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Notation and Terminology

For us, ‘C*-algebra’ always means ‘unital C*-algebra’. Likewise, our -
homomorphisms are always assumed to be unital, unless noted otherwise (as in
the proof of Theorem 13.4.1). This already applies to the following index of our
notation, which lists the conventions for our most commonly used mathematical

symbols:

W,X,Y,Z Compact Hausdorff spaces
1,....4 A compact Hausdorff on the corresponding number of points, where
we write e.g. 4 = {0, 1,2,3}
w,x,y,z Points in a compact Hausdorff space
f.8 h,k  Continuous functions between compact Hausdorff spaces
O,(O,T  Unit square, unit disk and unit circle, considered as compact subsets of
C
A,B  C*-algebras or piecewise C*-algebras (Definition 3.1.5)
M,  the C*-algebra of n X n matrices with entries in C
o,B,y.v,t Normal elements in a C#*-algebra, or (more generally) x*-
homomorphisms of the type C(X) — A
¢ A *x-homomorphism or piecewise *-homomorphism of the type A —
B
a,b  Self-action of a piecewise C*-algebra (Definition 13.4.1) or a piecewise

group (Definition 13.5.3)

The normal part of a C*-algebra A is

We also think of it as the set of ‘A-points’ of C. More generally, for A € C*alg, and

CA) ={acA|aa” =a*a}.

a closed subset S C C, we also write

S(A) :={a € C@A) [sp(a) S S}
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for the set of normal elements with spectrum in S, and similarly S(¢) : S(A) — S(B)
for the resulting action of a x-homomorphism { : A — B on these elements. For
example, R(A) denotes the self-adjoint part of a C*-algebra, and similarly T(A) is
the unitary group. This sort of notation may be familiar from algebraic geometry,
where the set of A-points of a scheme S (over a ring A) is denoted S(A). We also
use the standard notation C(X) for the C-valued continuous functions on a space X.
Unfortunately, this is very similar notation despite being different in nature.
We work with the following categories:

CHaus Compact Hausdorff spaces with continuous maps

CGHaus Compactly generated Hausdorff spaces with continuous maps

C*alg, C*-algebras with *-homomorphisms

cC*alg, Commutative C*-algebras with *-homomorphisms

V(H) Context category (Definition 1.1.1)

Q Sub-object classifier (Definition 1.3.1)

S This generally indicates a sieve (Definition 1.3.2)

8°(P) Outer daseinisation of projector P (Definition 2.2.2)

cHa Complete Heyting algebra (Definition 2.1.5)

Suby (%) Set of all clopen sub-objects of X (Definition 2.2.1)

Gy Isomorphism of complete Boolean algebras (Definition 2.2.1 and
Eq.(3.4.3))

z Spectral presheaf over V(#) (Definition 3.1.1)

pC*alg, Piecewise = C*-algebras  (Definition 3.1.5) with piecewise
*-homomorphisms (Definition 3.1.6)

Sets Category of sets

Sets”(")”  Topos of presheaves over V()

A Spectral presheaf over a C*-algebra A (Definition 3.1.1)

ucC* Category of unital abelian C*-algebras and unital *-homomorphisms

KHaus Category of compact Hausdorft spaces and continuous maps

(®,G,) Automorphism of spectral presheaf (Definition 3.2.1)

F; Flow on the spectral presheaf (Definition 3.4.1)

F o General flow (Definition 3.4.2)

F;:1 (1) Flows induced by unitaries (Definition 3.4.3)

1% Measure on the state-space X (Definition 3.4.4)

CpP Presheaf of classical probability measures on =V (Definition 3.4.5)

F; Flow on I'CP induced by one-parameter group of unitaries (Defini-
tion 3.4.7)

Cn(F) Filter in P(N) (Eq. (4.1.4))

& Antonymous function of A (Definition 4.1.2)

4 Observable function of A (Definition 4.1.2)

8 (f’) Inner daseinisation (Definition 4.1.4)

S(A) Physical quantity associated with A (Definition 4.1.16)

Si(A)V Gelfand transform associated with §’ (A)V (Corollary 4.1.1)

SO(A)V Gelfand transform associated with SU(A)V (Corollary 4.1.2)
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L2

R

E

o

SAWN)

SF(R, P(N))
QO(P(), R)
aA

cA

CA

7
c

Sub(N)
AbSub(N)
FAbSub(N\)

Sub(Proj(N))

BSub(Proj(N))

FBSub(Proj(N))

PG
R

I
O(X)
J

€.n
K

Loc
Spaces
pt(X)
A
CStar

KRegLoc
)

M
3-Str(7)
Xt

X.¢

Pseudo-state (Definition 4.2.1)

Extended reals (Definition 5.1.1)

Spectral family (Definition 5.1.1)

g-Observable function associated with A (Definition 5.1.4)

Set of self-adjoint operators affiliated with a von Neumann algebra N
Set of extended, right-continuous spectral families of P(N\)

Set of all abstract g-observable functions

g-Antonymous function associated with A (Definition 5.3.1)

A cumulative distribution function (CDF) of a random variable A
(Definition 5.5.1)

An extended cumulative distribution function (ECDF) of a random
variable A (Definition 5.5.1)

Quantile function of A (Eq. (5.5.1))

Lattice valued CDF (Definition 5.5.3)

Set of all von Neumann subalgebras of A/ (Definition 6.1.1)
Set of all abelian subalgebras of N (Definition 6.1.1)

Set of all abelian subalgebras of N containing only finitely many
projections (Definition 6.1.1)

Poset of subalgebras of Proj(N) ordered by subset inclusion (Defini-
tion 6.1.2)

Poset of Boolean subalgebras of Proj(N') ordered by subset inclusion
(Definition 6.1.2)

Poset of finite Boolean subalgebras of Proj(N') ordered by subset
inclusion (Definition 6.1.2)

Set of commutative Lie subalgebras of L(G) (Section 14.1)
Presheaf of quantizations over PG (Definition 14.1.1)
Pre-quantization presheaf (Definition 14.1.3)

Category of open subsets of the topological space X

A Grothendieck topology seen as a function on a category (Defini-
tion 7.1.5)

Site, consisting of a category C and a Grothendieck topology J
Basis for a Grothendieck topology (Definition 7.1.11)
Category of locales with continuous maps

Category of topological space with continuous maps

Points of a local X

Internal C*-Algebra in a topos (Definition 9.2.1)

Category of internal unital C*-algebras, together with internal unital
*-homomorphism

Category of compact regular locales

A first order signature (Definition 10.2.1)

A X-structure (Definition 10.3.1)

Category of Z-structures and X-structure homomorphisms
Term in context (Definition 10.3.2)

Formula in context (Definition 10.3.3)
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T Theory over a sequent ¥ (Definition 10.2.5)

T-Mod(7) Category of models for a given theory T

Poset Category of partially ordered sets and monotone functions

Topos Category whose objects are topos and whose morphisms are geometric
morphisms

A Presheaf representing the internal C*-algebra (Definition 11.1.1)

DY Internal spectrum of A

)N Topological space associated with X 4 (Definition 11.2.1)

I: A, — R Probability integral (Definition 11.3.3)

PIEN Alternative definition of state space (Definition 11.4.1)

] (A)_1 Covariant daseinisation map (Definition 11.4.2)

[A€ (p.g)li  Covariant proposition (Definition 11.4.3)

R, Internal lower reals (Definition 11.5.1)

R, Internal upper reals (Definition 11.5.2)

R Quantity valued object (Definition 12.3.1)

v <>

Alternative quantity value object (Definition 12.4.1)

aC*alg, Almost  C*-algebras  (Definition 13.4.1) with almost  *-
homomorphisms (Definition 13.4.2)

Grp Groups with group homomorphisms

pGrp Piecewise groups (Definition 13.5.1) with piecewise group homomor-
phisms (Definition 13.5.2)

aGrp Almost groups (Definition 13.5.3) with almost group homomorphisms

(Definition 13.5.4)



Chapter 1
Introduction

The present book is a follow up to the first book [26] which was aimed at introducing
the new promising field of Topos Quantum Theory. Since the publication of the first
volume many more exciting results have been developed. The aim of this second
volume is to explain these new results.

For a thorough understanding of the topics in this book the reader is advised to
first read volume one, since this book builds up on the concepts explained there.
Nonetheless, in the introduction we will summarise the main results dealt with in
[26] so as to refresh the reader with useful concepts which will be used throughout
this book.

1.1 Conceptual and Mathematical Preliminaries

The main conceptual problems inherent in quantum theory, which are mainly due to
how the theory is mathematically expressed, are the following:

* Due to the Kochen-Specker theorem, quantum theory is non-realist.!

Theorem 1.1.1 (Kochen-Specker Theorem) If the dimension of the Hilbert
space M is greater than 2, then there does not exist any valuation function
Vi + O — R from the set O of all bounded self-adjoint operators A of H to

the reals R, such that for all A€ Oand allf : R — R the following holds:
Vi (f(4)) = f(Vg(A)).

!By a ‘realist’ theory we mean one in which the following conditions are satisfied: (1) propositions
form a Boolean algebra; (2) propositions can always be assessed to be either true or false. As it
will be delineated in the following, in the topos approach to quantum theory, both conditions are
relaxed, leading to what Isham and Déring called a neo-realist theory.

© Springer International Publishing AG 2018 1
C. Flori, A Second Course in Topos Quantum Theory,
Lecture Notes in Physics 944, https://doi.org/10.1007/978-3-319-71108-9_1
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* Notions of ‘measurement’ and ‘external observer’ pose problems when dealing
with cosmology since the universe is a closed system.

* Standard quantum theory employs, in its formulation, the use of a fixed spatio-
temporal structure needed to make measurements. This fixed background seems
to cause problems in quantum gravity, where one is trying to make measurements
of space-time properties.

All these conceptual problems lead to the idea that, maybe, a new mathematical
formulation of quantum theory, which leads to a more realist interpretation might
be needed. This is precisely what the topos approach aims at. In particular, in such
a reformulation of quantum theory it is possible to express probabilities in terms of
truth values, hence probabilities become derived concepts.

One strategy to reformulate quantum theory in a more realist way is to re-express
it, such that it ‘looks like’ classical physics, which is the paradigmatic example of a
realist theory.

This is precisely the main idea in the topos approach [24, 26].

Furthermore, this reformulation of quantum theory has the key advantages that
(1) propositions can be given truth values without needing to invoke the concepts
of ‘measurement’ or ‘observer’; (2) probabilities can be expressed in terms of truth
values, hence they acquire a logical interpretation; (3) the internal logic which arises
is distributive.

In order to make quantum theory ‘look like’ classical theory we first of all need
to single out the underlining structure which makes classical physics a realist theory
and then, mimic, in the context of quantum theory, the way in which this structure
is defined.

The mathematical building blocks which render classical theory a realist theory
are:

1. The existence of a state space S.

2. Each physical quantity, A, is represented by a functionfy : S — R.

3. Any propositions of the form “A € A”? is represented by a subset of the state
space S: fi '(A) = {s € S| fa(s) € A}. The collection of all such subsets forms a
Boolean algebra denoted Sub(S).

4. States s are identified with singletons {s} C S.

The aim is now to define the above constructs for quantum theory in an
appropriate topos.

The issue one has to face is to identify which topos is the right one to use. This
is solved by noticing that, because of the Kochen-Specker theorem, the only way of
obtaining quantum analogues of requirements 1, 2, 3 and 4 is by defining them with
respect to commutative subalgebras (the ‘contexts’) of the non-commuting algebra,
B(#), of all bounded operators on the quantum theory’s Hilbert space.

2“The value of the quantity A lies in the subset A € R”.
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The set of all such commuting algebras (chosen to be von Neumann algebras)
forms a category,® V(#), called the context category. These contexts will represent
classical ‘snapshots’ of reality.

Definition 1.1.1 The category V() of abelian von Neumann algebras has:

* Objects: abelian von Neumann algebras V;.
* Morphisms: given two algebras V and V', there exists a map between them i,/ :
Vo Viffvcv.

The category V(H) is actually a poset ordered by subset inclusion and its elements
represent the contexts, with respect to which any object is defined.

Thus, in the topos approach each object will be defined as a collection of context-
dependent definitions related in a coherent way. One can, intuitively, think of a topos
quantum object as a collection of classical approximations, one for each abelian
subalgebra V. The quantum information is then carried by the categorical structure
of the collection of all these classical approximations.

1.1.1 What Is Topos Theory?

The very hand wavy definition of a topos is that of a category with extra properties,
which make a topos “look like” Sets in the sense that, any mathematical operation
which can be done in set theory, can be done in a general topos.

Of particular importance in a topos are the notions of Heyting algebra and sub-
object classifier [24, 26, 29, 33].

A Heyting algebra is the internal logic derived from the collection of all sub-
objects of any object in the topos and represents a generalisation of the Boolean
algebra in Sets. As such it is distributive, but the law of excluded middle does not
hold, i.e. § vV =S < 1. An example of Heyting algebra is given by the collection of
all open sets in a topological space.

The sub-object classifier Q represents the generalisation of the set {0,1} =~
{true, false} of truth-values in the category Sets, therefore its elements are truth
values and undergo a Heyting algebra. However, differently from Sets, in a general
topos 2 will contain many more elements than just 0, 1, leading to a multivalued
logic.

There are many different kinds of topoi, however we are looking for a topos
which allows us to obtain ‘classical’ local descriptions of objects. Such a topos
is the topos Sets” ™ of presheaves over the category V(1) whose objects are
abelian von Neumann sub-algebras of the algebra of bounded operators on H and
morphisms are inclusions.

3Roughly a category is a collection of objects and relations between these objects.
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The definition of a presheaf is as follows:

Definition 1.1.2 Let C, D be categories, then a presheaf is an assignment to each
D-object A of a C-object X(A), and to each D-arrow f : A — B a C-arrow X(f) :
X(B) — X(A), such that: i) X(14) = 1xu) and ii) X(f o g) = X(g) o X(f) for any
g : C — A, i.e. apresheaf is a contravariant functor.

1.2 Topos Quantum Theory

In this section we will define the topos analogues of the constructs 1, 3 and 4 of
Sect. 1.1. For an analysis of construct 2 the reader should refer to [24, 26].

State Space

As a first element we consider the representation of the state space in Sets¥(")”,
This is given by the spectral presheaf:

Definition 1.2.1 The spectral presheaf, ¥, is the contravariant functor from V(#)
to Sets, defined by:

* Objects: given an object V in V(H)?, the associated set (V) = X,
is defined to be the Gel’fand spectrum of the (unital) commutative von
Neumann subalgebra V, i.e. the set of all multiplicative linear functionals
A:V — C,such thatk(i) =1.

* Morphisms: given a morphism i/, : V >V CV)in V(#H), the associated
function X(i,/) : (V) — (V') is defined for all A € (V) to be the
restriction of the functional A : V — C to the subalgebra 1’4 C V,ie.
Ty y)A) = Ay

Propositions

In topos quantum theory propositions are identified with clopen sub-objects of
the spectral presheaf. A clopen sub-object S C X is an object such that, for
each context V € V(H), the set S(V) is a clopen (both closed and open) subset
of X(V), where the latter is equipped with the usual compact and Hausdorff
spectral topology. To understand how propositions are defined we need to introduce
the concept of ‘daseinisation’. Roughly speaking, what daseinisation does is to
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approximate operators so as to ‘fit’ into any given context V. More precisely,
the outer daseinisation (see Definition 2.2.2), §°(P), of P, at each context V,
is defined by

8°(P)yy := /\{R € P(V)|R = P}. (1.2.1)

One then assigns, to each such daseinised projection 8"(}3)‘/, the subset of the state
space consisting of all those elements which give value 1 to the daseinised projection
operator, i.e.

Ssoipy, 1= {4 € ZY|AE(P)y) = 1} . (1.2.2)

Py -
This subset can be shown to be clopen [24, 26]. Moreover, the collection of subsets
Sspy, V€ V(#H) forms a sub-object of X. This enables us to define the (outer)
daseinisation as a mapping from the projection operators to the clopen sub-object of
the spectral presheaf as:

§:P(H) — Subu(X); P> (S o(By, IVEV(H) = 8(P).

States

In classical physics a pure state, s, is identified with a singleton {s} C S. However,
the spectral presheaf ¥ has no points. Indeed, this is equivalent to the Kochen-
Specker theorem! Thus, the analogue of a pure state must be identified with some
other construction. There are two (ultimately equivalent) possibilities: a ‘state’ can
be identified with (1) an element of P(P(X)); or (2) an element of P(X).* The first
choice is called the truth-object option, the second the pseudo-state option. In what
follows we will concentrate only on the second option. For an analysis of the first
option see [24, 26].

Given a pure quantum state ¥ € H, we define the pseudo-state presheaf (see
Definition 4.2.1)

V= 8|y () (1.2.3)

such that, for each stage V we have
SCYNYD, = Sseipyiwny € Z(V) (1.2.4)

where 8°([¥) (¢ [)v = Ala € P(V)| [¥) (V] < @}.

4P(X) indicates the set of all subsets of X.
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The map |y) — w!¥) is injective [24, 26]. Thus, for each state |v/), there is
associated a topos pseudo-state, tv V), which is defined as the smallest sub-object of
the spectral presheaf ¥. Roughly speaking ¥, is the closest one can get to define a
pointin .

1.3 Sub-object Classifier and Truth Values

In the topos Sets”*)”

presheaf:
Definition 1.3.1 The presheaf Q € Sets”*” has

1. Objects: for any V € V(H), the set 2(V) is defined as the set of all sieves (see
Definition 1.3.2) on V.

2. Morphisms: given a morphism i/, : vV >v (V’ C V), the associated function
inQis Qi) 1 V) = QV); S Qi ))(S) =V V|V es).

the sub-object classifier 2 is identified with the following

A sieve on a poset, in our case V(H), is defined as follows:

Definition 1.3.2 For all V € V(#), a sieve S on V is a collection of subalgebras
(V/ C V) such that, if V' e Sand (VN - V/), then V" € S. Thus S is a downward
closed set.

In this case a maximal (principal) sieve on Vis | V := {V' € V(H)|V' € V}.

Truth values are identified with global elements of the presheaf 2, i.e. a
collection, for each V, of local elements in 2, i.e. of sieves. The global element,
that consists entirely of principal sieves, is interpreted as ‘totally true’. Similarly,
the global element that consists of empty sieves is interpreted as ‘totally false’.

A very important property of sieves is that, for each V, the set Q2,, of sieves on
V has the structure of a Heyting algebra. Similarly, the collection of (global) truth
values undergoes a Heyting algebra.

We can now define how truth values are assigned to propositions. Going back
to classical physics, a proposition Ae A= fA_I(A) is true for a given state s if
s} < f71(A).

In the quantum case, a proposition of the form “A € A” is represented by the
presheaf 8(E [A € A]),” while states are represented by the presheaves tv V). Since
both presheaves are sub-objects of X, it is reasonable to define truthfulness in terms
of an inclusion relation, as done in classical physics. In particular, we define:

) C§(P). (1.3.1)

SHere E [A € A] represents the spectral projector for the self-adjoint operator A, which projects
onto the subset A of the spectrum of A.
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This equation shows that, whether or not a proposition § (P) is ‘totally true’ given

a pseudo state 1w V), is determined by whether or not the pseudo-state is a sub-
presheaf of the presheaf §(P). With motivation, given the state 1o ¥}, we can now
define the truth value of the proposition “A € A” as:

V(A € A; [¥)) = vV CS(EA € A]). (1.3.2)

However, since presheaves are defined locally, we need to evaluate the above
expression at each V obtaining

V(A € A; [¥)y = v(w V) C S(EA € A))y (1.3.3)
={V S V(') CS(EN €A,

=1{V C V(¢ |8(E[A € Ay ) = 1}.

The last equality is derived by the fact that the relation (w V), € § (P)V, at the level

of projection operators, becomes 8"(}3)‘/ > (w!¥))y. However, since (1v!¥?)y is the
smallest projection operator, such that (y|(w!¥))y |) = 1, then §°(P)y > (w ")),
implies that (y|8°(P) |y) = 1.

The right hand side of Eq.(1.3.3) means that the truth value, defined at V of
the proposition “A € A”, given the state to ¥, is given in terms of all those sub-
contexts V' C V, for which the projection operator §(E[A € Al])), has expectation
value equal to one with respect to the state |1).

Equation (1.3.3) represents a sieve on V and the set of all of them is a Heyting
algebra, thus the set of truth values is also a Heyting algebra.

From the above discussion it emerges that in the topos formulation of quantum
theory, truth values can be simultaneously assign to any set of propositions, also
incompatible ones. Moreover, in [23, 26] it was shown that probabilities can be
described in terms of truth values. In such a formulation, logical concepts are seen
as fundamental, while probabilities become derived concepts. This approach to
probability theory allows for a new type of non-instrumentalist interpretation, which
does not require the problematic notions of measurement and external observer and
might be particularly appropriate in those schemes which interpret probabilities as
propensities.



Chapter 2
Logic of Propositions in Topos Quantum Theory

In Chap. 10 of the first series of lecture notes on topos quantum theory [26] we
showed that quantum propositions were represented by clopen sub-objects of the
spectral presheaf ¥ [26, Ch.10, Sec.1]. The collection of all such clopen sub-
object, which we denoted by Sub (%), was shown to form a Heyting algebra [26,
Th.10.2], hence the logic of quantum theory derived from the topos approach is an
intuitionistic logic. In this chapter we will explain some recent results obtained in
[15] in which it is shown that Sub.(X) is not only a complete Heyting algebra,
but also a complete co-Heyting algebra, therefore quantum logic is represented by
a complete bi-Heyting algebra where two types of implications and negations are
present.

2.1 Bi-Heyting Algebras

Before explaining the results shown in [15] we will state a few definitions we will
use along the way. Most of these definitions were already given in [26].

Definition 2.1.1 A lattice consists of a set, A, equipped with elements, 0,1 € A,
(bottom and top elements, respectively) and binary operations V,A : A XA — A
which satisfy the following conditions:

1. A and V are both associative, commutative and idempotent.
2. xvVO=xandx A1l =x, forall x € A.
3.xA@Vy) =xVvV(xAy) =xforallx € A.

The operations A and V are called meet and join, respectively.

© Springer International Publishing AG 2018 9
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Definition 2.1.2 Given a lattice A, then A is said to be distributive if for all x,y, z €
A the following hold:

xA(yVvZ)=@xAY)V(XAZ

xV(yAZ) =@xVy)A(xV2)

Definition 2.1.3 A Boolean algebra is a distributive lattice, A, equipped with an
operation, — : A — A, such that the following equalities hold for all x € A

XxAx=0

xVvx=1

Given any lattice A, it is possible to equip it with a partial ordering as follows:
given any two elements x,y € Athenx < yiff xAy = x or equivalently iff xvVy = y.
The element x A y is called the greatest lower bound of the set {x, y}, while x vV y
is the least upper bound of the set {x, y}. If a lattice has the lest upper bound and
greatest lower bound for all sets, not only finite ones, then the lattice is said to be
complete.

Definition 2.1.4 A Heyting algebra is a distributive lattice, A, equipped with a
binary operation, =: A X A — A, such that for all x,y, z € A then

a<b=ciffanb=<c

From a categorical perspective what this means is that the (meet) functor a A — :
A — A has aright adjointa = —: A — Aforalla € A.

Definition 2.1.5 A complete Heyting algebra is a Heyting algebra which is com-
plete as a lattice.

Given a complete Heyting algebra (cHa) A, any element b € A and a family of
elements {a;|i € I}, then the following holds

\ b nra)=br\/a (2.1.1)
iel iel
In fact, given any other element ¢ € A, then we have
\/(b A a) < ciffbAa; < cforalli
i€l
iff a; < b = cforalli
iff \/ai < (b= o)
iel

iffb/\\/ai <ec.

i€l
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On the other hand, if A is a lattice with arbitrary suprimums and such that the
identity (2.1.1) holds then we have

a<\/ldldnb<cy=anb=<\[{dldrb=<cinb
therefore
anb<\/tdAbldrb=<c}<c.

However, if a Ab < c thena € {d|d A b < c}, therefore, a < \/{d|d A b < c}. This
shows that

a<\/{dld b <c}iffanb <c.
Hence
b=c=\/{dldnb<c}.

The negation in a cHa A is defined in terms of the implication = relation defined
above. In particular, we have

—a=(a=0)=\/{blarnb<0}.

This represents the largest element in A such that a A —a = 0. One of the main
properties of Heyting algebra is that the law of excluded middle needs not hold, i.e.
a VvV —a < 1. The canonical example of a Heyting algebra is given by the collection
of all open sets of a topological space. In this case, the negation —a is given by the
interior of the complement of the open set a. Clearly a vV —a < 1.

Definition 2.1.6 Given a Heyting algebra A, an element @ € A is called regular if
——a = a.
There is also the notion of a co-Heyting algebra

Definition 2.1.7 A co-Heyting algebra A is a distributive lattice equipped with a
binary operation <: A x A — A suchthat,a & b <ciffa<bve.

From a categorical perspective what this means is that the (join) functor b v — :
A — A has aright adjoint — = b : A — Aforall b € A.

Definition 2.1.8 A complete co-Heyting algebra is a co-Heyting algebra which is
complete as a lattice.

Given a complete co-Heyting algebra A, any element b € A and family {a,|i € I},
then the following equality holds

b\//\aiz/\bVai. (2.1.2)

i€l i€l
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In fact, given any other element ¢ € A then

c < Vaj))iutc <bVva;toralli €
N\@®Va)iffc <bvaforalliel

i€l
iffc =b<a;foralliel
iffc b < /\a,-

i€l

iff ¢ < b/\a,-.

i€l

On the other hand, if A is a lattice with arbitrary meets satisfying Eq. (2.1.2),
then A is a co-Heyting algebra where the co-implication is defined by a = b =
NAl{cle v b > a}. In fact, if

/\{dldvb=a}l<c
then
Ntdldvb=a}vb=<cvb
Given (2.1.2), it follows that
/\{dvbldvb=at<cvb
hence
a< \dvbldvb=a}<cvb

Moreover, if a < ¢ Vv b, then ¢ € {d|d v b > a}, therefore A\{d|d Vv b > a} <c.

The co-negation operation is define by ~ a = 1 < a = A{blanb = 1},
hence it represents the smallest element in A such that av ~ a = 1. Generally, in
a co-Heyting algebra the law of contradiction does not hold, i.e. ~ a A a > 0. The
canonical example of a co-Heyting algebra is given by the collection of all closed
sets in a topological space. In this setting ~ a is given by the complement of the
interior of a, then clearly ~ a A a > 0.

Definition 2.1.9 Given a co-Heyting algebra A, an element a € A is called regular
if~~a=a.

If we combine the notions of a Heyting algebra and a co-Heyting algebra then we
obtain the notion of a bi-Hyeting algebra which is both a Heyting and co-Heyting
algebra.
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Definition 2.1.10 A bi-Heyting algebra A is a lattice which is both a Heyting
algebra and a co-Heyting algebra. It is a complete bi-Heyting algebra if it is a
complete Heyting algebra and a complete co-Heyting algebra.

An example of a bi-Heyting algebra is given by the collection of all open and closed
sets of a topological space. Moreover, any Boolean algebra is a bi-Heyting algebra.
In this case the negation and co-negation coincide with the standard Boolean
negation.

2.2 Bi-Heyting Algebra in Topos Quantum Theory

In [15] it was shown that the collection of quantum propositions as expressed in
terms of topos quantum theory form a bi-Heyting algebra. In order to explain this
result we need to recall how a proposition is represented in terms of topos quantum
theory. For an in depth analysis the reader should refer to [26]. Here we will
just recall that propositions are identified with clopen sub-objects of the spectral
presheaf constructed through the process of outer daseinisation. In particular we
have:

Definition 2.2.1 A clopen sub-object S of the spectral presheaf ¥ is a sub-object
S C X such that for each V € V() the set S, is a clopen subset of the Gelfand
spectrum X,. Sub.(X) denotes the set of all clopen sub-objects of 3.

The fact that proposition are identified with clopen sub-object is obtained though
the process of outer daseinisation.

Definition 2.2.2 Given the Von Neumann algebra V() with lattice of projection
operators P(V(H)), outer daseinisation is given by the following map'

8° : P(V(H)) = Sub. (%)

P 8°(P) = <6V(8”(13)V)) v

Here §°(P)y := A\{R € P(V)|R > P}, while
Sy : P(V(H)) — Subu(E)y 2.2.1)

is an isomorphism from the complete Boolean algebra of projection operators
present in the abelian subalgebra V' € V(H) to the complete Boolean algebra
of clopen subsets of the Gel’fand spectrum X, therefore Sy (6°(P)y) = {A €
ZyA(@E(P)v) = 1}.

'Note that the notation 8”(?’) and 8”(?’) are equivalent. Moreover, for notational simplicity
sometimes we will denote §° simply by § since generally when talking about daseinisation we
mean outer daseinisation. If considering inner daseinisation we will always put the superscript i.
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The collection of clopen sub-objects Sub.(X) of X is given a partial ordering by
stating that for all S, T € Sub(X), then § < T iff, forall V € V(H) then S, € T,.
Sub.(X) is equipped with arbitrary joins and meets which are defined context wise
as follows:

Given a family of clopen sub-objects (S;);es then, for all V € V(H),

(/\ Sov = int(()S:.v)
i€l i€l
while
\/ Sov = ct|_S;)-
i€l i€l

The need to take the interior and the closure is to guaranty that one obtains clopen
subsets at each context not just closed and open respectively. This fact also implies
that Sub,% is not a Heyting subalgebra of the Heyting algebra of sub-objects
Sub(X) of the spectral presheaf. We will now show that Sub,X% is a bi-Heyting
algebra [15].

Theorem 2.2.1 The collection Sub,X% of clopen sub-objects of the spectral
presheaf forms a bi-Heyting algebra.

Proof To prove that Sub.,; % is a bi-Heyting algebra we need to show that it is both a
Heyting algebra and a co-Heyting algebra. The former was shown in [26], so, what
remains to be shown is the latter. We know from the above discussion that Sub. X
has arbitrary joins and meets, therefore we need to show that, given a family of
(S,)ier of clopen sub-objects of X and any other clopen sub-object § C X, then

SA\S) =\ As).
i€l i€l

However, since we are in the context of presheaves, the above equation has to be
defined for each context. Thus for each V € V() we have:

S AN S =\ Sy AS).
iel il
However, for each context V € V(H) then Sub.(X)y is a Boolean algebra hence

\/(Sy AS;y) = int (U(SV N sw))

i€l i€l

= int (SV nlJ SLV)

i€l
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=S, Nint (U S,.,V)
i€l

=Sy A (\/ S)v

i€l

=S\ S)v.

i€l

O
The above discussion proves that Sub.(X)y is a bi-Heyting algebra where the two
negations are defined as follows:

~8:=% &85= \{R € Suby()|T =RV S} (2.22)
=§:=5=0=\/{R € Suby(L)|R A S = 0}. (2.2.3)

Therefore, ~ S is the smallest clopen sub-object of X such that ~ SV § = X, while
—S is the biggest clopen sub-object of ¥ such that =S A S = 0. It then follows that:

Corollary 2.2.1 ([15]) Forall S € Sub,(X) then =S <~ S.

Proof For each context V € V(H), X,,/S,, is the biggest subset such that £, /S, N
S, = @. But from the definition of =S we know that for each V € V(H) (=S)v A
Sy = 9, therefore (=S)y € X,,/S,. On the other hand X, /S, is the smallest subset
such that X,/S,, U S, = X,. But from the definition of ~ S we know that for each
VeVH), (~ Sy US, = 2. Therefore X,,/S,, € (~ (S)v. Thus we obtain that,
forall V e V(H), (—=S)y € (~ S)y. O

Corollary 2.2.2 ~SAS> 0.

Proof Since —S is the largest sub-object of X, such that =S A S > 0 and since from
the above Lemma —S <~ §, it follows that ~ S A S > 0. O

From the above corollary it follows that the logic of topos quantum theory
is a paraconsistent logic. This is a logic for which the principle of explosion
does not hold. This principle asserts that, given a contradiction anything can be
entailed. As a consequence any logic which has inconsistencies becomes trivial,
since any statement becomes a theorem. On the other hand in a paraconsistent logic,
contradiction does not entail truthfulness of any statement, hence it is possible to
have inconsistent but non-trivial theories.
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2.3 Two Types of Negations

In the previous section we have seen that the collection of quantum propositions
forms a bi-Heyting algebra in which two types of negations are present. In
this section we will analyse these negations and define their respective regular
elements [15].

2.3.1 Heyting Negation

Given any clopen sub-object S we want to understand what =S is. From (2.2.3) we
know that =S is the largest element in Sub; % such that S A =S = 0. To understand
how —S is defined context wise, we need to start with the context wise definition of
a general pseudo element. For all V € V() we have

S=Ry={reXyVv V CV;ifAly € Sy, then A|yr € R/}
It then follows that:

(S=0)y ={A € S |V V' C Vi if Aly €S, then A|ys € 0} 2.3.1)
={AeZ VV CViAly ¢Sy}

We now would like to express —S in terms of projection operators. To this end we
need to utilise the isomorphisms

6\/ . P(V(H)) — Subd(E)V
P> Spi={Ae T, AP) =1}

This map associates to each projection operator in P(V(#)) a clopen subset of Xy,.
Since it is an isomorphisms, given any clopen subset S € Sub.(X)y, the associated
projection operator is given by &,1(S) =: Pg. We can now re-write Eq.(2.3.1)in
terms of projection operators as follows:

=0y ={AeS, VV CVidly ¢S} (23.2)
= (A eS|V V CViAlw(Ps,) =0}
= {LeZy|VV CViAPs,) =0}

= e s, A\ Ps,) =0}

V'cv
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We know from the definition of a sub-object of X that for V/' € V then
Sy, € Sy, which implies that ﬁ’sv, > PSV. Therefore, as the context becomes smaller
the associated projections become bigger. This implies that when considering
/\(\/V,g,f’sv,) = 0 it suffices to consider only the “small” algebras V' C V. These
“small” algebras are the so called minimal contexts which are generated by a single
projection and the identity, i.e. V3 = {f’, i}" = CQ + (Di, with the exclusion of
Vi = {i}” = C1. The collection of minimal subalgebras for a given algebra V is
identified as follows:

my = {V' C V|V minimal} = {V;|P € P(V)}.

We can thus re-write Eq. (2.3.2) as follows:

(=S)y = {2 € ZyA(\/ Ps,) =0} (2.33)
V' emy
=fhez, M- \/ Ps,) =1
V'emy
= S"

l—\/v/emv PSV/ '

This implies that

Ps, =1-"\/ Ps,. (2.3.4)
V' €my

Given this result, we now want to show that:

Lemma 2.3.1 Given any S € Sub(X), S is Heyting regular (——S = S), iff for all
VeV(H)

Ps, = /\ Ps,,
V'emy

where my, = {V' C V|V’ minimal}.
Proof For a general element S € Sub,% we have that =——S > §. In terms of

projections this inequality translates as follows: from Eq. (2.3.3) we have that

(==S)y = Si_\/v,

emy P=s)°
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Therefore, in terms of projections we have

Py, =1- \/ P-s),,

V' €my
=i-\/ d-\ Ps)
V' Cmy Wemyr

Since V' € my, we obtain that my, = {V’}, therefore

Pmgyy =1 - \/ (- \/ Ps,)

V' emy Wemy,
=1-\/ (-Fs)
V' €my
= /\ Psy-
V'emy

However we know that for V' € my which implies i)sv, > f’sv, therefore

=S>8 iff ﬁ(—.—.g)v = /\ ﬁsv’ > ﬁsv'

V'emy
This means that
——S =25 iff /\ Ps,, = Ps,.
V' emy

|
Next we would like to relate regular Heyting elements with tight clopen sub-objects
of X.

Definition 2.3.1 A clopen sub-object S € Sub.(X) is called tight if, for all V',V €
V(H) such that V/ C V, then

Z(iyy)(Sy) = Sy (2.3.5)

Note that in general we have that X (iy/v)(Sy) € Sy

Lemma 2.3.2 A clopen sub-object S € Sub.(X) is called tight if, for all V',V €
V(H) such that V' C V, then

ﬁ’sw = O(iv,v/)(ﬁsv)-

where O(iy.y') : P(V) — P(V’) are the presheaf maps of the outer daseinisation
presheaf Section 11.1 in [26], which are defined by O(iyy')(P) := §°(P)},.
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Proof In terms of projection operators equation (2.3.5) becomes
Psiiysy) = Psy,

so, what we need to show is that i)z(iv’v)(sv) = (’)(iV,V/)(IA’SV) which in terms of
clopen subsets becomes X(iyv)(Sy) =So(iv (Psy) This was shown in Theo-
s \4

rem 3.1 in [22], but for completeness sake we have reported the theorem and proof
in Appendix A.3. O

Lemma 2.3.3 Tight sub-objects are regular Heyting elements.

Proof Given a tight sub-object S € Sub.(X), by definition we have that IA’SV/ =
O(iv,w)f’gv for all V,V' € V(H) such that V' C V, where O(iv,w)f’gv =
8”(f’sv)w = N\{R e P(V)IR > f’sv} > f’sv. For this same sub-object S we want
to show that /\y/c,,, IA’SV, = i’sv- For each V € V(H), the minimal subalgebra
generated by i’sv is V;JSV = {f’sv, i}”. This belongs to my, therefore we obtain

Oliv.yy, IPs, =8 (Ps, v, = AR e P(Vp )IR = Ps,} = Ps, (2.3.6)
Therefore, for each V € V(H)

A by, =Py,

V' emy

As an immediate consequence of the above we have that

Corollary 2.3.1 The outer daseinisation map §° : P(V(H)) — Sub.X defined
in Definition 2.2.2, maps projection operators to regular elements of the Heyting
algebra Sub % of clopen sub-object.

Proof By definition of the outer daseinisation presheaf we have that O(iy )
(8°(P)y) = 8°(P)yr, therefore

~

Pisoiiyy,, = 8°(P)vr = Oliv.y)(8°(P)v) = Oliv.y ) (P s iy, )-

Therefore clopen sub-objects of the form §°(P) are tight. Application of
Lemma 2.3.3 gives us the desired result. O

2.3.2 Co-Heyting Negation

Given an object S € Sub(X¥) we now would like to analyse the object ~ S and
understand what it represents in terms of projection operators.
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Lemma 2.3.4 Given any sub-object S € Sub,(X), then for any V € V(H) we have

Pigy = \/ Ol —Ps)

‘_/GMV

where My = {V D V|V is a maximal abelian subalgebra of V(H)}.

Proof Since ~ S is a sub-object of =, then for V C V we have that = (ij ) (~ )y €
(~ S)v. Moreover, we know from Lemma 2.2.1 that for all V € V(#), £,,/S, €
(~ S)v. Therefore we have that X(iy ,)(Z7/Sy) S Z(iyp)(~ Sy S (~ S)y. In
terms of projection operators this translates into P(NS)V > (’)(i‘-,’v)(i — IA’SV). Since
the set My contains all maximal sub-algebras (maximal contexts) containing V/, it
follows that

Pies, = \/ Oligy)(i - Ps,).

‘_/EM\/

From the definition of ~ § we know that ~ § is the smallest sub-object such that
~ 8§ Vv § = X. Context-wise we have that for all V € V(H), (~ S)y is the smallest
subset such that (~ S)y US,, = X, In terms of pI‘O]eCthIl operators this means that

P(~S)V is the smallest prOJectlon operator such that P(~S)V \% Pg = 1. Therefore, if

we show that \/7.¢,,. (’)(zV’V)(l — PSV) \ PSV =1forallVe V(H) then it follows

that P(~s), = Vyep, Oliyy)(1 — Ps;). To show this we subdivide our analysis in
two case:

i) If V is maximal, then My = {V} and \/jy, (’)(i‘-,qv)(i - IA’SV) =1- ﬁ’sv,
therefore Ps, v (1 — Ps,) = 1 and P(~s), = /¢y, Oliyy)(1 = Ps;).

ii) If V is non-maximal, then for any V € my we have that \/VGM (’)(zV V)(l -
PS ) > \/VeM_ O(ZVV)(l — PS y = 1 - PS, Since PS > PS , then
Viemy O(’V,v)(l - PSV) v Psv > (- PSV) 4 PS‘7 = 1. It follows that
Piwsyy = Vpen, Olip)(1 = Ps,).

O

Now that we have defined the co-Heyting negation in terms of projection operators,
we want to identify the regular elements [15].

Lemma 2.3.5 A sub-object S C X is co-Heyting regular (~~ S = S) iff for all
V e V(H), then

Ps="\/ OGiy)Ps, = \/ 8(Ps;)v

‘_/EMV VEMV
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Proof For each V € V(H) the condition of S € Sub.(X) of being co-Heyting
regular can be expressed in terms of projection operators as follows: P(~~s), = Ps, -
By applying Lemma 2.3.4 we obtain

Piansy = \/ Oligy)(1 = Presy)

‘_/EM\/
= \/ OGyA-\/ Oy, -Pery,))
‘_/EM\/ WGM‘_/

My=(V} \/ 06y - -Pes,)

‘_/EMV

= \/ Oy (Ps);)

‘_/EMV

=V &s)v.

‘_/EM\/

Lemma 2.3.6 Tight sub-objects of £ are co-Heyting regular.

Proof By definition, if S is tight then for all V, V' € V(#) such that V' C V,

X (iy.v)Sy = Sy, which in terms of projection operators becomes O(iv /) (Ps,) =

i)sv,. Now consider the case in which V € My, then we obtain O(i‘-/,v)(f’g‘,/) = f’sv.

Since this holds for all V € My it follows that \/ ¢y, O(iy.y)(Ps;) = Ps, . 0
An immediate consequence of this is the following:

Corollary 2.3.2 The outer daseinisation map §° : P(V(H)) — Sub,X defined
in Definition 2.2.2, maps projection operators to regular elements of the co-Heyting
algebra Sub.¥ of clopen sub-object.

Proof As shown in the proof of Corollary 2.3.1 clopen sub-objects of the form §° (i’)
are tight. Applying Lemma 2.3.6 proves our result. O

2.4 Examples of the Two Negations

We will now give several examples for both the Heyting and co-Heyting negation
of a quantum proposition. To this end let us consider a four dimensional Hilbert
space H = C* with orthonormal basis (Y1, ¥, ¥3, ¥4) and projection operators
(Pl, Pz, P3, P4) such that each P projects onto one dlmensmnal subspace Cy;. One
possible abelian von Neumann algebra is V = lm@(Pl, PZ,P3, P4). The spectral
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presheaf, evaluated at this context, is given by the Gelfand spectrum of V: ¥, =
{A1, A2, A3, A4}, where Ai(ﬁj) = §;;. We will now give examples of both negations
for two distinct quantum propositions.

2.4.1 First Example

For the first example we choose a clopen sub-object S C X, such that at the
context V we have S}, = {A;, A4}. This means that at the context V, S, represents
the proposition P; 4+ P4 given by 6;1(5). Next consider the contexts Vi, =
ling(Py.Py, P3 + P4}. The Gelfand spectrum of Vi, is Xy, = {A], A5, A5},
where A/ (ﬁj = §; and A,’d(ﬁk + P;) = 1. For an in-depth analysis of the spectral
presheaf the reader is referred to Section 9.2.1 of [26]. Since the restriction maps
Z(iy,,v) : Zy — Xy, , are such that Z(iy.y,,)S, C Sy, then Sy, = AL AS gt

with associated projection operator P + P53 + P,. We are now interested in defining

Piesy,, = \/ Oliyy, )0 —Psy).
VGMVI.Z

First of all we need to define the set My,, = {V, Vi »}, then we obtain
Oliv.,)( = Ps,) = Olivy,,) (P2 + P3) = Pr + P3 + Py
Oliviamy)( = Ps, ) =1-Ps, =P,
Putting these results together we obtain
i)(~S)v1.2 = 132 + 133 + i’4
Then, clearly

P(Ns)vlqz >1 _PSVLZ = P,.

This confirms that the projection ﬁ(f\,g)v is always greater than or equal to 1— Psv-

Given the definition the co-Heyting negation in Lemma 2.3.4, ﬁ(NS)V represents
the disjunction of all the coarse-grainings of complements of (finer) local proposi-
tions at “bigger” contexts V 2 V. Therefore, for each context V, the propositions
associated to Sy, and (~ S)y are not mutually exclusive in general.
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We now compute the other negation

Py, =1- \/ Py, (2.4.1)

’
\% E}’Vlvl’2

As a first step we identify the set my,, = {Vi, V2, Vl,z} where V; = Cl + CP..
The Gelfand spectrum for contests V; and V; are Xy, = {A},15,} and X, =
{A5, X34}, respectively. Therefore we obtain Sy, = {)&1, Ahsayand Sy = {45, A3, )

The associate projection operator is Py + P, + P3 + P4 in both cases. We now plug
in all these results into (2.4.1), obtaining

i)(_'s)‘/l.z =1- (i)l + i)z + i)_v, + ﬁ4) = 6
Clearly

ﬁ(_'s)‘/l.z < (i _PSVl,z) = fA’z.

Conﬁrmmg the fact that the projection P(_.S)V is always smaller than or equal to

i —PS , since PS , > PS forall V' € My.
leen the deﬁnltlon of the Heyting negation in Eq.(2.3.4) it follows that, the
projection P—g,, is determined at each stage V as the complement of the join of all

the coarse-grainings Ps,, of Ps,, where V' € my.

2.4.2 Second Example

For our second example we choose the sub-object S, = {A3} with associated
projection operator hatP3. We would like to evaluate P(ﬁgvls) for the context

Vi = linc(f’l,ﬁg, f’2+ﬁ4). The Gelfand spectrum for Vy 3is Xy, | = (AL AL A%,
while my,, = {V13, V1, V3}. Next we need to identify the sub-object S as defined
for each of the contexts V' in my, ,. These are subject to the condition X(iv,y)Sy €
Sys. Therefore for the context Vi3 we can choose Sy, . to be {13}, {13, A1} or

{A5, A1, A3y). We choose Sy, . = {43} whose associated projection is P5. Next for
Vi we choose Sy, = {A}54} with associated projection Py + P3 + Py and for V5 we
choose Sy, = {A3} with associated projection P3. We then obtain

P(_'S)Vl.s =1- \/ PS(/

’
\% Emy 5

Zi—(ﬁ3+ﬁ2+ﬁ4)=ﬁ1.
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Clearly
lf’(—-s)vh3 <1- ﬁ)SVm =P+ P+ Py
Next we compute

Pregy,, = \/ (’)(iv’vm)(i—i’gv).

‘_/EIWVL3
Here the set My, , is My, , = {V, Vi 3}, therefore we obtain
ﬁ(,\,s)vl_3 = i)l + i)z + i)4.

In this case IA’(NS)VI , = 1— i)svl ,

2.4.3 Interpretation

As discussed above, the Heyting complement of the sub-object S at each stage V is
the complement of all the coarse graining of the complement of S at each context
vV Ccv.

On the other hand the co-Heyting negation of the sub-object S at each stage V is
the disjunction of all the coarse grainings of the complement of S for all contexts
Vov.

Given the above, then for each context V we have

A

P_'SVSI_PSVSP("‘S)V

When V is a minimal context we have that f’_.s =1- 133 , while if V is a maximal
context (maximal sub-algebra) we have that 1— PSV = P(NS)V For any other contexts
V we seem to be getting a lower and a higher bound for 1— PS



Chapter 3
Alternative Group Action in Topos Quantum
Theory

In this Chapter we will explain an alternative way of describing group actions in
topos quantum theory. The definition of group and group action in topos quantum
theory was first introduced in [27]. Later, an alternative definition was put forward
in [13]. In the following chapter we will explain this new definition which rests on
the idea of flows in the spectral presheaf.

3.1 Maps Between Spectral Presheaves

In order to understand how to define flows of the spectral presheaf we, first of
all, need to introduce the notion of maps between spectral presheaves [14]. These
are maps between two distinct spectral presheaves associated to two different
algebras. In particular, given two C*-algebras A and B, then a map between the
spectral presheaf >4 and 2 is uniquely determined by a unital *-homomorphism
¢ : A — B. Clearly when the two algebras coincide then we get the notion of
an automorphisms on the spectral presheaf. Such automorphisms will be utilised to
define flows on the spectral presheaf.

Before going into the details of how these flows on the spectral presheaf are
defined, it would be useful to remind ourselves what the spectral presheaf oA
associated to a C*-algebra A is. In [26] we defined the spectral presheaf associated
to the category V() of abelian von Neumann subalgebras of the von Neumann
algebra N’ € B(H).! Clearly, such a definition can be easily extended to any unital
C*-algebra obtaining the following:

' B(#) indicates the algebra of bounded operators on the Hilbert space.

© Springer International Publishing AG 2018 25
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Definition 3.1.1 Consider a unital C*-algebra A with associated category C(A) of
unital abelian C*-subalgebras of A which forms a poset under algebra inclusion.
The spectral presheaf £ e Sets®Y™ associated to A is defined on

— Objects: given any C € C(A), then E“C4 is the set of multiplicative states A : C —
C equipped with the Gelfand topology.

— Morphisms: given an inclusion map ic'c : C' <> C, the corresponding presheaf
map is defined in terms of restriction as follows:

S(ice) : S = (3.1.1)
A [ AIC’

This map is surjective and continuous with respect to the Gelfand topology.

This definition implies that the spectral presheaf associated to a unital C*-algebra
consists of the collection of the Gelfand spectrum of all of the unital abelian C*-
algebra glued together by the presheaf maps.

Equipped with this definition we will define a map between two spectral
presheaves associated to two distinct C*-algebras A and B, respectively. To this
end we note that these two algebras are objects in the category uC* whose objects
are unital C*-algebras and whose arrows are *-homomorphisms. Therefore, given
A, B € uC*, the map ¢ : A — B € uC*(A, B) is a unital *-homomorphisms.
The claim maid in [14] is that any such unital *-homomorphism induces a map
8 > 4 In particular, ¢, induces a map at the level of the category of unital
abelian C*-subalgebras’ as follows:

é : C(A) — C(B)
Cr ¢lc(O).

This map is called the base map. Given a map between the base categories C(A)
and C(B), this induced an essential geometric morphisms [55, Theorem 2, VII]

@ : Sets“ A — SetsC®)
whose inverse image is defined as follows:
®* : Sets“®” — SetsCA”
Q' O*(Q) == Qo ¢:.

For the sake of completeness we will recall the definition of a geometric morphism.

2Note that since ¢ is a *-homomorphisms, then the restriction ¢ | is norm-closed and hence ¢|¢(C)
is a C*-algebra.
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Definition 3.1.2 A geometric morphism [55, 73] ¢ : 11 — 1, between topoi 1)
and 1, is defined to be a pair of functors ¢« : 71 — 1, and ¢* : 7, — 71, called
respectively the inverse image and the direct image part of the geometric morphism,
such that

1. ¢* - ¢« i.e., ¢* is the left adjoint of ¢,
2. ¢* is left exact, i.e., it preserves all finite limits.

A geometric morphism f is said to be essential if the inverse image functor /* has
both a right adjoint fi and a left adjoint f;.

Since @ is essential, there exists @, : SetsC” . Sets®”™ such that o, 4
®* 4 @,. Applying ¢* to the spectral presheaf £7 associated to the algebra B we
obtain that, for each C € C(A), ®*(£%)¢ = =8 . Moreover, given an inclusion

#(C)°
map ic/c : C' < C, then
**(=F)(icc) : @*(ZP)c — @* (2P (3.1.2)
/\ = /\|¢(C/)-

Therefore ®* allows us to map the object 28 e Sets®” 1o the object

®*(25) € Sets““™ . The next step is to define a map ®*(£5) — T4 in the
topos Sets”  To this end we will utilise the existence of a duality between the
category of commutative C*-algebras and the category of locally compact Hausdorff
spaces. Such a duality is called Gelfand duality. In our case we only consider the
sub-category of unital abelian C*-algebras which, by Gelfand duality is related to
the category of compact Hausdorff spaces. In particular, let ucC* be the category of
unital abelian C*-algebras and unital *-homomorphisms and KHaus the category
of compact Hausdorff spaces and continuous maps, the Gelfand duality is expressed
by the existence of the following adjunction:

P

T
ucC* 1 KHaus®?

C(-)

The action of the left adjoint ¥ is to associate to each A € ucC* the set X (A) of
characters of A equipped with the topology of pointwise convergence, and to each
morphism (unital *-homomorphism) ¢ : A — B, the map X(¢) : X(B) — X(A),
defined by X(¢)(A) := A o ¢. Clearly X (A) represents the spectral presheaf of the
algebra A. In particular, going back to the definition of the spectral presheaf for an
algebra A as in Definition 3.1.1 we note that for each C € C(A) then 7 := =(C).

On the other hand the right adjoint C(—) assigns to each object X € KHaus the
set C(X) of continuous complex valued functions on X equipped with the supremum
norm. This is a commutative C*-algebra under the pointwise algebraic operations.
Give a continuous function f : X — Y, then C(f) : C(Y) — C(X) is defined by

C(f)(g) :=gof € C(X).
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For the case at hand, we have the morphisms ¢|c : C — ¢(C) between two
commutative unital C*-algebras which by Gelfand duality induces a continuous map

Gpsc = Z(9(0)) — Z(0) (3.1.3)
A Adodlc. (3.1.4)

Since ¢ : A — B,then X(¢(C)) = ZS(C) = o*(ZB)cand T(C) = E“C“,therefore,

for each C € C(A), the above map translates to
Gpic : *(ZP)c — =2
We now would like to show that, for each C € C(A), Gy,c are the components of
the natural transformation Gy : ®* (£8) — =4, In particular we need to show that,
given an inclusion map i¢cr¢ : C' < C, the following diagram commutes
Gg:c
** (2% —— 3¢

O*(28)(icre) =A(icro)

@*(EB) $:C’ 5 E'A

Chasing the diagram clockwise, we obtain, for A € ®*(Z5)¢

OV 240 ) (A o dle)

(Ao glo)lc
= A|¢\C/ ol

(3.03)
Gp.c(Ag|e)

Gp.c (@*(ZP)(icrc)(M)).

24(icrc)(Gp.c(X))

(%11)

(%12)

This proves that the map G, : ®*(£8) — =4 is a natural transformation in

SetsC A7 Combining the two newly constructed maps ®* and Gy we obtain the
desired map

* (¢
58 2, p*(xB) 2 54,

The above discussion uncovers the fact that to each unital *-homomorphism ¢ :
A — B there is associated a map G, o ®* : ¥8 — 34 going in the opposite
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direction, i.e. we have a contravariant association. This finding is summarised in the
following Lemma [14]:

Lemma 3.1.1 Given two unital C*-algebras A,B € ucC* with a unital *-
homomorphism ¢ : A — B, then there exists a map

(®,Gy) = Gypo®*: 28 x4

between the respective presheaves going in the opposite direction.

In this Chapter we are interested in explaining the concept of flow of the spectral
presheaf put forward in [13]. To this end we need to define maps from a spectral
presheaf to itself. So far we have been able to define maps between two distinct
spectral presheaves the next step is to understand under what conditions such maps
are isomorphisms. The definition of an isomorphism between spectral presheaves
associated to two distinct algebras was given in [ 14].

Definition 3.1.3 Consider two unital C*-algebras A, B € ucC* with corresponding
spectral presheaves >4 and ©5, respectively. An isomorphism between >4 and T
consists of a pair (®, G4) where ® : Sets®Y — SetsC® is the essential geometric
isomorphism induced by the order-isomorphisms® ¢ : C(A) — C(13) (base map)
and Gy : ®*(2%) — 4 is a natural isomorphism, i.e. each component (Gs)c -
(®*(ZB)) e — Z“é is a homeomorphism for all C € C(A). As in Lemma 3.1.1 the
action of (®, G,) is defined by

Gypo @ : 38 — oA

If A = B then an isomorphism (P, G,) : ¥4 — ¥4 s called an automorphism.
An order isomorphism is essentially an isomorphism of partially ordered sets, where
the isomorphism is extended to the partial order as well (recall that the categories
C(A) and C(B) are posets). The formal definition is as follows

Definition 3.1.4 Given two posets P and Q, f : P — Q is an order isomorphism iff
f is a bijection such that, for every x,y € P, then x <p y if and only if f(x) <o f(»).
We would now like to characterise a way of obtaining isomorphisms of spectral
presheaves as defined in Definition 3.1.3. This is given by the following theorem
[14]:

Theorem 3.1.1 Given two unital C*-algebras A,B € ucC* with associated
spectral presheaves * and X respectively, then there exists an injective map

Iso(A, B) — Iso(Z5, =4)

3Note that from [50, 4.2.7] we know that when the base map ¢ is surjective on objects then the
induced essential geometric morphisms is surjective. Moreover, from [50, 4.2.12] we know that
when the base map ¢ is full and faithful, then the induced essential geometric morphisms is
an inclusion. It then follows that in our case the essential geometric morphism induced by the
isomorphism ¢ is itself an isomorphism.
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where Iso(A, B) denotes all isomorphisms from A to B and Iso(£®B, =) denotes
all isomorphisms from 5 to zA,

In order to prove this theorem we will need to introduce the notion of a partial C*-
algebra also sometimes denoted as a piecewise C*-algebra. The following definition
was inspired by Kochen and Specker’s consideration of partial algebras [51].4

Definition 3.1.5 ([72]) A piecewise C*-algebra is a set A equipped with the
following pieces of structure:

1. a reflexive and symmetric relation I € A x A. If o 1L B, we say that « and B
commute;,

. binary operations 4, : 1L — A;

. a scalar multiplication - : C x A — A;

. distinguished elements 0, 1 € A;

. an involution * : A — A;

.anorm || —||:A— R;

AN AW

such that every subset C C A of pairwise commuting elements is contained in some
subset C C A of pairwise commuting elements which is a commutative C*-algebra
with respect to the data above.

The piecewise C*-algebras in which the relation L is total are precisely the
commutative C*-algebras. Our choice of the symbol “1L” is explained by the special
case of rank one projections, which commute if and only if they are either orthogonal
(L) or parallel (]|).

Definition 3.1.6 ([72]) Given piecewise C*-algebras A and B, a piecewise -
homomorphism is a function ¢ : A — B such that

1. Ifa It B in A, then

C) i),  Lap) =L(@iB).  la+p) =Ll@+lp). (G.1.5)

2. ¢(za) = z¢ () foralla € Aand z € C,
3. {(a*) = () forall o € A.

4.7(1) = 1.

Example 3.1.1 1t is well-known that there is no *-homomorphism M, — C for
n > 2. The Kochen-Specker theorem [51] states that for n > 3 not even a piecewise
*-homomorphism M, — C exist.

The collection of piecewise C*-algebras and piecewise *-homomorphisms form
a category which we denote by pC*alg,. Still following [72], there is a forgetful

“For this reason van den Berg and Heunen introduced their definition as partial C*-algebras, but
the term was subsequently changed to piecewise C*-algebra [41].
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functor® C(—) : C*alg, — pC*alg, sending every C*-algebra A to its normal part,
CA ={aecA|aa”™ =a*a}. (3.1.6)

This set forms a piecewise C*-algebra by postulating that o 1L 8 holds whenever
« and B commute. C(—) is easily seen to be a faithful functor that reflects
isomorphisms. In the language of property, structure and stuff [59], this means that
it forgets at most the structure. So we may think of a C*-algebra as a piecewise C*-
algebra together with additional structure, namely the specifications of sums and
products of noncommuting elements.

Example 3.1.2 For A,B € C*alg,, any Jordan homomorphism R(4) — R(B)
extends linearly to a piecewise *-homomorphism C(A) — C(B).

Given the category of partial C*-algebras it was shown in [14] that there
exists a bijective correspondence between isomorphisms of partial C*-algebras and
isomorphisms of the respective spectral presheaves.

Theorem 3.1.2 Let A and B be unital C*-algebras whose spectral presheaves
are S and B respectively. There exists a bijective correspondence between
isomorphisms (®,Gy) : »8 — ¥4 and isomorphisms T : C(A) — C(B) of
the associated partial C*-algebras. This means that C(A) ~ C(B) iff =4 ~ %5,
The way to prove this theorem is to show that every isomorphism (®, Gy) : L
¥ induces an isomorphism 7 : C(A) — C(B) and vice versa.

Lemma 3.1.2 ([14]) Let A and B be unital C*-algebras whose spectral presheaves
are T4 and ® respectively, then each isomorphisms (®, Gp) : ¥8 — A induces
an isomorphisms T : C(A) — C(B).

Proof Since (®,Gy) : ¥8 — A4 is an isomorphism, the associated base map
¢ : C(A) — C(B) is an order-isomorphism. Therefore, for each C' € C(A) the
associate map

. B —_ B A
g¢;c/ o8 (Z )C’ = Ey(C/) — EC/
is a homeomorphism. Gelfand duality then determines a unique unital isomorphism

ke o C(25) — C(28)
ffoGse.

The unit of the adjunction for Gelfand duality is given by

1 iduec —> C(_) oX

SWe recall that a forgetful functor “forgets” or drops some or all of the input’s structure or properties
‘before’ mapping to the output.
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such that for each C’ € C(A) we get the (components) isomorphisms
ne o €' — C(TH)
Natcry - C(Egcr) = d(C).

These two maps together with the map k¢ can be combined to define, for each
C’' € C(A) an isomorphism

ac n;(lc/) okcrone : C' — ¢(C).

We will use such a map to define the desired isomorphism between the partial C*-
algebras as follows

T:C(A) — C(B)
A ac(A)
where C € C(A) is any context such that A € C. We now need to show that this map

is well defined, i.e. that it does not depend on the context C containing A. This can
be easily seen from the fact that the following diagram commutes

C — % L §(C)

ic/c Plicre)

C——=§(C)

where C,C’ € C(A) such thatA € CandA € C',and icc : C' <> CinC(A). O
On the other hand, we also have the “reverse” of the above lemma, namely

Lemma 3.1.3 ([14]) Given the unital partial C*-algebras C(A) and C(B), every
isomorphism T : C(A) — C(B) induces an isomorphism (®, Gy) 8 nA

Proof Given an isomorphism 7 : C(A) — C(B), then, for every C € C(A), the
restriction T'|¢ : C — C(B) is a unital *~homomorphism which implies that T'|¢(C)
is norm-closed and hence a unital abelian C*-subalgebra of C(B), i.e. T|c(C) €
C(B). Since for C' C C then T|c(C") € T|c(C) and it is possible to construct an
order preserving map

é: C(A) — C(B)
C+ T|c(C)
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whose inverse is

“L.cB) - C(A)
Cr T e(0)

where 77! is the unital partial isomorphism inverse of 7. The fact that ¢ has
an inverse, also defined in terms of an isomorphism 77!, implies that ¢ is an
order isomorphism and hence the desired base map. This induces the essential
geometric isomorphism @ : Sets“@ — Sets®® . We now need to define the
natural isomorphism G,. This will be done in terms of the map T as follows: for
each C € C(A)

Gpic + (@*(5)c = 25 | — =8

AP—)/\OTlc.

Clearly this map is an isomorphism by construction. Since it is defined for each
C € C(A), these are the components of the natural isomorphism

Gy : ©*(ZP) - 2B,

O
Putting together Lemmas 3.1.2 and 3.1.3 we obtain a proof for Theorem 3.1.2.
In [36] is was shown that there exists a correspondence between order isomor-
phisms ¢ : C(A) — C() and unital quasi-Jordan isomorphisms. Before stating and
proving this theorem we will need to define what a quasi-Jordan isomorphism is.

Definition 3.1.7 Given a unital C*-algebra A, the set A, of self-adjoint operators
in A forms a real unital Jordan algebra with product

A A A A 1 A A
VA Be A, A-B (AB+BA)

Definition 3.1.8 Given two real unital Jordan algebras A, and By,, then a quasi-
Jordan homomorphism is a unital map

Q: Ay — Bia
such that for all C € C(.A), then the restriction
Olc,, : Coa = Bya
is a unital Jordan homomorphism and thus Q is required to be linear only on

commuting self-adjoint operators, i.e. a quasi-linear map. Clearly Q preserves the
Jordan product on commuting operators since if AB = BA, then A - B = AB.
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If Q is a bijection with inverse Q~!, which is itself a quasi-Jordan homomor-
phism, then Q is a quasi-Jordan isomorphism.

From the above definition it is clear that there exists an intimate connection
between the Jordan algebra 4, associated to a unital C*-algebra A and the partial
algebra C(A) associated with A. In particular, Ay, is the self-adjoint part of C(.A),
therefore any partial *-isomorphism 7 : C(A) — C(B3) restricts to an isomorphism
T|so : Asa = B,y and any unital quasi-Jordan isomorphisms Q : A, — B;, extends
linearly to a partial *-isomorphism.

Theorem 3.1.3 ([36]) Given two unital C*-algebras A and B such that neither are
isomorphism to C* or B(C), then

Iso(C(A),C(B)) ~ Iso(As, Bsa) =~ Iso(C(A), C(B))

where Iso(C(A), C(B)) is the set of all order-isomorphisms, Iso( Ay, Bs,) is the set
of all unital quasi-Jordan isomorphisms and Iso(CA, C(B)) is the set of all partial
*-isomorphism.

An immediate consequence of Theorems 3.1.3 and 3.1.2 is the following:

Theorem 3.1.4 Given two unital C*-algebras A and B, such that neither are
isomorphism to C* or B(C) then

ISO(EB, E'A) >~ Iso(Asq, Bia)

where Iso(3B, £4) denotes the set of isomorphisms between the presheaves L5
and T4, while Iso( Ay, Bs,) denotes the set of unital quasi-Jordan isomorphisms
between the real unital Jordan algebras Ay, and B,.

3.2 Group Action as Flows on the Spectral Presheaf

In this section we will construct flows on the spectral presheaf as defined in [13].
These are given in terms of maps between the spectral presheaf and itself. Therefore,
we need to adapt what said in the previous section, to the case in which 4 = B, i.e.
the two unital C*-algebras coincide. As a first step we modify Definition 3.1.3 to
obtain:

Definition 3.2.1 Given a unital C*-algebras A € ucC* with corresponding spectral
presheaves . An automorphism on X% consists of a pair (P, Gy) where & :
SetsY — SetsCA) is the essential geometric isomorphism induced by the order-
isomorphisms ¢ : C(A) — C(A) (base map) and G : ®*(=*) — =4 is a natural
isomorphism, i.e. each component (Gg)c : (P* (=) — E“C“ is a homeomorphism
for all C € C(A). As in Lemma 3.1.1 the action of (®, G,) is defined by

Gyo @*: A —» oA
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The set of all automorphisms on X is denoted by Aut(=*) and it forms a group
under the operation

Aut(S4) x Aut(S4) — Aut(S4)
(@,Gp), (P, Gy)) > (@' 0 @,G5 0 Gy)
where @ o ® : Sets® — Sets4 is the essential geometric morphism induced

by ¢’ o¢p : C(A) - C(A) and G, o g(;, is the natural isomorphism such that, for
each C € C(.A) we have

’ A A A

We will now show that indeed Aur(S*) forms a group. As a first step we will prove
associativity, namely that ((®, Gg) o (', G, ) o (q>”,g;,,) = (®,Gy) o (P, ;/) o
(@, Q;,, ). This is equivalent to showing that

(®" 0 (¥ 0 ®),(Gy0Gy)0G,r) = ((® 0®)o® Gyo(Gy oGy)).

To prove the above equality we need to show that ®” o (& o @) = (®" 0 ®') o
and (Gy o Q¢/) Gy = Gy o (G © Gyr). We know that the essential geometric

morphlsm ®" o (¥’ o D) is induced by the base map ¢ o ((;S’ qs) :C(A) —» C(A)
while (®” o @) o @ is induced by the base map (¢~ o ¢') o ¢ : C(A) — C(A).
However, for each C € C(A) we have

¢ 0@ 0d)C) =3 o (@ B0)) =¢ (§PO)))

and

(@ 09 od(C) = (§ 0d)(P(C)) = (&' @(0))).

Therefore " o (®' o ®) = (& 0 @) o P.
To prove that (Gy 0 Gg) 0o G 5 = Gpo(Gy oG ¢~) we note that
. ” ’ —}
(g¢ ° g¢/) o g¢” . ((q> © (q> © qD)) z )C E¢”(¢ (¢(C)))

A A
- 2&/(&(0) = 50 7 XC

and
A
PIAN

7)o ! / * A = "fl ~ o~ ‘f.4 -~ ‘f.4
Gy oGy oGyr) - (B 0 @) ®)" XN = 5 5oy ™ Ziaion ~ Zoio)
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From the previous result it then follows that indeed (G 0 Gg/) 0 G 5 = Gy o (Gy o
G.).
¢

Next we will show that the automorphism (Id, id) is the identity element. In fact
(Id,id)o (D, Gy) = (Pold, idoGy) = (P, ¢) = (Ido®, Gyoid) = (P, Gy)o(ld, id).

Finally, given any element (®, Gy) with underlying base map q;, then the element
(&7, g;il) with underlying base map ¢! is its inverse. In fact,

(@71, g;_ll) 0 (®,Gy) = (Pod!, gdj_ll 0Gy) = (Id,id) =(®"' o ®,Gy 0 g;_ll)
=(®,Gy) 0 (d7, g;,%).

We would now like to prove the following theorem [14]

Theorem 3.2.1 Given a unital C*-algebra A with associated spectral presheaf
A, then there exists an injective group homomorphism

Aut(A) — Aut(S4)°P (3.2.1)
¢ > (@,Gy) = Gy 0 D™

In order to prove this theorem we need to consider Theorem 3.1.2 for the special
case in which A = B. This theorem, then, tells us that there exists a (contravariant)
group isomorphisms

Aut(E4)P S Attty (C(A)) (3.2.2)

between the group of automorphisms on >4 and the group of unital partial *-
automorphism on the partial C*-algebra C(.A).

The fact that the above map preserves the group structure can be seen from
the fact that, given two automorphisms (®, Gs) and (®',G'y) in Aut(E4) with
corresponding automorphisms 7" and 77 in Autp,(C(A)), then the composite
automorphism (®, Gy) o (®’, G'y) gets mapped to the composite 7" o 7.

We can now prove Theorem 3.2.1.

Proof Given an automorphism ¢ : A — A on the C*-algebra A, this gives rise to
an automorphism ¢|¢(4) : C(A) — C(A) by restriction. From the above discussion
this corresponds contravariantly to an automorphism on 4. Therefore we obtain
a contravariant group homomorphism from Auz(A) to Aut(*). We now need to
show that this homomorphism is injective. In particular given two automorphisms
a,B : A — Aif they are distinct then there will exist an A € C(A) such that
a(A) # B(A), therefore a|cay # Blem) which implies by Theorem 3.1.2 that
these corresponds to two distinct automorphisms on . O

The reason why the map of Eq.(3.3.9) is not surjective is because the group
Autya(C(A)) contains more elements then the group Aut(.A). In fact, given any
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automorphism o € Aut(.A), this induces an automorphism o|¢(ay € Autpar(C(A)).
However the converse is not true, i.e. not every unital partial *-automorphisms on
C(A) gives rise to an automorphism on A.

If we consider Theorem 3.1.3 for the case in which A = B, we obtain the
following group isomorphisms

Autorg(C(A))) = Aut(C(A))) = Aut(Asq).

This together with Theorem 3.2.1 proves that

Theorem 3.2.2 Given a unital C*-algebra A which is neither isomorphic to C* not
B(C?), then

Aut(C(A)) ~ Aut(S4)°.

We now would like to consider a special case of automorphisms on a unital C*-
algebra A, i.e. inner automorphisms.

Definition 3.2.2 Given a unital C*-algebra A, then each element Ueu (A) of the
unitary group U (A) of A induces an inner automorphism

¢02A—>A

A UAU™.

As a corollary of Theorem 3.2.1 we have:

Corollary 3.2.1 Given a unital C*-algebra A with associated spectral presheaf
YA, then there exists a group homomorphism

U(A) — Aut(Z4)P (3.2.3)
U (®4.Gp) = Gy o P,

To understand how each automorphism (®;, G;;) is constructed we recall that each
inner automorphism ¢;, induced an order automorphism on C(.A)

¢y : C(A) — C(A)
C > UCUx

with the associated essential geometric morphism &, : SetsCA” 5 SetsC (AT
whose inverse image part is

@}} - SetsCA” 5 SetsCA”

A % ().
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As described in Sect.3.1, to each such essential geometric morphism there is
associated a natural isomorphism G; : CIJB(EA) — ¥4, such that for each
C € C(A) we have

Gp s PE(ENe - T¢
A Ao ¢f]|c
Similarly, as in Sect. 3.1, we then obtain an automorphism of the spectral presheaf
(®4,Gp) =Gy o @7 : T4 - A,

Clearly the inverse (P, QU)_I = (P, Gp) is the automorphism induced by U*,
while the identity element 1 induces the identity automorphism (®;, G;) = Ids.a.

It is important to note that the map (3.2.3), differently from the map (3.3.9), is
not injective. This is because each element U, which belongs to the centre Z(A)
of A, induces the identity automorphism (Id, id) on . To fix this problem it was
suggested in [13] to consider the quotient®

M(A)pmper = M(A)/M(A)O

where U (A)y = U(A) N Z(A). Having done this we obtain:

Corollary 3.2.2 Given a unital C*-algebra A with associated spectral presheaf
A, then there exists an injective group homomorphism

U(A)proper - Aut(ZA)Op (324)

[0] = (Py.G5) = Gp o CD}‘]

for U € [U].

Now that we have defined automorphisms on the spectral presheaf we would like to
understand how these are defined in the context of topos quantum theory. Therefore,
instead of considering general unital C*-algebras, we will focus on von Neumann
algebras and how, in that case, automorphisms on the spectral presheaf are defined.
This will be the topic of the next section.

6 As stated in [13], this quotient is unproblematic when considering single systems and their unitary
evolution.
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3.3 From C*-Algebras to von Neumann Algebras

Most of the definitions and theorems developed in the previous sections can be
easily adapted to the case of von Neumann algebra however, for the sake of
completeness we will, nonetheless, report them here. The reader is also referred
to [14].

In [26] Chapter 9 we introduced the topos analogue of the state-space. This was
given by the spectral presheaf >V of a von Neumann algebra V, which was defined
as follows:

Definition 3.3.1 Given a von Neumann algebra A/ we denote the category of its
abelian subalgebras (which share the unit element) by V(N). This is a poset ordered
by inclusion, often referred to as the context category of N'. =V e Sets” ™7 is the
spectral presheaf associated with A/, which is defined on

— objects: forall V € V(N), E{/\[ := (V) is the Gelfand spectrum of V.
— Morphisms: for each morphism iysy : V' <> V in V(N), the associated presheaf
map is

SN (iyry) S - 2 (3.3.1)
A Al (3.3.2)

P (iyrv) is surjective, continuous, open and closed with respect to the Gelfand
topology.

We would now like to understand how maps between different state-spaces
associated to different quantum systems are defined. This is essentially an adaptation
of Definition 3.1.3, as applied to von Neumann algebras [14]. In particular we have:

Definition 3.3.2 Given two von Neumann algebras A" and M with corresponding
spectral presheaves =V and =M respectively, an isomorphism between >V and
=M consists of a pair (®, Gg) where ® : Sets — SetsC® is the essential
geometric isomorphism induced by the order-isomorphism ¢ : V(N) — V(M)
(base map) and G : o*(=M) - > is a natural isomorphism, i.e. each component
(Gg)c : (@* (M) — EJC\[ is a homeomorphism for all C € V(N). As in
Lemma 3.1.1 the action of (®, G,) is defined by

Gpo®*: M - 3N,

If N' = M then an isomorphism (®, Gy ) : sV - =N is called an automorphism.
Similarly, as for the C*-algebra case, the collection Aut(EN ) of automorphisms on
= forms a group.

We now would like to prove that there exists a bijective correspondence between
order-isomorphisms ¢ : V(N) — V(M) and spectral presheaf isomorphisms
(D,Gy) : sV - =N This correspondence is given by the following theorem
[14, Thm. 5.14]:
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Theorem 3.3.1 Consider two von Neumann algebras N' and M without type I,
summands, whose associated spectral presheaves are >N and =M, respectively.
Assume also that N and M are the Jordan algebras’ of N and M respectively.
Then to every isomorphism N M there corresponds a unique Jordan *-
isomorphism T : M — N and vice versa, to each Jordan *-isomorphism T :
M — N there corresponds a unique isomorphisms (®, Gp) : N 5 wM

Before being able to prove this theorem we need a few more results. First of all
we need the analogue of Theorem 3.1.2 for von Neumann algebras. In particular:

Theorem 3.3.2 Let N and M be unital C*-algebras whose spectral presheaves
are SV and M, respectively. There exists a bijective correspondence between
isomorphisms (®, Gs) : sM = N and isomorphisms T : C(N) — C(M) of
the associated partial von Neumann algebras. This means that C(N) ~ C(M) iff
N~ wM,
The proof is a straightforward consequence of Theorem 3.1.2.

In Definition 3.1.5 we introduced the notion of a partial/piecewise C*-algebra.
This definition also applies for partial/piecewise von Neumann algebras. With
respect to the latter, we obtain the following theorem [14]:

Theorem 3.3.3 Given two von Neumann algebras N and M with associated
partial von Neumann algebras N and M respectively, then

Iso(P(M), P(N)) =~ Iso(C(M, C(N))

where Iso(P (M), P(N)) is the collection of all isomorphisms between the complete
orthomodular lattices P(M) and P(N), while Iso(C(M, C(N) is the collection of
all isomorphisms between the partial von Neumann algebras C(M) and C(N).
Therefore C(M) ~ C(N) iff P(M) =~ P(N).

Proof In order to prove this theorem we will consider, on the one hand an
isomorphism 77 : C(M) — C(N) and construct the associated isomorphism
T : P(M) — P(N), on the other hand we will consider an isomorphism
T : P(M) — P(N) and construct the corresponding isomorphism 77 : C(M) —
CWN).

Consider now an isomorphism 77 : C(M) — C(N). Since it is an isomorphism
it preserves multiplication and involution, therefore, given any P € P(M) € C(M)
we obtain

T'(P) = T'(P*) = T'(P)?>, and T'(P) =T (P*) = T'(P)*.

Hence T'(P) € P(N) and T := T'lpmy © PM) — P(N) is a well defined
bijection. Next we need to show that T, as defined above, preserves the orthomodular

"Note that in this context the Jordan algebras A'and M associated to the von Neumann algebras
N and M respectively, are JBW-algebras, hence, their ground field is C.
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lattice structure. In particular, we need to show that it preserves complements, all
joins, all meets and that it preserves and reflects the order <.

To this end consider two elements P and Q in P (M), such that P < 0 de.
13@ = 13), then,

T'(PQ) = T'(P) = T'(P)T'(Q).

Therefore T’ (13) <T (Q). To show that T” reverses the order we consider its inverse
T'~!, which is also an isomorphism of partial von Neumann algebras. Then given
S, T € P(N), such that § < T, we have that

T'GT) =T'S) = T'RT (D).
Hence T'~'(S) < T""1(T) and T’ reflects the order.

Next, consider a projection Pe P(M) and its complement 1-P. Applying T’
we obtain

TPy =10 -1#) =1-1®.

To show that 7" preserves all joins we consider a family of projections (Pi)ies €
P(M), not necessarily commuting. Applying the map 7’ we obtain that, for all
iel,

T'(P) <T'(\/ P) (3.3.3)

iel
which implies that
\/T'@) =T (\/ P).
iel iel

Since T'7! is the inverse of T", it preserves and reverses the order, hence,

T/—1(\/ T'(P) < T/—I(T/(\/ P)) = \/131‘). (3.3.4)
i€l iel iel
Moreover, for all i € I applying T'~! to (3.3.3) we obtain
ﬁi — T/—l T/(Pl) < T/—l (\/ T/Pi)
iel

therefore

\/ﬁi <7! (\/ T'P)). (3.3.5)

i€l i€l
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Combining (3.3.4) and (3.3.5) we obtain that
\/Pi=1""(\/TP)
iel iel

which is equivalent to
T'(\/ Py =\/T'P)).

iel iel

To show that 7" preserves all meets we proceed in a similar fashion. In particular,
for all i € I, we have that

T'(\P) =T'(P) (3.3.6)
i€l
therefore
(N P) < \T'P)). (3.3.7)
i€l i€l

Using the properties of 7~! we obtain that
(T (N\P) = \Pi =T (\T(®P)).
iel iel iel

Moreover, for all i € I, we have that

T'(P) = \T'(P)

ier
applying 7"~! we obtain that
TPy =P =T \ T (P,
i€l

Therefore

/\ﬁi >7! /\T/(i’i)

i€l i€l

which is equivalent to

AT P) < T\ P). (3.3.8)

i€l i€l
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Combining (3.3.7) and (3.3.8) we obtain that

N\T' (@) =T(/\ P).

i€l i€l

Therefore T := T'|(P(M)) defines an isomorphism from P (M) to P(N).
On the other hand, given an isomorphism T : P(M) — P(N), we construct an
isomorphism 77 : C(M) — C(N) in the following recursive way:

1. Consider self-adjoint operators, these are finite real-linear combinations of
projections, therefore we define

T'(A) = T’(Xn: aiP) = Xn:aiT(i’i)
i=1 i=1

where P;P; = §;and Y_ P; = 1.

2. Arbitrary self-adjoint operators, on the other hand, can be approximate in norm
by a family of real self-adjoint operators which are finite real-linear combinations
of projections. Therefore we define

T'(A) := lim T(A;)
1—>00

where the limit is taken in the norm topology.
3. Non-self-adjoint normal operators can be decomposed into a sum of self-adjoint
operators, therefore we define

T(B) := T'(A)) + iAs.
4. For the unit element 1 we define
T'():=1(1) =1.

This shows that 77 is a well defined map, but it remains to show that it is, indeed,
an isomorphism, i.e. that it preserves the algebraic structure. The preservation of
involution can be shown from the fact that T(P*) := T'(P*) = (T'(P))* =
(T(i’))*, together with the definitions (a)—(d) above. To show that 7’ preserves sums
and multiplications we first consider self-adjoint operators which can be expressed
as finite real-linear combinations of projections.

In particular, consider two self-adjoint operators A and B such that A =
Z?=l aii’i and B = Z?:l bipi, then A + B = ZLl(ai + bi)i)i and AB =
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> a;b;P;. Therefore

TG4+ B) =Y (@i + b)T(P)

i=1
=Y _aTP)+ Y _ bT(P)
i=1 i=1
=T'(A) +T'(B).

For multiplication we have instead that

TAT'B) =Y aT(P) > bT(P)
i=1 j=1

= aT®)(Y_ bT ()
i=1 i=1

= Z a,SUbjT(ﬁj)
i=1
= Z aibT(P;)
i=1
while
T'(AB) = ) " aibiT(P).
i=1
Therefore

T'(AB) = T'(A)T'(B)

Hence also multiplication is preserved. By continuity in the norm topology, the

action of T can be extended to all self-adjoint operators and, by linearity, to all

normal operators. O
We will now state a result proven in [25]

Theorem 3.3.4 Given two von Neumann algebras N and M without type I,
summands, there exists a bijective correspondence between isomorphisms T
P(M) — PN) of complete orthomodular lattices of projection operators and
Jordan *-isomorphisms T: M — N. This correspondence is given by

Tw T, st T(P):=TF) VPePM)

T =T, st T:= T|73(M).
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The last result needed to prove Theorem 3.3.1 is the following [13]:

Theorem 3.3.5 Given two von Neumann algebras N and M without type I,
summands and not isomorphic to C?, there exists a bijective correspondence
between order-isomorphisms ¢ = V(M) — V(N) and Jordan *-isomorphisms
T:M—N.

The proof of this Theorem is given in Sect. 6.2.

We have now all the tools to prove Theorem 3.3.1.

Proof

Theorem 5.1.6

Iso(ZV,=N) TR T Iso(C(M), C(N))

Theorem 3.3.3

o~ Iso(P(M), P(N))

Theorem 3.3.4

~ Iso(M,N).

O
As an immediate consequence of the above prove we also obtain the following
isomorphisms

Iso(=N, EN) ~ Iso(M, N)
Iso(C(M), C(N)) ~ Iso(M, N).

If M ~ (2, then we also obtain

Theorem 3.3.4

Iso(P(M),PN)) =~ Iso(M,N)

Theorem 3.3.5

o~ Iso(V(M), V(M)

where each ¢ € Iso(V(M), V(M) is the base map underlying an essential
geometric morphism (®, G4 ).

Having defined maps between state-spaces of different quantum systems, we can
now apply this definition to maps between the state-space of the same quantum
system. These maps will be then used to describe time evolution of the system. To
define such maps we simply apply the definitions given in the previous section in
terms of general C*-algebra to the case of von Neumann algebras. All proves will
then be a straightforward consequence of the proves given above. In particular, from
Theorem 3.1.2 we obtain:

Corollary 3.3.1 Given a von Neumann algebra N, we have the following group
isomorphism:

Aut(EV)P S Attty (CN).
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This together with Theorem 3.2.1 give us:

Theorem 3.3.6 Given a von Neumann algebra N, with associated spectral
presheaf N then there exists an injective group homomorphism

Aut(N) — Aut(ZN)oP (3.3.9)

Moreover, as a consequence of Theorem 3.3.3 we obtain
Corollary 3.3.2 Given a von Neumann algebra N, there exists a group isomor-
phism
AMI(P(A/)) = AutparT(C(N))

where P(N) is the complete orthomodular lattice of projections in N" and C(N') is
the partial von Neumann algebra associated to N
On the other hand, as a consequence of Theorem 3.3.4 we obtain:

Corollary 3.3.3 Given a von Neumann algebra N without summands of type I,
there exists a group isomorphism®

Aut(P(N)) ~ Aut(N)

where P(N') is the complete orthomodular lattice of projections in N and N is the
Jordan algebra associated to N.
Finally from Theorem 3.3.5 we obtain:

Corollary 3.3.4 Given a von Neumann algebra N without type I, summands and
not isomorphic to C?, then there exists a group isomorphism

Aut,rg(VN)) =~ Aut(N)
between the group of order automorphisms ¢ : VW) — (V(N) and the group of
Jordan *-automorphisms T : N' — N.

The above discussion uncovers the fact that we effectively obtain six group
isomorphisms as follows:

Autorg(VIN) =~ Aut(N) =~ Aut(P(N)) = Auttyer(C(N)). (3.3.10)

8Here Aut(N') represents the group of Jordan *-automorphisms associated to .
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3.4 Time Evolution of Quantum Systems

In this section we will develop a way of defining time evolution of quantum systems
in the context of topos quantum theory. This was put forwards in [13].

Given a von Neumann algebra A/, Stone’s theorem tells us that any self-adjoint
operator A € N induces a strongly continuous one-parameter group of unitary
operators in V, as a representation of R in U (N):

U:R—>UWN)
s Ut) i= U, = ™
Each U, induces an inner automorphism as follows:
by N >N
A DADE
We then obtain a representation of R in Aut(N):

R — Aut(N)
t— (,ZS@.

Since each ¢;; (which we also denote by ¢, for simplicity) induces an automorphism

on Aut(EN ), we effectively get a representation of R on Aut(EN ). Such a
representation is called a flow on the spectral presheaf .

Definition 3.4.1 Given a von Neumann algebra A, a flow on the spectral presheaf
>V associated to an operator A, is a representation

Fi: R — Au(=V)
= (tha gzp,).

These flows on the spectral presheaf will allow us to define time evolution in
topos quantum theory. We recall that in canonical quantum theory time evolution
is represented in two distinct, but related ways, depending on whether one chooses
the Heisenberg picture or the Schrodinger picture. In particular, in the Heisenberg
picture physical quantities change in time, while states remain fixed. On the other
hand, in the Schrodinger picture physical quantities remain fixed while, states
change in time. In [13] it was shown that both “types” of time evolution can be
represented in topos quantum theory utilising the flows on the spectral presheaf.
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3.4.1 Heisenberg Picture

In the Heisenberg picture, as mentioned above, time evolution is relegated to
physical quantities while states remain fixed. In topos quantum theory, as explained
in [26], physical quantities are represented as maps S(A) . =V > R® from
the state-space to the quantity value object. Mostly, when doing physics, we are
interested in determining the values of physical quantities, hence we are interested
in establishing the truthfulness or falsehood of propositions regarding values of
physical quantities. Such propositions are generally of the form “A € A”, which
states that the quantity A takes values in the interval A € R. In topos quantum
theory propositions of this type are identified with clopen sub-objects of the
spectral presheaf [26]. Since such propositions pertain physical quantities they will
undergo time evolution. It is precisely the time evolution of quantum propositions
that we will analyse in this section. In topos quantum theory propositions are
represented by clopen sub-objects of the spectral presheaf, therefore time evolution
of propositions will be defined through the flow of the spectral presheaf as defined
in Definition 3.4.1.

In what follows we will firstly define the action of the flow of the spectral
presheaf on the bi-Heyting algebra Subcl(EN ) (see Chap.2) of all clopen sub-
objects of the spectral presheaf and then restrict it to only quantum propositions.

As a first step we need to show that automorphisms (@, Gs) of the spectral
presheaf map clopen sub-objects to clopen sub-objects. Recall that:

* (¢
sV 2L o (sN) 2 sV

Given any clopen sub-object S € Suby =™ we want to show that (®, Gy) maps it to
another clopen sub-object in >N In particular, for each V € V(N we have

N
(CD*(S))V = S¢(V) c E¢(v)-
If we then restrict the action of G, v to the sub-object ($*(S))v, we obtain
Gov (@ ($)v) € 2.

To show that the collection Gy v((®*(S))v) for all V € V(N) forms a sub-object
of =, we need to show that given an inclusion maps iyry @ V' <> V then
Gpvr ((D*($))v7) S Gpv((P*(S))v). From the fact that § € Sub (V) we have
that

gd),V’((q)* S)v) = S¢(v/) < S¢(V)-
From the fact that G, is a natural isomorphism we then have that

Go.v ((D*(S))v) S Gpv((2*(5)v)
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This shows that indeed the automorphisms (P, Gy) of the spectral presheaf map
clopen sub-objects to clopen sub-objects. Hence each (P, Gy) induces a bijection
& : Suba(ZN) > Suba (=)
S Gy (P (9)).

We now need to analyse whether the bi-Heyting structure of Subcl(EN ) is
preserved by ¢. In particular we need to show that given two sub-objects S, S, €
Subcl(ZN ), suchthat§; < S,,then¢(S;) < ¢(S,). Applying the various definitions
we obtain that, for each V € V(N),

P(S)v = Gov(P*(S))v)
= gzp,V(Sl@(V))
- g¢,V(SZ,¢(V))
= ¢(S)v

where the C is given by the fact that Gy v is a natural isomorphism and S, 4, <

S5 o)
B (V)
The collection of automorphisms on the spectral presheaf forms a group

Aut(EN ), hence the map ¢ has an inverse q&_l which is order reversing. This
implies that ¢ preserves the bi-Heyting structure of Suba(EV).

In [13] the author decided to work with the inverse ¢_1 to define the action on
clopen sub-objects. This was motivated by the fact that the automorphisms (®, G4)
on the spectral presheaf are interpreted as measurable functions while the collection
of clopen sub-object Subcl(EN ) is interpreted as the algebra of measurable subsets.

In terms of qb_l we obtain the following:

Lemma 3.4.1 Given a von Neumann algebra N there exists an injective group
homomorphism

Aut(EN) = Autpiggey (Sub(SN)°P
(@.Gy) > ¢
where
¢ : Sub(SV) — Sub (V) 34.1)

S G5 (@7)*(S)).

In order to understand how ¢_1 is defined we consider the inverse of (P, Gy),
which is (®,G,)™! = (®7'.G;"), where &' : Sets"™) s Sets’™) s
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the essential geometric automorphism induced by ¢~! : V(M) — V(N) and
g¢—1 S (@ H*(=) > =V is the natural isomorphism with components, for each
V € V(N), defined by

Gov: (@) &)y =)L) » =Y (3.4.2)
A AoT !y,

The map 77! : N — N is the Jordan *_automorphism associated to ¢! via
Eq.(3.3.10), hence T !y : V — ¢~ 1(V).

We have seen in Lemma 3.4.1 that the automorphism qb_l : Subcl(EN ) —
Suby (=) is defined on clopen sub-objects as ¢>_1(S) = G;'((@71)*(S)). Each
clopen sub-object corresponds to a projection operator via the isomorphism defined
foreach V € V(N) by

Sy : P(VN)) = Suba(=V)y (3.4.3)
P> {reSNAP) =1}

. . . -1 .
hence we are interested in analysing how ¢ = “acts” on the corresponding pro-
jections. In particular it was show in [13] that the projection operators (one for

each V € V(N)) corresponding to the clopen sub-object qb_l(S) are given by the
projection operators corresponding to the sub-object S, shifted by the Jordan *-
automorphisms 7 which corresponds (contravariantly), via Egs. (3.2.2) and (3.3.10),
to the automorphism (®, Gy).

Lemma 3.4.2 Consider a von Neumann algebra N with no type I, summands
whose spectral presheaf if us™' and an automorphism (®,Gs) : Vo 2N

with associated automorphism qb_l : Subcl(EN) — Subcl(EN). For each S €
Subo(ZN) we define, for all V e V(N

o — -1
P¢_l(s)v = 6V1(¢ S)v);
b=l S, Li 1) Ssm11) = G411 1, ((@TH*())w).

Then, for all V € V(N)

Py

P19, = Tlo=1on(Ps, ) (3.4.4)

Proof From Eq. (3.4.3), we know that, given any sub-object S € Suba (=), then
foreach V e V(N), A € Sy iff A(Ps,) = 1. Therefore we have

)=1

(T voTly—1y,=id)
—

A. (S S¢_1(V) <:> A.(PS¢71(V)

AoT Ny o Tlym1w)(Ps, ) = 1
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= Ao T ' )(Tly-10)(Ps, ) =1
G4 A
= ¢y W (Tlg-10v) (s, ) = 1.
But
A€ Symiy = (@) Sy <= ¢y (A) € 6 (@) (S))
G4l -1
=o'l e@ S)y)
— ¢;1(x)(13¢_1(s)v) =1
This implies that
T|¢*1(V)(i’s¢fuv>) - 13¢"(s>v'
O

We now consider Corollary 3.2.2. When applied to von Neumann algebras we
obtain:

Corollary 3.4.1 Given a von Neumann algebra N with associated spectral
presheaf s/, then there exists an injective group homomorphism

M(N)pmper - A“t(ZN)Op (3.4.5)
[0] > (®5.Gy) = G o @

for U € [U].
This Corollary, together with Lemma 3.4.1, proves the following:

Corollary 3.4.2 Given a von Neumann algebra N with no type I, summand and
not isomorphic to C?, then there is an injective group homomorphism

UN ) proper —> Auttpirzey (Sub(EN))*P
[0] - 65 =
for U € [U), and
Gp  Suby(EN) — Sub (ZN)
S G ((Pp )™ (5))

where @ is the automorphism induced by O Dpys-

We would now like to apply Lemma 3.4.2 for the case in which the automorphism
on the spectral presheaf is induced by an element U € U(N). In particular, given
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a von Neumann algebra A with no type I, summand, to each U € U(N) there
corresponds an automorphism ¢ . : SubdZN — SudeN therefore, for each
V € V(N), the equivalent of Eq. (3.4.4) is

~

By s, =Ubs,. 0 (3.4.6)

G (Sy) *yi

where Py (s = &, (¢« (S)v) and P, . = 6;1 voSamv)-

In order to understand why this is the case, we note that each element U € U(N)
induces an inner algebra automorphism ¢; : N' — N; A — UAD*. Being an
algebra automorphism it gives a Jordan *-automorphism, hence we can interpret ¢
as a Jordan *-automorphism. Hence we obtain:

Py 19y 7 Popeisy

Tly—1(v) (Psflw)) - ¢UPS¢[/* v = UPsy., U*.

Now that we have described how automorphisms on the bi-Hyeting algebra of
clopen sub-objects act, we can extend the definition of flow from flows on the
spectral presheaf to flows on the bi-Hyeting algebra Subcl(ZN ) [13].

Definition 3.4.2 (General Flows) Given aflow F : R — Aut(EN ) on the spectral
presheaf SV the associated flow F ' : R — Aut(Subd(EN )) on clopen sub-objects
is defined as the one-parameter group (F - (®)ier : Subd(EN ) —> Subd(EN ) such

that, given any ¢ € R, if F(z) = (®;, G;) then
F ') =6, Suba(SY) — Suba(sV)
S = G (@) ().

Definition 3.4.3 (Flows Induced by Unitaries) Given a self-adjoint operator A
affiliated with A/, this induces a one-parameter group of unitaries in A/, namely

(U)ier = (¢™),er. Utilising Definition 3.4.2, the flow (F;  ())ser on Subg(S)
associated to this one parameter group of unitaries is defined for all € R by
F3' (1) := ¢g, = Subu(ZN) — Suba (V)
S G ((quJt_l)*(S)).
Given an automorphism (®;,G;) its inverse (®;,G;)~" is equivalent to the

automorphism induced by —, ie. (®,,G,)~! = (®71,67! =)(P_,,G_,). This
implies that ¢t_1 = ¢_,, therefore for all t € R we have

F() =¢_, : Suby(SNV) — Suby(SV).
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Similarly, if we are considering the flow induced by one-parameter group of
unitaries, since U;” I'—= U_,, then for all t € R, we have

Fi () = ¢g_ + Suba(EN) — Suba(EV).

The above discussion elucidates how flows on the bi-Heyting algebra Subcl(ZN )
act on general clopen sub-objects S € Subcl(EN ). We now would like to restrict
our attention to those clopen sub-objects which represent quantum propositions,
i.e. those of the form 8”(15) which were defined in Definition 2.2.2. Since we are
interested in defining time transformations we will label each proposition by a time
label t € R. For example, the proposition A € A; ¢ signifies that at time ¢ the quantity
A has values in A. The projection corresponding to such a proposition would then
be P,. The topos quantum theory analogue of such a proposition is the clopen sub-
object SU(IA’,) of =V, We now would like to analyse how time transformations act
on these time dependent propositions. To this end we first of all analyse how time
transformations apply in standard quantum theory. As a convention we will denote
the initial time by fp = 0. Thus, consider a proposition A € A;0 at the initial
time O which is represented by the projection operator Py. At a later time 7 such a
proposition will have evolved to the proposition A € A;¢. Such a time evolution in
quantum theory is mathematically defined by a one-parameter group (ﬁ *)ier, such
that the projection operator P, representing the proposition A € A;¢t, is given by
P = U_PyU,.

The topos theory analogue of the proposition Poi is given by the clopen sub-object
8”(P0) while the proposition associated to P, = U_,POU, is 8 P, : U_,POU, It
was shown in [13] that the action of the flow on Subd(E ), induced by the one
parameter group’ (U_,)er, transforms §°(Py) into §°(P,).

Theorem 3.4.1 (13]) Consider the clopen sub-objects §°(Py),8°(P,) €
Subd(E ) which represent the same proposition at different time, and the flow

(Fy (t)),eR on Subcl(E ) induced by the one parameter group of unitaries

(U_,),G]R in N (such that U_, = e for some operatorA affiliated to N), then, for
allt e R

Fi ()8 (Po)) = 8°(P,).

Proof From the correspondence between projection operators and clopen sub-
objects of the spectral presheaf we have that for all V € V(N)

A

-1 Tl 08 _ % _ 7 ~ — 77 Db .
Sy (Fi @ PoDIv = Prt iy, = Pag00bony = U=Pyr

Po)pvir—,

°Similarly as done in [13, 14], from now on, we will define the one-parameter group by (f/_,),ER
rather than by (f],) rer- This is in accordance with the fact that, as seen above, in canonical quantum
theory time evolution is given by conjugating by f];* = U_, instead of U,.
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where the last equality follows from Eq. (3.4.6). If we now apply the definition of
outer daseinisation [26]'° to UiPyoip,), o We obtain for all V € V(N) that:

U—t
f]—fﬁS”(f’n)g,va_, U, = U, \UQU_, € P(OVU_)|UQU_, = Po}U,
= \(Q e PWM|U,QU-, = Py}
= N\{Q e PWV)|Q = U_PyU}
= 30(0—rﬁ00r)v
=Py pin
P,

Since the map Gy is an isomorphism for each V € V(N), it follows that

F (0(8°(Py)) = 8°(P,).

|
Generalising the above discussion, given any clopen sub-object S, € Subd(EN ),
representing a proposition at time 7y = 0, this gets mapped (in the Heisenberg

picture) to a proposition at a later time by the flow (F _l(t)),e]R on Subcl(EN ) as
follows:

S, 1= F (1(Sy) = ¢5,(Sy)- (3.4.7)

3.4.2 Schrodinger Picture

We will now analyse how time evolution can be implemented in topos quantum
theory in terms of the Schrodinger picture, i.e. states evolve in time while operators
stay fixed. In canonical quantum theory, states are identified with states of the von
Neumann algebra A associated with the quantum system. In topos quantum theory,
as explained in [26, Ch. 15], states are identifies with probability measures on =V,
The definition of a probability measure on =V is as follows:

Definition 3.4.4 A measure p on the state-space X is a map
w: Suby(X) — T'[0, 11> (3.4.8)

S = (Sy)vevry = (L(Sy))vevr) = (p(i)SV))VeV(N

10Recall that the definition of outer daseinisation is given by §° (f’) = /\{Q € P(V)|Q > f’}
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such that, the following conditions holds:

L w(®) = lygy.
2. forall S and T in Sub,(X) then u(S VvV T) + u(S AT) = u(S) + (7).

All operations of addition, meet and join are defined context-wise at each V €
V(N).

The fact that to each such measure there is associated a state p is given by the
following theorem [26, Th. 15.2]:

Theorem 3.4.2 Given a measure [, as defined above, then there exist a unique
state p “associated” to that measure.

In [13] the author gave an alternative but equivalent definition of a probability
measure on XV. The reason being that such an alternative definition better lends
itself to describe time evolution in terms of the action of one-parameter group of
unitaries on the set of measures. In particular in [13] probability measures on =V
are defined in terms of global sections of the presheaf of classical probabilities. This
is defined as follows:

Definition 3.4.5 Given a von Neumann algebra A with associated spectral
presheaf >V, the presheaf CP of classical probability measures on ¥V is defined
on:

— objects: for each V € V(N)
CP, = {my : Subs(ZN)y — [0, 1]}

where my(Z)) = 1. Given .S, € Suby(EV)y, then my (S U S,) + my(S; N
S2) = my(S1) + my(S;) therefore, my is a finitely additive probability measure.

— Morphisms: for each map iysy : V' < V the associated presheaf morphism is
given in terms of pushforwards as follows'':

CP(iyry) : CP, — CPy,
mys > My o EN(iV/V)_l.

We now will show the correspondence between global elements of CP and states

on N.

Theorem 3.4.3 ([13]) Given a von Neumann algebra N with no type I, summands,
then there exists the following isomorphism of convex sets:

I'CP ~ S(N)

HRecall that, for each V/ C V, the morphisms =N (iyry) are continuous and hence measurable.
This implies that the inverse =N (iy'v)~! maps measurable sets to measurable sets.
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where T CP is the set of global section of CP while S(N') is the set of states of N'.

Proof Given a state p on the von Neumann algebra V, then for each V € V(N) the
map

plv:P(V) —[0.1]
P p(P)
is a finitely additive probability measure. In fact, for all P, Q € P(V) such that

i’@ = 0, then

plv(P + Q) = plv(P) + plv(Q)

while

plv(l) = 1.

For each V € V(N), p|y can be “extended” to a finitely additive probability
measure on =V via the isomorphism &y : P(V) — Subd(EN)V; P {1 €
E(\/M(P) = 1} as follows:

plv o &yt Suba(SN)y — [0.1].

Therefore, for each V € V() it is possible to assign a finitely additive probability
measure p|y oSy, ! on V. Clearly the family (p|y 0 S},")vey(n,) is a global element
of CP.

On the other hand, given a global element m = (my)vey v of CP, then we can
define a finitely additive probability measure by

w:PWN)—0,1]
P> u(P) := (my o ay)(P)

where P € V C N. Here my o ay : P(V) — [0, 1] is a finitely additive probability
measure constructed from composing the finitely additive probability measure my :
Subo(EN)y — [0, 1] with the isomorphism ay. We now need to check that j is
well defined, that is, given V' C V then the measure M| p vy restricts to a measure
on P (V). This is indeed the case since (my)vey ) is a global section of CP hence,
forall V',V € N, such that V/ C V, then

(mV o O{V)|77(V’) = (mV/ o) ()[V/),
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Therefore, given a global section of CP we can construct a finitely additive
probability measure & on P(N). By Gleason’s theorem each u corresponds
uniquely to a state p,, of NV, such that p, |pv = p. O
From the above isomorphism we have that, given a state p, the associated global
element of CP will be m, = (m, v)vey) where, for each V € V(N), we have

mpy = plv o &y Suba(E) — [0, 1]. (3.4.9)

As mentioned at the beginning of this section, in [13] the author gives an
alternative definition of measures on =* in terms of global section of the presheaf
CP. This definition is given by the following Lemma:

Lemma 3.4.3 The convex set I'CP of global elements of CP is isomorphic to the
convex set M(ZN) of probability measures on =V as defined in Definition 3.4.4.

Proof To prove the above lemma we will construct two maps « : 'CP — M(EN )
and B : MEN ) — I'CP and show that they are inverse of each other. We start by
defining « as follows:

a:TCP— M(ZV)
m = (my)veyw) > m
where
i Suba(Z) — T[0, 1]Z
S = (Sy)vevn) = (my(Sy))vevm)-

We now need to show that /m, as defined above, is indeed a probability measure
on oV , i.e. we need to show that conditions 1-2 in Definition 3.4.4 hold. Clearly
(V) = (my(ZY))veva = lywy. Next, consider two sub-objects S,,S, €
Suby (TN, then for all V € V(N), we have

(m(S)) + m(S))v = my(S,,y) + my(Sy,y)
= my(Sy,y U Syy) +my(Syy N Syy)
= (m(S, v S,)v +m(S; AS,))v.

This shows that indeed /n is a probability measure on V. On the other hand we
define

B: MEN)—>rcp

m= = (Uy)vevn)
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where each py is defined as follows: given a clopen subset S € Subcl(E‘Jy ), then
there exists a clopen sub-object S € Subcl(ZN ) such that S, = S, then

iy : Suba(2) — [0.1]
S = p(($))(V).

Clearly, for each V € V(N) then MV(E{/\[) = M(ZN)(V) = 1. Moreover, for
any two disjoint subsets S, T € Subcl(E{/\[ ), there correspond clopen sub-objects
T,S € Subd(ZN), such that Ty, = T and S, = S§. It then follows that, for all
VeVWN)

py(SUT) = py((SVT)y)
= u(lSv V)
= (n(S) + u(T) — (S AT))(V)
= p@S)(V) + u(T)(V)
= pv(S) + pv(T).

This shows that, indeed, iy is a finitely additive probability measure on Subcl(Z()/ ),
therefore fi := (uv)veyv) € I'CP. By construction the two maps « and 8 are
inverse of each other. O

We are now interested in defining time evolution in terms of the Schrodinger
picture, that is, we want to define how probability measure on the state-space =N
evolve in time. To this end we first of all recall how unitaries act on states in
canonical quantum theory. In this context, given a normal state p : N’ — C with
associated density matrix p, such that p = tr(p—), then the action of a unitary Uis
given by

U-p = Utr(p—) := tr(UpU* =) = r(pU* — U) = p o

where ¢z« @ N — N is the automorphism induced by U*. In general, such a
definition of the action of a unitary can be applied to any state p, not necessarily
normal, obtaining U- pi=podp«.

In [13] it was shown that a similar definition applies to the action of unitaries on
probability measures on the state-space V. In particular, since to each state p there
is associated a probability measure m,, then to the time evolved state U- p there will

be associated the time evolved probability measure U- my = My, . Before proving

this result, however, we need to define what U- m,, actually is.

Definition 3.4.6 Given a state p : N/ — € with associated probability measure
m, € T'CP, then the action of a unitary U € U(N) on m, is defined, for each
V e V(N) by

(U -mp)v :=m, ey © Sppuyiy© blge 0 Sy : Suby(Z9) — [0,1]. (3.4.10)
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Given this definition we are now ready to show that the evolved state U- o
corresponds to the evolved probability measure U - m, = my, o

Lemma 3.4.4 The state U - p . N — C corresponds to the probability measure
U.mp = mi"p = mpoqb[/* e I'CP.
Proof Forall V € V(N) we obtain

A (3.4.10) .
U -mp)y "= "m, gy © Spuypy 0 Plge © Sy

(3:49)
Plovi © Sguyg © Spmyiy © Bl © &'

U*vo
= plyryp © Plys 0 Sy
= (po v o6y
= ml:/-p,V'
O

We can now define the action of the flow induced by one-parameter group of
unitaries on the global sections of CP.

Definition 3.4.7 Given a one-parameter group of unitaries (ﬁ,),ER in AV induced
by some operator A, then the flow on I'CP induced by (U)er is
Fi iR — Aut(I'CP)

1 my,

where p; = U,po = pg o ¢>U* = po © ¢, represents the state po at time 7, and
mp, = =0, Mpy = My Tepresents the corresponding probability measure on =V,
Since LCP ~ M(ZV), then the flow Fj; : R — Aut(I'CP) is equivalent to a flow
Fi : R — Aur(M(ZV)).

From the discussion in this section it is clear that given a state and a clopen
sub-object of the state-space > one can obtain an element of r[o, 1]=.

Definition 3.4.8 We define a state-proposition paring as the following map:
p: TCP x Suby(SV) — T[0,1)> (3.4.11)
(mva> = mp(S)

such that, for all V € V(N), we have m,(S))y 1= mp,v(Sy).
From Lemma 3.4.3 it is straightforward to see that for all V € V(N) then
(mp(8))v = ppv(Sy) = (1,(S))v hence

my(S) = 1,(S). (3.4.12)
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3.5 Relation Between the Heisenberg Picture
and the Schrodinger Picture

In the previous section we defined time evolution in topos quantum theory both in
terms of the Heisenberg picture, where propositions evolved in time while states
were constant, and the Shrodineger picture, where states evolved in time while
propositions remained constant. In this section we will investigate the relation
between the two and check whether or not it resembles the relation in canonical
quantum theory. In particular, in canonical quantum theory, the Heisenberg and
the Schrodinger picture are completely equivalent, i.e. the two are physically
indistinguishable. Mathematically this equivalence is expressed by the following
equation:

p:(Po) = po(Py) (3.5.1)

where P, represents the proposition “A € A” at time 7. This equation indicates
that the expectation value of the proposition “A € A” at time ¢y, with respect to the
evolved state py, is the same as the expectation value of the time evolved proposition
“A € A at time ¢ (represented by P,) with respect to the ‘initial’ state pg.

The fact that the above equation holds can be easily verified by applying the
various definitions. In fact, since p; = f], - Po = Po © ¢f1—, and f’, = f]_,130 f], then

pi(Po) = po o ¢y (Po) = po(U—PoT;) = po(P)).

In [13] the author showed that it is possible to define the topos equivalent of
Eq. (3.5.1) when defining time evolution in terms of flows on Subcl(ZN ) (Heisen-
berg) and flows on I'CP (Schrodinger). Since in topos quantum theory everything
is defined context-wise, we need to express Eq. (3.5.1) for each context V € V(N).
To do so we first consider p,(f’o). To express it context-wise we need to pick a
context V € V(N) which contains the proposition Py. Given such a V, then clearly
the context U_,VU, will contain the proposition P,. Hence the context dependent
version of (3.5.1) is

pilv(Po) = P0|fj_,vf],(ﬁr)-

We then have the following result [13]:

Theorem 3.5.1 Given a one-parameter group of unitaries (f/,),elR in N, then for
allVeVN)andt € R

(mp, (S)v = mp (S) vy

where S, € Subd(ZN), S, =¢,(Sp), po € SW) and p, = U, - Po = poo Py
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Proof We know from Definition 3.4.8 that m,, (S) € T'[0,1]Z, hence for all V €
V(N) we have

(my (Sp)v 2!

(344)  ~
=" (Ur-mp)v(Syy)

(3.4.10)

)
Moy (So.y)

—1
Mmoo vi, © Si_vi, ©Po_, © Sy (Soy)

=m,.i_vi, ©Si_vi,(U=Ps,, Ur)

(3.4.6) S p
— A A O 7 7
= o0 VU, AR o, (50)0_,vf/,)

= m;m;f]_,Vf],(¢IA],(SO)(A]_,V[A],)
3.4.7)
= P()§0—1V01(ST§0—1V01)

(3.4.11)
= (mpo (St))f]_tvfj'

|
In canonical quantum theory the compatibility of the Heisenberg picture and the
Schrodinger picture is given by the equation

pilv(Po) = poly_yg (Po)

which is valid only for the context V € V(N), such that 130 € V. On the other hand,
in topos quantum theory the compatibility between the Heisenberg picture and the
Schrodinger picture is given by the equation

(mpz (So))V = (mpo (St))ﬁ_,Vi/

which is valid for all contexts V € V(N) simultaneously.

We have seen above that in standard quantum theory, given a proposition “A €
A” represented by the projection operator P, then, given a state p € S(N), the
probability of P being true given p is

Prob(“A € A”; p) = p(P) € [0, 1].

Clearly if p(ﬁ) = 0 then the proposition is false given p, while if p(i’) = 1 the
proposition is true given p. However for 0 < p(ﬁ) < 1 the proposition is neither
true nor false.

We would now like to understand how the Born rule can be defined in topos
quantum theory. To this end let us consider a general proposition § (13) and a state
p € S(N). We know that to each such state there corresponds a probability measure
Hp € M(EY) on the state-space >V, such that ;1,,;(8(16)) : V(N) — [0, 1]. From
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Eq. (3.4.8) it then follows that for all V' € V(N) such that P eV, we have that
Uo(8(P))(V) = p(P). On the other hand for all V € V(N\) such that P ¢ V,
then 1,(8 (13))(V) > p(f’) since 8”(?’)V > P. It follows that the expectation value
Prob(“A € A”;p) = p(ﬁ) is given by the minimum of p,p(S(ﬁ)), ie.

G412

Prob(“A € A”; p) = minyey ity (8(P))y =" minyeyym,(8(P))y.

From Theorem 3.5.1 it then follows that for all V € V()

minyey M, (§(Po))v = minyeynymg, (8(P)v

therefore the expectation values in topos quantum theory coincide for the Heisen-
berg picture and the Schrodinger picture.

An alternative way of expressing the compatibility between the Heisenberg
picture and the Schrodinger picture in canonical quantum theory is through what
it is known as covariance. This property states that if one considers a state py at
time 7o and a physical quantity Ay at time fy, any physical prediction obtained would
be the same as if we had considered the state p; at time ¢ and a physical quantity
A, at time ¢. In particular, given a normal state p, with associated density matrix pg
then

po(Ao) = tr(pAg) = tr(U,pU—,UAgU—,) = tr(BiA,) = pi(A,).

In terms of projection operators which represent quantum propositions, the above
covariance becomes

po(Po) = py(P-)). (3.5.2)

We would now like to express such a covariance in topos quantum theory. As
it was done above, we first need to express Eq. (3.5.2) context wise. In particular,
given a context V € V(N) such that Po € V, then P_, = U,POU_, € U,VU_,,
therefore we obtain

polv(Po) = pilg v (P (3.5.3)

Our aim is to find a topos quantum theory analogue of Eq. (3.5.3). This was done in
[13].

Theorem 3.5.2 Given a one-parameter group of unitaries (Ur),e]R in N and a
clopen sub-object S, € Subd(E ) representing a proposition S(Po) then for all

Ve VWN)

(mp, (S)v = (mp, (S_Np,vir_,
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where S_; = ¢ (Sp), po € SWN) and p, = U,- Lo = poo Py

Proof To prove this theorem we simply apply the various results obtained in this
Chapter. In particular, for all V € V(N) we have

(3.4.11)
(mp’(S_T))[}tVﬁﬂ = mPt§ﬁtVi77t(Si7tVf]7t)

= mP()°¢[/7t 5 01V0—1 (Sﬁ,Vﬁ_,)

(349 -1
= (oo ¢y Moy, ©Syvp_, Sovi_,)

= (100 © ¢i/7t)|i/t‘/f]7t (PSlA/szfft)
= ,Oo(fj—ti)SA f]t)

U VO—
(3.4.6) LS

= PPy s )
= po o &y (¢y,(S_)v)
= poo° 6\_/l(So,v)

= Mp, (SO)V-



Chapter 4
Observables in Terms of Antonymous
and Observable Functions

In this chapter we will introduce the notions of antonymous and observable
ﬁmcnons put forward in [18]. These are utilised to express the physical quantise
§ (A) corresponding to the self-adjoint operators A in a more efficient way, which
does not relay on calculating the approximations of § (A) for each context V € V as
it was done in [26].

4.1 Observables Functions and Antonymous Functions

In this section we will describe how quantum observables can be described using
special types of functions called antonymous functions. This was first shown in [18].
A central ingredient in the definition of antonymous functions is that of a maximal
filter on the lattice P(\") of projection operators of a von Neumann algebra AV

Definition 4.1.1 Given a lattice L with zero element 0, a (proper) filter (o (proper)
dual ideal) consists of a subset ' C L such that:

1.0 ¢F.
2. Ifa,be F,thenaAnb € F.
3. Ifae Fandb > a,thenb € F.

The set of all (proper) filters of L is denoted by F(L).
A filter F is maximal if it is proper and there is no proper filter that is strictly greater.
The set of maximal filters will be denoted by Q(L). If the lattice L is complemented
and distributive, a maximal filter is called an ultra filter and it is such that, for each
element a € L, it either contains a or it contains its complement —a.

In the case at hand, given a von Neumann algebra /, each abelian subalgebra
V C N gives rise to a complemented distributive lattice P(V), whose elements are
projection operators in V. In [18] it was shown that, to each element A € X, of
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the Gelfand spectrum of an abelian subalgebra V C N/, there is associated to it the
(maximal) filter given by

F) = {P € P(V)|A(P) = 1}. 4.1.1)

We will now show that, as defined in (4.1.1), F is indeed a maximal filter. In
particular, we will first show that F, satisfies conditions 1-3 in Definition 4.1.1
and then we will show that either P or its complement —P belong to F (V).

Proof We recall that each multiplicative linear functional A € X, is such that, for
each P € P(V), then )L(P) € {0, 1}. Clearly 0 ¢ F). Next we need to show that if
P Q e F,, then PA Q € F,. Assuming that indeed P Q € F, we obtain

AP AQ) = A(PQ)
multiplicali_ve property

AP)A(Q)

P.OeF,
="1

For condition 3 in Definition 4.1.1, let us assume that PeF » and Q > P. Since
A(P) = 1 and A(Q) € {0, 1} it follows that A(Q) = 1 and Q € F}.

So far we have proved that F, is a (proper) filter. What remains to be shown is
that is it also a maximal filter. To this end we recall that, for each P € P(V) its
complement is given by 1 — P. We thus obtain

l=AxD)=AP+1-P)=2P)+711-P),

hence it follows that either )L(P) = land P € F), or )L(i — 13) = 1 and
(1-P) e F,. O
The above discussion uncovers the fact that toeach A € X, (V C N) one assigns
a maximal filter F,. Denoting the set of maximal filters on P(V) by Q(V) we claim
that the assignment

X, — Q) 4.1.2)
A Fy (4.1.3)

is injective.
Proof We assume that F;, = F,,. This implies that, for all Pe P(V) such that
A1(P) = 1, then A,(P) = 1, and vice versa. It then, trivially, follows that A; = A,.

O
Each filter F in P(V) can be extended to a filter in P(N') (V C N) as follows:

A

Cn(F):=1 F={0Q € PWN)|3P € Fs.t. P < Q}. (4.1.4)
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This represents the smallest filter in P(N) which contains F. An important Lemma
that will be used in subsequent section is:

Lemma 4.1.1 ([18]) Consider two von Neumann algebras N, M such that M C
N and 1)y = 1. Defining the map

8y i PIN) = P(NV)
Prs 8 (P) == \/{0 € P(M)|0 < P},
then, for all F € F(M) we have that
(%)~ (F) = Cn(F).

Proof ([18]) Let us assume that Pe Cn(F). This implies that there exists a Q €
F C P(N) such that O < P. It then follows that 85\4 (P) > Q. Since F is a filter,

this means that 8’M (P) € F. Considering that for each Q€F, (8~ Q) = {P €
P(N)|8v4 (P) = 0}, we obtain that CN(F) C (8 )N (F).

On the other hand, assume that for P € P(N) Pe (Cn(F))¢, i.e. there does not
exista Q € Fsuch thatQ < P. Since 8t (P) < P, then also 8t (P) € (Cn(F))S,1ie.
there does not exista Q € F such that Q < §! (P) therefore P ¢ (8’ )~!(F). This
implies that (Crr(F))° € (8),) "' (F))* or, equlvalently, ()~ 1(F) C Cyn(F). O

We are now ready to define the notions of antonymous and observable functions.
Definition 4.1.2 Given a von Neumann algebra N and a self-adjoint operator

A e N with spectral family (Eé),em = EA, then the antonymous function of A
is defined as:

gi: FWW) — sp(A)
F +— sup{r € R|i —E/} € F}.
The observable function of A is defined as:
fi i FIN) — sp(A)
F > inf{r € R|E* € F}.

Now that we have defined the notion of antonymous and observable functions we
will explain how these are used to describe the Gelfand spectrum of inner and outer
daseinised self-adjoint operators, respectively. To this end we need to recall a few
facts about inner and outer daseinisation of self-adjoint operators. First of all we
need to recall the notion of spectral order.
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Definition 4.1.3 ([24, 26]) Consider two self-adjoint operators A B e j\/m in a

von Neumann algebra A/! with spectral families given by (E )rer and (E )reR,
respectively. The spectral order is defined as follows:

~

A<,B iff  VreR:E'>ED
With respect to the spectral order, Ny, becomes a boundedly complete lattice.
Both inner and outer daseinisation of self-adjoint operators are defined in terms of

the spectral order. In particular, given any self-adjoint operator A € N,,, then for
each context’ V € C(N') outer daseinisation of Ais given by

@A)y = \{B € V.|B =, A},
while inner daseinisation of A is given by
Ay = \/{B € VulB <, A}.

Clearly these two processes give rise to the following mappings:

89 Noa = Vi (4.1.5)
A 8°(A)y (4.1.6)
and
84t Now = Vi 4.1.7)
A §i(A)y. (4.1.8)

The spectral order defined above is also utilised to define the spectral families of
inner and outer daseinised self-adjoint operators. In particular, for each context
V € C(N') we define [24, 26]

VreR:ENDY = A 5o(ED)y (4.1.9)
sS>r
and
VreR: EVOv = §i(Eh),. (4.1.10)

"Here NV, denotes the set of all self-adjoint operators in .
2Here C(N') indicates the category of abelian von Neumann subalgebras of .
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In the last equation we utilised the process of inner daseinisation on projection
operators. This process was extensively defined in [26, Sec 13.2] but, for the sake of
completeness, we will briefly recall it below.

Definition 4.1.4 Given a projection operator P, for each context V € C (N), inner
daseinisation is defined as:

5Py = \/1@ € P(V)l& < P}. 4.1.11)

It follows that §' (13)V is the best approximation in V of P obtained by taking the
‘largest’ projection operator in V, which implies P. From the definition, given
V' C V then

8 (8'(Py))y = 8'(P)y < 8'(P)y and §'(P)y < P. (4.1.12)
Since P < 8”(13)V we then have
§'(P)y <8Py . 4.1.13)

While outer daseinisation would pick the smallest projection operator implied
by the original projection operators (hence approximation from above), inner
daseinisation picks the biggest projection operators which implies the original one
(hence approximation from below).

The interesting feature of the mappings defined in (4.1.5) and (4.1.7) is that they
can be generalised also to cases in which the subalgebra W C A is not abelian,
as long as the unit elements in W and V' coincide. Therefore, given any subalgebra
W C N, we obtain the following mappings:

8+ Noa = Waa
A 8°(A)yy = \{B € Wy|B =, A}
and
Sy : Noa = W
A §A)yw = \/1B € Wy|B <, A}.

These generalisations allow us to prove the following theorems [18]:

Theorem 4.1.1 Consider a self-adjoint operator A € Ny and any subalgebra
M C N such that 15 = 1 4. For all filters F € F(M) we have that

ggi(A)M(F) = gA(C/\/(F))
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Proof Applying the definitions we obtain [18§]

23 (Cx(F)) = suptr € R|i — E} € Cur(F)}

Lemma 4.1.1

sup{r € R|1 — E} e (8, )" (F)}
= sup{r € R|§'(1 — E}:‘)M € F}
= sup{r e R|1 — 8°(EY) o, € F}

= sup{r e R|1 — /\5”(13"?)/\4 cF)

s>r

“L% sup{r € ]R|i - fffi(;‘)/” € F}

= ggi(A)M(F)-

|

Theorem 4.1.2 Consider a self-adjoint operator A € N, and any subalgebra
M C N such that 157 = 1 4. For all filters F € F(M) we have that

Sy (F) = i(Cur(F)).

Proof Applying the definitions we obtain [18§]

Fouii (F) = inf{r € RIE¥Dxm ¢ py
3°(A) m r

(4.12.10) il’lf{r c Rly(é‘é)/\/l € F}

= inf{r € R|E} € (§,) ' F}

Lemma 4.1.1

= fi(Cy(F)).

|
The above two theorems are very important, since they show that both the
antonymous and observable functions for daseinised self-adjoint operators can be
completely derived from the antonymous and observable functions of the original
self-adjoint operators. In particular, Theorem 4.1.1 tells us that, given a self-adjoint
operator A, then the antonymous functions ggz) @ F(M) — sp(8(A) p) of
the approximated self-adjoint operator 8i(12\) M, can be completely derived from the
antonymous functions g3 : F(NV') — sp(fA\) of the (original) self-operator A,
Similarly, Theorem 4.1.2 tells us that, given a self-adjoint operator A, then the
observable functions fs ), @ F(M) — sp(8°(A)pq) of the approximated self-

adjoint operator 5”(12\) M can be completely derived from the antonymous functions



4.1 Observables Functions and Antonymous Functions 71

fi 1 FWN) — sp(A) of the (original) self-operator A. When M is an abelian
subalgebra of A we obtain the following important results [18]:

Corollary 4.1.1 Consider a von Neumann subalgebra V-C N. We know that there
is an injective map (4.1.2) B : ¥y, — Q(V); A > F) which assigns to each element
of the spectrum of V a maximal filter F,. We can then identify the Gelfand transform

§i(A)y : By, — sp(8i(A)y); A > 8i(A)y = A(8'(A)y) with 85i(i) . | Q(v), Obtaining
A A)w) = gga), (F1) = 8 (Ca(F). (4.1.14)

Proof Upon identifying §i(A)y : £, — sp(§'(A)y); A > 8i(A)y = A(8'(A)y) with
85iA) |ov), Eq. (4.1.14) is a direct consequence of Theorem 4.1.1. O
A similar result holds for observable functions.

Corollary 4.1.2 Consider a von Neumann subalgebra V.C N. We know that there
is an injective map (4.1.2) B : £, = Q(V); A > F) which assigns to each element
of the spectrum of V a maximal filter F). We can then identify the Gelfand transform

8°(A)y : By = sp(8°(A)v); A > 8°(A)y = AB°(A)y) with fy, ) . |ow), obtaining
A" A)) = fyogiy (F2) = fi(Car(F2)) (4.1.15)

Proof Upon identifying §°(A)y : =, — sp(8°(A)y); A — 82(A)y = A(8°(A)y)
with g4 ., |owy, Eq. (4.1.15) is a direct consequence of Theorem 4.1.2. O

We recall from [26, Section 13.5] that physical quantities in topos quantum
theory are represented as maps from the state-space to the quantity value object.
In particular, a physical quantity A with associated self-adjoint operator A s
represented by the map

§5(A): T > R* (4.1.16)
which, at each context V, is defined as
§(Ayy : =, > R, 4.1.17)
A 8@y = (A ). 8 A ().
where §° (A)y is the order reversing function defined by

8°(A)yy(A) :L V = sp(A) (4.1.18)
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such that
(82 Ay (M)) (V') := 8°(A)v (S(ivv) (L) (4.1.19)
= 8°(A)y ()
= (M. 8°A)v)
= (L.8°(A)v)
= A A)v).

Here X (iy’y) are the spectral presheaf maps defined in (3.3.1) and SO(A)V X, - R

represents the Gelfand transform of 5”(A)V.
The choice of order reversing functions was determined by the fact that, for all
V' C V,since §°(A)y > 8°(A)y, then

Ay (M) = 8 (A (2Givv)(L)) = 82(A)y (). (4.1.20)
On the other hand, the order preserving function is defined by
§ Ay 1L V= sp(d) 4.1.21)
such that
(F A M) (V') = (A (S(ivv)(A) (4.1.22)
= §A)v ()
= (.8 A)v)

= (L8 @)
= A @A)
In this case the appropriate Gelfand transform to use is Si(A)V/ : ¥y = R. The

choice of order preserving function was determined by the fact that, fori: V/ C V,
since 8'(A)yr < §'(A)y, then

§i A (M) = A (S(ivv)(A) < SA)vQA). (4.1.23)

Given Egs. (4.1.14) and (4.1.15) the above order preserving and order reversing
functions can be written as

(B Aw)(V') = g1(Car(F2))
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and

(32A)y (D)) (V') = f1(Cxr(F2)),

respectively.

4.2 Example

We will now give an example on how to use the antonymous and observable
functions to compute the value of an observable, given a state.

Example 4.2.1 Let us consider a 2 spin system in C* whose algebra of bounded
operators is given by B(C*). The self-adjoint operator representing the spin in the
z direction is given by

2000
5= 1000 0
000-2
while the spectral family of S‘Z is
0if A < -2

Pyif —2<1<0
_ st —me=As 4.2.1)
P,+P3;+Pif0<A<?2

ﬁ4+ﬁ3+ﬁ2+ﬁlif2§l.

>
> >
o

The only maximal abelian subalgebra contalmng S isV = llnc(Pl,Pz,P';,P4)
wherePl—(IOOO) Pz—(OIOO) P3—(0010) P4—(0001) The
Gelfand spectrum of V' is Xy, = {41, A2, A3, A4}, where A; (P) = 8,]

Next, let us consider the subalgebra VP b = llnc(Pl,Pz,P3 + P4) whose
spectrum is ZVPI.I”JZ = {A]. A}, A}, where the A} are such that the only non zero

values are given by A’l(f’l) =1, A’z(f’z) = 1 and Ag(f’g, + Py) = 1. Clearly, the
spectral presheaf map Z(ivﬁlﬁz"/) Xy = EVFl-Pz is given by
S, 5, V)0 = 4
Xy, 5 v)(A2) = 45
S, 5, v)(4s) = 44
S(ivy, 5, 1)) = A,
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Each A; € ZV,; 5 gives rise to a maximal filter
1.2
Fy, = {R € P(Vp, ) IM(R) = 1.

By renaming Ql = 131, QZ = i’z and Q3 = i)g, + 134, since A;(Qj) = §;;, we can
write

Fy, = {Re P(V; ;)IR = Oy,
We will now compute Fy, for |, A} and A}. In particular we obtain
FM = {i)l,i)l +i)2,ﬁ1 +i)3+i)4,i}7

Fyy = {Py. P\ + Py, Py + Py + Py, 1}

and
Fy = {Py+ Py, Py + Py + Py, Py + Py + Py, 1},
respectively.
We would now like to compute the Gelfand transforms &' (S‘Z)VA . and

Pr.Py
5”(32)‘/131‘132 in terms of 83, and sz’ respectively. We recall (see (4.1.14)) that,

H /
fora given A} € ZVPlf’z then

818, 5, (M) = 85.(Ciion) (F2,)

while (see (4.1.15))

8°(Svs, 5, ) = f.(Crien) (F).

Py
In both cases, CB(@A;)(FA,) is the cone over the filter F,, i.e.
Ciety(Fa) = {0 € PB(CH)FR e F: 0 > R}
= {0 € P(B(C*)|Q = P;}.
We will first consider the case for /Vl, obtaining
8i(Svs, 5, (M) = suplr € RIT — £ = P1}

= sup{r € R|r < 2}
:27
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while

8oy, 5, (A1) = inf{r € RIEY = P1}

inf{r e R|2 < r}
=2.

If we consider A, we obtain
81(S)vy, 5, (M) = suplr € R|T — £ = Py}
= sup{r € R|r < 0}
= 0 s
while
80(31)%1}2 (A) = inf{r € R|E> > Py}
=inf{r e R|0 < r}
=0.

If we consider )V3 we obtain

813y, , (A1) = sup{r € RIT — £ > Py + Py}

P1.Py

= sup{r € R|r < =2}
=2,

while

808y, 5, (M) = infir € RIES: > Py + Py}

inf{r € R|0 < r}
=0.

As expected, in all above cases the values of § (S‘Z)V}alj32 (A}) and 6° (Sz)v;,l 5 (A)) lie
in the spectrum of S,. Moreover we have that Si(SZ)Vﬁlﬁz A) < 50(31)"131,132 (A)),
therefore we can think of the pair of values as an interval [8"(3})‘1131 5 (A},

5”(31)‘/131‘132 (A})] representing the possible values of the operator S‘Z when coarse-

grained to the context Vi, b, (see (4.1.17)). For a detailed explanation the reader
should refer to [26, Section 13.5].
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In the present case the physical quantity representing the spin in the z direction
is represented by the map

58y : 2, = R®, (4.2.2)
A 8S)vd) = (5S)v(h), 8°(S)v(b)) .

If we consider the context V5

.5, © V and the element A; € ¥, we then obtain

(F S, 8 Gv () = (v, 5, A1), 8°Bv;, 5, AD) = (2,2).

Instead, if we consider A, € X, we obtain

(F'Sv(22).8°Gv(A2) = (8Sv;, 5, A5), 8w, 5, (A5) = (0,0).

Finally if we consider either A3 € X, (or A4 € X)) we obtain
(F'SIv(22),8°Gv(23)) = (8Svs, 5, A4), 8By, 5, (A5) = (=2,0).

We will now utilise the above definition of the physical quantity S"(S’Z) to compute
its value given a state |) = (0,0, 1,0). As a first step we need to recall how states
are defined in topos quantum theory. In this instance we will utilise the pseudo-
state object [26, Section 11.4] that is, the object in our topos which most resembles
the notion of a point state, since it represents the smallest sub-object of the state-
space X. Being ¥ a presheaf, its sub-objects will be themselves presheaves, thus the
pseudo-state is a presheaf, i.e. an object in SetsV 7)™
Specifically, given a pure quantum state ¥ € H, we define the presheaf

V= 8|y () (4.2.3)

such that for each context V we have

81D, = S\t € PV [¥) (| <&} = SE([¥)(¥) € (V).
(4.2.4)

The map S is defined as
& : P(V) — Suby(D)y, (4.2.5)
such that

S (YW Dv = @ (1Y) (WD) := Sse(ty)iwiy - (4.2.6)
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Thus, for each context V € V(H), the projection operator §( |1ﬂ)(1//|)v is the
smallest projection operator implied by |¢)(¥|. Since |¥)(y| projects on a 1-
dimensional sub-space of the Hilbert space, i.e. it projects on a state, §( |1ﬁ)(w|)v
identifies the smallest sub-space of H equal or bigger than the one dimensional
sub-space |).

The collection (8(|w)(1ﬂ|)v) vevan = (oy) vey() forms a sub-presheaf of =
which is defined as follows:

Definition 4.2.1 For each state |y) € H we obtain the pseudo-state ro¥) e
Sets” ™™ which is defined on:

¢ Objects: for each context V € V() we obtain

SClN YD), =14 € Zy[A@E° (v ) (¥ v) = 1}. (4.2.7)

* Morphisms: for each iysy : V' C V the corresponding map is simply the spectral
presheaf map restricted to V), i.e.

w0 iy ) - wlY) (4.2.8)
/\. [ /\,‘V/ .

In the case at hand, since ¥ = (0,0, 1, 0), then |¥){(y¥| = P and for the context
Vi, p, We obtain

S, =135

Therefore, given the state ¥ = (0,0, 1, 0), the value of the spin in the z direction in

the context V5 is given by (for an in depth analysis on how this is done the reader
1,2

should refer to [26, Section 13.7]):

By, o = S, 5, @)y, o
= {(S(S‘Z)Vf’lf’z (A)lA € m“/ﬁfpz}
={(-2,0)}.

We now consider a smaller context Vs, = lin@(f’z, 131 + 133 + 134) such that Vi, €
V5, »,- The state-space Zvﬁz is given by Evﬁz = {A{, 1]} such that )Vl’(f’g) = 1and
AJ(Py + P3 + P4) = 1. The presheaf map E(ivﬁlﬁz*vi’z) : EVﬁlﬁz — Z;,z is such
that

Ay A

ARV "
AL A = AS
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For this context the pseudo-state is
s, = {5}
2

If we now compute the value of the spin in the z direction for the context Vj , given
the state ¥ = (0,0, 1, 0), we obtain

(B, = (5525, (0 )y,
= (3G, WA e w2

As we can see from this example, if we go to smaller contexts which contain less
information, the interval of possible values for a physical quantity becomes bigger,
i.e. we have less precise measurements.



Chapter 5
Interpreting Self-Adjoint Operators
as g-Functions

In [20, 21] the authors show how it is possible to interpret self-adjoint operators
affiliated with a von Neumann algebra /V, as real-valued functions on the projection
lattice P(N\") of the algebra. These functions are called g-observable functions. The
method of utilising real-valued function on P(N\") to define self-adjoint operators
was first introduced in [12] and, independently, in [8]. However, the novelty of
the approach defined [20, 21] consists in the fact that these real valued functions
are related to both the daseinisation map, central to topos quantum theory, and to
quantum probabilities.

5.1 ¢g-Observable Functions

In order to define g-observable functions we first of all need to introduce some
mathematical background. In particular, we need to introduce the notions of a
complete lattice.

A meet-semilattice is a poset P such that, given any two elements a, b € P, then
the meet (greatest lower bound) a A bisin P, i.e.

VeceP:c<a,b<c<anb.

If every family (a;);e; of elements in P has a meet /\ie ;a; in P, then the meet-
semilattice is called complete.

Dually we also have the notion of a join-semilattice. In particular, a join-
semilattice is a poset P such that, given any two elements a,b € P, then the join
(least upper bound) a v bisin P, i.e.

YabeP:ab<c<=aVvb=<c.
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If every family (a;)es of elements in P has a join \/,, a; in P, then P is a complete
Jjoin-semilattice.

If P is both a meet-semilattice and a join-semilattice then it is called a lattice.
Furthermore, if it is complete as a meet-semilattice and join-semilattice then it is
said to be complete as a lattice.

In what follows we will use the extended reals which are defined by

R ={-o0} URU{c0}. (5.1.1)

This forms a complete lattice which will be used to define g-observable functions.
To this end we also need to introduce the notion of spectral family. This was already
introduced in [26] but we will report it below for the sake of completeness.

Definition 5.1.1 Given a complete Hilbert space H with lattice of projections given
by P(H), then a spectral family is a map
E:R — P(H)

r— E,

such that:

1. forall r,s € R, if r < s then E, < E;.

2. \/VE]R @e = }

3. \jer Er =0.

A spectral family can be either left-continuous or right-continuous. In particular it
is called right-continuous if

VreR, NE =E. . (5.1.2)

S>r

while it is called left continuous if

VreR, \/E:E (5.1.3)
sS>r

Given a von Neumann algebra A/ on a Hilbert space H, if the image of the
spectral family E is in P(N') (projection lattice of A'), then we say that E is in
N. A spectral family E : R — P(N') can be seen as a monotone function.'

Self-adjoint operators can be expressed in terms of spectral families through the
spectral decomposition theorem

LGiven two posets (P, <,) and (Q, <,), then a map f : P — Q is called monotone (order-
preserving) if for all a, b € P, when a <, b then f(a) <, f(b).
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Theorem 5.1.1 Given a self-adjoint operator A on N, then there exists a unique
right-continuous spectral family E : R — P(N"), such that

~ +oo ~
A :/ rdE,,

o0

and vice versa: each right-continuous spectral family determines a unique self-
adjoint operator. Such a right-continuous spectral family will be denoted by E*.

We recall that a self-adjoint operatorA is contained in B(H) iff A is bounded i.e.
if its spectral family £ is bounded. Moreover, given a von Neumann algebra N, if
A € N C B(H) then E* € P(N') and A is bounded. However it could be the case
that E4 € P(N') but A is not bounded. If this happens we say that Ais affiliated
with V. The set of self-adjoint operators affiliated with a von Neumann algebra A/
is denoted by SA(N'), while the set of self-adjoint operators in A" is denoted by Nj,.
Clearly Ny, € SA(N).

In Definition 4.1.3 we defined the spectral order on the set NV, this definition
can easily be enlarged to the set SA(N') as follows:

Definition 5.1.2 Given a von Neumann algebra A/, the spectral order on the set
SA(N) is given by:

VABeSAWN): A<,B < VreR:E> B

where the order on the right hand side is the usual order of projections and E4 =
(Ef),eR and, E? = (Ef )rer are the right-continuous spectral families of A and B,
respectively.

If we replace the reals R with the extended reals R in the definition of a spectral
family we obtain the notion of an extended spectral family as follows:

Definition 5.1.3 Given a von Neumann algebra N/, then an extended spectral
family is a map

E:R— PWN)
s B
such that
LEo=0
2. Efoo =1

3. E|g is a spectral family.

Right- or left-continuity will depend on the right- or left-continuity of E|g. Clearly
every spectral family E : R — P(N') determines a unique extended spectral family
E : R — P(N') and vice versa. Moreover, the spectral theorem implies that there
exists a bijective correspondence between the set SA(N') of self-adjoint operators
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affiliated with A and the set SF(R, P(NV')) of extended, right-continuous spectral
families of P(\), i.e.

SAW) ~ SF(R, P(N'))

AI—)EA

+o00 o .

/ rdEf(—cEA.
—00

Similarly as it was the case for the spectral family, also the extended spectral
family is a monotone function, moreover, since it is defined on the extended reals,
it also preserves all meets. This implies that it is a morphism of complete meet-
semilattices. This result is encoded in the following Lemma [20]:

Lemma 5.1.1 Seen as a monotone function, the extended right-continuous spectral
family E : R — P(N') is a morphism of complete meet-semilattices. Conversely,
any meet preserving map E : R — P(N') such that the conditions

i. E(—o0) =0

ii. \/,egE(r) =1
hold, determines an extended right-continuous spectral family.

Proof Let us assume that E : R — P(N) is an extended right-continuous spectral
family, then, given an arbitrary family (r;),e; of elements in R, we obtain

Definition 2

E(lnf ri) = Einfl'e[ ri
i€l

right—c@tinuity /\ E
- s

s>inf,-e 17
monotonicity ~
=" N\
i€l

Therefore E preserves all meets and hence it is a morphism of complete meet-
semilattices.

On the other hand, let us assume that E : R — P(N\') is a meet-preserving map
satisfying condition (i) and (ii) above, then clearly it is monotone. This follows from
the fact that if E is meet-preserving then, given r, s € R we obtain

r<s=r=rAs= E(r) =E(r)AE(s) = E(r) < E(s).

To show that it is right-continuous we note that for all » € R then

E, = infys, — /\Ev s
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hence E is right-continuous. To show that E is an extended spectral family we need
to show that

1) E(+00) =1

2) E(—o0) = 0, which is simply assumption (i);

3) V,er E(r) = 1 which is simply assumption (ii) and
4) N,er E(r) = 0.

Utilising the meet-preservation properties of E we obtain

J\ E(r) = Eingyeyr = E(—00) = 0
reR

and
E(+00) = E(inf(#)) = \ 0 =1.

|
Now that we have shown that E is a morphism of complete meet-semilattices we
can apply the adjoint functor theorem for poset to construct the left adjoint of E. In
particular the adjoint functor theorem for poset is as follows:

Theorem 5.1.2 Consider two complete meet-semilattices (P, <,) and (Q, <,). If
f : P — Q is a monotone map, then f has a left adjoint g : Q — P iff f preserves
all meets. The left adjoint g is monotone, it preserves all joins and it is defined
by
g:0—P
X /\{a € Plx <, f(a)}.

Proof Let us assume that f : P — Q has a left adjoint g : Q — P. If we then
consider an arbitrary family (a;);e; € P we obtain, for all i € I, that

/\ai <pai=f (/\ai) <q.f(a;)

i€l i€l

oy ( A ) <, N\f@.

i€l i€l
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On the other hand, for all i € I we have

\f@) <4 fla) = g (/\f(ai)) < a;

i€l i€l

= ¢ (/\f(ai)) < N\a

i€l i€l

= N\fla) <. f ( A a,.) .

i€l i€l

It follows that A\, f(a;) = f (/\ie; @) for any family (a;)ie; < P.

Conversely, let us assume thatf : P — Q preserves all meets and thatg : Q — P
is defined by g(x) = A\{a € P|x <, f(a)} for all x € Q. We now want to show that
x=<,f(a) & gx) <, x.
= Assume that a; € P is such that x <, f(a;) for a givenx € Q,thena; € {a €

Plx <, f(a)} and g(x) = /\{a € Plx <, f(a)} <, a1.
< Assume that g(x) <, a; then, since f preserves meets and is monotone, we have
that

flan) 2, fe() = (\la € Pl =, f@)})
= \{f(@) € Qlx <, f(@)} =4 x.

An analogous theorem holds for join-semilattices.

Theorem 5.1.3 Consider two complete join-semilattices (P, <,) and (Q, <,). If
f + P — Q is a monotone map, then f has a right adjoint g : Q — P iff f
preserves all joins. The right adjoint g is monotone, preserves all meets and is
defined by

g:0—>P
X \/{a € P|f(x) <4 a}.
The proof is very similar to the one given above so we will omit it.
Theorem 5.1.2 together with Lemma 5.1.1 imply that £ : R — P(N') has a left

adjoint

of 1 PW)—>R
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which preserves arbitrary joins, i.e.

E (\/ lA’L) = sup oE(ﬁi) .

iel iel

From Theorem 5.1.2 we know how to explicitly construct of, in particular, for all

PePWN)
of(P) = inf{r e R|IP < E,}.
For the case in which E = E* we obtain:
oAMP) = inf{r e R|P < EA}. (5.1.4)

We are now ready to define the notion of g-observable functions:

Definition 5.1.4 ([20]) Consider a self-adjoint operator A affiliated with a von
Neumann algebra N and whose extended right-continuous spectral family is given
by EA = (EA) g~ The left adjoint oA P(N ) — R of EA defined in (5.1.4) is called
the g-observable function associated to A.

In [20] the authors gave an abstract characterization of g-observable functions in
terms of the adjunction of I E. To this end they introduced the notions of weak
q-observables and abstract g-observables.

Definition 5.1.5 A weak g-observable is a join-preserving function o : P(N') —
IR, such that
oP)>—-00 VP>0. (5.1.5)

An abstract g-observable function is a weak g-observable function with the extra
property that there exists a family (P;);e; € P(N') with \/,; P; = 1, such that

o(P)s +o0 Viel. (5.1.6)

The set of all abstract g-observable functions is denoted by QO(P(N'), R).
Theorem 5.1.4 ([20]) Given a von Neumann algebra N, there exists a bijective
correspondence between the set QO(P(N'), R) and the set SF(R, P(N)), i.e.

SF(R,P(N)) ~ QO(P(N),R)
E > of

E’° <io.
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Proof

= Let us assume that E : R — P(N') is an extended right-continuous spectral
family. We then have to show that its left adjoint of satisfies the conditions in
Definition 5.1.5. In particular, given any P > 0, since of preserves all joins, we
have that

of(P) = inf{r e R|P < E(r)} > —00.

Next consider that family of projections E|r = (E(r)),er, since it is a spectral
family we know that \/,.z E(r) = 1 holds. Moreover given the adjunction
of 4E, thenforallr e R

E(r) <E(r) = o"(E(r)) <r.
Therefore, given the above family E|g = (E(7)),er, We obtain that
oF(E(r) <rs 400,  VreR.

& Letus assume thato : P(N') — R is an abstract g-observable function, we need
to show that its right adjoint E is a right-continuous extended spectral family.
Since E° preserves all meets we have that for all r € R

E°(r) = E°(inf{s € R|r < 5}) = /\ E°(s).

§>r

This implies that E° is right-continuous. Next we need to show that it satisfies
the requirements of being an extended spectral family. However, since E°
preserves all meets, all we need to do is to apply Lemma 5.1.1. In particular,
we note that

Theorem 5.1.3

E°(—00) \/{P € P(N)|o(P) < —oc}.

However,
0(@) = o(\/ @) =sup@ = —o0
which, together with condition (5.1.5), implies that
E°(—00) = 0.

Moreover we have that

\/ E”(r) Deﬁnition;l.S,(S.l.G) \/ E(’(r) _ \/ E”(O(]A)L)) .

reR re{o(P))liel} i€l
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Given the adjunction o - E? it follows that, for all Pe PN),
o(P) < o(P) = P < E°(o(P)),

hence

\VE (@) =\/Pi=1.

iel iel
We conclude that since, \/,cg E°(r) > 1and 1 > V,er E°(r), then
V,er E°(r) = 1.

Note that since adjoins are unique we have that, for all 0 € QO(P(N'),R) and
E € SF(R, P(N)), the following holds:

|

Theorem 5.1.5 Given a von Neumann algebra N, there exists the following
bijection:

SAWN) ~ QO(P(N').R)

Aol
+o0
/ rde’(r) < o.
—00

Proof Given a self-adjoint operator A€ SA(N'), then we know that the spectral
theorem, uniquely, associates to it an extended right-continuous spectral famlly EA,
Applying Theorem 5.1.4 we obtain the unique g-observable function of" = o On
the other hand, given a g-observable function, Theorem 5.1.4 defines the unique
extended right-continuous spectral family E° and, by the spectral theorem, the
unique operator A" = fjozo rdE°(r). O

g-Observable functions are intimately related to the spectrum of self-adjoint
operators. In particular, in [20] it was shown that:

Lemma 5.1.2 Given a self-adjoint operator A affiliated with a von Neumann
algebra N, whose corresponding q-observable function is o*, then

oA (Py(N)) = spA

where Po(N') is the set of non-zero projection operators in N.If A is unbounded
from above then oA(l) =+4o0isin OA(Po(N))
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Proof Itis worth at this point recalling the fact that spfl is a non-empty set consisting
of those elements s € R for which E* = (E%),eR is non constant on any open

neighbourhood of s. This fact, together with the right-continuity property of EA
implies that, for r € spA then

A(EA) = inf{s € R| é > Aé} =r.

On the other hand, if r is in the image of oA then EA < EA for all s < r, therefore
E* is non constant on any ne1ghb0urh00d of r. This implies that r € spA

When A is unbounded, then EA < 1foralls € R hence EA = {and oA(1) =
400
For a bounded operator A with compact spectrum it follows that the image
oA(Po (N)) is compact. From this fact and Theorem 5.1.5 it follows that:

O

Lemma 5.1.3 Given a von Neumann algebra N, there exist a bijection between the
set Ny, of self-adjoint operators in N and the set QO°(P(N'), R) of g-observable
Sfunctions with compact image.

5.1.1 Lattice Structure

The poset (QO(P(N), R) <) equipped with the pointwise order forms a condition-
ally complete lattice.> Similarly the poset (SA(N'), <) equipped with the spectral
order forms a conditionally complete lattice. In [20] the authors showed that it is
possible to relate these lattices through an order-isomorphism.

Theorem 5.1.6 Given the posets (SAN'), <y) and (QO(P(N'), R) <), the map

¢ (SAN), <5) = (QO(P(N),R) <)
Ars o

is an order-isomorphism of conditionally complete lattice.

Proof We already know that the map ¢ is an isomorphism so, what remains to be
shown is that it preserves the order. To this end, consider two self-adjoint operators
A, B € SA(N') such that

A

A<,B< VreR: EA>EB

2A conditionally complete lattice is a lattice in which every non-empty bounded subset has a least
upper bound and a greatest lower bound. As an example of a conditionally-complete lattice one
may take the set of all real numbers with the usual order.
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It follows that for all P € P(\)
{reRIEP > Py C {re RIE} = Py,

therefore

oB(P) = inf{r e R|EP > P} > oA (P) = inf{r € RIE} > P}.

On the other hand, if oA < oé then, for all » € IR, we obtain

(P e PIN)|r = oB(P)} € (P e PIN)|r = A (P)}

hence
= \/{P € PN)Ir = o (P)}
< \/{P e PW)Ir = ()}
= AA .
This implies that A <s B. O

The upshot of this theorem is that it is now possible to faithfully represent the
poset (SA(N), <,) in terms of the poset (QO(P(N ), R) <).

We now consider the poset SF(R, P(A')) and equip it with the inverse pointwise
order which is denoted by <; and it is defined as follows:

F*<,E? « VreR:EN> EP.
Corollary 5.1.1 The map
(SAW), <5) = SF(R, P(N))
A E/3
is an order-isomorphism of conditionally complete lattices.

Proof Similarly as above, all that remains to be shown is that the order is preserved
by the map. However this follows trivially from the definition of the spectral order:

EAS;‘EE<:> VreIR:E‘}EE?@AgYE
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Theorem 5.1.7 The map

o+ E°
is an order-isomorphism of conditionally complete lattices.

The proof is very similar to the one of Theorem 5.1.6, however, for the sake of
completeness we will nonetheless report it here.

Proof Let us consider 0,0 € QO(P(N'), R) such that o < ¢’. It then follows that
forallr e R

E(r) = E} = \/{P € P(N)|o(P <1}
> E”(r) = E = \/{P e PN)|0'(P < 1}.

On the other hand, if E? < E;’/ then, for all P € P(N'), we have

o(P) = inf{r € R|E? > P}
<inf{r e R|E" > P}
=o'(P).

It follows that o < 0'. O

5.2 Relation to Outer Daseinisation

In this section we will analyse the relation between g-observable functions and
the process of daseinisation put forward in [20]. To this end we will first need the
following Lemma:

Lemma 5.2.1 Consider two von Neumann algebras M and N with common unit
element and such that M C N. Then the inclusion map i : P(M) — P(N) is a
morphism of complete orthomodular lattices® and as such it has both a left adjoint

844 1 PIN') — P(M) and a right adjoint §', : P(N') — P(M).

Proof To show that the map i is a morphism of orthomodular lattices we need to
show that it preserves orthocomplements, all meets and all joins.

3 A lattice is complemented if every element a has a complement a--. It is orthocomplemented if it
is equipped with an involution that sends each element to a complement. An orthomodular lattice
is an orthocomplemented lattice such that @ < ¢ implies that a V (a+ A ¢) = c.
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1 Orthocomplement: given any Pe P(M) its orthocomplement is given by 1-P
Since M C A and the unit elements in M and N coincide, we have that

il—-P)=1-P.

ii Meets: given a projection operator P, by definition this projects onto a closed
subspace S; of H, i.e. P i(S)) = S; and P (SJ-) = 0. The subspace S; is
independent of whether P is cons1dered to he in P(M), P(N') or P(H)
Therefore, given a family of projections (Pj)je ; in P(M), their intersection
A jes f’j will project onto the closed subspace given by Nje;S;. However, since

i(P;) = P;, it follows that:
NP | =/\i@).
el jel

iii Joins: given a family of projections (IA’j)jE 7 in P(M), then by de Morgan’s law
we have that

\/B=i- AP
jeJ jeJ

Since i preserves meets it then follows that it also preserves joins.

From Theorem 5.1.2 it follows that i has a left adjoint defined as follows:
8% 1 PN) - P(M)
P> 85,(P) == \{Q € P(M)|Q = P}.

This represents outer daseinisation.
From Theorem 5.1.3 it follows that i has a right adjoint defined as follows:

8yt PIN') = P(M)
P 8 (P) == \/{0 € P(M)|Q < P}.

This represents inner daseinisation. O
The relation between outer daseinisation and g-observable functions is then given
by the following Theorem [20]:

Theorem 5.2.1 Consider a von Neumann algebra N and a self-adjoint operatorfl
affiliated with N. If we consider a von Neumann algebra M C N, such that the
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unit elements of N and M coincide, then the weak g-observable of SO(A) M LS given
by

0N = A oi = ohrlpny  PN) — R

IfA is bounded from above, then "Dy s g proper g-observable function.

Proof Given the right-continuous extended spectral family EV R > PN), we
define

EY @ = 8ivg 0 E* R — P(M)
such that for all » € R we obtain

EY O (r) = 8 (BNn) = 8y (ED) = \/10 e PM)IQ < B2

From the definition it follows that E**“* is monotone. Since 8’ is a right adjoint,
it preserves all meets, hence

N\ (BN ) = 8 )\ EA0) = 8, (0) = 0.

reR reR

Moreover
8 (EA (+00)) = 8 (1) = 1.

However, E¥ M fails to be a right-continuous extended spectral family since it is
not necessarily the case that \/,cp E¥@™M(r) = 1. This is a consequence of the
fact that 8'(EA) oy < E2 for all r € R. Hence in this case we call E¥ @M a weak

right-continuous extended spectral family. Tts left adjoint 0% @M is then a weak
q-observable function. In this case we can define

R +o00 SO +o00 o

= [ raE e = [ rawEa
—00 —00

which represents the outer daseinisation of A.If A is bounded from above, then there

exists an r € R such that E4 = 1, therefore F @M — 1 and V,eg E¥WMm = 1.

This implies that E*’® is a right-continuous extended spectral family in which
case we obtain

8°@A)m = [\(B € SAM)|B =, A}.

Note that §°(A) v is a self-adjoint operator affiliated with M iff E¥ @ is a right-
continuous extended spectral family.
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The map E¥Drm = 85\/[ o EA is the composite of two right adjoints hence it is
itself a right adjoint whose left adjoint is

080(;4)/\/1 — 05‘\[ ol = 05‘\[|P(M) : P(M) —- R

where the second equality follows since i is an inclusion.

Clearly if E¥@ is a weak right-continuous extended family, then o @ will
be a weak g-observable while, if E% WD ig g right-continuous extended family, then
0%’ @ will be a g-observable function. O

5.3 g-Antonymous Functions

The notion of g-antonymous functions arose when trying to multiply a g-observable

function by —1 and noticing that the resulting function was not a g-observable

function [20]. In particular, given a g-observable function o associated to the self-

adjoint operator A € SA(N') then, for all P € P(\'), we obtain

—o\(P)

—inf{r € R|P < E}}

sup{—r € ]R|18 < Ef}

sup{r € R|P < l:ffi,}.

Let us now consider the left-continuous extended spectral family of —A denoted by
F~A = (F),cg. Since

FA=1—F VreR

we can write —o/ (13) as follows:
—oMP) =sup{re RIP <1 —F.

This function is clearly not the g-observable function associated to —A, it is however
a g-antonymous function associated to —A. These are defined as follows:

Definition 5.3.1 Given a self-adjoin operator A e SA(N'), the g-antonymous
function associated with A is defined by

& PNV) = R

f’Hsup{reRllA’f i—ﬁf}.
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The set of all such functions is denoted by QA(P(N),RR). Clearly each a o
P(N') — R is order-reversing, i.e. an antitone.
We then obtain the following Theorem:

Theorem 5.3.1 Given the sets (SA(N), <,) and (QA(P(N'),R), <), where the
latter is equipped with the pointwise order, there exists an order-isomorphism
defined as follows:

Arsdt
Proof We will first of all show that y is a bijection between the respective sets, then

we will show that it preserves the order. The fact that y is a bijection follows from
the fact that it can be constructed as follows:

Aot ot =a
where the first map is the isomorphism of Theorem 5.1.5, while the second map is
the obvious bijection between g-observable functions and g-antonymous functions.
To show that y also preserves the order, consider two self-adjoint operators A, B €
SA(N') then we obtain

O

In [20] the author showed that there exists a relation between g-observable

functions and g-antonymous functions. In particular, we have the following
Lemma:

Lemma 5.3.1 Given a self-adjoint operator A € SAN') with associated g-
observable function and q-antonymous functions given by o and a*, respectively,

then for all P € P(N') \ {0, 1} we obtain
APy < o (P).

Proof The self-adjoint operator A has associated with it both a right-continuous
extended spectral family E4 and a left-continuous extended spectral family F*. In
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A

terms of these the g-antonymous function a” can be written as follows:

aA(f’) = sup{r e R|P < 1— f’f}
=sup{re RIP <1—E}.
For each r € R such that P < Ef then, P £ 1 — Ef Given that o’ (P) is the least
upper bound of the set {r € R|P < 1 — [} it follows that » > a*(P). Moreover,

since OA(P) is the greatest lower bound of the set {r € R|P < ﬁf} it follows that
oA (P) = d(P). O

5.4 Relation to Inner Daseinisation

In this section we will explain how inner daseinisation is related to g-antonymous
functions [20]. To this end consider a self-adjoint operator A € SA(N'), with left-

continuous extended spectral family FA:R > P(N'). We then construct the
composite

FY@Orm = 500 FA L R — P(M).

This map preserves joins since both §° and F* do and, as such, it is left-continuous.
Moreover we have that

F5i(A)M (—o0) = }A?tg_i(o/}))M
~A
=8%(Fly)

=8°0) =0

and

\/ B =\ 8o

reR reR
reR
=81 =1.

However, since for all r € R, 6, (I:"f*) > I:"A, then in general /\I:"fi(A)M % 0.
Therefore, similarly as it was the case for the g-observable functions, we will call
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I:“f W 4 eak left-continuous extended spectral family. In the cases for which

AF YW = ) then F¥* will be a left-continuous extended spectral family.
Given a self-adjoint operator A € SA(N), its inner daseinisation is given by

+

S (A = /

—00

00 i +o00 o
rd(F¥®am) =/ rd(8°(FM m)
—0Q
IfA e SA(N) is bounded from below then there exists an » € R such that f’é =0,
hence F¥@rm = § and A F2 ™ = 0. It follows that §7(A) o is a self-adjoint
operator affiliated with M iff F% 4 s a left-continuous extended spectral family.

Since F¥Mm = §o0 FAisa composite of two left adjoints, it is itself left adjoint
and, as such, it has a right adjoint defined as follows:

zSi(A)M = zA oi:P(M)—>R

where 74 : P(N') — R is the right adjoin of FA given by Theorem 5.1.3 and
i : P(M) — P(N) is the inclusion map. We then obtain the following theorem
[20]:

Theorem 5.4.1 Consider two von Neumann algebras N" and M such that M C /\[
and the unit elements of both coincide. Then, given a self-adjoint operator A

affiliated with N, the function zgi(A)M, corresponding to the inner daseinisation
8'(A)pm of A, is given by

PO = A oi= Ay PV) > R
If A is bounded from below, then §'(A) v = \/{E € SAM)|B <, A} € SA(M).
In order to relate this to g-antonymous functions we note that, given any A €
SAW),
AP)=AA-P) VPePW).

In fact, since zA is the right adjoint of FA, from Theorem 5.1.3 it follows that zA can
be explicitly constructed as

A PWV) >R
P sup{r € RlAf‘ < 13}.
However, since 1— I:"f‘ > P iff I:"f‘ < 1— 13, then aA(IS) = z‘:‘(i — 13).

We can now relate inner daseinisation to g-antonymous functions obtaining the
analogue of Theorem 5.2.1.
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Theorem 5.4.2 Consider a von Neumann algebra N and a self-adjoint operatorfl
affiliated with N. If we then consider a von Neumann algebra M C N such that
the unit elements of N" and M coincide, the weak g-antonymous function of Si(A) M
is given by

a5i(A)N — Cl.é\/ol.: a‘}\/lp(j\/) P(N) —-R.

If A is bounded from below, then "D s g proper g-antonymous function.

5.5 g-Functions and Quantum Probabilities

In this section we are going to expand on the topic of the previous section and
explain how g-functions can be interpreted as generalised quantile functions for
quantum observables, seen as random variables. The content of this section is
a summary of the results presented in [21]. In order to make this section as
self sufficient as possible we will need to introduce a few mathematical nota-
tions.

5.5.1 Mathematical Background

In classical probability theory, a measure space is given by (€2, B(2), n) where 2
is a non-empty set called the sample space, B(S2) is a o-algebra of p-measurable
subsets of €2, whose elements are called events and u© : B(R2) — [0,1] is a
probability measure. Being a probability measure, p is such that ©(2) = 1 and,
for all countable families (S;);e; of pairwise disjoint events, then

M (U Si) = ZM(Si)-
ieN ieN

A random variable is a measurable function A : 2 — imA € R and, for every
Borel subset A € R, we have

ATY(A) € B(Q).

Definition 5.5.1 A cumulative distribution function (CDF) C* of arandom variable
A, given a probability measure p, is defined by

'R —[0,1]

ri—> WA (=00, r]).



98 5 Interpreting Self-Adjoint Operators as g-Functions

An extended cumulative distribution function (ECDF) C* of a random variable
A, given a probability measure 4, is a map C* : R — [0, 1] obtained by extending
C4 such that

CY(—00) =0 and CM+o0) = 1.

Conceptually C*(r) = w(A™'(—o0, r]) represents the probability of the variable A
having a value which does not exceed r. The maps C* : R — [0, 1] for each random
variable A are right-continuous and order preserving. In fact, given r < s we have
that (—oo, 1] € (=00, 5] hence A~!(—oc0, 7] € A7!(—00, 5] and (A~ (=00, r]) <
w(A™ (=00, s]). Conceptually it is clear that when r < s then the probability of
A having values not greater than r is less than the probability of A having value
not greater that s, since the former carries more information than the latter. It then
trivially follows that C* is right-continuous. We can now show that C* is a map
between meet-semilattices which preserves all meets. In fact we have

c! (inlfri) right cginuity /\ A (s) monolzonicity /\ A (r).
i€

s>infiey r i€l

It is now possible to apply Theorem 5.1.2 to construct the left adjoint of C4 as
follows:

g :[0,1] = R (5.5.1)
p > inf{r € ]R|CA(r) > p}.

This function is called the quantile function of A with respect to y and it assigns to
each probability p € (0, 1], the smallest value r such that the probability of A having
a value not greater than r is p.

From what has been said so far, the CDF functions are probability valued
functions, however, it is also possible to construct a variation of CDF functions
which take values in a lattice. In particular, for the case in which the lattice in
question is B(£2) we have the following definition:

Definition 5.5.2 Consider the complete Boolean algebra B(§2) of equivalent sub-
sets of Q and the inverse image A~! : B(R) — B(R) of the random variable
A, such that A~! preserves all meets. The B()-cumulative distribution function
(B(R2)-CDF) of A™! is given by

c* R = B(Q)

7 A_l([—oo, r]).
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If we then replace B(£2) with a general meet-semilattice the definition becomes:
Definition 5.5.3 Given the meet-semilattice L and the L-valued measure* A~! such
that A' (@) = 1, and A" (R) = T, then the L-CDF of A™! is given by
A
C :R—L (5.5.2)
ri> AT ([~o0,r]). (55.3)

Lemma 5.5.1 Given a complete meet-semilattice L and an L-valued measure A~ :

B(R) — L which preserves all existing meets, then the L-CDF, " R—>L of A7!
preserves all meets.

Proof Consider any family (r;);e; € R, we then obtain:
A . —1 .
C (infr;) = A7 ([—o0,infr;]
il i€l
= A_l (U[—OO, ri])
iel

e AGI (SN

i€l

= N\c't).

i€l

O
Since CA preserves all meets it will have a left adjoint which, from Theorem 5.1.2,
is defined by:

g 'L—->R (5.5.4)

T > inf{r € RIT < C* ()} (5.5.5)

and it preserves all joins. g” is called the L-quantile function of A=". It is possible
to express the usual CDF in terms of the L-CDF as follows:

ChuoC' R L0 1] (5.5.6)
ri=> (A" ([—o0, 7)) . (5.5.7)

“Here the notation A~! is only symbolic since there may not exist any function A whose inverse is
A~'. We used this notation to resemble the Definition in 5.5.2.
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Since by assumption A~! is meet preserving, it follows that the L-CDF C s also
meet preserving and, as such, it has a left adjoint

k:[0,1] =L

s> NIT € Lis < w(D)} .

Hence C4 = o c” also preserves meets and has a left adjoint ¢4 : [0,1] —
R which represents the quantile function of the random variable A. This can be
decomposed as

ququk.

5.5.2 Quantum Theory

In this section we would like to apply what we have learned to the case of quantum
theory. To this end we recall that, given a noncommutative von Neumann algebra
N and a self-adjoint operator A representing a random variable, then the spectral
measure of A is given by

& : B(R) > P(V;) < P(N).

Here V; = {A, 1} and P(V;) is the complete Boolean algebra of projection
operators in V3. This is a subalgebra of the complete orthomodular lattice P(N')

of projection operators in A/. Clearly ¢ can be seen as a P(\')-valued measure.
In previous sections we encountered the extended right-continuous spectral

family EA of the self-adjoint operator A. This can be written as

EV R — PV)

r eA([—oo,r]).

If we compare this definition with (5.5.2), it follows that EA is the P(N)-CDF of

the projection valued measure e. The analogue of (5.5.4) is then given by the g-
observable function

OAZP(N)—>]R.

It is in this sense that g-observable functions are interpreted as P(N')-quantile
functions of quantum variables described by P(N\)-valued measures.



5.5 g-Functions and Quantum Probabilities 101

Now we would like to construct the quantum version of the CDF function defined
in (5.5.6). To this end we need the analogue of the probability measure p : B(2) —
[0, 1]. This is given by the finitely additive measure

o : PIN') — [0,1]

equivalent to the state p : N' — C via Gleason’s Theorem. In particular we have
that

Hp = plrwv) -

From now on we will restrict our attention to normal states. These are state such
that, for all A € P(N') then p(;\) = tr(ﬁ;\), where p is some positive trace-class
operator of trace 1.

In this setting, a CDF of a quantum random variable A, given a state p, is defined
as

Cr=p, 0 R —[0.1] (5.5.8)

7 ,up(lAfé).

Lemma 5.5.2 The CDF C defined in (5.5.8) preserves meets.

Proof We know that the extended spectral family E* preserves meets since it is
monotonic and right-continuous, hence we only need to show that 1, preserves
meets. To this end let us consider an arbitrary family (r;);e; of real numbers. Then

o (AE) = (- Vi -2D)

i€l i€l

=1- supup(i —Eﬁ_

iel
— inf u, (E}
e ()
where the third equality follows from the fact that normal states preserve suprema
of increasing nets. O

From the above proof we have discovered that 11, preserves meets, hence it has
a left adjoint given by

ky 2 [0,1] = P(N)
s> \tP € PI)ls < (P}
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This, together with the left adjoint ot P(N) — R of EA, allows us to define the
left adjoint of C* = p, o E* as

quo/gokp:[O,l]—>R

S OA(kp(S)) .

g* represents the quantile function of the quantum random variable A with respect
to the normal state p.

It is also possible to define q/3 by applying Theorem 5.1.2. In this case we would
obtain

A [0.1] > R
s inf{r € R|s < CA(}’)}.

Lemma 5.5.3 ([21]) The two expressions for q‘:‘ are equivalent.

Proof To show that the two expressions for the quantile function coincide we need
to show that, for all a € [0, 1] then (0 o k,)(s) = inf{r € R|s < C*(r)}. From the

definition of C1 we have that
inf{r € Rls < CA(r)} = inf{r € Rls < u,(EM)}.
On the other hand, applying the definition given in (5.1.4) we obtain
oM ky(s)) = infir € R| \ (P € PI)Is < i, (P) < B

Clearly if P < Ef then ;Lp(f’) < p,p(lAfé). Conversely given P = ky(s) = /\{Q €
P(N)|s < u,(P)} which is the smallest projection for which u,(P) > s, then
,up(l:?f‘) > ,up(IS) > s implies that Eé > P = ky(s). It follows that the two
expressions for q;‘ coincide. O

5.5.3 The Case for Topos Quantum Theory

In [21] it was shown how to apply the ideas of the previous section to the case of
topos quantum theory. As a first step we recall that in this setting a random variable
is defined as a function from the spectra presehaf X to the presehaf representing the
quantity value object R*:

S(A): T >R,
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The inverse image of a random variable is then given by
A" B(R) > Sub, T
A s 8°(A(A) =: S, A).
Here
A B(R) — P(N)

A E[A € A =: A(A)

is the extended spectral measure of A and the projection e*(A) represents the
proposition “if a measurement on A is performed, the result will lie in the Borel set

A”. The clopen sub-object 8"(e‘2‘(A)) =: S(A, A) is obtained via the daseinisation
map defined in Definition 2.2.2.

Definition 5.5.4 Given a random variable § (A) : ¥ — R with associated inverse
image A7l B(R — Sub;X we define the Sub.;X-valued CDF function by:

E' R — SubyX
r> A7 (00, r]) = 8°(EY) = S(A, [~o00,1]).

where E*(—o0) = @ since EA = 0 and E*(4-00) = ¥ since £/ , = 1.

Clearly the map EA can be decomposed as follows:
E'=§0FE' : R — Suby X

Theorem 5.5.1 Given a von Neumann algebra N and a self-adjoint operatorA S
N5, then the map

EA R — Subys

is right-continuous.

Proof To show that E* is right-continuous we need to show that

NEs) = EA0).

s>r



104 5 Interpreting Self-Adjoint Operators as g-Functions

Since FA is a map between presheaves, we need to show that the above equality
holds for each context V € N. In particular, for all V € A we have that

(/\ EA(s)) (/\ S(EA))
= \&EHy

S>r

= A\ /i@ epPmIEl <0

S>r

= N0 e PV \E! < 0}

= N0 e PW)E < 0}
= §8°(E})y

= 5(E)),

Clearly EA preserves meets therefore it has a left given by

o SubyT — R

S > inf{r € RIS < EA(r)}

which represents the Sub;X-quantile function associated to EA, Applying such a
function to the special case for which S = §(P) we obtain

AS(P)) = infir € R|S(P) < E}
= inf{r € RI§(P) < 8(ED)}
= inf{r € RIP < E}}
= oP).

Now we would like to define the topos quantum analogue of both the CDF function

C* and the quantile function ¢*. This requires the notion of a probability measure
on X given in Definition 3.4.4.
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Definition 5.5.5 Given a state p with associated probability measure (i, and the
inverse image A~ of arandom variable A, then the corresponding CDF is defined by

Ch R - [0, 1]

> min EA ,
r VeV(/\/)'up( (r)

where the minimum is obtained at those contexts V € V(A) such thatA € V.
From Definition 5.5.4, we know that EA(r) = A1 ([—o0, r]) = §(E2).

The corresponding quantile function is then given by the left adjoint of C* which
is defined as follows:

qA:[O,l]—>IR

s inf{r € R|s < CA(}’)}.



Chapter 6
What Information Can Be Recovered from

the Abelian Subalgebras of a von Neumann
Algebra

As explained in [26], the motivation for constructing topos quantum theory is
to render quantum theory more “realist”. This is done by expressing quantum
theory in terms of similar mathematical constructs used to formalise classical
physics, in the hope that the ensuing interpretation would be more “realist” (as
is the case for classical theory). This is achieved by describing quantum objects
in terms of presheaves in the topos Sets” "), where V(%) is the poset of abelian
von Neumann subalgebras of the algebra of bounded operators B(#). Each such
abelian subalgebra V € V(H) represents a classical snapshot since it contain only
simultaneously measurable observables. Hence a quantum object can be seen as a
collection of classical approximation “glued” together by the categorical structure
of the base category V(#). The quantum information is then contained in the
categorical structure of V(#) which is also reflected at the level of presheaves. The
question that then comes to mind is the following: given a general von Neumann
algebra A/ and its collection of abelian subalgebras V(N), how much of N/, if
any, can be reconstructed from V(N)? This question was asked in [37]. There it
was shown that, if the initial von Neumann algebra A is abelian, then it can be
completely reconstructed from the poset of its abelian von Neumann subalgebras.
However, if the algebra A/ is not abelian, then it can only be reconstructed up to
its Jordan structure. This is because both A/ and its opposite op(N) have the same
collection of subalgebras but they are not necessarily isomorphic to each other [9].

6.1 Mathematical Preliminaries

In the following we will explain the results obtained in [37]. In order to make
the exposition more compatible with the original article we will utilise, whenever
possible, the notation put forward in [37].
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For clarity purpose we will recall a few definition regarding von Neumann
algebras which will be useful in understanding the content of this chapter. We will
start with the notion of the commutant of a given set. In particular consider the C*
algebra of all bounded operators on a Hilbert space . This is denoted by B(H).
Given a subset S of such an algebra, the commutant of S, which is denoted by &', is
the set of elements in B(#) which commute with each element of S. It follows
that the double commutant of S, which is denoted by S”, is the set of element
in B(H) which commute with each element in S’. It is possible to define a von
Neumann algebra in terms of the notion of double commutant. In particular, a subset
N C B(H) is a von Neumann algebra if N' = A/ ", i.e. a von Neumann algebra is
equal to its own double commutant. The set of projections in a von Neumann algebra
N is denoted by Proj(N) and it forms an orthomodular lattice. It turns out that a
von Neumann algebra is uniquely determined by its set of projection. In particular
we have that

N = (Proj(N))".

Given a von Nuemann algebra NV, a von Neumann subalgebra )V of A is defined
to be a subset ¥V C N which is itself a von Neumann algebra. In the following
sections we will consider particular types of von Nuemann subalgebras of a given
von Neumann algebra \V.

Definition 6.1.1 Given a von Neumann algebra N, Sub(N) will denote the set of
all von Neumann subalgebras of A/, AbSub(N') will denote the set of all abelian
subalgebras of A/, and FAbSub(N') will denote the set of all abelian subalgebras of
N containing only finitely many projections. Each of these sets are ordered by set
inclusion.
Each of the above sets can be shown to be a lattice. In particular, Sub(N) is a
complete lattice where meets are given by intersection and, given a family (V;);e; of
subalgebras, the join is the weak closure of the algebra generated by S;, i € I.

AbSub(N) is a complete meet semilattice where joins are defined only for those
subsets which are closed under finite joins. If A/ is not abelian, then AbSub(N') has
no top element.

FAbSub(N) is a complete meet semilattice for which every meet is finite. If N
is not abelian, then FAbSub(/N') does not have a top element.

Similarly, for an orthomodular lattice Proj(N\) of projections in A/ we have the
following:

Definition 6.1.2 Sub(Proj(N)) denotes the poset of subalgebras of Proj(N)
ordered by subset inclusion; BSub(Proj(N)) denotes the poset of Boolean
subalgebras of Proj(N') ordered by subset inclusion and FBSub(Proj(N')) denotes
the poset of finite Boolean subalgebras of Proj(N\') ordered by subset inclusion.
Given two von Neumann algebras M and N/, a *-isomorphism between them
is a map f : M — N which is linear, bijective, preserves the involution
and is such that f(ab) = f(a)f(b). On the other hand a *-antiisomorphism is a
map f : M — N which is linear, bijective, preserves the involution * and is
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such that f(ab) = f(b)f(a). In previous sections we have seen that to each von
Neumann algebra A one can associate its Jordan algebra where the Jordan product
is defined asaob = é(ab + ba). Such a product is commutative but not necessarily
associative, as opposed to the von Nuemann product which is associative but not
necessarily commutative. If we now consider two von Neumann algebras M and AV,
a Jordan isomorphism between them is a linear bijective function which preserves
the involution and it is such that f(a o b) = f(a) o f(b). The following is a well
known result.

Theorem 6.1.1 Every Jordan isomorphism f : M — N between von Neumann
algebras can be decomposed as a sum of a *-isomorphism and a *-antiisomorphism.
Of particular importance for the next section is a result by Dye.

Theorem 6.1.2 ([25]) Consider two von Neumann algebras M and N without type
I, summands. To each orthomodular lattice isomorphism ¥ : Proj(M) — Proj(N)
there corresponds a unique Jordan *-isomorphism V : M — N/, such that \I’(i’) =
W (P) for all P € Proj(M).
This theorem essentially tells us that W extends the action of i on projections.
Given the spectral theorem by defining how W acts on projections, one is able to
define its action on any other element in the algebra. Hence W will be the unique
Jordan *-isomorphism which extends .

Another important result which we will use in the next section is the following
theorem:

Theorem 6.1.3 ([38]) Given two orthomodular lattices (OML) L and M which
have no blocks with four elements, and an isomorphism ¢ : BSub(L) — BSub(M)
of posets, then there is a unique isomorphism ® : L — M with ¢(A) = D[A] for
each Boolean subalgebra A of L.

We are interested in the particular case in which the orthomodular lattices
in question are Proj(M) and Proj(N) for von Neumann algebras M and N,
respectively. For the theorem to apply we require both Proj(M) and Proj(N') not
to have any blocks with four elements. However, this is equivalent to the condition
that neither M nor N are isomorphic to C @ C or B(C & C). Therefore, rephrasing
the above theorem for the case at hand we obtain:

Corollary 6.1.1 Consider two von Neumann algebras M and N" which are not iso-
morphic to C®C nor B(CHC), then given an isomorphism  : BSub(Proj(M)) —
BSub(Proj(N)) there exists a unique isomorphism @ : Proj(M) — Proj(N) with
¢(A) = ®[A] for each Boolean subalgebra A of Proj(M).

6.2 Reconstructing the Jordan Structure

In this section we will show how it is possible to retrieve the Jordan information of
a von Nuemann algebra A/ given the poset of abelian subalgebras of \V.
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Theorem 6.2.1 ([37]) Consider two von Neumann algebras M and N, neither
isomorphic to C & C and without type I, summand. Given an order-isomorphism f -
AbSub(M) — AbSub(N) there exists a unique Jordan *-isomorphism F : M — N
such that f(S) = FI[S] for all S € N. Here F|[S] denotes the image { F(s)|s € S} of
the set S under F.

Before proving this theorem we will need a few more results.

Lemma 6.2.1 Given a von Neumann algebra N, then there exists an order
isomorphism

W : FAbSub(N') — FBSub( Proj(N))
S+ ¥(S) := SN Proj(N).

Proof First of all we need to show that the map W is well defined. It is a known
result that the projections of any abelian subalgebra of N form a Boolean subalgebra
of Proj(N) [1], hence S N Proj(N) € FBSub(Proj(N)). To show that ¥ is order
preserving we need to show that if ¥(S) € W(T) then S € 7. Assuming that indeed
W(S) C W(T) then, since W(S) = Proj(S) and S = (Proj(S))”, it follows that
S = (\I/(S))N C (\II(T))” = T. Clearly W is injective by construction, hence all that
remains to be shown is that it is also onto. That is, for each T € FBSub(Proj(N))
we need to show that T = W(S) for some S € FAbSub(N'). Assume we are given
T € FBSub(Proj(N')) whose minimal elements are 131,152, ... ,f’n, then we define
the map y : C" — A such that y(A1,A2,...,4,) = Y, 1P, Clearly such a map
is a unital *-isomorphism which maps into V. In [1, Lemma 2.100] it was shown
that, given a normal unital *-isomorphism y from a von Neumann algebra M into a
von Neumann algebra AV, then y (M) is a o-weakly closed subalgebra of NV, hence
a von Neumann algebra. This implies that y (C") = S is a von Neumann subalgebra
of . By construction $ has finitely many projections and it is abelian. Moreover
W(S) = S N Proj(M) = B hence V is onto. O

Lemma 6.2.2 Given two orthomodular lattices M and N, then each order-
isomorphism o« : FBSub(N) — FBsub(M) extends uniquely to an isomorphism
B : BSub(N) — BSub(M).

Proof To prove the above Lemma we need to recall the definition of an ideal of a
partially ordered set. This is a non-empty subset / such that (Vx e )y <x=>yel
andVx,y el Jzelst (x <z)A(y <7z),ie.lisadownset. In the case at hand we
define / to be that downset of FBSub(N), such that any two elements in / have a join
and that join belongs to /. In particular, for any element x € BSub(N), we define an
ideal I of FBSub(N) to be the set A, =] x N FBSub(N) = {z € FBSub(N)|z C x}.
Clearly if w,y € A, thenw Vv y € A, sincew C xandy C x. Moreovery < wV'y
and w < w V y hence the second condition of an ideal is satisfied. Regarding the
first condition, for any y € A, if w C y then clearly w € x and w € A,. It is easy to
see that the join of A, in BSUb(N) is x. Since each finitely generated subalgebra in a
subalgebra lattice is compact, all ideals in FBSub(N) are of the form defined above.
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Next, given an order-isomorphism o« : FBSub(N) — FBsub(M), we construct
B : BSub(N) — BSub(M) as follows:

B) =\/ a[l x N FBSub(N)).

Since « is an isomorphism it preserves ideals hence the join is well defined since
a[l x N FBSub(N)] is an ideal in FBSub(M). To show that f is order preserving
we need to show that if B(x) < B(y) then x < y. If B(x) < B(y), then from the
definition \/ «[} x N FBSub(N)] < \/ «[l y N FBSub(N)], therefore for each z €
xNFBSub(N) it follows that a(z) < \/ a[| xNFBSub(N)] < \/ a[{ yNFBSub(N)].
Since « is an order isomorphism and each finite Boolean subalgebra is compact' it
follows that z < \/[} y N FBSub(N)] = y. This is true for all z €}, x N FBSub(N),
hence x < y.

The fact that § is one-two-one is obvious, hence all that remains to be shown
is that it is onto. Clearly given any x € BSub(M) with associated ideal I, =] x N
FBSub(M) = {z € FBSub(M)|z C x} in FBSub(M), then x = \/I,. Since « is
an order-isomorphism ! (1,) is an ideal in FBSub(N) and, as such, it has a join
y € BSub(N),ie.y = \/a~'(I,) = \/[{ y N FBSub(N)]. Then B(y) = x.

We have then showed that 8, as defined above, is an order-isomorphism and
clearly it extends «. For uniqueness, consider any other order-isomorphism 8’ :
BSub(N) — BSub(M) which extends «, then by definition B’ preserves joins,
hence 8'(x) = B (VI x N FBSub(N)]) = \/ B'[{ x N FBSub(N)] = Va[{
x N FBSub(N)] = B(x). O

We are now ready to prove Theorem 6.2.1

Proof As a first step we will show that there exists a functorial assignment for each
order-isomorphism f : AbSub(M) — AbSub(/N) of a Jordan *-isomorphism F :
M — N. In particular, assume we have an order-isomorphism f : AbSub(M) —
AbSub(N), this clearly restrict to an order-isomorphism g : FAbSub(M) —
FAbSub(/N) since the elements in FAbSub(M) are those elements in AbSUb(M)
which have only finitely many elements beneath them. From Lemma 6.2.1 it follows
that there exist two order-isomorphisms W : FAbSub(M) — FBSub(Proj(M));
S+ SN Proj(M) and W : FAbSub(N') — FBSub(Proj(N)) ; T — T N Proj(N).
We then obtain the following diagram:

g

FAbSub(M) FAbSub(N)
OV Y
FBSub( Proj(M)) " FBSub( Proj(N)).

!Given a partially ordered set L, then an element a € L is compact if for any directed subset P C L,
if P has a supremum and a < Sup(P), then a < d for some d € Sup(P).
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Clearly the unique h : FBSub(Proj(M)) — FBSub(Proj(N)), which makes the
diagram commute, will be defined as A(S N Proj(M)) = g(S) N Proj(N) for
each S € FBSub(Proj(M)). From Lemma 6.2.2 this extends uniquely to an order-
isomorphism j : BSub(Proj(M)) — BSub(Proj(N')). As shown in [38] and in
Theorem 6.1.3: given two orthomodular lattices (OML) M, N without any 4-element
blocks, then to any order-isomorphism « : BSub(N) — BSub(M) there corresponds
a unique OML-isomorphism 8 : N — M, such that «(A) = B[A]. We can use this
result for our map j. In fact, since neither M nor A are isomorphism to C & C nor
B(C & C), then Proj(M) and Proj(N') have no 4-elements blocks. It follows that
the map j determines a unique map k : Proj(M) — Proj(N) such that j(A) = k[A]
for all A € Proj(M).

In [25] it was shown that, given two von Neumann algebras M and N/, without
type I, summand, then for any OML-isomorphism y : Proj(M) — Proj(N)
there is a unique Jordan *-isomorphism I' : M — N with y(ﬁ) = F(i’) for all
P € M (See Theorem 6.1.2). This result shows that k uniquely extends to a Jordan
*_jsomorphism F : M — N.

Next we consider two categories vNa; and vNa, the objects of which are both
von Neumann algebras but whose morphisms are defined differently. In particular,
consider two algebras M and A in vNa,, then a morphism between M and N is
defined to be an order-isomorphism f : AbSub(M) — AbSub(N'). On the other
hand, given the same two objects M, N € vNay, then a morphisms between them
is defined to be a Jordan *-isomorphism F : M — A. Let us then construct a
functor between these to categories which acts trivially on object and which assigns
to each order-isomorphism f : AbSub(M) — AbSub(N) the associated Jordan
*-jsomorphism F : M — N. Clearly F extends the action of f on projections,
since we defined it that way. Moreover, since a Jordan homomorphism is uniquely
determined by how it acts on projections it follows that the assignment f +— F is
unique. Functoriality then follows from this uniqueness. In particular if F and G
extend the action of f and g on projections, it follows that G o F extends the action
of g o f and Id does the same as id.

Since f extends to F, it follows that f~! extends to F~'. We will now show that
for every projection P e N, P e F[S]iff p € £(S) for any S € AbSub(M). To
this end let < P > be the abelian subalgebra generated by PIfP e f(S) then
< P >C f(S). Since f is an order-lsomorphlsm then f_ < P >C S. However, since
F~! extends f~!, then one has thatf"'(< P>) = F (< P >), therefore P e f(S)
is equivalent to F~!(< P >) C S which is equivalent to F~ 1(P) € S. Since Fis a
unital order-isomorphism then F~ 1(P) € S is equivalent to PeF ).

Next we need to show that both F[S] and f(s) are von Neumann subalgebras of
N. We do this by claiming that given any S € AbSub(M) then F[S] € AbSub(N).
Clearly, since S is abelian and F is a Jordan *-isomorphism, it follows that F|g
preserves the associative product. Moreover from [1, Prop. 4.19] it follows that
F is a unital order-isomorphism and its restriction F|s : § — A is a normal
unital *-isomorphism into N. From [1, Lemma 2.100] it follows that F|s[S] is a
von Neumann subalgebra of N which is clearly abelian hence F[S] = F|s[S] €
AbSub(N).
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Since both F[S] and f(s) are von Neumann subalgebras of N, and since they
contain the same projection they have to be the same, hence F[S] = f(S).

Finally we need to show that F is unique, i.e. given any other Jordan
*_isomorphism G : M — N such that f(S) = G[S] for each § € AbSub(M),
then F = G. Because of the spectral theorem, if F[P] = G[P] for all P € Proj(M),
then F = G since any other operator can be written in terms of the projections
operators in the algebras. Therefore we only need to show that F and G agree on
Proj(M). However from the result in [38] and Theorem 6.1.3 it suffices to show
that F and G agree on each Boolean subalgebra of Proj(M). From the uniqueness
in Lemma 6.2.1 it is enough to show that F[T N Proj(M)] = G[T N Proj(M)]
for each T € FAbsub(M). But since we have assumed that G[S] = F[S] = f(S)
for all S € AbSub(M) then clearly for T € FAbsub(M), G[T| = F|[T], therefore
F=0G. O

Interestingly enough the converse of the above theorem is also true, namely:

Theorem 6.2.2 Given two von Neumann algebras M and N and a Jordan
*-ijsomorphism F : M — N between them, then F induces a unique order-

isomorphism f . AbSub(M) — AbSub(N') such that for all S € AbSub(M),
f(S) = F[S].

Proof The proof is a straightforward consequence of the fact that a Jordan
*-isomorphism preserves commutativity, hence F' maps abelian subalgebras of M
to abelian subalgebras of A/. Moreover since it is an isomorphism it does so in a
bijective order preserving way hence f : AbSub(M) — AbSub(N) is an order-
isomorphism. O
The result of Theorem 6.2.1 is very important since it allows us to recover the
Jordan structure of a von Nuemann algebra from its poset of abelian sub algebras.
The question that still remains to be answered is if and how the full von Neumann
structure can be recovered. This could be done by adding additional information
on the poset of abelian subalgebras which would allow us to retrieve the full von
Neumann algebra. A step in this direction is given by orientation theory [1].



Chapter 7
Grothendieck Topoi

In this chapter we will describe the topos of sheaves over a category C equipped
with a Grothendieck topology. In [26] we came across the definition of sheaf over
a topological space X. This definition relied solely on the lattice of open sets of the
topological space X, i.e. on the topology. In this chapter we would like to extend the
notion of topology so as to be able to define sheaves on this more general ‘topology’.

7.1 Grothendieck Topology

In this section we will try to generalise the notion of a topology. As a first step we
will consider the concept of a covering which is central to topologies. The rigorous
definition of a covering is as follows:

Definition 7.1.1 Given a topological space X, a cover C of X is a collection of
subsets U; C X such that X = Ui U,;. If each U; is open then C is an open cover.
The notion of a cover also extends to subsets of the entire space X.

Definition 7.1.2 Given a subset Y C X, then a cover of Y is a collection of subsets
U; € X such that Y C |, U.

If we now consider the above definition in categorical language, then the notion of a
subset would be replaced with that of a monic arrow whose codomain is X or Y. The
particular category we will consider is the category O(X), which has as objects open
subsets of the topological space X, while a morphism V — U in O(X) is defined iff
V C U. Given such a category, the definition of a covering is as follows:

Definition 7.1.3 Given the category O(X) of open subsets of the topological space
X, a covering of an open U € O(X) is a family {U;|i € I} of opens in X, such that
Ui— UforallieIand U C \/,; U,.

In other words {U; — Uli € I} covers U iff U € | J, U;.
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From the definition of a cover it is easy to see that if we are given a cover {U; —
Uli e I} of Uand V C U, then {U; NV — V|i € I} is a cover of V. In fact,
V=vVnUcvnlY,U;=YJ;VNU,. This implies that any map V — U in O(X)
can be used to ‘pullback’ covers.

We now recall the definition of a sieve

Definition 7.1.4 A sieve on an object A € C is a collection S of morphisms in C
whose codomain is A and such that, if f : B — A € § then, given any morphisms
g:C — BwehavefogeS,ie.Sisclosed under left composition:

S

— =4

B

g
I Jog
()

Given a sieve S on A, if f : B — A belongs to § then the pullback of S by f
determines a sieve on B, i.e.

) ={h:C—>B|foheS={h:C— B}

is a sieve on B. Such a sieve is called a principal sieve (i.e. the sieve which contains
the identity arrow) and it is denoted by | B.

If we apply the definition of a sieve in the context of the category O(X), then
sieveaSon UisasetS = {V € OX)|V C U} such that,if V € Sand V' C V,
then V' € S. Given this definition of a sieve it is clear that S is a cover of U iff
U € Uyes V. We will now show several properties of a covering sieve.

1. Maximal sieve. The sieve S which contains U itself (the principal sieve) is a
covering of U.
Proof: Clearly if U € Sthen U C 5 V.

2. Stability axiom. If S is a covering of U, then forany U' C U, U' N Sis a
cover of U'.
Proof: U =U'NU C U NUyesV=Uypeg VN U

3. Transitivity axiom. If Sis a covering of U and R is any sieve on U such
that for all U’ € S, U’ N R is a covering on U’, then R is a covering of U.
Proof Since S covers U then U C | ;s U'. From the fact that for each U’ € S,
U' N R is a covering on U', it follows that U" € Uyerngy V = Uper VN U'.
Putting the two results together we have that U € (JyesUper V N U =
Upres U N Uyreg V. Tt then follows that U € | J,¢x V', i.e. R is a covering
of U.

The above discussion reveals how, as far as the category O(X) is concerned,
the (canonical) notion of a covering can be given in terms of sieves. Generally,
however, given a topological space X, the covering defined in Definition 7.1.1 is not
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necessarily a sieve but it does generate one, namely the sieve consisting of all those
opens V C X, such that V C U, for some U, in the cover. In this case the coverings
{U; — Uli € I} generate covering sieves.

We would now like to generalise the definition of coverings in terms of sieves
for a general category, not only for O(X). It is precisely this generalisation that
represents an extension of the notion of a topology on a category C and goes by the
name of Grothendieck topology.

Definition 7.1.5 ([55]) Given a category C, a Grothendieck topology is a function
J which assigns for each object C € C a collection J(C) of sieves on C, such that
the following conditions hold:

C.1 Maximal sieve.J(C) contains the maximal sieve on C.

C.2 Stability axiom. IfS € J(C), given any arrow h : D — C, then h*(S) €
J(D).

C.3 Transitivity axiom. Given S € J(C) and R is any sieve on C such that,
forallh: D — Cin S h*(R) € J(D), then R € J(C).

When S € J(C) then we say that S is a covering sieve of C or is a J-cover. A
straightforward consequence of the above definition is the following:

Corollary 7.1.1 Given a sieve S € J(C) then if S C R it follows that R € J(C).

Proof Given any f : D — C in S, then f*S is the principal sieve on C and thus
f*S € J(C). Moreover, since S € R then f*S C f*R, thus f*R is also the principal
sieve on C and f*R € J(C). Since this is true for any f € S, from the transitivity
axiom it follows that R € J(C). O

The above Lemma uncovers the fact that if a topology J on a category C contains
asieve S on C, then it also contains all sieves on C, which are coarser (bigger) then S.
Therefore, given two Grothendieck topologies J and J’ on the same category C, such
that J(C) € J'(C), then J' contains all sieves on C which are finer than those of J.
The fact that we can compare sieves allows us to compare Grothendieck topologies.

Definition 7.1.6 Given two topologies J and J' on C, we say that J’ is finer than J
if for all objects C € C, then J(C) € J'(C). In this case the topology J is called
coarser than J’ and it is denoted by J € J'.

The two extreme examples of topologies on a category C are the discrete topology
and the trivial topology. The discrete topology is the topology for which, given any
C € C, then J(C) contains all sieves on C. On the other hand, the trivial topology
is the topology for which, given any C € C, then J(C) contains only the principal
sieve on C.

We have now the necessary tools to define a site.

Definition 7.1.7 A site is a pair (C, J) consisting of a category C and a Grothendieck
topology J.

It is also possible to define covering sieves of arrows rather than objects. In
particular, we say that a sieve S on C covers an arrow f : D — C if f*S covers
D. It follows that S € J(C) iff S covers the identity arrow on C. It is then possible to
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re-write the axioms of a Grothendieck topology in terms of sieves covering arrows
rather than objects.

Definition 7.1.8 ([55]) Given a category C, a Grothendieck topology is a function
J which assigns, for each object C € C, a collection J(C) of sieves on C such that
the following conditions hold:

C’.1 Maximal sieve.If Sisasieveon C andf € §then S coversf.

C’.2 Stability axiom.If S coversan arrowf : D — C, given any other arrow
h:E — D,then S coversfoh:E — C.

C’.3 Transitivity axiom.If S coversanarrowf : D — C and R is any sieve
on C such that it covers all arrows in S, then R covers f.

We will now prove that Definitions 7.1.5 and 7.1.8 are equivalent.

We will start buy assuming that conditions C’.1, C’.2 and C’.3 hold and show
that this entails that conditions C.1, C.2 and C.3 also hold. In particular, if C’.1
holds, then f*S € J(dom(f) and it is the principal sieve on dom(f). By choosing
f = idc, then condition C.1 follows. Similarly if C’.2 holds then if f*S € J(D),
given any other arrow i : E — D, it follows that (fo h) * S = hx (f x S) € J(E).
By choosing f = idc then condition C.2 holds. Finally we assume condition C’.3
holds. If f * (S) € J(D) and R is any sieve on C such that for any g in S, then
g * (R) € J(dom(g)), it follows that f * (R) € J(D). By taking f to be id¢ then
condition C.3 follows.

Conversely, let us assume that condition C.1-C.3 hold. To prove C’.1 we need
to show that given a sieve S on C and f € S then S covers f. However, from C.2
we know that f*(S) € J(dom(f)), therefore S covers f. To prove C’.2 we need to
show that if S covers an arrow f : D — C (if f*S € J(D)), given any other arrow
h:E — D, then (f o h)*S = h*(f*(S)) € J(D). By applying C.2 with S replaced
by f*S the result follows. Finally to prove condition C’.3 let us assume that S covers
an arrow f : D — C and R is any sieve on C such that it covers all arrows in S. This
means that f*S € J(D) and for all g € S, g*R € J(dom(g)). We now need to show
that R covers f, i.e. f*R € J(D). Now given any h € f*S, then from the definition of
a pullback of a sieve it follows that f o 4 € S. Therefore our condition tells us that
(foh)*xR = hx(fx*(R)) € J(dom(h)). Since this is valid for any # it follows from
condition C.3 that f*R € J(D).

We now give some useful results concerning sieves.

Lemma 7.1.1 (Common Refinement) IfR,S € J(C) then SN R € J(C).

Proof Given any map f € S then, from the stability axiom, f*(S N R) = f*(S) N
f*(R) = f*(R) € J(C). Since this is valid for any f, from the transitivity axiom it
follows that SN R € J(C). O
As with the definition of a Grothendieck topology the common refinement Lemma
can also be stated in terms of arrows.
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Lemma 7.1.2 Ifboth R and S coverf : D — C, then R N S covers f.

Proof The condition that both R and S cover f implies that f*R, f*S € J(D). Now
consider g € f*(S), then by definition f o g € S thus, by C*.2 we obtain (f o g)*(SN
R) = g*(f*(RN S)) € J(dom(g)). Now since the set of sieves on an object is a
complete lattice, then R N S is a sieve on C and f*(S N R) is a sieve on D. We then
have that f*(S) € J(D) and f*(S N R) is a sieve on D such that for any g € f*S,
g5 (f*(S N R)) € J(dom(g)). It then follows from C.3 that f*(S N R) € J(D), i.e.
SN Rcoversf. O

Similarly as in general topology, also in the context of Grothendieck topologies
we have the notion of a basis. In order to introduce such a notion we first need to
explain what a generated sieve and covering family are. To this end we note that a
sieve S on C can be seen as a sub-object of y(C) in Sets®” wherey : C — Sets®”;
C +— Hom¢(—C) is the Yoneda embedding (Lemma A.7.2) [55]. Having said that
we can define the generated sieve as a particular presheaf.

Definition 7.1.9 (Generated Sieve) Consider a family of morphisms D = {f; :
D; — C}igr in C. This family generates a sieve Sp on C defined on:

1. Objects: given any object A € C we define a subset Sp(A) S y(C)(A) as

Sp(A) := [J(f)«y(D)(A).

iel
2. Morphisms: Given a morphisms g : B — A in C, then

Sp(g) : Sp(A) — Sp(B)
h— hog.

Clearly the above is a sub-object of y(C) in Sets®” | i.e. it is a sieve. In particular,
Sp is that sieve on C whose elements all factor via some element of the family D,
i.e. as a set we have Sp := {f o g|f € D, dom(f) = cod(g)}.

Definition 7.1.10 (Covering Family) Given a site (C,J). A family of morphisms
D = {f;: D; — C}in Cis called a J-covering family of C if the sieve Sp generated
by D is in J(C), i.e. if Sp is a J-covering.

From this definition it is straightforward to see that if we are given two
Grothendieck topologies J and J' on C, such that J C J', any J-covering family
is also a J'-covering family. In fact, if D = {f; : D; — C} is a J-covering family,
then Sp € J(C) € J'(C).

As we will explain shortly, Grothendieck topologies can be generated by
covering families. As an example consider an object C € C, and the set D(C) of
families of morphisms D = {f; : D; — C} in C. Then there exists a coarsest
Grothendieck topology J on C for which all the families in D(C) are J-coverings.
Such a topology is called the topology generated by the families D(C).
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An interesting exercise to better understand how Grothendieck topologies work
is to construct the relative topology on an slice category In particular, given a site
(C,J), then for any element B € C, J induces a topology J' on C/B, defined as
follows:

Consider an object x : X — B € C/B and let S be a sieve on X, then we define the
sieve S, on x as' the functor

S; : (C/B)®® — Sets
y:Y=>B=>S(y):={g:Y—>XeS(Y)|y=xo0g}
h:y =y h*:S(y) = Si(y) s.t. h*(g) ;= goh.

We now need to show that the above map is well defined and is a functor. For being
well defined we require that the object #*(g) := g o h is indeed in S,(y"). However,
since g € S,(y) then y = x o g. Moreover, the map & : yY — y € C/B induces the
commutative diagram

therefore yy = yoh =xogoh, thus goh € S,(y).

Next we need to show that the functor S, is well behaved under composition
and with respect to the identity. Let us consider f : X' — y' and & : y — y. Then
S:(hof)(g) = (hof)*(g) = f*(h*(g)) = gohof and S,(f)oS.(h)(g) = f*oh*(g) =
g o hof. Similarly, one can show that S,(id,) = ids,(y. Now that we know that the
above functor is well defined we need to show that it is a sieve. This follows trivially
by noting that S, is a subfunctor of y(x) : (C/B)°® — Sets.

Exercise 7.1.1 Show that the associated set S, = Uyec /5 Sx(y) is
Sy :={g € S|givenanyy : dom(g) - B C/B, y=xog}.

We then define the induced topology, for each x € C/B as J,, = {S,|S € J(X)}.

As a next step we now need to show that conditions C.1-C.3 of Definition 7.1.5
for a Grothendieck topology hold for J'. We will do this in terms of the set S,
rather than the functor S,. First of all we need to show that indeed S, as defined in
Exercise 7.1.1, is a sieve. Therefore we need to show that givenany g : y — x € S,
andf :x' — g€ C/B,where X' : X’ — B,then go f € S,. However, if g € S, then
g € S, therefore, given f : X’ — Y, then gof € S. To show that g o f € S,, we need
to show that, given any x’ : X’ — B, then X’ = x o g o f. But we know that g € S,

"Here we will frequently use that fact that, given two objects x : X — Bandy : Y — Bin C/B,
then amap g : y — xin C/B is defined in terms of the map g : ¥ — X in C.
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implies that forany y : ¥ — B, y = xog. The result then follows by simply defining
X' := yof and chasing the commutative diagram

f g

X—sY "X
A
B

Let us now define the induced topology J' for each x € C/B as
J'(x) == {S,|S € J(X)}.

It remains to show that J’ is indeed a Grothendieck topology, i.e. that it satisfies
conditions 1-3 in Definition 7.1.5. For 1. we note that, given any X € C the principal
sieve R belongs to J(X), then the associated sieve R, will be the principal sieve on x
by construction.

For condition C.2, let us assume that S, € J'(x) and let us consider a map f :
x — xinC/B givenby f : X’ — X, such that '’ = x o f. In terms of the topology
J this translates in S € J(X), but since J is a Grothendieck topology it follows
that f*(S) € J(X’) and thus (f*(S)), € J'(x'). What we wanted to show was that
f*(Sx) € J'(x'). For this to be the case we need to prove that (f*(S))y = f*(Sy). On
the one hand

17 (Se) = {glcod(g) = X', fog €5}

Definition of S,

= {glcod(g) =X, fog €S, foranyy: dom(g) > B € C/B, y=xofog}

Definition of f*§

{g €f*(S)| foranyy : dom(g) > B €C/B, y=xofog}

Definition of x

= {g €f*(S)| foranyy : dom(g) > B €C/B, y=x og}

:f* (S)x’«

For condition C.3 let us assume that S, € J'(x) and let S, be a sieve on x such
that for all f : X’ — x € S,, then f*(S)) € J'(x'). We want to show that S/, € J'(x).
In terms of the topology J the assumptions we have imply that for all f : X’ — X
in § with X’ = x o f, then f*(S) € J(X’). From the definition of maps in the comma
category we can define X' = x o f, then, applying condition C.3 to the Grothendieck
topology J we obtain §” € J(X). It then follows that S’. € J'(x).

Exercise 7.1.2 Prove that the functor S, satisfies conditions C.1-C.3 of Defini-
tion 7.1.5.

Exercise 7.1.3 Show that S = S, forallx € C/B.
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Now that we have introduced the notion of a generating sieve, we will define
the notion of a basis of a Grothendieck topology. For this we will assume that the
category we are working with has pullbacks.

Definition 7.1.11 Given a category C will pullbacks, a basis for a Grothendieck
topology on C is a function K which assigns to each object C € C a set K(C), whose
elements are families D = {f; : D; — C};e; of morphisms with codomain C subject
to the following conditions:

B.1 Foreach C € C, the set {f : C' — C|f is an isomorphisms} is in K(C);

B.2 Given{f; : D; = C};; € K(C), for any morphisms g : B — C, then the family
of pullbacks {D; x¢ B — B};e; is in K(B);

B.3 Given a family {f; : D; — C}ie; € K(C) and, for each i € I, a family {g; :
Bjj — Di}jer; € K(D;), then the family of composites {f; o g;j : Bj — Cl|i €
1,j € I;}isin K(C).

The pair (C, K) is called a site and the elements of each set K(C) for C € C are the
covering families.

Exercise 7.1.4 Show that a Grothendieck topology J satisfies B.2, B.3 in Defini-
tion 7.1.11 above but not B.1.

Definition 7.1.12 Given a basis K on a category C, this generates a Grothendieck
topology J as follows:

SeJ(C)iffAD € K(C)s.t. D  S.

We now show that indeed J, as defined above, is a Grothendieck topology.

Proof We need to show that J as defined in Definition 7.1.12 satisfies condition 1-3
in Definition 7.1.5.

C.1 Assume that S is the principal sieve on C, we want to show that there exists
an element R € K(C) such that R € S. From condition B.1 we know that
R ={idc : C — C} € K(C). Clearly R C S, therefore S € J(C).

C.2 Assume that S € J(C), therefore there exists an R € K(C) such that R C §.
Now given any & : D — C we want to show that 2*(S) € J(D). This is
equivalent to showing that there exists an R’ € K(D) such that R C h*(S).
We choose R’ to be constructed as in B.2, i.e. R = {g : D x¢ C; — D}ie;.
That is, R’ is the set of all those arrows which are constructed via the following
pullback diagram for some f; € R

DXC C,'4> Cl'

D

Clearly R’ € h*(S) := {k|cod(h) = D, g ok € S}, therefore h*(S) € J(D).



7.1 Grothendieck Topology 123

C.3 Assume that S € J(C), therefore there exists a T € K(C) such that T C S.
Next we have a sieve R on C such that forall s : D — C € S, then h*R €
J(D). This implies that there exists a 7" € K(D) such that 7" C h*(R). Since
T C S, then foreach h; : C; — C € T C S we construct 77 as in B.3, i.e.
T = {gj : Dj — Ci|j € I} € K(C;). Clearly from the definition of 4*(R)
and the property of sieves being closed under left composition, it follows that
T’ C h*(R). Now we can apply B.3 to obtain the composite 7° = {h; o 8ij :
Dj — Cli eI, j € I;} € K(C). It remains to show that T C R. But since
T' C hf(R) = {g|cod(g) = D, h; o g € R}, then for any g; it follows that
h; o gij € R, therefore T' CRandR € J(C).

0

Exercise 7.1.5 Show that Definition 7.1.12 is equivalent to the following definition:

Definition 7.1.13 Given a basis K, the Grothendieck topology generated by K is
the coarsest topology on C such that all R € K(C) (for all C € C) are J-covering
families as defined in Definition 7.1.10.

Definition 7.1.14 Given two families R = {f; : D; - C} and R’ = {g; : D; — C},
then we say that R refines R’ if every element f; € R factors through an element
gi € R

Note that, for a given topology J, there exists a maximum basis K which generates
J. This is given by:

Re K(C) & Sg € J(C) where Sg = {fog|f € R,dom(f) = cod(g)}.

Lemma 7.1.3 Given any two families of covers R,R' € K(C) then there exists a
common refinement.

Proof Given R,R' € K(C), then Sg, Sgr € J(C). From Lemma 7.1.1 it follows that
SrN Sk € J(C), therefore there exists a T € K(C) such that T C Sg N Sgr. Therefore
T C Sgpand T C Sg. This, in turn, means that T refines both R and R'. O

As an example consider again the category O(X) for some topological space X.
We defined the basis K on O(X) by {f; : U; — X|i € I} € K(X) iff each U; is open in
X and | J,; U; = X. This is the so-called open cover topology (see Definition 7.1.1).
We now need to show that, indeed, this definition of K satisfies conditions B.1-B.3
of being a basis. Clearly {idy : U — U} satisfies the requirement of belonging to
K(U). For condition B.2, consider a family {f; : U; — U},e; € K(U), then given a
morphisms g : V — U we want to show that {V xy U; — V} € K(V). Now in O(X)
the arrows are given by subset inclusion and the pullback by intersections, hence the
pullback V N U; — V is monic. Since finite intersections of opens are open, V N U;
is open. Finally, since V € U = (J, U, it follows that indeed | J, VN U; = V, hence
{V xy U; = V} € K(V). To show that B.3 holds, consider the family {f; : U; —
Ulier € K(U) such that for each i € I the family {g;; : V;j — Ui}jer, € K(U;). We
want to show that {f; o g;; : V;; = Uli € I, j € I;} € K(U). Since compositions of
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monics are monics, V;; € U. Moreover, given U = | J,¢; U; and U; =
follows that U = ;e Uje, Vis-

jel; Vij’ 1t

7.2 Grothendieck Sheaves

We now will introduce the definition of a sheaf on a site. In order to do so, we will
first recall the definition of a sheaf on a general topological space which relies solely
upon the lattice of open sets of that space.

Roughly speaking, a sheaf can be thought of as a fibre bundle in which the fibres
may vary from point to point. Formally a sheaf is a presheaf with values in the
category of sets that satisfies the following two axioms:

1. Given an open set U with open covering Uj, if s, t € F(U) are such that s|y, = t|y,
for all i, then s = .

2. Given an open set U with open covering U;, and s; € F(U;) for all i, such that
for each pair U; and U, si|u,nu; = sjluinu;» then there exists s € F(U) such that

sly, = s; for each i. “s” is called the gluing, while the s; (for each i) are called
compatible.

Axioms (1) and (2) state that compatible sections can be uniquely glued together.
The definition of a sheaf given in [26] was:

Definition 7.2.1 A sheaf of sets F' on a topological space X is a functor F' :
O(X)” — Sets, such that each open covering U = (J,; U;, i € I of an open set
U of X determines an equaliser

Foy— [[Fw) # [Trwinuy

i

where for t € F(U) we have e(f) = {t|y,|i € I} and for a family t; € F(U;) we
obtain

pitiy = {tiluny ), 4ty = luioy;} - (7.2.1)

Given the definition of product in a category [26, 55] it follows that the maps e,
p, and g above are determined through the diagram
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F(UNU;CU;)
F(U) ——— =" F(UiNU))

e

F(U)

[[rw) :q; [[rw:nuy
i ij

F(U;NU;CU;))
F(U) ——— = F(UinU)

An equivalent way of defining a sheaf is as follows:

Lemma 7.2.1 ([55]) Given a presheaf P on a space X, then P is a sheaf iff for every
open U C X and every covering sieve S on U the inclusion is : S — y(U) induces
an isomorphism

Hom(y(U),P) >~ Home(S, P)

In the above, y represents the Yoneda embedding (Lemma A.7.2).

Proof Given a covering |_J; U; = U of U we can construct an equaliser

e p
e~ [[pwy) —= [[Pwinu)
| ¥

l

where E consists of all those elements #; € P(U;) such that l‘i|U,-mU_,- = thU,-ﬂU_,-- We
then consider the associated sieve of the cover Uj, i.e. the sieve S consisting of all
subsets V of U, such that V C U, for some U; in the cover. This allows us to define,
forany V € §, such that V C U, ty := t;|v. Since ti|y,ny; = tj|u;nu;, it follows that
the definition of ¢y is independent of the i, therefore E becomes the set of all those
family of elements ty € P(V) with V € S, such that ty|y» = t,» whenever V/ C V.

From previous discussion we have seen that a sieve S on an element U can be
seen as a subfunctor S of y(U) = Hom(—,U) € Sets®®” In particular, for each
V e O(X) we have S(V) = 1if V € S and S(V) = 0 otherwise. It follows that
for each V € §, then the component S(V) — P(V) of the natural transformation
S — P represents the element ¢y. Therefore each #, € E gets replaced by a natural
transformation and E becomes Hom(S, P).
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The inclusion ig : S — y(U) induces a map

(is)* : Hom(y(U),P) — Hom(S,P)
(f:y(U) > P) > (fls : S > P).

We can now construct the following diagram

Hom(S,P) —L—~ [Py # [[pwinu

i i
(is)* T
e

Hom(yU,P) —— P(U)

where the arrows e, p, g are defined as in Definition 7.2.1 and Hom(yU, P) = P(U)
is a consequence of the Yoneda embedding (see Lem. 8.4.3 [26], Lemma A.7.2).
The map d is the equaliser such that forall g : S — P, then d(g) = g|v,(1) € P(U)).
The property of d being an equaliser implies that the square commutes. Since e is
also an equaliser, then its universal property requires (is)* to be an isomorphism.
It then follows that P is a sheaf iff for each covering U;, (is)* is an isomorphism,
where S is the corresponding covering sieve. O

Having discussed the definition of a sieve, we will now define sheaves on a site,
first with respect to a Grothendieck topology J and then with respect to a basis K. In
order to prove the equivalence of these two definition we will utilise Lemma 7.2.1.

First of all we need to define a presheaf P on a cite (C,J). However, since the
definition of a presheaf does not depend on the topology of the base category, P is
simply a functor P : C°? — Sets. Next, in order to define a sheaf on (C, J), we need
to introduce the notions of matching families and amalgamation point.

Definition 7.2.2 (Matching Family) Given a presheaf P : C°® — Sets on (C, J)
and a sieve S € J(C), a matching family for S of elements of P is a function which
assigns to each f € S an element x; € P(dom(f)) such that given any g € C with
cod(g) = dom(f) then,

P(g)(x) = Xpoq.

We will often denote a matching family for a sieve S by {xf}fes.

Definition 7.2.3 (Amalgamation) Given a matching family {x;}ses, where S is a
sieve on C, an amalgamation is an element x € P(C) such that:

P()(x) =, V[ES.

Given these two notions we can now define a sheaf on a site.
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Definition 7.2.4 Given a site (C,J), a presheaf P : C°® — Sets is a sheaf iff each
matching family for any cover of any object in C has a unique amalgamation point.

Diagrammatically, what the above definition states is that for each object C € C
and each cover S € J(C), if the diagram

P(C) = [[Pom(s) —= [l Pom(e)

fes a f.8f€s
cod(g)=dom(f)

is an equalizer for all covers S of all objects C € C, then P is a presheaf. Here
e(x) := {P(f)(x)}fes,P({Xf}fes)f,g = Xz and CI({xf}feS)f’g = P(g)(xr).

We would now like to compare Definitions 7.2.1 and 7.2.4. To this end we note
that, for {x;}ses € er s P(dom(f)), the requirement of each family having a unique
amalgamation point is equivalent to stating that Hom(S,P) =~ Hom(y(C),P). In
fact, since a site S on C can be seen as a subfunctor of y(C) = Hom(—, C), then,
for f € § € J(C), the assignment f +— x; is actually a component of the natural
transformation S — P at dom(f) € C. Therefore, the fact that the family {x} cs has
a unique amalgamation point is equivalent to the fact that S — P can be uniquely
extended as follows:

S——P

7
Ve

7

Y(C)

Hence P is a sheaf iff for every covering S of C, S <— y(C) induces the isomorphism
Hom(S,P) =~ Hom(Y(C),P).

We would now like to give the definition of a sieve in terms of a basis K for a
topology J. In order to do this we need to define the notion of a matching family
and an amalgamation point with respect to K.

Definition 7.2.5 Given a cover K and a family of morphisms R = {f; : D; —
C}ie; € K(C) a family of elements {x;};c;, where x; € P(D;), is said to be matching
for R iff

P(pr)(x) = P(pr)(xi), Vijel.

Herepr1 . Dl‘ Xc Dj —> Di andprz . Dl‘ Xc Dj — Dj.

Definition 7.2.6 Given a matching family {x;};e; for R = {f; : D; — C}ie; € K(C)
an amalgamation point is an element x € P(C), such that for all i € I, P(f})(x) = x;.
We now have the tools to define the sheaf condition with respect to a basis K.

Lemma 7.2.2 Given a site (C,J), a presheaf P : C° — Sets is a sheaf for J iff for
any family of morphisms R = {f; : D; = C}ie; € K(C) then, any matching family
{xi}ier has a unique amalgamation point.
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We will now report a proof of this Lemma which can be found in [55].
Proof We will first prove the “if then” direction then the “only if”.

= We will assume that P is a sheaf for J and show that this implies that for
any cover in K, any matching family has a unique amalgamation point. The
assumption that P is a sheaf implies that given any sieve S in J and any matching
family, this will have a unique amalgamation point. However we know how to
construct sieve given covers in K. In particular, given a cover R = {f; : D; —
Clie; € K(C), this generates asieve Sg = {g : D — Clg =fioh f; € R}. If
we now consider the matching family {x;};c; for R, we can construct a matching
family { y,}ges by

ye =PM)(x)), h:D— D; st.g=fioh.

We need to check that this definition does not depend on the choice of i and 4.
To this end consider the pullback diagram

Forg:D — C,if g = f; o h = f; o k then, the pullback property together with
the fact that {x;} are matching for R, imply that

P(1)(xi) = P()(P(pr1)(x))) = P()(P(pr2)(x;)) = P(k)(x;).

Given this matching family, since P is a sheaf with respect to J, it follows that
there exists a unique amalgamation point y € P(C) such that P(C)(g)(y) = y,
forall g € Sg. Since R C Sk, then for all f; € R we have that P(C)(f;))(y) =y, =
x;, thus y is an amalgamation point for the family {x;};c;. It remains to show that
such point is unique. This can be done by showing that an amalgamation point
for {x;};e; is also an amalgamation point for the cover Sg and we know this
to be unique. In particular assume that {x;};c; has another amalgamation point
¥, then P(C)(f)(y)) = x;. Given g = f; o h € S we then have P(g)(y/) =
P(h)(P(f)(y')) = P(h)(x;) = y,, hence y’ is also an amalgamation point for Sg
and we know this to be unique.

< We now assume that each matching family for any cover R in K has a unique
amalgamation point and then show that this implies that P is a sheaf with respect
to J. To this end consider a cover S € J(C). By definition there exists an R €
K(C) such that R C S. Next consider a matching family {y,|g € S}, then
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the sub-family {y¢|f € R} is matching and, by assumption, it has a unique
amalgamation point y. We next want to show that such a point is also the unique
amalgamation point for { y,|g € S}. Take any g € S and f € R and construct the
pullback diagram

" hy g "
DxcC ——C

.

D—*% o

then by B.2 in Definition 7.1.11, {ny,| f € R} € K(D). Givenany f € R we also
have that

commutativity

P(gomrg)(y) =~ P(fohr,)y

TE Py ()

matching family
= yf ohf.g
commutativity

= Ygon.g

matching famil
=P (777.6) Ve
Next, construct the following pullback for any f” : C" — C € R(C)

/7 l; hf-ﬁ
C XcDXCC/ %DXCC/ —

I

D xcC” D C

o g

Chasing the diagram around shows that P(go; .) matches P(goz 1% ’g), therefore
the family { ygor, |/ € R} is matching for the cover R" = {ms|f € R} € K(D).
By assumption, this family has a unique amalgamation point y, € P(D) such
that P(1y4)yg = Ygons, for each 7z, € R'. But we know that yeor,, = P(go
77.¢) (¥) and since the amalgamation point is unique it follows that y, = P(g)(y).
Hence y is also the unique amalgamation point for { y,|g € S}.
O
The following Corollary allows us to express sheaves in terms of the more familiar
notion of equaliser.



130 7 Grothendieck Topoi

Corollary 7.2.1 Given a site (C,J), a presheaf P : C°° — Sets is a sheaf for J iff
for any cover {f; : D; = C}ic; € K(C), then the following diagram is an equaliser:

P(C) —= [[P®) ::p [ [P@:n Dy (7.2.2)

i€l T jer

where e(x) = {P(f)()}ier, p(xitien)iy = Plpr)(x) and q({xitieri
P(pr2) (x)).
The proof is just a matter of spelling out the definitions but for the sake of
completeness we will nonetheless report it below.

Proof

= Let us assume that P is a sheaf for J. We know from Lemma 7.2.2 that any

matching family for any basis K has a unique amalgamation point. Therefore

consider any cover R = {f; : D; — C}ie; € K(C), a matching family {x;};¢;

for R will be such that P(pr1)(x;) = P(pry)(x;) for all i,j € I. The unique

amalgamation point is then an element x € P(C), such that P(f;)(x) = x; for all

i € 1. But this is precisely the statement that the diagram (7.2.2) is an equaliser.

4= On the other hand, if the diagram (7.2.2) is an equaliser, then for any element

{P(f)(0)}ier € [l;e; P(Di) such that P(pri)(x;) = P(pr2)(x;) for all i,j € I,
there exists a unique element x € P(C) such that P(f;)(x) = x; foralli € I.

0

The collection of all sheaves defined on a site (C,J) forms a category and it is

denoted by Sh(C, J). It turns out that SA(C, J) is actually a topos. To show that this

is the case, we will first analyse how the sub-object classifier is defined in Sh(C, J).

This will be the topic of the next section.

7.3 Sub-object Classifier

We would now like to construct a sheaf on a site (C,J) which plays the role of a
sub-object classifier . To this end we first recall that given a topological space X,
then for each U € O(X) the sheaf §2 has been defined as

QU)={] VIVCU} (7.3.1)

where | V indicates the principal sieve on V. We will now utilise a variation of the
definition of a principal sieve given by the following Lemma:

Lemma 7.3.1 Given a sieve S on U € O(X) if S satisfies the following condition
VWCU, Scovers W=WeS

then S is a principal sieve on U.
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Proof To prove this lemma simply take W = U. O
Essentially what the above Lemma says is that S is closed under arbitrary union of
its elements. We now extend this property of a sieve being closed to an arbitrary site

. J).

Definition 7.3.1 Given a site (C,J), a sieve S on C € C is closed for J iff for all
f:D — CinC, then

Scoversf = f €8S. (7.3.2)

Recall that “S covers f” means that f*S € J(D) and f € S means that f*S is a
principal sieve on D, hence Eq. (7.3.2) is equivalent to

f*S covers D = f*S is maximal on D.

Corollary 7.3.1 Given a sieve S on C and any morphism g : B — C then if S is
closed so is g*S, i.e. the property of being closed is preserved under pullback.

Proof Assume that S is closed, we want to show that g*S is also closed, i.e. given
any f : A — B then g*(S) coversf = f € g*(S). Let us assume that indeed g*(S)
covers f, this means that /*(g*(S)) € J(A). But since S is closed it follows that
g o h € 8, therefore by definition f € g*(S). O

Given any sieve S one can construct the closure of S which is denoted as § and it
is defined as follows:

Definition 7.3.2 (Closure) Given any sieve S on C € C, we define its closure to be
the sieve

S = {h|cod(h) = C, S covers h}. (7.3.3)

We now need to check that indeed S is a sieve and it is closed. To show that it is a
sieve we need to show that it is closed under left composition. To this end assume
that ~ € S and take g such that cod(g) = dom(h), we then want to show that
hog e S. Since h € §, then S covers h. From condition C’.2 it then follows that S
also covers f o h, therefore f o h € S.

Next we need to show that S is closed, i.e. if S covers f then f € S. Assume that S
covers f. By definition the sieve S covers every arrow in S. Applying condition C’.3
it then follows that S also covers f, hence f € S.

From the above definition it transpires that S is the smallest closed sieve which
contains S. We will now show that, forany g : D — C,

g*(S) = g (9). (7.3.4)

In fact, since S is closed, from Lemma 7.3.1, it follows that g*(S) is also closed,
therefore g*(S) C g*(S). On the other hand, if f € g*(S), then g o f € § which,
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form Eq. (7.3.3), is equivalent to S covering g o f and g*(S) covering f. Therefore
f€grs).

If we replace in Eq. (7.3.1) the notion of a principal sieve by that of a closed sieve
we can define, for each object C € C

Q(C) := {S|Sis a closed sieve on C}.

This definition actually turns €2 into a presheaf 2 : C°? — Sets which is defined:

1. on objects: C — R(C) := {S|S is a closed sieve on C}.
2. On morphisms: Given f : D — C then (f) : (C) — R(D); S — f*S.

We would now like to show that 2 is actually a sheaf for (C,J). Recall from
Definition 7.2.4 that the condition of € being a sheaf for (C,J) is equivalent to
requiring the following diagram to be an equaliser.

e 14

Q) = [[RUom(n) —= T[] ewnu).
fes 1 f.gfes

cod(g)=dom(f)

To show that indeed this is an equaliser we need to show two things: (1) that e is
injective; (2) every matching family has a unique amalgamation point.

Proof ([55]) We start by showing that e is injective. To this end consider two closed
sieves M, N € (C) and assume that for each f € S € J(C), then f*M = f*N,
i.e. the images of M, N via e coincide in ]_[fes Q (dom(f)). Now if f*M = f*N for
all f € S it follows, from the definition of the pullback, that SN N = § N M. Next
consider any g € M. By condition C’.2 it follows that M covers g. Since S covers C
it also covers g, hence by Lemma 7.1.1 it follows that M N S covers g. We know that
MNS=NNS C N, hence N covers g and, since N is closed, it follows that g € N.
Similarly one can apply the same reasoning for any 4 € N obtaining that M = N.
Hence e is injective.

Next we need to show that any matching family has a unique amalgamation point.
Consider a cover S € J(C), then for any f : D — C in S the M; € (D) form a
matching family {M;}ses of closed sieves such that g*M; = M., for any g with
cod(g) = dom(f). To construct the amalgamation point we first construct the sieve

M ={foglge M, feS}

Let us now define its closure M as in Definition 7.3.2. We claim such a closure to be
the unique amalgamation point of {My}ses, i.e. f*(M) = My forall f € S.

For any f € S, then f*(M) = {h|f o h € M}, which clearly implies that f*(M) 2>
Mjy. On the other hand if & € f*M, then by definition f o 1 € M, which means that
there exists a f/ € S and g’ € My, such that f o h = f’ o g’. But since My and My
belong to the matching family, then Myo, = h*(My) = g*(My) = My oy . However,
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since g’ € My, then g*(My ) is a maximal sieve and so is h* (M) therefore f € M;
and f* (M) € M;.

From Eq.(7.3.4) we know that f*(M) = f*(M), but we have just shown that
f*(M) = My and since My is closed we obtain that f*(M) = M;. Hence M is an
amalgamation point. O

We would now like to show that, as defined above, € is indeed a sub-object
classifier. To this end we recall the definition of a sub-object classifier [26] to be:

Definition 7.3.3 Given a category with a terminal object 1, a sub-object classifier
is an object €2, together with a monic arrow 7 : 1 —  (topos analogue of the set
theoretic arrow frue) such that, given a monic C-arrow f : a — b, there exists one
and only one y; arrow, which makes the following diagram:

a b
1 Q
a pullback.

For the case at hand we first of all need to define the analogue of the arrow 7 : 1 —
Q. We define it to be C +— t¢c = {f|cod(f) = C}, i.e. for each object C € C the
arrow 7 picks out the principal sieve on C. From the definition it is easy to see that
tc is closed. Given a map g : D — C, then the following diagram clearly commutes

f

-— >

_

T

T(C)

1(C) 2(0)

2(g)
1D) ——— >
(D) B (D)

In fact R(g)(t¢c) = g*(tc) = tp. It follows that 7T is a natural transformation.

Given the definition of the arrow 7, we claim that the sheaf £ together with T
is a sub-object classifier for the category Sh(C, J).

From Definition 7.3.3, in order to prove that the pair & and 7 define a sub-
object classifier we first of all need to define the analogue of the map y, then show
that such a definition would make the analogue of the diagram in Definition 7.3.3
a pullback. However in our setting, instead of considering a monic arrow f as in
Definition 7.3.3, we will consider a subsheaf Q of a sheaf P, which essentially is the
same thing.
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Definition 7.3.4 Consider a sheaf P on (C,J), and a subpresheaf Q € P. Q is a
subsheaf iff for all C € C, for all covers S of C and for any x € P(C), then x € Q(C)
whenever P(f)(x) € Q(dom(f)) forallf € S.

Essentially what this definition states is that any matching family of elements in
Q has a unique amalgamation point since P is a sheaf and this amalgamation point
lies in Q. Clearly this means that Q is a sheaf.

Now that we know what a subsheaf is we can prove that the pair 2 and 7 as
defined above is a sub-object classifier.

Proof Given a subpresheaf Q C P we define the arrow yq : P — &, forany C € C
and x € P(C) to be

(XQ)c®) ={f: D — CIP(f)(x) € Q(D)}. (7.3.5)

This is clearly a sieve. In fact given f : D — C in (yq)c(x) then P(f)(x) € Q(D).
Now consider g : B — D then fog : B — C will give rise to the presheaf
map P(f o g), such that P(f o g)(x) € Q(B) since P(f)(x) € Q(D), therefore
foge(xQ)c.

Consider a map h : D — C and assume that (yqg)c(x) covers A, i.e.
h*((xQ)c(x)) € J(D). We want to show that 1 € (xq)c(x), i.e. that yg(x) is closed
and hence an element of & (C). To this end consider any k € h*((xq)c(x)) € J(D),
then by definition k o & € (xq)c(x), which implies that P(k o 1)(x) € Q(dom(h)).
However since Q € P, then we can apply the definition of a subpresheaf obtaining
P(h)(x) € Q(D) as desired.

Next we want to show that yq satisfies the naturality condition. To this end
consider amap g : B — C and construct the diagram

PCC) — ™ 9

P(g) 2(g)

P(8) (xp) 2(©)

We want to show that it commutes, i.e. given x € Q(C) < P(C), then
(x@)s(P(g)(x)) = £2(g) o (xQ)c(x). Consider an f € (xq)s(P(g)(x)) then, since
P(f)(P(g)(x)) = (P(gof)(x), this implies that gof € (yq)c thereforef € g*(xq)c-
But from the definition of & we know that £(g) o (xq)c(x) := g*(xq)c hence xq
is a natural transformation.
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As a final step we need to show that yq is the unique arrow such that the square
Q——=1
-
_—
P 7 Q

is a pullback. Since in Sh(C, J) pullbacks are computed component-wise, we need
to show that for all C € C then

Q(0)

1(C)
7(©)

is a pullback. The pullback condition is equivalent to stating that, given any x €
P(C) then x € Q(C) iff (xg)c = tc. However, the latter condition follows from the
definition of (y¢q)c, therefore Q(C) is the pullback of yq along 7. Next we need to
show that (yq)c is the unique arrow for which the pullback condition is satisfied.
This will be shown by proving that the condition “idc € (xq)c(x) iff x € Q”,
implies that (yq)c(x) is defined as in (7.3.5). In fact given any f : D — C € C, then
f € (xo)ckx) iff idp € f*(xq)c(x)). But by naturality of yq)c and the condition
that ide € (xQ)c(x) iff x € Q, it follows that f*(yq)c(®)) = (x@)c(P(f)(x)) (see
diagram below). But this in turn implies that P(f)(x) € Q(D) hence (yq)c(x) is
defined as in (7.3.5).

PC) — " 90

P(f) Q)

PlS) ——— (D)
(xQ)p
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7.4 Sh(C,J) Is an Elementary Topos

In this section we would like to prove that the category of sheaves over a site is
actually an elementary topos. We recall from [26] that an elementary topos 7 is a
category such that:

1. 7 has all finite limits and colimits;
2. 7 has exponentials;
3. t has a sub-object classifier.

So far we have seen that indeed S%(C, J) has a sub-object classifier, so it remains to
show that also (1) and (2) are satisfied.

We will start by showing that Sh(C, J) is closed under taking finite limits. In order
to do this we will recall briefly how limits are defined in a category. For a more in
depth discussion the reader is referred to [26, 55].

Before defining limits we need to introduce the notion of a diagram of a category.
Given category C and a small category [ called the index category, a diagram D in C
of type I is a functor (I — C) € C’. Alternatively one can define it as in Definition
4.5.10 [26].

Definition 7.4.1 Given a category C, a diagram D in C is defined to be a collection
of C-objects a; € C (i € I) and a collection of C-arrows a; — a; between some of
the C-objects above.

A special type of diagram is the D-cone, i.e. a cone for a diagram D. This consists
of a C-object ¢ and C-arrows f; : ¢ — a;, one for each a; € D, such that

8
ai > aj

Ji

commutes whenever g is an arrow in the diagram D.

A cone is denoted by {f; : ¢ — a;} and c is called the vertex of the cone. It is
also possible to define a cone in terms of functors. To this end consider the functor
Aj : C — C! which takes each object C € C to the constant diagram Ay(C) € C/,
which has value C for all i € I. Next, given any other diagram A € C’, then a natural
transformation f : Ay(C) — A has components f; : C — A; for each i € I such that,
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given (g : i — j) € [, the following diagram commutes

Here f : A;(C) — A is called a cone of the diagram A with vertex C. Often such
cones are simply denoted by f : C — A.
‘We can now introduce the notion of a limit [26, 55].

Definition 7.4.2 A 11m1t for a diagram D is a D-cone {f; : ¢ — al} such that, given
any other D-cone { f ¢ - a;}, there is only one C-arrow g : ¢ — ¢ such that, for
each a; € D the following diagram commutes:

The limiting cone of a diagram D has the universal property with respect to all other
D-cones, in the sense that any other D-cone factors out through the limiting cone.

It is also possible to define limits in terms of functors. Consider the diagram A,
a limit of such a diagram is a cone f : C — A with vertex C, such that given any
other f' : C' — A there exists a unique map g : C' — C which make the following
diagram commutes forany (h:i —j) € [

\LA(h)

AQ))

The limit of a diagram A is denoted by lim._, A. This implies that “taking the limit”
is a functor of the form

lim: C' — C.
<1
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It turns out that lim., is right adjoint to Ay.

An important result for presheaves is that limits are computed pointwise. In
particular, consider the functor category CP for any two categories D and C. A
diagram of type I in CP is amap A : I — CP. Given any such diagram define
Ap : 1 — C; i+ Ap(i) by

Ap(i) := AG)(D).

This map then defines a diagram Ap : I — C in C for each object D € D. Next
assume that each such diagram has a limit L, = lim., Ap, then the presheaf
structure combines all these limits together to get a limit for the original diagram A.
Such a limit is represented by a functor lim._, A : D — C in CP, whose components
are given by the individual limits in C, i.e.

(lim A)(D) = lim Ap. (7.4.1)

Now that we have revised the notion of a limit and some of its properties let us
go back and analyse limits in Sh(C, J). From the discussions of the previous section
it is easy to see that the category of sheaves on a site (C, J) is a full sub-category of
the functor category SetsC”. In Sets®” a diagram is simply a functor I — Sets®";
i — P;, therefore we have the following theorem:

Theorem 7.4.1 ([55]) Consider a site (C,J) and a diagram I — Sets®” of
presheaves P;. If all P; (i € I) are sheaves then so is lim—y P;.

Proof Consider the limit P = lim, P; of presheaves in Sets®” . Given any C €
C, from Eq.(7.4.1) it follows that P(C) = lim., P;(C). We want to show that P
satisfies the sheaf condition when all P;, i € I satisfy it. Let us spell out the sheaf
condition for P;. This states that, given a cover S of C € C, the following diagram is
an equaliser

P(C) —— [[Pitdom(r) —= T[] Pidom(g).

fes ! fgfes
cod(g)=dom(f)

(7.4.2)

However, we know that the functor lim«_, is a right adjoint and, as such, it preserves
limits. Since the equaliser is a limit, applying lim, to the above equaliser gives us
the equaliser

P
P(C) —— [[Pom(r) —= [] Pwom(s)).

ses fefes
cod(g)=dom(f)

hence P is a sheaf. O
This proves that Sh(C, J) has finite limits.
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Next we need to show that all small colimits exist in SA(C, J). Colimits are dual
to limits and, as such, are defined in terms of cocones. Given a diagram D a cocone
consists of an object ¢ and arrows {f; : a; — ¢}, one for each element a¢; € D, such
that

8
a; %aj

commutes whenever g is an arrow in D. A cocone is often denoted by {f; : a; —
c}. Alternatively, given a diagram A : I — C, a cocone with vertex C is a map
A — A;(C) in C. The universal cocone of A is the colimit of A and it is denoted
by lim_,, A. Similarly, as for the case of the limit, “taking the colimit” gives rise to
a functor

lim:C'—>C
gl

whose left adjoint is the diagonal functor A; : C — C’.
In order to show that all small colimits exist in Sh(C, J) we need to introduce the
adjunction

Sh(C,J) = Sets"”
a

Clearly from the definition of SA(C,J) the map i : Sh(C,J) — Sets” is simply
an inclusion. Its left adjoint a : SetsC” — Sh(C, J) is called the associated sheaf
functor.

Before proving the adjunction a - i we need to understand how the functor a
acts. Consider any presheaf P € SetsC”', we then define the associated presheaf by

PT(C):= lim Match(R,P)

—>REJ(C)

where Match(R, P) are the matching families for the cover R, and the colimit is
computed with respect to all the covers of C € C, which are ordered by reverse
inclusion. As an example of how P*(C) is constructed let us consider two covers
R, S, which have a common refinement 7 € R N S with T € J(C). We then
obtain the maps S — T and R — T. These can be combined into the following
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pullback diagram:

R ——
[

n<——->59

R
T
At the presheaf level this translates into.

Match(R, P)

|

Match(S, P) <—— Match(T, P)
The colimit of this diagram is then given by the pushforward

Match(S, P) ]_[ Match(R, P) <—— Match(R, P)

Match(T,P) T
Match(S, P) Match(7, P)

Essentially the object Match(S, P) ]_[Mamh(T’P) Match(R, P) =~ Match(S N R, P)
consists of equivalence classes of matching families where two matching families
belong to the same equivalence relation, if their restriction to a common refinement
T coincides. In particular, an element of P™(C) would be an equivalence class

[{xf}rer] where
{Xr}rer stxy € P(D) and Vg :E — D, P(g)(x;) = Xfog.

Given two families {x/}eg and { y,},cs, these belong to the same equivalence class
if, given a common refinement 7 € S N R in J(C), then x; = y; forall k € T.

Next we need to define the presheaf maps. Given amap 4 : D — Cin C, at the
level of presheaves we obtain

P (C) —» PT(D) (7.4.3)
[{xr}rer] = P () ([{xr}rer]) = [xnop byrentm)]-

Note that P* (h) ([ }er]) = (P(h)xy e ))-

Clearly such a map preserves equivalence classes that is, if {x;}rer ~ {Ye}ges,
then = {xhof/}f/eh*(R) = {xhog/}g/eh*(g). Since T € SNR, then h* (T) h* (SNR) and
by property C.2 of a Grothendieck topology 1*(T) € J(D). Let us consider next the
two families {Xpop };en*(r) and {Xpog }o’en*(s). For them to be equivalent we need to
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find a common refinement on which they coincide. Choose the common refinement
to be h*(T) = {l|h ol € T}. We then want that for all [ € h*(T), Xpo; = Ynos, Which
is indeed the case since h o [ € T and by assumption {x}rer ~ { Yg}ges-

Having defined P™ we need to show that it is indeed a presheaf. In particular we
need to show that

1. PT(hog) = P*(g) o PT(h) whenever cod(g) = dom(h);

We will start with condition (1).

P (h o g)([{xrrerl) = ({P(h 0 )x}pegrimm])
= ([{P(g) o P(W)x}y egrnm))
=P (g) o PT (W) ([{x7}ye])-

Condition (2) is a straightforward consequence of the definition of P+,

Now that we have constructed the presheaf P we would like to analyse whether
it is also a sheaf. It turns out that this is not always the case. However, what is always
true, is that P* is “almost” a sheaf in the sense that it is separated. Essentially,
what it means for a presheaf to be separated is that it satisfies the requirement
of uniqueness for the amalgamation point but not necessarily the requirement of
existence. In other words, for P separated, the diagram (7.4.2) might fail to be an
equaliser but the map e is still injective.

Lemma 7.4.1 ([55]) Given any presheaf P, then P is separated.

Proof To show that P is separated we need to show that the map e in the diagram
the diagram (7.4.2) is injective, i.e. we need to show that the following map is
injective:

PH(C) — [P+ (dom(h)
heQ

To this end let us consider two elements {x;}seg and { y,}ses in P*(C) such that
Pt (h){xr}res = PT(h){ye}eer forall (h : D — C) € Q, where Q is a cover
of C. Our task is to show that the matching families {x;};cs and { ye}eer are the
same. From the definition of the presheaf maps (7.4.3), we know that the equality
P (h){xplres = PT(0){ vy hger. means that x| f € h*(S)} = {uglg’ € h*(R)}.
This, in turn, implies that for each & € Q there exists some cover Tj, C h*(R) NA*(S)
of D, such that x;; = y, for all ¢ € T},. Let us consider now the set

T ={htlhe Q,t € Ty}

This is clearly a sieve on C since Q is and all sieves are closed under composition,
then the pullback 2*(T) for all h € Q defines a sieve on dom(h). From the transitivity
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axiom of Grothendieck topology C’.3 in Definition 7.1.8 it follows that T € J(C).
Next consider h*(T) = {f|hof € T}. Clearly if f € h*T, then ho f € T, therefore
f € Ty. This means that T, € A*(T). On the other hand if f € T, then hof € T
and f € h*(T). This implies that T, D h*(T). Putting these two results together we
obtain that 7, = h*(T), then T € R N S. Now to show that {x;}res = {Yo}oer We
need to show that there exists a subcover W € § N R such that x; = y; forall j € W.
But this is precisely what T is. In fact any element of T has the form At for h € Q
and t € T,. Then for each such element we have indeed that x5, = yy,, therefore
{xr}res = {¥¢}oer and the map e is indeed injective. O

The idea is now to define a by a(P) := (P*)™ and show that this turns a into a
left adjoint for i. In order to prove the adjunction we first need to show that (PT)*
is actually a sheaf. That this is the case is elucidated by the following Lemma:

Lemma 7.4.2 IfP is a separated presheaf then PT is a sheaf.

Proof In order to show that P is a sheaf we need to show that for any matching
family there exists an amalgamation point and this point is unique. To start with, let
us define a matching family in P*. From now on we will denote an equivalence class
of matching families {x,},es as X. Given a cover R € J(C), the family {x/|f € R},
for x; € P*T(D), is a matching family in P if for any morphisms & : E — D,
Pt (h)xy = xp, where f : D — C, Xy = {x74|g : E — D € S} and xr, € P(E). The
condition P+ (h)x; = Xp, means that there exists an equivalence of families

{xrng |8 € h*(Sp)} ~ {xmelg € S}

This equivalence implies that there exists a cover Ty, € h*(Sy) N Sy, such that
Xf hk = Xfohk forall k € Tfsh'

Our first task is to find an amalgamation point for the family {X;| f € R}. This will
be a pointy € P*(C), such that P(f)y = y; for all f € R. Since our amalgamation
point is an element of P*(C) it has to be a matching family, so we need to construct
it in terms of the matching families we have at our disposal. Clearly a possibility
is to define y in terms of the matching family x;. First of all we need to choose a
cover of C in terms of which to define y. To this end we construct the sieve Q =
{foglf €R, ge S} where R € J(C) and Sy € J(D). Then for all & € R, clearly
h*(Q) € J(D), thus by the transitivity axiom of Grothendieck topology we have that
Q € J(C). Given such a cover, then for all f o g € Q we define

Vfog ‘= Xfg (7.4.4)

and

y = {ynlh € 0}.

Clearly if y is well defined then it automatically is a matching family since X is
one. So what we need to check is that y is indeed well defined. What this means is
that the definition we gave does not have to depend on the choice of factorisation of
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fog ie iffog =f og then we need to have that yro, = ypoy . The strategy we
will use to show this it to show that the points x;,,xp o € P(E) are amalgamation
points and, since P is separated, they have to be the same. To this end we consider
the cover Ty, N Ty v of E. Then for all k € Ty, N T oo we have

Xrmatching family

P(k)(x7.¢) = Xf gk
= Xfogk
= Xf’og’ k
= X8k

Xpr matching family

P(k) (xp7 7).

Because of the uniqueness of amalgamation point it follows that x; , = Xy ¢/, thus
Yfog is well defined and y = { yx|h € Q} is a matching family and hence an element
of PT(C). As the final step in our proof we need to show that y is the amalgamation
point of the family {x/|f € R}. What is means is that we need to show that for each
f:D — CinR, then PT(C)(f)y = xs. To see that this is indeed the case we need
to spell out the action of the presheaf map

PE(O)(f)y = {yponlh € f*0}.

Let us assume that yro, € PT(C)(f)y, then from Definition (7.4.4) and that of
f*(Q) = {h|f o h € Q} it follows that indeed yfor = x,. On the other hand if
Xrg € Xy, then g € ;. However, from the definition of Q, it follows that Sy € f*(Q),
therefore for all g € Sf, xr, = yrog. This shows that y is an amalgamation point.
The fact that it is unique follows from the fact that PT is separated. O
Given the above Lemmas we now have the right tools to prove the adjunction

Sh(C,J) — Sets®”.
a

Proof We want to show that a is left adjoint to the inclusion functor i : Sets®” —
Sh(C,J). Recall that the adjunction tells us that for a given map P — i(F) there
corresponds a unique map a(P) — F. Consider the natural transformation  : P —
P+, which, for each C € C is defined as:

nc: Pc - PH(C) (7.4.5)
x = ne() == {P(f)x|f € tc}

where 7¢ is the maximal sieve on C. Clearly two applications of 1 would result in
a map from P to PT™" = a(P). We want to show that any map from P to a sheaf

F factors uniquely through the map P A a(P) which, pictorially translates to the
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following diagram:

P4n>P+ HHP—’"F =a(P)
|
| k
A
F

Since we are applying the map 7 two times it suffices to show that the factorisation

p_".pt

X .

\
\
y
F

is unique, i.e. we want to construct a unique map o which makes the above diagram
commute. Let us consider an element {x;| f € R} € P(C) for some cover R € J(C).
Then, given any map g : D — C in R we have that np(x,) = {P(h)x,|h € 1p}.
However, since {x¢|f € R} is a matching family of P, then P(g) ({xf| fe R}) =
{xg'|f' € g*R}. Since g € R, then g*R = tp, therefore we obtain 7p(x,) =
P(g) ({xf|f € R}) This is true for all g € R. If the map « were to exist, it should
preserve such equality, that is there should exist a unique a({x;|f € R}) € F(C)
such that

F(@a({x|f € R}) = a([P(@{x|f € R}]) = a(np(x,)) = Blx,) (7.4.6)

for all g € R. However, since F is a sheaf and {8(x,)|g € R} is a matching family,
then indeed there exists a unique element a({x¢|f € R}) € F(C) which satisfies
condition (7.4.6). Hence « exists and it is unique. If we then consider the map [ :
P — i(F), the above discussion tells us that / uniquely determines a /2 : a(P) — F
such that the following diagram commutes:

P "L iap)

N

i(F).

This means that the map n o  : P — PT — P+ is the unit of the adjunction. O
Since a is a left adjoint, it preserves colimits, hence all small colimits exist in
Sh(C,J) since they exist in Sets®”.

As a last step in proving that Sa(C,J) is a topos, we need to show that it has
an exponential object. Recall that in standard set theory an exponential ZX is the
function set consisting of all functions f : X — Z. This set is completely determined
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by the bijection

Hom(Y x X,Z) — Hom(Y,Z%)
fiYxX>f:Y—>2Z"
such that for y € Y then f'y(x) := f(y, x).
In the context of presheaves, given P, F € SetsCOP, then we know from the Yoneda

embedding that F¥*(C) = Homg,c (y(C), F*), where y(C) = Home(—, C). Then
the above bijection is given by

Homg,, co» (y(C), FP) ~ Homgg co» (y(C) x P, F).

Given such a bijection the exponential object is defined by

F¥(C) := Hom_ co» (y(C) x P, F)

Sets

Therefore the elements of F¥(C) are natural transformations 7 : y(C) xP — F. Here
naturality implies that, given any & : E — D, then the following diagram commutes:

y(C)(D) x P(D) ——— F(D)
Y(C)(h)XP(h) F(h)

Y(O)(E) x P(E) —————F(E)

This implies that for any (g,x) € y(C)(D) x P(D), then t(y(C)(h)g x P(h)x) =

F(h)t(g, x).
Given a map f : C' — C, then at the level of the presheaf F¥ we have the
corresponding presheaf map

F'(C) — F¥(C))
> FP(f) (7).
Here 7 : y(C) x P — F while F?(f)(t) : y(C') x P — F. Therefore, given a map

(¢ : D— C') € Home/ (D, C') = y(C')(D) and an element x € P(D), the action of
F?(f)(7) is defines as

FP()(1) (¢'.x) == t(fog . x). (7.4.7)
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Applications of the adjunction a - i and Yoneda lemma (Lemma A.7.2) imply
that i(F?) ~ i(F)'®. In fact, given that a o i = id we have:

adjunction

(G—i(F") = (a(G)—>F")

Yoneda’s lemma

(a(G) — F") ~ a(G)xP > F

a preserves products
~

a(G) xP ~ a(G xi(P))

adjunction

a(GxiP) > F = GxiP)—iF)

Yoneda’s lemma

G x i(P) — i(F) ~ G — i(F)'®,

This implies that the exponential object in Sk(C, J), if it exists, will be constructed
in the same way as it is constructed in Sets®” .

Now that we know how exponentials are constructed in SA(C, J) we need to show
that, given P,F € SetsC”, if F € Sh(C,J) then F®* € Sh(C,J). The proof will
consist in first showing that the presheaf F¥ is separated and then that it has an
amalgamation point.

To show that the presheaf F¥ is separated we need to show that, given a cover
S € J(C), the following map is injective:

FP(C) — [Tjes F¥ (dom(f)).

Choose any 7,0 € FP(C) such that F¥(f)t = FP(f)o for all f € S. Applying
the definition of the presheaf maps given in (7.4.7), this means that t(f o g’,x) =
o(fog',x)forallg : D— C' and x € P(D). Choosing g’ = idp then we have

T(f,x) = o (f,x). (7.4.8)

We then need to show that 7 = o. In order to prove this we will utilise the fact that
F is separated. To this end consider any map k : C' — C with codomain C, then
k*(S) is a cover of C'. Since F is separated, for any x € F(C’) we have that

F(C)— [] F(dom@*(s)) (7.4.9)
g €k*(S)
is injective, therefore given two elements t(k, x), o (k, x) € F(C’), then

Naturality of 7

F(g")t(k,x) (kg xg")

"2 6 (kg xg)

Natural:ily of o F(g’)cr(k, 8)-
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Since we have assumed that F is separated (i.e. the map in (7.4.9) is injective), it
follows that t(k,x) = o (k, x). Since this result holds for any k and x, it follows that
7 = o and FP? is separated.

The final step in proving that F? is a sheaf is to show that any matching family
has an amalgamation point. Its uniqueness is a consequence of the fact that F¥ is
separated. Let us first construct a matching family. To this end consider a cover S €
J(C) such that for all f : D — C in S the natural transformations 7; : y(D) xP — F
form a matching family. By this we mean that for any g : E — D then

F'(9)t = 1.

Hence, given an element /i : E' — E € y(E) and x € P(E’) we obtain that

T (h, x) = (F¥(g)17) (h, x) = t:(gh, x). (7.4.10)

The fact that an amalgamation point for the family {t;}ses exists can be seen from
the following commuting diagram:

Diagram 7.4.1

yD)xP —2 - F

y(f)xid NF

7

yD)xP —° - Ft

Since F is a sheaf, it is straightforward to show that the map 7y, defined in (7.4.5),
is an isomorphism. Therefore the desired amalgamation point is 7y Lot

But how does one actually define 7’? To this end let us consider an object B € C,
then we have 75 : Y(C)(B) x P(B) — F*(B) which we define, for any k : B — C

and x € P(B) as
15 (k, x) = {7 (id, P(h)x)|h € k*S}.

To show that this is well defined we need to show that it represents a matching
family of elements of F for the cover k*(S) € J(B), i.e. an element of FT(B).
Therefore we need to show that for any i € k*(S), then 7y, (id, P(h)x) is such that,
for all m for which the composite & o m is defined, then F* (m)(zy,(id, P(h)(x)) =
Tknm (1, P(hm) (x)). This is indeed the case, in fact we have:

naturality

F* (m) (i (id, P(h)(x)) =" i (m, P(m) (x))

(7.4.10) T (id, P(hm) (x)).
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We have thus shown that tj(k, x), as defined above, is indeed an element of F*.
However we still need to show that with such a definition for 7/ diagram 7.4.1
commutes. To this end consider amap f : D — C € S, then f*S = tp is the
principal sieve on D. Given an element (k, x) € Y(D)(B) x P(E) where k : B — D,
going around the left hand side of diagram 7.4.1 we obtain

(" o (Y(f) x id))(k.x) = T (fk.x) = {zp(id, P(h) () |h € (fk)*(S)}

where (fk)*(S) = k*f*(S) = k*(tp) = tg. On the other hand, going round the right
side of diagram 7.4.1, we obtain

(e 0 77) (k. x) = ne(talid, x)) = {gpn(id, P(h) (X)|h € 15}.

Therefore the diagram commutes. This ends our proof.
From the discussion above we can conclude that the category Sh(J, C) of sheaves
over a site is a topos.



Chapter 8
Locales

8.1 Locales and Their Construction

As a first step, we introduce the notion of a frame [73] which is a lattice L with all
finite meets and all joins which satisfies the following distributive law:

Un\/Vi=\/(WAV). YU.VieL. 8.1.1)

l l

An example of a frame is given by the collection of all open subsets O(X) of a
topological space X. Given the definition of a frame it follows that each frame has
a largest element /\ ¥ and a smallest element \/ @. In fact the definition of meet
(/\) states that A\ @ is the biggest element such that for all x € @ then A @ < x.
However the last condition is vacuously true, hence all that remains is that /\ @ is
the biggest element. Similarly for the definition of join, \/ @ is the smallest element
such that for all x € @, x < \/ 0. Again the last condition is vacuous and what
remains is that /\ @ is the smallest element.

A morphism between frames ¢ : Ly — L, is a map of partially ordered sets
which preserves both finite meets and infinite joins, hence we also call it a frame
homomorphism. Such homomorphism has to satisfy the following conditions:

¢(0) =0, () =1, pUAV) =) Ap(V), d(/\V)=/\@V).
(8.1.2)
For example, given a continuous map between two topological spaces f : X; — X»,

the inverse image map f~! : O(X,) — O(X;) is a morphism of frames.
A morphism of frames ¢ : L; — L, has a right adjoint ¢ : L, — L; defined by:

VUeL, y(U):=\/tVeLlp(V) <UL
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To show that ¢ = ¥ is an adjoint pair we need to show that for each map ¢ (V) < U
there corresponds a map V < y(U). We start by assuming that we have a map
¢(V) < U, this implies that V € {V e L,|¢(V) < U}. Since ¥ (U) is the join
of the set {V € Li|¢p(V) < U}, it follows that V < ¥(U). On the other hand,
given a map V < y(U), then since ¢ is a frame homomorphism it follows that
p(V) < ¢(VIV € Lilp(V) < U}) = VV{p(V)|¢(V) < U}, therefore p(V) < U.
Being an adjoint pair, { preserves all meets, i.e. ¥ (A; U;) = A\, ¥ (U)).

As an example of the above mentioned adjoint pair, consider two topological
spaces X and Y, with a continuous map between them f : X — Y. Then the frame
mapisf~!: O(Y) — O(X) with right adjoint f, : O(X) — O(Y), such that

U fuU) == JiVIfF ' (v) c Ul (8.1.3)

It turns out that fi needs not to be a frame homomorphism, since it needs not to
preserve suprema.

Proposition 8.1.1 A frame is equivalent to a complete Heyting algebra (cHa),

Proof Recall that a cHa is a complete lattice L equipped with an implication
operation =: L°? x L — L such thatforany U, V, W € Lwehave W < (U = V) iff
W A U < V. However this condition states precisely that each U = (—) is the right
adjoint of U A (—). Since each U A (—) is a left adjoint it preserves all joins. This
is indeed the condition (8.1.1) in the definition of a frame. Therefore, given a frame
L, the implication relation is defined as U = V := \/{W € LIW AU < V}. O

Definition 8.1.1 Given a frame L, a nucleus is a function f : L — L such that the
following conditions are satisfied:

flanb)=fla)Af(b) (8.1.4)
a =< f(a) (8.1.5)
f(f(@) = f(a). (8.1.6)

Alternatively it is possible to define a nucleus in terms of a subset S of L, which
satisfies the following conditions:

1. \A € S whenever A C §.
2. a = b € S wheneverb € S.

The map f is then defined by f(a) := N\{beL|beS, a<bfandS = {a €
L|f(a) = aj.

Clearly frames have a topological flavour, but sometimes it is the algebraic aspect
of a frame which one is more interested in. This algebraic aspect is encoded in the
notion of a locale. In particular, a locale is the same thing as a frame, but such that
to each morphism between frames there corresponds a morphism between locales
going the other way. What this means in mathematical terms is that the category
of locales is the opposite of the category of frames: Loc = (Frames)’. It is a
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common convention to denote the frame by O(X) and the corresponding locale by
X. Moreover, given two locales X, Y with corresponding frames denoted as O(X)
and O(Y) respectively, a continuous map of locales / : X — Y is defined to be a
frame homomorphism I~! : O(Y) — O(X).

From the above, it is clear that there exists a covariant functor which maps
topological space to locales [50, 55]:

Loc : Spaces — Loc (8.1.7)
X — Loc(X).

The corresponding frame of Loc(X) is O(Loc(X)) := O(X). Therefore, given any
topological space X, we can construct the locale Loc(X), whose frame consists of
all the open subsets of X and, to each map f : X — Y between spaces, there
corresponds the locale map Loc(f) : Loc(X) — Loc(Y) with associated frame
map £~ : O(Y) - O(X).

From the above description one can infer that the elements of a locale are
“extended regions” rather than points. It is however possible to define the notion
of a point in a locale [50, 55].

Definition 8.1.2 A pointin a locale X is defined as a morphism p : 1 — X from the
locale corresponding to a one-point space (the terminal object in Loc) to the locale
in question.

In terms of frames, a point is defined as a frame homomorphism p~! : O(X) —
O(1) where O(1) is the frame consisting only of the bottom element 0 and the top
element 1, therefore O(1) >~ {0, 1} = Q.

Alternatively, a point P in a frame O(X) is a proper prime element of O(X), i.e.
l1#Pand UAV < Piff U < PorV < P. To understand how these definitions
are equivalent, let us analyse the kernel of the homomorphismp™' : O(X) — O(1).
This is given by the subset K := {U|p~!(U) = 0} such that:

1. 1 ¢K;
2. UANVeKiffUeKorV ek,
3. VU; eKiff U; € K forall i.

Given any such subset K € O(X), this defines an element P = (\/ex U) € O(X).
Translating conditions (1); (2); (3) above, to conditions on P, we obtain:

(@) 1#P;
(b) UANV <PiffU<PorV <P,
(¢) U< Piff U € K, therefore K = P.

From the discussion above it is clear that a point in a locale can be defined in
three equivalent ways: (1) as a frame morphism; (2) as a subset (K) of the locale
in question; (3) as a proper prime element of the corresponding frame.

Let us see how these equivalent definitions apply in the case of a locale defined
in term of the map Loc, defined in (8.1.7). To this end let us consider a topological
space X, then a point x € X determines a point in the locale Loc(X).
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Frame Morphism x can be defined in terms of a frame morphisms p; ' : O(X) —
O(1) with associated locale map p, : 1 — Loc(X), such that p_ ! (U) = 0 iff x ¢ U.

Subset Alternatively x can be defined in terms of the subset K, = {UO(X)|x ¢ U}.
Clearly K, is such that (1) X ¢ K,; 2Q)if U AV € K, thenx ¢ U A V. Therefore
x¢Uorx ¢ V,hence U ¢ K, orV ¢ K,; (3)if \/; U; € k, thenx ¢ \/, U;, hence
x ¢ U; for all i. This implies that U; € K, for all i.

Prime Element Finally x can be defined in terms of a proper prime element of
O(X). In this case this element is identified with the open X — {x}. Clearly X #
X—{x}andUAV C X —{x}iff U C X — {x} or V € X — {x}. This last condition
follows from the fact that U A V € X — {x} implies that either x ¢ V or x ¢ U.
Assume the latter, then x € X — U, therefore {x} € X — U (since {x} is the smallest
closed subset containing x), hence U € X — {x}.

We have seen so far that there is a close connection between topological spaces
and locals, however the question still remains on how much of the topological
space can be reconstructed from its lattice of open subsets. It turns out that a
particular class of topological spaces called sober spaces are determined up to
homeomorphism by their lattice of open subsets. A sober space is defined as follows

Definition 8.1.3 A topological space X is said to be sober if for any open subset
P C X satisfying the following conditions:

i) P#X.
i) fUNV C Ptheneither U CPorV CP,

then there is a unique point x € X with P = X — {x}.

Clearly the above definition is equivalent to the condition that there is a bijection
between the points x € X and points of the locale Loc(X), given by the maps p; ! :
O(X) — O(1). An alternative definition of a sober space is as follows:

Definition 8.1.4 A topological space X is said to be sober if every non-empty
irreducible closed subset of X is the closure of exactly one point of X.

To see that the two definitions are equivalent we first assume Definition 8.1.3,
then foreach x € X, P = X — {x} = {x}c. We now show that this implies that
{x} =X-— {x}C is an irreducible closed set. Since P # X, then {x} is non-empty.
Moreover, since U NV C P, then P° C (UN V)¢ = U°U V, but U C P implies
that P° C U¢, therefore P¢ = {x} is irreducible.

On the other hand let us assume that Definition 8.1.4 holds, i.e. for all x € X, {x}
are the only non-empty irreducible closed subsets of X. It then follows that, for each
x € X, the sets P = {x}L = X — {x} are open. Moreover, since {x} is non-empty,
it follows that P # X. Now assume that U NV C P, then P° = {x} C U° U V.
However, since {x} is irreducible it follows that either P C U* or P° C V¢, hence
UCPorVCP.



8.1 Locales and Their Construction 153

There exist many examples of familiar spaces which are sober as shown by the
following theorem:

Theorem 8.1.1 All sober spaces are Ty' and all Hausdorff spaces are sober:

Proof Assume that the space X is sober, we then want to show that for each pair
of points x,y € X there exists an open U, such that x € U and y ¢ U. Since X is
sober the map x — {x}, from a point to a non-empty closed irreducible subsets, is a
bijection. Therefore, given any to points x,y € X two distinct closed sets there are
associated to them, namely {x} and { y}, respectively. Therefore there exists an open
{y} suchthaty ¢ {y} andx € {y}".

We now assume that X is Hausdorff, that is for any two points x,y € X there
exists opens U, 3 x and U, > y such that U, N U, = @. We want to show that X
is sober, i.e. each non-empty closed irreducible subset is the closure of a singleton.
Let us assume that P is a non-empty closed irreducible subset such that x,y € P,
then P = (P — U,) U (P — U,). But this contradicts the assumption, hence P needs
to be irreducible. O

So far we have seen that given a topological space X we can define the associated
locale using the map Loc in (8.1.7). It is only natural to ask if one can also do the
reverse, namely: given a locale is it possible to define a topological space? It turns
out that this is indeed the case and to achieve this one utilises the points of a local,
i.e. the maps p : 1 — (X). In fact, the set of all points pt(X) = {p: 1 —> X} of a
locale X is equipped with a topological structure where the opens are defined by

pt(U) = {p € ptX)|p~"(U) = 1} (8.1.8)

where U € O(X).

To show that the collection of subsets of this form constitute, indeed, a
topology we note that for X € O(X), then {p € pt(X)|p~'(X) = 1} = pt(X)
is the whole space, while for @ € O(X) then {p € pt(X)|p~ (@) =
1} = pt(@) = @ is empty. Now, given two opens U,V € O(X), then
pt(UAV) = {pept(X)|p~"(UAV)=1}. However, since p~' is a frame
morphisms then p~ ' (UAV) = p~'(U)Ap~' (V) = 1 which implies that p~'(U) = 1
and p~!'(V) = 1. Therefore pt(U A V) = pt(U) A pt(V). Similarly one can show
thatpt(\/; U;) =\, pt(U)).

This shows that given a locale X it is possible to define a topological space pt(X),
whose opens are given by the sets of the form of (8.1.8). Topological spaces, defined
in such a way, share the property of being sober.

Lemma 8.1.1 Given a locale A, then pt(A) is sober.

Proof In order to show that pt(A) is sober we will show that the map x — {x} is
a bijection. To this end consider a non-empty closed irreducible subset F of pt(A),
then F* is a prime open, i.e. if UNV C F¢ for U, V open and not disjoint, then either

IRecall that a T, space is a space X such that for any two points x, y € X there exists an open set U
such that, eitherx € Uandy ¢ Uory € U and x ¢ U.
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U C F¢orV C F°. Clearly F*, then, is a proper prime element of O(pt(A)). From
the definition of points of a local, F¢ corresponds to a point prc : 1 — A, therefore
the map x — {x} is surjective. It remains to show that this map is also injective.
To this end we will first show that the space pt(A) is Ty. In fact if we consider two
distinct points p # ¢ : 1 — A, then g~ '(U) # p~'(U) for some U € O(pt(A)).
This implies that either p € pt(U) or g € pt(U), hence pt(A) is Tp. Hence the map
x > {x} is injective. O

Given two locales X and Y and a map f : X — Y, we would like to define a
map between the topological spaces pt(X) and pt(Y). This can be done by a simple
composition:

pt(f) : pt(X) — pt(Y) (8.1.9)
(p:1=>X)> (fop: 1 =>X—=>Y).

However, we need to check that this map is continuous. To this end consider an
open pt(V) < pt(Y), then the inverse image is pt(f)~'pt(V) = pt(f)~"'q €
ptMlg~'(V) = 1} = {p € pX)|p~'(f7'(V)) = 1} = pt(f~'(V)), which is
open.

This discussion uncovers the fact that the operation of defining points in a locale
is a covariant functor

pt : Loc — Spaces

X > pt(X). (8.1.10)

Theorem 8.1.2 ([55]) pt : Loc — Spaces is the right adjoint of Loc : Spaces —
Loc.

Proof To prove the adjunction Loc - pt we need to show that, given a topo-
logical space X and locale A there exists an isomorphism Homy e (Loc(X),A) =~
Homgpaces(X, pt(A)). To show this we will construct a map g : X — pt(A) from
amap f : Loc(X) — A and vice versa. Let us first assume that we have a map
f : Loc(X) — A, with associated frame map f~! : O(A) — O(X), we then construct
the map g : X — pt(A); x — g(x) such that, for all x € X, g(x)"'(U) = 1 iff
x € f~Y(U). We now need to show that, as defined, g is continuous. To this end
consider an open pt(U) C pt(A), then g~ (pt(V)) = g~ {p € pt(X)|p~'(U) =
1} = {x € X|g(x)""(U) = 1} = f~1(U), therefore g is continuous. Now we do
the reverse. Let us assume we are given a g : X — pt(A4) and we try constructing
an f : Loc(X) — A with associated frame map f~' : O(4) — O(X). We define
FHU) == {x € X|g(x)""(U) = 1}. Clearly f~1(U) = g~ (pt(U)). We now need
to show that f~!, so defined, is a frame morphism, i.e. it preserves finite meets and
arbitrary joins.

definition pt preserves meets

g~ (PUU A V) = g~ (pt(U) N p(V))

MY L o=t pt(U)) N g~ (pt(V)) = £ W) NN V).

Ay



8.1 Locales and Their Construction 155
On the other hand

£ U PE g o\ wp) TR g ()
T e euwn) = Jo @),

We have now constructed the maps ¢ : Homypoc(Loc(X),A) — Homspaces(X, pt(A));
f = gand ¥ : Homgpaces(X, pt(A)) — Homyec(Loc(X),A); g — f. What remains
to show is that these are inverse of each other. Let us start with ¥ (¢(f)), we want
to show that this is equivalent to f. Consider an open U € O(A), then

definition

{xeXlp(H™'(U) = 1}

deﬁnitiolof d(f)

W@ (WU)
{xeXxef (U} =f"(U).

therefore v (¢ (f)) = f.
On the other hand, we want to show that ¢ (¥ (g)) = g. Here ¢ (¥ (g)) : X —

pt(A) is such that for all x € X, ¢ (¥ (g))(x) : 1 — A is the locale map such that:

P (@)W (U) =16 xey(g) (V)
xeP(@ (V) & xeixeXlg0)™(U) = 13,

therefore

P (W) =14 g0 (V) =1.

O
An alternative way of proving the above theorem is by constructing the unit and
counit of the adjunction.

Proof Consider the map n : X — pt(Loc(X)) which takes each x € X to the
corresponding point p, : 1 — Loc(X). We will now show that this map satisfies
the triangular identities for the unit of the adjunction. In particular consider a map
g : X — pt(A), we need to show that there exists a unique f : Loc(X) — A in Loc,
such that the following diagram commutes

X g pt(4)

pt(Loc(X))
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Applying the functor pt to f we obtain the map pt(f) : pt(Loc(X)) — pt(4)
which, as explained before, is defined though composition pt(f) : (p : 1 —
Loc(X)) — (fop : 1 — A). If we now compose pt(f) with ¢ we obtain the
map

pt(f) o0 : X — pt(A)
x—>fopy:1l—A.

fope: 1 — Aiss point such that, given any U € O(A), (f o p,) "' (U) = 1if
x € f7YU) and (f o p)”""(U) = 0if x ¢ f~'(U). Therefore, for the diagram to
commute we need g(x) = f o py, i.e. x € f~1(U) iff x € g(x)~'(U). This means that
the map f should be defined, for any U € O(A), as f~1(U) = {x € X|g(x)" (V) =
1}. Clearly such an f is unique.

On the other hand let us consider the map € : Loc(pt(A)) — A such that €' :
O(A) — O(pt(A)); U — pt(U). We want to show that given an f : Loc(X) — A,
then there exists a unique g : X — pt(A) such that the following diagram commutes:

o) —I— o)

| T

O(pt(4))

That is, we require that for any U € O(A), f~'(U) = g (7' (U)) = g ' (pt(V).
This is equivalent to the condition that x € f~'(U) & x € g '(pt(U) &
g(x)"1(U) = 1. To account for this we define the map g : X — pt(A) which assigns
to each x € X a point g(x) : 1 — A such that, for all U € O(A), g(x)""(U) = 1iff
x € f71(U) and g(x)"'(U) = 0 otherwise. Clearly such a defined g is unique. 0O
Summarising, given a topological space X, the unit the adjunction is defined by

n :X — pt Loc(X)
x> (px : 1 - Loc(X)). (8.1.11)

On the other hand, the counit € : Loc pt(X) — X is defined in terms of the
corresponding frame map

€1 :0(X) — O(pt(X))
U — pt(U). (8.1.12)
Both the unit and the counit of the adjunction are important in understanding
certain properties of locales. In particular the property of a locale being sober is

equivalent to the condition that the unit is a homeomorphism. On the other hand the
property of a locale having enough points (notion to be defined later) is equivalent
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to the condition that the counit is an isomorphisms of locales. These properties are
expressed by two theorems.

Theorem 8.1.3 Given a topological space X, the following statements are equiva-
lent:

1. X is sober.
2. The unit n : X — pt Loc (X) is a homeomorphism.
3. There exists a locale A such that pt(A) >~ X.

Proof

1 = 2 Assume that § is sober, from Definition 8.1.3 we know that a space is
sober if there exists a bijection between the points x € X and the points
of the corresponding locale Loc(X). Thus the condition of being sober is
equivalent to the condition of the unit being a bijection. What remains to be
shown is that 7 is both open and continuous. To this end consider an open
U C X, then U € OLoc(X). To such an open there corresponds the open
pt(U) < pt(Loc(X)). Given a x € X, then n(x) € pt(U) iff =" (U) = 1 iff
x € U. This shows that 7 is continuous, but it also shows that it is open since
n(U) = pr(U).

2 = 3 Follows by choosing X = Loc(X).

3 = 1 Follows from Lemma 8.1.1.

O

As stated in previous sections, the main idea behind locales is to consider open
regions as primary entities rather than points. Given this, it is natural to ask whether
locales have points and ‘how many’ do they have. It turns out that some locales have
points while others don’t. Of those that do, some are said to have ‘enough points’
while others do not. Locales that have ‘enough points’ are called spacial. Having
enough points means that the points present are enough to distinguish elements of
the corresponding lattice. In particular, consider a locale X, this is spacial iff for any

U,V € O(X) then pt(U) = pt(V) implies that U = V. Alternatively we say that

X is spacial if for any two U,V € O(X) there exists a point p : 1 — X such that

p Y (U) # p~'(V). The property of being spacial is given in terms of the counit

though the following theorem.

Theorem 8.1.4 Given a locale A, the following statements are equivalent:

1. A is spacial.
2. The counit € : Loc pt(A) — A is an isomorphism of locales.
3. There exists a topological space X such that A >~ Loc(X).

Proof

1 = 2 Assume that the locale A is sober, then for any U,V € O(A) if pt(U) =
pt(V) it follows that U = V. Next consider the frame map €' : O(A) —
O(pt(A)); U +— pt(U). By construction such a map is onto, since each open
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in O(pt(A)) is of the form pt(U) for some U € O(A). Moreover, from the
condition of A being sober it follows that €~ is injective, hence ¢! is a
frame isomorphism and € is an isomorphism of locales.

2 = 3 Follows from choosing X = pt(A).

3 = 1 Assume that A >~ Loc(X) for some topological space X. Then given two
distinct opens U, V C X, these are distinguishable in terms of the concrete
points of X, but this implies that they are also distinguishable using points
of LocX.

O

A direct consequence of the above theorems is that the adjunction Loc - pt of

Theorem 8.1.2 becomes an equivalence of categories when restricted to the sub-

categories of spacial locales and sober spaces.

Lemma 8.1.2 The adjunction

Loc
Spaces _ 1~ Loc ,
pt

when restricted to the full sub-category of spacial locales and the full sub-category
of sober spaces, is an equivalence of categories.

Before proving this Lemma we will briefly recall the definition of an equivalence
of categories.

Definition 8.1.5 Given two categories C and D, they are said to be equivalent if
there exists an equivalence between them. An equivalence consists of a pair of
functors

C D,

-
G

and two natural transformations
FoG=x=Idp and GoF ~1Id:.

We will now prove the above Lemma.

Proof From Lemma 8.1.1 (and also Theorem 8.1.3), we know that, given a locale A,
then pt(A) is sober, therefore the image of pt : Loc — Space is contained in the sub-
category of sober spaces. On the other hand, from Theorem 8.1.4, given a space X,
then Loc(X) is spacial, hence the image of Loc : Spaces — Loc is contained
in the sub-category of spacial locales. This implies that LoC|sober 1 Pjspaciar- BUL
from Theorems 8.1.3 and 8.1.4, the unit and counit to this restricted adjunction are
isomorphisms. This proves the desired equivalence. O
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8.2 Maps Between Locales

In this section we would like to characterise various maps between locales. We will
pay particular attention to embedding maps, since these will pave the road for the
definition of sublocales in the next section.

As a first step let us consider a map f : A — B between two locales A and B.
Let us also assume that the map f~! : O(B) — O(A) is surjective, then it turns
out that the map pt(f) : pt(A) — pt(B) is injective. To see this consider two points
Dx. Dy € pt(A), such that pt(f)(py) = pt(f)(py). Given U € O(A), then from the
surjectivity of f~! it follows that there exists a V € O(B) such that U = f~!(V). It
then follows that

definition of pt(f)

Py (U) =p (') = (fep) (V) pt(f)(p)(V)
= pt(N)(p)(V) = (feop)~ (V) =p; ' (f 7 (V)
=p, (V).

Thus it seems that there is a close connection between surjective frame maps and
injective topological maps. This connection is encoded in the following Lemma:

Lemma 8.2.1 Given two topological spaces X, Y, a continuous map i : X — Y
is an embedding iff the frame map i~' : O(Y) — O(X) is surjective and pt(i) is
injective.

Proof

= Assume that i is an embedding, then the open sets in X are of the form X N U
for U open in Y. This implies that i~! : O(Y) — O(X) is surjective. Moreover,
since i is injective it follows trivially, that pt(i) : pt(X) — pt(Y) is injective.

< We now assume that i~! : O(Y) — O(X) is surjective and pt(i) is injective. We
then want to show that i is an embedding. Injectivity of i is a direct consequence
of the injectivity of pt(i). To show that the map i is also open we note that
surjectivity of i~ implies that any open U € O(X) is of the form i~!'(U’) for
some open U’ € O(Y). Therefore, consider two opens U, V C X, then from the
surjectivity of i~! these are of the form U = i~'(U’) and V = i~'(V’) for some
opens U’, V' C Y. Hence both ii~'(U’) = U’ and ii~!(V’) = V' are openin Y.

O

It is possible to relax the condition of injectivity of the map pt(i) : pt(X) — pt(Y¥)

in the above Lemma, but then certain topological requirements of X are necessary.

In particular we would have:

Lemma 8.2.2 Given two topological spaces X,Y such that X is Ty, then a
continuous map i : X — Y is an embedding iff the frame map i~' : O(Y) — O(X)
is surjective
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Proof

= Same as the proof of Lemma 8.2.5.

& We now assume that i~ : O(Y) — O(X) is surjective. We want to show that the
map i is injective. To this end consider two points x, y € X such that i(x) = i(y).
Next, consider the collection of opens A = {U C Y|i(x) = i(y) € U}. Because
of surjectivity, all opens in X are of the form i~'(U) for some open U C Y,
therefore i~ 'i(x) = x € U’ iff U’ = i(U) for some open U € A. Similarly
ili(y) = y € U’ iff U’ = i(U) for some open U € A. This implies that the
collection of opens containing x is the same as the collection of opens containing
y. Since the space is Ty this implies that x = y.

0

Similarly there is a Lemma relating surjective maps between topological spaces and

injective frame morphisms.

Lemma 8.2.3 Given two topological spaces X,Y such that Y is Ty, then a map
f 1 X — Y is surjective iff the corresponding frame map f~' : O(Y) — OX) is
injective.

Proof

= Assume that f is surjective. Then consider two opens U,V C Y such that
F7U) = fUV). Since f s surjective, f(f (V) = U = f(f~'(V)) = V.,
hence f~! is injective.
< Assume that ! is injective, then since Y is T}, each singleton {y} is closed.
Hence { y}¢ is open and f~!({ y}¢) C f~'(Y) = Y. This implies that there exists
a point x € X such that f(y) = x. Since this proof holds for all y € Y it follows
that f is surjective.
O
Given the above two Lemmas, it is now easy to define embeddings and
surjections of locales.

Definition 8.2.1 Given two locales A,B, a map f : A — B is an embedding
(respectively a surjection ) iff the corresponding frame map f~! : O(B) — O(A) is
surjective (respectively injective).

Clearly one could also define embeddings and surjections of topological spaces
in terms of locale maps.

Definition 8.2.2 Given two topological spaces X,Y then amap f : X — Y is an
embedding (respectively a surjection) iff the map Loc(f) : LocX — Loc(Y) is an
embedding (respectively, a surjection) and Y is T (respectively, X is Tp).

As a corollary of the above definition we have that:

Corollary 8.2.1 Given locales A, B, C, with maps f : A — Band g : C — A,
then:

i. If the map f : A — B is both an embedding and a surjection then f is an
isomorphism.
ii. Iff ogisa surjection then soisf.
iii. Iff ogisan embedding, then so is g.
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Proof

i. Assume the map f is both an embedding and a surjection. This implies that the
frame homomorphism £~ is both surjective and injective, which means that it
is an isomorphism. Therefore f is an isomorphism.

ii. If f o g is a surjection then (f o g)~' is injective, i.e. if g~ (f~'(U)) =
g '(f"1(V)), then U = V. Now assume that f~! is not injective, then there
exists U # V such that f~'(U) = f~'(V). But this contradicts the assumption
that (f o g)~! is injective.

iii. If fogis an embedding, then (fog)~! is a surjection, therefore for all U € O(C),
U =g '(f1(U")) for U € O(B). Now assume that g~ is not surjective, then
there exists a V € O(C) such that V # g~ (W) for W € O(A). For such
a V it then follows that V # g~ '(f~'(V’)) for V' € O(B) contradicting the
assumption.

0
It is interesting to note that it is possible to define both surjections and
embeddings of locales in terms of the adjunction defined in Eq. (8.1.3).

Lemma 8.2.4 Given two locales A, B and a map f : A — B between them, then the
following statements are equivalent:

1. f is surjective.
2. fiuf ' =id : O(B) — O(B).
3. The right adjoint fx : O(A) — O(B) is a surjection of posets.

Proof

1. 1 = 2. If we assume that f is surjective then from Definition 8.2.1 it follows that
f~' 1 O(B) — O(A) is injective. If we now consider the triangular inequalities
of the adjunction f~' = fi we get f~1fif ™' = f~! and fiuf “'f« = fi. Since f~!
is an injection and hence left cancellable, we get from the first inequality that
ff 7t =id.

2. 2 = 3.1If we assume that fof ~' = id, then for all U € O(B), U = fif ~1(U)
where f~1(U) € O(A). Therefore each U € O(B) is of the form U = f, U’ for
some U’ € O(A).

3. 3 = 1. Let us assume that f is surjective, then take U,V € O(B) such that
f~HU) = f~1(V). Since f* is surjective, then U = f5(U’) and V = fi (V')
for some U’,V' € O(A), obtaining f~'f(U’) = f~'fx(V’). Then clearly
ff (U = fuf "'fu(V'). Form the triangular inequality fif ~'fi = fx we
obtain that U = f,.(U’") = fx (V') = V, hence f is surjective.

O
A similar lemma holds for embedding of locales

Lemma 8.2.5 Given two locales A, B and a map f : A — B between them, then
the following statements are equivalent:

1. f is an embedding.
2. f Y =id: O(A) — O(A)

3. f« is injective.
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The proof of this Lemma is very similar to the prove of the previous Lemma but
for completeness reasons we will nevertheless report it.

Proof

1 =2 If f is an embedding, then f~' : O(B) — O(A) is surjective (right
cancellable), then, from the triangular equality f~'f,f ™' = f~' we get that
i =id.

2 = 3 Assume that f~!f, = id and that fi (U) = f«(V), then clearly £ (U) =
U = f~'f.(V) = V, hence f is injective.

3 = 1 Assume that f, is injective (left cancellable), then from the triangular
equality fyxf ~'fi = fx itfollows thatf~!f, = id. Then, givenany U € O(A),
we have that U = f~!(f«(U)), hence fi is surjective.

O

8.3 Sublocales

We now have the necessary tools to define the notion of a sublocale. In fact, given an
embedding f : B — A between locales, then the sublocale B will be defined in terms
of the adjunction f~! - fi. More precisely it will be defined in terms of the monad
Jifif 7V O(A) — O(B) of the adjunction. To understand why this is the case we
should go back to the definition of a subspace of a topological space. In particular,
consider a topological space X with a subspace Y, then the topology on Y is given
by all those opens U, such that U = Y N V for some open V C X. However, it can
be the case that for V #= W we still have that U = VN Y = W N Y, therefore each
open set U in Y is associated with a collection of open sets V;, suchthat U = Y N'V;
for all i. Alternatively we can define Utobe U = Y N (|, Vi) = J,(Y NV;). In this
case we can say that each open in Y is associated bijectively to a union of open sets
in X. Moreover, for each V;, we have that f~'(V)) = YNV, C J,(Y N V) = U,
therefore each open U in Y is associated with the union of opens V C X, which
satisfy f~!(V) € U. We now recall that the map f : ¥ — X gives rise to the
adjunction f~! - fi where the right adjoint f; is defined on each open U C Y as
fx(U) = U{V € X|f~1(V) C U}. These unions are precisely the ones which are
in bijective correspondence to the open sets in ¥ and can be characterised through
the triangular identity fif ~'fi = fi. In fact fuf ~'fi = fi implies that fif "' (U) =
f«(U). This means that the opens in Y are in bijective correspondence to opens in X
which are invariant under the operator fif ' : O(X) — O(X), i.e. opens sets of Y
correspond to fixed points of j.

Keeping this in mind we now go back to the case of interest and consider two
locales A and B with an embedding map f : B — A. We know from Lemma 8.2.5,
that fi : O(Y) — O(X) is injective and, from the triangular identity fif ~'fi = fi,
it follows that the image of fi consists of all those V which are invariant under the
operator fif 7' : O(A) — O(A). Therefore, for f an embedding, it follows that
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O(B) is isomorphic to the set of fixed points of j, i.e. O(B) ~ {U € O(A)|j(U) =

U}. 1t turns out the converse is also true. However, before showing this, we will

characterise the operator j in more details. As mentioned above, j is the monad of

the adjunction f~! - f, hence it comes equipped with two natural transformations:
unit and multiplication. These are defined, for any open U € O(A), by

U <jU), and (8.3.1)

Jj) = U, (8.3.2)

respectively. Because of functoriality of j, we have that j(U) < jj(U), hence
Eq. (8.3.2) becomes

ji(Uy = U. (8.3.3)

Moreover, since fsx is a right adjoint and f~! is a frame morphisms, they both
preserve meets therefore

JUAV) =jU) AjV).

We are now in a position to fully characterise the operator j.

Definition 8.3.1 Given a locale A, an operatorj : O(A) — O(A) is called a nucleus
on A if for each U € O(A), then the following conditions are satisfied:

U <jU) (8.3.4)
Jji) =jU) (8.3.5)
J(UAV) = jU) Aj(V). (8.3.6)

We have seen so far that, given an embedding f : B — A, the frame O(B) is
isomorphic to the set {U € O(A)|j(U) = U} of fixed points of j. We now would like
to prove that the reverse also holds. Once we do that we can completely characterise
sublocales of a locale in terms of its nucleuses.

Lemma 8.3.1 Given a nucleus j : O(A) — O(A) of a locale A, then the set
O4)) = {U € OQ)|j(U) = U} of fixed points of j is a frame and the map
i1 O(A) = O(A)); U+ jU is a surjection of frames.

Proof As a first step we need to show that O(4)) is indeed a frame, i.e. it has to be
closed under finite meets and arbitrary joins and condition (8.1.1) has to be satisfied.
From the definition of j we know that it preserves finite meets, hence O(4)) is closed
under finite meets. To show that it is closed under arbitrary joins, just consider a
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family of element {U;} in O(A;). One can then define sup{U;} = j(\/ U;) where
\/ U; is the supremum in O(A). We then need to show thatj \/(VAU;) = VAj\/ U

VeO(A;
ONAVA A= ONAVAT
P v a\/ Uy

O(A) iﬁl frame

AVAUZN 5}

As a last step we need to show that i~ is surjective, i.e. for all U € O(A)) then
U = j(U’) with U € O(A). However we know that U = j(U) and, because of
Eq. (8.3.5), jj(U) = j(U). Therefore the map is surjective. The preservation of finite
meets and arbitrary joints follows from the fact that j preserves such objects. O

We know from Lemma 8.2.5 that, if the frame map i~! : O(4;) — O(A) is
surjective, then the corresponding locale map i : A; — A is an embedding. Therefore
it follows that nuclei of locales give rise to embedding of locales. Moreover, it is easy
to see thati~! : O(A) — O(4)) is the left adjoint of the inclusion map ix : O(4;) —
OA), U~ U.

Now that we have proved Lemma 8.3.1 we can easily define sublocales as
follows:

Definition 8.3.2 Given a locale A with nucleous j : O(A) — O(A), the locale A;
with associated frame O(4;) = {U € O(A)|j(U) = U} of fixed points of j is a
sublocale of A.

Alternatively, one can define a sublocale B of a locale A as a subset satisfying the
following conditions:

1. B is closed under all meets.
2. For all b € B and all a € A, the pseudo compliment a — b belongs to B.

From this alternative but equivalent definition it is straightforward to see that
sublocales are always non-empty since 1 = /\ @ for every B satisfying 1.

Exercise 8.3.1 Show that the two definitions of sublocale are equivalent.
An alternative way of proving that sublocales are in bijective correspondence
with nuclei is by the following Theorem [49]:

Theorem 8.3.1 Given a locale A, there exists a bijective correspondence between
nuclei of A and embeddingsf : B — A.

Proof Given an embedding f we know that this gives rise to the nucleus fif ™' :
O(A) — O(A). On the other hand let us assume that one has a nucleus j = fif .
This gives rise to an inclusion map ix : O(4;) — O(A). To show that f is an
embedding we need to show that B is isomorphic to A;. However, since f is an
embedding we know from Lemma 8.2.5 that f~! is a surjection. Therefore f~!f, =
id : O(B) — O(B) andfyx : O(B) — O(A) is injective. Next we consider, with some
abuse of notation, the map fxjo(;) : O(B) — O(4)); U + fi(U) and show that this
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is an isomorphism. First of all, because of the triangular equality fif ~'fx = fi,
it follows that the above map is well defined. Secondly, since fi is injective, and
each fx(U) = fiuf "'fi(U), it follows that Jxlo(;) is injective. To show that fyjo 4
is also surjective, we need to show that for each U € O(4)), then U = f,(U’) for
U € O(B), but U = f,f "' (U) and f~! is surjective, hence f ' (U) € O(B). O

Definition 8.3.3 Given a locale A, a sublocale B is said to be dense if 0 € B, i.e.
Jj(0) = 0.
Lemma 8.3.2 Every locale has a smallest dense sublocale.

Proof As afirst step we will consider the map —— : A — A which takes any element
a of the locale A and maps it to its double negation” =—a. We want to show that such
a map is a nucleus, therefore we need to show that it satisfies Egs. (8.3.4)—(8.3.6).
From the definition of —a := a = 0, it follows that b < —a iff b A a = 0. Clearly
a A —~a = 0, therefore a < ——a. This proves Eq. (8.3.4).

Next, since —=—a A ———a = 0, it follows that =—ag < ———=—-a. On the
other hand, since a < ——a holds for all elements then —a < ———a. Hence
—a A g < g A g = 0 and ————a < ——a. These two results
put together show that =————ag = ——a and also Eq.(8.3.5) is proved. Finally
consider the inequality a A b < a < ——a, it follows that a A b A —a = 0,
therefore —a < —(a A b). Applying the same reasoning again we obtain that
——=(a A b) < ——a. Similarly we also obtain that ——(a A b) < ——b, therefore
—=(a A b) < —=—a A ——b. To prove the converse inequality, we start by noting that

—(anb)rhanb=0<% —=(anb)Aa<—b.

Since a < ——a, then a A =——a < —=—a A ———a = 0, which implies that =——a <
—a. On the other hand =—a A —a = 0 & —a < ———gq, thus —a = ———a. We then
obtain that

—(anb)rha<—-—=b & -—bAr=(arnb)ra=0
& b A —-(g /\b) < -q = ———qa
& —=bA—=(aAb)A——a=0
& ——a A——=b < —==(a AD).
It follows that =—a A =—b = ——(a A b). We have now shown that the map —— :
A — Aisanucleus. Clearly it is dense since =—0 = —1 = 0. Now take any nucleus
Jj such that 0 € A;, we know from condition 2 of the definition of a sublocale that,

forany a € A, thena — 0 € A; and ((a — 0) — 0) = ——a € A, therefore
——A CA;. O

2Here we define the negation — in terms of the Heyting algebra negation, i.e. —a := a = 0.
Recall that ¢ = 0 is defined as the least upper bound of all those elements b with b A a < 0.
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8.4 Defining Sheaves on a Locale

From Definition 7.2.1 it is clear that the notion of a sheaf on a topological space
solely depends on the lattice of open sets of that space. Moreover in Sect. 8.1 we
have seen that a locale is just a lattice which mimics the properties of the lattice of
open subsets of a topological space, therefore it can be considered as a generalised
notion of a topological space. It then follows that it is also possible to define sheaves
on a locale. We will start with the notion of a presheaf on a locale then extend it to
that of a sheaf.

Definition 8.4.1 Given a locale X, a presheaf on X is a functor:

O(X) — Sets
U~ FU)

Such that for any subset inclusion V C U, the corresponding presheaf map F(U) —
F(V) is given by restriction.

Definition 8.4.2 Given a locale X, a presheaf on X is a sheaf if, given a family
{xi € F(Uyli € I}, such that for any pair (i, ), then xi[,nv; = Xj|uiny; as elements
in F(U; N Uj), then there exists a unique element x € F(| J,¢; U;) such that x|y, = x;
foralli e [l.

Let us consider a locale X, with associated frame O(X). We want to define the
notion of a covering family for an open U € O(X).

Definition 8.4.3 A family {U;|i € I} of opens in X such that U; < U is a covering
family for U iff U = \/, U;.
Given such a covering we can define a basis K, for each U € O(X) as

K(U) = {{U; > U}iet|U; € U'is open, U = | J U} (8.4.1)

As discussed at the end of Sect. 7.1 this indeed satisfies the requirements for being
a Grothendieck basis. We will indicate the corresponding Grothendieck topology
by Ji. Since O(X) is ultimately a local, the sheaf defined on the site (O(X), J;) is
essentially the sheaf defined on the locale O(X).

Next we would like to show that, given any map X — Y between locals, there
corresponds a geometric morphism Si(X) — Sh(Y). As a first step we need to show
that the locale X can be recovered from the topos Si(X). In particular we have that:

Lemma 8.4.1 Given a locale X, and the terminal object 1 € Sh(X), then
Subgh(x)(l) = O(X)

Before proving this Lemma we need a few definitions and results. The first definition
we need is that of a subsheaf.
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Definition 8.4.4 A sub-object A of an object P € Sh(X) is a functor A : O(X) —
Sets, such that

i) A(U) € P(U).
ii) A morphism A(C) — A(D) is simply the restriction of the morphism P(C) —
P(D).
iii) For each object U € O(X), each cover S of U and each x € P(C) then A(f)(e) €
A(D) forall f : D — C in S implies that x € A(C). The last condition simply
states that A is actually a sheaf.

Next we will show that given any sheaf, the collection of its subsheaves forms a
complete Heyting algebra [55].

Lemma 8.4.2 Given a site (C,J) and a sheaf P € Sh(C,J), then Sub(P) for a
complete Heyting algebra.

Proof To show that Sub(P) is a complete Heyting algebra we need to show that it
has the structure of a lattice and that the operations of join and meet distribute. First
of all we note that Sub(P) is endowed with a partial ordering as follows:

A < Biff A(C) € B(C), VC €C.

Given A, B € Sub(P) we want to show that A A B € Sub(P), where for any C € C
we have (A A B)(C) = A(C) N B(C). To see that indeed A A B € Sub(P) we need to
prove that conditions i)—iii) of Definition 8.4.4 hold.

i) IfA(C) € P(C) and B(C) < P(C) then clearly A(C) N B(C) € P(C).

ii) Givenamap f : C' — C then P(f)|a : A(C) — A(C') and P(f)|p : B(C) —
B(C"). It follows that P(f)|arz : (A A B)(C') — (A A B)(C) is such that, given
x € (AAB)(C'), then P(f)|ans(x) = P(f)la(x) N P(f)|5(x) € A(C) N B(C).

iii) Assume that for each object C € C and each cover S € J(C) and x € P(C) both
implications
VfeS, Plalx) € AD) = xeA(C) (8.4.2)
VfeS, Plgx) € B(D)= xeB(C) (8.4.3)
hold. It then follows that Vf € S, P|aas(f)(x) = Pla(f)(x) N P|p(x) € A(D) N
B(D) = (A A B)(D). Therefore, x € A(D) N B(D) = (A A B)(D).

This discussion shows that indeed A A B € Sub(P). In fact, given any family {A;} of
sub-objects in P, the infimum /\; A; exists in Sub(P).

\A(C) = [ 4i(O).
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The supremum can now be defined in terms of the infimum as follows:
\/ 4= \BlA BV i}.

In Sh(C, J) it is also possible to define the supremum as follows: for any C € C and
x € P(C) then

X € (/\Ai)(C) iff {f : D — C|P(f)x € A;(D) for some i} € J(C). (8.4.4)

As a final step we need to show that the following equality holds for any A, B €
Sub(P):

B/\\/Ai = \/B ANA;.

Given a C € C we fist assume that x € \/; B A A;(C). From (8.4.4) it follows that
the sieve S = {f : D — C|P(f)x € (B A A;)(D) for some i} covers C. From the
definition of infimum it follows that P(f)x € B(D) and P(f)x € A;(D) for some i.
Since B C P then P(f)x € B(D) = x € B(C). Moreover the above sieve S is such
that for any f € S then P(f)x € A;(D) for some i, therefore x € \/;A;(C) and x €
B(C)AV/; Ai(C). This proves that forall C € C, (\/;B A A;) (C) € (B AV, A:) (C).

On the other hand let us assume that, given a C € C then x € (B A \/;A;) (C).
This implies that x € B(C) and x € \/,; A;(C). Therefore the sieve S = {f : D —
C| P(f)x € A;(D) for some i} covers C. Given such a sieve and given the fact that
B C P then, for all f € S, we have that P(f)x € (B A A;)(D) for some i. Therefore
S is the sieve such that x € (\/; B AA;) (C). This proves that (B A \/;A;) (C) <
(V:BAA;)(C). O

From the above Lemma it follows that given a locale X and 1 € Sh(X), then
Subsyx)(1) is a Heyting algebra, hence a frame. Let us analyse in more details how
a sub-object S C 1 behaves.

S:OX)? — Sets
U A(U) C {0}.

Next consider a cover {U;}ie; of U, i.e. U = \/,; U;, then if 0 € S(U;) for all i then
0 € S(U), since S is a sheaf. It follows that any sub-object S € 1 is completely
determined by the element W = \/{U|0 € S(U)} of O(X), therefore Subgyx)(1) =
O(X). We have thus proved Lemma (8.4.1).

It was shown in [55] that given any topos t with all small colimits, a geometric
morphism © — Sh(Y) for a locale Y, corresponds to a left-exact’ functor

3A functor F is said to be left-exact if it preserves finite limits.
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F: O(Y) — 7. We are interested in the case when © = Sh(X) for some locale X. The
left-exact functor in this case is F : O(Y) — Sh(X). We know from Lemma 8.4.1
that O(Y) = Subgpy)(1). Since F if left exact then Im(F) C Subsux)(1) = O(X).
Therefore F becomes F : O(Y) — O(X) which corresponds to the locale map
f X — Y. This implies that, for each geometric morphism F : Sh(X) — Sh(Y)
there corresponds a unique locale map f : X — Y. The above discussion formalises
in the following Lemma:

Theorem 8.4.1 Given any two locales X, Y, there is an equivalence of categories
Maps(X, Y) — Hom(Sh(X), Sh(Y))

induced by the functor X + Sh(X) from locales to topoi.

Here Maps(X, Y) is the category whose objects are locale maps f : X — Y and
morphisms are the natural transformations f — g. In particular Maps(X,Y) is a
poset such that f < gif f~1(U) < g7 !(U) for U € O(Y).



Chapter 9
Internalizing Objects in Topos Theory

In this chapter we will explain how to define categorical notions internally within
a topos. This internal description of objects is needed to understand the covariant
approach to topos quantum theory explained in the next chapter.

9.1 Internal Category

Given a topos 7, we would like to define the notion of a category internal to t.
Definition 9.1.1 An internal category C in t consists of the following elements:

1. three objects Cyp, C;, C;, representing the objects of objects, the object of mor-
phisms and the object of composable pairs, respectively.

2. The codomain morphism d(l) : C; = Cy and the domain morphism d} :C—> Gy
which assign to each morphism its domain and codomain, respectively.

3. A morphism s) : Cyp — C; called inclusion of identities which assigns to each
object the identity morphism.

4. Three morphisms: d3,d?,d3 : C, — C; which represent the first member, the
composite and the second member of the composable pair, respectively.

The above elements are subject to the following conditions:

1. The law of composite morphisms which is represented by the following pullback
diagram

© Springer International Publishing AG 2018 171
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2
C,————=C

d
C1 —>C0

2. Laws specifying the source and target of identity morphisms which are repre-
sented by the following commuting diagrams

0 0
SO S

C ——C Co—O>C1

d! d!
. 0 . 1
idc, idc

Co Co

3. Laws specifying the source and target of composite morphisms which are
represented by the following commuting diagrams

di d
CG———(C; C,—C
2 2 1
d d d dy
di dy
Cf —mM8M— Co C,——— G

4. Left and right unit laws for composition of morphisms are given by d% ) s(l) =
idc, = d? o s} where s} : C; — C; is defined via
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0 71
sody

G ———GC

so that, for a particular f € C; we obtain

f
\ ldé
N d!
") =

idcod(f) —l> dom(idcod

cod(f)

Therefore s} : Ci — Co; f —< ideoa(yr).f >. This implies that di o s) = idc, is
equivalent to idcoq(r) o f = f-
Similarly s} : C; — C, is defined via
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C ——C

therefore sl Ci — Co; f =< f,idgom(r) >. This implies that idc, = d o sl is

equivalent to f o idgom(s) = f.
5. Associativity law for composition of morphisms is given by the following
commuting diagram

C1 Xy C1 Xy C1

G

/
\

\/\
/\/

&
/

Given the definition of internal category, we also have a definition of internal
functor and internal natural transformation.

Definition 9.1.2 Given two internal categories C and D, an internal functor F :
C — D consists of morphisms Fy : Cy — Dy, F; : C; — D and F, : C; — D>,
which commute with the appropriate structure relations defined above.

Definition 9.1.3 Given two internal functors F,G : C — D, an internal natural
transformation o : F — G consists of a morphisms « : Cy — D; such that

doa = go, dia =fo, d(ad).fi) =d*(gi,ad)): Cy — Dy.
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9.2 Internal C*-Algebra

In order to define an internal C*-algebra for a topos 7 we will have to explain the
notion of rational numbers and integers in a topos [55]. These can be defined in
any topos T which has a natural number object IN_ . In particular, given IN_, then the
object Z_ of integers is defined as the co-equaliser

EH MTXMTHZT

where E is the pullback

Mr XMT %mr

E represents the set of 4-tuples (n,m,n’,m’) such that n + m’ = n’ + m, and
a(n,m,n’,m’) = (n,m’) while b(n,m,n’,m’) = (n’, m). This construction reflects
the idea that in set theory integers are defined in terms of an equivalence relations
on the natural numbers as follows:

Z, = {(n,m)|ln,m e N}/ ~

where (n,m) ~ (n',m’) iff n + m’ = n’ + m. Similarly, the construction of rational
numbers in a topos reflects the idea that in Sets, Q is defined as the quotient
{(n,m)|n € Z,m € W}/ ~ where (n,m) ~ ('m’) if n(m’ + 1) = n'(m + 1).
Therefore the pair (n,m) represent the rational n/(m + 1). This construction
translated within a topos t amounts to defining the rational number object QT as
the following co-equaliser

EH Z‘[ X MTHQT

where F is defined via the pullback

u Z X ]N

E T =7
‘ v m(idXs)
id
ZT % mf m(idXs) MI
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and s : IN, — IN_ is the successor while m : Z_  x Z_ — Z, represents
multiplication. Given the rational QT we denote by Qr[i] = {p+iqg|pg € QT}
the complexified rational numbers in t. A vector space over Qr[i] is defined as an
object A in 7 together with the following morphisms:

+:AXA—>A
1Ol xA—> A
0:1>A
which represent addition, scalar multiplication and the constant 0, respectively.
These maps satisfy the usual axioms of a vector space. Given the notion of an

internal vector space over QT [i] we can now define the notion of an internal C*-
algebra.

Definition 9.2.1 A x-algebra A in a topos t is a vector space over Qt[i] together
with an associative bilinear map - : A X A — A and a map (—)* : A — A such that
foralla,b e Aand z € Qt[i]

(a+b)*=da" +b*
z-a)*=z-a
(a-b)* =b*-a*

a = d.

Ifforalla,b € A, a-b = b -athen A is commutative, while it is unital if there is a
neutral element 1 : 1 — A for the multiplication such that, for alla € A,

a-l=a=1-a.

In order to turn A into a C*-algebra we need to introduce the notion of a norm
in 7. In Sets, a norm N on an algebra A is defined by a subset N € A x Q1 where
(a,p) € Niff ||a|| < p,and || - || : A — [0, 00). Similarly one defines a norm on A
as a sub-object N € A x Q™ which satisfies the following axioms [74]:

1. Vp e Q", (0,p) € N which expresses the fact that ||0]| = 0
2. Vae A, Ip € Q' st (a,p) € N which expresses the fact that ||a|| can not be

equal to oco.
3.VaeA, ((Yp € QT (a,p) € N) = (a = 0)) which expresses the fact that
|la]| = 0 implies that a = 0. This states that N is a norm, not just a semi-norm.

4. YVaecAandVp € QF, (a,p) eN < (g€ 0" (p > 9) A ((a.q) € N)).
This axiom together with the previous one indicates that the norm N can be seen
asamap || -[| : A —[0,00] .
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5.Yae€Aand Vp € QF, ((a.p) € N = (a*.p) € N) which, together with the
involution property of * implies that ||a|| = ||a*||.

6. Va,beAand Vp,q € QF, ((a,p) e NA(b,q) eN) = (xa+b,p+q) €N
which expresses the triangle inequality ||a + b|| < ||al|| + ||D]]-

7.VYabeAandVp,ge QT, ((a.p) e NA(b,q) € N) = (a-b,p-q) € N which
expresses the fact that ||a - b|| < ||a|| - ||5]|-

8. Vae A, Vxe QilandVp,qg € Q, (((a,p) e NA(|x| < q)) = (x-a,p-q) € N)
which expresses the fact that ||x - a|| = |x| - ||a||. Here | - | : Q[i]] — Q takes a
complex number and assigns its module, i.e. x + iy > x> + 2.

9.VacAandVp € O, ((a.p) € N <= (a-a*,p?) € N which expresses the
fact that ||a||® = ||a - a*||.

Note that the third axiom, because of the presence of the existential quantifier V,
can not be expressed in terms of the geometric logic explained in Chap. 10.

One needs A to be complete with respect to the norm N. This can be done in terms
of conversions of Cauchy approximations. For an in depth explanation the reader
should refer to [74].

The notion of an internal unital *-homomorphism between internal C*-algebras
is quite straightforward. In particular, given two such algebras A, B, an internal
unital *-homomorphism between them is a linear map f : A — B, such that
fla,b) = f(a)f (b),f(a*) = f(a)* and f(14) = 1.

The collection of internal unital C*-algebras, together with internal unital *-
homomorphism, form an internal category which we denote CStar. If we consider
commutative C*-algebras these form a full sub-category of CStar which we denote
by c¢CStar.

Moreover, there exists a Gelfand duality theorem internal to any topos t. We
will report the theorem below since it is an essential ingredient for the covariant
formulation of topos quantum theory. However, for a detailed discussion and proof
the reader should refer to [3-5]

Theorem 9.2.1 Given any topos T, there exists the following categorical duality'

)y

TN
cCStar KRegLoc
\_/

C—Co) 9.2.1)

where ¥ = C(—, C,).
The above adjunction associates, to each A € cCStar, the locale ¥(A) which
represents the Gelfand spectrum of A, while for each completely regular compact

'KRegLoc represents the category of compact regular locales. A locale L is compact if every
subset S € L with \/ S = T has a finite subset F with \/ F = T. It is regular if every element
of L is the join of the elements well inside itself. Given two elements, a, b then a is well inside b
(denoted a K b) if there exists c withc Aa= LandcVvb=T.
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locale X, C(X, C;) represents the collection of locale maps from X to the locale of
Dedekind complex numbers in the topos t (See Appendix A.1).

9.3 Internal Locales

In this section we investigate the notions of internal frame and internal locale.

Definition 9.3.1 Given a topos 7, an internal lattice L is an object in 7 together with
two arrows /\ : Lx L — Land \/ : L x L — L, such that the following diagrams
commute

* Associativity

idx /\

LXLXL ———= LXxL

N\ xid A\

LxL L
A

and a similar diagram for \/.
e Commutativity

LxL ———= [

LxL

and a similar diagram for \/. Here § : LxL — LxL is defined by §(a, b) = (b, a).
* Idempotent
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and a similar diagram for \/. Here A : L — L x L is defined by A(x) = (x, x)
* Absorption

L A LxL

pri T T idxV

LXLM LxLxL;d>LxL><L

pri \L \L/\xid

L LxL

Given the terminal object 1 € 7, the top and bottom elements of L are defined by
themaps T : 1 — Land L : 1 — L such that both the compositions

idxT A\
L~Lx1——LXxL—L

idx L V
L~Lx]1——LXxL—L

give the identity.

Definition 9.3.2 An internal frame F is an internal lattice with all finite meets and
all joins and for which the diagrammatic equivalent of the following equation is
satisfied

Un\/vi=\/(WAW.

Given a topos t, an internal frame is an internal complete Heyting algebra which
is define as follows:

Definition 9.3.3 Given a topos 7, an internal Heyting algebra is an internal lattice
L € 7 together with a binary operation =: L x L — L such that the following
conditions are satisfied:

* Identifying an element of the lattice x with the arrowx : 1 — L, then T : 1 — L
is equivalent to the composition

158 <L 3L

* The following diagrams commute
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idx /\

L i LxL LxLxL LxL = >[
iAxidxid
A idx= LxLxLxL A
Axid iidxﬁxid
Lol ==L xLxL LxLxLxL — 2% LxL
idx§
pri LXxLxL
idx=>
L LxL

A

An internal complete Heyting algebra is an internal Heyting algebra which is a
complete internal lattice. As such it is equivalent to an internal frame.

Similarly as for external locales, also internal locales are identified with internal
frames. Moreover, given a frame map f : O(X) — O(Y) the corresponding locale
mapis ¥ — X.

A point of an internal locale X is given by the frame map O(X) — 2, where
now £2 is the sub-object classifier of the topos 7. Opens are defined by maps | — X
where 1 is the terminal object in the topos t. Similarly as for sets, the collection of
all points pt(X) is given the topology expressed by the analogue of Eq. (8.1.8),

pt(U) = {p € ptX)|p~" o (U) = T}, (9.3.1)

where U € O(X) and T is the ‘maximal’ element of 2.

We are particularly interested in locales internal to the topos Sh(X) for some
topological space X. In what follows we will analyse some results pertaining the
category Loc(Sh(X)) of internal locales in Sh(X). In particular, we will prove that,
for any locale X, the category Loc(Sh(X)) of internal locales in Sh(X) is equivalent
to the slice category Loc/X [50]. The slice category Loc/X has as objects locale
maps f : Y — X where Y is a locale in Sets. Given two objects W — X and ¥ — X
in Loc(Sh(X)), a morphism between them consists of a commuting triangle of the
form

Y —mM8MW

NS

X

where the map ¥ — W is a morphisms of locales.
Before proving the above equivalence we briefly recall what an equivalence actually
is.
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Definition 9.3.4 Given two categories C and D, an equivalence between them is a
pair of functors

such that there are natural isomorphisms
FoGx~Idp and GoF =~ Idc.

Applying the above definition to the case at hand, we need to construct two
functors Z : Loc/X — Loc(Sh(X)) and £ : Loc(Sh(X)) — Loc/X and show
that their compositions are isomorphic to the identity functor on the appropriate
category. We note that the notation Z indicate the fact that we are internalising,
while the notation £ indicates that we are externalising.

To construct the functor Z : Loc/X — Loc(Sh(X)) consider an objectf : ¥ —
X € Loc/X. This induces a geometric morphism f : Sh(¥Y) — Sh(X) such that
the direct image functor fi preserves Heyting algebras and complete internal posets.
Consider now the sub-object classifier’ Q¥ € Sh(Y). This is defined for each open
set U € O(Y) as QY(U) := {V € OX)|V < U} such that given an inclusion
U’ C U, the corresponding restriction map Q¥ (U) — QY (U’) is givenby — N U’ If
we apply the functor fix to Q¥ then, because of the above mentioned properties of fi,
the sheaf £, (2¥) is a complete Heyting algebra (internal frame) in Sh(X). Given any
open set W € O(X), then fx (QY)(W) = QY(f~1(W)) = {V € O()|V <f L (W)}.
Therefore, starting from the object f : ¥ — X, we have defined the internal locale
fx(F) € Sh(X) whose associated frame we denote by O(Y).

We now need to show that the assignment

7 : Loc/X — Loc(Sh(X))
[ fu(@)

is indeed a functor [50, Prop. C1.6.1 ]. As a first step we need to define its action on
morphisms. To this end, let us consider a map & € Loc/X given by the commutative
triangle

21t is a standard result that in every topos the sub-object classifier is a Heyting algebra.
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This induces the commutative diagrams

Sh(Y) Sh(Z) Sh(Y)

Sh(X) Sh(X)

Therefore, given g«(Q2)(U) = {V € O2)|V < g '(U)} for any U € O(X),
then 7*(g+(Q2) (V) = {h'V € O@) ™'V < h~'g7 ' (U)} = {W € OM)|W <
F Y U)} = f«(Q22)(U). This implies that for each U € O(X), h* restricts to frame
homomorphism

hy : gx(Q2)(U) — f(Qy)(U).

Since h* is the inverse image of the geometric morphism 4 : Sh(Z) — Sh(Y) it
is the left adjoint of A, and it is left exact, which implies that A* preserves both
small colimits and finite limits.> Therefore, given U’ C U the following diagram
commutes

hg

2+(Q2) (V) f(Qp)(U)
—NU’ —NU
2:(Q)(U) ———— fu(Qy)(U)

This shows that g«(22)(U) — f«(22)(U) is an internal lattice homomorphism
in Sh(X). However we would like g«(22)(U) — f«(R22)(U) to be a map in
Loc(Sh(X)), hence we also need to show that it is an internal frame homomorphism.
To this end it suffice to show that the right adjoint of the 4, also forms a natural
transformation so that g«(22)(U) — f«(£22)(U) would be both a left adjoint and
left exact. To this end we note that A}, sends V < f~1(U) to h(V) N h(f~1(U)) =
h(V)N(hoh™tog™")(U) = h(V)Ng~' (V). This action is clearly natural in U since
given U’ C U then

VA UY) N g (U) = (V) N hh™'g~ (U') N g~ (U)
=h(V)Nng '(U)Ng (U
=hV)ng '(U)Ng ' (V)

3In the case at hand it means that #* commutes with arbitrary unions and finite intersections,
respectively.
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Therefore we have shown that, given the map & € Loc/X as described above, then
Z(h) : Z(f) — Z(g) is an internal locale morphisms which is functorial in 4 by
construction.

As a next step we need to construct a functor £ : Loc(Sh(X)) — Loc/X which
assigns to each internal locale L € Loc(Sh(X)) a morphism f : ¥ — X of locales.
Clearly we would like such an assignment to be such that L >~ Z(f). The strategy
that we will adopt is as follows: we start with an internal frame L € Sh(X), then
the locale Y will be defined by setting O(Y) = L(X). The fact that L(X) is a frame
will be explained later on. Given this setting, the map f will then be identified with
the frame homomorphism f~! : O(X) — L(X) such that for each open V € O(X),
FUV) = 0y (Tv) € L(X). Here, foreach V < U € O(X), o}, : L(V) — L(U) is
the left adjoint to the restriction map pY : L(U) — L(V).

To understand the above construction let us consider an internal frame L € Sh(X).

The global section functor I'y(—) : Sh(X) — Sets; L — L(X) is the direct image of
the geometric morphisms Sh(X) — Sets, hence it preserves Heyting algebras. This
means that L(X) is a frame in Sets.
Next consider subterminal objects (sub-presheaves of the terminal object 1) in
Sh(X). These identified with elements of O(X). In fact the terminal object 1 in
Sh(X) is nothing but the constant functor with value 1, hence a sub-presheaf S of 1 is
determined by the set {U € O(X)|S(U) = 1}. Since the maps in O(X) are inclusion
maps this set must be a downward-closed subset in O(X). Moreover, since S is a
sheaf, it has to be closed under coverings meaning that the set {U € O(X)|S(U) =
1} is actually a principle ideal | U for some U € O(X). Therefore Sub(1) >~ O(X).
This implies that elements in L(U) are actually morphisms U — L in Sh(X).
Moreover, since L is an internal poset, it has the property of being complete. This
means that the map |: L — QF which for each U € O(X) is defined by

Lu: L(U) — Q4(U)
p{p e LU)|p <p}

has a left adjoint \/ : Q& — L. Given two objects V, U € O(X) such that V < U,
we then obtain

) —Y 9l L) — o)
oY o
Ly — Y olvy L) —" ol

Since subterminal objects are the same as maps 1 — €2, i.e. points in €2, this
adjointness relation reduced to the fact that the restriction map pi/ : L(U) — L(V)
has left adjoint o7, : L(U) — L(V). It then follows that, for any Vi, V, € U, given
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the pullback square

nnv, ——7r

Vp —————>U

then the square

L(V1 N V2) <——— L(N)

L(Vy) <~ L(U)

commutes. This is known in the literature as the Beck-Chevalley condition [50]. For
V1 = V, = V we then obtain the commuting square

L) = L)
id ol
L) L)

1%
Py

which implies that pg oo(‘; = idy(v). Since L is an internal Heyting algebra, the maps
p"f are algebra homomorphisms. However, since a Heyting algebra is a bicartesian
closed poset,* the maps pg are cartesian closed which implies that the Frobenius
reciprocity law holds [50, A.1.5.8 ]:

ol (y A PY) = ol (3) Ax.

“4A bicartesian closed poset is a poset which (when thought of as a thin category) is (a) finitely
complete, (b) finitely cocomplete and cartesian closed.
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If we now assume U = X and y = Ty is the top element of the lattice L(V), then
Frobenius reciprocity law tells us that

oy py () = oy (Ty) A x.

Since the maps p{i are restriction maps it follows that any element p)‘g(x) =ye€
L(V) € L(X) will have to be such that y < oy (Tv). This is because, when we
mapped y to L(X) via oy we obtain oy pf(x) = oy (Ty) A x. This allows us to
identify L(V) as the principal ideal {y € L(X)|y < oy (Tv} of L(X).

Next we claim that the map s : O(X) — L(X) defined for all V € O(X) as
s(V) = oy (Ty) is a frame homomorphism. To prove this claim we need to show
that s preserves binary meets and arbitrary joins. To this end consider the following

commuting diagram

P;:irwz
L(Vl) _ > L(V1 N V2)
oyt
p)V(Z Oy
L) L) j769)

Given the element Ty, we then have that

Vo

X Vi Vo Vinvy
Ox™ © Py, © 0y (Tw)

Vi
Ox" © 0y, © Pyinv, (Tw)

_ _vinwn, \%
= Oy ° Py, (Tvy)

vinv.
oy *(Tviav,)

S(V] n V2)

where the third equality follows since p is a Heyting algebra homomorphism.
However, Frobenius reciprocity law tells us that

oy> o py, 00y (Tv,) = oy (Tv) Aoy (Ty,) = s(Vi) As(Va)
Hence, for any Vi, V, € O(X) we have that
S(Vl n Vz) = S(Vl) N S(Vz).

This shows that s preserves binary meets. To show that it preserves arbitrary
joins we consider a covering U = |J,; Ui € O(X). It is easy to see that
Tu = Vi 00 (Ty,). This follows from the fact that L is a sheaf over X and
compatible sections can be uniquely glued together. In particular, restricting Ty and
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Vier O'gi (Ty,) to L(U;), for any i € I, we obtain on, the one hand p,L]’l_ (Ty) = Ty,
and, on the other, pf (\/, o (Ty)) = pg. 0y (Ty,)) = Ty, were the last
equality follows since pgi ) crg’ = idy(y, as showed above.

Since oy is left adjoint we obtain

s(U) = o (Ty)

=o{(\/ o/ (Tv)

i€l

=\/(o{oy (Tu,)

i€l

=\/(oy (Tu))

i€l

= \/S(Ui)

i€l

were the fourth equality is given by simple composition. Thus s preserves arbitrary
joins.

We are now able to define the desired map £ : Loc(Sh(X)) — Loc/X. Namely,
for each internal locale L € Loc(Sh(X)), the locale map E(L) = f : ¥ — X is
defined by setting ¥ = L(X) and f~' = s. Then, for each U € O(X), we have
L(U) ~ {x € L(X)|x < f~'(U)}. Clearly these isomorphisms are natural in U. In
fact, given V < U in O(X), then the diagram

L(V) el =/}
oy
L(U) e L) < /71(U)}

commutes since V < U implies that f~'V < f~'U, therefore if y < f~!(V) then
y < f7'(U) and the map {x € L(X)|x < f~'(U)} = {y € LX)|y < f~'(V)} is
given by restriction. We have thus proved the following Lemma:

Lemma 9.3.1 Given an internal frame L € Sh(X) there exists a locale morphisms
f:Y — Xsuchthat L ~ O(Z(f)), ie. To& ~Id

Next we need to show that the map £ : Loc(Sh(X)) — Loc/X as defined above
is indeed a functor. We already know how it acts on objects but we still need to
understand how it acts on morphisms. In particular, given a map of locales k : L' —
L we would like to define a map £ (k) such that the following diagram commutes
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) —
X

We will do this buy considering the respective frame maps, i.e. we would like to
show that the following diagram of frames commutes

L(X) L'(X)

~ 7

o)

Each internal frame homomorphism k~! : L — L’ in Sh(X) induces an external
frame homomorphism k~!(X) : L(X) — L'(X) and, since k~! preserve joins, the
diagram

(W)

L) ————=L'(U)

o

LX) L'(X)

commutes. Moreover, since k~!(U) preserves the top element we have that
X)) = K0 (Ty) = ol (U)(Tw) = o¥(Ty) = §U).
It then follows that k= (X) is a frame homomorphism under O(X) and indeed the
diagram

L(X) L'(X)

~ 7

OX)

commutes. Functoriality follows by construction.

So far we have managed to define both functors Z : Loc/X — Loc(Sh(X))
and £ : Loc(Sh(X)) — Loc/X and show that Z o £ ~ Id. What remains to
be done is to show that £ o Z is isomorphic to the identity on Loc/X. Given
any map of locales f : ¥ — X, then by construction Z(f) = f«(R2y) and
O@dom(E(Z(f))) = (f«(2y))(X) >~ O(Y). To finish the proof we need to show that
the frame homomorphism s : O(X) — (f«(Qy))(X) coincides with f~'. However,
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by constructions, fx (2y)(U) = {V € (f(2y))(X)|V < f~1(U)} which implies that
its top elementis Ty = f~!(U) and oy is the inclusion map.

We have thus proved the following theorem
Theorem 9.3.1 Given any locale L, the categories Loc(Sh(X)) and Loc/X are
equivalent.



Chapter 10
Geometric Logic

In this chapter we will introduce the notion of a geometric logic. This is the logic of
implication between geometric formulas (see Definition 10.2.3). Before introducing
the notion of a geometric logic we need to recall the notion of a higher order type
language L. This was already introduced in [26, A.3], however we will briefly
summarise the main points in the following section.

10.1 The Higher Order Type Language £

In this section we will define, in general terms, the notion of a first order type
language which we denote by £. Such a language consists of a set of symbols and
terms.

Symbols

1. A collection of “sorts” or “types”. If Ty, T»,--- ,T,, n > 1, are type symbols,
thensois Ty X Tr x++-xT,. If n =0thenT; x T, x--- x T, = 1.

. If T is a type symbol, then' so is PT.

. Given any type T there are a countable set of variables of type T.

. There is a special symbol .

. A set of function symbols for each pair of type symbols, together with a map
which assigns to each function its type. This assignment consists of a finite, non-
empty list of types. For example, if we have the pair of type symbols (T}, T), the
associated set of function symbols will be F (T}, T,). Anelementf € F. (T, T)
has type Ty, T». This is indicated by writing f : T1 — T>.

6. A set of relation symbols R; together with a map which assigns the type of the

arguments of the relation. This consists of a list of types. For example, a relation

W B~ W N

!PT indicates the collection of all subsets of 7.
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taking an argument x; € 7T of type T} to an argument x, € T, of type T, is
denoted as R = R(x1,x;) C Ty X T5.

Terms

1.
. The symbol * is a term of type 1.
. A term of type 2 is called a formula. If the formula has no free variables then

10.

11.

The variables of type T are terms of type T, VT.

we call it a sentence.

. Given a function symbol f : T} — T, and a term ¢ of type T, then f(¢) is a term

of type T>.

Given t,t,- - ,t, which are terms of type Ty, T»,--- ,T,, respectively, then
(t1,t2,-+- ,t,) isaterm of type Ty X Tp X -+ x T),.

Ifxisatermof type Ty X Tp x---x T, thenfor 1 <i < n, x; is a term of type T;.
If w is a term of type Q2 and « is a variable of type T, then {¢|w} is a term of
type PT.

If x1, x, are terms of the same type, then x; = x; is a term of type 2.

If x1, x, are terms of type T and PT respectively, then x| € x; is a term of type
Q.

If x1, x, are terms of type PT and PPT respectively, then x; € x; is a term of
type Q.

If x1, x, are both terms of type PT, then x; C x; is a term of type 2.

The entire set of formulas in the language £ are defined, recursively, through
repeated applications of formation rules, which are the analogues of the standard
logical connectives. In particular, we have atomic formulas and composite formulas
The former are:

1.
2.
3.
4.

The terms of relation.

Equality terms defined above.

Truth T is an atomic formula with empty set of free variables.
False L is an atomic formula with empty set of free variables.

We can now build more complicated formulas through the use of the logical
connectives V, A, = and —. These are the composite formulas:

1.

2.

Given two formulas o and 8 then o Vv B is a formula such that, the set of free
variables is defined to be the union of the free variables in & and S.
Given two formulas o and 8 then o A B is a formula such that, the set of free
variables is defined to be the union of the free variables in & and S.

. Given a formula « its negation —« is still a formula with the same amount of free

variables.

. Given two formulas « and 8, then « = f is a formula with free variables given

by the union of the free variables in « and S.
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It is interesting to note that the logical operations just defined can actually be
expressed in terms of the primitive symbols as follows:

. true:= % = %,

anBi=(a, B) = (true, true) = (x = %, % = %),

as pfi=a=p.

a=f:= ((a AP) & oz) = (a, B) = (true, true) = a.
Vxa ;= {x:a} = {x: true}.

false:= Yww := {w : w} = {w : true}.

- = o = false.

LaAB =Vl =>wAB = w) =

. dxa = Vw[Vx(a = w) = w].

Vo N L B W~

In the above the notation {x : y} indicates the set of all x, such that y.

10.2 Geometric Theories

As was already explained in [26], topos theory is intimately related to first order
predicate logic. As seen in the previous section, such languages are comprised of
the following objects:

1. terms which denote the “atomic variables’.
2. formulae which are logical expressions denoting predicates pertaining the terms.

Logical connectives are then utilised to construct compound terms and compound
formulae. Tt is possible to represent a first-order predicate language within a
category. In this context, terms are given by morphisms while formulae are given by
sub-objects. Clearly the category in question needs to be rich enough in categorical
structures so as to give meaning to the logical connectives. A topos represents
precisely such a rich category which allows the construction of logical connectives
(true, false), standard connectives (A, V, =, = ) and quantifiers (V, 3). In
particular, the language £ we will consider, will be an infinitary, first-order, many-
sorted predicate logic with equality. Here infinitary means that infinite conjunctions
and disjunctions are allowed, while many-sorted means that the terms are grouped
into different sorts.

We will now explain, in more technical details, how a language £ is constructed.
A central ingredient in defining L is its first order signature ¥*> which essentially
consists of the non-logical symbols in the language.

Definition 10.2.1 A first order signature 3 comprises the following objects:

1. A set S of sorts.

2Note, the signature X should not be confused with the Gelfand spectrum. The two objects are
completely unrelated, although they have similar symbols.
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2. A set F of function symbols and a map which assigns to each such function
symbol f € F its type which is a non-empty finite list of sorts A|, A», A3, ... Ay, B.
The assignment of a type to a function is given by

f:1A; xA; XAz, x--- XA, = B.

This tells us that f is of type A1, Az, A3, ...A,, B. Here n is called the arity of f.
When n = 0 f is a constant of sort B which is denoted by f : 1 — B, where 1 is
the singleton set.

3. A set Q of relations and a map which assigns to each relation R € Q its type,
which is a finite list of sorts.

R;)Al XA2X---XAn

indicates that R has type A;, A, ...A,. Similarly as for functions, »n is the arity
of R and when n = 0, R is an atomic proposition which we denote by P C 1.

Each sort A of signature X has associated to itself a fixed countably infinite set
of variable V4.
Next we introduce the terms over X.

Definition 10.2.2 The collection of terms over X is defined recursively by the
following steps:

1. xis a term of sort A (dented by x : A) if x is a variable of sort A.

2. f(t1,t...t;) isaterm of sort B (f(t1,1...t,) : B)if f :A] XAy x--- XA, —> B
is a function symbol and #; : A, %, : Ay, ... 1, : A,. Every constant is a term. The
free variables of f(¢,1; .. .t,) are the free variables of t1, 1, .. .1,.

As far as the formulae over ¥ are concerned we will only consider geometrical
formulae.

Definition 10.2.3 The class of geometrical formulae ¢ over X, together with the
finite set of free variables for each ¢, is the smallest class closed under the following
rules:

1. f R C Ay XAy x---xA,is arelation and #; : A1, : As, ..., : A, are
terms, then R(t1, 1, ...t,) is a formula. The free variables of R(t;,1,,...t,) are
the free variables of #1, #; . . . t,. Every propositional symbol is a formula without
free variables.

2. If s and ¢ are two terms of the same sort, then s = ¢ is a formula. The free
variables of s = ¢ are the free variables of s and t.

3. Truth T is a formula without free variables.

4. If ¢ and ¢ are formulae, then ¢ Vv V¥ is a formula. The free variables of ¢ Vv
are those of ¢ together with those of .

5. False L is a formula without free variables.

6. If ¢ and ¢ are formulae, then ¢ A ¢ is a formula. The free variables of ¢ A ¥
are those of ¢ together with those of .
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7. If ¢ is a formula with free variables, x, x1, x2, ..., X,, then (3x)¢ is a formulae
with free variable x, x5, ..., x,

8. If each ¢;, for i in some index set /, is a formula and the collection of all the free
variables is finite, then \/,, ¢ is a formula. The free variables of \/,; ¢ are the
free variables of all the ¢;.

Given a formula ¢, the variables x in ¢ which are in the scope of some quantifier®
for example (3x), are called bounded variables. Two formulas ¢ and v are said to be
a-equivalent if they differ only in the names of bounded variables. Two a-equivalent
formulae are considered indistinguishable for all practical purposes. If a formula has
no free variable it is called a closed formula or sentence. A closed term instead is a
term that contains no variables at all.

Formulae are never considered on their own but always with respect to a given
context which, in this setting, is defined as follows:

Definition 10.2.4 A context is a finite list X = x1,x2, ..., x,, of distinct variables
of some sort. When n = 0 then we have the empty context denoted by []. Each
context can be enlarged with the acquisition of a new variable not already present.
For example, if y is a variable not in X, then we can form the new context X,y by
appending the variable y to the list. Similarly, if two contexts y and x are disjoint,
one can form the composite context X, y by concatenating the two.

The type of a context is given by the string of (not necessarily distinct) sorts of
the variables appearing in it.

Given a context X, we say that X is suitable for a formula ¥ if all the free variables
of ¢ occur in X. A formula-in-context is then denoted by X.¢p where X is a suitable
context for ¢. The canonical context for a formula ¢ is the context consisting
of only the free variables in ¢, listed in order of appearance. Similarly a term-in-
context is denoted by X.r where X is a suitable context for ¢, i.e. all the free variables
of 7 occur in X.

A formal expression of the form v 5 ¢ is called a sequent over a signature X
where both ¢ and ¥ are formula over X and X is a context suitable for both. The
meaning of ¥ 5 ¢ is that ¢ is a logical consequence of i in the context x. A set of
such sequents ¥ 5 ¢ comprises a theory T over X.

Definition 10.2.5 A theory over a signature X is a set of sequents T over X whose
elements are called the axioms of T. If all the sequents in T are geometric then we
say that T is a geometric theory.

10.3 Interpreting a Geometric Theory in a Category

Now that we have briefly described the expressions in a first order language, we
would like to understand how these are interpreted in a given category. Since,
ultimately, we are interested in the representation of this language in the topos

3For geometric theories we only have the existential quantifier 3.
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Sets“Y | we will consider out category to be a topos t.

Definition 10.3.1 Given a topos t, a X-structure M in 7 is given by the following
assignments:

1. To each sort A in o an object MA € t.

2. To each function symbol f : A} X Ay X -+ X A, — B a morphism Mf : MA| x
MA; x -+ x MA, — MB in t. A constant ¢ : 1 — B is given by an arrow
Mc : M1 — MB where M1 is the terminal object in 7.

3. Toeachrelation R < A|xA;X---xA, asub-object MR € MA| xMA,;x---xMA,.

The collection of X-structures in t forms a category denoted by X-Str(t) whose
morphisms are called the X-structure homomorphisms. Given two X-structures M
and N, a morphism 2 : M — N is given by a collection of morphisms h4 : MA —
NA one for each sort of X, such that it correctly maps function symbols and relations
symbols. In particular, we require that for each function symbol f : A} X Ay X -+ X
A, — B, the following diagram commutes

MAy x MAy x -+ x MA, ——— MB
hAl ><hA2X-~-XhA,l hp
Nf

NAy X NAy x ---x NA, — > NB

This can be seen as a naturality condition with respect to function symbols.
Moreover, we also require that for each relation symbol R < A} X Ay X --- X A,
the following diagram is a pullback

MR = MA; X MA, X --- x MA,

hAl XhAZX-"XhAn

NRC————— NA; x NA x --- X NA,

Given two topoi t; and 7, with a left exact functor F : t; — 1, between
them, this induces a functor X-Str( F) : X-Str(t;) — X-Str(z;). Moreover, any
natural transformation @« : F — G between functor F,G : 11 — 1, induces a
natural transformation X-Str(z;) — 3-Str(t;). This implies that the construction
3-Str(—) is 2-functorial.

Now we need to represent both terms and formulas in the topos t.
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Definition 10.3.2 Given a X-structure M in 7, a term-in-context X.t over ¥ (where
x;i:A; i =1,...,n)is represented in 7 by the morphisms:

[[X.]]pr : MA; x MA; x --- x MA,, — MB.

This is defined recursively as follows:

1. If ¢ is a variable it will necessarily be of type x; for some unique i < n, hence
[[;Ct]]M = pri.
2. If t is a function symbol f(t1, f2, . . . , ) for t; : C; then [[x.f]]3s becomes

(BF.r1Mag X [ 22]la XX [t Lot

M,
MA, xMA; x---x MA, MB, xMByx---x MB, - MB.

The naturality condition for morphisms 7 : M — N of X-structure we
encountered for function symbols also extends to terms. In particular, given a term-
in-context x.r over X, such that x; : A; and ¢ : B, then the following diagram
commutes:

(.4

MAy X MA» X -+ x MA, ————— MB

hay Xhay Xe+Xhy, hp

NA, x Ndy x - x NA, & g

On the other hand, formulas are represented recursively through the following
definition:
Definition 10.3.3 Given a X-structure M in 7, a formula in context ¥.¢p over &
(where x; : A;, i = 1,...,n)is represented in 7 by a sub-object

[X.0]] =< MA|; x MA, x --- x MA,

such that:

1. If ¢ is a relation R(t,...,t,) of type By,..., By, then [[x.§]] is represented by
the pullback

(X911 MR

MAy x5 MA, Tl X MB,,
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2. If ¢ is of the form s = ¢ where s, ¢ : B, then [[X.¢]] is represented by the equaliser

(5]
—_—
M4y x ... MA, MB.
EI

3. If ¢ is T, then [[X.¢]] is the top element of Sub(MA; x ... MA,).
4. If ¢ is of the form o A B, then [[x.¢]] is represented by the pullback

[[x.¢]]¢ [F.ct]]

[x.B]]————— MA; x--- x M4,

5. If ¢ is L, then [[X.¢]] is the bottom element of Sub(MA; x --- x MA,).
6. If ¢ is of the form a A 8, then [[X.¢]] is represented by the pushout

(%81 0 [[x.o]] ————— [[¥.e]

(x.A1] [x-41]

7. If ¢ is of the form (Jy)y where y : B, then [[X.¢]] is represented by the image of
the composite map

(% y.¢]] = MA; x -+ x MA, x MB 5> MA; x -+ x MA,.

8. If ¢ is of the form /\,;, ¥i, then [[x.¢]] is represented by the union of all the
[[X.v]] in Sub(MA| x --- x MA,).

Now that we have understood how to represent formulas and terms in a given
topos 7, the next step is to understand how axioms are represented in 7 and what it
means for an axiom to be valid in a given structure.

Definition 10.3.4 Given a X-structures M in 7, a sequent 0 = ¢ 3 ¥ over X is
satisfied in M if [[X.¢]] C [[x.v]] as elements of Sub(MA| x --- x MA,).

We have seen above that a (geometric) theory T over a structure ¥ is comprised
by a set of sequents over . We then say that a structure M is a model for a given
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theory T, if every axiom in T is satisfied in M. Clearly each theory T can have
more than one model. The collection of all such models forms a full sub-category
T-Mod(t) of X-Str(7).

We have seen above, that any left exact functor F' : 7y — 1, induces a functor
between the respective X structure as follows: X-Str( F) : -Str(t;) — X-Str(z;).
However, such a functor does not restrict to a functor T-Mod(7;) — T-Mod(1,),
but when considering geometric morphisms f : 71 — 12 we have the following
result:

Theorem 10.3.1 Given a geometric morphism f : 1y — 1 and a X-structure M in
71, such that f*M is the induced structure in t,, then for any geometric formula x.¢p
over X (where x; : A;) we have that

S ([x-9llm) = [[x-Bllrm

as sub-objects of f*(MA| X --- x MA,) ~ f*MA| x --- X f*MA,.

Proof The proof is by induction on the construction of each formulas as defined
in Definition 10.3.3. In particular, since f* is the inverse image of a geometric
morphism it preserves small colimits and finite limits, hence we obtain:

1. when ¢ is a relation R(fy,...,1,) the pullback representing [[x.¢]]y in 71 gets
mapped via f* to a pullback in 7, representing the formula [[X.¢]]/ .

2. When ¢ := (s = 1), the equaliser representing [[X.¢]]y in 7 is preserved via the
action of f*.

3. Both the top and bottom elements of Sub(MA; x --- x MA,) are preserved under
the action of f*.

4. Since f* preserves both meets and joins we have that f*([[x.a]]ys A [[X.8]]n) =
[Fallw A [FBllw and f*(Fally v [EB) = [Fallow v [EBllu.

Similar reasoning holds when ¢ is of the form A, V.
5. Since f* preserves images, then f*[[x.Qy)¥ ]Iy = [[X.(F) V] m-

A consequence of the above theorem is the following:

Theorem 10.3.2 Given a geometric theory T, any geometric morphismf : t; — 10
induces a functor f* : T-Mod(1) — T-Mod(t).

Proof Assume that M is a model for T in 1;, hence all axioms (¢ F; ¥) of T are
valid in M. The validity of such axioms is represented by the relation [[X.¢]]y <
[[X.4]m in Sub(MA; x --- x MA,) (where x; : A;). Since f* preserves inclusion
of sub-objects we obtain that f*([[X.¢]]x) < f*([[x.¥]]x), which, by applying the
Theorem 10.3.1, is equivalent to [[X.@]]pm < [[X.9]]r* m- ]

The above theorem allows one to determine which X-structures are T-models for
a topos 77 by determining which X-structure are T-models for some other topos 1,
provided we have a geometric morphism f : ; — 1,. This fact is of considerable
importance in situations in which the topos t; might be particularly intractable
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whereas 1, might not. In the case for which t; = [C, Sets] and 7, = Sets we have
the following Lemma:

Lemma 10.3.1 ([50], D1.2.14) Given a geometric theory T over a signature ¥ and
a small category C, then a %-structure M in [C, Sets] is a T-model iff for each C € C,
evc(M) is a T-model in Sets. Here evc : [C, Sets] — Sets represents the evaluation
Sfunctor for the object C, i.e. it assigns the set associated to C. Furthermore we have
the following isomorphism of categories:

T-Mod([C, Sets]) ~ [C, T-Mod(Sets)].

Proof We recall that a point of a topos 7 is identified with a geometric morphism
Sets — 7. Hence, given the topos © = [C, Sets] and an object C € C, a point is
defined by a geometric morphism ev¢ : Sets — [C, Sets]. The inverse image part
of such geometric morphism is precisely the evaluation functor. By Theorem 10.3.2
it follows that any T-model on [C, Sets] induces a T-model on Sets. The “if”” part
follows trivially from the definition of T-models in [C, Sets].

The isomorphism of categories T-Mod([C, Sets]) ~ [C, T-Mod(Sets)] is given
by the fact that homomorphisms of X-structure on [C, Sets] are equivalent to natural
transformations between functor F : C — X-Str(Sets). O

Each geometric theory T has associated to it a Lindenbaum algebra O([T]) which
is defined as the poset of formulae of T-modulo provable equivalence ordered by
provable entailment. Provable equivalence means that two formulae ¢ and v are
equivalent (v ~ ¢) if the theory T proves that each proposition implies the other.
For geometric theories, O([T]) turns out to be a frame.

As stated above, a structure M is a model for a given theory T, if every axiom
in T is satisfied in M, therefore a model for a theory T is equivalent to a consistent
assignment of either true or false to each of the axioms/formulae in T. Given that
the collection of formulae forms a frame O([T]), a model for T can be seen as a
frame map O([T]) — {0, 1} and hence a locale map * — [T], i.e. a point of the
locale T. This can be generalised to any locale Y, and one can consider a model of
T in a frame O(Y) to be a locale map Y — [T].

We will now give an example of how to construct objects in a topos t using a
geometric theory T. The object we choose to describe is the complex number object.
In particular, the geometric theory of complex numbers in 7 is obtained by assigning
to each pair (r, s) of rational complex numbers in 7 an atomic formulae

z€(r,s),

which intuitively represents the statement that the complex number z lies in the
complex rational open rectangle spanned by s and r. All the other formulae of the
theory are obtained by taking arbitrary disjunctions of finite conjunctions, etc. of the
above formulae. The sequence (or axioms) of this theory are given by:

l.ze(r,s) - Lif(r,z) <O.
2. TEV gz € @,9).
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3.ze(r)Fze(p.gvze(p.q)if(r.s) < (p.q) v (P'q).?
4. ze(p.grze(P'd)rze(rs)if(p.g) A(P'.q) < (r,9).
5.z€(r,s)F v(r’,s/)<1(r,x) ze(,s).
6. \/(r’,s/)<1(r,x) z€ (r/7s/) = Z€ (}", S).

Given the above geometric theory T, the complex number object C in the topos
T is identified with the locale given by the Lindenbaum algebra associated to T.
Therefore, the objects in C are given by the formulae of the theory modulo provable
equivalence in the theory, partially ordered by provable entailment in the theory.

Clearly C can also be defined in terms of frames and generators, in particular we
consider the atomic formulae to be the generators while the relations are given by
the above axioms upon replacing - by <.

“The symbol <1 indicates the rather below relation in a locale Y. in particular, we say that v <1 u
if there exists an element w € Y suchthatv Aw =0andu VvV w = 1.



Chapter 11
Brief Introduction to Covariant Topos
Quantum Theory

In this chapter we will describe a different way in which topos theory was utilised to
describe quantum theory. This approach is called covariant topos quantum theory
and it was first put forward in [42]. The aim of this approach is to combine, on
the one hand, algebraic quantum theory by describing a system via a C*-algebra A
and, on the other, Bohr’s idea of classical snapshots which enables one to talk about
physical quantities, only with respect to a suitable context of compatible physical
quantities. Such contexts are defined in terms of commuting subalgebras of A which
form a poset C(A) ordered by inclusion. The topos utilised in this approach is the
topos of covariant functors C(A) — Sets which we will denote by [C(A), Sets].
The main mathematical object in this topos is the covariant functor!

A:C(A) — Sets; A(C) =C,

such that, for each map D < C the corresponding covariant presheaf map is given
by inclusion. This covariant functor A is an internal commutative unital C*-algebra
which is called the Bohrification of A. Given the internal version of Gelfand duality,
which is valid in any (Grothendieck) topos, there exists a covariant functor X 4 in
[C 4, Sets], which represents the Gelfand spectrum of A and A is isomorphic to
the algebra of continuous complex values functions on X 4. In this setting X, is
a compact completely regular local, rather than a compact Hausdorff space and it
represents the state-space of the theory as seen internally in the topos [C(.A), Sets].
Given such a state-space, a state is represented, internally, as a probability valuation
n: O(X,) — [0,1]; where [0, 1], represents the covariant functor of lower reals
in [C(A), Sets]. Self-adjoints operators, instead, are represented internally by locale
maps X , — IR, where IR is the interval domain in [C(A), Sets].

'Note that we have denoted covariant functors by an overline X to distinguish them from
contravariant functors which we denote by an underline X.
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There are many similarities between this approach and the topos approach
delineated in [26]. The reader is referred to [75] for an in depth analysis. The main
difference, however, is the fact that in the covariant approach one defines all physical
quantities internally to the topos [C(A), Sets] and any reasoning is done utilising
the internal language of [C(A), Sets], which is the Mitchell-Benabou language with
the Kripke-Joyal semantics [50]. In what follows we will try and describe the main
building blocks of the covariant topos quantum theory for a more detailed exposition
the reader should refer to [42, 43].

11.1 Internal Topos Quantum Theory

In the covariant approach to topos quantum theory the authors start with a non-
commutative C*-algebra A and, then, construct a topos associated to each such
algebra A as follows:

Theorem 11.1.1 The map C : cStar — Poset is defined

1. onobjects: A — {C C A|C € ¢CStar} =: C(A) which are ordered by inclusion.
2. On morphisms: f : A — B gets mapped to C(f) : C(A) — C(B) such that
C C A gets mapped to the direct image f(C) C B.

Here the Poset denotes the category of partially ordered sets and monotone
functions.
The fact that this is indeed a functor follows trivially from the definition.

To each C*-algebra A, one associates the poset of commuting subalgebras C(.A)
ordered by inclusion. Then one considers the collection of functor C(A4) — Sets
for each such poset of commuting subalgebras. These collection forms a topos
SetsCA=ICCASets] and it s the topos associated to A. Hence, by describing a
quantum system in terms of a particular C*-algebra one can associate to it its
corresponding topos Sets““Y . The association of a topos to a quantum system
represented by a C*-algebra is functorial as it is shown by the following theorem:

Theorem 11.1.2 The map

7 : CStar — Topos

A > Sets¢

is a functor. Here Topos is the category whose objects are topos and whose
morphisms are geometric morphisms.

Proof As a first step we need to define the action on morphisms. In particular,
given a morphism f : A — B, we know from Theorem 11.1.1 that there is a map
C(f) : C(A) — C(B) in Topos. This is a map between categories and, as such,
it induces a geometric morphism f : SetsCA — SetsC® with direct image part
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fi : Sets® — Sets“® and inverse image part f* : Sets®Y) — Sets®®. The
latter preserves finite limits.

We have shown that, for each morphism f : A — B, t assigns the geometric
morphism f : Sets“Y — Sets®® Clearly such an assignment is functorial. O
We have just defined the ambient topos for a particular quantum system represented
by an algebra A. The next step is to define all the quantum object internally to
SetsCY) . The first object we will define is the internal C*-algebra A.

Definition 11.1.1 The co-presheaf A is defined on

1. objects: for each C € C(A), then A(C) = C.
2. Morphisms: given a map ic/c : C' € C the corresponding co-presheaf map
A(icrc) 1 A(C') — A(C) is simply the inclusion map.

In [42, 43] it was show that this functor is an internal commutative C*-algebra
for Sets¢V.

Theorem 11.1.3 The functor A is a vector space over the complex numbers Q[i]
with respect to the following operations:

0:1—- A
* > 0;
+:  AxA—- A

<a,b>+—a+b;

Qi xA—- A

<z,a>r>z-a.
The algebra operation and involution operation are given respectively by

AxA—-> A

<ab>+a-b
and

) AxA—-> A

awa*.
The norm relation is instead given by

N:AxQ —>Q N(a.q)iff|lall <q.



204 11 Brief Introduction to Covariant Topos Quantum Theory

where the sub-object classifier Q2 in SetsCY g given by the functor Q : C(A) —
Sets such that Q(C) = {S €1 C|S is an upper set}.

The proof of the fact that A is a commutative C*-algebra rests on the fact
that, for each context C € C(A), A(C) = C is itself a commutative C*-algebra.
We have, therefore, a collection of ‘local’ commutative C*-algebras. In particular,
since the definition of commutative pre-semi-C*-algebra consists only of geometric
formulae, we can apply Lemma 10.3.1 which implies that A is a pre-semi-C*-
algebra over Q][i], since each A(C) (C € C) is a pre-semi-C*-algebra over Q][i].
In order to show completeness and that the semi-norm is actually a norm, one uses
the internal sheaf semantics. For a detailed proof the reader should refer to [42, 74].
This completes the proof that A is an internal commutative C*-algebra. One can
generalise the above theorem as follows [74]:

Theorem 11.1.4 An object A is a C*-algebra internal to [C, Sets] iff it is defined
via a functor A : C — C*alg where C*alg is the category of C*-algebras and
*-homomorphisms in Sets. A is commutative iff each A(C) is commutative and
unital iff each A(C) is unital and for each f : C — C' in C the corresponding
*-homomorphism A(f) : C — C' preserves the unit.

Summarising what has been done so far: one starts with a non-commutative C*-
algebra A representing some quantum system. This algebra gets then internalised
in the topos [C(A), Sets] obtaining the commutative C*-algebra .A. By internalising
the algebra one goes from a non-commutative algebra to a commutative one and the
multiplication of two non-commutative operators is no longer defined, since they
belong to different commutative subalgebras, i.e. different contexts.

11.2 State-Space

Now that we have defined the internal C*-algebra .4 we would like to define its
spectrum. To this end we apply the internal Gelfand duality mentioned in [5], which
associates to each internal commutative C*-algebra A a completely regular compact
locale X 4, which represents its spectrum.

As shown in [5], in order to explicitly construct the state-space X ,, one has to
construct the propositional geometric theory T of multiplicative linear functionals
on A, obtained by adapting that of linear functionals of norm < 1 on the
seminormed space A. In particular, T is constructed as follows: for each a € A
and each open rectangle (r, s) in C we construct the basic formulae

a € (rs).

Any other formulae is obtained by application of the logical connective to the basic
formulae. The set of sequents/axioms of the theory are:

1. THO e (r,s)if0 € (r,s) and O € (r,s) I L otherwise.
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2. a € (r,a)Fta € (tr,ts) for any number t > 0 and a € (r,a) I ia € i(r, s) where
i represents the imaginary unit.

J.ae(rs)ynd e(r,sYrFa+d e (r+7r,s+5).

4. T F a € D(1) if a € D(1) where D(1) represents the open disc of radius 1
centred at the origin in the complex plane.

5.ae(r,s)Fae (g vae @, q)if(r,s) < (p.q) Vv ¥.q).

6. ac (r,9)F\ yyaps @€ (5.

7. Vv rars @ € (7,8 Fae (r,s).

Given the theory T defined above, one can construct the associated locale
obtained via the Lindenbaum algebra, i.e the locale whose objects are all formulae
of T modulo provable equivalence and ordered by provable entailment. We will
denote such a locale by X , in anticipation of the identification of such a locale with
the Gelfand spectrum of .A.

The axioms of the above theory imply that any representation of the theory, hence
any point of the locale X 4, represents a linear functional of norm < 1 on the semi-
normed space A. To also account for the linear functional to be multiplicative we
need to add a few extra axioms, namely:

1. THE1e(r,s)ifl € (r,s)and 1 € (r,s) - L otherwise.

2. a€(r,a) bk a*(r,s).

3.ad € (r.s) b \ja € (pig) Ad € (pg)) if \i(pinq) X (Pd)) = 1*(r.s)
where i : C x C — C denotes multiplication in the locale of complex numbers,
and p*(r, s) is the inverse image of the open rectangle.

The locale obtained by adding the above axioms of the theory is the spectrum of

the commutative C*-algebra A, which we again denote by ¥ ,. By construction the

points of X , (models of the theory) are the multiplicative linear functionals of A.
In [5] it was shown that:

Theorem 11.2.1 Given any commutative C*-algebra A in a Grothendieck topos t,
the spectrum X4 is a compact, completely regular locale.

Now that we have defined the spectrum of the internal C*-algebra A we can
define the Gelfand transform. Here we will only briefly state what the Gelfand
transform is. For a detailed derivation the reader should refer to [5, 42].

Given an internal C*-algebra A we consider the self-adjoint part, A, whose
elements are the self-adjoint elements in .A. Then the Gelfand transform associates,
to each a € Ay, the locale map

a:X,—R

where R is the locale of internal Dedekind reals (see Appendix A.1). The associated
frame map is

i OR) > O(2 ).
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This definition of the Gelfand transform will be used to prove the following
important theorem [42]:

Theorem 11.2.2 The Kochen-Specker theorem is equivalent to the statement that
the locale ¥ , has no points.

Proof Given a pointp : 1 — X 4 (see Definition 8.1.2) of the locale X 4 and the
Gelfand transform a : ¥, — R associated to a € Ay, one can construct the
point @ op : 1 — R of the locale R. Since this can be done for each a € Ay,
effectively we obtain a natural transformation V, : Ay, — Pt(R), which is an
internal multiplicative functional. For each C € C the components of V,, are V,(C) :
Ao (C) — Pt(R)(C) which are equivalent to V,(C) : Cy, — R. From the naturality
condition one obtains that for C" € C, V,(C)|cr = V,(C'). Since each V,(C) are
multiplicative functionals, the condition V,(C)|¢ = V,(C’) turns V), into a valuation
on B(H) which can not exist because of the Kochen-Specker theorem. O

Note that a similar theorem holds in the contravariant approach to topos quantum
theory [26].

11.2.1 Relation Between Contravariant and Covariant
State-Space

In [75], the author analysed the possible relation between the covariant state-
space X 4 and the contravariant state-space X [26, Def. 9.7]. This was done by
internalising ¥ and analysing the properties of the resulting internal local. As it
turns out that such a locale is not regular, hence it cannot be identified with the
spectrum of an internal C*-algebra, however, the implications of such a result still
need to be analysed in details.

In the following we will explain how the state-space X can be internalised and
show that the resulting internal locale is not regular [75]. To this end we recall
that the contravariant state-space was identified with the spectral presheaf ¥ on
V(H) (see Definition 9.7 in [26]), where V(A) represents the category of abelian
von Neumann subalgebras of the von Neumann algebra A associated to some
quantum system. Without loss of generality we can safely consider A to be a C*-
algebra associated to a quantum system and C(A) to be the category of unital
abelian subalgebras of A. Given the downwards Alexandroff topology? on V(A)
(equivalently on C(A)), X becomes a sheaf on V(A) whose corresponding etalé
bundle has as bundle space

=[] =

CeV(A)

2We recall that the downwards Alexandroff topology on V(A) is the topology for which a subset
U C V(A) is open if it is a downwards closed set, i.e. U = {C’ C C|C € V(A)}.
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where X is the Gelfand spectrum associated to the algebra C. The locale
homomorphism (or bundle map) is defined as follows:

X — V(A
AC—>C.

The topology on X is generated by the basis
W ={ScalCeV(A),A e X}, Sc=1{A|p|DC C}.

Given the fact that both ¥ and V(A) can be seen as internal locales in Sets, we
can identify the map 7 : ¥ — V(A) as a map of locales. Utilising the method for
constructing internal locals explained in Sect. 9.3 the map = : ¥ — V(A) induces
an internal locale in Sh(V(A), whose associate frame is given by [75]

0%, = O%,c.

However, in order to better compare the internal locale associated to the spectral
presheaf X to the locale ¥ 4, it is useful to equip the etalé space £ with a topology
generated by clopen subsets of 3. In particular, given the etalé¢ bundle 7 : ¥ —
V(A), a subset U € X is clopen if it is open in the etalé topology on X and, for
each C € V(A), the set Uc := U N X is clopen in X, equipped with the spectral
topology. When dealing with von Neumann algebras C € V(A) each X . has as basis
clopen subsets. The collection of these etalé clopens form a basis for a topology. The
resulting topological space is denoted [75] by X and the rigorous definition is given
by

Definition 11.2.1 The space X is identified with the set X = ]_[CEv( A) ¢ where
U € X is open if

1. IfA € Ucand C' C C, then A|¢r € Ug.
2. VC e V(A), Ucisopenin .

With respect to the above topology the map = : £, — V(A) is no longer
a homomorphism but it is continuous, therefore, it induces an internal locale in
[V(A)P, Sets], which we will denote by X . The following result shown in [75] is
of particular importance:

Theorem 11.2.3 Given a von Neumann algebra A such that C(A) # {C - 1} then
the locale | in [V(A)P, Sets| is not regular.
In order to prove the above theorem we need the following lemma [48]:

Lemma 11.2.1 Consider two Locales, X,Y and a continuous map f : X — Y.
This gives rise to the geometric morphism f : Sh(X) — Sh(Y) whose associated
direct image part is fix : Sh(X) — Sh(Y). In this setting the locale fi.(Qx) is said
to be regular iff, given any open U C X and any element x € X, there exists a
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neighbourhood N of f(x) in Y and open sets V, W in S such that

xeV, VNw=49
faycuvuw.

In this context a regular locale is defined as follows

Definition 11.2.2 Given a Locale L, this is said to be regular if every elementa € L
satisfies the following relations

a=\/{beLlb<al.

The symbol b < a indicates that there exists a ¢ € L such that b A ¢ = 0 and
ave=1.
We are now able to prove Theorem 11.2.3.

Proof In what follows we will report the proof given in [75]. To this end consider
the set

Bcy ={AlpID € C, A € U}

where U € OX. and C € V(A). Clearly B¢y satisfies condition 2 in Defini-
tion 11.2.1. To see that also condition 1 in Definition 11.2.1 is satisfied one has to
recall that the presheaf maps X(ic'c) : £ — X (C' € ), given by restriction,
are open [26]. From Lemma 11.2.1, the locale X is regular iff for any U € OX
andany A € U, there exists a pair of opens V, W € OX suchthatA € V,VNW =0
and Bcy € U U W. Now since we have assumed that C(A) # {C - 1}, there exists
some C € V(A) such that X has at least two elements (Gelfand-Mazur theorem).
Take two distinct elements 41,1, € X, then we define the open U := B¢ x.(1,}
where clearly A, € U. If OX | were to be regular, then there would exist two opens
V,W € OX such that At € V,A € Wand VN W = 0. Since such conditions
have to be preserved by the presheaf maps, it follows that for each C’ C C then
Al # Az|cr. However, if we include the trivial subalgebra C as a context, it
follows that the condition A;[cr # Az|c’ can not be satisfied, hence the locale X is
not regular. O
The importance of the above theorem is given by the fact that if the locale X
is not regular, then it can not be identified with the spectrum of an internal unital
commutative C* algebra. It does however satisfy the weaker property of being sober.

If we excluded the trivial context then in some case the locale % would be
regular, for example for A = M,(C) the associated locale is regular, however for
n > 2 the locale associated to A = M, (C) is not regular. In general it is safe to say
that the locale X | is not regular.
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11.3 States

In this section we will describe how states are defined in the covariant approach.
This was first introduced in [42]. The main result of this paper regarding states is
given by Theorem 14 [42] in which it is shown that there exists an isomorphism
between (quasi-)states on a C*-algebra A and, either probability integrals on A,
or probability valuations on the Gelfand spectrum X 4. In what follows we will
explain how this result is obtained. To this end, we first of all need to introduce the
notion of a state and a quasi-state.

Definition 11.3.1 Given a unital C*-algebra A, a state on A is a linear functional
p . A — C such that:

1. pis positive: p(a*a) > 0 forall a € A.
2. p(1) = 1.

A state is said to be pure if it is not a mixture of two distinct other states. The
collection of states on a C*-algebra form a compact convex set where the extremal
points represent pure states. The notion of a quasi-state is a relaxed version of the
notion of a state, namely, the former is only linear on commuting operators. This
weakened notion of a state suffices as far as quantum theory is concerned since
only commuting observables are physically meaningful. The rigorous definition of
a quasi-state is as follows:

Definition 11.3.2 Given a unital C*-algebra A, a functional p : A — C is called a
quasi-state on A if the following conditions hold:

L. pis quasi-linear: it is linear on all commuting subalgebras and for all self-adjoint
operatorsA B then ,o(A + zB) = p(A) + z,o(B)

2. pis positive: p(A*A) > 0.

3. p() =1

The main result relating quasi-states on a unital C*-algebra and states in the
covariant approach to topos quantum theory is given by the following theorem:

Theorem 11.3.1 ([42]) Given a unital C*-algebra A, quasi-sates on A are in
bijective correspondence with both probability integrals on Ay, and probability
valuations on ¥ 4.

Before being able to prove this theorem we need to understand what probability
integrals and probability valuations are in this context.

Definition 11.3.3 Given the self-adjoint part Ay, of a unital C*-algebra A, a
probability integral on Ay, is a linear functional I : Ay, — IR such that

i) ifzfl e A,, is such that A > 0, then I(A) > 0;

i) 1(1) = 1.

An integral is faithful if its kernel is {0}, i.e. A>0( e A and I(A) = 0 imply
that A = 0.
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The collection of all probability integrals over A4, forms a locale which we
denote by Z(Ay,).

Definition 11.3.4 Given a locale X and the set [0, 1]; of lower reals between 0 and
1, a probability valuation on X is a monotone map u : O(X) — [0, 1]; such that,
given any U,V € O(X) and a directed set {U;};c;, then the following conditions
hold:

1. If U < V then u(U) < u(V), i.e. i is monotone.
2. u(L)=0and u(T) =1.
3. u(U) + pu(V) = (U + AV)+ p(UV V)
4 uVig U) = Ve n(U).
Essentially a probability valuation on a locale can be thought of as the same thing

as a probability measure, but defined only on opens.
We are now ready to prove Theorem 11.3.1, [42].

Proof We will start by proving the correspondence between quasi-states on the
algebra A and probability integrals on A,. In particular, consider a quasi-state p
on A. This gives rise to a natural transformation® I : Ay, — R as follows: for each
C C A we define the component

(Ip)c = plcy, : Csa = R. (11.3.1)

The collection of all such components can be easily seen to give rise to a natural
transformation. Now consider an element aA € A,q such that A > 0. Given a
subalgebra C € A such that A e C, from the definition (11.3.1) it follows that
(I,)c(A) = ple,(A) = 0. Moreover (I,)c(1) = plc, (1) = 1 forall C C A.
Therefore, as defined above, / is indeed a probability integral on A,.

On the other hand, given a probability integral I : A;, — R we have defined a
quasi-state on .4 as follows

p:Au— R
A p(A) == I 3)(A),
where C*(A) is the sub-C*-algebra generated by A. Clearly C* (A +B) € C*(A, B)

and C*(A) U C*(B) C C*(A, B). Since I is a natural transformation and it is locally
linear we obtain

p(;l + B) = IC*(A+1§)(A + B)

= Ic*(A,B(A + B)

3Here IR represents the internal locale of Dedekind reals.
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= IC*(A,B)(A) +1 *(A,f?)(é)
= Iewgiy(A) + Ieu iy (B)

= p(A) + p(B)

Moreover p(i) = Ic*(i)(i) = 1, while positivity of p follows from the fact that [ is
locally positive. Clearly the above assignments are inverse of each other.

This shows that there exists a bijective correspondence between quasi-states on
A and probability integrals on A,,. Now we want to show that there also exists a
bijective correspondence between states on 4 and probability valuations on X 4.
This bijection can be shown by proving that the locale of probability integrals on
Ay, is homeomorphic to the locale of probability valuation on % 4. This result was
show in [10, 42] and it is essentially a generalisation of the Riesz-Markov theorem.
The reader should refer to [10, 42] for a complete statement and proof of the
theorem. O

The above discussion shows that to each quasi-state p on A there is associated
to it a probability valuation p, on % 4, given by the map of internal locals
K, : OX, — Ry Here R; represents the lower reals in [C(A),Sets] (see

Definition 11.5.1). Next we define the map 1; : OX , — Ry, such that for each
context C € C(A) we have

1ic: O 4(C) = Ry(C)
U (llc)(U) = lc IT C—> [0, 1]

where 1¢ :1 C — [0, 1] is the map that is constantly 1.
The terms 1, and 1; are terms of type R; with free variables of type OX 4, hence

we can then construct the formula [up = 1] of type Q2 as follows

n, =1]: 02 xO% 4 > Q

Using the alternative definition of state-space given in Definition 11.4.1 we can re-
write the above formula as

[,up = IZ]ZOET XOZT — Q

Since any open U € OX4 can be seen as a point of OX4 we obtain U : 1 — OXy.
As we will see in detail in the next section such points represent propositions in the
contravariant topos approach. Hence, given a probability valuation 11, on O% and

a proposition U, the formula
[, =1IU) = [1,(U) = L] =[p, = L]oU:1—>Q

represents the truth value of the proposition U given the state ji,,.



212 11 Brief Introduction to Covariant Topos Quantum Theory
11.4 Propositions

In this section we will investigate how proposition are defined in the covariant
topos quantum theory approach. To this end we need to first introduce the concept
of daseinisation and daseinisation map. The covariant version of such a map was
first introduces in [42], but subsequently a simplified version was put forward in
[75]. In the present context we will adopt this simplified version. However, we will
need to slightly change the topos we work with, in particular we will consider the
topos [V(A), Sets], where V(A) represents the category of abelian von Neumann
subalgebras of A. The reason for such a change is that we would like to define
the covariant daseinisation map in terms of the contravariant one, to do this we need
contexts which contain enough projections while general C* algebras do not. Before
describing the covariant daseinisation map we need to introduce an alternative
description of the state-space X 4 put forward in [74]

Definition 11.4.1 We define the space X4 to be the set ¥ = ]_[CEa( A) Zc such that
U € O, iff the following conditions hold:

1. given A € Ug, C C C'and A’ € T is such that A'|c = A, then A" € Ug.
2. VC e C(A), Uc € OZ.

We know from Sect. 9.3 that, given a locale map f : ¥ — X, this gives rise to
an internal locale L(Y) in Sh(X). For the case at hand we consider the space C(A)
equipped with the upper Alexandroff topology and define the continuous projection
map

715y — C(A) (11.4.1)

A C. (11.4.2)

This map between locales gives rise to the internal locale X4 in [C(A), Sets]. The
frame associated to X4 is given by

OX4 : C(A) — Sets

Cr> OZ4(0) = 0Z|pc ={UcOlUS ] Zcth
Cc’e(10)

For C C (', the corresponding presheaf maps are given by
0OZ4(C) — OET(C/)

v ] Ue.

c"e(t0)
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In [74][Th. 2.2.2] it was shown that, up to isomorphism, X4 is the internal spectrum
of the algebra A.

Given this new characterisation of the state-space in terms of X4 we can define
the covariant daseinisation map in terms of the inner and outer daseinisation of the
contravariant approach [26].

Definition 11.4.2 Consider the internal (to [V(A), Sets] ) locales ¥, and IR,*
whose associated frames are OET and OIR respectively. For each A e Asa We

define the covariant daseinisation map as the arrow § (12\)_1 : OIR — OX such
that for each context C € V(A) we have:

SA)TI( C x (p,q)s) = (A (p.@)s N Zplper
where

§: Ay — C(Z4,IR)
A §(A) := A > [A(8'(A)c), A(8°(A)c)].

Here §' and 8° represent the inner and outer daseinisation introduced in the
contravariant approach (see [26] Section 13.4, eq. 13.4.6). Moreover, X4|1¢ =
e erer T and 1 €' x (p, q)s = {(C, [, $]|C € C(A),C" S C,p <r <5 <gq}is
a basic open subset in C(A) x IR.

We now need to check that indeed the daseinisation map is well defined. In

particular we need to check that § (A) : ¥4 — IR is continuous and that 8_1, as
defined above, is a frame map. To show that S(A) is continuous we need to show

that the inverse image of an open in IR is open in X4. To this end consider an open
(p, q)s in IR. The inverse image, at a context C € C(.A), is given by

BA) " (p.g)s)c = {A € Ze|AS'(A)e) > py N A € SelA(E°(A)e) < g}

In order to determine whether (8(A)_1(p, q)s)c is open we need to show that it
satisfies the conditions in Definition 11.4.1. We will start with the second condition,
that is, we need to show that for all C € C(A), U N X¢ € O(X¢). Since each X is
equipped with the Gelfand topology, open sets are of the form U = {A € S¢|A(A)—
2l <o}forA e A ze Cande > 0hence, it follow that both {A € T¢|A(8'(A)¢) >
pland {A € S¢|A(8°(A)¢) < ¢} are open, and the second condition is satisfied.
Next we need to show that “openness” is preserved by the presheaf map. In
particular we need to show that if A € Uc then, for C € C',if ' € X is such

IR represents the internal Scotts interval domain (see Appendix A.2).
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that A'|c = A, then M € Ug. Let us assume that A € (§(A)~'(p,q)s)c N S¢
and for C C C, AN e X is such that M|c = A. We then consider the open
A p.9)s)er = {A € ZeA@EA)e) > py N {A € T |A(°(A) ¢ < g} It was
shown in [26] that, for C € C’, inner and outer daseinisation follow the following
relation

§'(A)e <8 A)e <A < 8°A)e < 8°(A)c.

It then follows that p < A/ (§'(A)¢) < A/(8'(A)¢) and A (8°(A)¢) < A(8°(A)¢)) <
g.hence A’ € (5(A)"'(p.q)s)c N T

The above discussion showed that the map, § (A) : 2y — IR, as defined above
is continuous. Next we need to show that the induced map 8(1@) is indeed a map of
internal locales. To this end we recall that Loc(Sh(C(A))) ~ Loc/C(A), hence
to define a map between internal locales all we need to do is to determine the
corresponding map in Loc/C(A). For the case at hand such a map is given by the
following commutative diagram:

(.8(4))

I C(A) x IR R — (e [V} YP3))

[

C(A) Cc

Having defined the covariant daseinisation map we can now describe how
propositions are expressed in the covariant approach [42, 75].

Definition 11.4.3 Given A € A,, and (»,q) € OR) the propositionA € (p,q)is
represented by the element in O defined by

A€ (.l =847 (p.9)s (11.43)
= [ 2 eZdRE@0). A @)l € (p.g)s}. (1144
CeC(A)

At the level of the spectrum X we have that

A

Ac(pg]:1— 0%
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such that, for each context C € C(.A), the components are defined by

A

A€ (p.glc:lc— 0%

~Ae (gl =]]Acepal
c'AcC

It is also possible to write [A € (p, q)] directly in terms of the map S(A)_l. In
particular we first define the map (p,q) : 1 — OIR such that at each context
C € C(A) we have

(P, q@)c : 1c — OIRc
* = (p.g)c(x) =1 Cx (p,g)s.

Combining this with §(A)~! we obtain

[Ac(p.g)]=8A)"0o(pg):1— O%y.

11.4.1 Relation Between Covariant Propositions
and Contravariant Propositions

In this section we would like to analyse the relation between the covariant
definition of propositions as elucidated in the previous section and the contravariant
description given in [24, 26]. Recall from Definition 2.2.2 that in the contravariant
approach propositions are identified with clopen sub-objects of the state-space by
the process of outer daseinisation. In particular, given a proposition “A € A”, which
is represented by a projection operator P, then the corresponding topos proposition
is given by

§°(P) == (Gy(8°(P 11.4.5
)= (v W) (1.4.5)
where §°(P)y := A\{R € P(V)|R > P} and &y (8°(P)y) = {A € Z,|A(8°(P)y) =
1}.

Let us consider a general C*-algeb}a A and its collection of abelian subalgebras
V(A), given a self-adjoint operator A € A, using definition (11.4.5), one can write
the proposition A € (p, q) as

8Py =[] €=l xp9@)c = 1}, (11.4.6)
CeV(A)
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where x(y.q) (A) denotes the spectral projection operator associated to the proposition
A€ (9.
This way of expressing contravariant propositions better lends itself for a compar-
ison with the covariant approach. In fact one can already see that on the one hand
the definition of covariant propositions (11.4.3) relays on the approximation of the
operator A € A, on the other hand, in the contravariant propositions expressed
by (11.4.6) the entire projection associated to the proposition gets approximated.
In [75] it was shown that it is possible to express covariant propositions in terms
of the inner daseinisation of the contravariant approach. In this new definition,
similarly as is the case of the contravariant approach, the entire proposition gets
approximated, albeit via the inner daseinisation. In particular we have that, given a
proposition [A € (p.q)], this can be expressed in the covariant approach as

Ae(poh= ][] eZclr (tpo@)o) = 1. (11.4.7)
CeV(A)

In [75] it was shown that the two ways of expressing a proposition given in (11.4.6)
and (11.4.7) are equivalent.

Lemma 11.4.1 Consider a self-adjoint operatorA € Ay, and an element (p, q) €
O(R). For any C € V(A) and A € X it follows that:

1.[Ae .9l < [A e @ . .
2. If A € |[A € (p,q)]a for some A € Z¢, then A(§'(A)¢c) > p and A(8°(A)¢) < q.

In order to prove the above Lemma we need to introduce the notion of
Antonymous functions and observable functions [18]. These are used to describe
the Gel’fand transforms of the operators associated to the inner daseinisation and
outer daseinisation of self-adjoint operators. This is done in Sect. 4.1.

Proof Recall that the spectral resolution of a self-adjoint operator Ais given by
(Ef‘),em where Ef = X(—o0./] (A). We can now re-write Egs. (4.1.14) and (4.1.15) as
[74]:

A (A)c) = supir € R|1 — E* € Cu(Fy)} (11.4.8)
= sup{r € R[3P € P(C), A(P) = 1, P < Jp00)(A)} (11.4.9)

and
A(S°(A)c) = inf{r € RIE* € Ch(Fy)} (11.4.10)

= sup{r € R|3P € P(C),A(P) = 1, P < J(—oon(A)}, (11.4.11)

respectively. This will allow us to prove the claims of the above lemma.
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1. Assume thatA[A € (p,g))1 C [A € (p,g)]>. This is equivalent to the statement
that if A(6'(A)¢) > p and A(S”(A)c) < g hold, then A(§'(x(p.9(A))c) = 1.
However, from Eq. (11.4.8), if A(§' (A)c) > p then, for € > 0, there exists
a projection operator P e P(C) such that )L(P) land P < X[ p+e.c0) (A)
Similarly, from (11.4.10), if A(S”(A)C) < g, then there exists a projection
operator Q € P(C) such that A(Q) = 1 and Q X(=00.0) (A) If we define
R:= PO, thenR € P(C), )L(R) =1landR < Hlrte.s) (A) < X9 (A) Therefore
R < 6t (A))c and A (1pA))) = 1. -

2. Consider any A € X¢ such that 1 € [A € (p, g)]», then, A(§'(x(p.9)(A))c) =
1. However, since §'(x(.q) (A))C < X(~o0.q) (A), it follows from (11.4.10) that
)L(S”(A)c) < g. Similarly, since Si()((p,q)(A))c < )([p,oo)(A), (11.4.8) implies that
A6 A)e) = p.

O

11.5 Physical Quantities

In this section we will explain how physical quantities are defined in the covariant
approach. Similarly as for the contravariant approach, even in the covariant approach
physical quantities are defined as maps from the state-space to the quantity value
object. Since both the state space ¥4 and the quantity value object IR are
internal topological spaces, physical quantities will be identified by continuous
maps between internal topological space. It is worth, therefore, to recall how a
continuous map between internal topological space is defined. Consider the topos
Sh(T) for some topological space T, and two internal topological spaces X and Y
whose external description is given by the bundlesp : X — T andgq : ¥ — T,
respectively. By equipping X and Y with the topologies O(X) and O(Y), respectively
we can define a continuous map f : (X, O(X)) — (Y, O(Y)) as a sheaf morphisms

f:X—>Y
such that, for all U € P(Y), then’
UeO®)=f1(U)e0X)
where f~! = P(f) : P(Y) — P(X). Here P can be seen as a contravariant functor

P : Sh(T) — Sh(T) which sends each object B to its power object P(B) and each
morphism f : B — A to the map P(f) = P(A) — P(B), which is defined as the

SHere P(Y) denotes the power object of Y.
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only arrow making the following diagram commute

A x P(4)

7N

B x P(4) Q

B x P(B)

The map €p: B x PB — €2 is defined to be the arrow such that, given any map
f:BxA — Q, there exists a unique map g : A — PB which makes the following
diagram commute:

A Bx4d — > Q
g 1xg =1
€B
PB PxPB) — Q

By considering sheaves over T as etalé bundles over 7, then the map f : X — Y
corresponds to the commuting triangle

X —7
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where f is continuous with respect to the etalé topology. If f is also continuous
with respect to the coarser topologies on X and Y coming from the internal
topologies of O(X) and O(Y), then f corresponds to an internal continuous map
f 1 (X,0(X)) — (Y,O(Y)). This ends our small revision of continuous maps
between internal topological spaces. Next we will define physical quantities as maps
from the state space to the quantity value object however, in order to do so, we need
to introduce the functors representing lower and upper reals.

Definition 11.5.1 In [C(A), Sets] lower reals are given by the functor R; : C(A) —
Sets defined on:

1. objects: for each C € C(A) the functor R; assigns the set R;(C) := OP((1
(), R) of order preserving functions . :1 C — R;
2. morphisms: given a morphism D — C the corresponding morphism is
OP((1 D).R) — OP((1 O).R)
W= e

Similarly, we can define the functor of upper reals as follows:

Definition 11.5.2 In [C(A), Sets] upper reals are given by the functor R,
C(A) — Sets defined on:

1. objects: for each C € C(A) the functor R, assigns the set R,(C) := OR((1
(), R) of order reversing functions v :? C — R;
2. morphisms: given a morphism D — C the corresponding morphism is

OR((t D). R) — OR((1 €).R)
V= Ve
Having defined the functors of lower and upper reals we can now characterise
both outer and inner daseinisation in terms of them.

Theorem 11.5.1 ([74]) Given a self-adjoint operatorA € Ay, outer daseinisation
is identified with the internal locale map 8’ (A) : % 4, = R,. Since Loc/C(A) =
Loc(Sh(C(A))), outer daseinisation can be also identified in terms of the following
commuting diagram of continuous maps®:

%In the following the set R,, denotes the set of upper reals. The topology on R, is generated by the
lower half open intervals [—00,y),y € R.
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8°(A)
PN C(A) x R,

C(A)

where Xy was defined in Definition 11.4.1 while w was defined in (11.4.1).

Proof Consider the internal topological space of the upper reals R,,. In terms of
etalé bundles this can be expressed by the map

7w, Ry — C(A)
where the space R, is given by
R. = {s|s € OR((? O),R)}.

R. is equipped with the topology generated by the etalé opens: for each C € C(A)
and ¢ € R we defined the open

Ui,c ={s e Ry|D €1 C,s(D) < x}.

We can now express the diagram in Theorem 11.5.1 in terms of maps of etalé
bundles as follows:

8°(A)
> 1 C(A) X Ru

C(A)
where, for each A € (£4)c C € C(A), we obtain

§8°(A)(2) = D > A(8°(A)p) -
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We now need to check that §?(A) is continuous with respect to the topology
generated by the opens U, ¢. In particular we obtain

N

A 3°(A —o0,x) ifCCD

Q) U = |0 WP 700
ifDZC

where §°(A)p : Xp — R is given by the Gelfand duality. Clearly, for each D €

C(A) the set 8”(A)jl(Ux,c)D is open in Xp. Moreover, given AL € Xp and C C D

such that A|¢ € 8°(A)~!(U,.c) then, since

A(8°(A)p) < Alc(8°(A)c) < x,

it follows that A € §°(A)~' (U, ¢)p. Therefore §°(A)~! (U, ¢) is open in X4 since it
satisfies the conditions of Definition 11.4.1. O
A similar theorem holds for inner daseinisation.

Theorem 11.5.2 [74] Given a self-adjoint operator a € Ay, inner daseinisation
is identified with the internal locale map SL(A) : X4 — Ry Since Loc/C(A) =
Loc(Sh(C(A))), inner daseinisation can be also identified in terms of the following
commuting diagram of continuous maps’ :

§(4)
DI C(A) x R,

C(A)

Proof Consider the internal topological space of the lower reals R;. In terms of etalé
bundles this can be expressed by the map

Ry — C(A)
where the space R, is given by

Ri = {sls € OP((1 O).R)}.

7In the following the set IR; denotes the set of lower reals. The topology on IR, is generated by the
upper half intervals (y, +o0], y € R.
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R, is equipped with the topology generated by the etalé opens: for each C € C(A)
and ¢ € R we defined the open

Uic ={s € RyD et C,s(D) > x}.

We can now express the diagram in Theorem 11.5.1 in terms of maps of etalé
bundles as follows:

§'(A)
DIPS C(A) xR,

C(A)
where, for each A € (24)¢ C € C(A), we obtain
§'(A)(A) = D > A(S(A)p).

We now need to check that §/(A) is continuous with respect to the topology
generated by the opens U, ¢. In particular we obtain

§A)p (x,+00) ifCCD

§(A) " (Uye)p = I

where 85(%) p . Xp — Ris given by the Gelfand duality. Clearly, for each D € C(A)
the set &' (@)_I(UX,C)D is open in Xp. Moreover, given A € Xp and C C D such that
Alc € 8'(A)~1(U,c) then, since

A(8'(A)p) = A (A)c) > x,
it follows that A € §(A)~!(Uy.c)p. Therefore §'(A)~(U,.c) is open in X4 since it
satisfies the conditions of Definition 11.4.1. O

If we then combine the two above maps together we obtain the locale map

8(A) = (§'(A),8°(A)) : =4 — Ry x R,
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which externally is defined by the following diagram of continuous maps:

8(4)
N C(A) x R x R,

C(A)

At the start of this section we claimed that physical quantities are maps from the
state space X4 to the quantity value object IR, therefore we need to understand the
relation between IR and R; x R,,. We will start by considering the relation of the
corresponding sets. In particular we will define an injective map [74]

j:IR - R, xR,
[x, 5] = (x,y).

The fact that j is injective follows trivially from the definition, moreover j is
also continuous. In fact, since R; x R,, comes equipped with the product topology,
an open will be of the form ((r, +00] x [—00,s)), therefore the inverse image
J N ((r, +00] x [-00, 5)) is

(r,s) € OAR) if r < s

JH(r 0] x [-o0,8)) = |
Bifs<r
hence j is continuous.

From the definitions of inner and outer daseinisation given in previous sections
we know that, for each context C € C(A), §/(A)¢c < §?(A)c, therefore A(§'(A)¢) <
A(8°(A)¢) and hence (A(8'(A)c),A(8°(A)c)) € O(IR). This implies that the
daseinisation map can be factored through the map j. This is expressed by the
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following commuting diagram in Loc/C(A):

5(4)
PPN C(A) xR; xR,

idxj

=\ C(A) xIR

pPri

C(A)

In the above, the map 7y : C(A) x IR, — C(A) represents the external description
of the interval domain IR in [C(A), Sets], while the factorisation map X4 —
C(A) x IR represents the external description of the daseinisation map defined in
Definition 11.4.2. It is precisely in this sense that physical quantities are defined by
maps from the state space to the quantity value object.



Chapter 12
Space Time in Topos Quantum Theory

One of the main challenges in theoretical physics in the past 50 years has been
to define a theory of quantum gravity, i.e., a theory which consistently combines
general relativity and quantum theory in order to define a theory of space-time
itself seen as a fluctuating field (with respect to the connection and the metric).
Therefore, a definition of space-time is of paramount importance but, it is precisely
the attainment of such a definition which is one of the main stumbling blocks in
quantum gravity.

The reason for such a difficulty is the seemingly incompatible roles of space-time
put forward by general relativity and quantum theory. In fact, on the one hand, in
general relativity, although the presence of both the 4-dimensional metric and the
connection is assumed ab initio, they are both considered to be dynamical quantities
and there is no preferred foliation of space-time.

On the other hand, quantum theory assumes a fixed (with respect to its differ-
entiable structure and metric) space-time, implied by the mathematical formalism
of the theory. For example the Schrodinger’s equation describing unitary evolution
between measurements is ik aa'f = H1v where the notion of time is fixed, while the
measurement process “reduces” the state vector via the second law of evolution:

vo— H; KH where P is the projection on the outcome of the measurement.

Therefore the state gets projected on a spacelike surface. Clearly, a fixed geometry
of spacetime is needed to define both the time 7 in the Schrodinger equation and the
spacelike surface on which the state vector is reduced.

In classical physics the statement “the particle x has position y” makes sense,
however in quantum theory, in order to have meaning, this statement should be
changed to “if a measurement is performed on the position of the particle x, then it
will have a certain probability to give outcome y”. The difference in these statements
reveals the discrepancy that exists between any classical theory and quantum theory.
Although the full implications of this will be analysed in details later on, for now we
want to emphasise that the concept of measurement is essential for any statement
regarding quantum systems to make sense. This, in turn, implies that by necessity,
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a fixed space-time background has to be assumed in which the measurement takes
place.

However, such a notion of a fixed background structure seems hard to accommo-
date in a theory of quantum gravity, where the varying field is space-time itself. In
fact, by adopting quantum theory as it stands, a possible theory of quantum gravity
would have to make sense of statements of the form “if a measurement is made of
property x of the space-time field, then the outcome y will have probability z”, where
the notion of measurement requires a fixed space-time background.

But what can be said about the “structure” of such a space-time inherent in
quantum theory? To answer this question one has to go back and analyse how
exactly quantum theories come about. This is generally done through the process
of “quantization”, by which a classical theory is ‘transformed’ into a quantum
theory. Now in a classical theory, in general, the configuration space of the system is
mathematically represented by a differentiable manifold M, while the phase space
is represented by its cotangent bundle 7% M. When quantising a classical theory,
this concept of a phase space is inherited by the quantum theory. For example,
if the classical configuration is Q ~ G/H for some Lie groups G and H, then a
quantization of such a system would define the quantum states to be sections of a
vector bundle over O, whose fibres carry a representation of H. By definition, the
domain of these sections would be the continuum Q. If quantization is so defined,
and this begs the question as to why this is the case, then the space of values of
quantum states is modelled by the continuum. This mathematical description of
space-time agrees with that given by general relativity, which models space-time by
a differentiable manifold M, whose elements are interpreted as space-time points
and the gravitational field is given by the curvature tensor of the pseudo-Riemannian
metric on M.

Therefore, although mathematically space-time is treated in an analogous way
in both quantum theory and general relativity, its role in these two theories is very
different. However, when defining a theory of quantum gravity, the very definition
of space-time as a differentiable manifold is put into discussion. In fact, it is believed
that at microscopic scales, space-time ceases to be continuous but acquires a discrete
nature. Therefore, the continuum structure of space-time suggested by the two main
ingredients of quantum gravity seems to be refuted by quantum gravity itself. This
might seem an odd predicament, but it might also suggest that the mathematical
description of space-time required for quantum gravity should be radically different
from the continuum picture put forward by the two ingredient theories.

A candidate for an alternative description of space-time is given by the topos
approach. In this approach the notion of a space-time point is replaced by the notion
of a space-time region. Such regions should be interpreted as defining regions which
are occupied by “extended” objects.

The interesting feature is that the collection of such “regions” carry a Heyting
algebra structure, which is a generalised Boolean algebra where the law of excluded
middle does not hold. This mathematical description of space-time in terms of what
is technically called a locale fits well with the discrete notion of space-time put
forward by quantum gravity.
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12.1 A Lesson from Quantum Gravity?

As mentioned in the introduction, to date there is still no agreement upon the theory
of quantum gravity. It is still possible and useful to analyse the various proposals
to see if anything can be learned from them. In particular, we would like to get a
feeling for how a theory of quantum gravity should address three main topics which
we believe are directly related with the ensuing concept of space-time. These topics
are:

(1) the use of the continuum;
(2) the role of the Planck length;
(3) the relation to the instrumentalist interpretation of quantum theory.

Use of the Continuum Both in classical physics and in quantum theory the
continuum appears in three main areas:

1. To model configuration space.
2. As values of physical quantities.
3. As modelling the space of probabilities.

We will now analyse why the continuum is used in these areas and how its use in
quantum gravity doesn’t seem to be justified, other than as an a priori assumption.
[7, 16, 45].

1. To model configuration space. If we consider a particle moving in three-
dimensional space, we define its configuration to be R?. This is a consequence
of the fact that physical space is modelled by a differentiable manifold. This
comes as no surprise since we are used to measuring macroscopic objects with
pointers and rulers. So it seems that the choice of a differentiable manifold to
represent a classical configuration space is a consequence of modelling physical
space by a manifold. As discussed briefly in the introduction, such a conception
of configuration space is carried over to the quantum regime via the process of
quantization. Thus, by necessity, the mathematical description of quantum theory
is determined by a priori assumptions on the nature of space-time. The question
is then if such a priori assumptions are still justified in the context of quantum
gravity.

2. Values of physical quantities. In classical physics, quantities are real-valued. This
is a consequence of the fact that such values are defined in terms of measurements
carried out in the physical space, i.e. pointers and rulers which measure quantities
living in the classical physical space. Thus, by using the continuum to model
space-time, we also adopt the view that values of quantities should be real.
Similarly in quantum theory, eigenvalues are expected to be real numbers. If we
now consider quantum gravity, space-time is no longer a smooth manifold, thus
it seems harder to justify the fact that physical quantities are real-valued.

3. Probabilities. In both classical physics and quantum theory probabilities are
defined using the relative frequency interpretation. Namely, to obtain a proba-
bility of a certain outcome x;, one has to repeat the measurement a large number
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of times (N) and divide this number by the number of times the measurement
gave the desired result (N;), thus obtaining the probability of outcome x; to be
N/N;. By necessity this has to be a rational number which lies between 1 (always
obtain x;) and O (never obtain x;). If one takes the number of measurements
to be infinite, then N/N; € [0,1]. In this way quantum probabilities take
their values in the closed interval [0, 1]. However, to make sense of such an
interpretation one has to assume a continuum background space-time in which
the measurements take place. However, if there is no classical spatio-temporal
background in which observations can be made or if the relative frequency
interpretation results meaningless for that background, then how can one justify
the fact that probabilities should lie in the closed interval [0, 1]? There have been
other notions of probabilities put forward, namely as propensities, measures of
believes and possibilities. With respect to such interpretations it turns out that it
is harder to justify the closed interval [0, 1] as the space of probability values. In
fact, all that is really required from such a space is that it be a partially ordered
set with top and bottom element and equipped with a semi-additive structure so
that probabilities of disjoint events can be added. However, other than this, there
is no reason why [0, 1] should be chosen.

Planck Scale We know by now that a theory of quantum gravity aims at reconciling
quantum theory with general relativity. One of the striking features of quantum
gravity is that, although both general relativity and quantum theory treat space-time
as a 4-dimensional manifold equipped with a metric, quantum gravity would suggest
that, at the microscopic scale, space-time is somewhat discrete. For example,
approaches such as loop quantum gravity, spin foams, dynamical triangulation and
causal set, all suggest that at the fundamental level space-time is discrete. In fact,
it is believed that at the Planck scale classical space-time concepts cease to apply
and a new way of viewing space-time is needed, which is not based on the notion
of a continuum. In particular, the notion of point is not regarded as fundamental any
more but it is replaced by the notion of a ‘region’ which physical objects occupy. For
example in loop quantum gravity space-time is considered to be discrete, therefore
there exist ‘regions’ of space-time with the smallest area and volume which can’t
be divided into smaller regions. Such a geometry of space time is described by
spin foams [56]. Another example is given by Causal Dynamical Triangulations
(CDT)[2], in which geometry is decomposed into triangular chunks or their higher-
dimensional versions, respectively.

Therefore the continuum structure of space-time suggested by the two main
ingredients of quantum gravity seems to be thrown into discussion by quantum
gravity itself. This seems quite an odd predicament but it might suggest that perhaps
a different mathematical structure, other than a smooth manifold, should model
space-time. Clearly if such a new mathematical structure is defined, the questions to
answer are

(a) Does it relate to the conception of space-time of both general relativity and
quantum theory?
(b) Is the manifold structure emergent?
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Relation to Instrumentalist Interpretation Most proponents of a theory of
quantum gravity seem to adopt quantum theory without changing any of the math-
ematical formalism. This implies that they also inherit the conceptual interpretation
of the theory which is an instrumentalist interpretation. This interpretation heavily
relies on the distinction of observed system and observer and ascribes to the process
of measurement an almost ontological status. However, such an interpretation seems
to be problematic in the context of quantum gravity. In fact, if we consider quantum
gravity as a theory of the entire universe, which is a closed system, then the observer
and observed system distinction cannot be applied.’

Moreover, the notion of measurement in quantum theory requires a fixed space-
time background in which the measurement takes place. However, quantum gravity
is a theory of space-time itself seen as a dynamical quantity, hence the problem
arises as to how one could measure space-time properties? Where would this
measurement take place? Failing to clearly define measurements of space-time
properties jeopardises the entire edifice of quantum theory, since any prediction
of the theory is defined in terms of repeated sets of measurements. Hence the
instrumentalist interpretation of quantum theory seems to be inconsistent with a
theory of quantum gravity. However, if we analyse the mathematics which induces
such an interpretation, we quickly arrive at the conclusion that it is a consequence
of the Hilbert space formalism, which ‘comes equipped’ with the Born rule for
probabilities. This reflection would suggest that maybe a theory of quantum gravity
should make do without the Hilbert space formalism of quantum theory.

12.2 Modelling Space-Time as a Locale

Usually space-time is modelled in terms of the continuum, i.e. locally space-time
is simply defined in terms of R*. However, as discussed in the introduction, in
quantum gravity there seems to be no a priori justification for the adoption of the
continuum to model space time. Moreover, it seems that the notion of a point in
space time becomes secondary to the notion of a region. If one thinks about it, the
notion of a space-time point is hardly justifiable. In fact, when talking about objects
as being in space-time, these tend to occupy regions of space-time rather than points.
This would suggest that perhaps a description of space-time in terms of extended
regions might be more appropriate [11, 46]. As mentioned in the introduction, such
extended regions would have to satisfy a certain algebra, whose operations would
be given in terms of union, intersection etc.

IThere have been attempts to reconcile the distinction between observed-system and observer
by considering appropriate sub-systems [64], however, we feel that if quantum theory should be
regarded as the ultimate theory, then even the interactions of such systems should undergo quantum
laws, and the definition of a subsystem being an observer versus an observed system seems very
hard to accommodate and be made precise.
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With these reflections in mind, it seems reasonable to try to utilise some kind
of locale (see Sect.8.1) do describe space-time. A locale is the same thing as a
frame which carries a Heyting algebra structure, and we have seen that the latter
is the internal algebra of a topos. Hence, when considering topos theory as the
mathematical framework of quantum theory, one facilitates a discrete notion of
space-time.

In particular, in topos quantum theory space-time is modelled in terms of a locale
R called the quantity value object. This object plays the same role as the Reals
do in classical physics, i.e. it assigns values to quantities. These values, however,
are not real numbers, but are related to them in some way. By using the locale
R, the concept of a point becomes secondary while the concept of a “region” of
space becomes primary. Moreover, since a locale is equivalent to a complete Heyting
algebra, the collection of space-time regions undergoes an intuitionistic rather than
a classical (Boolean) logic. If one equates extended objects with the space-time
regions they occupy, then, at the Planck scale, modelling space-time in terms of
a locale would imply that statements of the form “an object ¥ occupies region A
or it does not” would be neither true nor false. This is another way of stating the
fact that, in standard quantum theory, given a vector ¥ € H and a subspace W of
H, ¥ can have non zero components in both W and W+, So it would seem that
modelling space-time, at least at the quantum level, as a locale, is in agreement with
known facts about quantum theory. Motivated by this, let us try and make the locale
definition of space-time more rigorous. As a first step we will introduce the rigorous
definition of the quantity value object and show how this can be interpreted as a
locale.

12.3 Topos Definition of the Quantity Value Object

We will now introduce the representation of the quantity value object R in
Sets” ™™ In classical theory, the quantity value object is simply the real numbers
since each quantity takes on, as its value, an element of the reals. Similarly, in
canonical quantum theory, we have the reals as the quantity value object. However,
in topos quantum theory, the quantity value object is an object which has the same
role as the reals have in standard quantum theory, but its elements will not be
numbers. Clearly, each element of the quantity value object will be related to the
real numbers in some way, but it will not be a real number itself.

It should be noted that in any topos there is an object which represents the real
numbers, in fact there are several of them [50, 55]. However, the quantity value
object we use for topos quantum theory is not one of them. As we will see, the
motivations for defining the quantity value object in topos quantum theory come
from physics requirements.

In the topos Sets” ™™ the representation of the quantity value object R is given
by the following presheaf [24, 28]:
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Definition 12.3.1 The presheaf R acts as follows:
(i) Objects’:

R7y = {(w, )|, vl V=R,

W is order-preserving, v is order-reversing ; 4 < v}.
(i) Arrows: given two contexts V' C Vthe corresponding morphisms is
R7y i R7y > Ry (1) = (s vpy)-

This presheaf is where physical quantities take their values, thus it has the same role
as the reals in classical physics.

The reason why the quantity value object is defined in terms of order-reversing
and order-preserving functions is because, in general, in quantum theory one can
only give approximate values to the quantities.

Let us analyse the presheaf R in more depth. To this end, we assume that
we want to define the value of a physical quantity A, given a state ¥. If ¥ is an
eigenstate of A, then we would get a sharp value of the quantity A, say a. If ¥ is not
an eigenstate, then we would get a certain range A of values for A.

Let us assume that A = [a, b]. Then what the presheaf R does is to single
out the extreme points a and b, so as to give a range (unsharp) of values for the
physical quantity A. Obviously, since we are in the topos of presheaves, we have
to define each object contextually, i.e. for each context V € V(H). It is precisely
to accommodate this fact that the pair of order-reversing and order-preserving
functions was chosen to define the extreme values of our intervals.

To understand this we consider a context V, such that the self-adjoint operator A,
which represents the physical quantity A, does belong to V and such that the range
of values of A at V is [a, b]. If we then cons1der the context V' C V, such thatA ¢ V,
we will have to approximate Asoastofit V. The precise way in which self-adjoint
operators are approximated is defined in [24, 28]. However, such an approximation
will inevitably coarse-grain A, i.e. it will deform it.

It follows that the range of possible values of such an approximated operator,
which we denote by SA, will be bigger. Therefore the range of values of SA atV
will be [c, d] 2 [a, b], where ¢ < a and d > b. These relations between the extremal
points can be achieved by the presheaf R through the order-reversing and order-
preserving functions. Specifically, given thata := u(V), b := v(V), vVcv implies
that ¢ := ,u(V/) < (V) (u being order-preserving) and d := v(V/) > (V) (v
being order-reversing). Moreover, the fact that u(V) < v(V) by definition, implies
that as one goes to smaller and smaller contexts V', the intervals (i (V’), v(V’)) keep
getting bigger or stay the same.

2A map p :J V — Ris said to be order-preserving if V' C V implies that (V') < (V). A map
v 1} V — Ris order-reversing if vV cv implies that v(V') D u(V).
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An example of the quantity value object can be found in [17].
This object R can be given the structure of a locale and hence, that of a
complete Heyting algebra.

12.4 Quantity Value Object as a Locale

We would like to apply the above mentioned procedure to the sheaf R so as to
construct the associated locale in SA(V(#)). As a first step, we will need to define
a continuous map relating R to V() equipped with the Alexandroff topology.
This can be done in various ways depending on what topology R is considered to
have.

12.4.1 Locale Associated to R Part 1

As shown in [75], it is possible to view R as a sub-object of a locale in Sh(V(H)).
In order to understand how this is indeed possible we, first of all, have to consider
the product V() x IR, where the set IR is the interval domain consisting of all
compact intervals [a, b] with a, b € R and a < b (see Appendix A.2). Normally, the
interval domain comes equipped with the Scott topology (Appendix A.2), however,
we will not consider such a topology when looking at the product V(#) x IR since,
instead of the product topology, we will consider a different topology. In particular,
any algebra V € V(#H) and (u,v) € R*(V) define a basic open U[V, (i, v)]
with (V',[a,b]) € U[V,(u,v)] if V/ € Vand u(V') < a < b < v(V).
It is straightforward to check that such opens form a basis for a topology on
V(H) x IR. In terms of such a topology, the projection map 7; : V(H) x IR —
V(#H) is continuous, hence a map between locales. Since m; is an element of
Loc/V(#H), we can now apply the previously defined procedure to obtain an internal
locale Loc(V(#H) x IIR), whose associated frame is O(V(H) x IIR). The sheaf
OV (H) x IR), for all V € V(H), is given by:

OVH) xIR)(I V) = OV(H) x IR)| yxir.
The associated presheaf R is a subpresheaf of O(V(#H) x IR) given by
gy : R (V) > O(V(H) x IR)(V)
(1. v) = ULV, (i, v)].
We would now like to utilise this map to show that R is a sublocale of

Loc(V(H) x IR). However, as a first step we need to define the locale structure
on R*. The first step is to put an ordering on R (V) for each V € V(H). We
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define (p,v) < (i, V") iffforall V' C V, (V') > w' (V') and v/(V’) > v(V’) The
operations of join and meet are then defined as follows:
for all V/ C V we have

() A NV = (A )V, (0 AVYV)
:= (max{u(V"), 1/ (V')}, minfv (V'),v'(V')})

and

() v (W 0NV = (v V), (0 v V) (V)
i= (min{p(V"), ' (V)}, max{v (V') v'(V))}),

where the right hand side of both equations is defined with respect to the total
ordering on R. It is now straight forward to show that (8.1.1) holds.

Theorem 12.4.1 R is a sublocale of Loc(V(H) x IR).

Proof In this proof we will utilise the fact that a sublocale is given by the nucleus
of the underlying frame (see Definitions 8.3.2(2) and 8.1.1). In this case, we will
show that for each V € V(H), ¢y defined above satisfies conditions (8.1.4). We
will first show that ¢y preserves meets, i.e. gy ((it,v) A (W, V") = ¢y, v) A
¢V(/¢Ll7 V/)' COHSidering ¢V(Mv V) A ¢V(HI5 V/) = U[Vv (,LL, V)] A U[Vs (M/v V/)] from
the definition of the opens U[V, (i, v)] it follows that U[V, (u, v)]AU[V, (i, v)] :=
UV, (u A ', v Av')] where i A 1 is defined for each context V/ € V as (u A
wH(V) = max{u(V'), w' (V")} and, similarly, (v A v")(V’) := min{v(V’), V' (V)}.
Applying the definitions we then get

v (. v) A (' V) = dy((n A p'), (v AV)) = UV, (A p',v AV

It now remains to show that ¢y satisfies (B.2) and (B.3). This, however, is equivalent
to the requirement that the image of R under ¢ is closed upon taking the pseudo-
complement, i.e. forall (u,v) € R (V) and forall W € O(V(H) x IR)(V), (W —
UV, (m.v)]) € ¢v (R (V). Here U[V., (w, v)] = V{U'|U AW < UV, (1, v)]}.
Since the opens U[V, (u, v)] are a basis of the topology on V(#) x IR, the result of
the theorem follows. O

The reason why the above topology was chosen for V(#H) x IR is because
the author in [75] wanted to analyse the connection between the topos approach
to quantum theory put forward by Isham and Doering and described above with
an alternative formulation by Heunen, Landsman and Spitters in [42]. This latter
formulation has as a starting point a C*-algebra .4 and an ambient topos Sets“Y
where C(A) is the category of abelian subalgebras of .A. They then promote A to an
internal C*-algebra A in Sets““ and define the spectrum X as an internal locale. In
this context, the quantity value object is identified with the internal locale of interval
domain IR (See Appendix A.2).
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Through the above construction it transpires that the quantity value object R* is
intimately related to IR.

12.4.2 Locale Associated to R Part I1

We now would like to analyse an alternative topology for the quantity value object
R*.

Given such a presheaf, we define the set R := [ [y¢ ;) Ry with associated
map pg : R — V(H) such that pg(u, v) = V for (u,v) € R*,,. We would like to
define a topology on R such that the map pg be continuous.

A possibility would be to define the discrete topology on each fibre pi' (V) =
RR* g In or Sign Up https://www.faceb which would accommodate for the fact that
Pr ¢ R — V(H) is an étale bundle. We could then define the disjoint union topology,
but this would not account for the ‘horizontal’ topology on the base category V(H)
given by the Alexandroff topology.

Another possibility would be to consider as a basis for the topology on R
the collection of all open sub-objects. Thus a basis set would be of the form
S = [Uyey) Sy such that S, is open in R, which is equipped with the discrete
topology. In such a setting, the ‘horizontal’ topology would be accounted for by the
presheaf maps.

Since each R, is equipped with the discrete topology, the topology on the
entire set R would essentially be the discrete topology in which all sub-objects of R
are open.

Obviously, with respect to such a topology, the bundle map pg would be
continuous since for each |, V, p~'(| V) = [yve w R**, will represent the open

sub-object whose value is R, for all |4 €l V and @ everywhere else.

We now have at our disposal the continuous map pg : R — V(#H) which is a
locale map. This gives rise to the geometric morphism pg : Sh(R) — Sh(V(H)). At
this point we can apply the procedure defined in the previous section to construct
the internal locale O(R) = pg«(QF) such that, for any V € V(#), we obtain

(Pre( @)y = Q% (pr' (V) = @°([ | R™)
Vel

where

Q][ ROy =(Sco®Isc [] R®y).

Vely Vely

We recall that

s= ][] sv (12.4.1)

Vel


https://www.faceb
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where Sy is an open subset of R . Since the latter has a discrete topology, the
basis will be formed of singletons. These are defined, for each V' C V as a pair
(1, v) :} V' — R of order preserving and order reversing functions taking values in
R, which describe varying intervals of real numbers. Conceptually what this means
is the following: for each context V € V(H), which represents a classical snapshot
of the quantum system, we obtain a “locale” space-time seen as a collection of
unions of varying intervals of real numbers. Such a space-time has the property that
when considering two contexts V' and V such that V' C V, then the intervals of
real numbers describing the space-time associated to the context V' are “bigger”,
i.e. are less precise and thus have less information than the intervals of the space-
time associated to the bigger context. Since these intervals are interpreted as the
regions of space-time which physical objects occupy, what the above result signifies
is that when going to a smaller contexts V’, which contains less information due to
coarse-graining, then the precision with which one is able to determine the position
of physical objects decreases.

12.4.3 Locale Associated to R

An alternative way of associating to the quantity value object a locale is by
considering the definition of the quantity value object put forward in [27]. This
new definition was the result of introducing the notion of a group and a group action
in the topos quantum theory framework. To achieve this, the topos utilised to define
quantum theory had to be slightly changed so that now the base category, although
still remaining V(#), is considered to be invariant under any group transformation,
i.e. the group acts trivially. This slightly different category is denoted by V,(H)
where f stands for fixed. All the group actions were relegated to an intermediate
category, resulting in a construction of sheaves over Vy(H) as sheaves over this
intermediate category and, then, “pushed down” to sheaves on Vy(H) in the
appropriate way. We will not go into the details of how this is done, but the interested
reader should refer to [27]. All that we will do in the present context is to state how
the resulting new quantity value object is defined.

Definition 12.4.1 The quantity value object R isa presheaf of order-preserving
and order-reversing functions on V;(#) defined as follows:

— On objects V € Vy(H) we have

v <> PN
R, := I R, ) (12.4.2)
¢ EHom({V .,V (H))
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where each?

R4 vy = {(w.v)|n € OP( ¢o(V).R) . p € OR(l ¢g(V).R), p < v}.
(12.4.3)
Here the maps ¢, : Vy(H) — V(H) defined by ¢,(V) = (7ng7;1 for g € G,
represent faithful representations of a given group G. The downward set | ¢, (V)
comprises all the sub-algebras vV C ¢¢(V). The condition u < v implies that for
all V' €] g (V), (V') < (V).
— On morphisms i/, : V > V(V CV), we get:

R7Gyy) : Ry — Ry (12.4.4)
I R, ) — 11 R%, ) (1245
$g€Hom({V,V(H)) by €Hom(IV' V(H))

where for each element (¢, v) € R $(v) W€ obtain

R (), v) = Re(i(pg(v),(pg,(v’))(ﬂv V) (12.4.6)

= (W) Vigy V') (12.4.7)

where Mg (V') denotes the restriction of u to | q&g/(V/) Cl ¢.(V), and
analogously for v, ).
8

We are now interested in defining a topology for R This was done in [27]. As a
first step we define the set

R= [] Ry = |J WixR, (12.4.8)

VeVr(H) VeVr(H)

where each R, := ]_[%eHom(w’v(H)) R“’¢g(v).
The above represents a bundle over V() with bundle map pr : R — V;(H)
defined by pr(u,v) = V, where V is the context such that (u,v) € R“’¢g(v). In

this setting pz' (V) = IR;) are the fibres of the map pr.

We would like to define a topology on R with the minimal requirement that
the map p is continuous. We know that the category Vy(H) has the Alexandroff
topology whose basis open sets are of the form | V for some V € Vy(H). Thus we
are looking for a topology such that the pullback p%'(} V) := [,/ W ]RV/ is open
inR.

3Here OP stands for order-preserving while OR stands for order-reversing.
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Following the discussion at the end of [27, Section 2.1], we know that each R* is
equipped with the discrete topology in which all sub-objects are open (in particular
each R, has the discrete topology).

Therefore we define a subsheaf Q of R to be open if for each V € Vy(H) the

set QV - ]RV is open, i.e., each Q¢ ) c R"’%(V) is open in the discrete topology
8

on ]R<"¢g(v). It follows that the sheaf R~ gets induced the discrete topology in
which all sub-objects are open. In this setting the ‘horizontal’ topology on the base
category V() would be accounted for by the sheaf maps.

For each | V we then obtain the open set p%'({ V) which has value ]RV/ at
contexts V' €| V and @ everywhere else.

Given the continuous map px, this can be seen as an element in Loc/Vy(H),
allowing us to construct the corresponding internal locale in Sh(Vy(7)). In particu-
lar, we consider the induced geometric morphism pr : Sh(R) — Sh(V;(H)). The
internal locale we are looking for is then given by O(R) = pr«(Q7), therefore,
for any open | V € V;(#) we obtain

OR V) =QRpr'd vy =R [] Ry)
Velv

where

QR[] Ry =tweom®wec [] Ry} =0R)y
Velv Velv

and

U= ] 11 Uy 'y (12.4.9)

V' eV pg€Hom({V' V(H))

In this situation, for each context V the “locale” space-time is a collection of
unions of equivalence classes of varying intervals of real numbers where such
equivalence is defined with respect to a group G.

A tentative interpretation is that these space-time regions represent diffeomorphic
regions of space-time. Since such a locale is a sheaf, one could interpret a global
section as a particular choice of space-time. Each such global section (choice of
space-time) would then be related to each other by space-time diffeomorphisms.

Summary In this section we have defined three different locales representing the
quantity value object. The first two of these locales are very similar and only differ
in the type of topology used to construct such a locale. The third locale, on the other
hand, carries also information regarding group transformations and, as such, it can
be seen as a covariant description of R.
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12.5 Modelling Space-Time as a Locale

In the previous section We have seen that the quantity value object of topos quantum
theory can be interpreted as an internal locale R and, hence, as a complete Heyting
algebra.

If we then modelled space-time in terms of the locale R, the concept of a
point would be secondary while the concept of a “region” of space would be
primary. Moreover, since a locale is equivalent to a complete Heyting algebra,
the collection of space-time regions would undergo an intuitionistic rather than
a classical (Boolean) logic. If one equates extended objects with the space-time
regions they occupy, then, at the Planck scale, modelling space-time in terms of
a locale would imply that statements of the form “an object ¥ occupies region A
or it does not” would be neither true nor false. This is another way of stating the
fact that in standard quantum theory, given a vector ¥ € H and a subspace W of
H, ¥ can have non zero components in both W and W+, So it would seem that
modelling space-time, at least at the quantum level, as a locale is in agreement with
known facts about quantum theory. Motivated by this, let us try and make the locale
definition of space-time more rigorous.

Since we would like to somehow retrieve the classical concept of space-time in
the appropriate limit, we take quantum space-time to be constructed in a similar way
as in classical physics, i.e. as the fourth power of the quantity value object. In order
to achieve this we need to introduce the notion of tensor product of locales. We will
do this in terms of frames.

Definition 12.5.1 ([73]) Given two frames A and B, the tensor product A ® B is

defined to be the frame represented by the following presentation:

T{a®b,ac Aandb € B|

/\(ai®b») =(/\a) /\b (12.5.1)

i

\/(al®b) \/ )® (12.5.2)
\/(a@b) =a® \/b (12.5.3)

In other words, we form the formal products, a ® b, of elements a € A, b € B and
WE subject them to the relations in Egs. (12.5.1)—(12.5.3). We note that there are
injective maps
i:A—>AQ®B
ar> a® true (12.5.4)
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and

j:B—>AQ®B
b true ® b. (12.5.5)

Alternatively, following [73, Proposition 6.4.2], it is possible to define the tensor
product of frames in a more categorical way as coproducts* of frames.

Lemma 12.5.1 Given three frames A, B, C and frame homomorphismsf : A — C
and g : B — C, there exists a unique frame homomorphismh : A ® B — C such
thatf =hoiandg = hoj.

An immediate corollary of the above is:

Corollary 12.5.1 pt(A ® B) >~ pt(A) x pt(B)

Proof The points pt(A ® B) correspond to frame maps p~' : A ® B — Q. By
the property of coproducts, such maps are uniquely defined as the product maps
[Py, pp'] for the frame maps p;' : A — Qand p;' : B — Q. O

Equipped with this definition, we can now define space-time to be the locale
R®R ® R ® R =: R* constructed by iterations of Definition 12.5.1. Because of
Lemma 12.5.1, the object R* is defined as a coproduct in Sh(V(H)).

In this setting we then interpret space-time as the internal locale R* in Sh(V(H)).
Clearly according to which of the above defined locales we consider R to be, we
will obtain a slightly different interpretation of space-time, however all agree on the
fact that the basic notions are now given by extended regions rather than points. It is
not clear at this point which locale would be more suitable to represent space-time.
We leave the answer to this question as a topic for a subsequent study.

The implications of adopting a localic description of space-time and the detailed
analysis of the physics it might ensue is beyond the scope of the present chapter.
In the present instance we are only interested in describing possible alternative
mathematical descriptions of space-time which do not rely on the notion of the
continuum.

A natural question to ask is if the notion of a point can be defined within these
locales. In particular, can the notion of a sheaf of points of the locales be defined?
Making use of Corollary 12.5.1, we know that the presheaf pt(R*) ~ x4pt(R),
therefore it suffice to analyse the single presheaf pt(R). We will now analyse such
an object for each of the locales defined in the previous section.

4Coproducts are the categorical generalisation of disjoint unions in Sets.
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12.5.1 Can We Retrieve the Notion of Space-Time Points?

It is natural to ask the question of how the points of the locales used to model space-
time are represented assuming they exists. It turns out that it is possible to retrieve
the notion of a point for all three of the locales defined in the previous section.
The “collection” of such points will itself be a sheaf in SA(X). In order to define
the points of internal locales we will make use of the functor /Pt : Loc(Sh(X)) —
Top(Sh(X)), where Loc(Sh(X)) is the category of internal locales in Sh(X), while
Top(Sh(X)) is the category of internal topological spaces in Sk(X). This functor is
the internal analogue of the functor defined in (12.5.1). IPt is the right adjoint of
ILoc : Top(Sh(X)) — Loc(Sh(X)) which is the internal analogue of (8.1.7).
Internal topological spaces are defined as follows:

Definition 12.5.2 ([68]) A topological space object in a topos t consists of a pair
(A, T,) where T4, C PA such that the following conditions are satisfied

1.0 € Tx and A € Ty.
2. Forall BB ¢ PAifBe Tyand B’ € Ty then BN B’ € Ty.
3. Forall S € P(PA),if S C T4 then | JS € Tx.

Where | : P(PA) — PA is the exponential adjoint of the characteristic morphism
of the sub-object of P(PA) x A consisting of those elements (S, a), such that there
exists a B € PA for which a € B and B € S. Similarly () : P(PA) — PA is the
exponential adjoint of the characteristic morphism of the sub-object of P(PA) x A
consisting of those elements (S, a) such that forall B € PAif B € S, thena € S.

In the particular case in which the topos 7 is Sh(X) for some topological space X,
the above definition reduces to the following

Definition 12.5.3 ([69]) Consider a sheaf A in Sk(X) for some topological space X

with topology Tx and its associated etalé bundle A Lx.A topological structure on
A consists of a second topology on A, T4, which is courser than the etalé topology
but which still makes the map p continuous.
In the present situation, the topological space we are considering is V(#) equipped
with the Alexandrov topology. In this case Sh(V(H)) ~ Sets”™™ therefore
also an internal topological space will be a presheaf Y. This implies that for each
V € V(H), Y, will be a topological space in Sets with the appropriate topology. The
corresponding etalé space would then be ¥ = ]_[VEv(H Y, and the finer topology
Ty will be identified with the appropriate disjoint union topology. The definition
of ILoc : Top(Sh(X)) — Loc(Sh(X)) is now straightforward: given an internal
topological space Y then Loc(Y) is a presheaf such that, for each V e V(H),
ILoc(Y)y := {U|Uis openin Y} and it is the locale associated to the topological
space Y, in Sets. Therefore, for each V € V() we have ILoc(Y)y = Loc(Yy).

In the same way IPt : Loc(Sh(X)) — Top(Sh(X)) is such that, given a locale L
then Ipt(L)y := pt(Ly). The adjointness relation Loc 4 Pt induces the adjunction
ILoc — IPt.
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In the previous sections we have seen that, for any topological space X, we have
the following equivalence of categories Loc(Sh(X)) ~ Loc/X, hence another way
of defining a point of an internal locale L in Sh(X) is as a continuous cross section
m:L—>X.

In the following we will consider each locale defined in the previous section
and for each of them construct its points. For notational simplicity we will denote
IPt simply as Pt, keeping in mind that we are now considering internal locales and
topological spaces.

Point of the Locale Loc(V(#H) x IR) As briefly discussed in [42], the points of
the locale Loc(V(#H) x IR) are given by the presheaf pt(Loc(V(#H) x IR)) such
that for each V € V() we obtain the set given by a collection of pairs of sub-
objects of @, as follows:

ptLoc(V(H) x IR)(V) = {(L. U)yy| ¥V C V., (12.5.6)
(L(V"), U(V")) is an element of the locale TR},

where both L and U are sub-objects of the constant presheaf @) which assigns to
each V € V(H) the rationals Q. Therefore, for each V' C V, the pair (L(V'), U(V"))
satisfies Definition A.1.1.

However, since we are interested in the sublocale R, we will only consider a
subpresheaf of pt(Loc(V(#H) x IR)). In order to understand how the points in R
are defined, let us go back to the locale Loc(V(#H) x IIR) with associated frame
O(V(H) x IR), where O(V(H) x IR)(V) = O(] V x IR). Each of these sets is
isomorphic to the set of order-preserving functions OP(] V, O(IIR)). In particular,
given a topological space X, there is a standard bijection O(X) ~ C(X, S) where S
is the Sierpinski space {0, 1} whose only non-trivial open set is {1}. This bijection
is defined as f : U +— yyand f~' : g — g~ !({1}). Applying this result to the
case at hand, we obtain that O(} V x IR) >~ C({ V x IR, S). However, as shown
in [42], because of lambda-abstraction C(| V x IR, S) ~ C(| V,S™). Moreover,
C(R,S) >~ O(R), therefore O(] V x IR) >~ C(] V,O(R)). In this setting
continuity is given by monotonicity, therefore we replace C({ V, O(IR)) by OP({
V, O(IR)) obtaining the following isomorphisms:

O{ VxIR) - C(] VxIR,S) —C{ V, S]RR) — OP(] V,O0R))
U = Xu = hyy = 8hyy

where

1 iff (V. [a,b]) €U

xu(V' [a,b]) =
v 0 otherwise

hyy ! Vi xu(V,—)
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and
gy Ve (G0 V )T = (s bllo(Vifab) =13 (125.7)
= {[a.bll(V". [a.b]) € U}).

We will now utilise the isomorphism O(] V x IR) ~ OP({,O(IR)) to allow
us to relate points of Loc(V(#H) x IR), defined in (12.5.6) to order-reversing maps
1 V — OR). In particular, to each element of IR there corresponds an open U €
O(IR) via the equivalence betweenp : 1 — IR andp~! : O(IR) — £ and, to each
such open U, there corresponds a map 8hyy - Now, since we are in Sets, the element
(L(V"), U(V")) defines a compact interval [sup(L(V")), inf(U(V’))] so that pt(IRR)
can be identified with the classical Scott interval domain (See Appendix). Therefore,
to each pair (L(V’), U(V")), there corresponds an open W € O(IR) such that the
interval [sup(L(V")),inf(U(V'))] € W. However, since each such pair is defined
forall | V, then each (L, U)|,y defines a map g, :{ V — O(IR) which, in turn,
identifies an open U € O(V(H) x IR). In this way, the set pt(Loc(V(H) x IR))(V)
can be written as

pt(Loc(V(H) x IR))(V) = {(L, U)yv| V V' C V,
V', [sup(L(V")),inf(U(V")]) € O(] V x IR)}
> {gn, ¥ V—> OIR)}.

However, we are only interested in elements of the sublocale R*". Recalling that
the sublocale map takes elements (u, v) and maps them to base opens U[V, (i, V)],
then

PURT)(V) ={(L. U)|yv[3 (k.v) eRTy stV V' CV,
1(V') < sup(L(V") < inf(U(V') < v(V)}.

Recall that the compact intervals [a, b] seen as elements of IR are ordered by
reverse inclusion. Therefore, the condition u(V’) < sup(L(V’)) < inf(U(V")) <
v(V’) implies that the interval [ (V’), v(V’)] is the biggest, i.e. the one with least
amount of information.

In this setting, pt(IR*") can be seen as a presheaf such that for each V € V(H),
the set pt(R)(V) is a collection of assignments to each V' C V of an interval
domain [sup(L(V")), inf(U(V’))] associated to a global element (u,v) € T'(R®).
This interval domain represents a refinement of the information contained in the
interval [u(V’), v(V')].

Points of the Locale R We are now interested in analysing the points of the locale R
with associated frame O(R). In particular, the correspondence between Loc(Sh(X))
and Loc/X for some topological space X implies that the points of the locale R
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correspond to continuous cross-sections of &= : R — V(#). These are the locale
maps:

¢:V(H) - R
Vi (V.¢(V))

where ¢ (V) € R (V). At the level of frames we then have

¢~ OR) — O(V(H))
Uvuy = AV € VAH)I$(V') = (. v) v/}

where Uy () = {(V', (1, v)|v/|[V' € V} is a basic open set for the topology on
R. Since ¢ is continuous, the set ¢~ (Uy(,.v)) is open in the Alexandroff topology
of V(H). This implies that if ¢(V) = (u,v) and V' C V then ¢(V') = (i, v)|v.
Hence a point of the locale R corresponds to a global section of R, i.e. pt(R) =~
'R*.

In [19, Proposition 4.2] it was shown that TR ~ OP(V(H),IR). As a first
step the authors notices that each order-preserving map f :| V — IR can be
decomposed into two maps fy,f- :J V — R which pick out the end points of
the interval, i.e. f(V) := [f=(V),f+(V)]. This implies that f_ < f} and f_ is order-
preserving while, f is order-reversing.

On the other hand, each pair (i, v) € R gives rise to an order-preserving map
[} V— IR such that f(V') = [u(V"), v(V')] for all V' C V. This correspondence
implies that we can now characterise the presheaf R in terms of the interval
domain as follows:

Theorem 12.5.1 The quantity value object R acts on
* objects: forall V € V(H),
RT(V) ={f :} V- IR|f is order-preserving }
e Morphisms: for all iyry : V' CV
R @iyy) :RT(V) > RZ(V):  feflyv.
Given this new characterization, one can show that TR ~ OP(V(H),IR) as
follows:
Consider a global element y : 1 — R*. This, for each V € V(#), assigns

out an element py := yy({*}) :J V — IR. Since the global element is a natural
transformation, its naturality implies that py» = R (iy/v)(py) = pv|wv, therefore
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each global element y gives rise to a map:

py : V(H) = IR
V/ (= pVIl,V’

where V' C V. This is well-defined since for any other V”, such that V C V”, we
have p, |y = pv = py|y. The fact that it is also order-preserving follows from
naturality.

On the other hand, given an order-preserving map p : V(H) — IR, we can
define a global element by setting py := p|y for all V e V(H).

This result implies that

pt(R) ~ OP(V(H),IR).

Therefore the points in the locale utilised to eventually model space-time are order-
preserving functions from the context category to the interval domain. They describe
varying intervals of real numbers.

Points of the Locale R We will now define the points of the last locale which
represents a possible candidate for modelling space-time. Clearly such a locale is
intimately connected to the locale R and, as a consequence, also the characterization
of its points will be very similar. In fact, the locale R can be written out as R =
Hvevay Ug:yv—vay R (@(V)). Therefore, for each V € V(H), we obtain

pRWV)~ ] p®@V)~ [ ORU ¢(V).IR).

o V=>V(H) ¢yV—=>V(H)

What this implies is that the presheaf pt(R) assigns to each V € V(H) a collection of
intervals [ (V), v(V)] all related by a group transformation. Conceptually this might
be interpreted as stating that the points of the locale R represent equivalence classes
of intervals under some group transformation. Therefore, if we consider space-time
to be modelled by such a locale, then space-time points become equivalence classes
of regions under a symmetry transformation. So for a point p € pt(R(V)), we will

write p = [ 5.y Py 4 (V) — IR.

12.6 Conclusions

Most theories of quantum gravity seem to suggest that, at the fundamental level,
space-time has a discrete structure. As discussed in the introduction, this view of
space-time seems to contradict the way in which it is described, both in quantum
theory and in general relativity. In fact, in both these two theories, space-time
is seen as a continuum modelled on the real numbers. This discrepancy of the
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description of space-time between quantum theory and general relativity on the
one hand and quantum gravity on the other seems rather surprising, since quantum
gravity is supposed to combine general relativity with quantum theory in a coherent
framework. This odd feature has motivated some researchers to question the fact
that space-time should be modelled by a continuum and has suggested that, also at
the level of quantum theory and general relativity, a new mathematical model for
space-time should be created. In this chapter we proposed an alternative definition
of space-time put forward by topos quantum theory. Such a definition consists of
modelling space-time in terms of a locale where, now, the fundamental space-time
building blocks are regions, not points. This idea reflects the fact that space-time
points are not physically meaningful since real objects occupy space-time regions.

A locale is equivalent to a complete Heyting algebra. Therefore, modelling space-
time in terms of a locale can be interpreted, roughly, as modelling space-time
via an algebra of open regions of space-time where, the algebraic operations are
interpreted as defining unions and intersections of space-time regions. The reason
why open regions are preferred is to account for quantum indeterminacies given by
the generalised uncertainty principle. Therefore, modelling space-time via a locale
seems to resonate more accurately with our common-sense interpretation of space-
time.

In this chapter, we propose various candidate locales which are all ultimate
related to one another. Each of these locales could be adopted for modelling space-
time, however a discussion on which one would be the best suited is left as a topic for
future research. To derive the above mentioned locales, we started with the quantity
value object of topos quantum theory which plays the same role as the Reals in
classical physics. This object being a sheaf, we applied the standard technique to
‘transform’ sheaves into a locale internal to the appropriate topos. When considering
the locale associated to the quantity value object R, we discovered that, for each
context, the elements of such a locale were identified with collection of unions of
pairs of order-preserving and order-reversing functions, from the context category
to the interval domain. These describe unions of varying intervals of real numbers.
Conceptually what this means is the following: for each context V € V(#) which
represents a classical snapshot of the quantum system, we obtain a “locale” space-
time seen as a collection of unions of varying intervals of real numbers. Such a
space-time has the property that, when considering two contexts V’ and V such that
V' C V, then the intervals of real numbers describing the space-time associated to
the context V’ are “bigger”, i.e. are less precise and, thus, have less information,
than the intervals of the space-time associated to the bigger context. Since these
intervals are to be interpreted as the regions of space-time which physical objects
occupy, what the above result signifies is that when going to a smaller contexts
V’, which contains less information due to coarse-graining, then the precision with
which one is able to determine the position of physical objects decreases. Moreover,
when considering the locale associated to the ‘covariant’ quantity value object
IVR, we discovered that for each context V the “locale” space-time was considered
to be a collection of unions of equivalence classes of varying intervals of real
numbers, where such equivalence was defined with respect to a group G. A tentative
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interpretation is that these space-time regions represent diffeomorphic regions of
space-time. Since such a locale is a sheaf, one could interpret a global section as
a particular choice of space-time. Each such global section (choice of space-time)
would then be related to each other by space-time diffeomorphisms. Clearly this is
a very speculative idea and a much more thorough analysis is needed to determine
whether such an interpretation is physically reasonable. As previously stated, in this
chapter we only want to elucidate possible candidates for an interpretation of space-
time which makes no fundamental use of the continuum. This is a first step towards
defining a mathematical model of space-time. In fact, although the discreteness
of space-time in quantum theory is almost universally accepted, no mathematical
model of discrete space-time has been constructed so far. We hope that this article
will provide ideas for possible such models by offering various candidates. Which,
if any, of these candidates would be the most appropriate choice for representing
space time is a question that still remains to be answered and will be the topic of a
subsequent studies.



Chapter 13
Extending the Topos Quantum Theory
Approach

As it has been developed so far, the mathematical formalism of topos quantum
theory only allows for taking into consideration one physical system at a time.
This has clearly some limitations, in particular when trying to consider composite
systems. Hence it comes natural to try and enlarge the mathematical formalism so
that is possible to take into consideration various physical systems at the same time.
This implies considering a topos somewhat “larger” than the topos Sets”7)”" In
particular what needs to be “enlarged” is the category V(). In fact this category
only refers to the physical system with associated von Neumann algebra A/, whose
category of abelian subalgebras is given by V(#). However we would like to
consider all physical systems, each of which, has associated to it a different von
Neumann algebra. To account for this, one possibility would be to construct a
category in which each element is itself a topos which represents the mathematical
formalism of a physical system. Then one would have to construct a mapping
which associates to each physical system its associated topos. The aim would be
to turn this map into a geometric morphism of some sort between topoi, such that it
possesses nice properties which would help to better understand composite systems.
In the following we will present all work done so far in this direction, which is an
exposition of the results obtained in [30]. As it will be clear in due course, there are
still many open problems to be addressed.

C*-algebra theory is a blend of algebra and analysis which turns out to be much
more than the sum of its parts, as already illustrated by its fundamental results of
Gelfand duality and the GNS representation theorem. Nevertheless, the C*-algebra
axioms seem somewhat mysterious, and it may not be very clear what they mean
or where they actually ‘come from’. To see the point, consider the axioms of
groups for comparison: these have a clear meaning in terms of symmetries and the
composition of symmetries, and this provides adequate motivation for these axioms.
Do C*-algebras also have an interpretation which motivates their axioms in a similar
manner?
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A plausible answer to this question would be in terms of applications of C*-
algebras to areas outside of pure mathematics. The most evident application of
C*-algebras is to quantum mechanics and quantum field theory [35, 52, 70].
However, also in this context the C*-algebra axioms do not seem well-motivated.
In fact, not even the multiplication, which results in the algebra structure, does have
a clear physical meaning. This is in stark contrast to other physical theories, such
as relativity: especially in special relativity, the mathematical structures that come
up are derived from physical considerations and principles, often via the use of
thought experiments. A similar derivation of C*-algebraic quantum mechanics does
not seem to be known.

Hence it seems pertinent to try and reformulate the C*-algebra axioms in a more
satisfactory manner that would allow for a clear interpretation.

13.1 C#*-Algebras as Functors CHaus — Sets

In this section, we explain how to regard a C*-algebra as a functor CHaus — Sets,
and how this encodes the usual functional calculus for normal elements in a C*-
algebra, as well as its multivariate generalization.

The Yoneda embedding realizes a C*-algebra A as the hom-functor

C*alg,(—,A) : C*alg;® — Sets.

We are interested in studying this hom-functor on the commutative C*-algebras,
meaning that we consider its restriction to a functor cC*alg;” — Sets. Applying
Gelfand duality, we can equivalently consider it as a functor

—(A) : CHaus — Sets,

assigning to every compact Hausdorff space X € CHaus a set X(A), which is the
set of all *-homomorphisms C(X) — A. Our notation X(A) suggests thinking of it
as the set of generalized A-points of X.

Example 13.1.1 If X is finite, a *-homomorphism C(X) — A or generalized A-
point in X corresponds to a partition of unity in A indexed by X, i.e. a family of
pairwise orthogonal projections summing up to 1.

Example 13.1.2 1f A is a W*-algebra, the spectral theorem [31, Theorem 1.44]
implies that X(A) is precisely the collection of all regular projection-valued
measures on X with values in A.

Remark 13.1.1 In terms of algebraic quantum mechanics, where a physical sys-
tem is described by a C*-algebra A of observables [52, 70], we interpret a
x-homomorphism « : C(X) — A as a projective measurement with values in X,
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described in the Heisenberg picture. So the physical meaning of our X(A) is as the
collection of all measurements with outcomes in the space X.

Those *-homomorphisms C(X) — A, whose image is in the center of A, are
called C(X)-algebras, and they correspond exactly to upper semicontinuous C*-
bundles over X [58].!

At the level of morphisms, every f : X — Y acts by composing a -
homomorphism & : C(X) — A with C(f) toa o C(f) : C(Y) — A, so that

f(A) : X(A) — Y(A)
(13.1.1)
a+— aoC(f)

is the action of f on generalized A-points.

Remark 13.1.2 The physical interpretation of f(A) is as a post-processing or
coarse-graining of measurements. Under f(A), a measurement o : C(X) — A
with values in X becomes a measurement o o C(f) : C(Y) — A with values in
Y, implemented by first conducting the original measurement ¢« and then processing
the outcome via application of the function f. Since we work in the Heisenberg
picture, the order of composition is reversed, so that C(f) happens first.

This construction is also functorial in A: for any *-homomorphism ¢ : A — B
and X € CHaus, we have X(¢) : X(A) — X(B). Furthermore, for any f : X — Y
there is the evident naturality diagram

x4y L v

X(Z)J/ J/Y(E)

X(B) — > Y(B)

which expresses the bifunctoriality of the hom-functor C*alg, (—., —) in our setup.
Before proceeding with technical developments, it is worthwhile pondering on
how these considerations relate to functional calculus.

13.1.1 Functoriality Captures the ‘Commutative Part’
of the C*-Algebra Structure

In a somewhat informal sense, the functor —(A) captures the entire ‘commutative
part’ of the structure of a C*-algebra A. We will obtain a precise result along these
lines as Theorem 13.3.1. Here, we perform some simple preparations.

'We thank Klaas Landsman for pointing this out to us.
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Lemma 13.1.1 For any compact set S < C, evaluating an o : C(S) — A on
idS S — C,

o — a(idy), (13.1.2)

is a bijection between S(A) and the normal elements® of A with spectrum in S.

Proof If a, B : C(S) — A coincide on idg, then they must coincide on the *-algebra
generated by idg. Since idg separates points, this *-algebra is dense in C(S) by the
Stone-Weierstrass theorem, so that « = f by continuity. This establishes injectivity
of (13.1.2).

Concerning surjectivity, applying functional calculus to a given normal element
with spectrum in S results in a x-homomorphism C(S) — A which realizes the given
element via (13.1.2). O

Due to this correspondence, we will not distinguish notationally between a -
homomorphism e« : C(S) — A and its associated normal element, i.e. we also denote
the latter simply by « € A. Moreover, we can also think of a *-homomorphism
C(X) — A for arbitrary X € CHaus, as a sort of ‘generalized normal element’ of A.

For any two compact objects S,7 € C and f : S — T, functional calculus—in
the sense of applying f to normal elements with spectrum in S—is encoded in two
ways:

e inevaluatingan« : C(S) - Aonf : S — C, as in the proof of Lemma 13.1.1;
¢ in the functoriality f(A) : S(A) — T(A), since applying this functorial action to
o results in the same normal element of A,

3.1

Y (@ o C(f)(idr) = a(C(f)(idr)) = a(idr of) = a(f).
(13.1.3)

F@A)(@)(idr) !

From now on, what we mean by ‘functional calculus’ is the functoriality, i.e. the
second formulation.

Writing O C C for the unit disk, the normal elements of norm < 1 are identified
with the *-homomorphisms « : C(Q)) — A. For every r € [0, 1], we have the
multiplication map r- : O — (), so that (r-)(A) : O(A) — (O(A) represents scalar
multiplication of normal elements by r. Based on this, we can recover the norm of
anormal element & € (O(A) as the largest r for which « factors through C(r),

|la|]| = max {r € [0,1] | @ € im((r-)(A)) } .

As we will see next, the functoriality also captures part of the binary operations
of a C*-algebra.

2Given a C*-algebra A, a normal element a € A is an element such that aa* = a*a.
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Lemma 13.1.2 For S, T C C, applying functoriality to the product projections
ps - SXT — S, pr : SXT—T (13.1.4)

establishes a bijection between (SxT)(A) and pairs of commuting normal elements
(o, B) € A x Awithsp(a) C Sandsp(f) € T.

This generalizes Lemma 13.1.1 to commuting pairs of normal elements. Of
course, there are analogous statements for tuples of any size (finite or even infinite),
and this encodes multivariate functional calculus.

Proof We need to show that the map
(ps(A).pr(A)) : (§xT)(A) — S(A) x T(A)

is injective, and that its image consists of precisely the pairs (¢, 8) with« : C(S) —
Aand B : C(T) — A, that have commuting ranges. Injectivity holds because py :
SxT — Candpr : SxT — C separate points, so that the same argument as in the
proof of Lemma 13.1.1 applies. For surjectivity, let « and B be given. Since their
ranges commute, we can find a commutative subalgebra C(X) C A that contains
both, so that the pair (c, §) has a preimage in the upper right corner of the diagram

(§x )(CX) ——= S(CX)) x T(C(X))

| i

(Sx T)(A) —— S(4) x T(A)

Now the upper row is equal to the canonical map CHaus(X,S x T) —
CHaus(X, S) x CHaus(X, T), which is a bijection due to the universal property of
S x T. Hence we can find a preimage of («, §) also in the upper left corner, and then
also in the lower left corner by commutativity of the diagram. O

In the physical interpretation, the elements of (S x T)(A) are measurements that
have outcomes in § x 7 (Remark 13.1.1). Lemma 13.1.2 now shows that such a
measurement corresponds to a pair of compatible measurements taking values in S
and 7, respectively, and one obtains these measurements by coarse-graining along
the product projections (13.1.4), i.e. by forgetting the other outcome.

As part of bivariate functional calculus, we can now consider the addition map

SxT — S+T, (x,y) — x +y, (13.1.5)
where S + T is the Minkowski sum

S+T={x+y|lxeS,yeT},
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again considered as a compact subset of C. Under the identifications of Lem-
mas 13.1.1 and 13.1.2, the addition map

+@A)  (SxDA) — (S+T1)A). (13.1.6)
takes a pair of commuting normal elements with spectra in S and 7 and takes it to a

normal element with spectrum in S + 7.

Lemma 13.1.3 On commuting normal elements, this recovers the usual addition
in A.

Proof By Lemma 13.1.2, it is enough to take a y € (S x T)(A) and to compute the
resulting normal element that one obtains by applying +(A) in a manner analogous
to (13.1.3),

(13.L1) (y o C(+))(idsy7) = y(idsyr 0 +)

= y(lds o ps =+ ldT OpT)

(+(A)(y)(ids+r)

= y(ids o ps) + y(idr o pr)
= (y o C(ps))(ids) + (y o C(pr))(idr)

C2Y (ps(A) () (ids) + (pr(A)) () (idr).

where the crucial assumption of additivity of y has been used to obtain the
expression in the third line. O
In the analogous manner, one can show that the multiplication map

SxT — ST, (x,y) —> xy. (13.1.7)

lets us recover the product of two commuting normal elements in A. More generally,
we can recover any polynomial or continuous function of any number of commuting
normal elements.

Summarising, we think of the functor —(4) : CHaus — Sets associated to A €
C*alg, as a generalization of functional calculus, which remembers the entire ‘com-
mutative structure’ of A. The generalization is from applying functions to individual
normal elements—as in the conventional picture of functional calculus—to applying
functions to ‘generalized’ normal elements in the guise of *-homomorphisms of
the form C(X) — A. In particular, the C*-algebra operations acting on commuting
normal elements are encoded in the functoriality. In the remainder of this chapter, we
will always have this point of view in mind, together with its physical interpretation:

functoriality = generalized functional calculus = post-processing of measurements.

Remark 13.1.3 In Sect. 13.2.2, we will also consider functors F : CHaus — Sets
that do not necessarily arise from a C*-algebra in this way. In terms of the physical
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interpretation, this means that, instead of modelling physical systems in terms of
their algebras of observables, as the primary structure, we model them in terms
of a functor F, as the most fundamental structure that describes physics. This
is motivated by the fact that the C*-algebra structure of the observables is (a
priori) not physically well-motivated, as discussed in the introduction. Thanks to
Remarks 13.1.1 and 13.1.2, our functors F : CHaus — Sets do have a meaningful
operational interpretation in terms of measurements: F(X) is the set of (projective)
measurements with outcomes in X, and the action of F on morphisms is the post-
processing. This bare-bones structure turns out to carry a surprising amount of
information about the algebra of observables. We will try to equip F with additional
properties and structure such as to uniquely specify the algebra of observables.

In spirit, this approach is similar to the existing reconstructions of quantum
mechanics from operational axioms [34]. In recent years, a wide range of recon-
struction theorems, with a large variety of choices for the axioms, have been derived,
as pioneered by Hardy [39, 40]. In these theorems, ‘quantum mechanics’ refers to
the Hilbert space formulation in finite dimensions, and the reconstruction theorems
recover the Hilbert space structure within the framework of general probabilistic
theories. In contrast to this, our work focuses on the C*-algebraic formulation of
quantum mechanics and it is not limited to a finite-dimensional setting. Moreover,
we do not make use of the possibility of taking stochastic mixtures since we are
(currently) only dealing with projective measurements, therefore, taking stochastic
mixtures is not possible in our setup.

13.2 C*-Algebras as Sheaves CHaus — Sets

Functional calculus let us apply functions to operators or, more generally, to *-
homomorphisms C(X) — A as in the previous section. In some situations, one
can also go the other way: for certain families of functions {f; : X — Y;},e; with
common domain, a collection of x-homomorphisms {8; : C(Y;) — A}es arises
from a unique x-homomorphism « : C(X) — A by functoriality along the f;, if and
only if the B; satisfy a simple compatibility requirement. This property is a sheaf
condition, and it turns our functors —(A) into sheaves on the category CHaus.

We would like to emphasis that the sheaf conditions that we consider do not
arise from a Grothendieck topology (on CHaus®), since the axiom of stability
under pullback fails to hold. Moreover, sheaf conditions are typically formulated
for contravariant functors (i.e. presheaves), instead our sheaves live in a covariant
setting. To emphasize this distinction we could have named our sheaves ‘cosheaves’,
however this term usually refers to dualizing the standard notion of sheaf on the
codomain category, while we dualize on the domain category, hence we did not find
the name appropriate.

A good way of talking about sheaf conditions on large categories is not in
terms of sieves or cosieves—which would usually have to be large—but in terms
of cocones or cones [65]:
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Definition 13.2.1 A cone in CHaus is any small family of morphisms {f; : X —
Y;}ie; with common domain.

Definition 13.2.2 A functor F : CHaus — Sets satisfies the sheaf condition on
acone {f; : X — Yi}ies if the F(f;) implement a bijection between the sections
a € F(X) and the families of sections {B;}:c; with B; € F(Y;) that are compatible in
the following sense: for any i,j € I and any diagram

Ji
—_—

i (13.2.1)

N
N<——

e
h

we have F(g)(Bi) = F(h)(B)).
Since CHaus has pushouts, the compatibility condition holds if and only if it
holds on every pushout diagram

P

1

Y — Yl

L=

Hence the sheaf condition holds on {f;} if and only if the diagram

FX) — [[ron —Z []re: 1, v,
i€l ijel

is an equalizer in Sets, where the arrows are the canonical ones [55, p. 123]. At
times it is convenient to apply the compatibility condition as in (13.2.1) instead of
considering the pushout, while at other times it is necessary to work, explicitly, with
the pushout.

13.2.1 Effective-Monic Cones in CHaus

Since we are interested in sheaf conditions satisfied by a functor of the form —(A) :
CHaus — Sets for A € C*alg,, it makes sense to first consider the commutative
case. Then our functor takes the form —(C(W)), which is isomorphic to the hom-
functor CHaus(W, —).
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Definition 13.2.3 (e.g. [65, Definition 2.22]) A cone {f; : X — Y:};ey in CHaus
is effective-monic if every representable functor CHaus(W, —) satisfies the sheaf
condition on it.

Hence { f;} is effective-monic if and only if X is the equalizer in the diagram

X — l_[Yf - H(Yfﬁuﬁ 1),

iel ijel

or, equivalently, the limit in the diagram

(13.2.2)

Y

Before giving some examples we recall the definition of a representable functor.

Definition 13.2.4 Given a locally small category C, a functor F : C — Sets is said
to be representable if it is naturally isomorphic to the Hom-functor Hom(A, —) :
C — Sets for some object A € C. A representation of F is a pair (A, ®) where

®: Hom(A,—) - F

is a natural isomorphism.

Example 13.2.1 Let A be a small category and L : A — CHaus a functor of which
we consider the limit limy L € CHaus. The limit projections p, : limy L — L(1)
assemble into a cone { py}rea, Which is effective-monic.

Fortunately, it is not necessary to consider arbitrary W in Definition 13.2.3:

Lemma 13.2.1 A cone {f;} is effective-monic if and only if CHaus(1, —) satisfies
the sheaf condition on it.

Proof CHaus is well-known to be monadic over Sets, with the forgetful functor
being, precisely, the functor of points CHaus(1, —) : CHaus — Sets. In particular,
this functor creates limits. O
The above discussion implies that X must be the subspace of the product space
[1,e; Yi consisting of all those families of points {y;}c;, such that the image of
yi € Y; coincides with the image of y; € Y; in the pushout space Y; . Hﬁ_ Y;. This
condition also applies for j = i, in which case it is equivalent to y; € im(f;).
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Remark 13.2.1 For a given Y, the cone of all functions {f : X — Y}px_y is
effective-monic for every X if and only if Y is codense.

While these categorical considerations have been extremely general, we will now
analyse CHaus in more details. We write [0 := [0, 1] x [0, 1] for the unit square,
and consider it as embedded in O € R? = C, where the unit interval [0,1] € Ris
an edge of .

Lemma 13.2.2 For every X € CHaus, the cone {f : X — O}.x_o consisting of
all functions f : X — O is effective-monic.

By Remark 13.2.1, this is a restatement of the known fact that [1 is codense in
CHaus [44].

Differently from the ‘conventional’ sheaf condition, which states that a function
is uniquely determined by a compatible assignment of values to all (local neighbour-
hoods of) points, the above sheaf condition states that a point is uniquely determined
by a compatible assignment of values to all functions.

Proof We need to show that the diagram

X— [[o— ][] @,uDn

R —
f:xX—0 ghX—0

is an equalizer. Since functions X — [ separate points in X, it is clear that the map
X — []; O is injective.

Surjectivity is more difficult. Suppose that v € ]_[f: v 1 1s a compatible family
of sections. Then in particular, we have

v(hf) = h(v(f)) forall h:0—0O (13.2.3)

as an instance of the compatibility condition, since the square

fJ/ (13.2.4)

commutes.

We have to show that there exists a point x € X with v(f) = f(x) forallf : X —
0. This set of equations is equivalent to x € ﬂf f~1(v(f)). Hence it is enough to
show that ﬂf fY(v(f)) is non-empty. By compactness, it is sufficient to prove that
any finite intersection

[ U N0 )
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for a finite set of functions fi, ...,f, : X — O is non-empty. Using induction on n,
the induction step is obvious if for given fi, /> we can exhibit g : X — 0O, such that

g (@) = £ () NE ().

First, by (13.2.3), we can assume that both f; and f, actually take values in [0, 1],
e.g. by considering

h : O—1J0,1], t— |t—v(f)]

and replacing f; by h,f], which results in

(13.2.3)

() wnf) =" BT (i )) = 71 0TH0) = £ (),

and similarly for f,. After this replacement, we can take g(¢) := (f1(¢),f2(?)), and the
induction step is complete upon applying (13.2.3) to the two coordinate projections.

Finally, we need to show that any individual set f~!(v(f)) is non-empty as the
base of the induction. To this end, given a s € [0, 1] \ im(f), choose % such that
h(im(f)) = {0} and i(s) = 1 by the Tietze extension theorem. Then

0 =v(0) = v(#f) = h(v(f)),

and hence v(f) # s. Therefore v(f) € im(f), as it was to be shown. O

The effective-monic cone {f : X — O};.x_.g will be of particular importance
on subsequent sections. To better understand effective-monic cone and shed some
light on their general behaviour we will consider some other examples which
arise in CHaus. However, before doing so we should point out that, as shown
in the counterexample given in the proof of [44, Theorem 2.6], Lemma 13.2.2
does not hold with [0, 1] in place of . However, if X is extremally disconnected?
Lemma 13.2.2 is an immediate consequence of the following result:

Lemma 13.2.3 If X is extremally disconnected, then {f : X — 4} is effective-
monic.

Here, we write 4 := {0, 1,2, 3}, and the proof uses indicator functions yy : X —
4 of clopen sets Y C X.

Proof Since the clopen sets separate points, the injectivity is again clear and the
burden of the proof is in the surjectivity. To this end let v : 4¥ — 4 be a compatible
family of sections.

3 A topological space is said to be extremally disconnected if the closure of every open set in it is
open.
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As in the proof of Lemma 13.2.2, we show that the intersection

N Y

Y clopen, v(yy)=1

is non-empty. From compactness and an induction argument similar as the one given
in the proof of Lemma 13.2.2, it is enough to show that, for any clopen Y;,Y, C X
with v(yy,) = 1 and v(yy,) = 1, we also have v(xy,ny,) = 1. To see this, we
consider the function

f:: XY] +2XYza

and then apply the compatibility condition in the form (13.2.3) for various h. If
we choose & such that 0,2 — 0 and 1,3 — 1 we obtain that if = yy,, hence
v(f) € {1, 3}. Similarly, if we choose & such that 0,1 — 0 and 2,3 — 1 we obtain
hf = yv,, therefore v(f) € {2, 3}. Overall, we obtain v(f) = 3, and apply & with
0,1,2 — 0 and 3 — 1 to conclude v(yy,ny,) = 1 from if = yy,nv,.

So there is at least one point xog € X such that v(yy) = 1 implies xy € Y for all
clopen Y € X. We then claim that v(f) = f(xo) for all f : X — 4. This follows
from writing

S=0xy, +1xy, +2xv, + 3xv,

for a partition of X by clopens Yy, Y1, Y», Y3 C X, and applying (13.2.3) with &, such
that v(f) + 1, while the other three integers map to 0. O

A singleton cone {f : X — Y} is effective-monic if and only if f is injective. For
cones consisting of exactly two functions, the necessary and sufficient criterion is
as follows:

Lemma 13.2.4 A cone {f : X — Y, g : X — Z} consisting of exactly two functions
is effective-monic if and only if the pairing (f, g) : X — Y X Z is a Mal’cev relation,
meaning that f and g are jointly injective and their joint image

R:=im((f,g) S YxZ
satisfies the implication
((y, JeR. (V.9eR  (nd)e R) =  (V.d)eRr
(13.2.5)

For the notion of Mal’cev relation, see [32].

Proof We use the criterion of Lemma 13.2.1. The injectivity part of the sheaf
condition is equivalent to injectivity of (f,g) : X — Y x Z. Assuming that this
holds, we identify X with the joint image R C Y x Z.
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Now if { f, g} is effective-monic and we have y,y’ € Yandz,7 € Zasin (13.2.5),
then each of the three pairs (y, z), (¥, z) and (y, Z') represents a point of X. Therefore,
since (y, z) is in particular a compatible pair of sections, in Y LI ¢ Z the image of y
coincides with the image of z. If we apply the same reasoning to (3, z) and (y, 7),
then also y" and 7, respectively get mapped to the same pointin ¥ 1, Z. Hence also
(y',7) is a compatible pair of sections, which must correspond to a pomt of X due
to the sheaf condition.

Conversely, suppose that (13.2.5) holds. The pushout Y 11, Z is the quotient of
the coproduct Y I Z by the closed equivalence relation generated by f(x) ~ g(x)
forall x € X, i.e. by y ~ z for all (y,z) € R. In terms of relational composition, it is
straightforward to check that

idyriz URUR® U (Ro RP) U (R o R)

is already an equivalence relation thanks to (13.2.5). As a finite union of closed sets,
itis also closed, hence two points in ¥ LI Z get identified in ¥ LI, Z if and only if
they satisfy this relation. In particular, y € Y and z € Z map to the same point in
Y 1, Zif and only if (y,2) € R. O

In general, the pushout of an effective-monic cone along an arbitrary function is
not effective-monic again. The following example shows that the effective-monic
cones on CHaus do not form a coverage (see Definition 13.2.5); an even more
drastic example can be found in the proof of Proposition 13.2.2.

Example 13.2.2 Take X := 4 = {0, 1,2, 3}, and consider two maps to spaces with
3 points,

f:40,1,2,3} —{01,2,3}, g :{0,1,2,3} — {0,1,23},

as illustrated by the projection maps in Fig. 13.1. By Lemma 13.2.4, this cone is
effective-monic. However, taking the pushout along the identification map

h:{0,1,2,3} —> {0,12,3}

Fig. 13.1 Illustration of the 3 e 3e
cone {f, g} of 2 e —>f 20
Example 13.2.2 0o 1
o o Ole
g
0 1 23
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results in a cone consisting of f : {0,12,3} — {012,3} and g’ : {0,12,3} —
{0, 123}. Since the criterion of Lemma 13.2.4 fails, the cone {f’, g’} is not effective-
monic. In particular, the pushout of an effective-monic cone is not necessarily
effective-monic again. Worse, the collection of all effective-monic cones is not a
coverage (see Definition 13.2.5), in fact, for our original {f, g}, there does not exist
any effective-monic cone {k; : {0, 12,3} — Y;};e; such that every k;7 would factor
through f or g,

{01,2,3}
! \
[
[
{0,1,2,3} ———— {0, 1,23} |9
g
h [
hl o |
7> y
{0,12,3} >y,

ki

The reason is as follows: for every i € I, we would need to have k;(0) = k;(12) or
ki(12) = k;(3). If the former happens, consider the point y; := k;(3) € Y;, while if
the latter happens take y; := k;(0). (If both cases apply, these two prescriptions result
in the same point y; = k;(0) = k;(3).) It is easy to check that the resulting family of
points { y;}ies is compatible. However, it does not arise from a point of {0, 12, 3}. In
fact, since the k; must separate points, there must be i with k;(0) = k;(12) # k;(3),
and another i with k;(0) # k;(12) = k;(3). Hence neither of x € {0, 12, 3} results in
the given compatible family, and the cone {k;} is not effective-monic.

Incidentally, the cone {f’, g’} from above is arguably the simplest example of a
cone that separates points (it is jointly injective) without being effective-monic.

We recall the definition of a coverage to be

Definition 13.2.5 Given a category C, a coverage on C consists of a function
assigning to each object U € C a collection of families of morphisms {f; : U; —
U}iej called covering families, such that given any morphism g : V — U, then there
exists a covering family {/; : V; — V} such that each composite g o k; factors though

some f;, i.e.
U;
| Ji
U

k
_—

&
N <~—

B
8
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The previous example can also be understood in terms of effectus theory [47,
Assumption 1]: the relevant pushout square is of the form

id+f
W+Y —— W+Z7

g+id l l g+id

X+Y —— X+Z7
id+s

where ‘+’ is the coproduct in CHaus and both f and g are the unique map2 — 1. In
general, any cone consisting of id+f : W4+Y — W4Zand g+id : W+Y — X+Y
is effective-monic by Lemma 13.2.4.
It is conceivable that there are deeper connections with effectus theory than just
at the level of examples, but so far we have not explored this theme in depth.
Going back to C*-algebras, we record one more statement about cones for further
use.

Lemma 13.2.5 A cone {f; : X — Y;} separates points if and only if the ranges of
the C(f;) : C(Y;) = C(X) generate C(X) as a C*-algebra.

Proof By the Stone-Weierstrass theorem, the C*-subalgebra generated by the
ranges of the C(f;) equals C(X) if and only if it separates points (as a subalgebra).
This C*-subalgebra is generated by the elements g; o f; € C(X), where g; : ¥; —
[0, 1] ranges over all functions, and hence the subalgebra separates points if and
only if these functions separate points. This in turn is equivalent to the f; separating
points, since the g; : ¥; — [0, 1] also separate points. O

13.2.2 How to Guarantee Commutativity?

The previous subsection was concerned with sheaf conditions satisfied by the
functors —(A) for commutative A. Now, we want to investigate which of these sheaf
conditions hold for general A.

Definition 13.2.6 An effective-monic cone {f; : X — Yi}ies in CHaus is
guaranteed commutative if every functor —(A) satisfies the sheaf condition on it.

In detail, —(A) satisfies the sheaf condition on {f;} if and only if restricting a
x-homomorphism « : C(X) — A along all C(f;) : C(Y;) — C(X) to families
Bi : C(Y;) — A, that are compatible in the sense that §; 0 C(g) = p; o C(h) for every
diagram of the form (13.2.1),
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fi

X ——= Y
| lg
Z

results in a bijection. In terms of the functor C : CHaus®™ — C*alg,, this holds if
and only if the diagram

i

Y, ——
h

: C(Y)

()

CH)

CCY) ey €L 5 C(X)

: C(Y))

which is the image of (13.2.2) under C, is a colimit in C*alg,. Here, we have used
the canonical isomorphism C(Y; fiHﬁ Y) = C(Y) el C(Y;), which holds
because C is a right adjoint. So we are dealing with an instance of the question:
which limits does C turn into colimits?

Remark 13.2.2 Interms of the physical interpretation of Remarks 13.1.1 and 13.1.3,
the sheaf condition on a cone {f; : X — Y;} states that every compatible family of
measurements with outcomes in the ¥; corresponds to a unique measurement with
values in X, which coarse-grains to the given measurements via the f;.

The terminology of Definition 13.2.6 is motivated by the following observation:

Lemma 13.2.6 An effective-monic cone {f; : X — Yi}ies is guaranteed commuta-
tive if and only if, for every A € C*alg, and compatible family B; : C(Y;) — A, the
ranges of the B; commute.

Proof Suppose that the criterion holds. For A € C*alg,, we show that restricting
a *-homomorphism C(X) — A to a compatible family of x-homomorphisms
C(Y;) — A is a bijection. We first show injectivity. To this end let o, &’ : C(X) — A
be such that the resulting families coincide, i.e. 8; = ,3; . In particular, this means
that the range of each §; coincides with the range of !, and hence im(«) = im(e’)
by Lemma 13.2.5. We are, then, back in the commutative case, where Gelfand
duality and the effective-monic assumption apply.

For surjectivity, let a compatible family 8; : C(Y;) — A be given. By assumption,
there is some commutative subalgebra B C A which contains the ranges of all j;,
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and it is sufficient to prove the sheaf condition with B in place of A. The claim then
follows from Gelfand duality together with the assumption that {f;} is effective-
monic.

Conversely, if the sheaf condition holds on a functor —(A), then the §8; : C(Y;) —
A all arise from restricting some « : C(X) — A along C(f;)) : C(Y;)) — CX).
In particular, the range of every f; is contained in the range of «, which is a
commutative C*-subalgebra. O

The crucial ingredient here is the fact that commutativity is a pairwise property,
in the sense that if any family of elements in a C*-algebra commute pairwise, then
they generate a commutative C*-subalgebra. We will meet this property again in
Definition 3.1.5.

In the sense of Lemma 13.2.6, the question is under what conditions an effective-
monic cone ‘guarantees commutativity’ of the ranges of a compatible family.

Example 13.2.3 The effective-monic cone of Example 13.2.2 is guaranteed com-
mutative. In terms of indicator functions of individual points, the compatibility
assumption on a pair of *-homomorphisms B, : C({01,2,3}) — A and B, :
C({0,1,23}) — A s that

Br(xo1) = Bg(xo) + Bg(x1)s Be(x23) = Br(x2) + Br(x3)-

So B4(xo) is a projection below Br(xo1), and in particular orthogonal to 8(y2) and
Br(x3), so that it commutes with every element in the range of ;. Proceeding like
this proves that the ranges of By and 8, commute entirely.

Example 13.2.4 Let T C C be the unit circle, and py, py : T — [—1, +1] the two
coordinate projections. Then the cone { ps, ps} is effective-monic. This can be seen
by either applying Lemma 13.2.4 or, alternatively, noting that applying ps and pgy
establishes a bijection between points of x and pairs of numbers yy, yy € [—1, +1]
with y%t + yzSv = 1. Hence compatible families {8y, B} are *-homomorphisms
Bn : C(|—1,4+1]) — A and By : C(—1,+1]) — A that correspond to self-
adjoint elements By (id), Bx(id) € [—1,+1](A) with By (id)*> + Bx(id)*> = 1.
Functional calculus tells us that such a pair of self-adjoints arises from a unitary
if and only if they commute. As a counter example consider an A with non-
commuting symmetries si and sg, this gives rise to a compatible family upon
defining By := sp/+/2 and By := s3/+/2. However, such a family does not arise
in the way described above. Therefore { py, px} is not guaranteed commutative.

So far, we know of one powerful sufficient condition for guaranteeing commuta-
tivity:

Definition 13.2.7 An effective-monic cone {f; : X — Yi};; in CHaus is directed
if for every i € I there is a cone {g. : ¥; — Z};e;, which separates points, and it is
such that forevery i,i’ € I and j € J;,j € Jy there is k € I and a diagram
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X

Ji Jr
2
Y; Yy Yy
o N
7 z

Note that this definition can be considered in principle in any category.

(13.2.6)

Proposition 13.2.1 If{f;} is effective-monic and directed, then it is also guaranteed
commutative.

Proof By Lemma 13.2.6, it is enough to show that the ranges of a compatible family
{Bi : C(Y;) - A} commute. By Lemma 13.2.5, it is enough to prove that the range
of B; o C(gﬁ) : C(Z{) — A commutes with the range of B o C(gf::) : C(ZZ,/) — A
forany i,i’ € I andj € J;,j’ € Jy. Thanks to (13.2.6) and the compatibility, both of
these ranges are contained in the range of f; : C(Yy) — A, which is commutative.
|

Example 13.2.5 Let 2NN be the Cantor space, with projections p, : 2V — 2" for
every n € IN. Then the cone { p, },en is effective-monic and directed. Therefore it is
also guaranteed commutative.

More generally, let A be a small cofiltered category* and L : A — CHaus
a functor of which we consider the limit limy L € CHaus. The cone of limit
projections { p) : limy L — L(A)} is effective-monic (Example 13.2.1). With the
trivial cones {id} on the codomains L(1), the cofilteredness implies that the cone is
also directed, and therefore guaranteed commutative. What we have shown hereby
in a roundabout manner is that a filtered colimit of commutative C*-algebras is again
commutative.

Unfortunately, the converse to Proposition 13.2.1 is not true:

Example 13.2.6 The effective-monic cone {f, g} of Examples 13.2.2 and 13.2.3 is
not directed, despite being guaranteed commutative. The reason is that the additional
cones, as in Definition 13.2.7, would have to contain some / : {12,3,4} — Z;,
with h(3) # h(4), and, similarly, some k : {1,2,34} — Z34 with k(1) # k(2).
By (13.2.6), this would mean that the cone {f, g} would have to contain a function
that separates both 1 from 2 and 3 from 4, which is not the case.

4A (finitely) cofiltered category is a category C in which every finite diagram has a cone. The dual
notion is that of a filtered category. A diagram F : C — D for C a cofiltered category is called a
cofiltered diagram. A limit of a cofiltered diagram is called a cofiltered colimit. Again, dual notions

apply.



13.2 C*-Algebras as Sheaves CHaus — Sets 265

While Proposition 13.2.1 is sufficiently powerful for the results of this chapter,
it remains an open question to find a necessary and sufficient condition for
guaranteeing commutativity.

Lemma 13.2.7 For any X € CHaus, the cone {f : X — 0O} of all functions
f: X — Ois directed.

By Lemma 13.2.2, we already know that this cone is effective-monic. By
Proposition 13.2.1, we can now conclude that it is also guaranteed commutative.

Proof In Definition 13.2.7, take every {gé}je J; to be the cone consisting of all
functions [0 — [0, 1]. Since the pairing of any two functions X — [0, 1] is a function
X — [0, the cone {f : X — [} is directed. O

In terms of Remark 13.2.2, Lemma 13.2.7 ‘explains’ why physical measurements
are numerical. In fact, for every conceivable measurement with values in some
arbitrary space X, conducting that measurement and recording the outcome in X
is equivalent to conducting a sufficient number of measurements with values in O
and recording their outcomes, which are now plain (complex) numbers.

Lemma 13.2.8 If two cones {fi : W — Yi}ic; and {gj : X — Z;}je; are effective-
monic and directed, then so is the product cone

{fix g WxX—YiXZ}ijerx-

Proof Let {hf : Y; — Uflrex, and {k] : Z; — V}}ser, be the families of additional
cones that witness the directedness. Then for (i,j) € I x J, consider the cone at
Y; X Z; given by

{hf.‘py,. Y xZ — U{‘} U {k]l-pzj YixZ — VII} (13.2.7)

with index set K; IT L;. This cone separates the points of X; x Y}, since any two
different points differ in at least one coordinate. To check that the condition of
Definition 13.2.7 is satisfied, one needs to distinguish the cases of the left and the
right morphism in (13.2.6) belonging to either part of (13.2.7). The only interesting
case that comes up is when one considers a hfpyi Y xZy — U{‘ together with a
kjl-pzj Yy xZp — XV}, resulting in a diagram of the form

WxX

Y x Zy Yy x Z;
o l / \ l Kpz,
k 1
U /

where indeed the central vertical arrow can be taken to be f; x g;. O
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In combination with Lemma 13.2.7, we therefore obtain:

Corollary 13.2.1 For any X,Y € CHaus, the cone {f x g : X x Y — O x O}
indexed by all functions f : X — O and g : Y — O is directed.
Another simple class of examples is as follows:

Lemma 13.2.9 Let {f; : X — Y;}ic; be an effective-monic cone on X € CHaus.
Then the cone

(i) X = Yo x Yy}

consisting of all finite tuplings of the f; is effective-monic and directed.
Alternatively, we could phrase this as saying that, if an effective-monic cone is
closed under pairing, then it is directed.

Proof Mapping points of X to compatible families of points in all finite products
[1,= Y, is trivially injective, since it is already so on single-factor products
due to the effective-monic assumption. Concerning surjectivity, the compatibility
assumption guarantees that the component (y,...,y,) € ¥;, X ... x Y; is uniquely
determined by the components in every individual y;, since this is precisely the

compatibility condition on diagrams of the form

(fiy seifin) n

X — []%.

m=1

fim l Pm

)/im Yim

Hence the new cone is also effective-monic.
The condition of Definition 13.2.7 holds by construction, with the trivial cone
{id} on the codomains. O
Next, we briefly investigate the collection of directed effective-monic cones in
its entirety.

Proposition 13.2.2 The collection of all directed effective-monic cones on CHaus
is not a coverage (see Definition 13.2.5).

Results along the lines of [61, Theorem 1.1] indicate that this is not due to the
potential inadequacy of our definitions, but rather due to fundamental obstructions
related to the noncommutativity.

Proof Consider X := {0, 1} together with the three product projections py, 2, p3
{0,1}* — {0,1}. Applying a similar reasoning as that utilised in the proof of
Lemma 13.2.2 it can be deduced that their three pairings

{(plvPZ)v (PlsPS)v (stPS) . {0, 1}3 — {O, 1}2} (1328)
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form an effective-monic cone. From the proof of Lemma 13.2.7 it follows that this
cone is directed.

Now consider the function f : {0, 1}* — 4 defined by mapping every element of
{0, 1}3 to the sum of its digits. In any square of the form

(p1.p2)
{017 —— {0,1}?

we necessarily have

h(f(000)) = (00) = A(f(001)) = h(f(010)) = g(01)
=h(0)

= h(£(010)) = ... = h(f(110)) = ... = h(f(111)).
i) —h2) i)

and therefore & must be constant. By symmetry, the same must hold with (py, p3) or
(p2, p3) in place of (p1, p2). Hence any cone on 4 that factors through (13.2.8) must
identify all points of 4. In particular, no such cone can be effective-monic, let alone
directed. O

We close this subsection with another potential criterion for guaranteeing
commutativity.

Lemma 13.2.10 The following conditions on a cone {f; : X — Y;} in CHaus are
equivalent:

1. For every x € X and neighbourhood U > x there exists i € I with

[T (i) e U

2. For every x € X and neighbourhood U > x there exist i € I and a neighbourhood
V 3 fi(x) with

vy cu.

3. The sets ofz‘heformfi_1 (V) for open 'V C Y; form a basis for the topology on X.
Proof

1=2: Since X \ U is compact, f;(X \ U) is a closed set, and disjoint from {x}
by assumption. Now take V to be any open neighbourhood of f;(x) disjoint
from f;(X \ U).
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2=3: Supposex € £ (V)N fj_1 (V}). Then by assumption, there is k and an open
Vi C Y with fy(x) € Vj such that

K S v 0.

3=1: There must be a basic open f!(V;) with x € £;1(V;) € U. O

Definition 13.2.8 If the above conditions hold, we say that the cone {f;} is locally
injective.

Clearly, a locally injective cone separates points. However, it is not necessarily
effective-monic:

Example 13.2.7 The cone consisting of all three surjective functions 3 — 2 is
locally injective. However, it is not effective-monic since the pushout of any two
different maps 3 — 2 is trivial, and hence there are 2* compatible families of points
in the cone, but only 3 points in X.

Example 13.2.8 The cone { px,ps} from Example 13.2.4 is not locally injective.
In fact, for any angle 0 < ¢ < m/2, the point (cos¢,sing) € T cannot be
distinguished from (cos¢, —sing) € T under pg, and not from (—cos ¢, sin @)
under pg.

Conjecture 13.2.1 An effective monic cone {f; : X — Y} that is locally injective is
also guaranteed commutative.

Since the cone of all functions X — [ is an effective-monic and a locally
injective cone, proving this conjecture would again show that {f : X — O} is
guaranteed commutative. Furthermore, this would detect some cones as guaranteed
commutative that are not detected as such by Proposition 13.2.1. For example, the
effective-monic cone of Examples 13.2.2 and 13.2.3.

Example 13.2.9 In the setting of Example 13.2.5, the topology of limy L is
generated by the preimages of opens in all the L(A4). The cofilteredness assumption
implies that these opens form a basis: for U € L(A) and U,» € L(1'), we have A
and morphisms f : Py and [’ : A — A’ such that

limA L
Pr |A Py
/ (]
L(}) L(D) L)
L(f) L(f")

commutes. In particular, £~ (U;) Nf"~!(U,/) is an open in L(i) whose preimage in
lim, L is exactly the intersection of the preimages of U, and U)-. Hence the limit
cone { p,} is also locally injective. By Example 13.2.5, this is in accordance with
Conjecture 13.2.1.
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As already seen in Proposition 13.2.1, being locally injective is also not a
necessary condition for guaranteeing commutativity of effective-monic cones.

Example 13.2.10 There are effective-monic cones that are directed and hence
guaranteed commutative, but not locally injective. For example with G2 := [0, 1]*
the unit cube, the three face projections p1, p», p3 : 68 — [ form a cone {p1, p2, p3}
that is effective-monic but not locally injective. Nevertheless, if one considers copies
of the cone { py, ps : O — [0, 1]}, Definition 13.2.7 shows that the cone is directed,
and hence guaranteed commutative. In particular, the converse to Conjecture 13.2.1
is false.

13.2.3 The Category of Sheaves and Its Smallness Properties

Now that we have some idea of which sheaf conditions are satisfied by C*-algebras,
we investigate completely general functors CHaus — Sets satisfying some of these
sheaf conditions.

Definition 13.2.9 A functor F : CHaus — Sets is a sheaf if it satisfies the sheaf
condition on all effective-monic cones that are directed.

We write Sh(CHaus) for the resulting category of sheaves, which is a full
sub-category of Sets®Ha% Dye to Proposition 13.2.2, the sheaf conditions are not
those of a (large) site. Nevertheless, we expect that Sh(CHaus) is an instance of a
category of sheaves on a quasi-pretopology or on a Q-category, whose categories
of sheaves were investigated by Kontsevich and Rosenberg in the context of
noncommutative algebraic geometry [62, 63].3

A priori, Sh(CHaus) may seem rather unwieldy, and it is not clear whether it is
locally small.

Lemma 13.2.11 Let F,G € Sh(CHaus). Evaluating natural transformations on
Ul is injective,

Sh(CHaus)(F, G) = Sets(F(0), G(O)).

Proof Since F and G satisfy the sheaf condition on {f : X — O} by Corol-
lary 13.2.7, the canonical map

F(X) —— ]‘[ F(O)

f:Xx—0

51t is natural to suspect that the reason why Grothendieck topologies do not apply is in both cases
due to the noncommutativity, as it has been formally proven in [61]. However, so far, we have not
explored the relation to the work of Kontsevich and Rosenberg any further.
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is injective. Hence for any 1 : F — G, the naturality diagram
F(XX) —— ]‘[ F(O)
fix—0

nx l l_[/ na

G — [ c@
f:Xx—0
shows that every component 1y is uniquely determined by 1. O
Corollary 13.2.2 Sh(CHaus) is locally small.

Proof Lemma 13.2.11 provides an upper bound on the size of each hom-set. O

With functors —(A) and —(B) for A,B < C*alg, in place of F and G,
Lemma 13.2.11 also follows from the Yoneda lemma (Lemma A.7.2) and the fact
that C(0O) is a separator in C*alg,. The latter is true more generally:

Corollary 13.2.3 —(C(0)) is a separator (see Definition 13.2.10) in Sh(CHaus).
Recall that as functors —(C(O)), CHaus(O, —) : CHaus — Sets are such that
—(C(O)) =~ CHaus(d, -).

Proof By the Yoneda lemma (Lemma A.7.2),
Sh(CHaus)(—(C(0)), F) = Sets®"a(CHaus(O, —), F) = F(O),  (13.2.9)
and hence the claim follows from Lemma 13.2.11. O

We recall the definition of a separator to be the following:

Definition 13.2.10 Consider a category C, an object S € C is a separator if given
any parallel morphismf, g: X — Yin C, if foe = goe for every morphisme: S — X,
then f = g.

If C is locally small category, S is a separator if the functor Hom(S, —): C — Sets
is faithful, i.e. for all X, Y € C then

Hom(S,—) : C(X,Y) — Sets(Hom(S, X), Hom(S,Y))
is injective.
The following stronger injectivity property will play a role in the next section:
Lemma 13.2.12 For F € Sh(CHaus), the following are equivalent:

1. The canonical map
(F(p1),F(p2) : F(OxO) —— F(O) xFO) (13.2.10)

is injective.
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2. For every X € CHaus and effective-monic {f; : X — Y;}, the canonical map

F&) — []r(r

i€l

is injective.

In 2, the point is that the cone may not be directed so, generically, F does not
satisfy the sheaf condition on it. The intuition behind the lemma is that when these
(equivalent) conditions hold in the C*-algebra case, then the image of (13.2.10)
consists of precisely the pairs of commuting normal elements. In terms of the
interpretation as measurements on a physical system, this image consists of the pairs
of measurements (with values in [J) that are jointly measurable.

In the proof, we can start to put the seemingly haphazard lemmas of the previous
subsection to some use.

Proof Since the cone {p;,p, : O x O — 0O} is effective-monic, condition 1 is a
special case of 2.

In the other direction, we first show that for every X, Y € CHaus, the canonical
map F(X x Y) — F(X) x F(Y) is injective. By Corollary 13.2.1, the left vertical
arrow in

F(X X Y) F(X) x F(Y)

|

[[ roxo— | [[FO|x| [] FO)

fX—0O,gv—0 fXx—0 gY—0

is injective. Since the lower horizontal arrow is injective by assumption, it follows
that the upper horizontal arrow is also injective. By induction, we then obtain that
F(ITiZ, X)) — [Tj=, F(X)) is injective for any finite product.

Now let {f;} be an arbitrary effective-monic cone on X. By Lemma 13.2.9,
F satisfies the sheaf condition on the cone consisting of all the finite tuplings
(fii»---.fi,)- Hence we have the diagram

F(X) []F (v

| N

[T 11 F(l_[Y) 11 1T IIFow

nelN iy,....i,€l m=1 n€N iy,....i,€l m=1
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where the left vertical arrow is injective due to the sheaf condition, and the lower
horizontal one due to the first part of the proof. Hence also the upper horizontal
arrow is injective. O

So far, we do not know of any sheaf CHaus — Sets that would not have the
property characterized by the above Lemma.

By Gelfand duality, the commutative C*-algebras are precisely the representable
functors CHaus(W,—) : CHaus — Sets (see Definition 13.2.4). These are
characterized in terms of a condition similar to the previous lemma:

Lemma 13.2.13 For F € Sh(CHaus), the following are equivalent:

1. The canonical map

(F(p1).F(p2)) « FExO) —— F(O) x F(O)

is bijective.
2. F satisfies the sheaf condition on every effective-monic cone {f; : X — Y;} in
CHaus.

3. F is representable.

Proof By the definition of effective-monic, 3 trivially implies 2. Also if 2 holds,
then it is easy to show 1: the empty cone is effective-monic on 1 € CHaus, which
implies F (1) = 1. With this in mind, 1 is the sheaf condition on the effective-monic
cone {p1,p> : Ox 0O — O}.

The burden of the proof is the implication from 1 to 3. By the representable
functor theorem [54, p. 130] and the generation of limits by products and equalizers,
itis enough to show that F preserves products and equalizers, which we do in several
steps. As a first step we note that, since the functor — x Y : CGHaus — CGHaus
is a left adjoint [54, Theorem VII.8.3], it preserves colimits, in particular preserves
pushouts for any ¥ € CHaus. Moreover the inclusion functor CHaus — CGHaus
also preserves finite colimits, since it preserves finite coproducts and coequalizers
(the latter by the automatic compactness of quotients of compact spaces).

As a second step, we prove that the canonical map F(X x O) — F(X) x F(O)
is a bijection for every X € CHaus. To this end, we consider the effective-monic
cone {f xidg : X x O — O x O} indexed by f : X — O. We know that this
cone is directed by Lemmas 13.2.7 and 13.2.8. This entails that F(X x ) is equal to
the set of compatible families {f;};.x0 of elements of ]_[f:X_>D F(O x O). Since
— x O preserves pushouts as per the first observation, the compatibility condition is
the one associated to the squares of the form

Jxidg
XxO —— 0Ox0O

gXidm l

Ox0O —— (O 40 B) x O
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By using the fact that the maps U ;411 ;s 1 —> U separate points, it is sufficient
to postulate the compatibility on all commuting squares of the form

fxido
XxO —— Ox0O

gXidD \L \L hXidD

OxO — Ox0O
kxidg

Upon decomposing 8y = (,3} , ,3]%) via F(Ox O) = F(O) x F(O), the compatibility
condition is equivalent to the fact that F(h)(8}) = F(k)(B;) and that B; = B for
all b,k : O — O with Af = kg. Since the family of first components corresponds
precisely to an element of F(X), we conclude that the canonical map F(X x ) —
F(X) x F(O) is an isomorphism.

We now use this result to show that F(X xY) — F(X) xF(Y) is an isomorphism
for all X,Y € CHaus. The proof is the same as above, just with — x O replaced
by — x Y. The case of finite products F([]i—, X;) = [];—, F(X;) can then be proven
by induction, while the case of infinite products can be proven using the sheaf
condition.

We now show that F preserves equalizers. Since every monomorphismf : X — Y
in CHaus is regular, the singleton cone {f} is effective-monic. The fact that this
cone is trivially directed implies that F' satisfies the sheaf condition on it, which
entails that F(f) : F(X) — F(Y) must be injective.

Recall that a diagram

E ——s X Y

is an equalizer if and only if

E——X

e l l (idx.f)

X —— XxY
(idx.g)

is a pullback. By constructing the pushout X ,IT, X as a quotient of X IT X and doing
a case analysis on pairs of points in X 1T, X, the induced arrow k in
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E—" o x

(idy.g) XxY
is seen to be a monomorphism and, therefore, so is F(k). If B € F(X) is such that
F(f)(B) = F(g)(B), then also F(i)(8) = F(j)(B). But by the sheaf condition on
the singleton cone {e}, this means that § is in the image of F(e), as it was to be
shown. O
For F € Sh(CHaus), any W € CHaus and any o« € F(W), let F,, : CHaus —
Sets be the subfunctor of F generated by «. Concretely, over every X € CHaus, the
set Fy (X) consists of all the images F(f)(«) forf : W — X.

Proposition 13.2.3 [f the canonical map

FOxO) —— FO) xFO) (13.2.11)

is injective, then such an F, is representable.

Proof 1t is straightforward to verify that F, is also a sheaf. If we are able to show
that every pair of elements (81, 82) € Fo(Od) x Fu(O) actually comes from an
element of F, (0 x [0), then Lemma 13.2.13 and the injectivity assumption on F
complete the proof.

To this end, we write §; = F(fi)(«) and B, = F(f2)(«) for certain fi,f> :
W — [. Now considering « transported along the pairing (f1,/2) : W — O x O
results in an element of F(O x O) that reproduces (81, B2). O

Here is another smallness result:

Proposition 13.2.4 Sh(CHaus) is well-powered.
Before beginning the proof we recall the definition of a category being well-
powered.

Definition 13.2.11 Given a category C, we say that C is well-powered if every
object X € C has a small poset of subobjects, seen as an equivalence class of
monomorphisms with codomain X.

In other words, for every object X € C the (generally large) preordered set of
monomorphisms with codomain X is equivalent to a small poset.

For example Every Grothendieck topos is well-powered by the existence of a
subobject classifier and the smallness of hom-sets.

We are now ready to prove Proposition 13.2.4.
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Proof Letn : F — G be a monomorphism in Sh(CHaus). Then upon composing
morphisms of the form —(C(OJ)) —> F with 7, the Yoneda lemma (13.2.9) shows
that the component g : F(OO) — G(O) is injective, since the diagram

(13.2.9)
Sh(CHaus)(—(C(0)), F) — F(0)

o l l -

(13.2.9)
Sh(CHaus)(—(C(0)), G) — G(O)

commutes.

Again, using the sheaf condition on all functions X — O and the fact that O is
a coseparator in CHaus, we can identify the oo € F(X) with the families {;} with
By € F(O) that are indexed by f : X — [ and satisfy the compatibility condition
that F(h)(By) = Bis for all f and 2 : 0 — [. Hence we have the diagram

Fy — [] FO) —Z [] ro

fx—=0 fX—=04r0-0

nx l 1_[/' ng l l'[m ng

Gy — [] o —Z [[ ¢O

fx—0 fXx—0nR0-0

in which both rows are equalizers. Therefore, for fixed G, the set F(X) is determined
by the inclusion map ng : F(O) — G(O). Hence the number of sub-objects of G is
bounded by 2/¢)!, O

Corollary 13.2.4 Every sheaf F : CHaus — Sets for which (13.2.11) is injective
is a (small) colimit in Sh(CHaus) of representable functors.

Proof We show that F is the colimit in Sh(CHaus) of the subfunctors of the form
F,, from Proposition 13.2.3, as ordered by inclusion. Thanks to Proposition 13.2.4,
this colimit is equivalent to a small colimit.

To show the required universal property suppose, first, that 7,7 €
Sh(CHaus)(F,G) coincide upon restriction to all F,. Then in particular,
no(e) = ng(a) for all @ € F(O), and hence n = 71’ by the previous results.
Conversely, let {¢*}, be a family of natural transformations ¢* : F, — G that
are compatible in the sense that if Fg C Fy, then ¢%|r, = ¢P. Now define the
component ny : F(X) — G(X) on every a € F(X) as

nx (@) = ¢k (a).
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The commutativity of the naturality square

FOY) —— GY)

F(f) l l G(f)

F(Y) —— G(Y)

ny

on some @ € F(X) follows from

G(f)(9%(@) = ¢E(F(N) @) = ¢y " (F() (@),

where the first equation is naturality of ¢* and the second one is the assumed
compatibility.

To see that 7 restricts to ¢* on every F, we show that the components coincide,
ie. ny = ¢y forall Y € CHaus and 8 € F,(Y) where 8 = F(f)(x) for suitable
f : X — Y. To this end consider the diagram

nx

Fo(X) F(X) G(X)
l Fif) l G(f)
Fo(Y) F(Y) - G(Y)

Starting with « in the upper left, we have ¢§ («v) in the upper right, and hence

G(N(¢x (@) = ¢y (F() (@) = ¢y (B)

in the lower right, where the first equation is as above. Since we also have § in the
lower left, we obtain the desired ny(8) = ¢%(8). O

In light of the upcoming Theorem 13.3.1, this result is closely related to [72,
Theorem 5]. The only potential difference is that our colimit is taken in Sh(CHaus),
while van den Berg and Heunen consider it in pC*alg,, and it is not clear whether
these two definitions of colimits are equivalent.

Since it is currently unclear whether Definition 13.2.9 is the most adequate
collection of sheaf conditions that one can postulate, we will not investigate any
further the categorical properties of Sh(CHaus).
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13.3 Piecewise C*-Algebras as Sheaves CHaus — Sets

In this section, we will establish that Sh(CHaus) contains the category of piecewise
C*-algebras introduced by van den Berg and Heunen [72] as a full sub-category.
The definitions of partial algebras and piecewise *-homomorphism was given
in Definitions 3.1.5 and 3.1.6 respectively.

The discussion of Sect. 13.1 extends canonically to piecewise C*-algebras. That
is to say, Gelfand duality still implements an equivalence of CHaus® with a full
sub-category of pC*alg,, so that for every A € pC*alg, we can restrict the hom-
functor

pC*alg,(—,A) : pC*alg® — Sets

to a functor CHaus — Sets, which maps X € CHaus to the set of piecewise
x-homomorphisms C(X) — A. For any A € C*alg,, this results precisely in
the functor CHaus — Sets that we already know from Sect. 13.1, since in this
case pC*alg, (C(X),A) = C*alg,(C(X),A). In other words, we have a diagram of
functors

C*alg, SetsCHaus

C(-) /

pC*alg,

In fact, the proof of Proposition 13.2.1 still holds for piecewise C*-algebras. Hence,
also the image of the functor pC*alg, — SetsC"2"S resides in the full sub-category
Sh(CHaus), and the commutative triangle of functors can be taken to be

C*alg, Sh(CHaus)

i /

pC*alg,

We now investigate a bit further the functor on the right, finding that it is close
to being an equivalence. In the following, we use the unit disk () < C. Since it
is homeomorphic to the unit square [1 we have been working with until now, all
previous statements apply likewise with (I replaced by O).

Theorem 13.3.1 The functor pC*alg, —> Sh(CHaus) is fully faithful, with
essential image given by all those F € Sh(CHaus) for which the canonical map

F(OxQ) — F(O)xF(O) (13.3.1)

is injective.
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In other words, this functor forgets at most ‘property’, namely the property of
injectivity of (13.3.1) as investigated in Lemma 13.2.12. This property is equivalent
to F being separated (in the presheaf sense) on the effective-monic cones. It seems
natural to suspect that not every sheaf on CHaus is separated in this sense, but this
remains an open question. So it is also conceivable that pC*alg, — Sh(CHaus)
actually is an equivalence of categories (see Definition 8.1.5).

In particular, this shows that cC*alg, is dense in pC*alg;, i.e. that the canonical

functor pC*alg, — SetseC adl” i fully faithful. For a potentially related result of a
similar flavour, see [66, Corollary 8].

For the sake of completeness we will recall the definition of a fully faithful
functor and that of an essential image of a functor.

Definition 13.3.1 Given a functor F: C — D from a category C to a category D,
then F is said to be full and faithful if for each pair of objects x,y € C, the function

F:C(x,y) = D(F(x),F(y))

between hom-sets is both surjective (full condition) and injective (faithful condi-
tion).

Definition 13.3.2 Given a functor F' : C — D between two categories C and D, the
essential image of F is the smallest subcategory S of D such that:

1. S contains the image of F.
2. Given any object x € § and any isomorphism f:x = y in D, both y and f are also
in S. This condition means that S is a replete subcategory of D.

We will now prove the Theorem 13.3.1.

Proof A piecewise x-homomorphism { : A — B is determined by its action on
the unit ball, which is the set of elements with spectrum in (). In particular, ¢ is
uniquely determined by the associated transformation —(¢) : —(A) — —(B), so that
the functor under consideration is faithful.

Concerning fullness, let n : —(A) — —(B) be a natural transformation. Its
component at () is a map ¢y : O(A) = (O(B). The pairs of commuting elements
a, B € (O(A) are precisely those that are in the image of the canonical map

(O xO)A) — OM) x OA),

and hence the requirements (3.1.5) follow from naturality and the consideration
of functions like (13.1.5) and (13.1.7). The other axioms are likewise simple
consequences of naturality. This exhibits a piecewise *-homomorphism ¢ : A — B
such that n coincides with (O(¢). Then by Lemma 13.2.11, we have n = —({).

Finally, we show that every F € Sh(CHaus) for which (13.3.1) is injective is
isomorphic to —(A) for some A € pC*alg,. Concretely, we construct a piecewise
C*-algebra A by first defining its unit ball to be

O@) = F(O).
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This set comes equipped with a commutation relation, namely, o 1L § is declared to
hold for o, B € A precisely when («, B) is in the image of (13.3.1). In this case,
we can define the sum « + § and the product o using the functoriality on maps
such as (13.1.5) and (13.1.7). Likewise there is a scalar multiplication by numbers
z € (O and an involution arising from functoriality on the complex conjugation map

If we define A to consist of pairs (&, z) € F(Q) x Rxo, modulo the equivalence
(o, z7) ~ (sa,sz) forall s € (0, 1), we would obtain a piecewise C*-algebra. In fact,
the relevant structure of Definition 3.1.5 extends canonically from (O(A) to all of
A. Moreover, we also claim that any set {y;};ie; € (O(A) of pairwise commuting
elements is contained in a commutative C*-subalgebra. We write this family as a
single element of the /-fold product,

y € F(O)".

The cone {(p;,p;) : O = O x Olijes consisting of all pairings of projections
pi : OF = QO is effective-monic and directed. By the commutativity assumption on
v, the pair (y;, y;) € F(QO) x F(QO) comes from an element of F(O x (). Hence,
by the sheaf condition, y is actually the image of an element )’ € F (OI ) under the
canonical map. The subfunctor F,, C F, as in Proposition 13.2.3, is representable
and it corresponds to the commutative C*-subalgebra generated by the y;. O

The following criterion—due to Heunen and Reyes—describes the image of the
functor C(—) : C*alg, — pC*alg, at the level of morphisms.

Lemma 13.3.1 ([41, Proposition 4.13]) For A,B € C*alg,, a piecewise *-
homomorphism ¢ : C(A) — C(B) extends to a *-homomorphism A — B if and
only if it is additive on self-adjoints and multiplicative on unitaries.

By faithfulness of C*alg, — pC*alg,, we already know such an extension, if it
exists, to be unique.

Proof The ‘only if” part is clear, so we focus on the ‘if” direction. Every element of
A is of the form a+ib for a, b € R(A), and linearity forces us to define the candidate
extension of f by

L(a + ib) := ¢(a) + it (b).

In this way, 2 becomes linear due to the first assumption, and it is evidently
involutive and unital. On a unitary v, we have ¢(v) = ¢(v), since

b =E(" ) = Jre e -

= JEO) L0+ LW — L7 = L),

where the third step uses v 1L v™*,
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We finish the proof by arguing that f is multiplicative on two arbitrary elements
a, B € [—1,+1](A), which is enough to prove multiplicativity, and hence to show
that 2 is indeed a *-homomorphism. By functional calculus, we can find unitaries
v,7 € T(A) suchthate = v+ v* and 8 = v + t*. Then

E@B) =& (v + 1)+ %) =& (ve +ve* +v¥ T +v*7%)

= {(vr) + LvT*) + LvFr) + L)

=L(vt) + LTt + L ) + L)

= {()¢(0) + EWE(T™) + LW™E(D) + L)L)
= (COv) + LW NE(@) + £(r%)

= W) + L") + L)

= (v +v)(1 + %) = L@)(B),

where we have used that 2 coincides with ¢ on unitaries (third and sixth line) and
the assumption of multiplicativity on unitaries (fourth line). O
In fact, this result can be improved upon:

Proposition 13.3.1 A piecewise *-homomorphism ¢ : C(A) — C(B) extends to a
*-homomorphism A — B if and only if it is multiplicative on unitaries.

Proof By Lemma 13.3.1, it is enough to prove that such a ¢ is additive on self-
adjoints.

To this end we use the following fact, which follows from the exponential series:
for every «, § € R(A) and real parameter t € R, the unitary

eir(d+ﬂ)e_ita e—itﬁ

differs from 1 by at most O(#?) as t — 0. Since ¢ preserves the spectrum of unitaries,
we conclude that also

é' (eit(a+ﬁ)e—iroce—irﬂ) — eit{(a+ﬁ)e—ir@(a)e—irg(ﬂ)

is a unitary that differs from 1 by at most O(¢%). By the same argument as above,
this implies that ¢ (« + 8) = {(«) + £(B), as it was to be shown. O

As the proof shows, we actually need only multiplicativity on products of
exponentials, i.e. on the connected component of the identity 1 € T(A). The method
of proof also suggests a relation to the Baker-Campbell-Hausdorff formula, which
may be worth exploring further.

Finally, it is worth noting that a piecewise *-homomorphism ¢ : C(A) — C(B)
is additive on self-adjoints if and only if it is a Jordan homomorphism. In fact, the
condition ¢(a?) = ¢(a)? for o € R(A) is automatic since ¢ preserves functional
calculus.
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Let us end this section by stating an important open problem:

Problem 13.3.1 Is the functor pC*alg, — Sh(CHaus) an equivalence of
categories, i.e. does every sheaf on CHaus satisfy the injectivity condition of
Lemma 13.2.12?

13.4 Almost C*-Algebras as Piecewise C*-Algebras
with Self-Action

What we have learnt so far is that considering a C*-algebra A as a sheaf —(A) :
CHaus — Sets, or equivalently as a piecewise C*-algebra, recovers the entire
‘commutative part’ of the C*-algebra structure of A. Nevertheless, the functor
Cralg, — pC*alg, is not full, which indicates that part of the relevant structure
is lost. For example, a C*-algebra A is in general not isomorphic to AP [60],
although the two are canonically isomorphic as piecewise C*-algebras. This raises
the question: which natural piece of additional structure on a sheaf CHaus — Sets
or piecewise C*-algebra would let us recover the missing information?

Of course, what kind of additional structure counts as ‘natural’ is a subjective
matter. However, we can take inspiration from quantum physics and re-express
the question as follows: which additional structure would have a clear physical
interpretation? Our proposal to answer such a question is based on a central feature
of quantum mechanics, namely, that observables generate dynamics, in the sense
that to every observable (self-adjoint operator) « € R(A), one associates the one-
parameter group of inner automorphisms given by

RxA— A, (1, B) —> €@ Be™ ™ (13.4.1)

For example, if « is energy, then the resulting one-parameter family of automor-

phisms is given precisely by time translations, i.e. by the inherent dynamics of the

system under consideration. If o is a component of angular momentum, then the

resulting family of automorphisms are the rotations around that axis. As it is obvious

from (13.4.1), this natural way in which A acts on itself by inner automorphisms is

a purely noncommutative feature, in that it becomes trivial in the commutative case.
More formally, the construction of (13.4.1) really consists of two parts:

1. First, for every € R, one forms the unitary v := e~ since this is functional
calculus, it is captured by the functoriality CHaus — Sets.
2. Second, one lets v act on A via conjugation, as 8 — v*fSv.

The last part is not captured by what we have discussed so far, and hence we
axiomatize it as an additional piece of structure. Our definition is similar in spirit
to the ‘active lattices’ of Heunen and Reyes [41] and also seems related to [6,
Section VI].
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Definition 13.4.1 An almost C*-algebra is a pair (A, a) consisting of a piecewise
C*-algebraA € pC*alg, and a self-action of A, which is a map

a:T(A) — pCralg, (A, A)

assigning to every unitary v € T(A) a piecewise automorphism a(v) : A — A such
that

¢ v commutes with 7 € T(A) if and only if a(v)(7) = t;
* in this case, a(vt) = a(v)a(t).

So a must satisfy two equations on commuting unitaries. The first equation
implies that a commutative C*-algebra, considered as a piecewise C*-algebra, can
act on itself only trivially. Conversely, if the self-action is trivial, in the sense that
every a(v) is the identity, then A must be commutative. The second equation implies
that if v and T commute, then also their actions commute:

a(w)a(r) = a(vr) = a(rv) = a(r)a(v).

Introducing a self-action a : T(A) — pC*alg,(4,A) was motivated by physics
considerations discussion above and we expect the appearance of T to be related to
Pontryagin duality. The physical interpretation of the first axiom could instead be
related to Noether’s theorem.

Almost C*-algebras form a category denoted aC*alg, as follows:

Definition 13.4.2 An almost x-homomorphism ¢ : (A, a) — (B, b) is a piecewise
*-homomorphism { : A — B which preserves the self-actions in the sense that

b(E ) (¢(@) = {(a()(@). (13.4.2)

The forgetful functor C*alg, — pC*alg, factors through aC*alg, by associat-
ing to every C*-algebra A and unitary v € T(A) its conjugation action,

a(v)(a) := v¥av.

Every *-homomorphism ¢ : A — B is compatible with the resulting self-actions.
The condition (13.4.2) becomes simply

W) L(a)s(v) = C(v*av). (13.4.3)

Our main question is whether the additional structure of a self-action, that is
present in an almost C*-algebras, is sufficient to recover the entire C*-algebra
structure:

Problem 13.4.1 Is the forgetful functor C*alg, — aC*alg, an equivalence of
categories?
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In order for this to be the case, one would have to show that the functor is both
fully faithful and essentially surjective. While the latter question is wide open, it is
clear that the functor is faithful, since the forgetful functor C*alg, — pC*alg; is.
We can also prove fullness in a W*-algebra setting:

Theorem 13.4.1 C*alg, — aC*alg, is fully faithful on morphisms out of any W*-
algebra.
This result is similar to [41, Theorem 4.11], but does not directly follow from it

Proof We need to show surjectivity, i.e. if { : C(A) — C(B) for a W*-algebra
A is a piecewise *-homomorphism which satisfies (13.4.3), then ¢ extends to a *-
homomorphism A — B. Let us first consider the case that A contains no direct
summand of type I,. Then for every state ¢ : B — C, the map

o+ if — ¢(C(a) +il(B)) (13.4.4)

for ¢, 8 € R(A) is a quasi-linear functional on A in the sense of [36, Defini-
tion 5.2.5] and, therefore, it is uniquely determined by its values on the projections
2(A) [36, Proposition 5.2.6]. On the other hand, by the generalized Gleason
theorem [36, Theorem 5.2.4], this map 2(A) — R uniquely extends to a state
A — R. In conclusion, composition with ¢ takes states on B to states on A, and
hence R(¢) : R(A) — R(B) is linear.

Furthermore, on R(A) we have ¢(a?) = ¢(a)?, which makes ¢ into a Jordan
homomorphism. By a deep result of Stgrmer [67, Theorem 3.3], this means that
there exists a projection w € 2(B), commuting with the range of ¢, such that
a +— 7m{(x) uniquely extends to a (generally nonunital) s-homomorphism, and
similarly &« +— (1 — 7)¢(«) uniquely extends to a (generally nonunital) *-anti-
homomorphism. In other words, { decomposes into the sum of the restriction (to
normal elements) of a *-homomorphism and a *-anti-homomorphism. So far, we
have only made use of the assumption that ¢ is a piecewise *x-homomorphism.

In order to complete the proof in the case of A without type I, summand we will
work with the corner (1 — w)A(1 — ) in place of A itself. This then shows that
it is enough to consider the case m = 0, i.e. when { is the restriction of a x-anti-
homomorphism. In particular,

(13.4.3)

EW)* @) v) =" aw) = L)) (),

and therefore ¢ ()¢ (v?) = ¢ (v?)¢(a) for all v € T(A) and o« € C(A). Since every
exponential unitary ¢f is the square of another unitary, we know that ¢ (o) commutes
with every exponential unitary. Since every element of A is a linear combination of

SThis is because the notion of ‘active lattice’ of [41] includes a group that acts on the lattice and a
morphism of active lattices. In particular it is assumed to be a homomorphism of the corresponding
groups. If we had assumed something analogous in our definition of almost C*-algebra, the fullness
of the forgetful functor would simply follow from Proposition 13.3.1.
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exponential unitaries, we conclude that ¢(«) commutes with {(B) for every €
C(A). Hence the range of ¢ is commutative. In particular, ¢ is also the restriction of
a *-homomorphism, which completes the proof for the case at hand.

Now consider the case of an almost *-homomorphism ¢ : C(M;) — C(B). Due
to the isomorphism M, = CI(R?) ® C with a complexified Clifford algebra, M,
is freely generated as a C*-algebra by two self-adjoints o, and o, subject to the
relations

0,0y, + 0y0, = 0.

Since ¢ commutes with functional calculus, the first two equations are clearly
preserved by ¢ in the sense that ¢ (0,)*> = {(0,)? = 1. Concerning the third equation,
we know

(134.3)

_é‘(ax) ={(~0y) = C(CTyCTxCTy) C(Gy)g(ox)g(ay)-

Hence £(0,)¢(0y) + £(0,)¢(0y) = 0 due to {(oy)? = 1. Therefore the values ¢ (o)

and ¢{(oy) extend uniquely to a *-homomorphism { : M, — B. The problem is
now to show that this coincides with the original { on normal elements. Since any
symmetry v € {—1,41}(M;) is conjugate to o,, we certainly have f(v) = {(v)
by (13.4.3) and the assumption Z‘ (o0x) = C(oyx). However, because in the special
case of M,, every normal element can be obtained from a symmetry by functional
calculus, and both ¢ and E preserve functional calculus, it is sufficient to show that
E = ¢ on normal elements. This finishes off the case A = M,.

A general W*-algebra of type I, is of the form A =~ L*° (2, , M>) for a suitable
measure space (2,u). Let { : C(A) — C(B) be an almost *-homomorphism,
we will first show that { uniquely extends to a bounded *-homomorphism on the
*-subalgebra of simple functions. For a measurable set I' € Q, let ypr : Q —
{0, 1} be the associated indicator function. For non-empty I", the algebra elements
of the form ayr for « € M, form a C*-subalgebra isomorphic to M, itself (with
different unit). By the previous discussion, we know that { uniquely extends to a *-
homomorphism on this subalgebra. Furthermore, { behaves as expected on a simple
function er'l=l o; Xr;- Assuming that the I';’s form a partition of €2, we have o; yr, -
a;xr; = 0 fori # j, and hence { is additive on the sum which implies

z(Z ai)m) = 3 @) (ar)- (13.4.5)
i=1

i=1

We show that ¢ is linear on the sum of two self-adjoint simple functions. By
choosing a common refinement, it is enough to consider the case that the two
partitions are the same. Additivity then follows from (13.4.5) and additivity on
M,. Multiplicativity on unitary simple functions is analogous. Since the proof of
Lemma 13.3.1 still goes through in the present situation (where the *-algebra
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of simple functions is generally not a C*-algebra), we conclude that { extends
uniquely to a *-homomorphism on the simple functions. By construction this *-
homomorphism is bounded. Therefore it uniquely extends to a *-homomorphism
E : A — B, which coincides with ¢ on the normal simple functions. It remains to be
shown that Z‘ (o) = ¢(a) for all @ € C(A).

To obtain this for a given @ € C(A), we distinguish those points x € €2 for which
a(x) is degenerate from those for which it is not. Since degeneracy is detected by
the vanishing of the discriminant tr> — 4 det, the relevant set is

A:={xeQ|tr(a(x)? —4det(a(x)) =0}.

This set is measurable since both trace and determinant are measurable functions
M, — C. For every x € Q \ A there is a unique unitary v(x) € T(M,) such
that v(x)*a(x)v(x) is diagonal. Since the eigenbasis of a nondegenerate self-adjoint
matrix depends continuously on the matrix, it follows that the function x — v (x) is
also measurable. By arbitrarily choosing v(x) := 1 onx € A, we have constructed
a unitary v € T(L*°(2, u, M3)), such that v*av is pointwise diagonal. Thanks
to (13.4.3), it is therefore sufficient to prove the desired identity 2 () = ¢(ax) on
diagonal o only. However, since these diagonal elements generate a commutative
C*-subalgebra, which contains a dense *-subalgebra of simple functions on which
E and ¢ are known to coincide, the proof is complete because both E and ¢ are -
homomorphisms on this commutative subalgebra.

Now a general W*-algebra A is a direct sum of a W¥*-algebra without I,
summand and one that is of type I, [71, Theorems 1.19 & 1.31]. Again, by
considering corners, it is straightforward to check that if the fullness property holds
on almost *-homomorphisms out of A, B € C*alg,, then it also holds on almost
*-homomorphisms out of A & B. O

In general, the problem of fullness is related to the cohomology of the unitary
group T(A) as follows: Let { : C(A) — C(B) be an almost x-homomorphism
between C*-algebras. We can assume, without loss of generality, that im({)
generates B as a C*-algebra. For unitaries v, 7 € T(A) and any ¢ € (O(A), we
have

t(a) = ¢ (v (vr)a(vr)*vT)
29 L () ) D@L VD) LWL (7)
= (LD ML) L@ 0D EmET).

Hence the unitary ¢(v7)*¢(v)¢ () commutes with (). By the assumption that
im(¢) generates B, this means that there exists c(v, 7) in the centre of T(B), such
that

¢wr) = c(v, EW)E().
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As in the theory of projective representations of groups, we can use this relation to
evaluate ¢ on a product of three unitaries v, 7, y € T(A), resulting in

c(vz, e, MWD (0) = Lvry) = cv. T))e(T. NEWIE(@)E()).

This establishes the cocycle equation

c(t, pelve, )*cv, ty)cv,t)* =1,

showing that ¢ is a 2-cocycle on T(A) with values in the centre of T(B), which is
equal to the unitary group of the centre of B. Unfortunately, we do not know whether
this can be used to show that T(¢) : T(A) — T(B) is a group homomorphism, which
would be enough to prove fullness in general by Proposition 13.3.1.

Let us now restate the remaining part of Problem 13.4.1:

Problem 13.4.2 Is the functor C*alg, — aC*alg, full in general? If so, could it
even be essentially surjective?

13.5 Groups as Piecewise Groups with Self-Action

In order to get a better intuition for the relation between C*-algebras and almost
C*-algebras, it is instructive to perform analogous considerations for other mathe-
matical structures. In this section, we investigate the case of groups, which may also
be of interest in its own right.

By analogy with piecewise C*-algebras, we have:

Definition 13.5.1 ([41]) A piecewise group is a set G equipped with the following
pieces of structure:

1. a reflexive and symmetric relation I € G X G. If x 1Ly, we say that x and y
commute;,

2. abinary operation - : I — G;

3. adistinguished element 1 € G;

such that every subset C € G of pairwise commuting elements is contained in some
subset C C G of pairwise commuting elements, which is an abelian group with
respect to the data above.

Abelian groups are precisely those piecewise groups for which the commutativity
relation 1 is total. Piecewise groups form a category pGrp in the obvious way:

Definition 13.5.2 Given piecewise groups G and H, a piecewise group homomor-
phism is a function ¢ : G — H such that if g 1L & in G, then

C@LLh),  C(gh) = L()E(h). (13.5.1)
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It is straightforward to show that a piecewise group homomorphism satisfies
‘() =1.

Every group can be considered as a piecewise group. This gives rise to a forgetful
functor Grp — pGrp, which is faithful and reflects isomorphisms. Since it is not
full (taking inverses g > g~ ' is a piecewise group homomorphism for every G,
but a group homomorphism only if G is abelian), this functor forgets some of the
structure that groups have. By analogy with Definition 13.4.1, we try to recover this
structure by equipping a piecewise group with a notion of inner automorphisms:

Definition 13.5.3 An almost group is a pair (G, a) consisting of G € pGrp and a
self-action on G, which is a map

a:G— pGrp(G, G)
assigning to every element g € G a piecewise automorphism a(g) : G — G such
that:

e g commutes with % if and only if a(g)(h) = h;
* in this case, a(gh) = a(g)a(h).

Almost groups form a category denoted aGrp as follows:

Definition 13.5.4 An almost group homomorphism ¢ : (G,a) — (H,p) is a
piecewise group homomorphism ¢ : A — B such that

a8 () () = ¢(a(g)(h). (13.5.2)

The forgetful functor Grp — pGrp factors through aGrp by associating to every
group G and to every element g € G, the conjugation action

a(g)(h) := g~ 'hg.

Every group homomorphism { : G — H respects the resulting self-actions and the
condition (13.4.2) simplifies to:

£(9) "' ¢t (g) = (g ' hg). (13.5.3)

One can ask whether this forgetful functor Grp — aGrp is an equivalence of cate-
gories. In contrast to the discussion of Sect. 13.4, and in particular Theorem 13.4.1,
here we know the answer to be negative:

Theorem 13.5.1 The forgetful functor Grp — aGrp is not full.
In general, going from a group to an almost group still constitutes a loss of
structure.

Proof We provide an explicit example of an almost group homomorphism between
groups that is not a group homomorphism.



288 13 Extending the Topos Quantum Theory Approach

Let IF, be the free group on two generators a and b. For any word w € Fy, let w
be the cyclically reduced word associated to w. Then consider the map ¢ : F, — Z
where ¢ (w) is defined as the number of times that the generator a directly precedes
the generator b in W, minus the number of times that the generator b~! directly
precedes the generator a~! in #. By construction, this is invariant under conjugation
and therefore satisfies (13.5.3). If v,w € [, commute, then they must be of the
form v = ¥ and w = u" for some u € F, and m,n € Z [53, Proposition 2.17].
Hence to verify that { is a piecewise group homomorphism, it is enough to show
that ¢ (u¥) = ¢(u)* for all k € Z. This is the case because we have Wk = ik at the
level of reduced cyclic words.

On the other hand, ¢ is not a group homomorphism since ¢ (a) = {(b) = 0, while
C(ab) = 1. O

As the second half of the proof indicates, part of the problem is that a free group
has very few commuting elements. One can hope that the situation will be better for
finite groups.

Problem 13.5.1 Is the restriction of the functor Grp — aGrp from finite groups to
finite almost groups an equivalence of categories?

13.6 Open Problems: States and State-Space

As explained in previous chapters and in [26], topos quantum theory is formulated in
terms of a topos that depends on the particular physical system under consideration,
namely the category of presheaves on the poset of commutative subalgebras of the
algebra of observables A. Instead of working with commutative subalgebras only,
in this chapter we consider all *-homomorphisms C(X) — A for all commutative
C*-algebras C(X). Doing so means that .4 becomes a functor CHaus — Sets.
In this way, we can consider all physical systems as described by objects in the
functor category SetsCH3S or the category of sheaves Sh(CHaus). This will allows
us to consider multiple physical systems at once, shedding light on the problem of
composite systems in topos quantum theory.

As a first step in this direction would be to determine the state-space for a quantum
system in terms of the topos Sh(CHaus). This is still an open problem, however
a few things can be said on that matter. It is clearly possible to construct a functor
P : CHaus — Sets which assigns to each space X € CHaus the set of regular
probability measures P(X). In this setting a state could be defined as a natural
transformation

—(A)—>P
such that for every space X € CHaus the component X(A) — P(X) assigned to

each measurement o with outcome in X, the probability measure associated to that
measurement. Each state s € A induces such a natural transformation, however it is
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not clear at this stage if the converse holds, namely, if each natural transformation
—(A) — P arises from a state. If this would be the case we would obtain a bijective
correspondence between states of the algebra A and natural transformations —(4) —
P. Tt can be argued that if A is any kind of algebra for which Gleason’s theorem
applies, then the natural transformations —(A) — P are exactly the states on A.

Given the above reasoning it would seem reasonable to define the state-space
as some kind of exponential object. The question is then to figure out which
category to use to define the exponential object. On the one hand we have sheaves
—(A) € Sh(CHaus) for each A € pC*Alg,, which represent potential physical
systems, and on the other we have the presheaves P : Sets““, which assigns
probability measure to potential physical systems. Ideally the state-space would be
the exponential object P~), however, it is still unclear in which category to take this
object. A possible candidate would be Sets“7s since both functors live in there,
but CHaus is not even locally small.

Solving this issue is an important open problem in the topos quantum theory
formalism.



Chapter 14
Quantization in Topos Quantum Theory:
An Open Problem

In this chapter we are interested in analysing how, if at all, different quantizations
can be represented in Topos Quantum Theory. We already know from the work
of [57] that it is indeed possible to define the concept of quantization within a
topos. We would like to extend this program to incorporate all possible equivalent
quantizations.

When talking about quantization we are faced by two situations:

(a) there is an existing underlining classical system;
(b) there is no underlining classical system.

In the first sections of this chapter we will perform a general analysis of both these
situations. However, when utilising the quantization in a topos defined in [57] we
will assume the existence of an underlining classical system as was done by the
author.

The detailed development of the case in which there is no underlying classical
system is left for future work.

14.1 Abstract Characterisation of Quantization

In this section we would like to give a general description of a possible way to define
quantization in a topos. A possible approach for defining quantization would be to
choose, as a base category, a collection of objects representing label of physical
quantities with some structure, then quantization would involve associating these
labels with specific operators in a concrete Hilbert space and, hence, with one of
our topos structures.

If this approach is adopted, the first issue would be to define what sort of
mathematical structure such a collection of labels should have. The choice will
depend on whether or not we are considering an underlining classical system with
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a symplectic manifold, S as state space or not. We will deal first with the situation
when there is an underlying classical theory.

In this case the base category can be chosen to be the poset of subalgebras of
C®(S,R)' that are abelian as computed with the Poisson bracket on S. The idea here
is that each (see below) element of C*°(S, R) is labelled by the physical quantity to
which it corresponds, and that this labelling is fixed in concrete: i.e., one cannot start
performing symplectic covariance transformations on the whole system.

Quantization will then involve defining various ‘topos representation’ of this base
poset. Of particular importance will be the construction of sheaves/presheaves over
the poset on which the Dirac covariance group, G, acts. However the following
issues have to be addressed:

1. We know from the van Hove effect that the naive interpretation of quantization,
namely associating commutators with Poisson brackets, is not possible. Thus it
seems necessary to restrict C22 (S, R) in some way. When S is finite> dimensional
and admits a finite 1-dimensional transitive group G of symplectic transforma-
tions, then we restrict our attention to the subalgebra L(G) € C77 (S, R) spanned
by G. The corresponding base category/poset of commutative Lie subalgebras of
L(G) will be denoted® PG. However, it will generally be the case that one needs
to add ‘by hand’ certain physical quantities (e.g., the Hamiltonian) which are not
already contained in L(G). Of course, for some very limited situation this will
not be the case: for example in the SHO the Hamiltonian itself belongs to the Lie
algebra.

When there is no classical Lie algebra chosen, we will write the poset of labels
as PS. To get the poset structure it is necessary to use the Lie bracket on one
particular quantization, thus PS ~ V(#) although it must be born in mind that
the unitary group U(H) does not act on PS even if it does act on V(H).

2. Should we place a topology on C7;.(S, R) and, if so, do the abelian subalgebras
have to be closed subsets? Of course for finite-dimensional G this problem does
not arise.

3. Is C75(S, R) general enough? The reason C*°-functions are chosen is because the
Poisson bracket between any two of them is well-defined and belongs to the same
space. However, this clearly excludes certain functions on S that, arguably, are of
physical interest, but which are not of this type. For example, the characteristic
function, y4, of a (measurable) subset A € S corresponds to a proposition. This
is not C*° but, in the quantum theory, it is represented by a projection operator.

4. One might want to enlarge the classical space of observables to the space,
Meas(S,R), of measurable real-valued functions. The problem of course is

"When we think of C°°(S, R) as a Lie algebra we will use the notation Co(S, R).

2There is always an infinite-dimensional transitive group, namely the group of symplectic
transformations of S.

3Note that the use of PG raises the interesting question as to the extent to which the non-
commutative structure of the Lie algebra L(G) can be recovered from knowing the poset structure
of its abelian Lie subalgebras.
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that Poisson brackets are not defined on such functions (unless, one admits
distributional results?).

We will now set aside the above issues and analyse various possible quantization
strategies using the poset, PG, of commutative Lie subalgebras of L(G). To do
this we will pick one particular representation on a Hilbert space H although,
in principal, one could consider unitarily inequivalent quantizations for systems
where the Stone von Neumann theorem does not hold. In this setting we define a
quantization on H to be any poset morphism, ¢ : PG — V(H), from the poset PG
to the poset V(#). Although any quantization can be seen as such a morphism, the
converse is not true.

Denoting the collection of all poset morphisms by Hompose: (PG, V(H))) we can
define a group action on them by the group* G C U(H) as follows:

(@)L = Ly ($(L)) = Ugp(L) Uy (14.1.1)

for each L € PG and ¢ € Hompuee;(PG,V(H))). Note that we are assuming no
group action on Hontpege (PG, V(H))).?

This definition of representation is clearly very naive, since all that each poset
morphisms ¢ does is to associate, to each abelian subalgebra L of PG, an abelian
von Neumann subalgebra, ¢ (L) € V() in such a way that the ordering is preserved,
ie. if Ly € L, then ¢(L;) € (L). However this is not enough to characterise a well
defined quantization, in particular we would want that the maps ¢ respect the vector
space structure on each L € PG. In order to solve this problem we will introduce a
new presheaf later on, but for now we will stick with our simplified model and see
what we can learn from it.

14.1.1 Quantization Presheaf

We would now like to define a presheaf over PG which, in a way, represents all
possible quantization of PG. A possibility is to construct a presheaf using local
poset homomorphisms as follows:

4Clearly to define an action of G on these poset morphisms we are using a representation of G on
H. By factoring this representation by its Kernel, we can assume that it is indeed faithful.

3One can think of this as the idea that the elements in each poset L represent labels of physical
quantities and these are fixed once and for all.
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Definition 14.1.1 We define the presheaf R on PG which has as

1. Objects: for each L € PG we have R; := Hompos (4 L, V(H)).
2. Morphisms: given a morphism iz, s, : L — L, then the corresponding presheaf
morphism is

R(ir, 1,) : Homposer( Lo, V(H)) = Homposer( L1, V(H))  (14.1.2)
¢ = P - (14.1.3)

We then have the following lemma®:

Lemma 14.1.1
I'R >~ Homypese: (PG, V(H)) . (14.1.4)

Proof In order to prove the above lemma we need to define a map between
Hompose;(PG,V(H)) and I'R and then, show, that it is indeed the desired isomor-
phisms. We define the following:

i : Homposer( PG, V(H)) — TR (14.1.5)

such that for each ¢ € Homypse(PG,V(H)) and L € PG we have

i(P)(L) := ¢y (14.1.6)

where ¢y, € Hompose:( L, V(H)). If we then consider L; € L, then i(¢)(L;) :=

S = @)y = (((@)(L2))y, = R, 1,)({(¢)(L2)). Thus indeed i(¢), as
defined above, is a global element.
We now define the inverse as follows:

j : TR = Homyose( PG, V() (14.1.7)
by
GyNWL) == y(L)(L) (14.1.8)

forall L € PG and y € T'R. Moreover given L; C L, then j(y)(Ly) := y(L1)(Ly) =

y(L2)(Ly) € y(Ly)(Ly) = (j(y))L,. If follows that j(y), as defined above, is indeed

a poset morphisms. It is easy to see that i and j are inverse of each other. O
The group action on R is defined similarly as in Eq. (14.1.1), namely

(L)L = Lg(¢ (L)) (14.1.9)

for all ¢ € Homposer (3 L, V(H)), L;i €| Land g € U(H).

SHere 'R denotes the global sections of R.
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Since both | L and V(H) are equipped with the Alexandroff topology, we will make
use of the following Lemma

Lemma 14.1.2 Let o : Py — P, be a map between posets Py and P,. Then o is
order preserving if and only if for each lower set L C P,, we have that o' (L) is a
lower subset of P;.

Proof Let us assume that ¢ is order preserving and let L € P, be lower. Now let
z€a (L) € Py, ie., a(z) = [ for some [ € L, and suppose y € P is such that
y < z. Since « is order preserving we have «(y) < «(z) = [ € L, which, since L is
lower, means that a(y) € L, i.e.,y € a~'(L). Hence ! (L) is lower.

Conversely, suppose that for any lower set L € P, we have that o~ !(L) € P,
is lower, and consider a pair x,y € P such that x < y. Now | (y) is lower in P,
and hence a~! (| a(y)) is a lower subset of P;. However a(y) €| a(y) and hence
y € a”'({ a(y)). Therefore, the fact that x < y implies that x € «~ (| a(y)), i.e.,
a(x) €} a(y), which means that «(x) < «(y). Therefore « is order preserving. O

Given the above Lemma we can write

RL = Homposet(i/ L, V(H)) = C(\L L, V(H)) (14.1.10)
where C(| L, V(#)) denotes the set of all continuous functions. Moreover, given
two continuous functions f, g :| L — V(#), these have the same germ at L € PG
iff fi; = gy1. Thus, denoting the sheaf of germs (See Sect. A.4 in the Appendix) of
continuous functions between any two topological spaces X and Y as C(X,Y), we
can write

R~ C(PG,V(H)), (14.1.11)
such that for each L € PG, the space of germs at L is
R, ~ C.(PG,V(H)). (14.1.12)

As a consequence of Lemma 14.1.1 we have that

TR ~ C(PG,V(H)). (14.1.13)

14.1.2 Considering All Quantizations At Once

Since our aim is, eventually, to define a topos quantum theory which takes into con-
sideration all possible quantization, we would like to consider these quantizations
as elements of a new base category. This can indeed be done bydefining an ordering
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on the bundle space AR of the etalé bundle pg : AR — PG, associated to the sheaf
R. Such an ordering is defined as follows: given two elements ¢;, ¢, € AR then

¢1 < ¢ iff pr(1) € pr(¢2) and 1 = &2, - (14.1.14)

Given such an ordering we then have the following theorem:

Theorem 14.1.1 The Alexandrof topology on R defined via the above ordering is
homeomorphic to the etalé topology of A(R) associated with the etalé bundle py :
AR — PG.

Before proving the above theorem we will briefly recall the definition of an etalé
bundle.

Definition 14.1.2 Given a topological space X, a bundle pr : E — X is said to
be etalé iff py is a local homeomorphism. By this we mean that, for each e € FE
there exists an open set V with e € V C E, such that pV is open in X and py is a
homeomorphism V — pV.

We now will prove the above theorem.

Proof Let us consider an open set U in the etalé topology of A(R). Since pg :
A(R) — PG is alocal homeomorphism,’ then pg(U) is open in PG, i.e., it is a lower
set in the Alexandroff topology. However, by the definition of the poset structure on
AR, p is order preserving, thus p;l opr(U) is a lower set in AR. Moreover since pg
is a local homeomorphism then py' o pr(U) = U is a lower set in AR.

Conversely, let U be an open set in the Alexandroff topology on AR. Since pg
is order preserving then pg(U) is a lower set in PG. Now since pg : AR — PG is
an etalé bundle we know that pg is a local homeomorphism in the etalé topology.
Thus, restricting only to open sets, we have that pg ' (pr(U)) is an open set in the
etalé topology. However py! o pr(U) = U, i.e., U is open in the etalé topology. O

If we, indeed, do want to use AR as the base category we need a way of “pulling
back” the presheaves we defined in V(H) to presheaves on AR. This can be done
with the aid of the following functor:

Theorem 14.1.2 The map Jy : Sh(V(H)) — Sh(AR) defined on
1. Objects: given ¢ € AR we define
(Jo(A))y = A¢(pR(¢)) = (¢*A)p1e(¢) (14.1.15)

such that if ¢1 < ¢ (pr(¢1) S pr(p2) and ¢1 = ($2)ppg1)) we define
Jo(A) (g g,) = Jo(A)g, = Jo(A)g, by

To(A)ipig2) := Aligigz) = Agapuga) = Apr(putor) - (14.1.16)

7In the sense that for each element ¢ € (AR)y, given the open neighbourhood U, pr(U) is
open in PG and py, restricted to U 3 ¢ is a homomorphisms, i.e., (pg)|U : U — pr(U) is a
homomorphisms.
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2. Maps: given f : A — B in Sh(V(H)) we define Jo(f)g : Jo(A)g — Jo(B)g as the
maps foer@) * Apr@) = Bowr(e):

Proof Consider an arrow f : A — B in Sh(V(#)) such that, for each V € V(#), the
local component is fy : A, — By, with commutative diagram

I
4, —— B,

Ay, v, By,

Ay, —— By,
2 fVZ 2

for all pairs Vi, V, with V, < V. Now suppose that ¢, < ¢, such that (i) pr(¢2) <
Pr(¢1); and (i) ¢2 = P1ppn)- We want to show that the action of the Jy functor

gives the commutative diagram

Jo(Ng,

Jo(A)g, Jo(B)g,
JoA)Ggy.¢5) Jo(B) (i, .¢>)
JO(A)% o JO@)@

o )ga

for all V, C V. By applying the definitions, we get

To10r(@1))

L VS R—— - PPN

Alﬁl(ﬂR(lﬁl )-$2(PR(¢2)) E‘P](PR #1)).92(PR($2))

L TS E—— PP,
f¢2(l’R (#2))

which is commutative. Therefore Jo(f) is a well defined arrow in Sh(AR) from
Jo(A) to Jo(B).
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Given two arrows f, g in Sh(V(#)) then it follows that:

Jo(fog) =Jo(f) o Jo(g). (14.1.17)

This proves that the Jy is a functor from Sh(V(#)) to Sh(AR). The propertied of
this O

Corollary 14.1.1 The functor Jy preserves monics.

Proof Given a monic arrow f : A — B in Sh(V(H)) then by definition

Jo(f),e 1 Jo(A),s — Jo(B),s (14.1.18)
V2 Va Va
Josos0%) “ At (6 — Bas(p0) (14.1.19)
The fact that such a map is monic is straightforward. O

Similarly we can show that
Corollary 14.1.2 The functor Jy preserves epic arrows.

Proof Given an epic arrow f : A — B in Sh()V(#)) then by definition

Jo(F)yz 1 Jo(A)g — Jo(B),z (14.1.20)
v v vy
Tos @8 * Ak r6$) > Begmd) (14.1.21)
The fact that such a map is epic is straightforward. O

We would now like to know how such a functor behaves with respect to the
terminal object. To this end we define the following corollary:

Corollary 14.1.3 The functor Jy preserves the terminal object.

Proof The terminal object in Sh(V(H)) is the objects 1g,, (3., such that to each
element V € V(H) it associates the singleton set {*}. We now apply the J, functor
to such an object obtaining

JoUsnvan)ut, = Usnwan))es(ps@e) = 1%} (14.1.22)

where ¢¢ is the unique homeomorphism associated to the coset w},.

Thus it follows that Jo(Lg,(3)) = Lsua(c/6r)) |
We now check whether Jy preserves the initial object. We recall that the initial

object in Sh(V(H)) is simply the sheaf Oy, (5, Which assigns to each element V

the empty set {#}. We then have

JO(OSh(V(H)))wf, = Osivan) ot (ps9e) = 105 (14.1.23)

where ¢8 € Hom(| V,V(#)) is the unique homeomorphism associated with the
coset wj.
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It follows that:
JO(OSh(V(’H))) = OSh(A(G/GF)) (14.1.24)

From the above proof it transpires that the reason the functor J preserves monic,
epic, terminal object, and initial object is mainly due to the fact that the action of
Jo is defined component-wise as (Jo(A))y = Ay, for ¢ € Hom(] V,V(H)). In
particular, it can be shown that J preserves all limits and colimits.

Theorem 14.1.3 The functor Jy preserves limits.

In order to prove the above theorem we first of all have to recall some general
results and definitions. To this end consider two categories C and D, such that there
exists a functor between them F : C — D. For a small index category J, we consider
diagrams of type J in both C and D, i.e. elements in C/ and D’, respectively. The
functor F then induces a functor between these diagrams as follows:

Fl ¢/ - 1D’ (14.1.25)
A F/(A) (14.1.26)

such that ( F/(A))(j) := F(A(j)). Therefore, if limits of type J exist in C and D we
obtain the diagram

F F
D’ D
lim<—‘/
where the map
lim:¢ - C (14.1.27)
<«~J
A liIIJl(A) (14.1.28)

assigns, to each diagram A of type J in C, its limit lim«;(A) € C. By the universal
properties of limits we obtain the natural transformation

o Fonn} — limoF’ (14.1.29)

«~J

We then say that F preserves limits if «; is a natural isomorphisms.
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For the case at hand, in order to show that the functor Jj, preserves limits we need to
show that there exists a map

ay 1 Jo o lim — limoJ) (14.1.30)
<~J ~J

which is a natural isomorphisms. Here J({ represents the map

; J J
e (Sh(V(H))) > (Sh(A(G/GF))) (14.1.31)
A Ji(A) (14.1.32)

where (J3(A)())g 1= Jo(A()))g-

The proof of «; being a natural isomorphisms will utilise a result derived in [55]

where it is shown that for any diagram A : J — CP of type J in CP the following
isomorphisms holds

(lin}A)D ~limAp ¥ D € D (14.1.33)

where Ap : J — C is a diagram in D. With these results in mind we are now ready
to prove Theorem 14.1.3

Proof Let us consider a diagram A : J — Sets¥ ) of type J in SetsV():
A:J — SetsV ) (14.1.34)
j=A() (14.1.35)

where A(j)(V) := Ay(j) for Ay : j — Sets a diagram in Sets. Assume that L is a
limit of type J for A, i.e. L : V(H) — Sets such that lim—; A = J. We then construct
the diagram

J lime,
(Setsv(m) - - Sets¥

(SetsA(%) )J — - Sets™G/GR)

limey

and the associated natural transformation

ay 1 Jo o lim — limoJ) (14.1.36)
<«~J <«~J



14.1 Abstract Characterisation of Quantization

For each diagram A : J — Sets¥*) and ¢ € A(G/Gr) we obtain
(s0otim@), = (o)), = (ima),q, = limAuy

where Ag(v) : J — Sets, such that Ay vy (j) = A()) AN
On the other hand

((timos)a), = (Hm(s3n) | = tim(AA), = limAg

<«~J
where

JIA) 1 T — Sers™ (/0
J e Ty

301

(14.1.37)

(14.1.38)

(14.1.39)
(14.1.40)

such that for all ¢ € A(G/Gr) we have (J}(A(}))) ,= (Jo(A(j)) o = ADpm)-

It follows that

Jo o lim ~ lim oJ}
<~J <~J

Similarly one can show that

Theorem 14.1.4 The functor Jy preserves all colimits

(14.1.41)

O

Since colimits are simply duals to the limits, the proof of this theorem is similar
to the proof given above. However, for completeness sake we will, nonetheless,

report it here.

Proof We first of all construct the analogue of the diagram above:

lim—;

J
(Setsv(m) — > SetsVH)

(SetsA(—G/ Gr) )J — > Sets™G/GR)

lim»,/

8Recall that A : J — Sets¥™) is such that Ay(j) = A(j)(V), therefore (JO(A(j)))¢ =

A(Dpwy = Apw) ()
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J
where lim_,; : (SetsV(H)) — SetsY (") represents the map which assigns colimits
0

J
to all diagrams in (SetsV(H)) .

0
We now need to show that the associated natural transformation

7+ Joolim — limoJ! (14.1.42)
J 7 0

is a natural isomorphisms.

J
For any diagram A € (SetsV(H))O and ¢ € A(G/Gr) we compute
(neton), = (i), = (1), =yt 4145

where (lim_>1 A)¢(V) ~ lim_,; Ag(y) is the dual of (14.1.33). On the other hand

((113} ng)(A))¢ - (li)njl(Jé(A)))(ﬁ ~Hm(JjA)s = limAgy)  (14.1.44)

It follows that indeed B, is a natural isomorphisms. O
The Adjoint Functor Theorem as applied to Grothendieck toposes [50] states
that any colimit preserving functor between Grothendieck topoi has a right adjoint
and any limit preserving functor has a left adjoint, so Jy has both adjoints. The
construction of these functors is left as an exercise.
It is a standard result that, given a map f : X — Y between topological spaces X
and Y, we obtain the following geometric morphisms:

f* 1 Sh(Y) — Sh(X) (14.1.45)
fi : Sh(X) — Sh(Y) (14.1.46)

and we know that f* - fi, i.e., f* is the left adjoint of f,. If f is an etalé map,
however, there also exists the left adjoint f! to /*, namely

f1: Sh(X) — Sh(Y) (14.1.47)

with f! — f* - fi.
It can be shown that:

fUpa:A—>X)=fopr:A—>Y (14.1.48)

so that we combine the etalé bundle p4 : A — X with theetalé mapf : X — Y, to
give the etalé bundle fopys : A — Y.

Given a map @ : A — B of etalé bundles over X, we obtain the map f!(«) :
f1(A) — f1(B) which is defined as follows.
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We start with the collection of fibre maps «, : Ay — By, x € X, where A, =
p'A({x}), then, for each y € Y we want to define the maps f!(a), : f1(A), —
F1B)y. ie. fA@)y 1 p~ (A YD) = p (B(™'{)). These are defined as:

U a)y(a) == ap,)(a) (14.1.49)

forall a € f1(A), = p~" (A(f{a})).
For the case at hand, we will utilised the left adjoint functor

pr! : SH(AR) — Sh(PG) PR F DR .

to map sheaves over AR to sheaves over the poset category PG.
Thus, given a sheaf K € Sh(AR the associated etalé bundle over AR is px :
AK — AR. Then’ pg! : Et(AR) — Et(PG) is defined by

Pr!(pk : AK — AR) :=propg : AK — PG.
The precise way in which the left adjoint functor pg! is constructed is reported in
the Sect. A.5 in the Appendix.

Given a sheaf A € Sh(V(#H)) we are now able to define the corresponding sheaf
over PG as pg o Jy(A) where, now, the bundle space is

A(proJo(A))y = U ¢ =@ (14.1.50)
¢€H0mpaxet(¢LvV(’H))

It is interesting to note that, although the functor Jy preserves the terminal object,
the composition pg o Jy doesn’t (this was already shown in [27] but for different

functors). In particular, given the terminal object g, (5 then, for all ¢ € AR we
have

(Jo(snvan)e = Qg e orig) = 1} (14.1.51)

hence

However, if we then apply the functor pg! we obtain

Pr!(Iguar)) = R # lgypg) - (14.1.53)

9Here Et(AR) indicates the etalé bundles over AR.
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14.1.3 Preservation of Linear Structure Through
the Presheaf I

The presheaf R, although useful at a conceptual level it does not address the
preservation of linear structure. A possible way to preserve such a structure is to
construct a poset morphism ¢ :| L — V(#) (L € PG) by first introducing a Lie
algebra homomorphism, f : L — B(#) and then defining

¢r(L) = f(L)" (14.1.54)

where f(L)” is the double commutant of the abelian subalgebra f(L) < B(H).
Clearly f extends to a poset morphisms from | L to V(H) as f(Lo) := ¢y, (Lo)”
where ¢y, : Lo — B(H) is f restricted to the subalgebra Ly C L.

Given this construction it is now possible to define the following presheaf:

Definition 14.1.3 The pre-quantization presheaf has:

* as objects
I; := Homy. (] L,B(H)) (14.1.55)

for L € PG
* as Morphisms: given a map ir,z, : L1 < L, the presheaf maps are /(i 1,) :

I, — I}, such that

1(GL,,)(f) == fi, (14.1.56)

forall f € I, = Homp(Li. B(H)).

Since we want faithful representations, we restrict the homomorphisms to only
include injective ones.

We could obviously restrict f to irreducible representations. Clearly each such
irreducible representation will give a global element of 7, however it is not clear at
this stage if the converse is true.

The bundle space Al can be given a poset structure in a similar way as it was
done for AR, namely: given two elements fi, /> € Al then

h=<hh iff pi(fi) S pi(f).

The group action is defined in the obvious way: for each Uelu (H)andf €I, =
Homp; (L, B(H)) then I;;(f) € I is

(o) == UF)U". (14.1.57)

I (f) is indeed an algebra homomorphisms.
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Similarly, as it was done for the R presheaf, we now utilise the poset Al as our
base category and define a functor Iy : Sh(V(H)) — Sh(AI).

Theorem 14.1.5 The functor Iy is defined:
1. on objects: for all f € Al we define

(IO(A))(f) = Af(Pl(f))// (14.1.58)

where p; : AI — PG.
Iffa < fithen loAy 4, : (10(A))(fi) = (Io(A))(f2) is defined as

DA 1 = A i) B AR ) ™ Aponp)” - (14.1.59)

2. On arrows: for any g : A — B, and for each f € AI we define 1(g); : Ay — By
as 81" Arpir” > Brpuiy”

Proof Consider an arrow f : A — B in Sh(V(H)), so that for each V € V(H) the
local component is fy : Ay, — By, with commutative diagram

dyy ———— By,

Ay, v, By,

Ay, ——— By,

for all pairs V;, V, with V, < V. Now suppose that f, < fi, such that (i) p;(f>) <
pi(f1); and (ii) f> = filp,(s), We want to show that, for all V, C V|, the action of the
Iy functor gives the following commutative diagram

I(Np
ld)y, —— LBy

To(AD(ir 1) Io(B)(ify 1)

In(4)s, T Ih(B)s,
o(Np
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By applying the definitions we get

Ji i)

iy~ Biguuin

DY) B (s (i ()

Appy = Brpunn
W) (p1(£2)

which is commutative. Therefore Io(f) is a well defined arrow in Sh(AT) from I(A)
to I(B). Moreover, given two arrows f, g in Sh(V(H)) it easy to see that

Io(fog) =1Io(f)ol(g).

This proves that I is a functor from Sh(V(H)) to Sh(AI). O

Given the etalé bundle map p; : AI — PG we then utilise the left adjoint functor
pi! to map the sheaves over A/l to sheaves over the poset PG, thus obtaining the
composite functor

F:=pilol. (14.1.60)

14.1.4 Relation Between the Functors I and R

Theorem 14.1.6 The map k : I — R defined for each L € PG as

kr : Hompi (L, B(H)) — Homyposer(3 L, V(H)) (14.1.61)
g+ ki(q) (14.1.62)

such that k. (q)(Lo) := (¢(Lo))” for all Ly < L, is a functor.

Proof To show that the map k, as defined above, is indeed a functor we need to show
that for all L € PG the following diagram commutes:
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Homy.(L, B(H)) —f> Hompoger(4 L, V(H))

HomLie(L/, B(H)) Homposet(l« L/, V(H))

That is, we need to show that for all ¢ € Homy;. (L, B(#)), then
kyrof(q) = goku(q). (14.1.63)

Now, for all Ly € L (k;/ © f(q))(Lo) := (f(q(Lo))" = (g,(Lo))". This is equivalent
w0 (¢,(Lo))" = (q(Lo))".
On the other hand g o ki (gq) := (kL(q))| yo therefore, for all Ly < L,

k(@)1 (Lo) = Ky (9)(Lo) = (q(Lo))". O
Now that we have the two functors Iy and Jj it is interesting to note that for each
A € Sh(V(H)) we have, for ¢ € Hompoge:( L, V(H))

Jo(A)g :=Ayq) = (9™A)L (14.1.64)
and
IAr = Jo(A)up) = ki (Jo(A))y (14.1.65)
for f € Homy.(L, B(H)). Therefore we obtain that

n—A (14166)

DAgp, = Aqsfl (Pr(A) 5, (pr(£2))” ‘A¢f1(m<f1>> o (pr(2)”

From the definition it follows that this k& functor can be seen as a context
preserving functor. In particular, if we see it as a bundle map we would obtain the
map k : AI — AR between the etalé bundle spaces. Consequently the pull back
would be

(K" (Jo(AN]r = Jow.(r) = Ay = To(A)y (14.1.67)

forall f € Al and p;(f) = L.
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14.2 Quantization by Nakayama

In [57] the author defines a concrete way of defining a quantization in a topos
given an underlining classical system. This method turns out to be a particular
application of the above abstract description of a quantization in a topos, although
it is not presented in that way by the author. In the following we will first report the
main ideas in the paper, then try to generalise it to incorporate unitary equivalent
quantizations.

In [57] the author starts by considering a collection of so called pre-quantization
categories which are basically posets of lie-abelian classical observables. In partic-
ular, let us consider the set O of all classical observables, then C, is the collection
of all subsets C € O such that for any a, b € C then [a, b] = 0. C, forms a category
under inclusion. A pre-quantization category is then defined as follows:

Definition 14.2.1 Any full subcategory of C, is a pre-quantization category.

It is straightforward to see that the collection of pre-quantization categories forms
itself a category under inclusion. We will denote such a category by €.
In what follows we will assume that C, is invariant under any symplectic covariance
transformation. Given such a category, it is possible, as shown in [57] to define a
quantization functor. In particular, given any classical observable a we can define
the quantization of a through the map'”

§:am> e, (14.2.1)

This map induces a quantization functor ¢ defined as follows:

¢:C,— V(H) (14.2.2)
Cc— Y(C)" (14.2.3)
where T(C)" = (H(C) U #(C)*)" (here ” represents the double commutant

operator). Thus Y(C)” is the smallest abelian von Neumann algebra containing
Y (C). Since ¢(C') C ¢(C) whenever C' C C, it follows that indeed ¢ is a functor.
It is easy to ‘extend’ ¢ to a functor on &, where for all C € €, then ¢|¢c : C — V(H)
is the restriction of ¢ to C.

We are interested not only in a single quantization but in all possible unitary
equivalent quantizations, therefore we need to define the action of G € U(H)
on ¢. This will allow us to define the notion of unitary equivalent quantizations
implementing the Dirac covariance of quantum theory. In particular, for each g € G
and C € C, we define

L (C) == L(¢(C)).

10The author in [57] claims that the map  is faithful, however because of the periodicity of the
exponential function it is not clear to us how he justifies his claim.
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Having defined the action of G on the quantization functor we can define the
quantization presheaf over C, as follows:

Definition 14.2.2 The quantization presheaf Q : Cy — Sets is defined on

1. Objects: for each C € C, we assign the collection of unitary equivalent
quantization maps, i.e. Q(C) 1= {l,¢ :| C — V(H)|g € G} where [,¢(C) :=
l,(¢(C)). We assume that there is no group action on C,.

2. Morphisms: given a map ic, ¢, : C1 € C; the corresponding presheaf map is

Qlic,.c;) : Q(C2) — O(Cy) (14.2.4)
¢ = P, (14.2.5)

We would now like to consider all possible equivalent quantizations at the same
time. To this end we will adopt a similar trick as the one adopted in [27] and utilise,
as our new base category, the poset AQ. This will be the topic of the next Section.

14.2.1 Sheaves over AQ

Given the sheaf Q, the associated étalé bundle is pg : AQ — C, where AQ is the
bundle space. We want to show that AQ is actually a poset.

Lemma 14.2.1 Given two elements ¢, € AQ and ¢ € AQ, then

$1 = ¢2 iff po(@1) S po(@2) and d1 = 2 py(n)

Proof

1. Reflexivity. Trivially ¢ < ¢ since po(¢) < po(¢) and ¢ = ¢.

2. Transitivity. If ¢; < ¢; and ¢; < ¢y, then po(¢:) < po(¢;) and po(¢;) < po(¢).
therefore po(¢) S po(¢i). Moreover we have that ¢; = @jl,,(p) and ¢ =
Ok II’Q(¢j)’ therefore ¢; = ¢ |[,Q(¢i).

3. Antisymmetry. If ¢; < ¢; and ¢; < ¢; it implies that po(¢;) S po(¢;) and
Po(9)) S po(@i), thus po(¢;) = po(¢;). Moreover we have that ¢; = @jlpy )
and ¢; = ¢y, (4, therefore ¢; = ¢;.

O
We are now interested in ‘transforming’ all the physically relevant sheaves on

V(H) to sheaves over AQ which, being a poset, is equipped with the Alexandroff

topology. What this means is that we want to construct a functor

I:Sh(V(H)) — Sh(AQ) (14.2.6)
A I(A). (14.2.7)
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As a first attempt we define, for each context ¢,

(14), = Ay = (@ @) (©)

where ¢ :| C — V(#H) is the quantization functor defined for | C.
Next we need to define the morphisms: given ig, 4, : ¢2 < ¢ (¢p1 € Hom(]
Ci,V(H)) and ¢» € Hom(| C»,V(#H))) we define the associated morphisms

TA(igy9,) : (I(A)) - (I(A)) as

1 ¢
(IA(ig,.0.))(@) == Ay, () po(cr) (@) VaeAsc-

In the above equation C; = po(¢1) and Ca = po(¢2).!! Moreover, since ¢y < ¢y,
then ¢»(C2) € ¢1(C1) and ¢ = ¢ic,-

Theorem 14.2.1 The map I : Sh(V(H)) — Sh(AQ) is a functor defined as
follows:

(i) Objects: (I(A)), 1= Ay, = (@)*W)O). I[f 2 = ¢1 (¢ € Hom(l
C1,V(H)) and ¢, € Hom(| C>,V(H))), then

(IA) (igy 1) = A¢1(C1)s¢2(C2) :A¢1(C1) _)A¢2(C2)

where C = po(¢1) and C; = po(¢2).
(ii) Morphisms: if we have a morphisms f : A — B in Sh(V(H)) we, then, define
the corresponding morphisms in Sh(A(Q)) as

I(f)g, 1 1(A)g, = 1(B)g, (14.2.8)
Jor “Agitvow) = Boiposry - (14.2.9)

Proof Consider an arrow f : A — B in Sh(V(H)) so that, for each V € V(H), the
local component is fy : A, — By, with commutative diagram

1IRecall that po - AQ — C,.
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for all pairs Vi, V, with V, < V. Now, suppose that ¢, < ¢, such that (i) pp(¢2) <
po(é1); and (ii) g2 = @1py(g,)- We now want to show that the action of the / functor
gives the commutative diagram

1(f)g,
](@451 1(§)¢1
1(A)(ig) $2) 1(B)(ig) .4)
](@(]52 I(E)(ﬁz
1(/)gy

for all V, C V. By applying the definitions we get

I
Agpotpy ——— B

=¢1(po(91))
4 g B
$1(pQ(¢1))-$2(PQ ($3)) Z01(p0(91)).$2(P0(¢2))

A

Agspoipyy ———— B

T =¢2po(92))

which is commutative. Therefore I(f) is a well defined arrow in SA(A Q) from I(A)
to I(B).
Given two arrows f, g in Sh(V(#)) then it follows that:

I(fog) =1(f)ol(g). (14.2.10)

This proves that I is a functor from Sh(V(#)) to Sh(A Q). O
By considering AQ as our new base category we are effectively considering a
context to be an element of {¢ :| C — V(H)} for some abelian Lie subalgebra C
of classical observables. We can think of any such element as a local quantization
in which classical observables are attached to specific self-adjoint operators in the
Hilbert space H, in a globally coherent way.
Given that

AQ = [[{¢i:l c— V() (14.2.11)

CeC,
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we can then think of a context as a pair (¢, C) of a Lie algebra of commuting
classical observables and a specific quantization. Given such pairs it is possible to
give AQ a poset structure as follow:

(¢1,C1) < (¢2,C2) <= C1 S Cyand ¢1 = ¢i]c, (14.2.12)

Corollary 14.2.1 The etalé topology on AQ is homeomorphic to the Alexandroff
topology, given by the above ordering.
To prove the above Corollary we will make use of the following Lemma:

Lemma 14.2.2 Let o : Py — P, be a map between posets Py and P,. Then « is
order-preserving if and only if, for each lower set L C P, we have that =" (L) is a
lower subset of P;.

Proof We now assume that « is order-preserving and L < P, is lower. Next let
z€a (L) € Py,ie., a(z) = [ for some [ € L, and suppose that y € P; is such that
y < z. Since « is order-preserving we have a(y) < «(z) = [ € L, which, since L is
lower, it means that a(y) € L, i.e., y € a~'(L). Hence a~!(L) is lower.

Conversely, suppose that for any lower set L € P, we have that «~!(L) € P; is
lower. If we consider a pair x,y € P; such that x < y, | (y) is lower in P, and,
hence, o' (| «(y)) is a lower subset of P;. However a(y) €| «(y) and, hence,
y € a”'({ a(y)). Therefore, the fact that x < y implies that x € «~ (| a(y)), i.e.,
a(x) €l a(y), which means that a(x) < a(y). We can now say that « is order-
preserving. O

We can now prove Corollary 14.2.1.

Proof Let us consider an open set U in the étale topology of A(Q). Since pyp :
AQ — C, is a local homeomorphism'? then py(U) is open in C,, i.e., is a lower
set in the Alexandroff topology. However, by the definition of the poset structure on
AQ, pg is order-preserving, thus pél o po(U) is a lower set in AQ. Moreover since
po is a local homeomorphism then pél opo(U) = U is alower setin AQ.
Conversely, let U be an open set in the Alexandroff topology on AQ. Since py is
order-preserving then po(U) is a lower set in C,. Now, since pp : AQ — C, is
an étale bundle, we know that p is a local homeomorphism in the étale topology.
Thus, restricting only to open sets, we have that pél(pQ(U)) is an open set in the
étale topology. However pél opo(U) = U, ie., Uis openin the étale topology. O

Given the map pp : AQ — C between topological space, we obtain the left
adjoint functor po! : Sh(AQ) — Sh(C,) of p, : Sh(C,) — Sh(AQ). The existence
of such a functor enables us to define the composite functor

F:=polol: Sh(V(H)) — Sh(C,). (14.2.13)

In the sense that for each element ¢ € (AQ)c, given the open neighbourhood U, po(U) is open in
C, and pg restricted to U 3 ¢ is a homomorphisms, i.e., po|y : U = p(U) is a homomorphisms.
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Such a functor sends all the original sheaves we had defined over V(H) to new
sheaves over C,. Thus, denoting the sheaves over C, as A we have

Y= F(2) =poloI(T).
For each element C € C, we then obtain:

[ =@©). (14.2.14)
$E(AQ)(C)

Conclusions In this chapter we considered an abstract characterization of quanti-
zation in a topos, both in the case when there is an underlining classical system and
when such a system is absent. So far, to our knowledge, the only current application
of this schema was done in [57]. In this paper the author considers an underlying
classical system and defined quantization through the map v : a . However it
is not clear to us how this map can be injective. Nevertheless, the work done in [57]
is a very good start to tackling the problem of quantization in a topos. What needs
to be done at this stage is to enlarge such a schema so that the issues mentioned in
the introduction of this chapter can be addressed.



Appendix A

A.1 Dedekind Reals in a Topos

In Sect. 9.2 we gave the definition of the internal natural number object Z, and the
internal rational number object Qr. These will now be utilised to define the internal

Dedekind reals R. To this end, let us consider the set R of ordered reals, each real
number r € R defines two disjoint subsets in @, namely

L={qeQlg<r}
U={9€Qlg>r}.

These subsets have the following properties:

1. Each subset is non-empty.

2. L is a downwards closed set but has no largest element.

3. U is an upwards closed set but has no smallest element.

4. If x is a rational number then LU U C Q, otherwise LU U = Q.

Given the above we can now define the notion of a Dedekind cut.

Definition A.1.1 A Dedekind cut is a pair of disjoint subsets (L, U) of @ such that
the following conditions hold:

1. Non-degenerate:

dpeQ(pel), 3geQ(gel).
2. Inward-closed:

Vp,gqeQ(p<gnrqel=pel);

Vp,geQ(g<pnrqelU=pel).
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3. Outward-open:

VgeQ(geLl=FIpeQ(pelLng<p)
VgeQqeU=3pecQpecUAp<g).

4. Located:
Vp.qeQ(g<p=(qeLvpel)).
5. Mutually exclusive:
LNU=49.

It is possible to internalise the above definition of Dedekind cut in any topos with
a natural number object. This is done by first defining the ordering relation < in QI
as a sub-object of QI X QI. In particular, given two elements m/n,p/q € QI, then
<:={(m/n,p/q) € QT X Qt|m -q < p-n}where m-g < p-nis the order relation
on the integers. We can then re-write all of the above conditions in Definition A.1.1
in terms of the internal language of t, by simply replacing Q by (QI and interpreting
all the logical symbols in term of the internal language of <.
The internal Dedekind reals R is then defined as follows:

R={(L,U) € P(Q,) x P(QT)|(L, U) is a Dedekind cut } .

Itis also possible to define the internal Dedekind reals in terms of a geometric theory
[50, D4.7.4]. In particular, we consider the geometrical theory T generated by the
symbols (p,q) € Q x Q with p < g. These formal symbols undergo an ordering
defined as follows: (p,q) < (p’,q’) iff p < p’ and g < ¢'. The axioms of the theory
TR are

(max{pi, p2}, min{qi, q2}) if max{py, p2} < min{qi, ¢}
| otherwise .

2. (p.g) =\ 4)p<p <4 <q}.

3.T=Vip.9lp<al.

4. (p.q) = (p.q) VvV (p1.@)ifp <p1 <q1 <q.

Given a topos t, an interpretation of the theory T in 7 gives rise to a locale
R, with associated frame O(R;). The points of the locale R,, i.e. the maps
p~ ' OR,) — Q., are in bijective correspondence with Dedekind cuts defined in
Definition A.1.1.

L (p1.q)N (P2, q2) =
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A.2 Scott’s Interval Domain

We will start by giving a brief description of Scott’s interval domain IR in Sets.
In particular, as a set, IIR consists of all compact subsets of the form [a, b] with
a,b € Rand a < b. In IR are included also the singletons [a,a] = {a} for each
a € R. IR is a poset under reverse inclusion. In this sense, elements of IR can be
though of as approximations of real numbers. The smaller the subsets the better it
approximates the corresponding real number. It is possible to equip IR with the so
called Scott topology which is defined as follows:

Definition A.2.1 Given a subset U C IR, we say that U is Scott open if the
following conditions hold:

1. If [a,b] € U and [a,b] C [d, V] then [d’, D] € U. This means that U is upwards
closed.

2. If all directed sets S with supremum in U have non-empty intersection with U,
i.e. for any directed subset S € IR with supremum \/ S, if \/ S € U, then there
exists a W € S such that W € U. This property means that U is inaccessible by
directed joins.

Clearly the complement of a Scott open is Scott closed. These can be defined as
follows:

Definition A.2.2 Given a subset U C IR, we say that U is Scott closed if the
following two condition hold:

1. U is a down set.
2. If S is a directed set contained in U and the supremum (Sup(S)) of S exists, then
Sup(S) € U.

Given the above definition, a basis for the Scott topology is given by the
collection of the following subsets

(p.@)s:=1Ar.sllp<r=<s<gq}, p.ge Qandp <q.

We will denote the set IR, equipped with the Scott topology, by O(IR).

Next we would like to internalise the object IR in the topos [C(A), Sets]. This can
be done utilising the technique elucidated in Sect. 9.3. In particular, we recall that
the category C(.A) is equipped with the upwards Alexandroff topology, such that the
product C(A) x IR is given the product topology. We then consider the continuous
projection map 7 : C(A) xIR — C(A), (C, [a, b]) — C. The associated frame map
is then 77! : O(C(a)) — O(C(A) x IR). Such a map describes the internal locale
IR.

Similarly, as for the internal Dedekind reals, also the internal interval domain can
be defined in terms of a geometric theory Tyg. In particular, the generating symbols
for Ty are (p, g) € Q x Q with p < g. These formal symbols undergo an ordering
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defined as follows: (p,q) < (p'.q') iff p < p’ and ¢ < ¢’. The axioms of the theory
Tyr are

(max{ pi,pa}, min{qy, q2}) if max{pi,p2} < min{q, ¢2}
| otherwise .

2. (p.g =\ d)p<p <4 <q}.

3. T =\V{(p.9)lp < g}

Given a topos 7, an interpretation of the theory Ty in t gives rise to a locale IR,
with associated frame O(IR.). The points of the locale IR, i.e. the maps p~' :
OdR,) — . are in bijective correspondence with elements of IR as defined
above.

As one can see from the above definitions, the Scott interval domain is closely
related to Dedekind cuts, in fact, only axiom (4.) in the definition of Ty, fails to hold
for T]I]R-

L. (p1.q)N(p2, q2) =

A.3 Properties of Daseinised Projections

In [26, Sec. 10.2] various properties of the daseinisation map where introduced.
In this context it was also shown that sub-objects 8(P) of the spectral presehaf X
are ‘special’ in the sense that they are the only elements in Sub, (%) for which the
presheaf maps are surjective. In particular, in the definition of a sub-object of ¥ we
have the condition that, for each 174 C V, the respective presheaf map

(i) By = Xy (A.3.1)
is such that, for a given subset S}, € Xy, then
() Sy) €Sy S X (A3.2)

However, for subobjects of the form § (13) we obtain an equality in (A.3.2). This
property is encoded in the following theorem:

Theorem A.3.1 Given any projection operator P and any two contexts V! C 'V,
then the following relation holds:

S0ty 8°(P)v = Z(ivv)(Sgo ), ) - (A.3.3)
Proof As a first step we will show that the map

S(ivy) : P(Sy) = P(Sy) (A3.4)
S ryyS = (A A €S},
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is continuous, closed and open. For notational simplicity we will write r = X(i,/,,)
and Eq. (A.3.3) becomes

F(Soiey,) = 500, 6" (PIV) = Sy5) , - (A35)

Let us first show that such a map is continuous. Consider an open basis set!
R € X/, we know that Xy, := {A : V — C|A(1) = 1} and, similarly, X,/ :=
v - CM(i) = 1}. Moreover if A € X, then from the definition of the
presheaf maps it follows that Alv’ € X,/ when V' C V. We can then define, for any
R € P(X) the following:

(R :=RNX,. (A.3.6)

Since the intersection of open sets is open, 7! (R) is open.

Next we need to show that r is closed. Consider a closed subset § C X,. Since X,
is compact so is S and, since r is continuous, then r(S) is compact in X,/. But X/
is Hausdorff thus r(S) is closed.

To show that r is open we note that since every A,» € X, is of the form Ay|,, for
some Ay € S € Xy, then

rS) ={A |l eSi=5N3, . (A3.7)

If S is open, then S N X, is the intersection of two opens thus it is itself open.
Given the above properties of r, a clopen subset Sy, ) < Xy, gets mapped to the

clopen subset "(Ssn(is)v) € ,/. Such a subset® is

r(Sygiy,) = int[ Sy € Suba(Zy)|r(Sgop),) S Sp! (A.3.8)

thus r(SS"(f’)V) C SQ.

We now need to show that Q > §°(P)y. We prove this by contradiction. Assume
that §°(P)y > Q and define R := §(P)y — Q € P(V), such that A € Sj. It follows
that A € S&”(i’)v but A ¢ SQ - EV'

However if §°(P)y = §°(P),, then r(S 8”(13)\/) =S 5o(P), - In fact, given an element

A € 8(P),, = Sy p), by definition A(8°(P)y) = 1. Since §°(P),s > 8°(P)v (V' <

'Note that for each V € V(H), I, has the spectral topology (being the spectrum of V) which is
compact and Hausdorff. The details of such a topology are not necessary to prove continuity. It is
worth saying, though, that it can be shown that a basis for this topology is the collection of clopen
subsets. This renders the prof of continuity easier, however we will not use it here. On the other
hand, when proving closeness of r we will use the fact that 3, is a Hausdorff compact space.

Note that the int operation is needed for the subset to be clopen, otherwise it would only be closed.



320 Appendix A

V), then ’\\v’ € Sso(p) , - On the other hand, if A ¢ Sy, 3, then /\(8"(13)V) = 0. Since
\4

§°(P), = 8°(P)y then A,/ ¢ Sy, -

Py

Given the fact that every A,, € X, is of the form Ay|,, = r(dy) for some
Ae Sso (), » then r(Sé”(i’)v) = S‘g"(i))v/ and r((Sgn(i,)V)f) = Sgg(i’)v’ €X,.

It follows that in our case we have r(S;) = S; and r((S5)°) = (Sp)°. We have
shown that, 1,/ ¢ SQ CX,butie V(SS(,(I”,)V), what this means is that

if O < 8°(P)v then r(Syz,,) € Sp - (A.3.9)

However, this is a contradiction, therefore it must be the case that Q > 8”(18)‘/.
We can now write r(S 8”(13)\/) as

(Sgopy,) = int[ [{Sp € Sub(T,)|0 = 8°(P)v} (A.3.10)
= Sper(v)lozs Py = Soav,V)sn(fo)W (A3.11)

therefore
(iyry) : Sgopy, = Sga(is)v, : (A.3.12)

It follows that the clopen sub-objects of the form 8(13) are such that the presheaf
maps are also surjective. O

A.4 Connection Between Sheaves and Etalé Bundles

In this Section we will investigate the connection between sheaves and an etalé
bundles is. To this end we need to introduce the notion of a germ of a function.
Once we have introduced such a notion, it can be shown that each sheaf is a sheaf of
cross sections of a suitable bundle. All this will become clear as we proceed. First of
all: what is a germ? Germs represent constructions which define local properties of
functions. In particular they indicate how similar two functions are locally. Because
of this locality requirement, germs are generally defined on functions acting on
topological spaces, such that the word local acquires meaning. For example, one can
consider measure of ‘locality’ to be a power series expansion of a function around
some fixed point. Thus, one can say that two holomorphic functions f, g : U — C
have the same germ at a point a € U iff the power series expansions around that
point are the same. Thus f, g agree on some neighbourhood of a, i.e., with respect
to that neighbourhood they “look” the same.

This definition obviously holds only if a power series expansion exists, however
it is possible to generalise such a definition in a way that it only requires topological
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properties of the spaces involved. For example two functions f, g : X — E have the
same germ at x € X if there exist some neighbourhood of x on which they agree. In
this case we write® germ,f = germ,g which implies that f(x) = g(x). However the
converse is not true.

How do we generalise such a definition of germs in the case of presheaves? Let
us consider a presheaf P : O(X) — Sets € Sets®®” where X is a topological
space and O(X)? is the category of open sets with reverse ordering to the inclusion
ordering. Given a point x € X and two neighbourhoods U and V of x, the presheaf P
assigns two sets P(U) and P(V). Now consider two points t € P(V) and s € P(U),
we then say that ¢ and s have the same germ at x iff there exists some open W C
UNV,suchthatx € Wand sy = fjw € P(W).

The condition of having the same germ at x defines an equivalence class which
is denoted as germ,s. Thus t € germ,s iff, given two opens U,V > x then there
exists some W C U N V such that x € W and 1y = s;w € P(W), where s € P(U)
and ¢ € P(V). It follows that the set of all elements obtained through the P presheaf
get ‘quotient’ through the equivalence relation of “belonging to the same germ”.
Therefore, for each point x € X there will exist a collection of germs at x, i.e., a
collection of equivalence classes:

P, := {germ,s|s € P(U),x € U openin X} . (A4.1)
We can now collect all these set of germs for all points x € X, defining

Ap = ]_[Px = {all germ,s|s € X,s € P(U)}. (A4.2)

x€X

What we have done so far is, basically, to divide the presheaf space in equivalence
classes. We can now define the map

p:Ap—>X (A4.3)
germys — x

germys >y

which sends each germ to the point in which it is taken. It follows that each s € P(U)
defines a function

§:U = Ap (A.4.4)

X > germ,s.

3This should be read as: the germ of f at x is the same as the germ of g at x.
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It is straightforward to see that § is a section of p : Ap — X. Since the assignments
s — § is unique, it is possible to replace each element s in the original presheaf with
a section § on the set of germs Ap.

We now define a topology on Ap by considering as basis of open sets all the
image sets $(U) € Ap for U open in X, i.e. open sets are unions of images of
sections. Such a topology obviously makes p continuous. In fact, given an open set
U C X then p~!(U) is open by definition of the topology on Ap, since p~' (U) =
Userwn (0).

On the other hand it is also possible to show that the sections s, as defined above,
are continuous with respect to the topology on A p. To understand this consider two
elements t € P(V) and s € P(U) such that #(x) = 5(x), i.e. germ,(t) = germ,(s)
where x € V N U. It then follows that there exists an open set W > x such that
W C VNU. If we consider all those elements y € VN U C X for which s(y) = x(y),
then all such elements will comprise the open set W € V N U. Given this reasoning
we want to show that for any open O € Ap, then 5~ (O) is open in X. Without loss
of generality we can choose O to be a basis set, i.e.

S(W) = {germ,(s)|Vx € W}. (A4.5)

Thus §7'§(W) = W consists of all those points x such that §(x) = #(x) for t,s €
germs,(s). It follows that W is open.

One can also show that § is open and an injection. The property of being open
follows directly from the definition of topology on A, since the basis of open sets
are all the image sets $(U) € Ap for U open in X. To show that it is injective we
need to show that if germ,s = germ,s then x = y. This follows from the definition
of germs at a point. Putting all these results together we show that § : U — §(U)
is a homeomorphism. So we have managed to construct a bundle p : Ap — X
which is a local homeomorphism, since each point germ,(s) € Ap has an open
neighbourhood §(U) so that p, restricted to s(U), p : §(U) — X has a two sided
inverse § : U — §(U):

hence p is a local homeomorphism.

The above reasoning shows how, given a presheaf P it is possible to construct
an etalé bundle p : Ap — X out of it. Given such a bundle, it is then possible to
construct a sheaf in terms of it. In particular we have the following theorem:

Theorem A.4.1 The presheaf

I'(Ap) : O — Sets (A4.7)
Ur {5|s e P(U)}

is a sheaf.
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Proof In the presheaf

I'(Ap) : OX)”? — Sets
U {5|s e P(U)}

the maps are defined by restriction, i.e. given U; C U, then

I'(Ap) : OX)? — Sets
Ui — {5ilsi € P(U))}

where § > §; is defined via §; = P(iy,)s. Now since

§:U = Ap(U)

X > germys
while
S‘i U — AP(UL)
y > germys; .
Since U; C U, then
s:U; — AP(U,')
y > germys

it follows that §; = §|y,.
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(A.4.8)

(A.4.9)

(A.4.10)

(A4.11)

(A4.12)

In order to show that the above is indeed a sheaf we need to show that the diagram

p

F(ANU) — [T, T(A(U) == [T, T(ALU:N U)

q

is an equaliser. By applying the definition of the sheaf maps we obtain

e:T(A,(U) = [[T(A,(U))

5 e(3)=(yliel = {liell.

On the other hand

pG) = {silunu}t = {sjuinu;}

(A.4.13)

(A4.14)
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while

q() = {silunu;} = sjuinu;} - (A.4.15)

O
I'(Ap) is called the sheaf of cross sections of the bundle p : Ap — X. We can
now define a map

n:P—->ToAp (A.4.16)
such that for each context U € O(X)? we obtain

nu : Py — T(Ap)(U) (A4.17)

S S,

Theorem A.4.2 If P is a sheaf then 1 is an isomorphism.
Proof We need to show that n is 1:1 and onto.

1. One to one:
We want to show that if § = # then t = s. Given t,s € P(U), § = t means
that germ,(s) = germ,(t) for all x € U. Therefore there exists opens V, € U
such that x € V, and #jy, = sy,. The collection of these opens V, for all x € U
form a cover of U such that sy, = #)y,. This implies that s, ¢ agree on the map
P(U) — [l,ey P(V,). From the sheaf requirements it follows that 7 = .
2. Onto:

We want to show that any section i : U — A, is of the form ny(s) = § for
some s € P(U). Let us consider a section & : U — A, this will pick for each
x € U an element, say h(x) = germy(sy). Therefore for each x € U there will
exist an open U, > x such that s, € P(U,). By definition germ,(s,) = $§x(x)
where §, is a continuous section, therefore for each open U, we get 5,(U,) =
{germ,(sy)|Vx € U,}, which is open by definition. It follows that for each x € U,
there will exist some t,s € germ,(s), such that §(x) = #(x). This implies that
there exists some open set W, for which x € W, € U, € U and such that
fiw, = S)w,. These open sets W, form a covering of U, i.e. U = ]—[XEU,\- W, with
sjw, € P(W,) for each P(W,). Moreover, since h(x) = germ,(s,) for x € Uy
it follows that & = §, for each W,. Now consider two sections $; and §, for
x € P(W,) and y € P(W,), then on the intersection W, N W,, h agrees with
both §, and §,, therefore the latter agrees in the intersection. This means that
germ.(sy) = germ(sy) for z € W, N W,, therefore sy|w,nw, = sylw,nw,-

We thus obtain a family of elements s, for each x € U, such that they agree
on both maps P(U,) = ]_[ert P(W,) N P(W,). From the condition of being a
sheaf it follows that there exists an s € P(U), such that sy, = s,. Then at each
x € U we have h(x) = germ,(sy) = germy(s) = §(x), therefore h = 5.

O
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It follows that all sheaves are sheaves of cross sections of some bundle.
Moreover it is possible to generalise the above process and define the following pair
of functors

Sets®®” X Bunaxy S shex), (A4.18)
which if we combine together we get the so called sheafification functor:
TA : Sets®®" — Sh(X). (A4.19)

Such a functor sends each presheaf P on X to the “best approximation” I'Ap of P
by a sheaf.

In the case of etalé bundles we then obtain the following equivalence of
categories:

A
Etalé(X) — _ Sh(X)
T

The pair of functors I' and A are an adjoint pair (see Sect. A.5). Here we have
restricted the functors to act on Sh(X) C Sets®X” .

A.5 The Adjoint Pair

As discussed in Chapter 14 of [26], given a map f : X — Y between topological
spaces X and Y we obtain a geometric morphism, whose inverse and direct image
are, respectively,

F* 2 Sh(Y) — Sh(X) (AS.1)
fi : Sh(X) — Sh(Y).

We also know that f* - fy, i.e., f* is the left adjoint of fi. If f is an etalé map,
however, there also exists the left adjoint f! to /*, namely

f:Sh(X) — Sh(Y) (AS5.2)

with f1 = £* i fa.

In Theorem A.5.1, below, we will show that

fUpa:A—>X)=fops: A=Y (A.5.3)
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so that we combine the etalé bundle p4 : A — X withtheetalé mapf : X — Y,
to give the etalé bundle f o p4 : A — Y. Here we have used the fact that sheaves
can be defined in terms of etalé bundles. In fact in Chapter 14 of [26] it was shown
that there exists an equivalence of categories Sh(X) ~ Etale(X) for any topological
space X.

Theorem A.5.1 Given the etalé map f : X — Y, the left adjoint functor f! :
Sh(X) — Sh(Y) is defined as follows:

fUpa:A—>X)=fopr:A—>Y (A5.4)

forpa : A — Y being an etalé bundle.

Proof In the proof we will first define the functor f! for general presheaf situation,
then we will restrict our attention to the case of sheaves (Sh(X) C Sets*”) and f
etalé.

Consider the map f : X — Y, this gives rise to the functor /! : Sets®" — Sets"™ .
The standard definition of f! is as follows:

fli=—®x (:X°) (A5.5)
such that, for any object A € Sets*” we have
A®x (Y°). (A.5.6)
This is a presheaf in Sets"” p, thus for each element y € Y we obtain the set
(A®x (Y)y = A&y (Y*)(—.)) (A5.7)
where (;Y*®) is the presheaf
(rY*) : X x Y — Sets. (A.5.8)
This presheaf derives from the composition of f X idye : X X Y’ — Y x Y
((f x idyw)* SengXY " 5 Sets®*) with the bi-functor *Y® : ¥ x Y°P — Sets;
(v,y) +— Homy(y ,y), ie.,
(rY*®) := (f x idyow)*(°Y®) =* Y* o (f X idyw). (A5.9)
Now coming back to our situation we then have the restricted functor

(rY*)(—.y) : (X.y) — Sets (A.5.10)
(x.y) = (Y*)(x,y)
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which, from the definition given above is

(FY*)(x,y) = Y* o (f xidyw)(x,y) =* Y*(f(x),y) = Homy(y.f(x)).
(A5.11)

Therefore, putting all the results together we have that for each y € Y we obtain
A ®x (;Y*)(—,y), defined for each x € X as

A(—) ®x (¢ Y°*)(x,y) := A(x) ®x Homy(y,f(x)). (A.5.12)

This represents the presheaf A defined over the element x, plus a collection of maps
in Y mapping the original y to the image of x via f.

In particular A(x) ®x (;X*) = A(x) ®x Homy(y, f(—)) represents the following
equaliser:

L1, A() x Homy(x",x) x Homy(y.f(x') [, 4(x) x Homy(y,f(x))

A(=) ®x Homy(y.f(-))

such that, given a triplet (a, g, h) € A(x) x Homy(x',x) x Homy(y,f(x'), we then
obtain that

t(a, g, h) = (ag.h) = 0(a, g, h) = (a, gh) . (A.5.13)

Therefore, from the above equivalence conditions, A(—) ®x Homy(y,f(—)) is the
quotient space of | [, A(x) x Homy(y,f(x)).

We now consider the situation in which A is a sheaf on X, in particular it is an
etalé bundle py : A — X and f is an etalé map which means that it is a local
homeomorphism, i.e. for each x € X there is an open set V, such that x € V and
fiv 1 V = f(V) is a homeomorphism. It follows that for each x; € V there is a unique
element y; such that fjy(x;) = y;. In particular for each V C X then fjy (V) = U for
some U C Y.

Note that, since the condition of being a homeomorphism is only local, it can be
the case that fiy, (Vi) = fjv,(V)) evenif V; # V;. However in these cases the restricted
etalé maps have to agree on the intersections, i.e. fiy, (Vi N V)) = fiy,(V; N V)).

Let us now consider an open set V with local homeomorphism fjy. In this setting
each element y; € fjy(V) will be of the form f(x;) for a unique x;. Moreover, if we
consider two open sets Vi, V, € V, then to each map V; — V; in X, with associated
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bundle map A(V2) — A(V1), there corresponds a map fjy(V1) — fiy(V2) in Y.
Therefore, evaluating A(—) ®x Homy(—,f(—)) at the open set fjy (V) C Y we get,
for each V; C V, the equivalence classes

[A(Vi) xx Homy (fiv(V), fiy(Vi)] .

The equivalence relation is such that

A(V)) xx Homy(fiy(V),fiv(V})) = A(Vi) xx Homy(fijv(V). fiv(Vi))

iff: (1) there exists a map fjy(V;) — fjv(Vi) which combines with F|y — fjy(V)),
giving fiy (V) — fiv(Vx); and (2) the corresponding bundle map A(Vy) — A(V)) —
A(V) is given by the map V — V; — V; in X. A moment of thought reveals that
such an equivalence class is nothing but p;l (V) (the fibre of p4 at V) with associated
fibre maps induced by the base maps.

We will now denote such an equivalence class by [A(V) xxHomy (fiy(V), fiv(V))]
since, obviously, in each equivalence class there will be the element A(V) Xy
Homy (fiv(V), fiv(V)).

Applying the same procedure for each open set V; C X we can obtain two
cases:

(@) fiv,(Vi) = U # fy(V). In this case we simply get an independent equivalence
class for U.

@) If fiy,(Vi) = U = fy(V) and there is no map i : V — V; in X then,
in this case, for U, we obtain two distinct equivalence classes [A(V;) xx
Homy(fiv,(Vi). fiv;(V))] and [A(V) xx Homy (fiv(V), fiv(V))].

Thus the sheaf A(—) ®x (;Y*) is defined for each open set fiy(V) C Y as the set
[A(V) xx Homy(fiv(V). fiv(V))] = A(V))),

while, for each map f/ (V') = fv(V) in Y (with associated map V' — VinX), there
is associated the map

[A(V) xxHomy (fiy (V). fiy (V)] 22 A(V) = [A(V ) xxHomy (fiy (V) .fiyr (V)] 2= A(V).

This is precisely what the etalé bundle f o py : A — Y is. O

Now that we understand the action of f! on sheaves we will try to understand
its action on functions. To this end, let us go back to etalé bundles. Given a map
a : A — B of etalé bundles over X, we obtain the map f!(«) : f!(A) — f!(B)
which is defined as follows: we start with the collection of fibre maps «y : A, — By,
x € X, where A, := p~'A({x}). Then, for each y € Y we want to define the maps

fU@)y  fi(A)y — fIB)y, ie., fi(a)y : p~ (AGFHWD) — p~ (B(f'{¥}))- This
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are defined as
fHa)y(a) == o, (0)(@) (A.5.14)

for all a € f1(A), = p~ (A(f~{a})).

A.6 Lawvere-Tierney Topology and Closure Operator

In this section we will give a very brief review of a Lawvere-Tierney Topology
and of the closure operator. Essentially a Lawvere-Tierney topology is a topology
on a topos. We will choose the topos to be Sets” ™™ since it is the topos we are
interested in.

Definition A.6.1 Given the topos Sets””"  with sub-object classifier €2, a
Lawvere-Tierney Topology on Sets¥” js a map

Jji2—Q

V(H)P

in Sets which satisfies the following properties:

1. j o true = true, i.e. the diagram

commutes.
2. joj =], i.e. the diagram

commutes.
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3. jo A = Ao (j X)), ie. the diagram

A
AxL —m—= Q

) J

AN
XY —— Q

commutes. Here A : Q x Q — Q is defined so that for each V € V(#H) we have

Ay Qy X Qy — Qy

(Wi, w2) > Ay(wi, wa) i=wy Nwy.

Definition A.6.2 A closure operator (-) is a map such that, for every P € SetsV )™
it maps a sub-object S € P (S € Sub(P)) to another sub-object S < P. This
assignment is such that, given any two sub-objects S, 7' € Sub(Q) then the following
conditions hold:

SCS
S=S
SNT=8SNT.

In [55] it was shown that the Lawvere-Tierney topology, the closure operator and
the Grothendieck topology are equivalent to each other in the sense that each of
them implies the other.

Proof

1. Lawvere-Tierney topology = the closure operator: let us assume we have a
Lawvere-Tierney topology j. We then construct the following pullback

!
S ———m 1

i | true
Q

X
QO ———
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This is utilised to construct the closure S of S as the sub-object of Q, whose
characteristic morphism is j o y, i.e. such that the outer square is a pullback:

S 1

S true

. Q
1
Jox

0 Q

true

2. Closure operator = Grothendieck topology: let us assume we have a closure
operator (-), then the Grothendieck topology is given in terms of the closure of
the terminal object 1, i.e.

true

J>Q=1— Q.

3. Grothendieck topology = Lawvere-Tierney topology: let us assume we have
a Grothendieck topology J, then it is possible to construct a Lawvere-Tierney
Topology j in terms of the characteristic morphism of J. In particular we defined
J to be the morphism which would make the following diagram a pullback:

J
Q
It is straightforward to see that if we reiterate the procedures 1 — 2 — 3 — 1 we
would end up with the Lawvere-Tierney topology we started with. O

!
S |

J
I o

A.7 Yoneda Lemma

In this section we will give a very brief review of the Yoneda Lemma since it is used
through out the book.
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Lemma A.7.1 Preliminary: if C is a locally small category,* then each object A
of C induces a natural contravariant functor from C to Sets called a hom-functor
y(A) := Home(—,A).> Such a functor is defined on objects C € C as

y(A) : C — Sets (A7.1)
C +— Home(C,A)

on C-morphisms f : C — B as
y(A)(f) : Hom¢(B,A) — Home(C,A) (A7.2)
g yA)N)(g) =gof.

A very simple graphical example of the above is the following:

\D/

B
UY(A)
Home(E, A)
Home(4, A) Hom¢(B, A)
Hom¢(D, A)

Lemma A.7.2 Yoneda lemma: Given an arbitrary presheaf P on C there exists a
bijective correspondence between natural transformations y(A) — P and elements

4A category C is said to be locally small iff its collection of morphisms form a proper set.
SWe have already encountered this in Example 5.10 of [51].
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of the set P(A) (A € C) defined as an arrow

0 : Natc(y(A), P) = P(A) (A.7.3)

(a L y(A) = P) > 0(@) = anlidy).

where aa : y(A)(A) — P(A); Home(A,A) — P(A).
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