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Речь идет о том, как поступать с задачей,
которая решения не имеет. Это глубоко
принципиальный вопрос […]

К. Х. Хунта в [189]1

1“We are speaking of how to deal with a problem that has no solution. This is a matter of deep
philosophical principle …” Cristobal Junta in [189].
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Preface

Can a cause–effect chain close into a circle? Can a person travel to their past? These
questions have been intriguing people for millennia.

Until the last century, however, they were discussed only by philosophers and
poets.2 An adequate language appeared only in the end of the nineteenth century,
when due to the efforts of people like Wells and Poincare the concept was devel-
oped of time as an attribute of a four-dimensional object now called Minkowski
space. This concept formed the foundation of special relativity—logically, if not
historically—and brought up the third, almost equivalent to the first two, question:
is it possible to travel faster than light?

The next major step in understanding causality3 was made in a few years, when
Einstein developed general relativity, according to which the Minkowski space is
only an approximation, while the actual large-scale geometry of the universe is
much more complex and admits—in principle—different wonders: handles, frac-
tures, closed geodesics, etc. As a result, the question of a maximal speed became
much harder, even the concept of distance lost its clarity. The problem of time
travel also acquired a new aspect: among the above-mentioned wonders, there may
be self-intersecting timelike curves. Such a curve would describe an object—a time
traveller—returning to the past in a manner that has no analogues in special rela-
tivity. The traveller observes no local ‘miracles’: photons still overtake it, people do
not walk backward, raindrops fall down from clouds, etc. Nevertheless, at some
moment they meet their younger/older self. To dismiss the possibility of such time
trips is much more difficult than those in the Minkowski space. Einstein confessed

2Oedipus receives (via an oracle) a signal from the future, which compels him to flee from Corinth.
This flight is responsible for his meeting (and, consequently, killing) Laius. But it is the message
from the oracle concerning this killing that prompted Oedipus to leave Corinth (where he would
have never meet Laius). The story comes full circle making up what is known today as a ‘bootstrap
paradox’, see Chap. 6.
3The importance of that step went far beyond physics. It is worth mentioning, for example, that
modern philosophers of time use a general relativity based language [38].
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that this problem disturbed him already at the time of the building up of the general
theory of relativity4 without his having succeeded in clarifying it [40].

In a next few decades, little progress was made. The finding by Gödel [66] of a
cosmological model in which causality breaks down in every point somehow had
no developments. And the pithy discussion of tachyons concerned only causality in
Minkowski space. True, at that time the concept of wormhole gained popularity.
Misner and Wheeler suggested that what we think are charges are actually
wormhole mouths [134]. This idea, however, was not turned into a realistic model.
At the same time, the specific wormholes proposed by Ellis [44] and Bronnikov
[18] required the matter source to be quite exotic (which is unavoidable, as we
understand now). As a result, the interest in wormholes waned.

The situation changed drastically after the paper by Morris and Thorne had been
published where they noted that the existence of wormholes would apparently
imply also the existence of closed timelike curves [136]. This idea aroused con-
siderable interest and gave rise to a wave of publications. In a few years, however, it
became clear—somewhat unexpectedly, it seems—that there are no obvious
arguments against the possibility of time travel. This ended the period of facile
attacks leaving us with the understanding that

1. the problem was harder than it looked;
2. the formation of a time machine may be unstable;
3. both time and faster-than-light journeys (the latter was represented by a flight

through a wormhole) require, as a source of the spacetime curvature, matter with
negative (in a certain frame) energy density.

The results obtained by the early 1990s are summed up—with an emphasis on
wormholes—in [172].

The next period was characterized by a shift of accents. In particular, the
wormholes, time machines and—after the publication of Alcubierre’s paper [3]—
superluminal motion, began to be studied on equal footing with other relativistic
phenomena (singularities, say), and not as curiosities, whose impossibility, though
obvious, still is not convincingly proven, for some reason. The new approach
turned out to be more productive and in the last 20 years a number of interesting
results have been obtained. The time seems right to gather them into one mono-
graph and thus to spare those interested in the subject from having to work through
numerous original papers.

That is how this book came about (see also [187]). Not being a review, it is not
intended to be complete: to keep the size of the book reasonable without sacrificing
thoroughness, some topics were not included. The criteria of rejection were sub-
jective; it is worth mentioning only that among the omitted topics there are
important (e.g. Gott’s time machine), fashionable (e.g. wormholes in the ‘thin shell
approximation’) and highly controversial (e.g. Fomalont and Kopeikin’s mea-
surement of the speed of gravity) ones.

4Maybe, in fact, even earlier [41].
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Though some of its parts must be understandable to a reader unfamiliar with
mathematics, this book is by no means popular. To understand it entirely, including
the proofs, a reader should be acquainted with basic notions of general topology
(such as connectedness, compactness, etc.) and differential geometry (manifolds,
tensors, etc.). It will be helpful also, if the reader is familiar with the basics of
relativity. On the other hand, some fundamentals are recapitulated in the first four
sections of Chap. 1.

I acknowledge the many people who have helped this book to appear. Although
they are too numerous to list here, I wish to thank them all. Special gratitude goes to
R. R. Zapatrin, the only person with whom I seriously discussed the subject of the
book.

St. Petersburg, Russia Serguei Krasnikov
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Notations

Throughout the book, we use the Planck units: G ¼ c ¼ �h ¼ 1. The metric signature
and other sign conventions for geometric quantities are those adopted in [135]. The
neighbourhoods are defined to be open. As a rule,

AB(C) AB or AC

A � B A is defined to be B, A denotes B
M, U, … n-dimensional manifolds, spacetimes
Int W, W and _W The interior, closure and boundary of W
ClU W, BdU W The closure and boundary of W in U
B; S … (n−1)-dimensional surfaces, or (sometimes) their closures
H; R… Sets of lower than n−1 dimension
p, q… Points
c; k… Curves
cpq A curve from p to q
_cðvÞ The velocity of a curve c at a point x
t; k; T… Vectors and tensors
/ A field operator
gðt; kÞ � taka, g A (covariant) metric tensor
gR A Riemannian metric tensor
v;/;w … Isometries

�r The equivalence relation generated by an isometry r

q 2 I þU ðpÞ q is in the chronological future of a point p in U
p � q The same, when U ¼ M
q 2 J þ

U ðpÞ q is in the causal future of a point p in U
p 4 q The same, when U ¼ M
<p, q>U and 6p; q>U are defined on p. 17
DðUÞ The Cauchy domain of a set U
H A horizon
CG(D)CH A compactly generated (determined) Cauchy horizon
c A local condition or property
C The set of all spacetimes satisfying C

xvii



R(M) is defined on p. 17
I � ð0; 1Þ
E
n The n-dimensional Euclidean space

L
n The n-dimensional Minkowski space

DðUÞ The space of smooth functions with compact support
lying in U

M
# The set of all points of M in which the causality condition

does not hold
Mr is defined on p. 86
Tp(M) The space tangent to M at the point p
h � @a@a
c1, c2 … Constants, the values of which are irrelevant at the

moment
M� The solar mass

In a reference to an equation, proposition, etc., the number of the chapter is indi-
cated when and only when it differs from the current. Thus, for example, the
proposition formulated at page 88 is referred to as ‘proposition 6’ throughout
Chap. 4, and as ‘proposition 4.6’ everywhere else.

xviii Notations



Part I
Classical Treatment



Chapter 1
Geometrical Introduction

It has become apparent in recent decades that in discussing fundamental properties
of space and time the adequate language is Lorentzian geometry. Correspondingly,
we start the book with a brief introduction to that discipline. In the first four sections
of this chapter some basic notions—such as convexity, causal simplicity, and global
hyperbolicity—are defined and some basic facts about them are provided, such as
Whitehead’s and Geroch’s theorems, the Gauss lemma, etc. Of course, this recapitu-
lation cannot substitute a systematic presentation, so wherever possible the proofs of
those facts are dropped, which is understood as the reference to classical monographs
such as [141] or [76]. Then, in Sect. 5, some new objects—perfectly simple sets—
appear and the theorem is proved which states that they exist in arbitrary spacetime.
We shall use this theorem in proving Theorem 2 in Chap. 5, but, as it seems, it is
interesting also by itself (the perfectly simple sets are ‘as nice as possible’—they
are both convex and globally hyperbolic, which makes them exceptionally useful in
proving statements).

Finally, in Sect. 6 the ‘cut-and-paste’ surgery is rigorously described. This is nec-
essary because we shall widely employ that surgery in constructing spacetimes from
more simple ones. And experience suggests that even though the method seems
simple and pictorial, neglecting some its subtleties may lead to serious mistakes.

Thus, this chapter is technical and a reader can safely skip it or use it as a glossary, if
they do not intend to analyse the proofs of the statements formulated in the consequent
chapters.

1 Spacetimes

Classical general relativity, as it is understood in this book, is the theory describ-
ing the universe by an (inextendible, see below) spacetime (M, �), which is a con-
nected Hausdorff manifold M endowed with a smooth Lorentz metric � and a time

© Springer International Publishing AG, part of Springer Nature 2018
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4 1 Geometrical Introduction

orientation. Sometimes, when it is obvious or irrelevant what metric � is meant, the
manifold M itself will be also called a spacetime.

Comments 1 (1) A rigorous definition of time orientation can be found in [141].
Roughly speaking, it is a choice—made in a smooth manner–of which timelike vec-
tors, seeDefinition 15, are future- andwhich are past-directed. (2)M is automatically
smooth and paracompact. For the proof of the latter, non-trivial, fact see [61].

For building a full-fledged theory, the geometrical description must be supplemented
with postulates determining howmatter acts on geometry (usually these areEinstein’s
equations) and, conversely, how matter is acted upon by non-trivial geometry (typi-
cally the ‘comma-goes-to-semicolon’ rule is adopted, see Sect. 16 of [135]). Those
postulates are of secondary importance. For slightly varying them (introducing, say,
a small �-term), one typically changes the theory inconsiderably (at least at non-
cosmological scale). At the same time, none of the above-listed properties defining
the spacetime can be dropped without mutilating the theory beyond recognition.

A spacetime does not have to describe the whole universe. It is easy to check
that any open connected subset of a spacetime is a spacetime too. However, as the
Minkowski space exemplifies, the converse is false: even a noncompact spacetime
may not be a part of a larger one.

Definition 2 A spacetime M ′ �= M is called an extension of a spacetime M , if the
latter is an open subset of the former or is isometric to such a subset. M is extendible,
if it has an extension and inextendible, or maximal, otherwise.

Remark 3 An open subset M ⊂ M ′ is more than just a spacetime. It is a spacetime
imbedded in M ′ by a particular isometry. In considering such an imbedded spacetime,
we may be interested both in properties defined by its geometry (we shall call such
properties intrinsic, see below)and those definedby the imbedding.With this inmind,
we shall not automatically identify spacetimes only because they are isometric.

It seems natural to interpret an extension of M as describing a larger than M portion
of the universe and to consider M an adequate model of the universe only if it is inex-
tendible. In doing so, however, one encounters some technical problems associated
with infinities. For example, the regions t < 0 and t < −1 of the Minkowski space
are each other’s extensions. To avoid such problems, it is convenient to consider not
spacetimes, but triples T = (M, p, {e(i)}), where p is a point of M , and {e(i)} is a
basis in the space tangent to M in p. A triple T2 will be called an extension of T1, if
there is an isometry

ζ12 : M1 → ζ12(M1) � M2,

sending p1 to p2 so that the differential dζ12 maps {e(i)1} to {e(i)2}. Such an isome-
try, if it exists, is unique, which makes the—obviously transitive—relation ‘to be an
extension of’ asymmetric on the set of the triples. Thus, the relation in question is
a (strict) partial order [87], which enables one to show [62] that any spacetime has
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a maximal extension (we shall use the same line of reasoning in Chap.5). Note that
an extendible spacetime generally has infinitely many maximal extensions. Corre-
spondingly, one may ask: given the known part of the universe is described by M ,
which of its maximal extensions describes the whole universe? The answer is very
far from being clear as we shall discuss in Chap. 2.

2 Local Geodesic Structure

2.1 Geodesics

Any spacetime, just because there is a metric in it, possesses a distinguished class
of curves—the geodesics. Their properties to a great extent determine the whole
geometry of a spacetime including its causal structure.

According to the simplest definition, a curve is a geodesic if its velocity vector
is parallel translated (or, equivalently, covariantly constant) along that curve. It only
remains to recall that if T is a smooth tensor field of type (q, s)—with components
T a...e

b... f—then its covariant derivative ∇T is defined to be a smooth tensor field of
type (q, s + 1) with the components defined in the coordinate basis by the formula

T a...e
b... f ;c ⇋ T a...e

b... f,c + Γaci T i ...e
b... f + · · · − ΓibcT a...e

i ... f − . . . ,

where

Γabc ⇋
1
2g

ai (gib,c + gic,b − gbc,i )

are the so-called Christoffel symbols. And the covariant derivative along a curve
λ(ζ ), written D

∂ζ
T , is defined to be the projection of ∇T on ν ⇋ ∂ζ , that is to be the

tensor1 T a...e
b... f ;cvc.

Properties 4 Covariant derivative (in our case, when the connection is
Levi-Civita’s)

(a) coincides with the ‘usual’ derivative for scalar functions f : ∇ f = d f and
f;a = f,a⇋ ∂ f/∂xa;

(b) obeys the Leibnizian product rule: ∇(T ⊗ S) = ∇T ⊗ S + T ⊗ ∇S;
(c) is linear and commutes with contraction;
(d) is compatible with themetric: gab;c = 0 (hence the lengths of vectors and angles

between them do not change, when the vectors are parallel translated);
(e) is symmetric: Γcab = Γcba.
The symmetry immediately results in two important equalities:

1For the sake of brevity, a tensor (vector) field is sometimes called a tensor (vector).

https://doi.org/10.1007/978-3-319-72754-7_5
https://doi.org/10.1007/978-3-319-72754-7_2
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f;ab = f;ba, (1)

for all smooth functions f , and

ua ;b�b − �a ;bub = ua,b �
b − �a,b ub, (2)

for any smooth vector fields u and v. The right-hand side of equality (2) is sometimes
called the commutator of u and v and is denoted [u, v].
Corollary 5 Let u ⇋ ∂x and v ⇋ ∂y—be the velocity vectors of the coordinate lines
of some coordinate system {x, y, . . . }. Then

ua ;b�b − �a ;bub = ua,b �
b − �a,b ub = 0.

Proof Indeed, in the coordinate basis

u = (1, 0, . . . ) and v = (0, 1, . . . ).

Clearly, any partial derivatives of these vectors are equal to zero, and hence so is the
commutator. But by (2) that latter fact is coordinate independent. �

Now let us define a curve γ (ξ) to be geodesic if for some choice of h the following
equation holds: ( D

∂ξ

∂

∂ξ

)a ≡ �a;b�b = h(ξ)�a, (3)

where v ⇋ ∂ξ and, correspondingly, �i ⇋ dxi (ξ)/dξ .

Remark 6 In what follows the word ‘curve’ will mean both a map whose domain is
a segment and, quite often, the image of that map. Thus, for example, we call γ a
curve whether it is the map

γ : [0, 1] → R
2, ξ 	→ (x = cos 2πξ, y = sin 2πξ)

or the resulting circle. In rare instances when these two objectsmust be distinguished
we shall write, correspondingly, γ (ξ) and simply γ . Different maps with the same
images will be referred to as a different parameterization of the same curve.

The definition based on Eq. (3) is actually equivalent to that given in the beginning
of the section, because if (3) holds for some h it also holds for h = 0 (and an
appropriate parameter ξ ). The so chosen parameter is called affine, any two such
parameters being related by an affine transformation ξ ′ = c1ξ + c2. In the literature,
the term ‘geodesic’ is assigned sometimes only to γ (ξ), where ξ is affine, while the
common name for the solutions of (3) is pregeodesics.

A geodesic γ (ξ) whose affine parameter ξ is bounded above by some value
ξ0 is called incomplete in the direction in which ξ grows (i.e. for example, future



2 Local Geodesic Structure 7

incomplete or past incomplete). Further, it is called extendible in that direction, if
there is a geodesic γ̄

γ ⊂ γ̄ , γ (ξ0) ∈ γ̄

and inextendible otherwise.2 For example, the ray (y = 0, x < 0) of the Euclidean
(or Minkowskian, does not matter) plane with cartesian coordinates is an extendible
geodesic, while the same ray is inextendible in the space obtained by removing the
origin from the plane. In both cases, the geodesic is incomplete. Below inextendible
in one or (more often) both directions, geodesics will be called maximal.

Remark 7 Completeness, in contrast to extendibility, is an attribute of a geodesic
understood as a function rather than as a set of points. We shall see below that even
a closed geodesic can be incomplete.

A spacetime M in which all inextendible geodesics are complete is termed
geodesic complete. A geodesic incomplete spacetime is considered singular and
the singularity is called irremovable, if the relevant geodesic remains inextendible
in any extension of M .

Example 8 Let us introduce coordinates (they are calledCartesian) in theMinkowski
plane L2 so that the metric takes the form

ds2 = −dx20 + dx21 .

All straight lines are geodesics and on every such line with nonconstant x1 this
parameter is affine. Now, if we remove the ray x0 = 0, x1 � 0 from the plane, the thus
obtained spacetimeMX will be singular, because, for example, themaximal geodesic
γ : x0 < 0, x1 = 1 is incomplete. The singularity is removable because the geodesic is
extendible inL2 ⊃ MX. However, after MX is extended to, say, the twofold covering
ofL2−o,whereo is the origin, the singularity becomes irremovable (loosely speaking
the lacking point cannot be glued back into the spacetime. Similarly, one cannot fill in
the white circles in Fig. 5b; the case illustrated by that figure is a little more complex,
it is obtained by changing L

2 − o to L3 − S
1).

2.2 Normal, Convex and Simple Neighbourhoods

In any point p ∈ M , the vectors tangent to M form the vector space Tp(M) (this
is just the space in which the bilinear form � acts). Geodesics enable one to build a
canonical bijection between a neighbourhood of p and a neighbourhood of the origin
of Tp. The resulting coordinate system is a powerful tool as it casts the expressions
for some geometrical quantities into an especially simple form (for example, in these
coordinates the Christoffel symbols vanish at p).

2To avoid confusion, note that ‘extendible’ and ‘extended’ are almost antonyms: an extendible
geodesic being that which is not (fully) extended.
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Fig. 1 The dark star-shaped
region is Ñ . The light region
is N

q~

Let γp,t(ξ) be an affinely parameterized geodesic starting at p with the initial
velocity t [i.e. γp,t(0) = p, v(0) = t]. Then, the exponential map expp is the
function sending to the point γp,t(1) each t for which that point exists, see Fig. 1.
The geodesics through p may intersect in some other points too. However, one can
expect (rightly, see below) that the exponential map is injective in a sufficiently small
neighbourhood of p.

Definition 9 Let Ñ be a neighbourhood of the origin of Tp(M) and be star-shaped
(the latter means that Ñ with any vector u contains also all vectors cu, where c ∈
[0, 1]; topologically a star-shaped set is just a ball [151]). If the restriction of expp

to Ñ is a diffeomorphism, the neighbourhood N ⇋ expp Ñ of p is called normal.

As it is seen from the definition, every point of a normal neighbourhood N is con-
nected to the origin by a (unique) geodesic segment lying entirely in N . It is this fact
that makes possible the above-mentioned convenient coordinates. They are built as
follows. Pick a basis {e(i)} in Tp. The normal coordinates of a point q ∈ N are the
components of the vector q̃ ⇋ exp−1

p (q) in that basis (note that a different choice
of {e(i)} would lead to a different—though also normal—coordinate system). Using
the definition of the exponential map, we can put it another way: the normal coordi-
nates of a point q are Xa(q) when and only when there is an affinely parameterized
geodesic γpq(τ ) in N with the ends

γpq(0) = p, γpq(1) = q,

and with the initial velocity

v(p) = Xa(q)e(a), v ⇋ ∂τ . (4)

Now note that any point

r ⇋ γpq(τr ), 0 � τr � 1
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is at the same time an end point of the segment γpr (ζ ) with the ends γpr (0) = p,
γpr (1) = r and initial velocity ∂ζ (0) = τrv(0). Hence, the coordinates of r in the
system under discussion are τr Xa(q), which proves that in normal coordinates a
radial geodesic γpq is just a straight line

Xa[γpq(τ )] = τ Xa(q), 0 � τ � 1.

The components of the tangent vector v(τ ) = Xa(q)∂Xa , in the coordinate basis
{∂Xa }, do not depend on τ ,

�a(τ ) = Xa(q), a = 1 . . . n (5)

[the values of a are listed in order to emphasize that this is not a vector equality: the
vectors X ∈ Tp and v(τ ) = Xa(q)∂Xa ∈ Tγpq (τ ) belong to different spaces; therefore,
in some other coordinates the equality (5) will not hold]. The vector v(1) ∈ Tq is of a
particular interest, so we give to it the special name, position vector, and the special
notation, x(q). Clearly,

xa(q) = Xa(q), a = 1 . . . n (6)

[again the right-hand side is a vector of Tp, while the left-hand side is a (written in
the coordinate basis) vector of Tq ].

Pick an arbitrary point q ∈ N . It follows immediately from (5) that

�a,b �
b = d�a(1)

dτ
= d

dτ
Xa(q) = 0.

On the other hand, v = ∂τ and τ is an affine parameter. So,

�a ;b�b =
( D

∂τ

∂

∂τ

)a = 0. (7)

Comparing these two equalities, we conclude that

Γacb(q)�c(q)�b(q) = 0, ∀ q ∈ N .

But a radial geodesic with initial velocity v(p) ∼ u can be found for any u. Hence,

Γacb(p)u
cub = 0, ∀u ∈ Tp.

Now pick arbitrary vectors u,w ∈ Tp and define z ⇋ 1
2 (u + w), y ⇋ 1

2 (u − w).
Then the just obtained equation in view of the symmetry Γacb = Γabc gives

Γacb(p)u
c�b = Γacb(p)(z + y)c(z − y)b = Γacb(p)zczb + Γacb(p)yc yb = 0,
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which implies
Γacb(p) = 0. (8)

Another fundamental and highly non-trivial property of the exponential map is
the equality

xb(q)gba(q) = xb(q)gba(p), a = 1 . . . n, ∀q ∈ N (9)

(which, again, has this form only in the coordinates under consideration). In proving
this equality—known as the Gauss lemma—and Eq. (11) below we closely follow
the proofs in [141] of, respectively, Lemma 1 of Chap.5 and Corollary 3 of that
lemma.

Proof Pick a vector w ∈ Tp, w ∦ v (throughout the proof, we shall write v for
v(0)) and consider a one-parameter family of geodesics expp τ(v + sw), where s
ranges over a neighbourhood of zero. These geodesics sweep out a two-dimensional
surface, with the coordinates τ and s in it (in particular, q has the coordinates τ = 1,
s = 0). Two vector fields, ∂τ and ∂s , are defined on that surface. By Corollary 5, they
commute, which enables us to write

∂

∂τ
�
( ∂

∂τ
,

∂

∂s

)
= D

∂τ
�
( ∂

∂τ
,

∂

∂s

)
= �

( ∂

∂τ
,
D

∂τ

∂

∂s

)
= �

( ∂

∂τ
,
D

∂s

∂

∂τ

)
=

=1

2

∂

∂s
�
( ∂

∂τ
,

∂

∂τ

)
= 1

2

∂

∂s
�(v + sw, v + sw),

where we have used property 4(a) (in the first and the last but one equalities) and
property 4(d) combined with Eq. (7) (in the second equality). Thus, the variation of
the scalar product of ∂τ and ∂s along a radial geodesic obeys the equation

∂

∂τ
�
( ∂

∂τ
,

∂

∂s

)
s=0

= �(v,w).

The initial condition for this equation is the vanishing of ∂s at τ = 0, that is at p.
Integrating the equation, one gets

�
( ∂

∂τ
,

∂

∂s

)
s=0,τ=1

= �(v,w)τ
τ=1

= �bgba(p)�a . (∗)

The left-hand side is the scalar product at q of ∂
∂τ

= v and ∂
∂s , the latter being tangent

at s = 0 to the curve with the (normal) coordinates (v+ sw), whence its components
in the coordinate basis are �a . Thus, (∗) reduces to

�bgba(q)�a = �bgba(p)�a,

which proves (9) since w has been chosen arbitrarily and �b equals xb(q), see (5),
(6). �

https://doi.org/10.1007/978-3-319-72754-7_5
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Corollary 10 The function defined by

σ(q) ⇋ gab(q)xa(q)xb(q) (10)

(note that all quantities in this definition depend on the choice of the origin of coor-
dinates and are therefore functions of p even though as a rule we shall not indicate
this explicitly) obeys the equation

σ,a (q) = 2xa(q). (11)

Proof σ,a (q) = [xb(q)gbc(p)xc(q)],a = 2xb(q)gba(p) = 2xb(q)gba(q) = 2xa(q).
�

The normal neighbourhoods are remarkably convenient and yet they can be
improved further: not all points of such neighbourhoods are equal. Indeed, exp−1

p′
does not have to map the neighbourhood to a star-shaped region of Tp′ when p′ �= p.

Definition 11 An open set O is convex, if it is a normal neighbourhood of each of
its points.

With any twopoints x, y a convex setO contains also a (unique) geodesic segmentγxy
from x to ywhich does not leave O . The converse is also true: if in a normal spacetime
each pair of points can be connected by a single geodesic, then this spacetime is a
star-shaped neighbourhood of each of its points and hence is convex.

Definition 12 ([145]) An open convex set O is simple,3 if its closure is a compact
subset of some normal neighbourhood.

Moreover, any convex subset of a simple set is simple.

Proposition 13 Let O1 be convex. Then any connected component C of the inter-
section O1 ∩ O2 is convex (simple), if so is O2.

Proof The closure of any subset of a compactum is compact, so, it suffices to demon-
strate that C is a normal neighbourhood of each p ∈ C .

Consider the inverse images Õ1,2 of O1,2 under the exponential map

Õ1,2 = exp−1
p O1,2.

It follows right from Definition 12 that the restriction of expp to each of them is

a diffeomorphism. Hence, so is the restriction of expp to C̃ ⇋ Õ1 ∩ Õ2. Thus, C̃

satisfies the second condition of Definition 9. Suppose now that u lies in C̃ . Then
any vector cu with c ∈ [0, 1] must lie both in Õ1 and in Õ2 and hence in C̃ .
So, the first condition is fulfilled too and expp C̃ is convex. It remains to check that

expp C̃ = C . The inclusion expp C̃ ⊂ C is obvious (being a ball expp C̃ is connected

3Not causally simple.
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of course). But the inclusion C ⊂ expp C̃ is obvious as well, because expp C̃ is the
entire O1 ∩ O2 (not only one of its connected components). �

Generally, the intersection of two convex sets need not be convex or even connected
(this can be easily verified by considering a couple of convex subsets of a cylinder).
However, the situation is different for subsets of a convex space, cf. [141, p. 131].

Corollary 14 If O1 is simple, and its subsets O2, O3 are convex, then each of the
sets

O2, O3, O2 ∩ O3

is simple.

Proof The simplicity of O2,3 is obvious. Now let x, y ∈ (O2 ∩ O3). Since O2,3

are convex, there must exist geodesic segments γ2,3 ⊂ O2,3 connecting x to y. On
the other hand, it follows from the convexity of O1 that the geodesic connecting
them without leaving O1 is unique. So γ2 coincides with γ3 and, consequently, lies
in O2 ∩ O3. This intersection is therefore connected and hence (by Proposition 13)
simple. �

By the Whitehead theorem, see [151], any point of any spacetime has a simple
neighbourhood. And since the neighbourhood itself is a spacetime (and since its
simple subsets are at the same time simple subsets of the initial ‘large’ spacetime)
the simple sets form a base for the spacetime topology. They do not form a topology,
however, because the union of two simple (convex, normal) sets may not be simple
(convex, normal).

3 The Time

3.1 The Past and the Future

Everything discussed in the previous section applies equally to Riemannian and to
Lorentzian manifolds. However, the latter, actually, have a much richer structure,
because the vectors tangent to them are non-equivalent.

Definition 15 A non-zero vector v tangent to M , is called timelike [(non-)spacelike,
null], if �(v, v) is, respectively, negative [(non-)positive, zero].

The space Tp tangent to M at p ∈ M is essentially Minkowski space. Therefore, in
each such space, the non-spacelike position vectors form two cones with the bound-
aries generated by null vectors. The cones meet (only) in the common vertex located
in the origin of Tp. One of the cones is called past and the other is future. The vectors
constituting the cones are said to be, correspondingly, past- and future-directed. The
division of the non-spacelike vectors into these two classes is continuous (recall that
the spacetime is oriented by definition).



3 The Time 13

Convention 16 The names ‘past’ and ‘future’ are arbitrary—there is no ‘time’s
arrow’ in general relativity. Thus, the theory is symmetric in the sense that any
definition or statement has an (equally correct) ‘dual’ one, obtained by replacing
the words ‘past’ ←→ ‘future’. As a rule we shall formulate only one definition or
statement, the dual being always implied.

Convention 17 Throughout the book by ‘isometry’, we actually understand ‘isom-
etry preserving the time orientation’, thus an isometry sends future-directed vectors
to future-directed ones.

Consider a Riemannianmanifold (M, �R). Let v be a smooth nowhere zero vector
field on M (of course the existence of such a field restricts the choice of M). Now a
spacetime can be built by defining on M the Lorentz metric

�(a, b) ⇋ �R(a, b) − 2
�R(a, v)�R(v, b)
�R(v, v)

, ⇔ gab ⇋ gR
ab − 2

�a�b

gR
cd�c�d

(12a)

(note that with respect to this Lorentz metric the vectors v are timelike). And, vice
versa, the metric

�̃(a, b) ⇋ �′(a, b) − 2
�′(a, v′)�′(v′, b)
�′(v′, v′)

, (12b)

defined with the use of a Lorentz metric �′ and a timelike vector field v′, is Rieman-
nian, i.e. positive defined.

Proof Indeed, in each point of M pick an orthonormal basis diagonalizing �′. Obvi-
ously, only one vector of the basis is timelike. The boost sending that vector to v′,
transforms g̃ab (the matrix formed by the components of �̃) into the identity matrix.

�
The metric �̃ coincides with �R , when �′ = � and v′ = v (this is easy to verify in the
basis described above, see also Sect. 2.6 in [76]).

It turns out that any spacetime can be constructed by this means,

Proposition 18 ([141, Lemma 5.32]) In any spacetime, there is a smooth future-
directed timelike vector field.

This proposition is important. First, it restricts the possible topology of spacetimes,
see, e.g. Sect. 6.4 of [76]. Second, as we shall see, an auxiliary timelike vector field
can in itself be a convenient tool. Finally, representing a spacetime as a Rieman-
nian manifold (plus a smooth vector field) is a means of constructing spacetimes
with predetermined properties, cf. Example 8 in Chap. 4. Unfortunately, one cannot
completely reduce the Lorentzian case to Riemannian, because there is no preferred
choice of v.

Definition 19 A piecewise smooth curve λ(ξ) is called (future-directed) timelike,
(non-)spacelike or null, if such are all vectors ∂ξ tangent to it. Sometimes, non-
spacelike curves are also called causal.

https://doi.org/10.1007/978-3-319-72754-7_4
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Convention 20 ‘Constant’ curves, consisting of a single point, are regarded non-
spacelike, but not timelike.

On a timelike curve, one can introduce the natural parameter ξ defined by the con-
dition �(∂ξ , ∂ξ ) = −1. In the general case, however, a non-spacelike curve has no
preferred parameter and therefore has no property analogous to completeness. On
the other hand, the notion of extendibility can be generalized to non-geodesic curves.

Definition 21 Let a curve λ(ξ) : (a, b) → M be the restriction to the interval (a, b)
of a larger curve λ̃ : (A, B) → M , where A < a < b < B. The points p1 = λ̃(a)

and p2 = λ̃(b), if exist, are called the end points of λ. If λ is future-directed the end
points are called past and future, respectively. A curve is said to be (past-, future-)
extendible, if it has a (past, future) end point, and inextendible otherwise.

What makes this definition meaningful is the fact that the choice of λ̃ is actually
immaterial: the end points being just the limit points of all sequences λ(ξm) at ξm →
a, b.

Now that timelike and non-spacelike curves are definedwe shall use it to introduce
some important sets associated with every point of spacetime.

Definitions and notation 22 Let U be a neighbourhood of a point p ∈ M . The set
of all points of U which can be reached from p by a future-directed timelike curve
lying entirely inU is termed the chronological future of p inU and denoted by I+

U (p).
When U = M , the subscript M is usually dropped and the set is denoted by I+(p).
For an arbitrary set P ⊂ M the notation I+

U (P) means
⋃

p∈P I+
U (p). Changing in

this definition the word ‘timelike’ to ‘non-spacelike’, we define the causal future of
p and P , which are denoted by J+

U (p) and J+
U (P), respectively. The chronological

and causal past of a point p or a set P are defined dually.
The relations q ∈ I+(p) and r ∈ J+(s) are often written as, respectively, p ≺ q

and s � r (or, equivalently, as q � p and r � s). Both relations are obviously
transitive and the latter one, due to Convention 20, is also reflexive. If p � q and
p �= q, the points p and q are said4 to be causally related.

Through any point p, there is a timelike geodesic and hence (the second mem-
bership is a result of Convention 20)

p ∈ BdI±(p), p ∈ J±(p). (13)

Propositions 23 We shall not prove the following fundamental facts (which are
combinations of Lemma 5.33 and Proposition 10.46 of [141] or Propositions 4.5.1
and 4.5.10 of [76]) and restrict ourselves to a few comments.

(a) The sets I±
O (P) are always open.

(b) If a region O contains a timelike geodesic from p to q, then q ∈ I±
O (p). And for

a convex O the converse is also true: the points which can be connected by a
piecewise smooth timelike curve can be connected also by a timelike geodesic.

4For the reasons discussed in great detail in Sect. 2 in Chap. 2.

https://doi.org/10.1007/978-3-319-72754-7_2
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The first assertion is trivial, but the second is not. In principle, one could imagine
that there is a point q on a spacelike geodesic through p which can be reached
from the latter by a timelike (non-geodesic) curve.

(c) If O is convex, then BdO I
±
O (p) is the set of all points that can be reached from

p by future-directed (past) null geodesics lying in O. In particular,

ClO

(
I±
O (p)

)
= J±

O (p), ∀p ∈ O. (14)

Hence, J±
O (p) is closed in O. Note that this is not necessarily the case if O

is not normal. Thus, for the point p = (−1,−1) in the Minkowski plane, see
Example 8, the relation (14) is valid, but it breaks down if we delete the origin.

(d) If a non-spacelike curve λ from p to q is not a null geodesic, then in any
neighbourhood of λ there is a timelike curve connecting p and q.
One of the corollaries is the implication

(p ≺ q � r) or (p � q ≺ r) ⇒ p ≺ r. (15)

It should be stressed that p and q are not supposed to lie in a common convex
neighbourhood.

Propositions 23(d) and (a) enable us to formulate already at this stage a (primitive)
assertion to the effect that the fastest trip is thatmadewith the speed of light. Consider
a timelike curve μ through a point q and interpret it as the world line of an observer.
Then either a particle emitted from p and received in q moves on a null geodesic
(and therefore with the speed of light), or the observer receives it later than some
other particle which travelled from p to q with a subluminal speed (because if q is
in I+(p), then the same is true for some points of μ that precede q).

Corollary 24 The function σ defined in a convex O by the equality (10) is negative
in I±

O (p) and positive outside of J±
O (p).

Corollary 25 The set I+(p) is connected and coincides with the interior of its
closure: I+(p) = IntI+(p).

Proof The inclusion I+(p) ⊂ IntI+(p) is trivial. To prove the converse, consider an
arbitrary point q of the set IntI+(p). This set is a neighbourhood of q and q lies on
the boundary, see (13), of an open, see Proposition 23(a), set I−(q). Consequently,

IntI+(p) ∩ I−(q) �= ∅.

But I−(q) is open. So, with every point of IntI+(p) it contains some neighbourhood
of that point, and hence some point of the set I+(p)

I+(p) ∩ I−(q) �= ∅,

which implies q ∈ I+(p). �
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The concept of regions (un)bounded in time is formalized by introducing the
following notion.

Definition 26 S is a future set, if I+(S) − S = ∅.

In other words, S is not a future set, if and only if there is a point in BdS which can
be reached from S by a future-directed timelike curve. A simple example of a future
set is J+(U ), where U ⊂ M is arbitrary.

Proposition 27 If S is a future set in M, then I+(S) ⊂ S.

Proof Let p ∈ S. We must prove that p ≺ q implies q ∈ S. But if an open, by
Proposition 23(a), set I−(q) includes a point p ∈ Ṡ, then it includes also a point
s ∈ S. Thus, q ∈ I+(s) ⊂ I+(S) ⊂ S. �

Below, we shall also need the following simple criteria.

Criteria 28 Let W be an open future set in a spacetime A. Then

(a) A−W and A−W are past sets (such sets are defined dually to the future sets)
in A;

(b) If P is a subset of A, then W − P is a future set in A − P , when this last set is
a spacetime (i.e. when P is closed and does not separate A);

(c) If B is a subset of an extension of A such that

B ∩ A �= ∅, B ∩ W = ∅,

then W is a future set in B ∪ A.

Proof Criteria 28(a) If it were possible to reach a point p ∈ Bd(A − W ) = BdW
from q ∈ (A − W ) by a past-directed timelike curve, that would mean that q ∈
I+(W ) ⊂ W and hence W = ∅ (the proof for A − W is perfectly analogous).
Criteria 28(b) Obvious.
Criteria 28(c) If a future-directed timelike curve λ(τ) leaves W , then (since W is
open) there must exist the least value of its parameter τ0 at which this takes place,
i.e.

∃τ0 : λ(τ) ∈ W ∀τ < τ0, λ(τ0) /∈ W.

λ(τ0) cannot lie in B, because the latter is disjointwithW , andhencewith its boundary
too. But λ(τ0) cannot lie in A either, by the definition of the future set, see the remark
below Definition 26. �

The fact that some region is a future set imposes serious constraints on the region’s
boundary.

Definition 29 If no two points of a set S can be connected by a timelike (non-
spacelike) curve, it is called achronal (respectively, acausal).
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Achronal surfaces should not be confused with spacelike ones. The latter are defined
to be (sufficiently smooth) surfaces such that all vectors tangent to them are spacelike.
At the same time, an achronal surface need not be smooth, and even if the tangent
vectors exist they can be null (not spacelike). For example, the surface t = x in the
Minkowski space is achronal, but not spacelike. And, vice versa, a spacelike surface
does not have to be achronal.

Example 30 Let S be the strip defined in the (2 + 1)-dimensional Minkowski space
by the following system of equations written in the cylindrical coordinates:

9
10 < ρ < 1, −π < ϕ < π, t = αϕ,

whereα is a small number. The strip is spacelike, because such are the vectors tangent
to it (they are linear combination of two spacelike vectors: ∂ρ and ∂ϕ + α∂t ). It is,
however, not achronal, see Fig. 3a.

Proposition 31 Theboundaryof a future set,whennon-empty, is a closed, imbedded,
achronal C1− hypersurface.5

For a proof see [76, Proposition 6.3.1].
Let us introduce the following convenient notation.

Notation 32 For any two points p, q ∈ U

<p, q>U ⇋ I+
U (p) ∩ I−

U (q), �p, q�U ⇋ J+
U (p) ∩ J−

U (q)

(again, when U = M the subscript U as a rule will be dropped). Further, for a given
spacetime M we denote by R(M) the family of sets which consists of M and all its
subsets of the form <x, y>M .

The obvious fact that for any spacetime U and any two pairs of points x, y ∈
U, p, q ∈ <x, y>U

<p, q><x,y>U
= <p, q>U and �p, q�<x,y>U

= �p, q�U , (16)

leads to the following implication:

U ∈ R(M) ⇒ R(U ) ⊂ R(M). (17)

It seems tempting to relate the topological and the causal structures of spacetime
using R(M) as a base of topology. It turns out, however, that generally the result—
called the Alexandrov topology—does not coincide with the initial topology the
spacetime.

5A hypersurface is a submanifold of codimension 1.
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3.2 Causality Condition

We shall say that the causality condition (causality) holds in a point p of a spacetime
M if there are no closed non-spacelike curves through p, i.e. if J+

M(p)∩ J−
M(p) = p.

For any setU ⊂ M , we shall denote by
í
U the set of the points violating causality in

U :

í
U ⇋ {p : �p, p�U �= p}.

(In this notation, the causality condition in p is p /∈ í
M).

Definition 33 A spacetime M will be called causal, if
í
M = ∅, and non-causal6

otherwise.

Remark 34 Whether a point is in
í
U is defined by the causal structure ofU and does

not depend on anything in M −U . Generally,

í
U � (

í
M ∩U )

(it may happen that causality is violated in a point of U even though
í
U = ∅).

There is, however, an important exception. If U is a past set in M and � is a closed
non-spacelike curve through a point q ∈ U , then by (15) the entire � lies in the
chronological past of q and it follows from the definition of a past set that � ⊂ U .
Thus, in this case

í
U = í

M ∩U.

Proposition 35 The two following statements are, respectively, Propositions 6.4.2
and 6.4.3 of [76]:

(a) Any compact spacetime is non-causal;

(b)
í
M is a union of disjoint sets of the form

J+(p) ∩ J−(p), p ∈ M.

3.3 Causally Convex and Strongly Causal Sets

Definition 36 An open set N ⊂ M is causally convex in M , or—when M is
evident—just causally convex, if with any two points p, q it also contains the set

6We have to use this awkward term because the word ‘acausal’ is already taken, see Definition 29.
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A

a

b

B

c d

Fig. 2 For a given region C , consider the set S(C) of the curves which have both end points in C ,
but do not lie there entirely. Then, C is causally convex if and only if no curve of S(C) is timelike.
Applying this to the grey regions of the Minkowski plane, we conclude that B is causally convex,
but A is not, because S(A) contains, in particular, the curve (ab). Likewise, when M is convex, C
is convex too, if and only if no curve of S(C) is geodesic. Therefore, A is convex, but B is not,
because S(B) � (c, d)

<p, q>M or, to put it differently, if

∀p, q ∈ N <p, q>N = <p, q>M .

Clearly, N is causally convex, if and only if every non-closed inextendible timelike
curve lying in M intersects N in a connected set, cf. [11]. Note also that changing
<p, q>M to �p, q�M in the definition above, one obtains an equivalent definition.
Indeed, consider a pair of points p′, q ′ ∈ N such that p, q ∈ <p′, q ′> [existence
of p′ and q ′ is guaranteed by the fact that I+(p) and I+(q) are open]. It follows
from (15) that any r ∈ �p, q� is also in <p′, q ′> and hence lies all the same in a
causally convex [according to Definition 36] set N . And the converse implication

�p, q�M ⊂ N ⇒ <p, q>M ⊂ N

is obvious.
Convexity and causal convexity are defined by the behaviour of two quite different

families of curves—geodesic and timelike. It is not surprising therefore that these two
properties are unrelated. For example, if � is a closed timelike curve in a spacetime
M , it leaves a sufficiently small convex neighbourhood U of a point p ∈ �. So, U
is convex, but not causally convex in M . And vice versa the subset x0 < |x1| of the
Minkowski plane is causally convex but not convex. Two examplesmore are depicted
in Fig. 2.

Proposition 37 It is easy to check that

(a) Any future (past) set is causally convex;
(b) If A and B are causally convex, then so is A ∩ B;
(c) For any points p, q the set <p, q>M is causally convex (this follows from the

previous two items);



20 1 Geometrical Introduction

(d) If N is causally convex, then so is any A ∈ R(N ) (indeed, if p, q ∈ A, then
<p, q>A = <p, q>N = <p, q>M; the former equality being a consequence
of (16), and the latter—of the causal convexity of N , see the definition).

The causality condition can be strengthened by prohibiting—in addition to closed
causal curves—‘almost closed’ ones.

Definition 38 A set N is termed strongly causal in M , if each of its points has an
arbitrarily small causally convex neighbourhood.

Comments 39 The expression ‘an arbitrarily small such-and-such neighbourhood’
is a—very convenient, we shall use it throughout the book—abbreviation for ‘a
such-and-such sub-neighbourhood of an arbitrary neighbourhood’.

Remark 40 Alternatively, one can define strong causality in p ∈ M to be the fol-
lowing property: each neighbourhood U � p contains a sub-neighbourhood V such
that any non-spacelike curve with the end points in V lies entirely in U (see 14.10
in [141]). Now a set is called strongly causal if strong causality holds in each of its
points. In fact this definition is equivalent to Definition 38. Indeed, if p has arbitrarily
small causally convex neighbourhoods, then at least one of them lies in U . Such a
neighbourhood satisfies the requirements for V . Conversely, assume strong causality
in the sense of [141] holds in p and let U and V be the sets entering the definition.
Consider the set W = ⋃

r,q∈V <r, q>. Clearly, W is a neighbourhood of p and by
construction it is causally convex. On the other hand, each<r, q> by hypothesis lies
entirely in U and hence W ⊂ U . This means that p has arbitrarily small causally
convex neighbourhoods.

Remark 41 It should be stressed that strong causality is a property not of a spacetime
N ⊂ M , but rather of the pair—N and its embedding in the ambient space M
(technically, this follows from the fact that Definition 38 uses the notion of causal
convexity and hence the sets<p, q>M , not just<p, q>N ). So, if M1 and M2 are two
different extensions of N , it may happen that N is a strongly causal subset of M1,
but not of M2. Therefore, the expression ‘a strongly causal spacetime N ’ is, strictly
speaking, meaningless, cf. Remark 3. It is used only when M is evident, mostly when
N = M (in which case one speaks of intrinsic strong causality, see Definition 46).
The same is with causal convexity.

Example 42 Let N be the rhombus |x0 ± x1| < 1 with the metric

η : ds2 = −dx20 + dx21 .

It is easy to check that (N , η) is a strongly causal subset of Minkowski plane (R2, η).
At the same time N can be extended to the cylinder (CM , η)

CM : x0,1 ∈ R
1, x0 = x0 + 3.

In the latter case, there is a closed non-spacelike curve x1 = const through every
point of N . Thus, N is not a strongly causal subset of CM .
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The curves akin to ‘almost closed’ are those which fail to leave forever a finite
region.

Definition 43 A future inextendible future-directed curve λ : I → M is said to be
totally future imprisoned in a set K , if for some ξ0 ∈ I

λ(ξ) ∈ K , ∀ ξ > ξ0.

If a weaker condition

λ
ξ>ξ0

∩ K �= ∅, ∀ ξ0 ∈ I,

holds, then λ(x) is partially future imprisoned in K . Past imprisonment is defined
dually.

In a strongly causal spacetime, neither type of imprisonment is possible, cf. Propo-
sition [76, 6.4.7] and [141, 14.13], respectively.

Proposition 44 A future (past) inextendible non-spacelike curve leaves any compact
strongly causal set N never to return.

Proof Let a future-directed (and automatically non-spacelike) curveλ(s) : R+ → N
be future inextendible. If λ is imprisoned inN , then there is a sequence si such that

si → ∞, λ(si ) → p ∈ N . (∗)

By Definition 38, any neighbourhood U of the point p has a causally convex sub-
neighbourhood W ⊂ U . As follows from (∗), all λ(si ) beginning from some si0 are
in W . But λ is non-spacelike. Hence, all points of λ

(si ,si+1)
also lie in the—causally

convex—W . Thus, the entire λ beginning from some point lies in W and hence in
U . So, p is an end point of λ, which contradicts the inextendibility of the latter. �

4 Global Hyperbolicity

In spite of all their remarkable properties, the strongly causal sets in the general case
are still ‘insufficiently good’ and can have different undesirable pathologies (if, for
example, one removes an arbitrary closed set from such a spacetime, it will remain
strongly causal). That is why a more important role in general relativity is played by
a narrower class of spacetimes.

Definition 45 A strongly causal set N ⊂ M is called a globally hyperbolic subset
of M , if for any p, q ∈ N the set �p, q�M is compact and lies in N .

A simple example is provided by a pair of half-planes—x0 < 0 and x1 < 0—in L2.
Only the former is a globally hyperbolic subset even though both are strongly causal.
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Before discussing the exceptional simplicity and other merits of globally hyper-
bolic spacetimes, we have to dwell on a terminological problem (already mentioned
above). The point is that global hyperbolicity, as well as strong causality, is a prop-
erty of a triple (M, N ,φ) and not of N alone, see Remark 41. However, the formally
correct expression ‘a globally hyperbolic subset of a given spacetime’ is too cum-
bersome and is often shortened. In particular, the set N from Definition 45 is called
just ‘globally hyperbolic’ (we shall also follow this tradition), which may lead to
confusion. To avoid it, we introduce a special term [94].

Definition 46 Aspacetimewhich is a globally hyperbolic (or strongly causal) subset
of itself will be called intrinsically globally hyperbolic (respectively, intrinsically
strongly causal).

A globally hyperbolic subset N of a spacetime M is always intrinsically glob-
ally hyperbolic. The converse, however, is not always true, as can be seen from
Example 42, where the rhombus N being intrinsically globally hyperbolic is never-
theless a non-globally hyperbolic subset of the cylinderCM . The situation is reversed
if N is causally convex.

Proposition 47 An intrinsically globally hyperbolic spacetime is globally hyper-
bolic, if and only if it is causally convex.

Proof Let N be causally convex. Then, the compactness of�p, q�N , where p, q ∈
N , implies the compactness of �p, q�M (which is merely the same set). Likewise,
the intrinsic strong causality of N , due to the causal convexity thereof, implies the
strong causality of N as a subset ofM . These two implications prove the ‘if’ assertion.

Further, if N is non-causally convex, then there is a non-spacelike curve which
starts at p ∈ N , leaves N , and returns back to terminate in some q ∈ N . Thus,
�p, q�M /∈ N and therefore N is not a globally hyperbolic subset of M . �

Proposition 48 ([76, Proposition 6.6.1]) IfK is a compact subset (a point, for exam-
ple) of a globally hyperbolic region N, then both sets J±(K) ∩ N are closed in N
(this property of N is called ‘causal simplicity’).

Corollary 49 ([141, Lemma 14.22]) Let M be a globally hyperbolic spacetime and
let pi , qi ∈ M, i = 1, 2 . . . are sequences converging to, respectively, p and q. Then
the relation ∀i pi � qi implies p � q.

The importance of the intrinsically globally hyperbolic spaces stems mostly from
the fact that physics in such spaces can be studied in the customary terms of the
Cauchy problem.

Proposition 50 A spacetime N is intrinsically globally hyperbolic if and only if it
possesses a subset—called a Cauchy surface—which meets in a single point, every
inextendible timelike curve in N.
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The ‘if’ part of this fundamental proposition is [141, Corollary 14.39]. And the ‘only
if’ part is a half of Geroch’s splitting theorem (see [76, Proposition 6.6.8]).

Warning. Our definitions of a Cauchy surface and (below) of a Cauchy domain are
those adopted by O’Neil in [141]. Correspondingly, the former differs from that used
by Hawking and Ellis in [76] or by Geroch and Horowitz in [64] (in particular, we
do not require the surface to be spacelike), and the latter—from that adopted in [64],
which is obtained from ours by replacing the word ‘non-spacelike’ with the word
‘timelike’, see Definition 53. As a result, Geroch and Horowitz’s Cauchy domain is
the closure of ours (cf. [76, Proposition 6.5.1]).

It turns out that the geometry of globally hyperbolic spacetimes is quite specific.

Proposition 51 Let S be a Cauchy surface of a spacetime M. Then,

(a) S is an achronal connected closed topological (i.e. C0) hypersurface;
(b) S is homeomorphic to any other Cauchy surface in M;
(c) M = R

1 × S, with {t} × S being a Cauchy surface for every t .

The connectedness of S is proven in [141, Proposition 14.31], its achronality is a
part of the definition, and the remainder of Proposition 51(a), cf. [141, Proposition
14.29], is a simple corollary of Proposition 31 [the achronality of S implies that I+(S)

is disjoint with I−(S) and hence S is the boundary of the past set I−(S)]. Finally,
Proposition 51(b) is [141, Proposition 14.32], while Proposition 51(c) is the second
half of Geroch’s splitting theorem.

Though topologically all Cauchy surfaces are equivalent, they might differ geo-
metrically. The existence of sufficiently regular ones is established by the following
proposition (acausality—under the assumption of achronality—is proven for space-
like hypersurfaces in [141, Proposition 14.42]).

Proposition 52 ([12]) In any globally hyperbolic spacetime M, there is a smooth
spacelike acausal Cauchy surface S such that M is diffeomorphic to R1 × S.

It follows from the last two propositions that in some—well-defined—sense the
topology of a globally hyperbolic spacetimes does not change with time. Loosely
speaking, a handle will never appear in a globally hyperbolic spacetime born simply
connected.

Propositions 47 and 50 provide a simple way of building globally hyperbolic
spaces: pick a subset S of a spacetime M and remove from M all inextendible
timelike curves which do not meet S or meet it more than once. The remaining set
N (if non-empty and open) will be a globally hyperbolic subset of M . Indeed, by
construction S is a Cauchy surface in N , so N is intrinsically globally hyperbolic.
At the same time, N is causally convex in M , because otherwise there would exist
a non-spacelike curve λ such that the intersection λ ∪ N would have more than one
connected component. But each of those components would have to meet S (by the
definition of a Cauchy surface in N ) in contradiction with the achronality thereof.
Let us formulate this idea strictly.

Definition 53 TheCauchy domain of a setU—writtenD(U )—is the set of all points
p such that every inextendible non-spacelike curve through p meets U .



24 1 Geometrical Introduction

t

S

(a) (b)

Fig. 3 a The strip S is spacelike, but not achronal: its upper and lower ends contain points which
can be connected by timelike curves. The Cauchy domain of the strip in M ′ is intrinsically globally
hyperbolic, but it is not a globally hyperbolic subset of M . b H+ is the future Cauchy horizon for
the subset U (the grey region in the picture) of the Minkowski plane punctured in the point p. If
the points q1 and q2 are removed too, the properties ofH+ are governed by Proposition 56. b1 and
b2 are points in which two generators meet

D(U ) is never empty, because it always containsU . It is possible, however (even
if U is achronal), that it contains nothing more: D(U ) = U . Such is the case, for
example, whenU is a null geodesic in the Minkowski space. The following proposi-
tion is a combination of Lemmas 14.42 and 14.43 from [141] with [76, Proposition
6.6.3].

Proposition 54 If S is a spacelike achronal hypersurface in a spacetime M, then
D(S) is an open globally hyperbolic subset of M. And if S is closed and achronal,
then IntD(S) is globally hyperbolic, when non-empty.

Note that if S is a Cauchy surface of a globally hyperbolic N ⊂ M , then D(S)

does not need to coincide with N , though the inclusion N ⊂ D(S) is always true, of
course. Thus, D(S) is the maximal (by inclusion) globally hyperbolic subset of M
whose Cauchy surface is S.

Example 55 ([94]) Let S be the strip considered in Example 30, T be the plane
t = 0, and ϒ (shown in light grey in Fig. 3a) be a sector ϕ ∈ (−c, c) in that plane.
The constant c is chosen so that none of non-spacelike curves which have both end
points in S meet ϒ :

ϒ ∩ J−(S) ∩ J+(S) = ∅.

Denote by N the (clearly non-empty) Cauchy domain of S in the spacetime
M ′
⇋ M − (T − ϒ). M ′ differs from M in that S is achronal in the former. Since S

is also spacelike and achronal, N is a globally hyperbolic subset of M ′. Therefore, N
is intrinsically globally hyperbolic. At the same time, N is not a globally hyperbolic
subset of M (not being causally convex there).

With every globally hyperbolic region U ⊂ M , one can put in correspondence a
setH+ called the future Cauchy horizon:

H+(U ) ⇋ BdD(S) − I−(D(S)), where S is a Cauchy surface of U (18)
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[H+(U )will bewritten also asH+(S), or simplyH]. The dually defined past Cauchy
horizon is, naturally, denoted H−, while H is their union H = H+ ∪ H−. These
definitions seem to differ from the standard ones (which at this moment are less
convenient for us), see [141, Definition 14.49], but actually are equivalent to them.
Note that in definingH+ both S andU are auxiliary in a sense. Instead of S, one could
take any other Cauchy surface of U and instead of U any other globally hyperbolic
subset of M with the same Cauchy surface. H+ would not change.

Proposition 56 Assume, the surface S entering definition (18) is closed. Then H+
is a closed achronal topological hypersurface and through each of its points there is
a past inextendible null geodesic which lies entirely inH+.

The proof can be found in [141, Proposition 14.53], for an illustration see Fig. 3b.

Definition 57 The just mentioned geodesic, unless it is a portion of a larger one of
the same kind, is termed a generator of H+.

Corollary 58 If two points of H+(S), where S is closed, are causally related, they
belong to the same generator. It follows, in particular, that a point common to two
generators is the future end point of either.

Proof Suppose p, q ∈ H+ are, respectively, the past and the future end points of a
non-spacelike curve γ which is not a horizon generator. Then by Proposition 23(d)

the broken line consisting of γ and the segment of a generator which connects p
to some r ∈ H+, r � p (the existence of r is guaranteed by Proposition 56) can
be deformed into a past-directed timelike curve from q to r . But this contradicts the
achronality of H+.

Now suppose that generators α1 and α2 meet in a point b and one of them—let
it be α2 for definiteness—extends (in the future direction, obviously) beyond b to
some c ∈ H+. Then any point a ∈ α1 can be connected to c by a non-spacelike
curve which is not a horizon generator (specifically, by the segment of α1 from a to
b combined with the segment of α2 from b to c). But we just have established that
this is impossible. �

5 Perfectly Simple Spacetimes

Now we intend to relate the causal and the geodesic structures. That relation
depends ultimately on Proposition 23(b) and the first result of this kind will be
[145, Proposition 4.10].

Proposition 59 Any convex spacetime is intrinsically strongly causal.

Proof Let O be a convex spacetime and W ⊂ O be a region with compact closure.
To prove the proposition, we only have to demonstrate that W (however, ‘small’ it
is) contains a causally convex neighbourhood of any q ∈ W .
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Pick two sequences pm, rm ∈ W , m = 1, 2 . . . such that

pi , ri −−−→
i→∞ q, q ∈ <pm, rm>, ∀m

and consider a timelike curve from pm to rm . To derive a contradiction, suppose it
leaves W . Then there must be a point

xm ∈ (<pm, rm> ∩ BdW )

and [as follows from Proposition 23(b)] two geodesics: a future-directed λxmrm from
xm to rm and a past-directed λxm pm from xm to pm . If such xm existed for infinitely
many m, there would exist a subsequence {xi } converging to some x ∈ BdW and
sequences {λx j r j } and {λx j p j } converging to the same (non-zero, because q /∈ BdW )
geodesic λxq , which thus would be at the same time future- and past-directed: a
contradiction. �

Remark 60 Generally speaking, convergence of curves is quite a subtle matter,
see [11], but, fortunately, not in the case of geodesics in a convex spacetime. Choose
a normal coordinate system in W and for each λxmrm fix its affine parameter τ by the
requirement that �0(m) = −1, where v(m) = ∂τ (xm) and the components are found in
the coordinate basis. Being thus normalized the set of all pairs (x, �a) is obviously
compact7, and hence there exists a vector v(x) to which {v( j)} converge componen-
twise. That vector must be tangent to λxq (which must exist by the convexity of
M) because geodesics are solutions of the relevant system of ordinary differential
equations and therefore depend smoothly on the initial conditions. So, λxq is, indeed,
non-spacelike and future-directed.

The utility of Proposition 59 is restricted by the following fact. Strongly causal sets,
as mentioned above, can be quite pathological. In particular, they do not need to be
convex. Thus, the Whitehead theorem guarantees the existence of arbitrarily small
(in the sense of Comment 39) convex neighbourhoods of any point. Proposition 59
in turn guarantees that each of those neighbourhoods contains a strongly causal
sub-neighbourhood. But it is not clear whether a given point has a neighbourhood
which is strongly causal and convex at the same time. Our next goal is to show,
see Theorem 65, that such a neighbourhood (and even a ‘better’ one) does always
exist [97].

Definition 61 A spacetime V is called perfectly simple if each A ∈ R(V ) (see p. 17
for notation) (1) is convex, (2) is intrinsically globally hyperbolic and (3) with any
two points p, q contains also a pair of points r, s such that p, q ∈ <r, s>A.

Remarks 62 (a). Perfect simplicity, in contrast to simplicity, is an intrinsic property:
it does not depend on how (if at all) V is embedded in a larger spacetime. (b). It
follows from (17) that if V is perfectly simple, then so is every A ∈ R(V ). (c).

7In the tangent bundle T (M), of course.
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For any compact subset K of a perfectly simple V , there are points r, s such that
K ⊂ <r, s>V .

Lemma 63 Any spacetime point has an arbitrarily small simple neighbourhood O
such that for every p ∈ O the sets I±

O (p) are also simple.

Let O ′ be a simple neighbourhood of a point s, and e(i), i = 0 . . . 3 be an orthonormal
tetrad in O ′, that is a set of four smooth vector fields subject to the relations

e(m)
ae(k)a = δmk − 2δm0δk0

in each point (due to the normality of O ′ such fields always exist [141]). For every
point p ∈ O ′, the corresponding tetrad defines a basis—it is the set {e(n)(p)}—in Tp

and, consequently, a normal coordinate system, see Sect. 2.2. The coordinates of a
point r in that system will be denoted by Xa(p; r). The functions Xa(p; r) vanish
at r = p and depend smoothly on r and p. So, for any positive number δ there is a
simple sub-neighbourhood Oδ � s such that the coordinates of all of its points are
bounded by δ:

Oδ ⊂ O ′ and |Xa(p; r)| < δ ∀ p, r ∈ Oδ, a = 0 . . . 3. (19)

Thus, the lemma will be proven once we demonstrate that at some δ it is true
irrespective of p that

a geodesic segment with both end points in I+
Oδ

(p) lies in
that set entirely

(�)

(such a segment exists and is unique in O ′ owing to the normality thereof). Indeed,
this would prove that I+

Oδ
(p) (for the sake of definiteness from now on we discuss

I+
Oδ

(p); the properties of I−
Oδ

(p) are obviously the same) is convex and even (being a
subset of the simple set Oδ) simple. So, Oδ possesses all properties of the sought-for
O .

Proof of the Lemma Pick a δ. In the corresponding Oδ , see (19), choose a normal
coordinate system with the origin at p ∈ Oδ and define the function σ : Oδ → R by
formula (10).

Now suppose (�) is false. Then there is a geodesic segment μ(ξ), ξ ∈ [0, 1] such
that

μ(0), μ(1) ∈ Oδ, μ �⊂ Oδ,

see Fig. 4. By Corollary 24, this implies σ < 0 in the end points of μ and σ � 0
in some inner point. Clearly, this is impossible when μ is sufficiently short and our
strategy will be to show that it remains impossible as long as μ fits in Oδ with
sufficiently small δ. To this end, we shall consider a homotopy (with one fixed end)
interpolating between a ‘sufficiently short’ μ and that under discussion. We focus
upon the point r0 at which σ ceases to be negative for the first time. At r0 the geodesic
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Fig. 4 The situation which, as we argue, is impossible at a sufficiently small δ. The dashed line is
the boundary of the region Oδ . Both ends of μ are in the future of p, but are not causally related to
each other

μ, as we shall see, must touch the cone BdI−
Oδ

(p) from inside, but the cone is ‘too
convex’ for that.

Let us connect μ(0) to μ(1) by a curve λ(z), z ∈ [0, 1] lying entirely (in contrast
to μ) in I+

Oδ
(p), see Fig. 4, and define a surface h(ξ, z) ⊂ Oδ by the equalities

h(ξ, 0) = μ(0), h(1, z) = λ(z)

and the requirement that the curve h(ξ) at each (constant) z �= 0 be an affinely
parameterized geodesic. Consider themaximal value of σ on each of those geodesics.
Since σ is smooth, the function σm(z) ⇋ maxξ σ [h(ξ, z)] must be continuous. But
σm(0) < 0 and σm(1) � 0, so σm(z0) = 0 at some z0. Thus, one can see that the
violation of (�) would imply the existence of a geodesic segment γ (ξ) ⇋ h(ξ, z0)
such that the function σ̄ (ξ) ⇋ σ ◦ γ is negative on the boundary of its domain but
has a maximum σ̄ (ξ0) = 0.

Now toprove the lemma itwould suffice to show thenon-existence—at sufficiently
small δ—of such γ (ξ), which we shall do by establishing the implication

σ̄ (ξ0) = 0, σ̄ ′(ξ0) = 0 ⇒ σ̄ ′′(ξ0) > 0. (��)

(it says that a geodesic in Oδ can touch the null cone only from outside). In doing
so, we shall regard γ (ξ) spacelike

�a�a = 1, w ⇋ ∂ξ , (20)

because for timelike geodesics (�) and, in particular, (��) follow directly from the
definition of I+

Oδ
(p) and for null ones—from the same definition in combination with

Proposition 23(d). For future use, it is also convenient to write down the first two
derivatives of σ in terms of w:
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σ̄ ′ = σ,a �
a = 2xa�

a, σ̄ ′′ = (2xb�
b),a �

a = 2xb;a�b�a (21)

(in the first chain of equalities, relation (11) is used and in the second chain—the
fact that γ is a geodesic).

Consider now a point r0 ⇋ γ (ξ0) in which γ is tangent to the future null cone of
p, that is in which the left-hand side of (��) holds. Denote by T⊥ the subspace of
Tr0 orthogonal to the position vector

8 x0 ⇋ x(r0). By the definition of σ the equality
σ̄ (ξ0) = 0 implies that x0 is null and, correspondingly x0 ∈ T⊥. We use this fact
to construct a basis {x0, d(1), d(2)} in T⊥ defined (non-uniquely, of course) by the
following relations:

d(1,2) ∈ T⊥, d(i)
ad( j)a = δi j , d(i)

ae(0)a = 0 i, j = 1, 2. (22)

[we have chosen in addition to x0 a pair of unit spacelike vectorswhich are orthogonal
to eachother, to x0, and to e(0)(r0)]. Since σ̄ ′(ξ0) = 0, it follows from thefirst equation
in (21) that w(ξ0) ∈ T⊥ and so can be decomposed as

w(ξ0) = �(1)d(1) + �(2)d(2) + �(3)x0, where �(1)2 + �(2)2 = 1 (23)

[the second equality follows from the normalization condition (20)].
Our next step is to estimate σ̄ ′′ using (23). To this end, substitute this equation into

(21) and note that the term �(3)x0 does not contribute to σ̄ ′′. Indeed, the contribution
is (xb;axa yb1 +xb;axb ya2 ) r0

, where y1,2 ∈ T⊥. But xb;axa is proportional to xb (since x

is tangent to a radial geodesic), and hence the whole term xb;axa yb1 is proportional to
x0b y

b
1 = 0. The second term, in view of (11), vanishes too: 12 (xbx

b);a ya2 = 1
4σ,a ya2 =

1
2 xa y

a
2 = 0. Thus, in r0

σ̄ ′′(r0) = 2�(i)�( j)db
(i)d

a
( j)xb;a = 2�(i)�( j)db

(i)d
a
( j)(gab + Γb,acxc), (24)

where Γb,ac ⇋ 1
2 (gab,c + gbc,a − gac,b), and an obvious equality xc,d = δcd is used.

Now, taking into consideration (19), (22) and (23) one gets

|σ̄ ′′(r0) − 2| � 4�δ, � ⇋
∣∣�(i)�( j)db

(i)d
a
( j) sup

b,a,c
r,p∈O ′

Γb,ac
∣∣.

But �(i) are bounded, see (23), as well as db
(i) (since these are components of unit

vectors in the space E3 spanned by the unit vectors {e(k)} k = 1, 2, 3, and therefore
are bounded being continuous functions on the compact Oδ). Thus, � is finite and
hence σ̄ ′′(r0) is positive, if δ was chosen sufficiently small. This proves (��) and,
consequently, the whole lemma. �

8Whenever a coordinate-dependent entities—such as σ , position vector or Christoffel symbols
(below)—is mentioned in this proof, it is understood that the coordinates Xa(p; r) are used.
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Corollary 64 Any point s of a strongly causal spacetime has an arbitrarily small
convex causally convex neighbourhood with compact closure.9

Proof It is easy to check that all the listed properties are possessed by sets of the
form V ⇋ <pr>O , where p ∈ I−

O (s), r ∈ I+
O (s) and O , which is the neighbourhood

appearing in the lemma, is chosen so as to lie inside a causally convex neighbourhood
of s. Indeed, V is convex by Lemma 63 and Proposition 13, while its causal convexity
follows immediately from its definition, when (16) is taken into account. �

Theorem 65 Every spacetime point has an arbitrarily small perfectly simple neigh-
bourhood with compact closure.

Proof Let O and V be that from Corollary 64 (this time, though, we do not require
M to be strongly causal) and let A be a spacetime from R(V ). Clearly, A is a
(connected, of course) intersection of two simple (by Lemma 63) sets. Consequently,
by Proposition 13, it is simple too. This means in particular that, by Proposition 59, A
is intrinsically strongly causal. On the other hand, for any a, b ∈ A the set �a, b�A
is compact, as can be seen from the fact that by (16)

�a, b�A = �a, b�O ,

the right-hand side of which is a closed [see (14)] subset of the compactum O . Thus,
A is intrinsically globally hyperbolic. And, finally, the fulfilment of the requirement
3 in Definition 61 is also evident. So, V is perfectly simple. �

To exemplify the utility of the just proven theorem, we formulate the following
test (it will be needed later).

Test 66 If a spacetime M ′ is an extension of a spacetime M , then the latter contains
inextendible geodesics which are extendible in the former, cf. Exercise 5.15c in
[141]. There are (infinitely many if n > 2) such geodesics of each of the three
characters—null, timelike and spacelike.

Proof The proof consists in the construction of a null geodesic segment γ which
starts in M and ends in (M ′ − M). The existence of this geodesic would prove our
assertion because
(a) the geodesic γ̃ ∩ M , where γ̃ is the maximal extension of γ , has the required
properties (it is extendible in M ′, but not in M);
(b) the same reasoning applies to every geodesic segment that starts at the same point
as γ and has an initial velocity sufficiently close to that of γ . Among such segments,
there are infinitely many timelike, spacelike and (at n > 2) null ones.

Consider a perfectly simple neighbourhood O of a point p ∈ BdM ′M and a point
r ∈ I+

O (p). Let for definiteness r ∈ M [the case r ∈ (M ′ − M) is similar, one only

9In [76], such neighbourhoods are called local causality neighbourhoods and this corollary is
accepted without proof. Note in this connection that in [145] by ‘local causality neighbourhoods’
different (not necessarily convex) sets are meant.
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has to replace the point p by some p′ ∈ I−
O (r) ∩ M]. Then, all we need is to find

a point d that would be connected by null geodesic segments (dr) and (dp) with,
respectively, r and p: clearly, either (dr) or (dp) has its end points one in M and the
other in M ′ and thus can serve as γ .

Letμ be a past-directed null geodesic trough r . Since�r, p�O is compact (recall
that O is intrinsically globally hyperbolic),μmust leave it by Proposition 44. Hence,
a point x ∈ (μ ∩ O) can be found such that the geodesic νpx connecting p with x is
spacelike. At the same time, the geodesic νpr is timelike. Hence, by continuity there
must be a point in μ such that the geodesic which connects it to p is null. It is this
point that we take as d. �

6 ‘Cutting and Pasting’ Spacetimes

In this section, we consider in detail a convenient and pictorial way of describing
spacetimes: one spacetime is represented as a result of some surgery applied to
another.

6.1 Gluing Spacetimes Together

Let (N1, �1) and (N2, �2) be spacetimes such that two of their regions Ui � Ni ,
i = 1, 2 are related by a time-orientation-preserving isometry ψ. These spacetimes
can be glued along U or, equivalently, glued by the isometry ψ, see Fig. 5a, which
means that they are combined into a single spacetime (M, �) as follows. Consider
the map π—called natural projection—which leaves all points of Ni −Ui , i = 1, 2
intact and identifies the points of each pair p1, p2, where p1 ∈ U1, p2 = ψ(p1). It
is the image π(N1 ∪ N2) endowed with the quotient topology that we take as M :

M ⇋ N1∪ψN2. (25)

The restrictions ofπ to Ni will be denoted byπi and the imagesπi (Ni ) = π(Ni )byMi

(we speak of images, because according to our convention Mi �= Ni , see Remark 3).
Thus,

M = M1 ∪ M2

(note the disappearance of the subscript ψ).
The projection π induces both a smoothness and a smooth metric on M (it is to

ensure that π1 and π2 induce the same metric that we required ψ to be an isometry),

Terminology 67 Wheneverwe shallmention identification ( joining, gluing together,
etc.) of isometric open sets, we shall imply that the smoothness and the metric on
the resulting space are those induced by the natural projection.
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1

glued

glued

(b)(a)

Fig. 5 a M is the result of ‘gluing N2 to N1 by the isometry ψ’. b The spacetimes are joined so
that curves 1 and 2 are continuous. The white circles represent the—missing—edges of discs� and
θ(�)

Thus, M is a smooth connected pseudo-Riemannian time-oriented (owing to the
connectedness of Ui ) manifold. However, it does not have to be a spacetime: we do
not know whether it is Hausdorff.

Test 68 M is a spacetime (and thus an extension of either of Ni ), if and only if for
any converging sequence of points bk ∈ U1, k = 1, 2 . . . the following implication
holds:

ψ(bk) → p ⇒ p ∈ U2. (26)

In other words, M is not a spacetime, if and only if there is a converging sequence
in N1 such that its image in N2 has a limit point on the boundary of U2.

The straightforward proof consists in elementary but tedious search through
variants. A simpler way is to represent M as the quotient space N/

ψ∼, where
N ⇋ N1 ∪ N2, and

ψ∼ is a (clearly, open) equivalence relation

p
ψ∼ q ⇔ p = q,ψ(q), or ψ−1(q).

The closedness in N×N of the graph of this relation is equivalent to the validity of the
implication (26). Therefore, the proof of our assertion follows fromProposition [186,
III 1.6].

Corollary 69 If ClNiUi is compact, then the result of gluing together Ni along U
is not a spacetime [indeed in this case any sequence converging to a point on the
boundary of U1 provides a counterexample to (26)].

Any extension M of a spacetime N1 has the form (25).

Corollary 70 Any compact spacetime is maximal.

By definition, spacetimes are Hausdorff and pseudo-Riemannian. Note that the for-
mer property is essential to the corollary, but the latter is not.
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M

X

Y( )

( )

Fig. 6 M ′ is the result of ungluing M along π(X)

6.2 Ungluing Spacetimes

Consider a spacetime M of the form M = N1∪ψN2. This time, however, in contrast
to the case considered in the previous subsection, U1 is not connected: it is a union
of two disjoint non-empty open sets X and Y , see Fig. 6. Define a new spacetime

M ′
⇋ N1∪ψY N2,

where ψY is the restriction of ψ to Y .

Assertion 71 M ′ is a spacetime.

The just described procedure of obtaining M ′ from M will be called [partial]10

ungluing the latter [along π(X)]. Note that while the local properties are the same in
isometric regions, the global properties ofM andM ′ (such as causality, extendibility,
etc.) may differ considerably.

Not any spacetime can be unglued. It is easy to see, for example, that two curves,
one of which connects a point p ∈ Y to q ∈ X and the other—ψ(p) to ψ(q)—are
projected by π to a pair of curves that have the same end points, but that are not fixed-
end-point homotopic. So, to be partially unglued a spacetime must be non-simply
connected. There is, however, a quite similar surgery which can be applied to any
spacetime. Let us consider a simple example.

Denote by B,�,D, and B±, respectively, a coordinate ball, its equator, the (n−1)-
dimensional disc bounded by � and the halves of the balls separated byD. To put it
differently, these are the sets that are defined, in some coordinates {z j }, j = 1, . . . n
covering the whole B, by the following expressions:

B ⇋ {p ∈ M : z21(p) + z22(p) + . . . z2n(p) < 1},
B±
⇋ {p ∈ B : z1(p) ≷ 0}, D ⇋ {p ∈ B : z1 = 0}, � ⇋ D − D.

The space M − � is non-simply connected and can be easily unglued along B−: it
suffices to take M − D, B, B+ and B− as, respectively, M1, M2, ψ(X) and ψ(Y ),

10It would be complete, if Y were empty and M ′ were the union of two disjoint spacetimes.
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that is to represent M − � as the result of filling with B the slit obtained by deleting
the disc D. The resulting space is used as an intermediate in constructing maximal
spacetimes such as ‘dihedral wormholes’ [172], ‘Deutsch–Politzer time machines’,
see below, ‘stringlike singularities’ [101] etc., which are built as follows.

Let θ be an isometry such that

θ(B) ∈ M, B ∩ θ(B) = ∅,

where B ∈ M is the aforementioned ball. Remove from M both � and θ(�). Then,
unglue the remaining spacetime along B− and along θ(B+). Finally, use θ to glue
B± and θ(B∓) together. By Test 68 the result is a spacetime. To visualize it, remove
two discs from M , see Fig. 5b, and glue the left edge of either slit to the right edge
of the other.

Remark 72 Throughout the book, we shall speak of gluing together surfaces, not
regions bounded by them, because this language is more traditional (it is used, for
example, in complex analysis, in visualizing Riemann surfaces). Note, however, that
it may be somewhat misleading. In particular, it may happen that there are non-
equivalent ways of identifying the surfaces, see examples below and in [101]: B can
be mapped to θ(B) and D—to θ(D) by more than one isometry.

Example 73 (Deutsch–Politzer (DP) spacetime [34, 150]) Choose M to be a
Minkowski space Ln , that is Rn with a flat metric η on it

η : ds2 = −dx20 + dx21 + · · · + dx2n−1.

The Deutsch–Politzer space (MDP, η) is obtained from it by, first, making two ‘hori-
zontal’ (i.e. spacelike) cuts and then gluing the upper bank of either slit to the lower
bank of the other, see Fig. 7a. More accurately, it is described as the result of the
surgery under discussion with B,D and θ being, respectively, a coordinate ellipsoid

4(x0 + 1)2 +
n−1∑
j=1

x2j = 1

(depicted by the lower grey ellipse in Fig. 7a), the disc
∑n−1

j=1 x
2
j < 1, x0 = −1, and

the translation x0 	→ x0 + 2.
For future use, note that the DP space is an extension of the regionLn−D−θ(D);

therefore, one can use there the same coordinates {xk} as in the initial Minkowski
space keeping in mind, though, that now they do not cover the whole manifold, that
is, their values are restricted by the following conditions:

xk ∈ R at x0 �= ±1,
n−1∑
k=1

x2k > 1 at x0 = ±1.
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Fig. 7 a The initial Minkowski plane. b The (twisted) Deutsch–Politzer space as it looks in the
coordinates inherited from the Minkowski plane. Some smooth curves look discontinuous: after
reaching a ‘seam’ (a former cut shown by a dashed line) such a curve continues from the other—
seemingly distant—bank of the cut. Actually, however, the arrowed segments make two, if the
depicted space is MDP, or three, in the case of MTDP, continuous curves. These are (p, p′) and
(qrst) in the former case and (p, p′), (qt) and—closed—(rs) in the latter

The sets not covered by the coordinates {xk} are shown by the dashed lines in Fig. 7b.
These are the—glued together in pairs—former banks of the cuts. It is convenient to
formulate the difference between the initial Minkowski space and the DP space
obtained from it as a difference in rules determining which curves are smooth,
see Fig. 7b.

Example 74 (Twisted DP space) There aremany isometries in the Minkowski space
sending B to a region disjoint with it. One can choose, for example, θ to be a
superposition of the translation and the reflection xi 	→ −xi , where i = 1 in the
two-dimensional case and i = i1, i2 �= 0 when n > 2. Now before gluing the inner
edges together, one of them is rotated by 180◦. The thus obtained spacetime MTDP,
see Fig. 7 and the beginning of Sect. 3.2 in Chap. 6, will be called the twisted DP
space. In the two-dimensional case such a space is necessarily non-orientable (though
time-orientable, of course), but in four dimensions it is orientable, even though its
subset (x0, xi1) is a two-dimensional DP space.

A remarkable property of M is the ‘lack of some points’ (for example, those denoted
by the white circles in Fig. 5). Indeed, we started the construction of MDP from
deleting thepoints of�.Andwecannot return themback (lest theHausdorff condition
be violated, see Test 68), that is, we cannot attach them as end points to curves which
initially terminated at �. Thus, MDP is singular.11 Whether such singularities exist
in reality is still an open question (we shall return to it in Sect. 3 in Chap. 2). But
anyway it should be stressed that, contrary to a widespread opinion, the surgery
used for building MDP is merely a convenient pictorial description of MDP, by no

11There are different definitions of singularity, see [62], for example. In this case, apparently the
difference is immaterial.

https://doi.org/10.1007/978-3-319-72754-7_6
https://doi.org/10.1007/978-3-319-72754-7_2
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means it indicates any deficiency of the spacetime. It is ‘constructed by cutting and
gluing together decent space-times’ [43], but this is not a property of a particular
spacetime—exactly the same can be said of any spacetime.

One more way of obtaining a spacetime from another one—denote it M—is the
transition from M to its covering M̃ (which is meaningful, of course, only when M is
non-simply connected). The reverse procedure is taking the quotient of a spacetime
M̃ by a group of isometries G acting on it [17].

Consider again the equivalence relation

p
G∼ q ⇐⇒ p = ς(q), ς ∈ G.

Suppose, G is properly discontinuous and acts freely on M̃ , i.e. (the following defi-
nition is that used in [141]):
(1) Each point of M̃ has a neighbourhood V such that for any ς ∈ G, ς �= id

ς(V ) ∩ V = ∅, (27a)

(2) Points p, p′ ∈ M̃, p
G

�∼ p′ have neighbourhoods V � p and V ′ � p′ such that

ς(V ) ∩ V ′ = ∅, ∀ς ∈ G. (27b)

Then, M ⇋ M̃/
G∼ (sometimes M̃/G is written instead of M̃/

G∼) is a spacetime (the
smoothness and the metric are again understood to be inherited from M̃ , cf. Corol-
lary 7.12 in [141]) and the natural projection π : M̃ → M is a covering.

The same spacetime can be obtained by the ‘cut-and-paste’ surgery. To this end,
pick a fundamental regionF of the group G and in a neighbourhoodU ⊃ F identify
the regions related by isometries from G. If, for example, M̃ is the Minkowski space

and G is generated by the translation x0 	→ x0 + 3, then M̃/
G∼ is the cylinder CM

from Example 42. The same cylinder is the result of gluing together the regions
x0 ∈ (−1, 0) and x0 ∈ (2, 3) in the strip x0 ∈ (−1, 3). A more complex example
(the Misner space) will be considered in Sect. 2 in Chap. 4.

https://doi.org/10.1007/978-3-319-72754-7_4


Chapter 2
Physical Predilections

The discussion in this book is based on classical general relativity. But this sci-
ence is still young, each of its components—from the action to the smoothness
requirements—being questioned now and then. So, it is important that there is almost
a consensus on the validity of a few meta principles that restrict the arbitrariness
of possible modifications. Sometimes these principles are explicitly formulated—
differently by each author—but much more often they manifest themselves in casual
remarks like, ‘This violates causality and is therefore impossible’. Perhaps, a too
thorough analysis of these principles would be redundant, but on the other hand,
in discussing the subject matter of this book the traditional half-poetic approach is
definitely insufficient.

Our aim in this chapter is to briefly clarifywhat can be called ‘locality’, ‘causality’,
etc., and what kind of prohibitions are associated with these concepts. Unfortunately,
the mentioned terms are so heavily burdened with their rich prehistory that we have
to take a radical approach. Specifically, instead of comparing the already proposed
formulations and adopting the most suitable one, we analyze the matter ab ovo.
Meanwhile, the reader is requested to keep in mind that this is a theoretical physics
and not a philosophy book.

1 Locality

One of important tasks encountered within relativity is the comparison of different
worlds. Theworlds are assumed to differ geometrically only, the laws governing their
matter content being the same.A question that immediately arises is how to formulate
the relevant condition rigorously, how to capture the idea of sameness? Fortunately,
this is possible in the most important—though special—case of local geometrical
laws. The emphasized words are understood as follows. According to a universally
accepted view only ‘coordinate independent’ quantities are physically meaningful.

© Springer International Publishing AG, part of Springer Nature 2018
S. Krasnikov, Back-in-Time and Faster-than-Light Travel in General Relativity,
Fundamental Theories of Physics 193, https://doi.org/10.1007/978-3-319-72754-7_2
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Fig. 1 Vertices V2,3 are
related to V1 by Lorentz
transformations

V1

V2 V3

Fields, particles and their evolution are described in terms of mathematical objects
(e. g. tensors or spinors) that transform in a certain prescribed way in response to
coordinate transformation. Thus any isometryψ : U → U ′ induces a transformation
f → f ′ of fields in U and we call geometric1 laws of motion such that a field f ′
satisfies them in the spacetime U ′ if and only if so does f in U . We shall regard this
property as obviously mandatory and consider no exceptions.

Further, we call a law of motion (of some field, say) local if (1) the question of
whether this law holds at a particular point is meaningful and (2) the answer is fully
determined by the values or the field in an arbitrarily small neighbourhood of the
point (the rigorous definition is given in the next subsection). Note that locality is
something totally different from causality. By saying that a pair of events p and q are
related by a local interaction one does not imply that p is a cause (or an effect) of q or,
say, that p and q cannot happen simultaneously. One only states that these events are
not related directly, the interaction somehow propagates from one event to the other.
Clearly, all ‘usual’ dynamical laws are local (in particular, this is automatically true
for any laws formulated as differential equations). So, locality is not a too restrictive
requirement. Still, it is violation of locality (implicit, as a rule) that leads to serious
problems in studying some subtle points of spacetime evolution (see, for example
[83, 94]; we shall return to this question on p. 207).

Example 1 Suppose, a theory of pointlike particles in the Minkowski space admits
interaction shown by the vertex V1 in Fig. 1. Then to be local and geometrical the
theory must admit all vertices—V2,3, for instance—obtained from V1 by a Lorentz
transformation, since any such collision has a neighbourhood related to the corre-
sponding neighbourhood of V1 by the aforementioned transformation.

1.1 C-Spaces

The notion of locality turns out to be useful in discussing bothmatter and gravitational
fields. Suppose a spacetime M can be represented as a union

M =
⋃

α

Vα,

1This definition is not common by any means. Fortunately, we shall use it only a couple of times.
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where Vα are some suitable sets (balls, convex or perfectly simple neighbourhoods,
etc.). It is easy to see that properties of M fall into two categories: to establish some
of them (for example, convexity) one needs to know, how exactly Vα are united to
form M . At the same time, other properties (for example, flatness) can be deduced
from examining each of Vα separately. It is these later properties that will be called
local.

Definition 2 Let C denote the set of all spacetimes, satisfying a condition C (or
possessing a property C). Then the condition (respectively, property) C is local, if for
any open covering {Vα} of an arbitrary spacetime M the following equivalence is
true2

M ∈ C ⇔ Vα ∈ C ∀α.

From now on the elements of C will be called C-spaces for brevity.

We shall need the following evident fact

Fact 3 If C is local, then the following implications are true:

(a) V ⊂ W , W ∈ C ⇒ V ∈ C;
(b) O1, O2 ∈ C ⇒ (O1 ∪ O2), (O1 ∩ O2) ∈ C;
(c) N ∈ C and N ′ is locally isometric to N ⇒ N ′ ∈ C.

Example 4 The property ‘to satisfy the Einstein equations’

Gab = 8πTab (1)

is local, when the stress–energy tensor Tab is determined in each point by the value
of the fields (and its derivatives) in that point. The properties ‘to be geodesically
complete’ or ‘to be b-complete’, see Sect.A.3, clearly do not satisfy the ⇒ part of
the equivalence. So, these properties are nonlocal (this is one of the reasons why the
study of singularities is so hard). Extendibility and causality are also non-local: both
violate the⇐ part. For the same reason staticity also is non-local, as is demonstrated
by the Misner space, see Sect. 2.1 in Chap. 4. At the same time, ‘local staticity’, that
is the property to have a unique (up to a constant factor) surface orthogonal timelike
Killing vector field in each simply connected region [55] is, in agreement with its
name, local.

Definition 2 is formulated in purely topological terms, so, if desired, one could
change the word ‘spacetime’ in it to ‘manifold’ or even to ‘topological space’. Then
one would discover that, for example smoothness is local, while connectedness is
not. We do not need such generality. A law will be called local, if—irrespective of
the choice of an open covering M = ∪αVα—it holds in the entire spacetime M ,
when and only when it holds in each element Vα .

2Cf. the ‘three particularly interesting conditions’ considered in Appendix B of [62].

https://doi.org/10.1007/978-3-319-72754-7_4
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Remark. The definition of locality must be given with certain caution. For example,
one could think that Definition 2 without much detriment can be changed to the
following one: C is local, if it is true that

M ∈ C ⇔ U ∈ C ∀U : U is open and U � M.

In fact, however, this would lead to quite a different concept. For example, in the
Riemannian case the latter definition is satisfied by the—non-local according to the
former one—property ‘to have diameter not greater than 1’. We adopt Definition 2
because it is closer to the intuitive notion of locality: in particular, it makes the
implications (3)b and (3)c valid.

The difference between the two definitions is essential in this book, too. The
requirement of locality enters the formulation of Theorem 2 in Chap. 5 and if we
adopted the ‘modified’ definition of locality, as was declared (erroneously) in [97],
the theorem would be false or, at least, unproven [122, 126].

Dealing with certain relativistic problems, such as the lack of predictability in
relativity, see Sect. 3, one may be tempted to modify the definition of spacetime by
adding to it some supplementary requirements. Such requirements are presumed to
be local, so it is worth noting that:

1. There is no rational argument (to my knowledge) for that presumption;
2. Some of the standard conditions (in particular, Hausdorffness and inextendibility)

are not local;
3. The imposing of an additional local condition C may make it necessary to revise

the concept of inextendibility. This will happen if an extendible C-space is found
which has no extensions satisfying C. An example will be given in a moment.

Definition 5 Let C be a local property. M ′ is called a C-extension of a C-space M , if
M � M ′ and M ′ is a C-space too. A spacetime is C-extendible, if it has a C-extension,
and C-maximal otherwise.

The difference between extendibility and C-extendibility is demonstrated by the
example of region IV (this is one of the two regions with r > 2m) of the
Schwarzschild space, see Sect. 2.1 in Chap. 9. If C is the property ‘to be locally
static’ the said region is a C-space. And it is extendible (for example, to the Kruskal
space). However, in each of its extensions the Killing field at the boundary of the
region becomes lightlike and hence the extension does not have the property C. Cor-
respondingly, the region is C-maximal. Thus, the requirement that a spacetime satisfy
an additional (local) condition, may well come into conflict with the requirement that
it be inextendible.

https://doi.org/10.1007/978-3-319-72754-7_5
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1.2 The Weak Energy Condition (WEC)

An important class of local conditions are those imposed on the Einstein tensor Gab

or, insofar as we accept the Einstein equations (1), on the stress–energy tensor Tab.
Such is, in particular, the weak energy condition

Tab�
a�b � 0 ∀ non-spacelike v. (2)

The importance of theWEC lies in the fact that it relates a (quite pictorial) geometric
characteristic of spacetime to a widespread feature of its matter content.

As a property of thematter source, theWEC is the condition that the energy density
measured in the proper frame of an arbitrary observer be positive. There is evidence
that the WEC may break down (the Casimir effect [14, 70] was observed experi-
mentally [110, 160]). Moreover, it is not impossible that the WEC violating matter
constitutes the dominant bulk of the universe [118]. Still, it is generally believed that
as long as we ignore quantum effects (see Chap. 8) the weak energy condition must
hold.3

To understand the geometricalmeaning of theWEC consider a point p and a two-
dimensional oriented spacelike surface � through p. Pick an (as small as necessary)
neighbourhood O � p and letH be the set—it is a three-dimensional surface called
also beam, or congruence—formed by the null geodesics emanating from every point
of O ∩� in the direction normal to� [strictly speaking there are two such directions
in each point of �; we choose one of them by
(1) specifying which of the two such geodesics passing through p lies in H, that
geodesic will be denoted γp;
(2) requiring that the choice be continuous on �4].
Let ζ be the affine parameter on γp fixed, up to a constant factor, by the condition
ζ(p) = 0, and let A(ζ ) be the area of the cross section of the beam in the point
γp(ζ ). Now H is characterized by the expansion θ(p)—the quantity proportional
to A−1 d

dζ A ζ=0
in the limit of infinitely narrow beam. Clearly, θ is positive, if the

beam diverges and negative otherwise. It is essential that θ obeys also the inequality

d

dζ
θ � − 1

2θ
2 − (∂ζ )

a Rab(∂ζ )
b, (3)

see, for exampleChap.4 of [76]. This inequality is a purely geometrical fact stemming
from the properties of geodesics, it holds for any thus constructed congruence (i. e.
it does not depend on the choice of �). As we see,

3For an alternative point of view see [8, 174].
4It is this step in constructingH where we need � to be oriented.

https://doi.org/10.1007/978-3-319-72754-7_8
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d

dζ
θ � − 1

2θ
2 when the WEC holds. (4)

Thus, the curvature caused by the presence of ordinary (WEC-respecting) matter can
focus light rays (‘gravitational lensing’), but not disperse them: an initially converg-
ing beam keeps converging and its cross section shrinks to a point within a finite
parameter distance. Indeed, (4) is easily integrated to give

θ(ζ ) = (
ζ/2 + 1/θ(0) + f

)−1
,

where f is a non-decreasing function vanishing at ζ = 0. This proves the following
version of [76, Proposition 4.4.6].

Proposition 6 Provided that the WEC is satisfied and θ(0) < 0, there is a number
ζ∗ such that θ(ζ∗) = −∞, if γp can be extended to the point p∗ ⇋ γp(ζ∗).

In the point p∗ the area of the beam’s cross section vanishes, which means that γp

meets there (or ‘almost meets’, see [141, Example 10.31]) infinitesimally neighbour-
ing geodesics of H. The importance of p∗—such points are called conjugate to �

along γp—lies in the fact that any point in γp beyond p∗ can be reached from �

by a timelike curve (see [76, Proposition 4.5.14]; when some of the geodesics do
intersect in p∗, this is a simple corollary of Proposition 23(d)). Thus, Proposition 6
establishes a connection between the maximality of the speed of light and positivity
of energy that can be formulated as follows.

Statement 7 Suppose a geodesically complete spacetime satisfies the weak energy
condition. Then a null geodesic emanating from p reaches a sufficiently distant
destination later than some other non-spacelike curve starting at the same two-
dimensional oriented spacelike surface � if this surface is chosen so that θ(p) < 0.

Below, we shall also use the following corollary of Propositions 6 and [76, 4.5.14]

Corollary 8 If the null geodesics that form H are future (or past) complete and in
a point p ∈ H the inequality θ(p) < 0 [respectively, θ(p) > 0] holds, then H is
not achronal.

Remark 9 We shall deal only with congruences of null geodesics. So we could
change theWEC to the null energy condition or (which is the samewhen the Einstein
equations are satisfied) to the null convergence condition, which are the requirements
that, respectively, Tablalb and Rablalb are non-negative for any null l . However,
these conditions do not have such transparent physical meaning. Other local energy
conditions can be found in [76].

https://doi.org/10.1007/978-3-319-72754-7_1
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2 The Maximal Speed and Causality

Brosa� v vodu kamexki, smotri
na krugi, imi obrazuemye; inaqe
takoe brosanie budet pusto� za-
bavo�.

Koz�ma Prutkov [188].5

It is a matter of common knowledge that ‘according to relativity, nothing can travel
faster than light’ [75]. And it is of vital importance to this book that, if taken liter-
ally, the quoted simple, neat, and plausible assertion is wrong. A counterexample is
provided by light spots and shadows6 which well can move faster than light without
coming into conflict with relativity. But is the fallacy serious? Can’t it be corrected
by a slight reformulation? It turns out that the answer is negative. Experience shows,
in particular, that simple replacements of ‘nothing’ by ‘no material object’, or ‘no
field perturbation’ (it is implied that perturbations travel with the group velocity of
the corresponding field), etc., do not solve the question. It is this problem in formu-
lation of what one might think as a fundamental of relativity that makes this section
necessary. Its goal is to find out:

(1) exactly what speed limit is set by relativity?
(2) how is it enforced? If such a limit is a property of the corresponding fields and
particles, then what has it to do with relativity? On the other hand, if it is a property
of spacetime, then where is it hidden in the definition thereof?
(3) how is the speed limit in question related to locality and causality oftenmentioned
in this context?
Our primary interest is the ‘speed of gravity’. As for the matter fields and particles,
we content ourselves with clarifying the logical status of the principle of causality.
No attempts are made to develop a rigorous detailed theory.

2.1 The Speed to Be Restricted

In the Minkowski space, consider a pointlike particle with non-zero mass m. The
world line of the particle is a curve xi (t), where t ⇋ x0 and xi , i = 1, 2, 3 are the
standard Cartesian coordinates, see Example 73 in Chap. 1. Define the 3-velocity v

of this particle to be v ⇋
√

(dx1/dt)2 + (dx2/dt)2 + (dx3/dt)2 and assume that the
particle is subluminal, i. e. that v < 1. Then the particle’s energy as measured in the
coordinate basis is m/

√
1 − v2. This expression diverges at v → 1 and we conclude

5Throwing pebbles into the water, look at the ripples they form on the surface. Otherwise this
activity will be an empty amusement. Kozma Prutkov [152].
6Other popular counterexamples canbe found in good textbooks in special relativity, see, for instance
[169].
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that a massive initially subluminal particle cannot be accelerated to superluminal
velocities. Put differently, the world line of such a particle is timelike.

It is this clear and important fact that onewould like to generalize tomore complex
situations like field theories. In doing so, however, one encounters the problem of
deciding exactly what speed is bounded.

Example 10 Imagine a closely packed row of y-oriented electric dipoles aligned
along the x-direction. Every dipole is attached to a device able to flip it at an appointed
moment. Consider now two cases:

(a) Every dipole flips (back and forth) at the moment t (x) = x/va , where x is the
coordinate of the dipole and va is a constant.

(b) Only the dipole with x = 0 flips and only at the moment t = 0.

Consider the y-component of the electric field in either case. Obviously, Ey(x, t) at
positive x is a pulse running in the positive direction. Its speed7 is va in the first case
and a certain vb in the second.

Clearly, the Maxwell equations (not relativity) guarantee that vb � 1, but no reason
is seen for va not to be arbitrarily large (examples of superluminal electromagnetic
waves of that kind can be found in [22, 155]). It is natural to ask, what is so different
between the two pulses that some fundamental restriction applies only to one of
them? A self-suggesting answer would be that the pulse from 10(a) is not ‘real’.
Roughly speaking, it is, rather, a set of independent ‘swellings’, each appears in its
own place and stays put. Its evolution reduces to changes in size and shape (at first
it grows, then shrinks, and, finally, vanishes), but not in location. Correspondingly,
its velocity is zero and the resemblance between the evolution of the set of such
swellings and the propagation of a pulse is nothing more than an illusion.

On the other hand, this illusion is so persistent that one would like to have a formal
criterion for discriminating between ‘real’ and ‘illusory’ pulses. Such a criterionmust
be based, as it seems, on the difference between independent and causally related
events. It is this difference that is the subject matter of the present section, its goal
being to outline a way of introducing such a vague concept as the ‘cause–effect
relation’ in such a rigorous science as classical relativity.

Remark 11 Actually, the aforesaid differentiation is a very old problem. Consider,
for example what appears to be an arrow with the world line α(t). Should we speak
of an arrow flying with the speed α̇ or of a set of motionless arrows, each of which
exists for a single moment in a point of the curve α? This, seemingly philosophical
question [185] becomes physical (to some extent) in discussing causality.

The connection of the cause–effect relation to the ‘light speed barrier’ iswell exempli-
fied by pointlike superluminal particles, tachyons. Are they forbidden by relativity?
At first glance the positive answer is dictated by the following thought experiment
going back to Einstein [41], see also [167]. Let an observer A at the point a emit a
tachyon τ1, see Fig. 2a. The tachyon is received at the point b by observer B who

7The pulse will also deform in the course of propagation. But we neglect this irrelevant effect.
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Fig. 2 A thought experiment with tachyons leading to an (apparent?) contradiction with causality.
It stems from the fact that the segment dc looks future-directed for observer A , but past-directed
for observer B

re-emits it at the point c, see Fig. 2b. Then the re-emitted tachyon—it is denoted
τ2—is absorbed by A at d. Since the world lines of the tachyons are spacelike the
parameters of the experiment (the velocity ofB, the delay between the reception of
τ1 and emission of τ2, etc.) can be chosen so that d will precede a on the world line
of A . In other words, A in this experiment manages to send a signal (from a) to
their own past. And this, as one8 might think, gives rise to a variety of paradoxes,
see Chap.6.

Since 1970s, the view has prevailed that no signals to the past are sent by the
observer and the whole problem is purely interpretational [13]. Indeed, b happens
later than a and c is later than d only in the sense that

t (a) < t (b), t ′(c) < t ′(d), (∗)

where t and t ′ are the time coordinates in the proper coordinate systems of the
observers A and B, respectively. (These relations resemble the relations a � b,
c � d, but—just when the events are spacelike separated—do not coincide with
them.) The interpretation of a and c as the emission and b and d as the absorption
of tachyons (or, which is the same, a and c as the causes of, respectively, b and d) is
based solely on the inequalities (∗). But this substantiation (post hoc, ergo propter
hoc) is notorious for its inconsistency. And indeed, the comparison of the second
inequality with the—also correct—relation t (d) < t (c) shows that (∗) is unsuitable
for establishing cause–effect relations. On the other hand, abandoning that inter-
pretation and declaring the events c and d causally unrelated (the ‘reinterpretation
principle’ [13]), we immediately get rid of problems with ‘paradoxes’: tachyon τ2 is
not a signal any more (A in point d does not receive any information aboutB), etc.

8Not Einstein, see [41]!.
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However, solving one problem this approach at the same time gives rise to another
one, equally hard, cf. [33]. The point is that if all events on a curve (on the segment
cd in this case) are causally unrelated, the curve can hardly be referred to as the world
line of a particle. Obviously, the reinterpretation principle being consistently applied
transforms the tachyon from a pointlike particle into an analog of a light spot or a
succession of swellings, see above. Thus, we can conclude that relativity does forbid
superluminal particles insofar as we regard sending a signal to the past impossible.

2.2 Cause–Effect Relation

Our goal is to formalize somehow the notions of cause and effect within the frame-
work of general relativity. In this subsection, we restrict ourselves to matter fields on
a fixed backgroundwhose geometry is independent of those fields. The consideration
of the subtler and more important question of what ‘the speed of gravity’ is will be
postponed to Sect. 2.4.

Consider a classical theory of a (not necessarily scalar) matter field f . Normally,
such a theory consists of a spacetime M and a convention on which functions f
in M are ‘physical’, i. e. are regarded appropriate, describing reality. Typically, that
convention consists of an equation governing the dynamics of the field, (the ‘equation
of motion’) and a set B of constraints on admissible solutions. For example, in
electrodynamics, f is the vector potential Aμ, its equations ofmotion are theMaxwell
equations, and B comprises, first, the requirements on the field’s behavior at infinity
(usually it is required to decay sufficiently fast) and, second, some of the laws of
motion determining the evolution of the sources (which are also a kind of boundary
conditions), cf. Example 12(c).

Example 12 Let M be the Minkowski plane and f be the scalar field φ obeying the
equation

(∂2
t − ∂2

x )φ = 0. (5)

Consider different choices of B:

(a) Denote by Ba the requirement that φ be smooth and that at each t its derivatives
be square integrable on the x-axis. Then the choice B = Ba means, physically,
that we regard as legitimate any field configuration with finite energy and energy
density.

(b) Imagine that always
φ(t0, x0 + 1) = φ(t0, x0)

or, put differently, that in nature φ exists only as waves of length 1. This property
seems quite exotic, but what matters is only that it does not contradict (5). And
were it experimentally discovered, one would have to adopt B ⊃ Bb, where Bb

is the periodicity condition.
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Now let M be the four-dimensional Minkowski space and

(c) Bc be the requirement that

(i) φ as classical function be defined on M − λ, where λ is a curve r(t) and r
is the position vector in the three-dimensional space t = const ;

(ii) φ be a (distributional) solution of the equation � φ = δ
(
r − r(t)

)
.

Clearly, by setting B = Bc we incorporate pointlike sources of the field into
consideration. These sources are not provided by specific dynamical laws [oth-
erwise we would have to treat them on exactly the same basis as (5)], but one can
impose one or another condition on λ (on its velocity v = dr/dt , in particular).

Note that constraints constituting B may be non-local (such as, for example the
integrability condition in the first example). It is also noteworthy that additional
conditions entering into B in one theory, may follow from the laws of motion in
another—broader—theory. That is what happens, for example with the aforemen-
tioned constrains on the motion of sources, if one transits from the theory of free
electromagnetic field to magnetohydrodynamics.

Definition 13 Pick an event (point) p ∈ M and suppose that there is a closed set
A ⊂ M such that p /∈ A but nevertheless f (p) is uniquely determined by the values
of f and its derivatives in the points of A. Suppose, further, that no closed proper
subset of A inherits that property. Then we shall say that A determines p. Also we
shall write q ⥊ p for ‘q is in a set determining p’.

Below the relation⥊ will be used for introducing the cause–effect connection, so
an important point to emphasize is that⥊ depends on the choice of B, which is an
independent element of theory by no means deducible from equations of motion.
This distinguishes the speed of signal propagation from the phase velocity, the speed
of energy transmission and the like.

Example 14 Consider two segments in L
2:


1 : {t = 1, x ∈ [−1, 1]} and 
2 : {t = 1, x ∈ [0, 1]}.

By fixing at 
1 the initial conditions for Eq. (5) we, of course, uniquely determine
φ(o), where o is the origin of coordinates. On the other hand, neither 
2, nor any
closed proper subset of
1 have this property whenB = Ba . Thus under the assump-
tions of Example 12(a), 
1 determines o, while 
2 does not. And in Example 12(b)
owing to the periodicity of φ the value φ(o) is uniquely defined by the data fixed at

2 (but not at any of its subsets). Hence, now, conversely, 
2 determines o, and 
1

does not. Likewise, it is easy to check that, for example, p⥊̸ o in the first case and
p ⥊ o in the second, where p stands for the point {t = 1, x = 2}. Finally, when
B = Bc, the relation between p and o depends on conditions (if any) imposed on λ.
For instance, the condition |v| < 1 implies p⥊̸ o.
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It seems absolutely natural to regard events p and q causally unrelated

q ⥊̸ p, p⥊̸ q,

if what happens in p (i. e. the values of f and its derivatives) does not affect the
situation in q (as long as those values remain constant in all points of some set
determining q) and vice versa. So, the relation⥊ is quite close to the cause–effect
relation. But not quite, yet. In particular, it does not distinguish between the cause
and effect: one cannot infer from q ⥊ p whether q is a cause or an effect of p.
This was to be expected. Indeed, choosing different functions fA (restrictions of
f to a set A � q determining p), one would discover that f (p) varies accordingly,
irrespective of—admissible—values taken by f outsideA. This suggests that pmust
be understood as effect. However, exactly as well one could choose different f (p)
and state that each time this gives rise to a new fA (irrespective, again, on which
admissible f are fixed in other points of M − p−A). Then one would find it equally
natural to interpret p as a cause of q. Another drawback of⥊ is that it does not—
automatically—take into account the possibility of indirect influence, when p causes
q by affecting some cause of q instead of q itself.

To remedy the situation we resort to two as yet unused properties of causality as
it is understood intuitively. Namely, (1) a cause of a cause is a cause and (2) events
a and b are the same if and only if a is a cause of b and b is a cause of a.

Definition 15 � (‘is a cause of’, or ‘can affect’) is a reflexive (i. e. a � a), anti-
symmetric (i. e. from a � b, b � a it follows that a = b), and transitive (i. e. from
a � b, b � c it follows that a � c) relation9 such that

a � b, ⇒ a↔ b, or

∃ c : a↔ c, c↔ b and a � c, c � b,

where q↔ p is an abbreviation for ‘q ⥊ p or p⥊ q’.

Remark 16 The so-defined � is still non-unique. For example, one might expect
that the relation � (‘is an effect’) defined by the equivalence

p � q ⇔ q � p,

typically will satisfy Definition 15. One way to fix this arbitrariness is to relate the
difference between effects and causes with the difference between the past and the
future by imposing, for example the following additional condition

p � q ⇒ p /∈ J+(q)

9Such relations are called partial orders.
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(a cause must not lie in the future of its effect). It is this requirement that is often
called ‘the principle of causality’. We shall reserve this term for a more meaningful10

condition.

Thus, we have formalized the notions of cause and effect as attributes of a matter
field theory. The theory is understood to include, in addition to dynamics laws, a set
of requirements on admissible solutions. Causality in this approach characterizes not
a specific solution, but the theory as whole. Loosely speaking, it tells one what is
considered freely specifiable within that theory and what is to be found. As a next
step let us make the consideration ‘more local’ by introducing the notion of signal.

Definition 17 A signal from α(0) to α(1) is a curve α(ξ) : [0, 1] → M such that

α(ξ1) � α(ξ2), ∀ξ1 < ξ2.

The vector tangent to α is, correspondingly, the velocity of the signal.

It must be emphasized that one should be cautious in identifying the velocity of a
signal with the velocity of some particular carrier (particles or waves).

Example 18 Suppose, a certain O lives 4 km from the laboratory where an experi-
menter E every noon tosses a coin, this event will be denoted p. If E gets tails, he
stays at laboratory, but if the coin comes up heads, E walks to O and tells him the
outcome of the experiment. When E has to make this trip on a weekday he always
moves on some stipulated geodesic γ (being a curve in the four-dimensional world γ

is different every day), but on holidays he is allowed to choose his way at haphazard.
In both cases their meeting with O—it will be denoted q—happens strictly at 1:00
pm. The world line of E between the noon and 1:00 pm will be denoted β (on a
weekday, if E gets heads, β = γ ).

Let us pick a particular day and analyze the causal relations between the relevant
events. Taking the approach developed above we shall regard p a cause of an event
e, if the observation in e (that is, in fact, the checking of whether E is present in e)
allows one to learn the result of the tossing (because p in such a case is obviously in
a set determining e).

For a start, let the day in consideration be one of those weekdays when the coin
shows heads and, respectively, E walks from the laboratory to O’s residence.Then
an observer in every point of β learns (just from meeting E there) the outcome of
the tossing and thus gets affected by p. So, β is a signal and, in particular, p � q.
The speed of the signal is equal to the speed of E and everything looks rather trivial.

Let us, however, consider a weekday in which the coin comes up tails. This timeO
does not receive E ’s report. Nevertheless, the non-appearance of E will by itself let
O know how the coin landed. So, p � q again.Moreover, the same reasoning applies
to any point of γ , hence γ is a signal. The speed of this signal is obviously 4 km/h.
Thus we arrive at a rather counter-intuitive situation: there is a signal ‘propagating’

10Though in pre-relativistic times the difference might seem inessential.
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along a specific curve at a specific speed, even though there is nothing material—be
it a particle or a light spot—the motion of which could be associated with the signal.

Suppose, finally, that the daywhenE stayed at laboratory happened to be aholiday.
For O this fact is immaterial, so p still affects q. However, this time an observer
between p and q, not knowing β, gains no knowledge from the non-observation of
E . We thus obtain one more counter-intuitive result: p and q are causally related
even though there is no signals from one to the other.

2.3 The Principle of Causality

So far we have discussed the cause and effect as notions pertaining to the combina-
tion of a field theory and the geometry of the background. To use these notions in
formulating non-trivial statements one can tie them to another—purely geometrical,
say—relation defined on the relevant spacetime. One way to do so is to require that
� be not stronger than �.

Condition 19 ‘The principle of causality’. An event p can affect an event q, only
if there is a future-directed non-spacelike curve from p to q:

p � q ⇒ p � q.

This condition can be made ‘more local’, though at the cost of some weakening:

Condition 20 ‘Light barrier’. The speed of a signal cannot exceed the speed of light.

Remark 21 One also could require the existence of an open covering of M such that
in each of its elements, when it is considered as a spacetime by itself, Condition 19
holds. If the conditions in B are local (e. g. the solutions only must be smooth) and
M is sufficiently ‘nice’ (strongly causal, for example), then this requirement11 is
apparently equivalent to the Condition 19. Generally, however, this is not the case.
Both the causality principle and the boundedness of the speed of signal propaga-
tion can break down in spite of local causality. This takes place, in particular, in
Example 12(b). Another example is the field from Example 12(a), if the condition
of integrability is dropped and M is taken to be the cylinder CM from Example 42
of Chap. 1.

As the Kirchhoff formula [175] shows, the field

(
�− n−2

4(n−1) R
)

φ = 0, B = Ba (6)

in the Minkowski space (the term with R will be needed later) allows one to choose
� as � [the point (t0, x0, y0, z0), for example is determined by the unit 3-sphere
lying in the plane t = t0 − 1 and centered at the point (x0, y0, z0)], so the causality

11It is, essentially, what is called local causality in [76].
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principle is satisfied. The same is true for the electromagnetic and, in fact, for any
other field which is governed by a hyperbolic system of linear differential equations
with non-spacelike characteristics. Actually, the whole everyday physics (including
mechanics, quantum field theory, etc., insofar as they are considered in globally
hyperbolic spaces) admits the choice ‘�’ = ‘�’ and hence can be subordinated to
principles 19, 20.

It is the universality of the principle of causality that makes it so important and
explains why the non-spacelike vectors and curves are called causal, the sets J± are
called the causal future/past, and, generally, the structure associated with the relation
� is often referred to as ‘causal’ (beyond the present section we also adhere to this
tradition).

At the same time, situations are imaginable in which the principle of causality
does not hold. The onemost pertinent to this book is ‘causality violating’ spacetimes,
see Definition 33 in Chap. 1. In these spacetimes the aforementioned principle cannot
hold by definition (because� is not antisymmetric there, contrary to what is required
of �). In Chap.6 we shall discuss the ‘paradoxes’ ensuing from the absence of a
global cause–effect relation, see Chap.6, and now let us turn to ‘more local’ causality
violations. A simple example is provided by the field governed by the equation
(∂2

t − 2∂2
x )φ = 0 in the Minkowski space, but it is more interesting to check that the

same may happen also with fields obeying geometric (see the beginning of Sect. 1)
equations of motion.

Example 22 In a Friedmann universe (M, �)

� : ds2 = −dt2 + a2(t)[dχ2 + χ2(dϑ2 + sin2 ϑdϕ2)]

consider the field theory (6). Since the metric is conformally flat, the solutions of the
equations of motion will differ from the corresponding solutions in the Minkowski
space only by a non-zero factor, see Sect. 2.1 in Chap.7. Hence, in this theory (1) it
is possible to choose ‘�’ = ‘�’ [see the reasoning under (6)] and thus to satisfy the
principle of causality and (2) the signals exist propagating with the speed of light.
Denote by λ one of such signals:

λ ⇋ xc(ξ) : gcd
dxc

dξ

dxd

dξ
= 0.

Next, define on M a new metric tensor �̃ by the equation

g̃cd = gcd + 1
2τcτd , τ ⇋ ∂t

(note that the vector field τ can be defined in a coordinate independent way as the unit
vector field which in every point is normal to the three-surface of constant curvature
through that point [76]). τ have a clear physical meaning: they are the velocities
of the flow lines of the fluid whose stress–energy tensor generates, through the
Einstein equations, the metric �. In the spacetime (M, �̃), which, incidentally, is

https://doi.org/10.1007/978-3-319-72754-7_1
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also a Friedmann space, though with different factor a(t), consider a theory with the
same B and the same equation of motion (specifically Eq. (6), not the one obtained
from it by replacing �→ �̃). Clearly, in this new theory exactly the same events are
causally related as in the original one. In particular, λ is still a signal. Its velocity,
however, is now greater than the speed of light:

g̃cd
dxc

dξ

dxd

dξ
= 1

2

(
dxc

dξ
τc

)2

> 0.

Thus,wehave constructed a ‘physically reasonable’ theory12 inwhich the principle of
causality is violated andwhich nevertheless harbors neither ‘logical inconsistencies’,
nor ‘mind-boggling paradoxes’.

In summary, a theory describing matter fields and particles includes dynamic
equations and, independently, a set of conditions imposed on their solutions. This set
determines (non-uniquely, perhaps) what is freely specifiable in the theory (‘initial
data’) and what is to be found. This division gives rise to relations which we call
causal. The principle of causality is the following requirement placed upon both the
theory and the geometry of the background: the relation ‘to be a (possible) cause of’
must imply the relation ‘to be connected by a future-directed non-spacelike curve
to’. This principle holds in all usual theories, but its violations do not necessarily lead
to a catastrophe. Thus, whether to adopt it or not is a matter of taste. Being adopted it
is this principle (and not relativity, or locality. or local causality, etc.) that forbids the
velocity of a signal (not of a particle, or of the crest—or the front—of a wave, etc.) to
exceed the speed of light.We shall neither develop this theory any further, normake it
more rigorous. The role of the principle of causality seems to be greatly exaggerated:
if a theory is inconsistent with experimental data, or is self-contradictory, it will be
rejected anyway. But if a theory contains no contradictions, than the fact by itself
that the principle of causality does not hold in it, is a mere curiosity.

2.4 ‘The Speed of Gravity’ [108]

So far we have been discussing signalling bymatter fields. It is reasonable to ask now
what the speed of a signal carried by gravity is. Is that speed restricted in any way?
The question may seem meaningless, because the universe according to relativity is
a ‘motionless’, ‘unchanging’ 4-dimensional object (‘block universe’) and gravity is
just the shape of this object. But what can be called a speed of shape? What is the
‘speed of being a ball’? Yet, a meaningful question concerning whether ‘gravity is
faster than light’ can be formulated [108]. It takes some preliminary work though.

12In fact, it is a version of what was proposed in [5].
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Suppose an experimenter E plans to throw a rock.13 An observer O located at
some distance from E does not know when exactly this event—let us denote it s—
will happen. But if their apparatus is good enough,O will be able to register changes
in the gravitational field of the rock (the event at which the first change is registered
we denote by q) and infer that the rock is thrown. It seems quite natural to call s
the cause and q the effect. And it is equally natural to ask: How soon after s can q
happen? Can, in particular, q happen before the first photon from s will reach O?

Remark 23 The positive answer to the last question would mean—among other
things—that an outside observer can receive signals from inside the event horizon
of a black hole.

The above-formulated questions are quite similar to those discussed in the previ-
ous subsections. The reason why a special treatment is required in the case of gravity
is this. If E signalled by a matter field f (for example, by the Coulomb field of the
same rock), the statement ‘s affects q’ would mean that the value f (q) depends on
the decision of E : it is f (q) = f1, if E at s throws the rock, and f (q) = f2, otherwise
[recall that in our experiment E plays the role of a source, their behavior is not fully
fixed within the theory adopted by O and the latter has to take into consideration all
possibilities consistent with B, cf. Example 12(c)]. But if we tried to apply the same
approach to gravity we would have to compare the values at q of the metric—not
of f—in the two cases. And this, generally speaking, is impossible. There simply
cannot be different metrics—�1 and �2, say—in the same point of a spacetime: if
�1 �= �2, then (M1, �1) and (M2, �2) are different spacetimes by definition (irrespec-
tive of whether the manifolds M1 and M2 are equal). Hence, the metric tensors are
compared not in the same point q, but in two different ones (as soon as they belong
to different spacetimes): q1 ∈ (M1, �1) and q2 ∈ (M2, �2). But to justify out inter-
pretation (according to which the non-equality �1(q1) �= �2(q2) signifies that some
experiment ended up differently) we must somehow know that q1 and q2 correspond
to the ‘same’ (in some sense) time and place. There is no way to establish such a
correspondence, so, generally, there is no way to assign a meaning to the statement
‘the metric at this point has changed’.

Example 24 It is hard (if possible) to define consistently the speed of gravity in terms
of characteristics of Einstein’s equation [21, 49]. Indeed, the typical reasoning is:
‘The solution [to the Einstein equations] depends, at a point x , only on the initial data
within the hypercone of light rays […] with vertex x , that is, on the relativistic past of
that point. This result confirms the relativistic causality principle as well as the fact
that gravitation propagates with the speed of light’ [21]. The flaw in this argument is
that—for the reasons just discussed—in the case of gravity there is no analogue of
‘determining sets’ (see Sect. 2.2), so ‘is fixed as a solution of a differential equation
by the data within a set S’ and ‘is caused only by points of S’ is not the same, the
latter statement being meaningless.

13We have to invent a special thought experiment, because the common question ‘If the Sun dis-
appeared, how soon we would find that out’ is hard to answer due to its tension with energy
conservation.
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We shall get around this problem by considering the points in which, vice versa,
the metric does not change and which therefore can be declared independent of s.

Remark 25 In fact, we could do the same with matter fields, too (though it would
have been an unnecessary complication). Denote by N (s) the set of all points of M
which cannot be affected by s:

N (s) = {p ∈ M : s �� p}.

Then the principle of causality is the requirement that

(
M − N (s)

) = J+(s) ∀s.

We plan to capture the idea that M1 and M2 describe different developments of the
same prehistory (which includes the world line of E up to s), the next step being the
formulation of an analogue to the principle of causality as the exclusion of certain
pairs M1, M2. To that end we require the existence of a pair of isometric regions
N ∗
k ⊂ Mk k = 1, 2; it is these regions that describe the aforesaid prehistory. We

require further that N ∗
k bepast sets (clearly theportions—even isometric—ofdifferent

spacetimes do not describe the same region of the universe, if the remembrances of
their inhabitants differ).

Definition 26 A pair (Mk, �k, sk), where k = 1, 2 and sk is a point of a maximal
spacetime (Mk, �k) is called an alternative, if there is a pair of connected open past

sets Nk ⊃
(
J−(sk) − sk

)
and an isometry φ sending N1 to N2 and J−(s1) − s1 to

J−(s2) − s2.

For a given alternative the pair N1,φ does not have to be unique, there may exist a
whole family {Nα

1 ,φα} of such pairs. By (N ∗
1 ,φ∗)wedenote amaximal, by inclusion,

element of this family, that is an element such that the family contains no ‘greater’
element:

�α0 : N ∗
1 � Nα0

1 , φ∗ = φα0

N ∗
1

Zorn’s lemma [87] guarantees the existence of such an element, since the regions of
M1 and M2 are partially ordered by inclusion14

A � B ⇔ A ⊂ B

and with respect to this order every chain . . . � A1 � A2 � . . . has a supremum
∪i Ai ]. Correspondingly, N ∗

2 ⇋ φ
∗(N ∗

1 ).

Definition 27 The sets Nk ⇋ Bd N ∗
k , k = 1, 2 will be termed fronts. A front Nk is

superluminal, if Nk �⊂ J+(sk).

14This is because regions are not just spacetimes, but spacetimes plus their embeddings in M1,2, cf.
the discussion on p. 4.
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At either k the frontNk bounds the set N ∗
k (note, incidentally, that since N ∗

k is a past
set, Nk by Proposition 31 is a closed achronal embedded C1− hypersurface), which
according to our plan is to be interpreted as the common past of the two worlds. This
set is maximal and hence in any point of Mk − N ∗

k an observer can remember some
results of their gravitational experiments that differ their experience from that of any
observer from Ml , l �= k. It is such a remembrance that we interpret as a signal from
sk . It is natural to regard the signal superluminal if it is received out of J+(sk), hence
the name of the corresponding front.

The alternative is quite a rough concept. For example, generally, it does not allow
one to define the ‘speed of a gravitational signal’, if the signal is understood to be
a front. Even the source of a signal cannot be pinpointed because the same pair of
spacetimes can satisfy the definition of alternative for different choices of s. Still, it
makes possible the formulation of a necessary condition for the speed of gravity—in
a particular theory—to be declared superluminal. This is done by ascertaining which
alternatives are admissible in that theory, i. e. in which cases both spacetimes M1 and
M2 are legitimate solutions, while the difference between them is assignable to an
event s as opposed to the initial difference. If none of the admissible alternatives has
a superluminal front, we apparently have a theory with the speed of gravity bounded
by the speed of light. Note that only admissible alternatives matter and admissibility
is established in each theory individually, so we could have defined the alternative
just as a pair of pointed spacetimes. The remaining requirements (the existence of the
sets N ∗

k ) in such a case would have formed an additional criterion of admissibility.

Example 28 Let both (M1, �1) and (M2, �2) be globally hyperbolic. And let Sk ,
k = 1, 2 be Cauchy surfaces through sk related by the equation S2 − s2 = φ∗(S1 −
s1). An alternative is regarded as admissible if the values of the matter fields (and
their derivatives if necessary) in each point of S1 are equal to their values at the
corresponding points of S2. This criterion does not look far-fetched. Indeed, in the
absence of such surfaces no reason is seen to assign the difference between M1 and
M2 to s and its consequences, cf. [121]; rather such universes should be considered
as different from the outset and the alternative (Mk, �k, sk) as inadmissable. But by
assumption M1,2 are globally hyperbolic, whence

Mk − J+(sk) = [J−(sk) − sk] ∪ D(Sk − sk)

(each point inMk is connected by every inextendible non-spacelike curve with Sk , so,
unless that point is in J+(sk)∪ J−(sk), all inextendible causal curves through it meet
the ‘remainder’ of Sk , i. e. the set Sk − sk). By the existence and uniqueness theorem
(for the Einstein equations it is proved under some assumptions that we shall discuss
in a moment) the equality of the data fixed at three surfaces implies the isometry of
the corresponding Cauchy domains. So, the setsD(Sk − sk) are isometric. Hence N ∗

k
(which includes J−(sk)−sk , anyway) contains the entire Mk − J+(sk). Thus, neither
of the fronts is superluminal. In this sense general relativity,15 as one would expect

15How to adapt this approach to two more exotic theories is briefly discussed in [108, remark 6].

https://doi.org/10.1007/978-3-319-72754-7_1
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[49], forbids superluminal communication: under the above mentioned assumptions
the speed of gravity is bounded by the speed of light.

It is important that the theorems of uniqueness for the solutions of Einstein’s
equations are proved in some ‘physically reasonable’ assumptions on the properties
of their right-hand sides. A possible list of such assumptions can be found, for
example, in [76]. One of them is the principle of local causality (see Remark 21),
another one is a stability requirement, and the third restricts the stress–energy tensors
to expressions polynomial in gab (the corresponding restriction in [177] allows also
the SET to contain first derivatives of the metric). This last assumption is known
to fail in many physically interesting situations. In particular, vacuum polarization
typically leads to the appearance of terms with second derivatives of the metric
(like the Ricci tensor) in the right-hand side of the Einstein equations, see (7.11)
for example. This suggests that superluminal gravitational phenomena, if exist, may
take place in situations where quantum effects are strong—in the early universe, on
the horizons of black holes, etc.

2.5 The ‘Semi-superluminal’ Velocity

The fact that a single event is associated with two fronts, each in its own spacetime,
has a quite non-trivial consequence because they do not need to be superluminal both
at once.

Definition 29 An alternative is called superluminal, if both its fronts are superlu-
minal, and semi-superluminal, if only one is.

Suppose, in a world M1 a photon (or another test particle) is sent from the Earth
(we denote this event s1) to arrive at a distant star at some moment τ1 by the clock
of that star. Let, further, M2 be the world that was initially the same as M1 (there
are no objective criteria, so whether we consider the worlds as initially the same,
depends, in particular, on what theory we are using), but in which instead of the
photon a mighty spaceship is sent (the start of the spaceship is s2). On its way to
the star the spaceship warps and tears the spacetime by exploding passing stars,
merging binary black holes and triggering other imaginable powerful processes. We
assume that no superluminal (‘tachyonic’) matter is involved, so, in spite of all this,
the spaceship arrives at the star later than the photon emitted in s2. It is imaginable,
however, that the spaceship’s arrival time τ2 is less than τ1. Thus, the speed of the
spaceship in one world (M2) would exceed the speed of light in another (M1), which
would not contradict the non-tachyonic nature of the spaceship. Nor would such a
flight break the ‘light barrier’ in M1: the inequality τ2 < τ1 does imply that the
front F1 is superluminal, but no matter signal in M1 corresponds to that front. In
particular, there is no spaceship in that spacetime associated with F1. It is such a
pair of worlds M1,2 that we call a semi-superluminal alternative. A theory admitting
such alternatives allows superluminal signalling without tachyons.16

16One more way to understand the term ‘superluminal’ is discussed in Chap.3.
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Fig. 3 Spacetime M2. The
curve starting from s2 is the
world line of the spaceship.
The grey region is the causal
future of s2 and the dashed
broken line is the front N2
bounding N∗

2

deleted
s

Example 30 Let M1 be a Minkowski plane and s1 be its point with coordinates
t = −3/2, x = −1. Let, further, M2 be the spacetime obtained by removing the
segments t ∈ [−1, 1], x = ±1 from another Minkowski plane, see Fig. 3, and
glueing the left/right edge of either cut to the right/left edge of the other one. (M2

is an analogue of the DP space, see Example 73 in Chap. 1 with n = 2 and a slight
change in notation: x1 → t , x0 → x). The differences between M1 and M2 are
confined, in a sense, to the future of the points t = −1, x = −1 and t = −1, x = 1,
see Fig. 3. Speaking more formally, N ∗

1 is the complement to the union of two future
cones with the vertices at those two points. That N ∗

1 is maximal, indeed, is clear
from the fact that any larger past set would contain a past-directed timelike curve
λ terminating at one of the mentioned vertices, while φ(λ) cannot have a past end
point (because of the singularity).

Clearly, N1 �⊂ J+
M1

(s1), which means that N1 is superluminal. Its superluminal
character does not contradict the principle of causality in M1, because, as discussed
above, in the space M1, which is merely the Minkowski plane, the surface N1 does
not correspond to any signal. The front N2 is not superluminal, so the alternative
(Mk, �k, sk) is semi-superluminal. This name agrees with the fact that, on the one
hand, the spaceship reaches the destination at a moment preceding the arrival of any
photon emitted in s1, but, on the other hand, no tachyons are involved: while the
photons are in M1, the spaceship belongs to the universe M2, where its trajectory is
timelike.

From the practical point of view, the alternative from Example 30 has a serious
disadvantage: the nature of the difference between M1 and M2 is too exotic. It is
unknown at the moment whether such alternatives (if they are possible at all) are
admissible, i. e. whether something that takes place in s1,2 can make ‘the topology
change’ in the requiredway.Unfortunately, the same is true in the general case:we are
going to prove that in any semi-superluminal alternative the constituent spacetimes
have some causal pathologies.

Proposition 31 The spacetimes M1 and M2 of a semi-superluminal alternative
(Mk, �k, sk) cannot both be globally hyperbolic.

https://doi.org/10.1007/978-3-319-72754-7_1
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Fig. 4 The ball Bri bounded by the dashed line lies, by assumption, outside J+(s1). But this
contradicts the fact that the curves φ−1(λi ) must converge to a future-directed non-spacelike curve
from s1 to p

Remark 32 This statement differs substantially from that proven in Example 28
(to the effect that at least one of the spacetimes of a superluminal alternative must
be non-globally hyperbolic). The latter depends on the Einstein equations, while
Proposition 31 concerns a purely kinematical fact. Essentially, it is just another
property of globally hyperbolic spacetimes.

Proof Let the front N1 be superluminal. Then some points of N1 must be sepa-
rated from the—closed by the global hyperbolicity of M1, see Proposition 48 in
Chap. 1—set J+(s1), that is there must be a point p, see Fig. 4, such that

p ∈ N1, Br ∩ J+(s1) = ∅ ∀r < r̄ ,

where r̄ is a constant, and Br is a coordinate ball of radius r centered at p [i. e. the
set of points q which satisfy the inequality

∑(
x j (q)

)2
< r2 in some—fixed from

now on—coordinate system {x j } with the origin at p]. In I−(s1) pick a sequence
ai , i = 1, 2, . . . converging to s1. Our plan is to demonstrate that, unless N2 is
superluminal, there is a timelike curve μi from ai to Bri for any i and any ri < r̄ .
This would prove the proposition, because ri can be chosen so as to tend to zero.
In such a case the future end points of μi will converge to p, which—due to the
global hyperbolicity of M1, see Corollary 49 in Chap. 1—implies p ∈ J+(s1) in
contradiction to the choice of p.

To build for a given i a curve μi of the just mentioned type, pick a pair of points

bi ∈ (
N1 ∩ Bri

)
and ci ∈ N2,

such that for arbitrary neighbourhoods U ⊃ bi and V ⊃ ci it is true that

φ
(
N ∗
1 ∩U

) ∩ V �= ∅.

https://doi.org/10.1007/978-3-319-72754-7_1
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Such pairs always exist, because otherwise the maximal, by hypothesis, spacetime
M2 would have, by Proposition 68 in Chap. 1, an extension Bri ∪φ′ M2, where φ′
is the restriction of φ to a connected component of Bri ∩ N ∗

1 . Now assume that N2

is not superluminal. Then ci , being a point of N2 must lie in J+(s2) and hence in
the (closed, see Proposition 48 in Chap. 1) set J+(s2) too. Thus (recall that ai ≺ s1,
whence φ(ai ) ≺ s2) a pair ai , ci can be found such that φ(ai ) ≺ s2 � ci . From
Definition15 in Chap. 1 it follows that φ(ai ) ≺ ci . Hence, there is a neighbourhood
of ci which lies entirely in the (open) set I+(φ(ai )). And according to (∗) that
neighbourhood contains also points of φ(N ∗

1 ∩ Bri ). So there also must exist points
di :

φ(ai ) ≺ di , di ∈ φ(N ∗
1 ∩ Bri ) ⊂ N ∗

2 .

The latter inclusion coupled with the fact that N ∗
2 is a past set means that any timelike

curve λi fromφ(ai ) to di lies entirely in N ∗
2 and thus defines the curveμi ⇋ φ

−1(λi ).
This curve possesses all the desired properties: it is timelike, it starts in ai , and it
ends in Bri .

�

3 Evolutionary Picture

One of the central problems in physics is the determination of the evolution of a
system. In most general terms it can be formulated as follows: a system (some field
configuration, or a set of pointlike particles, etc.) at some moment of time (i. e. at
some spacelike surface) is in such-and-such state. Given the system is governed by
some known laws of motion, what will be its state at some later moment of time?
The laws of motion which are usually considered in this context are such that the
said problem has a unique solution in non-relativistic and special relativistic physics.

The situation with general relativity is more complex. The Cauchy problem here
is naturally associated with the (‘presentist’) picture, in which the system—it is the
spacetime itself and its matter content—is the result of some evolution processing
the ‘not-yet-happened future’ into the ‘already passed past’. Unfortunately, this con-
venient and intuitive picture so deeply contradicts the very foundations of relativity
(with its ‘block universe’ concept) that, to my knowledge, no way has been found
so far to give it a rigorous meaning. Suppose, however, for a moment that one can
restrict oneself exclusively to the globally hyperbolic spacetimes. Then the universe
would be presented as the product

M = L
1 × S, (�)

see Proposition 51(c) in Chap. 1, and the coordinate t parameterizing the first factor
would take the rôle of time in the special relativistic problem. The fact that the
spacetime is curved would affect the laws of motion, of course, but the world lines of
particles still would be transverse to the surfaces of constant time (as long as we do
not consider tachyons, see the previous section) and fields still would be described by

https://doi.org/10.1007/978-3-319-72754-7_1
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hyperbolic differential equations. The Cauchy problem for themwould be (typically)
well posed, when the initial state were fixed at a Cauchy surface {t0} × S, and would
have a unique solution.17 After the topology of S is fixed the geometry of M is fully
described by the (local) quantity, its metric �, and the metric can be dealt with as any
other field: one fixes � and its derivatives at S and the Einstein equations give us the
metric in any point of M , see Chap.7 in [76]. General relativity thus would become
an ordinary field theory differing from electrodynamics, say, only by details of the
field equations.

The questions which we (very briefly) discuss in this section are:

(1) Is the universe globally hyperbolic?
(2) If so, how to derive this fact theoretically?
(3) And if not, how to describe matter (let alone geometry) evolution?

3.1 Is the Universe Globally Hyperbolic?

Unfortunately, in answering the question in the title we cannot be guided by empirical
evidence. We do not know how the loss of global hyperbolicity would manifest
itself observationally. Assume, for example, that a topology change like that in the
spacetime M2, see Fig. 3, occurs once a year in every ball of the Solar system size.
Then the topology change [a process inconsistent with global hyperbolicity, see (�)]
would be one of the most common phenomena. And, nonetheless, the assumption
contradicts, apparently, no observations. Then again, nothing seems to be inconsistent
with the opposite assumption, that our universe is globally hyperbolic.

As for theoretical analysis, Penrose conjectured that the answer is positive and
formulated the principle, see [146] and references therein, that presumably agrees
with classical general relativity.
Conjecture (‘Strong cosmic censorship’.) A ‘generic’ inextendible solution of the
Einstein equations with a ‘physically reasonable’ right-hand side, is globally hyper-
bolic.18

The words ‘generic’ and ‘physically reasonable’ are intentionally left undefined
until appropriate theorem comes along. Formally, this makes it impossible to discuss
the conjecture in terms of validity: for some understanding of those words it is
certainly true. Still, the conjecture is not meaningless, because there is more or less
clear intuitive understanding of those words. ‘Generic’ essentially means ‘that which
does not evolve from the initial data so special that it would be physically impossible
to achieve’ [176]. The requirement that spacetimes be ‘physically reasonable’ means
that their matter content must not be so perverted as to lead to singularities in the

17Which, of course, is not a coincidence: originally global hyperbolicity was introduced by Leray
[113] as a property guaranteeing the existence and uniqueness of these solution [76].
18This is a retelling, not a quotation.
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Minkowski space. Perhaps, it will also include some energy conditions (such as the
dominant energy condition).

Penrose put forward some arguments in favour of cosmic censorship, see, e. g.,
[146], but in the later publication [147] he characterized them as ‘rather vague’ and
doubted the existence of any at all plausible general lines of argument aimed in
this direction. Below we mostly discuss the uniqueness of the relevant solutions
to the Einstein equations, but serious difficulties emerge already with proving their
existence. Indeed, a lot of inextendible solutions with physically reasonable sources
are known to be globally hyperbolic. But this does not bring us any closer to the
aim, because as a rule these spacetimes are highly symmetric and thus are by no
means ‘generic’. A possible way to support the conjecture would be to show that
small perturbations of the initial state leave the solution globally hyperbolic. This,
however, is quite hard mathematically and, to my knowledge, has been done so far
only for a handful of empty spacetimes, see [4, 156] for reviews.

The ‘intuitive clarity’ of the conjecture should not be overestimated. Note, in
particular, that it leans on the concept of ‘initial data’, and we do need something
of this kind: fixing only the (type of) the right-hand side in the Einstein equations
by no means fixes their solution and its geometry, in particular. Typically, there will
be infinitely many different spacetimes corresponding to the same type of the matter
source. And most of inextendible ones—in fact, by the uniqueness theorem, there
may be at most one exception [23]—will be non-globally hyperbolic.

Example 33 Let M1 be a globally hyperbolic inextendible solution of the Einstein
equations with a physically reasonable (whatever this means) matter source. Remove
a sphere Sn−2 from M1 and denote by M the double covering of the resulting space-
timeM1−S

n−2, see Fig. 1.5. Obviously,M is exactly as generic and inextendible19 as
M1 and solves Einstein’s equationswith the same source.20 And yet, it is non-globally
hyperbolic.

So, the idea suggests itself to exclude the redundant solutions by imposing initial
conditions. It is hard, however, even on the intuitive level, to give a sense to the
notion of ‘initial conditions’ in the general non-globally hyperbolic case. Suppose,
for example we wish to consider some globally hyperbolic spacetime as a solution of
the Einstein equations satisfying such-and-such initial conditions. It is natural to take
these conditions to be the geometry in a neighbourhoodU of some Cauchy surface S
(for simplicity we consider the vacuum case, otherwise wewould have to require also
the equality of the values of the matter fields). But which spaces should be regarded
then as having the same initial conditions (we must be able to answer this question in
order to find out whether they all are globally hyperbolic as the conjecture asserts)?
If these are all spacetimes containing a region ϑ(U ), where ϑ is an isometry, than
the uniqueness of the solution satisfying the specified initial conditions is out of the
question even in the class of globally hyperbolic spaces.

19This (hopefully obvious) fact can be rigorously proven much as Proposition 14 in Chap. 5,
cf. Corollary 15.
20This is important: the problem in discussion is not local, one does not expect anything like ‘D-
specialisation’ of the geometry [27] in the vicinity of the removed sphere.

https://doi.org/10.1007/978-3-319-72754-7_1
https://doi.org/10.1007/978-3-319-72754-7_5
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Example 34 The set S : x0 = 0 is a Cauchy surface of the Minkowski plane, see
Example 8 in Chap. 1. The local isometry

ϑ : (x0, x1) �→ (x ′
0, x

′
1), where x ′

0 ⇋ ch1 x0 + sh1 x1, x ′
1 ⇋ sh1 x0 + ch1 x1

maps S to a spiral in the—globally hyperbolic—flat cylinder obtained from that plane
by the identification

(x0, x1) = (x0, x1 + 2π), ∀x1,2.

ϑ sends some region U ⊃ S to a neighbourhood of the spiral. In doing so, however,
it does not preserve global properties. In particular, the aforementioned spiral (not
being achronal) is not a Cauchy surface.

Thus, one apparently will have to understand the term ‘initial conditions’ as a
set of conditions that distinguish a particular spacetime from the infinite number of
solutions of Einstein’s equations with given right-hand side, but that do not reduce to
the Cauchy data. Exactly what are those conditions is not clear at the moment. This
is not that important for relativity itself, but is crucial for the concept of evolving
universe: in order to use it, one must be able to answer questions like ‘How will the
Minkowski half-plane x0 < 0 end up? Will it evolve into the Minkowski space, or,
say, into the DP space?’21

3.2 Should General Relativity Be Slightly Modified?

As is discussed in the previous subsection, to overcome the lack of predictive power
of relativity one must have a means to exclude some spacetimes without appealing to
initial conditions. One possibility is to prohibit the redundant spacetimes by fiat, i. e.
to modify general relativity by adding a new postulate to it. To find an appropriate
postulate is a highly non-trivial task, but we can try, at least, to formulate (perhaps
somewhat vaguely) a list of its desired properties:

1. The sought-for postulate must not be ‘too global’. For example, it makes little
sense to postulate directly that the spacetime must be globally hyperbolic: a
requirement fixing the structure of the entire spacetime from the infinite past to
the infinite future, does not well fit in with the evolutionary picture;

2. It must be restrictive enough for determining uniquely the extension of a given
space in, at least, simplest cases like the Minkowski half-plane mentioned in the
previous subsection;

3. On the other hand, it must be mild enough so as

21In this relation one can often read that the Einstein equations do not specify the topology. This
is truth, of course, but not the whole truth. Thus, the DP space differs geometrically from M2 of
Example 30 even though they have the same topology and both solve the Einstein equations with
the same right-hand side and the same initial condition (by which this time we understand that they
coincide at t < −1).

https://doi.org/10.1007/978-3-319-72754-7_1
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(a) not to prohibit Minkowski, Schwarzschild, de Sitter, etc. spaces;
(b) not to come into conflict with another postulate of general relativity, accord-

ing to which the spacetime describing our universe is inextendible. In par-
ticular, it must not exclude all extensions of some ‘admissible’ extendible
spacetime [as would be the case if we required, for example spacetimes to
be static, see the discussion below Definition 5].

For example, one could require of the spacetime22 that it would remain globally
hyperbolic ‘as long as possible’, cf. [37]. Mathematically this could be formulated
as follows: the spacetime must have a closed surface R such that the region D(R),
see Definition 53 in Chap. 1, has no globally hyperbolic extensions. An advantage of
this choice is that—at least for the vacuum solutions of the Einstein equations—D(R)

is unique for a given pair (R, �R), see Sect. 7.6 in [76]. Yet, this does not solve the
entire problem of the non-uniqueness of evolution, because there exist extendible
globally hyperbolic spaces, all extensions of which are non-globally hyperbolic,
see Sect. 2 in Chap.4, for example. The postulate in question, contrary to our wish 2,
does not allow one to determine which evolution will be preferred by such a space-
time.

To exclude the aforesaid non-uniqueness one might want to prohibit the ‘unphys-
ical’ singularities like that appearing in Example 33. Thus, Hawking and Ellis pro-
posed [76] to postulate that our universe is described only by locally inextendible
spacetimes (a spacetime M is called locally extendible, if it contains an open set U
with noncompact closure in M , and U has an extension—obviously different from
M—in which its closure is compact).

Yet another possible postulate was proposed by Geroch who required the space-
time to be ‘hole-free’, which means the following.

Notation 35 For an arbitrary set R ⊂ M denote by D+(R) the set of all points p
such that every past inextendible causal curve through p meets R.

Clearly, ifD− is defineddually, i. e. by changing ‘past’ to ‘future’, thenD+ ∪ D− = D.

Definition 36 23A space-time M is hole-free, if for any achronal surface R ⊂ M ,
and any embedding θ : U → M ′, where U is a neighbourhood of D+(R), it is true
that

ϑ(D+(R)) = D+(ϑ(R)).

(roughly speaking, in a hole-free spacetime each achronal surface has the greatest
possible Cauchy development).

It turned out, however, that both postulates suffer from a common drawback—either
of them excludes even the Minkowski space, see [11] and [104], respectively.

A few more candidate postulates are obtained by modifying the definition of the
hole. One of them was proposed by Clarke [28], see [129] for a critical analysis.

22In fact, as it seems, this postulate is implicitly adopted by relativists.
23This is a slightly refined version [104] of the formulation given in [63].

https://doi.org/10.1007/978-3-319-72754-7_1
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64 2 Physical Predilections

Another one is due to Geroch [125], who altered his initial definition by requiring
that ϑ(R) be acausal. Finally, a postulate different from those two is discussed by
Minguzzi in [129]. It seems to satisfy wish 3a, but not 3b.

3.3 Matter in Non-globally Hyperbolic Spacetimes

So far we have concentrated on evolution of the geometry of a spacetime. But the
situation with matter is, in a sense, even worse. Indeed, even if we found a way to
describe a non-globally hyperbolic spacetime in terms of evolution, this still would
not automatically enable us to describe its matter content.

As a simplest example consider a flat strip U

ds2 = −dx20 + dx21 , x1 ∈ R
1, x0 ∈ (−1, 1).

in an inextendible spacetime M . Suppose, at the moment x0 = 0 (or, put differently,
on the Cauchy surface S : x0 = 0 of the spacetime U ) there is exactly one particle
A . Where will the particle find itself in the (proper) time �τ = 1? If we somehow
knew that the strip will evolve into a Minkowski space there would be no problems
with answering this elementary question. But in the general, non-globally hyperbolic,
case S is of course not a Cauchy surface. As a consequence, the question may have
infinitely many answers or none at all. Assume, for instance, that M is the DP space.
Then there are the following possibilities:

(ai) It may happen that the particle will cease to exist by that time. It will just
vanish in the singularity as is shown in the lower part of Fig. 5a.

(aii) Itmay also happen that the answer simply does not exist, because the specified
initial state corresponds to none of possible evolutions (i. e. to none of solutions of
equations of motion, or, in terms of [39], to the solution of ‘multiplicity zero’). For
instance, in the theory of pointlike perfectly elastic (identical) particles any solution
must contain the whole geodesic (composed, perhaps, from segments of the world
lines of different particles), if it contains its part. So, if a solution existed with initial
state shown in the upper part of Fig. 5a, it would contain the dashed segment with the
end points in S. Hence there would be also the particleA′ at the moment S, contrary
to the assumption that A is the only particle there.

(b) Consider, finally, the case—shown in Fig. 5b and in the lower part of Fig. 5a—
in which S is embedded in M so that D(S) �= M . This arrangement guarantees the
existence of past inextendible causal curves which remain forever in M − D(S)

that is beyond the Cauchy horizon. These may be, in particular, closed curves like
ð3, or curves appearing ‘from nowhere’ like ð1 and ð2. Along such curves some
unpredictable (for an observer on this side of the Cauchy horizon) information enters
the spacetime [74]. In particular, these curves may be the world lines of some objects
(when this is consistent with the laws of motion thereof) that neither existed in
D(S), nor originated from only objects which existed there. The unusual origin of
these objects—for reasons that will become clear in a moment they will be called
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Fig. 5 aTwodifferent extensions ofU to aDP space.bði—are theworld lines ofCauchy’s demons.
In particular, ð3 is a closed curve (demons of this kind are called jinns in [127]). Varying the initial
velocity of ð1 one obtains infinitely many different evolutions ofA (in [39] such a trajectory is said
to have ‘infinite multiplicity’)

Cauchy demons—does not make them any less physical than the conventional ones:
the latter, after all, also appear only from either infinity, or a singularity. So we
must take both kinds equally serious (which is especially clear from the ‘block
universe’ viewpoint). This is how the unpredictability of evolution manifests itself:
what happens beyond the horizon is affected by factors—the presence of demons
and their behaviour—which cannot be taken into account before the horizon.

Being legitimate particles, demons, nevertheless, may have quite bizarre interre-
lation with causality. Let A be a system whose initial state is fixed at S. Suppose,
that in the absence of demonsA has no evolution compatible with that state, but such
an evolution does exist, if there is a demon ð in the right place at the right time (for
example, this is the case [91] if—instead of A—particles B and B′ are prepared
at S in the state shown in Fig. 5a, see also examples in Chap.6). It is natural to ask
what will happen if we prepare such a state in a real experiment. Clearly—since we
managed to do so—ð will appear where it is needed. But our preparations take place
at S, while the world line of ð does not meet it. So, this demon is brought to existence
by quite a wonderful mechanism.

Remark 37 The situation with the Cauchy problem for fields is approximately the
same. However, some spaces were found, where appropriately fixed initial data pro-
vide the uniqueness of solution of the wave equation, see [6, 52] and references
therein. Also a prescription was formulated [81] which could play the role of the
missing data in solving the Cauchy problem for the scalar field in static non-globally
hyperbolic spacetimes.

https://doi.org/10.1007/978-3-319-72754-7_6


Chapter 3
Shortcuts

The question of interstellar travel under present conditions of
physical theory is ... uh ... vague.

Alfred Lanning in [1]

1 The Concept of Shortcut

Signal propagation considered in the previous chapter does not exhaust all types
of motion which one might call superluminal. Imagine, for example, that we plan
an expedition to Deneb. The distance d from the Sun to Deneb, determined from
the parallax, is about 1500 ly. So, a pessimist could think that the expedition, if it
is scheduled to start in t (s) = 2100CE, will reach the destination no sooner than
in t ( f ) = 3600CE and its report will be received on the Earth no sooner than in
t (�) = 5100CE, which makes the whole enterprise meaningless.

NotationThe Sun, Deneb and the light rays used in determining the distance between
them are all supposed to lie in a common simply connected (practically) flat region
U , so we use the standard Cartesian coordinates in which t is the time coordinate and

in which the Sun and Deneb are at rest.
↔
T will denote the time taken by the whole

round trip and s, f and � refer, respectively, to the start of the expedition, its arrival
at Deneb and its return to home.

Suppose now that the successfully completed expedition returns to the home
port at

�′ : t (�′) = 2016CE. (�)

Undoubtedly, such a trip would deserve the name ‘superluminal’.
The subject of this chapter is the situations in which (�) holds even though (1) no

tachyons are involved (in contrast to what was considered in Sect. 1 in Chap.2) and
(2) the expedition takes place in the same world M in which the distance between the
Sun and Deneb was found. A simple example of such situations is the flight through
an appropriate wormhole, see the following text.
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The second condition means that the trips under consideration do not reduce to
(semi)-superluminal gravitational signals, see Sect. 2.4 in Chap.2. Yet, there is some
similarity between them: two different worlds are compared (the real and a fictitious
ones; in this chapter these are, respectively, M andL4) and a tripmade by a spaceship
in the former is recognized as superluminal when it is faster than the corresponding
trip made by a photon in the latter. This time, however, we do not attribute the
difference between the two worlds to (consequences of) a particular event s. The
wormhole might appear long ago and be known to the pilot even before the start. In
the general case that wouldmean that the points s, f, w, w′ ∈ M have no counterparts
in L

4 and we cannot compare the trips in question, see Sect. 2.4 in Chap.2. We get
around this problem by requiring all these points to lie in U , which is isometric to
the corresponding region of L4.

It is the spacetimes in which superluminal, in this sense, trips are possible that
will be called shortcuts. Before proceeding further and giving a rigorous definition
let us dwell on the question of how the phenomenon is at all possible. Why can a

simple bound
↔
T > 3000 yr based on the naive inequality

↔
T � t (�′) − t (s) = [t (�′) − t ( f )] + [t ( f ) − t (s)] > 2d (1)

fail? The point, as we shall see from specific examples, is that, first, the relevant
properties are not quite local: a straight segment is guaranteed to be the shortest
connection between its end points, if it lies in E

n . Belonging to a flat region is
insufficient, see Example 2. Even if the universe is curved somewhere away from the
Sun–Deneb route, the distance between the stars may turn out to be much less than
d. Second, in the pseudo-Riemannian case it is often hard at all to define a quantity
resembling distance.

Example 1 What is the distance d from the horizon of a Schwarzschild black hole
of mass m to an observer with r = r0 > 2m? The metric in the relevant region is

ds2 = −(1 − 2m
r )dt2 + (1 − 2m

r )−1dr2 + r2d�2,

so it might seem natural [111] to define the sought-for distance by the formula

d �
∫ r0

2m
(1 − 2m

r )−1/2dr.

But the thus defined distance is constant, while the horizon is a sphere moving in
each its point with the speed of light.

The idea that changing the geometry of the space outside a flat region W we
can change the distance between the end points of a segment γ ⊂ W might seem
surprising. This happens, however, even in the two-dimensional Riemann case, when
the distance between two points is defined, as is customary in the Riemann spaces, to

https://doi.org/10.1007/978-3-319-72754-7_2
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γ

γ(a) (b)

Fig. 1 Either surface differs from E
2 only in the compact regions shaded in grey (in the case of a

plane with handle, depicted at the right, it should be borne in mind that the inner parts of the gray
annuluses are identified). In both cases, γ lies in a Euclidean region. Nevertheless, γ is not the
shortest curve with these end points. The latter is depicted as a thick line

be the length of the shortest curve γs connecting them. The reason is that the shortest
may be a geodesic leaving W , see Fig. 1.

Example 2 Consider a plane with metric

ds2 = �2(r)(dx2 + dy2), r �
√

x2 + y2, (2a)

where � is a monotone function such that

�
r<(1−δ)r0

= �0, �
r>r0

= 1, (2b)

δ,�0 � 1, and r0 being some positive constants. The plane is flat except in a thin
annulus 1 − δ < r/r0 < 1, and beyond the annulus, it is indistinguishable from the
Euclidean plane. Nevertheless, as is easily checked, the point (x = −r0, y = 0) is
much closer to the diametrically opposite point (x = r0, y = 0), than if the whole
space were flat (≈2�0r0 against 2r0).

Example 3 Consider a Riemannian space (M, �R) depicted in Fig. 1b. It is obtained
by removing two equal circles from a plane and deforming some neighbourhoods of
the resulting holes so as to glue them together on the next step. To put it rigorously
pick a plane and introduce two polar coordinate systems in it: (r, ϕ) and (r ′, ϕ′).
Their origins are denoted o and o′, respectively, and the angles ϕ, ϕ′ are measured

(clockwise) from the direction of
−→
oo′. Remove from the plane two equal discs

B � {p : r(p) � (1 − δ)r0}, B′ � {p : r ′(p) � (1 − δ)r0},

where 0 < δ � 1 and the constant r0 is so small that the discs are disjoint. The next
step would be to enclose either of the just obtained holes by a ring and to glue these
rings together. To do so, however, we need an isometry ψ, see Sect. 6 in Chap.1,
such that after gluing the rings together, by ψ, one obtains a Hausdorff space. But,
as follows from Test 68 in Chap.1, there is no such isometry on M � E

2 −B−B′.
So, we proceed by deforming the rings, that is by defining a new metric �R in M and
requiring it to satisfy the condition

https://doi.org/10.1007/978-3-319-72754-7_1
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ds2 =
{
dr2 + r2 dϕ2, at r > (1 + 2δ)r0,

dr2 + [(r − r0)2 + r20 ] dϕ2, at (1 − δ)r0 < r < (1 + δ)r0,

and the same condition with r ��� r ′. Now the space is non-flat in the narrow
annuli r (′)/r0 < (1 − δ, 1 + 2δ) shown shaded in Fig. 1b, and their inner parts
r (′)/r0 < (1 − δ, 1 + δ) are related by the isometry

r ′[ψ(p)] = 2r0 − r(p), ϕ′[ψ(p)] = −ϕ(p). (3)

ByTest 68 inChap.1 the use ofψ in gluing the rings together results in the appearance
of a Hausdorff Riemannian space. Topologically it is a plane with handle, see Fig. 3a.

Now note that the segment γ lies entirely in the flat region. Nevertheless, its ends
can be connected by a geodesic running through the handle and that geodesic will
be shorter than γ (if the distance between the balls B and B′ was sufficiently large).

Remark 4 The isometry ψ is non-unique. We could use as well any composition of
that defined in (3) with a rotation ϕ 	→ ϕ + ϕ0 or reflection ϕ 	→ −ϕ (if we don’t
mind non-orientable surfaces). Each time we would obtain a different space even
though the corresponding simply connected regions of all these spaces are isometric.

It is by generalizing in the simplest way the just considered examples to the four-
dimensional Lorentzian case that we come to the idea of the shortcut.

Definition 5 Let C be a timelike cylinder in the Minkowski space L4 (i.e. a set of
the form L

1 × B, where B is a spacelike open three-dimensional disc). A region U
of a globally hyperbolic spacetime M and also M itself are called shortcuts, if there
are an isometry χ : (M −U ) → (L4 −C) and a pair of points p, q ∈ (M −U ) such
that

p � q, χ(p) 
� χ(q).

In other words, we call M a shortcut if it can be obtained from the Minkowski space
by replacing a timelike cylinder C with something else (viz. U ) so that a pair of
initially spacelike separated points become causally related. The trip from p to q is
‘faster-than-light’ in the sense that the traveller reaches the destination faster than a
photon (be the spacetime L4) would.

Remark 6 An observer in M indifferent to what takes place in U may think that
they live in the Minkowski space. The presence of the shortcut would show up only
in the ‘tachyonlike’ behaviour of ordinary particles, which can now travel between
spacelike connected points. So, one may conjecture [93] that, by analogy with a pair
of tachyons, see Sect. 2.1 in Chap.2, a combination of two shortcuts can be converted
into a time machine. This conjecture was confirmed in special cases [46, 47, 136].

https://doi.org/10.1007/978-3-319-72754-7_1
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2 Wormholes

2.1 What Are Wormholes?

The concept of wormholes (‘bridges’) is almost as old as relativity itself [42]. Still
there is no commonly accepted rigorous definition of wormhole as of today. The
reason probably is that one usually needs such definitions only in proving general
theorems, while theorems concerning wormholes are very few.

To visualize the spacetime in question imagine two Euclidean spaces E3, from
each of which a ball is removed. Connect smoothly—with a cylinder S2 × I—the
boundaries of the holes left by the missing balls (the difference with what was
done in Example3 is in that the balls there lied initially in the same space). The
resulting space, see Fig. 2a, is called an inter-universe wormhole [172]. A vicinity
of the ‘seam’—shown in grey—is called the throat and the (somewhat indefinite)
neighbourhoods of the former holes are mouths. When the space under discussion
is viewed as a spacelike section of a spacetime, the latter is called a wormhole, too.
Also, the same name is sometimes given to spaces resembling that described above
(we shall consider a couple of examples), or even to a throat alone. In particular,
there is a ‘local’ approach, within which the defining property of the wormhole is the
presence of a throat, which is understood as a closed two-surface of the minimal—
with respect to some infinitesimal deformations—area [80]. In this approach the
space depicted in Fig. 2b is a wormhole.

A classic example of a wormhole is the Schwarzschild space (though in this
case the spaces connected by the throat are only asymptotically flat), see Chap.31
and especially Fig. 31.5 in [137]. Another typical wormhole is the Morris–Thorne
spacetime. This is an (obviously static and spherically symmetric) space with metric

throat
mouth

(a) (b)

Fig. 2 As a rule, by a wormhole one understands a three-dimensional analogue of the space (a),
or the four-dimensional result of its evolution. Sometimes this name is extended to spaces like b
[172]
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ds2 = −e2�(x)dt2 + dx2 + r2(x)(dϑ2 + sin2 ϑ dϕ2), x ∈ R, r > 0, (4)

where r and� are smooth functions tending at x → ±∞, respectively, to |x |+c1±c2
and to ±c3. In the region, where dr/dx 
= 0, this metric is often written [136] as

ds2 = −e2�dt2 + dr2

1 − b/r
+ r2(dϑ2 + sin2 ϑ dϕ2), r 
= b(r).

The functions �(x) and b(x) in this representation are called, respectively, the
shape and the redshift functions. If the space outside of a Morris–Thorne worm-
hole is empty, � and b by Birkhoff’s theorem must take the same form as in the
Schwarzschild space. This allows one to talk about the ‘mass’ of a wormhole’s
mouth (note that the masses of the mouths do not have to be equal). It is worthy of
note that there are no reasons to expect such a mass to be positive either.

Example 7 Consider an externally flat wormhole, which is defined to be a Morris–
Thorne space W�, with

� = 0, r = |x | + þ at x /∈ (−z, z),

where þ and z are positive constants. As is easily seen, the wormhole consists of
three regions: the throat ‘of length 2z’—it is the set of the points with |x | � z—and
two Minkowski spaces, in either of which the set r � þ + z is missing. The masses
of both mouths of this wormhole are zero.

Remark 8 We shall consider many spherically symmetric spacetimes. These, for-
mally speaking, are spacetimes of the formL

1 ×S in each section {t}×S, t ∈ L
1 of

which the group SO(3) of isometries acts. Its orbits are spheres labelled by radiuses
r , and it should be stressed that for a sphere S the value r(S) is not the distance to
the ‘centre’ (the centre may not exist at all, as is the case with the wormholes), but√

A/(4π), where A is the area of S. Correspondingly, the quantity r(S1) − r(S2) is
the difference in size between S1 and S2 and not the distance between them.

Example 9 Consider the spacetime

ds2 = −dt2 + r dx2 + r2(dϑ2 + sin2 ϑ dϕ2),

x ∈ R, r(x) � þ + 1
4 x2, þ � const.

Making r a new coordinate (at x 
= 0, of course), transform the metric to

ds2 = −dt2 + r

r − þ
dr2 + r2(dϑ2 + sin2 ϑ dϕ2), at r 
= þ.

Thus, the spacetime under consideration is a simplestMorris–Thorne wormhole with
� = 0, b = þ. Remarkably, its scalar curvature R is zero. This means, in particular,
that the classical massless scalar field [8], i.e. the field obeying the equation
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Sun Deneb

(a)

(b)

Fig. 3 Sections of an intra-universe wormhole. a The section t = const , ϕ = const is merely a
plane with a handle. This is the same surface as in Fig. 1b. b The section z = const . Actually, λ is
a continuous curve traversing the wormhole and the grey curve pp′ is a closed geodesic

(� − ξ R) φ = 0, ξ = const, (∗)

can be constant in this spacetime: φ = φ0. The stress–energy tensor for such a
solution is Tab = ξGabφ

2
0 , see [14, (3.190)]. Thus, this wormhole being filled with

the field φ = 1/
√
8πξ , solves the entire system consisting of (∗) and Einstein’s

equations [95].

Consider now another type of spacetime. It is constructed exactly as the inter-
universe wormholes with the only deviation: the two balls that are to be removed
are taken not in two different spaces, but in different regions of the same space,
so that instead of the surface depicted in Fig. 2a one gets a ‘handle’ depicted in
Figs. 1b and 3a. It is the evolution of this surface that constitutes a wormhole W�. The
wormholes of this kind are called intra-universe [172] and of all spaces constructed
in this section so far, only they satisfy the definition of shortcut (if the throat is
sufficiently short). Especially interesting are intra-universe wormholes with variable
distance between the mouths. Such spacetimes, however, do not always admit a
(3+1)-splitting, so we have to modify our description.

Remove from the Minkowski space two open cylinders, C and C ′, bounded at
each t by the spheres, respectively,


t � {p : x2(p) + y2(p) + z2(p) = c2}, and


′
t � {p : [x(p) − d(t)]2 + y2(p) + z2(p) = c2},
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where d(t) is the x-coordinate of the point α(t) of some timelike curve α, see
Fig. 3b (instead of spheres one could take, say, tori, pretzels, or other appropriate
two-dimensional closed surfaces and instead of the Minkowski space—some other
asymptotically flat spacetime). Now we could just glue together the boundaries of
the thus obtained cylindrical holes. The result would be a wormhole whose mouths
move with respect to each other, but the space would not be smooth. So, the last
step would be ‘smoothing the seam’. If, however, we are to describe a wormhole
with infinitely short and narrow throat (that the motion of the mouths may leave the
throat short is seen from Fig. 5a), we can simplify our task and model the wormhole
by the ‘holed’ space L4 − C − C ′ in which the following rule acts. An inextendible
curve reaching a point p ∈ 
t with velocity v is regarded as differentiable only if it
is continued by a curve with the initial velocity v′ emanating from p′ ∈ 
′

t ′ , where

�t = �′t ′ , �ϑ = �′ϑ ′ , �r = −�′r ′ , �ϕ = −�′ϕ′ ,

ϑ ′(p′) = ϑ(p), ϕ′(p′) = −ϕ(p), τ (p′) = τ(p) + cτ .
(5)

In these relations, r , ϑ , and ϕ are the standard polar coordinates in a neighbourhood
of 
t , while r ′, ϑ ′ and ϕ′ are the coordinates in a neighbourhood of 
′

t ′ induced by
an isometry ψ that maps the former neighbourhood to the latter. cτ is a constant and
τ(p(′)) denotes the (Lorentzian) length of the portion of C (′) confined between the
plane t = t0 and the point p(′)

τ (p) � t (p), τ (p′) �
∫ t (p′)

t0

√
1 − ḋ2 dt̆, (6)

where the dot stands for d/dt̆ . In otherwords τ is the time between themoments t = t0
and p(′) ∈ 


(′)
t (′) as measured by an observer at rest with respect to the corresponding

mouth (we do not have to specify where in 
(′) the point p(′) lies, that is what we
required the narrowness of the wormhole for).

The just given description ofW� suffers an important ambiguity: before the bound-
ary ofC is glued to the boundary ofC ′ the former can be shifted in time and/or rotated
as in the two-dimensional case, see Remark 4. In terms or the rules (5) this is a con-
sequence of the arbitrariness of cτ and ψ. The latter is defined only up to an inversion
ι and a rotation φ mapping 
′

t ′ to itself (see Fig. 4).
Thus even a simplest (static, spherically symmetric, flat outside a compact—in the

space directions—set, and having d = const) intra-universe wormhole W� has many
free parameters, including the distance d, the shift cτ and the three angles defining
the mutual orientation of the mouths. Note that the last four parameters are global.
Varying the values of these parameters one obtains quite different wormholes—
suffice it to say, that cτ determines whether causality holds in W�—but that difference
cannot be established in any local experiments where the relevant regions are simply
connected. The same is true for the difference between intra- and inter-universe
wormholes (Fig. 3).
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Fig. 4 An oriented spherically symmetric wormhole. For a curve traversing it, the exit point is
obtained from the point of entry by a translation ψ—it sends a sphere around one mouth to that
around the other—and a reflection with respect to the ‘zeroth’ meridian. Which meridian is zeroth
is determined by the choice of two freely specifiable angles

Another important characteristic of a wormhole is its ‘traversability’. The point is
that in the course of its evolution a wormhole can break so quickly that no observer
will have time to travel through the throat. To put differently, the regions on opposite
sides of the throat will not be connected by causal curves. It is such wormholes that
are called non-traversable.1 The best-known specimen of a non-traversable worm-
hole is the (maximally extended) Schwarzschild space, see Sect. 2.1 in Chap.9 for
a brief consideration and [58], [135, Sect. 31.6] for detailed ones. The traversable
wormholes are exemplified by the static space (4).

Of all the types of shortcuts the wormholes are studied the most, see [172] for a
review as of 1994. This is because their significance is not restricted to the subject
of this book: whether wormholes (can) exist is interesting by itself. We have got
used to the idea that the universe topologically may not be just R4 when Planckian
physics or, on the contrary, cosmology are discussed. However, when it comes to the
macroscopic scale, multiple connectedness of spacetime is often regarded exotic and
essentially unphysical. It seems important to (in)validate this—somewhat strange—
bias. Also, wormholes, if they exist, offer an exciting possibility to rule out the
concept of electric charge and thus to make a great step towards uniting gravitation
and electromagnetism. A beautiful idea of ‘charge without charge’ was proposed by
Einstein and Rosen in [42] and by Wheeler [180, 181]. Consider the electrostatic
field with the force lines entering one mouth of a wormhole and coming out of the
other. The field satisfies the charge-free Maxwell equations, but to a distant observer
themouths of the wormhole look like a pair of opposite charges; in particular, the flux
through a sphere enclosing2 one of them is non-zero. This inspires one to speculate
that perhaps in nature there is no such ‘substance’ as charge at all, and the charged
elementary particles aremerelymouths ofwormholes. Unfortunately, todaywe know

1Originally, the requirements were much more restrictive [136].
2Of course, it only seems that the sphere encloses the mouth: the real boundary of the throat is a
pair of spheres, each around its own mouth.

https://doi.org/10.1007/978-3-319-72754-7_9
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too little about wormholes for a serious and detailed discussion of the ‘chargewithout
charge’ concept.

Remark 10 Though the wormhole does resemble a pair of charges, the resemblance
is not perfect.

(1) A charge generates the electric field, but it also moves in response to the external
electric field. Why and how a wormhole would move in such a situation one can only
speculate;
(2) Just because awormhole is not theMinkowski space, the solutions of theMaxwell
equations do not have the Coulomb form near a point charge, even when the charge
rests somewhere far from the throat of W� in a flat region. Physically speaking, this
means that, generally, in the presence of a wormhole a point charge experiences a
force from the field generated by that very charge (a ‘self-force’), see A.1.

As of today there is no observational evidence either for or against the existence
of wormholes [168] (some—rather weak—restrictions were inferred from the idea
that a wormhole mouth with negative mass m ∼ −0.1M� must produce—by lensing
quasars in an unusual way, see [32, 165] and the references there, gamma ray bursts
of yet unobserved characteristics [168], or—also unobserved—double images of the
mentioned quasars [165]). So, the problem of the existence of wormholes is purely
theoretical at the moment. It can be split into two parts:

(1) Can a wormhole appear? Proposition 51(c) in Chap.1 implies that new worm-
holes can form only at the cost of the global hyperbolicity. But this gives us only
a necessary condition. Sufficient ones are hard to be found as we know too little
about the evolution of non-globally hyperbolic spacetimes, see Sect. 3 in Chap.2 for
a discussion. On the other hand, it is conceivable that the universe came into being
already with a wormhole in it. And again, today nothing can be said either for or
against such a possibility.
(2) Can a traversablewormhole be supported against collapse by realisticmatter? The
first models of such wormholes [18, 44] were quite exotic and this was no accident:
as is shown in [136] the Einstein equations require the matter in the throat of a static
spherically symmetric wormhole always to be exotic, i.e. to violate the weak energy
condition.

An argument due to Page, see Remark in Sect. F2 of [136], shows that the same
must be true in much more general case too. Consider a very large sphere � around
one of the mouths and the beam formed by the inward null rays normal to � and
crossing it at a given moment. The expansion θ of that beam, see Sect. 1.2 in Chap.2
for definition, is initially negative in all points p ∈ � (unless the space inflates very
fast, see below). However after the beam traverses the throat, the expansion, clearly,
changes its sign—the geodesics begin to diverge. Thus, there are two possibilities:

1. θ becomes infinite in a certain point p∗ ∈ γp of each of the geodesics traversing the
wormhole. Correspondingly, any point of γp lying beyond p∗ can be reached from

https://doi.org/10.1007/978-3-319-72754-7
https://doi.org/10.1007/978-3-319-72754-7_1
https://doi.org/10.1007/978-3-319-72754-7_2
https://doi.org/10.1007/978-3-319-72754-7_1
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� along a timelike curve, which is in fact a corollary to [76, Proposition 4.5.14],
see the paragraph following Proposition 6 in Chap.2;

2. there is a point in γp where θ increases.

The first possibility is definitely excluded in the case of a Morris–Thorne worm-
hole, where the radial geodesics for lack of a centre never meet and θ , consequently,
remains locally bounded. In more complex wormholes one might expect that some
γp do have points conjugated to �. However, the spacetime must be quite patholog-
ical if every null geodesic normal to � (of those that traverse the wormhole) on its
way to the infinity is run down and left behind by some other geodesic of the same
beam. On the other hand, the second possibility can be realized only at the cost of
the Weak energy condition, see (4) in Chap.2. It is easy to verify, for instance, that
in the wormhole from Example 9 the WEC is violated in every point. This brings us
to the following hypothesis:

Hypothesis 11 No sufficiently regular spacetime satisfying the weak energy condi-
tion contains a traversable wormhole.

Our consideration was not quite rigorous, of course, and we left it unspecified which
spacetimes should be regarded as ‘sufficiently regular’. Apparently, they must at
least be globally hyperbolic: dropping this requirement enables one to find many
traversable wormholes in which the WEC holds. These are, for example, the Kerr
spacetime, the ‘dihedral’ wormholes [172], and the spaces like those considered in
Sect. 5 inChap.4.However, global hyperbolicity alone is not sufficient for the hypoth-
esis to be valid. For example, in the space found in [123], both global hyperbolicity
and the WEC hold. Yet there is a traversable wormhole in it (inflating so fast that
even the ingoing null radial geodesics have a positive expansion, cf. [117]). Fried-
man, Schleich and Witt formulated the theorem—called ‘Topological censorship’
[54]–asserting that for a traversable wormhole to violate the WEC it is sufficient to
be globally hyperbolic and asymptotically flat (the latter is a term, its precisemeaning
can be found in [64]). The theorem, however, remains unproven [105].

One can speculate that some day a kind of matter will be discovered able to violate
theWEC, but usually, it is thought that classicalmatter does obey it. Then fromPage’s
arguments, it follows that a wormhole can be stabilized against instant collapse and
thusmade traversable only by quantum effects. This possibility is discussed in part II.

2.2 Wormholes as a Means of Transport

Consider a short traversable—static, say—wormholewith one of its entrances located
near the Earth and the other—near Deneb. Either the onward flight to Deneb through
the throat—its duration is t ( f ) − t (s) ≈ cτ , see (5)—or the return trip—it takes
t (�′) − t ( f ) ≈ −cτ—will be faster than it would be in the Minkowski space. So,
the wormhole is a shortcut and quite an effective one, because irrespective of d and

cτ the round trip takes no time at all:
↔
T ≈ cτ − cτ = 0. What makes it possible in

https://doi.org/10.1007/978-3-319-72754-7_2
https://doi.org/10.1007/978-3-319-72754-7_2
https://doi.org/10.1007/978-3-319-72754-7_4
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T

Sun Deneb

Earth f
(a)

(b)

Fig. 5 a Two consecutive spacelike sections of a spacetime containing a wormhole one of whose
mouths moves with respect to the other. The shape of the handle does not change, but the ‘distance
between the mouths’ grows. b On its way back the spaceship plunges into the wormhole in 3515

and, according to the rule (5), emerges from it near the Earth in 2016, i.e. in
↔
T = τ( f ) ≈ 1 year

after the start

this case to get around the ‘light barrier’, embodied in the inequality (1), is the fact
that the ‘real’ distance to the destination has nothing to do with the parameter d.

As a means of transport, such a shortcut has a serious drawback: it seems improb-
able that suitable wormholes can be found for all places of interest. So, let us discuss
the possibility of moving a wormhole mouth (implying that it is easier to build—or to
find—a wormhole with both mouths near the Earth and vanishing cτ ). An interstellar
expedition, in this case, might look as follows. An astronaut starts from the Earth
and heads to Deneb piloting a usual spaceship which tows one of the wormhole’s
mouths, see Fig. 5b. The mouth is pulled so gingerly that the throat remains short
and our simplified description valid. The spaceship moves with a near-light speed
and though by the Earth clock its trip takes t ( f ) − t (s) ≈ 1500 yr, the proper time
τ( f ) of the flight is small, a year, say. So, when the traveller returns home through
the wormhole it turns out that a mere

↔
T � t (�′) − t (s) = τ(�′) = τ( f ) − cτ = τ( f ) ≈ 1 yr (7)

has passed after the start. This solves the problem of the ‘light barrier’ though in
quite a bizarre way: the expedition returns home 15 centuries before it reaches the
destination.

Note that the trip described above is not a time journey. Roughly speaking, the
‘time jump’ is accompanied here by a ‘space jump’ and the latter is greater than the
former. Indeed, even if the spaceship that plunges into the wormhole at the point
f was launched from the Earth in s̃ � s (this is possible because the towed mouth
moves with a subluminal—though large—speed), it will return to the Earth in
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↔
T = t (�′) − t (s̃) > t (�′) − {t ( f ) − d[t ( f )]} =

t (s) +
∫ t ( f )

t (s)

√
1 − ḋ2 dt̆ − t ( f ) + d[t ( f )] =

∫ t ( f )

t (s)

(√
1 − ḋ2 − 1 + ḋ

)
dt̆ =

=
∫ t ( f )

t (s)

√
1 − ḋ

(√
1 + ḋ −

√
1 − ḋ

)
dt̆, (8)

where the inequality expresses the fact that to catch up with a photon emitted from
the Earth the spaceship must leave the Earth before the photon. The next equality
is obtained by substituting the expression (6) into the junction condition t (�′) =
t (s) + τ( f ), see (5). In our scenario d only grows with time, so it follows from the

bound (8) that
↔
T is positive and causality is not violated.

Remark 12 The difference t ( f )−t (�′) = ∫ t ( f )

t (s)

(
1−

√
1 − ḋ2) dt̆ is the time of flight

through the wormhole (as measured by the Earth clock). We see that it is negative
(this is, in effect, the twin paradox). If one used the naive formula T = S/v onewould
have to conclude that the spaceship travels a negative distance. This effect does not
have to be the result of moving a mouth. Any other method yielding cτ ∈ (0, d) will
do (for the homeward trip the best causality preserving cτ is, clearly, cτ = d − 0).

The use of wormholes as a means of travel looks so simple merely because we
have ignored all hard questions so far. One of them concerns the towing of the mouth.
How exactly could this be done? The point is that themouth is not a body, even though
there is a remote resemblance. There is no use throwing rocks in it—the rocks will
fly through the wormhole without stirring the mouths. It is equally useless to drag
it with a net—a rope that clutches the mouth will take the form of a geodesic, see
Fig. 5a, and pulling its ends further will result in breaking the rope, not in shifting
the mouth. One could try to ‘beckon’ the mouth [137] by bringing to it a gravitating
body, or an electric charge. But again, no reasons are seen to expect that the mouth,
like a pointlike test particle, will move to or from the charge.

3 Warp Drives

Just as the wormhole can be obtained by the generalization to the four-dimensional
case of the two-surface depicted in Fig. 1b, so one obtains another shortcut by multi-
plying byL2 the surface shown in Fig. 1a (or, to bemore precise, the surface discussed
in Example 2). And by slightly modifying this procedure one obtains what can be
called ‘warp drive’.

Example 13 (The Alcubierre space) Let � be the function defined by (2b). Then
the spacetime M with topology R

4 and metric

ds2 = −dt2 + �2(r)(dx2 + dy2 + dz2) r �
√

x2 + y2 + z2, (9)
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(a) (b)

Fig. 6 a The Alcubierre space. The inside of U is flat, but the light cones there are 1/�0 times
more open (in these coordinates) than in the external space. So, even the very mildly sloping curve
γ is actually timelike. Correspondingly, it will reach Deneb much sooner than in the case � ≡ 1.
b The Krasnikov tube. The light cones in U are tilted towards the Earth. Because of this q � p,
even though t (q) < t (p)

is flat everywhere except the thin wall bounding the cylinder U = {r < (1 − δ)r0}.
But the light cones inside U are ‘more open’, then outside (this, of course, is a
coordinate effect), and therefore the curves like γ from Fig. 6a are timelike, even
though they would be spacelike be the whole cylinder {r < r0} flat. Obviously, M is
a shortcut.3

Note that in using the Alcubierre space an advanced civilization4 would come up
against the same problem as with static wormholes: this type of warp drive does not
enable one to quicken the first flight (unless, by a happy coincidence, one found an
already existing shortcut just to the chosen destination) [93]. Indeed, assume that
geometrically our Galaxy now and in the foreseen future is (almost) a region of the
Minkowski space. Then in order to create the cylinderU between theEarth andDeneb
one would have to distribute in a certain way some matter and wait until the metric
governed by the Einstein equations will take the desired shape. In particular, one will
have to wait until the metric changes appropriately in the vicinity of Deneb, which in
the absence of superluminal—in the sense of Sect. 2 in Chap.2—communicationwill
take at least 1500 yr. By this time the flight—even with a superluminal speed—will
not make sense anymore.

The problem can be solved as in the case of wormholes by making the ‘distance’
from the Earth to Deneb negative.

3The metric originally considered by Alcubierre [3] is slightly different from (9), which was pro-
posed in [29] (in particular,the light cones in U are tilted forward), but the principle of operation is
the same.
4To which in this context it is customary to refer since [136].

https://doi.org/10.1007/978-3-319-72754-7_2
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Example 14 (The Krasnikov tube) Let M be again R
4, and let the metric be

� : ds2 = (dx − dt)(k(r)dx + dt) + dy2 + dz2. (10)

k(r) stands for a monotone function such that

k
r>r0

= 1, k
r<(1−δ)r0

= k0, where − 1 < k0 = const < 0.

The space is curved only in a spherical layer of width δr0 exactly as in the previous
example. But there is a significant difference between the two situations: the return
trip now ends before it starts [93] in perfect analogy to the trip through the wormhole
discussed on p. 79. This effect is caused by the fact that in the region U , where
k = k0, the light cones are tilted so much that some future-directed null vectors are,
nevertheless, directed towards decreasing values of t , see Fig. 6b. As a result, the
timetable of the expedition is more like that with a portable wormhole mouth than
that considered in Example 13: in 3515, immediately after the visit to Deneb is over
(see Fig. 5b), the spaceship plunges into the curved region (‘tube’) and emerges from
it near the Earth in 2016.

Remarkably, such aback-to-the-past journey—through solving, perhaps, the prob-
lem of prohibitively large interstellar distances—does not involve causality violation.
M actually is globally hyperbolic.5

Proof Rewrite the metric as

� : ds2 = −ω2
0 + ω2

1 + dy2 + dz2, ω0 � dt + k−1
2 dx, ω1 � k+1

2 dx

and denote by e0,1 the vectors dual to 1-forms ω0,1

e0 = ∂t , e1 = 2
k+1 (

1−k
2 ∂t + ∂x ).

Consider an arbitrary inextendible future-directed timelike curve μ(l). Decompose
its velocity in the orthonormal basis {e0, e1, ∂x , ∂y}:

∂l = A∂t + B 2
k+1 (

1−k
2 ∂t + ∂x ) + C∂y + D∂z .

Because μ(l) is future-directed and timelike

A > 0, and A2 > B2 + C2 + D2. (11)

Now introduce the auxiliary Riemannian metric �R in M

�R : ds2 = ω2
0 + ω2

1 + dy2 + dz2

5Though a pair of tubes can combine into a time machine [47].
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(it differs from � only in the sign at ω2
0) and require that—yet unspecified—l be the

natural parameter with respect to �R , i.e. that |l1 − l2| be the length of the segment
of μ between μ(l1) and μ(l2). Then

A2 + B2 + C2 + D2 = 1.

Comparing this with inequalities (11) one gets

A >
√
2/2 > |B|.

Now let us define F(t, x) = t + k0−1
2 x and find out how F changes along μ:

dF/dl = F,i (∂l)
i = AF,t +B 2

k+1 (F,x +F,t
1−k
2 ) = A + B k0−1

k+1 + B 1−k
k+1 �

�
√
2/2(1 − k−k0

k+1 ).

Thus, F changes with the speed bounded away from zero. On the other hand, since
(M, �R) is, obviously, complete, l takes all values fromminus to plus infinity. Hence,
μ intersects—exactly once—the surface F = 0. So, this surface is a Cauchy surface
of M , which, correspondingly, is globally hyperbolic by Proposition 50 in Chap.1.

The existence of the points p and q appearing in the definition is evident and we
conclude that M is a shortcut.

The purpose of the just considered examples was to show the possibility in prin-
ciple of superluminal—in the above-specified sense—travel. Below, however, we
shall also touch on some practical aspects and see that the large size of a shortcut
can make its creation impossible by requiring too much ‘exotic matter’. It should be
noted therefore that for an interstellar trip one does not need a huge cylinder with r0
of the order of light years. In fact, it would suffice to enclose the traveller in a small
sphere—in the case of Example 13 it is called the Alcubierre bubble—with diameter
h � d (see Fig. 7). The transition from the cylinder to the bubble enables one to
reduce the relevant quantity quite considerably: by the factor 1032, when d ∼ 100 lyr
and h ∼ 100m.

Whether putting the shortcuts into a separate category of spacetimes is useful, only
the future will tell, but one drawback in Definition 5 is already seen. The point is that
the space far from a wormhole or an Alcubierre bubble is normally thought of as flat.
But in the definition of a shortcut requires this flatness must be exact. Unfortunately,
this, seemingly technical, restriction apparently excludes the spacetimes satisfying
the WEC. Indeed, if the energy density is everywhere non-negative, and in some
regions even positive, one would expect the mass of the shortcut to be also positive,
while according to our definition it is zero.6

6This reasoning is not rigorous. As of today the conjecture that any shortcut violates the WEC is
not proven (see [121, 140], though).

https://doi.org/10.1007/978-3-319-72754-7_1
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h
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y

(a) (b)

Fig. 7 The Alcubierre bubble. a The section z = 0. The curve from s to f is timelike, its little
slope being merely a coordinate effect. At the same time, the little slope of the front of the grey
piece of the spacetime means (since the front propagates in the region where the cones are narrow)
that the speed of its propagation is greater than the speed of light. b The section t = const . The
spaceship moves together with the thin spherical shell the speed of which is superluminal. In the
absence of superluminal signals, this means that the ‘bubble’ is not a single moving sphere, but
rather a sequence in time of independent motionless spheres, cf. Example 10 in Chap.2. They could
be created by some devices placed in advance along the travel path and programmed to come into
operation at preassigned moments [93]

At first glance, this shortcoming might be overcome simply by changingL4 in the
definition of a shortcut to an appropriate curved spacetime and the cylinder C to an
appropriately defined world tube. A thus defined ‘curved shortcut’ may satisfy the
WEC, as is shown in A.2. It is, however, hard to say how ‘efficient’ such a shortcut
is. A positive mass is something opposite to the shortcut, something that gives rise
to the signal delay [59] called the ‘Shapiro effect’. So, a pessimist could suspect that
all a shortcut satisfying the WEC can do is to compensate the said tiny delay.

https://doi.org/10.1007/978-3-319-72754-7_2
https://doi.org/10.1007/978-3-319-72754-7


Chapter 4
Time Machines

Everyone knows that dragons don’t exist. But while this
simplistic formulation may satisfy the layman, it does not suffice
for the scientific mind. [There were] three distinct kinds of
dragon: the mythical, the chimerical, and the purely
hypothetical. They were all, one might say, nonexistent, but each
nonexisted in an entirely different way.

The Third Sally, or The Dragons of Probability [112]

In this chapter we start with the introduction, in Sect. 1, of the concept of appearing
time machine and give a simple example thereof. In the following section, a few less
trivial examples are considered. The first of them is the Misner spacetime. It is one
of the oldest and presumably the most important time machines: indeed, being just
a flat cylinder it is in a sense the time machine in its pure form. And anyway, with
its rich and counter-intuitive structure the Misner space deserves studying at least
as a wonderful source of counter-examples [133]. Its simplest generalizations to the
non-flat case are considered too. Then, in Sect. 3, we briefly discuss the process of
evolution of a wormhole into a time machine, a widely known and popular process.
Its importance lies in the fact that it is one of the most ‘realistic’ scenarios of how
the universe might lose its global hyperbolicity.

All the listed time machines as well as that from Example8 share one property:
they have no “holes” like those in the Deutsch–Politzer space, see Example73 in
Chap. 1. In Sect. 4 we formalize that similarity by introducing the notions of com-
pactly generated and compactly determined Cauchy horizons. All time machines
with such horizons are shown to have some important common properties. However,
none of those properties are compulsory for a general time machine. We show that
by example in Sect. 5.

Among the time machines not considered in this book particularly interesting
are the Clifton–Pohl torus [141, Example 7.16] and the flat four-dimensional time
machines proposed by Gott [67] and Grant [68].
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1 The Time Machine

In any spacetime where the causality condition (not the principle of causality!) is
violated an inhabitant and their younger/older self can meet or at least exchange
signals, with all related consequences. In this sense any such space might be called
a time machine. Historically, the Gödel, see [76, Sect. 5.7] and van Stockum [171]
spacetimes were first to be called so, but there is a much simpler spacetime—the
cylinder CM from Example42 in Chap. 1—that is just as good a model of time
machine as those two. Indeed, the recognized merit of the latter is that they solve the
Einstein equations with “realistic” sources and that they are free from singularities.
But exactly the same is true, of course, in the case of CM .

The spacetimes like these three, i.e. such that causality is violated in every point:
í
M = M , may be called eternal time machines. Can it be that our universe is among
them? On the one hand, it seems premature to rule out this possibility. One still can
imagine that the expansion of the universe will change to contraction [179] some
day. It is tempting then to identify the initial and the final singularities and to obtain
(after resolving somehow that singularity) an eternal time machine.1 On the other
hand, there is not a grain of evidence that this is really how the universe is arranged.
Surprisingly, there is a chance that the uncertainty may be resolved experimentally.
Indeed, causal loops which come to mind immediately (for example, world lines
of particles resting with respect to the cosmological fluid) are huge. However, their
existence automatically implies the existence also of arbitrarily short (in the Lorentz
sense) closed causal curves. The latter are obtained from the former by approximating
themwith piecewise null broken lines. This suggests that cosmological scale causality
violations may affect laboratory physics. Unfortunately, the role of an observer will
be passive in any case: if the universe is not an eternal time machine now, it never
will be.

More interesting are time machines in which the causality violating curves lie to
the future of some regular region M r. Let us require for definiteness that

M r
⇋ M − Cl

(
I +(

í
M)

)
is intrinsically globally hyperbolic, (1)

that is before the closed causal curves appeared the causal structure of the spacetime
was “as nice as possible”. Note for future reference that M r

(a) is a past set;
(b) is causally convex by Proposition37(a) in Chap. 1;
(c) is globally hyperbolic by Proposition47 in Chap. 1.

Condition (1) is satisfied, for example by the DP space. Unless the existence of such
time machines is somehow excluded either theoretically, or at least observationally,
one may speculate that the part of the universe we live in is just M r. Which means

1True, within such a scenario the arrow of time looks mysterious [120]. Then again, it looks so in
any scenario.

https://doi.org/10.1007/978-3-319-72754-7_1
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that the universe is causal and predictable, cf. Sect. 3 in Chap. 2, so far, but one day
it will lose both properties—a time machine will appear.

Definition 1 Suppose, the set
í
M of an inextendible spacetime M is non-empty and

satisfies (1). Then M , (or, sometimes, a connected component of
í
M) will be called

a time machine, or an appearing2 time machine.

Comment 2 As the example of Minkowski space populated by tachyons shows,
the principle of causality may be violated even in a spacetime with most innocent
geometry. Such a spacetime, however, may not be a time machine according to our
definition.

Comment 3 We require connectedness because by Proposition35(b) in Chap. 1 the

set
í
M is the union of disjoint and obviously connected subsets

í
Mα ⇋ J+(pα) ∩ J−(pα), pα ∈ M, α = 1 . . . k.

Correspondingly, each
í
Mα is called a timemachine and we speak of k timemachines

in this M .

Corollary 4 Any two points in a time machine lie on a common closed causal curve.

Local physical laws inside the time machine are the same as outside. However,
the pathological causal structure imposes non-trivial—and counter-intuitive, as in
the case of “temporal paradoxes”, see Chap.6—constraints on possible solutions,
cf. 3.3 in Chap. 2. Surprisingly little is known today about those constraints (see
[52, 114], though). So, the study of the time machine reduces mostly to the study
of M r, i.e. of the moment, when the spacetime loses the global hyperbolicity (see

also [88, 109, 132], where a number of facts concerning the geometry of Bd
í
M are

established).

Proposition 5 The boundary of M r is its future Cauchy horizon.

Bd M r = H+(M r).

Proof In M r pick a spacelike Cauchy surface S (it exists there by Proposition52 in
Chap. 1). The proof will be divided into three steps.
1. First, let us prove thatD(S) is an open set. To this end note that S being achronal in
the spacetime M r ⊂ M is also achronal as a subset of the whole M (indeed, a causal
curve emanating from a point of S cannot return back to S without leaving M r, but
once it has left M r it will never return—and hence never meet S again—because M r

is causally convex, see property (b) above). The openness ofD(S) now follows from

2In contrast to eternal ones mentioned above.
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Proposition54 in Chap. 1.
2. Next, let us establish the equality

M r = D(S). (∗)

The inclusion M r ⊂ D(S), as was mentioned just below Proposition54 in Chap. 1, is
obvious. Suppose, the converse inclusion does not hold, i.e. in D(S) there is a point

p of Cl
(
I +(

í
M)

)
. In such a case there must be also a point p′ ∈ D(S) ∩ I +(

í
M),

since D(S) is open. And this is impossible, because, moving from p′ to the past
along a timelike curve α (there is no loss of generality in assuming α to be future

inextendible: not leaving the set I +(
í
M), which is separated from S, it cannot meet

S to the future of p′), we could reach a point through which a closed causal curve
� passes. The curve consisting of α and � (the latter being counted infinitely many

times) is inextendible, but lies entirely in I +(
í
M), see Proposition23(d) in Chap. 1,

and therefore will never meet S, which contradicts the definition of D(S).
3.D(S), inasmuch as it coincides by (∗) with M r, is a past set. Hence the second term
in the right-hand side of (18) in Chap. 1 is disjoint with the first one and therefore
can be dropped. This is our assertion. �

Proposition 6 The surface S from Proposition5 is closed in M.

Proof Let λ be an inextendible timelike curve through a point p ∈ ClM S. The
chronological future of that curve must contain points of a neighbourhood of p, and
hence, some points of S and thus of M r. But M r is a past set, so λ itself also has points
in M r. It follows that λ (being timelike) meets S in a unique point p′. If p′ �= p, then
p ∈ (

I +(p′) ∪ I −(p′)
)
(since these points are connected with the timelike λ), and

hence S ∩ (
I +(p′) ∪ I −(p′)

)
is non-empty. This, however, is impossible, because S

was shown to be achronal in M , see the proof of Proposition5. So, p′ = p, which
means, in particular, that p ∈ S. �

Combining Propositions56 in Chap. 1, 5, 6 and Corollary58 in Chap. 1 immediately
gives

Corollary 7 The boundary of a time machine is a closed achronal hypersurface
generated by past inextendible null geodesics. If γ1 and γ2 are such generators, then
J+(γ1) ∩ J−(γ2), when non-empty, is their common future end point.

Of all spacetimes considered so far in this book only the DP space is a time machine.
But its topology is quite non-trivial: it has non-contractible loops, “holes”, etc.,
see p. 35. However, the impression that the time machine is an attribute of some too
pathological spacetimes is deceptive. Let us check that it appears as a result of even
a slight deformation of a most dull spacetime.

Example 8 Consider a Euclidean space (R4, ε) with the cylindrical coordinates
t, z, ρ, ϕ. It is covered by two regions U and K defined by the inequalities

https://doi.org/10.1007/978-3-319-72754-7_1
https://doi.org/10.1007/978-3-319-72754-7_1
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https://doi.org/10.1007/978-3-319-72754-7_1
https://doi.org/10.1007/978-3-319-72754-7_1
https://doi.org/10.1007/978-3-319-72754-7_1


1 The Time Machine 89

U : χ2 >
1

4
, K : 0 � χ2 < 1

2 , where χ ⇋
√

t2 + z2 + (ρ − 1)2.

K is a solid torus which appears for a brief time around the circle

� : t = z = 0, ρ = 1

and inflates to a maximum at t = 0, while U is the, slightly expanded, complement
of K . Further, define a vector field v by the equality

v = εU ∂t + εK ∂ϕ,

where {εU , εK } is the partition of unity subordinate to the open cover {U, K }. Clearly,
the spacetime (R4, �) with

gab ⇋ εab − 2�a�b

is the Minkowski space [cf. (12a) in Chap. 1] outside of K , that is in a region where
εK = 0 and εU = 1. However, inside K there are closed causal curves3: the circle �,
for instance.

2 Misner-Type Time Machines

2.1 Misner Space

Consider a usual flat two-dimensional cone M . It is convenient to perceive it as being
obtained from a plane (x0, x1) by cutting out the sector W bounded by the rays ν1,2

ν1 : x0 = ax1, ν2 : x0 = bx1, where x0 < 0, |a|, |b| > 1,

and gluing these rays together, see Sect. 6 in Chap. 1. It turns out that the properties
of the cone depend crucially on the signature or the metric. In particular, if the metric
of the initial plane is

ds2 = −dx2
0 + dx2

1 = −dαdβ α ⇋ x0 − x1, β ⇋ x0 + x1, (2)

then the geometry of M—which is called the Misner space in this case—is quite
bizarre. Its properties are the subject of the present subsection.

We begin with representing the Misner space as a cylinder. Consider a boost

� : (α, β) 	→ (κα, κ−1β), κ ⇋

√
(a+1)(b−1)
(a−1)(b+1) ,

3This spacetime is, basically, a variant of the time machine proposed as an example, in [74].

https://doi.org/10.1007/978-3-319-72754-7_1
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(b)(a)

Fig. 1 a In the half-plane β < 0 the bounding lines of the vertical strips are identified thus giving
rise to the cylinder, b In its upper half causality is violated, but its lower part (t < 0) is globally
hyperbolic. It is the latter that is called the Misner space. In order to obtain it from Q, one takes W
(the light gray sector) as the fundamental domain. The null geodesic γ meets the t-axis—which is
the other generator of the null cone—infinitely many times.

mapping the quadrant Q : α, β < 0 to itself, see Fig. 1, and ν1 to ν2. The parameter
κ is taken to be less than unity (which involves no loss of generality, as will become
obvious). Now M can be defined as the quotient of Q by the group of isometries
generated by � (cf. p. 37):

M ⇋ Q/G, G = . . .�−1, id,�,�2 . . . ; (3)

(that is how it is defined, for instance in [76]), i.e. as the space

ds2 = t−1dt2 − tdψ2 t < 0, ψ = ψ + 2 ln κ, (4)

where t and ψ are the coordinates in M induced by the projection π : Q → M and
the rule

∀p ∈ Q t (π(p)) = − 1
4α(p)β(p), ψ(π(p)) = ln

α(p)

β(p)
(mod 2 ln κ).

Written as in (4) the Misner space is associated rather with a cylinder, than with
a cone. In support of this picture note also that the fundamental domain is defined
non-uniquely. In the representation (3) we may take it to be not the sector W , but the
strip bounded by the null geodesics β = β0 and β = κβ0, see Fig. 1a, that is, obtain
M , by ‘rolling up Q into a tube’. At first glance, the fact that M can be perceived
both as a cylinder and as a cone seems paradoxical. The clue is in the fact that in the
Lorentzian case a sequence of circles with circumferences tending to zero (the case
in point are the circles t = const) can converge to a point (to the tip of a cone, say),
or to a closed null curve.
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The cylinder under discussion can be simplified further by choosing different
‘time’ or ‘angle’ coordinates:

τ ⇋ − ln |t |, ψ ′
⇋ ψ − ln |t |. (5)

With the aid of these coordinates (4) can be cast in more convenient forms:

ds2 = e−τ (−dτ 2 + dψ2) τ ∈ R, ψ = ψ + 2 ln κ, (6a)

ds2 = −2dtdψ ′ − tdψ ′2 t < 0, ψ ′ = ψ ′ + 2 ln κ. (6b)

The Misner space is causal and, moreover, globally hyperbolic (the circles τ =
const being evident Cauchy surfaces). It is extendible, however, which, of course,
comes as a complete surprise to one who thinks of this space as a cone. In particular,

a (maximal, as we shall see) extension MA ⇋ A/
G∼ can be built by simply replacing

everywhere above the quadrant Q to the left half-plane A ⇋ {p : β(p) < 0}. The
transformation α ↔ β maps Q to itself. Hence by starting from the lower half-plane
B ⇋ {p : α(p) < 0} instead of A we would arrive at a space MB , which is isometric
to MA, but does not coincide with it (in particular, some inextendible in MA curves
are extendible in MB and vice versa).

As α vanishes in some points of A, not all of the coordinates defined above (not,
for example ψ and τ ) can be extended to the whole MA, but t and ψ ′ can. Thus,
MA is obtained merely by replacing in (6b) the condition t < 0 with t ∈ R. The
spacetime MA, in contrast to M , is not causal—it is an appearing (if t grows in the
future direction) time machine. In the coordinates ψ, τ [the latter is the coordinate,
defined at t > 0 by relation (5)] the region MA − M takes the form

ds2 = −e−τ (−dτ 2 + dψ2), τ ∈ R, ψ = ψ + 2 ln κ,

which—up to the conformal factor e−τ and the replacement of the period from 3 to
2 ln κ—is the cylinder CM from Example42 in Chap. 1. Closed causal curves pass
through any point of this region and the closed null geodesic � : t = 0 (it is the
image of the ray α = 0 under the map π) separates it from the causal region M , see
Fig. 1b.

Now, let us consider the geodesic structure of the time machine MA. Clearly
(rigorously it can be proven by using [141, Lemma A9]), all geodesics here are the
projections of geodesics lying in the half-plane A. And each of the latter either is
parallel to the α-axis (and hence is complete), or terminates at it (of course, the end
points belong neither to the geodesic, nor for that matter to A at all). Every geodesic
γA of this second type is incomplete in A, and therefore its image γ = π(γA) is
incomplete in MA, which means that MA is singular. The geodesic γA is a straight
line α = cβ+d with c �= 0 and, as a corollary, its image γ (β) is given by a parameter
equation

t = − 1
4β(cβ + d), ψ ′ = ln 4 − ln β2.

https://doi.org/10.1007/978-3-319-72754-7_1
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Thus, as β tends to zero γ spirals infinitely winding itself onto the circle �. Now, pick
a pair of points in � and let Ua , Ub be their neighbourhoods. Since MA is Hausdorff,
they can be chosen so that

ClMA Ua and ClMA Ub are compact, ClMA Ua ∩ ClMA Ub = ∅. (7)

If γ—which is partially imprisoned in either of the neighbourhoods—had an end
point, that point would lie both inUa andUb at once, but this is impossible by (7). So,
γ can be extended neither in MA, nor in its extensions, if they exist (we shall see that
they do not). Thus, the singularity in the Misner space is true, i.e. non-removable.
On applying the same argument to the region |t | � t0 instead of the whole MA we
come to an unexpected conclusion: singularities may be present even in a flat and
compact subset of a spacetime.

Thus, there are three types of geodesic in MA:

1. Null curves ψ ′ = const (the generators of the cylinder). The affine parameter (it
can be α, for example) of such a curve is unbounded, so it is complete;

2. Incomplete geodesics infinitely winding themselves onto the Cauchy horizon
t = 0. Some of them are imprisoned in M (or in MA − M), the others intersect
the Cauchy horizon, reach the maximal (minimal) t , and approach the horizon
from above (correspondingly, from below4);

3. The closed null geodesic �. It is incomplete (because the ray α = 0, β < 0 is).
The reason is that (in)completeness is an attribute of a geodesic understood as a
map R → MA, not as a set of points of MA, cf. Remark7 in Chap. 1, and the
parameter length of the circle becomes less (if we move to the future) with each
return of the geodesic to its start. If, for example � is parameterized by β, then,
as is seen from Fig. 1a, in the future direction � becomes 1/κ times shorter with
each passage.

Above we have established that no maximal—in MA—geodesic can be extended in
any M̃ ⊃ MA, hence by Test 66 in Chap. 1 the spacetime MA is inextendible.

2.2 (Anti-) de Sitter Time Machines

A time machine similar to Misner space, but with different global structure, can be
obtained from a non-flat plane. In this subsection, we build a few such spacetimes,
see also [57, 90, 116].

Let S be the strip

� : ds2 = − 8
R sin−2(u + v)dudv, −π < u + v < 0. (8)

4The geodesics of the latter kind have self-intersections, in M . This, however, does not violate
causality, all such geodesics being spacelike.

https://doi.org/10.1007/978-3-319-72754-7_1
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(b)(a)

Fig. 2 a S is the two-dimensional (anti-, if the upper of the two arrows is timelike) de Sitter
spacetime. It is conformally flat and the conformal factor diverges on the boundary of S. b P is
the region α + β < 0. The grey half-annulus is one of the possible fundamental domains. The
horizontal and vertical rows of black dots depict, respectively, pm and qm

The free parameter is denoted by R because it is equal to the scalar curvature. If R
is positive, the spacetime (S, �) is called the (two-dimensional) de Sitter space. This
spacetime is highly symmetric and its global structure is as nice as that ofMinkowski
plane. Note, in particular, that it is non-singular (the straight lines bounding S are
infinities, not singularities, see A.3 in Appendix) and globally hyperbolic (which is
obvious from Fig. 2a).

If R < 0 the spacetime is called anti-de Sitter space. Sometimes the same name
is given to the space—denote it S̃—which is locally isometric to ours, but differs
from the latter topologically. S̃ is a hyperboloid embedded in an auxiliary flat space
and is obtained from S by rolling the latter up into a cylinder, that is by quotienting
it by the group the generator of which is a translation in the (∂u − ∂v)-direction [that
the translation is an isometry is seen from (8)]. The direction is timelike and it turns
out that S̃ is an eternal time machine. We do not consider it further.

In the region P ⊂ S defined by the inequality −π
2 < u, v < π

2 (it is the shaded
triangle in Fig. 2a) introduce the coordinates

α ⇋ tgu, β ⇋ tgv.

In these coordinates, P is a half-plane bounded by the straight line α = −β, see
Fig. 2b. The metric in P is

ds2 = − 8
R (α + β)−2 dαdβ.

It is easy to see now that there is an isometry �κ : P → P which sends every
point (α, β) to (κα, κβ), where κ is a positive parameter taken—for the sake of
definiteness—to be less than unity. The group G generated by �κ is properly discon-
tinuous and acts freely, see conditions (27) in Chap. 1. This implies that MP ⇋ P/G
is a spacetime and it is MP that we shall call (anti-) de Sitter time machine. The

https://doi.org/10.1007/978-3-319-72754-7
https://doi.org/10.1007/978-3-319-72754-7_1
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projection P → MP will be denoted by π: MP = π(P). As usual, MP can be
described also in terms of “cutting and pasting”. To this end on the plane (α, β) con-
sider a circle of radius β0 with centre at α, β = 0. Note that �κ merely “contracts”
this circle, i.e. sends its every point to the point with the same polar angle and with
radius κβ0. Thus, MP can be obtained by cutting a half-annulus bounded by the
mentioned circles out of P and glueing together its outer and inner boundaries, see
Fig. 2b.

To understand the structure of MP first note that P can be split into five invariant,
i.e. mapped by �κ to themselves, subsets. These are the half-axes α = 0, β = 0 and
the regions separated by them:

Q : α, β < 0, T1 : α > 0, T2 : β > 0

(a quadrant and two triangles). In each of these three the following coordinates are
defined

η̃ ⇋ ln |αβ|, χ̃ ⇋ ln |α/β|.

Correspondingly, MP consists of three regions, T1/G, Q/G and T2/G, separated by
two closed null geodesics, �α and �β (which are the images of the half-axes α = 0
and β = 0, respectively).

Coordinates in these regions are induced by the projection π (cf. the coordinates
t and ψ in Misner space):

∀ p ∈ P χ(π(p)) = χ̃ (p), η(π(p)) = η̃(p) (mod 2 ln κ).

and the spacetimes take the form

Q/G : ds2 = 2

R
ch−2 χ

2
[dχ2 − dη2], η = η + 2 ln κ, χ ∈ R,

T1(2)/G : ds2 = 2

R
sh−2 χ

2
[dη2 − dχ2], η = η + 2 ln κ, χ ≶ 0

[χ(p) → ∓∞, when p approaches �α,β]. In which of these cylinders causality holds
is determined by the sign of the term ∼ dη2, i.e. by the sign of R. For example, in
the de Sitter case (when R > 0) the regions T1,2/G are globally hyperbolic, while in
Q/G there is a closed causal curve χ = const through every point. Thus, depending
on how the future direction is chosen, MP is either a time machine with two regions
M r, or an eternal time machine evolving in two causally unrelated causal regions.
In the anti-de Sitter case the situation is reverse: there are two causality violating
regions—T1/G and T2/G—separated by the globally hyperbolic Q/G.

Remark 9 The causal regions of the three time machines are similar:

ds2 = �2
( − dτ 2 + dψ2

)
ψ = ψ + 2 ln κ,
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where

� = e−τ/2 τ ∈ R
1 Misner

� = 1√
R/2

sh−1τ/2 τ < 0 de Sitter

� = 1√−R/2
ch−1τ/2 τ ∈ R

1 anti-de Sitter.

As a point approaches the Cauchy horizon its τ -coordinate tends to ∞, −∞, and
±∞ in the first, second and third cases, respectively.

MP is singular. Indeed, each null geodesic in MP is the image of the corresponding
geodesic segment in (anti-)de Sitter space. This segment lies between the hypotenuse
and one of the legs of P , see Fig. 2a, and hence is incomplete. As with Misner space
this singularity is non-removable.

Proof Let γP(β) ⊂ P be a null geodesic defined by the equation

α(β) = α0 �= 0

(note that the parameter β is not affine, so, its unboundedness from below does not
imply the completeness—in the corresponding direction—of the geodesic). Pick a
negative number β0 and consider two sequences of points:

pm ⇋ γP(κ−mβ0), and qm : α(qm) = κmα0, β(qm) = β0 m ∈ N, (9)

see Fig. 2b. For each m, qm is in the orbit of the pm [that is qm = �i
κ(pm) at some

i , specifically at i = m], When m → ∞ the sequence {qm} converges to the point
q∞ with the coordinates α(q∞) = 0, β(q∞) = β0. Hence, its image π(q∞) in each
of its neighbourhoods contains points γ (β) ⇋ π ◦ γP(β) with unboundedly large
β. So, if γ had the end point it would be π(q∞). Now recall that β0 was chosen
arbitrarily, therefore the same must be true for any other point of �α . But a curve
cannot havemore than one future (past) end point, whence it follows that γ has no end
points at all, it is maximal in all possible extensions of MP . And for the same reason
(with α ↔ β) so are the vertical—in Fig. 2—geodesics. Thus, using again Test 66 in
Chap. 1, we come to the conclusion that MP is inextendible. �

In contrast to the Misner case, this time the isometry α ↔ β does not give rise to
any new extensions. Consider, however, the transformation I : S → S sending

w 	→ −π/2 − w, where w ⇋ u, v

(this is a coordinate inversion with respect to the point u = v = −π/4). I maps the
region P to P ′

⇋ T3 ∪ Q ∪ T4, see Fig. 2a. Quotienting P ′ by the group G ′ generated
by the isometry �′

κ ⇋ I ◦ �κ ◦ I −1 one gets a spacetime M ′
P isometric to MP . Now

https://doi.org/10.1007/978-3-319-72754-7_1
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note that, first, I (Q) = Q and, second, the orbits of G and G ′ in Q coincide [which
is easy to see, if we express I in terms of the coordinates α, β:

I : (α, β) 	→ (1/α, 1/β)

and infer that �′
κ = �−1

κ ]. This means that Q/G ′ = Q/G and, consequently, M ′
P ,

which is an extension of the former, is also an extension of Q/G. As in the Misner
case, it is impossible to extend Q/G both to T1/G, and to T4/G ′ (or to T2/G and to
T3/G ′ at once); otherwise, aswe know, therewould be a sequence (the just considered
sequence {pn} = {qn}, for example) with two different limits. It is possible, however,
to obtain twomore timemachines of the same kind, by applying the whole procedure
not to P or P ′, as above, but to the parallelogram cut in S by one of the following
conditions: −π/2 < u < 0 or −π/2 < v < 0.

2.3 Some Global Effects

BothMinkowski and de Sitter spaces are static, but the surgery used in transformation
them into the corresponding timemachines violates this symmetry.As a consequence,
the resulting time machines have an unusual property (‘local staticity’, see [57] and
Sect. 1.1 in Chap. 2): each of their simply connected regions is static, but the whole
spaces are not. What changes there with time are some of their global properties
(in particular, causal loops appear only to the future of some surface). Such a non-
standard feature has interesting consequences. In particular, conservation laws in
Misner space show in an unexpected way.

Consider, for example a free falling observer λ(ξ) who meets the same photon
γ (ζ ) twice: in s1 ⇋ λ(ξ1) = γ (ζ1) (ζ and ξ are some affine parameters) and in
s2 ⇋ λ(ξ2) = γ (ζ2), see Fig. 1b. The energy ε of the photon as measured by the
observer is

εi = c�M(ui , vi ), ui ⇋ ∂ζ (si ), vi ⇋ ∂ξ (si ), εi ⇋ ε(si ) i = 1, 2

(c in this expression is a constant of appropriate dimension and �M is the metric).
Between the meetings both the photon and the observer move steadily in a flat space.
So, one might naively expect that ε2 = ε1. This, however, is not the case: in fact, ε2
is κ−1 times greater than ε1.

Proof Let us, first, introduce a few useful objects. Pick a point s̃1 = π−1(s1) in A.
Denote by γ̃ (ζ ) and λ̃(ξ) the pre-images (under the projection π) of, respectively,
γ (ζ ) and λ(ξ) that pass through s̃1. For definiteness we take γ̃ to be a horizontal
geodesic α = const . By ũ1 and ṽ1 we denote the vectors in Ts̃1 tangent, respectively,
to γ̃ (ζ ) and λ̃(ξ). The isometry dπ sends them to u1 and v1, whence

ε1 = c�A(ũ1, ṽ1) = −cũ1
β �̃1

α (10)

https://doi.org/10.1007/978-3-319-72754-7_2
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[we have used (2) in the last equality].
The full pre-image π−1(s2) comprises infinitely many points, we need two of

them:
s̃2 ⇋ γ̃ (ζ2) and s̃ ′

2 ⇋ λ̃(ξ2) = �(s̃2),

see Fig. 1a. Finally, ũ2 denotes the velocity vector of the geodesic γ̃ in s̃2.
The proof consists in comparing the expression (10) for ε1 with its analogue for

ε2. In deriving the latter we shall need the vectors ũ
′
2, ṽ

′
2 ∈ Ts̃ ′

2
, which are the velocity

vectors of, respectively, γ̃ ′
⇋ �(γ̃ ) and λ̃.

It is obvious that in the spacetime (2) the components, in the coordinate basis, of
the velocity vector of any geodesic remains constant. Hence,

�̃′2
σ = �̃1σ , ũ2

σ = ũ1
σ , σ ⇋ α, β.

On the other hand, γ̃ and γ̃ ′ are pre-images of the same geodesic. So, if γ̃ (ζ ) satisfies
the equation β = c1ζ , the equation for γ̃ ′(ζ ) is κ−1β = c1ζ . Hence ũ′

2
β = dβ/dζ =

κ−1ũ2
β . Combining this with the previous relations we get

ε2 = c�A(ũ′
2, ṽ

′
2) = −cũ′

2
β �̃′2

α = −cκ−1ũ2
β �̃1

α = −cκ−1ũ1
β �̃1

α = κ−1ε1.

�

Thus, we have established that there are ‘dangerous’ null geodesics in Misner
space—a free falling observer before reaching the Cauchy horizon meets such a
geodesic infinitely many times. As measured in the observer’s frame, the energy of
a photon moving on the said geodesic exponentially grows with each encounter. The
same geodesics are present in de Sitter time machines and, in fact, as will be shown
below, see Sect. 4, in quite a broad class of time machines.

Consider now the wave equation � f = 0 in the (anti-) de Sitter time machine.
To this end define on P the function f̃ ⇋ f ◦π−1. Since π is a—local—isometry, f̃
satisfies the corresponding equation

∂α∂β f̃ = 0. (11)

Obviously, f̃ is a sum of two arbitrary functions—one of α and the other of β:

f̃ = a(α) + b(β).

It follows from the definition of f̃ that

a(κα) + b(κβ) = a(α) + b(β).

By differentiating this equality we get

κ∂αa(κα) = ∂αa(α), κ∂βb(κβ) = ∂βb(β).
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So, if in some point (α0, β0) the derivative f,α is non-zero, then f,α (κmα0) diverges
at m → ∞, and consequently, f cannot be smooth in the point (0, β0). The same
reasoning applies with α ↔ β. Thus, in the class of smooth functions defined on the
whole MP the wave equation has only constant solutions, cf. [137].

3 Wormholes as Time Machines

Consider a wormhole so short and narrow that it may be described by the spacetime
discussed in Sect. 2.2 in Chap. 3. This time, however, we shall choose the curve α(t)
which determines the motion of the moving mouth in a special way. Specifically, we
require that the distance d(t) between the mouths would decrease starting from some
time. Note that the ‘time jump’, i.e. the difference t ( f )− t (�′), where f the passage
of the spaceship through the right (moving) mouth and �′ is its appearance from the
left one, keeps growing, see Remark12 in Chap. 3. (This is, in fact, a variety of the
‘twin paradox’, it comes into play because we affixed a clock to either of mouths
and identify points with the same clock readings τ , not with the same t .) Thus, when
d(t) becomes sufficiently small, that is when the mouths come sufficiently close

together—this happens to the future of some three-dimensional surface—
↔
T turns

negative (the spaceship now returns home before the departure), which means that
closed causal curves have appeared in the spacetime5 [137]. In particular, a traveller
traversing the throat from right to left now can meet their younger self (event o
in Fig. 3a). Since the spacetime evolves from a globally hyperbolic initial region,
it satisfies the definition of a time machine given in Sect. 1, the above mentioned
-three-dimensional surface being its Cauchy horizon.

The importance of the time machines of this type lies in their apparent feasibility.
They look exotic today, still, as we shall see in Chap. 9, it is not impossible that
traversable wormholes do exist (or at least that they existed for some time in the
early universe). Then it is natural to assume that they and/or their mouths move
multidirectionally. So, the idea that the universe lost (or will lose one day) its global
hyperbolicity via the just considered mechanism does not seem too far-fetched.

To develop it a bit further consider a directed to the right null geodesic γ emanating
from a point between the mouths [in particular, at y(0) = z(0) = 0]. In some time
it arrives at a point of �′, or, which is the same, of �. In doing so it still lies in the
plane y = z = 0 and still is directed to the right (if we have chosen an appropriate
wormhole, cf. Sect. 2.1 in Chap. 3). Consequently, it will traverse the throat again
(this is the event p′

2 = p3), and so on. Thus, γ will never leave the surface depicted
in Fig. 3b. This surface is a two-dimensional time machine (its Cauchy horizon is
the closed geodesic qq ′) and it has the following property in common with Misner
and de Sitter spaces. The geodesic under consideration cannot meet qq ′, because
the latter, being a Cauchy horizon is also null. So, γ will approach qq ′ plunging

5Likewise, they appear in a spacetimewhere twowormholes—bothwith a constant distance between
the mouths—move with respect to each other.

https://doi.org/10.1007/978-3-319-72754-7_3
https://doi.org/10.1007/978-3-319-72754-7_3
https://doi.org/10.1007/978-3-319-72754-7_9
https://doi.org/10.1007/978-3-319-72754-7_3
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glued

glued

Cauchy horizon
Cauchy horizon

(b)(a)

Fig. 3 A wormhole turning into a time machine. a The dashed lines connect identified points (so,
each of the lines is, in fact a circle). The portion of the spacetime bounded from above by the Cauchy
horizon is globally hyperbolic. b The section y = z = 0 of the wormhole. The thin tilted lines are
a single geodesic γ

again and again into the right mouth and coming out from the left one. An observer
with the world line lying between the mouths will meet a photon moving on γ ,
infinitely many times before they reach the horizon. Moreover, with each encounter
the photon becomes more and more energetic, because q ′, as was already mentioned
in discussing (8) in Chap. 3, may lie only in the return leg of the journey.

Thus, in (simplest) wormhole-based time machines—in their initial globally
hyperbolic regions!—there are ‘dangerous’ null geodesics [137] similar to those
present in the Misner space. A photon moving on such a geodesic returns infinitely
many times in an arbitrarily small vicinity of a point in the Cauchy horizon, each
time more and more blue-shifted. This brings up a few questions:

1. Do not the existence of such geodesics and the pathology in the behaviour of
the solutions to the wave equation, see Sect. 2.3, indicate some instability of the
relevant time machines6?

2. How typical is it for time machines to have this property?

The answer to the first question is not clear. If wewish to treat the problem classically
(for the semiclassical analysis, see [115] andChap.7), wemust speak not of a photon,
but rather of a wave packet and, correspondingly, not of a null geodesic, but rather
of a five-parameter set thereof. What would happen with such a bundle if it contains
a ‘dangerous’ geodesic? On the one hand, the energy of a part of the bundle grows
with each return. But on the other hand, the wormhole acts as a diverging lens, as
is discussed on page 77. Therefore that part may become smaller and smaller [137].
So, which factor will prevail? In any case the whole effect can be easily neutralized
by simply building a brick wall between the mouths. Such a wall would not prevent
one from making a time trip (one can merely go round it), but would absorb the
potentially dangerous photons, at the classical level, at least.

6This question is quite old, see, for example [64].

https://doi.org/10.1007/978-3-319-72754-7_3
https://doi.org/10.1007/978-3-319-72754-7_7
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The second question is examined in the next section. We shall see that the appear-
ance of dangerous geodesics inheres in quite a broad class of time machines and, in
particular, in those originated from wormholes irrespective of their shapes, speeds,
etc. (this might seem strange, because a small rotation of �t before identifying it
with �′

t ′ would prevent γ from getting again in the throat [139]. The resolution is
that in the modified wormhole some of non-radial geodesics would become dan-
gerous). The existence of such a universal effect suggests the idea to estimate the
abundance of wormholes from astronomical observations, the wormholes must man-
ifest themselves as sources of well collimated high energy rays. One of the non-trivial
properties of the rays would be that they look as a bundle of photons with the total
energy E = ∑

i εi , where εi is the energy of the i th photon (thus, in a smoky room
one would see a set of rays of different colours and brightness). However, a screen on
the way of the bundle would absorb (if at all) only the photon of the highest energy.

4 Special Types of Cauchy Horizons

In time machines with ‘perforations’ (such as the DP space) the Cauchy horizon
emerges, loosely speaking, from nowhere. It is intuitively clear that such spacetimes
must differ strongly from those in which the horizon originates from the spacetime
itself (as in the wormhole-based time machines). To capture this difference, a special
class of time machines was introduced in [74].

Definition 10 A Cauchy horizon H+ is termed compactly generated, if it has a
compact subsetK ⊂ H+ in which every generator ofH+ is totally past imprisoned.

There are good mathematical reasons to single out in a special category the time
machines with compactly generated Cauchy horizons (CGCHs): on the one hand,
the category is rich enough to comprise many non-trivial specimens7 and on the other
hand, the defining condition is sufficiently restrictive to enable one to formulate and
prove meaningful statements, cf. [26, 74, 84, 88]. However, from the physical point
of view that condition is less transparent.8 Indeed, as a distinctive feature of these time
machines Hawking mentions that ‘…one might hope to predict events beyond the
Cauchy horizon if it is compactly generated, because extra information will not come
in from infinity or singularities’. This argument, however, is not quite convincing: in
any case one cannot predict an event e /∈ M r without information that lacks in M r:
some of the causal curves, simply by definition, arrive at e without ever entering M r.
And any information brought in by such a curve is apparently extra, whether the curve
originates from a singularity/infinity, or is just a loop of indefinite origin (though in

7These are, in particular, all time machines considered in this book so far, excluding the DP space.
8It is worth mentioning, therefore, that slightly different categories were considered too. In [88]

the set which is required to be compact is the entire
í
M , while in [142] it is a subset Q of a Cauchy

surface of M r such that first CTCs appear on the boundary of D(Q).
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the latter case unpredictability of that information may be restricted by some self-
consistency requirement). The extra information is essential: the geometry of M r

taken alone does not predetermine even whether the horizon will prove compactly
generated, see [97] or Theorem2 in Chap. 5.

Still, in a sense theMisner space ismore predictable than the DP space.We cannot
predict exactly what information will come into the former, but we know at least that
some information will: the appearance of the horizon is inevitable, as there is simply
no extensions of M r in which D(M r) is larger than M r

Definition 11 The Cauchy horizon of a time machine M is said to be forced, if M r

has no globally hyperbolic maximal extension.

The spacetime with a forced Cauchy horizon is perhaps the closest approach to the
“artificial” time machine: as will be demonstrated in Chap. 5, whatever one does
with the geometry of the world around them, one cannot compel the universe to give
birth to a closed causal curve (unless there is a yet unknown non-local law of Nature;
this could be, for example a law prohibiting ‘holes’, see Sect. 3.2 in Chap.2). But
by preparing a globally hyperbolic spacetime isometric to the region M r of a time
machine with forced Cauchy horizon, one constrains the universe to choose between
remaining causal or being hole free.

What makes the compactly generated Cauchy horizons interesting from the phys-
ical point of view is just the fact that they seem to be forced. This, however, is yet to
be established and that is why we shall consider also another, though quite similar,
type of horizon.

Definition 12 A Cauchy horizon is compactly determined, if it has an open9 subset
U such that for some Cauchy surface S0 of M r the set L ≡ J−(U) ∩ J+(S0), is
non-empty and compact.

As will be proven in the next subsection, all compactly determined Cauchy horizons
(CDCHs) are forced.

To be compactly determined a horizon need not be compactly generated. An
example is the spacetime

ds2 = d2y − 2dtdψ − tdψ2 y, t ∈ R
1, ψ = ψ + 1,

which is the Misner time machine, see (6b), multiplied by the real axis. In contrast,
the geometry of a CGCH which is not a CDCH is quite bizarre. Even if so patho-
logical spacetimes exist (which is not clear) they definitely do not fit the idea of the
‘laboratory-made’ time machine, while this is the only kind of time machines we are
interested in.

In this section, we consider both types of horizon (see also [26, 74, 84, 88]),
but first we need to introduce a few useful objects. Pick a smooth future-directed
timelike vector field τ normalized by the equality τ aτa = −1 [such fields always
can be found, see Proposition18 in Chap. 1]. Now the condition

9In the topology of the horizon, of course.

https://doi.org/10.1007/978-3-319-72754-7_5
https://doi.org/10.1007/978-3-319-72754-7_5
https://doi.org/10.1007/978-3-319-72754-7_2
https://doi.org/10.1007/978-3-319-72754-7_1
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�(ς , τ ) = −1, where ς ⇋ ∂l , (12)

fixes uniquely (up to an additive constant) the ‘arc length parameter’ l on any smooth
causal curve β(l). To see the geometric sense of l consider a tetrad in β(l) whose
zeroth unit vector is τ and, if τ and ς are linearly independent, the first unit vector
is chosen to be their linear combination. In such a basis (ς0)2 � (ς1)2 (since β

is causal), ς0 = 1 [by (12)], and ς i = 0 at i �= 0, 1. Thus, 1 � �R(ς , ς) =
(ς0)2 + (ς1)2 � 2, where

�R(x, y) ⇋ �(x, y) + 2�(x, τ )�(τ , y) (13)

is an auxiliary Riemannian metric in M . So, we can relate the difference l1 − l2 to
dl1l2 , which is the length (with respect to �R) of the segment β |l1−l2|

dl1l2 < |l1 − l2| <
√
2dl1l2 .

And the following evident statement shows why �R is so important (we shall use it
throughout this section).

Proposition 13 Let β(l) be a smooth causal curve which starts (ends) at a compact
set and lies in it at all positive (respectively, negative) l. Then β is future (past)
extendible, if and only if its length with respect to �R is finite or, to put it differently,
if and only if l is bounded.

4.1 Imprisoned Geodesics and Compactly Determined
Horizons

In this subsection, we study the geometry of the region immediately preceding a
CDCH. One of its peculiarities is the fact that all past-directed null geodesics {γm �=
γ } emanating from a point of a horizon generator γ must meet S0 in some {qm} lying
within a compact spot L ∩ S0, see Fig. 4. This means that there is a subsequence
of {γm} which converges both to γ and to the geodesic through a limit point of
{qm}. This latter geodesic, as we shall see, is “dangerous”. The property of the said
subsequence to have two limit curves is too exotic for a globally hyperbolic space,
which will enable us to prove that all CDCHs are forced.

We begin with proving that the past of any CDCH contains a geodesic infinitely
winding itself onto the horizon (we do not assert at the moment that this geodesic is
“dangerous”, because its energetic properties are not established yet).

Proposition 14 In any spacetime with compactly determined horizon there exists a
future inextendible null geodesic α, totally imprisoned in L ∩ M r.
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Fig. 4 The shadowed spot is
the set L ∩ S0 [106]. The
dashed lines are βi
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Remark 15 This fact does not contradict a Proposition44 in Chap. 1, because the
set L ∩ M r is non-compact, while its closure L, though compact, does not entirely
lie in M r.

Remark 16 In the two-dimensional case our proof would not work, but the proposi-
tion itself holds true, see the discussion at p. 99.

Proof Denote by H the set of the points that lie, together with all past-directed null
geodesics through them,10 in the horizon H+:

H ⇋ {x ∈ H+ : (
J−(x) − I −(x)

) ⊂ H+}.

Note that
H,when non-empty, consists of isolated points, (14)

because for any x ∈ H the set J−(x)− I −(x) is a neighbourhood inH+ of x and this
set does not contain any other points of H (which is immediate from Corollary7).

Now pick a point p in U − H, where U is the set appearing in Definition12.
The velocities of the horizon generators parameterized by the “length” l form in Tp

a—clearly closed and hence compact—proper subset of the sphere (12). So, there
are future-directed null geodesics γ and {γm}, m = 1, 2 . . . terminating at p and
satisfying

γ ⊂ H+, γ̇m(p) −−−→
m→∞ γ̇ (p), ∀m (γm − p) ⊂ M r.

Every γm enters M r and hence meets S0 in some point qm (whence, in particular,
γm �= γ ). From now on we understand γm to be geodesic segments from S0 to p (not
entire geodesics) and measure the length parameter l(m) on each of them, from the
corresponding qm :

10That the union of such geodesics includes the set J−(x) − I −(x) follows from Proposition23(d)
in Chap. 1. The reverse inclusion is, in fact, a corollary to Proposition56 in Chap. 1.

https://doi.org/10.1007/978-3-319-72754-7_1
https://doi.org/10.1007/978-3-319-72754-7_1
https://doi.org/10.1007/978-3-319-72754-7_1
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l(m) ∈ [0, l(m)max] : γm(0) = qm, γm(l(m)max) = p.

The superscript (m) will be dropped sometimes for simplicity of notation. All qm

lie in the compact (by Definition12) set J−(K) ∩ S0 = L ∩ S0, so passing to a
subsequence if necessary, we state that

qm → q, ∂l(qm) → ς ,

where q is a point of L∩ S0, and ς is a null vector satisfying (12). We define α(l) to
be the future inextendible geodesic fixed by the conditions

α(0) = q, ∂l(q) = ς .

The proposition will be proved once we prove that α is, indeed, totally imprisoned
in L ∩ M r.

At any l < lim l(m)max the sequence γm(l) contains, by the compactness of L,
a convergent subsequence {γ j (l)}. And γ j (l) → α(l) since α is a solution of the
geodesic equations (their solutions are known to depend continuously on the initial
conditions). So, α cannot leave the set � ⇋ ∪ j γ j as long as l � lim l( j)max, that
is until it passes through α(lim l( j)max) = p. But it never passes through p, because
otherwise α = γ (these geodesics not only intersect in p, but also have in it equal
velocities lim γ̇m), which contradicts the fact that γ when followed into the past does
not leave H+, see Corollary7. Hence

α ⊂ � ⊂ (
J−(p) ∩ J+(q)

) ⊂ L,

so it remains to prove that α does not leave M r either.
To derive a contradiction assume that α does meet H+ in a point r . Then what

will happen with α to the future of r? Three possibilities are conceivable: (a) α enters
M − M r; (b) it remains in H+; (c) it passes through some point o ∈ M r. But in the
case (a) the extensions of some γ j would also enter M − M r. So, they would have
to cross H+ in some points different from p. And that contradicts Corollary7. The
same corollary excludes (b), too: the extension of α to the future of r is a (part of
a) horizon generator, it cannot leave the horizon in the past direction. Finally, (c) is
also impossible, because otherwise one could arrive at r (which, being a point of
H+, lies off M r) moving in the past direction from o ∈ M r, which contradicts the
fact that M r is a past set. �

Proposition 17 Any compactly determined Cauchy horizon is forced.

Proof To obtain a contradiction, suppose that there is an isometry φmapping M r to
a proper subset M̂ of a globally hyperbolic inextendible spacetime Me.

Conventions. (1) The field τ used in (12) is defined on Me and the corresponding
field on M r is obtained by pulling τ back via φ. (2) For simplicity of notation, we
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shall write throughout the proof Â for φ(A). (Note that the geodesic γ e and the point
pe of it—they are defined below—both lie off M̂ . That is why they are not denoted
by, respectively, γ̂ and p̂.)

1. Our proof starts with the observation that every neighbourhood U intersecting
H+ contains a sequence of points pk ∈ M r and a point p such that

pk → p ∈ H+, p̂k → pe ∈ Bd M̂, (∗)

otherwise by Test 68 in Chap. 1 we could extend the—inextendible by definition—
spacetime Me by glueing to it U via the isometry φ. As U is arbitrary, the set of
points p satisfying (∗) is everywhere dense inH+.With (14) taken into consideration
this means that there is a point in the just mentioned set that lies inU−H. From now
on it is such a point that will be denoted by p, while q, qm , γ and γm , m = 1, 2 . . .

are the same points and geodesic segments as in the proof of Proposition14, with
the only difference that γm are now understood to be half-open: l ∈ [0, l(m)max) and,
correspondingly, p /∈ γm .

Now consider a future-directed timelike curve ν(υ) terminating at p. Our goal is
to prove that the future end point of ν̂ is pe. For this purpose we need yet another
family of geodesics. Specifically, we pick a sequence of points ν(υi ) converging to
p and by geodesics βi (ξ

(i)) connect each of these points with a point pk (k depends
on i). In doing so the curves βi , affine parameters ξ (i), and numbers k(i) are chosen
so—obviously, both requirements can always be satisfied—that beginning from some
number

βi are timelike and lie in a normal neighbourhood of p; (15a)

�(z, ∂ξ(i) ) = −1 at each υi , (15b)

where z is an arbitrary, but fixed fromnowon timelike vector field parallel transported
along ν. Since M r is a past set, condition (15a) guarantees the inclusion βi ⊂ M r

and, consequently, the existence of β̂i (ξ
(i)) for all i . Denote by L(βi ) and L(β̂i ) the

affine lengths of βi (i.e. ξ (i)[pk(i)]−ξ (i)[ν(υi )]) and β̂i , respectively. Combining two
obvious facts, L(β̂i ) = L(βi ) and L(βi ) → 0, we conclude that

L(β̂i ) → 0 at i → ∞. (∗∗)

Now note that for any i0 all p̂ j with sufficiently large j lie in the chronological
future of ν̂(υi0). Therefore,

∀υ pe ∈ I +(ν̂(υ)) = J+(ν̂(υ)) = J+(ν̂(υ)) and hence ν̂(υ) ∈ J−(pe),

where the last equality is due to the global hyperbolicity of Me. Thus, ν̂(υ > υ0) lies
in the compact set J−(pe) ∩ J+(ν̂(υ0)). But this means that the sequence ν̂(υi ) (or
some of its subsequences) converges and its limit coincides with pe, since these two
are connected with a geodesic (this is the limit curve of the family {β̂i }) of non-zero

https://doi.org/10.1007/978-3-319-72754-7_1
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[as follows from (15b)] initial velocity and zero [as is seen from (∗∗)] length. The
result will be the same if we replace {υi } by any other increasing sequence with the
same limit.11 Thus, pe is, indeed, the future end point of ν̂.

Now note that the reasoning above remains valid if we replace simultaneously pe

by νe defined to be the future end point of ν̂ and {pk} by {γm(lk)} where m is fixed
and lk → l(m)max. It follows that for all m, νe (which, as we already know, coincides
with pe) is the future end point of {γ̂m}.

2. Let us examine now the boundedness of the affine lengths of the geodesics {γm}
and {γ̂m}. For this purpose define the affine parameter s(m), or ŝ(m), respectively, on
each of those geodesics by the conditions

s(m)(p) = ŝ(m)(pe) = 0, �(∂υ, ∂s(m) )(p) = �(∂υ, ∂ŝ(m) )(pe) = 1

(note that by the second condition geodesics are past-directed) and denote for brevity
Lm ⇋ s(m)(qm), L̂m ⇋ s(m)(q̂m). Next observe that the sequence {Lm} is unbounded,
because otherwise γ would pass through q ∈ S0 at some finite positive s, which
is impossible, since γ cannot leave H+. But the unboundedness of the mentioned
sequence combined with the obvious equality Lm = L̂m implies the unboundedness
of {L̂m}. And this means that irrespective of ŝ the geodesic

γ e(ŝ) ⇋ lim
m→∞
ŝ(m)→ŝ

γ̂m(ŝ(m))

will never reach φ(S0) and consequently, will never leave the compact set

J−(pe) ∩ J+[
φ(L ∩ S0)

]
.

This, by Proposition44 in Chap. 1, contradicts the strong causality of Me. �

4.2 Deformation of Imprisoned Geodesics

Consider now a future-directed null geodesic γ0(l) : U → N , where l is still the
arc length parameter, N ⊂ M is a compactum (for example, γ0 and N may be,
respectively, α and L from Proposition14), andU is the half-axis R+ or R−. On γ0
in addition to l we introduce an affine parameter s chosen so that the velocity η ⇋ ∂s

is future-directed and s = 0 at l = 0. Now γ0 is characterized by the—clearly
negative—function

h ⇋ ηaτa,

which relates l to s:

11By the example of Misner space, one sees that in a non-globally hyperbolic Me even this may
not be the case.

https://doi.org/10.1007/978-3-319-72754-7_1
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Fig. 5 The homotopy �.
The curve γ0 is null and λs
are timelike

( )

h = − dl

ds
, s(l) =

∫ 0

l

dl̆

h(l̆)
(16)

(the first equality is obtained by multiplying both ends of the chain η = ∂s = dl
ds ∂l =

dl
ds ς by τ ) and one velocity to the other:

η = −hς on γ0. (17)

The function has a transparent physical meaning (unless γ0 is a loop, this case will
be considered separately):

h(l1)/h(l2) = ε(l1)/ε(l2), (18)

where ε(l) is the energy at a point γ0(l) of a photon moving on γ0, as measured by
an observer with velocity τ [γ0(l)], cf. Sect. 2.3.

Let us examine the curves obtained by moving every point of γ0 some distance to
the past along the integral curves of τ . Clearly, simply by choosing an appropriate
rate of decreasing of the mentioned distance, the resulting curve—let us denote it
γ∗—can be made also causal. At the same time γ∗ cannot be imprisoned in any
compact O ⊂ I −(N ), see Remark15. A few important properties of CGCHs can
be derived from these facts. This will be done in the next subsection, while now we
are going to prove a lemma that will enable us to find the deformations in question
explicitly.

Pick a positive (and sufficiently small, see below) constant κ∗ and a smooth
function f defined on U and obeying the inequalities f � f � f , where f and f
are non-negative constants. Define a homotopy

�(l, κ) : G → M, where G ⇋ U × [−κ∗, 0],

see Fig. 5, by requiring that

(a) the first “horizontal” curve be γ0:
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�(l, 0) = γ0(l);

(b) each “vertical” curve λc(κ) ⇋ �(c, κ) be (a part of) an integral curve of the
field τ ;

(c) the velocity κ = ∂κ in every point p ⇋ λl(κ) be equal to f (l)τ (p).

In other words, � is constructed so that for any κ the “horizontal” line γκ(l) ⇋
�(l, κ) is obtained from γ0 by moving each point of the latter to the past—along
the integral curves of τ—by f (l)|κ|, the distance being measured by the natural
parameter (loosely speaking f defines the shape of the deformation and κ—its
amplitude).
List. To summarize, we have introduced two types of curves:

1. Horizontal curves γ . One of them— the one whose deformation is under exami-
nation (it will be denoted, depending on the context, γ0,α, or �)—is parameterized
by the “arc length parameter”, which is the quantity l defined by (12). That curve
is a null geodesic. In addition to l there is an affine parameter s on γ0 and the
corresponding velocity η ⇋ ∂s . All other horizontal curves are parameterized
only by l, which in this case is defined by the requirement [see item (b) in the
definition of �] that it is constant along λ’s (note that when κ is non-zero, l need
not be an arc length parameter on γκ). The velocity vector corresponding to l is
denoted by ς ;

2. Vertical curves λ, which are the integral curves of the field τ . In addition to the
natural parameter there also defined the parameter κ on λs, which differs from
the former only by a constant (on each λ) factor, [see item (c) in the definition of
�]. The velocity ∂κ is denoted by κ ;

and a scalar function f , which is initially defined on U, but which we shall extend
to the entire G by the relation f (p) ⇋ f [l(p)] ∀p ∈ G.

The surface �(G) may have self-intersections, so a technical remark is necessary.
First, we consider η and h as functions of l, not of a point of M . And, second, the
vectors ς and κ are maps G → TM . So, a derivative like ςa ;b(p), p ∈ G is actually
shorthand for

[
ςa ◦�̃−1

]
;b
(
�(p)

)
, where �̃ is the restriction of� to a neighbourhood

O�,p of p in which � is injective.
Our way of defining l gives rise to a useful relation. To derive it pick a coor-

dinate system {l, κ, x1, x2} in a convex neighbourhood of �(p) so that within this
neighbourhood �(O�,p) is the surface x1,2 = 0 [this can be done, for example, by
picking in Tp a pair of vectors e1 and e2, enlarging {κ(p), ς(p)} to a basis in Tp,
and assigning the coordinates a, b, c, d to the end point of the geodesic that has unit
(affine) length and emanates from the point q : l(q) = a, κ(q) = b with initial
velocity c f 1 + d f 2, where f 1 and f 2 are the result of the parallel transfer of e1 and
e2 from p to q along the geodesic]. Then the curves λ and γ are coordinate lines and
hence, see Corollary5 in Chap. 1,

ςa ;κ − κa ;l ⇋ ςa ;bκb − κa ;bςb = ςa,κ −κa,l = 0, (19a)

https://doi.org/10.1007/978-3-319-72754-7_1
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which yields, in particular,

ςa ;κ ⇋ ςa;bκb = κa;bςb = ( f τa);bςb = f ′τa + f τa;bςb. (19b)

The existence—when κ∗ is sufficiently small—of the homotopy � is guaranteed,
even for a singular M , by the compactness of N (recall that N ⊃ γ ). Indeed, for
any point p ∈ M let tm(p), be the length, with respect to the Riemannian metric �R ,
of the shortest inextendible curve emanating from p. For example, in the DP space
tm(p) is the distance from p to the nearest “hole” and for the time machine from
Example8 it is infinite. Clearly, in the general case tm(p) is also either infinite, or
continuous and positive in N . Hence, t ⇋ inf

N
tm > 0 due to the compactness of

N . So, from any point it is possible to travel any (natural) distance T < t along the
integral curve λ of the field τ . Thus any number less than t/(2 f ) can be taken to be
κ∗.

As noted above, to properly use the fact that a causal curve is imprisoned in a
compactum, that is to derive a contradiction from that fact, we need the compactum
to lie in M r, not just in the causal past of γ0, cf. Remark15. We shall now formulate
a convenient sufficient condition. Let

F(p, t) : N × [ f κ, f κ] → M

be a map that displaces every point p ∈ N a parameter distance t to the future along
the corresponding λ. Any γκ with κ ∈ [−κ∗, 0] lies in O ⇋ F

(N × [ f κ, f κ]).
Being the image of a compact set under a continuous map,O is compact. Also it lies,
by construction, in J−(N ). Generally, however, it may happen, that O �⊂ I −(N ).
Such a possibility is excluded, if F moves to the past every point of N . Thus we
have established the existence of a compact set O such that

∀κ ∈ [−κ∗, 0] γκ ⊂ O,

If f , κ �= 0, then O ⊂ I −(N ).
(20)

Lemma 18 If f ′/ f is bounded and for some positive constant c1

h′/h < − f ′/ f − c1 f, ∀l ∈ U, (21)

then there is κ0 such that the curve γκ0 is timelike and inextendible in the same
direction as γ0.

Before proceeding to the proof proper (it will be similar to the proof of [76,
Lemma8.5.5]) we have to establish the boundedness—at sufficiently small κ∗—
of a number of relevant quantities in �(G). First, note that f and f ′ are bounded,
by definition and by hypothesis, respectively. And so are τ a , τ a ;b and τ a ;bc, since
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they are smooth in the entire12 compact setO, which, as follows from (20), contains
�(G). Next, consider the components ςa . At κ = 0 the boundedness of ςa follows
from the fact that the length of ς in the Riemannian metric (13) is constant on γ0:

�R(ς , ς) = �(ς , ς) + 2[�(ς , τ )]2 = 2.

Next, the function ςa(l, κ) is bounded also on the entire G, being the solution of the
differential equation (19b) with bounded coefficients and with bounded, as we just
have established, initial value ςa(l, 0). Finally, the chain

h′ = (ηaτa);bςb

γ0
= ηaτa;bςb = −hςaτa;bςb, (22)

in which the second equality follows from the fact that γ0 is a geodesic, and the last
one—from (17), proves that irrespective of the validity of (21)

h′/h is bounded on γ0. (23)

Proof of the lemma. Consider the function � ⇋ ςaςa . It plays the role of an indicator:
a curve γκ is timelike at some l0 when and only when �(l0, κ) is negative. Write
down the following chain of equations valid in every point of γ0

1
2�,κ = ςa;κςa = κa;lςa = ( f τa);lςa

γ0
= − f ′ − f τaςa ;l = − f ′ + f τa(h−1ηa);l

= − f ′ + f h(h−1),l + f τah−1ηa ;l = − f ′ − f ln′ |h|, (24)

which is derived by using, in turn, Eq. (19a) (in the second equality), the normalizing
condition (12) defining l (in the fourth one), the relation (17) (in the next equality),
and, finally, the fact that η satisfies the geodesic equation ηa ;l = − 1

h ηa ;bηb = 0 on
γ0. Combining the resulting equation with the hypothesis (21) we get

�,κ (l, 0) > 2c1 f 2. (25)

On the other hand, � = 0 on γ0. So, we conclude that for any l there is a (negative,
of course) κ∗∗ such that

�(l, κ) < 0, ∀κ ∈ (κ∗∗(l), 0) (26)

(the value of κ∗∗ depends on l). Thus, γκ for the relevant κ is timelike at l. We,
however, are looking for an inextensible timelike curve or, equivalently, a κ∗∗ such
that the inequality (26) holds for all l simultaneously. So, let us write down one chain
more:

12For the sake of simplicity, in discussing the boundedness of tensor components we shall assume
that the wholeO is covered by a single coordinate system. The generalization to the case when such
a system does not exist is straightforward, because O always can be covered by a finite number of
compact sets Om each of which is covered by a single chart.
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∀ κ
1
2�,κκ = [( f τa);lςa],κ = ( f τa);lκςa + ( f τa);lςa

;κ
= f ′τa;κςa + f τa;lκςa + ( f ′τa + f τa;l)( f ′τ a + f τ a ;bςb)

[the last parenthesized factor is ςa ;κ transformed with the use of (19b)]. Substitute
the formulas

τa;l = τa;bςb, τa;κ = τa;bκb = f τa;bτ b,

τa;lκ = τa;bcς
b f τ c + τa;bςb;κ = f τa;bcτ

cςb + τa;b( f ′τ b + f τ b;cς c),

in its rightmost part to obtain

�,κκ (l, κ) = b1 f ′2 + b2 f ′ f + b3 f 2,

where bk are some bounded (as follows from the established above boundedness of
ςa and the derivatives of τ a) functions. Dividing this relation by the inequality (25)
one gets (recall that by hypothesis f ′/ f is bounded)

|�,κκ (l, κ)/�,κ (l, 0)| < c2, ∀κ ∈ [κ∗∗, 0], (27)

where, as usual, c2 is a constant. And since, as we already know, �(l, 0) = 0 and
�,κ (l, 0) > 0, the bound (27) means that for some negative κ0

�(l, κ0) < 0, ∀l ∈ U, κ ∈ [κ0, 0),

and hence γκ0 is timelike.
Similar reasoning can be applied to the quantity ω ⇋ ςaτa . Namely, ω = −1 at

κ = 0, while its derivative in the κ-direction

ω;κ = ςa;κτ a + ςaτa;κ = f ′τaτ
a + f τa;bςbτ a + f ςaτa;bτ b

is bounded. Hence, ω(l, κ0) at a sufficiently small κ0 is greater (in absolute value)
than 1

2 . Consequently, the length of the corresponding γκ0 in the Riemannian metric
(13) is infinite and γκ0 is inextendible, see Proposition13. �

4.3 Some Properties of Time Machines with CG(D)CH

The WEC Violation

As we have seen above, exotic spacetimes such as shortcuts and wormholes need
exotic matter for their existence. The same is true for time machines, too. To prove
this claim we begin with an important technical result (essentially, this is Lemma
8.5.5 of [76] proven more rigorously [107]. One more proof can be found in [130]).
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Proposition 19 If a Cauchy horizonH+ is compactly generated, then its generators
are past complete.

Proof Assume, a generator γ0 is past incomplete. Then its affine parameter s is
bounded from below and the integral (16) converges at l → −∞. This enables us to
define on the semi-axis (−∞, 0] a smooth positive function

f (l) ⇋
1

h

[

−
∫ 0

l

dl̆

h(l̆)
+ 2

∫ 0

−∞
dl̆

h(l̆)

]−1

. (28)

For the thus defined f
f ′/ f + h′/h = − f (29)

and hence condition (21) is satisfied.
The fact, by itself, that the integral in (16) converges does not mean, of course, that

the integrand is bounded. It is quite imaginable that as l → −∞ the integrand takes
increasingly large values in increasingly narrow intervals. However, such a behaviour
would contradict (23) and we conclude that 1/h is bounded after all. It follows then
that f [by (28)] and, consequently, f ′/ f [by (29) and (23)] are bounded too. Thus, all
conditions of Lemma18 (withK asN ) are satisfied and there must be a timelike past
inextendible curve γκ0 in O, see (20). This curve is totally imprisoned in a compact
subset of the globally hyperbolic spacetime M r, namely, in the intersection of the
compactum O with J−[γκ0(0)], which is closed by Proposition48 in Chap. 1 (note
that the case in point is γκ0 , not γ0, whose causal past can be non-closed). And such
an imprisonment is forbidden by Proposition44 in Chap. 1. �
Corollary 20 If in some point of a CGCH H+ the expansion θ is positive,13 then
somewhere on the horizon the Weak energy condition does not hold.

This corollary—in [74] it is proven by combining Proposition19 with Corollary8
and Proposition6 in Chap. 2—is really important, because the condition θ > 0 to all
appearance must hold in (some, at least) points of the horizon of any time machine
that is of a laboratory rather than of a cosmological scale. Indeed, in such a spacetime
one expects the horizon to have (asymptotically, at least) the shape of an expanding
cone.

To make that argument more (though not quite) rigorous we introduce, following
[74], a special class of spacetimes: it consists of time machines whose Cauchy hori-
zons are compactly generated, while the Cauchy surfaces S of the initial globally
hyperbolic regions are non-compact (that is the region from which the time machine
originates in such a universe is “smaller than the whole universe”). Let γ (s) be an
affinely parameterized generator of the Cauchy horizon of such a time machine. Let,
further, μt be the map that translates every14 point of the horizon to the past along

13As before, we consider geodesic generators ofH+ to be future directed.
14Strictly speaking, μt is not defined in points in which a few generators meet, so one has to show
that such points form a set of measure zero.

https://doi.org/10.1007/978-3-319-72754-7_1
https://doi.org/10.1007/978-3-319-72754-7_1
https://doi.org/10.1007/978-3-319-72754-7_2
https://doi.org/10.1007/978-3-319-72754-7_2
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the corresponding γ by the parameter distance t

μt : γ (s) 	→ γ (s − t).

At t = 0 the 3-volume V [with respect to the Riemannian metric �R , see (13)] of the
three-dimensional region K is transformed under the action of μt by the following
law

d

dt
V(μt (K)) = d

dt

∫

K
dV = −

∫

K
θ dV,

where the last (by no means obvious) equality is, essentially, [76, Eq. (8.4)]. On
the other hand, H+ is non-compact (the integral curves of the field τ provide the—
possibly non-smooth—embedding ofH+ in S, that is S is an extension ofH+, which
would be impossible, be the latter compact, see Corollary70 in Chap. 1). Hence, K
is only a part of H+ and μt (K) is only a part of K

V(μt (K)) < V(K), ∀t.

Comparing this with the previous formula, we conclude that somewhere θ must,
indeed, turn positive, which implies that the WEC is violated in all time machines
with CGCH (and non-compact Cauchy surfaces of M r). It is apparently this result
that gave rise to the widespread idea that violations of causality and of the WEC are
inseparably connected.

The just reproduced reasoning contains a lacuna [25]: the horizon is implied to be
sufficiently smooth [for example, second derivatives enter Eq. (3) in Chap. 2]. How-
ever, generally, horizons are not that smooth, see [25, 109]. It is important, therefore,
that a proof was found [131] that does not lean on the smoothness assumptions.

(Almost) Closed Generators

The Cauchy horizon bounds a region containing closed causal curves. It would be
natural to expect that it too contains some closed null geodesics, at least when it is
compactly generated and its generators are not “open” by singularities. However, the
inevitable presence of closed null curves in CGCHs is not proved in the general case,
an example due to Carter, see [76, Fig. 39] might give a clue to why.

Proposition 21 [74] Every CGCH has a generator that lies entirely in K and that
is both future and past15 inextendible.

Proof Let λ(l) be a future-directed horizon generator lying in K at all l � 0. Since
λ is past inextendible, the parameter l is unbounded from below, see Proposition13.
Hence, we can define an infinite sequence of points pm ⇋ λ(−m), m = 1, 2 . . ..
Denote by ςm the velocities of λ in the points pm . Due to the compactness of both
K and the sphere (12), there is a subsequence (pk, ς k) such that

pk → p ∈ K and ς k → ς ,

15The “past” part is trivial, because such are all generators by Corollary7.

https://doi.org/10.1007/978-3-319-72754-7_1
https://doi.org/10.1007/978-3-319-72754-7_2
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where ς is a null vector satisfying (12). Consider amaximal geodesicμ(l) emanating
from p ⇋ μ(0) with the initial velocity ς . By Corollary7,H+ is closed, so μ is one
of its generators.

Suppose, μ is not a sought-for curve. But by construction it is a null geodesic
inextendible in both directions. So, the only possibility is that μ(d) /∈ K at some d,
which by the closedness of K implies, in particular, that around μ(d) there exists a
coordinate ball B disjoint withK. This means that every geodesic emanating from a
point sufficiently close to p with initial velocity sufficiently close to ς also meets B
and thus leaves K. In particular, this is true for the segment of λ bounded by λ(−i)
and λ(d − i) with sufficiently large i . A contradiction. �

Unfortunately, the proposition does not tell whether the endless generator is
closed. Let us dwell on the horizons (not necessarily compactly generated or deter-
mined) that do have closed generators, an example is the horizon of the Misner time
machine, which is generated by the circle t = 0, see Sect. 2.1.

Let � ⊂ H+ be a closed null geodesic. Then the function �(l) is periodic:

�(l) : R → H+, �(l) = �(l + l̃), l̃ is a positive constant.

On the other hand, � does not need to be periodic as function of an affine parameter
s. Correspondingly, h(l) also may not be periodic. It is, however, a solution of the
differential equation (22), whose coefficients are periodic. Therefore, in the general
case

h(l) = al/̃lχ(l), where χ(l) is periodic, a = const > 0. (30)

As we are going to prove, a cannot be less than unity. Whether it can be equal to
unity is unknown, while geodesics with a > 1, such as the Misner horizon, see
p. 91, have two curious properties. First, they cannot be the world lines of photons
(it would be impossible to assign a definite energy or momentum to such a photon)
and, second, the geodesic � is incomplete. Thus, the following proposition implies
that time machines with CGCH are “almost for sure” singular.

Proposition 22 [74] a � 1 with inequality only if � is future incomplete.

Proof Pick a constant c and on the segment [0, l̃] (this is a period of �) define the
function

f (l) ⇋
1

h(l)

[

c2
∫ l̃

l
h(l̆) dl̆ − 1

]

.

Clearly, it is smooth and positive. Besides, it solves the equation

f ′ + f ln′ h = −c2.

Now denote by �̃ the restriction

�̃ ⇋ �
[0,̃l]×[−κ∗,0]
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of the homotopy � (which is defined on p. 107). By replacing � with �̃ and γ0 with
� everywhere between the definition of � and inequality (26) (we do not have to
estimate �,κκ , because now we deal not with the semi-axis U, but merely with its
compact subset [0, l̃]), we get the proof of the fact that the curve �κ0 ⊂ M r, obtained
by translating each point of � the (natural parameter) distance f κ0 along the integral
lines of τ , is timelike and future directed.

However, if a < 1, then at sufficiently small c2

f (̃l) = −1/h(̃l) = − 1

ah(0)
>

1

h(0)

[

c2
∫ l̃

0
h(l̆) dl̆ − 1

]

= f (0),

that is the future end point �κ0 (̃l) of �κ0 ⊂ M r chronologically precedes the past
end point �κ0(0) (the latter is obtained by translating to the past the same point
�(0) = �(̃l) along the same line as the former, but by a smaller distance), which is
impossible, M r being causal. Thus, a � 1.

If a > 1, then the integral

s(l) = −
∫ l

0

dl̆

h(l̆)
= −

∫ l

0

a−l̆ /̃l dl̆

χ(l̆)

[we have consecutively used (16) and (30)] converges at l → ∞, which proves the
second assertion of the proposition. �

“Dangerous” Geodesics [106]

It was established above, see Proposition14, that a CDCH forms after the appearance
of a geodesicα(l) that is totally future imprisoned by a compact set. Howpathological
is the existence of such a geodesic? To answer this question we shall consider the
energy properties of the photon travelling on α. Specifically, we split α into segments
of unit (Riemannian) length and find—employing (18)—the maximal values of the
photon’s energy in each of these segments taking the energy of the photon in the
point α(l0) to be unit (the energy thus becomes a function of two variables—l and
l0). Then we sum those maximal values up and see that an appropriate choice of
the initial point α(l0) makes the sum arbitrarily large. We shall now prove this fact
before discussing its physical meaning.

Proposition 23 Let α(l) be the geodesic from Proposition14. Then for an arbitrarily
big constant E there is a positive number l0 such that

1

|h(l0)|
∞∑

k=0

hk � E, where hk ⇋ max
l∈[l0+k,l0+k+1] |h(l)|.

Proof Suppose, the assertion is false. Then the series in the inequality converges for
any choice of l0. Hence, first, h tends to zero at l → ∞ and, second, the positive
(since h is negative) function
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f (l) ⇋
1

h(l)

∫ ∞

l
h(l̆) dl̆ < E, l > 0

is defined. It is bounded by E and its numerator tends to zero, which enables us to
use the Cauchy formula [192, Sect. 120] and to establish that

f (l) = − h(l∗)
h′(l∗)

at some l∗ > l.

By (23) this means that f is bounded away from zero

0 < c3 < f. (☆)

It is easy to check that h′/h + f ′/ f = −1/ f and hence condition (21) is fulfilled
(as f is positive). The same equality being combined with the boundedness of h′/h,
see (23), and 1/ f , see (☆), implies the boundedness of f ′/ f . Thus the conditions
of Lemma18 are satisfied, whence there must exist a future inextendible timelike
curve which, as follows from (20), is totally imprisoned in a compact subset of
I −(α) ⊂ M r. But this contradicts Proposition44 in Chap. 1 because M r is strongly
causal. �

It is this result that suggests, see the discussion in the end of Sect. 3, that compactly
determined Cauchy horizons are unstable and do not actually form. What appears
instead are just bright flashes. Indeed, consider a ball B ⊂ L such that α∩ B consists
of the infinite number of segments αi . An observer in p ∈ B will perceive α as a
bundle of photons: within the “laboratory” B their world lines are αi . If the 4-velocity
of the observer is τ (p), he interprets E ⇋

∑
i h(qi ), where qi ∈ αi , as the “total

energy” of the bundle (B is assumed to be small enough to justify neglecting the
possible variation of h along αi ). In these terms, the just proven proposition says that
for arbitrarily large E , there is a null geodesic in L such that a photon moving on it
with the unit initial energy will cross the laboratory B, as a bundle of rays with the
total energy larger than E .

5 A Pathology-Free Time Machine

The time machines considered so far possess a number of “pathological” features:
they contain exotic matter, dangerous geodesics and singularities. This raises the
question of whether these properties are associated with all time machines. As an
answer, we build in this section a specific time machine (for a more general consid-
eration see Appendix A.3) free from all just listed ‘flaws’ [92].

In the two-dimensional DP space MDP, see Example73 in Chap. 1, pick a smooth
positive function w(x0, x1) which is equal to 1 at |x0|, |x1| > 1.5 and tends to zero at
x0,1 → ±1. Also we require first two derivatives of w to be bounded (for instance, w
can be the function from ExampleA.7 in Appendix). Then the desired time machine
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Fig. 6 aThe spacetime Mw .w = 1 exterior to the dark grey region. Thewhite circles depictmissing
points, w tends to zero as they are approached. b The space F . The dark grey region is a portion of
the Friedmann universe. The light grey ‘frames’ are isometric. The ‘integration of the time machine
into the Friedmann universe’ is achieved by cutting away the white regions and glueing the light
grey frames together

is the spacetime (Mw, �) with Mw = MDP × S2 and

� : ds2 = w−2(−dx2
0 + dx2

1 ) + r2∗ (dx2
2 + sin2 x2dx2

3 ),

where x2 ∈ [0, π ], x3 ∈ [0, 2π) are angle coordinates and the constant r∗ obeys the
following inequalities

0 < r∗ < inf
M1

∣∣w(w,x1x1 −w,x0x0 ) + w,2x0 −w,2x1

∣∣−1/2
. (31)

(as is explained in Example73 in Chap. 1, x0,1 coordinatize only a part of the factor
Mw, specifically, a plane with two cuts). The resulting spacetime is free from all
pathologies mentioned above, in particular, it has no singularities, see CorollaryA.8
in Appendix. This fact is not too surprising by itself: we have intentionally chosen
the conformal transformation of the initially singular spacetime so as to send the
singularities to infinity. It is remarkable, however, that wemanaged to do this without
violating the WEC. Indeed, it follows from (A.39) in Appendix that the inequality
(31) guarantees the fulfilment of this condition16 throughout Mw.

What may provoke some objections is theR2 ×S2 topology of the ambient space.
So, let us show that the time machine under discussion can be integrated into the
Friedmann universe, see Fig. 6. Let F be a space with topology R1 × S3 and metric

ds2 = a2(τ )[−dτ 2 + dχ2 + r2(χ)(dϑ2 + sin2 ϑdϕ2)], χ ∈ [−π/2, π/2].

16And even the dominant energy condition. On the other hand, the strong energy condition never
holds in spacetimes like Mw [124].
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118 4 Time Machines

Here ϑ and ϕ are the standard angle coordinates, while r and a are smooth positive
convex functions satisfying the following conditions:

a(x) = 1, r(x) = r∗ at |x | < 1.55, r(x) = cos x at |x | > 1.56.

As is easy to see, the space F beyond the cylinder |τ |, |χ | � 1.56 ismerely the closed
Friedmann universe. Our requirements on a make the initial and final singularities
inevitable, but these are the usual cosmological singularities unrelated to the time
machine. Further, the direct calculations (they can be considerably lightened by the
use of the formulas from [135, 14.16]) show that the WEC holds everywhere in F .

Now we are going to build a new space by cutting a part (comprising
í
Mw) out of

Mw and using it to replace a region in F . To this end we, first, note that the simple
change of notation

x0 → τ, x1 → χ, x2 → ϑ, x3 → ϕ

isometricallymaps the “frame” {1.5 < |x0|, |x1| < 1.55} ⊂ Mw to the corresponding
region of F , see Fig. 6 (we denote this isometry by σ). The desired spacetime MF

is obtained by 1) removing the set {1.55 � |x0|, |x1|} from Mw, 2) removing the set
{|τ |, |χ | � 1.5} from F , and 3) glueing the two thus obtained regions by σ:

MF ⇋ {q ∈ Mw : |x0(q)|, |x1(q)| < 1, 55} ∪σ {p ∈ F : |τ(p)|, |χ(p)| > 1, 5}.

The result is a universe that contains a time machine, but does not violate the WEC
and is free from dangerous geodesics and non-cosmological singularities. There is a
region in this universe the boundary of which is a 2-sphere existing for a finite time
interval (so, the region may be interpreted as a laboratory) and the exterior of which
is just the Friedmann universe minus a compactum.



Chapter 5
A No-Go Theorem for the Artificial
Time Machine

1 The Theorem and Its Interpretation

So far we have divided time machines into ‘eternal’ and ‘appearing’, see Sect. 1 in
Chap.4. This classification, however, is too coarse. Suppose, one wishes to travel
to the past. A possible strategy would be just to look for an already existing closed
timelike curve, or to wait passively until such a curve appears (as is exemplified by
the Deutsch–Politzer space, such waiting may not be hopeless however innocent the
spacetime looks at the moment). The alternative would be to create such a curve.
Appropriately distributingmatter and thus, according to theEinstein equations, acting
upon the metric, an advanced civilization could try to force the spacetime to evolve
into a time machine. In fact, it was the conjecture that, given a suitable opportunity,
the civilization can succeed [137], that initiated intensive studies of time machines
and wormholes.

The difference between finding a closed causal curve (which appeared owing to
circumstances beyond our control) and manufacturing it, i.e. between a ‘natural’
time machine and an ‘artificial’ one, is crucial to our discussion in this chapter. As
we shall see, this difference is so large that while the spacetimes of the former kind
seem (by now) to be feasible, the artificial time machines are impossible within
classical relativity. Even more, the last assertion remains valid if general relativity is
complemented by any local condition, see Sect. 1 in Chap.2.

The difference between the two types of time machine has to do with intentions
and will of its creators, so it is hard, if possible, to describe it in purely geometrical
terms. Our goal, however, is only to formulate a necessary condition for considering
a time machine artificial and this can be done without turning to so vague notions.

We proceed from the idea that for the existence of a time machine (i.e. a region
í
M

of a C-space M , the role of the hypothetical condition C in this definition will be
discussed in a moment) to be attributable to the activity in a region U ⊂ M , at least
the following two conditions must hold:

© Springer International Publishing AG, part of Springer Nature 2018
S. Krasnikov, Back-in-Time and Faster-than-Light Travel in General Relativity,
Fundamental Theories of Physics 193, https://doi.org/10.1007/978-3-319-72754-7_5

119

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-72754-7_5&domain=pdf
https://doi.org/10.1007/978-3-319-72754-7_4
https://doi.org/10.1007/978-3-319-72754-7_2


120 5 A No-Go Theorem for the Artificial Time Machine

(C1)
í
M lies entirely in the future of U ;

(C2) A non-empty
í
M satisfying condition (C1), exists in all C-maximal extensions

of the C-space U , cf. the definition of the forced Cauchy horizon.

If such U does not exist, we regard the time machine as natural, spontaneous, rather
than artificial.

Remark 1 Along with relativity, we include in our consideration theories in which
some additional local condition C is imposed on the universe (put differently, the uni-
verse is described not by amere spacetime, but by a C-space) and this fact complicates
the analysis. However, themeaning of C turns out to be irrelevant, it is important only
that C stands for the same condition throughout this chapter. In particular, C may be
empty, so the reader not interested in too much generality can consecutively ignore
the symbol C- up to Remark 26.

Condition (C1) is self-evident, but (C2) needs some comment. Consider, for exam-
ple the case when M is the DP space (see Example 73 in Chap.1) andU is its subset
x0 < −2.Note that, as alreadywasmentioned in Sect. 3.1 inChap.2, exactly the same
U could have different extensions: Minkowski space, for instance or R4 endowed
with the metric

� = (1 + f 2)η, where f
x0<−2

= 0, f �≡ 0, η is the flat metric, (∗)

Some of these extensions can be excluded by imposing appropriate local conditions
(that is why we speak of C-extensions, rather than of mere extensions). For example,
by requiring that the WEC hold in all points of M , we exclude the extension (∗).
However, generally, it is impossible to exclude in this manner all extensions but one
[96]: if some extension is found, then, as a rule, infinitely many others also can be
built (for instance, in the way described in Example 33 in Chap.2). So, a hypothetical
advanced civilization acting in U in principle cannot take credit for the geometry
of J+(U ). This fact, however, does not necessarily make efforts for creating a time
machine pointless:

(1) The situation may change with progress in science. It is conceivable that one
day an improved version of relativity will be able to predict the development of any
initial data unambiguously, see Sect. 3.2 in Chap.2. Or, speculating further, one can
imagine that the progress in quantum gravity will allow one to assign probabilities
to different developments/extensions of the sameU . In both the cases, we shall have
to revise the present concept of time machine creation.

(2)Wemay aim at causality violation, in general, not at a particular timemachine.
In such a case, we must consider as a successful result any development of the
initial data if the future of U in that development contains a closed causal curve.
Correspondingly, any non-causal C-extension of the C-spaceU deserves to be called
an artificial time machine unless there is a C-maximal C-extension of U in which
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causality does hold. Condition (C2) is just the requirement that there be no such
causal C-extensions.

In just the same way, we could classify the non-globally hyperbolic spacetimes
with initial globally hyperbolic regions (this type of spacetime is broader than time
machines, because a non-globally hyperbolic space need not be non-causal). The
example of the DP space shows that loss of global hyperbolicity not always can
be related to something that happened in the past. On the other hand, there are
spacetimes—an example is Misner space—in which the initial geometry makes it
inevitable that the global hyperbolicity will be lost: M r has no globally hyperbolic
extensions, cf. discussion of the forced horizons in Sect. 4 in Chap.4.

In this chapter, we prove a theorem stating that causality—in contrast to global
hyperbolicity—cannot be violated forcedly either in classical relativity or in any of
its generalizations obtained by postulating an additional local law. We emphasize
that the theorem does not forbid causality violations, it only guarantees that they
never have to appear. Imagine, for example that a certain B gets a wormhole and
starts to move its mouths in a vigorous and precise manner [10]. At the same time
another participant,A , only broods and swallows pills. What the theorem tells us is
that the results of their efforts will be exactly the same: in either case a time machine
may appear and may not. So, if a time machine appears after all, we shall have no
reasons to link it to A or B and thus to think of it as artificial.

Theorem 2 ([97]) For any local condition C, every C-extendible space U has a C-
maximal extension Mmax such that all closed causal curves in Mmax—if they exist
there—are confined to the chronological past of U.

The assertion of the theorem is quite obvious in the case of DP-like spaces. It
might seem, however, that the situation is different for time machines with CDCHs.
For example, in the Misner space an observer sees that as time goes on causal cones
‘open’ more and more (in coordinates t , ψ ′), see Fig. 1b in Chap.4. So, one may
expect the inevitable, at first glance, causality violation at t = 0, when ∂ψ ′ becomes
horizontal. However these expectations are exactly as groundless as in the DP case:
by the theorem, among maximal extensions of the Misner space there are causality
respecting ones. At the next stage, the observer may wonder how the geometry of
their spacetime is affected by additional (i.e. not stemming from general relativity)
restrictions. What, for example, will happen, if the local condition holds, that the
spacetime describing their universe is everywhere flat? The answer given by the
theorem is that among flat extensions of Misner space there must be such that (i)
they have no flat extensions and (ii) they adhere to the causality condition. Indeed,
an extension of this kind is obtained by, first, cutting the cylinder MA, see Fig. 1b
in Chap.4, along the semi-axis ψ ′ = 0, t � 0 and the Minkowski plane along the
semi-axis β = 0, α � 0, see Fig. 1a in Chap.4, and, second, glueing the left bank
of either cut to the right bank of the other, see Fig. 3 in Chap.6.
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Fig. 1 Di are variously situated perfectly simple subsets of Me. R is the union of M and one of
them. The intersections M ∩ D1 and M ∩ D2 are not causally convex in the corresponding Di .
Besides, in the latter case the intersection is connected, whence it follows that M is not convexly C-
extendible. At the same time, in the former case one can ‘unstick’ the upper connected component of
that intersection fromM , and hence from R (so, the darkest region in the figure should be understood
as a part of M seen through D1). M ∩ D1 in this case is causally convex and M� ⇋ M ∪ D1 has

no new, absent in
í
M , causal loops

2 Outline of the Proof

Let C be a local condition and M be a corresponding C-space. The proof will consist
of two (quite unequal) parts: first, we shall prove Proposition 24 saying that for anyM

of a certain type there exists a C-maximal spacetimeMmax ⊃ M such that
í
Mmax = í

M
(that is Mmax has no new—compared to M—causal loops). It will remain only to
prove that any U has a C-extension M which (1) is of the type mentioned above and
(2) satisfies the causality condition in all points outside of I−

M(U ). This program will
be realized as follows.

I. Assume, M has a C-extension Me (otherwise, M itself would be the sought-for
Mmax). Assume, further, that M is convexly C-extendible, that is (see Sect. 3) the
following holds:

For any choice ofMe and its perfectly simple subset D, each connected component of D∩M
is causally convex in D (we emphasize that it need not be causally convex in M or in Me).

Let us check that the convex C-extendibility of M guarantees the existence of a
C-extension M� ⊃ M (perhaps, not C-maximal yet) which satisfies the condition
í
M� = í

M , i.e., which has no new closed causal curves. To this end, extend M to
some R ⇋ M ∪ D, where D ⊂ Me is perfectly simple, see Fig. 1. Consider both
possible dispositions of D:

D ∩ M is connected. M� ⇋ R is just the sought-for extension. Indeed, a new
(i.e. not lying entirely in M) causal loop � would have to pass through a point
p ∈ (D − M). But D, being normal, does not contain closed causal curves. So,
� would have to leave D—and, therefore, to get into D ∩ M—both to the future
and to the past of p. Thus, the existence of � would imply the existence of p such
that
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p /∈ M, J±
D (p) ∩ M �= 0,

contrary to the assumed causal convexity of D ∩ M in D.

D ∩ M is non-connected. Unsticking from M all but one connected components
of D ∩ M reduces this case to the previous one.

Thus, all convexly C-extendible spacetimes can be extended without violating the
condition C and at the same time without giving birth to new causal loops. This,
however, does not bring us much nearer to the completion of the first step of the
proof: it may well happen that M� is still C-extendible, but—in contrast to M—not
convexly C-extendible, in which case we would not be able to repeat the procedure
and thus to build (M�)�, [(M�)�]�, etc., as one might wish. In order to solve this
problem we build in Sect. 4 one more extension of the (convexly C-extendible) space
M . This new extension, denoted by (M)�, or simply by M�, is constructed from
M� by cutting and pasting and have the following properties (it is the proof of the
last of them that makes up the most tiresome part of this chapter):

(P1) M� is a C-space [by Test 3(b) in Chap.2 this follows from the fact that M�
is locally isometric to M�, which in its turn was a part of Me];

(P2) M�, as well as M�, have no causal loops apart from those lying entirely in
M ;

(P3) If M� is C-extendible, then—in contrast to M�—it must be convexly C-
extendible.

The class of the spacetimes possessing the same properties will be denoted V, so the
properties (P1,2,3) of M� can be expressed as the mere membership M� ∈ V.

Now, assuming M is an extension of U that satisfies the causality condition
everywhere outside I−

M(U ) (the existence of such M is a non-trivial fact, requiring
a separate discussion, see below), we need only to find a C-maximal space in V. To
this end we check whether M , denoted also by V0 in this case, has a C-extension. If it
does we define V1 to be its C-extension belonging to V (it can be M�, for example).
If V1 is C-extendible, too, we denote by V2 its extension lying in V [for example,
V2 ⇋ (V1)�], etc. Eventually, we either build at some step a C-maximal Vk , and its
existence will prove the theorem, or obtain an infinite chain of spaces

{Vk}, k = 0, 1, . . . , ∀k Vk ∈ V,

each of which is an extension of the previous one. For such a chain it is easy to build a
spacetime V ∪ ∈ V in which all the spaces are imbedded at once. Hence, by the Zorn
lemma in V there is a maximal1 element V ∗. Such an element has no extension in V.
So, in particular, it cannot be extended to (V ∗)�, which means that V ∗ is C-maximal.
This proves the theorem, because V ∗ satisfies all the requirements of Mmax.

Thus, to prove the theorem it remains to verify that there exists an appropriate
M for a general U , i.e. to show that any C-extendible spacetime U has a convexly

1With respect to some order relation ⩿ that we shall introduce in V. Up to some technical details
A ⩿ B means A ⊂ B.
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C-extendible (or C-inextendible) C-extension M which contains no causal loops out-
side I−

M(U ). This is done as follows. Consider the setW of all possible C-spacetimes
of the form V = I−

V (U ). Clearly,

í
V ⊂ I−

V (U ) ∀ V ∈ W.

So, all we need is to find a convexly C-extendible (or C-maximal) element inW and
to declare it to be M . For this purpose we shall show (by the Zorn lemma again),
that in W there exists a maximal element Vm. A past-directed causal curve cannot
leave Vm, even if the latter is a part of a larger C-space (otherwise Vm would not be
maximal). It follows that Vm is convexly C-extendible or C-maximal and hence can
be chosen to be M .

3 Convexly c-Extendible Sets

We begin with introducing the notion that plays the central role in our proof. The
convex C-extendibility is an analogue of causal convexity, but, in contrast to the latter,
is an intrinsic characteristic of spacetime (cf. p. 21) even though it defines largely,
as we shall see, the properties of the boundary of the spacetime in its extensions.

Let a C-extensionMe of a spacetimeM have the form D∪M , where D is perfectly
simple. Let further D⋎ be a connected component of D ∩ M .

Definition 3 M is convexly C-extendible, if each thus defined D⋎ is a causally convex
subset of D.

Generally, neither convex, nor intrinsically globally hyperbolic sets, even if they are
C-extendible, have to be convexly C-extendible, as is exemplified by, respectively, a
rectangle in the Minkowski plane, and the set built in Example 55. However,

Proposition 4 If an intrinsically globally hyperbolic spacetime M is both convex
and C-extendible, then it is convexly C-extendible.

Proof Consider a timelike curve γ ⊂ D, connecting a pair of points

p ≺ p′, p, p′ ∈ D⋎

(the condition that M is C-extendible guarantees the existence of D and D⋎ in ques-
tion. This exhausts its role).Wemust show that the entire γ lies in D⋎ or, equivalently,
that the non-empty and obviously open (in the topology of γ ) set γ ∩ D⋎ is closed.
Put differently, we only need to prove that if a convergent sequence sk k = 1, 2 . . .

lies in γ ∩ D⋎, then so does s ⇋ lim sk .
We begin with the observation that each sk belongs to the set�p, p′�D⋎

. Indeed,
by Proposition13 in Chap.1, D⋎ is convex. Hence, there is a geodesic λpsk ⊂ D⋎
from p to sk . This geodesic is causal and future directed [because the very existence
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of γ implies the membership sk ∈ I+
D (p), thus the said geodesic connects p with

a point of its chronological future in the—convex—set D], so sk ∈ J+
D⋎

(p). The
membership sk ∈ J−

D⋎
(p′) is proved in the same way.

From the intrinsic global hyperbolicity of M and D it follows that, respectively,
�p, p′�D and �p, p′�M are compact. And sk , as we just have established, belongs
to both these sets. Consequently, s ∈ �p, p′�D ∩ �p, p′�M let alone

s ∈ γ ∩ D ∩ M

(the membership s ∈ γ follows merely from the closedness of γ , which, in fact, is
even compact, being a continuous image of the compactum [0, 1], see [186, Proposi-
tion III.3.9]). All connected components of D ∩ M are open. So, the one containing
s, also contains some of sk . Hence, it is just the component denoted by D⋎. �

Corollary 5 If a perfectly simple set is C-extendible, then it is also convexly
C-extendible.

A convexly C-extendible space certainly must be C-extendible, but, as is shown by
the example of M�, it does not have to be convex, i.e. the converse to the just proven
proposition is, generally, false. One of the reasons is that convex C-extendibility is,
loosely speaking, a characteristic of the ‘subsurface’ (i.e. lying near the boundary)
region of a spacetimes, not of their ‘depths’. This, in particular, implies a special
structure of the boundary of a convexly C-extendible region: ‘mostly’ it is achronal
(though not always for the reasons obvious from inspection of D3 in Fig. 1).

Proposition 6 Let M1 be a C-extension of a convexly C-extendible spacetime M and
U be a neighbourhood of some point of BdM1M. Then there exists a perfectly simple
set P ⊂ U and a connected component P⋎ of P∩M such that BdP P⋎ is a non-empty
closed imbedded achronal (n − 1)-dimensional C1− submanifold of P.

Proof AssumeU is perfectly simple (by Proposition 65 in Chap.1 this does not lead
to loss in generality) and denote byUM a connected component ofU ∩ M . Then the
convex C-extendibility of M implies (by definition) the causal convexity of UM in
U , i.e. the equality

U
 = ∅, U
 ⇋
(
I+
U (UM) ∩ I−

U (UM)
) −UM .

In the spacetime UM , there may be inextendible timelike curves that are extendible
as curves in U . The sets of all future and past end points of such curves are denoted
byB+ andB−, respectively. Clearly both sets lie in BdUUM , but may not exhaust it,
see Fig. 2a.

Pick a point q ∈ B+ (by Corollary66 in Chap.1, B+ and B− cannot both be
empty, so if B+ = ∅, then from now until the end of the proof one simply must
replace ‘past’ ↔ ‘future’ and + ↔ −). I+

U (UM) contains q and hence also some
perfectly simple neighbourhood P � q. This neighbourhood is disjoint with B−
[because the latter is a subset of I−

U (UM) − UM and hence its intersection with P

https://doi.org/10.1007/978-3-319-72754-7_1
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P

P

(b)
(a)

Fig. 2 a Of the two curves meeting in r , the upper one is B+ and the lower one is B−. r belongs
to neither. b M� is obtained from M by, first, pasting H̊ to the latter (the result is R) and, second,
unsticking all but one connected component of the intersection of the initial space with the region
pasted in (after which that region is renamed to H in order to avoid confusion with P ⊂ M1 or H̊ )

would have to lie in the—empty—set U
]. And this means that timelike curves in
the space P ∩UM cannot have past end points in P .

Let P⋎ ⊂ UM be a connected component of the set P∩M . Then, if a past-directed
timelike curve lying entirely in P leaves P⋎, it must also leave M , and, consequently
(due to our choice of P⋎) P ∩UM , too. But the last possibility is excluded, as we just
have proven. So, P⋎ is a past set in P and our assertion follows from Proposition31
in Chap.1. �

The sets P and P⋎, defined in the course of proving the proposition, and numerous
sets isometric to themwill be used extensively in what follows. Therefore, it is worth
mentioning that themain difference between P andU is that the former is sufficiently
small to be contained in I+

U (UM). It is this containment that enables P to avoid the
presence in it of sharp turns of BdPM , similar to the point r in Fig. 2a.

4 Construction of M�

In this section, for an arbitrary convexly C-extendible spacetime M , we build a
C-extension M� of a special type: it is also convexly C-extendible (as will be proven
later) and has no closed causal curves besides those lying in M . M� is built in a few
steps. First, we glue to M a perfectly simple region H and thus obtain a C-extension
denoted M� (see Fig. 2b). Then one more copy of H is glued to the ‘upper’ (i.e. lying
outsideM) part ofM� (to ensure theHausdorffness of the resulting extensionM♦—it
is depicted in Fig. 3a—we delete the corresponding three-dimensional submanifold).
Finally, an even smaller perfectly simple setG is glued toM♦, see Fig. 4. Themeaning
of these manipulations is this. The spacetime M is convexly C-extendible and so is
H . However, the boundaries of these two constituents in a common extension may

https://doi.org/10.1007/978-3-319-72754-7_1
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intersect in such a manner (cf. the part of BdM covered by the set D2 in Fig. 1)
that the result of glueing H to M is not convexly C-extendible. To get around this
problem, we remove the unwanted intersections and extend M to a spacetime M�
(to preserve the property Cwe do this by glueing to M sets isometric to some subsets
of M) such that the removed points are missing in any extension of M� (cf. Sect. 6.2
in Chap.1.).

Remark on notation 7 In building M� and analyzing its structure, we shall need
a great many notations. In order not to get confused (see also Remark 11), I denote
different sets of common origin by the same letters with different diacritics. The
diacritics are chosen so as to refer to the distinguishing feature of the corresponding
set. For example, M♦ is the union of M and a perfectly simple set, which is diamond
shaped in the simplest case, and M� differs from M by the ‘upper part’ of that
diamond.

4.1 The Spacetime M�

Proposition 8 Each convexly C-extendible spacetime M has a C-extension M� such
that

(a) M� = M ∪ H, where H is perfectly simple, and H⋎ ⇋ M ∩ H is connected;
(b) M is a past or future set in M�;
(c) The boundary S ⇋ BdM�M is a closed imbedded connected achronal (n − 1)-

dimensional C1− hypersurface in M�.

Let M1, U , P⋎ etc., be the same as in Proposition 6. We are going to build M� by
cutting the region R ⇋ M ∪ P out of M1 and then unsticking from R all connected
components of P but P⋎, see Fig. 2. In doing so, we shall also introduce for future
use a few objects more.

Proof Let M̊ and H̊ be the spaces isometric to, respectively, M and P:

φM : M → M̊, φP : P → H̊ , φM ,φP are isometries.

Then, see Sect. 6 in Chap.1, the just defined spacetime R can be represented as a
result of glueing H̊ to M̊ :

R = M̊ ∪φMP H̊ , φMP ⇋ φM ◦ φP
−1 : H̊ → M̊ .

Denote by φ the restriction of φMP to the connected component H̊⋎ = φP(P⋎) of
its domain [which is the set φP(P ∩ M) ⊂ H̊ ]. Glueing H̊ and M̊ by φ, we obtain
the sought-for space M�:

M� = M̊ ∪φ H̊ .

https://doi.org/10.1007/978-3-319-72754-7_1
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Now, considering that we shall not need R any longer, let us slightly change our
definitions. Specifically, we shall redefine

H ⇋ π�(H̊), H⋎ ⇋ π�(H̊⋎), M ⇋ π�(M̊),

where π� is the canonical projection of M̊ ∪ H̊⋎ to M�, while so far they have been
defined to be corresponding subsets of R. The new definition is consistent with the
intuitive picture of M� as R, in which P is replaced with H (i.e. is glued to M in
a different way). As clear from Assertion 71 in Chap.1, M� is an extension of M
(since so is R). At the same time, M� being locally isometric to R belongs toC. This
proves Proposition8(a).

For the sake of definiteness assume, as in the proof of Proposition6, thatB+ �= ∅.
Consider then a past-directed timelike curve μ ⊂ M� starting in M . The only way
for this curve to leave M would be to get, first, to H⋎ and then to H − H⋎. But, in
such a case the curve would intersect the boundary of H⋎ in H and the intersection
would lie in B− contrary to the fact that B− is disjoint with H (see the proof of
Proposition6). Thus, μ does not leave M and hence the latter is a past set in M�.
Item 8(b) is proved.

Except for the connectedness, all properties of S listed in 8(c) follow from
Proposition 31 in Chap. 1, when 8(b) is taken into consideration. But as shown
in, for example the proof or [76, Proposition 6.3.1], there is a neighbourhood W of
every point of S continuously projected to S ∩ W . Require that P (defined just as a
sufficiently small perfectly simple neighbourhood of a point q) would lie entirely in
W . Then the connectedness of S follows from that of P . �
Convention 9 From now on, for the sake of definiteness, we take M to be the past
set in M�. We are entitled to adopt this convention, since the proof of the theorem
is based only on Proposition 24 (which does not depend on the choice of the time
orientation) and formula (�), p. 145, which does not exploit any properties of H⋎
(it contains only M).

Remark 10 As proven on p. 122,M� contains no closed causal curves, besides those
confined to M . So, be M�, generally, convexly C-extendible (which is not the case)
we could proceed immediately to Proposition24.

4.2 The Spacetime M♦

In this subsection, we build one more C-extension of M (note that it will not be an
extension of M�) denoted M♦. Similarly to how M� was built, we, first, represent
an auxiliary space (M� − 
 in this case, notation is specified below) as a result of
glueing together two spaces (H̊H⟜⊸ and M̀��) and then unstick ‘redundant’ components
of their intersection.

LetG be a perfectly simple set such that it contains a point of the surface S but not
the entire S. Further, let ClHG be compact. G splits S into three non-empty disjoint

https://doi.org/10.1007/978-3-319-72754-7_1
https://doi.org/10.1007/978-3-319-72754-7_1
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(b)(a)

Fig. 3 M♦ is obtained by glueing the upper part (H̊∧) of the space H̊H⟜⊸ = H̊ − ClS̊� [see the
right picture] to M�� ⇋ M� − ClS– [see the left picture]. The dark region is the part of M seen
through H⟜⊸. The white circles depict missing points

parts, which we denote as follows:

S� ⇋ S ∩ G, S– ⇋ S − ClHG, 
 ⇋ S − S� − S–

(that 
 �= ∅ follows from the connectedness of S). We also separate out two regions
in H :

H⋎ and H∧ ⇋ H − ClH⋎,

and two regions in G:

G⋎ ⇋ G ∩ H⋎ and G∧ ⇋ G ∩ H∧,

see Fig. 3a. Finally, we shall need a space M̀� isometric to M� and notations for two
isometries:

ψM : M� → M̀� and ψH : H → H̊ .

To simplify the notation, we adopt the convention that À and Å stand for, respectively,
ψM(A) and ψH (A). In particular,

H̊∧ ⇋ ψH (H∧), G̊⋎ ⇋ ψH (G⋎), 
̀ ⇋ ψM(
), etc.

Separate notations are introduced for H̊ cut along S̊�, and M� cut along S–:

H̊H⟜⊸ ⇋ H̊ − ClS̊�, M�� = M� − ClS–.

Now, we are in a position to build M♦. To this end, represent M� −
 as the result
of gluing H̊H⟜⊸ to M̀��:

M� − 
 = H̊H⟜⊸ ∪ψMH M̀��, where ψMH ⇋ ψM ◦ ψH
−1.
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Next, note that H̊H⟜⊸ is stuck to M̀�� in two disjoint regions: H̊⋎ and H̊∧. So, we can
build a new spacetime by ‘unsticking’ one of them (viz. H̊⋎). Put formally, we define

M♦ ⇋ H̊H⟜⊸ ∪ψ M̀��, where ψ ⇋ ψMH
H̊∧

.

As is easily seen, M♦—it is portrayed in Fig. 3a—is, indeed, an extension of M ,
but not of M�. So, strictly speaking, we should distinguish subsets of M�, such as
H⋎, S–, etc. from the corresponding subsets of M♦, i.e. π♦(H̊⋎), π♦(S̀–) etc., where
π♦ is the canonical projection

π♦ : (H̊H⟜⊸ ∪ M̀��) → M♦.

However, our notation needs to be simplified, so we shall write (withminor detriment
to rigor)

G⋎ = π♦(G̀⋎), S� = π♦(S̀�), etc., (1)

that is identify, when convenient, π♦(M̀��) and its subsets with M�� and its corre-
sponding subsets. For the same reason, we equate

H⟜⊸ = π♦(H̊H⟜⊸).

At the same time, the sets under discussion should not be confused with their copies
lying in the ‘outward’ part of M♦ [which is the set π♦(H̊⋎), i.e. the lower part of the
rhomb π♦(H̊H⟜⊸) in Fig. 3a]. So, we shall mark the latter by the symbol ♦ over the
relevant letter:

♦
G⋎ ⇋ π♦(G̊⋎),

♦
H⋎ ⇋ π♦(H̊⋎), etc.

4.3 The Spacetime M�

Now, we are going to build a special C-extension of M♦: formally it is obtained by

glueing a copy of G to M♦, or, to be precise, to its part
♦
G⋎, see Fig. 4. As a first step,

through the use of yet another isometry, ς, we define a copy of G:

G̃ ⇋ ς(G̊),

notice that ς⋎ ⇋ ς ◦ π−1
♦ ♦

G⋎

maps its ‘lower’ (i.e. isometric to G⋎) part to M♦, and

form the spacetime in question by the following glueing:

M� ⇋ M♦ ∪ς⋎ G̃.
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Fig. 4 M�—it is portrayed in the left picture—can be represented as the result of pasting the

space shown at the right to M (not to M♦!). The hatched region, in the process, transforms into
♦
G⋎

Again, from now onwe (1) identify the spacetime G̃ and its projection to M� and (2)
abbreviate S̃� to S�. It is easily seen that M� is an extension of M♦ and, moreover,
it is a C-extension of M , since M� is locally isometric to the corresponding part of
M1.

Remark on notation 11 The structure of M� is, actually, not that complex. How-
ever, we have to separate out a plethora of subsets and to consider a few auxiliary
spacetimes. To sort them out, note that we have only three ‘basic’ sets: the perfectly
simple spaces G̊ and H̊ and the achronal surface S̊, see Fig. 3b. S̊ splits H̊ into two
parts: H̊⋎ and H̊∧. Likewise, S̊�, that is the part of S̊, which lies in G̊ splits it into G̊⋎
and G̊∧. The cut along S̊� transforms H̊ into H̊H⟜⊸. Further, we have a set of isometries
mapping the above listed sets to M��, M♦ and G̃ ⊂ M�, or to the auxiliary space
M̀�. Different images of the same spaces are distinguished by diacritics showing in
which of the spacetimes a set lies. Thus, for any set A it is tacitly understood that

A ⊂ M��, Å ⊂ H̊ ,
♦
A ⊂ M♦ − M��, Ã ⊂ G̃, À ⊂ M̀�

(this notation system admits of aliases, e. g. S̊� ≡ S̊�). There are two exceptions to
this rule: H⟜⊸ and S� lack diacritics, though neither lies (entirely) in M��.

Thus, M�, for example can be represented as the union of (overlapping) regions

M��, H⟜⊸, G̃,

or of disjoint sets

M, S�, H∧, S–,
♦
H⋎, S�, G̃∧.

The union of H∧, S–, and
♦
H⋎ makes up H⟜⊸.
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Proposition 12 In the spacetime M� the region M is a past set and G̃∧ is a future
set.

Proof The first assertion is evident from Figs. 3 and 4. Formally, it can be derived
from the fact thatM is a past set inM�, see Proposition8(b), and hence, by Test 28(b)
in Chap.1, in M�� too. Our claim now follows from Test 28(c) in Chap.1 with W ⇋
M , A ⇋ M��, and B ⇋ H⟜⊸ ∪ G̃.

Now assume that G̃∧ is not a future set. Then, it must contain a future-directed
timelike curveμ terminating atBdM� G̃∧ = BdG̃ G̃∧ (the equality stems from the fact
that by constructionM♦ has no point thatwould contain in each of its neighbourhoods
a point of G̃∧, whence the boundary thereof lies in G̃). The isometry ς−1, see the
beginning of this subsection, maps μ to a timelike future-directed curve lying in
G̊∧ ⊂ H̊∧ and terminating at BdG̊ G̊∧ ⊂ BdH̊ H̊∧. But such curves do not exist, since
H̊∧ is a future set in H̊ , as follows from Proposition8(b) by Tests28(a) and 28 (b)
of Chap.1 with W ⇋ H∧, A ⇋ M�, and P ⇋ M − H . �

5 The Structure of M�

Our goal in this section is to prove that a C-extendible M� is also convexly C-
extendible. To this end, we divide M� into three regions, M , G̃, and H⟜⊸, of which
the first two are convexly C-extendible and—up to a cut—so is the third, and reduce
the properties of M� to properties of these regions. In doing so, we utilize the
facts that in extensions of M� there are nonhomotopic curves with the same ends
(homotopy is meant to be fixed end point), and that a common neighbourhood of
such curves cannot be perfectly simple. That these curves are nonhomotopic is due
to a singularity, which is present in M� in spite of the fact that M� consists of a
few nonsingular regions.2 Thus, our immediate subject is homotopic properties of
curves intersecting S� and S�.

5.1 The Surfaces S� and S	

Our way of constructing M� (by unsticking relevant regions) implies the existence
of a projection π�, which maps M� to M� locally isometric. In particular, it maps
timelike curves to timelike, and each of the surfaces S�, S� to the surface that we
also denoted by S� [even though it lies in M�, cf. (1)]. Thus, Proposition8(c) yields

Corollary 13 S� andS� are connected closed imbeddedC1− hypersurfaces in M�.
They both and even their union are achronal in M�.

2The nature of this singularity is the same as in the DP space, or, say, in the twofold covering of the
punctured Minkowski plane.

https://doi.org/10.1007/978-3-319-72754-7_1
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Instead of appealing to Proposition8(c) we could use the following reasoning. The
definitions of S� and M�� imply that S� = BdM

��
M . On the other hand, M� was

obtained from M�� by glueing some open sets to regions disjoint with M . Therefore,

S� = BdM�M. (2)

Likewise, S� = BdG̃ G̃∧ and, again, M� is obtained from G̃ by glueing some open
sets to regions disjoint with G̃∧. Whence,

S� = BdM� G̃∧.

Now, almost all the listed properties of S� and S� follow from Propositions12 and
31 in Chap.1.

Our next goal is to show that those surfaces cannot be extended: roughly speaking,

, which was deleted in the process of building M�, cannot be ‘glued back’ into
spacetime. In this sense, 
 generates the above-mentioned singularity.

Proposition 14 In any extension Me of the spacetime M�, the sets S� and S� are
closed.

Proof We prove the proposition for S�, the ‘S�’ case being much the same. The
idea of the proof is to show that the existence of a non-empty edge BdMeS� − S�
would lead to contradictory properties of a certain past-directed geodesic γ . This
geodesic would have to enter both H⋎ (being limit to a family of geodesics that

descend passing to the right of the left white circle in Fig. 3a) and
♦
H⋎ (as a limit of

geodesics descending to the left of the circle), but these two sets are disjoint.
Thus, suppose that {pm} is a sequence of points such that contrary to our claim

pm ∈ S�, lim
m→∞ pm = z ∈ (Me − S�). (∗)

Denote by p̀m the images of pm in M̀�, that is p̀m ⇋ ψM(pm). Now recall that,
by construction, ClHG is compact and, consequently, so is ClM̀� G̀. Being a closed
subset of the latter Cl[ψM(S�)] is compact too. This entails the existence of a point
p̀ such that

lim
k→∞ p̀k = p̀ ∈ 
̀,

where { p̀k} is a subsequence of { p̀m} and 
̀ stands in place of the whole set
Cl[ψM(S�)], because p̀ by the assumption (∗) is not in ψM(S�).

Now pick a point ò in I+
H̀
( p̀) and consider a sequence of geodesics γ̀k(τ ) =

expò(τ v̀k) connecting ò to p̀k (they must exist, since H̀ , which contains both ò and
p̀k , is convex). The parameter τ on each of the γ̀k is chosen so that

γ̀k(1) = expò(v̀k) = p̀k .

https://doi.org/10.1007/978-3-319-72754-7_1
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Beginning from some k0, all these geodesics are timelike and, therefore, do not
meet S̀– [otherwise they would have more than one—including p̀k—common points
with the achronal, see Proposition 8(c), surface ψM(S)]. So, each γ̀k lies in the
domain of the projection π♦ and is projected to a geodesic γk ⊂ H which starts at
o ⇋ π♦(ò) ⊂ M�, has the initial velocity vk = dπ♦(v̀k), and passes through pk at
τ = 1.

Since all p̀k , as well as p̀, are in the convex set H̀ , where exp is a diffeomorphism,
we have

lim
k→∞ v̀k = v̀, where v̀ ⇋ exp−1

ò ( p̀),

and, by the smoothness of π♦,

lim
k→∞ vk = v, where v ⇋ dπ♦(v̀).

Consider now the geodesics

γ̀ (τ ) ⇋ expò(τ v̀) and γ (τ) ⇋ expo(τv).

Let ε be a positive number, so small that, first, both of these geodesics can be extended
to the values τ = 1 + ε [that they can be extended to some τ > 1 follows from the
very existence of z = γ (1) and p̀ = γ̀ (1)] and, second, γ̀ (1 + ε) lies still in H̀⋎.
Then, by continuity,

γ (1 + ε) = lim
k→∞ γk(1 + ε) = lim

k→∞π♦[γ̀k(1 + ε)]
= π♦[ lim

k→∞ γ̀k(1 + ε)] = π♦[γ̀ (1 + ε)] ∈ H⋎. (3)

However, since p̀ ∈ 
̀, we can find a sequence of points

q̀k ∈ S̀–, lim
k→∞ q̀k = p̀,

and, repeating the reasoning above with p̀k replaced by q̀k , obtain γ (1 + ε) ∈ ♦
H⋎.

This contradicts (3). �

Thus, we have established that the spacetime M� contains incomplete geodesics that
cannot be extended in any extension of M�.

Corollary 15 M� is singular.

Now, let us find out how timelike curves intersect S� and S�. Unfortunately, these
surfaces, though achronal, are not necessarily spacelike (cf. p. 17). So, we have to
prove some facts that would be standard be S� and S� at least C1. Specifically, we
shall show that a continuous deformation does not change the number of intersections
of a timelike curve with S� and S� as long as the curve remains timelike and its end
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Fig. 5 The solid curve
cannot be continuously
deformed—keeping it
timelike and its end points
fixed—into a dashed one.
The grey strip to the right is

(Q)

points do not cross the relevant surface. The curve can neither leave the surface (i.e.
the solid curve in Fig. 5a cannot deform into the leftmost dashed one, being restricted
by the singularity), nor bend so as to give rise to new intersections (being timelike
the curve intersects the achronal surface S� ‘transversally’).

Definition 16 Let λ(τ) be a timelike curve in an extension Me of the spacetime
M�. A �-root (or a �-root) of λ, is a value τi of the parameter τ such that λ(τi )

is in S� (respectively, in S�). The number of �- and �-roots of λ is denoted i�[λ]
and i�[λ], respectively.
Obviously, for any future-directed curve λ lying in M� and having end points a and
b the following holds:

i�[λ] =
{
1 if a ∈ ClM�M, b /∈ M;
0 otherwise

(4a)

(the first line follows from the equality S� = BdM�M , see (2), which leads in this
case to the restriction i�[λ] � 1, and Corollary 13, which implies that i�[λ] � 1;
the second line—from the fact that on the strength of Proposition 27 in Chap.1 the
part of λ lying to the past of λ ∩ S� must be contained in M , while the remainder,
on the contrary, must lie in M� − M). Likewise,

i�[λ] =
{
1 if b ∈ ClM� G̃∧, a /∈ G̃∧;
0 otherwise.

(4b)

Denote by Q the square [0, 1] × [0, 1] in the plane (τ, ξ) and consider a homotopy


(ξ, τ ) : Q → Me, (5)

such that for every fixed ξ0 the curve λξ0(τ ) ⇋ 
(ξ0, τ ) is timelike and future-
directed. The ‘horizontal’ curves will be denoted μτ0(ξ) ⇋ 
(ξ, τ0). We begin
with establishing some properties of the set R of all points (τα, ξα) ∈ Q such
that τα is a root of λξα

. Clearly, 
(R), being an intersection of two closed sets,

(R) = 
(Q) ∩ (S� ∪ S�), is closed too [both in Me and, as a consequence, in

(Q)]. Hence, by continuity, R is closed in Q.

https://doi.org/10.1007/978-3-319-72754-7_1
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Notation 17 By analogy with ±, we introduce the sign �. An expression or an
assertion, containing this sign, is understood as a pair of expressions (respectively,
assertions), linked by ‘and’: in one of them all � must be replaced by �, and in the
other—by 	.

Proposition 18 Suppose, curvesμ0 andμ1 intersect neither S�, nor S�. Then,R is
a finite number of disjoint continuous curves νm

�
m = 1, . . . ,m� < ∞ from ξ = 0

to ξ = 1. They are graphs of continuous functions

τ = rm
�

(ξ), 0 < rm
�

< 1.

A curve (not necessarily causal) ψ(s) ⊂ 
(Q) with the end points at the curves
ρ
m1
�
⇋ 
(ν

m1
�

) and ρ
m2
�
⇋ 
(ν

m2
�

) leaves M� if m1 < m2.

Proof Consider a point p∗ = (τ∗, ξ∗) ∈ Q and assume that τ∗ is a, �-, for definite-
ness, root of the curve λξ∗ . Then, by definition, λξ∗(τ∗) ∈ S� = BdM� G̃∧. But λξ∗ is
future-directed, while G̃∧ is a future set in M�. So, for any sufficiently small δ �= 0
(so small, that λ |τ−τ∗|�δ

is still in M�, and 0 < τ∗ ± δ < 1)

λξ∗
τ∗−δ<τ�τ∗

⊂ M� − ClM� G̃∧, λξ∗
τ∗<τ�τ∗+δ

⊂ G̃∧,

see Proposition27 in Chap.1. Hence, by the continuity of 
, there is ε = ε(δ) �= 0
such that at |ξ − ξ∗| � ε every segment λξ |τ−τ∗|�δ

also starts out of G̃∧, traverses

M� and ends in G̃∧. It follows then from (4) that in the rectangle


�δε ⇋ {τ, ξ : τ, ξ ∈ [0, 1], |τ − τ∗| < δ, |ξ − ξ∗| < ε}

for every ξ there is exactly one root.3 It is now easily seen that

(a) R ∩ 
�δε is the graph of some continuous (as we could choose an arbitrarily
small δ) function τ = rm�(ξ) with the domain |ξ − ξ∗| � ε;

b) the number of roots of λξ∗ is finite. Indeed, otherwise they would have a limit
point in some τ∞ ∈ [0, 1], and τ∞, due to the closedness of R would be a root,
which would contradict either the hypothesis of the proposition (if τ∞ = 0, 1), or
the existence of 
�δε (if τ∞ �= 0, 1);
c) νm

�
with different m are disjoint.

Now, let us establish that the domain of each rm� is the whole interval [0, 1] or,
equivalently, that the domain is closed (that it is open we already know—every ξ in
it has a neighbourhood also contained there). Consider to this end, a number τ∗∗ that
is not a root of λξ∗ . The point p∗∗ ⇋ λξ∗(τ∗∗) is not in S�. But the latter is closed
(by Proposition 14), and, consequently, some neighbourhood of p∗∗ is also disjoint
with S�. So, there is a rectangle 
�δ′ε′ around p∗∗ that contains no points ofR. This
means that the complement of the domain of rm� is open.

3This is the reason why we require that λ be timelike, not just causal.

https://doi.org/10.1007/978-3-319-72754-7_1
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To analyse the last assertion, consider the segment of ψ between ρ
m1
� and ρ

m1+1
�

(the case of ρ� is, naturally, perfectly analogous). For definiteness, λ are taken to
be future directed, and the indices of roots to grow with τ . Then on one end of
ψ—specifically, near ρ

m1
� —there is a point belonging to M� − M , and on the other

end—to M . The assertion now follows from (2). �

Corollary 19 Under the conditions of Proposition 18

i�[λξ1] = i�[λξ2 ] ∀ ξ1, ξ2 ∈ [0, 1].

In particular, the homotopy under discussion cannot relate the solid curve in Fig.5a
with either of the dashed.

Thus, i� and i� are analogous of intersection indices, the timelikeness of the
relevant curves playing the role of their transversality to the surfaces S�. The numbers
i� do not change at a fixed ends homotopy leaving the curves timelike. But in a
convex neighbourhood all timelike curves with common end points are related by a
homotopy of that kind.4 So, if O ⊂ Me is a convex neighbourhood, then to every
pair of points p, q ∈ O connected by a timelike curve λpq ⊂ O a pair of numbers
i�[pq] can be assigned:

i�[pq] ⇋ i�[λpq ], ∀p, q : p ∈ I±
O (q).

5.2 Convex C-Extendibility of M�

Let D be a perfectly simple subset of some extension Me of M�. Let, further, DM�
be a connected component of D ∩ M�. To prove the convex C-extendibility of M�,
we must establish the causal convexity of DM� in D, i.e. to show that any timelike
curveκ ⊂ Dwith the ends in DM� lies there entirely. But we know (from the convex
C-extendibility of the relevant sets) that this holds for curves that start and end in
components of the intersections D ∩ A, where A ⇋ M , G̃ or H (the symbol H here
should not be understood too literally: strictly speaking, M� contains H⟜⊸ rather
than H ). So, the main idea of our proof is to show that the above-mentioned curve κ

is in this class, i.e. both its ends lie in the same component of D∩ A, (at least, whenκ

does not cross S�, that is when the difference between H⟜⊸ and H is immaterial). For
this purpose, we show in Proposition 20 that κ ends in the same A, where it starts.
At the same time, Proposition 21 says that DM� ∩ M and DM� ∩ G̃∧ are connected
(this does not follow automatically from the connectedness of DM� : the intersection

4Indeed, any of them is homotopic to the geodesic connecting its ends: it suffices to define λξ∗ as
the geodesic segment from λ0(0) to λ0(τ = ξ∗) joined with the segment λ0

ξ∗<τ�1
.



138 5 A No-Go Theorem for the Artificial Time Machine

of two connected sets need not be connected, of course). The combination of these
two propositions proves (except when A = H ) thatκ returns to the same component
of D ∩ A where it begins. It remains to prove—this is done in Proposition 23 (with
the use of the convex C-extendibility of H )—that in the last case, i.e. when the curve
starts and ends in DM� ∩ H⟜⊸—the curve does not leave DM� either.

Proposition 20 If points a, b ∈ DM� are connected by a timelike curve κ ⊂ D
that intersects neither S�, nor S�, then they both lie in one of the three sets: M, H⟜⊸
or G̃∧.

Proof Connect a and b by a curve ϕ that—in contrast, perhaps, to κ—lies wholly in
DM� (the existence of such ϕ is guaranteed by the very definition of DM�). To prove
the proposition, we plan to demonstrate that ϕ can be chosen so that, if it intersects
S� or S�, then later it intersects the same surface in the opposite direction. But ϕ

lies in M�, where it is impossible to get into one of the sets A from another, without
an uncompensated intersection of S� or S�.

We already know how timelike curves intersect S�. So, we begin with replacing
an arbitrary ϕ by a piecewise timelike broken line. To this end, we cover ϕ by a finite
number of perfectly simple sets Fk ⊂ DM� , k = 1, . . . , K , numbered according to
the rule

ϕ ⊂
⋃

k

Fk, Fk−1 ∩ Fk �= ∅, a ∈ F1, b ∈ FK ,

and pick K + 1 points fk , so that:

f1 = a, fK+1 = b, fk ∈ Fk−1 ∩ Fk, k �= 1, K + 1,

see Fig. 6. Each pair fk, fk+1 lies in a common perfectly simple set Fk , whence there
is a point

pk ∈ I+
Fk

( fk) ∩ I+
Fk

( fk+1), pk /∈ S�.

Connecting at each k the point pk with fk and fk+1 by, respectively, future- and
past-directed timelike curves σk and ηk , where σk, ηk ⊂ Fk , we obtain a continuous
broken line from a to b. Since this broken line lies in M�, it can be used instead
of ϕ in the sense that the proposition will be proven once we show that the line in
question does not intersect S� at all, or intersect it an equal number of times in either
direction.

Let x ∈ D be such a point that

fk, pk ∈ I+
D (x) ∀k

(x exists, since D is perfectly simple). The obvious equality

i�[x, fk] + i�[σk] = i�[x, pk] = i�[x, fk+1] + i�[ηk]

gives



5 The Structure of M� 139

Fig. 6 κ ⊂ D may leave
M�, even if its end points
are in DM�

i�[x, fk+1] − i�[x, fk] = i�[σk] − i�[ηk],

whence, by induction,

i�[ f1, fK+1] = i�[x, fK+1] − i�[x, f1] =
K∑

k=1

i�[σk] −
K∑

k=1

i�[ηk].

On the other hand, i�[ f1, fK+1] = i�[κ] = 0; the last equality being due to the fact
that, by hypothesis, κ does not intersect S�. Thus,

K∑

k=1

i�[σk] =
K∑

k=1

i�[ηk],

which means, see (4), that the broken line under consideration intersects S� in the
outward direction exactly as many times as in the inward direction. �

Proposition 21 The sets DM� ∩ M and DM� ∩ G̃∧ are connected.

Proof We give the proof only for DM� ∩ M . The connectedness of DM� ∩ G̃∧ is
proved similarly.

Let a, b be a pair of arbitrary points in DM� ∩ M . To establish the proposition,
it suffices to find a curve ϕ ⊂ D connecting a with b and lying entirely in M
(such a curve lies automatically—as follows from its very existence—in a connected
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component of D ∩ M , and hence in DM� and, furthermore, in DM� ∩ M). To this
end, pick a curve

ϕ′(ξ) : [0, 1] → DM�

from a to b and a pair of points x, y such that

ϕ′ ⊂ <x, y>D

[ϕ′ exists, because, bydefinition, DM� is connected, and x , y—because D is perfectly
simple, see Remark62(c) in Chap.1]. We shall build the desired ϕ by ‘projecting’
ϕ′ − M to S�. Specifically, suppose, ϕ′ leaves M , p and q being, respectively, the
first and the last points of ϕ′ − M . Consider the homotopy (5) determined by the
condition that λξ at each ξ is a curve in D from x to y through ϕ′(ξ) [λξ can be taken,
for example to be the broken line consisting of two geodesic segments in D: one is
from x to ϕ′(ξ) and the other—from ϕ′(ξ) to y]. Since ϕ′ does not leave M�, both
points, p and q belong, by Proposition 18, to the same curve [it is 
(ρc

�) for some
c ∈ Z] lying in S� ∩ D. The broken line consisting of the segment of ϕ′ from a to
p, the segment of 
(ρc

�) from p to q, and, finally, the segment of ϕ′ from q to b, is
contained in ClM�M . By a small deformation (shifting a little all inner points to the
past) it is transformed into the sought-for curve ϕ. �

Our plan, as explained in the beginning of Sect. 5.2, is to derive the relevant property
ofκ (its inability to reenter a once left component of D∩M�) from the same property
of curves having both ends in A ⇋ M, G̃. What could spoil this plan are κ that have
both their end points in DM� ∩ A, but in different connected components of D ∩ A.
It is the existence of such κ that is excluded by the just proved proposition.

Corollary 22 DM�∩M and DM�∩G̃∧ are connected components (not necessarily
unique, D ∩ M� may not be connected) of spaces D ∩ M and D ∩ G̃∧, respectively.

Proposition 23 Any convexly C-extendible spacetime M has an extension that (1) is
C-maximal or convexly C-extendible and (2) has the causality violating set coinciding

with
í
M.

Proof To prove the claim, we shall show that the mentioned extension can be taken
to be M�.

(1) We begin by focusing on the first condition. To obtain a contradiction, suppose
that M� does not satisfy it, i.e. that M� has a C-extension such that in a perfectly
simple subset D of the latter there is a future-directed timelike curve κ(s) starting
at a = κ(0), ending at b = κ(1), and leaving M� somewhere in between:

a, b ∈ DM�, κ �⊂ M� (�)

(κ ⊂ D, hence κ �⊂ M� is equivalent to κ �⊂ DM�). Without loss of generality we
can assume that κ does not meet S�. Indeed, remove from κ a small (so small, in

https://doi.org/10.1007/978-3-319-72754-7_1
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particular, that its closure is also contained in M�) neighbourhood of each intersec-
tion κ ∩ S�. This will transform κ into a finite (see Proposition 18) set of segments
disjoint with S�. At least one of them being chosen to be the new κ will satisfy (�).

According to Proposition 20, both ends ofκ are in one of the three sets:M , G̃∧, or
H⟜⊸. ButM and G̃ are convexly C-extendible and, therefore, the ends ofκ that leaves
M� cannot lie in connected components of D ∩ M , or D ∩ G̃∧. This excludes—
on the strength of Corollary 22—their containment in DM� ∩ M , or DM� ∩ G̃∧.
Consequently,

a, b ∈ (
DM� ∩ H⟜⊸

)
.

This last possibility cannot be ruled out in the same way, because, first, H⟜⊸—in
contrast to M and G̃—is not convexly C-extendible (this is easily verified by taking
H̊ as the test C-extension and an arbitrary perfectly simple neighbourhood of a point
of 
̊—as the test perfectly simple set). And, second, for H⟜⊸ the connectedness of
its intersections with DM� is not established. So, one can imagine that a and b lie
in different components of that intersection, see the discussion above Corollary 22.
Our method for solving these problems will depend on whether the component of
D∩H⟜⊸ containing a—wedenote it DH⟜⊸—intersects the surfaceS�, or, to be precise,
whether there is a curve μ(s) : [−1, 0] → D such that

μ(−1) = p ∈ S�, μ(s) ⊂ H⟜⊸ at − 1 < s < 0, μ(0) = a

(the ‘dual’ case, obtained by replacing S� ↔ S�, is perfectly analogous and we
shall not consider it separately). If there is no such a curve, then, as we shall see, the
missing S̊� does not manifest itself. But if the curve do exist, then the position of D
is severely restricted by the singularity formed by deleting 
̊. The restriction is so
strong that κ—recall that it is future-directed and disjoint with S�—turns out to be
confined to H⟜⊸.

(i) Thus, suppose that the above-defined μ does not exist. This would imply that
DM� (as usual, this is the component of D ∩ M� containing a) lies wholly in H⟜⊸.
Hence,

DM� ∩ H⟜⊸ = DH⟜⊸ (6)

(cf. Corollary 22). Thus, to obtain a contradiction with the assumption (�) it would

suffice to extendW ⇋ D∪H⟜⊸ to the spacetime ¯̄W = D∪ ¯̄H , where ¯̄H is a convexly

C-extendible extension of H⟜⊸ such that ¯̄H ∩ D = H⟜⊸ ∩ D.
The desired ¯̄W will be built by the ‘cut-and-paste’ method discussed in Sect. 6 in

Chap.1. For this purpose, first, cut the region W out of Me, i.e. consider the former
as a spacetime in its own right (rather than a region of a larger space). If D ∩ H⟜⊸ is
non-connected [which will be the case—in spite of (6)—if so is D ∩ M�], change
toWunst by ‘unsticking’ all of its components but DM� (as before, we keep denoting
the corresponding regions of Wunst by D and H⟜⊸). This will guarantee that

D ∩ S� = ∅. (7)

https://doi.org/10.1007/978-3-319-72754-7_1
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As a last step, we recall that H⟜⊸ was created by deleting a surface in H̊ , see Sect. 4.2,

H⟜⊸ = π♦(H̊ − ClS̊�),

and close the slit, i.e. build a new space

¯̄W ⇋ Wunst∪π♦ H̊ .

By Test 68 in Chap. 1, ¯̄W is a spacetime, since the boundary ofWunst in
¯̄W is S̊�, and

thus, due to (7), is separated from the boundary of π♦(H̊) (this boundary belongs

to D). As easy to verify the thus defined pair ¯̄W , ¯̄H ⇋ π♦(H̊) does satisfy all the
requirements.

(ii) Assume now, that μ does exist. In considering this case it will be convenient
to work with H̊ , whose ‘nice properties’ are not spoiled by a slit. Keeping this in
mind, we define ξ as a continuous map

ξ : (
H⟜⊸ ∪ S�

) → H̊ ,

coinciding with π−1
♦ in H⟜⊸ (they both are isometries there) and recall that by con-

vention, X̊ is an alias for ξ(X), see Remark11.
The contradiction to which, as we are going to show, the existence of μ leads,

is that κ, contrary to its definition (�), cannot leave M� or, to be specific, some
K ⊂ M�. To define K we pick points y ∈ D and x ∈ H⟜⊸ such that

κ, μ ⊂ I−
D (y), (μ − p) ⊂ I+

H⟜⊸
(x), (☆)

see Fig. 7. The points y and x̊ (the latter is defined exactly as x , but with ,̊ placed over
μ, p, and H⟜⊸) can always be found, since D and H̊ are perfectly simple, while their
subsets μ, κ and μ̊ are compact. On the other hand, I−

H̊
(μ̊) ∩ I+

H̊
(x̊) is included in

H̊⋎ (i.e. timelike curves from x̊ to μ̊ do not meet S̊�) and hence also in the domain
of π♦, so we can—in agreement with the notation—take x that enters equation (☆)
to be π♦(x̊). Now we can at last define the afore mentioned set, which—as we shall
prove—includes κ:

K ⇋ I−
H⟜⊸

(S�) ∩ I+
H⟜⊸

(x).

For future use, we need also a certain geodesic family. Specifically, consider the
curve μ̃(s) obtained by translating every point μ(s), s �= 0 along a past-directed
path starting in this point and remaining in I−

D (y) ∪ H⟜⊸ (the reason for doing so is
that μ̃, in contrast to μ, does not meet S�, so we can apply to it Corollary 19, see
below). Let χ(s) be the curve resulting from joining μ̃ to κ:

χ(s) ⇋

{
μ̃(s), at s ∈ [−1, 0];
κ(s) at s ∈ [0, 1].

https://doi.org/10.1007/978-3-319-72754-7_1
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p

Fig. 7 The set H⟜⊸. The light grey region is I+
HH⟜⊸

(x). The dark grey—I−
HH⟜⊸

(S�). The intermediate
is their intersection K . The thin vertical segment fromμ(s) to S� depicts [γs), and γ is the geodesic
that, as we must show, does not lie in D. Its past end point is in I−(S�)∩ H⟜⊸, but not in I−

H⟜⊸
(S�)

We focus on future-directed geodesics γs ⊂ D connecting χ(s) with y. To begin
with, note that γ−1 meets S�. This follows from Corollary 19, in which μ0, μ1, λξ1 ,
and λξ2 are taken to be, respectively, y, μ̃(−1), γ−1, and the curve consisting of a
timelike segment from y to p and the above- mentioned path from p to μ̃(−1).

Next, denote by [γs) the segment of γs from χ(s) to the first meeting with S�.
By convention, the intersection itself (that it exists can be verified by application of
Corollary 19, this time with μ1 ⇋ y, μ0 ⇋ μ̃, and λξ ⇋ γ ξ+1

2
) is not contained in

[γs). Finally, define Σ (not to be confused with 
̊) as the set of all s for which

[
γs) ⊂ K . (∗)

Then our assertion (to the effect that κ is imprisoned in K ) is weaker than the
assertion that Σ = [−1, 1]. We are going to prove this latter by showing that Σ is
closed [it is open in [−1, 1], as follows from the openness of K , and it is non-empty,
because, by construction, χ(−1) = μ̃(−1) ∈ K ].

Let sm ∈ Σ, m = 1, 2, . . . be a sequence of points converging to some s∗. The
geodesic γs∗ is timelike (by the definition of y) and, as we just have discussed, meets
S�. So, χ(s∗) ∈ (

I−(S�)∩ H⟜⊸
)
. In combination with the—obvious—containment

χ(s∗) ∈ I+
H⟜⊸

(x), this almost proves our assertion [that χ(s∗) ∈ K and, hence, Σ is
closed, whence κ is imprisoned in K ]. The only problem is that we must prove the
membership of χ(s∗) in I−

H⟜⊸
(S�), while the latter may differ from I−(S�) ∩ H⟜⊸.

Thus, we are left with the task of excluding the possibility that γs∗ leaves H⟜⊸
somewhere between S� and χ(s∗), see Fig. 7.
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On each γsm pick a parameter τ so that

γsm (0) = y, �(�sm (0), V ) = −1,

where �sm ⇋ ∂τ (0) and V is an arbitrary future-directed timelike vector (the same
for all m). The compactness of the ball

{�(v, v) � 0, �(v, V ) = −1}

ensures the existence of a subsequence {s j } ⊂ {sm} such that the velocities vs j
converge to some v∗. We denote by γlim the geodesic emanating from y with initial
velocity v∗. The solutions of the geodesic equation depend continuously on initial
data, so for any τ

γlim(τ ) = lim
j→∞ γs j (τ j ) at τ j → τ, s j → s∗. (�)

Choosing τ j so that γs j (τ j ) lie between y and χ , we discover that the points in the

right-hand side are in the compact set �χ, y�D and, hence, γlim(τ ) ⊂ D. But D is
convex and y is connected to χ(s∗) by a single geodesic contained in D. This proves
that γlim = γs∗ .

Likewise, [γ̊lim) is the limit—in the sense of (�)—of the sequence of segments
[γ̊s j ). But each of them is in the compact set ClK̊ , which, therefore, contains also

[γ̊lim). Moreover, the latter segment lies in C̊ ⇋ ClK̊ − S̊, since S̊ is achronal in
H̊ , while γ̊lim is timelike. C̊ is included in the domain of π♦ and, consequently,
[γlim) = π♦

([γ̊lim)
) ⊂ π♦

(C̊) ⊂ H⟜⊸, which proves our claim.
(2) Thus, it remains to prove that M� satisfies also the second requirement of the

proposition. Let � ⊂ M� be a closed causal curve. It cannot be disjoint with M ,
because the projection π� (see the very beginning of Sect. 5.1) would map it to a
causal loop lying in H , which is impossible, since H is perfectly simple. But as �

is causal and M is a past set in M�, the existence of even a single common point
implies the inclusion � ⊂ M , see Remark34 in Chap.1. �

6 Proof of the Theorem

Proposition 23 is quite close to what we wish to prove. The main differences are

1. The C-extension whose existence we just have proved may be convexly
C-extendible, while the theorem asserts the existence a C-maximal one;

2. M is convexly C-extendible, while the theorem is formulated for an arbitrary U .

Correspondingly, we, first, duly strengthen Proposition 23 and then demonstrate that
any U , being maximally extended to the past, becomes convexly C-extendible or
C-maximal.

https://doi.org/10.1007/978-3-319-72754-7_1
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Proposition 24 Every convexly C-extendible spacetime M has a C-maximal exten-

sion Mmax with
í
Mmax = í

M.

The idea of the proof is close to that used by Choquet–Bruhat and Geroch [23].
We consider the set of all convexly C-extendible (or C-maximal) extensions of M in
which the causality condition holds outside M and introduce a partial order on that
set. A maximal, with respect to the corresponding relation, element turns out to be
just the sought-for spacetime.

Proof For a given M , consider the set V of all pairs (V, ζ), where V is an extension
of M that

(a) is C-maximal or convexly C-extendible,

(b) has
í
V = í

M

and ζ is an isometric embedding of M into V . Each pair (V1, ζ1), (V2, ζ2) of sets
contained in V defines the isometry ζ2 ◦ ζ−1

1 mapping ζ1(M) to ζ2(M), cf. [76]. Let
us introduce the following partial order in V: (V1, ζ1) ⩿ (V2, ζ2), if ζ2 ◦ ζ−1

1 can be
extended to an isometry ζ1,2 napping V1 to V2.

Comment 25 The relation (V1, ζ1) ⩿ (V2, ζ2) implies, of course, that V2 is an
extension of V1. The converse, however, is not true. As discussed in Sect. 1 in Chap.1,
generally, M can be embedded into V in more than one way (some of embeddings
may even send M to the same subset of V and be different, nevertheless). And it may
happen that (V1, ζ1) ⪀ (V2, ζ3). That is why the set of spacetimes cannot be ordered
merely by inclusion.

Let {(Vα, ζα)}, α ∈ A be an arbitrary chain in V. Our task is to demonstrate that it
has an upper bound (V ∪,π

M
). By Zorn’s lemma, see [87], this would imply the

existence of a maximal element V ∗ ∈ V. Thus, the existence of the mentioned upper
bound would imply that M has a C-extension V ∗ which, first, being an element of V
satisfies conditions (a), (b) and, second, (by the maximality inV) cannot be extended
to a larger C-space satisfying them. And, hence, by Proposition 23, to any C-space at
all. This means that V ∗ is C-maximal and can, therefore, be chosen as Mmax.

Warning The maximality of an element of V with respect to ⩿ and the maximality
(inextendibility) of a spacetime are different things.

Consider the set VA ⇋
⋃

A Vα and introduce the following equivalence in it:

x ∼ y ⇔ ∃ α1, α2 : x = ζα1,α2(y) or y = ζα1,α2(x).

Define V ∪ to be the quotient space V ∪
⇋ VA \∼ (i.e. to obtain V ∪ we embed a

spacetime into its extension, then this extension into its extension, etc.). By π, as
usual, the projection is denoted that sends every point p ∈ VA to the corresponding
point of V ∪ (that is to the equivalence class containing p). Clearly, the restriction of
π to any Vα is an isometry.

https://doi.org/10.1007/978-3-319-72754-7_1
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(1) That V ∪ is a spacetime, is obvious (a formal proof can be inferred from
Proposition 68 in Chap.1). Moreover, C-spaces Vα form its open cover [from now
on, we do not distinguish between Vα and their images π(Vα) in V ∪] and, hence, V ∪
is a C-space, see Test 3(c in Chap.2).

(2) Next, let us prove that if V ∪ is C-extendible, then it is also convexly
C-extendible. To this end consider its arbitrary C-extension V e and an arbitrary per-
fectly simple subset D thereof. Denote by ϕ a curve lying in D ∩ V ∪ (and, hence, in
a connected component of this set), and by κ—an arbitrary timelike curve with the
same end points. Since ϕ and κ are compact, we can find a finite subchain {Vαk }

Vα1 . . . ⩿ Vαk ⩿ . . . Vαk0

such that both these curves lie in
⋃k0

k=1 Vαk and, hence, in anyVβ that is an upper bound
of that subchain. But Vβ , by hypothesis, is convexly C-extendible, and, consequently,
κ ⊂ (D ∩ Vβ), i.e. κ lies wholly in a connected component DVβ

(which is the same
component where ϕ lies) of the intersection D ∩ Vβ and thereby in a connected
component of the intersection D∩V ∪. By definition, this means that V ∪ is convexly
C-extendible. Thus, it satisfies condition 24(a).

(3) Let � ⊂ V ∪ be a closed causal curve. Again, from its compactnesswe conclude
that there is a subchain such that � is contained in each Vβ bounding that subchain

from above. This means (since
í
V β = í

M) that there are no causal loops in V ∪ besides
those present in M . So, condition 24(b) holds too. �

Thus, we are left with the task of proving that any C-space U has a C-maximal or
convexly C-extendible extension M with causality violations confined toU . As a first
step, we consider the setW of all C-extensions ofU that are of the form V = I−

V (U ).
Clearly, for any C-extension V e of V

V ⊂ I−
V e(U ).

Repeating the previous argument one checks thatW contains amaximal, with respect
to ⩿, element M . Suppose, Me is a C-extension of M . Then the inclusion above,
combined with the maximality of M inW, implies the equality

M = I−
Me(U ). (�)

And this means, in particular, that it is impossible for a past-directed timelike curve
in Me to leave M . Consequently, M is causally convex in each of its C-extensions.
Hence,M is a C-maximal or convexly C-extendible extension ofU . And the inclusion
í
M ⊂ I−

M(U ) follows immediately from (�). In combination with Proposition24 this
proves Theorem2.

https://doi.org/10.1007/978-3-319-72754-7_1
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Remark 26 We have imposed the requirementW ⊂ C in order to ensure that C holds
in M . But another consequence is that the maximality in W guarantees the equality
(�) only for Me ∈ C. That is why in our proof convexly C-extendible spacetimes
are used and not their (geometrically more natural) variety defined by dropping the
condition Me ∈ C in Definition3.



Chapter 6
Time Travel Paradoxes

... Loads of them ended up killing
their past or future selves by mistake!

Hermiona in [158]

It seems appropriate now to turn attention to the most controversial issue related to
the time machines—the time travel paradoxes. On the one hand, paradoxes seem to be
something inherent to time machines (their main attribute, perhaps). And on the other
hand, the (supposed) paradoxicalness of time travel is traditionally the main objection
against it and a good pretext for dismissing causality violating spacetimes from
consideration. Recall, however, that in studying physics one meets a lot of ‘paradoxes’
(Ehrenfest’s, Gibbs’, Olbers’, etc.). Today they are just interesting and instructive
toy problems. Our aim in this chapter is to examine the ‘temporal paradoxes’ and to
reduce them to the same status. In particular, we are going to show that they do not
increase the tension between the relativistic concept of spacetime and ‘the simple
notion of free will’ [76]. As a by-product, we shall reveal, in the end of the chapter,
a curious relation between the geometry of a spacetime and its matter content.

In our discussion, we follow [96]. A reader interested in alternative views on the
paradoxes is referred to [38, 120, 138, 154, 172] and the literature therein.

1 The Essence of the Problem

1.1 The Two Kinds of Time Travel Paradoxes

The most known time travel paradox is undoubtedly the ‘grandfather paradox’
first proposed more than 70 years ago (perhaps, in ‘Le Voyageur Imprudent’
by R. Barjavel), which may be formulated as follows.

© Springer International Publishing AG, part of Springer Nature 2018
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Fig. 1 a The classical grandfather paradox. The two rightmost silhouettes are the grandfather at two
ages. b A free falling man in the DP space (the ‘seams’ depicted by the dashed lines play the same
role as the entrance and exit doors of the time machine in the left picture). The man learns—merely
sees—that in five minutes he will raise his right hand. After receiving this information, he tries to
change the future by raising the ‘wrong’ hand, hence a paradox

Example 1 (‘The Grandfather Paradox’). Suppose that at some moment (corre-
sponding to the surface P in Fig. 1a) a man able to travel in time decides to kill
his grandfather in infancy. He travels to the past, steals up to the baby and shoots.
What will happen? We assume that the man under consideration is

1. intelligent enough not to confuse babies;
2. accurate enough not to miss the target;
3. motivated well enough not to suddenly change his mind;
4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

So, the baby will be killed. But on the other hand, it will not be killed, because
otherwise the father of the would-be killer—and therefore also the killer himself—
would never be conceived, so there would be nobody to pull the trigger.

The question that is usually asked in this relation is: Will or will not the baby be
killed? Or, if the second alternative seems more convincing (after all, ‘a person’ and
‘a person whose grandfather did not die in infancy’ is exactly the same), one can ask:
What saves the baby? or Why didn’t the time traveller shoot?

In science fiction and popular literature, one can easily find hundreds of ‘time
travel paradoxes’ (a voluminous bibliography on the subject can be found in [138])
including those that concern ‘changing the past’ (why cannot a time traveller save
the dinosaurs or kill Hitler?). As far as I know all of them—except for trivial ones,
see below—are just variants of the grandfather paradox.
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(a) (b)

Fig. 2 The machine builder paradox. a The dashed line denotes the moment from which the time
machine operates. Before crossing it the experimenter already ceases to make any decisions. b A
simpler model of the same paradox

A paradox of another type was considered in [34]. In accordance with the homi-
cidal tradition, it can be reformulated as a story of a self-sacrificing experimenter.

Example 2 (‘The Machine Builder Paradox’). An inquisitive person plans to build
a time machine and to use it in killing their younger self, see Fig. 2a. The plan is
elaborate and the experimenter is resolved to stick to it no matter what happens.
What will come out of it?

This looks very much like the grandfather paradox. The remarkable difference,
however, is that now all preparations are done and the decisions are made before the
time machine appears. In other words, even before crossing the Cauchy horizon the
experimenter abandons the freedom of will.

As a simple model, consider an experiment performed in a point p, see Fig. 2b.
The experiment consists in pushing a uranium lump with mass m = 2

3×(critical
mass). The push is directed so that the lump moving on a geodesic must enter the
time machine where that geodesic has a self-intersection in a point x . We know for
sure that there must be an explosion in x , because the total mass of the two colliding
lumps exceeds the critical. But at the same time, we can assert with equal confidence
that there is no explosion there, because otherwise the ‘younger’ lump would collide
not with an m-mass piece of uranium, but only with its remnants, so that the total
mass of uranium in x would be less than critical. But the absence of explosion implies
that the lumps in x are intact and must explode. Et cetera.

Thus, we have a typical time travel paradox with an important feature: the experi-
menter remains in the causal region. The time machine, in this case, may be occupied
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only by inanimate objects governed by a few simple laws, which relieves us of having
to discuss freedom of will.

The difference between the two types of paradoxes sometimes may seem imma-
terial.

Example 3 (‘Changing the Future’). A person sees (with the aid of a time machine,
of course) that in five minutes they will raise the right hand, see Fig. 1b. What will
happen if the person makes up their mind (out of contrariness) to raise the other
hand? Obviously, this paradox is essentially the same as the previous ones. Which
type of paradox it is depends on whether γ —the maximally extended world line of
the experimenter—intersects the Cauchy horizon and when the decision to change
the future is made.

1.2 Pseudoparadoxes

There are a lot of situations to which we shall not refer as time travel paradoxes,
even though they are often called so. Let, for example, a certain Eckels travel to
the past (or at least to what is claimed to be the past), step on a butterfly, and find
on returning that the world differs from that he left [16]. Contrary to a widespread
belief this story, however strange and exciting, has nothing to do with time machines
as they are understood in this book and, in particular, with time travel paradoxes.
No closed causal curves are involved in the story (precisely because the world to
which Eckels returns is not the one from which he departed, his world line is not
self-intersecting) and, correspondingly, no time machines. Eckels did not ‘change
the past’ of the moment s in which he started the safari, he has never even been to
that past, see Fig. 3.

Another kind of pseudoparadox is obtained by assuming that along with con-
ventional macroscopic bodies, which we shall call comotes1 in this context, there
are objects, called contramotes [189]. Being perfectly usual in all other respects
contramotes get younger with time. In other words, the entropy of each contramote
decreases as time goes on.2 An encounter of a comote with a contramote can lead to
paradoxes similar to those considered above, because the latter remembers the future
of the former, which is a variant of the grandfather paradox. It is also quite paradox-
ical that neither of the personae can kill the other. We shall not, however, consider
paradoxes of this kind, because the spacetimes, in which they take place, do not have
to be what we call time machines, see Definition 4.1 in Chap. 4 and comment 4.2.

1The term was coined by Tadasana.
2In fact, this assumption is not that extravagant. I am not aware of a single strong argument against
it. Note, in particular, that the apparent lack of contramotes in the everyday life and in astronomical
observations is not an argument: the contramotes must be practically invisible to us comotes. Indeed,
they almost do not radiate light. Instead, a contramote star, say, absorbs a powerful flux of photons
emitted (for some mysterious reason) towards the star by other bodies.

https://doi.org/10.1007/978-3-319-72754-7_4
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s
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Fig. 3 A two-dimensional analogue of Eckels’ universe (the thick curve from s to s′ is his world
line): a Minkowski plane (in which the vertical direction, against tradition, is null) and a Misner
time machine (the ellipse is its horizon) are cut along a future-directed null ray each, and the edges
of the cuts are glued crosswise. This universe contains no causal loops: the butterfly is in the past
of s′, but not of s

Yet another pseudoparadox3 is a story of a man who receives a note (with a
very helpful clue) from his older self, keeps this note in his wallet, and when (his)
time comes hands it to the addressee—to his younger self [72]. Nothing impossible
happened, but one might wonder who wrote the note and why it does not get dirtier
with each cycle. The stories of this kind—‘bootstrap paradoxes’ in the terminology
of [172]—can hardly be called paradoxes. In contrast to Examples 1 and 2, they do
not contain plausible assumptions leading to unbelievable conclusions. If one finds
the existence4 of such a note incredible, all one needs to do (and, in fact, must do)
is to deny the existence of the note (nothing prevents one from doing so—the said
existence is just an assumption, indeed, not an implication from some other, very
natural, say, premises, so the burden of answering the puzzled questions lies with
Harrison).

A number of false paradoxes stem from a popular misunderstanding concerning
energy conservation. In the initial globally hyperbolic region, i.e. before the time
machine was put into operation, there had been exactly one m-mass lump at each
moment of time (i.e. on each surface P). But after the time machine started to
work the total mass of uranium doubled, see Fig. 2b). Does not this violate energy
conservation?

To answer this question note that there are two quite different laws which may
equally well be called ‘energy conservation’:

3For a collection of such pseudoparadoxes see [138].
4We speak of the existence of the note and not of its appearance, because being a typical Cauchy
demon, see Sect. 3 in Chap. 2, the note has always existed, without ever having come into being.

https://doi.org/10.1007/978-3-319-72754-7_2
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(1) One may call so the local property of matter fields to satisfy the equation T ab;b =
0. This equality must hold universally (in fact, by the definition of the stress–energy
tensor T ab). And it does hold in all time machines;
(2) Alternatively, one may require that the ‘total energy’ would be conserved, i.e.
that the quantity

∫
P T abnad3V (here n is the unit normal to P) would not depend on

the choice of a spacelike edgeless surface P. It is this requirement that fails in time
machines. But there is nothing paradoxical or even unusual in this failure. We have
no reason whatever to expect this law to hold anywhere except in the Minkowski
space, where it follows from the local one.

2 Science Fiction

Science fiction offers a plenitude of ideas concerning time travel paradoxes [138] of
which most interesting are the following two.

2.1 The Banana Skin Principle

According to a popular view, there are no time travel paradoxes at all: any reasonable
initial state of a reasonable system gives rise to some evolution.

The situations traditionally considered in thought experiments with time machines
(say, a human being in an unspecified causality violating spacetime) are, of course,
too complex for a rigorous analysis.5 So, one might conjecture that we just overlook
something each time, while actually all contradictions are resolved by unforeseen
contingencies. In Example 1 we compiled a list of precautions to be taken in sending
a killer to the grandfather. The idea under discussion is that such a list can never
be made exhaustive: no matter how many candidates we send to the past, each of
them will get in an accident, or slip on a banana skin, etc. In general, each time the
grandfather will be saved by natural causes. This approach especially suggests itself
in the case of the machine builder paradox. Indeed, as soon as a system crosses the
Cauchy horizon, it gets exposed to Cauchy demons (which are particles whose world
lines are disjoint with M r) with all their unpredictability, see Sect. 3.3 in Chap. 2.

Clearly, a wild demon behind the door of the time machine would easily reconcile
the traveller’s firm intention to shoot with the grandfather’s invulnerability. Still:

1. Even the best plan can fail, and it is in the order of things that an experimenter
suddenly fall sick or enter a wrong door. But if this happens a thousand times
in a row, in spite of all precautions, the situation—paradoxical or not—would
certainly need an explanation, however innocent each failure looks.

2. Similar paradoxes take place, as we shall see, even when all contingencies are
provided for (which of course can be done only in toy models).

5In fact, they often are too complex even when consist of billiard balls, see [39, 127].

https://doi.org/10.1007/978-3-319-72754-7_2
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2.2 Restrictions on the Freedom of the Will

Sometimes the impossibility to shoot the would-be grandfather is explained on the
hypothesis that the traveller will not even try to do so, which is interpreted as a
restriction on their freedom of will. Here one is up against two problems:

1. The lack of the freedom of will is, by itself, quite an obscure notion. What exactly
is it? How can it be registered? What mechanism enforces it?, etc. So, a puzzle
of time travel paradoxes turns out to be ‘explained’ via an equally puzzling phe-
nomenon. It is easy to imagine a person who—out of apathy—refuses to raise the
required hand and to see what would happen. But if 100 of 100 test persons do
the same, such a lack of curiosity might seem exceedingly strange (though not
paradoxical, perhaps) and calling explanation, as we already discovered in the
case of test persons in the causality violating region, see the previous subsection.

2. Whatever happens with the will of a traveller when they are in a time machine, this
would not explain the machine builder paradox, because in this case all decisions
(requiring presumably a free will) are taken in the region where the causality
condition is satisfied and ‘one is free to perform any experiment’ [76].

3 Modelling and Demystification of the Paradoxes

Formally speaking, a time travel paradox is a proof (non-rigorous, of course, but in
this chapter we omit such obvious provisos) of the fact that for a certain feasible
system (e.g. for a maniacally curios grandson, in Example 1) there is a state that, on
the one hand, is inconsistent6 with the laws of motion governing that system—let us
call such states paradoxical—and, on the other hand, is feasible (it seems easy to arm
the grandson, instruct him, and bring face to face with his baby grandfather). That
the feasibility is essential is clear from the following example, see also discussion
on p. 65.

Example 4 Let a system A be a set of stable sterile massless pointlike particles, and
let its state at the surface P be that shown in Fig. 4. Then we can ascertain that the
system is in a paradoxical state. Indeed, the laws of motion require such a particle to
pass through the points p′ and p′′ in some proper time after (respectively, before) it
passed through p. Both requirements are violated by the initial conditions.

Thus, we have found a paradoxical state. This, however, does not yet constitute
a ‘brain-boggling logical paradox’ [138], because (and only because) we have not
proposed a plausible method of preparing the system in this state.

Based on the examples considered in Sect. 1.1 we separate the paradoxes into
three types:

6As is known, ‘…either a tail is there or it isn’t there. You can’t make a mistake about it…’ [128].
The same is true for evolutions. So, we shall not speak of ‘self-inconsistent evolution’ or ‘trajectories
with zero multiplicity’.

https://doi.org/10.1007/978-3-319-72754-7_1
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Fig. 4 The state of the system A at the surface P is a single particle in p moving slowly to the
right (the black arrow from p is the particle’s velocity and the grey line is a part of its world line
determined by the laws of motion). When p is the origin in the DP space this state is paradoxical,
since it does not contain particles in p′ and p′′

i. The Grandfather Paradox. The whole history of the relevant system lies in the
non-causal region of the universe. We—inhabitants of M r—play no role and may
be considered missing as well;

ii. The Machine Builder Paradox. The state of the relevant system is fixed in the
initial globally hyperbolic region. Cauchy demons play no role and may be con-
sidered missing as well;

iii. Mixed Paradoxes. Something intermediate. The paradoxes of this type do not
exhibit any specific interesting features and we shall not consider them.

3.1 The Grandfather Paradox

With our definitions, the resolution of the grandfather paradox is trivially simple. It
is convenient to demonstrate this with a concrete example based on the ‘changing
the future’ paradox, see p. 150.

Assume that a time machine will be built one day and we shall be able to find 20
volunteers such that:

1. each of them will undertake to enter that time machine, to wait until their future
self raises a hand—at some moment τ0 (of proper time)—and

(a) to raise the other hand in 5 minutes before τ0;
(b) to keep it (and only it) raised for 5 minutes.

2. they will be attacked by Cauchy demons and 9
10 of them will fail to see their

future;
3. half of those who succeeded in observing their future selves, will exercise their

freedom of will and abandon the experiment.

To turn these assumptions into a paradox one only has to claim that they imply the
existence of 1

2 · 1
10 · 20 = 1 feasible initial state (a volunteer seeing his future self)

inconsistent with the laws of motion (which include the volunteer’s determination to
raise the wrong hand).
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The assumptions listed above are disputable, but what makes the fatal flaw in the
proposed paradox is the origin of the volunteers in question. Indeed, by construction
they came from the initial causal region of the spacetime, while by the definition
of the grandfather paradox, see p. 154, they must have been Cauchy demons. This
observation resolves the paradox, since the existence of suitable volunteers, which
seemed unquestionable, becomes highly doubtful, as soon as we require them to be
Cauchy demons.

This resolution also clears up the logical status of the paradox. It turns out to be
merely a proof—by contradiction—of an estimate on the number of demons of a
certain type. In this capacity it goes roughly as follows: ‘Let N be the number of

two-handed demons in
í
M that obey the laws 1–3. Then N < 20. For, suppose not.

Then it follows from the said laws that at least one demon will have motive, means
and opportunity to raise the wrong hand. Comparing the hands that are up at τ0 and
at τ0 − 5′ we see that by 1(a) they are different, but by 1(b) they are the same, a
contradiction. Q.E.D.’

3.2 The Machine Builder Paradox [96]

Before resolving the paradox let us verify that—in contrast to the previous one—it
does exist. To this end, we must produce an example of a system such that it can
be prepared at P ⊂ M r in a state inconsistent with its laws of motion. These laws
must be local geometrical (see the beginning of Sect. 1 in Chap. 2) so that we could
speak of the same laws in different spacetimes. They also must be consistent with
any feasible initial state in causality respecting spacetimes, for otherwise it is the
laws, not causality violations, that should be blamed for the paradox.

The paradox is built in the twisted DP space. This space can be visualized7 as a
space obtained by deleting the horizontal segments x1 ∈ [−1, 1], x0 = ±1 in the
Minkowski plane and gluing the lower side of either cut to the upper side of the other.
The sides are glued so as to identify diametrically opposite points

(1 ∓ 0, c) �→ (−1 ± 0,−c), ∀c ∈ (−1, 1),

see Fig. 5, not the points with the same abscissas x1 (which would result in the regular,
non-twisted, DP space). Except in two ‘seams’ (the two segments that appeared when
we glued the sides of the cuts together), we can use in M the coordinates x0,1 inherited
from the Minkowski plane, cf. Example 73 in Chap. 1. This is supplemented with the
following rules:

• any smooth causal curve approaching from below (from above) a point of the
upper (lower) seam continues from the symmetric—with respect to the origin of

7For a technical description see Example 74 in Chap. 1.

https://doi.org/10.1007/978-3-319-72754-7_2
https://doi.org/10.1007/978-3-319-72754-7_1
https://doi.org/10.1007/978-3-319-72754-7_1
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Fig. 5 The two-dimensional
twisted Deutsch–Politzer
space M . The shadowed

region is
í
M . The

self-intersecting line
poqros, which actually is
straight, is a null geodesic.
Its dark gray (closed) part
may be the world line of a
Cauchy demon. The seams
are shown by the dashed
segments

the coordinates—point of the lower (respectively, upper) seam. The velocity v of
the curve jumps at this moment (�x1 changes the sign), see Fig. 5;

• the curves that, loosely speaking, terminate at a ‘corner point’ x0, c = ±1 are
inextendible.

In this spacetime consider a set of particles that obey the following laws:

(a) the world line of each particle is an inextendible broken line in M whose
edges are null geodesic segments. The vertices are the points where two particles
collide;

(b) after a collision, either of the particles changes the direction of its motion.

Physically speaking, we consider pointlike perfectly elastic massless particles which
interact with, and only with, their like.

Every null geodesic that enters
í
M has a self-intersection. Thus, at first glance, it

might seem that already the initial data shown in Fig. 5—a single particle ready to fly
into the time machine—constitute the desired paradox. Indeed, if the particle enters
the time machine and freely flies through o, then later it will have to hit its younger
self in that same point. But in such a case the right (‘younger’) particle will have to
change the direction of motion and fly away on the ray os. Then it will never pass
through q and get in o. Correspondingly, there will be no collision and the younger
particle will arrive at o to meet its older self, cf. [154]. Et cetera.

In fact, however, this situation is a pseudoparadox like those mentioned in Sect. 1.
Indeed, the entire reasoning is based on the implicit assumption that the number of
particles is a conserved quantity: if there was a single particle on the surface S, then
there must be only one particle on the surface x0 = 0 too. But in the case under
consideration, there is no such a law, cf. the discussion of the energy conservation in
the end of Sect. 1. It does not follow from our laws (a,b), nor any reasons are seen to
impose it as a separate additional law (especially, as we require all laws to be local).

Another drawback of this candidate paradox is that it does not take into account the
possible interaction between the particle and Cauchy demons. Demons never meet
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P, so, their evolution is not determined by the data at that surface: they are guided
only by dynamical laws [(a,b) in this case] and the urge to provide the existence—in
the entire M—of a solution to the Cauchy problem.

Taking both of these issues into consideration, we immediately find a solution to
the paradox in question, i.e. a solution of laws (a,b) that is consistent with the given
initial state. This solution contains two different particles. One of them is a demon
whose world line is the closed curve oqro in Fig. 5. The other—its world line is
pos—collides with the demon in o and bounces away from the time machine.

To exclude such solutions let us supplement the physics of the particles with the
following law:

(c) Each particle is characterized at every instant by a ‘charge’ with the possible
values ±1. The charge of each particle change after every collision, see Fig. 6a,
and in no other case.

Remark 5 The introduction of ‘charge’ is inspired by the uranium lump story, see
Fig. 2b. The two values of charge correspond to the two states of the uranium—
exploded and intact. The reaction exploded + exploded → intact + intact may
seem strange, but we must introduce it insofar as we require the dynamics to be
geometric and local. This is the price for modelling such a complex non-equilibrium
object as a bomb by a mere pointlike particle.

Now the evolution depicted in Fig. 5 is impossible: on the one hand, the charge of
the particle must have the same sign on the segments (o, q) and (r, o) (because on
the segment (q, r) the particle does not collide with anything). But on the other
hand, the signs must differ because of the collision in o, cf. Figure 6a. And still,
self-consistent evolutions, satisfying all requirements, exist. An example is shown
in Fig. 6b. It consists of two particles again: one of them starts from P, collides with
a demon in o and flies away to the right. The other is a demon appearing ‘from the
singularity’. It collides consecutively with its older self at o′, then with the former
particle at o, and finally with its (demon’s) younger self at o′, after which it vanishes
in the singularity.

(a) (b)

Fig. 6 a All possible collisions satisfying (a–c). The world lines of ‘positive’ and ‘negative’
particles are drawn in black and in light grey, respectively. b An evolution consistent with both the
laws (a–c) and the initial data at P
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To exclude this last type of permitted solution, we assign, in addition to charge,
one more characteristic (constant, this time) to every particle. This characteristic,
called colour, is subject to the following law.

(d) There are three colours and the particles of different colours do not interact.

To summarize, interaction in the world under consideration reduces to the follow-
ing rule. The world lines of all particles taken together form a set of inextendible null
geodesics (though each geodesic may include segments of world lines of different
particles). If γ is such a geodesic then its colour is constant and the value of charge
in a ∈ γ differs from that in b ∈ γ if and only if between the points a and b, γ has
an odd number of intersections with geodesics of the same colour.

Now we are in a position to produce a paradox. Suppose, in the region x0 < −1
of the twisted DP space there are exactly three particles of different colours moving

in the same direction towards
í
M , see Fig. 7. This initial state is consistent with no

solution of dynamical laws (a – c).

Proof Indeed, any such solution must contain all three self-intersecting geodesics
depicted by the solid—thin, thick, and double—lines. Besides, it may contain a few
Cauchy demons. That is in addition to the solid lines the set of world lines may
contain a few dashed lines. Each of the solid lines has a self-intersection and hence
includes a loop [cf, the loop oqro in Fig. 5]. But there are at most two demons, ð2 and
ð3, intersecting the three loops. So, there is at least one particle that experiences no
collisions between the two moments of its history in which it passes through the same
point. And as we have already discussed, see just below Remark 5, it is impossible
to assign consistently any charge to such a particle. �

Thus, we have demonstrated that, at least in a simple model, feasible paradoxical
states—contrary to the banana skin principle—do exist. Now the question of what
actually will happen if the system under discussion will be prepared in such a state
becomes meaningful.

The answer proposed here is based on the observation that the geometry of a
spacetime is related to its matter content not only via the Einstein equations. For

Fig. 7 Any solution
consistent with the
conditions at P must contain
all three self-intersecting
geodesics. It also may
contain some of the
geodesics depicted by the
thin dashed lines
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example,8 in a spacetime of the form L
1×K, where K is a compact two-dimensional

surface, a field of non-zero null vectors by its very existence would imply that K is
a torus. But such a relation makes our approach—where backreaction is neglected
and the geometry of the spacetime is taken the same for all candidate solutions—
unjustified. And as soon as we admit the dependence of the geometry to the future
of P on the state of the particles at P, the paradox vanishes. Now the Minkowski
plane with three parallel null lines makes a legitimate solution of the evolution laws
consistent with the—former paradoxical—initial data depicted in Fig. 7.

The same reasoning applies to any machine builder paradox. Indeed, in all of
them, by definition, the initial state is fixed at an acausal subset P of the initial causal
region M r. But according to Theorem 2 in Chap. 5, M r can always be extended to
a causality respecting maximal spacetime Mmax, where all initial data—as long as
they are fixed at an acausal surface—are allowed.

Remark 6 How general paradoxes are is still a question. An interesting possibility is
that any ‘realistic’ state is paradoxical in any ‘realistic’ causality violating extension
of M r. This would mean that time machines are impossible after all and it is the
paradoxes that protect causality.

8For a less trivial one see [65].

https://doi.org/10.1007/978-3-319-72754-7_5
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Semiclassical Effects



Chapter 7
Quantum Corrections

So far our consideration was purely classical. There are no reasons, however, to
expect such consideration to be exhaustive even in the initial globally hyperbolic
region M r. Indeed, every causal curve leaving a sufficiently small neighbourhood
U of a point in M r will never return back to U . In this sense the physics in U
is the same as in the Minkowski space. However, the closer is U to the Cauchy
horizon, the smaller1 must it be to avoid causal loops, cf. Sect. 4 in Chap.4. And
when the relevant distances approach the Planck scale, one expects quantum effects
to become noticeable (cf. [173]). Thus, quantum gravity may be pertinent to our
subject. Unfortunately, it is not clear, how exactly it should be taken into account.
The situation is better with ‘semi-classical gravity’—the approximation (presumably
justified when U is large in Planck units) in which matter fields are quantized and
gravitation is not. In semi-classical gravity, see [14, 70, 178], it is assumed that the
metric keeps adhering the Einstein equations, while the contribution to their right-
hand side of a field in a pure quantum state |Q 〉 is the (renormalized) expectation
value of its stress–energy tensor operator 〈Q |Tab|Q 〉 (to simplify notation I shall often
write 〈 Tab〉Q for 〈Q |Tab|Q 〉). Correspondingly, the semi-classical Einstein equations
have the form

Gab = 8πT C
ab + 8π〈 Tab〉Q , (1)

where T C
ab is the contribution of the classical matter, that is the matter for which

quantum effects can be neglected. 〈Q |Tab|Q 〉ren depends on the type of the field
and its state, but also on the geometry of the spacetime, which makes Eq. (1) by far
more complex than Eq. (1) in Chap.2, only a few solutions are known. Much can be
said pro and contra semi-classical gravity, see e.g. [14]. In what follows, we take the
validity of the semi-classical Einstein equations for granted and confine discussion to

1Of course, in the pseudo-Riemannian case one should exercise certain caution in speaking of
‘sizes’, see, in particular item 2 below.
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its consequences. It should be emphasized that even inmacroscopic problems (which
are our concern), the transition from the classical to semi-classical approximation
may not reduce to small corrections:

1. In some important cases, the quantum effects may give rise to qualitatively
new phenomena. For example, it is believed, see Hypothesis 11 in Chap.3 and the
‘chronology protection theorem’ discussed just below Corollary20 in Chap.4, that
the WEC must break down on compactly generated Cauchy horizons and in the
traversable wormholes.

Remark 1 As before, we understand the WEC as the condition

Gab�
a�b � 0 ∀ v : �a�a � 0.

For solutions of the classical Einstein equations (1) in Chap.2, it is equivalent to (2)
in Chap.2, and in the semi-classical case, it takes the form

T C
ab�

a�b + 〈 Tab〉Q �a�b � 0 ∀ v : �a�a � 0. (2)

It is matter violating this condition that will be called exotic. Alternatively, one could
reserve the term WEC for the inequality (2) in Chap.2 and interpret the appearance
of a new term in the right-hand side of the Einstein equations an evidence that in
the semi-classical theory exotic matter is not necessary for creating time machines,
traversable wormholes, etc., rather than that usual matter can become exotic under
the action of quantum effects.

The need for purely classical matter to violate the WEC would mean, in fact, that
the corresponding spaces are forbidden. However, for quantum fields, the violations
of all energy conditions are commonplace, for explicit examples see Sect. 1.3 in
Chap.8 and the beginning of Chap.10. Irrespective of their strength (as we shall see
below there is no natural way, as of now, to characterize the ‘strength’ of the WEC
violations) they disarm the mentioned forbidenness of time machines and shortcuts.
Indeed, in Chap.9, we show that quantum effects do make traversable a wormhole
that classically is known to be a model of non-traversability.

2. There are no reasons to expect the quantum effects to be weak at, say, Planck scale.
And due to the Lorentzian signature, such scales sometimes turn out to be involved
in apparently macroscopic situations. For example, what can be called the ‘distance
between the mouths’ of a wormhole, tends to zero even for a macroscopic wormhole
in the course of its transformation into a time machine, see Sect. 1.3 in Chap.8.

Remark 2 In semi-classical gravity, a vacuum is not necessarily the lowest energy
state or the most symmetric one. Roughly speaking, a field is represented as a sum
of excitations and a vacuum is a state with as few excitations as possible (note
that speaking of vacuum solutions in this context one does not necessarily mean
that T C

ab = 0—the word ‘vacuum’ may refer only to the quantized fields). So, it
is not surprising that often 〈 Tab〉Q is non-zero even when |Q 〉 is a vacuum. This

https://doi.org/10.1007/978-3-319-72754-7_3
https://doi.org/10.1007/978-3-319-72754-7_4
https://doi.org/10.1007/978-3-319-72754-7_2
https://doi.org/10.1007/978-3-319-72754-7_2
https://doi.org/10.1007/978-3-319-72754-7_2
https://doi.org/10.1007/978-3-319-72754-7_8
https://doi.org/10.1007/978-3-319-72754-7_10
https://doi.org/10.1007/978-3-319-72754-7_9
https://doi.org/10.1007/978-3-319-72754-7_8
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phenomenon is known as vacuum polarization. The vacuum stress–energy tensor
〈 Tab〉Q affects—via the Einstein equations—the spacetime geometry. That is why
the vacuum energy density is so important in semi-classical gravity, even though in
the rest of physics, it can safely be set to zero. This density, as a rule, is so much
greater than the contribution to the full 〈 Tab〉Q of separate particles, that by |Q 〉 in
(1) a vacuum is tacitly understood.

Quantum fields are a subject of a mature and sophisticated science. Of all its
results and concepts, we shall only need the estimates for 〈 Tab〉Q in a few simplest
situations. So, in this chapter instead of presenting (the basics of) quantum field
theory, we restrict ourselves to the discussion—as brief as possible, for details and
substantiation we refer the reader to textbooks such as [14, 70, 178]—of relevant
methods for calculating 〈 Tab〉Q . Also some notations and formulas are established
for future use.

1 Direct Calculation

In this section,we recapitulate the basic procedure prescribed by quantumfield theory
for finding the vacuum expectation of the stress–energy tensor of the scalar field in
a globally hyperbolic spacetime.

We confine ourselves to the free scalar field. In the classical theory, it would be
described by a smooth function φ obeying a certain equation of motion. Its stress–
energy tensorwould be a quadratic combination ofφ and its derivatives. For example,
in the case of the ‘minimally coupled’ field the equation of motion is

(� − m2) φ = 0, (3)

and the stress–energy tensor is given by the expression

Tab = φ,a φ,b − 1
2gab(g

cdφ,c φ,d +m2φ2). (4)

In quantum case, the field is described by an ‘operator-valued distribution’φ, which is
an analogue of φ and solves the Klein–Gordon equation (3) too. The operators satisfy
certain commutation relations, see below, and to specify the state of the field one
must build a representation for these relations. The space of this representation (the
Fock space) can be built, for example, as follows. Find the setU = {uk} of functions
uk (they are called modes) which adhere to the conditions of ‘orthonormality’

�(ul, um) = δlm, �(ul, u∗
m) = 0, where �( f, g) ⇋ i

∫
S

(g∗∇a f − f ∇ag∗) dSa

(S is a Cauchy surface) and ‘completeness’. The latter means that every smooth
complex-valued solution of the equation of motion is a sum of two functions, of
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which one is in HU and the other—in H∗
U . Here, HU denotes the Hilbert space with

basisU ⇋ {un} and internal product � (the choice of � depends on the dynamics, the
expression given above is specific to the Klein–Gordon case). The basisU is chosen
arbitrary and every choice defines the expansion of φ in terms of annihilation and
creation operators:

φ =
∑

k

[akuk + a†ku∗
k ]

(recall that φ is a distribution, so convergence is understood in the distributional
sense). The operators obey the commutation relations

[ak, ak ′ ] = [a†k, a†k ′ ] = 0, [ak, a
†
k ′ ] = δkk ′ , (5)

which are either postulated, or are obtained from relations imposed on φ (stemming,
as a rule, from the correspondence ‘Poisson brackets �→ commutators’). The vacuum
|U〉 is defined now by the equality

ak |U〉 = 0, ∀k,

and the Fock space FU is the result of acting on |U〉 by all possible combinations of
creation operators a†k .

Remark 3 We consider vacuums corresponding to different choices of the basis as
different (that is why vacuums are labelled by letters referring to the relevant bases:
a vacuum |U〉 corresponds to the basis U). In fact, however, bases generating the
same Hilbert spaces give rise to equivalent theories.

It might seem natural to define the stress–energy tensor as the result of substituting
φ → φ into the classical expression. However, φ in contrast to φ are distributions,
so the quadratic combinations like φ2 are not defined. A possible way out is defining
the stress–energy tensor as a limit of some2 well-defined quantity. For example, in
the classical case

Tab(p) = lim
p′→p

Dab
(
φ(p)φ(p′)

)
, (6)

whereDab is a certain differential operator. It is easy to check, in particular, that for
the field (4)

Dab ⇋ ∇xa ∇x ′b − 1
2gab(∇xc∇x ′c + m2) (7)

(xa and x ′a are understood to be the coordinates of points p and p′, respectively).
So, one could expect that 〈 Tab〉U , where |U〉 is a vacuum, is obtained by replacing
φ(p)φ(p′) in (6) by 〈φ(p)φ(p′)〉U or, equivalently, by 1

2G(1)(U; p, p′). Here G(1)

is the Hadamard function

2There are different regularizations.
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G(1)(U; p, p′) ⇋
〈|φ(p)φ(p′) + φ(p′)φ(p)|〉U,

which is easily found3 from the commutation relations (5),

G(1)(U; p, p′) =
∑

n

un(p)u∗
n(p′) + complex conjugate, (8)

However, DabG(1) diverges at p′ → p and in reality 〈 Tab〉U is defined as the result
of subtracting from 1

2DabG(1) a certain T div
ab , which also diverges in this limit:

〈U|Tab|U〉ren(p) ⇋ lim
p′→p

[ 12DabG(1)(U; p, p′) − T div
ab (p, p′)]. (9)

The art of finding and justifying a suitable expression for T div
ab is one of the central

issues of semi-classical gravity. We shall not go into it, but two remarks are to be
made:

1. T div
ab does not depend on the state of the field, so there is no need to know it in

calculating differences like 〈Tab〉U − 〈Tab〉V .
Remark 4 The just mentioned independence combined with Eq. (9) implies that
〈Tab〉U depends on the choice ofU (or, to be more accurate, of the Hilbert space HU ,
cf. Remark3), because so does the Hadamard function. So, it should be emphasized
that generally there are infinitely many different bases and, correspondingly, differ-
ent vacuums. None of them is preferable or ‘natural’. Thus, the vacuum expectation
of the stress–energy tensor is not defined until it is specified exactly which vacuum is
meant. In theMinkowski case, it is customary to speak about the vacuum, or the ‘stan-
dard’ vacuum referring to the vacuum |0〉 associated with the modes ∼ eika xa−iωt ,
where ω = √

kaka + m2. By obvious reasons, it is agreed that 〈 Tab〉0 = 0 (though
actually it is a requirement on T div

ab ).

2. T div
ab does depend on the geometry of spacetime and the dependence is not quite

known. Fortunately, there are a few cases in which the ambiguity under discussion is
overcome owing to the high symmetry of the relevant spacetimes or to ‘accidental’
cancellations (cf. Remark6).

2 Auxiliary Spacetimes

Direct calculations of 〈U|Tab|U〉ren are, as a rule, very difficult. A trick to sometimes
facilitate the problem is the use of auxiliary spacetimes. One, first, finds relevant
quantities in spacetimes where the calculations are easy and then relates the result to
that in the ‘physical’ spacetime. In this section, two such examples are discussed.

3Note that G(1)(U) may not be a regular function. It often suffices to define it as a ‘bi-distribution’,
that is a functional that acts on D(M) × D(M) [where D(M) is the space of test functions on M]
and is linear and continuous separately in each of the two arguments.
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2.1 Conformal Coupling

Consider a pair of spacetimes, (M, �̊) and (M, �), where � = �2�̊ and� is a smooth
positive function on M . Generally, no simple relation exists between matter fields in
these two universes. There is an important exception, however. This is the case of
the conformally invariant fields and, in particular,4 of the scalar field governed by
the equation (

� − n−2
4(n−1) R

)
φ = 0, (10)

where R is the scalar curvature and n is the dimension of spacetime. It turns out
(see Sect. 3.1 in [14]) that φ(x) satisfies Eq. (10) in (M, �) if and only if φ̊(x) ⇋

�n/2−1φ(x) satisfies it in (M, �̊).

Definition 5 For a given functional S[φ, �], denote by S� the functional defined by
the relation

S�

[
φ̊, �̊,�

] = S
[
φ = �1−n/2φ̊, � = �2�̊

]
.

The field φ(x) with action S[φ, �] is called conformally invariant, if δS�/δ� = 0.

The fact that S� does not depend on � implies, among other things, that the stress–
energy tensor is traceless:

0 = δS�

δ(ln�)
= 2gac δS

δgac
+ (1 − n/2)φ

δS

δφ
= 2gac δS

δgac
= √−g T a

a

(the last but one equality in this chain is the equation of motion of the field φ and
the last one is the definition of the metric stress–energy tensor [111, Sect. 94]). At
the same time, direct calculations show that, generally, 〈T a

a〉U �= 0. This mysteri-
ous at first glance phenomenon is called conformal anomaly. The anomalous trace
〈T a

a〉U depends on transformation properties of the field and on the geometry of the
spacetime, but not on the state |U〉.

For a vacuum |Ů〉, defined in (M, �̊) by the modes {ůk}, there is a corresponding
quantum state |U〉 in the universe (M, �), defined by the set {uk ⇋ �1−n/2ůk}. The
states |Ů〉 and |U〉 are said to be conformally related. Since the quantities 〈Tab〉U and
〈Tab〉Ů are defined on the same manifold, they can be pointwise compared. It turns
out [144] that in the four-dimensional case

〈Tâĉ〉U = �−4〈Tâĉ〉Ů − c1�
−4

[
(C̊ j

âi ĉ ln�); j
i + 1

2 R̊ ji C̊ j âi ĉ ln�
]

+ c2
[
(2R ji C jâi ĉ − Hâĉ) − �−4(2R̊ ji C̊ j âi ĉ − H̊âĉ)

] + c3
[
Iâĉ − �−4 I̊âĉ

]
, (11)

where

Hâĉ ⇋ −Râ
i Riĉ + 2

3 R Râĉ +
(

1
2 Ri

d Rd
i − 1

4 R2

)
gâĉ,

4Another example is the electromagnetic field (though, only at n = 4).
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Iâĉ ⇋ 2R;âĉ − 2R Râĉ + ( 12 R2 − 2� R)gâĉ,

the covariant derivatives are taken with respect to the metric �̊, and ck are constants,
characterizing the field. The accent˚over a tensor shows that it refers to �̊, and hats
over a few indices mean that the relevant components are found in a (fixed once and
forever) orthonormal basis [the elements of the bases, in (M, �̊) and in (M, �), are
connected: the former are obtained from the latter by multiplying them by �]. In the
special case, when

Gab = 0 and � = const,

we have

R;ac = R̊;ac = 0, R = R̊ = 0, C̊ j
aic ; j = R̊a[c ;i] − 1

6 g̊a[c R̊;i] = 0,

and relation (11) takes the remarkably simple form

〈Tac〉U = �−2〈Tac〉Ů (12)

(the power is 2 and not 4 because in this expression we use the components without
hats).

Remark 6 Equation (12) may seem trivial. Indeed, a conformal transformation with
constant � is equivalent to transition to a new unit of length (and hence of energy),
and one might think that (12) can be obtained merely for dimensional reasons. This,
however, is not the case, as seen from (11). Generally, and, in particular, when Gab �=
0, the equality (12) does not take place. The origin of such a counter-intuitive property
of 〈Tac〉U is the same as that of the conformal anomaly: fixing the ambiguity in 〈Tac〉U
one has to introduce a constant of dimension of mass, which makes the resulting
(quantum) theory non-scale invariant. Fortunately, that constant is multiplied by a
factor that vanishes in the Einstein spaces, cf. the end of Sect. 1.

The connection between 〈Tâĉ〉U and 〈Tâĉ〉Ů has an important consequence in the
two-dimensional case too. The point is that in this case, all spacetimes are confor-
mally flat. So, we always can choose (M, �̊) to be flat. Correspondingly, in suitable
coordinates, its metric will have the form (locally, at least)

�̊ : ds2 = −dτ 2 + dψ2. (13)

It follows that for the conformally invariant field, see Eq. (6.136) in [14],5

〈Tab〉U = 〈Tab〉Ů − ϑab + 1
48π Rgab, (14)

5The last term there has a different sign from ours because so does the metric signature.
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where ϑab is a tensor with the following components in the coordinate basis

ϑτψ = ϑψτ = 1
12π � ∂ψ∂τ�

−1, ϑττ = ϑψψ = 1
24π � (∂2

ψ + ∂2
τ )�−1.

In the early 90s, the idea was popular that to prove the impossibility of a particular
time machine, one has only to prove that the energy density is unbounded in the
frame of a fiducial observer located at the Cauchy horizon. The (apparently, fatal)
drawbackof this idea is that the quantity 〈Tab〉U characterizes thepair: the background
spacetime and the state |U〉. In spacetimes with time machines, there are states
with both bounded and unbounded energy densities (examples will be presented in
Chap.10). But exactly the same is true even for Minkowski space, and thus cannot
serve as evidence that the corresponding spacetime is ‘flawed’. The relation (14)
enables us to illustrate this assertion with a very simple example.

Example 7 Pick a smooth function f and on the plane with coordinates ψ , τ define
new coordinates α ⇋ ψ + τ , β ⇋ f (ψ − τ). Then, the flat metric η(ψ,τ) on this
plane will take the form

η(ψ,τ) = �2(β)η(α,β), where � ⇋ ( f ′)−1/2 and η(α,β) : ds2 = dαdβ.

For the state U, conformally related to the standard vacuum in the plane (α, β), the
first and third terms in (14) vanish, while the second does not. We see that even in
the Minkowski space the vacuum expectation of the stress–energy tensor may be
non-zero (in a suitable vacuum state). Moreover, f can be chosen so that � diverges
at ψ − τ = c < ∞. So, obviously, does 〈Tab〉U . This, apparently, points to the fact
that for such f , |U〉 as a quantum state in Minkowski space6 is pathological, but by
no means this compromises the space itself.

2.2 The Method of Images

Let M be a non-simply connected spacetime and represent it as the quotient space

M = M̃/

∼, where M̃ is the universal covering of M , and 
 is the relevant group

of isometries M̃ → M̃ (cf. Sect. 2 in Chap.4). As M̃ is simply connected, it may
happen that it is easier to establish a property of a quantum field φ̃ in M̃ than of the
same (i.e. obeying the same equation of motion) field φ in M . Our task in this section
is to discuss what relation (if any) exists between the two fields.

Let |Ũ〉 be a vacuum state of the field φ̃. Suppose, that the Hadamard function
G(1)(Ũ; q, q ′) corresponding to this state respects the symmetries of M̃ , i.e. that

G(1)(γ q, q ′) = G(1)(q, γ −1q ′), ∀ γ ∈ 
, q, q ′ ∈ M̃ . (15)

6Another—better known, but also more complex—example is the Boulware vacuum in
Schwarzschild space.

https://doi.org/10.1007/978-3-319-72754-7_10
https://doi.org/10.1007/978-3-319-72754-7_2
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Then—assuming that the relevant series converges—the natural projection π map-
ping M̃ to M generates the function G�(p, p′):

G�(p, p′) ⇋
∑
γ∈


G(1)(Ũ; q, γq ′), p ⇋ π(q), p′
⇋ π(q ′). (16)

Like a Hadamard function, G� is symmetric and in both its variables solves the—
linear, since we discuss only free fields—equation of motion of φ. Denote by T ?

ab
the result of replacing G(1)(U; p, p′) in (9) by G� . The analogy with electrostatics
(which is responsible for the name of themethod) suggests that T ?

ab is just the vacuum
expectation of the stress–energy tensor in M . The ‘method of images’ is the approach
to the calculation of quantum effects based on the belief that the mentioned analogy
can be converted into specific rigorous results and that, in particular, G� and T ?

ab
are, respectively, the Hadamard function and the stress–energy tensor of a certain
vacuum. This belief goes back to [35]. To time machines, the method was applied for
the first time in [78], where the spacetimes M̃ and M were taken to be, respectively,
Minkowski and Misner spaces. The (scalar) field φ̃ was massless and its state |Ũ〉
was the standard Minkowski vacuum |0〉 (see Remark4). It turns out that in this case
T ?

ab diverges at the Cauchy horizon, from which the conclusion was drawn [78] that
in the full-fledged quantum gravity the horizon will prove to be a singularity (and
thus will protect causality). Later, approximately the same results were obtained for
many more spacetimes. There are a few questions, however, putting these results in
doubt.

Questions 8 (1) Does |U〉, such that T ?
ab = 〈Tab〉U , exist for all |Ũ〉?

(2) If the answer is no, then what is T ?
ab and what does its unboundedness prove in

the cases when the relevant |U〉 does not exist?

It seems that the answer to the first question is no, indeed. In defining G� it is
essential that (15) be valid. The full inverse image π−1(p) consists of the infinite
number of points and it is (15) that guarantees the independence of the sum of the
series in (16) on which of them is taken as q. (To avoid this problem one could have
considered, instead of G� , a more symmetric object

∑
γ,γ′∈
 G(1)(Ũ; γq, γ′q ′), but,

when |
| = ∞, such a series will hardly converge.) However, (15) need not always
hold even in the simplest case of a flat two-dimensional space with |
| < ∞.

Example 9 Let M̃ be a cylinder (we drop the requirement of simple connectedness of
M̃ , in order to make |
| finite) with coordinates τ , ψ , metric (13), and identification
rule (τ, ψ) = (τ, ψ + ψ0). Let, further, |F̃ 〉 be a vacuum (cf. the state |Ů〉 built on
p. 204), defined by a basis {uk} with

u2 = 1√
8π

e−2iβ, where β ⇋ 2π
ψ0

(τ − ψ).

Another vacuum, |Ṽ 〉, is associated with a different set of modes {�k}. Namely, these
are the modes defined by the following relations:
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�k ⇋ uk, k �= 2, �2 ⇋
√
2u2 + u∗

2.

Then, by Eq. (8),

�G(q, q ′) ⇋ G(1)(Ṽ ; q, q ′) − G(1)(F̃ ; q, q ′) =
= 1

4π

(
cos 2(β − β ′) + √

2 cos 2(β + β ′)
)
.

Now, choosing 
 to be the group generated by the translation

γ : ψ �→ ψ + ψ0/8

(so that M is merely a cylinder eight times thinner than M̃), we immediately see that
either G(1)(Ṽ ), or G(1)(F̃ ) violates (15), since

�G(γ q, q ′) − �G(q, γ −1q ′) =
√
2

2π
cos 2

(
β + β ′ + 1

4π

)
�= 0.

Questions 10 Suppose the answer to question 8(1) is positive. Then, which exactly
vacuum |Ũ〉 must be used in calculating T ?

ab in order to judge from its boundedness
the regularity of the Cauchy horizon in the hypothetical quantum gravity.

Indeed, the physical system under study is the field φ in the spacetime M , while M̃ ,
|Ũ〉, and φ̃ play the role of fictitious auxiliary entities. They have no specific physical
meaning, so it is totally unclear how to choose them. For example, the vacuum |0〉
used in [78] stands out, because it possesses all the symmetries of Minkowski space,
but the ‘physical’ spacetime M (which is the Misner space) does not have some of
them. In particular, |0〉 has some properties that may be desirable for a vacuum in a
static spacetime, but the Misner space is not static.

The answer to question 10 is of crucial importance: as we have seen, the diver-
gence of the energy density in some vacuums says nothing of whether the spacetime
under consideration is feasible: there are states with such a divergence even in the
Minkowski space, see Example7. Of course, the problem would be solved, were it
shown that in a given spacetime the divergence is present irrespective of the choice
of the vacuum. Such a strategy was adopted in [55]. Assuming (implicitly), that for
every vacuum |U〉 in the physical space M , there is a vacuum |Ũ〉 in the universal
covering M̃ , such that the stress–energy tensor for |U〉 is just T ?

ab(Ũ)

∀U ∃Ũ : 〈Tab〉U = T ?
ab(Ũ)

(this is not the positive answer to question 8(1): the quantors here stand in a ‘wrong’
order), Frolov made an attempt to show that T ?

ab diverges at the Cauchy horizon of
any time machine for any choice of Ũ and, hence, of U. The fallacy of the relevant
derivation will be demonstrated in Chap.10 with an explicit example.7

7For a detailed critical analysis of the approach developed in [55], see [90].

https://doi.org/10.1007/978-3-319-72754-7_10
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A lot of results are obtained by now employing the method of images. However,
to my knowledge, none of the problems pointed out above have been solved (though
some consideration was given to the case of the finite |
| [7]). So, we shall neither
discuss, nor review those results.

Remark 11 Two theories have been considered above: one of them describes the
field φ (or its quantum analogue φ) in the spacetime M , the other deals with the field
φ̃ in the universal covering M̃ . The former theory is, obviously, obtained from the
latter, by defining φ via the natural projection:

φ(p) = φ̃[π−1(p)],

and imposing an additional condition on φ̃

π(q) = π(q ′) ⇒ φ̃(q) = φ̃(q ′) ∀q, q ′ ∈ M̃ . (∗)

This condition is necessary for the self-consistency of the theory: if φ is required to
be single-valued, it must not change after travelling around a closed contour. One
could adopt, however, a different point of view and allow φ to be only defined locally.
Then the former theory has a curious generalization. It is obtained by replacing the
condition (∗) with

π(q) = π(q ′) ⇒ |φ̃(q)| = |φ̃(q ′)| ∀q, q ′ ∈ M̃ .

Now the phase of φ defined by (∗) may change after travelling around a closed
curve. The fields described by such functions are called automorphic. Locally, they
resemble the ‘usual’ fields, but the theory contains some non-trivial global effects,
see [14]. These effects contribute to the vacuum polarization in the vicinity of the
Cauchy horizon in non-simply connected time machines [164].



Chapter 8
WEC-Related Quantum Restrictions

So far,we have been focused on kinematical possibility of timemachines or shortcuts,
and the Einstein equations played no role in our consideration. As a next step, it is
natural to find out whether among such spaces there are solutions of the Einstein
equations with realistic matter sources. In general, any necessary property of matter
filling these spacetimes would be of interest. The only such property found so far is
that the geometries under consideration often1 violate the weak energy condition.

In the literature, different candidates were proposed for exotic matter, but in this
book I stand on the conservative position that they all are too exotic and the necessary
WEC violations are provided (if at all) only by the term 〈Tab〉Q in (2) in Chap.7. Our
task in this chapter is to explore the ensuing consequences and to check whether they
prohibit exotic spaces as the lack of exotic matter prohibits such spaces the classical
case.

There are strong grounds for expecting that they do. It was shown in some assump-
tions (belowwe analyse them thoroughly) that to support anAlcubierre bubble 100m
in diameter, one needs−1067 g ≈ − 1

210
34M� of exotic matter [148]. A similar result

was obtained [47] for the Krasnikov tube and, as we argue below, can be similarly
obtained for the traversable wormhole as well [98]. Such a figure looks absolutely
discouraging and for all practical purposes can be viewed as a prohibition of short-
cuts.

Our point, however, is that these estimatesmust not be taken too seriously, because:

(a) the assumptions mentioned above are quite disputable, see below;
(b) the spacetimes under discussion were brought forward as illustrations to the
concept of superluminal travel. Accordingly, they were intended to be as simple as
possible. So, it does not seem impossible that it is their simplicity that is responsible
for the undesirable properties of the matter sources.

Nevertheless, the arguments leading to such impressive estimates merit detailed con-
sideration and demolition.

1What ‘often’ means is a separate question; as is stated above, the relevant rigorous assertions are
yet to be formulated.
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1 Quantum Restrictions on Shortcuts

1.1 The Quantum Inequality

Suppose, a freely falling observer in a spacetime M measures the renormalized
vacuum expectation value of the energy density � � 〈T0̂0̂〉V of a quantum field. Pick
a non-negative function f normalized by the condition

∫ ∞

−∞
f (τ ) dτ = 1

and define the ‘weighted average’ of the energy density as

� f (V ; τ0) �
∫ ∞

−∞
�(V ; τ) f (τ − τ0) dτ. (1)

Here, τ is the proper time of the observer and the integral is taken along their world
line. To formulate the ‘quantum inequality’, consider a timelike geodesic segment
γ : (τ1, τ2) → M and denote

T �
(
max |Râb̂ĉd̂ |

)−1/2
,

where the maximum is taken over all τ ∈ (τ1, τ2) and all sets of indices (the hats
over the indices mean that the components are found in the proper reference system
of the observer γ , i.e. in an orthonormal basis with one of the basis vectors tangent
to γ ). Set γ to be so short that

|τ2 − τ1| � T , (2a)

J+(γ ) ∩ J−(γ ) is a ball (topologically). (2b)

A central role in this chapter is played by the following assertion.

Quantum inequality 1 There exists f ∈ D([τ1, τ2]) such that in any M for any γ

satisfying (2) and any reasonable V

− � f (V ) � c|τ2 − τ1|−4, (3)

where c is a constant of the order of unity.

A clear distinction should be made between this quantum inequality and any of
the other similar statements, which can often be met in the literature under—
sometimes—the same name (see [157] or [149] for a review). Some of these name-
sakes are correct and proven. Still, we shall not consider them, the only exception
being a brief discussion in Remark 2. The reason is that even when the difference in
formulation is minor, it makes the corresponding statement either useless in deriving
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restrictions on the shortcuts, or even wrong, see below. This is partly true even for
the statement 1 itself: as of today it is proven only when M is the Minkowski space,2

but in application to the shortcuts this case is obviously unusable. At the same time,
no easy way is seen to strengthen this result. It is known, for example to be false
[50], if either of the conditions (2) is dropped, or (in the two-dimensional case [99],
at least) if f

(τ1,τ2)
= const .

1.2 Connection with Shortcuts

Once the validity of the quantum inequality is assumed it is used for estimating
the value of the WEC violations. The reasoning goes, roughly, as follows. Consider
a point p through which there is a timelike geodesic segment γ (τ) satisfying (2).
Suppose, that

max |Râb̂ĉd̂(p)| ≈ max |Tê f̂ (p)| ≈ −�(p) (4)

(p satisfying all these requirements happens to exist in all three above-mentioned
shortcuts). Then, it follows from (3), when the possibility of |τ2 − τ1| 
 T is
neglected, that

|� f | � cT −4 = c
(
max |Râb̂ĉd̂ |

)2 ≈ c�2(p), (5)

or
|�(p)| � c−1� f (p)/�(p) ≈ 1. (6)

Thus, the energy density in p must be Planckian!
All the prohibitive estimates mentioned above stem merely from (6) (recall that

1 ≈ 5×1093 g/cm3). Indeed, pick a spacelike surfaceN in the region where the weak
energy condition fails and suppose that all points of N satisfy all the requirements
imposed on p above. Then one can define the ‘total amount of negative energy’

E−
tot �

∫
N

|�| d3x � V 3(N), (7)

where V 3(N) is the volume of N. In both Alcubierre and Krasnikov spaces, N is
chosen to be a spherical layer of diameter þ and thickness δ surrounding the domain
V of the ‘false’ flat metric. For a spherically symmetric wormhole, N is essentially
the throat of the wormhole, that is also a spherical layer of diameter þ and thickness
δ. The volume of N can be estimated as V 3(N) � Aiδ, where Ai is the area of its
inner surface [this is a quite rough bound from below: the area of the outer surface
may be much greater than Ai, even though δ is small]. To enable a human to travel by

2If n = 4. In the conformally trivial [14] two-dimensional case, it is proven for curved spaces too
[48].
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the shortcut, þ, apparently, must be at least∼ 1m, whichmeans that Ai ≈ þ2 � 1070.
So, even if the thickness of the layer is δ ∼ 1 (recall that in our units 1 = lPl), one
concludes that it would take at least

E−
tot ∼ |�þ2δ| ≈ 1032M� (8)

of exotic matter to support a practical shortcut.

Remark 2 As mentioned above, there are a number of assertions resembling the
quantum inequality that—in contrast to the latter are proven, but that do not
imply estimates like (8). Replace, for example, �(V ; τ) in the definition (1) by
�(V ; τ)−�(O; τ), where |O〉 is some ‘reference’ state. The inequalities (3) with the
thus obtained � f (V )—they are proven in [51]—do not yield the estimate in question,
because there is no reason now to believe that � f (p) ≈ �(p), so, the right-hand side
of (6) may well be small. Likewise, any inequalities with an unknown (and thus
potentially big) c, or those valid in the limit τ2 → τ1 are useless for us here, because
the sign � in (6) has no justification in this limit.

1.3 The Meaning of the Restrictions

...physicists are comfortable with little
huge numbers, but not with big ones.

B. S. DeWitt [36]

The quantity E−
tot is usually understood to be a quantifier of feasibility: spacetimes

with such astronomical E−
tot as in (8) are considered obviously impossible. It is not

improbable, however, that this interpretation is only due to the hypnotic effect of
large numbers. Indeed, the physical meaning of E−

tot is rather obscure. The surface
N and the congruence of geodesics γ can be chosen in infinitely many ways, and
no choice is preferred. At the same time, the value of E−

tot clearly depends on that
choice. Moreover, as the following example shows this dependence is so strong that
even with a fixed N simply by choosing a suitable γ one can make E−

tot arbitrary.
Let U be the region 0 < xa < ci , a = 1, 2, 3 of the Minkowski space. Here, xa

are the Cartesian coordinates with x0 being the time, and ci are some constants (thus
U is the world tube of a freely falling parallelepiped, it is such a parallelepiped that
we are going to choose as N, but it takes some preparation, because the foliation of
U by parallelepipeds may be done differently). Consider two families of geodesic
observers: somemoving in the x1- and the others—in x2-directions. The speeds of all
observers are the same (in absolute value) and, correspondingly, their four velocities
are

v1 = 1√
1−v2

(1, v, 0, 0) and v2 = 1√
1−v2

(1, 0, v, 0).

We define Ni , i = 1, 2 to be spacelike sections of U normal to vi .
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Now, suppose that the stress–energy tensor in U has the form

〈Tab〉 = diag(−1,−3, 1, 1) (9)

and, thus, violates the WEC. It is easy to check that E−
tot are different for i = 1 and

i = 2. Indeed, though the volumes are the same V 3(Ni ) = c1c2c3
√
1 − v2 in these

two cases, the energy densities �i are not:

�1 = 〈Tab�a1�b1〉 = −1 + 3v2

1 − v2
, �2 = 〈Tab�a2�b2〉 = −1.

As a result,

E−
tot1 = c�

1 + 3v2

√
1 − v2

, E−
tot2 = c�

√
1 − v2, where c� � c1c2c3,

andwe see thatmerely by the choice of a suitable observer, E−
tot canbemade arbitrarily

large/small. Does this make the matter distribution under consideration unphysical?

Remark 3 The stress–energy tensor (9) coincides, up to a factor, with that generated
by the Casimir effect (see [14, Eq. (4.39)]), i.e. with that which would be observed
(up to edge effects), if the parallelepiped N were bounded in the x1-direction by
superconducting plates. Also, (9) is the vacuum stress–energy tensor of the scalar
field in the spacetime obtained from L

4 by identifying x1 = x1 + c1.

2 Counterexamples

Whatever is the meaning of E−
tot, it seems likely that its moderate value for some

‘naturally chosen’ observers is a merit of a shortcut. Let us check, therefore, that
the (presumed) validity of the quantum inequality does not generally imply the esti-
mate (8).

2.1 The Weyl Tensor

In deriving (8), we assumed that in the relevant region the components of theRiemann
and the Einstein tensors are roughly of the same order, see (4). So, one does not expect
(8) to hold, even approximately, unless

max |Câb̂ĉd̂ |/max |Râb̂| � 1
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for the relevant observers, where

Cabcd � Rabcd + ga[d Rc]b + gb[c Rd]a

is the so-calledWeyl tensor. But this condition failsmore often than not. For example,
in any curved (and, hence, having a non-zeroRiemann tensor), but empty (and, hence,
having a zero Ricci tensor) region—in particular, in the vicinity of each star—for
any observer

max |Câb̂ĉd̂ |/max |Râb̂| = ∞.

For this reason alone, the whole argumentation resulting in the estimate (8) is wrong
in the general case. And, indeed, in Chap. 9, we produce an example of a traversable
wormhole which is prevented from collapse by the vacuum polarization just in the
Schwarzschild space.

2.2 The Non-trivial Topology

The inequality (3) becomes increasingly more restrictive as |τ2 − τ1| grows, so it is
important that the length of γ is bounded by the conditions (2). The main reason for
imposing (2)—even at the cost of the power of the quantum inequality—is that in
the Minkowski space the inequality (3) does hold, while any region is believed to
be ‘almost a portion of the Minkowski space’, if it is small enough. Of course, this
idea may be employed in different ways and the condition (2b) may be reformulated
one day, but it cannot be dropped completely: there are static spacetimes in which
� = const < 0, see Remarks 3 and 1 in Chap.10 for example. In such spacetimes,
there are γ -s that are sufficiently long to violate (3). In the absence of restrictions
like (2b), these γ -s would violate the quantum inequality too.

At the same time, (2b) prevents the quantum inequality from yielding a restric-
tion like (6) and thus (8) for the most promising (as shortcuts) wormholes. Indeed,
consider a timelike geodesic in the region between the mouths of a static wormhole:
such a geodesic is depicted by a vertical segment γ in Fig. 3b in Chap.3. The seg-
ment may be arbitrarily short, but if cτ is sufficiently close to d—and as discussed
in Remark 12 in Chap.3, it is the wormholes with cτ ≈ d that are best for interstel-
lar travel—the end points of γ are connected by a causal curve λ. The latter passes
through the throat of the wormhole and is, therefore, non-homotopic to γ , see Fig. 3b
in Chap.3. The existence of such a λ guarantees that J+(γ ) ∩ J−(γ ) is not a ball
and the condition (2b) does not hold. Thus, choosing a suitable cτ one can make the
maximal length allowed by condition (2b) arbitrarily small. This implies a loophole
in the derivation of (6), which leans heavily on the assumption that |τ2 − τ1| ≈ T ,
see the provision between (4) and (5).

An additional merit of wormholes with cτ ∼ d is that—as is reasonable to assume
by analogy with the case L3 × S

1, see Eq. (9) and Remark 3—the vacuum polariza-
tion generates large [of the order of (c2τ − d2)−2] negative energy density, which

https://doi.org/10.1007/978-3-319-72754-7_9
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relieves one of having to seek additional sources of exotic matter. So, the better is
the wormhole as shortcut, the less severe is the Quantum inequality.

2.3 ‘Economical’ Shortcuts

Now let us check that Planck-scale densities by themselves do not imply estimates
like (8). Even if all the assumptions of Sect. 1 are valid, a macroscopic wormhole
can nevertheless be maintained by just E−

tot ≈ 10−2M�. Moreover, contrary to naive
expectations [cf. the reasoning above formula (8)] a macroscopic body may, in prin-
ciple, be transported through a microscopic wormhole (or another shortcut), which
makes it possible to further reduce the required E−

tot to a modest value of ≈10−4 g.

‘Portal’

In any wormhole, there is a region where a converging congruence of null geodesics
becomes diverging. Correspondingly, the violation of the weak energy condition is
inevitable there, see the end of Sect. 2.1 in Chap.3 for discussion. However, the
magnitude of this violation depends dramatically on the geometry of the wormhole.
Thus, for example, in the wormholeW�, the violation takes place in the throat. Here,
the sphere �t is identified with �′

t ′ ‘turned inside out’, cf. Fig. 4 in Chap.3. It seems
reasonable to assume that the least exotic wormholes must be those where � in the
process of turning inside out changes its shape as little as possible.

With this guess in mind, we now turn to a special type of wormhole called portals.
These are static spacetimes with the Cauchy surfaces like those depicted in Figs. 1
and 2. In the (2+1)-dimensional case, it is a surface obtained as the space W in
Example 3 in Chap.3 with the only difference that now B and B′ are ovals rather
than circles, that is the long sides of the holes depicted in Fig. 1 are straight. Cauchy

Fig. 1 A surface of
simultaneity of a
(2+1)-dimensional portal

a

Fig. 2 The ‘distance’
between the hoops (defined,
for example, as the length of
the snake) is d. The radius of
each of them is ρ0 and the
thickness is h

https://doi.org/10.1007/978-3-319-72754-7_3
https://doi.org/10.1007/978-3-319-72754-7_3
https://doi.org/10.1007/978-3-319-72754-7_3
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surfaces in the (3+1)-dimensional case are built from the two-dimensional ones by
rotation with respect to the a-axis or, equivalently, by replacing the balls B and B′
from the description of W�, see Sect. 2.1 and Fig. 4 in Chap.3, by cylinders (the
bases of the cylinders are flat, but their side walls are not, this is where the spacetime
is curved).

The portal may be considered as an approximation to the limit case, which is the
spacetime H—a dihedral wormhole in the terminology of [172]—built as follows.
From the Euclidean space E(n−1) remove two equal (n − 2)-dimensional disks per-
pendicular to the line connecting their centres. Then glue the left bank of either slit
to the right bank of the other one (in perfect analogy to how the Deutsch–Politzer
space was built). The resulting space A is just a spacelike section of H = L

1 × A.
Though H resembles an ordinary wormhole, it differs from the latter in two respects:

a. H is everywhere flat. Thus, it does not need exotic matter at all: E−
tot = 0;

b. H is non-globally hyperbolic: it has a closed stringlike singularity.3 So, by defi-
nition, H is not a shortcut.

Conversely, H may be modified so as to obtain from it a proper shortcut (the explicit
expression for the relevant metric is presented in the Appendix). To this end cut out
some narrow neighbourhood of the singularity in A and replace it by a solid torus
(similarly to how a cone singularity is regularized sometimes by cutting out the sharp
tip and replacing it with a smooth blunted ‘cap’). The torus of course is not flat, but
its thickness h is small and E−

tot, though non-zero, turns out to be moderate. It can
be roughly estimated from the fact that when h tends to zero, � = 1

8π G00 grows as
h−2 (since the Einstein tensor includes the second derivatives of metric). At the same
time, the volume of a solid torus with fixed length falls as h2. Hence, the total amount
of energy concentrated in the hoop remains approximately constant in this limit and,
consequently, can be found by setting h ≈ � ≈ 1. Thus, to support a human-sized
wormhole of this type it would suffice E−

tot ≈ 1m ≈ 10−3M� of exotic matter. This
tiny [in relation to (8)] quantity is comparable with the energy of a supernova.

Van Den Broeck’s Trick

In fact, E−
tot can be reduced further yet by tens of orders of magnitude. The idea [170]

is to use a capsule which would be, on the one hand, large enough to accommodate a
human and, on the other hand, small enough to be transported through a microscopic
[i.e. with þ ≈ 1, see (8)] shortcut. Strange it might seem, both requirements can be
satisfied simultaneously and this would not require large amounts of exotic matter.

Consider the spacetime

ds2 = −dt2 + dl2 + r(l)2(dϑ2 + sin2 ϑ dϕ2), l � 0. (10)

3Due to the exceptional simplicity of this case one can assign a particular shape to the singularity
[101].
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(a) (b)

Fig. 3 a Variation of the capsule’s radius with the distance from the centre. b By using just ≈ MPl
of exotic matter, a Planck-size (to an external observer) capsule can be made arbitrarily roomy

(It is meant that the underlying manifold is merelyR4, rather than a wormhole: at
l = 0 points that have the same t are identified even when their ϑ and ϕ differ.) The
Einstein tensor for the metric (10) can be easily found, see e. g. [135, Eq. (14.52)]:

Gt̂t̂ = 1 − r ′2 − 2rr ′′

r2
, Gt̂t̂ + Gr̂r̂ = −2r ′′

r
, Gt̂t̂ + G ν̂ν̂ = 1 − r ′2 − rr ′′

r2
,

where ν � ϕ, ϑ .
Pick three positive numbers l0 < l1 < l2 and let r(l) be a smooth non-negative

function which is concave at and only at l ∈ (l1, l2) and which has a—unique—root
at l = 0. Impose the additional condition

|r ′| � 1 at l ∈ (l0, l1), r ′ = 1 at l /∈ (l0, l2),

see Fig. 3b. Then, it is easy to check that the WEC is violated in and only in the
spherical layer N : l ∈ (l1, l2). Obviously, the ‘external’ radius r(l2) of that layer
and its volume V (N) may be of Planck size, even when the ‘internal’ radius l0 is
macroscopic. In the simplest case, it takes only E−

tot ≈ MPl ≈ 10−7 kgof exoticmatter
to support the spacetime in discussion [98] (though, of course, the practicability
of such a spacetime is out of question). Moreover, if we relax for a moment the
requirement that the spacetime would be flat at large l, then a similar ‘pocket’ can
be built without exotic matter at all [82].

Remark We have used the Van Den Broeck pocket not as a shortcut, but only as
a tool for reducing the amount of negative energy required for a regular shortcut.
However, a similar trick was applied directly to the Krasnikov tube and enabled the
relevant E−

tot to be reduced to ≈1030 g [69].



Chapter 9
Primordial Wormhole

1 Introduction

In discussing the subject matter of this book, one of central points is the existence of
traversable wormholes. It turns out that approaches to this problem differ depending
on whether we consider the creation of a wormhole by a hypothetical advanced
civilization as a possibility. If we do, then it only remains to find a method for
stabilizing such a wormhole, i.e. for making it traversable. There are a number of—
speculative—proposals of how this can be done. Thus, for example, one could use
well-aimed ‘streams of pure phantom radiation’ [77] to this end.

We can, however, leave advanced civilizations aside1 and specify the question as
follows: consider a ‘primordial’ (i.e. that which appeared at the same time with the
rest of the universe and for the same reason) wormhole. Would it be traversable for
some time, at least? But even this question, as it turns out, is too general. There is a
plethora of more or less innovative theories in which the WEC does not hold. If any
of them is valid, the wormhole will have a chance to exist for sufficiently long time
to be traversed. For example, static wormholes are, apparently, possible in theories
with classical ‘ghosts’ [44] or scalar fields [8], in a ‘brane world’ [19], etc. In my
view, however, this fact does not make traversable wormholes any more plausible.

In this chapter, we adopt the approach of ‘maximal banality’ (cf. ‘the boring
physics conjecture’ [172]) and, in the spirit of [161], formulate our question as
follows: will a primordial wormhole be traversable within ordinary semi-classical
gravity involving nothing exotic in the least? Clearly, the answer must depend on the
initial shape of the wormhole, the state of the matter filling it, etc. Today it is hard
to tell what initial state is more and what is less realistic. So we choose it to be as
simple as possible in the hope that the simpler a wormhole is the more probably it

1In a globally hyperbolic spacetime no new wormhole can appear, see Proposition 51 in Chap.1,
while the evolution of non-globally hyperbolic spacetimes is a rather obscure matter, see Sect. 3 in
Chap. 2 for discussion.
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resembles a real one. Specifically, we assume that the spacetime Mwh containing the
wormhole in question is:

(1) spherically symmetric,2

(2) empty (in the classical sense, i.e. T C
ac = 0), and

(3) similar to that which would evolve from the same initial state in the purely
classical case (i.e. to the Schwarzschild space in this case).
Classically, such a wormhole would be non-traversable, see Sect. 2.1, and our
task is only to find out how this property is affected by quantum effects.

Remark 1 Our choice of simplifying assumptions is, of course, disputable. Indeed,
there are at least two works in which the solution was required to be static, while
conditions (3) or (2, 3) were, on the contrary, weakened. Neither of these attempts,
however,was successful. The length of thewormhole built in [79] is≈lPl/2, the radius
of its throat is ≈67lPl. And the second work [95] contains a serious mathematical
error.

To describe the appearance of the wormhole, we introduce—as initial condi-
tion—a surface E dividing Mwh and assume that the part of Mwh to the future of E
solves the semi-classical Einstein equations Gab = 8π〈 Tab〉Q . The remaining part of
Mwh is terra incognita and we do not consider it. At E proper the geometry is taken
to be exactly the same as at the corresponding surface in the Schwarzschild space.
By requiring E to obey a few seemingly natural conditions, see page 187, we reduce
the multitude of wormholes to a family parameterized by the initial mass m0, the
times (measured in a special coordinate system) at which the mouths appeared, and,
finally, some quantity h. The last-named parameter shows how close to collapse the
new-born wormhole would be if it were classical. As we shall see, for our model to be
self-consistent a wormhole must appear already almost torn apart by the singularity.
Thus, it is clear in advance that the ‘traversability time’ T trav of the wormholes
under consideration is very small (if non-zero). It should be stressed that this is not
a non-trivial property of primordial wormholes, but rather a criterion of eligibility
for being considered within our model. It turns out, however,—and this is one of the
main results of this book—that there are wormholes whose T trav, though small, are
macroscopic. Thus, the intra-universe version of Mwh, we discuss it in Sect. 4, may
well endanger causality.

2 The Model and Assumptions

2.1 Schwarzschild Spacetime

The question of traversability of a spherically symmetric empty wormhole reduces
in the classical case to studying the Schwarzschild space, merely because by the

2As a next step it would be natural to consider a rotating wormhole, see [85].
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Birkhoff theorem it is the only (maximal, globally hyperbolic) spherically symmetric
solution of the Einstein equations Gab = 0. Since our approach is based on the idea
that Mwh is a perturbation of the classical wormhole, we begin with recapitulating
some basic facts concerning the geometry of the latter (for a detailed geometrical
consideration see [103, 135], for a discussion of quantum fields in Schwarzschild
space see [14, 20, 56]). These facts are then used in formulating the assumptions
concerning the geometry of Mwh.

The Geometry

The Kruskal or the (maximally extended) Schwarzschild space MSc is the spacetime
with topology R

2× S
2 and metric

ds2 = −F̊2dudv + r̊2(dϑ2 + cos2 ϑ dϕ)

u, v ∈ R, r̊ > 0,
(1)

where ϕ and ϑ coordinatize the sphere and

F̊2
⇋ 16m2

0x−1e−x , r̊ ⇋ 2m0x . (2)

m0 is a positive3 parameter called the mass and x(u, v) is (implicitly) defined by the
equation

uv = (1 − x)ex . (3)

MSc includes two globally hyperbolic regions with radius r̊ (see Remark 8 in
Chap.3) varying from 2m0 to infinity in either. These are II ⇋ {u > 0, v < 0} and
IV ⇋ {u < 0, v > 0}, see Fig. 1a.

In region IV, consider the coordinate transformation from u, v to r̊ and
tS ⇋ 2m0 ln(−v/u). In the new coordinates, the metric takes the customary form4

ds2 = −(1 − 2m0
r̊ )dt2S + (1 − 2m0

r̊ )−1dr̊2 + r̊2(dϑ2 + cos2 ϑ dϕ)

tS ∈ R, r̊ > 2m0,

and we see, in particular, that region IV is asymptotically flat. It is static and each of
its spacelike sections tS = const is a (slightly deformed) Euclidean space E3, from
which a ball of radius 2m0 is removed. A maximal extension of the region under dis-
cussion is obtained by replacing this ball with a singular spacetime orwith a collapsar,
or, as in the Schwarzschild case, with a throat connecting IV to the region II. So,
Schwarzschild space is a wormhole, indeed—two static asymptotically flat universes
are connected by an evolving throat (which forms the union of I ⇋ {u > 0, v > 0}

3Solutions corresponding to m0 � 0 exist, but they have a completely different structure and will
not be considered here.
4A detailed discussion of how Schwarzschild space looks in different coordinates can be found, for
example, in [135].
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K 1

K 2

K 1

K 2

(a) (b)

Fig. 1 a The section ϕ = const , ϑ = const of Kruscal spacetime. A causal curve in each of its
points lies inside the angle with sides parallel to the u- and v-axis. So, the quadrants IV and II are
causally non-connected. b The sections tK = const , ϕ = const of the same space. c1 is in (−1, 1).
As is easily seen, the depicted spacetime is actually a (non-static) wormhole

and III ⇋ {u < 0, v < 0}). In this capacity, Schwarzschild space is often called the
Einstein–Rosen bridge.

Remark 2 MSc is non-static. Though there is a group of isometries acting on it

p �→ p̆, where u( p̆) = Cu(p), v( p̆) = C−1v(p) ∀C > 0, (4)

in regions I and III the corresponding Killing vectors are spacelike.

To visualize the geometry of MSc consider its sections tK ⇋
1
2 (u + v) = const .

At first, when tK is small, each of them is a pair of cylindersR1×S
2 with radiuses of

the 2D spheres taking all positive values, see the section tK = c2 in Fig. 1b. Then, at
tK = −1 [this value is easily found from (3)] the cylinders merge into a wormhole,
see section tK = c1. The radius of its throat grows from 0 to 2m0 (the latter value
is taken at tK = 0) and then begins to decrease. The throat becomes more and more
narrow, its radius tending to zero as tK → 1. At tK = 1 it collapses andwe again have
a pair of disjoint singular surfaces. Thus, the Einstein–Rosen bridge is a ‘transient’
wormhole. Moreover, it is non-traversable, because it is destroyed before any signal
has time to traverse it [58, 136]. This is easy to check by inspection of Fig. 1a: r̊ in
region I decreases along any future-directed causal curve. So, a signal which escapes
to spatial infinity must become superluminal somewhere. We denote the boundary
of region I by H̊ and call it the horizon (implying the event or apparent, but not, of
course, Cauchy horizon).
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As for specific relations, laterwe shall need a fewequalities following immediately
from definitions (2) and (3):

r̊ ,v = −2m0u

xex
, (5a)

r̊ ,u = −2m0v

xex
= 2m0

x − 1

ux
, (5b)

r̊ ,uv = − 2m0

x3ex
, (5c)

f̊ ,u = − 1
2 (ln x + x),u = −1 + x

2x
x,u , where f̊ ⇋ ln F̊ . (5d)

Vacuum Polarization

The matter in our simple model will be represented by the conformal scalar field,
see Sect. 2.1 in Chap.7, in a vacuum state. For the maximal Schwarzschild space,
there are three different vacuums that are regarded ‘natural’—Boulware’s, Hartle-
Hawking’s, and Unruh’s (see [14] and the literature cited there), but in the first state
the expected stress–energy tensor diverges at the future horizon u = 0, v > 0 and
the second contains radiation incoming from infinity. Either feature is undesirable in
modelling a regular evaporating wormhole, so we are left with the Unruh vacuum.
We shall denote it |Q̊〉, but sometimes drop the brackets, for simplicity, and write
T̊ab for 〈 Tab〉Q̊ . The Unruh vacuum respects all the symmetries of the Kruskal space,
which by itself puts serious restrictions on the structure of T̊ab:

(1) Consider the two-dimensional space Sp tangent5 in a point p ∈ MSc to the sphere
u = v = const . Sp is a subspace of Tp and this induces a Euclidean metric �R in the
former. The linear operator

A : xc �→ T̊ b
a xa, ∀ x ∈ Sp.

is self-adjoint with respect to this metric:

�R( y, Ax) = ybT̊ b
a xa = ybT̊ba xa = �R(Ay, x)

and hence its eigenvectors make up an orthogonal basis, i.e. there is a pair of orthog-
onal unit vectors s1, s2 ∈ Sp such that

T̊ b
a xa yb = λ1s1as1

bxa yb + λ2s2as2
bxa yb, ∀ x, y ∈ Sp.

5Since the metric is given, we shall not pedantically distinguish co- and contravariant vectors.

https://doi.org/10.1007/978-3-319-72754-7_7
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The spherical symmetry forces λ1 = λ2 = λ and therefore

T̊ b
a xa yb = λδb

a xa yb , whence T̊abxa yb = λgabxa yb ∀ x, y ∈ Sp.

Thus,
T̊ϑϕ = 0 T̊ϕϕ = cos2 ϑ T̊ϑϑ .

(2) Assume, that in a point p

0 	= T̊vϕ = (∂v)
a T̊ab(∂ϕ)b,

and, correspondingly, the projection of the vector T̊ab(p)(∂v)
b on Sp is non-zero.

This defines a preferential direction in Sp, which contradicts the spherical symmetry
of the problem. Applying the same reasoning to the cases u → v and/or ϕ → ϑ , we
conclude that

T̊wϑ = T̊wϕ = 0, w = u, v.

(3) Any two points p, p̆ with the same x 	= 1 and the same sign of v are related by
a combination of a rotation and an isometry (4). Hence,

T̊uu( p̆) = C−2T̊uu(p), T̊uv( p̆) = T̊uv(p), T̊vv( p̆) = C2T̊vv(p),

where C = x,u (p)/x,u ( p̆) and, consequently,

T̊uu(p) = x2,u (p)cuu, T̊vv(p) = x−2,u (p)cvv,

and T̊ab(p) = cab for the rest pairs ab.

cab in the last expression stand for some quantities that do not vary with coordinates
as long as r̊ is fixed.

(4) Finally, note that the metrics (1) with different masses are conformally related
and, hence, by (7.12)

T̊w1w2(m0, p) = (m̆/m0)
2T̊w1w2(m̆, p̆).

The right and left-hand sides of this equality refer to points with equal coordinates6

(the coordinate systems are understood to be those in which one metric is propor-
tional to the other). Thus, x( p̆) = x(p), but, for example, r̊( p̆) = x( p̆)/(2m̆) 	=
x(p)/(2m0) = r̊(p).

Thus, summarizing the results of items (1)–(4), we can state that in the coordinates
v, u, ϑ, ϕ (exactly in this order)

6They are different points, nevertheless, because they lie in different spacetimes.

https://doi.org/10.1007/978-3-319-72754-7_7
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T̊ab = m−2
0

4π

⎛
⎜⎜⎝

(r̊ ,u /m0)
−2τ1(x) τ3(x)

τ3(x) (r̊ ,u /m0)
2τ2(x)

τ4(x)

τ4(x) cos2 ϑ

⎞
⎟⎟⎠ ,

where τi , i = 1, . . . 4 are some functions of x (but not of u, v, orm0 separately). These
functions are connected via energy conservation and the value of the anomalous trace
[24]. This, however, is not sufficient for finding all four of them and some calculations
have to be done numerically, which, indeed, was done in [45]. The results that we
shall use in this chapter are (see Sect.A.5 in Appendix) as follows:

a. The vacuum polarization is weak (now, that it is described by scalar functions
τi this is a meaningful statement). In particular, it follows from (A.57), (A.52),
(A.54), (A.58) that |τi (1)| � 10−3;

b. At the horizon, the component T̊vv is negative.

More specifically, we shall need the following estimates for the components T̊ab at
the horizon:

r̊ ,2u T̊vv
H̊

= − F̊4(1)K

16m4
0

, where K ⇋
9

40 · 84π2
≈ 6 × 10−6.

Accordingly, τ1(1) = −64π K e−2 ≈ −10−3,

(6a)

− r̊ ,−2
u T̊uu

H̊
= τ2(1)

4πm4
0

≈ 2 · 10−5m−4
0 
 m−4

0 (6b)

and, as follows from the comparison with (2) and (A.54), at any macroscopic m0

|T̊uv|
H̊

= τ3(1)

4πm2
0


 F̊2(1)

64πm2
0

(6c)

(we do not substitute here the numerical value of F̊ in order to simplify the transition
from F̊ to F).

2.2 The Geometry of the Evaporating Wormhole

The wormhole Mwh that we are studying is spherically symmetric and, correspond-
ingly, has the metric

ds2 = −F2(u, v) dudv + r2(u, v)(dϑ2 + cos2 ϑ dϕ), (7)

where F and r (note the absence of ˚ over them) are the functions to be found.
Our next task is to express mathematically the idea that the wormhole is ‘initially
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Schwarzschild’. To this end, we pick a hypersurface E̊ dividing the Schwarzschild
space (later we shall restrict the possible choice) and require that there exist a surface
E ⊂ Mwh such that F , r and their first derivatives coincide on E with, respectively,
F̊ , r̊ and their derivatives (the values are compared in points of E and E̊ with the
same coordinates; we shall not repeat this trivial stipulation any more). In particular,
relations (5) with accents ˚dropped must hold on E. We require E to be spherically
symmetric—in the sense that with every point p it also contains all points q such
that u(q) = u(p), v(q) = v(p)—and to satisfy the following conditions:

(i) It is spacelike at r < 2m0;
(ii) In quadrant IV, its section ϕ = ϑ = 0 is a graph of a smooth positive function

v = V (u)whichhas nomaximum.The samemust also holdwith the substitution
IV → II, V → U , v ↔ u;

(iii) Far from the wormhole (i.e. at r 
 m0), E is required to be merely a surface of
constant Schwarzschild time, that is to satisfy the equation u/v = const . Thus
for some positive constants κL , κR and any point p ∈ E with r(p) 
 m0

v(p) < u(p) ⇒ v(p) = −κLu(p),

v(p) > u(p) ⇒ u(p) = −κRv(p).

Condition (i) restricts substantially the class of wormholes under examination, in
contrast to (ii), which is of minor importance and can be easily weakened, if desired.
The idea behind (iii) is that far from the wormhole mouths the Schwarzschild time
becomes the ‘usual’ time and that the Planck era ended—by that usual time—
simultaneously in different regions of the universe. Though, remarkably, (iii) does
not affect the relevant geometrical properties of Mwh, it proves to be very useful in
their interpretation. In particular, it enables us to assign in an intuitive manner the
‘time’ T to any event p′ near the throat of the wormhole. Namely, p′ happens at
the moment when it is reached by the photon emitted in the end of Planck era from
a point p (or p′′) located on the left (respectively, right) asymptotically flat region,
see Fig. 2. The distance—when it is large enough—from this point to the wormhole
is approximately

r = 2m0x ≈ 2m0 ln[−u(p′)v(p′)] = 2m0 ln[u2(p′)κL ]

[x here is expressed in termsofuv via (3)], or≈2m0 ln[v2(p′)κR]. Taking this distance
to be the measure of the time elapsed from the end of the Planck era, we define

TL(p′) ⇋ 2m0 ln[u2(p′)κL ], TR(p′) ⇋ 2m0 ln[v2(p′)κR] (8)

and interpret TL(R) as time, even though ∇TL(R) is null (as is the case with the
‘advanced’ and ‘retarded’ times in MSc). Note that as long as we consider the two
asymptotically flat regions of Mwh as totally independent (i.e. up to Sect. 4), there is
no relation between κR and κL , nor there is a preferred value for either of them.
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Fig. 2 The section ϕ = ϑ = 0 of an evaporating wormhole. The thinnest solid curves are the
surfaces r = const . The grey angle containing q is the horizon

Among other things, the choice of E [combined with the requirement that (1)
holds on it] fixes the coordinates u and v up to a transformation

u �→ u′ = Cu, v �→ v′ = C−1v.

To fix this remaining arbitrariness and thus to make formulas more compact, we
require the u- and v- intercepts of E—let us denote them u0 and v0—be positive and
equal, see Fig. 2. The remaining quantity, v0, is a free parameter of the model. And
though no reasons are seen to think that wormholes with some particular values of
v0 are more common than with any other, we restrict our consideration to those with

1 + √
c < h <

√
5+1
2 , where h ⇋ ec/v20, c ⇋ 16π K m−2

0 (9)

[K is defined by (6a)]. As we shall see, wormholes with smaller h may be non-
traversable, while those with larger h evaporate too intensely and cannot be studied
within our simple model. The lower bound of h differs from 1 by an extremely small
quantity

c ≈ 3 × 10−73

(
2m0

1m

)−2

,

which is chosen non-zero for a purely technical reason, see the derivation of (45).
To summarize, we have four independent parameters m0, h, and κR(L), all values of

which are considered equally possible as long as m0 
 1, h ∈ (1 + √
c,

√
5+1
2 ) and

κR(L) > 0.
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The class of wormholes under consideration is restricted further by requiring that
in the semi-classical region of the universe (i.e. above E in Fig. 2), the following
inequalities would hold

r,uv < 0, (10a)

∇r 	= 0. (10b)

This requirement means that the difference between Mwh and Schwarzschild space
must not be so strong as to change the sign in (5c), or to make the throat transit from
contraction to expansion.

Our subject will be the (right, for definiteness) horizon, by which I understand
the curve H lying in the (u, v)-plane and defined by the condition

r,v (u, v)
H

= 0. (11)

By (5a), r,v is negative in all points of E with positive u-coordinates and vanishes in
the point (0, v0). It is from this point that the horizon starts. H cannot have an end
point, being a level line of the function r,v, which has a non-zero [by condition (10a)]
gradient. Neither can it return to E, because v can only increase along H [again by
condition (10a), which would fail in a point of maximal v]. Thus, H goes from E

to infinity dividing the region of the (u, v)-plane lying above E into two parts: r,v

is strictly negative to the left of H and strictly positive to the right. So the horizon
exists in Mwh and is unique. Loosely speaking, any small segment ofH shows where
the event horizon would pass if the evolution stopped at this moment and the metric
remained (approximately, at least) Schwarzschild with mass

m(v) ⇋ 1
2r(H(v)) (12)

(thatH can be parameterized by v, as implied in this expression, follows from the—
already mentioned—fact that v grows monotonically on the horizon. Alternatively,
it can be parameterized by m). It is the behaviour of the horizon that defines whether
the wormhole is traversable. Obviously, a photon can leave the region bounded by
the horizon only if the horizon becomes timelike somewhere, see Sect. 2.4.

Notation. Given a function y(u, v), we shall write ŷ for its restriction toH. In doing
so, we view ŷ as a function of v or m depending on which parameterization is chosen
forH (this is a—slight—abuse of notation, because strictly speaking ŷ(v) and ŷ(m)

are different functions, but it must not cause confusion). Partial derivatives are, of
course, understood to act on y, not on ŷ. Thus, for example,

m ⇋ 1
2 r̂ ,

∂

∂v
r̂ ,u ⇋ r,uv (H(v)), f̂ ,uv (m) ⇋ f,uv (H(m)) etc.

In conformity with this notation, the function v → u whose graph is H will be
denoted by û(v), while û(m) is a shorthand notation for û(v(m)). On the intervals
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where H is not parallel to the v-axis (i.e. on the entire H in our case, as we shall
see), the function v̂(u) is defined likewise.

2.3 Weak Evaporation Assumption

The physical assumption lying in the heart of the whole analysis is the ‘evaporation
stability’ of the wormhole under consideration: we assume that in the region above
E there is a solution of the system (Einstein equations + field equations) having the
following property: the geometry in a small neighbourhood of each point p is similar
to that in a point p̊ of Schwarzschild space with some mass m̊ (of course p̊ and m̊
depend on p), while the stress–energy tensor in p is small (in the sense that will be
specified in a moment) and close to T̊ab(m̊, x( p̊)). This main assumption is realized
in the form of a set of (in)equalities. Let us list them.

The requirement that Tab on the horizon be close to T̊ab(m, 1) is embodied in the
assumption that the relations (6) remain valid when the sign˚is removed in the left-
hand side, while on the right-hand side F̊(1) and m0 are replaced with, respectively,
F̂ and m:

r̂ ,2u T̂vv = − K
16 F̂4m−4, K ≈ 6 × 10−6; (13a)

r̂ ,−2
u T̂uu = cm−4, 0 > c 
 −1; (13b)

|T̂vu | 
 1
64π F̂2m−2. (13c)

Twomore assumptions concern the ‘long-distance’ behaviour of the stress–energy
tensor. Let γ be a segment of a null geodesic v = const from some p′′ ∈ E to p′ ∈ H,
see Fig. 2. We shall assume that for all p′

∣∣∣∣
∫

γ

4πr,−2
u Tuur dr

∣∣∣∣ 
 1. (13d)

This assumption seems fairly reasonable. Indeed, as follows from (6b), in the
Schwarzschild case the combination 4π r̊ ,−2

u T̊uu is approximately 10−4m−4
0 on the

horizon and falls with x [at least, for x > 2, see [45], where that combination corre-
sponds to the expression 4πx

x−1 (μ + pr + 2sU)]. At large r it falls as 1/r2 [24], so the

left-hand side is presumably of the order of 10−4m−4
0 ln(r(p′′)/m0). Since r(p′′) is

less than the age of the universe, that quantity is small for any macroscopic m0 (that
we shall extend the assumption to small masses is simply a matter of convenience:
instead of the Planck mass, we could introduce some macroscopic minimal mass—
mmin = 103, say—which would only result in exponentially small corrections).

Finally, we assume that

|Tϑϑ | 
 1
2π r |r,vu |F−2. (13e)
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Again, in the Schwarzschild case the corresponding inequality—which is τ4 

2m2

0/x , see (2) and (5c)—holds both on the horizon and at large x , see (A.52) and
(A.50). And, again, we actually do not need (13e) to be true pointwise. It would
suffice that the relevant integral be small, see (30).

2.4 Preliminary Discussion

The traversability of the wormhole is determined by the fact that in the course of
evaporation û(m) does not remain constant (as in the Schwarzschild case), but tends
to û∞ > û0 as m → 1 (what happens at smaller m is, of course, anybody’s guess).
Indeed, draw through p′ ∈ H a future-directed null geodesic λ parallel to the v-axis.
In our model r̂ ,vv is strictly positive, see (20) below, and hence in the point where
λ meets the horizon, r

λ
(v) reaches its global minimum. So, λ intersects H once

only. Summarizing, λ is the world line of the photon emanating from p = λ ∩ E,
traversing, in p′ ∈ H, the throat of the wormhole and escaping to infinity.

Aswemove from p to the left, see Fig. 2, the same reasoning applies to all photons
as long as their u-coordinates are small enough to ensure the intersection ofH and λ.
The boundary of the part of E from which the right infinity is reachable is generated
by the points p∞ with

u(p∞) = û∞ ⇋ sup
m∈[1,m0]

û(m)

(as we shall see the supremum is provided, in fact, by m = 1). Correspondingly, we
define the closure time as the moment when the wormhole ceases to be traversable
for a traveller wishing to trip from the left asymptotically flat region to the other one:

T cl
L ⇋ 2m0 ln û2

∞κL .

Similarly, the opening time is defined as T op
L ⇋ 2m0 ln v20κL . Photons with u < v0,

that is with TL < T
op
L (such photons exist unless E is everywhere spacelike, which

is uninteresting) also cannot traverse the wormhole: on their way out they get into
the Planck region. For all practical purposes, this means that they ‘vanish into the
singularity’. Finally, we define the traversability time as

T trav
L ⇋ T cl

L − T
op
L = 4m0 ln

û∞
v0

. (14)

Obviously,

A wormhole is traversable ⇔ T trav
L > 0 ⇔ û∞ > v0 (�)



2 The Model and Assumptions 199

and our goal in this chapter is to estimate û∞/v0. This must be done accurately
enough, because there is a drastic difference between really traversable wormholes
and those that are traversable only nominally and have T trav ≈ 1, say.

Remark 3 The behaviour of the apparent horizon under assumptions very similar
to ours was studied back in the 1980s (see e.g. [20, 56] for reviews). The space-
time being considered, was not a wormhole, though, but a black hole originating
from gravitational collapse (which means, in particular, that it is not empty even
classically). Still, the problems are closely related. It should be noted therefore that
according to a widespread opinion (see [73], though), the backreaction results only
in the shift of the event horizon to a radius that is smaller than 2m by δ ∼ m−2,
which is physically negligible [9]. This inference, however, is logically flawed: the
smallness of δ does not at all imply that the effect is weak. The situation here is
similar to that with the ‘total amount of negative energy’, see Sect. 1 in Chap. 8—the
huge value of a quantity (for instance, M2� ≈ 1076) obscures the disputableness of
its interpretation. Indeed, the event horizon is a null surface, but there is simply no
such thing as the distance between a point and a null surface.7 And even if it were
properly defined, the distance between spheres with radiuses r1 and r2 would hardly
be uniquely determined by the difference δ ⇋ r1 − r2, which depends only on the
areas of the spheres, see Remark 8 in Chap.3.

3 The Evolution of the Horizon

The Einstein equations for metric (7) read

4πTvu = ( 14 F2 + rr,vu +r,v r,u )r−2, (15)

4πTvv = (2r,v f,v −r,vv )r−1, where f ⇋ ln F, (16)

4πTuu = (2r,u f,u −r,uu )r−1 = (17)

= − F2

r

( r,u

F2

)
,u , (17)′

4πTϑϑ = −2r2

F2
(r,vu /r + f,vu ). (18)

Under the weak evaporation assumption, they can be simplified. In particular, on the
horizon, the left-hand side of (15) can be neglected by (13c), while r,v vanishes there
by definition. So, we have

7Consider, for example, the surface t = x +� inMinkowski plane. Is the distance from the origin of
the coordinates to that surface large or small? Apparently, neither: � can be made arbitrary merely
by a coordinate transformation t ′ = tchγ + xshγ , x ′ = tshγ + xchγ with a suitable γ .

https://doi.org/10.1007/978-3-319-72754-7_8
https://doi.org/10.1007/978-3-319-72754-7_3
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r̂ ,vu = − F̂2

8m
. (19)

Equations (16) and (13a) yield

r̂ ,vv = π K F̂4

2m3r̂ ,2u
. (20)

Likewise, (17) in the approximation (13b) gives

r̂ ,uu = 2r̂ ,u f̂ ,u −4πcr̂ ,2u m−3. (21)

Finally, Eq. (18) with (13e) taken into consideration reduces to

f,vu = −r,vu /r. (22)

3.1 Evaporation

In this subsection, we establish the relation between the ‘mass’ m (or the normal-
ized mass μ = m/m0) and the ‘time’ v (this relation is used not to establish the
traversability of Mwh, but to check whether the model is self-consistent). As we shall
see m falls with v and it is this process that is referred to as evaporation.

As already mentioned, the horizon can be parameterized both by the mass m
and the coordinates u or v. The three parameterizations are related by the obvious
formulas:

2
dm

du
≡ dr̂

du
= r̂ ,u +r̂ ,v

dv̂

du
= r̂ ,u (23)

and
dv̂

du
= − r̂ ,vu

r̂ ,vv
, (24)

of which the former follows strictly from the definitions (11), (12) and the latter from
the fact that 0 = dr̂ ,v = r̂ ,vu du + r̂ ,vv dv̂.

Corollary 4 By substituting (19) and (20) in (24), we deduce that dv̂/du is positive.
This means that the horizon H is timelike in our model.

Now substitute the same formulas in the expression for dv̂/dm obtained by com-
bining (23) and (24):

dv̂

dm
= −2r̂ ,−1

u

r̂ ,vu

r̂ ,vv
= r̂ ,u m2

2π K
F̂−2,
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rewrite the resulting equation as

dv̂

dμ3
= 8m0

3c

r̂ ,u

F̂2
, where μ ⇋ m/m0, (25)

and estimate its right-hand side. To this end consider the geodesic segment γ between
the points p′ and p′′, seeFig. 2 and the passage above condition (13d).On this segment

( r,u

F2

)
,u du = −4πr

F2
Tuudu = −4πr

r,2u
Tuu

( r,u

F2

)
dr

(the former equality follows from (17′) and the latter—from the fact that dr = r,u du
on γ ) and, hence,

r̂ ,u

F̂2
(p′) ≡ r,u

F2
(p′′) · exp

{∫
γ

(
ln

r,u

F2

)
,u du

}
=

= − v

8m0
exp

{
−

∫
γ

4πrTuu dr

r,2u

}
≈ − v

8m0
. (26)

The approximate equality here is due to (13d), and the factor in front of the exponent
is simplified with the use of the first equalities in formulas (2) and (5b). Thus, we
see that the expression (5b), which in the Schwarzschild case is valid in the entire
spacetime, remains valid—at least, on the horizon—in Mwh too.

Substituting (26) in (25) and integrating the resulting equation (recall that v, and
v̂, as functions of p′, are the same) gives the sought-for relation

v̂(μ) = v0 exp
{ 1

3c
(1 − μ3)

}
. (27)

As an immediate application, we find the limit

v∞ ⇋ v̂(m = 0) = v0e
1
3c ,

which enables us to estimate the time [in the sense of (14)] that it takes for awormhole
to evaporate. Namely, take the beginning of the evaporation to be the very moment
T st

R when the wormhole appeared, i.e. when v̂ = v0. The evaporation (and the
existence of the wormhole, in general) ceases at the moment T fi

R when v̂ = v∞.
Thus, the evaporation time is

T ev
R ⇋ T fi

R −T st
R = 2m0 ln(v

2
∞κR) − 2m0 ln(v

2
0κR) = 4m0

3c
≈ 6 · 1066

(
m0

M�

)3

yr.

It is instructive to compare this result with that in [143, (26)].
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Remark 5 So far, nothing has suggested that a wormhole has time to evaporate
completely, i.e. that μ and v have time to reach the zero and v∞, respectively. One
could imagine that the evolving horizon tends to some asymptote v = vH, where
vH is a constant smaller than v∞. In fact, however, such a behaviour is excluded in
our model. Indeed, by symmetry the left horizon would have to have an asymptote
u = uH. This would imply that the horizons intersect (recall that they are timelike,
by Corollary 4), which contradicts (10b).

Remark 6 The coordinate transformation (u, v) → (r, ṽ), where ṽ ⇋ 4m0 ln v, casts
the metric in the following form:

ds2 = −F2r,−1
u dv(−r,v dv + dr) + r2(dϑ2 + cos2 ϑ dϕ) =

= F2v

8r,u m0

[
1

2m0
vr,v dṽ2 − 2drdṽ

]
+ r2(dϑ2 + cos2 ϑ dϕ) =

= (2mV /r − 1)dṽ2 + 2drdṽ + r2(dϑ2 + cos2 ϑ dϕ), mV ⇋ r
2m0 − vr,v

4m0
,

the last equality being obtained by the use of (26). In the vicinity of the horizon this,
in fact, is the Vaidya metric [71, (9.32)], because the chain of equalities

4m0mV ,u = 2m0r,u −v(r,u r,v +rr,uv )
H

= 2m0r̂ ,u +1

4
vF̂2 = 0

[the second one follows from (11), (19), and the last one—from (26)] proves that
mV depends only on ṽ.

3.2 The Shift of the Horizon

In this section we solve a, quite cumbersome, technical problem—we find the func-
tion û(m). To this end we, first, combine the relations (19)–(22) into an ordinary
differential equation defining r̂ ,u [this is Eq. (32)], and then solve the Eq. (23) with
the thus found right-hand side.

We begin with writing down the following consequences of relations (23) and
(24):

d

dm
r̂ ,u = du

dm

(
∂

∂u
+ dv̂

du

∂

∂v

)
r̂ ,u = 2r̂ ,−1

u

(
r̂ ,uu − r̂ ,2vu

r̂ ,vv

)
. (28)

Then, using (21) and the equation

r̂ ,2vu

r̂ ,2u r̂ ,vv
= m

32π K
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[it follows from (19) and (20)], we rewrite (28) as

r̂ ,−1
u

dr̂ ,u

dm
= 4

f̂ ,u

r̂ ,u
− 4πcm−3 − m

16π K
. (29)

The next step is to estimate the first term on the right-hand side. Consider the segment
λ of the null geodesic u = const between the points p ∈ E and p′ ∈ H. On this
segment, (5d) and (22) force the equality

f̂ ,u ≡ f,u (p′) ≡ f,u (p) +
∫

λ

f,uv dv = −1 + x̄

2x̄
x̄,u −

∫
λ

r,uv

r
dv (30)

[from now on for the sake of brevity I write r̄ , x̄,u , etc. instead of r(p), x,u (p), etc.;
note that in this notation ū(v) = û(v)]. The sign of r,uv is constant by (10a), while
r (which, as shown in Sect. 2.2, monotonically falls on λ) changes from r̄ to 2m.
Hence, on the strength of the corresponding theorem [193, n◦ 304], one gets

f̂ ,u =
( 1

2m�
− 1 + 1/x̄

4m0

)
r̄ ,u − 1

2m�

(
r̄ ,u +

∫
λ

r,uv dv
)

=

=
( 1

2m�
− 1 + 1/x̄

4m0

)
r̄ ,u − 1

2m�
r̂ ,u ,

where m� is a constant (for a given λ) lying between m and r̄/2 (put differently

1

x̄
� m0

m�
� 1

μ
, (31)

which will be used in a moment). Substituting the just derived expression for f̂ ,u

in (29) and neglecting the terms ∼m−1
� , m−3 in comparison with the last one we,

finally, obtain the differential equation mentioned above:

r̂ ,−1
u

dr̂ ,u

dm
= 2ξ x̄,u

r̂ ,u
− m

16π K
, ξ ⇋

(2m0

m�
− 1

x̄
− 1

)
. (32a)

Its initial condition is the equality

r̂ ,u (m0) = −2m0v0/e (32b)

following from (5b). And the solution is

r̂ ,u (μ) = −2
m0v0

e
[1 + �(μ)] y(μ), where

y(μ) ⇋ e
1−μ2

2c , �(μ) ⇋
e

v0

∫ 1

μ

ξ

y

(
x̄ − 1

ū x̄

)
dμ′.

(33)
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Proof Rewrite the equation in question as

dr̂ ,u

dμ
+ μ

c
r̂ ,u = 2ξ x̄,u m0,

or, equivalently, as

e− μ2

2c
d

dμ

(
e

μ2

2c r̂ ,u
) = 2ξ x̄,u m0.

Now it is evident that

r̂ ,u (μ) =
(

r̂ ,u (1) +
∫ μ

1

2ξ x̄,u m0

y
dμ′

)
y.

(33) is obtained by applying (5b) to both terms in the parentheses. �

In the remainder of this subsection, we turn to our main task, which is to explore
û(m). For this purpose, using, first, (23), then the fact that û(1) = 0 (which is obvious
from Fig. 2) and, finally, the expression (33), we represent û as

û(μ) = 2m0

∫ μ

1

dμ′

r̂ ,u (μ′)
= e

v0

∫ 1

μ

dμ′

y(μ′)[1 + �(μ′)] . (34)

The plan is to find a constant�m (its value will depend on which stage is considered)
restricting |�|

|�| � �m < 1

and thus to obtain an estimate

e

v0(1 + �m)

∫ 1

μ

dμ′

y(μ′)
� û(μ) � e

v0(1 − �m)

∫ 1

μ

dμ′

y(μ′)
.

To simplify the task, we introduce an auxiliary quantity

μ� : û(μ�) = v0. (35)

and consider separately the cases m > μ�m0 and m < μ�m0. Physically, this thresh-
old mass μ�m0 is distinguished by the fact that, as seen on Fig. 2, it is the mass of
the wormhole in the moment when an observer in the region IV for the first time can
see the light of the ‘other universe’ at the end of the throat.

The Early Stage

On the segment û < v0, the ray λ can meet E in one, two or three points, see
properties (i) and (ii) on page 187. But (exactly) one of them always lies between
the horizons. It is this point that we take to be the point p appearing in the definition
of m� and thereby of ξ , see Eq. (32a). This choice ensures, in particular, that x̄ < 1
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and v̄ < v0. Then [the first equality follows from (3)]

(1 − x̄)/ū = v̄e−x̄ < v0,

x̄ = 1 − (1 − x̄) > 1 − (1 − x̄)ex̄ = 1 − ūv̄ > 1 − v20

and, hence [recall that according to (9), c and, thereby, v0 are much less than 1]

|x̄ − 1|
ū x̄

<
v0

1 − v20
< 2v0. (36)

Now note that in our case, i.e. at x̄ < 1, (31) implies

1 � 1

x̄
� m0

m�
� 1

μ
,

which gives the estimate

0 < ξ ≡
(

m0
m�

− 1
)

+
(

m0
m�

− 1
x̄

)
� 2

1 − μ

μ
. (37)

Substituting it in the definition of �, see (33), and using then the inequality (36), we
get

|�| � 2e

v0

∫ 1

μ

1 − μ́

μ́y(μ́)

|x̄ − 1|
ū x̄

dμ́ < 4eZ , where Z ⇋
∫ 1

μ

1 − μ́

μ́y(μ́)
dμ́. (38)

To assess Z , take the relevant integral by parts

Z ≡ c

∫ 1

μ

μ́

c

1 − μ́

μ́2
e

μ́2−1
2c dμ́ = c

[
μ − 1

μ2
e

μ2−1
2c + e− 1

2c

∫ 1

μ

(
2

μ́3
− 1

μ́2

)
e

μ́2

2c dμ́

]

and note that the integrand in the right-hand side is positive (this is obvious) and
grows monotonically at 1 > μ́ � 1/m0 (i.e. as long as the wormhole remains
macroscopic).

Proof Indeed, the extrema of the integrand are the roots of the equation

μ́3 − 2μ́2 − 2cμ́ + 6c = 0. (∗)

The function in the left-hand side is obtained from the function μ́3 − 2μ́2, whose
roots are 0 and 2, by adding a small (∼c) function positive on the whole interval
[0, 1]. So, Eq. (∗) has a single (non-degenerate) root on that interval. It is ≈√

3c,
which can be easily established by solving the equation μ́2 + cμ́ − 3c = 0 [obtained
by neglecting the term μ́3 in (∗)]. But √3c < 1/m0, see (9), so, there is no roots in
the interval of interest. �
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Expanding the integration range to (
√
3c, 1) (what happens at smallerμ is irrelevant),

dividing it by the point μ́ = 1 − 100c, and, finally, replacing the integrand by its
maxima on either side of μ́, we have

e− 1
2c

∫ 1

μ

( 2

μ́3
− 1

μ́2

)
e

μ́2

2c dμ́ �
(
1 − 100c

)( 2

μ́3
− 1

μ́2

)
e

−1+μ́2

2c

μ́=1−100c
+

+ 100c · 1 ≈ e−100 + 100c.

Hence (taking into consideration that in the definition of Z the first term in the square
brackets is negative)

Z � e−100c + 100c2, ∀μ � 1/m0. (39)

Being substituted into (38) this gives

|�(μ)| 
 1, at μ � μ� (40)

and, in consequence,

û(μ) ≈ e

v0

∫ 1

μ

dμ′

y(μ′)
, at μ � μ�. (41)

It is clear, see Remark 5, that the (normalized) mass of the wormhole does reach
μ� and keeps decreasing (that stage is considered below). However, we also need to
know the specific value of μ�. To find it, substitute in (41) the formula

∫ μ

0

dμ́

y(μ́)
= √

2ce− 1
2c

∫ μ√
2c

0
eμ̀2

dμ̀ ≈ c

μ
e

μ2−1
2c , (42)

which is (asymptotically) correct at large μ√
2c
(see, for example, [191, Theorem 2.6]).

The result is

v0 = û(μ�) = e

v0

∫ 1

μ�

dμ́

y(μ́)
= e

v0

(∫ 1

0

dμ́

y(μ́)
−

∫ μ�

0

dμ́

y(μ́)

)
≈ ec

v0
(1 − 1

μ�
e

μ2�−1
2c ),

(43)

whence
1
μ�

e
μ2�−1
2c ≈ 1 − v20

ec
= 1 − h−1 �

√
c. (44)

This means, in particular, that μ� is very close to 1:

1 − μ� < 1
2 c |ln c| (45)
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[it is to make this, quite useful, estimate valid even at the minimal relevant h, that
we added to it an—extremely small—quantity

√
c, see (9)] and the approximation

(42) was legitimate.

The Late Stage

Consider the evaporation of the horizon at û > v0. Here, in contrast to the previous
case, x̄ > 1. So, instead of (36) we have

∣∣∣∣
x̄ − 1

ū x̄

∣∣∣∣ = 1

ū
(1 − 1/x̄) <

1

v0
= h

ec
v0. (46)

On the other hand, combining (31) with the definition of ξ , see (32a), one gets

−1 �
(2

x̄
− 1

x̄
− 1

)
� ξ �

( 2

μ
− 1

x̄
− 1

)
� 2 − μ

μ
,

whence
|ξ | � max{2/μ − 1, 1} = 2/μ − 1. (47)

In the definition (33), neglect the contribution of the segment (μ�, 1) to� [wemay do
so owing to (40)] and substitute the inequalities (46), (47) in the remaining integral
to obtain

|�| � e

v0

∫ μ�

μ

|ξ |
y

∣∣∣∣
x̄ − 1

ū x̄

∣∣∣∣ dμ́ � h

c

∫ μ�

μ
y−1

(
1 − μ́

μ́
+ 1

μ́

)
dμ́ � h

c
Z + h

c

∫ μ�

μ

dμ́

μ́y
.

The estimate (39) enables one to neglect also the first term in the right-hand side

|�| � h

c

∫ μ�

1/m0

e
μ́2−1
2c μ́−1dμ́ = h

2c
e− 1

2c

∫ μ2�
2c

1
2cm2

0

eζ ζ−1dζ ≈ h

μ2
�

e
μ2�−1
2c ≈ h − 1. (48)

The last equality here follows from (45) and (44), while the penultimate one—from
the fact that asymptotically

∫ b

a

eμ́dμ́

μ́
≈ eb

b
, at a ≈ 1 and large b.

4 The Traversability of the Wormhole

The farther a point of the horizon is from E, the greater its u-coordinate is, see Corol-
lary 4. Therefore, the quantity û∞ mentioned in Sect. 2.4 is merely û(μ = 0). The
latter can be easily assessed by (34), (48):
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v0 + e

hv0

∫ μ�

0

dμ′

y(μ′)
� û∞ = û(μ = 0) � v0 + e

(2 − h)v0

∫ μ�

0

dμ′

y(μ′)

[v0 is the contribution of (μ�, 1)], or, by (42) and (44),

v0(2 − h−1) � û∞ � v0(2 − h)−1. (49)

As discussed above, our subject is only those wormholes that satisfy (9). Conse-
quently, in our case h > 1 and, hence, (49) implies û∞ > v0. Thus, according to the
criterion (�), see page 192, the wormhole under discussion is traversable.

Depending on the value of h, its traversability time varies [see (14) and (49)] from

T trav
L = 0 at h = 1

(we have neglected
√
c) to

T trav
L = αm0, 1.3 � α � 3.8 at h =

√
5+1
2 .

The question of whether the obtained result is reliable, i.e. whether the model
is self-consistent and the weak evaporation assumption is valid, is too hard and we
shall not try to solve it. There is, however, one obvious limitation: if the wormhole
evaporates too violently it is conceivable that its horizons would approach each other
and eventually intersect, thereby violating the assumption (10b) and rendering the
model self-inconsistent. Let us check that such an intersection does not occur, at least
when h satisfies condition (9), because at such h

û(μ) < v̂(μ) (50)

and, hence, the entire right/left horizon lies in the right/left half-plane. Indeed, this
inequality is clearly true for all û � v0, i.e. for allμ � μ�. At the same time, μ � μ�

implies

û/v � û∞/v(μ�) � e
μ3�−1
3c

2 − h
≡ e

μ2�−1
2c

(2 − h)μ�

μ�e
1
3c (μ�−1)2(μ�+ 1

2 ) = 1 − h−1

2 − h
� 1

[the second inequality follows from the combination of (49) and (27), and the last
one—from (9). The last equality is obtained by applying (44) and (45)]. Thus, (50)
is true and, correspondingly, the horizons do not meet.

The traversability time T trav
L is macroscopic. It is small, however: even for a

supermassive black hole like those inhabiting the centres of massive galaxies, it is
of the order of minutes.

Remark 7 It does not follow from our analysis that the small traversability times
are typical of empty (spherically symmetric) wormholes in general. The wormholes



4 The Traversability of the Wormhole 209

for which this may not be the case, merely cannot be considered within this simple
model dealing exceptionally with ‘almost Schwarzschild’ spacetimes.

As a conveyance such quick-breaking wormholes do not look too promising.8

Nonetheless, their existence—especially in the intra-universe version—may be of
great importance. Let us dwell on this subject.

To adapt our model to description of intra-universe wormholes, first, enclose the
throat in a surface

C = {q ∈ Mwh : r(q) = þ}, þ 
 2m0

(physically, the constant þ is interpreted as the radius of the mouth). This surface
is a disjoint union of two cylinders L

1 × S
2, one of which, CL , lies in the left

asymptotically flat region and the other, CR ,—in the right:

C = CL ∪ CR, CL(R) ⊂ II(IV)

(the Roman numerals refer to corresponding regions in Fig. 2). We shall consider the
spacetime outside C (which is, correspondingly, a disjoint union of two asymptoti-
cally flat regions ML and MR) as flat. Hopefully, the resulting error is negligible—the
space far enough from a gravitating body is more or less flat. Pick Cartesian coor-
dinates in ML(R) so that the tL(R)-axes are parallel to the generators of CL(R), and
E∩ ML(R) are the surfaces tL(R) = 0. Now an intra-universe wormhole is obtained by
the standard surgery: one removes the half-spaces xL > d/2 and xR < −d/2 from,
respectively, ML and MR [it is understood that |x(C)| � þ < d/2] and identifies
the points on their boundaries (i.e. on the three surfaces xL = d/2 and xR = −d/2)
that have the same t-, y- and z- coordinates. The resulting spacetime, see Fig. 3, is a
Minkowski space, inwhich the interiors of two cylinders (their boundaries areCL and
CR) are replaced by a connected region, so that, for example, a photon intersectingCL

at the moment tin ∈ (T
op
L ,T cl

L ), emerges from CR at some tout. The only difference
between this spacetime and the wormhole considered in Sect. 2.1 in Chap.3, is that
in the former case � ⇋ tout − tin varies with time. Now note that it would take only
time d for the photon to return to CL . So, the spacetime in question is causal only if

tin < tout + d ∀ tin ∈ (T
op
L ,T cl

L ). (�)

By changing κL to κ ′
L—all other parameters being fixed—we add ≈2m0 ln(κ ′

L/κL)

to each of the quantities tin, T
op
L and T cl

L , see (8), without changing tout. So, for

8Note, though, that owing to Lorentz contraction T trav
L is larger for an observer moving towards

the wormhole [100].

https://doi.org/10.1007/978-3-319-72754-7_3
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Fig. 3 The two wavy lines
depict the world line of the
same photon

L

L

t = T op

t = T cl

R

t

x

d

1

t in

tout

sufficiently large κ ′
L the inequality (�) will fail. Thus, we conclude that irrespective

of the values of m0, d, h, and κR , traversable intra-universe evaporating wormholes
with sufficiently large κ ′

L are time machines with all the ensuing consequences.



Chapter 10
At and Beyond the Horizon

No tormoza otkazyva�t, – koda! –
� gorizont promahiva� s hoda!

V. S. Vysocki�1

As follows from the whole discussion above, there is nothing impossible in the exis-
tence of a traversable wormhole, when quantum corrections are taken into account.
Likewise, classically there is nothing impossible in its transformation into a time
machine. It remains to check that there are no known quantum effects that would
protect causality after all. In fact, there is some reason for believing that such effects
do exist. As we have seen, in the vicinity of any compactly determined Cauchy hori-
zon, there are always null geodesics returning infinitely many times, each time more
and more blue-shifted, to the same—arbitrarily small—region. This might make
one suspect [74] that time machines with compactly generated Cauchy horizons are
unstable: infinitely amplified quantum fluctuations will produce infinite energy den-
sity on the horizon. Partly, this idea is corroborated by the behaviour of the classical
massless scalar field near the horizon in the Misner space, see Sect. 2.3 in Chap. 4.
And, indeed, Yurtsever [183] argued that in the Misner space, the quantum version
of this field has a state |Q 〉 in which 〈 Tab〉Q diverges on the horizon. This, however,
may simply mean that there is a flaw in |Q 〉, while the spacetime per se is just as
nice as, say, Minkowski space, see Example 7 in Chap. 7. It would be different if the
divergence took place in all (or in ‘all reasonable’) states. Let us check, therefore,
that for the Misner-type spaces with massless conformally coupled scalar field that
is not the case [90].

We start with an auxiliary spacetime (M, �̊), which is a flat cylinder:

�̊ : ds2 = −dτ 2 + dψ2 τ ∈ R, ψ = ψ + ψ0. (1)

1“But the brakes refuse to work—coda! And I cross the horizon at full tilt.” V. S. Vysotsky
(H. William Tjalsma. Translation, 1982).

© Springer International Publishing AG, part of Springer Nature 2018
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Fundamental Theories of Physics 193, https://doi.org/10.1007/978-3-319-72754-7_10

211

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-72754-7_10&domain=pdf
http://dx.doi.org/10.1007/978-3-319-72754-7_4
https://doi.org/10.1007/978-3-319-72754-7_7


212 10 At and Beyond the Horizon

The vacuum |Ů〉 is defined by choosing the following set of modes Ů = {uk} to be
the basis of the one-particle Hilbert space:

u0 ⇋
1√
2|ψ0| (ςτ + iς−1), uk ⇋

1√|4πk|e
2π i
ψ0

(kψ−|k|τ)
, k ∈ Z, k �= 0,

where ς is a real constant. The Hadamard function in this state is of the form

G(1)(Ů; p, p′) = |ψ0|−1(ς2ττ ′ + ς−2) + D(1)(p, p′),

see (Eq. 8 in Chap. 7), where

D(1)(p, p′) ⇋
∑

k �=0

uk(p)u
∗
k(p

′) + complex conjugate.

Now to find 〈Tab〉Ů one should apply (Eq. 9 in Chap. 7). Fortunately, we need not
do so, because there is a well-known state |0ψ0〉 in which the Hadamard function is
D(1) and the stress–energy tensor is already found [14, Sects. 4.1, 4.2]:

〈Tττ 〉0ψ0
= 〈Tψψ 〉0ψ0

= − π

6ψ2
0

, 〈Tτψ 〉0ψ0
= 0.

We shall not analyse the subtle problem of how |0ψ0〉 is defined (in fact, it is under-
stood as the massless limit of some set of states of the massive fields), because
irrespective of the answer (recall that T div

ab does not depend on the state)

〈Tab〉Ů = 〈Tab〉0ψ0
+ lim

p→p′
1

2|ψ0|Dab(ς
2ττ ′ − ς−2),

whereDab is defined by (Eq. 7 in Chap. 7) with m = 0. Thus, the expectation value
of the stress–energy tensor in the state |Ů〉 is

〈Tττ 〉Ů = 〈Tψψ 〉Ů = 1

4
ς2|ψ0|−1 − 1

6
πψ−2

0 , 〈Tτψ 〉Ů = 0. (2)

Remark 1 〈Tab〉Ů violates the weak energy condition at ς2 < 2π
3ψ0

.

The initial globally hyperbolic regions of the Misner-type time machines are
spacetimes conformally related to the cylinders (1) with |ψ0| = 2| ln κ| and the
conformal factors�’s listed in Remark 9 in Chap. 4. Accordingly, in the said regions
the expectation of the stress–energy tensor in the state |U〉, conformally related to
|Ů〉, can be found by substituting those �’s and the expression (2) into (Eq. 14 in
Chap. 7):

〈Tτψ 〉U = 0, 〈Tμμ〉U = ς2

8| ln κ| − π

24 ln2 κ
− 1

96π
+ R

48π
gμμ, (�)

https://doi.org/10.1007/978-3-319-72754-7_7
https://doi.org/10.1007/978-3-319-72754-7_7
https://doi.org/10.1007/978-3-319-72754-7_7
https://doi.org/10.1007/978-3-319-72754-7_4
https://doi.org/10.1007/978-3-319-72754-7_7
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where μ ⇋ τ, ψ and no summation over μ is implied. As a point p approaches the
horizon, �(p) tends to 0, and we see that generally 〈Tab〉U〈T ab〉U diverges. But this
quantity is a scalar, so we conclude that in any frame at least some components of T
diverge too. To summarize, for a general ς in the case at hand, some components of
the stress–energy tensor will diverge in the proper frame of an observer who crosses
the horizon.

However, in the special casewhereς = √
4π/| ln κ| + | ln κ|/√12π the diverging

terms in (�) cancel each other:

〈Tac〉U = R

48π
gac.

Thus, for each of the three time machines, we have found a state in which the stress–
energy tensor remains bounded throughout the causal region.

Examples of equally nice non-vacuum states and states of the automorphic scalar
field, see Remark 11 in Chap. 7, are adduced in [90]. Yet another ‘regular’ state (for
the automorphic field in Misner space) was found in a more direct way [162], but
this result must be taken with some caution, because the Fock space used there is
non-conventional.2

So far, the behaviour of the stress–energy tensor has been studied only in the
regions preceding the Cauchy horizon. One may suspect, however, that it behaves
pathologically in the causality violating region and/or on the horizon [30, 31]. Were
this the case, one might infer that the back reaction does protect causality. To verify
this suspicion one would have to calculate 〈 Tab〉Q in the causality violating region.
It is, however, absolutely unclear, how exactly this could be done:
1. The quantization of a field theory is a notoriously hard problem. As of today, it is
solved satisfactorily only in the simplest toy cases like the free scalar field. However,
even in these cases, the procedure leans heavily upon the global hyperbolicity of the
background spacetime. Dropping this condition gives rise to severe problems, which
differ depending on how we quantize the field,3 but are of the same origin—there is
no surface any more at which data could be fixed to determine uniquely the solution
of the field equation.

Anaturalwayoutwould be to develop a quantization scheme little sensitive to non-
local properties of the background spacetime. The idea is that the laws in the small
should coincide with the ‘usual laws for quantum field theory on globally hyperbolic
spacetimes’ [83]. As a mathematical implementation of that principle, Kay formu-
lated the ‘F-locality condition’ and proposed to dismiss as impossible the space-
times which do not admit field algebras obeying that condition [83]. Among those
ruled out spacetimes are, in particular, all time machines with compactly generated

2In particular, the vacuum modes, as it seems [163], do not satisfy the completeness condition, see
Sect. 1 in Chap. 7.
3In the approach outlined in Sect. 1 in Chap. 7, such a problem is the lack of adequate substitutes
for � and the canonical commutation relations.

https://doi.org/10.1007/978-3-319-72754-7_7
https://doi.org/10.1007/978-3-319-72754-7_7
https://doi.org/10.1007/978-3-319-72754-7_7
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Cauchy horizons [84]. This program,4 however, has never been realized: it was shown
that the F-locality condition includes as its part a strong extraneous (i.e. not implied by
the mentioned principle) non-local requirement on the geometry of spacetime [94].
So, the prohibition of the time machines on the ground of the F-locality condition
does not differ much from their prohibition by fiat.

2. The typical quantum mechanical problem is this: given a system is initially in
a state |A〉, what is the probability that its final state is |B〉? Suppose now that the
system in its final state is located in the causality violating part of a spacetime. Then
some extraordinary effort is necessary even to give meaning to the above formulated
problem (let alone to solve it):

a. If the system in its initial state is prepared in the causal region M r, then in the
course of its evolution it has to cross the Cauchy horizon. After which it is exposed
to the uncontrollable environment (Cauchy demons, in terms of Sect. 3 in Chap.
2). In other words, the system ceases to be closed. Yet another (more quantum
sounding) way to say the same is: the evolution of the system ceases to be unitary
(cf. [34, 53]).

b. The situation is even worse, if the system finds itself on the same causal loop
both in the initial and in the final state. It is hard (if possible at all) to assign in
a meaningful way the probabilities to different results of a future measurement,
if the measurement actually had place in the past and one can, in principle, just
recall the outcome.

Taking into account the aforesaid, one would not expect quantum mechanics to be
generalized to non-causal spaces in the near future.

4For another possible approach see [184].

https://doi.org/10.1007/978-3-319-72754-7_2
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Details

A.1 Externally Flat Wormhole as Charge

In this section, we use a simple model (classical electrostatics in an externally flat
wormhole) to explore Wheeler’s idea of ‘charge without charge’. Our main task is
to find the force acting on a (sole) pointlike charge in this space, see the expres-
sion (A.28) below, and to compare it with that which would act on the test charge be
the wormhole replaced by another pointlike charge.

A.1.1 The Formulation of the Problem

The spacetime under consideration is a static inter-universe wormhole M� with throat
of length 2z, see Example7 in Chap.3. The metric of this spacetime is

ds2 = −dt2 + dx2 + r2(x)(dϑ2 + sin2 ϑ dϕ2), x ∈ R
1 (A.1a)

where r is a smooth positive even function, satisfying the condition

r(x)
x>z

= x + 1. (A.1b)

The consideration of just such spacetimes is justified by the fact that our subject is
macroscopic—not cosmological—wormholes. This implies that moving away from
the throat one gets eventually in an ‘approximately Minkowski’ region. We take it
to be strictly flat, which considerably simplifies, as we shall see, some really hard
problems encountered in the general case.

Remark 1 Striving for the maximal simplicity we, in particular, do not consider
wormholes of a bit more general type, where r = x + þ at x > z, because their
interaction with charge is qualitatively the same. Specific formulas for the case þ �= 1

c© Springer International Publishing AG, part of Springer Nature 2018
S. Krasnikov, Back-in-Time and Faster-than-Light Travel in General Relativity,
Fundamental Theories of Physics 193, https://doi.org/10.1007/978-3-319-72754-7
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can be found in [102], or derived independently by noticing that the metric of such a
wormhole is obtained from (A.1) by a conformal transformation with constant factor.

The spacetime M� is static and is represented as a product M� = L
1 ×Z�, where the

second factor is a spacelike three-dimensional surface {p ∈ M� : t (p) = const}.
We split Z� into the throat and two flat regions—F− andF+. The last two are defined
as regions outside of the spheres x = ∓z:

F−
⇋ {p ∈ Z� : x(p) < −z}, F+

⇋ {p ∈ Z� : x(p) > z}.

Now pick a point p∗ ∈ F+ and put in it a pointlike charge q (note that p∗ is a
point of Z�, not of M�, because the charge is at rest). The Maxwell equations in the
Lorentz gauge take the form

Aa;b;b = −4π J a,

see, for example, [119, Problem 14.16], and the fact that the charge under consider-
ation is pointlike and stationary means that neither A nor J depends on t and

J 0 = qδ(p − p∗), Jμ = 0 at μ = 1, 2, 3, p∗ ∈ F+. (A.2)

Thus, the scalar potential Φ ⇋ A0 is subject to the (three-dimensional) equation

�Φ = −4πqδ(p − p∗). (A.3a)

We supplement this equation with the boundary condition [from now on the subscript
∗ means that the corresponding quantity is found in the point p∗, so, ϕ∗ ⇋ ϕ(p∗),
r∗ ⇋ r(p∗), etc.]

max
ϑ,ϕ

|Φ(r, ϑ, ϕ)| < const < ∞ ∀r > 2r∗, (A.3b)

implying that solutions diverging at infinity are rejected as unphysical.

Remark 2 The generalization of the Maxwell equations to curved spacetimes is
not fixed uniquely by the rule ‘comma-goes-to-semicolon’ [119, Problem 14.16].
Fortunately, in the space under consideration, R0

a = 0 and it turns out that for the
current (A.2) the mentioned ambiguity does not affect Eq. (A.3).

By solving (A.3), one can find the potential and, hence, the electric field

E = −∇Φ

of a pointlike stationary charge. Then, it would remain to formulate accurately and
to solve the inverse problem: how does a given electric field act on such a charge?
Generally speaking, this problem is rather hard and the answer is partly postulated
[153]. In our case, however, these difficulties can be avoided owing again to the
exceptionally simple shape of the wormhole: it would suffice to find the action of the
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field on a charge placed in a point p̆ of the flat region F+. And this charge—let its
value be q̆—experiences a force F that can be found exactly as in E

3. Namely, the
potential in p̆ is split into the potential ‘generated by the test charge itself’ (in each
point s of the vicinity of p̆ it is defined to be q̆/| p̆, s|, where | p̆, s| is the distance
from p̆ to s) and the potential of the ‘external field’. The force F is associated only
with the latter term:

F( p̆) = −q̆∇sΦ
ren(s)

s= p̆
, Φren(s) ⇋ Φ(s) − q̆

| p̆, s| , (A.4)

where Φren(s) in s = p̆ is defined by continuity, and the subscript s at ∇ shows that
the differentiation is performed with respect to the coordinates of s.

To reproduce this approach in the case of the wormhole, we findΦ in what follows
(this is the gist of the section) and define an analogue of ‘distance’ for pairs of points
lying in the same flat region. Specifically, we extend F+ considered as a space by
itself, rather than a part of Z�, to the three-dimensional Euclidean space (this is done
by gluing a flat ball of radius z+ 1 into F+) and for all a, b ∈ F+ define |a, b| as the
distance between a and b in this ‘fictitious’ Euclidean space. Obviously, when the
whole segment from a to b lies in F+, the value of |a, b| is also the distance between
a and b in Z�.

A.1.2 Multipole Expansion

The solution of (A.3a)will be found by the standardmethod of separation of variables
[2]. Since the problem is spherically symmetric, we begin with writing it down in
the coordinates used in (A.1a). Then, the three-metric γ takes the following form in
Z�:

γ xx = 1, γ ϑϑ = r−2, γ ϕϕ = r−2 sin−2 ϑ,
√

γ = r2 sin ϑ

(all other components are zero) and, correspondingly,

�Φ = 1√
γ

∂α

√
γ γ αβ∂βΦ =

[
γ αβ∂α∂β + γ αβ,α ∂β + γ αβ(ln

√
γ ),α ∂β

]
Φ =

=
[
∂2

x + 2r ′

r
∂x + 1

r2
��

]
Φ,

(A.5)

where the prime denotes the derivative with respect to x , and �� is the angular part
of the Laplacian:

�� ⇋ ∂2
ϑ + ctgϑ ∂ϑ + sin−2 ϑ ∂2

ϕ.

The sought solution is built (for the specific prescription see Proposition5 below)
from the spherical functions and solutions of the auxiliary equation
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[
∂2

x −
(r ′′

r
+ l(l + 1)

r2

)]
z = 0 (A.6)

[from now on l is a natural number], which is related to the radial part of the previous
one due to the identity

[
∂2

x −
(r ′′

r
+ l(l + 1)

r2

)]
z ≡ r

[
∂2

x + 2r ′

r
∂x − l(l + 1)

r2

] z

r
. (A.7)

In the remainder of this subsection, we explore Eq. (A.6). To begin with, let us
rewrite it as

(z′r − r ′z)′ = l(l + 1)z/r

and integrate over the interval (x0, x), where x0 is a constant. Dividing the result by
r z, we get

z′(l, x)

z(l, x)
− r ′(x)

r(x)
= (z′r − r ′z)|x0

r z
+ l(l + 1)

r z

∫ x

x0

z(l, x̆) dx̆

r(x̆)
. (A.8)

Now note that in the flat region |x | > z the term with r ′′ in Eq. (A.6) vanishes and
the general solution becomes merely a linear combination of r−l and rl+1.

Notation By z−(l, x) and z+(l, x), we denote those solutions of equation (A.6)
that are equal to r−l at, respectively, x < −z and x > z. Below, for the sake of
definiteness, we mostly discuss z−(l, x), but all its properties hold also for z+(l, x),
when F+ is replaced with F−.
At x � −z both z− and z′− are non-negative (recall that l is natural, while r ′ = −1
there). It turns out that (with some refinements) the same is true for larger x too.
Indeed, let us try to find the smallest value of x , denote it x1, at which z− ceases to
be positive

z−(l, x1) = 0, z−(l, x) > 0 ∀x < x1.

The smoothness of z− implies that the ratio z′−(l, x)/z−(l, x) would have to tend to
−∞ at x → x1 − 0, but this is impossible: substituting z = z− and x0 = −z in
Eq. (A.8) gives

z′−(l, x)

z−(l, x)
= r ′(x)

r(x)
+ (l + 1)

r(−z)−l

r z−(l, x)
+ l(l + 1)

r(x)z−(l, x)

∫ x

−z

z−(l, x̆) dx̆

r(x̆)
(∗)

and we see that the first term in the right-hand side is bounded, while the following
two are positive—by hypothesis—up to x1, which must be greater than −z. So, x1
does not exist and z−(l, x) is positive on the whole x-axis. Consequently, at x > z,
when all terms in the right-hand side of (∗) are positive, z′−(l, x) is positive too.
Thus, we have established that

∀x z−(l, x) > 0, ∀x > z z′
−(l, x) > 0. (A.9)
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Further, it follows immediately from (A.6) that z′′− is positive 1) at x > z and 2) at
any x , when l > l̂, where the constant l̂ is defined by the requirement that the term in
the parentheses be positive everywhere. Hence, the first derivative z′− monotonically
increases and, therefore, is positive. Summarizing, we have proved the following.

Proposition 3 The functions z−(l, x) are positive. Outside the interval |x | � z
and—when l > l̂—on this interval also, they are increasing and concave.

Corollary 4 For l �= 0 the ratio z/r , where z is a solution of Eq. (A.6), is unbounded.

At x > z, i.e. in the ‘other universe’, z−(l, x) is, generally speaking, a linear
combination

z−(l, x)
x>z

= Cl(r
l+1 + αlr

−l)

(this representation would be impossible for z−(l, x) which remains proportional
to r−l in F+, but Proposition3 says that there are no such solutions). The reverse
formulas

Clαl = − 1

2l + 1
[z−(l, x)r−(l+1)]′r2l+2, Cl = 1

2l + 1
[z−(l, x)rl]′r−2l ,

valid at x � z, are easily verified by direct calculation. The latter of them in combi-
nation with (A.9) proves that

Cl > 0. (A.10)

The coefficient αl also admits a simple (though rough, as we shall see) estimate.
Indeed,

αl = −[z−(l, x)r−(l+1)]′r2l+2

[z−(l, x)rl ]′r−2l
= −r4l+2 z′−r−(l+1) − (l + 1)z−r−(l+2)

z′−rl + lz−rl−1
=

= r2l+1 (l + 1)z− − z′−r

z′−r + lz−
= r2l+1(z)

(l + 1) − r z′−/z−
x=z

l + r z′−/z−
x=z

=

= r2l+1(z)

[
−1 + (2l + 1)

l + r z′−/z−
x=z

]
. (A.11)

By Proposition3, r z′−/z−
x=z

is positive beginning from some l and we conclude

that
∃ l̂ : ∀ l > l̂ − r2l+1(z) < αl < 2r2l+1(z). (A.12)

A.1.3 The Solution of Equation (3) [102]

Proposition 5 Specify the coordinate system by the requirement that ϕ∗ = ϑ∗ = 0.
Then the general solution of Eq. (A.3) is
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Φ = Φinh − Q
∫ x

z

dx̆

r2
+Φ0, (A.13)

where

Φinh ⇋
q

r

∞∑
l=0

vl(x)Pl(cosϑ), (A.14)

Q and Φ0 are arbitrary constants, and

vl(x) ⇋ (r∗Cl)
−1

[
H(x − x∗)z+(l, x)z−(l, x∗) + H(x∗ − x)z−(l, x)z+(l, x∗)

]
,

H(x) ⇋ 1
2 (sign x + 1),

Pl are Legendre polynomials.
(A.15)

Compendium The Legendre polynomials are defined by the equality

Pl(μ) ⇋
1

2l l!
dl

dμl
(μ2 − 1)l , μ ∈ [−1, 1], l = 0, 1 . . . .

Below we shall use the following facts [190] (the prime temporarily denotes the
differentiation with respect to μ):

(1 − μ2)P ′′
l − 2μP ′

l + l(l + 1)Pl = 0; (A.16)

|Pl | � 1, Pl(1) = 1; (A.17)

P ′
l+1 − μP ′

l = (l + 1)Pl . (A.18)

By (A.16),

��Pl(cosϑ) =
[
(1 − μ2)∂2

μ − 2μ∂μ

]
Pl(μ)

μ=cosϑ
= −l(l + 1)Pl(cosϑ),

(A.19)
and, correspondingly, for z solving Eq. (A.6)

[
∂2

x + 2r ′

r
∂x + ��

r2

]
Pl(cosϑ)

z(l, x)

r
=

= Pl(cosϑ)
[
∂2

x + 2r ′

r
∂x − l(l + 1)

r2

] z(l, x)

r
=

= Pl(cosϑ)
1

r

[
∂2

x − r ′′

r
− l(l + 1)

r2

]
z(l, x) = 0 (A.20)

[in transition to the last line we have used the identity (A.7)]. Hence, in particular,

�[Pl(cosϑ)r−l−1] = 0. (A.21)

The Legendre polynomials are used [2] to define the spherical functions
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Y m
l (ϕ, ϑ) ⇋

√
2l + 1

4π

(l − |m|)!
(l + |m|)!e

imϕ(1 − μ2)
|m|
2

d|m|

dμ|m| Pl(μ)
μ=cosϑ

,

which solve the equation
��Y m

l = −l(l + 1)Y m
l (A.22)

[for m = 0 this follows from (A.19)]. These functions make up an orthonormal basis
in the space L2(S

2) and each function f of this space can be represented [175] as

f (ϕ, ϑ) =
∞∑

l=0

l∑
m=−l

f̃ (m)
l Y m

l (ϕ, ϑ), where (A.23)

f̃ (m)
l ⇋

∫
dϕdϑ sin ϑ Ȳ m

l (ϕ, ϑ) f (ϕ, ϑ). (A.24)

Finally, for any p, p∗ ∈ E
3 and, hence, for any p, p∗ ∈ F+ the following relation is

true (see, for example, [2, (� 2.13)]):

1

|p, p∗| = 1

r

∞∑
l=0

[H(x − x∗)(r∗/r)l + H(x∗ − x)(r/r∗)l+1]Pl(cos θ), (A.25)

where |p, p∗| is defined in the end of A.1.1.

Proof We shall prove Proposition5 in two steps. Namely, we shall show that, first,
Φ (or, rather, Φinh , since the last two terms, as will be shown later, are harmonic
functions) satisfies Eq. (A.3) and that, second, any solution of that equation has the
same form, the only difference being the values of Q and Φ0.

A Particular Solution to the Nonhomogeneous Equation

For a sufficiently large l, consider separately two cases:
(1) x < x∗∗ ⇋ 1

2 (x∗ + z). In this case taking into account the inequality x < x∗ one
has by the definition of ν, see (A.15),

|vl(x)| =|(Clr∗)−1z−(l, x)z+(l, x∗)| < |(Clr∗)−1z−(l, x∗∗)z+(l, x∗)| =
= |rl+1

∗∗ + αlr
−l
∗∗ |r−l−1

∗ � (r∗∗/r∗)l+1 + 2(r(z)/r∗∗)l(r(z)/r∗)l+1

[the first inequality follows from the fact that z− monotonically increases, see
Proposition3, and the second—from the inequality (A.12)]. Further, z′− also mono-
tonically increases. So, applying the same reasoning to the derivative one obtains the
estimate

|v′
l(x)| < |(Clr∗)−1z′

−(l, x∗∗)z+(l, x∗)| = |(l + 1)rl
∗∗ − lαlr

−l−1
∗∗ |r−l−1

∗ �

� l

r∗

[
2(r∗∗/r∗)l + 2(r(z)/r∗∗)l+1(r(z)/r∗)l

]
.
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Finally, using the relation (A.6) between z and z′′ one finds that

|v′′
l (x)| = |(Clr∗)−1z′′

−(l, x)z+(l, x∗)| < 2l2|(Clr∗)−1z−(l, x)r−2z+(l, x∗)| <

< 2r−2
minl

2|(Clr∗)−1z−(l, x∗∗)z+(l, x∗)| < 2r−2
minl

2(Clr∗)−1r−l
∗ Cl(r

l+1
∗∗ +

+ |αl |r−l
∗∗ ) < 6r−2

minl
2(r∗∗/r∗)l+1

[the last inequality is derived using the estimate (A.12) and the fact that r is monotone
on the interval (z, x∗∗)]. The three just derived bounds show that (by the Weierstrass
M-test) the series (A.14) and the series obtained from it by one or two term by term
differentiations converge uniformly. Hence, the last two converge to the, correspond-
ingly, first and second derivatives of Φinh . Therefore,

�Φinh = q
∞∑

l=0

[
∂2

x + 2r ′

r
∂x + ��

r2

]vl(x)

r
Pl(cosϑ).

But vl(x) in the domain under consideration is proportional to z−(l, x), whichmeans,
see (A.20), that

�Φinh = 0,

i.e. Eq. (A.3a) is fulfilled.
Further, at ϑ = 0, differentiate the series (A.14) with respect to x . Since this can

be done termwise, as we just have established, and since vl at x < −z is r−l [up to a
positive, see (A.10), factor] the result is positive. So, Φinh(ϑ = 0) strictly decreases
(remaining positive) at x → −∞. But each term of the series (A.14) for all x has
the maximum at ϑ = 0, see (A.17). Thus,

|Φinh(ϑ, x)| � Φinh(0, x), ∀x, ϑ,

and we conclude that the condition (A.3b) is fulfilled too.
(2)Nowconsider the case x � x∗∗. To the right-hand side of (A.14), add theCoulomb
term and subtract the same term in the form of the series (A.25):

Φinh = q

|pp∗| + q

r

∞∑
l=0

Pl(cosϑ)

{
H(x − x∗)

[
Cl(rl+1∗ + αlr−l∗ )

r∗Clrl
−

(
r∗
r

)l]
+

+ H(x∗ − x)

[
Cl(rl+1 + αlr−l)r−l∗

r∗Cl
−

(
r

r∗

)l+1]}
=

= q

|pp∗| +
∞∑

l=0

q

rr∗
Pl(cosϑ)

αl

r lr l∗
. (A.26)

The estimate (A.12)means that the series in the right-hand side of (A.26) is dominated
by a convergent (at r ’s in the interval under consideration) geometric series and,
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therefore, uniformly converges. Moreover, for the same reason, the series remains
uniformly convergent after being once or twice differentiated term by term. Hence,
taking the Laplacian can also be done term by term. At the same time, each term is
harmonic, as seen from (A.21). So,

�Φinh = �
( q

|pp∗|
)

= −4πqδ(p − p∗).

Thus,Φinh solves Eq. (A.3a). And the validity of (A.3b) is proved in much the same
way as in the previous case.

The General Solution to the Homogeneous Equation

We are left with the task of proving that all solutions of the equation

[
∂2

x + 2r ′

r
∂x + ��

r2

]
Φhom = 0, (A.27)

see (A.3a) and (A.5), that obey the condition (A.3b) have the form

−Q
∫ x

z

r−2 dx̆ +Φ0,

where Q and Φ0 are arbitrary constants.
Let us first estimate the coefficients (A.24), we denote them �m

l , of the expan-
sion (A.23) for the potential Φhom . On the one hand, (A.3b) requires them to be
bounded. But on the other hand, it follows from the chain of equalities

0 =
∫

Ȳ m
l (ϕ, ϑ)�Φhom(ϕ, ϑ, x) sin ϑdϕdϑ =

=
[
∂2

x + 2r ′

r
∂x

] ∫
ΦhomȲ m

l sin ϑdϕdϑ + 1

r2

∫
Φhom��Ȳ m

l sin ϑdϕdϑ =

=
[
∂2

x + 2r ′

r
∂x − l(l + 1)

r2

] ∫
ΦhomȲ m

l sin ϑdϕdϑ =

=
[
∂2

x + 2r ′

r
∂x − l(l + 1)

r2

]
�m

l (x)

[where we have used (A.22)] that the product r�m
l (x) solves Eq. (A.6), see the

identity (A.7). And this means, by Corollary4, that �m
l may be bounded only at

l = 0. Thus, as easily verified by substitution,

Φhom = Φ(0)
0 (x)Y 0

0 (ϕ, ϑ) = z0/r,

where z0 is a solution of the equation (∂2
x − r ′′/r)z0 = 0, that is, an arbitrary linear

combination of r and r
∫ x
z r−2dx̆ .

�
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A.1.4 The Action of a Wormhole on a Pointlike Charge

In the presence of a pointlike charge, the electric field outside the wormhole (i.e. in
the region F+) has the form

E = −∇Φ = −∇
(

q

|pp∗| + Q̃

r
+ q

∞∑
l=1

αlPl(cosϑ)

(rr∗)l+1

)

[this expression is obtained by substituting (A.26) into (A.13), taking explicitly the
integral at Q, discarding the constant term, and, finally, replacing Q with Q̃ to
absorb the zeroth term of the series]. Hence, the force exerted on the test charge q
with coordinate r is1

F = Q̃q

r3∗
r∗ − q2∇

∞∑
l=1

Pl(cosϑ)
αl

(rr∗)l+1 ϑ=0,r=r∗
=

= Q̃q

r3∗
r∗ − q2

r∗
r∗

d

dr

( ∞∑
l=1

αl

(rr∗)l+1

)

r=r∗

= Q̃q

r3∗
r∗ + q2r∗

r2∗

∞∑
l=1

(l + 1)αl

r2l+2∗
, (A.28)

as discussed in the beginning of the section, see (A.4). The first, Coulomb, term
does coincide with the force that would act upon q, be F+ a part of a Euclidean
space—not of a wormhole—containing, in addition to q, a pointlike charge Q̃ in the
origin of coordinates. In this sense, the wormhole, in agreement with the concept of
‘charge without charge’, resembles a charged body even though the matter filling it
is electrically neutral, see (A.2). There are, however, significant differences too.

A.1.4.1 The wormhole in comparison with a charged body

So far Q̃ has been an absolutely arbitrary function of p∗. Correspondingly, at this
stage expression (A.28) does not suffice to find the force F(p∗) experienced by a
test charge located at p∗. Moreover, even if we somehow knew F(p∗) this would not
enable us to find F(p′∗) for any p′∗ �= p∗. As a consequence, we cannot compare the
law (A.28) with the Coulomb law.

The problem can be solved when the final state (in which the charge q rests at p′∗)
evolves from the initial one (the charge resting at p∗) in agreement with the Maxwell
equations (this condition can be satisfied only approximately, the field in both states
being static). In such a case the flux of E through a sufficiently large (not crossed

1Since the charge is in the flat region, the ‘renormalization’ by dropping the term∇ q2

|pp∗| requires no
special justification: by the electrodynamics in curved spacetime, we understand a local geometric
generalization of the usual one, cf. Sect. 1 in Chap.2.

https://doi.org/10.1007/978-3-319-72754-7_2
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by q in the course of evolution) sphere remains constant [181]. Thus, Q̃ (not Q as
argued in [15, 86][86][15]) deserves the name of the wormhole’s charge, being a
constant which generates the potential Q̃/r .

Now consider the second term of the expression (A.28). This term does not depend
on Q̃ and is proportional to q2. So, it is natural to think of it as a force exerted on
the charge by itself (‘self-force’). However, it also owes its existence to the presence
of the wormhole, or, at least, of the curved regions—in a totally flat spacetime it
is lacking. Note that the self-force does not have to be small: in fact, it may well
constitute the greater part of the force acting on a test charge.

Finally, there is an important asymmetry: if the sphere x = z bounded a charged
body, instead of the wormhole’s mouth, the body would move under the attraction
of q. Whether the throat will move in this case is unclear.

A.1.5 The Short Throat Approximation

In this subsection, we consider the self-force in the limit z → 0. The reason is
that the result, as we shall see, does not depend on the shape of the wormhole. The
only—quite innocuous—condition that we impose on it is

r � rmin, |r ′/r | � |r ′/r |max, ∀x ∈ (−1, 1), (A.29)

where the right-hand sides of the inequalities are some positive constants (i.e. quan-
tities that are the same for all r and z).

Proposition 6 Let z tend to 0 and let l be fixed. Then the derivative of the function
λ ⇋ ln′ z− − ln′ r is bounded on the interval (−1, 1) uniformly over z.

Proof By definition, λ solves the equations

λ′ = −λ2 − 2r ′r−1λ + l(l + 1)r−2, (A.30a)

λ
x�−z

= (l + 1)/r, (A.30b)

see (A.6). Consequently, λ is positive. Indeed, to the left of −z this follows from
(A.30b),while to change its sign at larger x ,λwould havefirst to become small,which
[due to the last term in the right-hand side of (A.30a)] would make the derivative λ′
positive and, correspondingly, would make λ increasing.

The right-hand side (RHS) of Eq. (A.30a) admits the estimate

RHS � −λ2 + 2|r ′/r |maxλ + l(l + 1)/(rmin)2 � (|r ′/rmax|)2 + l(l + 1)/(rmin)2

[the second inequality is obtained by simply finding the maximum of the square
polynomial (in λ) in its left-hand side] and, hence, at any fixed l the derivative λ′
on the interval (−1, 1) is bounded above, uniformly over z. The same is also true
for λ [since λ(x) � λ(−1) + (x + 1)(λ′)max]. On the other hand, λ, as we just have
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established, is positive. On the strength of Eq. (A.30a) combined with the hypothesis
(A.29), the just proven boundedness of λ implies the boundedness—uniform over z,
again —of λ′, now from below. �

This enables us to find the limit values of αl . Indeed,

ln′ z−(z) = λ(z) + 1 = λ(−z) + 1/(1 + z) + 2zλ′(xz) = l + 2 + O(z),

where xz ∈ (−z, z) and the last equality follows from Proposition6. Substituting this
estimate into (A.11) yields

αl → −(2l + 2) + (2l + 1)

2l + 2
= − 1

2(l + 1)
.

Now that we know this limit we, at last, can find the force acting on the charge.

As follows from (A.28), it is the sum of the ‘Coulomb’ field Q̃q
r3∗
r∗, which may

be interpreted as generated by the wormhole, and the self-force Fs−i . The latter is
directed radially and its value is

Fs−i
r −−→

z→0

q2

r∗
lim
z→0

∞∑
l=1

αl(l + 1)

r2l+2∗
=

= q2

r∗

∞∑
l=2

l limz→0 αl−1

r2l∗
= − q2

2r∗

∞∑
l=2

1

r2l∗
= −q2

2r3∗ (r2∗ − 1)

[lim and
∑

commute, because by (A.12) the series converges uniformly over z].

Conclusion A charge draws itself into a short wormhole with a finite force.

A.2 Shortcut in Curved Spacetime

In this section, we demonstrate by means of an explicit example that a spacetime
resembling a shortcut may satisfy theweak energy condition. The difference between
such a spacetime and a real shortcut is that outside U (see Definition5 in Chap.3)
the former is the Schwarzschild rather than the Minkowski space. This makes one
suspect that exotic matter is not at all necessary for faster-than-light travel, WEC
violations resulting merely from the poor definition of shortcut.

The situation modelled in this section is similar to that considered in Sect. 2.5
in Chap.2. in connection with gravitational signalling. At the moment t = 0, an
earthling E decides to contact an alien A . The space separating them is not any
longer considered empty, in particular, it is not flat. Instead, it is filled with matter
constituting a static globular cluster B with the centre located exactly between E and
A . The earthling considers two scenarios again:

https://doi.org/10.1007/978-3-319-72754-7_3
https://doi.org/10.1007/978-3-319-72754-7_2
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1. They send a photon, which traverses the cluster and reaches A , who—in the
opposite direction—an answer signal, which arrives to the Earth at a moment2

t (�).
2. Instead of a test photon, the Earth sends a spaceship, which disturbs the metric—

by exploding stars, emitting gravitational waves, etc.—in a way consistent with
causality. This will not enable the spaceship to outrun a photon emitted at t = 0,
but by the time the former arrives to A the metric in B will have changed (even
though it will remain the same outside the cluster). It is obvious, therefore, that
generally the spaceship will return to the Earth at t (�′) different from t (�). And
it may happen, in particular, that t (�′) < t (�). Then the return trip will be
superluminal in the sense of Sect. 1 in Chap.3.

In the second scenario, the spacetime is essentially a shortcut, but the role of the
Minkowski space is played now by the Schwarzschild space. Our task is to verify
that the WEC does not forbid such spacetimes. Specifically, we are going to build a
spherically symmetric spacetime (M, �) with the following properties:

1. Outside of a cylinder U ⇋ {p : r(p) < r0}, it is the Schwarzschild space, in
which r is the standard radial coordinate;

2. Throughout M , the weak energy condition holds;
3. The minimal (Schwarzschild) time necessary for travelling through U from a

point with r > r0 to the diametrically opposite point decreases with time.

For this purpose, pick three positive constants: m, rh and r0 > rh . Then, choose
two smooth functions, ψ and �, obeying the following conditions:

ψ � 0, �
r<rh

= 10, �
r>r0

= 1, �′ � 0.

Finally, use these quantities to define two more functions:

m(r) ⇋ mr−1/3 exp
∫ r

rh

�(x) dx

3x
, (A.31)

ε(r) ⇋

∫ r

r0

(r − x)
x2[m ′(x)x−2]′

x − 2m(x)
ψ(x) dx . (A.32)

For later use, let us examine these functions. First, note that

m(r)
r<rh

= mr−10/3
h r3, m(r)

r>r0
= const, (A.33a)

i.e. m behaves as the mass of a non-relativistic ball with the density that is constant at
r < rh and smoothly decays to zero as r → r0. Second, its derivative is non-negative

m ′(r) = (� − 1)m(r)

3r
� 0, (A.33b)

2Notation imitates that used in Chap. 3.

https://doi.org/10.1007/978-3-319-72754-7_3
https://doi.org/10.1007/978-3-319-72754-7_3
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but

[m ′(r)/r2]′ = m(r)

9r4
[3r�′ + (� − 1)(� − 10)] � 0, (A.33c)

The equality here is attained at r /∈ (rh, r0). Substituting (A.33c) in the definition
(A.32) gives

ε
r<rh

= const, ε
r>r0

= 0. (A.33d)

Let the constant m be so small that

r > 2m(r), and, hence, also ε′ � 0 (A.34)

[that suchm can be found, follows from (A.31) and (A.33a)]. The latter inequality is
obtained from the former by differentiating (A.32) and using (A.33c) when the fact
is taken into account that inside U the upper limit of the integral (A.32) is smaller
than the lower, while outside it ε = 0.

Now consider the (static and, hence, auxiliary) metric

ds2 = −e2ε(1 − 2m/r)dt2 + (1 − 2m/r)−1dr2 + r2(dϑ2 + sin2 ϑdϕ2). (A.35)

on M . As already mentioned, outside of U , i.e. ‘beyond the cluster’, ε = 0 and
m = const . So, this region is simply a part of the Schwarzschild space lying outside
the horizon.

Let us verify that by choosing a suitable function ψ (which has been almost
arbitrary so far) one can force the metric (A.35) to satisfy the weak energy condition.
A simple way to do this is to verify with the aid of equations [135, (14.43)] that in
the orthonormal basis e(0) ∼ ∂t , e(1) ∼ ∂r , e(2,3) ∼ ∂ϑ,ϕ

G 0̂0̂ = 2r−2m ′ � 0, G 0̂0̂ + G 1̂1̂ = 2
r − 2m

r2
ε′ � 0, (A.36)

and for i = 2, 3

G 0̂0̂ + Gı̂ı̂ = (1 − 2m/r)
[
ε′2 + ε′

r

(
1 − 3

m ′r − m

r − 2m

)
+ ε′′ − r2

r − 2m
(m ′/r2)′

]
.

The first term in the square brackets is non-negative and—ifm is sufficiently small—
the second term, too. So, by twice differentiating (A.32) we get

G 0̂0̂ + Gı̂ı̂ � (ψ − 1)
r2

r − 2m
(m ′/r2)′. (A.37)

The right-hand side of the inequality is non-negative, see (A.33b), when ψ < 1.
Thus, when m is sufficiently small, the metric (A.35) satisfies the WEC for any

positive ψ < 1. Moreover, it is easy to see that in some interval [r1, r2] ⊂ (rh, ri )

the inequalities (A.36) and (A.37) are, in fact, strict. And hence they also hold for
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the metric (A.35), in which ψ(r) is changed to ψ(r) − κ(t)ψ1(r), where κ and
ψ1 are non-negative, suppψ1 ⊂ [r1, r2], and, finally, κ , κ̇ , and κ̈ are sufficiently
small (the higher derivatives of κ do not enter the Einstein tensor). Consider such
a ‘deformed’ metric in the case, where κ increases with t (and, correspondingly,
ε—which, as follows from (A.33d) and (A.34), is non-negative and whose absolute
value, by (A.32), decreases—grows too). In this metric, any causal curve γ ⊂ U has
the following property. Each γ̃ , obtained from γ by translating every point the same
�t > 0 along the lines of t , is causal and, moreover, contains timelike segments
(they lie in the regions where |g00| has increased). According to Proposition1.23(d),
γ̃ can be deformed so that its past end point remains fixed, the curve itself remains
causal and the future end point is displaced in the past direction. Thus, even though
the metric outside the cluster remains intact, it takes less and less time (by the Earth
clock) to cross the cluster. Put differently, the return takes less time than the outbound
trip.

A.3 Topology Evolution

Can a space change its topology in the course of evolution? The answer is simple in
the two extreme cases:

(1) If we restrict our consideration to globally hyperbolic spacetimes, it becomes
possible to formulate the question rigorously: the subject matter in this case is the
topology of the Cauchy surfaces. The impossibility of the topology changes now
follows from Geroch’s splitting theorem, see Proposition51(b) in Chap.1.

(2) If, on the other hand, we consider arbitrary spacetimes, it is unclear even
whose topology is discussed. It makes no sense, for example, to simply turn to
slices3 instead of Cauchy surfaces, because the former, in contrast to the latter, may
have different topologies even if they intersect, as, for example, in the de Sitter space,
cf. [64, Fig. 5.16].

The problem, it seems, can be solved by the following modification [89]: the
topology of spacetime is regarded changing if there are causally related points p,
q and an achronal surface P � p such that none of achronal surfaces through q is
homeomorphic to P. According to this definition, topology does not change either in
the de Sitter, or in the Bardeen spaces (the metric of the latter can be found in [136]
and the description of its geometry—in [76]). However, there are simple spacetimes
where the topology does change, see Example 30 in Chap. 2 (for more refined trans-
formations see [182]). The question nowcan be reformulated as follows: is a topology
change, understood as above, possible? Or, put differently, what pathologies are un-
avoidable in spacetimes with changing topology? Important results in this direction
were obtained in [60, 166], where it was proven that topology changes are impossible
in spacetimes of a certain type. These are spacetimes in which some subsets (loosely
speaking, the places where the changes occur) are compact and where (in the case

3A slice is a spacelike, three-dimensional closed submanifold of spacetime [64].

https://doi.org/10.1007/978-3-319-72754-7_1
https://doi.org/10.1007/978-3-319-72754-7_1
https://doi.org/10.1007/978-3-319-72754-7_2
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of [166]) some energy conditions hold, including the WEC. However, contrary to a
widespread opinion, this fact does not forbid the topology changes outright. Perhaps,
the compactness of the mentioned sets is a too strong requirement, because its lack
does not necessarily imply that the spacetime is extendible or singular. At the same
time a milder condition, which excludes WEC violations and singularities, but not
infinities, does not rule out some topology changes. To prove this, we are going to
present a procedure yielding spacetimes (Mw, �) with such changes.

The procedure consists in the following three steps: first, by cutting-and-gluing,
see Sect. 6 in Chap.1, we construct from a flat two-dimensional space (N , η) a
(singular) spacetime (Nw, η) with the changing, in the above sense, topology. Then,
we find a conformal factor w−2 which sends all the singularities to infinity. Now the
desired spacetime (Mw, �) is the product (Nw ×S

2, �(w) ×�(r∗)), where �(w)
⇋ w−2η

and (S2, �(r∗)) is the standard sphere of radius r∗

� : ds2 = w−2(−dx2
0 + dx2

1 ) + r2∗ (dx2
2 + sin2 x2dx2

3 ) (A.38)

(x2 and x3 are just aliases for the usual spherical coordinatesϕ andϑ). The topology of
(Mw, �) changes with time, but this does not make it any ‘worse’ in other respects. In
particular, Mw may contain a region isometric to the complement to a compact set in
a maximal globally hyperbolic space. Such Mw describes a ‘laboratory’ (as opposed
to ‘cosmological’) topology change. The same construction is used in building a
non-singular time machine in Sect. 5 in Chap.4.

Example 7 1. Bridge. Cut the Minkowski plane N along the segment |x0| � 1,
x1 = 1, see Fig.A.1a, and along the same segment at x1 = −1. Let Nw be the
result of gluing the right bank of each cut to the left bank of the other (i.e. Nw is the
spacetime M2 from Example30 in Chap.2). Let, further,

ρ ⇋ (x2
0 − 1)2 + (x2

1 − 1)2

(x0,1 are the coordinates inherited from N , they cover the whole Nw except for the
two segments) and w be a positive function equal to ρ at small ρ and constant at
ρ � 1. The space Mw obtained from this Nw as described above is a universe two
distant regions of which become connected for some time by two ‘bridges’.
2. Compactification. Now let N be a flat cylinder

ds2 = −dx2
0 + dx2

1 , x0 ∈ R, x1 = x1 + 3

and w be an arbitrary smooth function, constant at x2
0 + x2

1 � 1 and positive (only)
in Nw ⇋ {p : p ∈ N , x2

0 + x2
1 > 1/2}. Then, the universe Mw is initially closed

in the sense that the sections x0 = const (which are Cauchy surfaces for this initial
region) are compact. With time, however, it becomes open and then compactifies
again, see Fig.A.1b. All this occurs, as we shall see, without the appearance of any
singularities.

https://doi.org/10.1007/978-3-319-72754-7_1
https://doi.org/10.1007/978-3-319-72754-7_4
https://doi.org/10.1007/978-3-319-72754-7_2
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Fig. A.1 a To obtain Nw , identify the banks of the vertical slits crosswise. w is constant beyond the
light grey regions (note that there are two—not four—such regions). b The space Nw is a cylinder
from which a disc is removed. In the course of evolution the universe, starts from being closed,
becomes open and then closes again

The spacetimes Mw built above are not globally hyperbolic, but are ‘almost as
nice’. In particular, they are strongly (and stably [76]) causal. Let us check that for a
suitable r∗ they also satisfy the weak energy condition and are free from singularities.

The Riemann tensor for the metrics under consideration can be easily found with
the aid of the formula [135, (14.50)]. In the orthonormal basis

ω(0)
⇋ w−1dx0, ω(1)

⇋ w−1 dx1, ω(2)
⇋ r∗ dx2, ω(3)

⇋ r∗ sin x2 dx3

its non-zero components (up to exchange of the indices) are

R2̂3̂2̂3̂ = r−2
∗ , R0̂1̂0̂1̂ = −E ⇋ w,2x0 −w,2x1 +w(w,x1x1 −w,x0x0 )

(the hats over the indices stand to suit the notation of [135]). Thus, all curvature
scalars are bounded and so are tidal forces acting on a free falling (or moving with
a finite acceleration for a finite time) observer [89]. The Einstein tensor in the same
basis is Gâb̂ = diag(r−2∗ ,−r−2∗ ,−E,−E). So, the weak energy condition holds, if

r−2
∗ > w(w,x1x1 −w,x0x0 ) + w,2x0 −w,2x1 . (A.39)

It remains to prove that there are no singularities in Mw. This assertion needs
some refinement, because there are different understandings of what is a singularity,
see [62, 76]. Roughly speaking, they differ in how the length of a curve is defined
(the problem is that the metric is pseudo-Riemannian) and which inextendible curves
are required to be infinitely long [62]. To regard a spacetime singularity-free, one
could, for example, require that all inextendible timelike geodesics be complete or
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that the proper time be unbounded on any timelike curve with bounded acceleration
lasting for a finite time. We adopt the weakest of common definitions (i.e. such that a
spacetime is singular in any other—usual—sense, if it is singular by our definition).
Specifically, we identify singularity with b-incompleteness, see below. Since we are
interested not in all singularities, but only in those associated with our procedure,
we consider only curves along which w → 0, i.e. we verify, loosely speaking, that
the conformal transformation does rid the spacetime of the singularities w = 0
transforming them into infinities.

Thus, consider a curve γ (ζ ) : [0, 1) → Mw. Denote by l its velocity

li = dxi (ζ )/dζ, where xi (ζ ) ⇋ xi
(
γ (ζ )

)
,

and by γNw and γS—the projections of γ to, respectively, Nw and S
2. Next, pick an

orthonormal basis {e(i)(0)} in γ (0).4 Then, in all points of γ the bases {e(i)(ζ )} are
defined to be the parallel transport of {e(i)(0)} along γ :

ea
(i);blb = 0. (A.40)

The generalized affine length of a segment γ
(
[0, ζ )

)
is defined as

Lγ (ζ ) ⇋

∫ ζ

0

(∑
i

�(l, e(i))
2
)1/2

dζ ′, (A.41)

see [159]. Specific values of Lγ (ζ ) depend on the choice of the initial basis, but
its boundedness does not, which makes the following definition correct: γ is called
b-complete, if Lγ (ζ ) is unbounded.

To find out whether γ is b-complete, it is convenient to choose the vectors of the
initial basis to be directed along the coordinate lines e(i)(0) ∼ ∂xi . We also introduce
the coordinates α ⇋ x1 + x0, β ⇋ x1 − x0, in which the metric takes the form

�(w) : ds2 = w−2dαdβ,

and the corresponding vectors e(α) ⇋
1
2 (e(1) + e(0)), e(β) ⇋

1
2 (e(1) − e(0)) (they are,

of course, also parallel along γ ). The only non-zero Christoffel symbols with the
indices α or β are

Γμ
μμ = 1

2gμν2gμν,μ = (ln gμν),μ = −2σ,μ σ ⇋ lnw, μ, ν ⇋ α, β, μ �= ν

(A.42)
(no summation over repeated indices is implied). It is seen that when the tetrad
{e(i)(0)} is parallel transported alongγ , the dyads {e(m)},m = 0, 1and {e( j)}, j = 2, 3
are parallel transported along, respectively, γNw and γS . Define the lengths LγNw

and
LγS by changing in (A.41) i to, respectively, m and j . Clearly,

4To be precise, in Tγ (0).
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Lγ � LγNw
, LγS . (A.43)

Proposition 8 If w[γ (ζ )] → 0 as ζ → 1, then γ is b-complete.

Proof In the coordinates α, β, the parallel transport Eq. (A.40) takes the form

eμ

(i),ζ = −Γμ
μμ μ̇eμ

(i)

(still no summation over μ is implied, the dot denotes differentiation with respect to
ζ ) and is easily solved after (A.42) is substituted in it:

eμ

(μ) = eμ

(μ)(0) exp{2
∫ ζ

0
σ,μ μ̇ dζ }, eμ

(ν) = 0, μ �= ν; (A.44)

em
( j) = e j

(m) = 0 m = 0, 1, j = 2, 3.

Pick a specific value of ζ and assume that

∫ ζ

0
σ,β β̇ dζ ′ �

∫ ζ

0
σ,α α̇ dζ ′. (∗)

(this does not lead to any loss of generality since the sense of the inequality changes
with the coordinate transformation α ↔ β, i.e. x0 ↔ −x0). Assume also that
ln[w/w(0)] � 0 (since w tends to zero along γ , this assumption involves no loss of
generality either). Now it follows from the evident identity

[
w(ζ )

]−2 = [
w(0)

]−2
exp{−2

∫ ζ

0
(σ,α α̇ + σ,β β̇) dζ ′} (A.45)

that (∗) implies the inequalities

∫ ζ

0
σ,α α̇ dζ ′ < 0 and

∣∣∣∣
∫ ζ

0
σ,α α̇ dζ ′

∣∣∣∣ >

∣∣∣∣
∫ ζ

0
σ,β β̇ dζ ′

∣∣∣∣ ,

whence, in particular,

∫ ζ

0
|σ,α α̇| dζ ′ > −1

2

ζ∫

0

(σ,α α̇ + σ,β β̇) dζ ′ = 1
2 ln[w(0)/w(ζ )]. (A.46)

In order to estimate LγNw
, substitute in its definition the inequality

[
�(l, e(0))

2 + �(l, e(1))
2
]1/2 = [

2�(l, e(α))
2 + 2�(l, e(β))

2
]1/2 �

� |�(l, e(α))| + |�(l, e(β))| = w−2
[
|α̇eβ

(β)| + |β̇eα
(α)|

]
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combined with the expression (A.44). Then setting eα
(α)(0) = eβ

(β)(0) = w(0) gives

LγNw
(ζ ) � w(0)

ζ∫

0

(
|α̇| exp{2

∫ ζ ′

0
σ,β β̇ dζ ′′} + |β̇| exp{2

∫ ζ ′

0
σ,α α̇ dζ ′′}

)
w−2 dζ ′.

Hence, dropping the second—obviously positive—term, substituting the identity
(A.45), and, finally, using the inequality (A.46) we get

LγNw
(ζ ) � w(0)

ζ∫

0

(
|α̇| exp{2

∫ ζ ′

0
σ,β β̇ dζ ′′}

)
w−2 dζ ′ =

= w−1(0)

ζ∫

0

(
|α̇| exp{−2

∫ ζ ′

0
σ,α α̇ dζ ′′}

)
dζ ′ �

ζ∫

0

|α̇/w| dζ ′ �

� 1

max |w,α |

ζ∫

0

|σ,α α̇| dζ ′ � ln[w(0)/w(ζ )]
2max |w,α | ,

where the last inequality is again obtained by application of (A.46). �

A.4 The Metric of a ‘Portal’

Our task in this section is to find an explicit analytic expression for the metric of the
spacetime described in the beginning of Sect. 2.3 in Chap.8. Specifically, we build a
static ‘portal’ M = L

1×P�, where the Riemannian spaceP� has the structure shown
in Fig. 2 in Chap.8. To simplify the task, we write down the metric of another space,
P�, from which P� is obtained by a simple cut-and-paste surgery. By analogy with
wormholes, see Sect. 2.1 in Chap.3, P� may be called ‘inter-universe portal’ and it
is to P� as W� to W�. The spacetime under discussion is axially symmetric, i.e. P�(�)
is obtained by revolution of some two-dimensional surface. It is this surface that is
our main subject.

Denote byW̄ the spaceobtainedby removing the solid torus H̄ ⇋ {(ρ̄−ρ0)
2+z̄2 �

h2} fromEuclidean spaceE3. Here, (z̄, ρ̄, ϕ̄) are the standard cylindrical coordinates,
in which the metric of the Euclidean space takes the form

ds2 = dz̄2 + dρ̄2 + ρ̄2dϕ̄2, (�)

and
h, ρ0 are constants such that 0 < h < ρ0. (∗)

https://doi.org/10.1007/978-3-319-72754-7_8
https://doi.org/10.1007/978-3-319-72754-7_8
https://doi.org/10.1007/978-3-319-72754-7_3
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Our plan is to build a double coveringW of W̄ (we have excluded h = 0 lestW be
a dihedral wormhole with their inherent singularities) and glue something—it will
be denoted byH—in place of H̄ so as to ‘fill the hole’ left by removing H̄, without
forming an above-mentioned singularity.
Assertion The spacetime P�, whose metric is5

ds2 = 4[χ2
ε (η) + η2](dη2 + η2dψ2) + ρ2(η, ψ)dϕ2,

ρ(η, ψ) ⇋ ρ0 − η2 cos 2ψ,
(��)

has the just described geometrical structure. Here, the following conventions and
notations are adopted: χε(η) is a ‘hat of radius

√
h’, i.e. a smooth even function that

is non-zero at and only at |η| <
√

h, while (η, ψ) and (ρ, ϕ) are two sets of ‘polar
coordinates’ in the sense that in P�

ψ = ψ + 2π, ϕ = ϕ + 2π, η, ρ � 0,

and all points with η = 0, differing only by ψ , are identified, as well as all points
with ρ = 0, differing only by ϕ.

To clarify the geometry of P�, split it into

H ⇋ {η �
√

h} and W ⇋ {η >
√

h}.

H is, again, a solid torus—the product of the circle η �
√

h lying in the plane (η, ψ)

and the circumference of constant η, ψ ; this circumference does not degenerate into
a point, because ρ �= 0 in H owing to condition (∗). The distinctive characteristic
of H is that its interior is the set of all points of P� in which—in contrast to the
region Int H̄— the metric is non-flat. It isH that plays the role of a ‘hat’ smoothing
out the singularity of the initial dihedral wormhole. The metric in it—and even in
a neighbourhood of it —is regular [first, as we have already mentioned, ρ > 0
in H and, second, (χ2

ε + η2) �= 0; it is to make this factor non-vanishing—and,
correspondingly, the metric non-singular—that we consider a non-flat case χε �= 0].

It remains to verify thatW is, indeed, a double covering of W̄. To this end, notice
that the function � : p �→ p̄ defined by the equalities

ϕ̄( p̄) = ϕ(p), ρ̄( p̄) = ρ(p), z̄( p̄) = η2 sin 2ψ(p), (A.47)

is a (local) isometry [cf. (�) and (��)]. Further, for each p ∈ W, by definition,

h2 < η4(p) = [ρ̄( p̄) − ρ0]2 + z̄2( p̄)

and, hence, �(W) ⊂ W̄. And conversely, complementing (A.47) with the definition
of ρ, see (��), we convince ourselves that for all p̄ ∈ W̄ the equation �(p) = p̄ has
two solutions. These are the points p with the coordinates

5Note that ρ̄, ϕ̄ and ρ, ϕ refer to different spaces.
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1Θ

rotate

z

ρ

ρ

z = 0

2Θ

 glue

glue

d
2

ρ = 0

Fig. A.2 The space P�. It is obtained by (1) removing a circle from the upper half-plane (it is the
left light grey circle in the picture), (2) cutting the remainder along a segment that connects the
circle to the boundary of the half-plane, (3) gluing crosswise the edges of the resulting slit to the
edges of the like slit in another (though isometric) space and (4) rotating the resulting space. To
turn this wormhole into an intra-universe one, i.e. into P�, the hatched regions must be removed
and their boundaries identified

η(p) = ([ρ̄( p̄) − ρ0]2 + z̄2( p̄)
) 1

4 , ψ(p) = σ, σ + π, σ ⇋
1

2
arctg

z̄( p̄)

ρ0 − ρ̄( p̄)
.

They both satisfy the inequality η(p) >
√

h and, hence, lie inW.
To visualize the geometry of P�, it is instructive to construct it by the use of the

‘cutting-and-pasting’ method, see Sect. 6 in Chap.1. To this end define �̄ to be the
section ϕ̄ = 0 of W̄, which is the Euclidean half-space (z̄ ∈ R, ρ̄ � 0) without
the circle C̄ ⇋ {(ρ̄ − ρ0)

2 + z̄2 � h2}. That circle is a section of H̄, see Fig.A.2.
Further, take two copies—�̄′

1 and �̄′
2—of the space �̄′, which is obtained from �̄

by deleting the vertical segment from C̄ to the origin. Obviously, � projects to �̄′
1

the ‘right half’ −π/2 < ψ < π/2 of � ⇋ {x ∈ W : ϕ(x) = 0} and to �̄′
2—the

‘left half’ π/2 < ψ < 3π/2 of �. Correspondingly, gluing crosswise the banks of
the cuts we get the entire �. The space P� is now obtained by rotating � and filling
the appearing hole with the solid torus H. P� is not yet the shortcut we are after,
because it still has two asymptotically flat regions, which correspond to �̄′

1 and �̄′
2,

while our goal is an intra-universe wormhole P�. To build it from P� pick a constant
d > 2h, remove the regions z̄ > 1

2d and z̄ < − 1
2d from �̄′

1 and �̄′
2, respectively, and

glue together the boundaries of these removed regions (note that the surgery takes
place in a part of P� which is isometric to a region of Minkowski space, so it must
not give birth to any new singularity). Rotating the thus obtained two-dimensional
space around the axis ρ = 0 gives, finally, the sought P�.

Outside some compact set, P� is merely a Euclidean space. Inside that set, it is
also flat except in a region that looks like a pair of hoops, but is actually a single
hoopH. A traveller (the lion depicted in Fig. 2 in Chap.8, say) jumping through one
of these hoops instantaneously finds themself flying out of the other. Remarkably,
throughout the whole journey the vicinity of the traveller remains flat and empty
enabling them to avoid plunging into the Planck-density matter.

https://doi.org/10.1007/978-3-319-72754-7_1
https://doi.org/10.1007/978-3-319-72754-7_8
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A.5 The Functions τ i

In this section, we extract the estimates on τi needed in Chap.9 from the results
obtained in [24, 45]. In doing so, we neither reproduce the derivation of these results
nor comment them.

Notation The quantities denoted in [24] by t , r , M , Tαβ and T α
α in this book are

denoted by, respectively, tS , r̊ , m0, T̊αβ and T̊ . Without the risk of confusion, we use
both notations as equivalent. The double brackets refer to the numbering in [24]. The
index ξ used in [24] to label quantities associated with the Unruh vacuum will be
dropped since we consider no other vacuum. It is also worth noting (even though we
shall not use this right now) that our coordinates u and v differ from those denoted so
in [24]. The latter—let us denote them ū and v̄, cf. Remark6 in Chap.9,—are related
to the former as follows:

ū = −4m0 ln(−u), v̄ = 4m0 ln v.

1. The components T̊ ϑ
ϑ and T̊ ϕ

ϕ at large r̊ are given (implicitly) in Eq. ((5.5)), which
says (when the Definition ((2.6)) and the expression

T̊ = 1

60π2

M2

r6
((4.8))

for the anomalous trace are taken into account)

T̊ ϑ
ϑ = T̊ ϕ

ϕ ≈ λK (2m0)
−4x−4, (A.48)

where λ and K are constants

0 < λ � 27, K ⇋
9

40 · 84π2
(A.49)

[the last equality is, in fact, ((6.21))]. Accordingly,

τ4 = 16πm4
0x2T̊ ϑ

ϑ ≈ πλK x−2 at large x . (A.50)

2. Near the horizon the component T̊ ϑ
ϑ was found, numerically, in [45] (it is denoted

by pt there):

0 < T̊ ϑ
ϑ � 2 · 10−6m−4

0 , d
dx T̊ ϑ

ϑ ≈ −1, 3 · 10−6m−4
0 (A.51)

[the value of the derivative will be needed in (A.53)], whence

τ4(1) = m4
0

π
T̊ ϑ

ϑ � 10−5. (A.52)

https://doi.org/10.1007/978-3-319-72754-7_9
https://doi.org/10.1007/978-3-319-72754-7_9
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3. It follows from ((4.8)) that

T̊ = m−4
0

3840π2 x−6 ≈ 2, 6 × 10−5m−4
0 x−6, T̊ ′

x=1
≈ −1, 6 × 10−4m−4

0

(the prime, as usual, denotes differentiationwith respect to x). Hence, for the quantity

Y ⇋ T̊ − T̊ ϑ
ϑ − T̊ ϕ

ϕ = T̊ − 2T̊ ϑ
ϑ ,

we have

Y
x=1

≈ 3·10−5m−4
0 , Y ′

x=1
= (

T̊ ′−2 d
dx T̊ ϑ

ϑ

)
x=1

≈ −1, 5×10−4m−4
0 . (A.53)

Now it is convenient to introduce yet another pair of coordinates

r∗
⇋ 2m0 ln(−vu), tS ⇋ 2m0 ln(−v/u),

which diagonalizes the Schwarzschild metric (9.1):

ds2 = x−1
x

( − dt2S + dr∗2) + r̊2(dϑ2 + cos2 ϑ dϕ)

and yields

T̊uv = 4m2
0

vu (T̊r∗r∗ − T̊tS tS ) = − 4m2
0e−x

x (T̊ r∗
r∗ + T̊ tS

tS
) = − 4m2

0e−x

x Y
x=1

≈ −4 · 10−5m−2
0 ,

whence
|τ3(1)| = |4πm2

0T̊uv| ≈ 5 · 10−4. (A.54)

4. In the case of the Unruh vacuum, the quantity denoted in [24] by Q vanishes,
see the passage between ((5.2)) and ((5.3)). Substituting this into ((2.5)) and using the
fact that the component T ϑ

ϑ (x) and the trace T̊ (x) are bounded at x → 1, see, e. g.,
(A.51) and ((4.8)), one gets

T r
r = 1

r2

(
1 − 2M

r

)−1 (
− K

M2
+

∫ r

2M
[MT̊ (ŕ) + 2(ŕ − 3M)T ϑ

ϑ (ŕ)]dŕ

)
(A.55)

and, thus,

T r∗
r∗ = T r̊

r̊ → − K

M2r2

(
1 − 2M

r̊

)−1

= − K

4m4
0x(x − 1)

at x → 1.

This means, in particular, that one can neglect two last terms in ((2.4))

T tS
tS

= −T r̊
r̊ − 2T ϑ

ϑ + T̊ → −T r̊
r̊ at x → 1.

https://doi.org/10.1007/978-3-319-72754-7_9
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Further, substituting ((2.3)) into the formula above ((2.6)) gives

T r∗
tS

= x

x − 1

[
− K

m2
0r̊

2

]
= − K

4m4
0x(x − 1)

. (A.56)

Gathering the expressions above, we have

T̊vv = 4m2
0

v2 (T̊tS tS + T̊r∗r∗ + 2T̊tSr∗) = (x−1)
x

(
4m2

0
xex

)2
r̊ ,−2

u (−T̊ tS
tS

+ T̊ r∗
r∗ + 2T̊ r∗

tS
) →

→ − (x − 1)

x

(
4m2

0

xex

)2

r̊ ,−2
u

4K

4m4
0x(x − 1) x=1

= −16e−2Kr̊ ,−2
u =

= − F̊4(1)K

16m4
0

r̊ ,−2
u ,

which implies, among another things, the estimate

τ1(1) = 4π r̊ ,2u Tvv = −4π r̊ ,2u ×16e−2Kr̊ ,−2
u = −64πe−2 · 9

40 · 84π2
≈ −1, 5 · 10−3.

(A.57)
5. Similarly, by the use of (9.5b), we find

T̊uu = 4m2
0

u2 (T̊tS tS − 2T̊r∗tS + T̊r∗r∗) = x
x−1 r̊ ,2u (2T ϑ

ϑ − T̊ + 2T̊ r∗
r∗ − 2T̊ r∗

tS
).

Substituting in this equality the definition of Y and expressions (A.55) and (A.56),
one obtains

T̊uu = xr̊ ,2u

x − 1

[
−Y + 2

K

4m4
0x(x − 1)

+ 2T̊ r∗
r∗

]
=

= xr̊ ,2u

x − 1

[
−Y + 2

x(x − 1)

∫ x

1
[ 12 T̊ (x́) + 2(x́ − 3

2 )T
ϑ
ϑ (x́)]dx́

]
=

= xr̊ ,2u

x − 1

[
−Y + 2

x(x − 1)

∫ x

1

(
1
2Y + 2(x́ − 1)T ϑ

ϑ

)
dx́

]
.

Finally, we introduce the quantity ε ⇋ x − 1 and check that

T̊uu(x = 1) = lim
ε→0

xr̊ ,2u

ε

[
−Y + 2

ε(ε + 1)

∫ ε

0

(
1
2Y + 2έT ϑ

ϑ

)
dέ

]
=

= lim
ε→0

xr̊ ,2u

ε

[
−Y (0) − εY ′(0) + 2

(ε + 1)

(
1
2Y (0) + 1

4εY ′(0) + εT ϑ
ϑ (0)

)]
=

= lim
ε→0

r̊ ,2u

(
−Y (0) − 1

2Y ′(0) + 2T ϑ
ϑ (0)

)
≈ −2 · 10−5m−4

0 r̊ ,2u ,

whence
τ2(1) ≈ −2, 5 · 10−4. (A.58)

https://doi.org/10.1007/978-3-319-72754-7_9
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