage. They contain linear zones, pairs of pinwheels, saddle points, and fractures, and
their retinotopic organization and gradient (not shown) are roughly similar to adult maps. The
ring-like shape of the Fourier transform is also starting to emerge with disk and noisy disk
inputs. The map obtained with noisy disks is the best match with animal maps (Figure 9.2).
Note that nearly all of the resulting receptive fields have two lobes (i.e. they are edge-selective)
rather than three (line-selective), predicting that a similar distribution would also be found in
newborns. With noiseless patterns (middle row), the RFs are very smooth, and the neurons
become highly selective for orientation, unlike neurons seen in newborn maps. On the other
hand, with uncorrelated random noise (bottom row), the neurons become significantly less se-
lective and the RFs do not have regular shapes like they do in animals. The “Noisy disks” map
therefore constitutes the most realistic model of prenatal self-organization, and will be used as
a starting point for postnatal training.

results suggest that the inputs need to be spatially coherent for realistic receptive
fields and maps to develop; noise alone is not sufficient.

In summary, the noisy disks model of internal training patterns leads to orienta-
tion maps that are a good match with those seen in newborns. These patterns have
enough oriented edges to drive self-organization, and enough noise to prevent the
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(a) Neonatal cat (b) Prenatally trained HLISSOM

Fig. 9.2. Prenatal orientation maps in animals and in HLISSOM. (a) A 1.9 mm× 1.9 mm
section measured through optical imaging in a 2-week-old binocularly deprived kitten, i.e. a
kitten without prior visual experience. The map is not as smooth as in the adult, and many of
the neurons are not as selective (not shown), but the map already has iso-orientation patches,
linear zones, pairs of pinwheels, saddle points, and fractures (detail of a figure by Crair et al.
1998, reprinted with permission, copyright 1998 by the American Association for the Ad-
vancement of Science). (b) The central 30 × 30 region of the “Noisy disks” orientation map
from Figure 9.1. The overall organization is very similar in the two maps, suggesting that pre-
natal training with internally generated patterns may be responsible for the observed maps at
birth.

map from becoming too selective. Such maps form a good starting point for further
refinement with natural images, as will be demonstrated next.

9.3 Postnatal Development

This section shows how a prenatally trained HLISSOM can continue learning with
natural images. Instead of overwriting the prenatal order, the map gradually gets
more refined, and eventually represents the statistical distribution of features in the
training images.

9.3.1 Method

The prenatal HLISSOM model trained for 1000 iterations with noisy disks was used
as a starting point for the postnatal simulations. In 9000 further iterations, 108× 108
segments of natural images were presented to the retina, and the network was allowed
to self-organize with the learning parameters listed in Appendix C.1.



9.3 Postnatal Development 195

In the main experiment, the network was trained postnatally with a dataset
most closely matched with natural input (dataset “Nature”). This set consists of 25
256× 256-pixel images of naturally occurring objects taken by Shouval et al. (1996,
1997). Nearly all of these images are short-range closeups, although there are a few
wide-angle landscapes showing the horizon. All orientations are represented, but
overall this dataset includes slightly more horizontal and vertical contours than other
orientations. The main research question is then answered by observing how the map
becomes gradually more refined during self-organization with these inputs.

The second goal was to understand what role postnatal training might play in
helping the animal cope with its environment. As was discussed in Section 8.1, when
animals are raised in artificial environments with only vertical lines, the numbers of
orientation-selective cells in V1 will reflect this bias (Blakemore and Cooper 1970).
The orientation maps of such animals also have enlarged domains for the overrepre-
sented orientations (Sengpiel et al. 1999). Even when raised in normal environments,
the maps become smoother and more selective through postnatal experience (Crair
et al. 1998). To understand these phenomena computationally, the HLISSOM model
was trained on two other natural image datasets as well.

The second postnatal training set, “Landscapes”, consisted of 58 stock pho-
tographs from the National Park Service (1995). Nearly half of the images in this
set are wide-angle photographs showing the horizon or other strong horizontal con-
tours; a few also include man-made objects, such as fences. Therefore, this dataset
has significantly more horizontally oriented contours than other contours. The third
postnatal set, “Faces”, consists of 30 frontal photographs of upright human faces
(Achermann 1995), which contain more vertical orientations than do the other two
sets. Example images from these three postnatal datasets are shown in Figure 9.3.
Each of these three sets of natural images has different distributions of oriented
edges, and the resulting self-organized maps should differ accordingly.

9.3.2 Map Organization

Starting from the rough prenatal orientation map, postnatal training with natural im-
ages gradually refines the map (Figure 9.6, top row). The neurons become more
selective and the organization of the map changes slightly. Note, however, that the
overall shape of the postnatal map remains similar to the prenatal map, as has been
found to be the case in animals, but not in previous models of prenatal and postnatal
development of orientation maps (Burger and Lang 1999).

The final adult map matches animal data very well (Figure 9.4). The overall or-
ganization of features on this map is similar to measurements from e.g. monkeys,
cats, and ferrets. Whereas the prenatal map has a roughly uniform distribution of ori-
entation preferences, the final map is biased for horizontal and vertical orientations.
This is important because a similar bias has been found in adult animals (Figure 9.5;
Chapman and Bonhoeffer 1998; Coppola et al. 1998).

Most of the RFs in the final map are orientation selective (Figure 9.3, top row),
as found in V1 of animals. However, they are still less selective than those in maps



196 9 Understanding Low-Level Development: Orientation Maps

Retina LGN RFs LIs OR pref. & sel. OR H OR FFT

N
D

+
N

at
ur

e
N

D
+

L
an

ds
ca

pe
s

N
D

+
Fa

ce
s

Fig. 9.3. Effect of environmental postnatal training patterns on orientation maps. Each
simulation started with the same initial map, trained prenatally for 1000 iterations on noisy
disks (ND) as shown in the top row of Figure 9.1. Postnatally, this map was trained for 9000
iterations under the same parameters but with retina-size segments of three different kinds of
natural image inputs (the full images for these examples are shown in Figure 8.4d–f ). In each
case, maps with realistic features, RFs, lateral connections, and Fourier transforms developed.
The final maps are less selective than those trained with artificial stimuli (Section 5.3), match-
ing biological maps well. They also differ significantly on how the preferences are distributed.
The network in the top row was trained on images of natural objects and primarily close-range
natural scenes from Shouval et al. (1996, 1997). Like biological maps, this map is slightly
biased toward horizontal and vertical orientations (as seen in the histogram), reflecting the
edge statistics of the natural environment. The network in the second row was trained with
stock photographs from the National Park Service (1995), consisting primarily of landscapes
with abundant horizontal contours. The resulting map is dominated by neurons with horizon-
tal orientation preferences (red), with a lesser peak for vertical orientations (cyan), which is
visible in both the map plot and the histogram. The network in the bottom row was trained
with upright human faces, by Achermann (1995). It has an opposite pattern of preferences,
with a strong peak at vertical and a lesser peak at horizontal (bottom row). Thus, postnatal
self-organization in HLISSOM depends on the statistics of the input images used, explaining
why horizontal and vertical orientations are more prominent in animal maps, and how this
distribution can be disturbed in abnormal visual environments. It also suggests that postnatal
learning plays an important role in how visual function develops: It allows the animal to dis-
cover what the most important visual features are and allocate more resources for representing
them.
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(a) Adult macaque (b) Postnatally trained HLISSOM

Fig. 9.4. Postnatal orientation maps in animals and in HLISSOM. (a) A 5 mm×5 mm area
of the orientation preference map in adult macaque (detail of Figure 2.4a, reprinted with per-
mission from Blasdel 1992b, copyright 1992 by the Society for Neuroscience). After postnatal
training on natural images, the HLISSOM map (b) replicates its structure very well. Thus, the
HLISSOM model shows how both the prenatal and adult orientation maps can develop based
on internally generated and environmental stimuli.

trained with artificial stimuli (i.e. Section 5.3), which is realistic and expected be-
cause the natural images contain many patterns other than pure edges. The receptive
fields have a realistic multi-lobe structure similar to those observed in simple cells
of monkeys and cats (Hubel and Wiesel 1962, 1968). Lateral connection patterns are
patchy and oriented, as they are in the adult animal (Bosking et al. 1997; Sincich and
Blasdel 2001).

Thus, postnatal training with natural images can explain how orientation maps
develop during early life. The model can also help us understand why such postnatal
learning is useful, as will be discussed next.

9.3.3 Effect of Visual Environment

The HLISSOM model suggests a computational explanation for the horizontal and
vertical biases in the orientation preferences. As was discussed in Section 9.3.1, the
“Nature” image set has slightly more horizontal and vertical edges than edges in
other orientations. Because self-organizing maps allocate resources according to the
input distribution (as was discussed in Section 3.4.3), these orientations become more
prominent in the map. Since vertical and horizontal contours are overrepresented in
the natural environment as well (Switkes et al. 1978), HLISSOM suggests a possible
mechanism for how the observed biases could result.
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Fig. 9.5. Distribution of orientation preferences in animals and in HLISSOM. The thin
line with circles delineates a histogram of orientation preferences for a typical adult ferret
visual cortex (replotted from Coppola et al. 1998; measured through optical imaging in an
oval 8.4 mm × 3.3 mm area). The thick line shows a similar histogram for the “ND+Nature”
network from Figures 9.3, 9.4, and 9.6. Both adult ferrets and the HLISSOM model have more
neurons representing horizontal or vertical than oblique contours, reflecting the statistics of the
natural environment. HLISSOM maps trained on internally generated patterns alone instead
have an approximately flat distribution, as seen in the histograms of Figure 9.1.

Moreover, if the statistical properties of the inputs are altered, the resulting maps
should reflect this change. To demonstrate this idea computationally, the HLISSOM
networks trained with the three different postnatal natural image datasets (as de-
scribed in Section 9.3.1) can be compared.

The postnatal development of the HLISSOM map during the first few hundred it-
erations turned out very similar regardless of the training patterns used. This result is
in line with Crair et al.’s (1998) finding (discussed in more detail in the next section)
that visual experience typically has only a small effect on early map development in
kittens.

Yet, in continued HLISSOM training the maps start to diverge (Figure 9.3). Com-
pared with the slight horizontal and vertical biases of the “ND+Nature” map, the
final “ND+Landscapes” map is strongly biased toward horizontal contours, with a
much weaker bias for vertical. These biases are visible in the orientation plot, which
is dominated by red (horizontal) and, to a lesser extent, cyan (vertical). The oppo-
site pattern of biases is found for the “ND+Faces” map, which is dominated by cyan
(vertical) and, to a lesser extent, red (horizontal). These results are analogous to those
with animals raised in artificial environments over the long term (Section 8.1; Blake-
more and Cooper 1970; Sengpiel et al. 1999). They suggest that the visual system
learns to encode the edge statistics of the visual environment in the orientation map,
a result that to our knowledge has not been demonstrated computationally before.

The HLISSOM model therefore shows how postnatal learning can contribute to
building an effective visual system. The most common contours in the environment
are the best represented in visual cortex, which will result in more effective process-
ing of typical visual input.
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9.4 Prenatal and Postnatal Contributions

Although prenatal and postnatal training together can account for the experimental
data, are both phases necessary in order to construct a realistic orientation map?
Somewhat surprisingly it turns out that training with internally generated patterns
and training with natural images alone are both sufficient in principle. However, the
animal would either not be able to perform visually at birth, or would not be able to
adapt its performance to fit the environment better.

9.4.1 Method

To understand whether prenatal and postnatal phases are both necessary, three further
experiments were run. First, the newborn network was trained for another 9000 iter-
ations (with the same parameters as the postnatal network) with noisy disk patterns
to determine whether training with internally generated patterns only could result in
an organization similar to the adult map.

Second, another network with the same architecture and learning parameters,
called the “Nature” network, was trained for 10,000 iterations with the “Nature” set
of inputs, but starting from an unordered, random initial organization at iteration 0.
That is, both the prenatal and postnatal phases used the same dataset of natural im-
ages. This network is used to test whether HLISSOM can self-organize from natural
images alone, and whether its final organization will be different from a network
trained with a prenatal map as a starting point.

Third, another randomly initialized network called “Blank+Nature” was trained
with the same set of natural image inputs starting from iteration 1000, i.e. after some
of the maturation processes had already taken place (Sections 4.4.3 and 16.1.6). That
is, the simulation parameters had been changed according to the schedule for the
first 1000 iterations, even though all inputs were blank and no training had actually
occurred. The initial network therefore had a shorter excitation radius, steeper sig-
moid, and slower learning rate than it would have had at iteration 0 (Appendix C.1).
The purpose was to see whether there was a critical period after which training from
natural images only would fail to generate a realistic map. Together with the main
experiment combining prenatal and postnatal learning, these three experiments allow
identifying distinct roles for the prenatal and postnatal phases of orientation map de-
velopment.

9.4.2 Effect of Training-Regime Variations

When trained with only internally generated inputs, an orientation map develops that
is qualitatively and quantitatively very similar to HLISSOM maps that were trained
fully or partly with natural images (Figure 9.6). This result is important because
it suggests that a continual generation of internal inputs during early life could be
responsible for the development, instead of actual visual experience.

There is indeed evidence that internally driven self-organization continues after
birth (or eye opening). Crair et al. (1998) found that similar maps develop in kittens
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Fig. 9.6. Effect of prenatal and postnatal training on orientation maps. The different rows
illustrate how the prenatal training phase affects the final self-organized maps. The state of
each network at iteration 1000 is shown on the left half, and the final state at iteration 10,000
on the right half. In the “ND+Nature” simulation (the same as in Figures 9.1 and 9.3), postnatal
training makes more neurons sensitive to horizontal and vertical contours and more selective in
general. However, the overall map shape remains similar, as found experimentally in animals
(Chapman et al. 1996; compare individual orientation patches between pairs of maps on the
top row). However, even without any prenatal training (bottom row), or when the network is
trained with natural images also prenatally (third row), HLISSOM develops a qualitatively
similar final map. In these cases, its organization depends only on the properties of the natural
images, not on the internally generated patterns under genetic control. Conversely, even when
natural images are replaced by internally generated ones in postnatal training (second row),
orientation maps still develop. However, they are not a good match to the visual environment:
For example, the orientation histogram is essentially flat. These results suggests that prenatal
training is useful mostly because it allows animals to have a functional visual system already
at birth, forming a robust starting point for further development. Postnatal training, on the
other hand, allows the animal to adapt to the actual visual environment.
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for several weeks whether their eyes are open (i.e. when self-organization is driven
by visual inputs) or whether they are sutured shut (i.e. when it is presumably still
driven by internal patterns). At least for a while, therefore, postnatal self-organization
may be influenced by internal inputs. How long this process continues and what its
long-term effects are is not known; however, eventually visual inputs will have a
significant effect, resulting in representations that match the input statistics, as was
discussed in the previous section. It is possible that the role of internally generated
inputs gradually changes from self-organization to maintenance, i.e. counteracting
excessive adaptation to noisy inputs from environmental input that might otherwise
take place. This possibility is discussed in more detail in Section 17.2.4.

When trained with natural images only, the map develops a very similar final
organization as the prenatally trained HLISSOM maps (Figure 9.6). This result is
interesting because it suggests that prenatal training is not necessary to obtain func-
tional adult maps. However, such training can still be very useful for the animal. The
animal will have a functioning orientation detection system immediately at birth,
giving it a survival advantage. Prenatal learning may also make postnatal learning
more robust against variations in parameter values and random fluctuations in the
inputs. The prenatal training patterns are simpler and well separated from each other
(Feller et al. 1996), suggesting that well-organized maps will develop under a greater
range of conditions than they could for natural images. Prenatal training may also be
important for the development of higher areas connected to V1 (e.g. V2 and V4), be-
cause it ensures that the map organization in V1 is approximately constant after birth
(Figure 9.6). As a result, the higher areas can begin learning appropriate connection
patterns with V1 even before eye opening.

Still, it is interesting that orientation maps can develop without any initial order
under such widely varying input conditions: oriented patterns, large unoriented pat-
terns, wide variety of natural images, and to some extent, even just noise. It does not
seem likely that internally generated patterns would exist only in order to organize
low-level maps, if they can be obtained so robustly. Instead, it is possible that the
primary effect of prenatal training is to bias the system so that high-level functions
are easier to develop. This is the hypothesis studied in detail in the next chapter.

9.5 Discussion

The results in this chapter show that prenatal training on internally generated activity
followed by postnatal training on natural images can account for how orientation
maps, orientation selectivity, receptive fields, and lateral connections in V1 develop.
The same activity-dependent learning rules can explain development based on both
internally and externally generated activity. The two types of activity serve important
but different roles in this developmental process, and both are crucial for replicating
the experimental data.

Comparing orientation maps and RFs trained on random noise vs. those trained
on images, disks, or Gaussians suggests that oriented features are needed for realistic
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receptive fields. Even though rough maps develop without such features, the recep-
tive fields do not match those typically measured in animals. A similar result was
recently found independently by Mayer et al. (2001) using single-RF simulations.
However, they conclude that natural images are required for realistic RFs, because
they did not consider patterns like noisy disks. The results in this chapter suggest
that any pattern with large, coherent spots of activity will suffice, and thus that natu-
ral images are not strictly required for RF development.

In animals, the map that exists at eye opening has more noise and fewer selec-
tive neurons than the prenatally trained maps in Figures 9.1 and 9.2 (Chapman et al.
1996; Crair et al. 1998). As a result, in animals the postnatal improvement in selec-
tivity is larger than that shown here for HLISSOM. The difference may result partly
from measurement noise, but also partly from the immature receptive fields in the de-
veloping LGN (Tavazoie and Reid 2000). Using a more realistic model of the LGN
would allow the map to improve more postnatally, but it would make the model sig-
nificantly more complex to analyze. Neurons may also appear less selective at birth
because the cortical responses vary more in infants. Such behavior could be modeled
by adding internal noise to the prenatal neurons, which again would make the model
more complex to analyze but would not fundamentally change the self-organizing
process.

A recent study has also reported that the distribution of orientation-selective cells
matches the environment even in very young ferrets, i.e. that horizontal and vertical
orientations are over-represented in orientation maps at eye opening (Chapman and
Bonhoeffer 1998). One possible explanation for this result is that the retinal gan-
glion cells along the horizontal and vertical meridians are distributed nonuniformly
(Coppola et al. 1998), which could bias the statistics of internally generated patterns.
Even if such a prenatal bias exists, HLISSOM shows how biased visual experience
is sufficient for the map to develop preferences that match the visual environment.

9.6 Conclusion

The HLISSOM results show that internally generated activity and postnatal learning
can together explain much of the development of orientation preferences. Either type
of activity alone can lead to orientation maps, but only with realistic prenatal activity
and postnatal learning with real images can the model account for the full range
of experimental results. The model also suggests a distinct role for both kinds of
inputs: Prenatal learning allows the animal to have a functional visual system at
birth, forming a robust starting point for further development, and postnatal learning
allows refining it to represent the environment better.

In this chapter, the HLISSOM model was tested in a domain that has abundant
experimental data for validation. The next chapter will utilize this map as the first
cortical processing stage, and will use the prenatal and postnatal simulation tech-
niques to model how the cortical circuitry develops in the much less well-studied
domain of face processing.
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Understanding High-Level Development: Face
Detection

The previous chapter showed that internally generated patterns and visual experi-
ence can explain how orientation preferences develop prenatally and postnatally in
V1, a process that is well documented and allows validating the model with neu-
robiological data. In this chapter, the same ideas will be applied to face detection,
which has been extensively studied psychophysically, but where little neurobiolog-
ical data exist. The simulations will demonstrate that internally generated patterns
result in face preferences similar to those observed in newborns. When the system is
trained further with real images, it learns faster and more robustly. The time course
of learning matches that of human infants, showing a weaker response to schematic
patterns and a stronger response to familiar faces. These results complement those
for orientation processing, showing how prenatal and postnatal learning could also
combine genetic and environmental influences in constructing higher visual func-
tion. The psychophysical data and existing theories on infant face detection are first
reviewed below, followed by the description of HLISSOM prenatal and postnatal
learning experiments.

10.1 Psychophysical and Computational Background

Although the neurobiological foundations of infant face detection are still unknown,
it has been studied extensively using psychophysical methods. The experiments have
inspired several computational models and theories, which will be reviewed and eval-
uated in this section.

10.1.1 Psychophysical Data

Although much of the biological data on the visual system comes from cats and
ferrets, face-selective neurons or regions have not yet been documented in these an-
imals, either adult or newborn. Even in primates, the data are sparse: The youngest
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primates that have been tested and found to have face-selective neurons are 6-week-
old monkeys (Rodman 1994; Rodman, Skelly, and Gross 1991). Six weeks is a sig-
nificant amount of visual experience, and it has not yet been possible to measure
neurons or regions in younger monkeys. Thus, it is unknown whether the cortical
regions that are face selective in adult primates are also face selective in newborns,
or whether they are even fully functional at birth (Bronson 1974; Rodman 1994). As
a result, how these regions develop remains highly controversial (see de Haan 2001;
Gauthier and Logothetis 2000; Gauthier and Nelson 2001; Nachson 1995; Slater and
Kirby 1998; Tovée 1998 for reviews).

While measurements at the neuron and region levels are not available, behavioral
tests with human infants suggest that face detection develops like orientation maps.
In particular, internal, genetically determined factors are also important for face de-
tection. The main evidence comes from a series of studies showing that human new-
borns turn their eyes or head toward facelike stimuli in the visual periphery longer or
more often than they do so for other stimuli (Goren et al. 1975; Johnson, Dziurawiec,
Ellis, and Morton 1991; Johnson and Mareschal 2001; Johnson and Morton 1991;
Mondloch, Lewis, Budreau, Maurer, Dannemiller, Stephens, and Kleiner-Gathercoal
1999; Simion, Valenza, Umiltà, and Dalla Barba 1998b; Valenza, Simion, Cassia,
and Umiltà 1996). These effects have been found within minutes or hours after birth.
Figure 10.1 shows how several of these studies have measured the face preferences,
and Figure 10.2 shows a typical set of results. Whether these preferences represent
genuine preference for faces is controversial, in part because measuring pattern pref-
erences in newborns is difficult (Cohen and Cashon 2003; Easterbrook, Kisilevsky,
Hains, and Muir 1999; Hershenson, Kessen, and Munsinger 1967; Kleiner 1987,
1993; Maurer and Barrera 1981; Simion, Cassia, Turati, and Valenza 2001; Slater
1993; Thomas 1965). Newborn preferences for additional patterns will be reviewed
in Section 10.2, which also shows that HLISSOM exhibits similar face preferences
when trained on internally generated patterns.

Early postnatal visual experience also affects face preferences, as it does how ori-
entation maps develop. For instance, an infant only a few days old will prefer to look
at its mother’s face, relative to the face of a female stranger with “similar hair col-
oring and length” (Bushnell 2001) or “broadly similar in terms of complexion, hair
color, and general hair style” (Pascalis, de Schonen, Morton, Deruelle, and Fabre-
Grenet 1995). A significant mother preference is found even when non-visual cues
such as smell and touch are controlled (Bushnell 2001; Bushnell, Sai, and Mullin
1989; Field, Cohen, Garcia, and Greenberg 1984; Pascalis et al. 1995). The infant
presumably prefers the mother because he or she has learned the mother’s appear-
ance. Indeed, Bushnell (2001) found that newborns look at their mother’s face about
1/4 of their time awake over the first few days, which provides ample time for learn-
ing.

Pascalis et al. (1995) found that the mother preference disappears when the ex-
ternal outline of the face is masked, and argued that newborns are learning only
face outlines, not faces. They concluded that newborn mother learning might dif-
fer qualitatively from adult face learning. However, HLISSOM simulation results in
Section 10.3 will show that learning of the whole face (internal features and outlines)
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Fig. 10.1. Measuring newborn face preferences. A few minutes or hours after birth, human
infants are presented schematic stimuli, measuring how far to the side their eyes or head track
each stimulus. The experimenter does not see the specific pattern shown, and neither does the
observer who measures the baby’s responses. Face preferences have been found even when
the experimenter’s face and all other faces seen by the baby were covered by surgical masks.
Reprinted with permission from Johnson and Morton (1991), copyright 1991 by Blackwell.

can also result in mother preferences. Importantly, masking the outline in HLISSOM
also erases these preferences, even though outlines were not the only parts of the face
that were learned. Thus, HLISSOM predicts that newborns instead learn faces holis-
tically, as has been suggested for adults (Farah, Wilson, Drain, and Tanaka 1998).

Experiments with infants over the first few months reveal a surprisingly complex
pattern of face preferences. Newborns up to 1 month of age continue to track facelike
schematic patterns in the periphery, but older infants do not (Figure 10.3; Johnson
et al. 1991). Curiously, in central vision, schematic face preferences are not measur-
able until about 2 months of age (Maurer and Barrera 1981), and they decline by 5
months of age (Johnson and Morton 1991). Section 10.3 will show that in each case
such a decline can result from learning real faces, coupled with the different rate of
maturation of fovea and periphery in the retina.

In summary, much of the neural basis of face processing is still unclear, in the
adult and especially in newborns. However, behavioral experiments suggest that hu-
man newborns can detect faces already at birth, and their performance develops post-
natally as they experience real faces. These experiments suggest that face-selective
neurons develop based on both prenatal and postnatal factors, like neurons in the
orientation map. Both cases can be explained based on internally generated neural
activity: The system develops through input-driven self-organization both before and
after birth.
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Fig. 10.2. Face preferences in newborns. Using the procedure from Figure 10.1, Johnson
et al. (1991) measured responses of human newborns to a set of head-sized schematic patterns.
The graph at left gives the result of a study conducted within 1 hour after birth; the one at
right gives results from a separate study with newborns an average of 21 hours old. Each bar
indicates how far the newborns tracked the image pictured below with their eyes on average.
Because the procedures and conditions differed between the two studies, only the relative
magnitudes should be compared. Overall, the study at left shows that newborns respond to
facelike stimuli (a,b) more strongly than to simple control conditions (c); all comparisons were
statistically significant. This result suggests that face processing is in some way genetically
coded. In the study at right, the checkerboard pattern (d) was tracked significantly farther than
the other stimuli, and pattern (g) was tracked significantly less far; no significant difference
was found between the responses to (e) and (f ). The ovals are not as visible to the newborn as
the square dots, and the checkerboard stimulates newborn’s low-level visual system extremely
well. These results suggest that simple three-dot patterns can invoke face preferences much
like facelike patterns do, but low-level visual stimulation can also have a significant effect.
Replotted from Johnson et al. (1991).

10.1.2 Computational Models of Face Processing

The models discussed in this book so far have simulated visual processing only up
to V1 and did not include any of the higher cortical areas that are thought to underlie
face-processing abilities. Most computational systems that include face processing
were not intended as biological models, but instead focus on specific engineering
applications such as face detection or face recognition (e.g. Bartlett, Movellan, and
Sejnowski 2002; Burton, Bruce, and Hancock 1999; Graham and Allinson 1998;
Ko and Byun 2003; Lawrence, Giles, Tsoi, and Back 1997; O’Toole, Millward, and
Anderson 1988; Rao and Ballard 1995; Rowley, Baluja, and Kanade 1998; Viola
and Jones 2004; Wiskott and von der Malsburg 1996; Yilmaz and Shah 2002; see
Phillips, Wechsler, Huang, and Rauss 1998; Yang, Kriegman, and Ahuja 2002 for
reviews). A few biologically motivated face processing models exist, but like the en-
gineering systems they either bypass the circuitry in V1 and below, or treat it as a
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Fig. 10.3. Face preferences in young infants. In addition to newborns (Figure 10.2), Johnson
and Morton (1991) also tested how infants at various postnatal ages up to 5 months respond
to schematic patterns. They rotated the infant’s chair toward the stimulus and measured the
angle at which he or she first attended (or oriented) to it. Neither 3-month-old nor 5-month-
old infants significantly preferred facelike schematic patterns (b,c,d and f,g,h) over the controls
(a and e). Results at earlier ages were variable, depending on the testing method (e.g. whether
the stimuli were presented in central or peripheral vision). These results suggest that early
postnatal visual experience significantly shapes the infant face preferences. Replotted from
Johnson and Morton (1991).

fixed set of predefined filters (Acerra, Burnod, and de Schonen 2002; Bartlett and
Sejnowski 1997, 1998; Dailey and Cottrell 1999; Gray, Lawrence, Golomb, and Se-
jnowski 1995; Wallis 1994; Wallis and Rolls 1997; see Valentin, Abdi, O’Toole, and
Cottrell 1994 for a review). Given the output of the filtering stage, these models show
how face-selective neurons and responses can develop from training with real im-
ages. The HLISSOM model of face processing develops such neurons and responses
as well. However, it is the first to use a self-organized V1 as the input stage, and the
first to demonstrate that the same computational mechanism could be responsible for
processing in both V1 and the higher face-processing area. HLISSOM thus unifies
these high-level models with the V1 models discussed earlier.

Of the biological models, the Dailey and Cottrell (1999) and Acerra et al. (2002)
models have goals most similar to those of this chapter. Acerra et al. (2002) simu-
lated newborn face preferences, and their work will be reviewed in the next subsec-
tion. Dailey and Cottrell (1999) instead had a more general focus on whether face
detection needs to be genetically encoded. They showed in an abstract model how
specific face-selective regions can arise without genetically specifying the weights
of each neuron. As was discussed in Section 2.1.3, some of the higher visual areas
of the adult human visual system respond more strongly to faces than objects; oth-
ers have the opposite preferences. Moreover, some of the face-selective areas have
been shown to occupy the same region of the brain in different individuals (Kan-
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wisher et al. 1997). This consistency suggests that those areas might be genetically
specified for face processing.

To show that such explicit prespecification is not necessary, Dailey and Cot-
trell (1999) set up a pair of supervised networks that compete with each other to
identify faces and to classify objects into categories. They provided one of the net-
works with real images filtered to preserve low-spatial-frequency information (i.e.
slow changes in brightness across a scene), and another with the images filtered to
preserve high-spatial-frequency information. These differences correspond to con-
necting each network to a subset of the neurons in V1, each with different preferred
spatial frequencies. They found that the low-frequency network consistently devel-
oped face-selective responses, while the high-frequency network developed object-
selective responses. Thus, they concluded that different areas may specialize for dif-
ferent tasks based on very simple, general differences in their connectivity, and that
specific configuration of individual neurons need not be specified genetically to re-
spond to faces.

Like the Dailey and Cottrell (1999) model, HLISSOM is based on the assump-
tion that cortical neurons are not specifically prewired for face perception. To make
detailed simulations practical, HLISSOM will model only a single high-level re-
gion, one that has sufficient spatial frequency information available to develop face-
selective responses. Other regions presumably develop similarly, but become selec-
tive for objects or other image features instead.

10.1.3 Theoretical Models of Newborn Face Preferences

The computational models discussed in the previous section do not specifically ex-
plain why newborns should respond strongly to faces. Such explanations have all
been conceptual, not computational (with the exception of Acerra et al. 2002). There
are four main theories of this phenomenon: (1) the linear systems model, (2) sensory
models (including the Acerra et al. (2002) computational model and the top-heavy
conceptual model), (3) haptic models, and (4) multiple systems models. These the-
ories will be reviewed below, showing how they compare to the pattern generation
model, and arguing that it provides a simpler, more effective explanation.

Linear Systems Model

The linear systems model (LSM; Banks and Salapatek 1981; Kleiner 1993) is a
straightforward and effective way of explaining a wide variety of newborn pattern
preferences, and could easily be implemented as a computational model. Because it
is general and simple, it constitutes a baseline model against which others can be
compared. The LSM is based solely on the newborn’s measured contrast sensitivity
function (CSF). For a given spatial frequency, the value of the CSF will be high if
the early visual pathways respond strongly to that size of pattern, and low otherwise.
The newborn CSF is limited by the immature state of the eye and the early visual
pathways, which makes low frequencies more visible than fine detail.
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The LSM assumes that newborns pay attention to those patterns that give the
largest response when convolved with the CSF. Low-contrast patterns and patterns
with only very fine detail are only faintly visible, if at all, to newborns (Banks and
Salapatek 1981). Conversely, faces might be preferred because they have strong
spatial-frequency components in the ranges that are most visible to newborns.

However, studies have found that the LSM fails to account for the responses to
facelike stimuli. For instance, some of the facelike patterns preferred by newborns
have a lower amplitude spectrum in the visible range (and thus lower expected LSM
response) than patterns that are less preferred (Johnson and Morton 1991). The LSM
also predicts that the newborn will respond equally well to a schematic face regard-
less of its orientation, because the orientation does not affect the spatial frequency or
the contrast. Instead, newborns prefer schematic facelike stimuli oriented right-side-
up. Such a preference is found even when the inverted stimulus is a better match to
the CSF (Valenza et al. 1996). Thus, the CSF alone does not explain face preferences,
and a more complex model is required.

Acerra et al. Sensory Model

The LSM is a high-level abstraction of the properties of the early visual system.
Sensory models extend the LSM to include additional constraints and circuitry, but
without adding face-selective visual regions or systems. Acerra et al. (2002) recently
developed such a computational model that can account for some of the face pref-
erences found in the Valenza et al. (1996) study. Their model consists of a fixed
Gabor-filter-based model of V1, plus a high-level sheet of neurons with modifiable
connections. They model two conditions separately: newborn face preferences, and
postnatal development by 4 months. The newborn model includes only V1, because
they assume that the high-level sheet is not yet functional at birth.

Acerra et al. showed that the newborn model responds slightly more strongly to
the upright schematic face pattern used by Valenza et al. (1996) than to the inverted
one. This surprising result replicates the newborn face preferences found by Valenza
et al. In the stimuli, only the internal facial features were inverted, not the entire
pattern. In the upright case, the spacing is more regular between the internal features
and the face outline (compare Figure 10.7d with 10.7g, top row). As a result, neurons
whose RF lobes match the spacing respond more strongly, and the total response of
all filters will be slightly higher for the facelike (upright) pattern than to the non-
facelike (inverted) pattern.

However, the Acerra et al. model was not tested with patterns from other studies
of newborn face preferences, such as Johnson et al. (1991). The facelike stimuli
published by Johnson et al. (1991) do not have a regular spacing between the internal
features and the outline, and it is unlikely that the model will replicate preferences for
these patterns. Moreover, Johnson et al. used a white paddle against a light-colored
ceiling, and so their face outlines would have a much lower contrast than the black-
background patterns used by Valenza et al. (1996). Thus, although border effects may
have contributed to the face preferences found by Valenza et al., they are unlikely to
explain those measured by Johnson et al.
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The Acerra et al. newborn model also does not explain newborn learning of faces,
because their V1 model is fixed and the high-level area is assumed not to be func-
tional at birth. Also importantly, the model was not tested with real images of faces,
where the spacing of the internal features from the face outline varies widely de-
pending on the way the hair falls. Because of these differences, we do not expect the
Acerra et al. model to show a significantly higher response overall to photographs of
real faces than to other similar images. The pattern-generation model will make the
opposite prediction, and will explain how newborns can learn faces.

To explain learning of real faces in older infants, the Acerra et al. model relies
on having face images strictly aligned in the input, having nothing but faces pre-
sented to the model (no objects, bodies, or backgrounds), and having the eyes in
each face artificially boosted by a factor of 10 or 100 relative to the rest of the im-
age. Because of these assumptions, it is difficult to evaluate how well their postnatal
learning model corresponds to experimental data. In contrast, the HLISSOM model
learns from faces presented at random locations on the retina, against natural image
backgrounds, intermixed with images of other objects, and without special emphasis
for faces relative to the other objects.

Top-Heavy Sensory Model

Simion et al. (2001) also presented a sensory model of newborn preferences, al-
though their model is conceptual only. They observed that nearly all of the facelike
schematic patterns that have been tested with newborns are top-heavy, i.e. they have a
boundary with denser patterns in the upper than the lower half. They also ran behav-
ioral experiments showing that newborns prefer several top-heavy (but not facelike)
schematic patterns to similar but inverted patterns. Based on these results, they pro-
posed that newborns prefer top-heavy patterns in general, and thus prefer facelike
schematic patterns as a special case.

This hypothesis is compatible with most of the experimental data so far collected
in newborns. However, facelike patterns have not yet been compared directly with
other top-heavy patterns in newborn studies. Thus, it is not yet known whether new-
borns would prefer a facelike pattern to a similarly top-heavy but not facelike pattern.
Future experimental tests with newborns can resolve this issue.

To be tested computationally, the top-heavy hypothesis would need to be made
more explicit, with a specific mechanism for locating object boundaries and the rel-
ative locations of patterns within them. It would then be possible to test it with a
variety of inputs, including photographs of real faces. Whereas the bulk of the cur-
rent evidence suggests that newborns prefer face patterns in general, we expect that
a computational test of the top-heavy model would find only a small preference (if
any) for real faces, compared with many other common stimuli. Many real faces,
such as those with beards, wide smiles, or wide-open mouths, are not necessarily top
heavy, and would result in little or no response from the model.

This prediction is also supported by a systematic test of training pattern shapes
with HLISSOM, presented in Section 10.2.6. Although many simple shapes includ-
ing general top-heavy patterns result in weak face preferences, more facelike patterns



10.1 Psychophysical and Computational Background 211

are necessary to obtain selective responses that allow matching the behavior of the
model with newborn data. Such patterns will therefore be used in training the HLIS-
SOM model of newborn face preferences.

Haptic Hypothesis

Bushnell (1998) proposed an explanation very different from that of the sensory
models: A newborn may recognize facelike stimuli as a result of prenatal experience
with its own face, via manual exploration of its facial features. Some support for this
position comes from findings that newborn and infant monkeys respond equally or
more strongly to pictures of infant monkeys than to adults (Rodman 1994; Sackett
1966).

However, the process by which a newborn could make such specific connec-
tions between somatosensory and visual stimulation, prior to visual experience, is
not clear. Moreover, the haptic explanation does not account for several aspects
of newborn face preferences. For instance, premature babies develop face prefer-
ences at the same post-conception age regardless of the age at which they were born
(Ferrari, Manzotti, Nalin, Benatti, Cavallo, Torricelli, and Cavazzutti 1986). Presum-
ably, the patterns of hand and arm movements would differ between the intrauterine
and external environments, and thus the haptic hypothesis would predict that gesta-
tion time should have been an important factor. Several authors have also pointed
out strong similarities between newborn face preferences and imprinting in newly
hatched chicks; chicks, of course, do not have hands with which to explore, yet de-
velop a specific preference for stimuli that resemble a (chicken’s) head and neck
(Bolhuis 1999; Horn 1985). Some of these objections are overcome in a variant of
the haptic hypothesis by Meltzoff and Moore (1993), who propose that direct propri-
oception of the infant’s own facial muscles is responsible.

However, neither variant can account for evidence suggesting that newborns’
preferences are specifically visual. For instance, newborns respond as well to pat-
terns with a single dot in the nose and mouth area as to separate patterns for the nose
and mouth (Johnson et al. 1991). This finding is easy to explain for visual images: In
a blurred top-lit visual image, shadows under the nose blend together with the mouth
into a single region. But the nose and mouth have opposite convexity, so it is difficult
to see how they could be considered a single region for touch stimulation or pro-
prioception. Similarly, newborns have so far only been found to prefer faces viewed
from the front, and it is not clear why manual exploration or proprioception would
favor that view in particular. Thus, in this chapter the newborn face preferences are
assumed to be essentially visual.

Multiple-Systems Models

The most widely known conceptual model for newborn face preferences and later
learning was proposed by Johnson and Morton (1991). Apart from HLISSOM simu-
lations in this chapter that test some of its foundations, it has not yet been evaluated
computationally.
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Johnson and Morton proposed that infant face preferences are mediated by two
hypothetical visual processing systems that they dubbed CONSPEC and CONLERN.
CONSPEC is a fixed system controlling orienting to facelike patterns, assumed to be
located in the subcortical superior colliculus–pulvinar pathway. Johnson and Morton
proposed that a CONSPEC responding to three dark dots in a triangular configura-
tion, one each for the eyes and one for the nose/mouth region, would account for the
newborn face preferences (see Figures 10.5a and 10.6c for examples).

CONLERN is a separate plastic cortical system, presumably corresponding to the
face-processing areas that have been found in adults and in infant monkeys (Kan-
wisher et al. 1997; Rodman 1994). The CONLERN system would assume control
only after about 6 weeks of age, and would account for the face preferences seen
in older infants. Eventually, as it learns from real faces, CONLERN would gradu-
ally stop responding to schematic faces, which would explain why face preferences
can no longer be measured with static schematic patterns by 5 months (Johnson and
Morton 1991).

The CONSPEC/CONLERN model is plausible, given that the superior collicu-
lus is relatively mature in newborn monkeys and is involved in controlling attention
and other functions (Wallace et al. 1997). Moreover, some neurons in the adult supe-
rior colliculus/pulvinar pathway are selective for faces (Morris, Ohman, and Dolan
1999), although such neurons have not yet been found in young animals. The model
also helps explain why infants are less interested in faces in the periphery after 1
month: The preferences may change as the attentional control shifts to the not-quite-
mature cortical system (Johnson et al. 1991; Johnson and Morton 1991).

However, subsequent studies showed that even newborns are capable of learn-
ing individual faces (Slater 1993; Slater and Kirby 1998). Thus, if there are two
visual processing systems, either both are plastic or both are functioning at birth,
and thus there is no a priori reason why a single face-selective visual system would
be insufficient. On the other hand, de Schonen, Mancini, and Liegeois (1998) argue
for three visual processing systems: a subcortical one responsible for facial feature
preferences at birth, another one responsible for newborn learning (of objects and
head/hair outlines; Slater 1993), and a cortical system responsible for older infant and
adult learning of facial features. And Simion, Valenza, and Umiltà (1998a) proposed
that face selectivity instead relies on multiple visual processing systems within the
cortex, maturing first in the dorsal stream but later supplanted by the ventral stream
(which is where most of the face-selective visual regions have been found in adult
humans).

In contrast to the increasing complexity of these explanations, the HLISSOM
model shows that a single general-purpose, plastic visual processing system is suffi-
cient, if that system is first exposed to internally generated facelike patterns of neural
activity. As reviewed in Section 2.3.4, PGO activity waves during REM sleep repre-
sent a likely candidate for such activity. If the PGO waves have the simple three-dot
configuration illustrated in Figures 8.4c and 10.5a, they can explain the measured
face-detection performance of human newborns.

The three-dot training patterns are similar to the three-dot preferences proposed
by Johnson and Morton (1991). However, in their model the patterns were imple-
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mented as a hard-wired subcortical visual area responsible for orienting to faces. In
HLISSOM, the areas receiving visual input learn from their input patterns, and only
the pattern generator is assumed to be hard-wired. Both of these possible mechanisms
require about the same amount of genetic specification. The crucial difference is that
in the pattern generation approach the visual processing system can be arbitrarily
complex because it learns the complexity from the input. In contrast, a hard-coded
visual processing system like CONSPEC is limited by what can specifically be en-
coded in the genome. Such a system is a plausible model for subcortically mediated
orienting at birth, but less plausible as a model of a cortical areas. In the future it
may be possible to use imaging techniques to determine whether newborn face pref-
erences are based on subcortical processes, or mediated by a hierarchy of cortical
areas as they are in the adult.

Specifying only the training patterns also makes sense from an evolutionary per-
spective, because that way the patterns and the visual processing hardware can evolve
independently. Separating these capabilities thus allows the visual system to become
arbitrarily complex, while maintaining the same genetically specified function. Fi-
nally, assuming that only the pattern generator is hardwired explains how infants of
all ages can learn faces.

In conclusion, previous face-processing models have not yet shown how new-
borns can have a significant preference for real faces at birth, or how newborns could
learn from real faces. They have also not accounted for the full range of patterns
with which newborns have been tested. Using the self-organized orientation map,
the HLISSOM model of face detection will show how face-selective neurons can de-
velop through internally generated activity, explaining face preferences at birth and
later face learning. In the next two sections, the prenatal and postnatal phases of this
process are each discussed in turn.

10.2 Prenatal Development

In this section, internally generated patterns are used to self-organize the full HLIS-
SOM model prenatally, including both V1 and the FSA. Its performance on schematic
facelike patterns is then shown to be remarkably similar to that of human infants. Im-
portantly, the trained model responds strongly to real faces as well, but not to other
naturally occurring objects. This behavior can be obtained with a variety of internally
generated patterns that match the general outline of the human face.

10.2.1 Training Method

Previous developmental models have been tested only for small input areas such
as those used in Chapters 4–9. In contrast, face detection requires processing head-
sized stimuli at a distance of about 20 cm from the baby’s eyes, filling a substan-
tial portion of the visual field (about 45◦). To model behavior at this scale, the ori-
entation map simulation from Section 9.2 was expanded to a very large V1 area
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(approximately 1600 mm2 in total) at a relatively low sampling density (approxi-
mately 50 neurons/mm2). The expansion was done using the scaling equations in
Appendix A.2, which allow adjusting the simulation parameters algorithmically to
obtain a simulation of a different size (the scaling equations will be described in
detail in Chapter 15).

The cortical density was first reduced to the minimum value that would show an
orientation map that matches animal maps (36 × 36), and the visual area was scaled
to be just large enough to cover the visual images to be tested (288 × 288, i.e. width
×8 and height ×8). The FSA size was less crucial, and was set arbitrarily at 36×36.
The FSA RF size was scaled to be large enough to span the central portion of a face
input. The resulting network consisted of 438 × 438 retinal units, 220 × 220 PGO
generator units, 204× 204 ON-center LGN units, 204× 204 OFF-center LGN units,
288 × 288 V1 units, and 36 × 36 FSA units, for a total of 408,000 distinct units.
There were 80 million connections in total in the two cortical sheets, which required
300 MB of physical memory.

The RF centers of neurons in the FSA were mapped to the central 160 × 160
region of V1 such that even the units near the edge of the FSA had a complete set
of afferent connections on V1, with no FSA RF extending over its edge. V1 was
similarly mapped to the central 192×192 region of the LGN channels, and the LGN
channels to the central 384×384 region of the retina and the central 192×192 region
of the PGO generators. In the figures in this chapter, only the area mapped directly
to V1 will be shown, to ensure that all plots have the same scale. The size of the
input patterns on the retina was chosen to match the preferred spatial frequency of
newborns, as cited by Valenza et al. (1996). Inputs were presented at the spatial scale
where the frequency most visible to newborns produced the largest V1 response in
the model. The rest of the simulation parameters are listed in Appendix C.3.

V1 was self-organized for 10,000 iterations with inputs consisting of 11 ran-
domly located circular disks per iteration, each 50 units wide (Figure 10.4a). These
simple patterns were used for clarity and simplicity, since the focus of these sim-
ulations is on the development of the high-level FSA region. If the V1 size were
increased to provide more units for each location in the retina, the noisy disks pat-
terns from the previous chapter could also have been used. The background activity
level was 0.5, and the brightness of each disk relative to this surround (either +0.3
or −0.3) was chosen randomly. The borders of each disk were smoothed into the
background level following a Gaussian width σd = 1.5.

The FSA was trained for 10,000 iterations based on the responses of the V1
network. Two triples of dark circular dots were used as input to V1, each arranged in a
triangular facelike configuration (Figure 10.5a). As was discussed in Section 10.1.3,
such patterns roughly correspond to the eye and nose/mouth areas of the face, as
proposed by Johnson and Morton (1991). Each dot had a radius of 10 PGO units; the
centers of the two top dots were separated by 50 units and they were located 54 units
from the bottom dot. The dot was 0.3 units darker than the surround, which itself was
0.5 on a scale of 0 to 1. Each triple was placed at a random location each iteration,
at least 118 PGO units away from the center of the other one to avoid overlap. The
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Fig. 10.4. Self-organization of the scaled-up orientation map. These figures show a scaled-
up version of the “Disks” simulation from Figure 9.1, eight times wider and eight times taller.
At this scale, each input includes multiple disks (a), the afferent weights of each neuron span
only a small portion of the retina (drawn to scale in e) and the lateral weights only a small part
of V1 (drawn to scale in f ), and the orientation map has many more orientation patches (g).
Its Fourier transform (i) is still ring-shaped and its OR histogram (h) flat. Zooming in on the
central 36 × 36 portion of this 288 × 288 map, plot (j) also shows that the local structure and
selectivity of the map are similar to those in Section 9.2. The map appears blockier because
the neuron density was reduced to the smallest acceptable value so that the network would
be practical to simulate. Plot (c) shows that the orientation preference of each neuron that
responds to the input (plotted as in Figure 6.5) is still a good match to the orientation of the
input at that retinal location, and the histogram of the responses is unbiased, although noisy
(d). Thus, this network is a reasonable approximation to a large area of V1 and the retina.

angle of each triple was drawn randomly from a narrow (σ = π/36 radians) normal
distribution around vertical.

Because the model is very large and expensive to simulate, V1 was trained first,
followed by the FSA. This arrangement reduces computational cost without signifi-
cantly affecting how face preferences develop, which is the focus of the next subsec-
tion.
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(a) PGO activation (b) V1 response (c) FSA response
before training

(d) FSA response
after training

(e) Initial
FSA RFs

(f ) Final
FSA RFs

(g) Initial
FSA LIs

(h) Final
FSA LIs

(i) Initial FSA map (j) Final FSA map

Fig. 10.5. Self-organization of the FSA map. The PGO activation is shown in gray scale
from black to white (low to high), and the V1 and FSA activities and the afferent and lateral
weights in gray scale from white to black (low to high). (a) Each input pattern consisted of two
dark three-dot configurations with random nearly vertical orientations presented at random
locations on the PGO sheet. (b) The V1 neurons compute their responses based on this input,
relayed through the LGN. (c) FSA neurons initially respond to any activity in their receptive
fields, but after training (d), only neurons with closely matching RFs respond. In the FSA
plots, the inner square represents the FSA and is drawn to scale with the retina. The outer
square is provided to help locate the FSA responses on the retina, as was done in Figures 4.4
and A.1(a). Through self-organization, the FSA neurons develop RFs selective for a range of
V1 activity patterns like those resulting from the three-dot stimuli (e and f , drawn in the same
scale as b for two sample neurons). The RFs are patchy because the weights target specific
orientation patches in V1. This match between the FSA and the local self-organized pattern
in V1 would be difficult to ensure without training on internally generated patterns. The FSA
neurons also develop lateral inhibitory connections with a smooth Gaussian profile (g and h,
drawn in the same scale as c and d for the two neurons in e and f ). Plots (i) and (j) show
the afferent weights for every third neuron in the FSA. All neurons develop roughly similar
weight profiles, differing primarily by the position of their preferred stimuli on the retina and
by the specific orientation patches targeted in V1. The largest differences between RFs are
along the outside border, where the neurons are less selective for three-dot patterns. Overall,
the FSA develops into a face detection map, signaling the location of facelike stimuli.

10.2.2 V1 and Face-Selective Area Organization

Through self-organization, the scaled-up map shown in Figure 10.4g emerged. The
map has the same structural features and similar quantitative measures as the pre-
vious LISSOM OR maps (Chapters 5 and 9). However, as was seen in Figure 8.2,
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this scaled-up model can extract the salient local orientations even in large images,
which has not yet been demonstrated for other models of V1 development.

After V1 had been trained, its weights were fixed and the FSA was allowed to
activate and learn from the V1 responses to the three-dot patterns. The resulting
face-selective map consists of an array of neurons that respond most strongly to pat-
terns similar to the training patterns (Figure 10.5j). Despite the overall similarities
between neurons, the individual weight patterns are unique because each neuron tar-
gets specific orientation patches in V1. Such complicated patterns would be difficult
to specify and hardwire genetically, but they arise naturally from internally generated
activity.

10.2.3 Testing Method

As the FSA training completed, the lower threshold of the sigmoid (i.e. θl in Fig-
ure 4.5) was increased to ensure that only patterns that are a strong match to an FSA
neuron’s weights will activate it. An active neuron in the FSA thus indicates that
there is a face at the corresponding location in the retina, which will be important for
measuring the face-detection ability of the network.

The cortical maps were then tested on natural images and with the same schematic
stimuli on which human newborns have been tested (Goren et al. 1975; Johnson and
Morton 1991; Simion et al. 1998b; Valenza et al. 1996). For all such tests, the same
parameter settings described in Appendix C.3 were used. Schematic images were
scaled to a brightness range of 1.0 (i.e. the difference between the darkest and light-
est pixels in the image). Natural images were scaled to a brightness range of 2.5, so
that facial features in images with faces would have a contrast comparable to that
of the schematic images. If both types of images were instead scaled to the same
brightness range, the model would prefer the schematic faces over real ones. Using
different scales is appropriate for these experiments because responses are compared
only within groups of similar images, and the infant is assumed to adapt to each
group. For simplicity, the model does not specifically include the mechanisms in the
eye, LGN, and V1 that are responsible for such contrast adaptation.

The HLISSOM model provides detailed neural responses for each neural region.
These responses constitute predictions for future electrophysiological and imaging
measurements in animals and humans. However, the data currently available for in-
fant face perception are behavioral. It consists of newborn attention preferences mea-
sured from visual tracking distance and looking time. Thus, validating the model on
these data will require predicting a behavioral response based on the simulated neural
responses.

As a general principle, newborns are assumed to pay attention to the stimulus
whose overall neural response most clearly differs from those of typical stimuli. This
idea can be quantified as

a(t) =
F (t)
F

+
V (t)
V

+
L(t)
L

, (10.1)
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where a(t) is the attention level at time t, and F , V , and L represent the FSA, V1, and
LGN regions: X(t) (either F , V , or L) is the total activity in region X at that time,
while X is the average (or median) activity over the recent history. Because most
stimuli activate the LGN and V1 but not the FSA, when a pattern evokes activity in
the FSA the newborns would attend to it more strongly. Yet, stimuli evoking only
V1 activity could still be preferred over facelike patterns if their V1 activity is much
higher than typical.

Unfortunately, it is difficult to use such a formula to compare to newborn exper-
iments, because the presentation order in those experiments is usually not known.
As a result, the average or median value of patterns in recent history is not avail-
able. Furthermore, the numerical preference values computed in this way will differ
depending on the specific set of patterns chosen, and thus will be different for each
study.

Instead, a categorical approach inspired by Cohen (1998) will be used in the sim-
ulations below; it avoids these problems and leads to similar results. Specifically,
when two stimuli both activate the model FSA, the one with the higher total FSA ac-
tivation will be preferred. Similarly, with two stimuli activating only V1, the higher
total V1 activation will be preferred. When one stimulus activates only V1 and an-
other activates both V1 and the FSA, the pattern that produces FSA activity will be
preferred, unless the V1 activity is much larger than for typical patterns. Using these
guidelines, the computed model preferences can be validated against the newborn’s
looking preferences, to determine if the model shows the same behavior as the new-
born.

10.2.4 Responses to Schematic Patterns

This section and the following one present the model’s response to schematic patterns
and real images after it has completed training on the internally generated patterns.
The response to each schematic pattern is compared with behavioral results from in-
fants, and the responses to real images constitute predictions for future experiments.

Figures 10.6 and 10.7 show that the model responses match the measured stimu-
lus preferences of newborns remarkably well, with the same relative ranking in each
case where infants have shown a significant preference between schematic patterns.
These rankings are the main result from this simulation. Each category of schematic
patterns is next analyzed in more detail, to understand what aspects of the model are
responsible for the result.

Most non-facelike patterns activate only V1, and thus the preferences between
those patterns are based only on the V1 activity values (Figures 10.6a,e–i and 10.7f –
i). Patterns with numerous high-contrast edges have greater V1 response, which ex-
plains why newborns would prefer them. These preferences are in accord with the
simple linear systems model (Section 10.1.3), because they are based only on the
early visual processing.

Facelike schematic patterns activate the FSA, whether they are realistic or simply
patterns of three dots (Figures 10.6b–dand 10.7a–d). The different FSA activation
levels reflect the level of V1 response, not the precise shape of the pattern. Again
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the responses explain why newborns would prefer patterns like the three-square face
over the three-oval face, which has shorter edges. The preferences between these
patterns are also compatible with the LSM, because in each case the strength of the
V1 response in the model matches newborn preferences.

The comparisons between facelike and non-facelike patterns show how HLIS-
SOM predictions differ from the LSM. HLISSOM predicts that the patterns that
activate the FSA would be preferred over those activating only V1, except when the
V1 response is highly anomalous. Most V1 responses are very similar, and so the
patterns with FSA activity (Figures 10.6b–d and 10.7a–d) should be preferred over
most of the other patterns, as found in infants. However, the checkerboard pattern
(Figure 10.6a) has nearly three times as much V1 activity as any other pattern with
a similar background. Thus, the HLISSOM results explain why the checkerboard
would be preferred over other patterns, even ones that activate the FSA.

Because the RFs in the model are only a rough match to the schematic patterns,
the FSA can have spurious responses to patterns that to adults do not look like faces.
For instance, the inverted three-dot pattern in Figure 10.7e activated the FSA. In
this case, part of the square outline filled in for the missing third dot of an upright
pattern. Figure 10.8 shows that such spurious responses should be expected with in-
verted patterns, even if neurons prefer upright patterns. This result may explain why
some studies have not found a significant difference between upright and inverted
three-dot patterns (e.g. Johnson and Morton 1991). Because of such effects, future
experimental studies should include additional controls besides inverted three-dot
patterns.

Interestingly, the model also showed a clear preference in one case where no
significant preference was found in newborns (Simion et al. 1998a): for the upright
three-dot pattern with no face outline (Figure 10.7a), over the similar but inverted
pattern (Figure 10.7i). The V1 responses to both patterns are similar, but only the
upright pattern has an FSA response, and thus the model predicts that the upright
pattern would be preferred.

This potentially conflicting result may be due to postnatal learning rather than
capabilities at birth. As will be shown in the next section, postnatal learning of face
outlines can have a strong effect on FSA responses. The newborns in the Simion et al.
study were already 1–6 days old, and Pascalis et al. (1995) showed that newborns
within this age range have already learned some of the features of their mother’s
face outline. Thus, the pattern generation model predicts that if younger newborns
are tested, they will prefer upright patterns even without a border. Alternatively, the
border may satisfy some minimum requirement on size or complexity for patterns
to attract a newborn’s interest. For instance, the total V1 activity may need to be
above a certain threshold for the newborn to pay any attention to a pattern. If so, the
HLISSOM procedure for deriving a behavioral response from the model response
(Section 10.2.3) would need to be modified to include this constraint.

Overall, these results provide strong computational support for the speculation
of Johnson and Morton (1991) that the newborn could simply be responding to a
three-dot facelike configuration, rather than performing sophisticated face detection.
Internally generated patterns provide an account for how such “innate” machinery
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Fig. 10.6. Response to schematic images by Goren et al. (1975) and Johnson et al. (1991).
The activations of the retina, LGN, V1, and FSA levels are shown using the plotting conven-
tions from Figures 10.4 and 10.5. The top row shows a set of input images as they are drawn
on the retina. These patterns were presented to newborn human infants on head-shaped pad-
dles moving at a short distance (about 20 cm) from the eyes, against a light-colored ceiling.
The newborn’s preference was determined by measuring the average distance his or her eyes
or head tracked each pattern, compared with other patterns. Below, x>y indicates that image
x was preferred over image y under those conditions. Goren et al. (1975) measured infants
between 3 and 27 minutes after birth. They found that b>f >i and b>e>i. Similarly, Johnson
et al. (1991), in one experiment measuring within 1 hour after birth, found b>e>i. In another,
measuring at an average of 43 minutes, they found b>e, and b>h. Finally, Johnson and Mor-
ton (1991), measuring newborns an average of 21 hours old, found that a>(b,c,d), c>d, and
b>d. The HLISSOM model has the same preference for each of these patterns, as shown in
the images above. The second row shows the model LGN activations resulting from the pat-
terns in the top row. The third row shows the V1 activations, with the numerical sum of the
activities shown underneath. If only one unit were active at half strength, the sum would be
0.5; higher values indicate more activation. The bottom row displays the settled responses of
the FSA, again with the numerical sum underneath. This sum represents the strength of the
response of the model. The images are sorted left to right according to the preferences of the
model. The strongest V1 response by nearly a factor of three is to the checkerboard pattern (a),
which explains why the newborn would prefer that pattern over the others. The facelike pat-
terns (b–d) are preferred over patterns (e–i) because of activation in the FSA. The details of the
facelike patterns do not significantly affect the results — all of the facelike patterns (b–d) lead
to FSA activation, generally in proportion to their V1 activation levels. The remaining patterns
are ranked by their V1 activity alone, because they do not activate the FSA. In all conditions
tested, the HLISSOM model shows behavior remarkably similar to that of the newborns, and
provides a detailed computational explanation for why these behaviors occur. Reprinted from
Bednar and Miikkulainen (2003a).
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Fig. 10.7. Response to schematic images by Valenza et al. (1996) and Simion et al. (1998a).
Valenza et al. measured preference between static, projected versions of pairs of the schematic
images in the top row, using newborns ranging from 24 to 155 hours after birth. They found the
following preferences: d>f , d>g, f >g, and h>i. Simion et al. similarly found a preference for
d>g and b>e. The LGN, V1, and FSA responses of the model to these images are displayed
here as in Figure 10.6, and are again sorted by the model’s preference. In all cases where the
newborn preferred one pattern over another, so did the model. For instance, the model FSA
responds to the facelike pattern (d) but not to the inverted version (g). Patterns that closely
match the newborn’s preferred spatial frequency (f and h) caused a greater V1 response than
their low-frequency versions (g and i). Some non-facelike patterns with high-contrast borders
can cause spurious FSA activation (e), because part of the border completes a three-dot pattern.
Such spurious responses did not affect the predicted preferences, because they are smaller than
the genuine responses (see Figure 10.8 for more details on how spurious responses typically
arise). Interestingly, Simion et al. found no preference between (a) and (i) in 1–6-day-old
infants. The model predicts that (a) would be preferred at birth, due to the FSA response, but
not by older infants who have learned face outlines postnatally. Reprinted from Bednar and
Miikkulainen (2003a).

can be constructed during prenatal development, within a system that can also learn
postnatally from visual experience.

10.2.5 Responses to Natural Images

Researchers testing newborns with schematic patterns often assume that the re-
sponses to schematics are representative of responses to real faces. However, no
experiment has yet tested that assumption by comparing real faces to similar but
non-facelike controls. Similarly, no previous computational model of newborn face
preferences has been tested with real images. HLISSOM makes such tests practi-
cal, providing an important way to determine whether the behavioral data based on
schematics can be used to predict preferences for real faces.

Face detection performance of the model was tested quantitatively using two im-
age databases: a set of 150 images of 15 adult males without glasses, photographed
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Fig. 10.8. Spurious responses to the inverted three-dot pattern. Several studies have used
an inverted three-dot pattern as a non-facelike control for an upright three-dot pattern with
conflicting results (e.g. Johnson and Morton 1991; Simion et al. 1998a; Valenza et al. 1996).
However, the results with HLISSOM show that this pattern does not make a good control,
because of the many axes of symmetry of a three-dot pattern. The first two rows in (a) and
(b) are reproduced from Figure 10.7a,i, and show that HLISSOM prefers the facelike upright
pattern to the control. However, the preference is sensitive to the value of the FSA threshold
θl and the FSA input scale γA. For instance, if γA is increased by 30%, the model FSA re-
sponds more strongly to the inverted pattern (bottom row). The inverted pattern is not as good
a match for any single neuron’s weights, so the FSA activity spots are always smaller for the
inverted pattern. However, with a high enough γA, the FSA responds in three different places
(b) compared with only one for the upright pattern (a), and together the three small responses
outweigh the single larger response. Plot (c) demonstrates how such spurious FSA responses
arise in the model. These responses are shown superimposed on the retinal pattern as three
small dots, and the outlines indicate the three-dot patterns that they represent. Each pattern
shares two dots with the inverted input, shown as three black squares; these two shared dots
are enough to activate the unit. In HLISSOM, γA is set to a value low enough to prevent such
spurious responses, which ensures that FSA neurons respond only to patterns that are a good
match to their (upright) RFs. For humans, the γA value represents the state of contrast adap-
tation at a given time, which varies depending on the recent history of patterns seen (Albrecht
et al. 1984; Turrigiano 1999). Thus, these results suggest that infants will have no preference
(or will prefer the inverted pattern) if they are tested on the high-contrast schematic patterns
while being adapted to the lower contrast levels typical of the environment. Because such
adaptation is difficult to control in practice, the inverted pattern is a problematic comparison
pattern — negative results like those of Johnson and Morton (1991) may be due to temporary
contrast adaptation instead of genuine, long-term pattern preferences.

at the same distance against blank backgrounds (Achermann 1995), and a set of 58
non-face images of various natural scenes (National Park Service 1995). The face
image set contained two views of each person facing forward, upward, downward,
left, and right (as shown in Figures 10.9a and 10.10f–i). Each natural scene was pre-
sented at six different size scales, for a total of 348 non-face presentations (examples
shown in Figure 10.9f–i).
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Fig. 10.9. Response to natural images. The top row shows a sample set of photographic
images. The corresponding LGN, V1, and FSA responses are displayed as in Figures 10.6
and 10.7. The FSA is indeed activated at the correct location for most faces of the correct size
and orientation (e.g. a–d), including 88% of those in the Achermann (1995) database. Just as
importantly, the network is not activated for most natural scenes and man-made objects (f –h).
In fact, the FSA responded to only 4.3% of 348 presentations of landscapes and other natural
scenes from the National Park Service (1995). The spurious activations usually result from a
V1 activation similar to that of a three-dot arrangement of contours (d and i), including related
patterns such as dog and monkey faces (not shown). Response is low to images where hair
or glasses obscure the borders of the eyes, nose, or mouth, and to front-lit downward-looking
faces, which have low V1 activation from nose and mouth contours (e). The model predicts
that newborns respond in the same way if tested. Credits: (a) copyright 1995 by University
of Bern (Achermann 1995), (b–e) public domain; (f –i) copyright 1999–2001 by James A.
Bednar. Reprinted from Bednar and Miikkulainen (2003a).

Overall, the HLISSOM performed very well as a face detection system: The
FSA responded to 91% (137/150) of the face images, but to only 4.3% (15/348) of
the natural scenes. Because the two sets of real images were not closely matched in
terms of lighting, background, and distance, it is also important to analyze the ac-
tual response patterns to be sure that the percentage differences are genuine. Such
an analysis indicates that the FSA responded with activation in the location corre-
sponding to the center of the face in 88% (132/150) of the face images. It missed
mostly faces where the hair obscured some of the borders between the eyes, nose,
and mouth. At the same time, it generated spurious responses in 27% (40/150) of
the face images, i.e. responses in locations other than the center of the face. Nearly
half of the spurious responses were from the less-selective neurons that line the edge
of the FSA (Figure 10.5j); these responses can be ignored because they would not
occur in a model of the entire visual field. Most of the remaining spurious responses
resulted from a genuine V1 eye or mouth response plus V1 responses to the hair or
jaw outlines. In humans, such responses would actually direct attention to the general
region of the face, and thus contribute to face preferences, although they would not
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Fig. 10.10. Response variation with size and viewpoint. The three-dot training pattern of
HLISSOM matches most closely a particular size and an upright frontal view. However, the
model also responds to a range of other sizes (a–e) and viewpoints (f –i). The model activa-
tion is again displayed as in Figures 10.6–10.9. In the viewpoint experiment, the correct FSA
location responded to 88% of the set of 150 images consisting equally of front, left, right, up,
and down views. Most of these viewpoints result in similar responses, although 100% of the
faces looking upward were detected correctly and only 80% of those looking downward were.
Overall, HLISSOM predicts that newborns will respond to real faces even with moderate vari-
ation of sizes and viewpoints. Photographs copyright 1995 by University of Bern (Achermann
1995).

pinpoint the precise center. For the natural scenes, most of the responses were from
the less-selective neurons along the edge of the FSA, and those responses can again
be ignored. The remainder were in image regions that coincidentally had a triangular
arrangement of three contour-rich areas, surrounded by smooth shading. Therefore,
the HLISSOM performance was meaningful, demonstrating a clear difference be-
tween faces and non-faces, and making mistakes on inputs that are confusing for
humans as well.

It is also important to evaluate how robustly HLISSOM performs when properties
of the input are varied. The above dataset included mostly faces that were top-lit,
which is the most common direction of light in the natural environment. As seen in
Figure 10.9b–e, HLISSOM performs relatively well with other lighting conditions,
having trouble only with frontal lighting. In such cases the nose and mouth contours
are not as prominent, making them a poor match with the three-dot pattern. The
response is also reliable across a range of size scales and viewpoints (Figure 10.10).
Thus, training the model with a single type of pattern is sufficient for robust detection
of real faces.

In summary, the FSA responds to most human faces of about the right size, il-
lumination, and viewpoint, signaling their location in the visual field. It does not re-
spond to most other stimuli, except when they contain accidental three-dot patterns.
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The model predicts that when tested, human newborns will have a similar pattern of
responses in the face-selective cortical regions.

10.2.6 Effect of Training-Pattern Shape

The preceding sections showed that a model trained on a triangular arrangement of
three dots can account for face preferences at birth. This pattern was chosen based
on Johnson and Morton’s (1991) hypothesis that a hard-wired region responding to
this pattern might explain newborn preferences. However, the actual shape of most
internally generated activity in humans is unknown, and like retinal waves, the shape
may not be very precisely controlled in general. Thus, it is important to test other
possible training pattern shapes to see what range of patterns can produce similar
results.

Accordingly, a series of simulations was run with a set of nine patterns chosen to
be similar in overall size and shape to the three-dot patterns. These patterns are shown
in the top row in Figure 10.11. Matching the size is crucial to make the networks
comparable, because only a single-sized training pattern is used in each network. All
training parameters were the same except for γF (the afferent scaling factor for the
FSA), which was set manually so that each simulation would have the same amount
of activity per iteration of training, despite differences in the patterns.

To make it possible to train and test so many networks, they were implemented
in a reduced HLISSOM model that requires much less time and memory. This model
consisted of a 24 × 24 FSA and did not include V1, allowing self-organization in
13 MB of memory (the rest of the simulation parameters are listed in Appendix C.2).
Without V1, the model does not provide numerical preferences between the non-
facelike patterns (i.e. those that activate V1 but not the FSA), but activity in the FSA
allows facelike patterns to be distinguished from other types, which is sufficient to
measure the face selectivity of each network.

Specifically, the face selectivity SF was defined as the proportion of the average
response ηF to a set of facelike patterns, out of the response to those patterns and the
average responses ηN to a set of non-facelike control patterns:

SF =
ηF

ηF + ηN
. (10.2)

A value of 1.0 indicates that the network strongly prefers facelike patterns, i.e. of the
patterns tested, only the facelike patterns caused any FSA response. Values less than
0.5 indicate that the network prefers non-facelike inputs.

The networks were tested both with schematic inputs (from Figure 10.6) and with
real images (from Figure 10.13). To ensure that the comparisons between networks
were fair, the sigmoid activity threshold (θl in Equation 4.4) was set to maximize
the face selectivity of each network. That is, θl was set to the minimum value for
each network at which the FSA would respond to every facelike pattern. The upper
threshold was then set to θu = θl + 0.48, for consistency. If there was no response to
any non-facelike pattern with these settings, SF would be 1.0, the maximum. The θl

parameter was set separately for schematics and real images.
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Fig. 10.11. Effect of training patterns on face preferences. Results are shown for nine
matched face detection simulations (bypassing V1), each with a different set of input pat-
terns. The top row displays examples of these patterns, drawn on the retina. The second row
shows the LGN response to the retinal input, which forms the input to the FSA in these sim-
ulations. The third row plots a sample FSA receptive field after self-organization, visualized
by subtracting the OFF weights from the ON; other neurons learned similar RFs. In each
case the HLISSOM network learns FSA RFs similar to the LGN representation. These RFs
are not patchy, because they no longer represent the patchy V1 activities. The two numer-
ical rows quantify the face selectivity of each network. The row labeled “Sc” specifies the
selectivity for facelike schematics (from Figure 10.6b–d) relative to non-facelike schematics
(from Figure 10.6e–i). The row labeled “Im” lists the selectivity for the six face images from
Figure 10.13 relative to the six comparable object images in the same figure. The different
training patterns gave rise to different selectivities. Pattern (g) leads to equal responses for
both facelike and non-facelike schematics (selectivity of 0.5), and (h) and (i) have a greater
overall response to the non-facelike schematics (selectivity lower than 0.5). Thus, not all train-
ing patterns can explain preferences for schematic faces even if they match some parts of the
face. Similarly, the single-dot pattern (g) has a selectivity below 0.5 for real faces, indicating
a stronger response for the objects than for real faces. The other training patterns all have the
same size as real faces, or match at least two parts of the face, and thus have selectivities larger
than 0.5 for real faces. Overall, the shape of the training pattern is clearly important for face
selectivity, both for schematics and real faces, but it need not be controlled very tightly to
result in face-selective responses.

As Figure 10.11 shows, even with such a liberal definition of face selectivity,
not all training patterns result in preferences for facelike schematics and real faces.
Furthermore, several different patterns result in high face selectivity. As expected,
the results vary most strongly for schematic test images (row “Sc”). The schematics
are all closely matched for size, differing only by the patterns within the face, and
thus the results depend strongly on the specific training pattern. Of those resulting in
face selectivity, the training patterns in Figure 10.11a–e (three dots, dots and bars,
bars, and open triangles) have nearly equivalent selectivity, although the three-dot
pattern in Figure 10.11a has the highest.

The results were less variable on real test images (row “Im”), because real faces
differ more from objects than the schematic faces differ from other schematic pat-
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terns. All training patterns that matched either the overall size of the test faces (Fig-
ure 10.11a–f ), or at least the eye spacing (Figure 10.11h,i), led to face selectivity. In
contrast, the single-dot pattern (Figure 10.11g) does not result in face preferences.
Although it is a good match to the eyes and mouth regions in the real faces, it is also
a good match to many features in object images.

These results show that if the training patterns have the right size, a weak selec-
tivity for faces already develops. The shape of the pattern is also influential as well,
as can be seen with schematic patterns. Of all training patterns tested, the three-dot
pattern results in the highest selectivity, while a pattern matching a single low-level
feature like eye size is not enough. The three-dot pattern is therefore a good default
choice for pattern generation simulations, so that the predictions will most clearly
differ from those of other models.

In conclusion, internally generated patterns explain how genetic influences can
interact with general adaptation mechanisms to specify and develop newborn face-
processing circuitry. The HLISSOM model of the visual system incorporates this
idea, and is the first to self-organize both low-level and high-level cortical regions at
the scale and detail needed to model such behavior realistically. The results match
experimental data from newborns remarkably well, and for the first time demonstrate
preferences for faces in real images. How these preferences change with experience
of real faces will be discussed next.

10.3 Postnatal Development

In this section, the HLISSOM model will be extended to postnatal development. The
prenatally trained system from the previous section is trained on real face images, and
its face detection performance is compared with that of infants. It is found to learn
faster and more robustly than a system that was not prenatally organized, display a
similar decline to schematic inputs as infants do, and develop a mother preference
like infants. Together, the simulations in this chapter show that prenatal and postnatal
learning can explain much of the face preferences in young infants, and provide
concrete predictions for future behavioral experiments.

10.3.1 Initial Trained and Naı̈ve Networks

Psychophysical experiments on postnatal face detection have focused only on whether
the infant prefers facelike over non-facelike patterns; the effect of spatial frequency
(Figure 10.7) has not been measured. As a result, the reduced HLISSOM model
(Section 10.2.6), which does not include V1 and is therefore not strongly sensitive to
spatial frequency, is sufficient to model these experiments. The reduced model makes
it practical to simulate much larger FSA RFs, which will be crucial for learning face
outlines.

The final network trained with three-dot patterns in Section 10.2.6 formed the
starting point for the postnatal learning phase. To determine whether the prenatal
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(a) Prenatally trained network (ON−OFF) (b) Naı̈ve network (ON and OFF)

Fig. 10.12. Initial afferent weights across prenatally trained and naı̈ve FSA networks.
The RFs of every third neuron horizontally and vertically in each network are plotted. For the
prenatally trained network (a), the RFs were visualized by subtracting the OFF weights from
the ON (as in Figure 10.11). The RF patterns are roughly similar to faces, like the RFs of the
prenatal FSA trained with V1 input (Section 10.2). In contrast, the RFs of the naı̈ve network (b)
were initially uniformly Gaussian; the ON and OFF weights were identical. These networks
form an unequal starting point for postnatal learning of faces, as will be shown in later figures.

patterns bias subsequent learning, a naı̈ve network, which was not prenatally orga-
nized, was also tested. The goal is to determine whether neurons that are initially
face selective due to prenatal training will learn faces more robustly than neurons
that are initially unselective and learn only from the environment.

So that the naı̈ve and prenatally organized networks would match on as many pa-
rameters as possible, the naı̈ve network was constructed from the prenatally trained
network post hoc by explicitly resetting afferent receptive fields to their uniform-
Gaussian starting point. This procedure removed the prenatally developed face se-
lectivity, but kept the lateral weights and all of the associated parameters the same.
The activation threshold θl for the naı̈ve FSA network was then adjusted so that both
networks would have similar activation levels in response to the training patterns;
otherwise the parameters were the same for each network. This procedure ensures
that the comparison between the two networks will be as fair as possible, because
the networks differ only by whether the neurons have face-selective weights at birth.
Figure 10.12 displays the state of each network just before postnatal learning.

10.3.2 Training and Testing Methods

The experiments in this section simulate gradual learning from repeated encounters
of specific individuals and objects against different backgrounds over the first few
months of life. Figure 10.13 shows the people and objects that were used and Fig-
ure 10.14 describes how the training images were generated. The prenatally trained
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Fig. 10.13. Face and object images in postnatal training. Postnatal training inputs were
formed by placing these face and object patterns in random locations in front of randomly
chosen natural scenes (as shown in Figure 10.14). The faces are adapted from Rowley et al.
1998; the objects are from public domain clip art and image collections.

and naı̈ve networks were each trained for 30,000 input presentations. The same ran-
dom sequence of images was used in both cases, so that the influence of prenatal
training on postnatal learning will be clear.

The RFs changed more in these simulations than in the postnatal learning ex-
periments in Section 9.3, because the weights were initially concentrated only in
the center (Figure 10.12) and needed to spread out over the whole receptive field.
During this process, neural responses to typical training inputs varied significantly.
To compensate for these changes, the sigmoid threshold θl from Equation 4.4 was
periodically adjusted for each network (as detailed in Appendix C.2). Without such
compensation, the networks would eventually fail to respond to any training input as
the weights become spread out over a large area and are normalized. Section 17.1.1
outlines how this process can be simplified by extending HLISSOM with automatic
mechanisms for setting the threshold based on the recent history of inputs and re-
sponses, as found in many biological systems (Turrigiano 1999).

In the previous section, pattern preferences were measured in a fully organized
network that had similar RFs across the visual field. With such a uniform archi-
tecture, image presentations generally result in similar responses at different retinal
locations. In contrast, in this section the preferences will be measured periodically
during early postnatal learning, before the network has become fully uniform. There-
fore, input stimuli will be presented at 25 different retinal locations, the results will
be averaged, and statistical significance of the difference between distributions will
be computed. To match the typical analysis methods from the psychological experi-
ments, all comparisons will use the Student’s t-test, with the null hypothesis that the
network responds equally strongly to both stimuli. As in psychological experiments,
if p ≤ 0.05 the difference is considered statistically significant.

The next three subsections will show that the prenatally organized network has a
suitable bias for learning faces, its response declines over time similarly to infants,
and it develops a mother preference like infants.
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Fig. 10.14. Example postnatal training presentations. The top row shows six randomly
generated images drawn on the retina during postnatal learning. Each image contains a fore-
ground item chosen randomly from the images in Figure 10.13. The foreground item was
overlaid onto a random portion of an image from a database of 58 natural scenes (National
Park Service 1995), at a random location and at a nearly vertical orientation (drawn from a
normal distribution around vertical, with σ = π/36 radians). The second row shows the LGN
response to each of these sample patterns, and the bottom row the FSA response at the start of
postnatal training. The FSA responds to groups of dark spots on the retina, such as the eyes
and mouths in (b), (c), and (f ) and the horse’s dark markings in (d). Subsequent learning in
the FSA will be driven by these patterns of activity. Because the prenatal training biases the
activity patterns toward faces, postnatal self-organization will also be biased toward faces, as
is shown in Figure 10.15.

10.3.3 Prenatally Established Bias for Learning Faces

Over the course of training, the RFs of both prenatally trained and naı̈ve net-
works gradually learn to represent averages (i.e. prototypes) of faces and hair out-
lines (Figure 10.15). RFs in the prenatally trained network gradually become more
face selective, and eventually nearly all neurons are highly selective. Postnatal self-
organization in the naı̈ve network is less regular, and the final result is less selective
for faces.

For example, the postnatal network often develops neurons that respond strongly
to the clock. The clock has a high-contrast border that is a reasonably close match to
a face outline, and thus the same neurons tend to respond to both the clock and to real
faces during training. However, the clock is a weak match to the three-dot training
patterns of the prenatally trained network, and this network rarely develops clock-
selective neurons. These results suggest that the prenatal training biases postnatal
learning toward biologically relevant stimuli, i.e. faces.
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(a) Prenatally trained network (ON−OFF) (b) Naı̈ve network (ON−OFF)
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Fig. 10.15. Prenatally established bias for learning faces. Plots (a) and b show the RFs
for every third neuron from the FSA array, visualized as in Figure 10.12a. As the prenatally
trained network learns from real images, the RFs morph smoothly into face prototypes, i.e.
representations of average facial features and hair outlines (c). By postnatal iteration 30,000,
nearly all neurons have learned facelike RFs, with very little effect from the background pat-
terns or non-face objects (a). Postnatal learning is less uniform for the naı̈ve network, as can
be seen in the RF snapshots in (d). In the end, many of the naı̈ve neurons do learn facelike RFs,
but others become selective for general texture patterns, and some become selective for ob-
jects like the clock (b). Overall, the prenatally trained network is biased toward learning faces,
while the initially uniform network more faithfully represents the environment. Thus, prenatal
learning can allow the genome to guide development in a biologically relevant direction.

10.3.4 Decline in Response to Schematics

Like human infants, the HLISSOM model gradually becomes less responsive to
schematic patterns during early postnatal learning (Figure 10.16). This decline re-
sults from the normalization of the afferent weights (Equation 4.8). As the FSA
neurons learn the hair and face outlines typically associated with real faces, the con-
nections from the internal features become weaker. Unlike real faces, the facelike
schematic patterns match only these internal features, not the outlines. As a result,
the network responds gradually less strongly to schematic patterns as real faces are
learned. Eventually the response drops below the fixed activation threshold (θl in
Equation 4.4) and at that point, the model no longer prefers facelike to non-facelike
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Fig. 10.16. Postnatal decline in response to schematic images. Before postnatal training, the
prenatally trained FSA (row “FSA-0”), responds significantly more to the facelike stimulus
(a) than to the three-dot stimulus (b; p = 0.05) or to the scrambled faces (c,d; p < 10−8;
Appendix C.2). These responses are similar to those found by Johnson and Morton (1991)
in infants up to 1 month of age. In some of their experiments, no significant difference was
found between (a) and (b), which is unsurprising given that they are only barely significantly
different here. As the FSA neurons learn from real faces postnatally, they respond less and less
to schematic faces. The bottom row shows the FSA response after 1000 postnatal iterations.
The FSA now rarely responds to (a) and (b), and the average difference between them is
no longer significant (p = 0.25). Thus, no preference would be expected for the facelike
schematic after postnatal learning, which is exactly what Johnson and Morton (1991) found
for older infants, i.e. 6 weeks to 5 months old. The response to real faces also decreases
slightly through learning (e,f ), because the newly learned average face and hair outline RFs
are a weaker match to any particular face than were the original three-dot RFs. However, this
decline is much smaller, because real faces are still more similar to each other than to the
schematic faces. Thus, HLISSOM predicts that older infants will still show a face preference
if tested with more-realistic stimuli, such as photographs.

schematics (because there is no FSA response, and V1 responses are similar). In a
sense, the FSA has learned that real faces typically have both inner and outer fea-
tures, and does not respond when either type of feature is absent or there is a poor
match to real faces.

Yet, the FSA neurons continue to respond to real faces (as opposed to schematics)
throughout postnatal learning (Figure 10.16e,f ). Thus, the model provides a clear
prediction that the decline in face preferences is limited to schematics, and that no
decline will be found if infants are tested with sufficiently realistic face stimuli.
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This prediction is an important departure from the CONSPEC/CONLERN model.
In HLISSOM, an initially CONSPEC-like system is also like CONLERN, in that it
will gradually learn from real faces. In contrast, in CONSPEC/CONLERN, CON-
LERN gradually matures and begins to inhibit CONSPEC, predicting that the decline
also applies to real faces. These divergent predictions can be tested by presenting real
faces to infants older than 1 month.

As was discussed in Section 10.1.1, the decline takes place at different times
in the central vision and in the periphery. Such a difference can be due to gradual
maturation of the fovea, as will be outlined in Section 10.4.

10.3.5 Mother Preferences

As was discussed in Section 10.1.1, infants a few days old prefer their mother’s face
over other similar faces (Bushnell 2001; Bushnell et al. 1989; Pascalis et al. 1995;
Walton, Armstrong, and Bower 1997; Walton and Bower 1993). Similar behavior
can be observed in the HLISSOM model. Designating one of the female images
as the mother, it was presented in 25% of the postnatal learning iterations, corre-
sponding to the estimated proportion of time the infant spends viewing the mother’s
face (Bushnell 2001). One of the other females with a similar face, designated as
the stranger, was not presented at all during training. Over 500 training iterations,
the FSA learned to respond to the mother significantly more strongly than to the
stranger (Figure 10.17a,b).

Interestingly, the mother preference disappears when the hair outline is masked
(Figure 10.17c,d), which is consistent with Pascalis et al.’s claim that newborns learn
outlines only. However, Pascalis et al. (1995) did not test the crucial converse con-
dition, i.e. whether newborns respond when the facial features are masked, leaving
only the outlines. It turns out that HLISSOM does not respond to the head and hair
outline alone either (Figure 10.17e,f ). Thus, contra Pascalis et al. (1995), we cannot
conclude that what has been learned “has to do with the outer rather than the inner
features of the face.”

In the model, the response declines with either type of masking because the
model learns faces holistically, based on all facial features. As real faces are learned,
the afferent weight normalization ensures that neurons respond only to patterns that
are a good overall match to all of the weights, instead of matching only on a few fea-
tures. Many authors have argued that adults also learn faces holistically (e.g. Farah
et al. 1998). These results suggest that newborns may learn faces in the same way,
and predict that newborns will not prefer their mother when her hair outline is visi-
ble but her facial features are masked. The time course of this behavior may to some
extent depend on foveal maturation, as will be discussed in the next section.

10.4 Discussion

The HLISSOM simulations show that self-organization based on internally gener-
ated patterns and environmental inputs can together account for face detection in
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Fig. 10.17. Mother preferences based on both internal and external features. Initially, the
prenatally trained FSA responds to both women well, with no significant difference (p = 0.28;
plots a,b in the row labeled “FSA-0”). The response is primarily due to the internal facial
features (c,d), although the hair and one of the eyes also align into a three-dot pattern in
both figures, causing weak spurious activation (a,b). Subsequently, image (a), designated as
the mother, was presented in 25% of the postnatal learning iterations, while image (b), the
stranger, was not presented at all. After 500 iterations (bottom row), the response to the mother
is significantly greater than to the stranger (p = 0.001). This result replicates the mother
preference found by Pascalis et al. (1995) in infants 3–9 days old. The same results are found
in the counterbalancing condition — when trained on face (b) as the mother, (b) becomes
preferred (p = 0.002; not shown). After training with real faces, there is no longer any FSA
response to the facial features alone (c,d), which replicates Pascalis et al.’s (1995) finding that
newborns no longer preferred their mother when her face outline was covered. Importantly,
no preference is found for the face outline alone either (e,f ) suggesting that face learning in
HLISSOM is holistic. This conclusion is contrary to Pascalis et al.’s (1995) conclusion but
consistent with face learning in adults (Farah et al. 1998).

newborns and infants. This perspective leads to testable predictions and suggests fu-
ture experiments. Importantly, several of HLISSOM’s predictions differ from other
models and theories, making it possible to distinguish between them in the future.

One easily tested prediction is that newborn face preferences should not de-
pend on the precise shape of the face outline. The Acerra et al. (2002) model (Sec-
tion 10.1.3) makes the opposite prediction, because in that model the preferences
arise from precise spacing differences between the external border and the internal
facial features. Results from the HLISSOM simulations also suggest that newborns
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will have a strong preference for real faces (e.g. in photographs), whereas the Acerra
et al. model predicts only a weak preference for real faces, if any (Section 10.1.3).

Experimental evidence to date cannot yet decide between the predictions of these
two models. For instance, Simion et al. (1998a) did not find a significant schematic
face preference in newborns 1–6 days old without a contour surrounding the internal
features, which is consistent with the Acerra et al. model. However, the same study
concluded that the shape of the contour “did not seem to affect the preference” for the
patterns, which would not be consistent with the Acerra et al. model. As discussed
earlier, newborns may not require any external contour, as the pattern-generation
model predicts, until they have had postnatal experience with faces. Future experi-
ments with younger newborns should compare model and newborn preferences be-
tween schematic patterns with a variety of border shapes and spacings. These exper-
iments will either show that the border shape is crucial, as predicted by Acerra et al.,
or that it is unimportant, as predicted by the pattern-generation model.

The predictions of the pattern-generation model also differ from those of the
Simion et al. (2001) top-heavy model (Section 10.1.3). The top-heavy model pre-
dicts that any face-sized border that encloses objects denser at the top than the bot-
tom will be preferred over similar schematic patterns. The pattern-generation model
predicts instead that a pattern with three dots in the typical symmetrical arrangement
is preferred over the same pattern with both eye dots pushed to one side, despite both
patterns being equally top heavy. These two models represent very different expla-
nations of the existing data, and thus testing such patterns should offer clear support
for one model over the other.

On the other hand, many of the predictions of the fully trained pattern-generation
model implemented in HLISSOM are similar to those of the CONSPEC model pro-
posed by Johnson and Morton (1991). In fact, the reduced HLISSOM face prefer-
ence network in Section 10.2.6 (which does not include V1) can be seen as the first
CONSPEC system to be implemented computationally, along with a concrete pro-
posal for how such a system could be constructed during prenatal development. The
primary architectural difference between the trained HLISSOM network and CON-
SPEC/CONLERN is that in HLISSOM only neurons located in cortical visual areas
respond selectively to faces in the visual field, whereas both the subcortical CON-
SPEC and the cortical CONLERN systems are face selective.

Whether newborn face detection is mediated cortically or subcortically has been
debated extensively, yet no clear consensus has emerged from behavioral studies
(Simion et al. 1998a). If future brain imaging studies do discover face-selective visual
neurons in subcortical areas of newborns, HLISSOM will need to be modified to
include such areas. Yet, the key principles would remain the same, because internally
generated activity also shapes subcortical regions (Wong 1999). Thus, experimental
tests of the pattern-generation model vs. CONSPEC should focus on how the initial
system is constructed, and not where it is located.

Although the HLISSOM model is a good match with current experimental data, it
could be extended to account for more variation in the input. For example, the current
model is only able to detect facelike patterns at one particular spatial scale. Because
all experimental data on face preferences in newborns come from experiments with
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life-sized input at a distance of around 20 cm, multiple sizes were not necessary
to account for human data. It would be easy to extend the model to multiple face
sizes (i.e. distances) by varying the spatial scale of the training patterns during self-
organization (Sirosh and Miikkulainen 1996b). The FSA in such a simulation would
need to be much larger to represent the different sizes, and the resulting patchy FSA
responses would require more complex methods of analysis, but the resulting model
should perform like the current model at the same scale. With the multi-scale model,
it would be possible to make specific predictions about how human face detection
varies over distance.

All HLISSOM experiments were based on upright training patterns, because the
Simion et al. (1998a,b) studies suggest that the orientation of face patterns is impor-
tant even in the first few days of life. In the areas that generate training patterns, such
a bias might be due to anisotropic lateral connectivity, which would cause sponta-
neous patterns in one part of the visual field to suppress those below them (discussed
further in Section 16.2.2). On the other hand, tests with the youngest infants (less
than 1 day) have not yet found orientation biases (Johnson et al. 1991). Thus, the
experimental data are also consistent with a model that assumes unoriented patterns
prenatally, followed by rapid learning from upright faces. Such a model would be
more complicated to simulate and describe than the one presented in this chapter, but
could use a similar architecture and learning rules.

Another important aspect of postnatal learning that is currently not explicitly in-
cluded in the HLISSOM model is that of fovea vs. periphery (this extension will be
discussed in Section 17.2.10). Preference for schematic faces is not measurable in
central vision until 2 months of age (Maurer and Barrera 1981), and is gone by 5
months (Johnson et al. 1991). This time course is delayed relative to peripheral vi-
sion, where preferences exist at birth but disappear by 2 months. As was reviewed
in Section 10.1.3, Johnson and Morton (1991) propose two separate explanations for
these phenomena. In the periphery, the preferences disappear because CONLERN
matures and inhibits CONSPEC, whereas in central vision they disappear because
CONLERN learns properties of real faces and no longer responds to static schematic
patterns. HLISSOM instead suggests a unified explanation for both phenomena: A
single learning system stops responding to schematic faces because it has learned
from real faces. Why, then, would the time course differ between peripheral and cen-
tral vision? As Johnson and Morton acknowledged, the retina changes significantly
over the first few months. In particular, at birth the fovea is much less mature than
the periphery, and may not even be functional yet (Abramov, Gordon, Hendrick-
son, Hainline, Dobson, and LaBossiere 1982; Kiorpes and Kiper 1996). As a result,
schematic face preferences in central vision may be delayed. A single cortical learn-
ing system like HLISSOM is thus sufficient to account for the time course of both
central and peripheral schematic face preferences.

Central and peripheral differences may also have a role in how mother prefer-
ences develop postnatally. In a recent study, Bartrip, Morton, and de Schonen (2001)
found that infants 19–25 days old do not prefer their mothers significantly when ei-
ther the internal features or the external features are covered. This result partially
confirms the predictions of Section 10.3.5, although tests still need to be run with
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newborns only a few days old, like Pascalis et al. (1995) did. Interestingly, Bartrip
et al. also found that infants 35–40 days old do prefer their mothers even when the
external outline is covered. The gradual maturation of the fovea may again explain
these later-developing capabilities. Unlike the periphery, the fovea contains many
ganglion cells with small RFs, which connect to cortical cells with small RFs (Meri-
gan and Maunsell 1993). These neurons can learn smaller regions of the mother’s
face, and their responses will allow the infant to recognize the mother even when
other regions of the face are covered. In this way, simple documented changes in the
retina can explain why mother preferences would differ over time in different parts
of the visual field.

While the current HLISSOM simulations focus on how faces are detected, in the
future the model could be used to study face recognition as well. These two tasks
have very different requirements. In face detection, the system has to respond sim-
ilarly to a wide range of different faces. This behavior is achieved in HLISSOM
with low afferent learning rates: Each neuron develops preferences that match the
long-term averages of faces. In contrast, in face recognition the responses to differ-
ent individual faces have to differ significantly. Such behavior could be modeled in
HLISSOM by including additional FSA-like regions with a higher learning rate: Dif-
ferent neurons would learn to prefer different faces. The final organization of such
regions would not depend strongly on the prenatal training patterns, because the
initial preferences would soon be overwritten with postnatal experiences. However,
even for face recognition regions, prenatal training could speed up postnatal learn-
ing by ensuring that their initial state is close to patterns that will be experienced
postnatally.

Because tests with human newborns are technically difficult and expensive to
perform, understanding how face preferences develop can benefit from the study of
model systems in other species. In particular, the phenomenon of chick imprinting
has much in common with newborn and young infant face recognition (Bolhuis and
Honey 1998; Horn 1985; Johnson and Morton 1991). Birds also exhibit REM sleep
(Siegel 1999), and chicks have an “innate” preference for visual stimuli shaped like
a head with a neck, on the day after hatching (Horn 1985). Interestingly, chicks do
not significantly prefer such stimuli on the first day after hatching, and the preference
does not depend on patterns experienced the first day. If such preferences arise from
pattern generation, as in the HLISSOM model of face preferences, they may be due
to patterns presented in REM sleep the first night. Such patterns may be triggered by
the stress hormones that are released after hatching (as suggested by M. H. Johnson,
personal communication, January 24th, 2002), but they would not take effect until
the next REM sleep episode. Subsequent experimental studies of disrupting REM
sleep in chicks can be conducted in conjunction with an HLISSOM-based model
of chick imprinting. Such experiments would provide a concrete, practical test for
high-level pattern generation as a general principle of development across species.
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10.5 Conclusion

The HLISSOM face detection simulations show that internally generated patterns
and a self-organizing system can together explain why newborns prefer facelike vi-
sual input, how neonatals learn faces, and how face detection develops in the longer
term. The model also suggests why newborns prefer specific patterns, why the re-
sponse to schematic faces decreases over time, and how mother preferences develop.
Unlike in other models, the same principles apply to both central and peripheral vi-
sion in HLISSOM, and the results differ only because the fovea matures more slowly.

These explanations and simulation results lead to several concrete predictions
for future infant experiments. Such experiments may eventually verify the underlying
hypothesis that the genome steers development through internally generated patterns,
allowing sophisticated abilities to be learned faster and more robustly.
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PGLISSOM: A Perceptual Grouping Model

Grouping of image elements into coherent objects is an intriguing, fundamental func-
tion of the visual cortex. Part IV of the book focuses on understanding this process,
suggesting that self-organization of lateral connections plays a central role in it. In
order to perform grouping, the LISSOM model is expanded in two ways. First, the
flat two-dimensional map is extended into a two-layer structure, where long-range
excitatory connections in the second layer perform binding and segmentation. Sec-
ond, firing-rate units are extended into spiking units so that the system can represent
temporal coding. The resulting model, PGLISSOM (perceptual grouping LISSOM;
Choe 2001; Choe and Miikkulainen 2000, 2004), is used to demonstrate how V1 can
perform grouping in schematic images. Simulating spiking and long-range excitation
is computationally expensive, and the model can therefore include only the essential
components. In particular, the high-level areas and subcortical areas (including the
ON/OFF channels) of the HLISSOM experiments in Part III are not included in the
simulations in Part IV.

In this chapter, the architecture and components of PGLISSOM are described in
detail, showing how the network is initialized, activated, and trained. As a validation
experiment, an orientation map is shown to self-organize like in firing-rate LISSOM
models. In subsequent chapters in Part IV, PGLISSOM’s temporal coding and self-
organization processes are demonstrated and analyzed, and the model is shown to
account for low-level perceptual grouping phenomena such as contour integration
and certain illusory contours.

11.1 Motivation: Temporal Coding

Recently, considerable evidence has emerged suggesting that low-level perceptual
grouping, such as integrating a sequence of line segments into a coherent contour,
take place early in the visual system, most likely in V1 (Kapadia, Ito, Gilbert, and
Westheimer 1995; Polat, Mizobe, Pettet, Kasamatsu, and Norcia 1998; Stettler et al.
2002). A map-level model such as LISSOM is ideal for testing this hypothesis com-
putationally. However, the LISSOM models introduced in Parts II and III consist of
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firing-rate units representing cortical columns. As we saw in Section 2.4.1, superpo-
sition catastrophe will occur when activities of firing-rate units representing separate
objects are combined. In order to study perceptual grouping in V1, firing-rate units
must be replaced with spiking units.

A self-organizing map with spiking units can be interpreted to model cortex in
two ways: (1) The spiking units can stand for individual, representative neurons in
cortical columns, or (2) they can be interpreted as subgroups of neurons with oscil-
latory total activity. Current neuroscience data are not specific enough to favor either
interpretation; however, it is easier to describe the model and its behavior in terms of
neurons, so the first alternative is adopted in Part IV.

A map of spiking neurons can self-organize like a firing-rate neuron map, and it
can segment simple objects (such as relatively small squares) through synchroniza-
tion and desynchronization of spiking events (Choe and Miikkulainen 1997, 1998;
Ruf and Schmitt 1998). The long-range inhibitory lateral interactions play a crucial
role in both behaviors: They establish competition that drives self-organization, and
they establish desynchronization that drives segmentation. It is not necessary to in-
clude long-range excitatory connections to achieve these behaviors.

However, to achieve simultaneous binding and segmentation of more complex
objects such as long contours, long-range excitatory lateral connections need to be
included in the model. Such specific excitation is necessary to overcome the seg-
mentation that would otherwise result from the lateral inhibition, and the excitatory
connections need to be long enough to bind together several contour elements. Sim-
ply making the short-range excitatory lateral connections longer in a spiking LIS-
SOM map does not work. The neurons then respond to almost any input, and a map
where the afferent receptive fields of all neurons look almost the same results. The
two functions of perceptual grouping and self-organization therefore have conflict-
ing requirements: One depends on having long and the other short excitatory lateral
connections.

In order to account for perceptual grouping in a self-organizing visual cortex,
the PGLISSOM model was developed. PGLISSOM includes both short-range and
long-range excitatory lateral connections between spiking neurons. To prevent the
long-range excitatory connections from interfering with the self-organizing process,
PGLISSOM includes two layers (or maps). In the first map (SMAP), excitatory lat-
eral connections are short range to allow self-organization to take place; in the sec-
ond map (GMAP), they have a long range and implement perceptual grouping (Fig-
ure 11.1). The neurons in the corresponding locations in the two maps are linked with
excitatory connections in both directions, allowing GMAP to self-organize properly,
driven by the self-organization of SMAP.

In summary, PGLISSOM extends LISSOM in two important ways: Spiking neu-
rons are included to represent grouping through temporal coding, and long-range ex-
citatory lateral connections to coordinate synchronization for temporal coding. The
model is motivated computationally, but the design is also a good match with the lay-
ered architecture found in the visual cortex, as will be discussed in Section 16.3.3.
In the following sections, the components of the PGLISSOM model are described
detail.
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Retina

GMAP

SMAP

Fig. 11.1. Architecture of the PGLISSOM model. The cortical network consists of two
layers (or maps). The lower map (SMAP) has short-range lateral excitation (dotted square) and
long-range lateral inhibition (dashed square), and drives the self-organization of the model.
In the upper map (GMAP), both excitation and inhibition have very long range, establishing
perceptual grouping and segmentation. The two maps both receive afferent input directly from
a model retina, representing the ON channel like the reduced LISSOM model (Figure 6.3). The
neurons in the vertically corresponding locations on the two maps are connected via excitatory
intracolumnar connections in both directions, tying such neurons together into a functional
unit (i.e. a cortical column). All neurons are spiking neurons (Figure 11.2); their firing rate is
visualized in gray-scale coding from white to black (low to high).

11.2 The Self-Organization and Grouping Architecture

The overall organization of the PGLISSOM model is shown in Figure 11.1. The
model consists of two layers (or maps), one overlaid (or stacked) on top of the other.
Both maps are based on the LISSOM model, but the extent of lateral connections
in the two maps differs. To control input conditions better and to reduce computa-
tional cost (Section 11.4), the model will be trained with schematic images instead
of natural images. The ON/OFF channels of the LGN can therefore be bypassed (as
was discussed in Section 6.2): Both maps receive afferent input only through the ON
channel, reduced into direct connections from the retinal receptors. The high-level
areas and the subcortical areas of HLISSOM are not relevant for the grouping study
either, and were omitted.

The lower map, SMAP, is similar to the LISSOM and HLISSOM cortical net-
works. Short-range excitatory connections establish a local neighborhood that en-
forces local correlation, and longer inhibitory connections establish competition that
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decorrelates more distant activities. Through these connections, SMAP drives self-
organization in the model. In the upper map, GMAP, both the excitatory and in-
hibitory connections have long range. The excitatory connections form the basis for
perceptual grouping: Through the self-organizing process, they learn to encode cor-
relations in the input distribution, and the strength of the connections controls the
degree of synchronization across the neurons. The inhibitory connections are broad
and have a long range, causing two or more synchronized populations of neurons to
desynchronize, thus establishing background inhibition for segmentation.

Neurons in the vertically corresponding locations in the two maps form a func-
tional unit (cortical column), and they are connected to each other in both directions
through excitatory intracolumnar connections. These connections influence the ac-
tivity on the opposite map so that both self-organization and grouping behaviors are
shared by both maps. This two-component model of the cortical column is called the
SG model, corresponding to the SMAP and GMAP the columns form. The neurons
are all spiking neurons, as will be described next.

11.3 Spiking Unit Model

A schematic diagram of the spiking neuron is shown in Figure 11.2. The model is
based on the integrate-and-fire model discussed in Section 3.1.3 (Eckhorn et al. 1990;
Gerstner 1998b; Reitboeck et al. 1993). Each neuron has three components: leaky
synapses, weighted summation, and a spike generator. The synapses continuously
calculate the decayed sum of incoming spikes over time. Four different kinds of input
connections contribute to the weighted sum: afferent, excitatory lateral, inhibitory
lateral, and intracolumnar connections (Figure 11.1). The activations of the different
kinds of inputs are summed and compared with the dynamic threshold in the spike
generator. Details of each component will be discussed below.

11.3.1 Leaky Synapse

Each connection in the model is a leaky integrator (Section 3.1.3), modeling the
exponential decay of postsynaptic potential (PSP) in biological neurons. At each
connection, an exponentially decayed sum of incoming spikes is maintained:

ι̃(t) =
t∑

k=0

R(t − k) e−λk, (11.1)

where ι̃(t) is the current decayed sum at time step t, R(t − k) is the spike (either
0 or 1) received k time steps in the past, and λ is the decay rate. Different types of
connections have separate decay rates: afferent connections (λA), excitatory lateral
connections (λE), inhibitory lateral connections (λI), and intracolumnar connections
(λC). The most recent input has the most influence on the activity, but past inputs
also have some effect. As was discussed in Section 3.1.3, this sum can be defined
recursively as
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Fig. 11.2. The leaky integrator neuron model. Leaky integrators at each synapse perform
decayed summation of incoming spikes, and the outgoing spikes are generated by comparing
the weighted sum with the dynamic spiking threshold. Four types of inputs contribute to the
activity: afferent, excitatory lateral, inhibitory lateral, and intracolumnar connections (Equa-
tion 11.3). The dynamic threshold consists of the base threshold θb, the absolute refractory
contribution θa, and the relative refractory contribution θr (Equation 11.5). The base threshold
is a fixed baseline value, and the absolute refractory term has a value of ∞ for a short time
period immediately following an output spike. The relative refractory contribution is increased
as output spikes are generated, and it decays to zero if the neuron stays silent.

ι̃(t) = R(t) + ι̃(t − 1) e−λ. (11.2)

Such a formulation allows implementing the model efficiently, since the past spike
values R(t − k), k > 0, do not need to be stored, nor do they have to be decayed
repeatedly.

By adjusting the decay rate λ, the synapse can function as either a coincidence
detector or as a temporal integrator. When the synaptic decay rate is high, the neuron
can only activate when there is a sufficient number of inputs coming in from many
synapses simultaneously. On the other hand, when the decay rate is low, the neu-
ron accumulates the input. Thus, presynaptic neurons can have a lingering influence
on the postsynaptic neuron. As will be shown in Section 12.2.1, by varying the de-
cay rates for different types of connections, the relative time scales of the different
connection types can be controlled, and desired synchronization behavior obtained.
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11.3.2 Activation

The neuron receives incoming spikes through the afferent, lateral excitatory and in-
hibitory, and intracolumnar input connections, and the decayed sums of the synapses
are calculated according to Equation 11.2. These sums are then multiplied by the
connection weights and summed to obtain the input activity (Figure 11.2). More
specifically, the input activation vij(t) to the spike generator of the cortical neuron
at location (i, j) at time t consists of (1) the input from a fixed-size receptive field
in the retina, centered at the location corresponding to the neuron’s location in the
cortical network (i.e. afferent input), (2) excitation and (3) inhibition from neurons
around it in the same map, and (4) input from neurons in the same column in the
other map (i.e. intracolumnar input):

vij(t) = σ

(
γA

∑

xy

χ̃xy(t − 1)Axy,ij − γE

∑

kl

η̃kl(t − 1)Ekl,ij

+ γI

∑

kl

η̃kl(t − 1)Ikl,ij + γC

∑

cd

ζ̃cd(t − 1)Ccd,ij

)
, (11.3)

where χ̃xy(t − 1) is the decayed sum of spikes from retinal receptor (x, y) during
the previous time step, Axy,ij is the afferent connection weight from that receptor to
cortical neuron (i, j), η̃kl(t − 1) is the decayed sum of spikes from the map neuron
(k, l), Ekl,ij is the excitatory and Ikl,ij the inhibitory lateral connection weight from
that neuron, ζ̃cd(t − 1) is the decayed sum of spikes from neuron (c, d) in the other
map in the same vertical column as (i, j), Ccd,ij is the intracolumnar connection
weight from that neuron, and γA, γE, γI, and γC are constant scaling factors. The
function σ(·) is the piecewise linear approximation of the sigmoid (Equation 4.4),
used to keep the input activity to the spike generator between 0.0 and 1.0.

The activation vij(t) is then passed on to the spike generator, where comparison
with the dynamic threshold is made. A spike is fired if the input activity exceeds the
threshold:

S(t) =
{

1 if vij(t) > θ(t),
0 otherwise,

(11.4)

where S(t) represents the spiking output of the neuron over time. The dynamic
threshold θ(t) determines how much activation is necessary to generate a spike. It
depends on how much time has passed since the last firing event, as will be described
next.

11.3.3 Threshold Mechanism

For a short period of time immediately after they have spiked, biological neurons
cannot generate another spike. This short interval is called the refractory period and
consists of two parts: (1) During the absolute refractory period, the neurons cannot
fire no matter how large the input is, and (2) during the relative refractory period,
neurons can only spike if they receive very strong excitatory input.
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The dynamic threshold in the PGLISSOM spike generator implements a refrac-
tory period by providing a base threshold and raising the threshold dynamically, de-
pending on the neuron’s spike activity. The spike generator compares the input activ-
ity to the dynamic threshold and decides whether to fire (Figure 11.2). The threshold
θ(t) is a sum of three terms:

θ(t) = θb + θa(t) + γθθr(t), (11.5)

where θb is the base threshold, θa(t) implements the absolute refractory period dur-
ing which the neuron cannot fire, θr(t) implements the relative refractory period
during which firing is possible but requires extensive input, and γθ is a scaling con-
stant. More specifically, θa(t) = ∞ if the last spike was generated less than tr time
steps ago, otherwise θa(t) = 0. The relative refractory component θr(t) is imple-
mented as an exponentially decayed sum of the output spikes (Figure 11.2), i.e. a
leaky integrator similar to the leaky synapses (Equation 11.2):

θr(t) = S(t) + θr(t − 1) e−λθ , (11.6)

where λθ is the decay rate.
The usual integrate-and-fire model includes a similar dynamic threshold mecha-

nism, but consists of θb and θr only (Eckhorn et al. 1990; Reitboeck et al. 1993). The
absolute refractory period makes the model more realistic, but it also serves a com-
putational purpose: It ensures that the neurons do not fire too rapidly. This property
makes synchronization more robust against noise, as will be described in the next
chapter.

The spikes generated this way are propagated through the connections and the
average firing rates of the neurons in a small time window are gathered. Based on
these firing rates, the connection weights are adapted. The details of the learning
mechanism are explained next.

11.4 Learning

The PGLISSOM simulations begin with a network in an unorganized state: All con-
nection weights in the network are initialized e.g. to uniformly random values be-
tween 0 and 1. The network is trained by presenting visual input, and adapting the
connection weights according to the Hebbian learning rule. Instead of natural images
as in Part III, schematic inputs will be used for the perceptual grouping experiments
for two reasons: (1) Contour integration is a well-defined task with schematic inputs;
it is possible to have tight control over stimulus configurations and therefore test
behavior of the model systematically, as is done in psychological experiments on
human subjects. (2) With schematic inputs, smaller networks can be used, making
self-organization with spiking neurons computationally feasible.

The input to the network consists of oriented Gaussian bars similar to those in
Section 5.3. To generate such an input pattern in a spiking model, the input neurons
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fire with different frequencies: At the center of the Gaussian, the spike rate is maxi-
mal, and the spike rate decreases gradually for neurons farther away from the center.
At each input presentation, an input with a random orientation is placed at a ran-
dom location in the retina, and the resulting retinal receptor activities are propagated
through the afferent connections of the network. As in firing-rate LISSOM mod-
els, the input is kept constant while the cortical response settles through the lateral
connections. The retinal receptors generate spikes at a constant rate and the cortical
neurons generate and propagate spikes and adjust their dynamic thresholds accord-
ing to Equations 11.1 through to 11.6. After a while, the neurons reach a stable rate
of firing, and this rate is used to modify the weights.

The spiking rate η(t) is calculated as a running average:

η(t) = λrη(t − 1) + (1 − λr)S(t), (11.7)

where λr is the retention rate, ν(t − 1) is the previous spiking rate, and S(t) is the
output spike at time t (either 0 or 1). With this method, a short-term firing rate in a
limited time window is calculated. For each input presentation, the average spiking
rate of each neuron is calculated through several iterations. The weight modification
then occurs as in firing-rate LISSOM models (Section 4.4.1). The afferent, lateral,
and intracolumnar weights are modified according to the normalized Hebbian learn-
ing rule:

w′
pq,ij =

wpq,ij + αXpqηij∑
uv(wpq,uv + αXpqηuv)

, (11.8)

where wpq,ij is the current connection weight (either A, E, I , or C) from neuron
(p, q) to (i, j), w′

pq,ij is the new weight to be used until the end of the next set-
tling process, α is the learning rate (αA for afferent, αE for excitatory lateral, αI

for inhibitory lateral, and αC for intracolumnar connections), and Xpq and ηij are
the spiking rates of presynaptic and postsynaptic neurons after settling. Note that
in PGLISSOM normalization is done presynaptically instead of postsynaptically;
this change does not affect self-organization but results in stronger grouping (Sec-
tion 16.1.3; Choe, Miikkulainen, and Cormack 2000; Sakamoto 2004). As before,
those connections that become near zero in the learning process are deleted, and
the radius of the lateral excitation in SMAP is gradually reduced following a preset
schedule.

This process of input presentation, activation, and weight adaptation is repeated
for a large number of input patterns, and the neurons gradually become sensitive
to particular orientations at particular locations. In this way, the network forms a
global retinotopic orientation map with patchy lateral connections similar to that of
the earlier LISSOM OR model. In PGLISSOM, this map will then synchronize and
desynchronize the firing of neurons to indicate binding and segmentation of visual
input into different objects.
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11.5 Self-Organizing Process

After extending the LISSOM model with spiking neurons and excitatory lateral con-
nections, a crucial question is whether the model is still capable of self-organization
in the same way as the original model. Most importantly, do the lateral connections
develop a characteristic patchy structure that could form the basis for perceptual
grouping? This section will demonstrate that this is indeed the case: PGLISSOM
self-organizes to form orientation maps and functionally specific lateral connection
patterns.

11.5.1 Method

The SMAP consisted of 136× 136 neurons, and GMAP of 54× 54 neurons. GMAP
was smaller to make simulations faster and to fit the model within the physical mem-
ory limit. The intracolumnar connections between SMAP and GMAP were propor-
tional to scale, so that the relative locations of connected neurons in the two maps
were the same. This connectivity scheme ensures that the global order of the two
maps matches as they develop. The excitatory lateral connection radius in SMAP
was initially seven and was gradually reduced to three. The lateral inhibitory radius
was fixed at 10, i.e. smaller than in the LISSOM simulations, in order to reduce the
computational requirements; reducing the radius further would not allow maps to
self-organize properly. In GMAP, excitatory lateral connections had a radius of 40
and the inhibitory connections covered the whole map; such very long-range connec-
tions were necessary to achieve proper grouping behavior. Afferent connections from
the retina had a radius of six in both maps (mapped according to Figure A.1), and
intracolumnar connections a radius of two. The retina consisted of 46×46 receptors.
As long as the relative sizes of the map, the retina, and the lateral connection radii are
similar to these values, the maps will self-organize well. The rest of the parameter
settings are specified in Appendix D.1.

The input consisted of single randomly located and oriented elongated Gaussians
with major and minor axis lengths initially σa = 3.9 and σb = 0.8, and elongated to
6.7 and 0.7 after 1000 input presentations (of a total of 40,000 presentations). Such
inputs result in sharp OR tuning and long lateral connections necessary for contour
integration, as will be described in the next two subsections.

11.5.2 Receptive Fields and Orientation Maps

The self-organization process was very similar to that of the firing-rate LISSOM,
and also matched experimental data well (as described in Sections 2.1, 5.1 and 5.3).
As in earlier LISSOM simulations, the receptive fields are initially circular and have
a random profile. They gradually become elongated and smoother as the training
proceeds, and the neurons gradually develop orientation preferences.

The resulting receptive fields of SMAP and GMAP are shown in Figure 11.3a.
The neurons belonging to the same column in SMAP and GMAP have highly similar
orientation preferences. Most neurons are highly selective for orientation, and others
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Fig. 11.3. Self-organized afferent weights and retinotopic organization. In (a), the afferent
weight matrices of corresponding sample neurons in SMAP and GMAP are plotted (in gray
scale as in Figure 6.4, organized as in Figure 5.8a): In SMAP, every fourth neuron horizontally
and vertically is shown, and in GMAP, every tenth neuron. Both maps saw the same inputs
during training, and due to the intracolumnar connections they developed matching orienta-
tion preferences. Since the ON/OFF channels in the LGN were bypassed in this simulation,
the receptive fields are all unimodal. However, they display the same properties as the orien-
tation model in Section 5.3: Most neurons are highly selective for orientation, and neurons
near discontinuities are unselective. In (b), the center of gravity of the afferent weights of each
neuron in the network are plotted as a grid in retinal space (as in Figure 5.11). Although the
two maps differ in size, the overall organization closely matches: Neurons in the same cortical
column receive input from the same locations in the retinal space. The overall organization of
the map is an evenly spaced grid with local distortions, as observed in biology and in the LIS-
SOM orientation map (Figure 5.11; Das and Gilbert 1997). The preferences are sharper and
the distortions wider than in the LISSOM simulations because more elongated input patterns
were used during training.
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Fig. 11.4. Self-organized orientation map. The orientation preference and selectivity of each
neuron in SMAP and GMAP are plotted using the same conventions as in Figure 5.9. Because
of the intracolumnar connections, the two maps develop similar organizations. As in LISSOM
and in biological maps (Figures 2.5 and 5.9), the preferences change smoothly across the cor-
tex, and exhibit features such as linear zones, pairs of pinwheels, saddle points, and fractures
(outlined as in Figure 2.4). As in animal maps, the neurons at the pinwheel centers and frac-
tures are unselective for orientation (these features are more prominent in the SMAP, which
drives the self-organization). The orientation histograms are essentially flat and therefore free
of artifacts. These plots show that realistic orientation maps can be formed with spiking neu-
rons and with the SG model of cortical columns.

respond to a variety of orientations. The retinotopic organization in the two maps
closely matches even though they had different numbers of neurons (Figure 11.3b).
The receptive field centers are laid out in an evenly spaced grid that covers the whole
retinal space, and the local distortions of this grid reflect the underlying orientation
map.

To visualize the global order of the orientation maps, the orientation preferences
and orientation selectivity of each neuron were measured (Figure 11.4). Despite
the density difference, both maps have highly similar global order. The preferences
change smoothly across the map, and contain features such as linear zones, matched
pairs of pinwheels, saddle points, and fractures. Neurons at pinwheel centers and
fractures are not very selective for orientation, similar to biological maps and the
LISSOM orientation map (Sections 2.1.2 and 5.3.2).

In addition to the qualitative descriptions, quantitative measures introduced in
Section 5.3.3 can be used to characterize the global properties of the maps. Orienta-
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tion preference histograms and two-dimensional Fourier power spectra of both maps
look similar to those of the LISSOM orientation map (Section 5.3.3): The histograms
are flat and the spectra are ring-shaped, suggesting that at any location in the map, all
orientation angles are equally well represented, as they should be. Such a structure
is also very similar to biological maps (Section 5.1.1).

Together these results show that the architecture and the learning rules in PGLIS-
SOM can develop realistic orientation maps, similar to those seen in previous LIS-
SOM models, and in the mammalian visual cortex. In the next section, the lateral
connection patterns will be analyzed.

11.5.3 Lateral Connections

As was discussed in Sections 2.2 and 5.1, the lateral connections in biological orien-
tation maps have two prominent characteristics: (1) Strong connections exist between
neurons with similar orientation preferences, and (2) the connections extend along
the direction matching the source neuron’s orientation preference (Figure 2.7). Such
connections are believed to represent correlations in the visual input.

Similarly, the long-range lateral connections in PGLISSOM self-organize into
patterns that have the same two general properties, and reflect the correlations in the
input. The SMAP connections self-organize similarly to those in firing-rate LISSOM
models; their properties were demonstrated in detail in Section 5.3.4. GMAP self-
organization is different, however, since both excitatory and inhibitory connections
have long range in GMAP, in order to establish segmentation and binding in the
model.

Figure 11.5 plots the excitatory lateral connections of four sample neurons in the
iso-orientation patches of the GMAP. In each case, the neuron is most strongly con-
nected to others with similar orientation preferences. Thus, the figure shows qual-
itatively that the first property above holds in the model. The connections are also
anisotropic, i.e. stretched along a particular direction with patches of connections
found along this direction at roughly equal intervals. Such connection patterns are
consistent with the second property exhibited in biological data.

As in the LISSOM models in the earlier chapters, such patterns emerge in PGLIS-
SOM because the afferent and lateral connections adapt to encode the statistical
structure in the training input. Since the training inputs are elongated Gaussian bars,
the afferent connections form oriented receptive fields. Neurons with similar orien-
tation preferences whose receptive fields are aligned along a straight axis will be ac-
tivated simultaneously when a long input happens to fall upon those receptive fields.
Due to the Hebbian learning process, such neuron pairs will develop strong lateral
connections. Moreover, the connections are not strictly aligned along the axis, but
there are also connections flanking the preferred axis. These flanks are larger farther
from the source neuron, like a bowtie. The same pattern can be seen in biological
data (Figure 2.7b).

This is an important observation, since the flanks allow grouping of not only
straight contours, but also cocircular ones. Neurons not only respond to the opti-
mal orientation at the optimal position, but also to slightly misoriented inputs (Fig-
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Fig. 11.5. Long-range lateral connections in GMAP. The long-range excitatory lateral con-
nection patterns for four sample neurons in GMAP are shown on top, located in iso-orientation
patches as shown in the map below. Similar plotting conventions are used as in Figure 5.12:
The small black square identifies the neuron itself in both plots, and the white outline on the
map indicates the extent of the lateral connections after self-organization and pruning; before
self-organization the lateral connections covered the whole map, as shown by the black square
outline on top. The color coding in the top plots represents the target neuron’s orientation pref-
erence, selectivity, and connection strength, and the map below encodes orientation and selec-
tivity. The histogram in the middle shows the distribution of the target neurons’ orientation
preferences. Each neuron is most strongly connected to its closest neighbors; the long-range
connections are patchy and connect neurons with similar orientation preferences. They extend
longer than those in Figure 5.12 because more elongated input patterns were used during self-
organization. As in LISSOM, these connections extend along the orientation preference of the
source neuron: (a) 2◦ red, (b) 51◦ purple, (c) 91◦ light blue, and (d) 136◦ light green. They
are narrow around the neuron but wider farther away. As will be seen in Chapter 13, specific
connection patterns like these are crucial for perceptual grouping such as contour integration.

ure 11.6). Thus, neurons with cocircular receptive fields can coactivate. When the
two receptive fields can be connected with a straight path, but one or both are slightly
misoriented from the axis of the path, they will both still be active. Their lateral con-
nection will be strengthened, resulting in cocircular connection patterns.

The connection patterns in the model can also be measured quantitatively and
compared with biological data. To measure the first property (i.e. that connections
are stronger between neurons with similar orientation preferences), the percentage of
GMAP excitatory lateral connections that connect receptive fields with varying ori-
entation differences were calculated. The results are shown in Figure 11.7. The per-
centage of connections peaks at 0◦, and rapidly decreases to zero as the orientation
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(a) Collinear (b) Cocircular

Fig. 11.6. Activating neurons with collinear and cocircular RFs. The plot shows two rep-
resentative cases of coactivation, i.e. two neurons responding simultaneously to a long input
across their receptive fields. (a) The two receptive fields (black bars) are precisely aligned on
a straight path (dashed line). If a long input is presented on this path, the two neurons will
respond maximally, and the connection between them becomes stronger, according to nor-
malized Hebbian learning. (b) Even though the two receptive fields are slightly misaligned on
the path, they can still weakly activate and the connection will become stronger. As a result,
neurons that represent cocircular contours develop significant lateral connections, although
not as strong as those that represent straight lines. Reprinted with permission from Choe and
Miikkulainen (2004), copyright 2004 by Springer.
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Fig. 11.7. Distribution of lateral connections in animals and in PGLISSOM. In the tree
shrew V1, biocytin was injected in the cell body of seven different neurons, and the projections
going to neurons of different orientation preferences were counted. The thin line with circles
shows the median percentage of connections for each difference (adapted from Bosking et al.
1997). In the GMAP, the percentage of connections to neurons with different orientations were
similarly counted (after pruning); the median over all neurons in the map is shown as the thick
line. Both plots peak at 0◦, and quickly fall off as the orientation differences become larger
(this effect is slightly exaggerated in the model because in this experiment it was trained on
straight elongated Gaussians only; cf. Section 13.4.2). In other words, strong excitatory lateral
connections mostly link neurons with similar orientation tuning both in the model and in
animals.

difference increases. In other words, strong excitatory lateral connections in GMAP
are most likely to be found between neurons that have similar orientation preference.
Such a result is consistent with experimental measurements (Figure 11.7), quantita-
tively verifying the first property.

This measure not only allows comparing the connectivity in the model and in
biological data, but also suggests a possible functional role for the first property.
As will be discussed in Section 13.1, contours are believed to be grouped through
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specific lateral interactions between contour elements (representing a local grouping
function, or an association field). The measure presented above suggests that lateral
connections could be implementing such a local grouping function.

The second property can also be measured quantitatively, by gathering statistics
about the directions, angles, and distances of the source and target receptive fields.
This study will be done in Section 13.2, showing that the second property holds
quantitatively in PGLISSOM, and demonstrating that it implements a local grouping
function. Edge-cooccurrence statistics in natural images and the connection statis-
tics in the PGLISSOM model are shown to be strikingly similar, which makes the
connectivity in PGLISSOM well suited for contour integration tasks.

11.6 Conclusion

To make it possible to understand self-organization of perceptual grouping phenom-
ena, the PGLISSOM model expands the LISSOM framework inward in two ways.
First, the single-unit model of the cortical column is extended to include two com-
ponents: The S component takes part in self-organization (in SMAP), and the G
component contributes to perceptual grouping (in GMAP). Second, the firing-rate
neurons in LISSOM are replaced with spiking neurons, in order to represent group-
ing through temporal coding. The resulting PGLISSOM network self-organizes like
the other LISSOM models, and the patterns of long-range excitation are appropriate
for implementing perceptual grouping. In the following chapter, the synchronization
behavior of the model is analyzed in detail. As a concrete example, its performance
in contour integration tasks is then demonstrated in Chapter 13.
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Temporal Coding

Experimental evidence reviewed in Section 2.4.2 suggests that temporally correlated
activity may be the basis for binding and segmentation in perceptual grouping. In
PGLISSOM such a temporal coding is generated by spiking neurons that synchro-
nize their activities. It is important to understand how synchronization takes place
in the model, mainly to gain insight into synchronization in biological networks, but
also so that the PGLISSOM model as a whole can be tuned to function properly.
In this chapter, the neuron model of PGLISSOM will be analyzed experimentally to
find the conditions under which synchronization and desynchronization occur. Basic
binding through synchronization and segmentation through desynchronization will
be demonstrated first, followed by an analysis of how these processes are affected
by the relative amounts of inhibition and excitation, spatial extent of the connec-
tions, synaptic decay rates, noise levels, neuron population sizes, and the length of
the absolute refractory period. A special focus is on robustness against noise, which
is crucial for these processes to function in biological networks.

12.1 Method

Synchronization is important for binding together populations of neurons that rep-
resent input features of the same coherent object. Desynchronization, on the other
hand, signals that the input features belong to different objects. In this chapter, these
processes will be illustrated using one-dimensional networks connected one-to-one
to input and output. Such networks are sufficient for testing the various factors gov-
erning synchronization, and they are also easy to visualize in two dimensions because
the activities can be plotted over time.

Unless stated otherwise, in all experiments the input neurons spike at every time
step, the membrane potential of each neuron is initialized to uniformly random distri-
bution within [0..1], the afferent weights are fixed at 1.0, the lateral excitatory weights
are fixed at 1.0/nE, and the lateral inhibitory weights are fixed at 1.0/nI, where nE

and nI represent the number of excitatory and inhibitory lateral connections (the rest
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of the parameters are listed in Appendix D.3). In order to study synchronization be-
havior, the following parameters are systematically varied in the experiments: (1)
lateral excitatory and inhibitory connection patterns and radii rE and rI, (2) their
contributions γE and γI, (3) their synaptic decay rates λE and λI, (4) the size and
pattern of the afferent input, (5) the degree of noise in the membrane potential, and
(6) the duration tr of the absolute refractory period.

For example, Figure 12.1 demonstrates synchronization behavior of a five-neuron
network with full lateral connectivity under two conditions. In Figure 12.1a, all lat-
eral connections were excitatory, whereas in Figure 12.1b they were inhibitory; all
the other parameters were the same (γE = 0.01, γI = 0.001, λE = 5.0, λI = 8.0, full
input activation, no noise in the membrane potential, no absolute refractory period).
The simulation time is on the x-axis, and the membrane potential of each neuron is
plotted over time in two ways: as a continuous y value in the top plot, and as a gray-
scale value in the bottom plot. In Figure 12.1a, due to lateral excitation, the neurons
reinforce each other’s activity and soon start firing at the same time. In contrast, in
Figure 12.1b, the lateral inhibition establishes competition between the neurons, and
after a short time they each fire at different times.

Such complete and exclusive lateral excitation vs. inhibition results in extremely
strong synchronization and desynchronization, and constitutes a good example of
these behaviors. The PGLISSOM models include both excitation and inhibition, and
the synchronization behavior depends on many other factors. In the following sec-
tions, these factors will be systematically varied, and gray-scale plots similar to those
in Figure 12.1 will be used to illustrate the resulting behavior.

12.2 Binding Through Synchronization

In this section, two main factors that affect the quality of synchronized representa-
tions will be analyzed: the synaptic decay rate and the extent of lateral connections.
Decay allows controlling how accurately the spiking events need to be timed. On the
other hand, lateral connections are necessary to coordinate the firing of neurons, and
their extent determines how large areas can be synchronized.

12.2.1 Effect of Synaptic Decay Rate

Previous models of spiking neurons have either adapted or selected the axonal de-
lays to regulate synchronization behavior (Eurich, Pawelzik, Ernst, Thiel, Cowan,
and Milton 2000; Gerstner 1998a; Horn and Opher 1998; Nischwitz and Glünder
1995; Tversky and Miikkulainen 2002). The biological basis for such delay tuning is
unclear: Although e.g. axonal morphology (length, thickness, and myelination) can
change over time (Eurich, Pawelzik, Ernst, Cowan, and Milton 1999), the fast and
accurate delay tuning needed in the above models may not be easy to achieve in this
way (Stevens, Tanner, and Fields 1998).

An alternative to delay adaptation is changing the decay rate of the PSP. De-
cay may be easier to alter in biological neurons since ion channels can be added
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(b) Desynchronized

Fig. 12.1. Synchronized and desynchronized modes of firing. A network of five neurons
is connected only with excitatory lateral connections in (a) and only with inhibitory lateral
connections in (b), and exhibits synchronized and desynchronized firing as a result. Simulation
time is shown on the x-axis, and the membrane potential for each neuron is displayed in two
ways: along the y-axis in a voltage trace plot on the top, and in gray scale from white to
black (low to high) in the bottom. Each row in each plot represents a different neuron, with
its index identified on both sides of the plot (1 to 5, from bottom to top). The black vertical
bar on the left shows which neurons are activated by afferent input (black means on and
white means off); in these two examples, all input neurons were activated. To the right of
the scatterplot, two vertical bars illustrate the excitatory (left) and inhibitory (right) lateral
connection ranges of one sample neuron in the network; all neurons had identical connections
in these two examples. Black indicates that a connection to the neuron exists in that row, and
white that it does not. The same plotting convention will be used throughout this chapter.
With excitatory lateral connections in (a), all spikes (peaks) start to become vertically aligned
around iteration 21, showing that all the neurons are firing at the same time. In contrast, with
inhibitory lateral connections in (b), the neurons all fire at different times. An animated demo
of these examples can be seen at http://computationalmaps.org.
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or removed to tune the leakage of currents through the cell membrane. The number
and distribution of ion channels can change through various mechanisms, including
activity-dependent gene expression and activity-dependent modulation of assembled
ion channels (Desai, Rutherford, and Turrigiano 1999; Nowak and Bullier 1997; see
Abbott and Marder 1995 for a review). Synaptic decay has been utilized in compu-
tational models before (Eckhorn et al. 1990; Reitboeck et al. 1993), but the influence
of different levels of decay on synchronization has not been fully tested.

PGLISSOM allows the effects of synaptic decay rates to be analyzed systemati-
cally. The λ values in Equation 11.1 can be varied independently for different types
of connections (excitatory or inhibitory). In such simulations, the decay rate was
found to influence synchronization strongly. By adjusting λ, it is possible to get both
synchronized and desynchronized behavior with both types of connections.

Four separate experiments were conducted: (1) excitatory lateral connections
with slow decay (λE = 0.1), (2) inhibitory lateral connections with slow decay
(λI = 0.1), (3) excitatory lateral connections with fast decay (λE = 1.0), and (4)
inhibitory lateral connections with fast decay (λI = 1.0). Except for the decay rate λ
and the connection type, all other parameters were the same in the four experiments,
including γI = γE = 0.01. In each experiment, a one-dimensional network of 30
neurons with full lateral connections was simulated for 500 iterations.

The results are shown in Figure 12.2. Two conditions, excitatory connections
with fast decay and inhibitory connections with slow decay, result in synchrony. In
contrast, excitatory connections with slow decay and inhibitory connections with fast
decay result in desynchrony. This is an interesting result, since excitation does not
always guarantee synchronization, and inhibition does not always guarantee desyn-
chronization.

Nischwitz and Glünder (1995) showed that a similar result is obtained by varying
the degree of delay among integrate-and-fire neurons connected via excitatory or in-
hibitory connections. A short delay with excitatory connections and long delay with
inhibitory connections caused the neurons to synchronize, and in the opposite case
to desynchronize. The current result indicates that synaptic decay adaptation, which
appears more plausible than delay adaptation, can also control synchronization.

It is important to note that although synchronization can be achieved through
slowly decaying inhibitory connections, excitatory connections are more likely to
be responsible for coherent oscillation in the cortex. As will be discussed in Sec-
tion 16.3.3, coherent oscillations have been found mostly in the superficial layers of
the cortex, especially in layers 2/3. The long-range connections in those layers are
mostly excitatory, suggesting that the synchronization is established through excita-
tion.

In summary, synchronization can be regulated effectively by adjusting the synap-
tic decay rate. Because possible adjustment mechanisms are known to exist in biol-
ogy, synaptic decay adaptation is an attractive alternative to models based on delay
modulation.
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Fig. 12.2. Effect of connection type and decay rate on synchronization. Thirty neurons
with full lateral connections, either excitatory or inhibitory, were simulated for 500 iterations
(see Figure 12.1 for plotting conventions). Four experiments were conducted where the type
of the lateral connections (excitatory or inhibitory) and the synaptic decay rates (λ) were
altered. All other parameters were the same for all four cases. (a) Excitatory connections with
slow decay (λE = 0.1) result in desynchronized activity. (b) Excitatory connections with
fast decay (λE = 1.0) result in synchronized activity. (c) Inhibitory connections with slow
decay (λI = 0.1) result in synchronized activity. (d) Inhibitory connections with fast decay
(λI = 1.0) result in synchronized activity. Note that in the two synchronized cases (b) and (c),
the firing rate is higher in (b): The input activity to the neuron g(t) approaches the threshold
faster because of the excitatory lateral input. The results show that synchronization behavior
can vary greatly even for the same connection type if the synaptic decay rate differs.

12.2.2 Effect of Connection Range

In the second test, the goal was to determine whether local excitatory connections
can synchronize a global population. Inhibitory lateral connections were excluded to
simplify the simulations. Thirty neurons with varying degrees of excitatory lateral
connection radii were simulated for 500 iterations. Five separate experiments were
conducted with excitatory connection radii of 30, 10, 5, 2, and 0. Other simulation
conditions were the same as in Section 12.1, except γE = 0.01 and λE = 5.0 so that
the network would also synchronize under the smaller radii.

The results are shown in Figure 12.3. Global synchronization is achieved not only
in the fully connected network as before (radius 30), but also in locally connected
networks, down to a radius of 5. These results demonstrate that synchronization can
propagate through locally connected neurons, which is consistent with other coherent
oscillation models with local connections (Campbell et al. 1999; Terman and Wang
1995; Wang 1995, 1996). They show that synchronization may work as a basis for
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Fig. 12.3. Effect of excitatory connection range on synchronization. A network of 30 neu-
rons with varying extent of lateral excitatory connections was simulated for 500 iterations.
Synchronization occurs through the excitatory connections even though the connections did
not cover the whole network. From (a) to (e), the lateral excitatory connection radius rE was
reduced from 30 (i.e. full connectivity) to 10, 5, 2, and 0 (the bars at right depict the connec-
tions of the neuron in row 15). All other parameters were the same as before. Synchronization
starts to break once the radius reaches 2, but for a fairly local connection radius (e.g. 5), global
synchronization is maintained. As expected, with no excitatory connections (e), the initial ran-
dom order of spikes is maintained throughout the simulation. Global synchrony can therefore
be established with local connections.

transitive grouping: If A and B are grouped together and B and C are grouped to-
gether, then A and C are perceptually grouped together (Geisler et al. 2001; Geisler
and Super 2000).

In summary, fully connected networks synchronize well, but it is not necessary to
have full connectivity to achieve global synchrony. Global synchronization through
local connections in the PGLISSOM model may be a possible mechanism for tran-
sitive perceptual grouping.
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12.3 Segmentation Through Desynchronization

Proper desynchronization is as important as synchronization, since it is the basis for
segmentation. This section will show that inhibitory connections are necessary for
segmentation, and that a small amount of noise is necessary for symmetry breaking.

12.3.1 Effect of Connection Types

As was seen in Section 12.2.1, excitatory and inhibitory connections have the oppo-
site effect under the same decay rate. For perceptual grouping, both synchronization
and desynchronization are necessary; such behavior may be efficiently achieved by
utilizing both excitatory and inhibitory lateral connections. This hypothesis is tested
in this section, verifying that including both types of connections indeed results in a
desirable temporal representation for binding and segmentation.

As an abstraction of the grouping task and the underlying connectivity in the cor-
tex, a one-dimensional network of 90 neurons was divided into two groups: Neurons
[1..22] and [45..66] formed the first group, and neurons [23..44] and [67..90] the
second group. Lateral excitatory connections were only allowed to connect neurons
within the same group, whereas inhibitory connections connected the whole popula-
tion.

Four separate experiments were conducted: one with both excitatory and in-
hibitory connections, another with excitatory connections only, the third with in-
hibitory connections only, and the fourth with no lateral connections at all. Other
simulation conditions were the same as in Section 12.1, except γE = 0.36 and
λE = 5.0 to compensate for the larger size of the network and the addition of in-
hibitory connections. Values of γI = 0.42 and λI = 5.0 were used for the inhibitory
connections.

The results are shown in Figure 12.4. First, with both excitatory and inhibitory
connections, neurons within the same group are synchronized, but across the groups
where only inhibitory connections exist, desynchronization occurs (Figure 12.4a).
Such temporal representation is well suited for perceptual grouping, since binding is
signaled by synchrony and segmentation by desynchrony. Next, with only excitatory
connections, segmentation does not occur (Figure 12.4b), and with only inhibitory
connections, binding does not occur (Figure 12.4c). Finally, without any lateral con-
nections, the neurons fire in different phases, determined by their randomly initial-
ized membrane potential (Figure 12.4d).

In summary, binding and segmentation can be established in a network with both
excitatory and inhibitory lateral connections. Omitting either kind of the lateral con-
nections results in losing the ability to bind, segment, or both.

12.3.2 Effect of Noise

In previous sections, the initial membrane potential of each neuron was uniformly
randomly initialized. Whether such initial perturbations are necessary will be tested
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Fig. 12.4. Binding and segmentation with different connection types. A network of 90
neurons was divided into two groups and simulated for 500 iterations. Neurons [1..22] and
[45..66] formed the first group (E1) and neurons [23..44] and [67..90] the second group (E2).
All neurons in each group had the same lateral connections, shown at right. Excitatory lateral
connections only linked neurons within the same group (E1 or E2), and inhibitory connections
were global. (a) With both excitatory and inhibitory connections, the neurons within the same
group are synchronized, while those in different groups are desynchronized. (b) With exci-
tatory connections only, the neurons cannot desynchronize. (c) With inhibitory connections
only, no coherently synchronized groups emerge. (d) When there are no lateral connections,
neurons spike in different phases determined by their initial state. Both types of connections
are therefore needed to establish simultaneous binding and segmentation.

in this section, analyzing the roles of initial and continual noise in symmetry break-
ing. The results are compared with the control case where the simulation is carried
out without noise.
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A network of 180 neurons with both excitatory and inhibitory lateral connections
was simulated for 500 iterations. The network was divided into two groups as in
the previous experiment (Section 12.3.1). Neurons [1..22], [45..66], [89..110], and
[133..154] formed the first group, and neurons [23..44], [67..88], [111..132], and
[155..180] the second group. Excitatory lateral connections only connected neurons
within the same group, and their radius was limited to 90. The inhibitory connections
were global.

Three separate experiments were conducted: with initial noise only, with contin-
ual noise only, and without noise. The parameters were the same in all three exper-
iments: γE = 0.48, γI = 0.42, and λE = 5.0, λI = 1.0, and all other simulation
conditions were the same as in Section 12.1.

The results are shown in Figure 12.5. With initial noise (i.e. random initial mem-
brane potential), the neurons within the same group are synchronized while the two
different groups are desynchronized (Figure 12.5a). Also, even if the neurons are ini-
tialized uniformly (at 1.0), when a small amount of noise (0.1%) is added to the mem-
brane potential at each time step, the two groups will desynchronize (Figure 12.5b).
However, without noise of any kind, symmetry is not broken and the two groups stay
synchronized (Figure 12.5c). So, inhibitory connections alone are not sufficient for
desynchronization. Cortical neurons actually operate in a noisy cellular environment,
so including such noise in the model is realistic. It may also be desirable, in that it
can make the behavior of the model more robust (Baldi and Meir 1990; Horn and
Opher 1998; Terman and Wang 1995; Wang 1995).

In summary, a small amount of noise is needed for desynchronization; noise
will therefore be used in the perceptual grouping experiments with PGLISSOM. The
problem in biological systems, however, is not lack of noise, but that there may be
too much of it. Next, how binding and segmentation can take place robustly under
noisy conditions will be investigated.

12.4 Robustness Against Variation and Noise

The previous sections showed how the synaptic decay rate, the type and extent of
the lateral connections, and the degree of noise can be controlled in the model to
achieve synchronization and desynchronization for binding and segmentation. How-
ever, there are several factors that can possibly interfere with this process. For exam-
ple, if the network is presented with different-size inputs simultaneously, the larger
input could dominate the smaller input. If the level of noise is raised above a thresh-
old, noise can dominate and coherent behavior may not be obtained. How robust
the model is against such external factors will be analyzed in this section, and the
components that contribute to its robustness will be identified.

12.4.1 Robustness Against Size Differences

One requirement for perceptual grouping is that input features should not be sup-
pressed or promoted on the basis of size only, since smaller but complex input fea-
tures in the scene can be equally important as large but simple features. Thus, a
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(c) Non-random initial potential, no noise

Fig. 12.5. Effect of noise on desynchronization. A network of 180 neurons with both exci-
tatory and inhibitory lateral connections was simulated for 500 iterations. The network was
divided into two groups, as in the experiment of Figure 12.4. The first group (E1) consisted
of neurons [1..22], [45..66], [89..110], and [133..154], and the second group (E2) of neurons
[23..44], [67..88], [111..132], and [155..180]. The excitatory lateral connections were limited
to the neurons in the same group within a radius of 90; the inhibitory connections were global.
To illustrate, the plots at right show the lateral connections of neuron 45 in E1 and 132 in E2.
(a) The membrane potential of each neuron was uniformly randomly initialized, and no noise
was added afterward. The symmetry is broken and the two groups are separated as expected.
(b) The membrane potentials initially were the same, but perturbed throughout the simulation
by adding 0.1% of uniformly random noise. The neurons within the same group are synchro-
nized at the same time as the two groups are desynchronized. (c) Without any noise (initial
or continual), the symmetry was not broken and the entire network remained synchronized. A
small amount of noise is therefore essential for proper desynchronization to occur.
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(c) One input three times the size of the other

Fig. 12.6. Effect of relative input size on synchronization. A network of 90 neurons with
both excitatory and inhibitory lateral connections was simulated for 500 iterations. The exci-
tatory connection radius was 14 and inhibitory connections were global (as shown at right for
neuron 45). The network was given two spatially separated inputs, and the size of the second
input was varied. The rows (i.e. neurons) that received input are marked by black solid bars
on the left. (a) The two inputs were the same size, activating neurons [19..36] and [55..72].
(b) One input was twice as long as the other input, activating neurons [16..45] vs. [61..75]. (c)
One input was three times as long as the other input, activating neurons [1..45] vs. [61..75].
In all cases, the inputs are robustly bound and segmented, showing that the behavior is not
affected by variation in the size of the input.

network of spiking neurons modeling such behavior should tolerate differences in
input size.

To test if the PGLISSOM model is robust against such variation, a network of
90 neurons with both excitatory and inhibitory lateral connections was simulated for
500 iterations. The excitatory connection radius was 14 so that neurons representing
different inputs were not connected, and inhibitory connections were global. Three
separate experiments were conducted by presenting two inputs of relative sizes 1:1,
1:2, and 1:3 (Figure 12.6). The parameter values were the same in the three experi-
ments: γE = 0.7, γI = 0.6, and λE = 5.0, λI = 1.0, to compensate for the larger
number of excitatory connections compared with the previous experiments. Other
simulation conditions were the same as in Section 12.1.
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Fig. 12.7. Overcoming noise with strong excitation. A network of 30 neurons with global
excitatory lateral connections was simulated for 500 iterations. A higher level of noise (1%,
i.e. 10 times the noise in Section 12.3.2) was added to the membrane potential at each iteration.
When the excitatory contribution is weak, as in (a) and (b), noise overwhelms it and causes
the activities to desynchronize. However, as the excitatory contribution becomes stronger as
in (c) and (d), it overcomes noise and achieves synchrony.

The results are shown in Figure 12.6. The two areas of the map representing
the two objects are synchronized and desynchronized within and across the group,
regardless of the input size. Note that these behaviors occur under identical parameter
conditions, and thus demonstrate that the model is not affected by the size of the
inputs alone.

12.4.2 Overcoming Noise with Strong Excitation

Cortical neurons operate in an inherently noisy environment. Noise can arise from
several causes: For example, synaptic transmission may be unreliable or membrane
potential may fluctuate. As was shown in Section 12.3.2, a small amount of noise
is useful in desynchronizing separate representations. However, biological networks
are likely to be very noisy, and a model should be robust against such high levels of
noise as well.

A network of 30 neurons with global excitatory lateral connections was simulated
for 500 iterations. Four separate experiments were conducted, increasing the excita-
tory contribution in four stages under a higher level of noise (1%, i.e. 10 times the
noise in Section 12.3.2). The simulation conditions were the same as in Section 12.1,
except λE = 5.0.

The results are shown in Figure 12.7. With a higher level of noise, weak excita-
tory connections cannot keep the neurons synchronized (Figure 12.7a,b), but as the
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Fig. 12.8. Overcoming noise with a long refractory period. A network of 30 neurons with
global excitatory lateral connections was simulated for 500 iterations. A significant level of
noise (7%, 70 times the noise in Section 12.3.2) was added to the membrane potential at
each iteration. Such high noise cannot be tolerated by just increasing the lateral excitatory
contribution γE. However, increasing the absolute refractory period can make the model robust
even in this case. (a) When there is no absolute refractory period (tr = 0), the activities
are random. (b) When the absolute refractory period lasts for three iterations, the activities
start to synchronize loosely. (c) When it lasts for five iterations, the activities are strongly
synchronized. With longer periods between firing, the noise is effectively washed out.

excitatory contribution γE is increased, the neurons start to synchronize. This result
shows how a network of spiking neurons can robustly synchronize even in moder-
ately noisy conditions: Strong excitation can be used to overcome the noise in such
cases.

12.4.3 Overcoming Noise with a Long Refractory Period

Although increasing the excitatory contribution helps, there is a certain threshold
where noise cannot be overcome this way. For example, 7% noise will break the
synchronization behavior even with extremely strong excitatory connections because
noise will dominate the spiking behavior of the network. However, it turns out longer
refractory periods will make the network robust even in such cases.

A network of 30 neurons with global excitatory lateral connections was simulated
for 500 iterations. Three separate experiments were conducted where the length of
absolute refractory period was gradually increased. The simulation conditions were
the same as in Section 12.1, except λE = 5.0 to make synchronization more robust.

The results are shown in Figure 12.8. Under significant noise (7%), the excita-
tory connections alone cannot keep the neurons synchronized (Figure 12.8a), but as
the absolute refractory period is lengthened, the neurons start to synchronize again
(Figure 12.8b,c). This result suggests that absolute refractory periods may have come
to exist in biological neurons in part to overcome high levels of noise in the cortical
environment. When the time interval during which the neuron can fire is smaller than
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the refractory period, the noise is washed out. Thus, with a strong γE and a long re-
fractory period, the neuron can be made highly robust against noise, which suggests
that synchronization can be robust in real environments. Such a mechanism can be
seen as a way to increase reliability at the expense of processing speed.

12.5 Discussion

As experiments in this chapter demonstrate, several factors influence how firing be-
comes synchronized and desynchronized in a network of integrate-and-fire neurons.
The observed effects of synaptic decay and absolute refractory period are particularly
novel and potentially significant.

Synaptic decay has a similar effect on synchronization as the time it takes to
integrate incoming PSPs: Both modulate the time it takes to reach the threshold.
Integration time has been recognized earlier as a parameter that can alter synchro-
nization behavior (Eurich et al. 1999, 2000). It is usually modeled by adding an
additional delay to the spike arrival time. However, such an approach does not take
into account that the PSP also decreases over time. The results in Section 12.2.1 sug-
gest that decay plays a significant role in synchronization. Explicitly modeling decay
therefore gives us a more accurate understanding of the mechanisms responsible for
synchrony.

At this point, the effects of decay adaptation are computational predictions only;
there is little biological evidence to support or falsify such processes. In the near
future, it may be possible to verify whether the dendritic membrane potential can
decay at different rates at different locations in biological neurons, and also whether
there is such a difference between different types of synapses (e.g. glutaminergic
vs. GABAergic synapse). If differences are found, they can be compared with the
results presented in this chapter, allowing us to predict what role such different kinds
of connections may play in modulating synchrony. An interesting further question
is how the decay rate interacts with conduction delays. While it may be difficult to
tune the delays in biological systems, it is possible that the decay rate adjusts to
the delays so that robust synchronization behavior emerges under various conditions
(Section 16.4.7).

Another novel result of this chapter is that a longer absolute refractory period
can help overcome noise: Even in a highly noisy neural environment, synchroniza-
tion can be achieved in this manner. From a computational point of view, such a
mechanism can be seen as a way to increase reliability at the expense of process-
ing speed: With a longer refractory period, firing rates will be lower and it will take
longer to decode the information encoded in them (Section 16.4.7).

Together, the results in this chapter demonstrate qualitatively how the different
factors affect behavior in networks of integrate-and-fire neurons. They serve as a
practical guide that allows utilizing synchronization in large neural network systems,
as will be done in the next chapter. In the future it may also be possible to carry the
analysis a step further and develop a quantitative theory of how the different pa-
rameters modulate synchrony (similar to the analysis of connection types and delays
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by Nischwitz and Glünder 1995). For example, the PSP decay rate parameter λ or
the length of the absolute refractory period can be continuously varied within a fixed
range, and the degree of synchrony measured in each case. Such a study might lead to
empirical equations that allow predicting the behavior of the network with different
parameters. Like the equations that scale the model to different size networks (Chap-
ter 15), such equations might also allow setting the parameters directly to obtain the
desired behavior, eventually leading to a mathematical theory of synchronization.

12.6 Conclusion

In this chapter, a one-dimensional network of spiking neurons was systematically
tested to determine how the different components of the PGLISSOM model con-
tribute to synchronization and desynchronization of activity. The results show that
increasing the decay rate can synchronize networks with excitatory connections and
desynchronize networks with inhibitory connections, local excitatory connections
can achieve long-range synchrony, and both excitatory and inhibitory connections
are necessary for simultaneous binding and segmentation, and noise helps break the
symmetry in such cases. The model was also shown to be robust against changes
in input size, and against high levels of noise through strong excitation and long
absolute refractory periods.

Understanding such qualitative and quantitative factors that affect synchroniza-
tion allows us to predict how a network of spiking neurons behaves in a specific
configuration, and provides a theory for the corresponding mechanisms in biology.
These mechanisms play an important role in perceptual grouping tasks such as con-
tour integration, which is the subject of the next chapter.



13

Understanding Perceptual Grouping: Contour
Integration

Perceptual grouping is the process of identifying the constituents in the visual scene
that together form a coherent object. Grouping takes place at several levels in the vi-
sual processing hierarchy, as was discussed in Section 1.3. Experiments with PGLIS-
SOM focus on the early grouping task of contour integration, where there are plenty
of neurobiological and psychophysical data to constrain, test, and validate the model.
The hypothesis is that much of contour integration is performed in V1, based on
mechanisms implemented in PGLISSOM.

The first section in this chapter defines and motivates the task and reviews psy-
chophysical observations and computational models. The following sections demon-
strate PGLISSOM in contour integration, including segmentation of multiple con-
tours and completion of partial and illusory contours. Input-driven self-organization
is also shown to possibly account for the differences in contour integration perfor-
mance in different parts of the visual field.

13.1 Psychophysical and Computational Background

Contour integration is a well-defined task where performance can be readily mea-
sured both in humans and in computational models. It has therefore been extensively
studied both in psychophysical experiments and in artificial neural networks. The
underlying theory is remarkably clear and uniform across these studies and also ex-
tends to illusory contours. It is less clear, however, how contour integration circuitry
can arise in early development and result in different performance in different parts
of the visual field.

13.1.1 Psychophysical Data

A typical visual input for the contour integration task is shown again in Figure 13.1.
The input consists of a series of short oriented edge segments (contour elements)
aligned along a continuous path, embedded in a background of randomly oriented
contour elements. The task is to identify the longest continuous contour in this scene.
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Fig. 13.1. Demonstration of contour integration. Look briefly at the circular area fill with
line segments above; a continuous contour from top left to the right and slightly down should
immediately emerge. This process is called contour integration: A good continuation of con-
tour elements leads to a vivid perception of a single object. This function is believed to arise
automatically in the orientation map of V1, mediated by lateral connections (Section 13.1.1).

Psychophysical experiments (Elder and Goldberg 2002; Field et al. 1993; Geisler
et al. 2001; McIlhagga and Mullen 1996; Pettet et al. 1998; see Hess, Hayes, and
Field 2004 for a review) suggest that there exists a highly specific pattern of inter-
actions among the contour elements. Such interactions allow contour elements of
certain positions and orientations to be more visible than in others. For example,
Field et al. (1993) conducted a series of experiments where each subject was told to
find a contour of similarly oriented Gabor patterns embedded among randomly ori-
ented Gabor patterns. Several factors affected the performance. The relative orienta-
tion of successive contour elements (i.e. orientation jitter) along the longest contour
(the path) was the most important such a factor. When the orientation of successive
contour elements differed more, the performance degraded. Other factors, such as
distance between elements and phase difference between successive Gabor patterns,
also affected performance but to a lesser extent.

Based upon these results, Field et al. suggested that local interactions between
contour elements follow specific rules and form the basis for contour integration in
humans. In other words, these constraints form a local association field that gov-
erns how differently oriented contour elements should interact to form a coherent
group (Figure 13.2). An association field can be described with two rules: (1) con-
tour elements positioned on a smooth path (Figure 13.2a) and (2) contour elements
aligned collinearly along the path (Figure 13.2b) are more likely to be perceived as
belonging to the same contour. This idea can be formalized as a mathematical theory,
and extended to account for non-uniform variance in the association profile as well
(Ben-Shahar and Zucker 2004).

Pettet et al. (1998) further confirmed that lateral interactions between neighbor-
ing contour elements follow well-defined constraints. They compared the perfor-
mance of human subjects with a model consisting of fixed lateral interaction con-
straints similar to the association field, and found that the model explained psy-
chophysical data very well. In particular, it was consistent with the earlier result
of Kovacs and Julesz (1993) showing that closed contours were easier to detect than
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(a) Position (b) Orientation

Fig. 13.2. Association fields for contour integration. The circular disks with black and white
oriented bars represent Gabor wavelets, which is the typical input contour element used in the
study by Field et al. (1993). Whether the elements interact depends on two factors: (a) The
elements’ positions have to be located on smooth (collinear or cocircular) contour, and (b)
their orientations have to be parallel to the smooth contour. The solid lines indicate cases
where integration occurs, and the dashed lines those where it does not. Adapted from Field
et al. (1993).

open-ended contours. Pettet et al. reasoned that the missing lateral interaction be-
tween the two ends of the open-ended contour made it harder to perceive the contour,
whereas reverberating lateral interaction along the closed loop made it easier.

Geisler et al. (2000, 2001) took a different approach in identifying the condi-
tions that govern contour integration. Instead of proposing rules based on human
performance, they extracted the rules from edge-cooccurrence statistics measured
in natural images (Section 13.2.3). Edge-detected natural images were decomposed
into outline figures, consisting of short oriented edges. The cooccurrence probabil-
ity of each pair of edges belonging to the same physical contour in natural images
was then calculated. Such edge-cooccurrence statistics (as also reported by Elder
and Goldberg 2002; Krüger and Wörgötter 2002; Sigman, Cecchi, Gilbert, and Mag-
nasco 2001) turned out to be very similar to the lateral interaction rules proposed by
Field et al. and Pettet et al. Furthermore, Geisler et al. devised a method of extract-
ing contours using these cooccurrence statistics: Two edges are grouped together if
the probability of the edges occurring in the given configuration exceeds a thresh-
old. Larger groups are then formed transitively: A and C were grouped together if A
and B can be grouped together and B and C can be grouped together. Geisler et al.
showed that this method of grouping accurately predicts human performance. Thus,
they showed that the statistical structure in the environment closely corresponds to
human perceptual grouping.

Moreover, Geisler et al. found that the statistical model explains more of the per-
ceptual performance than previously believed, including the difference between open
and closed contours. First, when the complexity of the contours and the eccentric-
ity of the edge elements was carefully controlled, the advantage of closed contours
disappeared in most cases. Where it still existed, it was perfectly predicted by the
statistical model (Tversky, Geisler, and Perry 2004). Therefore, closed contours may
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(a) Kanizsa triangle (b) Ehrenstein figure

Fig. 13.3. Edge-induced vs. line-end-induced illusory contours. The figures illustrate the
two mechanisms believed to underlie the process of forming illusory contours in the visual
system: (a) The hovering white triangle is formed by edge inducers, i.e. by continuing the
separate, collinearly aligned edges, and (b) the bright circle in the middle is composed by
line-end inducers, i.e. by connecting the ends of the lines into a continuous circle.

be easier to perceive simply because each segment is a good continuation of a nearby
segment in each direction, without any special reverberating mechanisms along the
contour.

Contour integration takes place not only with disjoint line segments, but also with
illusory contours, i.e. perceived boundaries where no luminance contrast actually ex-
ist. Illusory contours can be triggered by two types of stimulus configuration: edge
inducers and line-end inducers. The Kanizsa triangle in Figure 13.3a is a representa-
tive of edge-induced illusory contours, where the contour forms collinearly with the
inducing edges of the pacmen. The Ehrenstein pattern in Figure 13.3b is an example
of line-end-induced illusory contours, where the boundary of the circle is orthogonal
to the line ends near the center. Following the initial discovery by Schumann (1900),
illusory contours were studied in depth by Ehrenstein (1941) and Kanizsa (1955).
They have become an important subject in visual perception research as a test case
in figure-ground separation, object recognition, and perceptual grouping in general
(Lesher and Mingolla 1995; Petry and Meyer 1987).

Early on, there were two main theories of illusory contour perception: the
bottom-up brightness theory and the top-down cognitive factor theory. Brightness
theory maintained that illusory contours arise from a low-level mechanism that gives
brightness to areas enclosed by illusory boundaries. On the other hand, cognitive
theorists argued that illusory contours are purely a high-level cognitive phenomenon.
However, more recent evidence suggests that neither of these theories can account
for the full range of illusory contour phenomena. Illusory contours were discov-
ered that arise from image configurations without subjective brightness, providing a
counterexample to the brightness theory (Hoffman 1998; Kanizsa 1976; Parks 1980;
Prazdny 1983). On the other hand, cells in V1 and V2 were found to respond to il-
lusory contours, demonstrating that such contours can be processed early on, unlike
what the cognitive theories suggested (Lee and Nguyen 2001; Peterhans, von der
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Heydt, and Baumgartner 1986; Redies, Crook, and Creutzfeldt 1986; Sheth, Sharma,
Rao, and Sur 1996; von der Heydt and Peterhans 1989). They arise at least partly
based on the same mechanisms as ordinary contours, including lateral interactions
in V1 and V2. Association fields and statistical models can potentially be used to
explain much of illusory contour processing as well.

Another intriguing characteristic of contour integration is that it is stronger in cer-
tain parts of the visual field than in others. The two main divisions are: (1) The lower
visual hemifield is better in illusory contour discrimination tasks than the upper vi-
sual hemifield (Rubin, Nakayama, and Shapley 1996), and (2) contour integration is
stronger in the fovea than in the periphery (Hess and Dakin 1997; Nugent, Keswani,
Woods, and Peli 2003).

Rubin et al. (1996) compared the performance of humans in discriminating the
angle made by illusory contours in the lower vs. upper hemifield (see Figure 13.3a for
an example stimulus). The pacman-like disks were rotated by small amounts so that
the perceived square in the middle would look either thick (like a barrel) or thin (like
an hour glass). Rubin et al. presented the inputs in either the lower or upper visual
hemifields and measured the minimum amount of rotation (i.e. threshold) needed for
the subject to reliably tell whether the input was thick or thin. The results showed
that the threshold is much higher in the upper hemifield than in the lower hemifield,
i.e. lower hemifield is more accurate in this task than the upper hemifield. Similar
results are expected for contour integration tasks, although such experiments have
not been carried out so far.

Along the same lines, Hess and Dakin (1997) and Nugent et al. (2003) investi-
gated differences in contour integration performance in the fovea vs. the periphery.
When line segments had a consistent phase (as in Figures 13.1 and 13.2), they found
that, in the fovea, contour integration is accurate even for a relatively large orien-
tation jitter, but quickly fails after a critical point. However, in the periphery, the
accuracy decreases linearly as the orientation jitter increases. Hess and Dakin (1997)
observed that such a linear decrease is predicted by a linear filter model (e.g. con-
volution with oriented Gabor filters), which does not require sophisticated lateral
interactions. These results suggests that contour integration is a stronger process in
the fovea than in the periphery.

How and why do such differences in performance occur? A likely explanation is
that the cortical structures in these areas are different. Such differences could arise if
the structures develop based on input-driven self-organization, and the areas receive
different kinds of inputs during development.

The inputs can differ in two ways: due to passive environmental biases and due to
active attentional biases, and there is evidence for both causes. Environmental biases
seem to drive the upper vs. lower hemifield distinction. Because of gravity, objects
tend to end up near the ground plane, making the input in the lower hemifield more
frequent and complex. In animals with high dexterity such as monkeys, reaching
for objects and manipulating them takes place mostly in the lower hemifield as well
(Gibson 1950; Nakayama and Shimojo 1992; Previc 1990). Attentional biases, on
the other hand, may be responsible for the differences between fovea vs. periphery.
For example, Reinagel and Zador (1999) presented natural images to humans and
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gathered statistics about the locations in the image to which the human attended, by
tracking eye movements. They found out that human gaze most often falls upon areas
with high contrast and low pixel correlation. Since the attended areas mostly project
to the fovea, the statistical properties will differ in the fovea vs. the periphery. Such
evidence suggests that the input statistics can differ in different areas of the visual
cortex, which may in turn lead to different development and different performance
in these areas.

In summary, psychophysical results suggest that specific lateral interactions are
crucial for contour integration. As we saw in the previous chapter, this is exactly what
input-driven self-organization captures in the PGLISSOM model. Thus, computa-
tional models like PGLISSOM can show how these three observations are related:
Human contour integration performance arises from specific neurobiological struc-
tures, derived from input statistics through self-organization. So far, PGLISSOM is
the only model of contour integration that includes the self-organization component;
the other models are reviewed next.

13.1.2 Computational Models

Several neural network models of contour integration have been developed, showing
that specific lateral interactions are sufficient to account for the phenomena outlined
above (Finkel and Edelman 1989; Grossberg and Mingolla 1985; Hugues, Guilleux,
and Rochel 2002; Li 1998, 1999; Peterhans et al. 1986; Ullman 1976; VanRullen,
Delorme, and Thorpe 2001; Wersing, Steil, and Ritter 2001; Yen and Finkel 1997,
1998). The models are able to detect and enhance smooth contours of oriented Ga-
bor patterns embedded in a background of randomly oriented Gabor patterns (as in
Figure 13.1), contours in natural images, and various illusory contours.

All these models use fixed formulas in determining the lateral interactions, and
these interactions are similar to the association fields. For example in Yen and
Finkel’s (1997; 1998) coupled oscillator model, the units were connected with long-
range lateral excitatory connections. The magnitude and time course of the synap-
tic interactions depended upon the position and orientation of the connected units.
Excitatory connections were confined within two regions. One fanned out cocircu-
larly around the preferred orientation axis of the central unit. The other extended
out transaxially to a smaller area flanking the preferred orientation. Inhibitory con-
nections linked to the rest of the surrounding neurons that did not receive excitatory
connections. The connection strengths had a Gaussian profile, with the peak at the
central unit. Through synchronization of the coupled oscillators, the model was able
to predict human contour integration performance, showing that specific lateral in-
teractions can be responsible for contour integration.

In Li’s (1998; 1999) approach, the excitatory and inhibitory interactions were
defined by fixed rules derived from specific constraints, as follows: (1) The sys-
tem should not activate spontaneously, (2) neurons at a region border should re-
spond strongly, and (3) the same neural circuit should enhance contours. Coupled
oscillators were used to describe the dynamics of the orientation-selective cells, and
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Fig. 13.4. Contour completion across edge inducers. After the retinal and thalamic prepro-
cessing, the inputs received by the primary visual cortex are essentially edge-detected versions
of the original images, as shown here for the Kanizsa triangle of Figure 13.3a. Each of the
three sides (e.g. the one outlined with a dashed oval) has a gap (indicated by an arrow). The
triangle boundary can be generated by filling in the gap through contour completion. Contour
completion is therefore a possible mechanism underlying edge-induced illusory contours.

mean-field techniques and dynamic stability analysis were used to calculate the lat-
eral connection strengths and the connectivity pattern according to these three con-
straints. The resulting lateral connection strengths were very similar to those of Yen
and Finkel’s, except there was no transaxial excitation; instead, areas flanking the
center received specific inhibitory connections. The model also predicted contour in-
tegration performance well, and again showed that specific lateral connections can
accurately predict human contour integration performance.

The first neural network model of illusory contours was based on edge inducers,
and illusory contours were processed through contour completion (Ullman 1976).
Figure 13.4 gives an example of this process. However, subsequent models were
based on line-end inducers, and included edge inducers only as a special case. In
these models, the corners where the edges meet (e.g. the throats of the pacmen in
Figure 13.3a) and the tip of convex angles (e.g. the lips of the pacmen) constituted
line ends, connected to obtain the illusory contour (Finkel and Edelman 1989; Peter-
hans et al. 1986). However, models strictly based on line-end inducers cannot account
for psychophysical results where increasing the length of the inducing edge causes
the illusory contour to become clearer (Shipley and Kellman 1992). Thus, neither
model can account for both types of illusory contours.

For this reason, the model developed by Grossberg and Mingolla (1985) included
both types of inducers. In the first stage, boundaries were formed orthogonally to the
line-end inducers, and in the second stage collinearly to both line-end and edge in-
ducers. In the second stage, the neurons had bipole (i.e. bowtie shaped) receptive
fields similar to those found in V2 (von der Heydt and Peterhans 1989), combining
the responses of two first-stage neurons. These neurons activated only when stimuli
were present on both lobes of the receptive field, thereby binding the elements of
the contour together. The neurons were connected into a systematic pattern by hand,
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and through equilibrium values the resulting network successfully accounted for il-
lusory contour perception where contour completion had an important role (Gove,
Grossberg, and Mingolla 1993; Grossberg 1999; Grossberg et al. 1997; Grossberg
and Williamson 2001; Ross, Grossberg, and Mingolla 2000).

Although the models described above have been successfully applied to explain
experimental data, several important questions remain. Most importantly, how does
the brain construct the circuitry required for contour integration and segmentation?
As mentioned in Section 13.1.1, it is possible that statistical regularities in the visual
environment drive a self-organizing process that results in such a circuitry. Demon-
strating this process computationally is the main goal of this chapter.

Second, can the connections that implement contour integration produce illusory
contours as a side effect? They are involved in binding line segments into a coherent
representation across gaps, which could result in illusory contours in the extreme.
This hypothesis is viable especially about edge-induced contours, which appear to
occur early in the visual hierarchy. The hypothesis will be tested in this chapter us-
ing PGLISSOM as the computational platform; an extension to line-end-induced
contours will be outlined in Section 17.2.12.

Third, can the adapting lateral interactions also account for the differences in hu-
man contour integration performance across the visual field? If the input distribution
varies in the different parts of the visual field, the corresponding lateral connection
patterns will be different, leading to different perceptual performance. This process
can be modeled by the adaptive lateral connections in PGLISSOM, as will be done
in the third main subsection of this chapter.

13.2 Contour Integration and Segmentation

This section will show how specific, self-organized lateral connections combined
with synchronized activities can account for human contour integration performance.
In addition, equally salient contours can be segmented via desynchronized activity,
making PGLISSOM a unified model of binding and segmentation in the visual cor-
tex.

13.2.1 Method

The contour integration experiments were run on the PGLISSOM network described
in Section 11.5. The long-range lateral excitatory connections in the GMAP of this
network are patchy, forming a substrate for binding. The inhibitory lateral connec-
tions are broad and have a long range, providing a baseline similar to global inhibi-
tion in other cortical models (Eckhorn et al. 1988; Terman and Wang 1995; von der
Malsburg and Buhmann 1992; Wang 1995, 1996, 2000). Such inhibition allows input
elements to be segmented by default, unless lateral excitation binds them together.
To establish robust grouping in the self-organized network, the GMAP neurons were
made more sensitive to excitation and inhibition, noise was added to their synapses,
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(a) Retinal activation (b) GMAP response areas

Fig. 13.5. Measuring local response as multi-unit activity. (a) An example contour integra-
tion input, consisting of nine contour elements with different positions and orientations on the
retina. Each element is an oriented Gaussian of length σa = 1.9 and width σb = 1.2. The
firing rates of the retinal receptors are set according to these Gaussian values, plotted in gray
scale from white to black (low to high). (b) The resulting activations of the GMAP neurons,
measured as a leaky average firing rate with a 0.92 decay rate. The circles indicate areas where
separate MUA values are measured. Each area is centered on a neuron whose receptive field
is centered on one of the contour elements and whose orientation preference is the same as the
element’s orientation; due to local distortions in the retinotopic mapping, the circle’s center
in V1 is sometimes slightly displaced from the element’s center on the retina. A few neurons
outside the circles are also activated, driven by simultaneous input from two different contour
elements. The circle radius is chosen such that the spurious activation is not included in the
MUA measurements.

and the absolute refractory period was increased, as discussed in Chapter 12 (and
described in detail in Appendix D.2).

In each experiment, two input examples with different arrangements of contour
elements were tested in separate trials. Each contour element was an oriented Gaus-
sian of length σa = 1.9 and width σb = 1.2, i.e. short enough to fit into a single
receptive field (of radius 6). The patterns were generated to approximate contour in-
tegration inputs in human experiments as well as possible within the small model
retina and V1 (Appendix D.2). The inputs were presented to the trained network for
500 iterations each, allowing the neurons to spike 50 times on average. Assuming
that the firing rate is about 40 Hz (the γ-frequency band; Section 2.4.2), the simula-
tions correspond approximately to 1.5 seconds in real time. The performance of the
network was measured in GMAP, since it is the component that drives the grouping
behavior in the model and therefore establishes its final output.

For each contour element, a distinct area in GMAP becomes activated (Fig-
ure 13.5). To measure the performance of the model, the degree of synchrony be-
tween these areas was calculated. The number of spikes in each area was counted
at each time step. As briefly mentioned in Section 2.4.3, this quantity is called the
multi-unit activity of the response, or MUA, and it measures the collective activity
of a population of neurons (Eckhorn et al. 1988, 1990). MUAs over the 500 itera-
tions, called MUA sequences, can be used to demonstrate qualitatively the process
of contour integration for a given set of inputs.
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In order to measure integration and segmentation performance quantitatively, the
degree of synchronization between two areas can be measured using the linear corre-
lation coefficient, or Pearson’s r. That is, the product of the deviations from the mean
of each MUA sequence is accumulated over time and normalized by the product of
their variances:

r =
∑

i(Xi − X̄)(Yi − Ȳ )√∑
i(Xi − X̄)2

√∑
i(Yi − Ȳ )2

, (13.1)

where Xi and Yi are the MUA values at time i for the two areas representing the
two different objects in the scene, and X̄ and Ȳ are the mean MUA values of each
sequence. The correlation coefficients between all possible pairs of MUAs are cal-
culated: The higher the correlations, the more synchronized the areas are, thus rep-
resenting a strong percept of a contour. The average correlation within the contour
was compared with correlation between elements across contours and with back-
ground elements to establish how well the network integrates and segments the input
elements.

The same method was used in all experiments in this chapter. Contour integration
performance will be described first, followed by contour segmentation and contour
completion. The effect of input distributions will be analyzed in the last section.

13.2.2 Contour Integration

As was discussed in Section 13.1.1, contour integration accuracy in humans is max-
imal when orientation jitter is 0◦, and the accuracy decreases as a function of in-
creasing orientation jitter. To test whether PGLISSOM exhibits similar behavior,
four contour integration experiments were carried out, with 0◦, 30◦, 50◦, and 70◦

of orientation jitter.
Figure 13.6 shows the MUA sequences for these four simulations. There are nine

rows in each plot, corresponding to the nine contour elements in the input. The bot-
tom three rows (rows 1 to 3) represent the three contour elements constituting the
salient contour. How well these rows are synchronized compared with the rows rep-
resenting the background elements determines how strongly the network perceives
the contour. As expected, for 0◦ orientation jitter the three bottom MUA sequences
are synchronized (Figure 13.6a), but as the orientation jitter increases (Figure 13.6b–
d), the synchronized state is more difficult to maintain and the phases tend to shift
back and forth.

This process can be quantified using the linear correlation coefficient r. The re-
sults are summarized in Figure 13.7, together with the human performance data from
Geisler et al. (2001). The plot shows that at low orientation jitter, the model and hu-
mans both recognize the contours reliably, but as orientation jitter becomes larger,
they both become less accurate in a similar manner. Correlation coefficients between
MUA pairs corresponding to two background contour elements, or pairs between a
background and a contour element in the salient contour, were usually less than 0.1
(i.e. not perceptually salient), except in rare cases where the jitter caused them to line
up accidentally.
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(b) 30◦ of orientation jitter
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(c) 50◦ of orientation jitter
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(d) 70◦ of orientation jitter

Fig. 13.6. Contour integration process with varying degrees of orientation jitter. In each
subfigure, the input presented to the network is shown at left, the areas in GMAP where MUA
was measured in the middle, and the resulting MUA plot at right. Each contour was composed
of three contour elements, and embedded in a background of six randomly oriented elements.
Each contour runs diagonally from lower left to top right with varying degrees of orientation
jitter. The MUA of each area is plotted in gray scale from white (no neurons firing in the
area at this time step) to black (all neurons firing). Time (i.e. simulation iteration) is on the
x-axis and the y-axis consists of nine rows, each plotting the MUA of the area labeled with
the row number. The three bottom rows (1 to 3) represent the MUAs of the salient contour,
and the six top rows (4 to 9) the MUAs of the background elements. The contour is very
strongly synchronized for 0◦ and 30◦ but relatively weakly synchronized for 50◦ and 70◦ of
orientation jitter: The contours get harder to detect as the jitter increases. In all cases (a to d),
the background MUAs are unsynchronized. A quantitative summary of these results is shown
in Figure 13.7, and an animated demo can be seen at http://computationalmaps.org.
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Fig. 13.7. Contour integration performance in humans and in PGLISSOM. The model’s
performance was measured as the average correlation coefficient between the MUA sequences
in the salient contour, calculated over two trials, each with a different input example (left y
axis). Human performance was measured as the percentage of correctly identified contours
(right y axis; data by Geisler et al. 2001, root-mean-square (RMS) amplitude 12.5, fractal
exponent 1.5, which is the closest match with the PGLISSOM input configuration). The x-
axis is the orientation jitter in degrees, and the error bars indicate ±1 SEM in the model (no
error measures were published for the human data). In both humans and the model, contour
integration is robust up to 30◦, but quickly breaks down as the orientation jitter increases (the
difference between 30◦ and 50◦ is significant with p < 10−4; the other differences are not
significant with p > 0.1).

As described in Section 13.1.1, such contour integration performance is believed
to depend on specific lateral connection patterns in the primary visual cortex. Next,
the distributions of lateral connections in the model will be analyzed in order to
demonstrate how they influence perceptual performance.

13.2.3 The Role of Lateral Connections

As was discussed in Section 11.5.3, lateral connections in PGLISSOM (as well
as in the LISSOM orientation model) have two specific anatomical properties: (1)
Strong connections exist between neurons with similar orientation preferences, and
(2) the connections extend along the direction matching the source neuron’s orien-
tation preference. These properties allow the connections to encode specific local
grouping functions, or association fields.

However, to understand the functional role of these connections in visual space
(instead of cortical space), the relationships between the receptive fields of the con-
nected neurons need to be examined. Which input features in a scene activate neu-
rons that have strong lateral connections between them, and how strongly is a pair of
input features bound together in the cortex through lateral connections? By compar-
ing such connection statistics with human perceptual performance and natural scene
statistics, it is possible to determine precisely what functional role the patchy lateral
connections play in contour integration.
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δ

φ

Reference

Fig. 13.8. Quantifying the spatial relationship between two receptive fields. For each pair
of neurons connected with excitatory lateral connections, the afferent connection weights were
examined to determine (1) the orientation preference of the neuron (shown as oriented bars),
and (2) the location of the receptive field in retinal space (as the center of gravity of the afferent
weight matrix). From these values, the direction φ, radial distance δ, and difference between
orientation preferences θ between all pairs of neurons were calculated. Notice that these values
define the spatial relationship between the two neurons in the retinal (or visual) space, not in
the cortical space, and therefore allow comparing connectivity with edge-cooccurrence data.
Such a comparison is presented in Figure 13.9. Adapted from Geisler et al. (2001).

Figure 13.8 illustrates the quantities that define the spatial relationship between
a pair of receptive fields. These quantities were measured from all lateral excitatory
connections in GMAP that remained after connection death. The results are summa-
rized in Figure 13.9b. Two properties are evident in the plot: (1) The target receptive
fields are most likely oriented along cocircular paths emanating from the center, and
(2) the most likely target locations form a bowtie-shaped flank along the horizontal
axis. These results show that neurons with receptive fields falling upon a common
smooth contour are most likely to be connected with lateral excitatory connections.
Such a pattern closely matches the association field proposed by Field et al. (1993;
Figure 13.2), thus suggesting that perceptual grouping rules can be implemented as
actual patterns of lateral connections in the brain.

In fact, such connection patterns predict the contour integration performance of
the previous section very well. Since receptive fields aligned on an arc with smaller
curvatures are more likely to be connected, inputs with smaller orientation jitter
would be more strongly bound together than those with large orientation jitter. The
model therefore offers an explanation for the observed performance in terms of spe-
cific neural structures.

Furthermore, these functional statistics in the model are similar to the local
Bayesian edge-cooccurrence statistics in natural images (Geisler et al. 2001). Fig-
ure 13.9a summarizes the likelihood that a pair of edges under configuration (φ, θ, δ)
fall upon a common physical contour, such as a tree trunk, boulder boundary, etc.
Such natural contours are also found likely to follow cocircular paths. As demon-
strated by Geisler et al. (2001) the edge-cooccurrence patterns accurately predict
human contour integration performance, which also indirectly explains why PGLIS-
SOM accurately predicts human contour integration performance: Both humans and
PGLISSOM are biased toward integration of natural contours.
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Fig. 13.9. Edge cooccurrence in nature and long-range lateral connections in PGLIS-
SOM. The distributions of excitatory lateral connections in the model are compared with the
edge-cooccurrence statistics in nature to see how well they match perceptual requirements.
(a) The Bayesian edge-cooccurrence statistics in natural images (Geisler et al. 2001; reprinted
with permission, copyright 2001 by Elsevier). Each location in polar coordinates (φ, δ) con-
tains a small round disk, representing the likelihood ratios of all possible orientations θ at
direction φ and distance δ by color coding; the θ with the highest ratio is shown in the fore-
ground (θ, φ, and δ are defined as in Figure 13.8). Each likelihood ratio represents the condi-
tional probability that a pair of edge elements in configuration (θ, φ, δ) belongs to the same
physical contour vs. different physical contours in natural images. The conditional probabil-
ities were determined through manual labeling of contours in real world images. The most
likely elements are aligned along cocircular paths emanating from the center. (b) The distribu-
tions of θ, φ, and δ for the lateral excitatory connections in GMAP (Choe and Miikkulainen
2004; reprinted with permission, copyright 2004 by Springer). Each location (φ, δ) displays
two values: (1) The color scale in the background shows the relative log-probability of find-
ing a target receptive field at that location, and (2) the black oriented bars represent the most
probable orientation θ of the target receptive field at that location (not plotted for the weak-
est connections). The figure shows that neurons with receptive fields aligned on a common
smooth contour are most likely to be connected with lateral excitatory connections. This dis-
tribution corresponds closely to the edge cooccurrence patterns in nature, suggesting that the
model is well suited for encoding grouping relations in natural images.

13.2.4 Contour Segmentation

Importantly, the synchronization process that establishes the contour percept can also
separate different contours to different percepts. The same self-organized network
with the same simulation parameters as in Section 13.2.1 was used for the contour
segmentation experiment. Two contours and three background elements were pre-
sented as input, and the correlations between elements within and across the con-
tours, between the contour and the background, and within the background were
calculated. The MUA sequences of the nine areas are shown in gray-scale coding in
Figure 13.10. The bottom three rows (1 to 3) correspond to the diagonal contour, the
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Fig. 13.10. Contour segmentation process. Input for the contour segmentation experiment
consisted of two contours, diagonal and vertical, and three background elements. The same
plotting conventions as in Figure 13.6 were used to illustrate the MUAs of the areas that re-
sponded to these inputs. The three bottom rows (1 to 3) correspond to the diagonal contour, the
three middle rows (4 to 6) to the vertical contour, and the top three rows (7 to 9) to the back-
ground elements. The MUA sequences within each contour are synchronized. On the other
hand, the MUA sequences of elements in different contours, of elements in the background,
and of contour and background elements are desynchronized. In other words, the three areas
representing the same contour fire together while the areas responding to the other contour
and to the background are silent. Such an alternating activation of neuronal groups ensures
that each coherent object is represented distinctly and not mixed with representations of other
objects. An animated demo of this process can be seen at http://computationalmaps.org.

middle three rows (4 to 6) to the vertical contour, and the top three rows (7 to 9) to
the background elements.

In the beginning, all areas are mostly synchronized, but as lateral interactions be-
gin to take effect, the MUAs form two major groups firing in two alternating phases.
The correlation coefficients of areas in the same contour are consistently high while
those in different contours and in the background are low (Figure 13.11), signifying
integration within each contour and segmentation across the contours. This result
suggests that the same circuitry responsible for contour integration can also be re-
sponsible for segmentation between multiple contours.

PGLISSOM can segment up to about six contours this way. With more than six,
representations for some objects will be synchronized instead of being desynchro-
nized (a similar limitation was reported by Horn and Opher 1998 and Horn and Usher
1992). Over a longer period of observation, it may be possible to separate even more
objects. Even if disjoint representations occasionally become synchronized, they do
not stay in this state permanently. Synchrony is eventually broken, and another pair of
representations that was previously desynchronized becomes synchronized. There-
fore, even with a limited capacity for segmentation, a large number of objects can be
segmented if the degree of synchrony is measured over a long period of time.

There is an interesting balance between segmentation and integration in the
model. Segmentation cannot be made too strong, otherwise contour integration suf-
fers. It turns out that with integration performance roughly comparable to that of
humans, the system sometimes integrates when there is no contour. This behavior
can explain how an interesting class of visual illusions, those based on edge-induced
contour completion, may arise, as will be described next.
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Fig. 13.11. Contour segmentation performance. The average correlation coefficients be-
tween two MUA sequences within the same contour, across different contours, between con-
tour and background, and within the background are plotted, calculated over two trials. The
error bars indicate ±1 SEM. The MUA sequences within the same contour are highly corre-
lated, whole those belonging to different contours or the background are not (the difference
is significant with p < 10−10). This result demonstrates quantitatively that neurons within
each contour form a synchronized group, whereas neurons responding to different contours
are desynchronized.

13.3 Contour Completion and Illusory Contours

As was discussed in Section 13.1.1, the same lateral interactions that implement
contour integration could also underlie contour completion, i.e. filling in missing el-
ements in a contour. Experiments with PGLISSOM strongly support this hypothesis.
The model demonstrates that contour completion and the resulting illusory contours
are a necessary side effect of the contour integration circuitry. In this section, the con-
tour completion performance of PGLISSOM will be analyzed in detail, focusing on
conditions under which completion occurs. This process gives rise to edge-induced
illusory contours, and to a difference in detecting closed vs. open contours. These
results suggest a possible mechanism for edge-induced illusory contours in V1. Sim-
ilar mechanisms in V2 could be responsible for line-end-induced contours, as will
be discussed in Section 17.2.12.

13.3.1 Method

The PGLISSOM network that was used to demonstrate contour integration and seg-
mentation in Section 13.2 was tested in contour completion as well. The inputs in-
cluded long contours with one element missing, and contours representing the edge-
detected Kanizsa triangle (Figure 13.4). Because these inputs have more elements
than those in Section 13.2, the elements tend to be closer than before. As a result, the
radius of the MUA areas was reduced to five to avoid overlap.

As before, the network was activated for 500 iterations, and the MUA sequences
for areas of GMAP representing the input contour elements and the gaps were mea-
sured. Each experiment consisted of two trials with the input positioned in a different
location and orientation but with a similar structure.
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Fig. 13.12. Contour completion process. (a) The four contour elements in the input with a
gap in the middle correspond to one side in the edge-detected Kanizsa triangle (the dashed
oval in Figure 13.4). In the MUA plot, the four contour elements are shown in the bottom
and the top (rows 1–2 and 4–5) and the gap in the middle (row 3). Even though there were
no inputs in the middle, the cortical area representing the gap is activated, and the activations
are synchronized with the other four MUA sequences. This behavior indicates that contour
completion occurred and the gap is perceived as an illusory edge. (b) In the second experiment,
the input consisted of two contour elements from only one side of the gap. The MUA sequence
for the gap is silent (row 3), indicating that contour completion did not occur. Thus, both sides
of the gap need to be stimulated for the gap to be perceived as an edge.

13.3.2 Contour Completion

To test basic contour completion, PGLISSOM was presented with a straight contour
with a gap in the middle as shown in Figure 13.12a. Such a contour represents one
side of the edge-detected Kanizsa triangle in Figure 13.4. To make sure the contour
elements on one side of the gap do not alone activate the gap, an input consisting
of only half the contour was also presented to the network (Figure 13.12b). The
prediction was that the network would fill in the gap in the first stimulus, but not in
the second.

For the contour completion input (Figure 13.12a), there indeed is a significant
MUA sequence for the gap (row 3), and it is synchronized with the rest of the se-
quences (rows 1–2 and 4–5): The gap is perceived as part of the contour. In contrast,
with the single-edge input (Figure 13.12b), the MUA sequence representing the gap
(row 3) is silent, while the rest of the MUA sequences (rows 1 and 2) are active
and synchronized. Thus, both sides of the gap need to be stimulated for the gap
to be perceived as an edge. The same self-organized circuitry in PGLISSOM that
is responsible for contour integration can therefore account for contour completion
as well. The contributions of the different kinds of connections to this process are
analyzed next.
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(a) Retinal activation (b) Afferent GMAP input

Fig. 13.13. Afferent contribution in contour completion. The afferent contribution of the
input in (a) to the GMAP activation is plotted in gray scale from white to black (low to high)
in (b); the circles delineate the MUA areas as shown in Figure 13.12. The four areas cor-
responding to the four contour elements all receive strong afferent input. The center area,
corresponding to the gap, receives weak afferent input, due to slight overlap with neighboring
regions in the retina. However, as seen in Figures 13.14 and 13.15, it is not enough to activate
its representation without a contribution from the lateral connections.

13.3.3 Afferent and Lateral Contributions

The filling in of gaps in the PGLISSOM model is to be expected, given that spe-
cific excitatory lateral connections project from the neighboring areas into the gap.
However, it is also possible that afferent input is causing the completion. In animals
and in the PGLISSOM model, receptive fields of neighboring areas in the cortex
overlap. If the cortical area representing the gap receives enough afferent input from
both sides around the gap, it can be activated the same way as the rest of the contour
representations.

To check the amount of afferent input received by the gap, the net afferent
contribution in GMAP was measured in the contour completion experiment (Fig-
ure 13.12a). A two-dimensional intensity plot (Figure 13.13) shows that the cen-
tral area indeed receives some afferent input. Could such spurious afferent input be
enough to activate the area representing the gap?

More generally, the question is whether the afferent contribution alone, or the
lateral excitatory contribution alone, can cause the filling-in effect, or whether the
phenomenon requires both kinds of contributions. To answer this question, two ex-
periments were performed using the same method as in Section 13.3.2, with the
single-contour input of Figure 13.12a. In the first experiment, the gap area received
no afferent connections, and in the second there were no excitatory lateral connec-
tions.

The MUA sequences for the two experiments are shown in Figure 13.14. In both
cases, the sequence representing the gap in the contour shows no activity at all, sug-
gesting that contour completion did not occur in either case. For comparison, the
average correlation coefficients in all three cases of lateral connectivity are shown in
Figure 13.15. The correlation is high only when both afferent and lateral excitatory
connections are included.



13.3 Contour Completion and Illusory Contours 291

1
2
3

4
5

1

2
�

3
�

4
�

5
�

0
�

100 200 300
�

400 500
�

(a) No afferent connections to the gap area

1
2
3

4
5

1

2
�

3
�

4
�

5
�

0
�

100 200 300
�

400 500
�

(b) No lateral excitatory connections to the gap area

Fig. 13.14. Contour completion process with different kinds of connections. Networks
without afferent connections to the gap area (a) and without lateral excitatory connections to
this area (b) were tested in the contour completion task. In both cases, the MUA sequences for
the four input contour elements (rows 1–2 and 4–5) are synchronized, whereas the sequences
for the gap (row 3) are silent, suggesting that filling in did not occur. Contour completion
therefore requires both kinds of connections.
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Fig. 13.15. Contour completion performance with different kinds of connections. The av-
erage correlation coefficients for the four MUA sequences representing the four input contour
elements vs. the MUA sequence representing the gap are shown, calculated over two trials.
Both afferent and excitatory connections are included in “Both”. In “Lateral”, the afferent
connections are removed from the center, i.e. binding is due to excitatory lateral connections
only. In “Afferent”, the excitatory lateral connections are removed from the center, and bind-
ing is based on afferent connections only. The plot shows that both afferent and excitatory
contributions are necessary for contour completion (p < 10−7).

These results demonstrate that contour completion in PGLISSOM requires a con-
tribution from both afferent and lateral excitatory connections. Such a condition can
only occur when the input contour elements are aligned along a smooth path. The
central receptive field is then partially activated by the input in the neighboring ar-
eas, and the cocircular projection of lateral connections amplify this activation above
threshold. The next question is: Can this mechanism of contour completion be re-
sponsible for illusory contours as well?
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(a) Complete triangle
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(b) Incomplete triangle

Fig. 13.16. Contour completion process in the illusory triangle. Each element in the trian-
gle is identified by a number 1 through to 9 counterclockwise from the top left vertex, with 2,
5, and 8 denoting the gaps. (a) A complete triangle with gaps in the middle of each side ap-
proximates the central triangular part of the edge-detected Kanizsa triangle (Figure 13.4). The
MUAs corresponding to gaps are all active and synchronized with the other inputs. Overall,
the synchronization of all nine inputs means that the system is perceiving a single coherent
object (as also demonstrated quantitatively in Figure 13.18). (b) When one vertex (elements 6
and 7) is removed, areas representing gaps 5 and 8 become almost silent: The perception of a
triangle disappears, as it does in the incomplete Kanizsa triangle (Figure 13.17). An animated
demo of these examples can be seen at http://computationalmaps.org.

13.3.4 Completion of Illusory Contours

To test the model in perceiving illusory contours, a simplified illusory triangle, em-
bedded in a background of six randomly oriented edges, was presented to the network
(Figure 13.16a). This triangle has gaps in each of the three sides, approximating the
edge-detected Kanizsa triangle (Figure 13.4) as well as possible with the small model
retina and V1. The network was also tested with one vertex of the triangle removed
(Figure 13.16b) to see whether both sides of the gaps are necessary for the illusion
to appear. Figure 13.17 shows the actual images corresponding to these inputs. Oth-
erwise the same simulation method was used as in the single-gap experiment.

As expected, all gaps of the complete triangle are activated and synchronized
with the neighboring contour elements (Figure 13.16a). In contrast, in the incom-
plete triangle (Figure 13.16b) only gap 2 (in the left edge) is filled; gaps 5 and 8
(on the sides) are not. These results are consistent with those of the single contour
(Figure 13.12a). However, what makes this experiment particularly interesting is
that the three sides of the triangle are also synchronized. The sides constitute three
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(a) Kanizsa triangle (b) One corner removed

Fig. 13.17. Salience of complete vs. incomplete illusory triangles. The illusory object is
vividly perceived in the complete Kanizsa triangle (a). However, when one corner is removed,
this perception disappears (b).

Within Across Whole Contour
 vs. BG

   BG
vs. BG

0.0

0.1

0.2

0.3

0.4

0.5

0.6

C
or

re
la

tio
n 

(r
)

Fig. 13.18. Contour completion performance in the illusory triangle. Each side of the trian-
gle is represented by a group of three MUA sequences, and constitutes a separate contour. The
average correlation coefficients were calculated over two trials for MUA sequences represent-
ing two elements within the same side, across different sides, anywhere in the whole triangle,
one in a contour and the other in the background, and within the background. The elements
in each side are strongly synchronized, but so are elements across different sides and in the
whole triangle (the differences between “Within”, “Across”, and “Whole” are not significant
with p > 0.1). Furthermore, the elements in the triangle are significantly more synchronized
than contour and background elements, and elements in the background (p < 10−6). This
result shows quantitatively that the three sides are perceived together as a single object.

independent contours with sharp angles between them, and based on the analysis
in Section 13.2.4 would be expected to be desynchronized. However, as shown in
Figure 13.18, all contour elements (within the same side, across different sides, and
among the whole triangle) are highly correlated, suggesting that the network per-
ceives only one object. How is such cross-contour synchronization possible?

At the vertices of the triangle, two contour elements with different orientation
preference overlap. Since the afferent receptive fields in PGLISSOM are topologi-
cally organized, the two cortical areas responding to the two edges at the vertex are
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close by on the map. As shown in Figure 11.5, the excitatory connections not only
connect to neurons with similar orientation preferences, but at a close range also to
those with somewhat different orientation preferences. Thus, proximity of the inputs,
as well as the good continuation of contours, determines the degree of synchroniza-
tion. At the vertices, the two abutting inputs cause the corresponding cortical areas
to synchronize, which in turn causes the three sides of the triangle to synchronize.
As a result, the network represents the whole triangle as a coherent object.

These results show that PGLISSOM indeed performs contour completion, and
also forms representations for whole objects. Inputs can be grouped through prox-
imity as well as through good continuation. Such mechanisms arise automatically
from the properties of afferent and lateral connections in the model, and may form a
general principle for grouping (ordinary and illusory) in the visual system.

13.3.5 Salience of Closed Versus Open Contours

With a thorough understanding of how contour completion occurs in the model, let
us now return to the psychophysical observation that closed contours are easier to
detect than open contours (Kovacs and Julesz 1993; Pettet et al. 1998; Tversky et al.
2004). As discussed in Section 13.1.1, the most recent evidence suggests that there
is no special reverberatory mechanism around the closed contour: The advantage is
due to proximity and good continuation between elements (Tversky et al. 2004).

While it is difficult to replicate the control conditions in a small retina of PGLIS-
SOM, the illusory triangle experiment in Section 13.3.2 can be used to test the fun-
damental principle of this theory computationally. The complete and incomplete tri-
angles in Figure 13.16 form closed and open contours. Indeed, the perception of an
illusory triangle breaks when one component is removed from the Kanizsa triangle
(Figure 13.17).

To measure how salient the two objects are, the average correlation coefficients
between the nine elements of the complete illusory triangle (elements 1 through to
9) and seven elements of the incomplete triangle (1–5 and 8–9) were calculated. The
results are shown in Figure 13.19. The activities in the network for the closed contour
are significantly more synchronized than those of the open contour, indicating that
the closed contour is more salient.

The explanation for this effect in PGLISSOM is straightforward. Every part of
the closed contour receives excitatory lateral contribution from both neighboring ar-
eas, and strong synchronization results along the contour. In contrast, at the two ends
of an open contour the neurons only receive lateral excitation from one neighboring
area, and the synchrony does not reach the same level of salience.

In this simple experiment, PGLISSOM has provided an independent computa-
tional confirmation of the current psychophysical theory on closed vs. open contours.
The difference arises from local interactions based on proximity and good continua-
tion, without a separate reverberatory mechanism. In the future, larger PGLISSOM
models can be used to replicate the actual conditions in human experiments, leading
to more detailed predictions and insights into this phenomenon.
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Fig. 13.19. Contour completion performance in closed vs. open contours. The average
correlation coefficients between the MUA sequences in the complete and incomplete triangles
(labeled “closed” and “open”) of Figure 13.16 are shown, calculated over two trials and dif-
ferent groups of contour elements. Although the differences in correlation within each side
are not significant (p > 0.2), the elements in the closed contour are significantly more cor-
related across the sides and within the whole object than in the open contour (p < 0.004),
consistent with psychophysical results (Section 13.1.1). The correlations between contour
and background elements and within the background were significantly weaker in both cases
(p < 0.03), indicating that both contours were perceived as single objects. The PGLISSOM
model therefore provides independent computational support to the theory that closed con-
tours are salient because of proximity and good continuation rather than a special reverbera-
tory mechanism.

13.4 Influence of Input Distribution on Anatomy and
Performance

In Section 13.2 we saw how lateral connectivity plays a central role in contour inte-
gration in PGLISSOM. Because these connections are learned through input-driven
self-organization, different input distributions during development result in different
anatomy and performance. The self-organizing process can therefore potentially ac-
count for the observed differences in human visual performance across different parts
of the visual field, such as upper vs. lower hemifield and fovea vs. periphery (Sec-
tion 13.1.1). This hypothesis can be tested computationally by training PGLISSOM
with inputs of varying frequency and complexity.

13.4.1 Method

The visual inputs that the cortex receives during training may vary in several ways.
For example, inputs in the fovea and lower hemifield may be more frequent, shorter,
sharper, curved, textured, or have higher contrast. As was discussed in Section 13.1.1,
distributions of these features across the visual field have not yet been fully charac-
terized, and it would be somewhat premature to test the model with a selection of
such variations. However, at a more abstract level, two distinctly different dimen-
sions of variation can be identified: (1) the amount of training each area receives,
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and (2) the complexity of the training inputs it sees. In this section, these dimensions,
represented by input frequency and curvature, are varied systematically, leading to
verifiable predictions about the resulting anatomy and performance.

In the frequency experiment, two PGLISSOM networks trained with different
input presentation frequencies were compared. The first one was similar to the con-
tour integration network described in Section 13.2, i.e. trained with single randomly
located and oriented elongated Gaussians. The second one was otherwise the same,
except every other input presentation was skipped during training. The simulation
parameters (excitatory radius, learning rate, thresholds, and connection death) were
adapted according to the same schedule as before, modeling maturation based on
time and trophic factors (Sections 4.4.3 and 16.1.6). In other words, the second net-
work received input half as frequently as the first network during its maturation.

In the curvature experiment, each training input consisted of three short elongated
Gaussian bars that together formed a smooth contour, located and oriented randomly
on the retina. The angles between the bars were changed to adjust the curvature of the
input. For the first network, the training inputs had uniformly randomly distributed
curvature in the range [0o..25o], and for the second network in the range [0o..10o].

Over the course of self-organization, the input Gaussians were slightly broader
and became elongated slightly slower than those used in Section 11.5. As a result, the
learning was slower but the resulting network performed more robustly on the wider
variety of inputs (Appendix D.2). Other than the difference in input distributions, all
PGLISSOM networks were trained as in Section 11.5. After training, the afferent and
lateral connectivity patterns and contour integration performance of each network
were measured and the differences analyzed as in Sections 11.5 and 13.2, as will be
described next.

13.4.2 Differences in Connection Patterns

All four simulations resulted in a similar map of orientation preferences, matching
the results of previous self-organization experiments (Section 11.5). Two interesting
observations can be made based on orientation selectivity, as shown in the distribu-
tions in Figure 13.20. First, neurons in the more frequently stimulated network were
more selective than those in the less frequently stimulated one (Figure 13.20a), sug-
gesting that its initial responses are sparser but stronger for specific inputs. Second,
the networks trained with different curvature are equally selective (Figure 13.20b),
suggesting that any performance differences are likely to be due to lateral connec-
tions.

To uncover any differences between the resulting lateral connection patterns, the
(φ, θ, δ) statistics were calculated on the four networks as in Section 13.2.3. In the
frequency experiment, two major differences emerged: (1) The high probability areas
extend out longer in the high-frequency network (Figure 13.21a) than in the low-
frequency network (Figure 13.21b), i.e. the network with more frequent exposure to
oriented edges can group together more distant inputs. (2) The most probable θ for a
given (φ, δ) location tends to be cocircular in the high-frequency network, whereas
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Fig. 13.20. Orientation selectivity in SMAP with different input distributions. For each
of the four networks, the selectivity of neurons in the SMAP was measured (as described in
Appendix G.1.3) and plotted as a histogram; GMAP selectivities were similar and are not
shown. (a) The histogram for the 100% presentation frequency peaks at around 0.32, and
that of the 50% frequency around 0.12, suggesting that the responses of the high-frequency
network are sparser but stronger for specific inputs. (b) The histogram for the high curvature
range [0◦..25◦] and the low curvature range [0◦..10◦] are almost identical. Given that the
orientation preferences were also almost identical, any differences in their performance are
likely to be due to the lateral connections.

in the low-frequency network it is more collinear (i.e. the black edges in the high
probability areas are more parallel).

As we saw in Section 11.5.3, collinearity is the most prominent feature in the
input, and is therefore learned more reliably. With extensive training, it is extended
to large distances, as happened with the high-frequency network. Cocircularity de-
velops more slowly than collinearity because the network responds less strongly in
the cocircular arrangement. The high-frequency map had enough input presentations
and was able to learn the secondary (cocircularity) property of the input as well.

In the curvature experiment, high probability areas (red and orange) along the
horizontal axis are broader in the map trained with a broader range of curvatures (Fig-
ure 13.22a) compared with the one trained with a narrower range (Figure 13.22b). As
expected, the input-driven self-organizing process has encoded the input distribution
differences into the lateral connections. As a result, the map with exposure to higher
curvature should be better at integrating cocircular contours.

In summary, differences in the input distribution, whether presentation frequency
or complexity of inputs, result in specific, predictable differences in the afferent and
lateral connection patterns. Such a difference in structure predicts that contour inte-
gration performance will also differ in these networks, as will be tested in the next
section.
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Fig. 13.21. Lateral excitatory connections in GMAP with different input frequencies. The
connection probability distributions are displayed the same way as in Figure 13.9. As before,
only GMAP is shown because it is responsible for contour integration in the model. The lateral
connection profiles differ in two subtle ways: (1) The high probability areas (red and yellow)
extend longer in the high-frequency map (a) than in the low-frequency map (b) (three vs. two
rings of high probability). (2) The most probable θ (black oriented bars) are cocircular in (a),
but mostly collinear in (b) (as seen e.g. in the second ring from the outside). These results
predict that contours should be easier to detect in the high-frequency network.
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Fig. 13.22. Lateral excitatory connections in GMAP with different curvature ranges. The
network trained with a broader range of curvatures (a) has broader areas of high probability
connections (red and yellow) than the network trained with a narrower range (b). As a result,
contours with more curvature and higher orientation jitter should be easier to detect in network
(a) than in (b).
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13.4.3 Differences in Contour Integration

For each of the four networks trained in Section 13.4.1, two contour integration ex-
periments were performed, with orientation jitters 0◦ and 40◦. The 40◦ test case was
chosen because contour integration performance in both humans and the model de-
grades most rapidly at around 40◦ (Figure 13.7), making the differences due the input
distributions most clearly visible. The method described in Section 13.2.1 was used
for all experiments. Figures 13.23 and 13.24 display the MUA sequences in each
case. The MUAs are significantly more synchronized for the high-frequency net-
work than for the low-frequency one when the orientation jitter is the same (compare
Figure 13.23a vs. b and c vs. d). For the networks trained with different curvature
range, the degree of synchrony was similar for 0◦ orientation jitter (Figure 13.24a vs.
b), but the network trained with a broader range was significantly more synchronized
in the 40◦ case (Figure 13.24c vs. d). The correlation coefficients between the MUA
sequences confirm these observations (Figure 13.25). Frequency makes a difference
both in perceiving collinear and cocircular contours, whereas curvature matters only
with the cocircular ones.

Such performance differences are predicted by the afferent and lateral connec-
tion patterns described in the previous section. Each of the four networks has lateral
connections that can group collinear contours, so any difference in performance with
0◦ orientation jitter must be due to the afferent connections. The neurons in the high-
frequency network have more selective afferent connections, and therefore activate
and synchronize more strongly for inputs that match their preferences. On the other
hand, the afferent weights do not differ significantly in the curvature experiment, and
neither does the performance of the two networks in the 0◦ case. In contrast, with
40◦ of jitter, the shape of the lateral connections makes a big difference. Each neigh-
boring pair of contour elements is aligned on a cocircular path, and integration re-
quires cocircular connections. Because the lateral connections in the high-frequency
network and the high-curvature network are more cocircular, they can detect such
contours with high orientation jitter much better than the low-frequency and low-
curvature networks.

In summary, differences in the input distribution, even as simple as presentation
frequency or curvature, can change how the maps are organized, which in turn can
affect performance in contour integration. Such differences in structure and func-
tion are due to the input-driven nature of self-organization. This principle provides a
possible developmental explanation for the differences in contour integration perfor-
mance across different areas of the visual field found in psychophysical experiments.

13.5 Discussion

The results in this chapter suggest that contour integration, segmentation, and com-
pletion can be due to synchronization mediated by self-organized afferent and lateral
connections, and may form a general principle for grouping (ordinary and illusory)
in the visual system.
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(b) 50% frequency: 0◦ orientation jitter
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(c) 100% frequency: 40◦ orientation jitter
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(d) 50% frequency: 40◦ orientation jitter

Fig. 13.23. Contour integration process with different input frequencies. In each MUA
plot, the three bottom rows correspond to the MUA sequences for the three contour elements
in the input and the rest correspond to background elements. For the same degree of orientation
jitter (0◦ or 40◦), the more frequently trained network is more strongly synchronized (a vs. b;
c vs. d).

It may be possible to verify the synchronization hypothesis experimentally in the
near future (Section 16.3.1). Meanwhile, the hypothesis is consistent with existing
data on how temporal coding affects performance. Lee and Blake (2001) augmented
the usual contour integration input with a temporal cues such as periodic flashing
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1
2

3

4

5
6

7

8

9

1

2

3
�

4

5
�

6

7

8
�

9
�

0
�

100 200
�

300
�

400
�

500
�

(b) [0o..10o] curvature: 0◦ orientation jitter
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(c) [0o..25o] curvature: 40◦ orientation jitter
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(d) [0o..10o] curvature: 40◦ orientation jitter

Fig. 13.24. Contour integration process with different curvature ranges. Both curvature
networks show the same degree of synchrony for the 0◦ orientation jitter (a vs. b), but in the
40◦ case, the network trained with a broad range of curvatures becomes significantly more
synchronized than the one trained with a narrow range (c vs. d). These observations and those
from Figure 13.23 are confirmed quantitatively in Figure 13.25.

of contour elements. Strong spatial and temporal cues (such as smooth contours and
synchronized flashing) resulted in accurate contour integration, as expected. How-
ever, when a weak spatial cue was combined with a weak temporal cue, the subjects
performed better than expected. The two cues were not simply added together, but
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Fig. 13.25. Contour integration performance with different input distributions. The aver-
age correlation coefficients between the MUA sequences in each experiment are shown, cal-
culated over two trials. (a) For both 0◦ and 40◦ orientation jitter, the high-frequency network
was significantly more synchronized than the low-frequency network (p < 0.003). The differ-
ence is more pronounced in the 40◦ case, as predicted by the lateral connection distributions
in Figure 13.21. (b) At 0◦ orientation jitter, the performance of broad and narrow curvature
range networks is comparable (p > 0.7), but with 40◦ of jitter the broad curvature network
performs significantly better (p < 0.0009), as predicted by the connection distributions in
Figure 13.22.

interacted nonlinearly. The temporal cues may not even have to be continuously syn-
chronized to obtain this effect: Beaudot (2002) showed that it is enough to have
the contour become visible slightly before the background. A possible interpretation
of these results is that temporal cues in the stimulus, such as synchrony and initial
activation advantage, enhance synchrony in neural activity, which then allows the
perceptual system to bind the individual elements of the contour more strongly.

There are well-defined limits to the grouping process as well. The specific ex-
citatory lateral connections allow only those contours to be completed that fall on a
cocircular path. On the other hand, the model needs small amounts of afferent input
to fill in the gap, so that arbitrarily large gaps will not be filled in. High orientation
jitter makes the contour difficult to perceive as a whole, as it does in humans. The
raw segmentation ability of the model is also limited, and curiously similar to the
limited number of short-term memory slots, usually quoted as 7±2 (Miller 1956). It
is difficult to say whether the memory and segmentation limits are related; however,
similar limits for simultaneous representation have been observed on other temporal
coding models (Horn and Opher 1998), and they seem to be a robust property of such
systems.

The behavior of the model is primarily driven by the self-organized lateral con-
nections. Their pattern matches edge distributions in natural images well, which re-
sults in good performance in contour integration. However, it is interesting to note
that these connections were trained not with natural images, but with elongated Gaus-
sian inputs. The gradual tapering of such patterns on both sides trains the connections
to become cocircular. This result suggests that very simple visual inputs, such as



13.5 Discussion 303

those generated internally before birth (Section 2.3) could already prepare the ani-
mal for essential tasks in the actual visual environment. As demonstrated in Part III,
training after birth with natural images will then further refine the circuitry for more
accurate performance.

The PGLISSOM model can be extended in several ways to model a wider range
of phenomena and to make it biologically more accurate. For example, the process
of forming edge-induced illusory contours demonstrated in Section 13.3 could be
extended to line-end-induced contours as well. As will be described in more detail in
Section 17.2.12, the model could be extended with a V2 network, containing neurons
with end-stopped receptive fields, and connected in a manner similar to GMAP in
the current model. Synchronized activation in a group of such neurons in V2 would
then be interpreted as a line-end-induced contour. In this manner, the same binding
mechanism based on lateral interactions would account for both types of contours,
providing an alternative to the bipole model discussed in Section 13.1.2.

The range of illusory contours could be expanded further by including feedback
from higher levels of visual processing. For example, contours that establish an il-
lusory object (such as the Kanizsa triangle of Figure 13.3a) cannot be explained
entirely by low-level mechanisms (Hoffman 1998); they appear to be partly driven
by object representations and cognitive factors as well. In fact, connections between
lower and higher visual areas are reciprocal (Felleman and Van Essen 1991; Nelson
1995) and well suited for carrying out such computations. Extending PGLISSOM to
include such high-level feedback is an interesting future research direction, as will
be discussed in Sections 17.2.13 and 17.2.14.

The PGLISSOM model can also be extended in size. The retina and cortical maps
are currently limited by the available computational resources, which makes it dif-
ficult to replicate the exact contour integration experiments done with humans, and
especially those involving illusory contours and the perception of closed vs. open
contours. The retina and the cortex would need to be an order of magnitude larger
to approximate typical inputs consisting of about 200 line segments. Such simula-
tions are currently not feasible, but the scaling techniques described in Chapter 15
and Section 17.2.9, coupled with the expected growth of computing power, should
make them possible in a few years. While the current PGLISSOM model with small-
scale inputs is a valid demonstration of the underlying processing principles, such
larger-scale models would allow making detailed predictions that match actual psy-
chophysical measurements. Such a large-scale model could also be trained with natu-
ral images, or with a combination of prenatal and postnatal inputs, further enhancing
the realism of the model. It would then be possible to study new phenomena, such as
interaction of multiple stimulus dimensions, as described in Section 17.2.8.

The model can also be extended with a more accurate representation of the input
to the different visual areas. As was discussed in Section 13.1.1, contour integration
is stronger in the fovea than in the periphery, and in the lower vs. upper hemifield.
Section 13.4 demonstrated how such functional differences can result from different
distributions of training inputs in these areas. To verify that such differences indeed
exist, a method similar to that of Reinagel and Zador (1999) could be used: Input
statistics from different parts of the visual field could be collected using eye-tracking
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devices while human subjects are freely browsing the environment. Such statistics
will account for both environmental and attentional biases, thus accurately represent-
ing the input distributions in the different parts of the visual field. This information
makes it possible to predict perceptual performance of the different cortical areas.

However, any such comparison would have to take into account the structural
differences in the optics and the retina. For example, peripheral inputs tend to be
more blurred, and there are far fewer photoreceptors in the periphery than in the
fovea. As a result, small details that can easily be seen in the fovea may not be vis-
ible in the periphery. However, when inputs are larger, contour integration in the
periphery could be similar to that in the fovea (as suggested by W. S. Geisler, per-
sonal communication, January 9th, 2004). Such structural factors should be taken
into account when gathering input statistics and reasoning about the possible causes
of functional divisions. The predictions of such an extended model can then be tested
in developmental neurobiological experiments, by manipulating the visual input and
measuring the resulting connectivity patterns and contour integration performance,
as will be discussed in Section 16.4.8.

13.6 Conclusion

In this chapter, the self-organized afferent and lateral connections of the PGLISSOM
model were shown to perform contour integration similarly to human subjects. The
model shows how visual input statistics, lateral connection patterns, and perceptual
performance are related. It suggests a concrete, testable explanation for how illusory
contours arise as a side effect of normal performance and why performance in dif-
ferent parts of the visual field differs. Understanding these processes in the model
allows ascribing function to low-level neural circuitry, and provides a foundation for
building models of more complex visual tasks.



Part V

EVALUATION AND FUTURE DIRECTIONS
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Computations in Visual Maps

So far we have seen how a wide variety of psychophysical and neurobiological phe-
nomena can be explained by computations in a laterally connected, self-organized
LISSOM network. In Part V, the LISSOM approach will be evaluated as a founda-
tion for further research. In this chapter, the representations in LISSOM maps are
analyzed experimentally, and shown to result in a sparse coding that reduces redun-
dancies while preserving the most important features of the input. These representa-
tions serve as an efficient foundation for pattern recognition, as will be shown in an
example application to handwritten digit recognition. In the next chapter, a method
for scaling LISSOM to maps of different sizes, including the size of the entire vi-
sual cortex, is presented. The biological assumptions of the model are evaluated and
predictions for future biological and psychological experiments are drawn from it
in Chapter 16. Extensions of the model, future computational experiments, and new
general research directions are proposed in Chapter 17. That chapter also briefly de-
scribes Topographica, the publicly available software package for simulating cortical
maps, intended to support future computational research on computational maps in
the cortex.

14.1 Visual Coding in the Cortex

How is visual information represented in the cortex? A number of researchers have
proposed that the main goal of visual coding, besides representing the important fea-
tures of the input, is to reduce redundancy (Atick 1992; Atick and Redlich 1990;
Barlow 1985; Földiák 1990, 1991b; Rao and Ballard 1997; see Simoncelli and Ol-
shausen 2001 for a review). The idea is related to methods used in compression of
bitmap images, and the possible benefits are the same. Redundancy reduction could
permit storing and transmitting the retinal image using fewer cells and connections,
and as a result the visual cortex could process more visual information with limited
resources.

The standard redundancy reduction methods aim at representing all likely inputs
in a small number of coding units (e.g. neurons). Each image is coded into the activity
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of a small number of units, and the dimensionality of the representation is reduced.
However, the cortex takes the opposite approach: A few million optic nerve fibers
branch out to more than a hundred million cortical cells (Wandell 1995), and for each
small region of the retina there is a large number of neurons with different feature
preferences. Therefore, the visual input is expanded out and coded in the activity of
a larger number of cells than in the retina. Coding in the cortex must therefore be
based on an approach different from straightforward redundancy reduction.

Field (1994) suggested that the cortex might instead aim at representing the input
with a minimum number of active units. For any given image, only a small subset
of cortical units respond, with most neurons remaining inactive. For different im-
ages, different populations of cells are activated. Such sparse coding makes pattern
recognition easier: Because each cell responds relatively rarely, it is easier to iden-
tify features. If a cell is active, it is possible to predict what inputs caused it to be
active. Sparse coding also greatly reduces energy requirements, because spiking is
metabolically expensive (Lennie 2003).

However, sparse coding by itself also conflicts with neurobiological evidence.
Without redundancy reduction, at least the same number of cells would be active in
V1 as in the retinal image, and all of this redundant activity would be carried through
to the higher processing levels. The higher levels would then have to be at least as
large as V1. However, the higher processing areas in the brain are invariably smaller
than the primary visual cortex, and become smaller as one proceeds up the cortical
hierarchy.

Taken together, however, sparse coding and redundancy reduction do constitute a
strong, consistent hypothesis for the nature of the visual code. More specifically, the
receptive field properties of V1 units produce a sparse representation of the input,
because any given visual pattern matches only a small percentage of the neurons’
RFs. Redundancy in this sparse response is then reduced by the lateral interactions
within V1. As a result, an efficient, sparse coding of the input is formed, suitable for
further processing by higher levels of the visual system.

This hypothesis rests crucially on the lateral interactions in V1. As proposed by
Barlow (1972, 1989, 1990), lateral connections in V1 could suppress redundant acti-
vation by decorrelating the V1 responses. Such a process indeed takes place if neu-
rons that respond to similar inputs are connected with inhibitory lateral connections.
In such a case, the response of one neuron can be predicted based on the response of
the other. Therefore, the activity of the second neuron is redundant, and a more ef-
ficient representation can be formed by eliminating the redundant response. Lateral
inhibitory connections have exactly this effect: Whenever these neurons are active
together, the inhibition tends to reduce their activation. Such decorrelation filters out
the redundancies and concentrates the activity in independent feature-selective units.

The hypothesis is difficult to verify experimentally because it requires measuring
activations of large numbers of neurons individually over very short time scales; such
spatial and temporal resolution is not available with current imaging or recording
techniques. However, computational models such as LISSOM are well suited for
testing it. This section demonstrates that (1) LISSOM produces a sparse, decorrelated
visual code, and (2) the specific self-organized lateral connections are crucial for this
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process. In Section 14.3, such coding will be shown to form an effective foundation
for pattern recognition applications as well, using handwritten digit recognition as
an example.

14.2 Visual Coding in LISSOM

In LISSOM, the self-organized connections store information about long-term activ-
ity correlations through Hebbian learning: the stronger the correlation between two
cells, the stronger the connection between them. Because the long-range connections
are inhibitory, they reduce the overall activation levels, while short-range lateral ex-
citation locally amplifies the responses of active neurons. As will be shown in this
section, this process makes the resulting responses sparse without losing information,
i.e. by suppressing redundant activity.

Sparse responses can also be obtained through fixed, isotropic lateral interac-
tions, like those used by nearly all previous computational models of the visual cor-
tex. The connection strength between two neurons in such networks depends only
on the distance between the neurons, not on their response properties. Although such
interactions also reduce activity, the quality of the visual code is compromised, as
will be demonstrated below.

14.2.1 Method

The experiments in this section were based on the reduced LISSOM version of the
perceptual grouping network in the previous chapter. Because the analysis focuses on
the overall activity patterns instead of grouping, firing-rate units were used instead
of spiking neurons, and only the SMAP component of V1 was included in the sim-
ulations. (As was described in Section 11.2, SMAP determines the activity patterns
in the model, whereas GMAP performs a grouping function among them.) To make
input reconstruction practical, the retina was reduced to 36 × 36 receptors and the
cortex to 48×48 units. Like the perceptual grouping network, the model was trained
with long, oriented Gaussians (20,000 presentations of single Gaussians with axis
lengths σa = 30 and σb = 1.5; Appendix F.1), and it developed a well-organized
orientation map with long-range, patchy lateral connections (Figure 14.1).

Isotropically connected networks were constructed out of the self-organized net-
works by replacing the lateral inhibitory weights with isotropic weights. That way,
all parameters and other components of the architecture were the same for both net-
works, making fair comparisons possible. A variety of isotropic profiles for the lat-
eral connections were tested, including uniform disks, radial Gaussian distributions,
and radial Cauchy distributions. The best performance was found using a sum of
two Gaussians (SoG), chosen as a close match to the self-organized weight profiles
(Figure 14.1b; Appendix F.1).

Sparseness of the cortical response was measured as the population kurtosis (i.e.
the fourth statistical moment, or peakedness, of the neuronal activity distribution;
Field 1994; Willmore and Tolhurst 2001). A small number of strongly responding
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Fig. 14.1. Self-organized vs. isotropic lateral connections. In (a), self-organized inhibitory
lateral connection weights for a sample neuron in the LISSOM orientation map are plotted
in gray scale from white to black (low to high); the small white square marks the neuron
itself. In (b), the connections of a sample neuron in the network with isotropic long-range
connections are shown. This network was constructed by adding two isotropic Gaussians: The
smaller Gaussian was chosen as wide as the central peak in the self-organized weights, and the
larger to extend as far as the longest self-organized lateral connections. Therefore, all neurons
that are connected in the self-organized network are also connected in the sum-of-Gaussians
network.

neurons, i.e. a sparse coding, results in high kurtosis, and a broad nonspecific pattern
in low kurtosis. For each network, the average amount of kurtosis was measured for
a set of 10,000 random input patterns, each with two long contours composed of two
or three short, oriented Gaussians (Figure 14.2a).

Information content, on the other hand, can be measured in principle by recon-
structing the input pattern from the cortical response. The idea is that accurate re-
construction is possible only if information about the input pattern is retained in the
coding. A lossy coding, on the other hand, would result in incomplete reconstruc-
tion. If the networks were linear, it would be possible to perform the reconstruction
simply by inverting the network, i.e. by backprojecting a set of V1 activity patterns
through the afferent weights to produce a pattern on the retina. However, the neu-
rons’ activation functions are nonlinear, and their response depends on the nonlinear
effect of the lateral connections. It is therefore not practical to reconstruct the input
simply by mathematically inverting the network function.

However, an approximate inverse can be obtained by training a nonlinear neural
network to compute it. One effective approach is to train a feedforward backprop-
agation neural network to map each V1 activity pattern to the retinal activity pat-
tern that led to that V1 response. Such networks in general are effective in pattern
recognition tasks, and also plausible as a model of how humans learn higher cogni-
tive tasks (Bechtel and Abrahamsen 2002; Elman, Bates, Johnson, Karmiloff-Smith,
Parisi, and Plunkett 1996; McClelland and Rogers 2003; Rumelhart et al. 1986; Se-
jnowski and Rosenberg 1987). One such reconstruction network was trained for the
initial V1 response, another for the V1 response settled through self-organized lat-
eral interactions, and a third for the V1 response settled through isotropic SoG lat-
eral interactions. Each reconstruction network was trained and tested in a 10-fold
cross-validation experiment with subsets of the same 10,000 retinal and V1 activity
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patterns that were used to measure kurtosis. The network and learning parameters
were optimized to obtain the best performing network for each case (Appendix F.1).
Any differences in reconstruction ability can then be attributed to the quality of the
V1 representations.

In this manner, both how sparse the representations are and how well they rep-
resent information can be measured. In the next two subsections, representations
formed with self-organized lateral connections, isotropic lateral connections, and
without any lateral connections will be compared.

14.2.2 Sparse, Redundancy-Reduced Representations

The main effect of the self-organized lateral interactions is to make the cortical repre-
sentation of the input sparser (compare Figure 14.2b and d). The recurrent excitation
and inhibition focuses the activity to the neurons best tuned to the features of the
input stimulus, producing a sharper response. The average kurtosis of the V1 activity
patterns before settling was 35.4, which was more than doubled, to 85.7, by settling
through the self-organized connections. The average total activity in the response
reflected this change, reducing from 16.7 to 9.32 through the settling.

Importantly, the sparse coding is formed without losing information. As Fig-
ure 14.2c,(e) demonstrates, the retinal patterns can be reconstructed from the settled
response just as well as from the initial response. In order to measure the reconstruc-
tion ability numerically, the percentage of output patterns that were identifiable, i.e.
closest to the correct pattern in the test set, were counted. In both cases, 100% of
test patterns (in a 10-fold cross-validation experiment) resulted in identifiable recon-
structions.

Thus, the experiments with LISSOM provide computational evidence for the
sparse coding with redundancy-reduction hypothesis. By decorrelating the V1 ac-
tivity, the self-organized lateral connections form a sparse code without losing infor-
mation.

14.2.3 The Role of Self-Organized Lateral Connections

Are self-organized lateral connections necessary to achieve sparse redundancy-
reduced coding? It turns out that while the SoG network can indeed form a sparse
code, it does so by reducing information instead of only redundancy.

In three control experiments, SoG networks were adjusted to perform sparse
coding. First, the overall strength of the lateral inhibitory weights was set so that
the Gaussian peak in the SoG was as high as the central peak of the self-organized
weights (i.e. γI in Equation 4.7 was increased from 4 to 40 while γE remained at 0.9).
The goal was to ensure that the SoG network included the lateral connections from
the self-organized network, and differed from it by including additional connections
as well. As a result, all activity in V1 was eliminated during settling. This result
suggests that for the SoG network to form any visual coding at all, the individual
long-range isotropic connections must be weaker than the individual self-organized
connections. Consequently, any computation that the lateral connections perform,
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(a) Retinal activation

(b) Initial V1 response:
Kurtosis 37.9

(c) Reconstruction from (b):
Average RMS error 0.094

(d) Settled V1 response:
Kurtosis 63.0

(e) Reconstruction from (d):
Average RMS error 0.094

(f ) SoG-settled V1 response:
Kurtosis 60.1

(g) Reconstruction from (f ):
Average RMS error 0.137

Fig. 14.2. Sparse, redundancy-reduced coding with self-organized lateral connections. In
(a), an example test input consisting of two multi-segment contours is shown. The V1 initially
responds to this pattern with multiple large patches of activation (b), but lateral interactions
focus the response into the most active neurons (d). This process results in a sparse code, as
shown by the increased kurtosis values beneath each plot. The settling reduces redundancy but
does not lose information; the input pattern can be reconstructed from both the initial response
(c) and the settled response (e) equally well. When the lateral interactions are replaced with
isotropic patterns, such as a sum of two Gaussians (f ), a sparse code with a similar kurtosis
results. However, crucial information about the input is lost in this process. All active neu-
rons inhibit each other, and occasionally a crucial component of the representation is turned
off. For example, the activity patch at the center represents the rightmost element of the left
contour. It disappears in the settling process of the SoG network, and consequently the recon-
struction image is missing this element as well (g). Self-organized patchy lateral connections
are therefore crucial in forming a sparse redundancy-reduced coding of the visual input.
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such as decorrelation or grouping, will perforce be weaker in SoG networks than in
networks with self-organized lateral connections.

In the second experiment, the strength of the lateral inhibitory connections was
reduced (to 11.4) until the average kurtosis of the responses reached 84.4, match-
ing that of the self-organized network. However, the responses were now highly
saturated, with average total activation of 27.1 compared with the 9.32 of the self-
organized network. As a result, only 41% of the reconstructed input patterns were
identifiable.

In the third experiment, therefore, the lateral inhibition and excitation were both
adjusted simultaneously (γI to 14 and γE to 0.46) so that both the average kurtosis
and the average total activation, at 82.3 and 9.16, were comparable to those of the
self-organized network. Figure 14.2f shows a sample cortical response of this SoG
network. Overall, it is very similar to that of the self-organized network: The ex-
periment shows that it is possible for isotropic connections to achieve a sparse code
similar to that of self-organized connections.

An important difference arises when the reconstruction is attempted based on
the SoG representations. Whereas there was no loss of reconstruction ability in the
self-organized case, the SoG network performs slightly but consistently worse: The
reconstructed patterns are recognizable 99.0% of the time on average (the difference
is significant with p < 10−4). The reason is apparent in Figure 14.2f ,g; with certain
inputs, the settled SoG pattern is missing representations of parts of the input pattern,
and as a result, those parts are also missing from the reconstructed pattern.

The loss of information in the SoG network primarily results from interactions
between unrelated input components. As seen in Figure 14.2, even though the two
contours have very different orientations, and thus are likely to be independent in-
puts instead of two parts of the same contour, their representations inhibit each other
strongly in the SoG network. As a result, part of the V1 response disappears, allow-
ing only one of the input contours to be reconstructed. In the self-organized case,
even though the individual lateral inhibitory connections are stronger, they come
from neurons that are often active together, reducing redundant activation only. The
representations of unrelated contours do not inhibit each other, and both are retained
in the settled response and in the reconstruction.

Similar but even worse results were observed for the other isotropic long-range
connection patterns tested, including large Gaussians, Cauchy distributions, and uni-
form connections. If the isotropic connections were strong enough to provide a sparse
code similar to that of the self-organized connections, they reduced the quality of the
visual code. These results suggest that patchy, specific, self-organized connections
are crucial for a sparse, redundancy-reduced visual code.

In conclusion, because the LISSOM model is computational, it allows test-
ing hypotheses about visual coding in exact, quantitative terms. In doing so, self-
organization is found to store long-range activity correlations between feature-
selective cells in the lateral connections. During visual processing, this information
is used to eliminate redundant information, and enhance the selectivity of cortical
cells. As a result, the model establishes a sparse, redundancy-reduced coding of the
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visual input, which allows representing visual information efficiently with limited
resources.

14.3 Visual Coding for High-Level Tasks

The sparse, redundancy-reduced coding is efficient, given that there is a limited num-
ber of neurons, and activation is expensive. Does it also provide an advantage in in-
formation processing? The example high-level application in this section suggests
that it indeed does. Recognition of handwritten digits is easier when the visual in-
put is represented on a LISSOM map, as opposed to the SOM version of the self-
organizing map discussed in Section 3.4. The domain is first described below, fol-
lowed by the recognition system architecture, and the results.

14.3.1 The Handwritten Digit Recognition Task

Handwritten digit recognition, a subtask of optical character recognition (OCR), is
an important problem with many practical applications. Traditional approaches to
this task include algorithmic and statistical methods, such as global transforma-
tion and series expansion, geometrical and topological feature extraction, and de-
riving features from the statistical distribution of points (Govindan and Shivaprasad
1990). More recently, neural networks have been successfully applied to this task
as well, including general feedforward networks and dedicated and hybrid methods
(Fukushima and Miyake 1982; Keeler and Rumelhart 1992; LeCun et al. 1995; Lee
1996; Lee and Lee 2000a,b; Martin, Rashid, Chapman, and Pittman 1993; Yaeger,
Webb, and Lyon 1998. Digit recognition systems achieve 97.6–99.8% accuracy, ri-
valing estimated human performance at around 99.8% (LeCun et al. 1995).

In general character recognition, context information from the word and sentence
may be available, and when recognition is done on-line, also information such as ve-
locity, continuity of line segments, and the angle of motion. However, in its most
basic and useful form, recognition is done off-line on isolated, normalized digits.
Such raw bitmap images can be quite confusing, since many digits share similar
features. For example, the digits 7 and 9, 4 and 9, 1 and 7, and 3 and 8 have large
overlapping segments, and the distinct features are proportionally smaller than the
overlapping ones. Although humans are good at paying attention to the distinct fea-
tures in classifying digits, it is difficult to do so automatically.

For automatic recognition to be effective, it is necessary to form an internal rep-
resentation that emphasizes the salient features of the input. Such representations
must be highly separable, i.e. different for different digits, and easy to generalize,
i.e. similar for the variations of the same digit. These requirements are difficult to
achieve at the same time. If the representations are separated too far, generalization
will often suffer. Good generalization, on the other hand, usually increases overlap
between categories, degrading separation.

The hypothesis tested in the experiments that follow is that the sparse, redundancy-
reduced representations in LISSOM are separable and generalizable, and thus consti-
tute an effective foundation for pattern recognition. To test this hypothesis, LISSOM
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Input

Map

Output 0 1 2 3 4 5 6 7 8 9

Fig. 14.3. Architecture of the handwritten digit recognition system. In the input, a normal-
ized bitmap image of digit 8 is presented. The activation propagates through the afferent con-
nections to the map, which is either a SOM or a LISSOM network; a LISSOM map is shown
in this figure, together with an outline of the afferent (solid line), lateral inhibitory (dashed
black line), and lateral excitatory (dotted white line) connections of one neuron. In LISSOM,
the activity settles through the lateral connections into a stable activity pattern (Figure 14.8);
in SOM, the response is due only to the afferent connections (Figure 14.7). This pattern is the
internal representation of the input that is then recognized by the array of perceptrons at the
output. In this case, the output unit representing 8 is correctly activated, with weak activations
on other units representing similar digits such as 2, and 9. The gray scale from white to black
represents activity from low to high at all levels.

will be used to form internal representations for handwritten digits that will then be
categorized by a perceptron classifier. The performance of LISSOM representations
in this task will be compared with those of the SOM self-organizing map network. As
was discussed in Section 3.4, SOM is an abstract, computationally efficient model of
cortical maps; however, because it does not have self-organizing lateral connections,
the activation patterns on the map do not form a sparse, redundancy-reduced code.
LISSOM representations lead to better recognition performance, thereby demonstrat-
ing that sparse redundancy-reduced visual coding provides an advantage for infor-
mation processing.

14.3.2 Method

The recognition system consists of three levels (Figure 14.3): (1) an input sheet of
32 × 32 units, where the input digit is represented as a normalized bitmap; (2) a
20 × 20 unit LISSOM (or SOM) map, which is fully connected to the input sheet;
and (3) an output array of 10 perceptron units, corresponding to digits 0 to 9, fully
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Fig. 14.4. Handwritten digit examples. One hundred samples from the NIST database 3 are
shown demonstrating the variety of inputs in this task. Most of the digits are recognizable to a
human observer; however, each digit occurs in different shapes, thicknesses and orientations,
there is significant overlap between digits, and the classification is based on small, crucial
differences. Such properties make automatic classification of handwritten digits very difficult.

connected to the map level. The map performs the feature analysis and decorrelation
of the input, and the perceptrons perform the final recognition.

As training and testing data, the publicly available 2992 pattern subset of the
National Institute of Standards and Technology (NIST) special database 3 (Garris
1992; Wilkinson, Garris, and Geist 1993) is used. These data contain samples from a
large population of writers, coded into 32×32 bitmaps of single digits (Figure 14.4).
The digits are first centered and scaled and the image is then normalized according
to

χxy =
χxyo√∑
uv χ2

uvo

, (14.1)

where χxyo is the original input unit activity at location (x, y). Such normalization
is useful because digit segments can vary in thickness. With normalization, the map
activates approximately equally for both thick and thin digits.

The map activation and learning take place as described in Sections 3.4, 4.3,
and 4.4, with three extensions that result in better performance in the character recog-
nition domain and allow comparing the results of the two architectures more directly.
First, in the SOM network, the Euclidean distance similarity measure is reversed and
scaled so that the maximum response is 1 and minimum is 0, as in the LISSOM
network:

ηij =
dmax − ‖X − Wij‖

dmax − dmin
, (14.2)

where ηij is the activity of map unit (i, j), X is the input vector and Wij is the unit’s
weight vector, and dmax and dmin are the largest and smallest Euclidean distances
between the input vector and the weight vectors on the map.
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Second, in the LISSOM network, the RFs of all neurons cover the whole input
image, for two reasons: (1) Such connectivity matches that of the SOM model, and
(2) the resulting map representations do not have spatial organization by design; any
such structure emerges from the visual coding, making the analysis and comparison
easier.

Third, instead of keeping the total sum of the afferent weights constant in LIS-
SOM, they are normalized so that the length of the weight vector remains the same:

A′
xy,ij =

Axy,ij + αAχxyηij√∑
uv(Auv,ij + αAχuvηij)2

, (14.3)

where Axy,ij is the afferent weight between input unit (x, y) and map unit (i, j), χxy

is the normalized activity of the input unit (x, y), αA is the afferent learning rate.
Since the input vectors are normalized to constant length, normalizing the weight
vectors in the same way allows forming an accurate mapping of the input when the
scalar product is used as the similarity measure (Section 14.4).

Although the LISSOM map can be organized starting from initially random af-
ferent weights, a more controlled procedure was utilized in the character recognition
experiments. A rough initial order was first developed in a SOM map, two copies
were made of it, and their training was continued in two different ways: one as a
LISSOM map, after normalizing the afferent weights and adding lateral weights, and
the other as a SOM map. This procedure is useful because the resulting SOM and
LISSOM maps are likely to have similar large-scale organization. The remaining dif-
ferences reflect primarily the differences in visual coding, which makes comparisons
easier.

The perceptrons receive the entire activation pattern on the map as their input.
The activation for the perceptron unit ψk is calculated according to

ψk =
∑

ij

ηijPij,k, (14.4)

where ηij is the activity of map unit (i, j) and Pij,k is the connection weight between
map unit (i, j) and perceptron k. The activity ψk represents the likelihood that the
input belongs to category k. Thus, the digit represented by the perceptron with the
largest activation is taken as the decision of the system. The perceptrons are trained
with the delta rule (Haykin 1994; Widrow and Hoff 1960), by changing each weight
proportionally to the map activity and the difference between the output and the
target:

P ′
ij,k = Pij,k + αP(Tk − ψk)ηij , (14.5)

where αP is the learning rate parameter and Tk is the target value (Tk = 1 if k is the
correct digit, and zero otherwise).

Instead of perceptrons, other supervised classifiers such as backpropagation, ra-
dial basis function networks, or support vector machines (Ben-Hur, Horn, Siegel-
mann, and Vapnik 2001; Haykin 1994; Moody and Darken 1990; Rumelhart et al.
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1986) could be trained to perform the recognition, and they would be likely to per-
form better. However, the goal of these experiments is not to engineer the best pos-
sible digit recognition system, but to demonstrate that some visual codes are easier
to recognize than others. Because perceptrons are more sensitive to the separability
of the input patterns than the other approaches, they should make such differences
more clear in the performance of the system.

Digit recognition performance was measured in a 12-fold cross-validation ex-
periment. In each split of the data into training and testing, the SOM and LISSOM
maps were first organized with a training set, and the perceptron network was then
trained with the responses of the final maps to the training set patterns: Different
perceptron networks were trained with the SOM representations, the initial LISSOM
representations, and the settled LISSOM representations. In addition, a fourth per-
ceptron network was trained with the raw bitmap patterns in the training set. The
performance of each of these networks was measured both with the training set and
with the test set.

The simulation details are specified in Appendix F.2; the representations on the
SOM and LISSOM maps and the recognition performance of the different networks
is analyzed in the next two subsections.

14.3.3 Forming Map Representations

The final afferent weights for the SOM and LISSOM maps from one example split
are shown in Figures 14.5 and 14.6. Even though they were trained from the same in-
termediate organization with the same sequence of inputs, SOM and LISSOM maps
show different final organization. The SOM afferent weights are sharply tuned to
the input patterns, and clear clusters for each digit 0 to 9 are found on the map. In
contrast, the LISSOM afferent weights do not represent all digit categories equally.
For example 2 and 5, which were somewhat less frequent in the dataset, are not
represented distinctly anywhere, but appear only as a combination of digits 0 and 3.

Because of these differences in the afferent weights, the responses on the SOM
map are continuous and diffuse, whereas LISSOM’s initial responses are sparser,
with contracted activity in several clusters (Figures 14.7b and 14.8b,c). The average
kurtosis of these responses over all 2992 patterns was 0.84684, significantly higher
than the 0.42988 of the SOM (p < 10−5).

As expected, the strongest lateral connections in the LISSOM map link primarily
to areas with similar afferent weights, i.e. those that respond to similar inputs (Fig-
ure 14.6). Their effect is to decorrelate and reduce redundant activation, forming a
sparse response. The average kurtosis of the settled LISSOM activation was 2.2560,
which is significantly higher than that of the initial responses (p < 1014).

At first glance, the LISSOM map and its activity patterns seem less ordered than
those of the SOM. However, the differences are mostly due to local vs. distributed
style of representation, not regularity. Since the lateral connections in LISSOM link
areas that respond to similar inputs, they implement more general neighborhoods
than the two-dimensional local areas of the SOM. Representations far apart on the
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map can act as neighbors, and the responses are highly regular, even though they are
less localized.

These distributed patterns act as attractors of the recurrent network, and they
make the LISSOM representations more easily recognizable during performance.
The settling process reduces the differences between similar patterns, by reducing
redundant activation and focusing the activity at the usual distributed locations for
that digit. In contrast, even though the initial responses to different digits may over-
lap significantly (Figure 14.8b), their differences become amplified during settling
(Figure 14.8c). As a result, patterns within a category appear more similar and those
across categories more different than they do in either the initial response or the SOM
response, making classification of LISSOM representations easier.

In the following subsection, computational support for this informal interpreta-
tion will be provided by using perceptrons to measure the separability and general-
izability of the map representations.

14.3.4 Recognizing Map Representations

Recognition performance of the perceptron serves as a measure of how good the map
representations are. Performance on the training patterns can be used as a measure
of separability of the patterns, i.e. how difficult the task is, and the performance on
the test patterns can be used as a measure of how regular the representations are, i.e.
how easy it is to generalize to new inputs.

Recognition performance based on settled LISSOM, initial LISSOM response,
SOM, and raw input were measured and compared over the 12 splits of data into
training and test sets. The settled LISSOM patterns turned out to be the easiest to
learn (92.9%), followed by the initial LISSOM response (90.2%), SOM (88.7%),
and raw input (84.8%). On the test sets, settled LISSOM patterns also performed
best at 90.2%, followed by initial LISSOM responses (88.7%), SOM (85.9%), and
far below, the raw input (54.4%). All of these differences are statistically significant
(p < 10−4).

The main conclusion from the digit recognition experiments is, therefore, that
the sparse, redundancy-reduced internal representations provided by the LISSOM
network are both most separable and easiest to generalize. In addition to being ef-
ficient, such representations provide a solid foundation for further stages of visual
processing, such as pattern recognition.

14.4 Discussion

Comparing the kurtosis and reconstruction of the initial and settled LISSOM re-
sponse demonstrates that self-organized long-range lateral connections are sufficient
to form a sparse, redundancy-reduced visual code. The comparisons with isotropic
long-range connection patterns suggest that they are also necessary: Whenever such
patterns increased kurtosis, they also lost crucial information about the input. Note
that this result applies to long-range connectivity only: Isotropic connections limited
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Fig. 14.5. Self-organized SOM afferent weights. The fuzzy digit-like images display the
afferent weights for each unit in the 20 × 20 map, in gray scale from white to black (low
to high). The SOM has a regular global organization with local clusters sensitive to each
digit category. For example, the lower right corner is sensitive to inputs of digit 1, and this
preference gradually changes to 7 and then to 4 along the right edge of the map.

to the range of the central Gaussian of the SoG, i.e. approximately the range of a
single orientation patch in the OR map, would form a sparse response without sig-
nificantly degrading the visual code. However, as was mentioned in Section 11.5.1,
such a map would not self-organize or perform perceptual grouping properly, and
would be an incomplete model of computations in V1.

The handwritten digit recognition experiments in turn demonstrate that the
sparse, redundancy-reduced coding not only retains the salient features of the in-
put, but is also particularly effective as input to later stages of the visual system. It
is easier to recognize the input based on the LISSOM coding than on a comparable
SOM coding which is not sparse and redundancy reduced.
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Fig. 14.6. Self-organized LISSOM afferent and lateral weights. Compared with the SOM
map in Figure 14.5, the afferent weights are less sharply tuned to individual digits and the clus-
ters are more irregular and change more abruptly, resulting in more distributed responses (Fig-
ure 14.8). The black outline identifies the lateral inhibitory connection weights with above-
average strength of the unit marked with the thick black square, which is part of the represen-
tation for digit 8. Inhibition goes to areas of similar functionality (i.e. areas sensitive to similar
input), thereby decorrelating the map activity and forming a sparse representation of the input.

Such coding could be potentially useful in building artificial vision systems as
well (Section 17.3.4). In such practical applications of the LISSOM model, it is im-
portant to make sure that the similarity between the input and the weight vectors is
measured appropriately. Recall that the unit response in LISSOM is based on the
weighted sum, i.e. the scalar product of the input and the weight vector, instead
of Euclidean distance similarity measure as in SOM. The scalar product is biolog-
ically more realistic; however, it does not distinguish between differences in angle
and length. In principle, both the input and the weight vectors should be normal-
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(a) Input (b) Map response

Fig. 14.7. SOM activity patterns. Three samples of normalized input are shown in (a), and
the response of SOM map to each input in (b). In each case, many units respond with similar
activations, resulting in a broad and undifferentiated activity pattern over the map. Response
patterns for different digits overlap significantly, making them difficult to classify.

ized to constant length, so that the similarity is measured only in terms of angles
between vectors. In order to preserve the n-dimensional input distribution, a redun-
dant (n + 1)th dimension must then be added to the input and weight vectors before
normalization. The original dimensions are interpreted as angles and the (n + 1)th
dimension represents the length of the vector, which is chosen the same for all inputs.
After this transformation, the original input distribution becomes a submanifold of
the (n + 1)-dimensional space. Since the dimensions are optimally chosen in the
self-organizing process and the (n + 1)th input dimension is redundant, the map
self-organizes to represent the original n-dimensional input distribution (Miikkulai-
nen 1991; Sirosh and Miikkulainen 1994a).
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(a) Input (b) Initial map response (c) Settled map response

Fig. 14.8. LISSOM activity patterns. As in Figure 14.7, column (a) shows the normalized
input; the LISSOM map activity before and after lateral interaction is shown in columns (b)
and (c). The initial responses are sparser than in SOM, although the responses for different
digits still overlap significantly. Settling through the lateral connections removes much of the
redundant activation and focuses the response around the typical active regions for each digit.
After settling, the patterns for the same digit have more overlap, and those for different digits
less overlap than before settling, making the digits easier to recognize.

If the input vector lengths do not vary extensively, it may be possible to achieve
robust self-organization simply by normalizing the afferent weight vectors to con-
stant length. In some applications, like the digit recognition domain in this chapter,
the input may also be normalized without losing crucial information, and the map-
ping will then be accurate. To a degree, such input normalization takes place in the
ON/OFF channels, which respond mostly to edges in the input instead of constant
activation (this effect is further enhanced by afferent normalization introduced in
Section 8.2.3). In such cases, it is usually sufficient to maintain the total sum of
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the weights constant instead of length. Such normalization constrains the afferent
weights of each neuron (i, j) to the hyperplane defined by

∑
xy Axy,ij = 1, and

self-organization produces a mapping of the input space projected onto this hyper-
plane. In high-dimensional spaces, the distortion due to this projection is small, espe-
cially when inputs are limited to a smaller dimensional submanifold, as is the case in
the retina. Such a simplification is appealing from the biological standpoint because
it provides a simple way to calculate the response, and a unified rule for modifying
all synapses.

In the handwritten digit recognition experiments, it was interesting to see that
the initial LISSOM responses were sparser and easier to recognize than the SOM
responses, even though both maps were trained from the same intermediate organi-
zation with the same sequence of inputs. These differences result because the afferent
weights in LISSOM learn to anticipate the lateral interactions. The final settled pat-
terns are used to modify the afferent weights; as a result, some of the characteristics
of the settled patterns become encoded into the afferent weights. Such processes are
common in adapting systems in nature: Dynamic processes become automatic, and
eventually may even become hardwired in the genome. This result is also promising
from the point of view of building practical applications based on LISSOM networks.
After the proper recognition behavior has been learned with lateral connections, the
behavior can be transferred into the afferent weights with further training, resulting
in a simpler system with faster performance.

14.5 Conclusion

The self-organized long-range lateral connections in LISSOM decorrelate the activa-
tion on the map, resulting in a sparse code where redundant activation is reduced and
the distinguishing features are enhanced. Self-organized, specific lateral connections
are necessary for such coding: When equally sparse representations are formed with
isotropic lateral connections, information is lost. Such representations are efficient
in that they allow more information to be represented in the same area of cortex, but
they also provide an information processing advantage. They are more easily separa-
ble and generalizable, making further visual processing such as pattern recognition
easier.
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Scaling LISSOM simulations

Current computational models such as LISSOM can account for much of the struc-
ture of the visual cortex and how it develops, as well as many of its functional
properties. However, other important phenomena, such as orientation interactions
between spatially separated stimuli and long-range visual contour and object inte-
gration, have remained out of reach because they require too much computation time
and memory to simulate. In this chapter, two interrelated techniques are presented
for making detailed large-scale simulations practical. First, a set of linear scaling
equations is derived that allows computing the appropriate parameter settings for a
large-scale simulation given an equivalent small-scale simulation. Second, a method
called GLISSOM is developed where the map is systematically grown based on the
scaling equations, allowing the entire visual cortex to be simulated at the column
level with desktop workstations. The scaling equations can also be used to quantify
differences in biological systems, and to determine values for the model parameters
to match measurements in particular biological species.

15.1 Parameter Scaling Approach

A given LISSOM simulation focuses on a particular area of the visual field with a
particularly density of retinal receptors and V1 neurons. Modeling new phenomena
often requires setting up a different area or density in the model. For example, a
larger portion of the visual space, e.g. a larger part of V1 and the eye, may have to
be simulated, or the area may have to be simulated at a finer resolution, or a species,
individual, or brain area needs to be modeled that devotes more neurons or receptors
to representing the same visual space.

Varying the area or density over a wide range can be difficult in a complex nonlin-
ear system like LISSOM. Parameter settings that work well for one size are usually
not appropriate for other sizes, and it is not always clear which parameters need to
be adjusted. Fortunately, with LISSOM it is possible to derive a set of equations
that allows computing the appropriate parameter values for each type of transfor-
mation directly. The equations treat the cortical network as a finite approximation
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of a continuous map, i.e. one that is composed of an infinite number of units (see
Amari 1980; Fellenz and Taylor 2002; Roque Da Silva Filho 1992; Wu, Amari, and
Nakahara 2002 for theoretical analyses of continuous maps). Under such an assump-
tion, networks of different sizes represent coarser or denser approximations of the
continuous map, and any given approximation can be transformed into another by
conceptually reconstructing the continuous map and then resampling it. Given an
existing retina and cortex, the scaling equations provide the parameter values needed
to self-organize a functionally equivalent smaller or larger retina and cortex.

To be most useful, such scaling should result in equivalent maps at different
sizes. Map organization must therefore not depend on the initial weights, because
those will vary between different-size networks. As was shown in Section 8.4, the
LISSOM algorithm has exactly this property: The organization is determined by the
stream of input patterns, not by the initial weight values. In effect, the LISSOM
scaling equations provide a set of parameters for a new simulation that, when run,
will develop similar results to the existing simulation.

The equations for scaling area and density will be derived in the next section. The
more minor LISSOM parameters can be scaled as well, using the methods described
in Appendix A.2. Most of the simulations presented in this book were set up using
these equations, and they were crucial for the large maps used in Section 10.2. In
Section 15.3, these equations will be utilized systematically by developing an incre-
mental scaling algorithm for self-organizing very large maps.

15.2 Scaling Equations

In this section, the method for scaling the visual area, retinal receptor density, and
cortical density in LISSOM models is developed. The scaling equations are derived
theoretically and verified to be effective experimentally, especially analyzing the lim-
itations of the scaling approach. Although the method applies to all versions of LIS-
SOM, the simulations are based on the reduced LISSOM orientation map without
ON/OFF channels (Chapters 6, 7, and 14; Appendix B). This model is complex
enough to demonstrate the power of scaling and simple enough to observe its ef-
fects clearly. The equations are derived for the central area of the retina with full
representation in the cortex (Figure A.1), but they can also be extended to include
the border area (as shown in Appendix A.2).

15.2.1 Scaling the Area

The simplest case of scaling consists of changing the area of the visual space simu-
lated. The model can be developed quickly with a small area, then enlarged to elimi-
nate border effects and to simulate the full area of a biological experiment. To change
the area, both the V1 width N and the retina width R must be scaled by the same
proportion k relative to their initial values No and Ro. (The ON and OFF channels
of the LGN change just as the retina does; Appendix A.2.)
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In such scaling, it is also necessary to ensure that the resulting network has the
same amount of learning per neuron per iteration. Otherwise, self-organizing a larger
network would take more training iterations; as a result, the final map would be dif-
ferent because nonlinear thresholding is performed at each iteration (Equation 4.6).
To achieve the same amount of learning, the average activity per input receptor needs
to remain constant. With discrete input patterns such as Gaussians, the number of pat-
terns np per iteration must be scaled with the retinal area. With natural image inputs,
it is sufficient to make sure that the images cover all of the full, larger retina; param-
eter np can be ignored. Assuming discrete inputs, the equations for scaling the area
by a factor m are

N = mNo, R = mRo, np = m2npo. (15.1)

An example of such scaling with m = 4 is shown in Figure 15.1. The simulation
details are described in Appendix B.3.

15.2.2 Scaling Retinal Density

Retinal density, i.e. the number of retinal units per degree of visual field, may have
to be adjusted, e.g. to model species with larger eyes or parts of the eye that have
more receptors per unit area. In practice, higher density means increasing retina size
R while keeping the corresponding visual area the same. This type of change also
allows the cortical magnification factor N :R, i.e. the ratio between the V1 and retina
densities, to be matched with values measured in a particular species. The scaling
equations allow R to be increased to any desired value, although in most cases (es-
pecially when modeling newborns) a low density suffices.

The parameter adjustments to change density are slightly more complicated than
those for area. First, in order to avoid disrupting how the maps develop, the visual
area processed by each neuron must be kept constant. More specifically, the ratio of
the afferent connection radius and the retina width must be constant, i.e. rA must
scale with R.

Second, to make sure equivalent maps develop, the average total weight change
per neuron per iteration must be remain the same in the original and the scaled net-
work. When the connection radius increases, the total number of afferent connections
per neuron increases dramatically. Because the learning rate αA specifies the amount
of change per connection and not per neuron (Equation 4.8), the learning rate must be
adjusted to compensate; otherwise, a given input pattern would modify the weights
of the scaled network more than those of the original network. The afferent learn-
ing rate αA needs to be scaled inversely with the number of afferent connections to
each neuron, which in the continuous plane corresponds to the area enclosed by the
afferent radius. That is, αA scales by the ratio r2

Ao/r2
A.

Third, because the average activity per iteration also affects self-organization,
the size of the input features must also scale with R. For Gaussian inputs, the ratio
between the width σ and R must be kept constant; other input types can be scaled
similarly. Thus, the retinal density scaling equations are
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(a) Original retina: R = 24 (b) Retinal area scaled by 4.0: R = 96

(c) Original V1:
N = 54, 0.4 hours, 8 MB

(d) V1 area scaled by 4.0:
N = 216, 9 hours, 148 MB

Fig. 15.1. Scaling retinal and cortical area. The small retina (a) and V1 (c) was scaled to
a size 16 times larger (b,d) using Equation 15.1. To make it easier to compare map structure,
especially in early iterations, the OR maps are plotted without selectivity in this chapter. The
lateral inhibitory connections of one central neuron, marked with a small white square, are
indicated in white outline. The simulation time and the number of connections scale approxi-
mately linearly with the area, and thus the larger network takes about 16 times more time and
memory to simulate. For discrete input patterns like these oriented Gaussians, it is necessary
to have more patterns to keep the total learning per neuron and per iteration constant. Because
the inputs are generated randomly across the retina, each map sees a different stream of inputs,
and so the patterns of orientation patches on the final maps differ. The area scaling equations
are most useful for developing a model with a small area and then scaling it up to eliminate
border effects and to simulate the full area of a corresponding biological preparation.
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(a) Original retina:
R = 24, σa = 7, σb = 1.5

(b) Retina scaled by 2.0:
R = 48, σa = 14, σb = 3

(c) Retina scaled by 3.0:
R = 72, σa = 21, σb = 4.5

Fig. 15.2. Scaling retinal density. Each column shows a LISSOM orientation map from one
of three matched 96×96 networks with retinas of different densities. The parameters for each
network were calculated using Equation 15.2, and each network was then trained indepen-
dently on the same random stream of input patterns. The size of the input pattern in retinal
units grows as the retinal density is increased, but its size as a proportion of the retina remains
constant. All of the resulting maps are similar as long as R is large enough to represent the
input faithfully, with almost no change above R = 48. Thus, a low value can be used for R in
practice. Such scaling of retinal density is useful for modeling species and areas with higher
receptor resolution, and for matching the cortical magnification factor of a model to that of a
particular species.

rA =
R

Ro
rAo, αA =

r2
Ao

r2
A

αAo, σa =
R

Ro
σao, σb =

R

Ro
σbo. (15.2)

Figure 15.2 demonstrates that these equations can be used to generate function-
ally equivalent orientation maps with different retinal receptor densities. The crucial
parameters are those scaled by the retinal density equations, specifically rA and σ.
The value of R is unimportant as long as it is large enough to represent input patterns
of width σ faithfully. The minimum such R can be computed based on the Nyquist
theorem in digital signal processing theory (e.g. Cover and Thomas 1991): The sam-
pling frequency, determined by R, has to be at least twice the spatial frequency of
the input, which is determined by σ.

If ON and OFF channels are included in the model, σ is important only if it is
larger than the centers of the LGN cells, i.e. only if the input is large enough so that
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it will be represented as a pattern at the LGN output. As a result, with natural images
or other stimuli with high-frequency information (i.e. small σ), the receptive field
size of the LGN cells may instead be the limiting factor.

In practice, these results show that a modeler can simply use the smallest R
that faithfully samples the input patterns, thereby saving computation time without
significantly affecting how the map develops.

15.2.3 Scaling Cortical Density

Because of the numerous lateral connections within the visual cortex, cortical density
has the largest effect on the computation time and memory in LISSOM. With scaling
equations, it is possible to develop the model through a series of computationally
efficient low-density simulations, only scaling up to high density to see the details in
the final model. Such scaling is also crucial for simulating maps with multiple fea-
ture dimensions, such as ocular dominance, orientation, and direction (Section 5.6),
because such maps can be seen more clearly at higher cortical densities.

The equations for changing cortical density are analogous to those for retinal
receptor density, with the additional requirement that the intracortical connectivity
and associated learning rates must be scaled as well. The lateral connection radii rE

and rI should be adjusted so that their ratios with N remain constant. If the lateral
excitatory radius is decreased as part of the simulation, the final radius rEf must also
be adjusted accordingly. Like αA in the previous section, αE and αI must be scaled
so that the average total weight change per neuron remains constant each iteration
despite changes in the number of connections. Finally, the absolute weight level wd

below which lateral inhibitory connections are deleted must be scaled inversely to
the total number of such connections, because normalization adjusts each weight
inversely proportional to the number of connections (Equation 4.8). In the continuous
plane, that number is the area enclosed by the lateral inhibitory radius. Thus, the
cortical density scaling equations are

rE =
N

No
rEo, αE =

r2
Eo

r2
E

αEo, wd =
r2
I o

r2
I

wdo,

rI =
N

No
rIo, αI =

r2
I o

r2
I

αIo.

(15.3)

Figure 15.3 shows how these equations can be used to generate closely match-
ing orientation maps with different cortical densities. Larger maps are smoother and
show more detail, but the overall structure is very similar.

The Nyquist theorem specifies theoretical limits on the minimum N necessary
to faithfully represent a given orientation map pattern. In practice, however, the min-
imum excitatory radius rEf is the limiting parameter. For instance, the map pattern
from Figure 15.3e can be reduced using image manipulation software to 18 × 18
without changing the global pattern of orientation patches. Yet, when simulated in
LISSOM, the 36 × 36 (and to some extent, even the 48 × 48) map differs from
the larger ones. These differences result from quantization effects on rEf . Because
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(a) 36 × 36:
0.17 hours,

2.0 MB

(b) 48 × 48:
0.32 hours,

5.2 MB

(c) 72 × 72:
0.77 hours,

22 MB

(d) 96 × 96:
1.73 hours,

65 MB

(e) 144 × 144:
5.13 hours,

317 MB

Fig. 15.3. Scaling cortical density. Five LISSOM orientation maps from networks with dif-
ferent densities are shown. The parameters for each network were first calculated using Equa-
tion 15.3, and each network was then trained independently on the same random stream of
input patterns. The number of connections in these networks ranged from 2 × 106 to 3 × 108

(requiring 2 MB to 317 MB of memory), and the simulation time from 10 minutes to 5 hours.
Despite this wide range of simulation scales, the final organized maps are both qualitatively
and quantitatively similar, as long as their size is above a certain minimum (about 64 × 64
in this case). Larger networks take significantly more memory and simulation time, but of-
fer greater detail and allow multiple dimensions such as orientation, ocular dominance, and
direction selectivity to be represented simultaneously.

units are laid out on a rectangular grid, the smallest radius that includes at least one
other neuron is 1.0. Yet, for small enough N , the scaled rEf will be less than 1.0. If
such small radii are truncated to zero, the map will no longer have local topographic
ordering, because there will be no local excitation between neurons. On the other
hand, if the radius is held at 1.0 while the map continues to shrink, lateral excitation
will take over a larger and larger portion of the map, making the orientation patches
in the resulting map wider. Thus, in practice, N should not be reduced so far that
rEf < 1.0.

Together, the area and density scaling equations allow essentially any size V1 and
retina to be simulated without a search for the appropriate parameters. Given fixed re-
sources, such as a computer of a certain speed with a certain amount of memory, they
make it simple to trade off density for area, depending on the phenomena being stud-
ied. The equations are all linear, so they can also be applied together to change both
area and density simultaneously. Such scaling makes it easy to utilize supercomput-
ers for very large simulations. A small-scale simulation can be first developed with
standard hardware, and then scaled up to study specific large-scale phenomena on
a supercomputer. Scaling can also be done step by step while the network is self-
organizing, thereby maximizing the size of networks that can be simulated, as will
be described in the next section.
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15.3 Forming Large Maps: The GLISSOM Approach

The scaling equations make it possible to determine the parameter settings necessary
to perform a large-scale simulation. This approach can be generalized by applying it
successively to larger and larger maps. This approach is called GLISSOM (growing
LISSOM), and it allows scaling up LISSOM simulations much further, up to the size
of the human V1.

The main idea in GLISSOM is to make use of the structure learned by the smaller
network in each scaling step. Instead of self-organizing the scaled network from
scratch, its initial afferent and lateral weights are interpolated from the weights of the
smaller network. Such scaling allows neuron density to be increased while keeping
the large-scale structural and functional properties constant, such as the organiza-
tion of the orientation map. In essence, the large network is grown in place, thereby
minimizing the computational resources required for the simulation.

GLISSOM is effective for two reasons. First, pruning-based self-organizing mod-
els such as LISSOM have peak computational and memory requirements at the be-
ginning of training (Figure 15.4). At that time, all connections are active, none of
the neurons are selective, and activity is spread over a wide area. As the neurons be-
come selective and smaller regions of V1 are activated by a given input, simulation
time decreases dramatically, because only the active neurons need to be simulated in
a given iteration. GLISSOM takes advantage of this process by approximating the
map with a very small network early in training, then gradually growing the map as
selectivity and specific connectivity are established.

Second, self-organization in computational models, as well as in biology (Chap-
man et al. 1996), tends to proceed in a global-to-local fashion, with large-scale order
established first, followed by more detailed local organization. Thus, small maps,
which are faster to simulate and take less memory, can be employed first to establish
global order, and large maps subsequently to achieve more detailed structure. In this
manner, much larger networks can be simulated in a given computation time and in
a given amount of memory.

Although the primary motivation for GLISSOM is computational, the scaling
process is also well motivated biologically. It is an abstraction of how new neurons
are integrated into an existing region during development. Recent experimental re-
sults suggest that new neurons continue to be added even in adulthood in many areas
of primate cortex (Gould, Reeves, Graziano, and Gross 1999). Moreover, many of the
neurons in the immature cortex (corresponding to GLISSOM’s early stages) have not
yet begun to make functional connections, having only recently migrated to their fi-
nal positions (Purves 1988). Thus, the scale-up procedure in GLISSOM corresponds
to the gradual process of incorporating those neurons into the partially organized
map.

15.4 GLISSOM Scaling

GLISSOM is based on the cortical density scaling equations, with one significant
extension: The initial weights of the scaled network are calculated from the exist-
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Fig. 15.4. Training time and memory usage in LISSOM vs. GLISSOM. Data are shown
for a LISSOM network of 144 × 144 units and a GLISSOM network grown from 36 × 36 to
144×144 units as described in Section 15.4.2. (a) Each line shows a 20-point running average
of the time spent in training for one iteration, with a data point measured every 10 iterations.
Only training time is shown; times for initialization, plotting images, pruning, and scaling net-
works are not included. Computational requirements of LISSOM peak at the early iterations,
falling as the excitatory radius (and thus the number of neurons activated by a given pattern)
shrinks and as the neurons become more selective. In contrast, GLISSOM requires little com-
putation time until the final iterations. Because the total training time is determined by the area
under each curve, GLISSOM is much more efficient to train overall. (b) Each line shows the
number of connections simulated at a given iteration. LISSOM’s memory usage peaks at early
iterations, decreasing at first in a series of small drops as the lateral excitatory radius shrinks,
and then later in a few large drops as long-range inhibitory weights are pruned at iterations
6500, 12,000, and 16,000. Similar shrinking and pruning takes place in GLISSOM, while the
network size is scaled up at iterations 4000, 6500, 12,000, and 16,000. Because the GLISSOM
map starts out small, memory usage peaks much later, and remains bounded because connec-
tions are pruned as the network is grown. As a result, the peak number of connections (which
determines the memory usage) in GLISSOM is as low as the smallest number of connections
in LISSOM.

ing weights through interpolation. The interpolation equations are presented in this
section, followed by experiments that demonstrate that the method is effective.

15.4.1 Weight Interpolation Algorithm

In order to perform interpolation, the original weight matrices are treated as dis-
crete samples of a smooth, continuous function. Under such an interpretation, the
underlying smooth function can be resampled at a higher density. The resampling
is equivalent to the smooth bitmap scaling done by computer graphics programs (as
will be shown in Figure 15.6). This type of scaling always increases the size of the
network by at least one whole row or a column at once. However, unlike the growing
SOM algorithms that add nodes to the original network (Bauer and Villman 1997;
Blackmore and Miikkulainen 1995; Cho 1997; Fritzke 1994, 1995; Jockusch 1990;
Rodriques and Almeida 1990; Suenaga and Ishikawa 2000), in GLISSOM the origi-
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Fig. 15.5. Weight interpolation in GLISSOM. This example shows a V1 of size 4× 4 being
scaled to 7 × 7, with a fixed 8 × 8 retina. Both V1 networks are plotted in a continuous two-
dimensional area representing the surface of the cortex. The squares in V1 represent neurons
in the original network (i.e. before scaling) and circles represent neurons in the new, scaled
network. A is a retinal receptor cell and B and C are neurons in the new network. Afferent
connection strengths to neuron B in the new network are calculated based on the connection
strengths of the ancestors of B, i.e. those neurons in the original network that surround the
position of B (B1, B2, B3, and B4 in this case). The new afferent connection strength wAB

from receptor A to B is a normalized combination of the connection strengths wABi from A
to each ancestor Bi of B, weighted inversely by the distance d(B, Bi) between Bi and B.
Lateral connection strengths from C to B are calculated similarly, as a proximity-weighted
combination of the connection strengths between the ancestors of those neurons. Thus, the
connection strengths in the scaled network consist of proximity-weighted combinations of the
connection strengths in the original network.

nal network is completely replaced by the scaled network. The interpolation process
is similar to that used in continuous SOM algorithms (Campos and Carpenter 2000;
Göppert and Rosenstiel 1997). However, whereas continuous SOM methods inter-
polate to approximate functions more accurately, in GLISSOM the result forms a
starting point for further self-organization.

Let us first derive the interpolation procedure for the afferent connections. As-
sume the original and the scaled networks are overlaid uniformly on the same two-
dimensional area, as shown in Figure 15.5. The afferent connection weight from
retinal receptor A to neuron B in the scaled network is calculated based on the cor-
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responding weights of B’s original neighbors, i.e. the neurons Bi of the original
network that surround B in its two-dimensional neighborhood hB . These neurons
are called B’s ancestors. In the middle, each neuron has four ancestors; at the cor-
ners, each has only one, and along the edges, each has two. Each ancestor has an
influence f ranging from 0 to 1 on the computed weights of B, determined by its
proximity to B:

fBBi = 1.0 − d(B, Bi)
dmax

, (15.4)

where d(B, Bi) represents the Euclidean distance between B and its ancestor Bi in
the two-dimensional area, and dmax is the maximum possible distance between B
and any of its ancestors, i.e. the diagonal spacing between the ancestors. The afferent
connection strength wAB is then a normalized influence-weighted linear combination
of the weights from A to B’s ancestors:

wAB =

∑

i∈hB

wABi
fBBi

∑

i∈hB

fBBi

, (15.5)

where wABi
is the afferent connection weight from receptor A to the ith ancestor of

B. Because receptive fields are limited in size, not all ancestors receive connections
from that receptor; only those that do contribute to the sum.

The lateral connection strengths from neuron C to neuron B in the scaled map
are computed analogously based on the connection strengths between the ancestors
of C and the ancestors of B. The two kinds of lateral connections, excitatory and in-
hibitory, are computed separately through the same procedure. First, the contribution
of C’s ancestors to each Bi is calculated as

gCBi =

∑

j∈hC

wCjBi
fCCj

∑

j∈hC

fCCj

, (15.6)

where wCjBi
(either E or I) is the connection weight from the jth ancestor of C

to the ith ancestor of B (if such a connection exists). The new lateral connection
strength wCB is then the influence-weighted sum of the contributions from all an-
cestors of B:

wCB =

∑

i∈hB

gCBifBBi

∑

i∈hB

fBBi

. (15.7)

Because the neurons in the scaled network have more lateral connections than those
in the original map, the new connections are usually pruned immediately during the
scaling process: Each new connection is included in the scaled network only if it is
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Fig. 15.6. Scaling cortical density in GLISSOM. In a single GLISSOM cortical density
scaling step, a 48 × 48 V1 (top row) is expanded into a 96 × 96 V1 (bottom row) at iteration
10,000 out of a total of 20,000. Smaller scaling steps are usually more effective, but the large
step makes the changes more obvious. A set of weights for one neuron in each network is
shown in (a–c). At this point in training, the afferent and lateral connection profiles are still
only weakly oriented, and lateral connections have not been pruned extensively (the jagged
black outline in (c) shows the current connectivity). The orientation map for each network is
shown in (d), with the inhibitory weights of the sample neuron overlaid in white outline. The
orientation map measured from the scaled map is identical to that of the 48 × 48 network,
except that it has twice the resolution. This network can then self-organize at the new density
to represent finer detail.

larger than the pruning threshold. This procedure makes sure the scaled networks
require as little memory as possible.

Figure 15.6 shows an example scaling step for a partially organized orientation
map and the weights of one neuron in it (to see the correspondence more clearly, the
lateral connections were not pruned in this example). The larger map replicates the
structures of the smaller one, and can be self-organized to represent further detail.

15.4.2 Method

The GLISSOM simulations were based on the same reduced LISSOM orientation
model as the simulations in Section 15.2, with a 24 × 24 retina. The parameters
of this model were adjusted with the density and area scaling equations to get the
specific model for each of the comparisons.

Each GLISSOM simulation started with low cortical density. The scaling method
was then used to increase the density gradually as the network self-organized. At the
same time, the other parameters were adjusted according to the scaling equations to
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make sure the map stayed functionally the same. Similar scaling could be used to
increase the retinal density during self-organization, but because retinal processing
does not affect the computation and memory usage much, retinal density was not
adapted in the simulations.

The precise scaling schedule is not crucial as long as the initial map is large
enough so that the largest features of the final map can be represented approximately
in the initial map. A linear increase from the initial size No to the final size Nf

usually works well. If scaling is faster than linear, i.e. the simulation scales up quickly
to large maps which are then self-organized for a long time, the final maps will
be more refined but the simulation takes more time; conversely, slower than linear
scaling results in faster simulation but less accurate maps. If the scaling steps are
very large, the final map may have more distortions. On the other hand, many small
steps incurs a significant overhead of having to organize the initial weights many
times. Therefore, the most effective schedule usually consists of a few medium-size
steps.

The scaling steps N were computed as

N = No + m(No − Nf), (15.8)

where m is a constant whose values increase approximately linearly over the simula-
tion. This equation allows specifying the scaling steps uniformly across experiments
even with different network sizes. Unless stated otherwise, the simulations consisted
of four steps, with m = 0.20 at iteration 4000, 0.47 at 6500, 0.67 at 12,000, and 1.0
at 16,000. The rest of the simulation details are described in Appendix B.3.

The GLISSOM maps formed in this manner were compared with LISSOM maps
that were organized directly at the final size. The self-organization processes and the
final maps are compared next.

15.4.3 Comparing LISSOM and GLISSOM Maps

The first result is that GLISSOM develops an orientation map in a similar process
as a full-size LISSOM (Figure 15.7). Both networks pass through similar stages of
intermediate order, while the GLISSOM map size gradually approaches that of the
LISSOM map.

Second, as long as the initial GLISSOM map is sufficiently large to represent the
global organization, GLISSOM results in an orientation preference map and weight
patterns that are qualitatively and quantitatively equivalent to those of LISSOM (Fig-
ures 15.8 and 15.9).

Third, GLISSOM significantly reduces the overall computation time and memory
usage (Figure 15.10). For example, for a final map with N = 144, LISSOM takes
5.1 hours for 20,000 training iterations, whereas GLISSOM finishes in 1.6 hours,
yielding a speed-up ratio of 3.1. For the same simulation, LISSOM requires 317 MB
of memory to store its connections, while GLISSOM requires only 60 MB, result-
ing in memory savings ratio of 5.2. Importantly, the speed-up and memory savings
increase with larger networks, which means that GLISSOM can make simulation of
very large networks practical.
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Fig. 15.7. Self-organization of LISSOM and GLISSOM orientation maps. The GLISSOM
map is gradually scaled so that by the final iteration it has the same size as LISSOM. To
make the scaling steps more obvious, this example is based on the smallest acceptable initial
network; Figure 15.9 shows that results match even more closely for larger initial networks. At
each iteration, the features that emerge in the GLISSOM map are similar to those of LISSOM
except for discretization differences. An animated demo of these self-organization examples
can be seen at http://computationalmaps.org.
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Fig. 15.8. Accuracy of the final GLISSOM map as a function of the initial network size.
Each point shows the RMS difference between the final values of the corresponding weights
of each neuron in two networks: a 144 × 144 LISSOM map, and a GLISSOM network with
an initial size shown on the x-axis and a final size of 144 × 144. Both maps were trained on
the same stream of oriented inputs. The GLISSOM maps starting at most as large as N =
96 were based on four scaling steps, whereas the three larger starting points included fewer
steps: N = 114 had one step at iteration 6500, N = 132 had one step at iteration 1000,
and there were no scaling steps for N = 144. Low values of RMS difference indicate that
the corresponding neurons in each map developed very similar weight patterns. The RMS
difference drops quickly as larger initial networks are employed, becoming negligible above
36 × 36. As was described in Section 15.2.3, this lower bound is determined by rEf , the
minimum size of the excitatory radius.
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(a) GLISSOM
No = 36:

1.63 hours, 61 MB

(b) GLISSOM
No = 54:

1.94 hours, 60 MB

(c) GLISSOM
No = 72:

2.29 hours, 69 MB

(d) LISSOM
Fixed N = 144:

5.13 hours, 317 MB

Fig. 15.9. Orientation maps in LISSOM and GLISSOM. Above the minimum 36 × 36
initial network size, the final GLISSOM maps closely match those of LISSOM, yet take much
less time and memory to simulate. Computation time increases smoothly as larger initial net-
works are used, allowing a tradeoff between accuracy and time. However, accurate maps are
obtained substantially faster than with LISSOM. As long as the initial networks are small
compared with the final maps, memory usage is bounded by the size of the final maps.

These results validate the hypothesis that a coarse approximation suffices for the
early iterations in LISSOM. Early in training, only the large-scale organization of
the map is important; using a smaller map for this stage does not significantly affect
the final results. Once the large-scale structure settles, individual neurons become
more selective and differentiate from their local neighbors; a denser map is required
so that this detailed structure can develop. Thus, GLISSOM uses an appropriate map
size for each stage in self-organization, in order to model development faithfully
while saving simulation time and memory.

15.5 Scaling to Cortical Dimensions

The maps studied so far in this book represent only a small region of V1 and have
a limited connectivity range. The results presented in this chapter make it possible
to obtain a rough estimate of the resource requirements needed to approximate the
full density, area, and connectivity of the visual cortex of a particular species. As
discussed in the next section, with such a simulation it will be possible to study
phenomena that require the entire visual field or the full cortical column density and
connectivity. Calculating the full-scale parameter values is also useful because it can
help tie the parameters of a small model to physical measurements. For instance,
once the relevant scaling factors are calculated, the connection lengths, receptive
field sizes, retinal area, and cortical area to be used in a model can all be derived from
measurements in a biological preparation. Conversely, where such measurements are
not available, GLISSOM parameter values that result in realistic behavior constitute
predictions for future experiments.

In this section, the resource requirements and key LISSOM parameters are com-
puted that make it possible to simulate the full human primary visual cortex at the
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(b) Peak memory usage

36 54 72 90 108 126 144
N

1

2

3

LI
S

S
O

M
/G

LI
S

S
O

M
 ti

m
e

0

f

(c) Speed-up
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(d) Memory savings

Fig. 15.10. Simulation time and memory usage in LISSOM vs. GLISSOM. Computational
requirements of the two methods are shown as a function of the network size. In the LISSOM
simulations the network had a fixed size Nf , as indicated on the x-axis; in GLISSOM the ini-
tial size was No = 36 and the final size Nf as indicated on the x-axis. Each point represents
one simulation; the variance between multiple runs was negligible (less than 1% even with dif-
ferent input sequences and initial weights). (a) Simulation time includes training and all other
computations such as plotting, orientation map measurement, and GLISSOM’s scaling steps.
The simulation times for LISSOM increase dramatically with larger networks, because larger
networks have many more connections to process. In contrast, because GLISSOM includes
fewer connections during most of the self-organizing process, its computation time increases
only modestly for the same range of Nf . (b) Memory usage consist of the peak number of
network connections required for the simulation; this peak determines the minimum physical
memory needed when using an efficient sparse format for storing weights. LISSOM’s memory
usage increases very quickly as Nf is increased, whereas GLISSOM is able to keep the peak
number low; much larger networks can be simulated on a given machine with GLISSOM than
with LISSOM. (c,d) With larger final networks, GLISSOM results in greater speed-up and
memory savings, measured as the ratio between LISSOM and GLISSOM simulation time and
memory usage.
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column level. These calculations apply to models with one computational unit per
cortical column, and at most one long-range connection between units.

Most of the simulations in the preceding sections include a map whose global
features match approximately a 5 mm × 5 mm = 25 mm2 patch of macaque V1
(e.g. compare Figure 15.9 with Figure 9.4a). The full area of human V1 has been
estimated at 2400 mm2 (Wandell 1995), and so a full-size simulation would need to
have an area about 100 times as large as the current simulations.

The full density of a column-level model of V1 can also be calculated. The
total number of neurons in human V1 has been estimated at 1.5 × 108 (Wandell
1995). Each cortical unit in LISSOM represents one vertical column, and the num-
ber of neurons per vertical column in primate V1 has been estimated at 259 (Rockel,
Hiorns, and Powell 1980). Thus, a full-density, full-area, column-level simulation
of V1 would require about 1.5 × 108/259 ≈ 580, 000 column units in total, which
corresponds to LISSOM parameter N =

√
580, 000 ≈ 761.

More important than the number of units is the number of long-range lateral con-
nections, because they determine the simulation time and memory requirements. Lat-
eral connections in V1 can be as long as 8 mm (Gilbert et al. 1990), but the connec-
tions in the LISSOM models so far have been shorter in order to make them practical
to simulate. For instance, scaling the parameters used in the previous sections to the
full density would result in an inhibitory radius rI = 18, but matching the full 8 mm
connection length at full density would require rI = 8 × 761/

√
2400 ≈ 124. This

larger radius requires about 45 times as much memory as rI = 18, because the mem-
ory usage increase with the area enclosed by rI. In the current LISSOM implementa-
tion, all of these possible connections must be stored in memory, so supporting such
long connections would need enough memory for 7612 × (2×124+1)2 ≈ 4×1010

connections in V1. Thus, simulating the entire V1 at full density would require about
4×4×1010/230 ≈ 150 gigabytes of RAM (assuming 4 bytes per connection). Such
simulations are currently possible only on large supercomputers.

In contrast, because all possible final connections do not need to be included in
the initial network, GLISSOM can make use of a sparse lateral connection storage
format that takes much less memory, and correspondingly less computation time. The
memory required depends on the number of connections that remain active after self-
organization, which in current GLISSOM simulations is about 15%. As the radius rI

increases, this percentage decreases quadratically, because long-range connections
extend only along the preferred orientation of the neuron and not in all directions
(Bosking et al. 1997; Sincich and Blasdel 2001). Thus, for the full-scale simulation,
about 15%×182/1242 ≈ 0.3% of the connections would have to be included. Under
these assumptions, the memory requirement reduces to approximately 0.003×150×
1024 ≈ 460 MB. Thus, with GLISSOM it is possible to simulate the entire V1 at the
level of laterally connected cortical columns on existing desktop workstations.
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15.6 Discussion

The parameter scaling experiments in Section 15.2 showed that the LISSOM scaling
approach is valid over a wide range of spatial scales. The GLISSOM experiments in
Section 15.4 in turn showed that the equations can be used to reduce simulation time
and memory requirements significantly and thereby make the study of large-scale
phenomena tractable. The method is not specific to LISSOM; it should apply to most
other models with specific intracortical connectivity, and it can be adapted to those
with more abstract connectivity, such as a DoG interaction function. The growth pro-
cess of GLISSOM should provide similar performance and memory benefits to most
other densely connected models whose peak number of connections occurs early in
training. Essentially, the GLISSOM method allows a fixed model to be turned into
one that grows in place, by using scaling equations and an interpolation algorithm.

On the other hand, models that do not shrink an excitatory radius during self-
organization, and therefore do not have a temporary period with widespread activa-
tion, benefit less from GLISSOM. For such models, it may be worthwhile to con-
sider a related approach, whereby only the lateral connection density is gradually
increased, instead of increasing the total number of neurons in the cortex. Such an
approach would still keep the number of connections (and therefore the computa-
tional and memory requirements) low, while keeping the large-scale map features
(such as the distance between orientation patches) constant over the course of self-
organization.

The GLISSOM method is most effective when it can be initiated with very small
maps. However, as was discussed in Section 15.2.3, the self-organizing process re-
quires that the neighborhood radii are at least 1.0, even though the sampling limits
imposed by the Nyquist theorem would allow smaller maps. One way to get around
this limitation would be to approximate smaller radii with a technique similar to anti-
aliasing in computer graphics. Before a weight value is used in Equation 4.7 at each
iteration, it would be scaled by the proportion of its corresponding pixel’s area that is
included in the radius. Because the mask would only apply to small radii, the added
computational overhead would not be large. This technique should permit smaller
networks to be simulated faithfully even with a discrete grid.

Apart from their application to simulations, the parameter scaling equations pro-
vide insight into how structures in the visual cortex differ between individuals, be-
tween species, and during development. In essence, the equations predict how the
biophysical correlates of the parameters differ between any two similar cortical re-
gions that differ in size. The discrepancy between the actual parameter values and
those predicted by the scaling equations can help explain why different brain regions,
individuals and species will have different functions and performance levels.

For instance, Equation 15.3 and the simulation results suggest that learning rates
per connection should scale with the total number of connections per neuron. Oth-
erwise, neurons in a more densely connected brain area would have significantly
more plasticity, which (to our knowledge) has not been demonstrated. Consequently,
unless the number of synapses per neuron is constant, the learning rate must be
regulated at the level of the whole neuron rather than being a property of individ-
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ual synapses. This principle conflicts with assumptions implicit in most incremental
Hebbian models that specify learning rates for individual connections directly. Future
experimental work will be needed to determine whether such whole-neuron regula-
tion of plasticity does occur, and if not, whether more densely connected regions also
are more plastic.

Similarly, Equation 15.3 suggests that pruning is not based on an arbitrary fixed
threshold, but depends on the total number of connections to a neuron. In the model,
this behavior results from the divisive weight normalization, which ensures that in-
creasing the number of connections makes each one weaker (as was discussed in
Section 3.3, such normalization is consistent with recent biological results on neu-
ronal regulation). If the pruning threshold were not normalized by the number of
inputs, a fixed value that prunes e.g. 1% of the connections for a small cortex would
prune all of the connections for a larger cortex. These findings provide independent
computational and theoretical support for earlier experimental evidence that pruning
is a competitive process, and not one based on a fixed threshold (Purves 1988).

The scaling equations are also an effective tool for making cross-species compar-
isons, particularly between species with different brain sizes. In effect, the equations
specify the parameter values that a network should implement if it is to have similar
behavior to a network of a different size. However, as pointed out by Kaas (2000), dif-
ferent species do not usually scale faithfully, probably due to geometrical, metabolic,
and other restrictions. As a result, as V1 size increases, the lateral connection radii
do not increase as specified in the cortical density scaling equations, and process-
ing becomes more and more local. Kaas (2000) proposed that such limitations on
connection length may explain why larger brains, such as human and macaque, are
composed of so many visual areas, instead of just expanding the area of V1 to achieve
the same functionality (see also Catania et al. 1999). The scaling equations in LIS-
SOM provide a concrete platform on which to measure the tradeoffs between a small
number of large visual areas and a large number of small, hierarchically connected
visual areas.

15.7 Conclusion

The scaling equations and the GLISSOM method allow detailed laterally connected
cortical models like LISSOM to be applied to much more complex, large-scale phe-
nomena. Using GLISSOM, it should be possible to model all of V1 at the column
level with desktop workstations. These methods also provide insight into how the
cortical structures compare in brains that differ widely in size. Thus, the scaling
equations and GLISSOM can help explain brain scaling in nature as well as provide
a method for scaling up computational simulations of the brain.
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Discussion: Biological Assumptions and Predictions

The experiments presented in this book provide computational support for the hy-
potheses presented in Chapter 1 about cortical structure, development, and function.
To be well founded, a computational model should make only the assumptions that
are necessary, and those assumptions should be compatible with biological evidence.
Second, the model should suggest a realistic set of biological and psychological ex-
periments that can verify or refute it. In this chapter, the assumptions underlying the
self-organization, genetically driven development, and temporal coding in the LIS-
SOM model are evaluated, and predictions are made based on the simulations. The
next chapter focuses on computation, reviewing important new directions for future
work.

16.1 Self-Organization

Many of the fundamental assumptions of the LISSOM model, such as the computa-
tion of the input activity as a weighted sum, the sigmoidal activation function, and
Hebbian weight adaptation with normalization, are common to most neural network
models. As was discussed in Chapter 3, their computational and biological valid-
ity has been examined in detail by other researchers. However, there are steps in
the LISSOM self-organizing process that make it more complex than the usual ab-
stract model of self-organizing maps. These are: (1) recurrent lateral interactions,
(2) adapting lateral connections, and (3) independent multiplicative normalization
for each connection type. The self-organizing process in LISSOM is also based on
a number of assumptions that were made out of computational necessity and have
not yet been fully characterized experimentally. Those are: (4) short-range excitation
and long-range inhibition, (5) connection death, and (6) parameter adaptation.

In this section, these assumptions will be evaluated based on how biologically
valid and crucial they are for the self-organization phenomena discussed in this book.
Assumptions necessary for genetically driven development and for functional effects
such as grouping will be discussed in later sections.
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16.1.1 Recurrent Lateral Interactions

Perhaps the most important difference between LISSOM and other self-organizing
map models is the settling of activity through recurrent lateral interaction. This pro-
cess affects self-organization by modifying the activation patterns in two ways:

1. It concentrates activity in the maximally active regions of the network, suppress-
ing activity elsewhere.

2. It decorrelates activation across the network through inhibitory lateral connec-
tions.

The first effect generalizes the winner-take-all process of SOM and other abstract
models. Instead of finding one winner and adapting the neurons in a single contin-
uous neighborhood around it, recurrent interaction selects a set of maximally active
regions. This soft winner-take-all process is necessary for afferent connections to
self-organize efficiently: Had there been no such process, all neurons would adapt
for all inputs and the afferent weights would become the same for all neurons with
the same anatomical RF. The explicit lateral interactions also eliminate the search
mechanism for finding the winner which is used in SOM, and make it possible for
all neurons to compute in parallel.

The second effect, decorrelation, is crucial for efficient coding of input. By decor-
relating neural activity to the same extent that they are known to be correlated, the
redundancy of the cortical activity is reduced most efficiently, as was discussed in
Section 14.2. Without such recurrent lateral interactions, the neurons would act much
like linear filters; with lateral interactions, the network activity is concentrated in a
set of best-responding neurons. In this way, the input image is represented as a sparse
coding of the primary visual features.

The cortical plasticity results of Chapter 6 also depend crucially on the lateral
interactions. For example, the dynamic changes in the RF sizes of unstimulated neu-
rons occur because there is less lateral inhibition from the surround. In the same
way, the perceptual shift observed after the dynamic RF experiment results from re-
duced lateral inhibition. The extent of lateral excitation also determines the range
over which cortical neurons can adapt and compensate for lesions.

In addition to self-organization, the recurrent lateral interactions affect the visual
function of the map. They result in the tilt aftereffect discussed in Chapter 7, and pos-
sibly other aftereffects and illusions as well. They modulate synchronization across
spatially separate regions, thus contributing to perceptual grouping as described in
Part IV. Such functional aspects of recurrent lateral interactions will be discussed in
Sections 16.3, 16.4, and 17.2.

16.1.2 Adapting Lateral Connections

As has been shown using the SOM and other self-organizing models, afferent re-
ceptive field structures such as those for ocular dominance and orientation can self-
organize even with fixed lateral interactions. Similarly, receptive fields can be dy-
namic and cortex can reorganize after retinal lesions even in models with recurrent,
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but non-adapting lateral interactions. What role do the adapting lateral connections
serve?

As was discussed in Section 14.2, self-organized inhibitory long-range lateral in-
teractions are most important for eliminating redundant activity and coding visual
input efficiently. Self-organization produces a variety of receptive fields for each
retinal location, and the RFs are organized in a smoothly varying fashion across the
cortex. Therefore, each input causes initial activity in many neurons, and most of
this activity is redundant. An efficient coding can be achieved by retaining activity
in only those units that are best tuned to the features of that retinal region. Such
an encoding can be achieved by decorrelating activity through lateral connections,
making the feature representations of the visual input across the cortex more inde-
pendent. Therefore, lateral inhibition is necessary between the receptive fields, and
its strength should be organized according to the correlations between them. This
type of organization is what LISSOM achieves by adapting the inhibitory long-range
lateral connections. Interestingly, perceptual phenomena such as the tilt aftereffect
emerge as a side effect of this process.

On the other hand, adapting long-range lateral excitation is crucial for perceptual
grouping. The correlations they learn implement the Gestalt principles that allow the
network to decide which elements in the input should be bound together into a co-
herent object. Because maps are locally smooth, it is not as important to adapt the
short-range excitatory connections, although such adaptation also helps improve the
efficiency of coding. These connections cumulate the activity of nearby units, am-
plifying their responses. This process should also depend on activity correlations be-
tween neurons: Similar neurons should contribute more excitation than those that are
dissimilar. If the lateral excitatory connections are also self-organized, the weighting
of lateral activity will be matched to these correlations. Such correctly weighted ex-
citation will produce appropriately sized activity bubbles, and minimum spurious
activity.

Importantly, lateral connections adapt synergetically with the afferent connec-
tions. The afferent organization determines the initial pattern of activity, and the af-
ferent and lateral organizations together determine the final pattern after settling. The
settled patterns in turn determine the weight changes by the Hebbian rule. If one of
these connection types were to be fixed while the other type develops, the resulting
connection patterns would be different. Therefore, the afferent and lateral connec-
tions adapt together in LISSOM, and form matching structures.

In biology, it is not yet clear whether afferent and lateral connections develop in
a similar synergetic fashion. However, experimental evidence suggests that they de-
velop at least about the same time in mammals. In the cat visual cortex, for example,
lateral connections proliferate exuberantly and rapidly elongate in the first postnatal
week, but they do not grow very much afterward (Callaway and Katz 1990; Katz
and Callaway 1992). After the first week, the connections slowly refine into clusters
by synaptic elimination and reach an adult-like organization at the end of 6 weeks.
Simultaneously, afferent connections organize into ocular dominance and orientation
columns: Rough ocular dominance and orientation columns are visible from about 2
to 3 weeks after birth and are adult-like also at about 6 weeks. These observations
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suggest that in the cat neocortex, a rough lateral connection structure emerges first,
bootstraps self-organization, and gradually gets refined into connections that selec-
tively associate neurons with similar properties. However, establishing the details of
this process will require additional experiments, both in cats and in other mammals
such as primates.

16.1.3 Normalization of Connections

An important part of Hebbian learning is a regulatory process that keeps the connec-
tion weights from increasing without bounds (Section 3.3). In LISSOM, the different
kinds of connections are assumed to be regulated independently and multiplicatively.

The different connection types must be adapted independently because they
self-organize from different types of activity correlations. The afferent connections
learn correlations between the cortex and the receptors, the short-range lateral ex-
citatory connections learn correlations between near neighbors within the cortex,
the long-range inhibitory connections learn redundancies between distant neurons,
and the long-range excitatory connections (in PGLISSOM) learn correlations within
coherent objects. If the connection weights are all normalized together, these dif-
ferent types of correlations will influence all the weights, and interfere with self-
organization.

As was discussed in section 3.3, there are two common ways to normalize the
synaptic weights in self-organizing models. In LISSOM, the total weight of each
type of connection is kept constant multiplicatively: After the weights are adapted,
each weight is scaled by the total weight. An alternative way would be to normalize
subtractively: After the weights are adapted, the increase in total weight divided by
the number of weights is subtracted from each weight (e.g. Goodhill 1993; Miller
et al. 1989). Subtractive normalization would not work well in LISSOM. The rea-
son is that it always results in some of the weights increasing to a maximum value
and others decreasing to zero: No intermediate weight values develop (Miller and
MacKay 1994). Therefore, lateral connections will not store the precise correlations
between neurons, and afferent connections will not develop precise representations
of the input features. Furthermore, for stability, synaptic weights become fixed once
they reach their maximum values. Therefore, gradual reorganization such as that ob-
served with retinal and cortical lesions cannot take place. Such representations would
not be as useful in visual coding and processing as the precise, continuous weights
obtained through multiplicative normalization.

The form of the multiplicative normalization used is not crucial: When the inputs
are relatively regular and laid out on a retina, either the constant sum of weights or the
constant vector length normalization can be used (Section 14.4). Self-organization
also works similarly whether the normalization is done postsynaptically, i.e. over in-
coming connections as in the firing-rate LISSOM models (Section 4.4.1), or presy-
naptically over outgoing connections as was done in PGLISSOM (Section 11.4). As
long as the normalization is done separately for each weight type, suitable parameters
can be found for either case, and organized receptive fields and lateral interactions
will develop.
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However, the site of normalization is important for grouping: Presynaptic nor-
malization makes it easier for the model to segment different objects. In this case,
the postsynaptic cell receives inputs through weights that are each scaled differently,
according to the outgoing weights of each presynaptic cell. Even relatively low ac-
tivity can result in a large weight, and the postsynaptic cell can be more sensitive to
small changes in the input. In segmentation tasks, small differences in the activation
levels must be magnified, and presynaptic normalization makes this process easier.

In postsynaptic normalization, all incoming weights are scaled by the same value.
The inputs are treated more equally than in presynaptic normalization, and the be-
havior of the neuron becomes slightly more stable. This property makes postsynaptic
normalization preferable for models that do not include grouping. Biological data to
date do not rule out either form of normalization, and they could even coexist. Com-
putationally, connection weights could be modeled as a product of two factors, the
postsynaptic and the presynaptic weight, each normalized separately (Leow 1994;
Leow and Miikkulainen 1997). The different normalization processes could interact,
and depending on the input, one or the other might dominate; they could also be
specific to only the excitatory or inhibitory synapses. Future research, both experi-
mental and computational, is necessary to verify the precise form of normalization
in biological systems.

16.1.4 The Role of Excitatory and Inhibitory Lateral Connections

In order for a LISSOM network to self-organize, the net lateral interactions between
strongly responding units must be inhibitory at long ranges and excitatory at short
ranges. Such lateral interactions are essential for concentrated activity bubbles to
form and for self-organization to take place (Section 4.2.3). They are also a key in-
gredient common to most self-organizing models (Section 3.4.1; Miller 1994; Miller
et al. 1989; von der Malsburg 1973).

The original biological inspiration for such interactions comes from the neural ar-
chitecture of the retina, where long-range inhibition is well established. In the retina,
lateral inhibition enhances contrast, especially at edges and boundaries of objects.
Such interactions have been shown to produce an efficient coding of the retinal im-
age, decorrelating and reducing redundancies in the photoreceptor activities (Atick
1992; Atick and Redlich 1990). Numerous researchers have proposed that lateral in-
hibition is a general principle of perceptual systems, and may occur similarly in the
cortex (e.g. Blakemore et al. 1970).

Measurements of the activity levels of strongly stimulated cortical neurons in-
deed support the idea of long-range lateral inhibition and local excitation in the
cortex (Grinvald et al. 1994; Sceniak, Hawken, and Shapley 2001). For instance,
Grinvald et al. (1994) performed optical imaging experiments visualizing large-scale
cortical activity. The responses to two stimuli were compared: a surround stimulus
consisting of a high-contrast grating with a square hole (or mask) at the center, and a
center stimulus consisting of three small high-contrast bars that fit within the masked
region. When the surround and center stimuli were presented together, the center re-
gion was substantially less active than when the center stimulus was presented alone,
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indicating that the surround was inhibiting the center area. Similarly, mapping exci-
tatory and inhibitory regions using high-contrast sine gratings shows that surround
influences tend to be excitatory locally but inhibitory at longer ranges (Sceniak et al.
2001).

However, the long-range interactions in the cortex are more complex than the
above experiments might suggest. Anatomical surveys show that 80% of the synapses
of long-range lateral connections connect directly between pyramidal cells, which
are thought to make excitatory synapses only (Gilbert et al. 1990; Hirsch and Gilbert
1991; Kisvárday and Eysel 1992; McGuire et al. 1991). The other 20% of the con-
nections target inhibitory interneurons, which in turn contact the pyramidal cells,
and thus represent inhibitory connections. Even though the inhibitory connections
are outnumbered, the net effect at the columnar level has been difficult to establish
with anatomical studies. For instance, the interneurons often synapse at regions such
as the soma, where their effects may be larger than those of excitatory neurons, which
synapse farther out on the dendrites (Gilbert et al. 1990; McGuire et al. 1991). Thus,
the known anatomy is compatible with both long-range excitation and long-range
inhibition.

Electrophysiological evidence indicates that in fact the same connections can
have either excitatory or inhibitory effects, depending on how strongly neurons are
activated (Hirsch and Gilbert 1991; Weliky et al. 1995; see Angelucci, Levitt, and
Lund 2002 for a review). The balance between these two types of connections de-
pends on image contrast: The incoming lateral connections of a neuron have a mildly
excitatory influence when the surrounding area is activated weakly (as it would be
by a low-contrast stimulus) and a strongly inhibitory effect when the surround is ac-
tivated strongly (as it would be by a high-contrast stimulus; Hirsch and Gilbert 1991;
Weliky et al. 1995). Thus, for high contrast stimuli, as in the Grinvald et al. (1994)
study, the interactions are usually inhibitory, even though the anatomical connections
are primarily between excitatory neurons.

The details of the cortical circuit implementing this contrast dependence remain
unclear. One early proposal was that the inhibitory interneurons are inherently more
effective than the direct excitatory connections, but have a higher threshold for acti-
vation (Sillito 1979). At very low stimulus levels, the excitatory effects would pre-
dominate, but at high levels the inhibitory interneurons would become progressively
more active and eventually would suppress the response of the target cell. More re-
cently, Douglas, Koch, Mahowald, Martin, and Suarez (1995) proposed a detailed
circuit based on recurrent short-range excitatory lateral connections. They showed
how the inhibitory connections can dominate the response even though they are fewer
in number. Simplified versions of such circuits have been modeled by Stemmler et al.
(1995) and Somers et al. (1996). They propose that these complex connections make
it easier to detect weak, large-area stimuli while suppressing spatially redundant ac-
tivation for strong stimuli. Figure 16.1 shows one such circuit that could give rise to
contrast-dependent effects.

The two-layer (SG) model of cortical columns in PGLISSOM can be seen as a
column-level abstraction of such circuits. In PGLISSOM, SMAP has long-range in-
hibition and short-range excitation and drives the self-organizing process; in GMAP,



16.1 Self-Organization 351

Inhibitory cell

connection
Excitatory lateral

Fig. 16.1. Local microcircuit for lateral interactions. This circuit can potentially explain
how lateral interactions can depend on the input contrast. A long-range lateral connection
from an excitatory cell contacts two pyramidal excitatory cells (large black triangles) and
one inhibitory cell (large circle). The inhibitory cell has a high threshold for activation, but
strongly inhibits the pyramidal cells when activated. Weak excitation activates the pyramidal
cells monosynaptically, and does not activate the inhibitory cell. However, strong excitation
activates the inhibitory cell as well, causing a net inhibitory effect. In this manner, a sin-
gle incoming excitatory long-range lateral connection could have inhibitory effects for strong
stimuli (e.g. high-contrast patterns), and excitatory effects for weak stimuli. The SG model of
cortical columns in PGLISSOM produces a similar effect, and can be seen as an abstraction of
this circuitry at the columnar level. The excitatory synapses (shown as small triangles) adapt
by Hebbian learning, but the inhibitory synapses (shown as small circles) are fixed in strength.
Such learning can be approximated by direct Hebbian excitatory and inhibitory connections,
as is done in PGLISSOM. Adapted from Weliky et al. (1995).

both connections have long range and implement grouping. When the combined ef-
fects of these interactions are measured on a cortical column in PGLISSOM, exci-
tatory effects are found to dominate with low-contrast inputs, and inhibitory effects
with high-contrast inputs, as they do in the cortex.

Importantly, self-organization is primarily driven by high-contrast inputs in
PGLISSOM, and most likely in animals as well. Low-contrast patterns rarely cause
a significant response because of the neurons’ nonlinear activation function. The
resulting synaptic changes are small and do not significantly affect the learning pro-
cess. Thus, the simplifying assumption, common to all LISSOM models, that the
long-range lateral interactions are primarily inhibitory during self-organization, is
well founded. The GMAP layer can be omitted from models that do not focus on per-
ceptual grouping; the remaining network includes short-range excitation and long-
range inhibition, which is the necessary connectivity for proper self-organization to
occur.

For computational convenience, the long-range inhibitory interactions are repre-
sented in all LISSOM models as direct connections instead of connections through
interneurons (such as those in Figure 16.1). Because the interneurons can be brought
to firing threshold rapidly and repeatedly without fatigue (Thomson and Deuchars
1994), they introduce only a small delay in the inhibitory process and can be approx-
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imated functionally by direct connections. Also, while there is no clear evidence for
Hebbian strengthening of direct inhibitory synapses in the cortex, the inhibitory ef-
fects can be modified through Hebbian strengthening of excitatory synapses onto the
inhibitory interneurons. Therefore, direct Hebbian learning is a valid abstraction of
adapting lateral inhibition in the cortex, resulting in more parsimonious models with
equivalent behavior.

16.1.5 Connection Death

An important component of self-organization in LISSOM is the pruning of unused
lateral connections (Section 4.4.2). This process is useful computationally, but it is
also well motivated biologically.

More than half of the long-range lateral connections in the neocortex are esti-
mated to disappear during development (Callaway and Katz 1990; Katz and Call-
away 1992; McCasland et al. 1992; Purves and Lichtman 1985). In the visual cortex,
structured lateral connectivity emerges from an initially unstructured organization
after axons projecting to incorrect targets die off (Callaway and Katz 1990). Which
connections survive depends on how often they are active. The reason could be that
synapses are nourished in proportion to their strength. Once formed, a weak synapse
may survive only for a limited time without sufficient trophic factors.

The onset of connection death in LISSOM, td, models this survival time. Synapses
whose strength falls below the survival threshold are not eliminated immediately, but
only if they stay below the threshold until td. Even in prolonged self-organization,
short-term fluctuations in synaptic strength will not cause inappropriate connection
death in LISSOM. The connections are pruned at well-spaced intervals ∆td, instead
of eliminating them as soon as they become weak. As was seen in Section 14.2.3,
the resulting patchy lateral connections are crucial in forming a sparse, redundancy-
reduced visual code.

Connection death is also important for perceptual grouping. The long-range ex-
citatory connections in PGLISSOM are pruned after training so that only the strong
ones remain (Section 11.4). The resulting patchy connectivity represents activity cor-
relations in the input, implementing the Gestalt principles that drive the grouping
process. They also make it possible to adapt the lateral interactions dynamically dur-
ing performance. Since the connectivity is patchy and stable, the strengths can be
modulated at a fast time scale without changing their overall effect. Although not
strictly necessary for grouping, such fast dynamic adaptation results in more robust
synchronization (Baldi and Meir 1990; von der Malsburg 1981, 2003; Wang 1996).

An important side effect of connection death is that it limits how extensively the
network can adapt to changes in internal and external inputs. For example, before
the connections are pruned, the network can recover function even after relatively
large cortical damage, but such plasticity is limited in the pruned adult network (Sec-
tions 6.4.2 and 16.4.4). Also, after the connections have been pruned to represent
activity correlations in the input, if those correlations change, it will be difficult for
the network to adapt, as it will be for animals (Sections 8.1 and 9.4.2). Connection
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death can therefore be seen as a process that makes the computational system more
efficient, at the expense of the ability to adapt to changes.

16.1.6 Parameter Adaptation

As was discussed in Sections 4.2.3 and 4.4.3, consistent lateral inhibition is neces-
sary for the self-organizing process, and gradually reducing the excitatory radius and
gradually making the neurons more difficult to activate allows forming more regular
maps. These mechanisms were included primarily for computational reasons, allow-
ing the maps to self-organize even from very disordered starting points. Biological
maps have more order initially, and thus may not require these processes.

However, biological counterparts do exist for the parameter adaptation processes
in LISSOM. They represent maturation based on time and trophic factors, and can be
used to establish a maturation schedule for LISSOM models independently of input-
driven self-organization. Such maturation allows studying deprivation and critical
periods, as reviewed in Section 2.1.4 and implemented in Sections 9.4 and 13.4.

For instance, several lines of evidence suggest that there is more net excitation
during early development than later. First, immature neurons are connected by a net-
work of excitatory gap junctions that are not seen in the adult (Sutor and Luhmann
1995). Second, cross-correlation studies in the primary visual cortex of the kitten
showed that net lateral excitation extends to distances of 1 mm in the first 2 to 3
weeks (after compensating for cortical growth), and decreases to less than 400 µm
by the seventh to ninth week (Hata et al. 1993). Third, direct studies of synaptic con-
nections in the ferret visual cortex found that local excitatory synaptic connections
increase rapidly in number and extent at the time of eye opening, and subsequently
prune down to much more local connectivity (Dalva and Katz 1994). Thus, animal
cortex may also have wider excitatory activations in early stages.

To fine tune the LISSOM map, the activation threshold for neurons is gradu-
ally raised so that neurons become more difficult to activate. Interestingly, cortical
neurons also become harder to trigger electrically as they mature. Immature neurons
have higher input resistances, longer time constants and more linear relationships be-
tween applied current and voltage than do mature cells (Prince and Huguenard 1988).
Thus, older cells require more electrical stimulation to activate. These effects may
be due to homeostatic plasticity processes, which tend to normalize the frequency
of neuronal firing over time (Turrigiano 1999). That is, immature neurons have RFs
that are not yet well developed and are not yet a good match to the statistics of vi-
sual scenes, and thus homeostatic mechanisms may lead them to fire more easily
(for a given amount of electrical stimulation). Older neurons have well-tuned RFs,
and can thus require a good match before responding. In LISSOM, these processes
are approximated by gradually raising the sigmoid threshold. Extending LISSOM to
include automatic mechanisms for regulating firing probability is discussed in Sec-
tion 17.1.1.

For simplicity, LISSOM includes constant levels of inhibition throughout the
simulation. However, the role of inhibition in animals is more complex. First, the
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neurotransmitter GABA has an excitatory effect on postsynaptic cells in early de-
velopment, in contrast to its inhibitory effects in the adult. Second, direct electrical
stimulation does not create inhibitory responses until about 10 days after birth in
the rat (Sutor and Luhmann 1995). (Presumably, inhibition could be evoked before
birth in animals such as monkeys with a longer gestation, but this possibility has
not yet been studied.) Assuming that the homeostatic mechanisms mentioned above
also apply to inhibition, it would be possible to extend LISSOM with an automatic
mechanism for introducing inhibition. Once cells begin to activate regularly, a feed-
back mechanism could automatically increase inhibition to balance excitation. Such
a mechanism would reflect the biological process, while allowing enough inhibition
to initiate the self-organizing process.

16.2 Genetically Driven Development

In Part III, the hypothesis that input-driven self-organization is based on internally
generated patterns as well as external visual inputs was tested in computational sim-
ulations. The first assumption was that simple patterns such as retinal waves could
drive the early self-organization of V1. Second, higher levels could be similarly orga-
nized assuming more complex patterns could be generated in the brainstem as PGO
waves and propagated during REM sleep. Third, pattern generation would have been
discovered by evolution because it makes it easier to construct complex adaptive sys-
tems than hard wiring or general learning. These assumptions are discussed in more
detail in this section.

16.2.1 Self-Organization of V1

The shape and distribution of internally generated activity patterns determine how
the maps and connections develop in HLISSOM (Chapter 9). Although a variety of
such patterns have been detected experimentally, retinal waves (Section 2.3.3) are
currently the most likely cause for the early organization of V1. In general, such
patterns have to satisfy four main requirements.

First, there needs to be a mechanism for generating internal patterns consistently
while V1 develops. Such a mechanism has indeed recently been mapped out in ferrets
(Butts, Feller, Shatz, and Rokhsar 1999; Feller 1999; Feller, Butts, Aaron, Rokhsar,
and Shatz 1997): retinal waves emerge from the spontaneous behavior of neurons
connected together by gap junctions. In essence, one neuron fires randomly, which
excites its neighbors, and then regulatory mechanisms step in to keep the activity
localized. The result is an activity spot that appears randomly, drifts, and disappears.
It is likely that other pattern generation mechanisms will be found in other species
once their developing sensory systems are studied in detail. A variety of such mech-
anisms are already known to exist in the motor systems of different vertebrate and
invertebrate species (see Marder and Calabrese 1996 for a review).

Second, the internally generated activation needs to drive the activation of neu-
rons in V1. Which sources of activity actually reach the developing V1 neurons is
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not yet known. However, the retinal wave patterns are known to occur before orien-
tation maps and selectivity can be measured in V1 (see Issa et al. 1999; Wong 1999
for reviews), so they are correctly timed for this role. Further experiments will be
needed to verify whether the retinal waves produce significant neural responses in
V1 while orientation maps develop, or whether other sources of activity are more
prominent at this time.

Third, the developing V1 needs to perceive the internally generated patterns as
oriented. So far, no such patterns have been observed. For example, the retinal waves
in the ferret are approximately as wide as the V1 receptive fields in the adult animal
(Wong et al. 1993); if they were relayed directly to V1, they would activate all the
inputs to many of the cortical cells, and would not appear oriented to most of them.
However, as the simulations in Section 9.2 showed, the center–surround processing
in the ON and OFF channels of the retinal ganglia and LGN could emphasize the
edges of the retinal wave patterns enough to give them a distinct orientation. Alter-
natively, neurons in the LGN may respond only transiently, to the first appearance of
activity in each part of the retinal wave, which again would make the patterns seen
by V1 more like edges than like large activated areas. Although it is not yet known
how the ganglia and the LGN respond to the retinal waves, in either of these cases
the broad, internally generated patterns could drive the development of orientation
maps.

Fourth, the internally generated patterns need to activate the ON and OFF chan-
nels differently. If the same patterns appear in both channels, V1 will not be able
to learn the center–surround relationship between them, and will not be able to pro-
cess natural image input. While the origins of retinal wave patterns are still not fully
understood, they do result in different activations in the ON and OFF neurons in
the retina (Myhr et al. 2001). It is possible that the activation is generated before it
branches into ON and OFF channels, or else activity may be generated separately in
each channel. In either case, such a difference should be enough to drive the devel-
opment of V1 neurons, as was shown in Section 9.2.

Because retinal waves are consistent with these computational requirements and
little is known about the properties of other spontaneous activity, they are currently
the most likely candidate for prenatal self-organization of V1 orientation maps. Other
sources of patterns could contribute to this process in addition or even instead of
retinal waves, provided they satisfy the requirements above.

16.2.2 Self-Organization of Higher Levels

The face-selective area simulations in Chapter 10 rely on similar assumptions about
the PGO waves (Section 2.3.4) as the V1 simulations do on retinal waves. Like retinal
waves, PGO waves are not the only possible cause for prenatal self-organization, but
they are the most likely cause for higher levels, given the computational requirements
and our current understanding of internally generated patterns. These assumptions
are evaluated in this section.

First, a neural mechanism must exist for generating spatial configurations of ac-
tivity similar to the three-dot pattern (Section 10.2.6). Such activity might occur
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through a variation of the mechanisms involved in retinal waves. A relatively large
circular area could be activated, which could then break up into individual activity
bubbles through mutual inhibition.

In preliminary experiments using LISSOM it turned out relatively easy to gen-
erate such multi-spot activity using short-range excitation and long-range inhibition,
starting from an initial larger set of activated neurons. Biasing the patterns to pro-
duce vertically oriented sets of spots, with more on top than below, is slightly more
difficult, but can be achieved using a gradient of activation threshold or excitation
strength across the dimension representing vertical in the cortex. Such a gradient
makes it more likely for bubbles to form in the upper portion of an activated region
than in the lower. Such mechanisms might be implemented in the developing brain-
stem, giving it the capability to generate spatial patterns that lead to newborn face
preferences.

The second assumption is that such patterns can be propagated to the higher lev-
els of the visual system during development. As described in Section 2.3.4, PGO
waves generated during REM sleep are a good candidate for this process. How-
ever, there are a large number of theories for other functions of REM sleep (Harnad,
Pace-Schott, Blagrove, and Solms 2003; Horne 1988; Moorcroft 1995; Rechtschaf-
fen 1998), and it is important to evaluate whether pattern generation is consistent
with them.

The most prominent theory is that REM sleep helps consolidate long-term
episodic memories: Such memories are believed to be stored temporarily in the hip-
pocampus as they are acquired, then rehearsed repeatedly during REM sleep (Al-
varez and Squire 1994; Qin, McNaughton, Skaggs, and Barnes 1997; Sejnowski
1995; Shastri 2002; Smith 1996; Wilson and McNaughton 1994). Rehearsal helps
store the memories permanently in the cortex through long-term learning that inter-
leaves and integrates the new memories with existing ones. In this way an organism
can quickly acquire new memories, without interference from older ones, and then
store them more permanently through long-term learning. Evidence for the mem-
ory consolidation theory comes from several types of experiments and observations
(Smith 1996). First, damage to the human or animal hippocampus often results in ret-
rograde amnesia, i.e. forgetting of recent, but not distant, memories (although other
functions may be affected as well, such as probabilistic category learning and spa-
tial representation and navigation; Fuhs, Redish, and Touretzky 1998; Hasselmo,
Bodelón, and Wyble 2002; Hopkins, Myers, Shohamy, Grossman, and Gluck 2003;
O’Keefe and Burgess 1996; Touretzky 2002). Second, REM sleep deprivation can
act much like retrograde amnesia. If an animal is deprived of REM sleep soon after
training it on a new task, it performs poorly on that task later; deprivation before
the task or long after the task does not have as large an effect. Third, when animals
are trained on new tasks or exposed to novel environments, they spend more time in
REM sleep. The conclusion is that new episodic memories depend on the hippocam-
pus and REM sleep until the memories are consolidated into the cortex.

However, over the past few years, alternative explanations for each of these phe-
nomena have emerged. For instance, retrograde amnesia does not necessarily indi-
cate that memory is being consolidated (Moscovitch and Nadel 1998; Nadel and



16.2 Genetically Driven Development 357

Moscovitch 1997). Such amnesia could result from an impaired process of storing
memories permanently in the hippocampus just as well as it can from disrupted con-
solidation in the cortex. Similarly, depriving subjects of REM sleep causes significant
stress and changes the behavior of the animal, which in turn can make learning more
difficult even if memory is consolidated normally (Horne 1988; Rotenberg 1992).
Finally, REM sleep may in fact increase after learning and in novel environments in
order to counteract excessive learning (Jouvet 1998, 1999).

It is possible that it has been difficult to establish a clear role for REM sleep
because it may serve a variety of functions. For instance, REM sleep might be a
way for the nervous system to rehearse important sensory patterns, replaying them
to strengthen connections and responses. This mechanism could be used both for
rehearsing memories, as in memory consolidation, and for training the system with
genetically controlled activity patterns, like the three-dot patterns in Part III. Such
training could be useful for constructing the system initially, and it could be crucial
for integrating environment-driven learning with the genetic biases. While it is not
yet possible to refute or verify this hypothesis experimentally, internally generated
activity patterns resembling PGO waves are known to exist during sleep even before
waking experience (Marks et al. 1995). The crucial assumption of the HLISSOM
model is that higher cortical areas can learn from such patterns just as they do from
externally evoked activity.

The third assumption is that the patterns propagated as PGO waves have the
shape that can drive self-organization of higher levels, such as the three-dot con-
figuration that results in prenatal face preferences in HLISSOM. At this point, PGO
waves and other types of spontaneous activity have not been studied as thoroughly as
retinal waves. In particular, it is not yet known whether they consist of large, coherent
patches of activity, and whether those patches are organized in configurations such as
three-dot patterns. Recent advances in imaging equipment may make measurements
of this type possible in the near future (Rector et al. 1997), allowing testing these
assumptions directly.

As internally generated patterns are measured in more detail in the future, can-
didates other than PGO waves may emerge; it may also be possible to identify other
areas and behaviors where prenatal self-organization might play a role. However,
based on our current biological and computational knowledge, the PGO waves are
an explanation at least for the newborn preferences for faces.

16.2.3 Evolving Complex Systems

The HLISSOM simulations show how pattern generation can be an effective way
to develop a functional system. The underlying assumption of the whole approach
is that at some point during vertebrate evolution, pattern generation proved to be
a more effective way to construct advanced perceptual and cognitive abilities than
direct hard wiring and general-purpose learning. It is important to understand why,
both to gain insight into the biological observations, and potentially to generate better
artificial learning systems.
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One important reason is that with pattern generation, the desired outcome can be
encoded independently of the architecture that performs the task. For instance, it is
possible to specify that neurons should respond to three-dot stimuli independently
of the actual hardware that implements face processing. Using pattern generation,
evolution could insert a measured amount of bias (Turney 1996) into the general-
purpose learning system without changing the architecture of the learning system
itself. The system can then learn to become specific for faces, using mechanisms like
those explored by Dailey and Cottrell (1999), even without specific genetic control.
In short, the divide-and-conquer strategy of pattern generation would allow such an
architecture to evolve and develop independently of the function, which may have
been crucial for the rapid evolution and development of complex adaptive systems.

In terms of information processing, pattern generation combined with self-
organization may represent a general way to solve difficult problems like face de-
tection and recognition. Rather than meticulously specifying the final, desired indi-
vidual, the specification need only encode a process for constructing an individual
through interaction with its environment (Section 2.3.2; see Elman et al. 1996; Mar-
cus 2003; Mareschal, Johnson, Sirois, Spratling, Thomas, and Westermann 2005a,b
for related and alternative explanations). The result can combine the full complexity
of the environment with a priori information about the desired function of the system.
In the future, this approach could be used for engineering complex artificial systems
for real-world tasks, e.g. handwriting recognition, speech recognition, and language
processing. This idea is explored in more detail in Section 17.3.5.

16.3 Temporal Coding

Like self-organization depends on adapting lateral connections and development de-
pends on internally generated patterns, perceptual grouping in LISSOM depends
on temporal coding through synchronization. The main assumptions are that neu-
ral synchrony drives perceptual performance, low-level temporal codes can be un-
derstood at a higher level, and synchronization can be implemented together with
self-organization in different layers of the visual cortex.

16.3.1 Synchrony as a Perceptual Representation

The assumption that synchronous neural activity represents coherent percepts orig-
inates from two kinds of experiments: Either input properties and neural synchrony
are compared in animals (Eckhorn 1999; Eckhorn et al. 1988; Gray 1999; Gray et al.
1989; Gray and Singer 1987; Singer 1993, 1999; Singer and Gray 1995), or psy-
chophysical performance and timing between input features are compared in humans
(Fahle 1993; Lee and Blake 2001; Leonards and Singer 1998; Leonards et al. 1996;
Usher and Donnelly 1998). In the first case, whether the animal perceived the in-
put as coherent is not known; in the second, whether the neurons fired in synchrony
has not been observed. However, to verify the assumption, it would be necessary to
observe both phenomena at the same time and establish a link between them.
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Such an animal study might indeed be possible. Over the last decade, consider-
able evidence has emerged suggesting that under certain conditions, neural activity of
the animal is faithfully represented in its observable behavior. For example, micros-
timulation of neurons in the monkey middle temporal area (MT, the visual motion
center in the brain) causes a significant change in motion detection tasks (Salzman,
Britten, and Newsome 1990). Also, the spike count of a single neuron in MT accu-
rately predicts the behavior of the monkey in such tasks (Britten, Shalden, Newsome,
and Movshon 1992; Celebrini and Newsome 1994).

In these studies on monkey MT, periodically modulated synchronization (or co-
herent oscillations) was not observed (Bair, Zohary, and Newsome 2001). However,
it should be possible to apply the same methods to areas where such oscillations have
been found, such as areas V1 and V2 in cats (Eckhorn et al. 1988; Gray et al. 1989;
Gray and Singer 1987; Singer 1993). The animal could be trained to respond to the
stimuli and act out the decision it made about the stimuli. The coherence in input
features, the synchrony in neural firing, and the perceptual experience (manifested
as behavioral performance) could all be measured and compared to verify explicitly
that correlated firing of neurons represents perceptually salient events.

In order to account for graded responses in behavior, like those in the PGLISSOM
grouping experiments of Chapter 13, it must be possible to observe different degrees
of synchrony in the neural activity. In PGLISSOM, such a gradation is measured as
correlation coefficients between the MUA sequences. The two sequences can match
to a degree, and that degree can vary over time; the correlation of the two sequences
over time corresponds to the degree of synchrony. Similar methods could be used in
the experiments outlined above for comparing neural activity and behavior.

However, with graded synchrony, it will be difficult to interpret synchrony in
more complex representations, like those constructed using the transitive grouping
rule (Geisler et al. 2001; Geisler and Super 2000). For example, if representations
(A,B) are synchronized to degree x, (B, C) to y, and (A,C) to z, how strong is
the synchrony in this group, i.e. how strong is the sense of a coherent object? Should
it be max(x, y, z), min(x, y, z), their average, or some other quantity? If z, y < z,
should B be be interpreted as part of the representation of the object or not? Although
it is possible to adopt various rules in computational models, such questions can
be answered conclusively only through biological measurements of synchrony and
performance, as outlined above.

16.3.2 Interpretation of Temporal Codes

The PGLISSOM approach assumes that synchronized activity is the perceptual rep-
resentation employed by the brain, for the reasons outlined above. However, there
are other forms of temporal information that neural systems could utilize as well,
including time to first spike, inter-spike intervals, phase difference of spikes rela-
tive to background oscillation, variation of response amplitude over time, and degree
of resonance in frequency-tuned response (Bruns, Eckhorn, Jokeit, and Ebner 2000;
Eckhorn, Gail, Bruns, Gabriel, Al-Shaikhli, and Saam 2004; Freeman and Burke
2003; Izhikevich 2001; Kozma, Alvarado, Rogers, Lau, and Freeman 2001; Maass
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1998; O’Keefe and Reece 1993; Oram, Wiener, Lestienne, and Richmond 1999). In
a broader sense, the question is how the information in the spike sequence (or spike
train) can be interpreted. Various techniques have been used in this task, including
information theory, Bayesian inference, and other probabilistic methods (Agüera y
Arcas and Fairhall 2003; Baldi 1998; Rieke, Warland, de Ruyter van Steveninck,
and Bialek 1997). These methods work in different cases and lead to different re-
sults; however, there is little direct neurobiological evidence on what kinds of codes
might actually be used by the brain, and for what purpose.

It might be possible to observe various temporal codes using these techniques in
PGLISSOM, and it might be possible to adjust the model to express some of them in
particular. Their possible causes and roles can be relatively easily assessed because
the entire state of the model is known at all times and can be easily altered. Such
computational studies may turn valuable in testing hypotheses about temporal codes,
as well as in designing methods for measuring them.

Assuming that synchronized activity is used at the primary visual cortex to repre-
sent objects, how can the higher levels of the visual system respond to them? Some-
how, such activity would have to be recognized as a coherent pattern, distinguishing
groups of neurons that fire at different synchronized phases. One possibility is that
different high-level neurons detect coincident low-level firing for different objects,
and produce spatially separate rate codes as a result (Abeles 1982; Marsalek, Koch,
and Maunsell 1997). Mechanisms such as depressing synapses, which synchronize
synaptic transmission even when action potentials are only partially synchronized
(Senn, Segev, and Tsodyks 1998; Tsodyks, Pawelzik, and Markram 1998), may make
such coincidence detection robust in practice.

However, coincidence detection requires that a different neuron represents each
possible binding of input features into a coherent object, which is unlikely to be
a general solution to the interpretation problem. The alternative is that the high-
level representations are distributed as well, each consisting of a collection of more
abstract feature representations. These high-level patterns can then be synchronized
together with their low-level constituents (von der Malsburg 1999).

Because high-level representations are difficult to identify and measure, it is dif-
ficult to distinguish between these alternatives experimentally. However, computa-
tional models can be used to study whether coincidence detection could be accurate
or general enough, and what kind of connectivity would be required for synchro-
nization at the high level. Such models might eventually lead to testable predictions
about how the brain interprets temporal codes.

16.3.3 The Role of the Different Layers

The two-layer organization of PGLISSOM was developed because long-range lateral
inhibition with short-range excitation was found computationally necessary for or-
dered self-organization (SMAP), and long-range inhibition and excitation for group-
ing (GMAP; Section 11.1). Such a design can also be interpreted in terms of the
connectivity patterns in the cortex, leading to insights into their function.
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As was discussed in Section 2.1.2, the visual cortex is often described in terms of
six layers. These layers are connected in complex but systematic ways (Binzegger,
Douglas, and Martin 2004; Çürüklü and Lansner 2003; Douglas and Martin 2004;
Robert 1999). Afferent excitatory connections to neurons in layer 4 are often accom-
panied by inhibitory connections to their surrounding neurons, established through
inhibitory interneurons in layer 6 (Ahmed, Anderson, Martin, and Charmaine 1997;
Ferster and Lindström 1985; Grieve and Sillito 1995). The long-range inhibitory and
short-range excitatory connections in SMAP can be interpreted as abstractions of
this on-center off-surround effect, as well as the effect of direct inhibitory lateral
connections of layers 3, 5, and 6 (Kisvárday, Kim, Eysel, and Bonhoeffer 1994; Mc-
Donald and Burkhalter 1993). On the other hand, the very long-range excitatory and
inhibitory lateral connections in GMAP most naturally correspond to the long-range
axonal projections in layer 2/3 (Gilbert and Wiesel 1989; Hirsch and Gilbert 1991;
McGuire et al. 1991). As in the cortex, the inhibitory connections in the SMAP can
be shorter than the connections in the GMAP. The third architectural component in
PGLISSOM consists of the intracolumnar connections, corresponding to such known
connections between layers 2/3, 4, 5 and 6 in the cortex (Callaway and Wiser 1996;
Gilbert and Wiesel 1979).

Thus, the PGLISSOM architecture has a natural interpretation as a biological
model. Consequently, PGLISSOM suggests that the specific anatomical arrange-
ments of the visual cortex may be due to different functional requirements, as they
are in PGLISSOM: The lower layers may contribute primarily to self-organization,
and layer 2/3 mostly to perceptual grouping. As a matter of fact, layer 2/3 in the
cortex contains fast-spiking cells known as chattering cells (Gray and McCormick
1996), postulated to contribute to coherent oscillations and suggesting that the long-
range connections in layer 2/3 might play a central role in grouping (Grossberg 1999;
Grossberg and Williamson 2001; Raizada and Grossberg 2001). Although the lat-
eral excitatory and inhibitory connections appear to have opposite effects, they serve
different purposes and operate through different mechanisms. While decorrelation
takes place at the level of average activity, synchronization applies to temporal cod-
ing, and the system can therefore be both decorrelating and grouping at the same
time. The PGLISSOM model further suggests that the lateral circuitry may adjust
the balance of these two functions according to contrast (Section 16.1.4). With high-
contrast inputs, which make grouping easier but strongly influence self-organization,
the long-range interactions are mostly inhibitory; with low contrast these interactions
are mostly excitatory, enhancing the grouping function.

In the future, the PGLISSOM model can be extended to model the biological
circuitry in more detail, and some of its biological predictions can be verified, as will
be discussed in Sections 16.4.8 and 17.1.3. In this way, models such as PGLISSOM
can help explain the different functions found in the layered architecture of the visual
cortex, and allow gaining insight into how the functional divisions may occur and
how they interact.
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16.4 Predictions

The main prediction of the LISSOM model is that the self-organization, pattern gen-
eration, and synchronization mechanisms described in this book are responsible for
much of the structure, development, and function of the visual cortex. Because the
model matches biological data well, many of its assumptions (outlined above) can
also be interpreted as predictions. They are computationally advantageous and some-
times even necessary, suggesting that they might apply to biology as well.

The main advantage of a computational model is that its processes and mech-
anisms are completely observable at all times. Such observations lead to specific
predictions and suggestions for future biological and psychological experiments. A
number of such predictions are reviewed in this chapter, referring back to the in-
dividual chapters where the underlying mechanisms are discussed in more detail.
Predictions about cortical structure are reviewed first, followed by those about de-
velopment, perceptual grouping, and visual coding. The focus is on experimental
(biological or psychological) studies that could be performed in the near future. Fu-
ture computational work is reviewed in Chapter 17.

16.4.1 Cortical Organization

The LISSOM simulations in Chapter 5 show how multiple input feature dimensions
and patchy lateral connections can self-organize at the same time based on a sin-
gle input-driven Hebbian learning process. The model can be used to make several
predictions about how the cortical organization depends on visual inputs.

Hubel and Wiesel (1959; 1965; 1974; Section 2.1.2) originally observed that in-
put features such as ocularity and orientation seemed to be hierarchically organized
in V1: For each retinal location there were two areas with different ocular dominance,
further divided into orientation-selective patches. Further measurements have shown
that neurons have more complex spatiotemporal receptive fields, and the features
depend on each other more than originally thought. In many cases the emergent or-
ganization is well approximated by a hierarchy (e.g. Weliky et al. 1996), but e.g. the
orientation maps may differ depending on the spatial frequency used in measuring
them (Basole, White, and Fitzpatrick 2003; Issa et al. 2001). Thus, the hierarchi-
cal organization should be considered primarily as a way to describe the complex
properties of neurons rather than an underlying principle of cortical organization.

Self-organizing models such as LISSOM can be instrumental in understanding
how such complex cortical organization emerges. The V1 organization is not built in,
but is constructed in a self-organizing process based on properties of visual inputs.
What structures develop depends on how much each feature varies and how large the
map is. The feature with the highest variance is represented as large map areas with
uniform values, such as ocular dominance stripes. If the map has enough units, these
areas are further divided into subareas with uniform values for the feature with the
next largest variance, such as orientation preference. Eventually the features vary too
little or there are too few units to continue the hierarchy, and the remaining features
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are represented simultaneously at the same level (Kohonen 1989; Miikkulainen 1993;
Obermayer et al. 1990d).

How strongly expressed the hierarchy is depends on how different the variances
of different features are (Section 5.5.3). An important prediction of self-organizing
models is that different maps can be obtained by manipulating the variances. For
example, if spatial frequency is artificially varied more and orientation less than in
the normal visual environment, the visual cortex of a test animal should develop large
spatial frequency stripes and orientation patches inside them. The model also predicts
that in species with a larger V1, topographic organization would be visible for more
visual features. However, as V1 gets larger to fit a wider variety of feature-selective
cells, eventually it becomes infeasible to connect the entire map laterally, and the
visual cortex is instead divided into several different visual areas (Section 15.6; Kaas
2000).

Such models also predict that the shapes of the observed structures, such as the
periodicity of the preference patches, depend on correlations in the input patterns.
For example, the stronger the correlations between the eyes, the narrower the ocular
dominance stripes, and with perfect correlation they disappear entirely. Similar ob-
servations have already been made in cats, comparing normal and strabismic (uncor-
related) organizations (Section 5.1.2; Goodhill and Löwel 1995; Löwel 1994; Löwel
and Singer 1992).

It should be possible to verify these predictions in biological experiments where
the input variances and correlations in the visual environment are systematically var-
ied and the resulting organization observed through optical imaging. If confirmed,
they would suggest that the cortical organization is indeed constructed in a self-
organizing process driven by the properties of the visual input.

16.4.2 Patterns of Lateral Connections

The LISSOM model predicts that lateral connection patterns follow the activity cor-
relations set up by the organization of receptive fields. If the major activity corre-
lations are organized according to ocular dominance, as in a strabismic animal, the
patterns follow the organization of ocular dominance (Section 5.4.3). If the ocular
dominance is a less important feature, as in normal animals, the lateral connections
follow the organization of the orientation and direction maps (Section 5.6).

In the orientation map, the lateral connection patterns are determined not only
by the orientation preference, but also orientation selectivity, i.e. by how tuned the
neuron is to orientation. Highly selective cells have lateral connections that connect
primarily to other highly tuned cells with similar orientation preference. When the
connection patterns are mapped back to visual space, they appear elongated along
the direction of orientation preference. This prediction has already been verified ex-
perimentally (Bosking et al. 1997; Sincich and Blasdel 2001). Other related predic-
tions have not yet been tested. For instance, less selective cells in the model have
lateral connections that are unspecific to orientation. The connections also follow
the local organization of the orientation map: At pinwheel centers for example, the
lateral connection patterns are unspecific to orientation, and more or less isotropic.
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At discontinuities such as fractures, the patterns are elongated along the orientation
preferences of the nearby cells. At saddles, they follow the orientations that make
up the saddle, but also intermediate orientations that match the preferences in the
middle of the saddle (Section 5.3.4).

Similarly, long-range connections for direction-selective cells in the LISSOM
maps are specific for direction of motion, in addition to orientation. They extend
along the preferred orientation, not direction, and avoid patches of orthogonal orien-
tations and opposite directions. Preliminary experimental results in ferrets are con-
sistent with this prediction (White, Bosking, Weliky, and Fitzpatrick 1996). Further,
neurons at DR fractures connect with both directions and extend along their common
orientation. At DR saddles, they connect with the directions of the saddle, and at DR
pinwheels with all directions; these DR features can occur at a variety of OR map
features. The ocular dominance preferences are overlaid with the OR and DR prefer-
ences: The neurons most selective for one eye prefer connections from that eye, but
such preference is absolute only in strabismic animals.

As will be discussed in Section 17.2.1, the primary visual cortex also has an
organization of spatial frequency and color (Issa et al. 1999, 2001; Landisman and
Ts’o 2002a,b; Livingstone and Hubel 1984a). The lateral connections of cells with
these feature preferences should be organized according to similar principles. The
cells that are highly tuned to low spatial frequencies should preferentially connect to
other cells with similar tuning. Color-selective cells typically occur near the center
of ocular dominance columns in locations called blobs. The connections of cells at
these locations should strongly prefer color-selective cells in other blobs.

A number of experiments can be performed on young animals to verify the above
predictions. Two such experiments have previously shown that when kittens are de-
prived of visual input they develop shorter and less dense lateral connections in V1
(Callaway and Katz 1991), and that when they are made strabismic, these connec-
tions follow ocular dominance instead of orientation (Löwel and Singer 1992). Sim-
ilarly, one would expect that if an animal is brought up in a visual environment with
only diffuse light spots and no edges or lines, the lateral connections would not be
elongated along the orientation axes of cells, but would be more isotropic. Further, it
should be possible to devise conditions such that these patterns follow the organiza-
tion of spatial frequency. If the diffuse light spots have varying sizes, but not edges
and boundaries, orientation preferences of cortical cells should be weak. However,
because the stimuli vary in size, spatial frequency should become the prominent
component in the cortical representation. The lateral connections should then fol-
low mainly the organization of spatial frequency, rather than the organization of the
orientation map.

In essence, any manipulation of visual inputs that substantially changes the orga-
nization of feature-selective cells should alter the patterns of lateral connections to
match the new activity correlations in the cortex. Such experiments would provide
further evidence for the hypothesis that the lateral connections develop synergetically
with the afferent connections, based on activity correlations in the cortex.
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16.4.3 Tilt Aftereffects

The LISSOM model of tilt aftereffects (Chapter 7) makes specific predictions about
the activation and adaptation processes underlying the effect. Assuming suitable pro-
tocols can be developed for measuring the tilt aftereffect in animals, these predictions
could be verified in future animal experiments.

The LISSOM model predicts that the tilt aftereffect depends crucially on adapt-
ing lateral inhibition. This prediction could be verified by blocking intracortical in-
hibition mediated by GABAB receptors with bicuculline (Sillito 1979) and that me-
diated by GABAA receptors with phaclofen (Pfleger and Bonds 1995). The observed
effect would then be due to adapting afferent connections only. According to LIS-
SOM, its sign should be reversed and its magnitude should be significantly weaker
(Figure 7.7).

The activity patterns during the tilt aftereffect could also be observed using op-
tical imaging, directly verifying the model’s predictions. Although the temporal res-
olution is currently not sufficient to measure such transient activity, certain key pre-
dictions should be testable already. For instance, if an indirect-effect test pattern is
repeated regularly throughout adaptation, the LISSOM model predicts that the over-
all response to the test pattern will increase each time. Other models, such as fatigue
or those relying on levels above V1 (described in Section 7.1.2), predict that the
activity levels in V1 do not change or actually decrease instead.

If imaging techniques with sufficient temporal and spatial resolution become
available in the future, plots like those in Section 7.4.2 could be computed for mon-
keys and compared with those of the model. After an orientation map is first mea-
sured on the animal, the response of the cortex would be measured for test patterns at
orientations typical of direct and indirect effects. Next, the cortex would be adapted
to a stimulus of a particular orientation. The test patterns would then be presented
again, measuring the cortical response once more. When the earlier measurements
are subtracted from the later measurements, there should be a net decrease in activity
for orientation detectors near the orientation used during adaptation, a net increase
in activity of those with more distant orientations, and no change for very distant
orientations.

The required temporal resolution for such measurements is on the order of a few
seconds to avoid significant adaptation to the test pattern, and the spatial resolution at
the level of individual orientation patches, i.e. 0.1 mm. With such resolution, it should
also be possible to calculate perceived orientations, as was done on the LISSOM
model in Section 7.2.1. If those orientations were found to be within the range of the
measured tilt aftereffect, the experiment would provide strong support for the lateral
inhibition theory of direct and indirect tilt aftereffects.

16.4.4 Plasticity

If the same processes that self-organize the visual cortex during early life are as-
sumed to operate in the adult, many observations of cortical plasticity, such as re-
covery after damage, can be explained computationally by the LISSOM model. The
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model also leads to several predictions verifiable in traditional plasticity experiments.
These predictions are briefly reviewed below; the details are discussed Chapter 6.

A retinal scotoma changes the dynamic equilibrium of the cortex, and the corti-
cal neurons shift their receptive fields and adjust their lateral connections as a result.
The model predicts that if the scotoma is large enough so that the neurons respond-
ing to its center no longer receive afferent input, their receptive fields should remain
unchanged; otherwise, the receptive fields should shift outward and the blind spot
should disappear. Second, according to the model, the unstimulated neurons expand
their receptive fields because they receive less inhibition from the surrounding neu-
rons. If inhibition before and after the scotoma was blocked (e.g. by bicuculline),
such an expansion should not occur. Third, the orientation map reorganizes to repre-
sent the boundaries of the scotoma, and these changes are integrated into a smoothly
varying map structure.

Similar reorganization occurs after a cortical lesion. Because the neurons in the
lesioned area no longer inhibit the neurons right outside, these surrounding neurons
begin to respond to inputs to the lesioned area, and the loss of function is smaller than
would be expected. The inhibitory connections between these surrounding neurons
gradually increase, and their responses to such inputs become weaker, temporarily
increasing the loss of function. Over a longer time however, the receptive fields of
these neurons shift inward, regaining some of the lost representations again. The
model predicts that neurons with orientation preferences perpendicular to the lesion
boundary (and therefore most lateral connections from the lesioned area) shift the
most, whereas those with parallel preferences are less affected. This prediction could
be checked with standard recording and imaging techniques.

The model further predicts that the extent of surviving lateral excitation deter-
mines how much of the function is regained. If the neurons on the opposite sides of
the damaged area are linked with excitatory connections, the RFs can reorganize as
neighbors and take over the lost function completely. Therefore, in early develop-
ment, when the lateral excitatory radius is large and the connections are less patchy
(Callaway and Katz 1990; Dalva and Katz 1994), it should be possible to compen-
sate for larger lesions. The prediction can be checked by inducing lesions at various
stages of development of the animal and comparing the extent of reorganization. The
model also suggests two mechanisms for speeding up recovery from such lesions.
First, by blocking inhibition in the perilesion area after the lesion should eliminate
the regressive phase, and allow the receptive fields to shift inward faster. Second, it
should be possible to hasten the shift by stimulating the area extensively with inputs
originally represented by the damaged area.

If successful, such experiments would provide convincing evidence that the cor-
tex is a continuously adapting system in a dynamic equilibrium with internal and
external input, as suggested by the LISSOM model.

16.4.5 Internal Pattern Generation

The main principle of the HLISSOM model is that the shape and distribution of
internally generated activity patterns determine how the maps and connections in
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the visual cortex develop in early life. Further, the model predicts that differences
in these patterns serve a purpose in information processing. If the internally gener-
ated patterns differ across species, they should have different cognitive and sensory-
processing abilities as a result.

Internally generated activity has not yet been characterized in sufficient detail to
constrain modeling efforts. However, such constraints could possibly be derived indi-
rectly, based on computational grounds. For example, the results in Section 9.2 show
that different types of internally generated patterns will result in different types of V1
receptive fields. Uniformly random noise tends to lead to four-lobed RFs, whereas
disks alone result in two-lobed RFs. Although orientation maps have been measured
in young animals, very little data are available about what receptive fields these neu-
rons might have. In future experiments, both of these structures could be measured at
the same time, so that it will be clear what types of RFs lead to orientation selectivity
at different stages of map development. Such data should allow narrowing the range
of possible models of orientation map development, e.g. by rejecting either those
based on uniformly random noise or those based on retinal waves.

In humans, one of the most intriguing predictions is that the internally gener-
ated activity should have a specific spatial structure. In Section 10.2.6, a number of
training patterns that matched the size of a face and several of its components were
shown to result in a preference for faces, as seen in newborn humans. On the other
hand, many other patterns did not, including single dots and pairs of dots. The model
therefore predicts that in humans, at least some of the internal patterns belong in
the first category. As was mentioned in Section 16.2.2, recent advances in imaging
equipment may make such measurements possible in the near future (Rector et al.
1997).

Perhaps the most convincing test of the pattern generation idea would be to mod-
ify the internally generated activity in animals, measuring whether their brains de-
velop differently in a systematic way. As was discussed in Section 2.3.3, some tests of
this type have already been performed, measuring effects on the retina and the LGN.
For instance, pharmacological agents can be used to make the retinal wave patterns
larger, faster, and more frequent (Stellwagen and Shatz 2002). When the agent is ap-
plied to one eye, the LGN layer corresponding to that eye becomes larger. The effect
is not simply due to increased metabolic activity or other nonspecific mechanisms,
because no changes are seen when the agent is applied to both eyes at once. That is,
the pattern of activity determines how the LGN develops, not simply the total amount
of activity.

The effects of these manipulations have not yet been measured at the V1 level.
HLISSOM predicts that faster waves would make neurons more direction selective,
perhaps even resulting in a full direction map at eye opening (unlike in normal dark-
reared animals; White and Fitzpatrick 2003). If the waves were made smaller than the
RFs, the V1 neurons should become less selective for orientation, because they would
not have seen large oriented edges during development. Once PGO wave patterns
have been measured, similar modifications could be performed on them, leading to
similar results. Each change in the pattern can be simulated in HLISSOM, generating
a specific, testable prediction about how the change will affect V1.
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In the long term, detailed analysis of the pattern-generating mechanisms in the
brainstem could provide clues to how the pattern generators are specified in the
genome. These studies would also suggest ways for representing the generator effec-
tively in a computational evolutionary algorithm, which is currently an open ques-
tion. Studies of genetics and phylogeny, perhaps paired with computational simula-
tions, could then possibly determine whether pattern generation was crucial in pro-
ducing complex organisms that could adapt to the environment postnatally. Such
studies could be instrumental in understanding the evolutionary origins of complex
abilities and adaptation in higher animals.

16.4.6 Face Processing

In Chapter 10, the pattern generation hypothesis was extended to explain how face
preferences in human infants could arise, and how they could change during early
life. The model leads to several concrete predictions that can be tested in psycholog-
ical experiments with human infants.

For instance, HLISSOM suggests that the precise spacing of a face outline is not
crucial for newborn face preferences. This prediction can be tested in human infants
by presenting facelike patterns with a variety of outline shapes; the model predicts
that the response will be similar regardless of the shape of the outline. Similarly,
HLISSOM predicts that newborns will prefer facelike patterns to ones where the
eyes have been shifted over to one side. This prediction contrasts the alternative “top-
heavy” explanation for face preferences, and can be tested in similar experiments as
the effect of outline.

A second set of predictions concerns the preferences that develop postnatally,
with exposure to real faces. Pascalis et al. (1995) showed that covering the hair out-
line was sufficient to suppress infant’s preference for his or her mother. HLISSOM
predicts that covering the facial features will have a similar effect, i.e. that newborns
learn faces holistically. This prediction can be tested using methods like those of
Bartrip et al. (2001) and Pascalis et al. (1995), using human newborns. HLISSOM
also predicts that older infants will continue to prefer realistic face stimuli, such as
photographs or video of faces, even though they stop preferring schematic faces in
the periphery by 2 months of age.

Nearly all of the proposed experiments can be run using the same techniques
already used in previous experiments with human infants. They will help determine
how specific the newborn face preferences are, and clarify what types of learning are
involved in postnatal development of these preferences.

16.4.7 Synchronization

The PGLISSOM model shows that neural synchrony can serve as a foundation for
perceptual representations in the visual cortex. It may be possible to verify this idea
in future biological experiments, and also demonstrate how such representations are
constructed and maintained.
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First, the contour integration experiments in Chapter 13 suggest that how strongly
and reliably the contour is perceived depends on how strongly synchronized the neu-
ral representations of the contour elements are. If synchronization were to be dis-
rupted artificially, the perception of the contour should disappear. Such an experi-
ment might be possible in the future using transcranial magnetic stimulation (TMS;
Barker, Jalinous, and Freeston 1985; Hallett 2000; Lancaster, Narayana, Wenzel,
Luckemeyer, Roby, and Fox 2004; Walsh and Cowey 2000). While the usual effect
of TMS is to excite or inhibit an area of neurons temporarily, it might be possible to
affect only their synchronization in three ways: (1) TMS could be applied to a related
visual area, which could indirectly disrupt synchronization in the area of study; (2)
with very low intensity, TMS could have a subthreshold excitatory effect, causing
the target group of neurons to fire more rapidly and out of synchrony with other neu-
rons; and (3) high-frequency repetitive TMS (1–60 Hz rTMS; George, Wassermann,
Williams, Steppel, Pascual-Leone, Basser, Hallett, and Post 1996) at low intensity
could be applied at the same or different phases at two separate sites, driving the fir-
ing of the neurons and inducing artificial synchrony or desynchrony. Applying such
techniques or some combination of them while the subject is performing a perceptual
grouping task should degrade his or her performance in the contour integration task
without affecting the perception of the elements themselves.

Such methods could perhaps be even more illuminating and reliable if paired with
simultaneous electro-encephalogram (EEG) recordings that measure the changes in
brain activity resulting from the TMS (Ilmoniemi, Virtanen, Ruohonen, Karhu, Aro-
nen, Näätänen, and Katila 1997). If TMS is found to result in a particular perceptual
change and at the same time a characteristic change in the EEG, it might even be
possible to develop a way to measure synchrony directly from the EEG. Such tech-
niques would be highly useful in verifying whether synchronization indeed is the
underlying representation for perceptual grouping.

Second, the results in Section 12.2.1 show that adapting the PSP decay rate is a
possible way to modulate synchronization behavior in neurons. The effects of decay
are similar to those of adjusting delay of signal propagation between neurons, which
has been proposed before as a possible synchronization mechanism (Eurich et al.
2000; Gerstner 1998a; Horn and Opher 1998; Nischwitz and Glünder 1995; Tversky
and Miikkulainen 2002). At this point there is no conclusive biological evidence to
support either process. However, although axonal morphology can change over time
and affect the delay, it would be difficult to make such changes fast and accurately
enough (Eurich et al. 1999; Stevens et al. 1998). On the other hand, PSP decay may
be easier to adjust, for example by controlling the properties of ion channels in the
dendrites. It is therefore a good candidate for modulating synchrony.

Experimental techniques exist for measuring the various sources of temporal lag
in the neuron (Nowak and Bullier 1997). Using similar techniques, it may be possible
to verify whether the dendritic membrane potential decays at different rates at differ-
ent locations in neurons, and also whether the rates depend on the synapse type (such
as glutaminergic vs. GABAergic). If two neurons far apart are found to synchronize
despite a long delay, the model predicts that their decay rates could be compensating
for the delay. Further, using voltage or current clamping, it might be possible to con-
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trol the decay of the PSP, and measure the effect on synchronization. In this way, it
might be possible to verify that PSP decay rate could have a modulating effect.

Third, PGLISSOM simulations showed how a longer absolute refractory period
could help synchronize neural activity even under noisy conditions (Section 12.4.3).
Such an effect has not been demonstrated biologically, but it is nevertheless interest-
ing to speculate how it could be utilized in biological systems. Given that homeostatic
mechanisms have been found for regulating various other aspects of neuronal behav-
ior (Turrigiano 1999), perhaps their refractory periods adapt as well. Synchronization
would then be possible over different ranges of noise and variability. This hypoth-
esis could be tested by changing the noise environment of a synchronized group of
neurons and observing whether the refractory periods change to compensate.

Even if the refractory periods did not adapt dynamically, they could have been
adapted through evolution. Assuming that synchronized activity will be found in
different parts of the brain and in different species, the hypothesis could be tested
by measuring the refractory periods of neurons located in different noise environ-
ments. Neurons operating under significant noise should have longer refractory peri-
ods than those where the signal is relatively free of noise. Further, it might be possible
to strengthen synchronization artificially in such neuron populations. By artificially
lowering the membrane potential immediately following a spike, the refractory pe-
riod could be increased, which should result in more highly synchronized neuron
activities in noisy conditions.

Fourth, fast adaptation of lateral excitatory connections in PGLISSOM promotes
synchrony among the connected regions. Such adaptation has been proposed to be
crucial for dynamic feature binding in general (Crick 1984; Sporns et al. 1991;
von der Malsburg 1981, 2003; Wang 1996), and similar short-term plasticity has re-
cently been observed in rat prefrontal cortex (Hempel, Hartman, Wang, Turrigiano,
and Nelson 2000). However, it is not clear whether such plasticity depends on co-
inciding presynaptic and postsynaptic activity, and whether it indeed facilitates syn-
chrony. To answer these questions, it will be necessary to measure plasticity and syn-
chronization in the same experiment, perhaps by combining the techniques used by
Hempel et al. (2000), Eckhorn et al. (1988), and Gray et al. (1989). Since short-term
plasticity is believed to depend on Ca2+ channels (Fisher, Fisher, and Carew 1997;
Hempel et al. 2000; Regehr, Delaney, and Tank 1994), it might also be possible to
test the hypothesis directly by disabling short-term plasticity with Ca2+ antagonists
such as nifedipine, or with Ca2+ channel blockers such as diltiazern (Jensen and
Mody 2001). If synchronization becomes less robust, it suggests that fast adaptation
indeed plays a role in establishing synchrony.

Such investigations of cellular mechanisms can lead to a deeper understanding
of perceptual representations, including how neural synchrony occurs and how fine
tuning of temporal behavior is possible.

16.4.8 Perceptual Grouping

The PGLISSOM model shows how input-driven self-organization can result in dif-
ferent perceptual grouping performance across the visual field (Section 13.4). This
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result leads to interesting predictions about the statistics of visual input and the
anatomical foundations of perceptual grouping, as well as the role of internal pat-
tern generation in the initial construction of the system. The assumption that group-
ing and self-organization are based on the lateral connections of neurons in different
layers of the cortex may also be tested experimentally.

First, the PGLISSOM model can explain the observed performance differences
assuming that the visual input statistics differ in specific ways across the visual field.
This assumption should be verified in direct image measurements. Using an eye-
tracking method similar to that of Reinagel and Zador (1999), statistics about edge
frequency, curvature, and occlusion can be collected at different visual regions. To
validate the model, edges and occlusions should be more frequent and curvature
higher in the fovea vs. periphery and in the lower vs. upper hemifield. Further, the
same method could be used to measure other input properties, such as color, contrast,
and spatial frequency. The results should help characterize the structure of visual
scenes and understand how visual attention biases the sensory statistics, forming a
foundation for further computational modeling and psychophysical experiments of
grouping performance.

Second, PGLISSOM predicts that if different areas of the visual cortex receive
different inputs during development, they will develop different patterns of lateral
connections. These patterns in turn cause perceptual performance to differ in cor-
responding areas of the visual field. Such predictions can be tested experimentally
by manipulating the training inputs: Lateral connectivity can be measured in upper
vs. lower hemifield and fovea vs. periphery to see whether there are any differences
between these areas as the model suggests (Section 13.4.2); or, the cause of the dif-
ferences can be experimentally tested by rearing animals in controlled visual envi-
ronments where the input distributions in these areas are systematically altered.

For example, animals can be fitted with eye glasses that flip the input to the upper
and lower hemifield. After the critical period, the connectivity patterns and contour
integration in the lower and upper hemifield can be measured and compared with
normally reared animals. If connectivity is genetically determined, there should be
no noticeable difference to the control animals. In contrast, PGLISSOM predicts that
the more cocircular connectivity and better contour integration would develop in the
upper hemifield instead of the lower hemifield. Such an experiment would verify
both that the contour detection depends on the connectivity and that the connectivity
can be explained as an effect of input-driven self-organization. Finding such evidence
would be an important step toward understanding how functional differences arise in
the visual cortex.

Third, PGLISSOM can be brought together with internal pattern generation to
suggest how prenatal and postnatal self-organization each contribute to constructing
an effective contour integration circuitry. As was discussed in Section 13.2.2, essen-
tial for contour integration is that the lateral connections have a cocircular profile,
matching the distribution of edges in natural images. Interestingly, PGLISSOM does
not have to be trained with natural images to obtain such connectivity: It also de-
velops with oriented Gaussian inputs. Such inputs might indeed be available during
the prenatal development of the visual cortex: After the retinal waves are filtered by
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the LGN, they would appear as collections of smooth, oriented, and locally straight
Gaussians to the developing V1 (Section 16.2.1). Although such Gaussians would be
relatively short, they should be enough to develop a rudimentary contour integration
ability prenatally. The circuitry would then be further refined postnatally with visual
inputs, resulting in adult performance.

While it would be difficult to measure contour integration performance in new-
borns and in animals, it might be possible to measure synchrony in animals using
multi-cellular recording techniques (Eckhorn et al. 1988; Gray et al. 1989). The pre-
diction could then be verified by presenting contours to animals of different ages and
comparing the extent of synchronized groups that form. Such an experiment would
provide further evidence for prenatal self-organization, and lead to a precise under-
standing of how the ability to integrate contours develops.

Fourth, the model suggests that due to the opposite requirements for grouping
and self-organization, functional differences might exist in the layered architecture
of the visual cortex (Section 16.3.3). This prediction is difficult to verify with cur-
rent experimental techniques, but it might become feasible in the future. For exam-
ple, if deep or shallow layers could be selectively disabled, or the intracolumnar
connections between the layers disrupted, their functions would become decoupled.
Progress of development and the ability to form synchronized groups could then be
measured separately in the deep layers and compared with that in the shallow layers.
The PGLISSOM model predicts that the shallow layers would not properly self-
organize and the deeper layers would not synchronize. Such an experiment would
lead to significant insights into how cortical structures implement function.

16.4.9 Sparse Coding

One of the important predictions of the LISSOM model is that the inhibitory self-
organized lateral connections decorrelate, reducing redundant activity and producing
a sparse coding of the visual input (Sections 14.2 and 17.3.1). Such representations
are efficient in energy and space, allowing more inputs to be represented with fixed
resources, and also form an effective foundation for later stages of visual information
processing.

In LISSOM, sparse representations emerge as a necessary component of the self-
organizing process: The responses are focused into local neighborhoods so that dis-
tinct representations for the different parts of the input space can be formed. Indirect
evidence for such focusing already exists from direct recordings of cortical activity.
Pei, Vidyasagar, Volgushev, and Creutzfeldt (1994) found that the orientation selec-
tivity determined from excitatory PSPs (and not action potentials) became increas-
ingly sharper with time. Consistent with the LISSOM model, they independently
attributed this phenomenon to intracortical excitation and inhibition.

Sparse coding implies that the information about a given visual image is repre-
sented by a small number of neurons, and conversely that each neuron conveys a
significant amount of information about the input. The LISSOM network indeed fo-
cuses the initial activation in a few iterations to the best-responding neurons, and it
is possible to identify what type of stimulus would have caused it to be active. Such
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a process is consistent with the response properties of neurons. The neurons divide
up the task of representing the input space, and respond only to particular sharply
defined regions of it. For a typical neuron in the primary visual cortex, a response of
10 action potentials following one brief stimulus presentation was found to be suffi-
cient to classify the stimulus into a relatively small region in stimulus space, with a
high degree of confidence (Geisler and Albrecht 1995).

With optical imaging techniques, it should also be possible to verify the sparse
coding prediction directly. The time resolution of current imaging techniques (e.g.
Senseman 1996) should be sufficient to observe how the sparseness of cortical ac-
tivity changes in response to visual input, presumably due to the recurrent lateral
interactions in the cortex. Sparseness can be quantitatively estimated by calculating
the kurtosis of the activity (Barlow 1972; Field 1994), as was done with the LIS-
SOM experiments of Chapter 14. For any given input, the kurtosis should increase
with time as the activity becomes more focused and stable.

Any manipulation that affects the lateral interactions should affect the sparse
code. Suppressing lateral inhibition, for example, would be expected to result in
less sparse responses. It should be possible to apply an inhibitory blocker, such as
bicuculline, and measure the kurtosis of cortical activity through optical imaging. If
lateral inhibition plays a significant role in producing the sparse code, the less inhib-
ited responses should be less sparse. Another experiment could focus on selectively
preventing the long-range lateral connections from self-organizing during develop-
ment. In such a case, the kurtosis of cortical activity should be much lower than in
the normal case. As a consequence, neurons should also be far less selective for ori-
entation and spatial frequency. The experiment would show that the activity coding
in the cortex closely depends on the organization of lateral connections. The last
step would be to verify that the sparse representations indeed constitute an advan-
tage in information processing. Such experiments are difficult to design and conduct
conclusively; however, if it is possible to prevent proper self-organization of lateral
connections during development as outlined above, such an animal should have an
impaired ability for visual pattern recognition due to a less efficient coding of visual
inputs.

While sparse coding is currently a computational hypothesis consistent with bi-
ological data, the above experiments in the near future could establish it as a funda-
mental information processing principle in the visual cortex.

16.5 Conclusion

The LISSOM framework is based on a number of assumptions about the connectiv-
ity, adaptation, and temporal coding in the cortex. Although there is not yet suffi-
cient evidence to verify these assumptions completely, they are plausible, and lead
to testable predictions. The next chapter will discuss how LISSOM can be extended
to explain new phenomena, and how it can serve as a starting point for new research
directions.
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Future Work: Computational Directions

The research discussed in this book can serve as a starting point for a wide variety of
future computational investigations. Several such studies continue the research de-
scribed in the individual chapters, and have already been discussed in those chapters.
Others are new directions, and will be described in this chapter. First, the LISSOM
architecture can be extended in several ways to match biological systems in more
detail. Second, LISSOM models can be built to understand several new visual phe-
nomena, both in V1 and in other visual areas. Third, LISSOM can be used as a start-
ing point for new research directions, including modeling other cortical areas and
building artificial vision and other information processing systems. The Topograph-
ica simulator, a publicly available computational tool for modeling cortical maps,
is designed to make these future extensions practical to simulate and understand, as
described in the end of this chapter.

17.1 Extensions to the LISSOM Mechanisms

The LISSOM equations and architecture are designed to account for a large frac-
tion of the experimental results on the development and function of the primary
visual cortex, while being as clear and parsimonious as possible. To more closely
match specific experimental results, more complex mechanisms can be included in
the model, as described in this section. These extensions should not change the fun-
damental principles and results of the model, only make it biologically less abstract.

17.1.1 Threshold Adaptation

One of the most important components of any detection or recognition system is the
activation threshold. If set properly, the threshold allows the system to respond to
appropriate inputs while ignoring low-level noise and other nonspecific activation.
For instance, the threshold can allow an orientation-selective neuron to respond to
stimuli near its preferred orientation, and not to other orientations. In terms of signal
detection theory, the threshold is a balance between the false alarm rate and the false
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positive rate; in general this tradeoff is unavoidable (Egan 1975). Thus, it is important
to set the threshold appropriately.

In LISSOM, the activation thresholds (θl and θu in Equation 4.4) are set by hand
through trial and error. This procedure can be seen to correspond to evolutionary
adaptation, which results in animals that are born with appropriate threshold val-
ues. However, biological systems make use of threshold adaptation as well. Home-
ostatic regulation mechanisms in general have recently been discovered in a variety
of biological systems (see Turrigiano 1999 for a review). Some of these regulatory
mechanisms are similar to the weight normalization already used in LISSOM (Equa-
tion 4.8). Others more directly adjust how excitable a neuron is, so that its responses
will cover a useful range (i.e. neither always on nor always off). In particular, Azouz
and Gray (2000) found the neuron’s firing threshold to be proportional to the rate of
depolarization in the PSP: When the PSP rises rapidly, neurons automatically raise
their thresholds.

An automatic method of setting thresholds would also be computationally de-
sirable for several reasons: (1) It is time consuming for the modeler to find an ap-
propriate threshold value; (2) the threshold setting process is subjective, which often
prevents rigorous comparison between different experimental conditions (e.g. to de-
termine what features of the model are required for a certain behavior); (3) different
threshold settings are needed even for different types of input patterns, depending
on how strongly each activates the network (e.g. high-contrast schematic patterns
vs. low-contrast real images); and (4) the optimal threshold value changes over the
course of self-organization (because weights become concentrated into configura-
tions that match typical inputs, increasing the likelihood of a response).

A first step in this direction is the mechanism used in the PGLISSOM simula-
tions of Chapter 11, where the spiking threshold θb was set automatically based on
input activity. A fixed percentage, usually 50 to 65%, of the maximum input activ-
ity over the map was set as the threshold at the beginning of each settling iteration
(Appendix D). Another approach is to increase the threshold if the neuron has been
highly active in the past, and decrease it if not (Burger and Lang 2001; Gorchetch-
nikov 2000; Horn and Usher 1989). With such mechanisms, the map responds to
all inputs with roughly the same level of total activation. However, this level still
needs to be adapted by hand during self-organization to make sure that the responses
became gradually sparser. How to do it automatically, perhaps utilizing regulation
mechanisms similar to those observed in biology, is currently an open question.

Adding automatic mechanisms for setting the thresholds would make the model
significantly more complex mathematically. Even so, it would make the model bio-
logically more realistic, and also much simpler to use in practice, particularly with
real images.

17.1.2 Push–Pull Afferent Connections

Neurons in adult V1 retain their selectivity over wide variations in contrast; how
strongly they respond depends primarily on how well the input matches their pre-
ferred features such as orientation, ocularity, and direction (Sclar and Freeman 1982).
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As described in Section 8.2.3, HLISSOM includes a divisive normalization term to
achieve such contrast invariance. While this method is simple and works well in
most cases, it is an abstraction and should be replaced by biologically more accurate
mechanisms.

One problem with divisive normalization is that it penalizes any activity in the
anatomically circular receptive fields that does not match the neuron’s weights. As
a side-effect, the V1 responds less strongly to input where the stimuli are closely
spaced. For example, the V1 network responds less to a high-frequency square-wave
grating than to the same pattern with every other bar removed.

In future work, it may be possible remove this limitation by using a push–pull
arrangement of weights rather than full-RF normalization (Ferster 1994; Hirsch, Gal-
lagher, Alonso, and Martinez 1998b; Troyer, Krukowski, Priebe, and Miller 1998).
With a push–pull RF, cortical neurons receive both excitatory and inhibitory afferent
inputs from different parts of the retina, rather than the purely excitatory input, as
in LISSOM and in most other models. One difficulty with push–pull weights is that
the inhibitory weights need to connect the neuron with regions in the retina that are
anti-correlated with it, and therefore such weights cannot be learned through Heb-
bian learning. Thus, either a new learning rule or a more complicated local circuit in
the cortex will need to be developed so that push–pull weights can self-organize.

Such an extension should allow LISSOM to self-organize as before, but would
represent the afferent circuitry more accurately, and also lead to reliable responses to
a wider variety of input patterns.

17.1.3 Modeling Substructure Within Columns

LISSOM is a column-level model, and each unit in the model stands for the response
patterns of a set of cells in a vertical column in the cortex. An important extension is
to take more of the structure within the column into account, more precisely repre-
senting the fine-grained structure and processing that occurs at this level.

First, the responses recorded from LISSOM represent averages of multiple cells.
These responses are a good match to data obtained with optical imaging techniques,
which also measure averages over multiple nearby cells. For instance, LISSOM units
in map regions near pinwheel centers and fractures in orientation maps tend to have
lower orientation selectivity, just as in maps measured using optical imaging (Blasdel
1992b).

Interestingly, when the pinwheel neuron responses are measured using micro-
electrode recordings, they appear as selective as neurons in other parts of the map
(Maldonado et al. 1997). However, the pinwheel centers do have a wider variety
of orientation preferences in a small area. Thus, optical imaging techniques report
lower selectivity probably because some neurons in that area respond to each of the
different orientations.

In order to model the detailed behavior of individual neurons within pinwheel
centers, LISSOM could be extended so that each unit in the current model is repre-
sented by a set of different units. Connectivity between each unit could be determined
stochastically, so that each unit could function differently but the average response



378 17 Future Work: Computational Directions

of all the units in the column would be similar to the current LISSOM model. Such a
model is currently too expensive to simulate at the map level, but could become feasi-
ble in near future, especially through techniques outlined in Chapter 15. In this way,
LISSOM could be extended to model low-level neural phenomena more accurately
within the same basic framework.

Second, the circuitry and subfunctions in the column can be modeled in more
detail. The SG model of the cortical column in PGLISSOM is already a step in this
direction. Although it was motivated primarily on computational grounds (i.e. in or-
der to implement both self-organization and grouping in the same map; Section 11.1),
it has an intriguing biological implementation in terms of the layered structure of the
cortex (Section 16.3.3). This interpretation can be expanded by implementing the
circuitry in more detail. For example, the broad long-range inhibition in GMAP can
be replaced by local inhibitory interneurons as outlined in Section 16.1.4, making it
possible to determine precisely how layer 2/3 contributes to self-organization. Sim-
ilarly, the connectivity within the column can be modeled in more detail, and the
contribution of the deeper layers on synchronization analyzed.

Such more detailed models of cortical columns would allow understanding com-
putations in maps more precisely, leading to predictions that can be verified with
existing cellular recording techniques.

17.1.4 Phase-Invariant Responses

The behavior of cortical columns in the current LISSOM model is based on simple
cells only, i.e. cells that respond most strongly when their preferred input is aligned
with the ON and OFF subfields of their receptive field (Section 2.1.1). Such cells are
thought to be the first in V1 to show orientation selectivity, but V1 also includes cells
with more general responses (Hubel and Wiesel 1968). Termed complex cells, they
respond to any input within their RF regardless of the alignment; in other words,
their response is phase invariant. Such responses have been observed in the visual
cortex, although the circuitry that gives rise to them is not well understood.

Most current models with phase-invariant responses are hierarchical: Complex
cell behavior is obtained by pooling outputs from several simple cells (e.g. Hyvärinen
and Hoyer 2001; Weber 2001). An alternative approach is to establish local recurrent
connections within a single set of V1 neurons (Chance, Nelson, and Abbott 1999):
Phase-invariant responses can then occur among the simple cells through recurrent
excitation. It is not yet clear which approach is a closer match to how phase-invariant
responses arise in V1.

The LISSOM model could be extended with additional sheets of neurons in V1
representing complex cells, or with a local circuit that pools the responses of simple
cells into phase-invariant ones. Both of these extensions involve connecting neurons
in a small local area, and assume that the area includes neurons that respond to dif-
ferent phases. Phase is indeed distributed randomly within a column and between
nearby columns in animals (DeAngelis et al. 1999). The likely reason is that phase
in the input may effectively be random over short time scales due to small eye move-
ments known as microsaccades (Martinez-Conde, Macknik, and Hubel 2000).
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Current LISSOM simulations tend to group RFs by phase similarity (in addi-
tion to similarity of orientation, ocular dominance, and direction selectivity), be-
cause neurons with similar phase preferences are activated together. For the phase-
invariance extensions to work, LISSOM needs to be further augmented with a
learning rule that associates stimuli over time, such as the trace learning rule
(Földiák 1991a). In this variant of Hebbian learning, connections between neurons
are strengthened if they respond soon after one another, instead of having to respond
simultaneously. Based on microsaccade-like movements during training on visual
images, the model should then develop phase-invariant responses and random phase
distributions like those seen in animals. Such a model could be used to compare the
two alternatives, and to draw predictions for future biological experiments.

17.1.5 Time-Lagged Activation

The direction map simulations in Sections 5.5 and 5.6 focused on how LGN cells
with different lags can result in direction-selective responses in V1. However, any
other source of different delays for signals reaching V1 neurons could also contribute
to direction selectivity (Clifford and Ibbotson 2002). Since the biological mecha-
nisms underlying such selectivity are not well understood, computational models
could serve a pivotal role in evaluating the alternatives.

For example, different lags in the lateral connections in the cortical maps could
be used to represent motion. If connections from nearby locations make synaptic
connections on distal dendrites and connections from farther away on proximal den-
drites, their effect would arrive at the soma at the same time. A coincidence detection
mechanism could then detect these events and generate a spike, allowing the neuron
to respond to moving inputs in a specific location, direction, and velocity. Alterna-
tively, reverberating feedback loops (Amit 1994; Hebb 1949; Seung, Lee, Reis, and
Tank 2000; Wang 2001) within V1 or between V1 and other areas could act as mem-
ory for previous inputs, providing information about past input patterns just as the
lagged cells and connections do.

Future simulations can focus on where such lags might occur in different species,
and how those differences can result in direction selectivity, leading to predictions
for future biological experiments.

17.2 Modeling New Phenomena with LISSOM

In addition to the topics covered by current LISSOM simulations, the model can be
used to understand a wide range of other visual phenomena. This section proposes
a number of such studies, focusing on development, visual function, grouping, and
scaling up to larger networks and to higher levels of visual processing. Each project
is possible future work using the Topographica software described in Section 17.4.
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17.2.1 Spatial Frequency, Color, and Disparity in V1

The LISSOM simulations in Chapter 5 focused on how orientation, ocular domi-
nance, and direction maps develop in V1. However, the approach is very general and
can be easily extended to include other dimensions of visual input, such as spatial
frequency, color, and disparity. Maps for each of these dimensions can be developed
by generating input that varies in these dimensions, self-organizing the model based
on these inputs, and measuring the response properties of V1 neurons that result.

For instance, the current simulations are based on single-size ON and OFF cells
(i.e. a single DoG center and surround radius), and thus include only a limited range
of spatial frequencies. Spatial frequency maps can be simulated by including multiple
sets of LGN cells, each with a different DoG size. The V1 network will organize into
different groups preferring different spatial frequencies, which can then be compared
against experimental spatial frequency maps (such as those observed by Issa et al.
2001).

Color maps can be developed in LISSOM by including separate groups of reti-
nal and LGN neurons for the different colors. Each eye will be represented by three
sheets of photoreceptors R, G, and B, corresponding to long, medium, and short
wavelengths. One sheet of ON cells and another of OFF cells in the LGN will have
center and surround RFs on all three photoreceptor sheets, and thus respond to differ-
ences in intensity. Eight other LGN sheets are connected to the photoreceptors in a
manner that establishes four red/green opponent RF types (such as excitatory center
on the red sheet and inhibitory surround on the green sheet), and four blue/yellow
opponent RF types (such as excitatory center on the blue sheet and inhibitory sur-
round on the red and green sheets). V1 receives input from all of these LGN cells,
and should develop patches selective for colored areas of the input (e.g. regions with
greater R activation than G activation). The model can be validated by comparing its
color-selectivity structure to the color-selective areas found in biological V1 (Landis-
man and Ts’o 2002b). If the model is extended to include V2 (as discussed below),
similar comparisons can be made with color maps in V2 (Conway 2003; Ts’o, Roe,
and Gilbert 2001; Xiao, Wang, and Felleman 2003). It will also be interesting to
determine whether the distribution of color representations in the model matches
the statistical properties of color in natural images (Doi, Inui, Lee, Wachtler, and
Sejnowski 2003; Lee, Wachtler, and Sejnowski 2002b), and whether lateral interac-
tions contribute to constant perception of color under different lighting conditions
(Barnard, Cardei, and Funt 2002; Brainard 2004).

Modeling disparity does not require additional LGN cells, but will require in-
put patterns slightly offset in each eye, as they are in stereoscopic images. Through
self-organization, such patterns will result in groups of cells in V1 that prefer dif-
ferent disparities, i.e. different distance between corresponding features. The model
can again be validated by comparing with experimental results for disparity maps
measured using optical imaging (such data are currently only available for V2; Ts’o
et al. 2001).

Compared with orientation, ocularity, and direction, much less is known about
how spatial frequency, color, and disparity are represented in the brain. Extending the
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model to these dimensions should lead to a number of specific, testable predictions,
significantly advancing our understanding of how input features are represented in
the visual cortex.

17.2.2 Differences between Species

The simulations in this book have drawn upon experimental data from multiple
species, including human, monkey, cat, tree shrew, and ferret. This approach was
necessary because most of the relevant experiments have so far been performed in
only one species. For instance, only in the cat have lateral connections been mea-
sured in strabismic animals (Löwel 1994; Löwel and Singer 1992), and only in the
ferret have direction maps been measured in V1 (Weliky et al. 1996). Because the
primary visual cortex is remarkably similar across these species, pooling the exper-
imental data in this way is generally valid. However, there are several differences
between species as well; a computational model such as LISSOM can be instrumen-
tal in understanding which differences are significant and what their origins are.

Some of the main species-specific differences include: (1) Ocular dominance
maps in the cat have a patchier, less stripe-like organization than in the monkey
(Blasdel 1992a; Löwel 1994); (2) in the cat, V1 orientation maps have only a weak
bias for horizontal and vertical orientations, unlike in the ferret (Müller et al. 2000);
(3) orientation and ocular dominance patches are less likely to intersect at right an-
gles in cat than in monkey (Müller et al. 2000; Obermayer and Blasdel 1993); and
(4) in ferrets, some regions of the central visual field are entirely monocular, rather
than binocular with alternating ocular dominance stripes as in other species (White,
Bosking, Williams, and Fitzpatrick 1999).

There are a number of possible sources for such differences that could be mod-
eled in LISSOM: (1) The shape of the head and the position of the eyes differ be-
tween species, which affects how correlated the patterns between the eyes are. Such
differences in turn will change how the ocular dominance maps develop. (2) The
anatomy and physiological properties of the retina differ between species. For in-
stance, retinal ganglion cells in the rabbit are selective for motion direction, unlike
in other species (see Clifford and Ibbotson 2002 for a review). (3) Whereas cats have
time-lagged cells at the LGN level, similar cells have not yet been found in mon-
keys (Hubener et al. 1997; Löwel et al. 1988; Saul and Humphrey 1992). As a result,
these species may represent time-varying input differently, which in turn may affect
how the different features are organized in the cortex. (4) The various areas of the
visual cortex, including V1, have significantly different sizes in species such as the
ferret and the monkey, and the cortical area devoted to the corresponding visual area
differs as a result (Kaas 2000). (5) Various developmental events (e.g. when spon-
taneous retinal activity stops and orientation maps emerge) take place at different
times in different species (Blasdel, Obermayer, and Kiorpes 1995; Issa et al. 1999).
(6) Internally generated activity patterns differ between species, potentially changing
how the animal develops prenatally and how postnatal visual experience affects them
(Jouvet 1998).
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Species-specific differences can be modeled in LISSOM using different param-
eter values, demonstrating how self-organization depends on the specific input pat-
terns seen by a developing visual area. Such hypotheses are difficult to test exper-
imentally, but a computational model like LISSOM is ideal for the task: It is pos-
sible to set up hypothetical developmental scenarios and observe their outcome. In
this way, it may be possible to determine which of the known anatomical and envi-
ronmental differences could be responsible for the different maps and responses in
different species.

17.2.3 Prenatal and Early Postnatal Development of V1

The simulations in Chapter 9 showed how orientation maps can be constructed in
a self-organizing process that takes place both before and after birth. Once other
feature dimensions have been simulated for a particular species (as proposed in Sec-
tion 17.2.1), LISSOM can be used to construct a realistic and detailed model of how
all the dimensions develop at once, based on internally generated activity and post-
natal visual experience. A similar model can be built to understand how the ability
to integrate contours could be constructed.

To allow for a detailed comparison, such studies need to focus on a single species.
Currently, the most detailed data on the early development of maps are available for
the ferret (although the cat is also a good candidate). The LISSOM model can be
set up with parameters closely tied to measurements in ferrets, and the initial de-
velopment of maps can then be simulated in detail. As mentioned in Section 2.1.4,
experiments have shown that dark rearing, eyelid suturing, and modifying the vi-
sual environment can significantly change how maps develop in ferrets (Crair et al.
1998; Crowley and Katz 1999; Gödecke and Bonhoeffer 1996; Stellwagen and Shatz
2002; Weliky and Katz 1997), and it should be possible to replicate each of these
experiments in the model.

Ocular dominance will be a particularly interesting test case, because OD maps
have been found in animals before they have had any visual experience. Whether
neural activity is required to develop them initially is currently controversial (Crow-
ley and Katz 1999; Stellwagen and Shatz 2002); LISSOM simulations could help
determine what types of activity are sufficient for this process. For instance, LIS-
SOM simulations in Section 5.4.4 suggest that realistic adult maps require correla-
tion between the two eyes, yet patterns like retinal waves are not correlated between
the eyes. One possibility is that the OD map is constructed in two phases: prenatally
with uncorrelated inputs (which leads to strabismic-like maps), and postnatally with
correlated images that differ primarily in brightness. Simulations could demonstrate
how an initial strabismic-like OD map changes into an adult-like OD map with vi-
sual experience, a hypothesis that could then be tested in future animal experiments.
Alternatively, the developing cortex may receive simultaneous or alternating input
from two sources, one uncorrelated (e.g. retinal waves) and one identical for both
eyes (e.g. brainstem input during sleep). Simulations of this process should show
adult-like maps at all stages of development, which again could be compared with
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animal measurements. The results of such comparisons would allow distinguishing
between the two possible mechanisms of constructing the OD map.

The origin of direction selectivity is another interesting research issue because
this property appears to develop differently from orientation and ocular dominance.
Specifically, direction maps have not been detected in young ferrets raised in dark-
ness, even though orientation and ocular dominance maps have been found robustly
(White and Fitzpatrick 2003). Assuming that retinal waves result in orientation selec-
tivity, perhaps the waves do not move fast enough or often enough to cause direction
selectivity to emerge at the same time. Alternatively, perhaps the signals reaching V1
during early development do not have sufficiently different lag times, which again
would prevent the direction selectivity from emerging. Through simulation studies,
it should be possible to determine whether the amount of motion in retinal waves
can lead to direction maps, or whether only orientation maps will develop. In the
latter case, further simulations could verify whether direction selectivity can develop
within an existing orientation and ocular dominance map based on postnatal training
with moving natural images. Such simulations would result in predictions for future
biological experiments, making it possible to determine how direction selectivity de-
velops in the visual cortex.

Prenatal and postnatal simulations can also be set up to understand how contour
integration circuitry is constructed. As was discussed in Section 16.4.8, Gaussian
inputs such as LGN-filtered retinal waves should result in cocircular lateral connec-
tivity patterns prenatally, which would allow the network to perform rudimentary
contour integration. The lateral connections would be further refined through learn-
ing from visual inputs, eventually resulting in adult performance. Although it might
be possible to verify this prediction experimentally already, further computational
simulations would allow making the predictions much more detailed. PGLISSOM
could be trained prenatally with Gaussians resembling input that the developing V1
receives, and postnatally with natural inputs (Section 17.2.8). Its ability to form syn-
chronized representations for contours could then be tested at different stages of
development, resulting in specific predictions for biological experiments.

Such computational studies would potentially allow accounting for all of the
known data on how V1 develops in early life, and identifying specific gaps in our
knowledge that can be addressed in further biological experiments.

17.2.4 Postnatal Internally Generated Patterns

When the V1 maps are constructed in two separate learning phases, prenatal and
postnatal, the influence of the internally generated and environmentally driven stim-
uli can be clearly identified. Such a separation is a good model of spontaneous
activity in the developing sensory areas, such as retinal waves, because the waves
disappear at eye opening (Wong et al. 1993). But other activity, such as that during
REM sleep, continues throughout development and adulthood (Callaway et al. 1987).
These postnatal patterns suggest that pattern generation may also have a significant
role beyond prenatal development.
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Specifically, postnatal internally generated activity patterns may be interleaved
with waking experience to ensure that postnatal development does not entirely over-
write the prenatal organization. Such postnatal patterns may explain why altered en-
vironments can only be learned partially (as found by Sengpiel et al. 1999), and why
the animal spends so much time in REM sleep during the time when its neural struc-
tures are most plastic (Roffwarg et al. 1966). The postnatal patterns may help ensure
that the visual system does not become too closely adapted to a particular environ-
ment (a phenomenon called “overtraining” in machine learning), which would limit
its generality.

Such patterns would be needed only in systems that remain plastic in the adult,
and they may provide a simple way to trade off between adaptability and geneti-
cally specified function in such systems. In future simulations, it should be possible
to study how such interleaving interacts with experience. The results could be first
validated with biological observations, such as those of Sengpiel et al. (1999), and
then expanded to propose further experiments on how genetic bias is expressed in
self-organizing systems.

17.2.5 Tilt Illusions

In Chapter 7, tilt aftereffects were shown to arise as interactions between subsequent
visual patterns in the LISSOM model. Simultaneous inputs can also interact (as was
demonstrated in a limited scale in Section 14.2.3), and cause distortions in perceived
orientations. Such an effect, called the tilt illusion, is well documented psychophys-
ically (Calvert and Harris 1988; Carpenter and Blakemore 1973; Gilbert and Wiesel
1990; O’Toole 1979; Smith and Over 1977; Wenderoth and Johnstone 1988; West-
heimer 1990), but how it can arise from the two-dimensional spatial interactions in
the cortex has not yet been demonstrated computationally.

In LISSOM, two stimuli should interact with each other as the lateral interactions
settle, inhibiting neurons tuned to orientations between them. This effect should drive
the two perceived orientations away from each other. Such an explanation was orig-
inally proposed by Carpenter and Blakemore (1973), and the principles have been
demonstrated recently in an abstract model of orientation (Mundel, Dimitrov, and
Cowan 1997).

With LISSOM, it should be possible to show how the tilt illusion depends on
specific lateral connections, provided two extensions are made to the current sim-
ulations. First, because overlapping patterns could cause confounding effects, the
inputs need to be separated spatially (as they are in psychophysical experiments).
As a result, the radius of lateral inhibitory connections must be larger than that used
in the tilt aftereffect simulations. Second, to self-organize such long connections,
the training inputs would have to be correlated over a long range (as they are when
the model is trained with natural images; Section 9.3.1). Spatially separated neurons
will then develop lateral inhibitory connections, which causes the angle expansion.
If it turns out that such connections would have to be longer than what can be simu-
lated computationally, it may be possible to use shorter connections and more closely
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spaced test patterns by decoding the perceived orientations of overlapping lines us-
ing probabilistic methods (such as those of Zemel, Dayan, and Pouget 1998). In the
extended model, the magnitude of the tilt illusion can be measured by computing
the perceived orientations from each line alone, and comparing with the perceived
orientation when both lines are presented at once.

Alternatively, it may be possible to test tilt illusions more economically using a
combined orientation and ocular dominance simulation. In humans, when a different
pattern is presented to the same location in each eye, they interact just as do two
patterns presented to separate locations in one (or both) eyes (Carpenter and Blake-
more 1973). Thus, it should be possible to test tilt illusions already in the network of
Section 5.6.2, without first having to self-organize a model with a longer inhibitory
radius.

Indirect tilt illusions similar to the indirect tilt aftereffect have been found in hu-
mans, and it might be possible to model them in LISSOM as well. Such an effect
would arise if weakly activated units were facilitated by units at distant orientations;
such facilitation could be mediated by lateral connections whose effective sign de-
pends on local contrast, as it would in the extension to LISSOM proposed in Sec-
tion 16.1.4. Implementing such extensions and observing their effects constitutes a
most interesting direction of future work.

17.2.6 Other Visual Aftereffects

Many visual aftereffects similar to the tilt aftereffect are known to exist in biological
vision. LISSOM could be extended to gain insight into these effects as well.

In addition to orientation, aftereffects of motion, spatial frequency, size, position,
curvature, and color have been documented in humans (Barlow 1990; Howard and
Templeton 1966; Schrater, Knill, and Simoncelli 2001; Wolfe 1984). For instance, a
movement aftereffect known as the waterfall illusion can be induced by prolonged
viewing of a moving stimulus: Stationary stimuli appear to be moving in the oppo-
site direction (Kohn and Movshon 2003). Recent work also suggests that high-level
tasks such as face perception have similar aftereffects (Leopold, O’Toole, Vetter, and
Blanz 2001; Webster and MacLin 1999; Zhao and Chubb 2001). In all of these cases,
the cortex adapts to a long-lasting stimulus, changing the perception of subsequent
stimuli.

Using a LISSOM model that includes maps for the relevant features, it should be
possible to demonstrate aftereffects for each of these dimensions. In each case, the
effects would occur through short-term adaptation in specific lateral connections be-
tween feature-selective cells. For instance, presenting a continuously moving image
to the direction map of Section 5.5 should result in a realistic movement aftereffect.
Presenting single faces to the face-selective network of Section 10.3 should result in
face-specific aftereffects.

Analogous aftereffects have also been found for other modalities, such as hear-
ing, touch, muscle positioning, and posture (Howard and Templeton 1966). For in-
stance, hearing a sound in one location can influence the perceived location of later
sounds. That is, after adaptation, sounds presented in nearby locations appear to be
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farther away than they actually are, and the effect peaks at a certain distance, much
like the direct tilt aftereffect. If development in these areas can be modeled with LIS-
SOM (as is expected), aftereffects should also occur in such models. In this way,
LISSOM could be used to provide a simple, unified explanation for a variety of per-
ceptual aftereffect phenomena across modalities.

17.2.7 Hyperacuity

Like models of illusions and aftereffects, a LISSOM model of hyperacuity can pro-
vide useful information about how primary visual cortex adapts.

Performance in hyperacuity tasks, such as deciding whether two lines of same
orientation are separated by a small perpendicular offset, improves with practice
(Fahle, Edelman, and Poggio 1995; Weiss, Edelman, and Fahle 1993). The improve-
ment occurs even without any feedback indicating whether each judgment is correct.
The effect is specific to position and orientation, but transfers to some degree be-
tween eyes. This transfer is thought to indicate that at least some part of the effect
arises in V1, because V1 is the first stage in the visual pathway where binocular
inputs are combined.

Shiu and Pashler (1992) reported similar results for orientation discrimination
tasks, although they found that the effect also depends on cognitive factors. Perfor-
mance improved with practice only if the subjects were directed to pay attention
to the orientation. However, the effect only occurred at the specific retinal location
where the training examples had been presented, ruling out any deliberate cognitive
strategy that the subject might have learned during the experiment. This result sug-
gests that attentional mechanisms may activate circuitry in V1 (or other early visual
areas) that regulates adaptation.

The LISSOM activation and learning mechanisms should be able to account for
such basic psychophysical learning phenomena. The active units and lateral connec-
tions between them would adapt during repeated presentations. Over time, the area
of the cortical map responding to those features would expand, allowing smaller dif-
ferences to be represented and discriminated. However, the attentional effects might
require an extension to high-level feedback, as discussed in Section 17.2.13. Such
extended experiments might help clarify how and when adaptation occurs in early
vision.

17.2.8 Grouping with Natural Input

Human contour integration performance depends on several stimulus dimensions
in addition to orientation, including how random the background is, how jagged
the path is, how much the elements of the contour are separated, and what spatial
frequency, relative phase, color, and contrast the elements have (Field et al. 1993;
Geisler et al. 2001; McIlhagga and Mullen 1996; Pettet et al. 1998). While human
performance has been characterized in detail along most of these dimensions, their
effect has not yet been analyzed computationally.
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PGLISSOM can be trained with artificial input patterns where these dimensions
are systematically varied. Alternatively, such training could be made more realistic
by generating inputs based on known natural image statistics (as suggested by W.
Geisler). Such inputs would need to be appropriately filtered based on known bio-
logical processes in the retina and LGN, because PGLISSOM is a model of V1 and
assumes that such processes have already taken place. The model could then be used
to predict human perceptual performance in more detail. It could also be used to iden-
tify the input statistics that are important for each stimulus dimension, by analyzing
the lateral connection patterns and receptive field properties.

The next step would be to train the model with natural inputs such as moving
natural images, as was done in Section 5.6.4. Currently such inputs cannot be used
in PGLISSOM because the spiking network is computationally much more expen-
sive to simulate than the firing-rate version. However, with the scaling-up techniques
proposed in Section 17.2.9, such training should be possible. Natural images vary in
all the stimulus dimensions described above, and should make PGLISSOM grouping
performance sensitive to these dimensions.

Most interestingly, direction-selective cells that emerge from such training would
allow grouping to take place based on motion, which is an important process in bio-
logical vision. Such a model would make it possible to compare the model directly
with experimental observations on synchronization, which are usually based on mov-
ing inputs (Eckhorn et al. 1988; Gray and Singer 1987).

17.2.9 Scaling up to Large Networks

Developing techniques to simulate large networks accurately is a major issue in com-
putational neuroscience research. Scaled-down versions of perceptual experiments
had to be devised in this book in order to study them with the available model retina
and cortex: For example, the tilt aftereffect inputs consisted of only a single line,
instead of gratings used in human experiments; contour integration was performed
over three to six elements in a background of zero to six elements, instead of 20
in 200. While the principles are the same and we believe the results are valid, such
mismatch in scale makes it difficult to compare the results directly with human exper-
iments. Also, large maps are necessary for many other important visual phenomena,
such as visual attention, saccades between stimulus features, the interaction between
the foveal and peripheral representations of the visual field, and the self-organization
based on large-scale patterns of optic flow due to head movement. In order to under-
stand them computationally, large parts of the visual cortex have to be simulated.

The parameter scaling equations and the GLISSOM map growing method in-
troduced in Chapter 15 are the most promising avenue to date to scale up to large
networks. As was discussed in that chapter, these techniques already allow simulat-
ing the entire V1 at the column level with desktop workstations. The techniques can
be combined with parallel implementations of the LISSOM algorithm in order to
simulate multiple visual areas or more-detailed column models (Chang and Chang
2002).
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It may be possible to reduce the memory requirements of large simulations by
modeling biological networks more directly. The lateral connection weights could
be initialized based on known biological connectivity or connectivity derived from
image statistics. Since such connectivity is usually sparse, a larger map can be con-
structed. Although the initial development of the map cannot be modeled in such
networks, large-scale simulations can be run to test specific functional effects of bi-
ological connectivity patterns, and to test the components of the network in various
realistic psychophysical tasks.

In order to deal with inputs as large as the entire visual scene, techniques could be
developed for scanning the visual space sequentially with a small LISSOM network.
If a model has only afferent connections, the input space can be partitioned into dis-
crete grids the size of the LISSOM retina, and the responses for each grid location
combined to form the global output. With lateral connections, the combination be-
comes more complicated because the lateral interactions between the different areas
must be taken into account. As a first approximation, it may be sufficient to represent
only the lateral connections of the LISSOM map to its eight neighboring locations in
the grid. These same connections can then be used at all grid locations. In this man-
ner, it may be possible to self-organize and run an arbitrarily large LISSOM map that
is constructed on the fly from local components.

With the scale-up techniques, it should be possible to apply the LISSOM ap-
proach to many new visual phenomena in a realistic scale. Before its performance
can be directly compared with that of humans, it will also be necessary to extend
LISSOM to model foveated input, as will be described next.

17.2.10 Foveated Input and Eye Movements

Current LISSOM simulations are based on a uniform representation of the visual
field, which is appropriate when modeling a small patch of the retina and the corre-
sponding parts of the visual cortex. However, a number of visual phenomena depend
on differences between central and peripheral visual processing (such as contour in-
tegration; Section 13.1.1). In the periphery, retinal ganglion cells are spaced much
farther apart and have much larger receptive fields than in the fovea, and thus the
mapping of visual space differs significantly between central and peripheral vision.
As a result, object perception performance varies across the visual field (Levy, Has-
son, Avidan, Hendler, and Malach 2001; Mäkelä, Näsänen, Rovamo, and Melmoth
2001; Strasburger and Rentschler 1996). For instance, faces in the periphery need
to be both larger and have higher contrast to be recognized, compared with those in
central vision.

To understand these experimental results, a large-scale version of LISSOM can
be implemented that includes both central and peripheral processing. The architec-
ture would be mostly the same as in the current model, perhaps scaled up with the
techniques discussed in Section 17.2.9. In addition, a module would be included be-
fore the photoreceptors to perform a log-polar transformation of the visual image
before computing the activation of the photoreceptors. This transformation could be
adjusted over time to take into account that the fovea develops later than the rest of
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the retina (Abramov et al. 1982; Kiorpes and Kiper 1996). Such a transformation
process would simulate the nonlinear distribution of retinal ganglion cells, without
requiring changes to the LGN, V1, or FSA models.

Although modeling foveated input requires only these small changes to the LIS-
SOM model of V1, to understand fully the effects of the fovea on self-organization
and visual function, it may be necessary to include mechanisms for moving the di-
rection of gaze.

In normal vision, the fovea is directed at several different visual targets each sec-
ond, changing between targets with a quick saccade. The saccades are controlled by
subcortical areas such as the superior colliculus and by high-level areas such as the
frontal eye fields (see Bisley and Goldberg 2003 for a review). Including regions that
generate eye movement would greatly complicate the model, but would also com-
plete a loop between eye movement, retinal image, and subsequent eye movements.
In the long run, such a model will be crucial for understanding how the visual sys-
tem utilizes representations in the fovea and the periphery to make sense of the visual
environment.

17.2.11 Scaling up to Cortical Hierarchy

In addition to scaling to larger maps, the visual cortex model can be scaled up verti-
cally by including maps beyond V1 in the visual hierarchy, such as V2, V4, and MT.
Such large-scale models will rely on detailed data now becoming available about
the connectivity and functional properties of higher visual areas (e.g. Heeger, Boyn-
ton, Demb, Seidemann, and Newsome 1999; Kötter 2004; McCormick, Choe, Koh,
Abbott, Keyser, Melek, Doddapaneni, and Mayerich 2004a; McCormick, Mayerich,
Abbott, Gutierrez-Osuna, Keyser, Choe, Koh, and Busse 2004b; McGraw, Walsh,
and Barrett 2004; Pinsk, Doniger, and Kastner 2004; Van Essen 2003; Wong and
Koslow 2001). The ultimate goal would be to self-organize structures as complex
and powerful as the primate visual system, with dozens of interacting visual areas
allowing recognition of highly complex patterns. First steps toward this goal were
presented in Section 10.2, where the high-level FSA was organized based on inputs
from the V1 model.

Self-organization of hierarchical structures is a difficult unsupervised learning
task in general (Becker 1992). The idea is to apply self-organization in multiple
stages and to discover increasingly complex structures in the input. However, lin-
ear projections and nonlinear topographic mappings (such as the SOM) do not usu-
ally suffice: Each level will represent essentially the same information even if it is
scaled or organized differently. In contrast, LISSOM includes several extensions that
make it possible to discover high-level representations: (1) The afferent receptive
fields are local, and higher levels receive information from broader areas than lower
levels; (2) the activation function includes a threshold, ensuring that only the best-
matching neurons respond; and (3) the lateral interactions decorrelate the represen-
tations, forming a sparse, redundancy-reduced code that makes recognition and clas-
sification at higher levels easier (as was shown in Section 14.3). The higher levels
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can then develop complex feature preferences like those found in higher levels of the
visual cortex.

With a hierarchical model, it should be possible to show how high-level per-
ceptual properties can develop. One important such property is translation-invariant
and viewpoint-invariant responses. These invariances are crucial for large-scale ob-
ject and face recognition, because large objects are usually not encountered at pre-
cisely the same retinal position and orientation each time. Lateral connections are
believed to play a crucial role in this process (Edelman 1996; Marshall and Alley
1996; Wiskott and von der Malsburg 1996); however, existing models do not yet
develop ordered maps for orientation or other low-level visual features, and do not
explain how the lateral connectivity can develop along with the map (Bartlett and
Sejnowski 1998; Földiák 1991a; Olshausen, Anderson, and Van Essen 1995, 1996;
Stringer and Rolls 2002; Wallis and Rolls 1997). Instead, the models are based on
hierarchically arranged sheets of neurons that respond to faces or specific objects
over a wide range of positions or three-dimensional viewpoints.

Despite this difference in focus, the overall architectures of most transformation
invariance models are similar to a hierarchical LISSOM model, and their mecha-
nisms could be implemented in LISSOM. For instance, the VisNet family of mod-
els (Rolls and Milward 2000; Stringer and Rolls 2002; Wallis 1994; Wallis and
Rolls 1997) achieves transformation invariance using the trace learning rule (Sec-
tion 17.1.4; Földiák 1991a). Because a moving object will assume a number of dif-
ferent spatial positions and configurations over time, the trace learning rule ensures
that responses to each of these views will become associated. At each subsequent
hierarchical level, neurons will process larger areas of the visual field, leading to
translation and viewpoint invariance at the highest levels (comparable to monkey
inferotemporal cortex).

A hierarchical LISSOM model would provide a first unified account of how topo-
graphic maps can develop in a hierarchy of visual areas, how their function depends
on self-organized lateral connections, and how high-level properties such as transfor-
mation invariance emerge in this process. In the following four subsections, opportu-
nities for understanding several high-level perceptual phenomena with hierarchical
LISSOM are reviewed.

17.2.12 Line-End-Induced Illusory Contours and Occluded Objects

PGLISSOM was used in Section 13.3.4 to show how edge-induced illusory contours
could arise based on the same mechanisms as normal contour integration. An im-
portant future experiment with hierarchical LISSOM is to include end-stopped cells
in the model, and demonstrate how line-end-induced illusory contours, and possibly
occluded objects, could be detected in V2.

As was discussed in Section 17.1.4, the behavior of cortical columns in the cur-
rent LISSOM models is based on simple cells, which are the first in V1 to show ori-
entation selectivity. Such cells in the cortex usually respond more strongly when the
input stimulus, such as an oriented line element, gets longer. In contrast, end-stopped
cells also found in V1 respond best to an input with a particular length (Gilbert
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and Wiesel 1979), and they have been proposed to be responsible for both line-end-
induced illusory contour completion and occluded object recognition (Finkel and
Edelman 1989; Kellman, Yin, and Shapley 1998; Rensink and Enns 1998; Sajda and
Finkel 1992; Weitzel, Kopecz, Spengler, Eckhorn, and Reitboeck 1997).

End-stopped cells have been found in layer 4 in cats. They are thought to arise
when a layer-6 cell, which typically has a wider receptive field, inhibits (through an
inhibitory interneuron) a layer-4 neuron with a smaller receptive field: Inputs that are
exactly as long as the smaller RF excite such a layer-4 neuron the most (Bolz and
Gilbert 1986; Gilbert 1994). The end-stopped cells further project to V2, and may
form a basis for orientation columns for illusory contours that have been observed in
V2 (Sheth et al. 1996).

In order to understand line-end-induced illusory contours and occluded object
detection with PGLISSOM, it will first have to be extended with a set of neurons
and intracolumnar circuitry in layers 4 and 6 that give rise to end-stopped receptive
fields: These neurons in layer 6 have wider receptive fields and inhibit the neurons in
layer 4, which have narrower receptive fields. During self-organization, these layer-
4 neurons will develop into end-stopped cells and self-organize with the rest of the
orientation map. A V2 map, receiving input from the end-stopped cells, will then
self-organize based on the oriented end-stop activity, and form an orientation map
of illusory contours in a process similar to how the V1 forms an orientation map of
ordinary contours.

The model can be tested in illusory contour detection and in occluded object
detection tasks. If successful, it would demonstrate how such behavior can arise
from input-driven self-organization in V1 and V2. Further, since the V2 in such
an extended model will behave as the V1 in the current LISSOM, tilt aftereffects
should occur between illusory contours in much the same way as they do in ordinary
contours in LISSOM (Chapter 7). Such aftereffects have indeed been found in psy-
chophysical experiments (Berkley, Debruyn, and Orban 1993; Paradiso, Shimojo,
and Nakayama 1989; van der Zwan and Wenderoth 1994, 1995); the model predicts
that the same underlying mechanism is responsible for both of them.

In this manner, a hierarchical LISSOM model can be used to understand self-
organization and function of V2 and higher levels of visual processing. An important
further extension of the hierarchy is to include feedback from higher levels, as will
be discussed next.

17.2.13 Feedback from Higher Levels

Current hierarchical LISSOM models, such as the HLISSOM network of Chapter 8
and those proposed so far in this chapter, are feedforward only: Activation propagates
from the eye to LGN, to V1, and to higher levels, but not in the reverse direction.
Including feedback connections is an important direction of future work that will
allow us to model several new phenomena.

In the cortex, a large proportion of connections propagate in the reverse direction,
connecting from higher levels to V1 and the LGN (see Gandhi, Heeger, and Boynton
1999; Lamme, Super, and Spekreijse 1998; Van Essen et al. 1992; White 1989 for
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reviews). The role of these feedback connections is not yet clear, but they may be
involved in top-down pattern completion, attention, visual imagery, and large-scale
object grouping. In many cases, they may achieve these effects by enhancing the
existing lateral interactions (Freeman, Driver, Sagi, and Zhaoping 2003).

During self-organization, the feedback connections may also encourage differ-
ent areas to develop synergetically, mediating competition and cooperation between
multiple areas (Rolls 1990). Thus, over a large spatial scale, feedback connections
may act like lateral connections within each area. The arrangement of maps into a
hierarchy may even be primarily a means for making such large-scale connections
more efficiently than could be achieved in a single large, laterally connected map
(Kaas 2000).

As a first approach, feedback connections can be included in LISSOM just like
afferent and lateral connections, as additional terms in each neuron’s activation func-
tion. The principle is particularly clear if the activation function is written by index-
ing over receptive fields (as is done in Appendix A and implemented in Topograph-
ica):

ηij(t) = σ

⎛

⎝
∑

ρ

γρ

∑

kl∈RFρ

Xkl(t − 1)wkl,ij

⎞

⎠ , (17.1)

where the index ρ indicates afferent, lateral, and feedback receptive fields (RF),
Xkl(t − 1) is the activation of neuron (k, l) in that receptive field, and wkl,ij is
the weight from that neuron to neuron (i, j). The sign of scaling factor γρ is posi-
tive for afferent and lateral excitatory connections, and negative for lateral inhibitory
connections. Although individual feedback connections are usually excitatory in the
cortex (White 1989), they may have inhibitory effects for strongly activated neurons
(like lateral connections do; Weliky et al. 1995). Both approaches can be tested in
LISSOM by changing the sign of γρ for the feedback connections. In future work,
this approach can be further generalized by adding different delays for afferent, lat-
eral, and feedback connections, thus replacing “1” in the equation with a specific dρ

for each connection type. For instance, lateral connections have a higher latency, on
average, than feedback connections (Nowak and Bullier 1997), and would thus have
longer delays.

Using a hierarchical version of LISSOM with feedback, it should be possible to
explain visual phenomena like pattern completion, where an object-selective neu-
ron in a higher level can bias those neurons in a lower level that generally cause
it to fire, thus completing missing or weak low-level features. Such feedback could
also be used to account for a wider range of illusory contours, and for multi-modal
integration, as will be discussed in the next two sections.

Feedback most likely plays a large role in perceptual systems, a role that has only
recently began to be understood (Carpenter 2001; Dayan, Hinton, Neal, and Zemel
1995; Knoblauch and Palm 2003; Kosslyn and Sussman 1995; Murray, Schrater, and
Kersten 2004; Pollen 1999; Schyns, Goldstone, and Thibaut 1998). Although much
of the insight comes from computational experiments, it has been difficult to build
large-scale computational models with self-organized hierarchy and feedback. The
extensions to LISSOM proposed above, as well as their practical implementation
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(a) (b) (c) (d)

Fig. 17.1. High-level influence on illusory contour perception. Low-level mechanisms such
as contour completion can account for some illusory contour perception phenomena. However,
surrounding context can affect how salient the illusory contours are, suggesting that higher
levels influence the low-level mechanisms. The patterns in (a) and (b) have the same oval
outline in the middle, but only in (b) is the oval seen as a floating illusory object. Similarly, (c)
and (d) have the same square outline in the middle, but the illusory square is prominent only
in (d). In (a) and (c), the boundary elements are perceived as individual objects at the high
level, suppressing the illusory effect. Adapted from Hoffman (1998).

provided by the Topographica simulator (Section 17.4), should make such models
possible, making it possible to understand perceptual systems at a new level of detail.

17.2.14 High-Level Influence on Perceptual Grouping

Although synchronization in V1 can explain many perceptual grouping phenomena,
feedback from higher levels of visual processing also has an effect in many cases.
An interesting question is whether synchronized activities exist in high-level visual
and cognitive areas of the brain, and how they might influence low-level perception
and behavior.

In fact, correlated spiking has been found in the frontal cortex of awake mon-
keys. Such spiking forms synfire chains, where a population of neurons firing
synchronously activates another population in a successive, feed-forward manner
(Abeles 1991; Abeles, Bergman, Gat, Meilijson, Seidemann, Tishby, and Vaadia
1995; Abeles, Bergman, Margalit, and Vaadia 1993; Vaadia, Haalman, Abeles,
Bergman, Prut, Slovin, and Aertsen 1995). Further, these chains correlate with the
behavioral states of the animal: In a delayed response task, different chains were ob-
served leading to different responses (Prut, Vaadia, Bergman, Haalman, Slovin, and
Abeles 1998). Through backprojections, synfire chains could also affect synchrony
in low-level areas. For example, Sillito, Jones, Gerstein, and West (1994) showed that
to achieve synchrony, the LGN needs feedback from V1. Such observations suggest
that synchronized firing indeed exists in higher cortical areas, and it can influence
processing in lower levels.

Further evidence for this idea comes from certain complex illusory contour phe-
nomena. For example, even though the central regions in Figure 17.1a and b are iden-
tical, the region is salient only in b (the same is true of c and d). This phenomenon
suggests that all illusory contours are not based purely on bottom-up activation of V1
or V2 neurons; feedback from higher levels influences them as well. In Figure 17.1a
and c, the parallel contours cause the boundary elements to be recognized as objects



394 17 Future Work: Computational Directions

at a higher level, and feedback from their representations suppresses the illusory
contour effect.

At this point it is not clear whether the high-level representations are local, such
as columns on a map, or distributed, i.e. patterns of activation spread across an area
of cortex. If they are local, they can influence lower levels simply by projecting a
broad, diffuse set of connections back to the lower level; the neurons receiving these
connections will then synchronize with the high-level representation. On the other
hand, if the high-level representations are distributed, each neuron may project back
just a small, focused set of connections; when the high-level representation synchro-
nizes, the back projections will synchronize the corresponding low-level representa-
tion (von der Malsburg 1999).

Computational experiments with PGLISSOM can help distinguish between these
alternatives. The model will first have to be extended with high-level object repre-
sentations, such as localist and distributed representations for parallel lines. With
each alternative, the contextual cues can be varied and the synchrony emerging at
the lower level observed. Such a model can lead to a computational account on how
high-level objects are represented in the cortex, and also how grouping is affected by
feedback from higher levels.

Similar computational experiments with PGLISSOM can also be used to under-
stand other phenomena of high-level influence on perceptual grouping. For exam-
ple, which afterimages are observed after viewing patterns like those in Figure 17.1
(i.e. the boundary elements or the central illusory object) depends on the high-level
context (Shimojo, Kamitani, and Nishida 2001); this phenomenon could be mod-
eled with PGLISSOM that combines high-level feedback with short-term adaptation
(such as that responsible for the tilt aftereffect; Chapter 7). Similarly, integration of
inputs from different sensory modalities involves feedback from higher areas, and
can be modeled with PGLISSOM as discussed in the next section.

17.2.15 Multi-Modal Integration

The different sensory modalities are known to interact in the brain: For example,
auditory processing and visual perception influence each other (Churchland, Ra-
machandran, and Sejnowski 1994; McGurk and MacDonald 1976; Repp and Penel
2002; Stein, Meredith, Huneycutt, and McDade 1989), and so do touch and vision
(Bach y Rita 1972, 2004; Zhou and Fuster 2000). Once LISSOM is extended to in-
clude a hierarchy of sensory areas and feedback from higher levels, it can be used to
test hypotheses about how such interactions take place.

One well-documented multi-sensory phenomenon is the coupled development of
auditory and sensory areas in the barn owl (Haessly, Sirosh, and Miikkulainen 1995;
Knudsen and Knudsen 1985; Rosen, Rumelhart, and Knudsen 1995). The auditory
spatial map in the inferior colliculus depends partially on visual input the animal
receives during development. A hierarchical LISSOM network can be extended to
model this phenomenon by including auditory and visual channels converging on
a higher level map. The low-level maps learn to represent the auditory and visual
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space, and the high level learns associations between the two modalities. With back-
projections, the high-level map then correlates the low-level maps as well, resulting
in coupled development of the two modalities.

Another important issue is how the sensory information in different modalities
is integrated during performance. One possibility is that a higher level area performs
the integration (Section 17.2.14; de Sa 1994; de Sa and Ballard 1997). Another pos-
sibility is synchronization: When two representations in different modalities are syn-
chronized, they are perceived as part of a single experience. Although coherent oscil-
lations have been found in sensory areas other than vision (such as the olfactory bulb
and the auditory system; Eeckman and Freeman 1990; Friedrich and Laurent 2001;
Joliot et al. 1994), it is not yet known whether the different modalities are bound to-
gether through synchronization. Computational models such as PGLISSOM can be
instrumental in testing this hypothesis.

Integration studies require simulating multi-modal brain areas, i.e. regions that
receive strong input from multiple sensory modalities. One such candidate is the
posterior part of the intraparietal area (PIP), where integration of tactile and visual
information has been observed in fMRI studies (Saito, Okada, Morita, Yonekura,
and Sadato 2003). A PGLISSOM model of this system would include sensory ar-
eas, a higher level area representing the PIP, and feedback mechanisms similar to
those discussed in Section 17.2.14. The model would be first validated by matching
its spike activity with the fMRI data. Different inputs would then be systematically
presented and the resulting synchronization in the PIP and the low-level maps ob-
served. In this way, it would be possible to predict what kinds of representations are
activated and synchronized during multi-modal integration tasks. These predictions
could then be verified in biological experiments, using e.g. the techniques proposed
in Section 16.4.7.

In addition to high-level cortical areas like the PIP, subcortical areas such as
the thalamus can contribute to multi-modal integration (Crabtree, Collingridge, and
Isaac 1998; Crabtree and Isaac 2002; Hadjikhani and Roland 1998; see Calvert 2001;
Sherman and Guillery 2001 for reviews). For example, Choe (2002, 2003a,b, 2004)
recently showed how the recurrent activation between the thalamus and different cor-
tical areas can establish analogical mappings between cortical representations (see
Jani and Levine 2000; Kanerva 1998 for general neural mechanisms of analogy).
Such an approach can be extended to establish mappings between sensory modali-
ties, such as those between orthographic and phonetic representations of words and
sharp visual edges and high-pitch tones. Corticocortical connections between dif-
ferent sensory areas initiate such mappings, and the thalamus selects the most ap-
propriate ones among the resulting activity. If the PGLISSOM architecture were to
be extended to include the thalamocortical loop, synchronization between different
sensory modalities could be used to represent the analogy. Such a model would lead
to concrete predictions about how information in different modalities is represented
and associated.

A number of other psychophysical phenomena involving multi-modal integration
have been described as well (Meredith and Stein 1986; Stein and Meredith 1993).
Computational models such as PGLISSOM can serve an instrumental role in formu-
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lating hypotheses about their neurobiological foundations. Such models constitute
a significant step toward understanding the multi-modal, multi-level, and recurrent
nature of the perceptual system.

17.3 New Research Directions

The LISSOM framework was developed to understand the visual system in compu-
tational terms. However, experience with it can serve to motivate research in other
areas, and even suggest entirely new research directions. A number of such ideas are
reviewed in this section, including theoretical analysis of visual computations, train-
ing realistic natural and artificial vision systems, and constructing innate capabilities
and complex systems through interactions between evolution and learning.

17.3.1 Theoretical Analysis of Visual Computations

Computational experiments with LISSOM demonstrate how the visual cortex can
develop and function based on a number of biologically motivated computational
principles. The next step in this direction is to analyze the model theoretically, deter-
mining what its computational goals are and which of its mechanisms are necessary
to achieve them. The two main directions are defining an objective function for LIS-
SOM self-organization, and characterizing the capabilities of temporal coding.

The ultimate goal in theoretical neuroscience is to understand why the cortical
structures exist, i.e. what is their purpose and role in information processing (Arbib,
Érdi, and Szentágothai 1997; Barlow 1994; Churchland and Sejnowski 1992; Dayan
and Abbott 2001; Field 1994; Hecht-Nielsen 2002; Marr 1982; Rao, Olshausen, and
Lewicki 2002). With LISSOM, a crucial question is: What is the goal of the self-
organizing process? In Chapter 14, the self-organized LISSOM network was shown
to form sparse representations by reducing redundancy in the input, and these repre-
sentations were found to be effective in further stages of information processing. This
observation suggests that the goal of self-organization is to form structures that allow
representing the visual input in an optimal manner, given the biological constraints.
What exactly is the objective function, and what are the constraints?

One possibility is that the process optimizes the ability to reconstruct the in-
put, i.e. maximizes the information retained in visual cortex representations. Alter-
natively, these representations could be optimized for the needs of further stages
in visual processing, such as pattern recognition. The process could be constrained
by physical resources in the cortex, such as wiring length, i.e. the extent and total
strength of the lateral connections, the total amount of activation in each cortical rep-
resentation, or the smoothness and continuity of cortical activation patterns (Bell and
Sejnowski 1997; Chklovskii, Schikorski, and Stevens 2002; Hochreiter and Schmid-
huber 1999; Koulakov and Chklovskii 2001; Olshausen and Field 1997).

Such hypotheses can be verified by constructing a mathematical model with the
proposed objective function and constraints, and showing that optimizing it results
in processes and structures similar to those in the computational model (Wiskott
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and Sejnowski 1998). In fact, a settling and learning process very similar to that
in LISSOM can be derived in this way by optimizing reconstruction with sparse
representations (Olshausen 2003; Olshausen and Field 1997). The activity and the
weights are optimized in two alternating phases using gradient ascent. First, given
an input image and the weights, the most likely sparse network activity pattern is
found. Second, given the input and the activity, the weights are found that allow
reconstructing the input as accurately as possible. The activity update that results is
similar to LISSOM settling and the weight update similar to Hebbian learning.

Using the same approach with further constraints (such as wiring length) and
further objectives (such as pattern recognition accuracy), it may be possible to con-
strain the optimization process toward final structures similar to those found in LIS-
SOM. Such a result would serve to identify a computational goal for the LISSOM
process, and to the extent LISSOM accurately models the cortex, to biological self-
organization as well.

In PGLISSOM, the self-organizing process is further extended with temporal dy-
namics. An important question is whether the computational goals that the system
implements are also extended in this way, or whether spiking is simply a low-level
implementation of rate coding. One way to analyze computational capacity of spik-
ing networks is through Vapnik–Chervonenkis (VC) dimension analysis (Bartlett and
Maass 2003; Valiant 1994; Vapnik and Chervonenkis 1971).

The VC dimension describes how complex classifications a given network can
represent: the higher the VC dimension, the more complicated functions it can rep-
resent, but also the less likely it is to generalize well to novel inputs. Typically, the
more hidden neurons the network has the higher its VC dimension. Zador and Pearl-
mutter (1996) first analyzed the VC dimension of leaky integrate-and-fire networks.
Subsequently, Maass (1997) showed that networks with noisy spiking neurons re-
quire fewer neurons to perform the same function than rate-coding networks with
linear threshold and sigmoidal activation functions, and are therefore more econom-
ical and likely to generalize better. It should be possible to use similar techniques in
PGLISSOM, and perhaps demonstrate whether its self-organizing performance is in
principle different from that of the rate-coded LISSOM.

In PGLISSOM, the mechanisms of Hebbian self-organization and grouping
through synchronization are shown to operate in a single computational structure.
Such a model can be used to motivate a theory of how these processes might in-
teract. For example, it may be possible to include grouping as part of the objective
function for self-organization, and demonstrate that the two-layer architecture re-
sults from combining these two functions optimally. In this manner, LISSOM can be
used as a testbed for bringing together different theories of brain function, eventually
resulting in a formal description of computations in the visual cortex.

17.3.2 Genetically Specified Pattern Associations

As was discussed in Section 16.2.3, internal pattern generation may be a way to
encode species-specific knowledge into a self-organizing process. So far we have
seen how such patterns could be useful in constructing the visual system, but the
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idea is more general. Internal pattern generation could play a role in establishing
many other behaviors that have traditionally been considered innate, such as certain
emotional responses.

As discussed in Section 17.2.4, internal patterns continue to be generated during
REM sleep even in the adult, and they could affect other areas besides the visual sys-
tem. For instance, the amygdala, an area primarily involved in processing emotion,
is strongly activated during REM sleep (Maquet and Phillips 1998). This observation
raises an intriguing possibility: Internally generated patterns may train the animal to
associate a particular emotional valence (positive or negative) with a class of visual
patterns (Bednar 2000).

Although this hypothesis is difficult to test directly, it is consistent with behav-
ioral data. In a series of studies on rhesus monkeys raised alone (without other mon-
keys or mirrors), Sackett (1966, 1970) found behaviors suggesting that the monkeys
had specific genetically determined preferences. For instance, beginning around 2–
2.5 months of age, the monkeys became more playful when an image of an infant
monkey was shown than when pictures of older monkeys were shown, and they
would more often press a lever to continue the display of the infant image. At the
same age, they became visibly disturbed and agitated when an image of a mon-
key with a threatening facial expression was shown, and were less likely to con-
tinue its display (Sackett 1966). Remarkably, these responses had developed without
experience with either playful or threatening live monkeys. Also, the responses to
the threatening images decreased with time and were no longer measurable by 3.5
months, suggesting that the original negative emotions associated with such images
were overwritten by the experience where the threats never materialized.

Other associations in the same monkeys arose later in development, again with-
out any environmental experience. These tests used live male and female monkeys
visible in nearby cages, and measured which cage a test animal approached (Sackett
1970). When the ages of the visible monkeys matched the age of the test monkeys,
deprived infants younger than 9 months approached both sexes equally. Older de-
prived infants preferred members of their own sex, and adult deprived monkeys pre-
ferred members of the opposite sex (Sackett 1970). When the visible age-matched
monkeys were replaced with adults, deprived newborns strongly preferred females,
but deprived males began to prefer males when they reached 48 months of age. Im-
portantly, this change occurred at nearly the same age as in normal, non-deprived
monkeys. Thus, positive or negative associations with visual stimuli can arise inde-
pendently of visual experience in animals.

It may be possible to explain these behaviors through internal pattern generation
in the HLISSOM framework. Specifically, a pair of high-level units representing pos-
itive and negative emotions can be added to the model, with connections to and from
the highest cortical areas, and reciprocal inhibitory connections with each other. A set
of internally generated patterns is then designed to represent the infant, male adult,
and female adult faces. Through internal training, each type of pattern is associated
with a positive or negative emotion, and the associations are tested using images of
real faces. The model should produce the same emotional response to real faces as
to their internally generated counterparts.
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In this manner, genetically determined associations can be maintained for dif-
ferent classes of environmental stimuli throughout development, independently of
environmental associations. The approach demonstrates how genetically supervised
learning can occur in an otherwise unsupervised system.

17.3.3 Embodied, Situated Perception

The simulations discussed so far can all be performed off-line in experiments with a
predetermined corpus of input patterns (e.g. a set of natural images or video). How-
ever, it can be very difficult to obtain a realistic, representative set of such patterns.
The standard databases of e.g. face images include mostly canonical examples, in-
stead of a realistic sampling of faces as seen by an infant. In order to train a model
to perform like an infant, it will have to be trained with data seen by the infant. How
can such data be obtained?

Einhauser, Kayser, Konig, and Kording (2002) recently took the first steps in col-
lecting such realistic training data by attaching a video camera to an adult housecat’s
head, and collecting video while it freely roams the environment. Einhauser et al. ar-
gue that this approach is a good approximation of the visual experience of the adult
cat, because cats tend to move their heads (and not just their eyes) when scanning a
visual scene. However, the data may not be appropriate for modeling how the cat’s
visual system develops. The visual experience of a kitten may be quite different from
that of an adult cat. For instance, very young kittens move around their environment
much less than adult cats do, particularly during the earliest times after eye opening
while their visual systems are first developing.

Moreover, it is impractical to extend this approach to human infants, or even
to closely related primates. Apart from any ethical considerations, the video thus
recorded would not necessarily be a good approximation of the infant’s visual ex-
perience. In humans, eye movements can be significantly different from head move-
ments: Humans often keep their heads still while scanning a scene or fixating on
different parts of an object. Although eye-tracking equipment exists, it could not be
attached to an infant or animal unobtrusively for several months.

Even if a realistic set of training data were obtained, video alone would not cap-
ture the crucial features of vision, particularly in the higher, cross-modal areas of
the nervous system. Vision is an active process of interaction with the environment,
driven by attention (Findlay and Gilchrist 2003; Gibson 1979; Goodale and Milner
1992; Milner and Goodale 1993; O’Regan and Noë 2001; see Findlay 1998 for a re-
view). The video data can record the pattern of light falling on the eye, but it cannot
capture the causal link between visual system activity, visual attention, and the eye
movements that determine the specific images seen and thus future activity patterns.
Given how difficult it is to replicate this feedback loop, it will be difficult to reach
human levels of visual system performance by simply making training patterns more
realistic.

The active vision approach directly addresses these issues. Vision is no longer
limited to passive interpretation of visual input, but involves an active motor control
process as well. This approach allows using resources efficiently, and makes many
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difficult computer vision problems easier to solve, such as inferring shape from shad-
ing, contours, and texture, and computing the optic flow (Aloimonos, Weiss, and
Bandyopadhyay 1988; Bajcsy 1988; Ballard 1991; Ballard, Hayhoe, Pook, and Rao
1997; Blake and Yuille 1992; Harris and Jenkin 1998; Landy, Maloney, and Pavel
1995). However, in most active vision systems, the sensorimotor interaction is lim-
ited to the visual apparatus (e.g. rotation of stereo cameras), and the full range of
movement in natural agents has not been fully utilized.

For these reasons, there is a growing sense that “embodied” or “situated” per-
ception is the necessary next step toward understanding postnatal learning, as well
as cognitive functions in general (Bailey, Feldman, Narayanan, and Lakoff 1997;
Beer 2000; Brooks, Breazeal (Ferrell), Irie, Kemp, Marjanović, Scassellati, and
Williamson 1998; Choe and Bhamidipati 2004; Clark 1999; Cohen and Beal 2000;
Elliott and Shadbolt 2003; Goldstone 2003; Langley, Choi, and Shapiro 2004; Mark-
man and Dietrich 2000; Pfeifer and Scheier 1997, 1998; Philipona, O’Regan, and
Nadal 2003; Pylyshyn 2000; Regier 1996; Thompson and Varela 2001; Weng, Mc-
Clelland, Pentland, Sporns, Stockman, Sur, and Thelen 2001; Ziemke 1999). For
instance, it may be useful to study a relatively simple robot as an example of an in-
dividual interacting with its environment. Such a system may provide insights that
could not be obtained from a purely computational study of human development,
because it can preserve the causal link between eye, head, and body movements and
the visual system activity that results.

Therefore, implementing models like LISSOM within situated devices such as
simple robots is an important new direction in understanding how perceptual systems
develop in animals.

17.3.4 Building Artificial Vision Systems

In addition to providing a precise understanding of the mechanisms underlying visual
processing in the brain, computational models can serve as a foundation for artificial
vision systems. Such systems have the advantage that they are likely to process vi-
sual information the same way humans do, which makes them appropriate for many
practical applications.

First, LISSOM networks can be used to form efficient internal representations
for pattern recognition applications. A method must be developed for automatically
identifying active areas in the maps and assigning labels to neural populations that
respond to particular stimulus features. This task is similar to the problem of inter-
preting the neural code (Section 16.3.2), and the same techniques can probably be
used. One particularly elegant approach, demonstrated in Section 14.3, is to train
another neural network to do the interpretation. In such a system, the feedback idea
discussed in Section 17.2.13 can be useful in training the map. By adding back-
projections from the interpretation network back to the map, a supervised process
similar to learning vector quantization and top-down expectations could be imple-
mented (Kohonen 1990; Xu and Oja 1990). The backprojections learn which units
on the map are statistically most likely to represent the category; they can then ac-
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tivate the correct LISSOM units even for slightly unusual inputs, resulting in more
robust recognition.

Second, a PGLISSOM network can serve as a first stage for object recognition
and scene analysis systems, performing rudimentary segmentation and binding. Like
contour integration, object binding and object segmentation are thought to depend on
specific long-range lateral interactions (Gilbert, Das, Ito, Kapadia, and Westheimer
1996), so PGLISSOM is in principle an appropriate architecture for the task. With the
scale-up approaches discussed in Sections 17.2.9 and 17.2.11, it should be possible
to build networks large enough to cover the entire scene. The system would con-
sist of multiple hierarchically organized PGLISSOM networks. At the lowest level,
preliminary features such as contours would be detected, and at each successively
higher level, the receptive fields cover more area in the visual space, eventually rep-
resenting entire objects. At each level, synchrony would effectively represent coher-
ent components and desynchrony would segment different components. A high-level
recognition system could then operate on these representations to perform the actual
object recognition and scene interpretation.

Including such postprocessing steps in LISSOM, and scaling it up to larger and
hierarchical maps, should allow building robust pattern recognition and low-level
vision systems up to the level of identifying coherent objects.

17.3.5 Constructing Complex Systems

The simulations on pattern-generator-driven self-organization demonstrate how ge-
netic and environmental influences can interact in constructing a complex visual pro-
cessing system (as was proposed in Section 2.3). The approach is more general,
however, and can be seen as a general-purpose problem-solving approach that can
be applied to a variety of fields, perhaps making it practical to develop much larger
computing systems than we use today.

In the most straightforward approach, the pattern generator can be designed
specifically for the task, as was done in Part III of this book. Such a generator al-
lows the engineer to express a desired goal without having to hard-code it into a
particular, inflexible architecture. In essence, the engineer will bias the learning sys-
tem with generated patterns, allowing it to solve problems that would otherwise be
difficult for learning systems. For example, simpler patterns can be learned before
real data, thereby avoiding local minima in the search space of solutions (Elman
et al. 1996; Gomez and Miikkulainen 1997; Nolfi and Parisi 1994; Tonkes, Blair,
and Wiles 2000). Such bootstrapping may also allow the designer to avoid expensive
and laborious manual collection and/or tagging of training datasets, as in tasks like
handwriting recognition and face detection. For instance, a three-dot training pattern
could be used to detect most faces, and only the patterns that were not detected would
need to be tagged manually (Viola and Jones 2004).

More significantly, the pattern generator could be constructed automatically us-
ing evolutionary algorithms (EAs, such as genetic algorithms, evolution strategies,
classifier systems, or genetic or evolutionary programming; Beyer and Schwefel
2002; Fogel 1999; Goldberg 1989; Holland 1975; Koza 1992; Mitchell 1996). In
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this approach, domain-specific knowledge necessary to design the generator by hand
would not be needed. For instance, studying real faces may lead one to suggest that a
three-dot pattern would be a good training pattern to bootstrap a face detector; how-
ever, often such knowledge can only be obtained through trial and error, and it would
be better to have an algorithm to do it automatically. Indeed, the self-organizing sys-
tem, the pattern generator, and the EA together can be considered a single general-
purpose adaptive algorithm.

What benefits would such a system have over other adaptive systems, such as
EAs or learning networks alone? Essentially, the combination of learning and evolu-
tion represents a balance between adaptation at different time scales (i.e. determines
a proper tradeoff between bias and variance; Section 2.3.1). Short-term learning al-
lows an individual network to become particularly well suited for the particular tasks
on which it is tested. Long-term adaptation (i.e. selection by the EA) can ensure that
short-term learning does not reduce generality. For instance, the EA can select train-
ing patterns to ensure that a system is able to handle events that occur rarely, yet
are vitally important over the long term. For example, a computer vision system for
detecting faults in manufactured devices can be trained both on the typical cases of
correct devices, plus specifically generated examples of faults and defects. The EA
can also select pattern generators that get the system “in the ballpark,” to increase
the chance that learning will succeed. Thus, by combining EAs and learning using
pattern generators, it should be possible to evolve systems that perform better than
using either approach alone.

A concrete first test of this idea could be devised in a pattern recognition domain
such as identifying handwritten characters. Such a system has to be both flexible
(to adapt to a particular person’s handwriting) and general (to recognize writing by
many people; Revow, Williams, and Hinton 1995). An EA could be used to design
training patterns and a learning algorithm to adapt to those patterns and to real-world
examples.

More specifically, the core of such a system would be a neural network that re-
ceives the handwritten digits as its input and produces the classification of each digit
as its output. Three different ways of constructing such a network could be com-
pared. First, the network weights could be evolved directly using an EA (Schaffer,
Whitley, and Eshelman 1992; Stanley and Miikkulainen 2002; Yao 1999). Second,
the network could be trained with a set of handwritten digit examples using a su-
pervised learning algorithm such as backpropagation (Chauvin and Rumelhart 1995;
Hecht-Nielsen 1989; Parker 1982; Rumelhart et al. 1986; Werbos 1974). Third, the
network could be trained with some such examples, but also with inputs constructed
by a pattern generator, which is evolved: The EA determines generator parameters
such as the locations and sizes of a small set of two-dimensional Gaussians, and the
generator is evaluated based on how well the network learns the task.

The expected outcome is that the direct EA would require a prohibitively large
number of iterations, because it has to search in an extremely high-dimensional space
of network weights. The environmentally driven learner, on the other hand, is likely
to get stuck in a suboptimal local minimum, because it will start far from the desired
solution, without any bias toward it. In contrast, the combined system should be able
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to discover a solution quickly because it only needs to evolve a small number of
parameters of the generator. Its structure should also be simpler, determined largely
by the pattern generator, which should allow it to generalize better to new data.

If successful, such an experiment would demonstrate how pattern generation can
be applied to tasks that require both generality and flexibility, thus combining the
benefits of evolution and learning. Such a system would be a significant step toward
automatic construction of complex systems.

17.4 The Topographica Cortical Map Simulator

In this chapter, a number of computational research projects from low-level exten-
sions of current models to new directions of long-term research have been proposed.
As an integral component of the LISSOM project and an accompaniment to this
book, Topographica is a software tool specifically designed to make such research
possible. In this section, the design and implementation of Topographica is briefly
reviewed and its use in modeling the visual cortex outlined; the software itself is
available at http://topographica.org.

17.4.1 Overview

Future progress in understanding how the visual cortex develops and functions will
require developing a large number of computational models. Building these mod-
els using existing simulation tools is time consuming, because they do not provide
support for biologically realistic, densely interconnected topographic maps. Avail-
able biological neural simulators, such as NEURON (Hines and Carnevale 1997)
and GENESIS (Bower and Beeman 1998), focus on detailed studies of individual
neurons, or very small networks of them. Tools for simulating large populations of
abstract units, such as PDP++ (O’Reilly and Munakata 2000) and Matlab (Trap-
penberg 2002), focus on cognitive science and engineering applications, rather than
models of cortical areas. As a result, the current simulators do not provide support for
constructing topographic map models, training them with perceptual input patterns,
and analyzing their structure and function.

To fill this role, the Topographica simulator has been developed to make it prac-
tical to simulate large-scale, detailed models of topographic maps. Topographica is
designed to complement the existing low-level and abstract simulators, focusing on
biologically realistic networks of tens of thousands of neurons, forming topographic
maps containing millions or tens of millions of connections. Topographica has been
developed together with the LISSOM project, and it was used to implement the mod-
els discussed in this book; it is also well suited for the future research proposed in
this chapter. However, Topographica is a simulator for topographic maps in the brain
in general, not only those in the visual system, but in all domains where such maps
occur.

In the subsections below, the design of Topographica is described, including the
models and modeling approaches it supports, how the simulator is implemented, and
how it can be used to advance the field of computational neuroscience.
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Fig. 17.2. Example Topographica model. In Topographica, models are composed of inter-
connected sheets of neurons. Each visual area is represented by one or more sheets in this
example model of the early visual system: For instance, the eye is represented by an array
of photoreceptors plus two sheets representing retinal ganglion cells. Each of the sheets can
be coarse or detailed, plastic or fixed, as needed for a particular study. Afferent and feedback
connections link the different areas, and units within each area can be connected using lateral
connections. The afferent connections are shown for one sample neuron in each sheet, and
also the lateral connections for the sample neurons in V1 and higher areas. Similar models can
be used for topographic maps in auditory, somatosensory, and motor cortex.

17.4.2 Scope and Design

The models supported by Topographica focus on topographic maps in any two-
dimensional cortical or subcortical region, such as those in visual, auditory, so-
matosensory, proprioceptive, and motor systems (Figure 17.2). Typically, models
will include multiple regions, such as an auditory or visual processing pathway, and
simulate a large enough area to allow the organization and function of each map to be
studied. The external environment must also be simulated, including playback of e.g.
visual images, audio recordings, and artificial test patterns. While current computa-
tional models usually include only a primary sensory area with a simplified version of
an input pathway, larger scale models will be crucial in the future for understanding
phenomena such as object perception, scene segmentation, speech processing, and
motor control. Topographica is intended to support the development of such models.
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To make it practical to model topographic maps at this large scale, the fundamen-
tal unit in the simulator is a two-dimensional sheet of neurons, rather than a neuron
or a part of a neuron. Conceptually, a sheet is a continuous, two-dimensional area
(as in the models of Amari 1980; Fellenz and Taylor 2002; Giese 1998; Roque Da
Silva Filho 1992; Wu et al. 2002); this area is then approximated computationally by
a finite array of neurons. This approach is crucial to the simulator design, because it
allows user parameters, model specifications, and interfaces to be independent of the
details of how each sheet is implemented.

As a result, the user can easily trade off between detailed simulations and compu-
tational requirements, depending on the specific phenomena under study. If enough
computational power and experimental measurements are available, models can be
simulated at full scale, with as many neurons and connections as in the animal sys-
tem being studied. More typically, a less-dense approximation will be used, requiring
only ordinary personal computers. Because the same model specifications and pa-
rameters can be used in each case, switching between levels of analysis does not re-
quire extensive parameter tuning or debugging, as would be required in neuron-level
or engineering-oriented simulators. The continuous approach also makes it possible
to calculate parameter values for a small simulated system based on experimental
measurements. Such model specification and calibration is facilitated by the neuron
property databases that have recently become available (e.g. Gardner 2004; Mirsky,
Nadkarni, Healy, Miller, and Shepherd 1998; Mirsky et al. 1998).

For most simulations, the individual neuron models in the sheets can be imple-
mented at a high level, consisting of single-compartment firing-rate or integrate-and-
fire units. More detailed neuron models can also be used, e.g. if such detail is nec-
essary to validate the model against experimental data, or if the specific phenomena
require simulating them. Such models can be implemented using interfaces to exist-
ing low-level simulators, such as NEURON and GENESIS, aided by neuron-model
synthesis techniques such as L-Neuron (Ascoli, Krichmar, Nasuto, and Senft 2001)
and neuron model description languages such as NeuroML (Goddard, Hucka, How-
ell, Cornelis, Shankar, and Beeman 2001).

Connectivity between neurons can be established using prespecified profiles,
such as the Gaussian and random connection distributions used for the initial con-
ditions of the simulations in this book. Adult patterns of connectivity can also be
specified based on measurements in particular species and systems, such as the area
and connectivity data becoming available in various neuroinformatics knowledge
bases (e.g. Arbib and Grethe 2001; Kötter 2004; Mazziotta et al. 2001; Mori et al.
2002; Van Essen 2003, 2004; Van Horn, Grafton, Rockmore, and Gazzaniga 2004).
This experimental data can also be used to validate the self-organized structures that
develop in the model.

17.4.3 Implementation

Topographica consists of a graphical user interface (GUI), a scripting language, and
libraries of models, analysis routines, and visualization techniques. The model li-
brary consists of predefined types of sheets, connections, neuron models, and learn-
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ing rules, and can be extended with user-defined components. These building blocks
are combined into a model using the GUI or the scripting language.

The analysis and visualization libraries include statistical tests and plotting meth-
ods geared toward large two-dimensional areas. They also focus on data displays that
can be compared with experimental results, such as optical imaging recordings, for
validating models and for generating predictions. Figure 17.3 shows examples of
such visualization types in a screenshot of Topographica.

To allow large models to be executed quickly, the numerically intensive portions
of the simulator are implemented in C++. Equally important, however, is that proto-
typing be fast and flexible, and that new architectures and other extensions be easy to
explore and test. Although C++ allows the fine control over machine resources that is
necessary for peak performance, it is difficult to write, debug and maintain complex
systems in C++.

To provide flexibility, the bulk of the simulator is implemented in the Python
scripting language. Python is an interactive high-level language that allows rapid
software development and interactive debugging, and includes a wide variety of
software libraries for tasks such as data analysis, statistical measurements, and vi-
sualization. Unlike the script languages typically included in simulators, Python is a
complete, well-defined, mature language with an independent user base. As a result,
it enjoys strong support outside of the field of computational neuroscience, which
provides greater flexibility for users and makes maintenance of the models and soft-
ware easier.

17.4.4 Further Development

The goal of Topographica is to provide a tool for the research community that allows
researchers to prototype and test ideas about topographic maps rapidly without the
extensive software development that was previously necessary. In particular, using
the tools provided by Topographica, it should be possible to answer many of the
research questions posed in this chapter.

The simulator is designed throughout to be general and extensible, and the goal
is to keep developing it further in parallel with research progress in the area. To
facilitate such development, Topographica is an open source project, with binaries,
source code, example models, and documentation freely available on the Internet at
http://topographica.org. As in any open-source project, the users of the software will
have a large effect on its future. Researchers can share code and models through an
on-line repository, and the simulator itself will include user-contributed extensions.
Thus, Topographica is intended to serve as a shared platform and a catalyst for future
research on understanding how cortical maps develop and function.

17.5 Conclusion

In this chapter, a variety of ideas for future computational neuroscience research
were discussed. Although they span a number of topics and disciplines, it is possible



17.5 Conclusion 407

Fig. 17.3. Example Topographica screenshot. In this example session with Topographica,
the user is studying the behavior of an orientation map in the primary visual cortex, using a
model similar to the one depicted in Figure 17.2. The window at the bottom labeled “Orien-
tation 1” shows the self-organized orientation map and the orientation selectivity in V1. The
five windows labeled “Activity” show a sample visual image along with the responses of the
retinal ganglion cells and V1 (labeled “Primary”; both the initial and the settled responses
are shown). The input patterns were generated using the “Test pattern parameters” dialog at
left. The window labeled “Weights 1” (lower right) shows the strengths of the connections to
one neuron in V1. This neuron has afferent receptive fields in the ganglion cells and lateral
receptive fields within V1. The afferent weights for 8× 8 and 4× 4 samplings of the V1 neu-
rons are shown in the two “Weights Array” windows at right; most neurons are selective for
Gabor-like patches of oriented lines. The inhibitory lateral connections for an 8 × 8 sampling
of neurons are shown in the “Weights Array 3” window at lower left; neurons tend to receive
connections from their immediate neighbors and from distant neurons of the same orientation.
Topographica is designed to make this type of large-scale analysis of topographic maps prac-
tical, in addition to providing effective tools for constructing the models and their training and
testing environments.

to see that many of the ideas interact. Models like LISSOM bring together several
research areas and facilitate gaining a deep understanding about perceptual phenom-
ena. Many of these ideas can be tested immediately, although some of them depend
on large-scale models and high-performance computing. Importantly, at the current
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rate of technological progress, computers should be powerful enough to simulate
the visual cortex at realistic detail within a decade. An appropriate goal for compu-
tational neuroscience is to produce models that can make use of that power. Such
confluence is likely to lead to a fundamental understanding of perception and higher
brain function, and result in novel algorithms for pattern recognition and artificial
vision.



18

Conclusion

In the beginning of this book, three computational hypotheses about the develop-
ment, structure, and function of the visual cortex were proposed:

1. Self-organization, plasticity and perceptual phenomena in the visual cortex are
mediated by a single computational process based on recurrent lateral interac-
tions between neurons and cooperatively adapting afferent and lateral connec-
tions.

2. A functioning sensory system can be constructed from a specification of a rough
initial structure, internal training pattern generators, and self-organizing algo-
rithm that learns from both internal and environmental inputs.

3. Perceptual grouping can be established through synchronized activity between
neuronal groups, mediated by self-organized lateral connections.

In order to verify these hypotheses, a unified computational theory and a concrete
simulation model called LISSOM was developed based on the known biological and
psychological constraints, and a number of simulated experiments were performed
with it. The results strongly support the hypotheses, matching biological and psy-
chological data, and suggesting specific biological and psychophysical experiments
for further verification. In this chapter, the main contributions of each main chapter
are summarized, concluding with future prospects for computational understanding
of the visual cortex.

18.1 Contributions

In Chapter 4, an algorithm called LISSOM that combines the self-organization of
afferents and lateral connections was developed. The afferent weights of LISSOM
develop like in other self-organizing algorithms and form nonlinear approximating
surfaces for input distributions. The self-organizing lateral connections, an original
contribution of the model, learn correlations in activity between the neurons, dynam-
ically modulating the map response, which allows modeling several new phenomena.
In addition, an LGN component in the model makes it possible to self-organize from
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moving natural inputs. Such a design is primarily biologically motivated, with the
goal of establishing a computational interpretation for several experimental observa-
tions.

In Chapter 5, LISSOM was used to demonstrate how the observed patterns of
orientation, ocular dominance, direction selectivity, and their combinations can arise
from input-driven self-organization, together with patchy lateral connectivity. The
maps were analyzed using the same techniques as those for experimental data, and
shown to agree qualitatively and quantitatively. The model developed shaped recep-
tive fields and maps with structures similar to those in the primary visual cortex.
The patterns of lateral connections follow the organization of the map, matching the
experimental data known to date. The model makes several predictions about the
lateral connection patterns and interactions of the different features, much of which
have not been studied experimentally nor computationally before.

Chapter 6 extended the input-driven self-organization to understanding cortical
plasticity. The objective was to demonstrate that the self-organized network is in a
dynamic equilibrium with the inputs and reorganizes like the cortex when the inputs
are altered. No single model so far had accounted for both plasticity and development
of the primary visual cortex: LISSOM constitutes such a unified model. Phenomena
such as compensation for blind spots and dynamic receptive fields were shown to re-
sult from the rapid reorganization of afferent and lateral connection weights. Similar
reorganization occurred after lesions in the cortical network. Based on the compu-
tational simulations, the model suggested techniques to hasten recovery following
stroke and cortical surgery.

Chapter 7 showed how the same self-organizing processes can account for func-
tional phenomena in the adult. The tilt aftereffect was studied in detail, and shown
to result from increased inhibition during adaptation. The results from the model
match human performance very well. The direct aftereffect with small angles was
shown to take place as predicted, and the model suggested a novel explanation for
the indirect effect: It arises indirectly as a result of weight normalization. The study
demonstrated how a computational model can be used in lieu of a biological system
to gain insight into the biological process.

In Chapter 8, the HLISSOM extension of LISSOM outward to subcortical and
higher level visual areas was introduced. HLISSOM is the first model to show how
genetic and environmental influences can interact in multiple cortical areas. This
level of detail is crucial for validating the model on experimental data, and for mak-
ing specific predictions for future experiments in biology and psychology. Also cru-
cial is that the results of the self-organizing process depend on the stream of input
patterns seen during development, not on the initial connection weight values. This
result was demonstrated experimentally on the HLISSOM model.

In Chapter 9, V1 neurons in HLISSOM were shown to develop biologically real-
istic, multi-lobed receptive fields and patterned intracortical connections through un-
supervised learning of internally generated and visually evoked activity. These neu-
rons organized into biologically realistic topographic maps, matching those found
at birth and in older animals. Postnatal experience gradually modified the orienta-
tion map into a precise match to the distribution of orientations present in the en-
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vironment. This smooth transition has been measured in animals, but had not been
demonstrated computationally before.

In Chapter 10, prenatal internally generated activity in HLISSOM was shown
to result in a newborn visual system that prefers facelike patterns, and also detects
faces in real images. This hypothesis follows naturally from experimental studies in
early vision, but had not been previously proposed and tested. Further, HLISSOM
was used to show how postnatal learning with real faces can explain how newborns
learn to prefer their mothers, and why the preference for schematic faces disappears
over time. The model suggests that the psychological studies claiming that newborns
learn face outlines, and the studies claiming that responses to faces in the periphery
decrease over the first month of age, should probably be reinterpreted. Instead, new-
borns may learn all parts of the face, and only responses to specific schematic stimuli
may decline.

The LISSOM model was then expanded inward to PGLISSOM in Chapter 11,
by replacing the firing-rate model of the neuron with a spiking model, and opening
the cortical column to include an excitatory and an inhibitory component. The map
still self-organizes as before, but it now can also implement perceptual grouping
functions. PGLISSOM is the first model where these two process have been brought
together, showing that they can coexist and both be due to adapting lateral interaction.
If inhibition is strong enough, it will drive the self-organization of the whole system,
and allow excitation to implement the grouping function in the time domain.

Conditions for synchronization in the model were studied in detail in Chapter 12.
Synchronization can be robustly controlled in a network of spiking neurons, by ad-
justing the PSP decay rate and connection range. Since decay may be easier to reg-
ulate then delay, PGLISSOM suggests that it may be the mechanism used in bio-
logical systems to modulate synchronization. Such a network can be robust against
noise, provided there is strong excitation and the refractory period is long enough.
Thus, the model demonstrates that synchronization may be possible even in the noisy
natural environment of the neuron, which has long been an open question.

Chapter 13 presented a series of experiments demonstrating how PGLISSOM
can account for perceptual grouping phenomena. Contour integration performance
in the model matches human performance, and contour segmentation is achieved
simultaneously in the same network. The model predicts that differences in input
distribution cause the network to develop different structure and functionality, as
seen in the different areas of the vision system. The network also performs contour
completion, thereby accounting for a class of illusory contours as well.

In Chapter 14, the representations of visual input formed in the LISSOM map
were analyzed computationally. The self-organized inhibitory lateral connections
decorrelate the activation on the map, resulting in a sparse, redundancy-reduced code
that retains the original information well. Such coding allows representing more in-
formation with fixed resources, but it also provides an advantage for information
processing: The patterns are more easily separable and generalizable, making fur-
ther visual processing such as pattern recognition easier.

In order to make future research with larger models possible, in Chapter 15 a set
of scaling equations was derived, showing how quantitatively equivalent maps can
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be developed over a wide range of simulation sizes. These equations are systemati-
cally utilized in a map growing method called GLISSOM, allowing the entire V1 be
simulated at the column level with existing desktop computers.

Together, the results demonstrate a comprehensive approach to understanding the
development and function of the visual cortex. They suggest that a simple but pow-
erful set of self-organizing principles can account for a wide range of experimental
results from animals and infants.

Perhaps the most important potential contribution of the LISSOM project, how-
ever, is to serve as a foundation and catalyst to further research in the area. As re-
viewed in Chapters 16 and 17, many future projects are possible based on the results
presented in this book, some immediately, others in the near future. It is equally im-
portant to provide proper tools; the Topographica simulator reviewed in Section 17.4
is intended to serve that role, making it easy to initiate and carry out new research in
computational modeling of the visual cortex.

18.2 Conclusion

The research reviewed in this book demonstrates how computational models can
play a crucial role in understanding biological phenomena. In order to make a the-
ory computational, it must be specified precisely and completely. It is then possible
to test the theory as if it was the real system, in effect running simulated experi-
ments that would be difficult to set up in biology. The results can be observed and
analyzed exactly and completely, allowing insights that would otherwise not be pos-
sible. These insights must eventually be verified experimentally, but the experiments
can be chosen more carefully if they are based on a solid computational theory. As
our understanding of brain structures and mechanisms becomes more sophisticated,
such computational models are likely to become an increasingly important part of
neuroscience research.

LISSOM has already led to several insights and proposed experiments at the
level of computations in cortical maps. It provides a framework for understanding
the synergy of nature and nurture in development, the dynamic nature of a contin-
uously adapting visual system, and the low-level automatic mechanisms of binding
and segmentation. In the future, the same principles can be applied to understanding
higher visual functions as well, and how the visual system is maintained, and how it
can be repaired in case of damage.

The research in visual cortex is at an exciting stage. For the first time, we have
the technology to look into the brain in enough detail to constrain computational
models, and the computing power to build large models that help understand percep-
tual behavior. LISSOM and the Topographica software tool that accompanies it are
intended to serve as a platform on which future research can be based, eventually
aiming at complete understanding of computational maps in the cortex.
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LISSOM Simulation Specifications

Appendices A–F give the specifications and parameters for the models and compu-
tational experiments in this book. This appendix details the basic LISSOM model,
starting with a generalized version of the activation equation that serves as a refer-
ence for how the activation parameters are used in practice. Later appendices de-
scribe the HLISSOM and PGLISSOM extensions, as well as the reduced LISSOM
and SOM abstractions of self-organizing maps, and the experiments on sparse coding
and pattern recognition. Appendix G then describes how the various map visualiza-
tions were calculated.

The specifications listed in these appendices can be used to reproduce the LIS-
SOM simulation results on general-purpose simulation platforms, such as the To-
pographica simulator for cortical maps (Section 17.4). The executables and source
code for this simulator are freely available at http://topographica.org; the site also
contains implementations of a few LISSOM models as examples, including demos
and animations illustrating how they work, specific instructions on how to run them,
and how to modify them for other purposes.

A.1 Generalized Activation Equation

For clarity, the LISSOM activation equations in Chapter 4 were presented in their
most concrete form, showing how activations are computed for a single retina, one
pair of ON and OFF channels, and V1. This section generalizes those equations into
a single equation applicable to all of the LISSOM simulations in this book, with
an arbitrary number of input and LGN regions. Although more abstract, this unified
version is concise and easily extensible to additional input dimensions and cortical
areas in future work. This form is also the one implemented in the Topographica
simulator, which makes it easy determine the simulator parameters from the values
listed in this appendix.

In the general case, the activation of unit (i, j) in a LISSOM map at time t is
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ηij(t) = σ

⎛
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∑

ρ

γρ
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⎠ , (A.1)

where the index ρ indicates a particular receptive field (RF; afferent, lateral, or feed-
back), Xkl(t − 1) is the activation of unit (k, l) in that receptive field, and wkl,ij

is the weight from that unit to unit (i, j). The sign of scaling factor γρ is positive
for afferent and lateral excitatory connections, and negative for lateral inhibitory
connections. This equation can also be extended to HLISSOM by including affer-
ent normalization as in Equation 8.1, and to PGLISSOM by including spiking as in
Equations 11.3–11.6.

As an example of how this equation is used, the combined orientation, ocular
dominance, and direction simulation in Section 5.6.3 consisted of two eyes, 16 LGN
regions, and V1. In V1, each neuron has 16 afferent RFs (four types of lag for both
ON and OFF channels for the two eyes), and two lateral RFs (excitatory and in-
hibitory). Thus, ρ iterates over 18 RFs while the sum of the contributions from each
RF is accumulated. A sigmoid is then applied to this entire sum to determine the ac-
tual response of the neuron. Other simulations have fewer RFs, but otherwise operate
through the same steps.

For the first settling iteration, the lateral contributions are zero, because all units
are initialized to zero at each input presentation. Thus, Equation A.1 reduces to the
initial activation equation 4.6 for the first settling step. This equation also applies to
LGN units: They have only had one RF so far in this book (i.e., a single eye), but
multiple RFs can be included, e.g. if color inputs are to be processed (Section 17.2.1).

A.2 Default Parameters

All of the LISSOM simulations in this book were based on the same set of default
parameters, with small modifications to these defaults as necessary to study different
phenomena. The default model corresponds approximately to a 5 mm×5 mm area of
macaque V1; the V1 size was chosen to match the estimated number of columns in
such an area and the other parameters were set to simulate it realistically. This model
was introduced in Section 4.5 and used to organize an orientation map in Section 5.3.
This section describes the default parameter values in detail, and later sections in this
appendix show how each simulation differed from the defaults.

Although all of the parameters are listed here for completeness, most of these
can be left unchanged or calculated from known values. Most of the rest can be set
systematically and without an extensive search for the correct values. Each simula-
tion has relatively few free parameters in practice, which makes it straightforward to
use the model to simulate new phenomena.

Because a large number of closely related simulations will be covered by this
appendix, the default parameter values are listed in a format that makes it convenient
to calculate new values when some of the defaults are changed. That is, instead of
listing numeric values, most parameters are shown as formulas derived from the
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Parameter Value Description

Ndo 142 Reference value of Nd, the cortical density

Ldo 24 Reference value of Ld, the LGN density

Rdo 24 Reference value of Rd, the retinal density

rAo 6.5 Reference value of rA, the maximum radius of the afferent connections

rEo 19.5 Reference value of rE, the maximum radius of the lateral excitatory connections

rIo 47.5 Reference value of rI, the maximum radius of the lateral inhibitory connections

σao 7.0 Reference value of σa, the radius of the major axis of ellipsoidal Gaussian inputs

σbo 1.5 Reference value of σb, the radius of the minor axis of ellipsoidal Gaussian inputs

tf o 20,000 Reference value of tf , the number of training iterations

wdo 0.00005 Reference value of wd, the lateral inhibitory connection death threshold

Table A.1. Parameters for the LISSOM reference simulation. These values define a refer-
ence simulation that serves as a basis for calculating the parameters for other simulations, as
specified in Table A.2. The subscript “o” in each name stands for “original”, as in the scaling
equations in Section 15.2. These parameters have the same value in every simulation.

scaling equations in Section 15.2. These formulas differ slightly from the ones in
Section 15.2 because they have been extended to support networks with an LGN, to
add scaling for other additional parameters, and to make it easier to change the retina
and cortex sizes.

The scaling equations require that one particular network size is used as a refer-
ence from which parameters for other sizes can be calculated; Table A.1 lists these
reference values. Based on these values, the default LISSOM parameters are pre-
sented in Tables A.2 and A.3. The parameters in Table A.2 are constant for any
particular simulation, and the parameters in Table A.3 vary systematically through-
out each simulation. Figure A.1 illustrates how the parameters for retina, LGN and
V1 sizes map to each other.

Sections A.3–A.9 explain how these three tables were used to compute the pa-
rameters for each different simulation (sometimes overriding the defaults). As an
example, the parameters for the default simulation, i.e. the orientation map study
presented in Section 5.3 can be computed by following Table A.2 line by line. The
numerical value for each parameter is calculated by filling in the constants from Ta-
ble A.1 and the previous lines. For instance, parameter Nd can be calculated as 142,
Ld as 24, rA as 6.5, and so on.

Most of the parameters in Table A.2 are temporary variables used only in later
entries in this table and in Table A.3. They are introduced to make the notation easier
to follow, and are not part of the LISSOM model itself. For the actual LISSOM
parameters, the tables list the equation or section where each parameter is used. Once
the LISSOM parameter values are obtained, the temporary values can be discarded.



418 A LISSOM Simulation Specifications

Parameter Value Used in Description

Nd Ndo Table A.2 Cortical density, i.e. width and height of a unit area of cortex

Ld Ldo Table A.2 LGN density, i.e. width and height of a unit area of the LGN

(the area that projects to Nd)

Rd Rdo Table A.2 Retinal density, i.e. width and height of a unit area of retina

(the area that projects to Ld)

sg 1.0 Table A.2 Global size scale of the model in area units Nd, Ld, and Rd

nA 2 Table A.2 Number of afferent RFs per cortical unit (e.g. 1 ON and 1 OFF)

rA
Ld
4

+ 0.5 Section 4.2.3 Maximum radius of the cortical afferent connections†
rEi

Nd
10

Section 4.2.3 Initial value for rE, the maximum radius of the lateral excita-

tory connections, before shrinking†
rEf max(2.5, Nd

44
) Table A.3 Minimum final value of the rE after shrinking†

rI
Nd
4

− 1 Section 4.2.3 Maximum radius of the lateral inhibitory connections†
sw

rA
rAo

Table A.2 Scale of rA relative to the default

σA
rA
1.3

Section 4.2.3 Radius of the initial Gaussian-shaped afferent connections†
σE 0.78rEi Section 4.2.3 Radius of the initial Gaussian lateral excitatory connections†
σI 2.08rI Section 4.2.3 Radius of the initial Gaussian lateral inhibitory connections†
σc 0.5sw

Rd
Ld

Equation 4.1 Radius of LGN DoG center Gaussian†
σs 4σc Equation 4.1 Radius of LGN DoG surround Gaussian†
rL 4.7σs Section 4.2.2 Maximum radius of the LGN afferent connections†
N sgNd Section 4.2.1 Width and height of the cortex, in number of units

L sgLd + 2(rA − 0.5) Section 4.2.1 Width and height of the LGN, in number of units

R sgRd + 2
Rd
Ld

(rA − 0.5)

+2(rL − 0.5)
Section 4.2.1 Width and height of the retina, in number of units

sr

(
L

Ld+2(rA−0.5)

)2

Table A.2 LGN area scale relative to the reference simulation†

σu 3sw Equation 4.2 Radius of unoriented Gaussian inputs

σa σaosw Equation 5.1 Radius of the major axis of ellipsoidal Gaussian inputs

σb σbosw Equation 5.1 Radius of the minor axis of ellipsoidal Gaussian inputs

rd 25.0sw Equation 9.2 Radius of the full-brightness portion of disk-shaped patterns†
σd 3.0sw Equation 9.2 Radius of the Gaussian falloff in brightness at the disk edge

sb 1.0 Section 5.4.1 Brightness scale of the retina (contrast of fully bright stimulus)

ob 0.5 Section 4.2.1 Brightness value of the background of the retina

Rp L Section 4.3.1 Width & height of the random scatter of discrete pattern centers

dr 2.2rA Section 4.3.1 Minimum separation between the centers of multiple inputs†
ss 0.0 Section 5.4.4 Scale of the input pattern scatter from the calculated value

sd 2.0 Table A.2 Input density scale (ratio between average cortical activity for

one oriented Gaussian to the average for the actual pattern)

st
1

sd
Tables A.2, A.3 Iteration scaling factor; can be adjusted to use fewer iterations

if input patterns are more dense at each iteration, or vice versa

np max(1, sdsr) Section 4.3.1 Number of discrete input patterns per iteration (e.g. Gaussians)

(Table continues on the next page)
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(Table continued from the previous page)

Parameter Value Used in Description

γA 1.0 Equation 4.5 Scaling factor for the afferent weights

γE 0.9 Equation 4.7 Scaling factor for the lateral excitatory weights

γI 0.9 Equation 4.7 Scaling factor for the lateral inhibitory weights

γL
2.33
sb

Equation 4.3 Scaling factor for LGN’s afferent weights†
γn 0.0 Equation 8.1 Strength of divisive gain control (only in HLISSOM)

tsi 9 Section 4.3.3 Initial value for ts, the number of settling iterations

θli 0.083 Equation 4.4 Initial value for θl, the lower threshold of the sigmoid activa-

tion function

θui θli + 0.55 Equation 4.4 Initial value for θu, the upper threshold of the sigmoid activa-

tion function†
tf tf ost Section 4.4 Number of training iterations

αAi
0.0070
nAstsd

Equation 4.8 Initial value for αA, the afferent learning rate†

αEi

0.002r2
Eo

stsdr2
E

Equation 4.8 Initial value for αE, the lateral excitatory learning rate†

αI
0.00025r2

I o

stsdr2
I

Equation 4.8 Lateral inhibitory learning rate†

wd 2wdo

r2
I o

r2
I

Section 4.4.2 Lateral inhibitory connection death threshold

td tf Section 4.4.2 Iteration at which inhibitory connections are first pruned

Table A.2. Defaults for constant parameters. This table specifies how the parameter val-
ues for the different simulations can be constructed, based on the reference values from Ta-
ble A.1. These parameters have constant values in each simulation. Those with the subscript
“i” represent the initial values for parameters that are changed over the simulation, as shown
in Table A.3. The table is organized into sections including user-defined network size, connec-
tion radius, calculated network size, and input pattern parameters on the previous page, and
connection strength, activation, and learning parameters on this page. The numerical values in
formulas marked with a dagger (†) were determined empirically in earlier work (Bednar and
Miikkulainen 2000b; Sirosh 1995). Parameters that are listed as being used in Table A.2 are
temporary variables, introduced to make the notation easier to follow. Those listed as being
used in various equations and sections are actual parameters of the LISSOM model itself.

A.3 Choosing Parameters for New Simulations

Despite the seemingly large number of parameters, few of them need to be adjusted
when running a new simulation. The most commonly changed parameters are the
cortical density Nd and area scale sg, because these parameters directly determine
the time and memory requirements of the simulations. The default Nd of 142 repre-
senting a 5 mm × 5 mm area is a good match to the density of columns in V1 orien-
tation maps (Bednar, Kelkar, and Miikkulainen 2004), but in practice much smaller
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Iteration rE ts θl θu αA αE

0st max(rEf , rEi) tsi θli θui αAi αEi

200st max(rEf , 0.6000rEi) tsi θli + 0.01 θui + 0.01 αAi αEi

500st max(rEf , 0.4200rEi) tsi θli + 0.02 θui + 0.02 50
70

αAi 0.5αEi

1000st max(rEf , 0.3360rEi) tsi θli + 0.05 θui + 0.03 50
70

αAi 0.5αEi

2000st max(rEf , 0.2688rEi) tsi + 1 θli + 0.08 θui + 0.05 40
70

αAi 0.5αEi

3000st max(rEf , 0.2150rEi) tsi + 1 θli + 0.10 θui + 0.08 40
70

αAi 0.5αEi

4000st max(rEf , 0.1290rEi) tsi + 1 θli + 0.10 θui + 0.11 30
70

αAi 0.5αEi

5000st max(rEf , 0.0774rEi) tsi + 2 θli + 0.11 θui + 0.14 30
70

αAi 0.5αEi

6500st max(rEf , 0.0464rEi) tsi + 3 θli + 0.12 θui + 0.17 30
70

αAi 0.5αEi

8000st max(rEf , 0.0279rEi) tsi + 4 θli + 0.13 θui + 0.20 30
70

αAi 0.5αEi

20000st max(rEf , 0.0167rEi) tsi + 4 θli + 0.14 θui + 0.23 15
70

αAi 0.5αEi

Table A.3. Default parameter change schedule. The values of these parameters at the be-
ginning of simulation are given in Table A.2; this table describes how their values change at
each subsequent iteration. The new values are calculated at the start of each listed iteration.

values also often work well (as shown in Section 15.2.3). The default sg of 1.0 cov-
ers an area large enough to include several orientation patches in each direction, but
more area is useful when processing larger images.

Apart from the simulation size parameters, most simulations differ primarily by
the choice of input patterns. Starting from an existing simulation, usually only a few
parameters need to be changed to obtain a similar simulation with a new set of pat-
terns. If the new pattern is similar in overall shape, often all that is needed is to set the
afferent input scale γA or the sigmoid threshold θli to a value that, on average, pro-
duces a similar level of cortical activity. Usually a quantitatively similar map results,
as shown in the simulations with and without ON/OFF channels in Section 6.2.3.

For a large change in pattern shape or size, such as using natural images instead
of Gaussian patterns, two parameters need to be adjusted. First, the input scale or
threshold needs to be changed to get results as similar to the original working sim-
ulation as possible. Second, the input density scale sd needs to be adjusted to com-
pensate for the remaining differences in the amount of input per iteration. Of course,
because the system is nonlinear, it is not always possible to compensate completely.

As an example, if Gaussian input patterns are replaced with large, sharp-edged
squares, each input will produce multiple activity bubbles in V1 instead of one bub-
ble. The input scale γA should be set to a value that results in bubbles about the same
size as in the Gaussian simulation, and sd should be set to the average number of
bubbles per iteration in the new simulation. For input patterns with large, spread-out
areas of activity, the lateral interaction strengths γE and γI can also be increased to
ensure that distinct activity bubbles form. Other parameters do not usually need to
be changed when changing the input patterns.
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Fig. A.1. Mapping between neural sheets in LISSOM. In computing the LGN size L and
the retina size R (Table A.2), a buffer area is added around the lower level sheet so that all
neurons at the higher level have complete receptive fields. (a) In the mapping from LGN to
V1, the outer square represents the LGN sheet, the dashed area maps point-for-point to V1,
and the circle represents the receptive field of the top left V1 neuron. For instance, if sg = 8
and Ld = 24, the dashed line encloses an area of 192× 192 LGN units (8× 24 = 192). This
area is extended on all sides by rA − 0.5 units to make sure that all V1 neurons have complete
receptive fields. Thus, the LGN contains 204 × 204 neurons in total (192 + 2 × 6 = 204).
(b) The mapping from retina to V1 is formed analogously, by extending the buffering down
one more level. The outer square represents the retina, the dotted area maps point-for-point to
the LGN, and the dashed area maps point-for-point to V1. The circle on the right shows the
receptive field of the top right LGN neuron and the circle on the left represents the receptive
field of the top left V1 neuron, with its radius expressed in retinal units (hence the factor
Rd/Ld). For example, if Rd = 48, the dashed area is sgRd = 8×48 = 384 retinal units wide
and the dotted area 384+2× 48

24
×6 = 408 retinal units wide. For an LGN radius of rL = 16.5,

the full retina therefore consists of 440 × 440 neurons (384 + 2 × 48
24

× 6 + 2 × 16 = 440).

The connection weights in each RF are usually initialized to uniformly dis-
tributed positive random values; sometimes a Gaussian pattern is used instead to
speed up the self-organization. The range [0..1] was used for these values in all sim-
ulations; note however that the range does not matter because the weights in each
group of RFs (afferent, lateral excitatory, and lateral inhibitory) are immediately nor-
malized to sum to 1.0.

Sections A.4–A.9 describe the specific differences from the default parameters
for each of the LISSOM simulations in this book. To determine the actual parameter
values, one can begin with a copy of Tables A.2 and A.3, make the specified changes,
and then calculate the new values for each parameter starting at the top of each
table. For instance, for a simulation that changes θli to 0.05, parameter θui would
become 0.6 instead of 0.65 (Table A.2). The same method can be used to determine
a consistent set of parameter values for any new simulations.
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A.4 Retinotopic Maps

The retinotopic map simulations in Chapter 4 were based on the default values, ex-
cept the training Gaussians were unoriented (σa = σb = σu = 3), the sigmoid
threshold was lower (θli = 0.035) so that the smaller patterns would produce as
much cortical activity as oriented Gaussians do, the RF centers were randomly scat-
tered by 5% in both the x and y directions, and the lateral connections were uniformly
random instead of initialized to a Gaussian profile.

The default parameter values result in two Gaussian inputs per iteration. While in
principle it would be possible to self-organize the network with patterns that consist
of more than two, given that the Gaussians are relatively large compared with the
retina, it would be difficult to distribute them uniformly on the retina while enforc-
ing a minimum distance dr between them. After two Gaussians have been placed
randomly, the only remaining possible locations are often near the corners. The cor-
ners would therefore be trained more often than the other areas of the map, resulting
in a distorted organization. More Gaussians could be used if a larger retinal and cor-
tical area was simulated (i.e. with a larger sg), or the Gaussians were narrower.

A.5 Orientation Maps

The LISSOM simulations with oriented Gaussians in Sections 5.3 and 6.2 (Fig-
ures 5.5–5.12, “Gaussians” in 5.13, “ON/OFF” in 6.4 and 6.5) were based on the
default parameter values, except the inhibitory connection death threshold wd was
increased to 6wdor

2
I o/r2

I for historical reasons. These values were also used in the
“Plus/Minus” simulation in Figure 5.13, except the sign of the input scale sb was
chosen randomly for each pattern. The other types of orientation map simulations
presented in that figure are described in the following subsections.

A.5.1 Disks, Noisy Disks, and Noise

The simulations with circular disks (“Disks” in Figure 5.13) were based on the de-
fault LISSOM parameters, except only one disk was drawn per iteration (np = 1),
the lateral interactions were stronger to allow long contours to be separated into dis-
tinct activity bubbles (γI = 2.0, γE = 1.2), and the LGN afferent scale was slightly
stronger (γL = 3/sb) because each activity bubble was slightly weaker than in the
oriented Gaussian simulation.

The disk input patterns were fully activated in the circular region (rd = 25sw)
around their centers, and the activation then fell off according to a Gaussian pattern
(σd = 3). Each input center was separated far enough so that input patterns would
never overlap (dr = 1.5rd). Because the disk stimuli are large compared with Ld,
the area in which disk centers are chosen was increased so that even the neurons at
the edges of the map are equally likely to receive input from all parts of the disks.
Thus, the number of inputs per eye was corrected to reflect this larger area (np =

max
[
1,

(
2rd+Ldsg

2rd+Ld

)2
]

).
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The simulations with noisy circular disks (“Noisy disks” in Figure 5.13) were
identical to the simulations with noiseless disks, except uniform random noise in the
range [−0.5..0.5) was added to the input pattern. The simulations with uniform ran-
dom noise alone (“Noise” in Figure 5.13) were based on the noisy disk simulations,
except no disks were drawn, the LGN parameters were adjusted to produce stronger
LGN activations (σc = 0.75, σs = 3σc, and γL = 5/sb), and the V1 parameters
were changed to produced stronger V1 activations (γE = 0.9, γI = 0.9, γA = 3).

A.5.2 Natural Images

The orientation map simulations trained on natural images (“Nature” in Figure 5.13)
were based on the default LISSOM parameters, except the retinal density was dou-
bled to provide more image resolution (Rd = 48), only one image was drawn per
iteration (np = 1), the input density scale was higher (sd = 4) because each in-
put resulted in about four activity bubbles on average, the number of iterations was
fixed to the default value (st = 0.5) instead of being adjusted automatically for the
input density scale, the LGN afferent scale was increased to produce activity for low-
contrast inputs (γL = 4.7/sb), and the sigmoid threshold was lower (θli = 0.076) to
allow responses to low-contrast stimuli.

The lateral interaction strengths and learning rates were also adjusted during
training rather than being fixed. In the default simulation, the lateral inhibitory
weights self-organize into only a few small regions, because Gaussian patterns have
no long-range correlations. In contrast, natural images have significant long-range
correlations, and inhibitory weights spread over a larger area. To keep the balance
between excitatory and inhibitory lateral weights approximately constant, the lat-
eral inhibitory strength was set to γI = 1.75 at first, increased to 2.2 at itera-
tion 1000st and 2.6 at iteration 2000st. The lateral inhibitory learning rate αI was

set to αI =
0.00005r2

I o

stsdr2
I

at first, increased to αI =
0.00010r2

I o

stsdr2
I

at iteration 1000st,

αI =
0.00015r2

I o

stsdr2
I

at iteration 2000st, and αI =
0.00025r2

I o

stsdr2
I

at iteration 5000st. With

these modifications, the orientation map self-organizes robustly with natural image
input.

A.6 Ocular Dominance Maps

The ocular dominance simulations in Section 5.4 (Figures 5.15–5.17, “Dimming”
in Figure 5.19) were based on the default LISSOM parameters, except four LGN
regions (nA = 4) and two eyes were included, the sigmoid threshold was lower
(θli = 0.035) so that the smaller patterns would produce as much cortical activity as
oriented Gaussians do, the training Gaussians were unoriented (σu = 4.25), and the
input brightness scale sb was randomly chosen from the range [0..1] for the left eye
and calculated as 1 − sb for the right eye for each input.

The strabismic ocular dominance simulations (Figure 5.18, “Strabismic” in Fig-
ure 5.19) were otherwise similar, except the inputs were scattered randomly between
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the eyes (ss = 1.0). The “Mild” ocular dominance simulations in Figure 5.19 were
identical to “Strabismic”, except the input scale was constant (sb = 1.0), and the
inputs were scattered slightly between the eyes (ss = 0.2). The “Moderate” ocular
dominance simulations were identical to “Mild”, except the inputs were scattered
more between the eyes (ss = 0.4).

A.7 Direction Maps

The direction map simulations in Section 5.5 (Figures 5.21–5.24, “Speed 1” in Fig-
ure 5.25) were based on the default LISSOM parameters, except eight LGN regions
were included (nA = 8), only a single pattern was presented per iteration (sd = 1)
to avoid overlapping patterns that are moving in different directions, and the LGN
afferent scale was slightly stronger (γL = 2.38/sb) because the response is weaker
when inputs are not perfectly aligned in each eye. Because sd = 1, st = 0.5, which
means that these simulations were run for 20,000 iterations with one pattern apiece
rather than the default 10,000 with two patterns apiece. As long as input patterns can
be placed randomly on the retina without overlap, and the responses are localized
in V1 (as they usually are), using more patterns in fewer iterations is equivalent to
using fewer patterns in more iterations.

The simulations with different speeds (Figure 5.25) were otherwise identical ex-
cept the LGN afferent scale was adjusted for each speed to keep the average response
comparable: γL = 2.33/sb for speed 0, γL = 2.38/sb for speed 1, γL = 2.53/sb

for speed 2, and γL = 2.80/sb for speed 3.

A.8 Combined Orientation / Ocular Dominance Maps

The combined orientation and ocular dominance simulations in Section 5.6.2 (Fig-
ures 5.27 and 5.28) were based on the “Gaussians” orientation-only simulation, ex-
cept four LGN regions (nA = 4) and two eyes were included. For each input, the
input scale sb was chosen randomly for the left eye and calculated as 1 − sb for the
right eye.

A.9 Combined Orientation / Ocular Dominance / Direction Maps

In Section 5.6, the Gaussian-trained combined orientation, ocular dominance, and
direction simulations (Figure 5.29, “Gaussians” in Figure 5.32) were based on the
“Gaussians” orientation-only simulation, except 16 LGN regions (nA = 16) and
two eyes were included, only a single pattern was presented per iteration (sd = 1)
to avoid overlapping patterns that are moving in different directions, and the LGN
afferent scale was adjusted to match the value computed for the direction-only map
(γL = 2.38/sb). For each input, the input scale sb was chosen randomly for the left
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eye and calculated as 1 − sb for the right eye. The speed of the moving patterns was
1, i.e. subsequent frames differed by 1.0 retinal units.

The combined simulation with noisy disks (“Noisy disks” in Figure 5.32), used
the inputs from the “Noisy Disks” orientation-only simulation, drawn at speed 2. The
parameters were the same as for the “Gaussians” combined OR/OD/DR simulation,
except a higher input density scaling was used (sd = 2) because the inputs more
regularly activated the cortex, γI and αI were adjusted as for the orientation-only
simulation with natural images (Section A.5.2) to keep excitation and inhibition bal-
anced, and the input scaling for the LGN was increased (γL = 3.0/sb) to keep the
LGN responses comparable.

The combined model trained with natural images (Figure 5.31, “Nature in Fig-
ure 5.32) was identical to the orientation-only natural image simulation in Sec-
tion A.5.2 except 16 LGN regions (nA = 16) and two eyes were included, the input
density scale was increased without changing the number of iterations (sd = 2 and
st = 1), and the LGN afferent scale was adjusted to match the value computed for
the direction-only map (γL = 5.6/sb). For each input, the input scale sb was chosen
randomly for the left eye and calculated as 1− sb for the right eye. The speed of the
moving patterns was 2.0.
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Reduced LISSOM Simulation Specifications

As described in Section 6.2.3, as long as the inputs to the model consist of abstract
patterns instead of natural images, simulations that utilize only the ON channel (or
bypass the LGN entirely) lead to the same results as simulations that include both the
ON and OFF channels of the LGN explicitly. Such reduced LISSOM networks allow
demonstrating many phenomena efficiently and clearly, as was seen in Chapters 6, 7
and 11–15.

The reduced LISSOM simulations were based on the default LISSOM parameter
values, except there was only one input sheet (instead of ON and OFF; thus nA = 1).
This sheet was mapped directly to the cortex like the LGN sheets (Figure A.1), and
sized like the LGN sheets (R = L). The most important adjustment is to set the
sigmoid thresholds so that the total cortical response is the same (on average) as
with ON and OFF channels, to compensate for the higher average value of retinal
activity compared with the LGN activity. In the reduced LISSOM simulations, the
input threshold was therefore set to θli = 0.1. These values are taken as the default
reduced LISSOM parameters, occasionally overridden in individual simulations as
specified in the following sections and in Appendices D and F.

B.1 Plasticity

The retinal lesion experiments in Section 6.3 were run with the default reduced LIS-
SOM parameters, except the inhibitory connection death threshold wd was increased
to 6wdor

2
I o/r2

I for historical reasons, and the afferent learning rate αA was increased
to 0.003 after iteration 10,000; all other parameters remained the same as at the end
of the self-organization. Faster learning makes the changes more visible, and also
models the increased plasticity that might result during recovery from injury (Emery,
Royo, Fischer, Saatman, and McIntosh 2003; Kaas 2001a,b). The cortical lesion ex-
periments in Section 6.4 were based on the same parameters as the retinal lesion
experiments, except the afferent learning rate remained at its default value even after
the end of self-organization.
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B.2 Tilt Aftereffect

The tilt aftereffect experiments in Chapter 7 were based on the default reduced LIS-
SOM parameters, except for historical reasons the cortical density was slightly larger
(Nd = 192), the final excitatory radius rEf was reduced to 1.5, the inhibitory con-
nection death threshold wd was decreased to 0.00005, and only a single pattern was
presented per iteration (sd = 1). Also for historical reasons, the input patterns were
blurred with a uniform 3 × 3 convolution kernel before they were presented to the
network.

For the average tilt aftereffect plots in Figures 7.5 and 7.6, each input line was
presented at nine different locations chosen from the nodes of a regular 3 × 3 grid
centered in the retina, with each grid step four retinal units wide.

B.3 Scaling

The scaling equation and GLISSOM simulations in Chapter 15 were based on the
tilt aftereffect parameters (Section B.2), scaled as described in each section of Chap-
ter 15. For instance, the area scaling simulation (Figure 15.1) compares two sim-
ulations with Ld = 24 and Nd = 44, differing by their area scales (sg = 1 and
sg = 4).

The scaling simulations were run on a 600 MHz Intel Pentium III Linux machine
with 1024 MB of RAM. The timing results are user CPU times reported by the GNU
“time” command; the CPU time is essentially the same as the elapsed wallclock time
because the CPU utilization was always over 99%.
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HLISSOM Simulation Specifications

The HLISSOM model extends basic LISSOM by including afferent normalization
(Equation 8.1) that allows processing natural images, as well as a PGO sheet and a
face-selective area. The PGO sheet is connected to the LGN and V1 is connected
to the FSA so that each unit has a full receptive field (Figure A.1). The simulation
parameters are based on the default LISSOM parameters of Appendix A, except as
specified in the subsections that follow.

C.1 V1 Only

The V1-only simulations showing the effect of γn (Figures 8.2 and 8.3) were based
on disk-shaped input patterns. The parameters were the same as in the “Disks” sim-
ulation in Section A.5.1, except the area was very large (sg = 8) to allow large,
detailed retinal stimuli to be tested, the cortical density was very low (Nd = 24)
to reduce memory and computational requirements, and the LGN radius was slightly
smaller (σc = 0.4) for historical reasons. During self-organization, γn was zero; after
self-organization, that parameter was adjusted as shown in the figure.

The small-scale V1-only HLISSOM simulations in Figure 8.5 and in Chapter 9
were based on the default LISSOM simulation parameters of Appendix A; in partic-
ular, afferent normalization was not used (γn = 0). In the input and weight stream
simulations (Figure 8.5) the cortical density was lower (Nd = 64) so that the random
initial weights would be visible.

The V1 simulation parameters were always evolved on a schedule for a 10,000-
iteration run; in the prenatal simulations of Figure 9.1, the training was simply in-
terrupted at 1000. The prenatal “Disks” and “Noisy Disks” simulations were based
on the same parameters as the full-length simulations described in Section A.5.1, up
to iteration 1000. The prenatal “Noise” simulation was identical to “Noisy disks”,
except no disks were drawn.

The “Nature” simulation in Figure 9.6 was based on the “Images” simulation
described in Section A.5.2, except the inhibitory and excitatory strengths were fixed
(γI = 2.0 and γE = 1.2), and the input density scale was higher (sd = 8) without
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Parameter Value

Nd 24

Rd 48

rA
Ld
0.96

+ 0.5

rEi
Nd
6

rI
Nd
2.4

θli 0.1

sw
9.5
rAo

σA
9.5
1.3

σc 0.75sw

Parameter Value

σs 1.6σc

dr 20 6.5sw
9.5

sd 1.5

st 0.5

np max(1, 0.5sdsr)

γA
1.07
nA

γL
10.2
sb

wd 6wdo

r2
I o

r2
I

Table C.1. Defaults for FSA simulations. FSA simulations were based on the defaults from
Table A.2, modified as shown in this table. Some of these defaults are overridden in individual
FSA simulations, as described in the text.

changing the time scale (st = 0.5). These same parameters were used in all postnatal
simulations, but starting at 1000 after the prenatal training described above.

The simulations with prenatal training followed by natural images (Figures 9.3–
9.6) were based on the prenatal training parameters specified until 1000, followed by
9000 iterations with the “Nature” parameters.

C.2 Face-Selective Area Only

The FSA (like any cortical area) has its own independent set of parameters. To keep
the notation simple, the same parameter names are used for the FSA as for V1, and
each area is described separately in this appendix. For example, when discussing the
FSA parameters, Nd refers to the size of the FSA network and Ld to the size of the
V1 network.

The default FSA parameter values are listed in Table C.1, overriding those in
Table A.2. The values for σA, sw, and dr were determined empirically in earlier work
(Bednar and Miikkulainen 2000a). The afferent radius rA was significantly increased
compared to the V1 simulations to allow whole faces and face outlines to be learned.
The other parameters were adjusted accordingly; for example, to allow the initial
activity bubbles to remain similar to those in networks with a smaller afferent radius,
the afferent weights were initialized with a fixed-width Gaussian instead of random
noise.

The prenatal phase of the FSA-only simulations in Section 10.3 (Figure 10.12)
was identical to the default simulation in Table C.1.

The simulations with the different face training pattern types (Figure 10.11) were
otherwise identical to the default, except γA was varied as shown in Table C.2 to
ensure that the average FSA activity was the same for each pattern. These values
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Figure Pattern γA

10.11a 1.070

10.11b 0.697

10.11c 0.697

10.11d 0.550

10.11e 0.577

Figure Pattern γA

10.11f 0.490

10.11g 1.983

10.11h 1.416

10.11i 0.948

Table C.2. Parameters for different types of face training patterns. Each of the simulations
in the subfigures of Figure 10.11 was based on the same parameters, except γA was adjusted
by hand until the average activity resulting from each pattern was similar. The resulting γA is
shown for each pattern in this table.

Iteration θl (prenatally trained) θl (naı̈ve) αA

20000st θli + 0.070 10
70

αAi θli + 0.120

20400st θli + 0.070 10
70

αAi θli + 0.120

22000st θli + 0.070 9
70

αAi θli + 0.120

24000st θli + 0.070 8
70

αAi θli + 0.090

28000st θli + 0.070 7
70

αAi θli + 0.070

32000st θli + 0.070 7
70

αAi θli + 0.070

36000st θli + 0.080 6
70

αAi θli + 0.050

40000st θli + 0.090 6
70

αAi θli + 0.045

Table C.3. Parameter change schedule for postnatal FSA simulations. The FSA simula-
tions in Section 10.3 continued past 20,000 iterations to model postnatal learning; the for-
mulas above describe how the parameter values were obtained for these additional iterations.
Together, Tables A.3 and C.3 specify the parameter change schedule for the entire FSA-only
simulations.

were determined by presenting a set of random inputs while adjusting γA until the
sum of the cortical response was the same as for the three-dot pattern (Figure 10.11a).

The postnatal phase of the FSA-only simulations in Section 10.3 (Figure 10.15)
continued with the parameters that were in effect at the end of prenatal training,
except αA was reduced further as shown in Table C.3, the sigmoid range θu − θl

was reduced to 0.48, and the sigmoid’s lower threshold θl was set separately for each
network as described in Section 10.3 and shown in Table C.3.
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V1 settings FSA settings

Iteration θl γA γE γI γn θl γA γE γI γn

28000st θli + 0.140 1.90 0.9 0.9 0 θli + 0.130 3.0 0.9 0.9 0

30000st θli + 0.267 2.70 1.0 1.1 1 θli + 0.250 5.0 0.5 0.7 2

35000st θli + 0.317 2.90 1.1 1.3 2 θli + 0.400 9.0 0.4 0.6 5

40000st θli + 0.417 3.25 1.2 1.4 4 θli + 0.710 10.6 0.4 0.6 9

Table C.4. Parameter change schedule for combined V1 and FSA simulations. During
iterations 20,000–28,000st, the network with both V1 and FSA (Section 10.2) was trained
using the schedule for iterations 0–8000st in Table A.3. Beyond 28000st, it was trained as
shown in this table. Because each cortical area has an independent set of parameters, the
values for V1 and the FSA are listed separately.

In the statistical significance tests discussed in Figures 10.16 and 10.17, each in-
put image was presented at 16 different locations chosen from the nodes of a regular
4 × 4 grid centered on the retina, with each grid step four retinal units wide. The
example images shown in these figures are located at the center of the retina.

C.3 Combined V1 and Face-Selective Area

In the simulations of Section 10.2, V1 and FSA were combined into a single model.
The retina, LGN, and V1 parameters were identical to the “Disks” simulation in
Section A.5.1, except V1 density was very low (Nd = 24) to reduce memory and
computational requirements, the V1 area was very large (sg = 8) to allow large
retinal stimuli to be tested, the LGN radius was slightly smaller (σc = 0.4) to match
earlier simulations, and the simulation continued past 20,000st. The FSA parameters
were identical to the default FSA-only parameters (Section C.2), except the FSA
was slightly more dense (Nd = 36/0.94), the input region was significantly more
dense (Ld = 170) because the FSA connects to V1 and not to LGN, the area scale
corresponded to the full area of V1 (sg = 0.94), the afferent radius was smaller
(rA = 0.375Ld + 0.5) and the weights initially random because only small training
patterns were used, the afferent scale was larger (γA = 3) to compensate for the
patchy activity in the input region (V1), and the parameters were changed on the
schedule listed in Table C.4. The FSA also had only one input (V1) instead of two
(the ON and OFF LGN channels), i.e. nA = 1 for the FSA.

Because FSA training followed that of V1, V1 training iteration 20,000st was
treated as if it was iteration zero in FSA training, and thus the parameters e.g. for
iteration 28000st were determined like parameters for iteration 8000st of the de-
fault FSA simulation. After iteration 28000st, the V1 and FSA parameters followed
the schedule shown in Table C.4. The V1 parameters were chosen to ensure that the
network responded well to large natural images. First, the value of γn was gradually
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increased from zero to make the responses less dependent on image contrast. As a re-
sult, similar shapes that have different contrasts in different areas of an image would
lead to comparable V1 responses. The other parameters were adjusted to compensate
for the effect of γn, ensuring that V1 responses to the highest-contrast patterns were
near 1.0, and lower contrasts resulted in lower V1 responses. The parameters of the
FSA were chosen similarly, except the FSA sigmoid threshold θl was also gradually
increased so that the response would be nearly binary. In this way, the FSA response
was used to decide whether a facelike pattern had occurred in the input, as described
in Section 10.2.
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PGLISSOM Simulation Specifications

The PGLISSOM simulations focused on demonstrating valid self-organization of the
orientation map, and on grouping visual features. These simulations were based on
the reduced LISSOM specifications of Appendix B, with slightly different parameter
values to reduce the required computational resources.

D.1 Self-Organization

The self-organization simulations in Section 11.5 form the baseline for all PGLIS-
SOM simulations. The parameter values for this simulation are specified in Table D.1
and the schedule for parameter adaptation over the course of self-organization in Ta-
ble D.2. The parameter values were found to be effective by running several experi-
ments, and small changes to them did not affect the global behavior of the model.

All weights were initialized with uniformly random values distributed within
[0..1]; the afferent connections were mapped to the retina so that each neuron had
a complete receptive field (Figure A.1). GMAP was smaller than SMAP to make
simulations faster and more compact. The γC was lower in SMAP than in GMAP
so that activity caused by high excitation in GMAP would not interfere with self-
organization in SMAP, and to allow the self-organized global order of SMAP to be
transferred to GMAP. The value γE was lower and γI higher in GMAP than in SMAP
to prevent the map from becoming too active.

The inhibitory connections in GMAP did not adapt (αIG = 0); the initial broad
connectivity remains to provide background inhibition, as explained in Section 11.2.
The afferent and intracolumnar learning rates αA and αC in both maps were de-
creased over time, so that the order in the map could gradually start stabilizing. The
long-range lateral inhibitory connections in SMAP and long-range excitatory lateral
connections in GMAP were pruned on the same schedule, specified by wd and td.

The base thresholds θb in both maps were set to θb0 when the input was first
presented, the activation-based values in Table D.1 were then computed, and the base
thresholds were fixed to those values for the remaining settling iterations. As a result,
the network would not become too active or completely silent for any of the training
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Parameter Value

NS 136

NG 54

L 46

rA 6

rESi 7

rEG 40

rIS 10

rIG 54

σai 3.9

σbi 0.8

θl 0.01

θu 1.3

γA 1.1

Parameter Value

γES 0.8

γEG 0.2

γIS 0.9

γIG 2.5

tf 40000

np 1

αAi 0.012

αE 0.008

αIS 0.008

αIG 0.0

wd 0.001

td 40000

Parameter Value Used in Description

rC 2 Section 11.2 Maximum radius of the intracolumnar connections

θb0 0.05 Equation 11.5 Base threshold at the beginning of settling

γbSi 0.5 Table D.2 Initial value for γbS, SMAP base threshold scaling factor

γbGi 0.5 Table D.2 Initial value for γbG, GMAP base threshold scaling factor

θbS γbS maxij vij(t) Equation 11.5 SMAP base threshold

θbG γbG maxij vij(t) Equation 11.5 GMAP base threshold

γCS 0.5 Equation 11.3 Scaling factor for the SMAP intracolumnar weights

γCG 0.9 Equation 11.3 Scaling factor for the GMAP intracolumnar weights

γθ 0.4 Equation 11.5 Scaling factor for the relative refractory period

λE 3.0 Section 11.3.1 Excitatory synaptic decay rate

λI 0.5 Section 11.3.1 Inhibitory synaptic decay rate

λC 1.0 Section 11.3.1 Intracolumnar synaptic decay rate

λθ 0.5 Equation 11.6 Refractory period decay rate

λr 0.92 Equation 11.7 Spiking rate decay rate

tr 0 Section 11.3.3 Length of the absolute refractory period

tw 15 Section 11.4 Length of time window for computing average spiking rate

αCi 0.012 Equation 11.8 Initial value for γC, the intracolumnar learning rate

Table D.1. Defaults for PGLISSOM simulations. The subscript “S” identifies parameters
of the SMAP, and “G” those of the GMAP; parameters without these subscripts had the same
values for both maps. Although many of the parameters are the same as in firing-rate LISSOM
models (top half), their default values are slightly different to take into account the two-map
architecture and the spiking units. A number of new parameters related to intracolumnar con-
nections and spiking are also introduced (bottom half). Some of these defaults are overridden
in the synchronization and grouping simulations, as described in the text.
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Iteration rES γbS γbG αA αC σa σb

0st rESi γbSi γbGi αAi αCi σai σbi

500st 0.57rESi γbSi γbGi αAi αCi σai σbi

1000st 0.429rESi γbSi γbGi αAi αCi 1.718σai 0.875σbi

5000st 0.429rESi γbSi 1.3γbGi 0.667αAi 0.667αCi 1.718σai 0.875σbi

15000st 0.429rESi 1.15γbSi 1.3γbGi 0.667αAi 0.667αCi 1.718σai 0.875σbi

40000st 0.429rESi 1.15γbSi 1.3γbGi 0.667αAi 0.667αCi 1.718σai 0.875σbi

Table D.2. Parameter change schedule for PGLISSOM simulations. Starting with the ini-
tial values given in Table D.1, these parameters were adapted at each iteration as shown in the
table.

inputs. The scaling factors γbS and γbS were later adjusted as shown in Table D.2 so
that the activities could gradually become sparser. This method has a similar effect
as adapting the sigmoid activation function (described in Section 4.4.3). To speed
up self-organization, tr was set to zero so that the neurons could fire as rapidly as
possible.

The input consisted of single randomly located and oriented elongated Gaus-
sians. Over time, these Gaussians were made longer than in previous LISSOM sim-
ulations, so that sharper orientation tuning and longer lateral connections could de-
velop, improving contour integration in the model (self-organizing very long-range
lateral connections is computationally expensive and was therefore avoided in previ-
ous simulations). Continuous input values were used to approximate spiking input,
making the simulations more efficient without discernible effect on how the model
behaves. The training took about 30 hours and 178 MB of memory on a 1 GHz
AMD Athlon Linux machine.

D.2 Grouping

After self-organization, several parameters were adjusted slightly in order to make
grouping more robust in Chapter 13. First, the excitatory learning rate αE in GMAP
was set to 0.1. Although not strictly necessary for grouping, such fast adaptation of
lateral excitatory connections allows the network to quickly adjust the weights re-
maining after connection death to a level that allows robust synchronization (von der
Malsburg 1981, 2003; Wang 1996). It does not affect the patchy structure of the lat-
eral connections nor the organization of the map. Second, in GMAP γE was increased
to 0.8, γI increased to 5.0, and 4% noise was added to the membrane potential of all
GMAP neurons, as described in Sections 12.3.2 and 12.4.2. Third, the absolute re-
fractory period tr was increased to 4.0. After self-organization, fast simulation is not
critical, but it is important to have a high enough temporal resolution of activity so
that multiple groups of neurons can desynchronize at the same time. Higher tr results



438 D PGLISSOM Simulation Specifications

in such higher resolution; it also makes synchronization more robust, as discussed in
Section 12.4.3.

Each contour integration test pattern was generated to approximate the patterns
used with human subjects (such as that in Figure 13.1) as well as possible within the
small model retina and cortex. The input patterns consisted of oriented Gaussians
with σa = 1.87 and σb = 1.22. The elements of each contour were placed on the
retina at approximately collinear locations (cocircular in the curvature experiment
of Section 13.4) with a minimum separation of 0.5σ2

a and an orientation that corre-
sponded to the desired degree of jitter. In addition, the neurons in SMAP and GMAP
had to be highly selective for that input in that location. The background elements
were then placed on the retina at random locations and orientations with the same
distance and selectivity constraints until no more possible such locations existed.

In the input distribution experiments in Section 13.4, slightly broader Gaussians
were used to train the networks, and the Gaussians became elongated slightly slower.
Initially, σa = 3.9 and σb = 1.1, and they were increased to σa = 7.1 and σb = 0.9
at iteration 10,000. As a result, self-organization was slower; on the other hand, the
connectivity patterns remained broader, allowing the networks to perform robustly
on the wider variety of inputs.

D.3 Synchronization

The synchronization and desynchronization simulations in Chapter 12 were all
based on a simplified PGLISSOM network where synchronization behavior could
be clearly demonstrated. The network consisted of a one-dimensional array of neu-
rons, connected one-to-one to input and output. The input neurons spiked at every
time step, and the membrane potential of each neuron was initialized to uniformly
random distribution within [0..1]. The afferent weights were fixed at 1.0, the lateral
excitatory weights at 1.0/nE (where nE is the number of incoming excitatory lateral
connections of the neuron), and the lateral inhibitory weights at 1.0/nI (where nI

is the number of incoming inhibitory lateral connections). The afferent contribution
was set to γA = 0.63 and decay rate to λA = 1.0, spike generator decay rate was
λθ = 0.05, sigmoid threshold and ceiling θl = 0.0, θu = 3.0, relative refractory
threshold proportion γθ = 0.65, and base threshold θb = 0.1.

The remaining parameters were systematically varied in the experiments: (1) lat-
eral excitatory and inhibitory connection patterns and radii rE and rI, (2) their contri-
butions to the neuron activation γE and γI, (3) their synaptic decay rates λE and λI,
(4) the size and pattern of the afferent input, (5) the degree of noise in the membrane
potential, and (6) the duration tr of the absolute refractory period.
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SOM Simulation Specifications

In order to establish a baseline for comparison with LISSOM, the simulations in
Chapter 3 were based on the SOM version of self-organizing maps, where the
response is based on Euclidean distance similarity measure, and the weights are
changed to minimize Euclidean difference between the input and the weight vec-
tor (Equation 3.15).

The default parameters, used in the basic self-organization simulation of Fig-
ure 3.6, are listed in Table E.1. The receptor surface was fully connected to each map
unit. The connections were initialized to uniformly random values within [0..1]. The
input consisted of single unoriented Gaussians whose centers were chosen from a
uniformly random distribution so that they were evenly scattered over the receptor
surface.

The magnification simulation (Figure 3.7) was run with the same network and
learning parameters; the only difference was the distribution of the input Gaussians.
The network was trained up to 10,000 iterations as before, at which point the input
distribution was changed. Instead of a uniformly random distribution, in Figure 3.7a
a Gaussian high-density area with center (0.5, 0.5) and radius 0.01 was added to
a uniformly random distribution of range [0..0.2]. In Figure 3.7b, the distribution
consisted of a uniform distribution and two Gaussian high-density areas, one with
center (0.5, 0.25) and the other (0.5, 0.75), and the major and minor axes of 0.05
and 0.0125 for both areas.

The three-dimensional model of ocular dominance (Figure 3.10) was abstracted
further by representing the input location as a two-dimensional variable (x, y), in-
stead of an activation pattern on a two-dimensional surface as in the two previous
simulations. These values were drawn from a uniformly random distribution within
[0..1]. The third variable, representing ocular dominance, was also uniformly ran-
domly distributed, but within [−0.15..0.15]. The inputs were thus three-dimensional
vectors of (x, y, z) values, fully connected to the map units. The network was
self-organized in tf = 120, 000 input presentations, with the adaptation rate =
0.1 exp(−4.0 t/tf) and neighborhood width = max[13.3 exp(−5.0 t/tf), 0.8].

The specifications for the SOM in handwritten digit recognition simulations will
be described in Appendix F.2.
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Parameter Value

N 40

L 24

σu 0.1

tf 40000

Parameter Value Used in Description

αS 0.42 exp(−6.0 t/tf) Section 3.4.2 SOM learning rate

σh max[13.3 exp(−5.0 t/tf), 0.5] Section 3.4.2 Neighborhood width

Table E.1. Defaults for SOM simulations. The αS (i.e. α in Chapter 3) and σh parameters
were reduced exponentially at every iteration t until they reached their minimal values as indi-
cated. Some of these defaults are overridden in the individual SOM simulations, as described
in the text.
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Visual Coding Simulation Specifications

The simulations in Chapter 14 focused on demonstrating how LISSOM represen-
tations form a sparse, redundancy-reduced code that retains the salient information
in the input and serves as an efficient foundation for later stages of the visual sys-
tem. Except as indicated below, the simulations were based on the reduced LISSOM
specifications of Appendix B and SOM specifications of Appendix E. In addition,
backpropagation and perceptron networks were used for reconstruction and recogni-
tion, as described in the following sections.

F.1 Sparse Coding and Reconstruction

The sparse coding and input reconstruction experiments in Section 14.2 were based
on the default reduced LISSOM parameters, except the training Gaussians were very
long (σa = 30), only a single pattern per iteration was used (sd = 1) to avoid
overlapping such long patterns, the afferent strength was decreased (γA = 0.7)
to compensate for the larger inputs, the lateral inhibitory radius was increased
(rI = Nd/1.2) to allow long-range interactions, the lateral inhibitory strength was
increased (γI = 4.0) to compensate for the fixed weight of 1.0 being spread over
more inhibitory connections, and the cortical density was reduced (Nd = 48) to
make it practical to simulate these long connections.

The SoG network was based on the same parameters as the network with self-
organized lateral connections, except the lateral excitatory and inhibitory strengths
were adjusted in order to perform sparse coding. In the first experiment in sec-
tion 14.2.3, γI was increased to 40 while γE remained at 0.9. In the second experi-
ment, γI was reduced to 11.4 without changing γE. In the third experiment, γI = 14
and γI = 0.46.

The reconstruction input consisted of pairs of contours, each with three Gaussian
segments with axis lengths σa = 1.9 and σb = 1.2, and with centers of each segment
separated by 9.5 units along the contour. The center of each contour was chosen
randomly from a uniform distribution in the central two-thirds of the retina, with
a minimum separation of 14.3 units between the centers. The orientation of each
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contour was determined uniformly randomly as well. These patterns were chosen to
show how the representation of visual input in the isotropic networks is degraded,
i.e. how the interactions between unrelated contour elements cause the response to
one or more of the elements to disappear.

The sparseness of the response was measured with population kurtosis K (Field
1994; Willmore and Tolhurst 2001):

K =
1

N2

∑

ij

(
ηij − η̄

ση

)4

− 3, (F.1)

where ηij is the response of neuron (i, j) in the N × N network and η̄ and ση are
the mean and the standard deviation of the responses.

For input reconstruction, a fully connected feedforward backpropagation net-
work (Chauvin and Rumelhart 1995; Hecht-Nielsen 1989; Parker 1982; Rumelhart
et al. 1986; Werbos 1974) with one hidden layer and sigmoidal units was trained to
map the V1 activity patterns to the corresponding input activity patterns in the retina.
Because only a few cortical neurons receive input from the retinal receptors near the
edges (Figure A.1; Section 6.2.1), only the central 24 × 24 area of the retina was
included in the target pattern. Three different networks were trained, one for recon-
struction from the initial V1 response, another from the settled LISSOM response,
and a third from the settled response of the sum-of-Gaussians network.

An extensive search for appropriate backpropagation parameters was first done
for each network with a set of 10,000 randomly generated input patterns and the
corresponding V1 responses. A feedforward network with 500 hidden units and a
learning rate of 0.25 for on-line backpropagation (where weights are changed af-
ter each input presentation, as opposed to after each pass through the training set)
was found to perform consistently the best. The results are robust to relatively wide
variations of these parameters: Doubling or halving these values led to only slightly
weaker results.

A different dataset of 10,000 randomly generated patterns was then used to com-
pare how well the input could be reconstructed from each of the three types of activity
patterns. A 10-fold cross-validation experiment was run where 9000 patterns from
this dataset were used for training, 500 for deciding when to stop training (based on
the RMS error), and 500 for testing. The validation and testing sets had no overlap
between the 10 runs; the training time varied between 37 and 40 epochs. The final
performance was measured by counting how many of the reconstructed patterns were
closest in Euclidean distance similarity measure to the actual input pattern in the test
set.

F.2 Handwritten Digit Recognition

In the handwritten digit recognition simulations in Section 14.3, performance based
on internal representations on SOM and LISSOM maps were compared. These rep-
resentations were formed with the default parameter except as indicated below.
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The initial SOM map was formed in eight epochs over the training set, with a
learning rate of 0.01, linearly reducing the neighborhood width from 20 to 8. The
LISSOM training then continued for another 30 epochs, with the inhibition radius of
20 and the excitation radius linearly decreasing from eight to one. The initial SOM
was also trained for another 30 epochs, linearly decreasing the neighborhood width
from eight to one.

In the LISSOM simulations, an adaptive version of the sigmoid activation func-
tion was used. As the map learns and changes its responses, a histogram of the unit’s
recent activity values is maintained and used to construct an activation function that
approximates the cumulative probability of activation at a given level (Choe 1995).
As a result, all units respond at different levels equally often, allowing competition
and self-organization to occur robustly. Such adaptation was not necessary with the
input distributions and network structures used in this book, which result in even
distributions of activity already. However, adaptive sigmoids are useful in general in
making the self-organizing process robust under various input and network condi-
tions.

Appropriate learning parameters were found after some experimentation to be
αA = 0.005, αE = 0.003, αI = 0.003, αS = 0.006, γE = 1.05, γI = 1.35,
θl = 1.0, and θu = 3.5. In addition, the adaptation rate of the sigmoid ασ = 0.1 and
four histogram bins were used (Choe 1995).

Twelve different splits into training and testing data were generated by randomly
ordering the dataset and taking the first 2000 inputs for training and the last 992 for
testing. On average, each split had 600 inputs in the training set that did not appear
in other training sets.

The perceptrons were trained with the on-line version of the delta rule (i.e. adapt-
ing weights after each input presentation), with a learning rate αP = 0.2, for up to
500 epochs. These settings were found to be appropriate experimentally. Among the
2000 inputs used for LISSOM training, 1700 were used to train the perceptrons, and
the remaining 300 were used as the validation set to determine when to stop training.
After a good learning schedule and parameters were found in this way, the whole
2000 patterns were used to train the perceptron again, in order to utilize the small
training set as well as possible. The final recognition performance of the total system
was measured on the remaining 992 patterns, which neither the maps (LISSOM and
SOM) nor the perceptrons had seen during training.
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Calculating Feature Maps

Feature maps, such as orientation, ocular dominance, and direction maps, summarize
the preferences of a large set of neurons at once. Each pixel in a feature map plot rep-
resents the preferred stimulus of that unit. The feature preferences can be measured
using a number of algorithms, but the results from each algorithm are similar, as long
as the neurons are strongly selective for that feature. For instance, most map mea-
surement methods result in the same preferred orientation for units that are highly
selective for orientation. They often differ slightly for unselective units, where the
preference is not as clearly defined. The typical techniques used for measuring maps
are first surveyed in this appendix. The details of the weighted average method are
then presented, including how it was used to compute each type of feature map plot
in this book.

G.1 Preference Map Algorithms

Preference maps can be calculated directly from the weight values of each neuron, or
indirectly by presenting a set of input patterns and analyzing the responses of each
neuron. Direct methods are more efficient and indirect methods more accurate, as
will be described in the following subsections.

G.1.1 Estimating Maps from Weights

Some feature maps can be calculated directly from weight values. For instance, a
map of preferred position can be estimated by computing the center of gravity of
each neuron’s afferent weights. Due to Hebbian learning, the afferent weights tend
to reflect the response properties of the neuron, so the center of gravity is a good
measure of what position in the input sheet the neuron prefers.

More generally, preference maps can be computed from a neuron’s weights by
fitting a parametric function to the afferent weights of each neuron; the parameters
of the best fit constitute an estimate of the preferences of that neuron. For instance,
an ellipsoidal Gaussian can be numerically optimized to fit the afferent weights of a
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neuron in a reduced LISSOM network, and the orientation of the resulting Gaussian
provides an estimate of the neuron’s orientation preference (Sirosh 1995). Unfor-
tunately, it is difficult to ensure that any single parametric function will be a good
match to all of the RF types that may be found in a network, particularly with natural
images or random noise inputs. Thus, the parametric fitting method is difficult to use
with the range of LISSOM simulations presented in this book.

Lateral interactions within the network can affect the feature preferences signif-
icantly under certain circumstances, such as during cortical reorganization (Chap-
ter 6). In general, it is not feasible to extend methods based on direct weight analysis
to include such interactions. In addition, these methods rely on internal information
in the model that would not be available in animal experiments, and thus the re-
sults are not directly comparable to animal data. In such cases, a method based on
neuronal responses must be used instead.

G.1.2 Discrete Pattern Method

Most map measurement methods, both for animals and for models, involve present-
ing a series of input patterns with varying parameter values and keeping track of the
responses of each neuron. For example, in the discrete pattern method, an orienta-
tion map can be computed by presenting stimuli with several different orientations.
The estimated orientation preference of the neuron is the orientation of the stimulus
that led to the greatest response. Lateral interactions can be taken into account by
measuring the responses after the network has settled.

In practice, more than one pattern is needed for each orientation, e.g. at different
retinal positions and spatial frequencies, because a neuron will only respond to its
preferred orientation if it is at the correct position. That is, even though responses
will be collected only for the different values of the map parameter (such as orien-
tation), the other parameters (such as location, spatial frequency, and eye of origin)
must be varied to ensure that at least one appropriate pattern has been presented for
each map parameter value. For each value of the map parameter, the peak response
obtained using any combination of the other parameter values is stored. The map
parameter value producing the peak response for any pattern tested is then taken as
the preference of this neuron.

Any input pattern capable of eliciting a neural response can be used in this proce-
dure, including oriented Gaussians and sine gratings. Sine gratings are more practical
because fewer input patterns are needed to cover the space: they vary in only one spa-
tial dimension (i.e. phase), whereas Gaussians vary over both x and y positions. With
sine gratings, the map measurement procedure can also be seen as an approximation
of discrete Fourier analysis.

Although the discrete pattern method is effective and allows taking lateral inter-
actions into account, a large number of test patterns is necessary to achieve good
resolution. For instance, to obtain orientation resolution of 1◦ would require sine
gratings with a complete set of phases, typically 24, to be presented at each of 180
orientations. Entire self-organization simulations only require 10,000 input presen-
tations, so calculating just two orientation maps takes nearly as many presentations
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(180× 24× 2 = 8640) as the entire simulation. Thus, in practice the discrete pattern
method is either prohibitively expensive or can provide only low-resolution maps.

G.1.3 Weighted Average Method

The feature maps in this book are based on the weighted average (also known as
the vector sum1) method, introduced by Blasdel and Salama (1986). This technique
generalizes the discrete pattern method by providing a continuous estimate of pref-
erences between the discrete patterns.

As in the discrete pattern method, inputs that cover the whole range of parameter
values (e.g. combinations of orientations, frequencies, and phases) are presented, and
for each value of the map parameter, the peak response of the neuron is recorded. The
crucial difference is that the preference is not just the map parameter value that led
to the peak response, but the weighted average of the peak responses to all map
parameter values. For a periodic parameter like orientation, the averaging must be
done in the vector domain, so that orientations just above and below zero (e.g. 10◦

and 170◦) average to 0◦ (e.g. instead of 85◦). For non-periodic parameters such as
ocular dominance, retinotopy, or spatial frequency, the arithmetic weighted average
is used instead.

In computing the preferred orientation, for each test orientation φ, other pattern
parameters such as spatial frequency and phase are varied systematically, and the
peak response η̂φ is recorded. A vector is then formed for each orientation φ with
η̂φ as its length and 2φ as its orientation (because orientation is π-periodic, not 2π-
periodic), and these vectors are summed together to form vector V = (Vx, Vy):

Vx =
∑

φ

η̂φ cos 2φ,

Vy =
∑

φ

η̂φ sin 2φ.
(G.1)

The preferred orientation of the neuron, θ, is estimated as half the orientation of V:

θ =
1
2
atan2(Vy, Vx), (G.2)

where atan2(x, y) is a function that returns tan−1(x/y) with the quadrant of the
result chosen based on the signs of both arguments. The magnitude of V can be taken
as an estimate for orientation selectivity; its variance can be reduced by dividing with
the sum of component vector magnitudes, resulting in normalized selectivity S:

S =

√
V 2

x + V 2
y

∑
φ η̂φ

, (G.3)

1 This method should not be confused with the vector sum method for measuring perceived
orientation of cortical responses (Section 7.2.1).
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The neuron is highly selective if much of the response is in the direction of the
preferred orientation, and unselective if the response is distributed widely across all
orientations.

For example, assume that patterns were presented at orientations 0◦, 60◦, and
120◦, and phases 0, π

8 , . . . , 7π
8 , for a total of 24 patterns. For a given neuron, assume

that the peak responses across all eight phases were 0.1 for 0◦, 0.4 for 60◦, and 0.8
for 120◦. The preferred orientation and selectivity of this neuron are

Vx = 0.1 cos 0 + 0.4 cos 2π
3 + 0.8 cos 4π

3 = −0.50,

Vy = 0.1 sin 0 + 0.4 sin 2π
3 + 0.8 sin 4π

3 = −0.35,
(G.4)

θ =
1
2
atan2(Vy, Vx) = 107◦, (G.5)

S =

√
V 2

x + V 2
y

0.1 + 0.4 + 0.8
= 0.47. (G.6)

Thus, this neuron is estimated to prefer an orientation that is intermediate between
two test patterns, with a relatively low selectivity because it had a significant response
to two of the patterns.

The weighted average method results in highly accurate, continuously valued es-
timates while requiring fewer input presentations than the discrete pattern method.
For instance, in informal tests using the reduced LISSOM model, maps computed
with as few as 24 input presentations (three orientations, each with eight phases) us-
ing the weighted average method had higher orientation resolution than those com-
puted with 864 input presentations (36 orientations, each with 24 phases) using the
discrete pattern method. The resulting maps were similar, but the weighted aver-
age map more accurately represented fine differences in the preferences of nearby
units (verified by comparing the afferent weights). The minimum number of patterns
needed depends on how broadly the neurons are tuned; in general, the method is
effective as long as neurons have a significant response to at least two of the patterns.

Lateral interactions can be included in the weighted average method the same
way as in the discrete pattern method, by recording the peak responses after settling.
In many cases, however, responses to afferent stimulation alone (Equation 4.5) pro-
vide a sufficient approximation. The maps computed in this manner are consistent
with those computed from the settled responses; typically, differences are seen only
in unselective neurons, for which the preferences are less clearly defined. To save
computation time, nearly all maps in this book were computed based on the afferent
responses. The plasticity experiments in Chapter 6 are an important exception: With
lesions, the dynamic equilibrium between afferent and lateral inputs is disturbed, and
it is necessary to observe the actual settled responses.

The same algorithm can be applied to any input feature that can be varied sys-
tematically, such as ocularity or direction. In each case, peak responses are collected
for each value of the map parameter, and a weighted average is computed to estimate
the preferred value. If the parameter is periodic, the average is a vector sum, and the
selectivity is based on its magnitude. Otherwise, an arithmetic mean is used for the
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average, and the selectivity is based on the highest response. Sections G.2–G.5 pro-
vide details for how these techniques were applied to measure each of the different
types of feature maps.

G.2 Retinotopic Maps

The retinotopic maps in Chapter 6 were computed from the settled response, and
therefore included the effect of lateral interactions. The input patterns were single
Gaussians that varied in x and y position, each taking the values 0, 6, 12, 18, and
24 for a retina of size R=36. The preference in each dimension was computed as the
arithmetic mean of each of the positions tested, weighted by the peak response to
that position.

Elsewhere in the book the retinotopic maps were computed by finding the center
of gravity of the afferent weights. For the self-organized maps in those chapters, this
method is roughly equivalent to computing the position preference based on afferent
stimulation, but more efficient.

G.3 Orientation Maps

The orientation maps were computed from the settled response in Chapter 6, and
from afferent stimulation elsewhere. For most networks, they were measured using
the weighted average method based on four orientations, i.e. 0◦, 45◦, 90◦, and 135◦,
and 18 phases. Similar maps are obtained as long as at least three orientations and
at least eight phases are included. For historical reasons, maps in Chapter 10 were
based on 36 orientations and those in Chapter 11 on 18 orientations; the maps in
Chapter 15 were calculated with the discrete pattern method with 36 orientations.

Because each simulation focused on a single-size LGN RF, the same spatial fre-
quency was used for all test patterns (1.0 units on the 42 × 42 retina in Chapter 11
and 0.76 units on the 36 × 36 retina elsewhere). Orientation selectivity was calcu-
lated as in equation G.3, multiplied by 16 to highlight areas of low selectivity such
as fractures and pinwheels.

G.4 Ocular Dominance Maps

For networks that included two eyes, ocular dominance and orientation preference
were computed at the same time, both using the weighted average method. The var-
ious sine gratings were presented in only one eye at a time, with twice as many test
patterns in total. The ocular dominance value was obtained as the weighted average
of the peak response to any pattern in the left eye and the peak response to any pat-
tern in the right eye, divided by their sum. Selectivity was computed by dividing the
peak response to the dominant eye by the sum of the peak responses for the two eyes.
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G.5 Direction Maps

Direction maps were computed like orientation maps, but using six different direc-
tions, 12 phases, and four speeds (ranging from 0.0 to 1.0 retinal pixels per step).
For each direction, the sine grating orientation was chosen to be perpendicular to the
direction of motion. Because direction is 2π-periodic (unlike orientation), the vec-
tors in the sum represented the actual direction, rather than twice the orientation. The
vector sum was computed just as for orientation, but without dividing the result by
two. The direction selectivity was calculated as in equation G.3 and multiplied by 96
to highlight areas of low selectivity such as fractures and pinwheels.

G.6 Orientation Gradients

For any of the feature maps described above, a gradient plot can be calculated. For
example, orientation gradient plots (such as those in Figures 5.1b and 5.10b) repre-
sent how abruptly the orientation preferences change across a given point in the map.
The gradient is high at fractures, and low (and nearly constant) across linear zones.

To measure and visualize the orientation gradient, first the differences Dx,ij and
Dy,ij in orientation preference of each unit (i, j) in the map and its preceding neigh-
bor in the x and the y directions were calculated:

Dx,ij = Ωij − Ω(i−1)j ,
Dy,ij = Ωij − Ωi(j−1),

(G.7)

where Ωij is the orientation that unit (i, j) prefers. Negative differences and differ-
ences larger than 90◦ were converted to the equivalent angles within [0◦..90◦] (for
example, 110◦ and −70◦ are both equivalent to a 70◦ difference). The gradient mag-
nitude Dij is then given by

Dij =
√

D2
x,ij + D2

y,ij . (G.8)

These values were computed for each unit in the array (except those at the top and
the left edge), and together they represent the gradient over the orientation map.
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Krüger, N., and Wörgötter, F. (2002). Multi modal estimation of collinearity and parallelism
in natural image sequences. Network: Computation in Neural Systems, 13:553–576.

Kuhlmann, L., Burkitt, A. N., Paolini, A., and Clark, G. M. (2002). Summation of spatiotem-
poral input patterns in leaky integrate-and-fire neurons: Application to neurons in the
cochlear nucleus receiving converging auditory nerve fiber input. Journal of Computa-
tional Neuroscience, 12:55–73.

LaBerge, D. (1995). Attentional Processing: The Brain’s Art of Mindfulness. Cambridge,
MA: Harvard University Press.

LaBerge, D., and Buchsbaum, M. S. (1990). Positron emission tomographic measurements of
pulvinar activity during an attention task. The Journal of Neuroscience, 10:613–619.

Lamme, V. A., Super, H., and Spekreijse, H. (1998). Feedforward, horizontal, and feedback
processing in the visual cortex. Current Opinion in Neurobiology, 8:529–535.

Lancaster, J. L., Narayana, S., Wenzel, D., Luckemeyer, J., Roby, J., and Fox, P. (2004). Eval-
uation of an image-guided, robotically positioned transcranial magnetic stimulation sys-
tem. Human Brain Mapping, 22:329–340.



References 477

Lander, E. S., et al. (2001). Initial sequencing and analysis of the human genome. Nature,
409:860–921.

Landisman, C. E., and Ts’o, D. Y. (2002a). Color processing in macaque striate cortex: Elec-
trophysiological properties. Journal of Neurophysiology, 87:3138–3151.

Landisman, C. E., and Ts’o, D. Y. (2002b). Color processing in macaque striate cortex: Rela-
tionships to ocular dominance, cytochrome oxidase, and orientation. Journal of Neuro-
physiology, 87:3126–3137.

Landy, M. S., Maloney, L. T., and Pavel, M., editors (1995). Exploratory Vision: The Active
Eye. Berlin: Springer.

Langley, P., Choi, D., and Shapiro, D. (2004). A cognitive architecture for physical agents.
Technical report, Institute for the Study of Learning and Expertise, Palo Alto, CA.

Lapicque, M. L. (1907). Recherches quantitatives sur l’excitation électrique des nerfs traitée
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Bröcher, S. 6, 27, 493
Brockmann, D. 111, 454, 488
Bronson, G. W. 204, 456
Brooks, R. A. 400, 456
Brown, G. J. 43, 499
Bruce, V. 206, 457
Bruns, A. 359, 456, 463
Buchsbaum, M. S. 16, 476
Budreau, D. R. 204, 482
Buhmann, J. 42, 43, 46, 47, 280, 498
Bullier, J. 260, 369, 392, 483
Buonomano, D. V. 134, 152, 456
Burger, D. 4, 456
Burger, T. 52, 95, 111, 190, 195, 376,

456, 457
Burgess, N. 356, 484
Burke, B. C. 359, 465
Burke, W. 134, 135, 152, 457, 498
Burkhalter, A. 6, 23, 26, 361, 457, 480
Burkitt, A. N. 44, 476
Burnod, Y. 207, 208, 209, 210, 234,

235, 451
Burton, A. M. 206, 457
Bushnell, I. W. R. 204, 211, 233, 457
Busse, B. L. 389, 480
Butts, D. A. 354, 457, 464
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Érdi, P. 396, 452
Ermentrout, B. 40, 43, 93, 94, 485, 488
Ernst, U. 27, 258, 270, 369, 464

Erwin, E. 31, 52, 54, 78, 85, 86, 91, 92,
93, 94, 464, 482

Eshelman, L. J. 402, 490
Eurich, C. W. 258, 270, 369, 464
Evans, A. 405, 480
Eysel, U. T. 136, 350, 361, 464, 475
Fabre-Grenet, M. 204, 219, 233, 234,

237, 368, 485
Fagiolini, M. 49, 471
Fahle, M. 35, 358, 386, 464, 477, 499
Fairhall, A. L. 360, 451
Farah, M. J. 205, 233, 234, 464
Farkas, I. 61, 93, 94, 464, 478
Farrar, S. B. 222, 451
Feidler, J. C. 113, 405, 473, 480
Feldman, J. A. 400, 452
Felleman, D. J. 16, 18, 20, 303, 380,

391, 464, 497, 501
Fellenz, W. A. 326, 405, 464
Feller, M. B. 7, 30, 31, 183, 201, 354,

457, 464, 481
Ferrari, F. 211, 464
Ferster, D. 361, 377, 464
Field, D. J. 10, 76, 158, 159, 274, 275,

285, 308, 309, 373, 386, 396, 397,
442, 465, 471, 484

Field, T. M. 204, 465
Fields, R. D. 258, 369, 495
Findlay, J. M. 399, 465
Finkel, L. H. 10, 28, 137, 278, 279, 391,

465, 485, 490, 501
Finlay, B. L. 49, 485
Fischer, I. 427, 463
Fisher, S. A. 370, 465
Fisher, T. M. 370, 465
Fisken, R. A. 23, 465
FitzHugh, R. 43, 465
Fitzpatrick, D. 6, 10, 19, 20, 22, 23, 24,

25, 87, 89, 90, 97, 98, 102, 115, 117,
130, 176, 195, 197, 198, 202, 254,
341, 350, 351, 362, 363, 364, 367,
381, 383, 392, 454, 456, 460, 465,
499, 500

Fogel, D. B. 401, 465
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fovea 15
contour integration in 277, 304
maturation of 205, 236
modeling of 69, 387, 388
visual statistics in 277, 303, 371

fractures 20, 86, 89, 98, 101, 115, 122,
251

frontal cortex 393
frontal eye fields 389
frontal lighting 224
FSA see face-selective area
function of self-organized structures 8
functional magnetic resonance imaging

(fMRI) 21, 395
future research areas based on LISSOM

results 396–406

GABA 270, 354, 365, 369
Gabor

filters 209, 277
patterns 17, 97, 273, 278
wavelets 275

gamma-band oscillations 34, 281
gap junctions 353, 354
Gaussian input patterns 55, 94, 95, 104,

121, 124, 128, 247, 327, 417, 418,
422, 438, 441

gaze-selective neurons 21
gene expression 260
general-purpose adaptive algorithm 402
generalizable representations 314
genes see genome
GENESIS 40, 403, 405
genome

coding of pattern generator 367
compact encoding 8, 30, 217, 402
hardwiring 7, 175, 212, 324
size 4, 30

Gestalt grouping principles 27, 347, 352
gestation time 211, 353
GLISSOM (growing LISSOM)

compared to LISSOM 337
growing step 334
scaling schedule 337
weight interpolation see weight inter-

polation
glutamate 270, 369
GMAP (grouping map in PGLISSOM)

242

measuring grouping in 281
gradient of orientation maps 86, 92, 99,

115, 122
graphical user interface (GUI) 405
gravity 277
grouping moving inputs 387
GUI see graphical user interface

H (histogram, figure label) 100
hair outline see also face preferences, ef-

fect of hair outline on
effect on HLISSOM model 224, 231,

233
newborn learning of 212, 368

handwritten character recognition 314–
319, 358, 401

LISSOM architecture for 315
using internally generated patterns for

402
haptic hypothesis for face preferences

211
hardwiring 7, 29, 133, 175, 177, 212, 213,

217, 225, 324
head injury 29, 135
head movements 399
head outline see hair outline
head shape and eye position, effect on oc-

ular dominance maps 381
Hebbian learning 48–50, 52

biological evidence for 49
in CBL models 92
in plasticity 135
in SOM 54
of push–pull RFs 377
requirement for normalization 348
rule in LISSOM 76

hemifields
left and right 16
upper and lower 277, 303, 371

hexagonal grid model of the cortical sheet
51

high-dimensional search spaces 402
higher cortical areas 16, 20
hippocampus 356–357
histograms

for direction preference 115
for lateral connectivity 87, 253
for ocular dominance 108
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for orientation preference 86, 99, 215,
251

HLISSOM (hierarchical LISSOM) 175
activation function 180
architecture 178
assumptions see LISSOM, assump-

tions
parameters 429–433
predictions 366–368

Hodgkin–Huxley model 40
holistic face preferences 234, 368
homeostatic regulation 49, 170, 229, 343,

353, 370, 376
horizon, effect on natural scene statistics

194, 195
hormones 237
horseradish peroxidase 24
human-like visual processing 400
hyperacuity 26, 386
hypersurfaces 60

illusory contours 276–277, 390, 392, 393
in PGLISSOM 288–304

Im (images, figure label) 226
image databases 104, 184, 194, 195, 221,

230, 316, 399
image segmentation 48
imagery, visual 32, 391
images see bitmap images; natural im-

ages
incremental Hebbian models 185
indirect encodings 4, 358
inferior colliculus 394
inferotemporal cortex (IT) 203, 390
information content 310
inhibitory blockade see also bicuculline;

GABA
effect on plasticity 366
effect on sparseness 373
effect on TAE 171, 365
for recovery from injury 151

initial organization, effect on self-
organization 184, 326

input patterns, separating multiple 422
input reconstruction 396
input sequence, effect on self-

organization 184
input-driven self-organization 4–6, 11,

26, 28, 30, 85–132, 175–178, 277

instructive role for spontaneous activity
31, 382

integrate-and-fire model 41, 43–44, 244,
see also PGLISSOM

interaction between genetics and environ-
ment see visual development, inter-
action between genetic and environ-
mental factors

interactions between maps 121, 122, 124,
126, 381, see also combined maps

internally generated patterns 30
blocking or manipulating 31
computational model of 182–184
for constructing complex systems 357–

358, 401–403
for face preferences 8, 212–235
for handwritten character recognition

402
in animals 7
in orientation map development 191–

194
in the adult 398–399
neural mechanisms 354
requirements for higher-area develop-

ment 355–357
requirements for V1 development 354–

355
species differences in 381

interneurons 350, 351
intracolumnar connections 246, 251
invertebrates 29
inward shift of RF after lesion 135, 145

in LISSOM 146, 150
ion channels 40, 260
iso-orientation patches 20
IT see inferotemporal cortex

joint maps see combined maps

Kanizsa triangle 276, 279, 303
kitten 22, 26, 190, 192, 353, 364, 399, see

also cat
kurtosis 309, 311–320, 373, 442

L-Neuron 405
lagged cells 113–131, 379, 381
landscapes 183, 184, 196, 223
language processing 358
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large-scale cortical organization vii–x,
29, 30, 176, 347

large-scale LISSOM V1 model 181
lateral connections 18, 23–28

anisotropy of 23
development in animals 25
excitatory vs. inhibitory 23, 242

biological implementation of 349
functional specificity of 23
in combined maps 122, 124, 127
in different layers 23
in direction maps 89, 116
in LISSOM ocular dominance maps

108
in LISSOM orientation maps 101
in macaque monkey 24
in newborns 6, 192
in orientation maps 252
in strabismic LISSOM maps 109
in tree shrew 25
isotropic 24, 309–314
models of 94
pruning of 25
role in computation 6, 26–28
role of patchiness of 309–314, 352

lateral geniculate nucleus (LGN) 4, 15–
17

lateral inhibition 349
lateral occipital area (LO) 180
layers within V1 18, 242, 360, 372
leaky integrator 43, 244, 247
learning rate 185, 342
learning rules 405
learning, models of 48
least shrew 20
lesions

cortical 135–137, 146–152
experimental data on 135–137
LISSOM model of 146–152
orientation specificity of 149
predictions of LISSOM model on

149
retinal 133–135, 142–145

experimental data on 133–135
LISSOM model of 142–145

somatosensory 137
levels of abstraction 41
LGN see lateral geniculate nucleus

lid suture see visual deprivation, eyelid
suture

likelihood ratio 286
limit cycle 43
line-end inducers 276, 279, 303, 390
linear projections 389
linear systems model (LSM) 208, 218,

219
linear zones 20, 89, 98, 115, 122, 124,

251
LIs (lateral inhibitory connections, figure

label) 105
LISSOM (laterally interconnected syner-

getically self-organizing map) 10
overview 10, 68
activation function 73, 75
afferent connection plotting conven-

tions 79
architecture 11, 69
assumptions 3, 67, 345–361

adapting lateral connections 346
development driven by internally gen-

erated patterns 354
divisive normalization 348
evolutionary advantage of pattern

generation 357
excitatory vs. inhibitory lateral con-

nections 349
parameter adaptation 353
pattern generating mechanism 355
pruning 352
recurrent lateral interactions (settling)

346
role of cortical layers 360
role of synchronization in perception

358
comparison with SOM 78–81
connection types 69
decreasing excitatory radius 77, 353
future architecture extensions 375–379

column models 377
complex cells 378
connection delays 379
push–pull afferent connections 376
threshold adaptation 375

future models 379–396
cortical hierarchy 389
end-stopped RFs 390
feedback 391
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foveated inputs and eye movements
388

full-scale cortical areas 387
grouping in natural images 386
hyperacuity 386
maps for color, spatial frequency, and

disparity 380
multi-modal integration 394
postnatal internally generated pat-

terns 383
prenatal and postnatal development of

V1 382
species differences 381
tilt illusions 384
top-down influence on grouping 393
visual aftereffects 385

initial retinotopic map 72
initial weights 73
input and response plotting conventions

74
lateral connection plotting conventions

82
lateral connection radii 72
learning rule 76
LGN model (ON/OFF cells) 69, 70, 73,

74
mapping between neural sheets 184,

421
normalization 353
parameter adaptation 77
parameters 416–425

defaults 416
for new input patterns 420
scaling equations for 416
setting values for 74, 376, 416, 419

predictions see predictions
pruning (connection death) 77
receptive fields 69
retinotopic map plotting conventions

81
scaling of influence from each connec-

tion type 76
scaling up 388, 389
settling process 76, 319
starting point of self-organization 72
unit model 68
visual coding 161, 309–324

LO see lateral occipital area

local refinement of cortical organization
25, 29, 30, 347

localist representations 394
log-polar transformation 388
logistic function see sigmoid
long-range excitation 242
long-term depression (LTD) 49
long-term potentiation (LTP) 49
LSM see linear systems model
Lucifer Yellow 41

macaque monkey see monkey
machine vision 400–401
manifolds 61
map models

types of 91
correlation-based learning (CBL) 92
non-incremental 91
spectral 92
visual performance of 94
with specific lateral connections 94

map simulators see Topographica
mapping between neural sheets see

LISSOM, mapping between neural
sheets

Matlab 403
maturation 353
mean-field techniques 279
measuring cortical maps see feature

maps, calculating
membrane potential 40, 43, 266
memory consolidation 356
memory usage 333, 340
meridians (visual horizontal and vertical)

202
metabolic activity

limits of 343
minimizing 308

microcircuit, cortical 351
microelectrode recordings see electro-

physiological recordings
microsaccades 378
microstimulation 359
middle temporal area (MT) 136, 359

modeling of 389–394
molecular level 39
monkey 15, 277, 359, 381, 398

macaque 18, 20, 21, 86, 89, 122, 124,
341
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monosynaptic excitation 351
mother preferences see face preferences,

for mother
motion direction selectivity see direction

selectivity
motor systems 404
mouse 26
MT see middle temporal area
MUA see multi-unit activity
multi-cellular recording 372
multi-modal integration 27, 392, 394–396
multi-unit activity (MUA) 281, 359
multiple-systems models of face prefer-

ences 211
multiplicative normalization see normal-

ization, divisive
muscle spindles 45
mutations, effect of 30
myelination 258

naı̈ve network 228
National Institute of Standards and Tech-

nology (NIST) 316, 316
natural images

computational models for 94, 95
effect on V1 model development 91,

104, 105, 124, 127, 129
for modeling postnatal development

184, 190, 194–202
in PGLISSOM 302, 387
limitations of databases of 399
of faces 195, 217, 221–225, 229
of landscapes 195
of objects 217
parameter adjustments necessary to

process 420
properties of 94, 138, 141

natural scene statistics 152, 184, 198,
199, 275, 277, 284, 285, 286, 371,
386, see also environment, visual

natural video 399
nature vs. nurture ix, 28–33, 175–178
ND (noisy disks, figure label) 196
neighborhood function 54
nematode worm 29
neuroinformatics databases 389, 405
NeuroML 405
NEURON 40, 403, 405

neurons per column in V1 see number of,
neurons per column in V1

neurons, number of see number of, neu-
rons in humans

nifedipine 370
NIST see National Institute of Standards

and Technology
noise see random noise
noisy disks 104, 127, 128, 182, 190–194
normalization 49, 54, 170, 320–324, 348–

349
afferent 180, 184, 376
divisive 48, 54, 68, 180, 348
postsynaptic 76
presynaptic 248
subtractive 48, 92–93, 348
sum-of-squares 54

number of
bits in the genome viii
columns in V1 341
genes in humans 4
neurons and connections in V1 18, 341
neurons in humans 4
neurons per column in V1 341
synapses in humans 4
transistors in computing systems 4

Nyquist theorem 86, 329, 330, 342

object binding 401
object perception 388, 404
object recognition 27, 400

occluded 276, 390–391
object segmentation 401
objective functions 396–397
oblique contours 156, 170, 198
OCR see optical character recognition
ocular dominance (OD) 89
ocular dominance maps 19, see also com-

bined maps
calculating see feature maps, calculat-

ing
computational models of 93
development of 4
effect of input disparity on 111
effect of input pattern types on 124
in cat 88
in macaque monkey 21, 89
in strabismic LISSOM maps 109
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in strabismus see visual deprivation,
strabismus

LISSOM model of 106–113
potential sources of eye differences

106, 382
OD see ocular dominance
old age, effect on cortical processing 151
olfactory bulb 395
ON/OFF channels 16

in animals 17
properties of 17
role of 71, 138–142

open contours 274, 275, 294
open-source software development 406
opponent cell receptive fields 380
optic chiasm 16
optic nerve 16
optical character recognition (OCR) 314
optical imaging 19, 87, 365, 373, 380
OR see orientation
orientation (OR) 89
orientation biases, effect on orientation

maps 194–198, 202
orientation jitter 273–302
orientation maps see also combined maps

calculating see feature maps, calculat-
ing

computational models of 93
developed from large unoriented pat-

terns 104
effect of input pattern types on 104
HLISSOM model of 189–202
in ferret 89
in macaque monkey 18, 20, 21, 89
in newborns 8, 192, 194, 202
LISSOM model of 95–106
measuring 97
PGLISSOM model of 249–255

orientation preference, development of 4
orthographic representations 395
oscillations 34, 395
overtraining 384
owl, multi-modal integration in 394

pacman-like disks 277, 279
parameter search 331
parameter values, setting see LISSOM,

parameters, setting values for

pattern generation see internally gener-
ated patterns

pattern recognition 396, 400
PCA see principal component analysis
PDP++ 403
Pearson’s correlation 281
perceived orientation

computation example 163
computation in LISSOM 161

perceptrons 315–319
perceptual grouping 8–10, see also

PGLISSOM, model of contour inte-
gration

effect of normalization on 348
transitive see transitive grouping
via lateral connections 347
via temporal coding 33, 47

periphery 15
contour integration in 277, 304
face preferences in 204, 205, 212, 236,

368
modeling of 69, 387, 388
visual statistics in 277, 303, 371

permissive role for spontaneous activity
31

PGLISSOM (perceptual grouping LIS-
SOM) 241

activation function 246
architecture 241–255
assumptions see LISSOM, assump-

tions
binding 280–285
connections between locations in visual

space 284
contour completion 288–304
decreasing excitatory radius 248
effect of jitter on 282
excitatory and inhibitory lateral con-

nections 350
illusory contour response 288–304
initial weights 247
learning rule 248
limits on contours that can be seg-

mented 287
model of contour integration 280–304
parameters 435–438
predictions 368–372
scaling up 303
segmentation 286–287
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size independence 265
synapse model 244
unit model 244

PGO see ponto-geniculo-occipital waves
phaclofen 365
phase columns 378
phase invariance 378
phase transition 62
phonetic representations 395
photoreceptors 15, 31
phylogeny 368
piecewise linear sigmoid see sigmoid
pinwheel centers 20, 86, 89, 97, 102, 115,

122, 124, 251
PIP see posterior intraparietal area
pizza box model of ocular dominance 62,

63
plasticity 133–153

in CBL models 93
predictions on 365–366

Poggendorf illusion 28
ponto-geniculo-occipital (PGO) waves

32–33, 178, 355–357
generator in HLISSOM 178
hypothesized shape of 212
in twins 32

population oscillations 36
posterior intraparietal area (PIP) 395
postnatal development 194–198, 383
postnatal face learning, HLISSOM model

of 228–233
postsynaptic normalization see normal-

ization
postsynaptic potential (PSP) 244, 258,

270, 271, 369–370, 372, 376, 411
predictions see also LISSOM, assump-

tions
general overview 362–373
combined OR/DR maps in different

species 119
compensation for delays with decay

rate 369
contour integration in newborns 371
cortical activity patterns during the

TAE 171, 365
decay rate adaptation in synchroniza-

tion 369
effect of artificial environments 363

effect of differences in internally gener-
ated patterns between species 366

effect of face outline shape for new-
borns 234, 368

effect of flipping visual environment
during development 371

effect of inhibitory blockade on sparse-
ness 373

effect of modifying internally gener-
ated patterns 367

effect of natural scene statistics on con-
nection patterns 297, 371

effect of natural scene statistics on con-
tour integration performance 299

effect of refractory period on synchro-
nization 370

effect of TMS on contour integration
368

effect of V1 size 363
extent of cortical plasticity depending

on lateral interaction lengths 151,
366

extent of reorganization to retinal sco-
toma 142, 366

functional role of cortical layers in syn-
chronization 372

holistic face learning in newborns 204,
233, 368

indirect TAE caused by weight normal-
ization 170

infant preferences for realistic faces
232, 234, 368

lateral connections 130
after rearing in deprived environ-

ments 364
effect of natural scene statistics on

371
in color and spatial frequency maps

364
in direction maps 117, 364
in orientation pinwheels, saddle

points, and fractures 102, 363
reflecting activity correlations 363

lateral interactions increasing sparse-
ness 372

learning rate scaling 342
natural scene statistics differences be-

tween upper and lower hemifields
371
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newborn cortical response to faces 217
newborn preferences

for facelike vs. top-heavy patterns
235, 368

for faces 219, 224
for mother 233, 368

orientation-specific effects on cortical
plasticity 149, 366

pruning level depending on number of
connections 343

response to indirect TAE test pattern in-
creasing during adaptation 365

RF shapes in newborns 193, 367
role of input variance and correlations

363
role of retinal waves in OD maps 131
role of short-term plasticity in synchro-

nization 370
sign and magnitude of TAE under in-

hibitory blockade 171, 365
spatial configuration of PGO waves

367
spatial frequency map after rearing in

deprived environments 364
prefrontal cortex 370
prenatal and postnatal visual activity 31,

189–202, 382–384
presynaptic normalization see normaliza-

tion
primary visual cortex (V1) 4, 16

feature preferences in 18
layers (lamination) in 18
number of neurons and connections in

see number of, neurons and connec-
tions in V1

organization of vii–x, 4
size of 18, 341

principal component analysis (PCA) 59
principal curves 60–63
principal surfaces 59–63
projections between LISSOM sheets 421
proprioception 211, 404
prototypes of faces 230, 231
pruning

in LISSOM 77, 352
in PGLISSOM 248
of lateral connections 25, 347
scaling of 330

PSP see postsynaptic potential

pulvinar 16, 212
Purkinje cells 42
push–pull

cortical RFs 376, 377, see also normal-
ization, afferent

effect resulting from afferent normal-
ization 180

lateral connections 107
LGN RFs 75

pyramidal cells 40, 41, 43, 350
Python 406

quantization effects 330

rabbit, direction-selective ganglion cells
in 381

radial basis function networks 317
random noise

input patterns 104, 191, 192, 367
role in desynchronization 46
role in development see internally gen-

erated patterns
role in synchronization 263

random weight values, effect of 184, 326
rapid-eye-movement (REM) sleep 32–33,

212, 237, 355–357, 383, 398
in embryos 32

receptive field (RF) 4, 17
in higher cortical areas 20
scatter 72
shapes in adults 17
shapes in newborns 193, 201, 367

reciprocal connections 23, 69, 303, 398
reconstruction error for principal surfaces

60
reconstruction of visual input 309–314
recovery from injury or surgery see plas-

ticity
rectangular grid model of the cortical

sheet 51, 330
red/green opponent cells 380
reduced HLISSOM 225–233
reduced LISSOM 138–142, 326–341

parameters 427–428
redundancy reduction see decorrelation
reference simulation 417
refractory period 246, 370
regression 151
REM see rapid-eye-movement sleep
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resampling 326, 333
retina 15

activity waves in 7, 31, 140, 182, 367
computational model of 191–194
pharmacological manipulation of 367
sufficiency for developing OR maps

189
density scaling of 327
ganglion cells in 15, 31, 381, 388
lesions in see lesions, retinal

retinotopic maps
calculating see feature maps, calculat-

ing
distortions due to other maps 100
LISSOM model of 78–81
SOM model of 55–57

retrograde amnesia 356
retrograde transport 88
reverberating circuits 274, 275, 294, 379
rewiring visual inputs to go to auditory

cortex 22
RF see receptive field
rhesus macaque monkey see monkey
RMS see root mean square
robots, biological modeling using 399
robustness 7, 8, 105, 133, 153, 175, 200,

201, 224, 227, 265
root mean square (RMS) 284, 338, 442
rTMS see transcranial magnetic stimula-

tion

saccades
modeling of 387, 389

saddle points 20, 89, 98, 102, 115, 122,
251

salience
of contours 282, 283, 294
of illusory patterns 293
testing in animals 359

Sc (schematics, figure label) 226
scalar product 51, 70, 73, 75, 185, 317,

321
scaling

cortical density 330
lateral connections 330
model complexity 405
retinal density 327
to human cortex size 339
visual field area 326

schematic stimuli 204–205, 217, 218–
221, 225–227, 243

scotoma 134, 145, see also lesions, retinal
scripting language 405, 406
segmentation 10, 43, 242, 286–287
selectivity of orientation maps 87, 99
self-organization see input-driven self-

organization
self-organizing maps 50–57

biological plausibility of 67
general architecture 51

SEM see standard error of the mean
separable representations 314
SG (self-organization and grouping col-

umn model) 244, 251, 350, 351,
378

shadows in face images 211
sigmoid 45, 68, 75, 76, 184, 225, 229, 246
signal transduction 30
simple cells 18
simulators for cortical maps see Topo-

graphica
situated perception 399
sizes of cortical areas 343, 381, 392
SMAP (self-organization map in PGLIS-

SOM) 242
SoG see sum of Gaussians
SOM (self-organizing feature map algo-

rithm) 52–57
activation function 53
comparison with LISSOM 78–81
continuous model 333
decreasing excitatory radius 53, 77
for handwritten character recognition

314–324
growing model 333
hierarchical 389
lateral interactions (neighborhood

function) 52
learning rule 55
model of cortical maps 93, 346
model of plasticity 137
model of retinotopic maps 55–57
neighborhood function 346
parameters 439–440
winner-take-all mechanism 52, 346

somatosensory cortex 26, 137, 395, 404
sparse coding 307–314, 372–373
spatial frequency maps 132, 364, 380
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spatial frequency preference of LGN cell
16

spatiotemporal receptive fields 89, 90,
115, 362

species differences 132
due to internally generated patterns 8,

366
in cortical area sizes 342, 343
in cortical maps 18, 20
in map size 325, 363
in REM sleep 32
modeling of 381–382

spectral models see map models, spectral
speech 43, 45, 358, 404
speeding up recurrent processing 324
spike generator 244, 246
spike-based coding 359
spike-timing-dependent plasticity (STDP)

49
spikes 33, 359–360, 372, see also PGLIS-

SOM
spiking units 10, 43, 242, 244, 405

information capacity of 397
spinal cord 30
spontaneous activity see internally gener-

ated patterns
squint see visual deprivation, strabismus
stacked model of cortical layers 243
standard error of the mean (SEM) 157,

164, 284, 288
STDP see spike-timing-dependent plas-

ticity
stellate cells 43
stereo vision 28, 111
stereoscopic images 380
strabismus see visual deprivation, strabis-

mus
striate cortex see primary visual cortex
stroke 133, 135, 151
subcortical face processing areas 212,

235
subcortical pathways 15, 16, 395
subtractive normalization see normaliza-

tion
sum of Gaussians (SoG) 309–313, 320
sum-of-squares normalization see nor-

malization
supercomputers 331, 341
superior colliculus 16, 211, 212, 389

superposition catastrophe 33, 34
supervised learning 310, 315, 400
support vector machines 317
surgery, effect of 151
symmetry breaking 62, 264
synapses, number of see number of,

synapses in humans
synaptic decay rate see decay rate
synaptic depression 360
synaptic transmission 268, 360
synchronization 10, 46–48, 242

as a binding mechanism 33–36, 43,
257–271, 358–359

between cortical areas 393–396
effect of excitatory and inhibitory con-

nections on 258–263
effect of long refractory period on 269
effect of noise on 263–270
effect of strong excitation on 268

synergetic development of multiple con-
nection types 26, 347, 392

synfire chains 393

tabula rasa 29
TAE see tilt aftereffect
tagging 401
temporal coding 33–36, 43, 46–48, 241,

358–360
temporal integrator 245
temporo-occipital (TEO) area 41
TEO see temporo-occipital area
tetrodotoxin 25
thalamocortical connections see feedfor-

ward pathways
thalamocortical loop 395
three-dot patterns 211–213, 216, 367

generation of 236, 355
threshold adaptation 228, 229, 246, 375
tilt aftereffect (TAE) 155–172, 347, 384–

386, 391, 428
analysis of 166–170
computing magnitude of 162
computing perceived orientation for

161
dark recovery of 171
demonstration of 156
detailed mechanism of 167
direct 156, 168
effect of adaptation time on 156
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in humans 157
in LISSOM vs. humans 164–166
indirect 156, 168, 170
measured neurally 365
measured psychophysically 156
predictions on 171, 365
saturation of 166, 171
theories and models of 158–160

decorrelation 159
fatigue 158, 166, 365
gain control 160
lateral inhibition 159, 166

time course of 165
variability of 171
with oblique contours 156

tilt illusion 155, 171, 384
TMS see transcranial magnetic stimula-

tion
top lighting 211, 224
top-heavy face preference model 210, 368
topographic maps 18–20, 403

computational models of 91–95
in animals 85–91

Topographica 403–406
compared to other simulators 403
implementation 405
scope and design 404

trace learning rule 379, 390
training pattern stream, effect on self-

organization 184
training time 333, 340
transcranial magnetic stimulation (TMS)

369
transformation invariance 390
transistors see number of, transistors in

computing systems
transitive grouping 261, 262, 275, 359
translation invariance 390
tree shrew 15, 102
trophic factors 296, 352, 353
twins, PGO waves in 32
two-dimensional approximation of corti-

cal structure 18

unit models 39, see also coupled os-
cillators; compartmental models;
firing-rate models; integrate-and-
fire-model

UNIVAC 50

unsupervised learning see self-
organization

V1 see primary visual cortex
V2 see visual area 2
V4 see visual area 4
V4v see ventral visual area 4
Vapnik–Chervonenkis (VC) dimension

397
variance of a learning method see

bias/variance tradeoff
variance of input

effect on cortical maps 362–363
effect on self-organizing maps 59–63

VC see Vapnik–Chervonenkis dimension
vector quantization 400
vector sum see perceived orientation,

computing in LISSOM; feature
maps, calculating, vector sum
method

ventral stream 178, 212
ventral visual area 4 (V4v) 180
vernier acuity 386
viewpoint invariance 390
VisNet 390
visual aftereffects 385, see also tilt after-

effect; motion aftereffect; visual il-
lusions

with illusory contours 391
visual area 2 (V2)

color maps 380
disparity maps 380
illusory contours in 276, 288, 303
modeling of 389–394
RF shapes in 279

visual area 4 (V4)
modeling of 389–394

visual coding 310
visual deprivation

by dark rearing 22
by eyelid suture 4, 22, 32, 192, 199
by orientation biases 4, 22, 87, 176, see

also orientation biases, effect on ori-
entation maps

by strabismus 26, 87–88, 106–111
effect on lateral connections 176, 364

visual development
effect of thalamic input on 176
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interaction between genetic and envi-
ronmental factors 28–33, 177, 189–
202, 358

visual illusions 28, see tilt illusion, visual
aftereffects

visual system
anatomy 15
architecture 4
as a model system for understanding

the brain viii, xi
development 5, 176
in humans 16

visually evoked activity 15
voltage-sensitive dyes 19

waterfall illusion see motion aftereffect
(MAE)

wavelets 275
weight interpolation 333–336
weight values, effect of initial 184, 326
winner-take-all mechanism 346
wiring length 396
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