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For the young person in all of us
who thinks all that matters is already known.
For the older person in some of us
who realizes that we hardly know anything
completely.



Preface

When Maria Bellantone from Springer first proposed that we wrote this book in the
hot Spanish summer of 2011, we asked ourselves whether there was room for yet
another book on complex systems. The truth is that there are quite a few good books
out there that discuss complex systems and complexity. There are even some which
do so in the context of plasma science, although mostly focusing on astrophysical
plasmas. So why should we write another book? What needs do still exist out there
that have not been properly addressed and that might justify writing, printing and
selling another book on the subject? Why would any student or researcher feel a
need to buy this book and to use it?

Our take on the subject of complex systems is that of researchers whose primary
interest is not to understand complexity as an abstract concept but to identify the
mechanisms within a particular physical system that make its behaviour complex.
A first step is to prove that complex dynamics are actually at work. In some cases,
this can be shown rather easily. Sometimes, even a simple inspection of the system
is sufficient. That is certainly the case of swarming behaviour, or of the evolutionary
processes that biological systems undergo, to name just a few. In the study of plasma
systems, where both of us have carried out the majority of our work for the last
three decades, things are rather subtle and much more complicated. For starters,
experimental data is often not easily accessible. And when it is, it does not often
correspond to what one would have liked to measure in the first place. Instead, it is
what is possible to measure in the experiment, usually in the form of time series that
require a significant amount of interpretation to make any sense of.

Neither of us considers himself an expert on stochastic theory, on statistics, or on
the theory of complexity. We are plasma physicists by trade, with a large history in
the study of turbulence in magnetically confined fusion plasmas, such as those inside
a tokamak or a stellarator. Our profile is one of scientists that feel as comfortable
when handling mathematical equations as when running numerical simulations in a
supercomputer or when analyzing experimental data provided to us by friends and
colleagues. As such, we need a clear—simple, but not dumbed down—description
of the main ideas behind complex dynamics and succinct prescriptions of the best
methods available to detect them and to characterize them. There are possibly
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viii Preface

better books out there that describe in painful detail the mathematical properties
of fractional Brownian motion, the Langevin equation or the rigorous mathematical
theory of fractional derivatives. Our approach in this book is not the one of any
of those, very respectable, texts. We intend instead to cover the bare essentials on
these topics, in a mathematically sound but not excessively rigorous way, and to
blend them together with sufficient basic concepts of plasma physics as to form
a mix that could be useful for plasma scientists of many flavours: from hardcore
fusion scientists to space physicists and beyond, from pure theoreticians to computer
scientists, from phenomenological modellers to pure experimentalists, and from
aspiring graduate students to established experts. This is the way in which we would
like that this book excels. We expect it to offer a useful experience that, in the sense
previously described, cannot be found elsewhere.

We would like to conclude by saying that we are already too old to claim that
no errors, misconceptions or mistakes have made it into our book. The only thing
we can swear by is that, from the bottom of our hearts, we have worked hard to
make this book the best possible and that we have not intentionally obscured or
embellished any part of it, or selectively left out any unpleasant details for fear of
our own contributions being looked at in a less favourable light. On the contrary, we
have purposely tried to make it as clear, direct and easy to use as possible. Our hope
is that our readers will benefit from it and consider it a worthwhile purchase. It is
now up to them to judge our work and decide whether we have achieved successfully
what we set ourselves to do, or whether we have failed some place along the way.

Leganés, Madrid, Spain Raúl Sánchez
Fairbanks, AK, USA David Newman
August 2017
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Part I
Characterization of Complex Systems

In the first part of this book, the most important properties and features usually found
in complex systems are introduced, discussed and illustrated. The style attempts
to be direct, clear and precise, purposely avoiding any excessive mathematical
rigour. It is our intention to help readers to develop the sometimes elusive intuition
needed to distinguish actual complex behaviour from a merely complicated one.
In parallel, the first part of the book also provides a collection of popular analysis
tools, together with relatively easy-to-follow instructions to use them, with which
complex properties can be identified and quantified in real data. The running
sandpile provides a safety line that interconnects all the chapters of the first part
of the book, serving both as a paradigm for complex behaviour and as a testbed
where many of the analysis tools are illustrated. In addition, a list of problems is
proposed at the end of each chapter on which readers may try to practice, challenge
and hone their new skills, if they so desire.



Chapter 1
Primer on Complex Systems

1.1 Introduction

Complexity has become one of the buzzwords of modern science. It is almost
impossible to browse through a recent issue of any scientific journal without running
into terms such as complexity, complex behaviour, complex dynamics or complex
systems mentioned in one way or another. But what do most scientists actually mean
when they use these terms? What does it take for a system to become complex? Why
is it important to know if it is complex or not?

1.1.1 What Is a Complex System?

Most scientists that work on complex systems will state, if asked, their own idea of
what a complex system is. Most probably, their answers will be different, at least
in the specific details. However, most of them would probably agree that certain
features are more frequent than others when complex behaviour is observed. It is
the collection of all of these features that provide, in our opinion, the closest thing
we have to a “definition” of what a complex system is.

We will try to illustrate the situation by means of an example. Everyone is
familiar with biological swarms. Roughly speaking, swarming is a behaviour
exhibited by many animal species, by which individuals tend to move together in
large aggregations, but as if governed by a single mind instead of by their own
wills. Swarming behaviour is exhibited, among others, by many insects, birds, fish
and mammals. Let’s consider, for instance, a bee hive [1]. If taken alone, individual
bees move around minding their own business. Within the hive, however, individuals
interact with their closest neighbours and these neighbours with their respective own
and, quite magically, swarming behaviour sets on. The colony appears to move as
a single entity and responds to any external stimulus extremely quickly. Why do
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4 1 Primer on Complex Systems

Fig. 1.1 Examples of swarming behaviour. Starting from the left, upper corner and going around
in a clockwise sense: bees swarm for protection and effective foraging; birds form flocks while
migrating; jellyfish gather in big schools to survive large predators such as fish and seabirds; sheep
form herds for warmth and protection [Credits: all free public domain images from Pixabay.com]

swarms happen? Probably, because the laws of natural evolution have dictated that
swarms are more efficient than isolated individuals in order to provide protection, to
fight off predators, to migrate over long distances or to optimize foraging. It is for
similar reasons that mammals form herds, fish form schools and birds form flocks
(see Fig. 1.1).

Swarms provide a good example of complex behaviour, and many of their
properties are indeed shared by most complex systems. Consider, for instance, the
fact that the features that define each of their many individual constituents (i.e.,
each bee) become unimportant to explain the dynamics of the system (the swarm)
while acting as a whole. It is only the type of interactions that exist among the
individual elements that matters. The interaction could be as simple as following
the motion of your closest neighbour or the chemical trace it leaves behind! But
these local interactions permit the emergence of intricate, unexpected behaviours
and patterns in an unguided, self-organized way, when the system has to react to
external stimuli. In fact, self-organization and emergence are, in our opinion, the
two most defining properties of all complex systems.

It is apparently simple interactions among many individual constituents that drive
the emergence of complex behaviours in many other systems. Some of them, known
as adaptive complex systems (ACS), are even capable of tuning the strength and
type of these interactions to better adapt to the external environment. Although
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1.1 Introduction 5

Fig. 1.2 Examples of complex systems. Starting from the left, upper corner and going around in
a clockwise sense: weather systems and hurricanes, natural evolution and extinctions, forest fires,
the stock market and economic crises, the spreading of wars, electric power grids, and (center)
traffic in big cities [Credits: all free public domain images from Pixabay.com]

ACS are often found in biological contexts, they can also be found elsewhere. For
instance, in technological applications, as it is the case of smart power grids, or in
social systems, such as the global stock market (see Fig. 1.2).

Ultimately, there is always an external force (or principle) that drives complexity
in a system. This force can vary greatly from one to another. It usually has to do with
how the system interacts with the external environment to optimize some goal. In
the case of swarming, it is probably the desire to better survive as a species. In other
cases, it might be the need to dissipate, transport or distribute energy effectively, or
the desire to make the largest possible profit at the lowest cost.

1.1.2 Examples of Complex Systems

Complex systems are plentiful in nature. As mentioned previously, they usually
share some general properties. To start with, they are open systems, in the sense that
they interact with their surroundings. They are composed of many individual parts
that interact among themselves in such a way (nonlinearly) that multiple feedbacks
and feedback loops are established. These feedbacks are the transmission chain
through which a change in some part of the system conditions the evolution of other
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6 1 Primer on Complex Systems

parts. As a result of these interactions, emergence of unexpected behaviour takes
place, almost always through self-organization. Complex systems often exhibit
long-term memory, in the sense that the past history of the system conditions its
future behaviour. Another typical feature is the particular significance of extreme
events in their dynamics. These events could be described as coherent, often
unpredictable, phenomena that suddenly affect a very large part (if not all) of the
system.

The world stock market provides another good example of a complex system
[2]. It is an open institution where human and legal beings can buy or sell shares,
and interact among them by exchanging currency. Of course, greed is the main
driving force behind the stock market. Money is to be made by buying stocks
when prices are low and selling them when they are high. The price of the shares
is driven by their demand (the more demanded they are, the higher their price)
and availability (the more available they become, the lower their price), which
respectively provide examples of a positive and a negative feedback. Many other
feedbacks exist in the world stock market. Some come from the fact that it is coupled
to other complex systems. Thus, global geopolitics, technological progress, peer-
pressure and corruption affect the way in which the world stock market evolves.
As a result, the value of shares changes with time in a very complex, seemingly
unpredictable, manner. But this evolution is not random. It is well documented that
share prices exhibit a very long memory, with actual prices being affected by the
previous history of the share value, as well as by the performance of other shares in
the same business sector, and even by the behaviour of the global market as a whole.
It is also particularly interesting (and painful!) to observe that the stock market can
suddenly undergo large market crashes in which the value of a large fraction of all
shares suddenly decreases very quickly.1 These crashes are not random, but caused
by the intricate interaction of the many events that take place in the system over long
periods of time, thus making them very difficult to predict. The significance and the
way in which these extreme events appear are both good illustrations of the kind of
self-organized, emergent behaviour than can appear in a complex system.

Other important complex systems of particular interest to us are the human
brain [3, 4], human languages [4, 5], biological systems [6, 7], electrical power
grids [8] or weather systems [9]. As previously advertised, all of them are open
systems formed by many elements that interact mostly locally and that are subject
to multiple feedbacks and feedback loops. It is easy to identify emergent behaviours
that appear via self-organization in all of them. In the case of the brain, the
combination of the interaction between millions of neurons under the influence
of external stimuli creates a complex system whose most remarkable emergent
behaviour is the ability of thinking. In the case of languages, it is the need to
communicate among humans and the interactions between those speaking the same
language and the influence of other populations speaking other languages that drive
the creation and evolution of languages over time. For biological systems, the

1At the same time, it is during these large crashes that new fortunes are more easily made!
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interaction among species as well as among members of each species, driven by
the need to feed and reproduce and the desire to survive, are behind the process
of natural evolution. Extreme events happen, in this case, in the form of mass
extinctions. And, of course, one should always consider the greatest emergent
event of all: the appearance of life itself [7]. In the case of electrical power grids,
the complicated networks that connect generators, transformers and many other
elements to best provide our homes with energy are driven by the combination of
the energy production units, the systems that store it and transport it, and its final
users, both domestic and industrial. Emergent catastrophic events appear here in the
form of blackouts that, in some cases, can leave large fractions of a whole continent
without access to energy [8]. Finally, in weather systems, the turbulent interaction
between many packets of atmospheric air, affected by the changes induced in their
state by the heat coming from the Sun, the mass leaving in the form of rain or
incoming from the evaporating ocean water, and the interactions with masses of land
and ice, condition the temporal evolution of both short-term weather and long-term
climate. Any emergent behaviours here? One could quickly mention tornadoes or
hurricanes, for instance, at the level of the short-term weather. Or, at a much longer
scale, the onset of glaciation periods.

Many other examples of complex systems can be easily found in the literature,
in almost every field of science. A few more that we find particularly engaging
are, for instance, the dynamics of earthquakes [10], the behaviour of forest fires
[11], the workings of the human body and its immune system [3], the dynamics
of telecommunication grids [12], the internet [13], the history of wars [14], the
dynamics manufacturing processes and logistics [15], the spreading of political
ideas or infectious diseases, or the behaviour of traffic in large cities [16].

1.1.3 Complex Systems in Plasma Science

Plasmas, that will be the focus of the second part of this book, provide another
playground where complex behaviours can often emerge (see Fig. 1.3). If one keeps
in mind the discussion we just had, it is easy to understand the reasons. Loosely
speaking, plasmas are composed of charged particles (ions and electrons) that
interact among themselves in such a way that they are able to maintain (a close
to) overall spatial charge neutrality. These charges, in their motion, modify any
electric and magnetic fields that might confine them as well as those through which
they interact among themselves. The situation is thus ripe for the establishment of
feedbacks and feedback loops of all signs. Not surprisingly, emergence and self-
organization abound in plasma systems. We will enumerate a few examples now,
many of which will be revisited in later chapters.

Starting at some of the largest scales in our universe, one could first consider
the case of galaxies [17], in which a partially ionized background plasma and
billions of stars interchange mass and energy in the presence of multiple feedbacks
that couple all scales, from the smallest ones (related to the interactions between
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Fig. 1.3 Examples of plasma complex systems. Starting from the left, upper corner and going
around in a clockwise sense: the formation of stars within dust clouds, the flaring Sun, galaxy
formation and its organization within clusters, the Earth’s magnetosphere and its auroras, and
a tokamak reactor (in this case, the JET tokamak in the UK) used in magnetic confinement
fusion [Credits: nebula (public domain image from Pixabay.com); flaring Sun (© ESA/NASA
- SOHO/LASCO); Pinwheel galaxy (©ESA/NASA - Hubble); JET tokamak (© EFDA-JET,
Eurofusion.org); auroral view from space (© ESA/NASA - ISSS; photo taken by Scott Kelly)]

stars) to the largest ones (intragalactic distances within galaxy clusters). The local
availability of mass, the evolution of its metallicity, the local interactions mediated
by gravitational and tidal forces and the many heating and cooling processes at
work (star explosions, nuclear fusion, radiation, plasma compression, accretion,
etc.) are some of the main players. It is apparent that galaxies eventually self-
organize themselves internally, often producing beautiful spiral patterns that are
still not well understood. They also order themselves within very large clusters that
may confine many millions of them. Complex behaviour has often been invoked
to explain the resulting spatial distribution of galaxies inside these clusters, that
exhibits an apparent fractal structure [18], since fractality is a well known trademark
of complexity (see Chap. 2). In fact, observations like these have even lead to the
recent proposal of fractal theories of the cosmos, although it must be acknowledged
that these ideas still have a minority support among cosmologists [19].

It has also been suggested that complex dynamics could be at play in the
accretion disks that form around black holes and some massive stars, as they
engulf mass and energy from neighbouring objects such as other stars, interplanetary
nebulae and others [20]. Depending on the mass of the central object, the disk
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material might be in a state that would range from partially to completely ionized.
Magnetic fields are also thought to be present, mostly in a direction perpendicular
to the plane of the disk. The reason why complex behaviour has been suggested as
relevant in this context is the well documented observation of very long power-law
decaying tails in the statistics of the energy of the X-ray bursts that accretion disks
produce, another typical signature of complex dynamics (see Chap. 3).

Individual stars also seem to exhibit behaviours characteristic of a complex
system [21]. These balls of very hot plasma burn huge amounts of hydrogen in order
to keep the thermal pressure that prevents their gravitational collapse. The energy
and heat produced is transferred to the surface of the star via several mechanisms
that include radiation, convection and conduction. Some of this energy eventually
leaves the star in the form of flare and coronal mass ejection (CME) explosive
events, in which local reconnection of the surface magnetic field appears to take
place [22]. Similarly to the case of accretion disks, the statistics of the energy
released in flare events consistently exhibit a power-law decay for several decades
[23, 24]. In addition, stars have long puzzled us with their ability to self-generate
and sustain their own magnetic field [22, 25], as do also galaxies and some planets.
The stellar dynamo is another example of emergent behaviour. We will discuss
solar flares and CMEs in more detail in Chap. 7.

Complex behaviours involving plasmas are also found at planetary scales. For
instance, in planetary magnetospheres. The magnetosphere is the region around a
planet where the motion of charged particles coming from outer space is modified
by the planetary magnetic field. In the case of our Earth, the majority of these
particles come from the solar wind, that deforms its dipole-like magnetic field
by forming a long magnetotail that extends away from the Sun for very long
distances [26, 27]. The magnetosphere can be disturbed by any solar flare and
CME that leaves the Sun in the direction of the Earth, since they can lead to
violent reconnections of large regions of the magnetotail. These events, known as
geomagnetic storms, can affect communications on the Earth’s surface but are also
responsible for the beautiful aurora seen over the Earth’s poles. In addition to storms,
smaller disturbances of the magnetotail, known as geomagnetic substorms, do also
happen in the absence of large flares or CMEs. Substorms are apparently driven
by the constant, intermittent forcing provided by the solar wind. Although they are
rather unpredictable, substorms are far from random. It has been known for some
time that their statistics also exhibit self-similarity (as does the aurora’s intensity!)
and that their temporal indices exhibit long-term correlations and other fractal
characteristics, which points to some kind of complex dynamics [28]. Geomagnetic
storm and substorms will be discussed in more detail in Chap. 8.

Last, but not least, we finally arrive to laboratory plasmas, such as those
confined in a tokamak in order to produce fusion energy. Tokamak plasmas also
appear to exhibit rather interesting emergent behaviours in regimes particularly
relevant for reactor operation. Tokamaks are toroidal magnetic configurations that
confine a fully ionized plasma by means of a poloidal magnetic field, generated by
the current flowing in the plasma in the toroidal direction, and a toroidal magnetic
field which is generated by external coils [29]. For some time now, it has been



10 1 Primer on Complex Systems

known that tokamak plasmas exhibit so-called canonical profiles for sufficiently
high power. That is, the radial profiles of plasma temperature and pressure seem
rather insensitive to the strength or location of the external heating. This regime of
confinement is known as the L-mode. While in this state, the plasma energy leaks
out of the toroidal trap at a rate which is much larger than what is predicted from the
expected collisions among plasma particles. This excess has been long attributed
to the action of plasma turbulence. Even more interestingly, the scaling of the
energy leaking rate with the tokamak radius is rather odd, being much worse than
what should be expected if energy was being transported out of the device by some
turbulence-enhanced eddy diffusivity. Some authors have attributed this behaviour
to the rather singular features that transport seem to be endowed with when the local
plasma profiles sit very close to the threshold values that determine the onset of local
turbulence [30, 31]. In this so-called near-marginal regime, turbulent dynamics
do certainly appear complex, as will be argued in Chap. 6. Luckily for the future
of fusion energy production, tokamak plasmas seem to spontaneously transit into
a better confinement regime as the external heating is further increased. In this
enhanced confinement regime (known as H-mode), the plasma edge is affected by
a high poloidal and toroidal rotating motion (known as a zonal flow) over a narrow
region known as the edge transport barrier [32, 33]. This self-organization of the
tokamak plasma constitutes another example of emergent behaviour that will be
discussed in Chap. 9.

1.1.4 Complexity Science

We conclude this introductory section by making some general remarks about this
relatively new branch of science that investigates the properties of complex systems.
That is, of systems that, due to the way in which their many parts are interconnected
and how they interact with their external environment, experience the emergence of
unexpected collective behaviours and features in an unguided, self-organized way.

The first important point to make is that, from a formal perspective, complexity
science is rather different from traditional theories such as Classical Mechanics,
Electromagnetism or Quantum Mechanics. Any of these classical theories is based
on a finite number of unprovable axioms, that are either inferred from observa-
tion (inductive approach) or taken for granted, pending later confirmation from
experimentation of the outcomes of the theory (deductive approach). Theorems
and predictions are then derived rigorously from the axioms, sometimes with the
aid of careful approximations to enable further analytical progress. Finally, these
predictions are contrasted against the real world, process through which the validity
of the axioms—and of the approximations that made the derivation possible—is
confirmed.

Complexity Science, on the other hand, does not work in this way. It does
not follow a systematic path starting from a few basic axioms. Instead, it is built
organically, typically starting with the careful observation of the overall behaviour
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of the systems under study. In a sense, one could even say that most approaches to
complexity2 can be categorized within at least one of the following strategies [34]:

1. the determination of whether a system is complex or not;
2. the quantification of how complex the system is;
3. the understanding of how the system became complex;
4. the investigation of the consequences of being complex.

The first approach is mostly descriptive. To determine whether a system is
complex one basically looks for self-organized emergent behaviours. In some cases
this is quite evident, as in the case of swarms. In others, the emergent feature may
be more subtle or the system of interest may be not easily accessible (say, stars
or galaxies). Then, one often looks for as many of the characteristic features of
complex systems as possible. Many tools are available for this task: correlation
analysis, Fourier analysis, statistical analysis, time series analysis and many more.
We will have an opportunity to discuss many of these tools soon.

The quantification of the degree of complexity of a complex system is however,
more subjective and controversial, since there is not such a thing as a unique
definition of a measure of complexity. Each author uses its favourite one, of which
many examples exist: entropies of different kinds, fractal dimensions, fractional
exponents, scale-invariance measures, information theory, etc.

Finding out how and why the system became complex, on the other hand, is a
completely dynamical task. One tries to discover why complex behaviour appears
by investigating the interactions between the parts that form the system and from
the knowledge of the physical, biological or social mechanisms at work. Concepts
such as self-organization, criticality, feedback loops, free energies, thresholds and
so on are often called upon.

Finally, the investigation of the consequences of being complex is the most
predictive of all the aforementioned approaches, and possibly the more important
one for engineering and practical applications. How it is carried out, depends on
the system under study and on which our predictive needs are. These predictions,
however, are often quite different from what more conventional theories usually
provide.3 Most of the time, they come in the form of statistical laws and trends.
Predictions can also be made about what qualitative changes in dynamics could be
expected if the system is manipulated in certain ways, which could have important
practical applications. In particular, rather trustful predictions are often possible
about the emergent, large-scale, ordered features that appear in a complex system,
even if the detailed evolution of its state is out of reach. That is the reason why
it is possible to predict, with some degree of confidence, what the climate will be

2Many would even go further and claim that there are as many approaches as there are investigators
working in this context!
3In fact, some authors feel that the complex approach is useless to predict the future. We feel
that this criticism is however rather unfair since, even if the level of quantitative predictability
associated to classical theories is well beyond the capabilities of complexity theory, a certain level
of predictability does indeed exist.
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like decades from now, even if the local weather cannot be predicted beyond a few
days. Or why the changes in the overall mortality in city traffic resulting from some
change in transportation regulation can be estimated, even if the fate of a particular
driver is completely unpredictable.

To sum up, it should be apparent to the reader that complexity science is an
attempt at enabling a level of understanding of the dynamics of a system much
deeper than what could be obtained by simply considering the detailed evolution
of the governing dynamical equations. It does it in a somewhat unorthodox way,
that often makes it difficult to derive specific quantitative predictions, but that
permits a more intimate grasp of what is actually happening. In addition, it also
provides tools and methods to look for and to establish the existence of certain
features and behaviours, typical of complex systems. These tools can be of great
value in practical applications. A favourite of ours is their use in verification
and validation exercises of available numerical models for physical phenomena.
Complexity science can help to carry out these tests at a dynamical level that is
out of reach of more traditional theories. Take the case, for instance, of any of the
huge numerical codes that try to simulate the Earth’s climate by solving hundreds of
coupled ordinary differential equations that theoretically describe the joint dynamics
of the atmosphere and the ocean, as well as of ice and land masses. In order to fit
these calculations within the supercomputers available, severe simplifications must
be done in the models. There is a risk, however, that these simplifications may
inadvertently restrict the kind of dynamics that the simulation is able to capture,
restricting the validity (and usefulness!) of its predictions. The good news is that,
at least in principle, the same tools that complex scientists use to detect complex
features in real Earth climate data could be used to check whether similar behaviour
is captured or not in the simulations. In this way, complexity science can provide
additional tests of confidence on the numerical models and help to identify their
shortcomings. Similar statements could be made about many other fields beyond
climate science, such as fusion or space plasma simulations.

1.2 Key Concepts in the Study of Complex Systems

There are several concepts that appear recurrently when discussing complex
systems. We have chosen to categorize them within three large classes: (1) defining
properties that characterize a system as being complex; (2) basic ingredients that
are often present in systems that exhibit complex dynamics, and (3) emergent
features that may be exhibited by a complex system.
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1.2.1 Defining Characteristics

By defining characteristics of complexity we mean those fundamental properties
that a complex system should always exhibit. They are, in our opinion and that of
many others, self-organization and emergence.

1.2.1.1 Self-organization

A system is said to self-organize when it spontaneously rearranges itself (spatially,
temporally or spatio-temporally) in a purposeful manner in order to better accom-
plish some goal. In physical systems, this goal often is the efficient dissipation of
the incoming energy, given the constraints imposed by the laws of Physics or by its
boundary conditions [35]. Many other goals are also possible, however, particularly
for non-physical systems. For instance, in biological systems the final goal is often
survival. In economical systems, it is to maximize profits. In political systems, to
maximize power or control.

A natural consequence of self-organization is that the internal order of the system
increases. For that reason, it has sometimes been argued that self-organization
somewhat contradicts the mandate of the second law of Thermodynamics, at least
in the sense that it opposes the tendency towards maximizing disorder that is
linked to an ever increasing entropy. Since such a violation is impossible, any
rise of complexity must always be accompanied by the simultaneous exportation
of disorder to the surroundings. This is the reason why complex systems are usually
open systems driven from the outside. Furthermore, it is the external drive that is
ultimately responsible for keeping the system at its complex state, in which energy
is dissipated most effectively given the constraints of the system. If the drive is
removed, complexity eventually disappears [36].

1.2.1.2 Emergence

Emergence is the process by which novel and a priori unexpected patterns, entities,
properties or behaviours arise in a system, usually at a level higher than the one at
which the interactions between its constituents take place. Emergence takes place
only if the nature of the interactions allows the establishment of feedbacks and
feedback loops at these higher levels, through which parts of the system react to
changes in others. These actions and reactions ultimately drive self-organization.
Since the number of possible interactions that can be established in a system grows
quickly with the number of its constituents, complex systems are usually composed
of many elements. It must be noted, however, that it is not just the sheer number of
interactions that matters, but their ability to constitute feedback loops. Or in other
words, not every system with many constituents behaves as a complex system. On
the other hand, the formation of a tepid network of feedback loops is what makes
prediction of the system behaviour extremely difficult, if not virtually impossible.
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1.2.2 Basic Ingredients

Basic ingredients of complexity are those elements that are often present in systems
that end up exhibiting some kind of complex dynamics. The reader should be aware
that not every element discussed next will be present in every system. However, the
detection of their presence should always ring a loud bell in our minds to warn about
the possibility of complex dynamics being at work.

1.2.2.1 Openness

Most complex systems are open and driven in the sense that they can interact with
their surroundings. In physical systems, this usually means that the system can
interchange mass, momentum or energy with the outer world. In other cases, the
interaction may take the form of an interchange of currency, the influence of external
stimuli, the availability of food, etc. The need for openness is ultimately dictated by
the second principle of Thermodynamics, as we discussed previously.

1.2.2.2 Non-determinism

Most complex systems are non-deterministic in the sense that their future evolution
is not uniquely determined by their previous state, but also by the action of its
surroundings, which is often unknown.4 In spite of their non-deterministic nature,
it is interesting to note that many of the emergent features that will be discussed
later do admit a certain level of prediction.

1.2.2.3 Dynamical Feedbacks

In the theory of dynamical systems, a feedback is an action by which the output
of one process serves as input to another. A feedback loop consists of any number

4It is interesting to note that non-determinism is often invoked to differentiate complex systems
from chaotic ones. Indeed, chaotic systems are usually deterministic, closed and low-dimensional,
while complex systems are often non-deterministic, open and high-dimensional. This distinction
also relies on the fact that chaotic systems are usually simplified mathematical models, whilst
complex systems are often real systems. It is however worth pointing out that when we simulate
complex systems in a computer, nondeterminism disappears since computers are perfectly
deterministic. However, we can still observe many emergent features. This is the case, for instance,
of any numerical simulation of a fully-developed turbulent system with a large number of degrees
of freedom. In the computer, these simulations are driven by a deterministic source (even pseudo-
random numbers are deterministic!). However, they still behave like a complex system in many
ways. One is the development of a scale-free inertial range; another, the exhibition of long-term
correlations and scale-free statistics. This fact suggests that openness and high-dimensionality are
probably stronger requirements than non-determinism in order to achieve complex behaviour!
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of processes successively connected by feedbacks, with the output of the last one
serving as input of the first process of the chain. A loop can consist of just one
element subject to its self-interaction. Or of two elements subject to their mutual
interaction. Or it could involve many elements, each one successively affecting the
next in line via a directed, one-way interaction.

It is traditional to distinguish between positive and negative feedbacks. A
feedback is positive if the two processes that are connected tend to change in phase.
For instance, the price of shares in the stock market and their demand are in phase,
since a higher [lower] demand drives a higher [lower] price. Feedback is negative,
however, if both processes tend to be out of phase. That is, one is suppressed
[increased] if the other grows [decreases]. Going back to the stock market example,
the price of shares and their availability are connected through a negative feedback.
The more [less] shares are available, the less [more] will buyers be willing to pay
for them.

A positive feedback promotes growth and thus, change. In complex systems,
it is through positive feedbacks that small local variations can end up growing
into the much larger structures or patterns that we describe as emergent. In
contrast, negative feedbacks introduce constrains that limit or suppress growth or
change. Therefore, negative feedbacks can, if dominant, suppress the appearance of
emergent features in complex systems. At the same time, negative feedbacks also
enable the maintenance, over long periods of time, of any emergent property that
might have appeared during a period of dominance of positive feedbacks.

It is also traditional to introduce the concept of positive and negative feedback
loops. Loops may connect any arbitrary number of processes but, for simplicity,
we discuss feedback loops that connect just two processes. In the two-process
positive loop, the two feedbacks that form it must have the same sign. That is,
both will be either positive or negative. This means, that the growth [decrease] of
the first process would drive the growth [decrease] of the second, which would
then also drive the growth [decrease] of the first one. Clearly, positive loops, if
unchecked, lead to uncontrolled growth or decrease, and eventually to a catastrophe.
For example, in the case of the stock market, a large and sudden decrease in the price
of share may decrease its demand, if buyers perceive it as an unsafe investment,
which will further decrease the value of the share. If unchecked, the share will
soon turn worthless. When this happens on a massive scale, a global economic
crisis follows! Two-process negative loops, on the other hand, are formed by two
feedbacks with different signs. For example, a sudden increase in the demand of
a particular share will increase its price (positive feedback), but the larger price
will ultimately diminish its demand (negative feedback) as less and less buyers can
afford to buy them. Clearly, when more than two processes are involved in a loop,
negative feedback loops are easier to establish than positive ones, since a positive
loop always requires all feedbacks to be of the same sign.
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1.2.2.4 High-Dimensionality

Complex systems have a very large number of dimensions. These dimensions refer
however to the number of components of the system, not to the dimensionality of
the space in which the system lives. This is easier to visualise if one thinks, for
instance, of the numerical representation of a weather system, whose elements are
the many (say N) parcels of air that fill the atmosphere and whose velocity, pressure
or temperature we would like to track over time. The position and velocity of each
of these parcels in the three-dimensional space the atmosphere occupies is given
by three numbers each, and thus 6N numbers are required to establish the state
of the atmosphere at any given time. The number of dimensions (or degrees of
freedom) of the phase space of the problem is thus said to be 6N and is usually
very large for complex systems.5 This need stems from the fact that the number
of possible interactions and feedback loops grows very quickly with the number
of elements.6 Since the fraction of feedback loops that are positive diminishes
quickly when the number of interconnected processes increases, the probability of
extreme events, although still significant when compared to non-complex systems,
remains relatively small. Otherwise economic crisis would happen every other
month, instead of being separated by decades.

1.2.2.5 Nonlinearity

The term “nonlinear” often appears in relation to complexity. However, being
nonlinear is a mathematical, not a physical property.7 Thus, the use of the term in
this context has to do with the fact that the dynamical equations that describe most
complex systems, either ordinary (ODEs) or partial differential equations (PDEs),
are almost inevitably nonlinear. The reason is that feedback loops involving two or
more elements of a system often enter its evolution equations through non-linear
terms.

To illustrate the relation between feedbacks and nonlinearities, we will use
a famous example, the predator-prey (PP) model.8 The version of the model

5The set of partial differential equations that describe the weather system have, in fact, an infinite
number of dimensions since N ! 1 as the limit of zero parcel size is taken.
6In contrast, chaotic systems are usually low-dimensional systems defined by a small number of
ordinary differential equations, usually N < 10.
7Nonlinear means that the superposition principle, that states that the any linear combination of
solutions of a problem is again a solution of the same problem, is no longer valid.
8The reader should be aware that this predator-prey model is low-dimensional, closed and
deterministic, and does not exhibit complex dynamics. In fact, the version described here is not
even chaotic since less than two interacting populations are considered. We feel, however, that
thanks to its simplicity, this model works great to illustrate the connection between nonlinearities
and feedbacks and feedback loops. It is also great to introduce the concept of threshold, that will
be of great importance later on.
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Fig. 1.4 Feedbacks in the PP model. Signs give feedback polarity (positive or negative)

considered here has only one prey and one predator, say hares and lynx, which
makes it very easy to analyze. Hares feed primarily on grass. We will assume that
their numbers grow because of mating and that they diminish only because of the
action of predators (i.e., lynx) or because of the competition for food (i.e., grass)
with other hares. The number of lynx, on the other hand, also grows through mating
but always in the presence of food (i.e., hares), being diminished by the competition
for food (i.e., hares) with other lynx. By naming the two populations nh (hares) and
nl (lynx), a possible mathematical model to study their interplay in these conditions
is provided by the following pair of ODEs:

dnh

dt
D ˛nh � ˇnhnl � �n2h (1.1)

dnl

dt
D ınlnh � �nl (1.2)

where all parameters are assumed constant and positive.
The feedbacks present in the equations are schematically presented in Fig. 1.4.

There are five different feedbacks, each of them associated to one of the terms
appearing on the right hand side (rhs) of the PP equations. Let’s consider the first
nonlinear term on the right hand side of the first equation: �ˇnhnl. It represents
the decrease in the hare population due to their killing by lynx. The nonlinearity
appears because the killing process naturally requires the simultaneous presence of
both lynx and hares! The negative sign then tells us that the feedback, that connects
the hare population to the product of lynx and hare populations, is negative. The
larger this product is, the more the hare population will decrease. Why? Because
more hares imply an easier kill for lynx, but more lynx also imply more hare killing.
Thus, the relevant quantity is the product of the two. A second feedback is provided
by the nonlinear term in the second equation: Cınlnh. This time the term is positive
since it reflects the fact that, the more hares there are, the more lynx can live off
them by mating and feeding on them. Again, the nature of the interaction requires
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that both hares and lynx be present simultaneously, that leads to the nonlinearity.
In fact, these two feedbacks together constitute a two-process negative feedback
loop, by which an increase [decrease] in hares will cause by an increase [decrease]
in lynx that will be followed a decrease [increase] in both hares and lynx.

A different type of feedback loop also present in the PP model has to do with
self-interactions. For instance, the C˛nh term in the first equation represents the
growth of the hare population due to mating. Note that mating only requires the
presence of hares, and can thus be represented by a linear term. Interestingly, there
is a second feedback loop that only involves hares, represented by the last term in
the first equation: ��n2h. This term models the fact that, for a constant supply of
food, a overabundance of hares finally leads to starvation. It is however nonlinear
because, for a small hare population, it should be unimportant relative to the mating
linear term, but it should dominate if the hare population grows very large. The use
of the nonlinearity achieves this goal. Finally, there is another self-interaction loop
represented by the linear term ��nl in the second equation. It represents a negative
feedback loop associated to the effect on the lynx population of the superabundance
of lynx.9

Once specific values are prescribed for all parameters (i.e., ˛; ˇ; �; ı and �), the
relative importance between all feedbacks is set, and certain outcome will follow.
The beauty of the PP model is that the possible outcomes are just a handful. They
are illustrated in Fig. 1.5, that shows the phase-space10 of the model for different
parameter choices. The upper, left panel shows the phase-space for � D 0. That
is, when there is no limitation to the number of hares that can live on the available
amount of grass. In this limit, the model reduces to the famous two-dimensional
Lotka-Volterra system [37].11 Then, hares and lynx numbers vary in periodic fashion
(see Problem 1.2), following a closed orbit in phase space around a central point,
given by .nh; nl/ D .�=ı; ˛=ˇ/. Lynx and hares may seem to approach extinction at
some moments, but they always manage to rebuild their numbers.

Nothing really interesting happens in the two-dimensional Lotka-Volterra equa-
tion when the parameter values are changed while keeping � D 0. It is only the
location in phase space of the central point that moves around. The parameter � must

9The attentive reader might complain that we used a nonlinear term to model a similar process in
the case of hares. The explanation is based on the fact that hares can live without lynx, quietly
feeding on grass, but lynx cannot live without hares to hunt. Therefore, nl should naturally go to
zero whenever nh D 0. This requires the use of the linear term (see Problem 1.1).
10The phase-space of the predator-prey model is the two-dimensional space that uses nl and nh as
coordinates. A point in this phase space represents a possible state of the system, given by a pair
of values .nh; nl/. A trajectory in phase space corresponds to the evolution in time of the hare and
lynx populations, starting from given initial conditions, as allowed by the equations of the model.
11The two-dimensional Lotka-Volterra equation does not exhibit either chaotic or complex
behaviour. However, if one considers N-order Lotka-Volterra equations, Pni D rini.1�PN

jD1 ˛ijnj/,
chaotic behaviour ensues for N > 3, where the system, although deterministic, is no longer
integrable [38]. For N D 3, limit cycles do appear, to which the trajectories are drawn by the
dynamics, but trajectories are not chaotic.
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Fig. 1.5 Phase space of the hare-lynx model for four different sets of parameter values: Upper
Left: ˛ D 2, ˇ D 1, ı D 0:2, � D 1:5 and � D 0; Upper Right: ˛ D 2, ˇ D 0:5, ı D 0:2,
� D 1:5 and � D 0:2; Lower Left: ˛ D 2, ˇ D 0:5, ı D 0:2, � D 1:9 and � D 0:2; Lower
Right: ˛ D 2, ˇ D 0:5, ı D 0:2, � D 3 and � D 0:2. The stable fixed points are shown in green,
neutral in blue and unstable, in red

become non-zero for interesting new dynamics to become possible. In that case,
the phase space undergoes important changes, as shown in the remaining panels of
Fig. 1.5. The best way to illustrate these changes is to calculate the fixed points12 of
the dynamical system. Setting Pnh D Pnl D 0, we find that there are three fixed points
(see Problem 1.3):

.A/ nh D nl D 0 (1.3)

.B/ nh D ˛=�; nl D 0 (1.4)

.C/ nh D �=ı; nf D .˛ � ��=ı/ ˇ�1; (1.5)

12A fixed point of a system of ODEs is a point of phase space where the right-hand-side of the
system of ODEs vanishes [39]. Since the right-hand-sides give the time derivatives of all relevant
dynamical quantities, the evolution of the system remains unchanged if it starts from any fixed
point in phase space, or after it reaches any of them over time. Thus, their name. Fixed points
maybe stable, if the solution tends to come back to the fixed point after being perturbed, unstable,
if perturbations grow and push the solution away, or neutral, if the perturbation neither grows nor
is damped (see Appendix 1 in this chapter).
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corresponding to the case of (i) extinction of both species (A); (ii) hares growing to
the maximum number supported by the grass available in the absence of lynx (B)
and (iii) hare and lynx numbers remaining finite, in mutual equilibrium (C). The
upper, right panel in Fig. 1.5 shows an example of the phase-space of the predator-
prey model for small, but positive �, showing the three fixed points. The reader will
note that all phase-space trajectories finally reach point .C/ and move away from
both .A/ and .B/, thus escaping partial or total extinction. This happens because .C/
is an stable fixed point, whilst both .A/ and .B/ are both unstable. In fact, it is easy
to prove that, in the limit of � ! 0, .C/ becomes neutral and gives the central point
of the Lotka-Volterra equation, around which all orbits circulate.13 The situation
however changes if � > �c WD ˛ı=� , since nl would no longer be positive at the
.C/ fixed point. This causes point .C/ to coalesce with point .B/, that becomes the
new stable point of the system (see lower, right panel in Fig. 1.5). The result? That
the only possible outcome of the evolution is now the extinction of all lynx! What
has happened here? That we have encountered a threshold (also known as tipping
point, in the context of biological systems), set by the value �c, that separates two
very different outcomes.

Although the PP model does not exhibit complex behaviour, it illustrates pretty
well that any change in the relative importance of feedback loops can lead to a
change of the overall behaviour of the system. This type of change will not take
place in the PP model as it is advanced in time, since all parameter values are
prescribed at the start, and its evolution is thus completely deterministic thereafter.
But in a complex system, being open and driven from the outside in an often
unpredictable manner, conditions can change at any time in ways that make hidden
thresholds be overcome and sudden changes in behaviour take place. The much
higher dimensionality of complex systems also implies that many more feedback
loops and many more thresholds do exist, and that a much richer variety of
dynamical behaviours could be accessed while responding to any changes in the
external drive. Some of these new behaviours may lead to the type of emergent
features that make systems complex.

1.2.2.6 Thresholds

By threshold we mean the magnitude or intensity of a certain quantity that must be
exceeded for a certain reaction or phenomenon to occur. The concept of threshold
has just been beautifully illustrated within the PP model, in which two very different
outcomes were obtained depending on whether � exceeded or not the critical value
�c WD ˛ı=� . For � > �c, lynx became extinct. For � < �c, their numbers always
reached a finite value nf D .˛ � ��=ı/ ˇ�1. The parameter �c is an example of
a global threshold, that determines the transition between two different types of
global behaviour. In high-dimensional complex systems, the much larger number of

13Note that, in the same limit, .B/ and .A/ coalesce to .nh; nl/ D .0; 0/, and remain unstable.
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feedback loops often present can lead to many different thresholds. Therefore, the
number of accessible behaviours becomes also much larger.

Thresholds can also be local in the sense that if a certain quantity exceeds some
threshold value at a certain location, some new phenomenon will take place at
that particular location. Local thresholds are particularly important in the case of
plasmas and fluids in which exceeding a certain local threshold for quantities such as
a velocity, temperature or pressure (or, more precisely, their gradients) often leads
to the excitation of instabilities at that location. For instance, in fluid turbulence,
the local threshold for the excitation of Kelvin-Helmholz (KH) instabilities has to
do with the velocity gradient [40]. Or, in the case of interchange instabilities in
tokamak plasmas, a local threshold for the pressure gradient value must be overcome
[29]. Local thresholds are, of course, not exclusive to turbulent systems. One could
consider, for instance, the dynamics of faults in the Earth crust. In them, earthquakes
are excited whenever the amount of local stress overcomes what the fault can sustain
at each particular location [10].

1.2.3 Main Emergent Features

The term “emergent feature” refers to any of the special patterns, events, properties,
phenomena or behaviours that are often observed in complex systems, typically
taking place over scales much larger than those characteristic of the constituents
of the system. An example is the observation of fractal patterns in river beds or in
human pulmonary alveoli. Or the formation of banded flow patterns in Jupiter’s
atmosphere. The observation of emergent features is indicative of the fact that
complex dynamics might be at play. It must be kept in mind, however, that the
list of features given here is not complete by any means. Other emergent behaviours
are possible. On the other hand, it must also be noted that non-complex dynamical
explanations could sometimes be more adequate to explain the observation of
apparently complex features. Indeed, there are scale-invariant processes which are
not due to complex dynamics. One could mention, for instance, the type of random
walk process that underlies diffusive motion, that is statistically scale-invariant both
in space and time [41] but not driven by complex behaviour, in any sense of the
word.

1.2.3.1 Scale-Invariance

Scale-invariance means that the system looks and behaves similarly at every scale.
Or in layman terms: if you could rescale yourself and enter the system at a different
scale, everything would look the same as it did before rescaling. Scale-invariance
manifests itself in many ways. One is through fractal spatial patterns. A spatial
pattern is loosely termed fractal if it looks approximately, statistically or exactly the
same when examined at different spatial scales [41, 42]. Fractal patterns are often
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observed in nature. For example, one could mention the structure of veins in leaves,
or the way in which capillaries organize within the pulmonary alveoli in our lungs,
or the patterns formed by some rivers as they push water downhill on relatively
shallow riverbeds. In any of these examples, as in many others, fractal patterns seem
to be the answer found by system to provide an optimal setup to achieve some goal.
These goals probably are, for the examples considered, to best interchange gases in
our lungs, to efficiently transport the products of photosynthesis to the rest of the
tree or to best move large quantities of water through a shallow and rough terrain.

The idea of “invariance upon examination on different scales” is not restricted,
in complex systems, to fractal spatial patterns. It is often observed in other forms,
such as in temporal records. This is the case, for instance, of time traces of the
inter-beat interval of the human heart, or of signals of neural activity in the human
brain, both of which have a similar appearance when examined over widely varying
time scales [43].

Scale-invariance is sometimes also exhibited by the statistical distributions
associated to the phenomena taking place in the system, that often exhibit power-law
decays over a wide range of scales. The reason why power-laws are often linked to
scale-invariance is that any function, f .x/, that verifies that f .x/ D ��f .�x/ for
some exponent � is scale-invariant [42]. Clearly, the power law f .x/ D x�a is
scale-invariant for � D a. Thus, power-law statistics are often observed in complex
systems, that are sometimes said to exhibit statistical scale-invariance. For instance,
this is the case of the statistical distribution of released energy by earthquakes (basis
of the well-known Gutenberg-Richter law [44]), the statistics of the energy released
by the Sun in the form of flares [23] or the statistics of casualties in major wars [45],
among others.

We will discuss scale-invariance and its properties at length in Chap. 3, including
many useful methods to detect it and to quantify scale-invariance exponents.
However, it must always be kept in mind that scale-invariance is always limited,
in real systems, by finite-size effects. That is, scale-invariance only holds within a
certain range of scales, usually limited from below by those scales characteristic of
the system constituents (their size, lifespan, reaction times, etc.) and from above, by
the system largest scales (mainly, the system global size, the amount of time needed
to transverse it or its lifespan). The finite range of scales over which scale-invariance
is observed in finite systems is often referred to as the mesorange, the self-similar
range or the scale-invariant range.

1.2.3.2 Coherent Structures

The term “coherent structure” has been used for many decades in fields related
to fluid and magnetic turbulence [46]. It refers to any large structure created by
the system dynamics that remains coherent (i.e., lasts) for time lapses well beyond
typical turbulent times. Coherent structures in turbulent systems may take the form
of, among others, long-lived large vortical structures—such as the Jupiter’s red spot
or the tornadoes and hurricanes that can form in weather systems–, quasi-permanent
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regions of flow motion sustaining strong shear layers or discontinuities—such as
Jupiter’s zonal flow patterns, the solar tachocline, propagating fronts associated to
combustion or explosions, or the radial transport barriers found in tokamak reactors
in certain regimes—, or slow-varying, large-scale magnetic fields—such as those
observed stars and galaxies, and planets such as our own Earth.

In complex systems of non-turbulent nature, long-lived structures that keep their
coherence for very long periods of time, with sizes/lifespans well beyond those of
the system constituents, do also exist. We will abuse language and refer to them
also as coherent structures. One could think, for instance, of the several instances of
biological swarms previously discussed as coherent structures in biological systems.
Or the phenomenon of fashion so prevalent in social systems, by which large
fractions of the population follow a particular trend or practice for long periods
of time due to peer-influence and information spreading. A similar process takes
place in political and economical systems, in which large number of people adhere
to specific ideas and opinions that appear, develop and eventually fade away in
an apparent, self-organized manner, such as liberalism, marxism, nationalism and
many others.

1.2.3.3 Extreme Events

The term “extreme event” refers to any event that affects a significant fraction
(and sometimes all) of the system extension. In many cases, they have catas-
trophic consequences—such as a global economic crisis, a massive extinction, a
glaciation period, a very large earthquake, blackout or hurricane—, what makes
them particularly interest to predict. Extreme events are, however, not exclusive to
complex systems, since they may also happen in non-complex systems as well. Their
significance is however much larger because statistics in complex systems tend to
exhibit power-law decays (instead of exponential, or Gaussian decays). This fact
increases the probability of extreme events rather significantly, as will be explained
in more depth in Chap. 2. A second distinguishing aspect is the fact that extreme
events do not happen randomly in complex systems, being instead dictated by the
evolution of the tepid network of mutual interactions between system constituents
over very long periods of time (namely, a chain of events that result in an unchecked
positive feedback loop coming to dominance). This absence of randomness, that is
not exclusive to the excitation of extreme events, is loosely known as memory and
will be the main focus of Chap. 4.

1.2.3.4 Memory

Complex systems often exhibit “memory”, in the sense that the the future behaviour
of the system depends not only on the current system state, but also on its past history
under the influence of its environment, for periods of time much longer than any
characteristic time that could be associated to the system individual constituents.
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This type of memory is particularly important for the appearance and evolution of
any emergent feature in the system. It affects the triggering of extreme events that
is often heavily conditioned by the system past history. Let’s take, for instance, the
triggering of earthquakes at those parts of a fault where the local stress has exceeded
a certain threshold value. Most of the time, the fault will be able to release the
excess local stress by triggering small earthquakes that move it to other parts of the
fault. But eventually, the whole extension of the fault will sustain values of stress
so close to the maximum that much larger earthquakes, affecting significant parts of
the fault extension, become inevitable. Memory expresses itself here by influencing,
for periods well beyond the timescale over which individual earthquakes take place,
when future earthquakes of a certain size will take place under the external drive
provided by tectonic plate motion [10]. A very similar phenomenology is found in
other complex systems, as will be discussed in length in Chap. 4.

1.2.3.5 Criticality

Another behaviour that may emerge in complex systems is “criticality”. When this
term is used, it is usually meant that the system displays similar features to those
exhibited in critical transitions in equilibrium thermodynamics. Namely, scale-
invariant fluctuations with divergent correlation scales both in space and time [47].
In contrast to what happens in equilibrium transitions, criticality emerges here in an
open driven system without fine tuning any external parameter. This behaviour is
known as self-organized criticality (SOC), a concept introduced by P. Bak in the
late 1980s [48]. SOC is thought to play an important role in processes as different
as the triggering of earthquakes [10], the dynamics of forest fires [11], the dynamics
of blackouts in power grids [8] and many others [49]. SOC is also a concept of
particular relevance in plasma science, where it might relevant to the understanding
of the dynamics of solar flaring [24] (see Chap. 7), of geomagnetic substorms in the
Earth’s magnetosphere [50] (see Chap. 8) and of near-marginal turbulent transport
in tokamaks [30, 31] (see Chap. 6), among others.

1.2.3.6 Fractional Transport

In some cases, transport across a complex system becomes endowed with features
that are quite different from the familiar diffusive transport in order to make it more
efficient. This appears to be the case, for instance, of turbulence when attempting
to transport either energy out of a tokamak plasma, at least in certain regimes (see
Chap. 6), or angular momentum out of an accretion disk [24].

In order to understand better what these new features are and what they imply, we
need to briefly discuss diffusive transport first. The paradigm of diffusive transport
was introduced in the 19th century, and assumes that the local flux � of some
transported quantity, say n, is proportional to its local gradient, rn. That is, � D
�Drn, expression that is known as Fick’s law [51]. The proportionality constant,
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or diffusivity, is determinable, under certain hypothesis, from the properties of the
microscopic process responsible [52]. For instance, in the simple case of a gas in
which molecules transverse on average a mean free path � before colliding with
other molecules with an average frequency �, the diffusivity turns out to be roughly
given by D ' �2�. Particle transport throughout the gas can then be well described,
at least for distances much larger than � and times much longer than ��1, by
introducing Fick’s law in the continuity equation for the gas density,

@n

@t
C r � � D S; (1.6)

where S is an arbitrary external source, which yields the usual diffusive equation,

@n

@t
D Dr2n C S: (1.7)

A similar reasoning can be made for any other system in which both a
characteristic length and a characteristic timescale for the transport process can be
found. Characteristic transport scales are, however, absent in some complex systems.
Let’s take, for instance, any of those systems governed by SOC. Criticality implies
that fluctuation scales are divergent in both space and time. Therefore, typical scales
equivalent to both � and ��1 are nowhere to be found, since they are usually
related to (now divergent) moments of the fluctuation statistics. Transport through a
SOC system, as will be discussed in the next section, thus becomes rather counter-
intuitive, specially for our Fick-trained minds [31]. Similar situations are sometimes
also encountered in complex systems that do not exhibit SOC dynamics [53]. For
instance, non-diffusive transport often place takes through fractal environments, as
it is the case of many porous media [54]. SOC or non-SOC, we will refer to all these
instances of non-Fickian transport under the general label of fractional transport14

for reasons that will made clearer in Chap. 5.

1.3 Self-organized Criticality

Self-organized criticality or, more simply, SOC, will play an important role in later
chapters. Thus, it is worth to discuss it here in more detail. The concept of SOC was
first introduced as an emergent behaviour of certain complex systems in the late
1980s. Originally, the concept and the ingredients needed to make it possible were
presented in the context of a cellular automata, known as the Bak-Tang-Wiesenfeld
sandpile or, in short, the BTW sandpile [48]. However, we will discuss it here using
the running sandpile, another cellular automata introduced a few years later [55]

14Various other names such as non-diffusive transport, anomalous transport, self-similar transport
or scale-free transport, are also often used, depending mainly on the specific field and author.
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that turns out to be more adequate for some of the plasma applications that will be
discussed in the second part of this book (see Chap. 6).

1.3.1 The Running Sandpile

The running sandpile is a one-dimensional cellular automata (see Fig. 1.6). It has L
cells containing grains of sand up to a height hn at each cell n, where n D 1; � � � ;L.
It is driven by continuously and randomly dropping Nb grains of sand, with a
frequency p0, on each cell. As a result, the height of the cells increases over time.
The dynamics of the running sandpile are defined by a simple rule: whenever the
local slope, defined as zn D hn � hnC1, exceeds a certain prescribed threshold
Zc > 0, NF grains of sand are transported from the n-th to the .n C 1/-th cell. That
is, transport is directed, taking place always down the gradient. Any grain of sand
that reaches the edge (i.e., the L-th cell) is removed from the system. The running
sandpile, when advanced according to this rule, eventually reaches a stationary state
when the edge losses balance on average the sand dropped throughout the system.

The running sandpile is a paradigmatic example of a complex system of the self-
organized critical type. It contains the main ingredients needed for SOC dynamics
to emerge: it is open, slowly-driven and contains a local threshold that separates
fast local relaxation from periods of local inactivity. Its more characteristic feature is
that, for NF > 1, transport through the system takes place in the form of avalanches
of sand, with linear extensions ranging anywhere from one cell to the system size.
Avalanches happen because, after sand is removed from cell n onto cell .n C 1/, the

Fig. 1.6 Sketch of the running sandpile. As shown, wherever and whenever the local slope exceeds
a critical value Zc, Nf grains of sand are toppled to the next cell
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Fig. 1.7 Avalanches in the running sandpile. The horizontal axis corresponds to the cell number;
the vertical one, to the iteration number. Three different avalanches are shown in red, containing
those cells that have undergone any relaxations. Although sand is always transported down the
gradient (i.e, to the right), holes might also be transported up the gradient (to the left). This happens
if the local removal of NF grains of sand from cell n causes that cell n � 1 becomes unstable. The
definitions of avalanche linear size (l) and duration (d) are illustrated

latter may become itself unstable if znC1 exceeds Zc due to the sand just added. If
this instability state continues to propagate to more neighbouring cells, an avalanche
forms (see Fig. 1.7). The condition NF > 1 is very important for SOC dynamics.
It guarantees that the local slope will sit, most of the time, below and not at Zc.
This avoids the possibility of all cells continuously maintaining a slope Z D Zc,
which would make every avalanche reach the sandpile edge. Similarly, it is also
required that .p0Nb/n < NF=2 for all n � L. Otherwise, the region for n > ns, with
ns D NF=2.p0Nb/ will constantly have Zn > Zc (i.e., the cell would be overdriven!),
and transport would never cease at that location.
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1.3.2 Criticality in the SOC State

Interesting things happen once the running sandpile has reached a steady-state under
the aforementioned conditions. In particular, the sandpile exhibits properties typical
of the critical points at which equilibrium phase transitions happen, despite the fact
that the system is not in thermodynamical equilibrium [48]. Criticality is apparent
in the form of divergent correlations both in time and space. Most interestingly, this
state of things is reached without the need of any tuning whatsoever.15 In fact, that
is the main reason for describing this type of criticality as self-organized.

The criticality of the SOC state can be made apparent in many ways. The easiest
one is by means of the various power laws that abound in the system. Take the
probability density function (pdf) of the avalanche linear extensions (see Fig. 1.7
for the definition of linear extension, l). Phenomenologically, it is well described by
an expression of the kind (see Fig. 1.8)

p.l/ � exp.�l=l2/

1C .l=l1/b
; (1.8)
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Fig. 1.8 Probability density function of avalanche linear extensions computed for two sandpile
sizes, L D 200 and L D 1000. Both cases are run with NF D 30, Zc D 200, Nb D 10 and p0 D
10�4. Best fit to Eq. 1.8 is shown for each case, yielding b ' 1:92 ˙ 0:2. Estimated mesoranges
cover the intervals � .10; 90/ for the L D 200 case, and � .20; 130/ for the L D 1000 case

15This is in contrast to the situation in equilibrium phase transitions, where some physical
magnitude, usually temperature, must be finely tuned.
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with b 2 Œ1; 2	, and with l2.L/ � l1.L/ > 1. The two scales l1 and l2 are associated
(but not identical) to the smallest and the largest linear extensions that avalanches
can have (the system size and the minimum meaningful length, one cell). But the
important point here is that, for avalanches with linear extensions within the so-
called mesorange, l1.L/ � l � l2.L/, the pdf behaves as a power-law p.l/ � l�b,
that is scale-invariant by definition.16 As previously mentioned, finite-size effects—
due to both the finite sandpile and unit cell sizes, or to the finite duration of the
simulation and the fact that the minimum time is one iteration—limit the extension
of the mesorange from below and from above.17

Criticality in space is associated with the divergent nature of Eq. 1.8 over the
mesorange whenever 1 < b < 2. Indeed, if we attempt to compute the average
linear extension of avalanches in that case, we would find that,

NlL �
Z L

1

lp.l/dl �
Z L

1

l1�bdl � L2�b �! lim
L!1

NlL D 1: (1.9)

Therefore, the sandpile’s SOC steady state lacks a characteristic spatial scale, since
the average distance that sand could travel inside an avalanche diverges with the
system size, L. Or, in other words, such scale is not set by the transport process,
since it is only limited by the system size. In contrast, in any diffusive system, the
transport spatial scale is independent of (and much smaller than) the system size, as
we discussed in the previous section.

Criticality in time, on the other hand, can be detected by looking at the pdf of
the lapses of time between successive avalanches, also known as waiting (or quiet)
times. Waiting-times determine the characteristic timescale in the running sandpile.
They do so because, in order to exhibit SOC, the sandpile must not be overdriven,
that requires .Nbp0/ < NF=2L. This means that, in practice, the average duration of
an avalanche must be much shorter than the typical waiting periods between them.18

Thus, the waiting-times become the only remaining timescale of interest. Revealing
the critical nature of the temporal behaviour of the randomly driven running sandpile
is however somewhat subtle.

A direct calculation of the pdf of waiting times between avalanches yields an
exponential (or Poisson) distribution. The reason is that avalanches can only start
when a drop of sand falls, together with the fact that these grains are dropped

16Scale-invariance is also apparent in many other quantities of the sandpile. Naturally, the actual
value of the exponents and the limits of the mesoscale are different.
17In an infinite sandpile (in space and time), the mesoscale would extend over all scales. The
sandpile would then behave as a true monofractal. In reality, deviations from scale-invariance
should be expected at scales that approach any of the finite boundaries. As a result, he monofractal
behaviour is only approximate. In particular, the sandpile size (lifespan) must be significantly larger
(longer) than the unit cell (one iteration) in order to display SOC dynamics.
18In fact, Bak’s original formulation (and most analytical studies, such as those that describe SOC
dynamics as an absorbing transition [56]) of SOC assume the limit of zero duration, in which
avalanches are relaxed instantaneously once excited.
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randomly with probability p0 [57]. Because of this randomness, the probability of
having to wait for an amount of time w for the next avalanche must be independent
of how much time we have already been waiting, w0. Mathematically, this condition
is expressed as (see Sect. 2.3.4):

p.w/ D p.w C w0/
p.w0/

; (1.10)

that is only satisfied by the exponential distribution, p.w/ D w�1
0 exp.�w=w0/, with

w0 / p�1
0 giving the average waiting time. It would thus seem that a characteristic

timescale w0 does indeed exist, and that all critical temporal behaviour is absent
from the system. However, this is not the case.

A random drive is not needed for SOC dynamics to emerge and either non-
random drives [58] or even random drives applied at non-random locations [59]
could be used without altering the SOC character of the transport dynamics, as
long as the system is not overdriven. The only measurable consequence of using
non-random drives is that the sandpile waiting-time distribution changes from an
exponential to a power-law, while all other avalanche statistics remain unchanged.
Interestingly, what is in fact rather insensitive to the details of the drive, is the
pdf of the waiting-times between avalanches sufficiently large so that their linear
extensions lie within the mesorange. Or in other words, when avalanches with size
l < l1.L/ are simply ignored. In this case, waiting times are distributed according to
an expression like Eq. 1.8, again with 1 < b < 2 (see Fig. 1.9). The critical nature of
the sandpile temporal behaviour becomes now apparent, and is linked to the fact that
the average waiting-time between avalanches within the mesorange again diverges
with the system size. The fact that the waiting-time pdf is no longer exponential also
implies that the triggering process of these avalanches ceases to be uncorrelated.
Instead, the previous record of waiting times conditions strongly the probability of
which the next waiting time will be. We have previously referred to this state of
things loosely as memory. We discuss it a bit more in what follows.

1.3.3 Memory in the SOC State

How is memory established and maintained in the running sandpile? The relaxation
rules are local in time and space, since they require only current information to
advance the state. So no help there. Similarly, if the driving of the system is random,
it cannot originate there. Only remaining suspect is the past history of the sandpile
height profile itself. Clearly, avalanches start at cells where the local gradient is
below, but very close to the threshold, and will stop at two other cells (one below
and one above the original excitation point) where the local profile is well below
critical. In the former locations, the addition of a single grain of sand is enough to
turn the location unstable; in the latter, the addition of the sand coming from the
relaxation of the previous cells is not enough to push the gradient above the critical
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Fig. 1.9 Fig. 2 from [58] showing waiting time pdfs for sandpile activity without thresholding
the avalanche duration (inset) and after thresholding. Sandpiles with sizes L D 100, 400, 2000,
4000 and 10;000 are used, with duration threshold respectively being dt D 30, 75, 200, 400 and
800. Values are chosen to be well into the mesorange for each sandpile. Reprinted figure with
permission. Copyright 2002 by the American Physical Society

value. After the avalanche has ceased, the local gradient has been reduced below
marginal at the starting point, and pushed closer to marginal at the two stopping
cells that mark the maximum extension of the avalanche. In addition, there is another
cell where the local gradient is reduced: the cell two positions after the innermost
stopping point [60]. This means that the fact that an avalanche was excited at some
starting location increases the probability of another avalanche starting at any of
these locations in the future. Hence, as this process happens once and again, the
slope profile becomes “rough” on all scales. This is how memory is established and
stored in the profile, and transmitted through time.

Some astute readers might however object by saying that the distribution of
previous positions also determines the future state of a deterministic gas. Therefore,
any system should be able to display memory in that sense, right? What is then
so special about the running sandpile? The subtlety lies again in the lack of
characteristic scales of the SOC state. When finite characteristic scales exist in time
and space, memory effectively disappears for times longer and distances larger than
those scales. However, spatio-temporal criticality prevents the existence of these
characteristic scales in the running sandpile and, therefore, all the past history and
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the full spatial extent of the system conditions the future evolution. This is not the
case of the deterministic gas, where the previous history is essentially wiped out
after a few collision times. We will have much more to say about memory in the
running sandpile (and by extension, in SOC systems) in Chap. 4, where we will also
illustrate several methods to detect and quantify the presence and type of memory
in a system.

1.3.4 Transport in the SOC State

SOC also has important consequences for the nature of transport through the
sandpile. Transport becomes very different from the diffusive transport that we
briefly discussed at the end of Sect. 1.2. In the SOC steady state, transport events
are linked to the avalanche mechanism and to the existence of a local threshold.
Spatio-temporal criticality ensures that there is neither a characteristic scale for
the avalanche linear size nor a characteristic frequency, since the statistics of both
avalanche sizes and waiting-times diverge with the system size. Therefore, the type
of transport that emerges exhibits many features that seem nonintuitive to any Fick-
trained mind. We will discuss non-diffusive (or, more precisely, fractional) transport
in Chap. 5, but it is worth to advance a few relevant features at this point.

For instance, let’s examine the average confinement time of sand in the sandpile.
This figure-of-merit is defined as the ratio of the total sand contained to the total
drive strength. That is,

�CF D 1

Nbp0L

LX

nD1
hn ' .Zc � NF=2/L2

2Nbp0L
/ L: (1.11)

Interestingly, the diffusive equation (Eq. 1.7) would yield a scaling �CF / L2 instead
(see Problem 1.6). Clearly, the SOC confinement scaling is much less favourable.19

In addition, the confinement time degrades as .Nbp0/�1, in contrast to the diffusive
case, in which confinement is independent of the drive strength. That is, the faster
the sand is added to the pile, the faster it will be transported out.20 In the sandpile,
this type of power degradation of confinement is closely related to the strong profile
stiffness that the SOC steady state exhibits. By the term “stiff”, it is meant that the
sand profile is rather insensitive to the location or strength of the external drive.

19In fact, this apparently innocent statement can become pretty important in some cases, such as
when trying to confine plasma energy in a tokamak fusion reactor. The determination of whether
the confined plasma exhibits SOC or not might cost (or save) the fusion program quite a few
millions of additional dollars.
20Power degradation is not unique to SOC systems. It may also happen in diffusive systems
whenever D is a function of the external power. That is the case, for instance, in driven plasmas
since D is then a function of the local temperature.
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Fig. 1.10 Left: Average steady-state slope profile for a running sandpile defined by L D 1000;
NF D 30, Zc D 200 p0 D 10�4 and rain size Nb D 10. The slope remains, on average, below
Zc and above Zc � NF everywhere. In spite of being submarginal on average, the sandpile sustains
significant transport. Right: Integrated outflux of sand coming out of the bottom of the pile for
106 iterations starting at iteration 1:3� 107. The instantaneous outflux is shown in the inset, being
equal to NF when the edge is unstable (i.e., Zedge > Zc), and zero otherwise

In fact, the sandpile profile remains always close to Zc by exciting avalanches,
which quickly bring the profile back below threshold. A stronger drive simply
means that avalanches will be triggered more frequently and be possibly larger.
Instead, a diffusive system would adapt its profile shape to the external source,
not being constrained by anything. Profile stiffness is in fact the reason why SOC
systems can drive significant transport while apparently staying submarginal (i.e.,
below threshold) on average (see Fig. 1.10). This counter-intuitive behaviour simply
reflects the fact that the sandpile stays quiet (and submarginal) the majority of the
time, but intermittently, it becomes locally supercritical. Avalanches are then excited
that drive net transport.21

A final characteristic worth mentioning is the significance of extreme events for
transport in the SOC state. Extreme events can be defined here, for convenience,
as those avalanches with linear extensions involving a sizeable part of the system
size. Spatio-temporal criticality makes the contribution of extreme events to the
overall SOC transport always significant, independently of how large a system is
considered. This is a consequence of the divergent power-law statistics of the SOC
state that endows larger avalanches with probabilities that are always meaningful.
In contrast, diffusive systems exhibit Gaussian-type statistics and the probability
of extreme events decreases exponentially as the system size increases. Therefore,
their contribution to the overall transport becomes quickly negligible.

After this description of the features of transport in the running sandpile, it is not
surprising that Fick’s law turns out to be inadequate to capture most, if not all, of

21It should be noted, however, that SOC could also sustain average supermarginal profiles if the
drive is strong enough to keep the profiles above marginal more often than not. SOC would however
disappear if the system becomes overdriven, with profiles staying above threshold everywhere, all
the time.
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the features of SOC transport. Any candidate for effective transport model should
be able to tackle the lack of characteristic scales of SOC systems.22 The search for
such a model is a problem of great interest in the context of SOC, but also for many
other systems unrelated to SOC. This common need has stimulated the development
of a new type of transport formalism, not based on Fick‘s law, commonly known as
fractional transport theory. We will discuss it in detail in Chap. 5.

1.4 Overview of the First Part of This Book

In this chapter we have discussed many concepts of relevance for the understanding
and investigation of complex systems. We have argued that, in our opinion, the two
most defining features of complexity are self-organization and emergence. We have
also shown that these features appear in systems that are widely different and may
emerge in various forms. We will devote the rest of the first part of this book to
describe and quantify some of these features, with a particular emphasis on the
introduction of techniques that are useful to characterize them.

We will start with a discussion about statistics in Chap. 2, since most of the
approaches that can reveal complex behaviour rely heavily on the use of proba-
bilities and averaging, both from a theoretical and practical point of view. Then,
we will continue with the concept of scale-invariance in Chap. 3, both in space and
time. Important scale-invariant mathematical models that complex systems are often
compared against, such as the fractional Brownian (fBm) or Lévy (fLm) motions,
will be introduced here. Chapter 4 will discuss at length the concept of memory
in the context of complex systems. Finally, Chap. 5 will review in depth the (still
expanding) theory of fractional transport and its implications for the description of
transport in complex systems.

The running sandpile will provide a lifeline throughout this introductory journey.
At the end of each chapter, some relevant aspect of the running sandpile dynamics
will be analyzed by means of some of the techniques just presented. These exercises
will serve as an illustration, but also as a window through which SOC dynamics can
be further explored and understood.

In most of the material included, we have tried to be mathematically correct but
not excessively rigorous. There are situations in which a formula will be provided
without proof, or a physical argument will be stated without deriving it in painful
detail. In most of these cases, references are provided where the interested reader
can find proofs and derivations. Some appendices have been included at the end of
each chapter to stress some concepts, formalisms or methods of particular interest.

22Finding effective transport models for non-diffusive systems is a very important problem and
a very active area of research, particularly in engineering contexts such as the development of
magnetic confinement fusion reactors, or the understanding of transport in porous media that has
applications in oil extraction or pollutant control, to name a few.
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Footnotes are often used (some might say that excessively) to convey additional
information. The reader should keep in mind that they can be ignored in a first read
to avoid slowing down progress.

It might also happen that some of the material could be perceived as excessively
introductory for some readers. In some cases, we will recommend them explicitly
to browse quickly through the first sections of the chapter, that usually deal with
basic concepts and introductory theory, and to move directly to the later sections
that focus on methods and applications.

A list of proposed problems has also been included at the end of each chapter.
Some of these problems will simply ask for the derivation of some formula that has
been used, but not proved, in the main text. Other problems, much more interesting
in our opinion, will ask the readers to build numerical codes to repeat or expand
the examples that have been presented in the main text. In most of these cases,
some basic guidance is often provided in the appendices included at the end of
the corresponding chapter. We strongly recommend readers to try to work these
exercises out. It is our firm belief that many of the subtleties of complexity can only
be fully grasped after having had some first-hand experience with these systems.

Appendix 1: Fixed Points of a Dynamical System

A dynamical system is usually defined by a system of N ordinary differential
equations (or simply, ODEs) that, written in matrix form, becomes:

Px D F.x/; (1.12)

where F is an arbitrary N-dimensional non-linear function. The fixed points of the
system are given by the solutions of F.xfp/ D 0, that correspond to all the time-
independent solutions of the problem. At most, N different fixed points may exist.
Each fixed-point can be either stable, unstable or neutral, depending on whether
a small perturbation away from the fixed point is attracted back to it (i.e., stable),
diverges away from it (i.e., unstable) or remains close to the fixed point without
either being attracted or ejected from it (i.e., neutral).

To determine their type [39], one needs to linearize the system of ODEs in the
neighbourhood of each fixed point, xfpIk, where the index k D 1; 2; � � � ;Np, being
Np � N the number of fixed points of the system. To do this, one writes x D xfpIk Cy
and assumes that the norm of the perturbation jyj remains small. The behaviour of
the perturbation, when advanced in time, will tell the type of the fixed point. A linear
advance is sufficient. Thus, one proceeds by inserting x D xfpIk C y into Eq. 1.12,
that yields the linear evolution equation of y:

Py D @F
@x

ˇ
ˇ
ˇ
ˇ
xDxfpIk

� y: (1.13)



36 1 Primer on Complex Systems

The matrix formed by taking partial derivatives of F and evaluating them at the
fixed point is called the jacobian matrix at the fixed point. The solution of this
equation is given by the exponential of the jacobian,

y.t/ D exp

 
@F
@x

ˇ
ˇ
ˇ
ˇ
xDxfpIk

.t � t0/

!

� y.t0/: (1.14)

Therefore, it is the eigenvalues of the jacobian at the fixed point that define the
type of the fixed point. If there is any eigenvalue with a positive real part, the
perturbation will grow and the solution will move away from the fixed point, and the
fixed point is unstable. If all eigenvalues have negative real parts, the amplitude of
the perturbation will eventually vanish, and the solution will come back to the fixed
point, which is stable. If, on the other hand, all eigenvalues are purely imaginary,
the norm of the perturbation remains constant over time and, although the solution
never gets back to the fixed point, it does not run away from it. The fixed point is
then neutral.

Problems

1.1 Predator-Prey Model: Definition
Prove that, if a term like �nl � �n2l had been used in Eq. 1.2 of the predator-prey
model to account for lynx mating and overpopulation, a finite number of lynx might
exist in the absence of hares, which would make no sense in the context of the
model.

1.2 Lotka-Volterra Model: Periodic Orbits

(a) Prove that the predator-prey model, if � D 0, admits the conserved quantity:

K.nl; nh/ WD ˛ log.nl/C � log.nh/ � ˇnl � ınh (1.15)

(b) Write a numerical code to plot the orbits K.nl; nh/ D K0, for arbitrary K0.

1.3 Predator-Prey Model: Fixed Points
With the help of the techniques discussed in Appendix 1 in this chapter,

(a) prove that all the fixed points of the PP model are given by Eqs. 1.3–1.5.
(b) show that the jacobians at the fixed points are given by:

A W
�
˛ 0

0 ��
�

; B W
��˛ �ˇ˛=�
0 ı˛=� � �

�

; C W
� ���=ı �ˇ�=ı
.ı˛ � ��/ =ˇ 0

�

(1.16)

(c) find the eigenvalues of each jacobian.
(d) classify the type of each fixed point.



References 37

1.4 Predator-Prey Model: Phase Space
Write a computer code that numerically integrates the dynamical system given by
Eqs. 1.1–1.2, starting from appropriate initial conditions. Use the code to reproduce
all the phase space plots shown in Fig. 1.5.

1.5 The Running Sandpile: Building of a Cellular Automata
Write a computer program that evolves in time the one-dimensional running
sandpile described in Sect. 1.3.1. The output of the program should include at least
the time record of the state of each cell of the sandpile (stable or unstable), its height,
the total mass confined and the outflux coming out of the bottom of the pile. This
program will be the basis of several exercises proposed in later chapters.

1.6 Diffusive Equation: Global Confinement Scaling
Assume a one-dimensional system of size L driven by a source density S, uniform
both in time and space. If transport in the system takes place according to the
diffusive equation (Eq. 1.7) with boundary conditions: n.L/ D dn=dx.0/ D 0, show
that:

(a) profiles are not stiff by finding the steady-state profile as a function of S and D;
(b) the scaling of the global confinement time, �CF , defined as the ratio of the total

mass contained to the total drive strength, is �CF / L2;
(c) there is no power degradation if D is independent of the external source S.
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Chapter 2
Statistics

2.1 Introduction

Statistics is a fundamental tool to study physical phenomena in any system, be
it complex or not. However, it is particularly important in the study of complex
systems, for reasons that will be explained in this chapter in detail.

Any discussion on statistics must necessarily start with a definition of proba-
bility, of which two complementary views are often used in mathematical physics:
the temporal and the ensemble approach. The former is more intuitive, since it
hinges on our every day experience with measurement and repetition. The latter is
more convenient from a theoretical point of view, being used often in mathematical
treatments. In the temporal approach, the probability of an event is related to its
occurrence frequency in the system where it happens. In the ensemble approach,
one considers many virtual copies of the same system, and define the probability
of an event as the fraction of copies in which it is observed. Clearly, preparing
multiple copies of a system is usually inconvenient from an experimental point
of view, making ensemble theory a tool that is useful mainly for theoreticians. A
system or a process is called ergodic if the temporal and ensemble approaches
yield the same statistics. In turbulence theory, such equivalence is known as
Taylor’s hypothesis [1], and it plays a central role in the theory of turbulence.
Ergodic assumptions are also central to the development of statistical mechanics [2].
However, there are many systems that are not ergodic, not even in an approximate
manner. In these cases, theoretical models based on the ensemble approach may not
be applicable to actual data, that are often collected in the form of a multiple time
series. One must then progress with care. Some of these systems do exhibit complex
dynamics.

We will not discuss the basics of probability theory here, since it is a topic
usually covered both at the high school and introductory college levels. Many
monographs are available that provide a good introduction to the subject for those
readers that might need to refresh their knowledge, or that would simply like to
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extend it [3, 4]. Instead, we will start with a review of the concept of probability
density function (or pdf), that will be used often throughout this book. Since the
level of the material reviewed is introductory, some readers may prefer to jump
directly to Sect. 2.3, where the significance of specific pdfs starts to be discussed.
In later sections (Sects. 2.4 and 2.5) we will also describe several techniques that
are particularly useful to determine algebraic tails accurately, among other things.
This is an important capability in this context, since algebraic tails are often seen in
complex systems but are difficult to determine in practice due to the low probability
of the events they contain.

2.2 The Probability Density Function

The probability density function is introduced to deal with any quantity that has a
continuous support. That is the case, for instance, of the temperature in a room, of
any component (or the magnitude) of the local velocity in a turbulent fluid, or of
the time intervals between successive disintegrations of a radioactive material. In all
these cases, the outcome of each measurement is given by a continuous variable
that takes values within a certain range˝ D .a; b/:1

2.2.1 Definition

Any definition of probability based on repetition becomes useless in the case of
continuous variables since the total number of possible outcomes is infinite. To get
around this, a function, p.x/, is introduced2 such that p.x/dx gives the probability P
of the outcome X lying between x and x C dx (assuming dx small):

P.X 2 Œx; x C dx	/ D p.x/dx: (2.1)

p.x/ is known as the probability density function (or, simply, the pdf). This
function must satisfy a couple of conditions to ensure that p.x/dx is a proper
probability. First, probabilities must be always positive. It thus follows that

p.x/ � 0; 8x 2 ˝: (2.2)

1In the case of the room temperature, a D �273:13 ıC and b D C1; for a component of the fluid
velocity, a D �1I b D C1 while its magnitude varies between a D 0 and b D C1. Finally,
waiting-times between disintegrations vary within the range defined by a D 0 and b D C1.
2We will always represent probabilities with an uppercase P. Also, we will represent the generic
outcome of an observation or experiment by an uppercase X.
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Table 2.1 Examples of some
common probability density
functions (pdfs)

Name p(x) Domain

Uniform 1

b � a

[a, b]

Gaussian 1p
2
w2

exp

�

� .x � �/2

2w2

�
.�1;1/

Cauchy 1




�

.x � �/2 C �2

.�1;1/

Exponential 1

�
exp .�x=�/

Œ0;1/

Laplace 1

2�
exp .�jx � �j=�/ .�1;1/

Secondly, the joint probability for all possible outcomes must equal one. Thus,
Z

˝

p.x/dx D 1: (2.3)

It is worth noting that p.x/ may exceed one locally since the pdf is not a probability
in itself.3 Only, p.x/dx is! Some common analytical pdfs are collected in Table 2.1
and illustrated in Fig. 2.1.

2.2.2 Cumulative Distribution Function

The cumulative distribution function is defined as4:

cdf.x/ D
Z x

a
dx0p.x0/; x 2 ˝; a D min.˝/: (2.4)

It gives the probability of the outcome being less than a certain x. For that reason, it
is also denoted by PŒX � x	. Naturally, the cdf must be equal to zero at the minimum
possible value for x (i.e., x D a), and tends to one as the maximum allowed value
(i.e., b) is approached (see Fig. 2.2). The pdf can be derived from the cdf via the
relation,

p.x/ D d

dx
.PŒX � x	/ : (2.5)

3For instance, a Gaussian pdf will exceed 1 if w < 1=.2
/. A Cauchy will exceed 1 if � < 1=
 .
4Both the cdf and the sf are very useful tools to determine the tails of pdfs in the case of power-law
statistics, as will be discussed in Sect. 2.4.3.
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Fig. 2.1 Plots showing the Gaussian (black, � D 0, w D 2), Cauchy (red, � D 0; � D 1) and
Exponential (blue, � D 2) pdfs in lin-lin and log-lin scales. Note the much heavier tail of the
Cauchy distribution, with respect to the Gaussian

2.2.3 Survival Function

The survival function5 is defined as:

sf.x/ D
Z b

x
dx0p.x0/: (2.6)

That is, it gives the probability of the outcome being larger than a certain x, or
PŒX � x	. As a result, it is complementary to the cdf, being equal to one at the
minimum possible value for x (i.e., a), and becoming zero as the maximum value
(i.e., b) is approached (see Fig. 2.2). The pdf is obtained from the survival function
via,

p.x/ D � d

dx
.PŒX � x	/ : (2.7)

5The survival function is also known as the complementary cumulative distribution function (or
ccdf). The name survival function originated in biological studies that investigated the probability
of a certain species surviving beyond a certain length of time.
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Fig. 2.2 Plots showing the cdf (above) and survival functions (below) for a Gaussian (black, � D
0, w D 2), Cauchy (red, � D 0; � D 2) and Exponential (blue, � D 2) pdfs. It should be noted
that the much heavier tail of the Cauchy distribution implies a much waker growth (for the cdf)
and decrease (for the sf) than in the case of the Gaussian

A list of survival and cumulative distribution functions of some common analytic
pdfs is given in Table 2.2.6 It is also worth noting that cdf.x/C sf.x/ D 1, since the
total probability must always equal one.

2.2.4 Characteristic Function

Another important function related to the pdf is the characteristic function.7 It is
defined by the integral (using ı D p�1 for the imaginary unit)

�p.k/ WD
Z

˝

dx eıkxp.x/: (2.9)

6The error function used in Table 2.2 is defined as:

erf.x/ � 2p



Z x

0

dx e�x2 : (2.8)

7Characteristic functions are very important in the context of complex systems since, for many
meaningful pdfs with power-law tails, only their characteristic function has a closed analytical
expression. This makes, for instance, that comparisons against experimental data can often be
done more easily using the characteristic function.
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Table 2.2 Cumulative distribution and survival functions of some common pdfs

Name cdf(x) sf(x)

Uniform x � a

b � a

b � x

b � a

Gaussian 1

2

�

1C erf

�
x � �p
2w

��
1

2

�

1� erf

�
x � �p
2w

��

Cauchy 1

2
C 1



arctan

�
x � �

�

�
1

2
� 1



arctan

�
x � �

�

�

Exponential 1� exp
�
� x

�

�
exp

�
� x

�

�

Laplace
8
<̂

:̂

1

2
exp

� x � �

�

�
; x < �

1� 1

2
exp

��� x

�

�
; x > �

8
<̂

:̂

1� 1

2
exp

� x � �

�

�
; x < �

1

2
exp

��� x

�

�
; x > �

Table 2.3 Characteristic functions of some common pdfs

Name p(x) �p.k/

Uniform 1

b � a

exp.ıkb/� exp.ıka/

ık.b � a/

Gaussian 1p
2
w2

exp

�

� .x � �/2

2w2

�

exp

�

ı�k � 1

2
w2k2

�

Cauchy 1




�

.x � �/2 C �2
exp .ı�k � � jkj/

Exponential 1

�
exp .�x=�/

1

.1� ı�k/

Laplace 1

2�
exp .�jx � �j=�/ exp .ı�k/

.1C �2k2/

It is worth noting that, if the range ˝ D .�1;1/, the characteristic function
becomes the Fourier transform of the pdf (see Appendix 1 for a brief introduction
to the Fourier transform and the conventions adopted in this book), �p.k/ D Op.k/.
In that case, the pdf can be trivially recovered by inverting the transform to get,

p.x/ D 1

2


Z 1

�1
dk e�ıkx�p.k/: (2.10)

If ˝ D Œ0;1/ or ˝ D Œa; b	, the range can be trivially expanded to .�1;1/ by
extending the pdf definition to be p.x/ D 0; 8x … ˝ , which allows the equivalence
to the Fourier transform. This convention will be implicitly assumed throughout this
book. A list of characteristic functions of common pdfs is given in Table 2.3.
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2.2.5 Expected Values

Expected values are defined, for any arbitrary function g.x/ of the random variable
x whose statistics are described by p.x/, by the weighted integral:

hgi D
Z

˝

dx g.x/p.x/; (2.11)

that effectively sums the product of each possible value of the function, g.x/, with
its probability of taking place, p.x/. Some expected values are particularly useful.
For example, the characteristic function just discussed (Eq. 2.9) can be expressed as
the expected value:

�p.k/ D hexp.ık/i : (2.12)

Some of the more common statistical measures that characterize a process or event
are also expected values. Of particular importance are the so-called moments and
cumulants of a distribution.

2.2.6 Moments

The moments of the pdf are defined as the expected values of the integer powers
of the outcome x:

mn WD hxni D
Z

˝

dx xnp.x/; n D 1; 2; � � � (2.13)

It can be shown that all the information contained in the pdf is also contained in the
infinite series of moments. Therefore, the knowledge of all the moments is as good
as knowing the pdf itself. Indeed, any pdf can be reconstructed from its moments.
One simply needs to insert the Taylor series of the exponential,

ex D
1X

nD0

xn

nŠ
; (2.14)

in Eq. 2.12 to get:

�p.k/ D
1X

nD0

.ık/n

nŠ
mn; (2.15)

where we have assumed that all moments are finite. From �p.k/, the pdf follows
by using Eq. 2.10. Inversely, the characteristic function can be used to generate all
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finite moments of its associated pdf via:

mn D .�ı/n
dn�p

dkn
.0/: (2.16)

2.2.7 Cumulants

Cumulants are another very useful family of expected values. They are defined as:

cn D
�

xn ln p.x/

p.x/

	

D
Z

˝

dx xn ln p.x/: (2.17)

The cumulants contain, as did the moments, all the information of the pdf. Indeed,
the characteristic function of p.x/ can be expressed in terms of its cumulants as,

ln�p.k/ D
1X

nD0

.ık/n

nŠ
cn; (2.18)

assuming that all cumulants exist. The finite cumulants can also be generated from
the characteristic function using,

cn D .�ı/n
dnŒln �p	

dkn
.0/: (2.19)

It is straightforward to derive relations between moments and cumulants. For
instance, by equating Eqs. 2.19 and 2.16, the following relations follow for the
lowest four (see Problem 2.3):

c1 D m1 (2.20)

c2 D m2 � m2
1 (2.21)

c3 D m3 � 3m2m1 C 2m3
1 (2.22)

c4 D m4 � 4m3m1 � 3m2
2 C 12m2m

2
1 � 6m4

1 (2.23)

These expressions provide alternative formulas to compute the cumulants, once the
moments are known.

The first few cumulants efficiently condense abundant information about the
shape of the pdf. In particular, the four first cumulants are often combined to define
four popular statistical figures-of-merit: the mean, the variance, the skewness and
the kurtosis.
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Fig. 2.3 Sketch illustrating
the meaning of positive and
negative skewness of a pdf

1. Mean. Its explicit expression is:

Nx 	 c1 D m1 D
Z

˝

dx xp.x/: (2.24)

The mean Nx provides the typical value8 for the outcome x.
2. Variance. It is defined as:

�2 	 c2 D m2 � m2
1 D

Z

˝

dx .x � Nx/2p.x/: (2.25)

Its square-root, � , is known as the standard deviation and it is often used to
characterize the spread of all possible outcomes around the mean.9

3. Skewness. It is defined as:

S 	 c3

c3=22
D 1

�3

Z

˝

dx .x � Nx/3p.x/: (2.26)

The skewness quantifies the asymmetry of a pdf around its mean. It is zero for
distributions that are symmetric around their mean. That is, those for which p.Nx�
x/ D p.Nx C x/. The geometrical meaning of positive and negative skewness is
illustrated in Fig. 2.3.

8The mean should not be confused with the most probable value, that is that value of x where
p.x/ reaches its maximum. It is also different from the median, that is the value xm, for which
P.X > xm/ D P.X < xm/.
9The standard deviation is often used to estimate the error of a measurement, with the mean of all
tries providing the estimate for the measurement. In this case, it is implicitly assume that all errors
are accidental, devoid of any bias [5].
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Fig. 2.4 Illustration of the meaning of positive and negative kurtosis. The Gaussian (or normal)
distribution has zero kurtosis and is shown in black (� D 0, w D 2). In red, a Cauchy distribution
is shown (� D 0, � D 1); it has an infinite (positive) kurtosis. The blue curve, on the other hand,
decays as p.x/ � exp.�x3/ for large x and has a negative kurtosis. Left box is in lin-lin scale; right
box, in lin-log scale

4. Kurtosis. It is defined as10:


 	 c4
c22

� 3 D 1

�4

Z

˝

dx .x � Nx/4p.x/� 3: (2.27)

The kurtosis 
 quantifies, for symmetric distributions, the peakedness of a pdf
around its mean and the significance of its tail relative to the Gaussian pdf. As
the kurtosis gets large and positive, so does the significance (also referred to as
heaviness or fatness) of the tail, that decays more slowly than the Gaussian pdf
(see Fig. 2.4, in red). On the other hand, as it gets more negative, the central part
of the pdf will be flatter than for a Gaussian pdf, but the tails will fall much faster
(Fig. 2.4, in blue).

10Note that our definition of kurtosis corresponds to what in some textbooks is called the excess
kurtosis. In those cases, the kurtosis is defined instead as 
 WD ˝

.x � �/4
˛
=c22 which, for a

Gaussian pdf yields a value of three. The excess kurtosis is then defined as 
e WD 
 � 3, so
that a positive 
e means a heavier tail than a Gaussian and a negative value, the opposite.
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Table 2.4 Cumulants of some common pdfs

Name p(x) Mean Variance Skewness Kurtosis

Uniform 1

b � a

a C b

2

.b � a/2

12

0 �6
5

Gaussian 1p
2
w2

exp

�

� .x � �/2

2w2

� � w2 0 0

Cauchy
1




�

.x � �/2 C �2
� 1 0 1

Exponential
1

�
exp .�x=�/

� �2 2 6

Laplace
1

2�
exp .�jx � �j=�/ � 2�2 0 3

The values of these statistical figures-of-merit for some common analytical
pdfs11 have been collected in Table 2.4. It is worth noting that, in some cases, the
cumulants may not exist because of lack of convergence of the integral that defines
them.

2.3 Significance of Specific Pdfs

One of the first things scientists often do when examining experimental or numerical
data is to look at their pdf. The shape of these pdfs can sometimes offer a first hint
about the nature of the underlying dynamics of the system under study. Gaussian
statistics are usually associated with non-complex dynamics, lack of long-term
memory and diffusive transport. They have been extensively used to interpret
experimental data, to estimate errors in measurements and virtually in almost every
situation in which statistics appear, not limited to the physical sciences by any
means. In fact, they are so familiar to us that the Gaussian pdf has earned the name
of normal distribution. Power-law statistics, on the other hand, are often found in
situations where complex dynamics are at play.12 There are many other possibilities,

11The skewness and kurtosis are particularly useful to detect departures of Gaussian behaviour in
experimental data, due to the fact that the cumulants of the Gaussian pdf satisfy that cn D 0; n >
2 (see Problem 2.4). These deviations are also referred to as deviations of normality, since the
Gaussian is also known as the normal distribution!
12One must however remain cautious and avoid taking any of these general ideas as indisputable
evidence. Such connections, although often meaningful, are not bullet-proof and sometimes even
completely wrong. Instances exist of complex systems that exhibit Gaussian statistics, and non-
complex systems with power-law statistics. It is thus advisable to apply as many additional
diagnostics as possible in order to confirm or disregard what might emerge from the statistical
analysis of the system. Knowing as much as possible about the underlying physics also helps.
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though. Some of them convey their own significance, such as the exponential or the
log-normal distributions. We will discuss some of these pdfs in detail in this section.

2.3.1 Gaussian and Lévy Pdfs: Additive Processes

Why are Gaussians (or near-Gaussians) found so often in natural processes? The
traditional answer is provided by the central limit theorem (CLT), the most popular
member of a series of mathematical theorems stating that, under certain conditions,
the pdf of the outcomes of performing certain operations on random variables will
tend towards some member of just a few families of attractor distributions. The
existence of such theorems has important practical implications. First, it explains
why just a few pdfs, amongst the many possible ones, seem to be observed so often
in nature. Secondly, these theorems identify the most reasonable pdfs to choose from
when trying to model a certain process.

The standard central limit theorem identifies the attractor distributions for the
outcomes of the addition of a sufficiently large number (N) of independent random
variables.13 We will not dwell here on the mathematical details of the CLT. We refer
the interested reader to the abundant bibliography in the matter [4, 6, 7]. It suffices
to say that, loosely speaking, the CLT states that, if the means and variances of all
independent variables are finite and respectively equal to� and �2, the attractor pdf
will be a Gaussian pdf, with mean� and variance given by �2=N. Many phenomena
in nature can be thought of as resulting from the addition of many, approximately
independent, microscopic events. These processes are usually referred to as additive
processes. One example is provided by most transport processes, since the observed
macroscopic displacements over a certain amount of time are usually the result of
many microscopic displacements.14

Most textbooks present the CLT along the lines just described. However, the
CLT can also be formulated for cases in which the requirement is dropped of a
finite variance for the distributions being added. In that case, the CLT states that the
attractor pdf is a member of the Lévy family of pdfs [6] that is selected depending
on “how fast the variances of the individual random variables diverge”, among other
things. What is it meant by saying that the variance diverges faster or slower? Let’s
consider the case in which the individual pdfs behave asymptotically as15,

p.x/ � x�s; x ! 1I 1 < s < 3: (2.28)

13A random variable is the way we refer to the unpredictable outcome of an experiment or
measurement. Mathematically, it is possible to give a more precise definition, but in practical terms,
its unpredictability is its more essential feature.
14For example, Gaussian distributions are also well suited to model unbiased measurement errors,
since they are always assumed to be the result of many additive, independent factors [5].
15s > 1 is needed to make sure that the pdf be integrable and normalizable to unity. We also assume
x > 0, but the same argument could be done for x < 0 by changing x ! �x.
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Their variance would then scale as,

�2 D
Z 1

dx x2p.x/ �
Z 1

dx x2�s � x3�s
ˇ
ˇ1 ; (2.29)

which clearly diverges whenever s < 3. The closer s is to one, “the faster” the
divergence is. The value of the exponent s is one of the elements that determines the
member of the Lévy family that becomes the attractor.

Lévy distributions should often be expected in complex systems for the same
reasons that Gaussians are so prevalent in other systems. Indeed, since the statistics
in complex systems are often scale-invariant (i.e., power-law like), any additive
processes taking place in them will tend to exhibit Lévy statistics if their power-
law tails are sufficiently heavy.

Let’s define the Gaussian and Lévy distributions in more detail.

2.3.1.1 Gaussian Distribution

The Gaussian pdf16 is defined as (see Fig. 2.1, left panel):

N�;�2 .x/ WD 1p
2
�2

exp

�

� .x � �/2

2�2

�

; ˝ D .�1;1/: (2.30)

Its mean is c1 D � and its variance c2 D �2. The width of the Gaussian is
usually defined as w D p

�2. All the moments of the Gaussian are finite and
can be expressed in terms of � and �2. Another important characteristic is that its
cumulants all vanish for n > 2. That is, all above the variance are identically zero.

Finally, its characteristic function is:

�N
Œ�;w	.k/ D exp

�

ı�k � 1

2
�2k2

�

: (2.31)

2.3.1.2 Lévy Distributions

Lévy distributions [7] span a four-parameter family, LŒ˛;�;�;�L 	.x/, with the ranges
of their defining parameters being: 0 < ˛ < 2, j�j � 1, �L > 0 and j�j < 1.
An analytic expression does not exist for them, except in a few cases. Their

16We adhere to the convention of representing the Gaussian with the uppercase letter N, a
consequence of its being called the normal distribution.
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Fig. 2.5 Illustration of symmetric (� D 0, �L D 1 and � D 0) Lévy pdfs with various values of
the parameter ˛ 2 .0; 2/. As it can be appreciated, the pdfs exhibit an asymptotic power law tail
that becomes heavier, the smaller ˛ is. The case with ˛ D 2 (in black) corresponds to the Gaussian
pdf [Left box is in lin-lin scale; right box, in lin-log scale]

characteristic function can however be written in closed form [7]:

�L
Œ˛;�;�;�L 	

.k/ D

8
ˆ̂
<̂

ˆ̂
:̂

exp
n
ı�k � �˛L jkj˛

h
1 � ı�sgn.k/ tan

�
˛

2

�io
; ˛ ¤ 1

exp




ı�k � �Ljkj
�

1C 2ı�



sgn.k/ log jkj

��

; ˛ D 1

(2.32)

The meanings of the four parameters, ˛, �, � and � are:

• Parameter ˛. Its range is 0 < ˛ < 2. This parameter sets the asymptotic
behaviour of the tail of the distribution at large x (see Fig. 2.5). In fact, all
Lévy pdfs satisfy that17:

LŒ˛;�;�;�L 	.x/ � C˛

�
1˙ �

2

�

�˛L jxj�.1C˛/; x ! ˙1 (2.33)

17For that reason, CLT states that the average of random variables with individual pdfs exhibiting
tails p.x/ � x�s will be attracted towards a Lévy distribution with ˛ D s � 1 if s < 3. The value
of � of the attractor distribution will depend on the level of asymmetry of the individual pdfs.
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where the constant is (� .x/ is Euler’s gamma function),

C˛ D

8
ˆ̂
<̂

ˆ̂
:̂

˛.˛ � 1/
� .2 � ˛/ cos.
˛=2/

; ˛ ¤ 1

2



; ˛ D 1

(2.34)

Therefore, the tail of a Levy becomes heavier, the smaller ˛ is. In addition, all
moments diverge for n � ˛. Therefore, all Lévy pdfs lack a finite variance.
Furthermore, all distributions with ˛ � 1 also lack a finite mean!

• Parameter �. Its range is j�j � 1. This parameter quantifies the degree of
asymmetry of the distribution (see Fig. 2.6), since all Lévy pdfs satisfy that

LŒ˛;�;�;�L 	.x/ D LŒ˛;��;�;�L 	.�x/: (2.35)

Thus, the only symmetric Lévy pdfs are those with � D 0. The degree of
asymmetry increases with the magnitude of �, while its sign tells whether the
distribution leans more to the left (negative x’s) or to the right (positive x’s) side.18

Fig. 2.6 Illustration of (right)-asymmetric (˛ D 0:5, �L D 1 and � D 0) Lévy pdfs with various
values of the parameter � 2 Œ0; 1	. As it can be appreciated, the pdfs exhibit all the same asymptotic
power law tail, since ˛ is the same. The degree of right-asymmetry becomes stronger, the closer to
unity � is. For � D 0, it is symmetric. On the other hand, the case with � D 1 (in pink) corresponds
to an extremal Lévy pdf (see discussion in text), that is defined only for x � 0 [Left box is in lin-lin
scale; right box, in lin-log scale]

18The case of maximum asymmetry (i.e., when j�j D 1) is particularly interesting, and will be
discussed separately later in this chapter. We will also refer to it often in Chap. 5, while discussing
fractional transport in the context of continuous time random walks.
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• Parameter �L. Its range is �L > 0. The parameter �L is called the scale
parameter because of the following property:

LŒ˛;�;�;�L 	.ax/ D LŒ˛;sgn.a/�;a�;jaj�L 	.x/; 8a: (2.36)

That is, changing �L only affects the “width” of the distribution. It is worth noting
that this width is somewhat different from the usual Gaussian width, that is given
by the square-root of the variance, which diverges here. It can also be shown that,
for all Lévy pdfs with � D 0, their finite moments verify:

hjxjpi / �
p
L ; p < ˛: (2.37)

so that one can define an effective width as,

w WD hjxjpi1=p / �L; p < ˛: (2.38)

• Parameter �. Its range is j�j < 1. The parameter � is called the translation
parameter. The reason for this name is related to a property of the Fourier
transform. In particular, the fact that the Fourier transform of any function whose
independent variable is shifted by some arbitrary � is the same as that of the
unshifted function, but multiplied by a phase ı�k (see Appendix 1, Eq. 2.127).
Therefore, the ı�k term that appears in the characteristic function of the Lévy
pdf (Eq. 2.33) simply displaces the distribution to the right (if � < 0) or left
(� > 0) for x D 0. The parameter � is also somewhat related to the usual mean.
In fact, � gives the mean of all Lévy distributions with � D 0 and ˛ > 1. For
non-symmetric distributions (i.e., � ¤ 0) with ˛ > 1, the mean depends however
both on � and �L.

Analytical Expressions for Lévy Pdfs

There are only two Lévy distributions that have a closed analytical expression: (1)
the Cauchy distribution (˛ D 1; � D 0; see Fig. 2.1),

CauŒ�L 	.x/ 	 LŒ1;0;0;�L 	.x/ D �L


.x2 C �2L /
; x 2 .�1;1/ (2.39)

and (2) the Lévy distribution,19 (˛ D 1=2, � D 1),

LevŒ�L	.x/ 	 LŒ1=2;1;0;�L 	.x/ D
� �L

2


�1=2 1

x3=2
exp.��L=2x/; x 2 Œ0;1/ (2.40)

19Although the name Lévy distribution is used, in this book, for any member of the Lévy family of
pdfs, in many statistical contexts the name is reserved to this specific choice of parameters. This is
kind of unfortunate, and can lead to confusions sometimes.
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Extremal Lévy Distributions

The attentive reader may have noted that the analytical expression for LŒ1=2;1;0;�L 	.x/
(see Eq. 2.40) is only defined for x � 0. This distribution is an example of a
particularly important subfamily of Lévy distributions known as extremal Lévy
distributions. These subfamily includes all Lévy pdfs with ˛ < 1 and � D ˙1.
What makes them interesting (see Fig. 2.6) is that the range of these pdfs only spans
the interval Œ0;˙1/.20 This property makes extremal Lévy distributions with � D 1

well suited as attractor pdfs for processes that involve variables that can only take
positive values, such as waiting times, when they lack a finite mean. We will come
back to these distributions again in Chap. 5.

Gaussian Pdf as a Limiting Case of the Lévy Family

A final comment about Lévy distributions worth making is that the Gaussian pdf
can be obtained as a limiting case of the Lévy characteristic function (Eq. 2.32).21

Indeed, in the limit ˛ ! 2�; � ! 0, the Lévy characteristic function reduces to:

�L
Œ2;0;�;�L 	

.k/ D exp
˚
ı�k � �2L k2 	

� D �N
Œ�;

p
2�L	
.k/; (2.41)

that is the characteristic function of a Gaussian pdf with mean � and with variance
�2 D 2�2L (see Eq. 2.31). We will use this notion extensively in Chap. 5, when
discussing fractional transport.

2.3.2 Log-Normal and Log-Stable Pdfs: Multiplicative
Processes

We discussed previously that the CLT explains, in the case of additive processes, the
attraction of their statistics towards the Gaussian or Lévy pdfs. However, sometimes
one encounters processes of a multiplicative nature instead. Multiplicative processes
are the consequence of the accumulation of many small percentage changes, instead
of many small increments. In this situation, one should not expect to see any
attraction towards Gaussian or Lévy statistics, but to something else.

Let’s consider, for instance, the case of a highly communicable epidemic. It all
starts with a few (maybe even just one) infected people, the so-called patients zero.
We will build a very simple model for the propagation of the epidemic by assuming
that the average probability that an infected person transmits the disease to a healthy

20For ˛ > 1, the Lévy pdfs with � D ˙1 do cover the whole real line, but it can be shown that
they vanish exponentially fast as x ! �1 [7].
21In fact, some authors include the Gaussian as the only non-divergent member of the Lévy family.
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one is p, and that the average number of people met by a normal person during a
normal day is n. The increment in the number of infected people in a single day will
be then given by,

�Ninfected ' pnNinfected �! �Ninfected

Ninfected
' pn: (2.42)

That is, the increment in the number of infected increases with the number of
infected during the epidemic, but the percentage change in the number of infected
remains equal to pn.

Within the context of our simple model for the epidemic, the number of infected
after the first .k C 1/-th days can be estimated as,

NkC1
infected D Nk

infected C pknkNk
infected � �kNk

infected D .1C pknk � �k/N
k
infected: (2.43)

That is, the model simply adds, to the number of infected that already exists, the
number of newly infected people during the k-th day and subtracts the number of
people that has overcome the disease that day or has died from it. Evidently, pk is
the infection probability in the k-th day, nk is the number of people met that day and
0 � �k � 1 is the probability of a sick person becoming healthy again or dying. The
reason why we do not use constant values for these coefficients in the model is that
any of these quantities may fluctuate from one day to another for various reasons.22

It is now straightforward to connect the number of infected at the .k C 1/-th day
to the number of patients zero by applying Eq. 2.43 recursively to get:

NkC1
infected D

"
kY

iD1
�i

#

� N0
infected; �i D 1C pini � �i � 0; (2.44)

where N0
infected is the number of people initially infected. It is clear that the statistics

of Nk are not those of an additive process, but of a multiplicative one related to
k copies of the � random variable, that contains the details about the infection
rate, degree of curability of the disease, etc. So the question becomes, which are
the attractor distributions for these kind of multiplicative processes? The answer is
either the log-normal or the log-stable distributions. Let’s see why.

2.3.2.1 Log-Normal Distribution

The log-normal distribution is the pdf of any random variable X whose associated
random variable Z D ln X follows a Gaussian distribution [8]. More precisely, if

22These reasons may include, for instance, the varying strength of the immune system of the people
encountered, their personal resistance to that particular contagion, the specific weather of that day
or whether the day of interest is a working day or part of a weekend.
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Z is distributed according the normal distribution NŒ�;�2	.z/, then X is distributed
according to:

LogN�;�2 .x/ D 1

x�
p
2


exp

�

� .ln x � �/2

2�2

�

; (2.45)

that is the usual definition of the log-normal distribution (see Fig. 2.7). Its cumulants
become also a function of the mean and variance of the underlying Gaussian. It is
straightforward to prove (see Exercise 2.9) that its mean is c1 D exp.�C�2=2/ and
its variance is c2 D .exp.�2/� 1/ exp.2�C �2/.

Fig. 2.7 Illustration of several log-normal pdfs (� D 0). Clearly, an x�1 scaling range exists that
can be made arbitrary large by making � � 1. At values of � < 1, the extension of the x�1 scaling
is almost negligible. Instead, the pdf has a maximum at a position 0 < x0 < 1 that moves towards
1 as � tends to zero [Left box is in lin-lin scale; right box, in lin-log scale]
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Why do log-normal distributions appear as attractor pdfs for multiplicative
processes? One just needs to take the logarithm23 of Eq. 2.44,

log


NkC1

infected=N0
infected

� D ln

 
kY

iD1
�i

!

D
kX

iD1
ln �i; (2.46)

to see that the new process YkC1 	 ln


NkC1

infected=N1
infected

�
is an additive processes.

Therefore, if each of the individual processes being added (i.e., each ln �i) has
well defined characteristic scales (i.e., a finite variance), the central limit theorem
predicts that the statistics of their sum, YkC1, will necessarily fall within the basin
of attraction of a Gaussian pdf. It naturally follows from here that the statistics of
NkC1

infected will then follow the log-normal distribution associated to that Gaussian.

2.3.2.2 Log-Stable Distributions

It is often the case in complex systems, however, that characteristic scales cannot
be defined (see Chap. 1). Therefore, it may be the case that the logarithms of the
random variables that form the multiplicative process (i.e. ln �i in Eq. 2.46) lack a
finite variance. In those cases, the basin of attraction to which their sum (i.e., YkC1
in Eq. 2.46) would belong cannot be that of the Gaussian law, but one associated to
some member of the Lévy family of pdfs. Which pdf plays a role analogous to that
of the log-normal distribution in these cases? The log-stable distribution that will
be defined next.

The log-stable distribution is the pdf followed by any random variable X whose
associated random variable Z D ln X follows a Lévy distribution [7]. The log-stable
distribution associated to the Lévy pdf, LŒ˛;�;�;�L 	.z/ is given by,

LogStŒ˛;�;�;�L
	.x/ D 1

x
LŒ˛;�;�;�L 	.ln x/: (2.47)

Regretfully, since most Lévy laws lack closed analytic forms, the log-stable
distributions must be calculated numerically in most cases. A notable exception is
the log-Cauchy pdf, associated to the Cauchy pdf (Eq. 2.39), that is given by:

LogCauŒ�L 	
.x/ D �L

x



ln2.x/C �2L

� : (2.48)

Interestingly, log-stable distributions have become recently quite popular to
model the statistics of various complex systems such as the world stock market
[9] or the transition to turbulence in fluids [10], thus pointing to the relevance of

23We have normalized NkC1
infected to the initial number infected for simplicity.
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multiplicative processes in those systems. The physical mechanisms behind those
processes are easy to point out, being related to the presence of cascades in either
volatile stocks and option prices or in turbulence.

2.3.3 Weibull, Gumbel and Frechet Pdfs: Extreme Value Pdfs

It has already been mentioned that heavy-tailed power-law pdfs often appear in
the context of complex systems. Due to the divergent character of those tails, the
relatively large probability (as compared to normal distributions) of the events that
are found near their end, also known as extreme values or extreme events, becomes
particularly relevant.24

Can one say anything about the statistics of such extreme events? The answer
is yes. Another limit theorem exists that provides attractor pdfs for the statistics of
extreme values. Let’s say that one has N independent random variables, Xi, with
i D 1; � � � ;N, all distributed according to a common pdf, pXi.X/ D f .X/; 8i. An
extreme value will be defined as the maximum value of each outcome of the N
variables,

Xev D max.X1;X2 � � � XN/: (2.49)

It turns out that the statistics of such extreme values fall within the basin of attraction
of a one-parameter family of pdfs, whose cumulative distribution function is [11]:

HŒ�;�;�E 	.x/ D exp

 

�
�

1C
�

x � �
�E=�

���1=�!
; � 2 .�1;1/: (2.50)

Here, the essential parameter is �, since � and �E act as translation and rescaling
parameters, very similar to their analogous Lévy counterparts. Three different
families of pdfs are derived from this cumulative distribution function: the Gumbel
pdf, the Frechet pdf and the Weibull pdf. We discuss them separately in what
follows. Criteria are also provided that determine the pdf to which the statistics of
the extreme values of a particular parent pdf will end up attracted to.

24In many cases, extreme events have such a long-term influence on the system that, in spite of their
apparently small probability, they dominate the system dynamics. One could think, for instance, of
the large earthquakes that happen in the Earth’s crust, or of the global economical crisis that affect
the world economy, and the impact that may have on our daily life for many years after.
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2.3.3.1 The Gumbel Pdf

By taking the limit � ! 0 of Eq. 2.50 and differentiating it with respect to x (see
Eq. 2.4), one obtains the Gumbel pdf (see Fig. 2.8, in black):

GuŒ�;�E 	 .x/ D 1

�E
exp




�
��

x � �
�E

�

C exp




�
�

x � �

�E

����

; x 2 .�1;1/;

(2.51)

that decays exponentially for large (positive and negative) values of x. There is a
practical criterion provided by Gnedenko [11] to decide whether a particular parent
distribution, p.x/, will have its extreme values distributed according to a Gumbel
pdf. One just needs to check whether the survival function (see Eq. 2.6) associated
with p.x/ verifies,

lim
x!1

sf.x/

sf.cx/
D 0; 8c > 0: (2.52)

Fig. 2.8 Comparison of Gumbel and Frechet distributions (� D 0, �E D 1). The Gumbel
distribution is defined for any x and decays exponentially for large positive and negative values
of the exponent. Frechet pdfs, on the other hand, are defined only for x > �� �E=� and exhibit a
power-law decay with exponent 1C 1=� [Left box is in lin-lin scale; right box, in lin-log scale]
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Here, c is an arbitrary positive constant. Examples of pdfs contained within this
basin of attraction are the Gaussian pdf (Eq. 2.30) and the exponential pdf, that
will be discussed soon (Sect. 2.3.4).

2.3.3.2 The Frechet Pdf

For � > 0, the resulting pdf is the Frechet pdf that is given by:

FrŒ�;�;�E 	.x/ D 1

�E

�

1C x � �

�E=�

��.1C1=�/
exp

"

�
�

1C x � �

�E=�

��1=�#
: (2.53)

This pdf is defined only over the domain,

x 2
�

� � �E

�
;1

�

: (2.54)

The Frechet pdf exhibits algebraic tails for large (positive) values of x (see
Fig. 2.8). Again, Gnedenko gives us a criterion to decide whether a certain parent
pdf, p.x/, has extreme values with statistics that will tend to the Frechet pdf [11].
One just need to check whether the survival function associated with p.x/ verifies,

lim
x!1

sf.x/

sf.cx/
D ck; k > 0; 8c > 0: (2.55)

Any survival function that has an algebraic tail, sf.x/ � x�k verifies this condition.
Thus, its related pdf will see its extreme values converging to the Frechet law with
parameter � D 1=k. In particular, Lévy pdfs with a tail index ˛ will have their
extreme values converging to Frechet pdfs with parameter � D 1=˛.

2.3.3.3 The Weibull Pdf

For � < 0, the resulting extreme pdf is the Weibull pdf. It is given as:

WeŒ�;�;�E 	.x/ D 1

�E

�

1 � x � �

�E=j�j
�.1=j�j�1/

exp

"

�
�

1 � x � �

�E=j�j
�1=j�j#

: (2.56)

The Weibull pdf is also defined over a restricted domain,

x 2
�

�1; �C �E

j�j
�

; (2.57)
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Fig. 2.9 Comparison of Gumbel and Weibull distributions (� D 0, �E D 1). The Gumbel
distribution is defined for any x and decays exponentially for large positive and negative values
of the exponent. Weibull pdfs, on the other hand, are defined only for x < �C �E=j�j. The cutoff
point moves towards zero as j�j gets larger [Left box is in lin-lin scale; right box, in lin-log scale]

and has a short positive tail, due to the cutoff value at xc D �C �=j�j (see Fig. 2.9).
The parent pdfs that fall within the basin of attraction of the Weibull pdf are those
whose survival function verify [11],

lim
x!0�

sf.cx C w/

sf.x C w/
D ck; k > 0; 8c > 0: (2.58)

The value of w is given by the equation, sf.w/ D 0. That is, w is the maximum value
that x can take. One example of a pdf whose extreme values follow the Weibel pdf
is the uniform pdf, defined over any finite interval.

2.3.4 Exponential and Related Pdfs: Poisson Processes

Another pdf often found in nature is the exponential pdf (see Fig. 2.1, right panel),

E� .x/ WD ��1 exp.�x=�/; ˝ D Œ0;1/; (2.59)



2.3 Significance of Specific Pdfs 65

in which x can only take positive values.25 Thus, it is often related to the statistics
of time intervals or distances, that are naturally positive. For instance, x could be
time intervals between disintegrations of a radioactive material, or between the
occurrence of mutations in a DNA strand. Or the distance between defects in a
solid.

As in the case of the Gaussian, it is only natural to ask for the reasons that
make exponential pdfs to appear so often. It turns out that the answer is related to a
mathematical concept known as a Poisson process [12]. It is defined as any process
in which the time at which an event happens does not depend in any way of the past
history of the process. The fulfilment of this condition implies, among other things,
that the statistics of the time intervals between successive events (i.e., a waiting-
time) must follow an exponential pdf. Since many processes in nature behave
like Poisson processes, exponential pdfs are very abundant. They are somewhat
more rare in complex systems, where memory of past events is relevant in the
dynamics. For that reason, an absence of exponential pdfs in waiting-time statistics
can sometimes be used to detect possible complex dynamics.26

In what follows, we will discuss the statistics of the waiting-times of a Poisson
process, the distribution of the number of events taking place in a given lapse of
time, known as the Poisson pdf, as well as other related distributions, such as the
Gamma pdf or the stretched exponential.

2.3.4.1 Exponential Pdf

Let’s determine the distribution, p.w/, that is followed by the waiting times w
of a Poisson process. We will assume that an event has just happened at time
t D 0. From what we have said about Poisson processes, it should be clear that
the probability of the next waiting-time being larger than w (given by the survival
function sf.w/ D PŒW � w	) must be equal to the probability of having to wait for
longer than w after having already waited for an amount of time Ow following the

25A related pdf, the Laplace pdf, can be defined for both positive and negative values:

Lp� .x/ D 1

2�
exp.�jxj=�/; ˝ D .�1;1/: (2.60)

However, the Laplace pdf does not play any similar role to the exponential in regards to time
processes. It is somewhat reminiscent of the Gaussian distribution, although it decays quite more
slowly as revealed by its larger kurtosis value (see Table 2.4).
26One must be careful, though. There are examples of complex systems with exponential statistics.
For instance, a randomly-driven running sandpile exhibits exponential statistics for the waiting-
times between avalanches. This is a consequence of the fact that avalanches are triggered only
when a grain of sand drops, which happens randomly throughout the sandpile. It is only when
sufficiently large avalanches are considered that non-exponential waiting-time statistics become
apparent, revealing the true complex behaviour of the sandpile, as we will see in Sect. 4.5.
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event.27 Mathematically, this idea is expressed by28:

PŒW � w C Ow	
PŒW � Ow	 D PŒW � w	 (2.61)

where the left-hand-side is the probability of having to wait for at least w for the
next event to happen after having already waited for Ow. The right-hand-side is the
probability of having to wait for at least w after t D 0, when the previous event
happened. We can rewrite this relation as,

PŒW � w C Ow	 D PŒW � Ow	 � PŒW � w	; (2.62)

whose only solution is the exponential function29:

PŒW � w	 D exp.aw/: (2.64)

The pdf associated with this survival function is (Eq. 2.7),

p.w/ D � d

dw
.PŒW � w	/ D a exp.�aw/ D Ea�1 .w/; (2.65)

which yields the exponential pdf (Eq. 2.59; see Fig. 2.1). The parameter a gives the
inverse of the average waiting time of the process, as can be easily checked by
calculating the expected value (see Eq. 2.24):

hwi D
Z 1

0

dw wp.w/ D
Z 1

0

dw aw exp.�aw/ D 1

a
: (2.66)

2.3.4.2 Poisson and Binomial Discrete Distributions

Many other properties of a Poisson process can be easily derived. For instance, the
probability of k events occurring during a lapse of time t is given by the discrete

27This follows from the fact that the triggering of events in a Poisson process is independent of the
past history of the process. Thus, what we may have already waited for is irrelevant and cannot
condition how much more we will have to wait for the next triggering!
28The conditional probability of B happening assuming that A has already happened, P.AjB/, is
given by: P.AjB/ D P.A \ B/=P.A/, where P.A \ B/ is the joint probability of events A and B
happening, and P.A/ is the probability of A happening [4].
29Indeed, note that due to the properties of the exponential function, it follows that:

PŒW � w C Ow	 D exp.a.w C Ow// D exp.aw/ 	 exp.a Ow/ D PŒW � Ow	 	 PŒW � Ow	: (2.63)
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Poisson distribution30:

Po� .X D k; t/ D 1

kŠ

� t

�

�k

exp.�t=�/; (2.67)

where � D a�1 is the mean waiting-time of the Poisson process and X is the number
of events triggered in time t.31

One way to derive the discrete Poisson distribution is as a limit of another
discrete distribution, the binomial distribution. The binomial distribution gives the
probability of succeeding k times in a total of n trials, assuming that the probability
of success of each trial is p:

B.k; nI p/ D
�

n
k

�

pk.1 � p/n�k; with

�
n
k

�

D nŠ

kŠ.n � k/Š
(2.68)

The Poisson distribution is obtained in the limit of n ! 1 and p ! 0, but keeping
the product np finite. The result is (see Problem 2.6),

B.k; nI p/ �! .np/k

kŠ
exp.�np/: (2.69)

To conclude the derivation, we note that np gives the average number of successful
trials during the whole process. In the notation of the continuous process, the
number of events in a lapse of time t is given by t=� , if � is the average waiting
time. Thus, Eq. 2.67 is obtained by making the substitution np ! t=� .

2.3.4.3 The Gamma Pdf

Another popular pdf, the Gamma pdf is the continuous version of the Poisson
discrete distribution. It can obtained by replacing k by a continuous argumentˇ, and
by including an additional 1=� factor, needed to ensure the proper normalization of
the pdf.32 The Gamma pdf depends on two parameters, ˇ > 0 and � > 0:

GammaŒˇ;�	.t/ D 1

� .ˇ/

�
tˇ�1

�ˇ

�

exp.�t=�/; t � 0: (2.70)

30Discrete means that the possible outcomes are countable; in this case, the number of events k,
that can only take integer values. One consequence of being discrete is that the distribution gives
actual probabilities, so that it is no longer a density of probability.
31Note that the Poisson distribution is a discrete distribution, not a pdf, and is normalized to unity
only when summing over all possible values of k. Can the reader prove this?
32Remember that � .x) becomes the usual factorial function, � .k C 1/ D kŠ, for integer k.
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Fig. 2.10 Gamma pdf for several values of the shape parameter ˇ (� D 100). A power-law region
exists for t < � with exponent ˇ � 1, that can be positive or negative. At larger values of t, an
exponential decay dominates the scaling [Left box is in lin-lin scale; right box, in lin-log scale]

ˇ is often called the shape parameter (see Fig. 2.10) and � , the scale parameter.
Note that, for ˇ D 1, the usual exponential pdf is recovered. Its mean is given by
c1 D ˇ� , whilst its variance is c2 D ˇ�2. Its skewness is given by S D 2=

p
ˇ,

whilst its kurtosis is 
 D 6=ˇ. Its characteristic function is,

�Gamma
Œˇ;�	 .k/ D 1

.1 � ı�k/ˇ
: (2.71)

It is possible to endow the Gamma pdf with some physical meaning if ˇ > 1 is
an integer number. In that case, the Gamma pdf arises naturally when the variable
t is formed by adding together ˇ � 1 partial variables, �i, each of them distributed
according to the same exponential distribution, p.�i/ D E� .�i/. This might be the
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Fig. 2.11 Stretched exponential pdf for several values of the shape parameter ˇ (� D 20). A
power-law region exists for t . � with negative exponent ˇ � 1. The smaller ˇ is, the longer the
power-law scaling extends along t, due to the fractional exponent in the exponential [Left box is in
lin-lin scale; right box, in lin-log scale]

case, for instance, of the distribution of failing times of a power system that is
composed of ˇ identical backup batteries, each of them with the same exponential
distribution of failing times.33

2.3.4.4 The Stretched Exponential Pdf

Another interesting pdf somewhat related to the exponential is the one-parameter
family of stretched exponential pdfs (see Fig. 2.11), that is defined over the range

33This is, in fact, a nice example of a physical system in which the appearance of a power law in
a pdf has nothing to do with any complex behaviour, and the exponential decay at large t is not a
finite size effect.
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ˇ 2 .0; 1	 as:

eŒˇ;�	.t/ D ˇtˇ�1

�ˇ
exp.�.t=�/ˇ/; t � 0: (2.72)

For ˇ D 1, the usual exponential pdf is recovered. For ˇ < 1, a power-law scaling
region appears at to a timescale of the order of � , beyond which the exponential
term dominates. Due to the fractional exponent in the exponential, the lower ˇ is,
the more extended the power scaling region becomes. In contrast to the Gamma pdf,
we do not know of any derivation of the stretched exponential pdf from physical
arguments. Stretched exponentials are often used phenomenologically.34 We will
also use them in Chap. 5, during the discussion of fractional transport, due to some
of their interesting properties.

The cumulative distribution function of this family is given by:

cdfe
Œˇ;�	.t/ D exp.�.t=�/ˇ/; (2.73)

popularly known as the stretched exponential, from which the whole family of
pdfs borrows its name.

2.4 Techniques for the Practical Estimation of Pdfs

We believe that the ability to estimate pdfs from numerical or experimental data
should always be in the bag of tricks of any scientist or engineer. Some people might
however argue that, given any set of data, the estimation of its mean and variance is
sufficient for most practical purposes, and that one rarely needs to make the effort to
estimate the full pdf.35 For instance, in order to quantify the resistance of an airfoil
with respect to vertical forcing, one could apply multiple times the same external
forcing (say, setting some prescribed weight on the tip) and measure each time the
vertical displacement of the tip of the wing. The computation of the mean is trivial.
One just needs to add all values and divide the result by the number of measurements
and, for the variance, to subtract the mean from each measurement, square the result,
add them all, and divide by the number of measurements.36 With these two numbers,
one can quantify the expected resistance and its typical variability.

34It was first introduced by R. Kohlrausch to describe the discharge of a capacitor at the end of the
nineteenth century, and is often used in the context of relaxation processes.
35This idea is rooted in the perceived prevalence of Gaussian pdfs, whose cumulants higher than
the variance all vanish.
36It is worth to point out the relation between these prescriptions, that we all learned in high
school, and Eqs. 2.24 and 2.25, that require knowledge of the full pdf. Given a series of data
fxi; i D 1; 2; 	 	 	 Ng, these prescriptions for the mean and variance are given by:
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There are however situations in which having a full knowledge of the pdf is
important. This is certainly the case in the context of complex systems, in which the
shape of the tail of the pdf may give us a hint of the kind of underlying dynamics we
are dealing with. For instance, in turbulent fluids and plasmas, the departure away
from diffusive effective transport can often be monitored as a transition from near-
Gaussian to heavy-tailed statistics for quantities such as fluctuations, velocities and
fluxes (see Chap. 5). The accurate determination of these tails is however a delicate
business due to the fact that events that contribute to them happen with a much
smaller probability than those contributing to central part of the distribution.37

In this section, we will discuss several methods to estimate pdfs from experimen-
tal data in ways that try to minimize these problems as much as possible. We will
start, however, by discussing the standard method of estimating pdf that is based on
the idea of data binning.

2.4.1 Constant Bin Size Method

The standard method to construct a pdf from a set of data proceeds as follows.
Suppose that we have made N measurements of a certain quantity, X:

X
 D fX1;X2;X3; � � � ;XNg : (2.75)

We can then estimate the pdf by first building a set of M bins that spans the whole
domain covered by the data: Œmin.X
/;max.X
/	. The number of bins, M, must be
chosen much smaller than N, so that a reasonable number of values will presumably
fall within each bin. We define each bin, bi, as the interval:

bi D Œmin.X
/C i�b;min.X
/C .i C 1/�b	; i D 1;M: (2.76)

Nx WD 1

N

NX

iD1

xi; �2 WD 1

N

NX

iD1

x2i � Nx2: (2.74)

It is simple to show that the same formulas are obtained if one introduces the numerical pdf
obtained from the data series in Eqs. 2.24 and 2.25. Let’s take the mean. The sum over all data
points that appears in its definition can be rewritten as a sum over all possible different values of x,
if we multiply each value by the number of times it appears. Since the sum is normalized to N, the
total number of data points, the sum over all different possible values would become just a sum of
the products of each value and its probability. That is, precisely, what Eqs. 2.24 and 2.25 express.
Can the reader prove the same equivalence for the variance?
37The central values are also the ones that contribute more strongly to the values of means and
moments, except in cases in which these moments diverge!
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where the size of each bin, �b is defined by:

�b D max.X
/ � min.X
/
M � 1

: (2.77)

The size of all bins is the same, giving the method its name: the constant bin size
(or CBS) method.

Next, one simply counts the number of elements of set X
 fall within each bin.
Let’s call this number Ni. Then, the probability of one measurement having fallen
in bin bi is simply given by,

Pi D Ni

N
; (2.78)

and, subsequently, the probability density function takes a value at that bin given by,

Pi D pi�b �! pi D Ni

N�b
: (2.79)

It is typical to assign the value of the pdf just obtained to the mid-point of the
bin. Thus, the numerical pdf is composed of all the pairs of the form,

pCBS.X

/ (2.80)

D



.xi; pi/ D
�

min.X
/C
�

i C 1

2

�

�b;
Ni

N�b

�

; i D 1; 2 � � � ;M
�

The whole procedure has one free parameter M, the number of bins. The
performance of CBS relies on choosing the bin size wisely. A sufficient number
of values of X should fall within each bin, so that the probability can be measured
accurately. As an illustration, Fig. 2.12 shows the different pdfs computed with CBS
method for data distributed according to the Gaussian N0;1.x/ using different M
values (shown in the upper frame of Fig. 2.13). If M is to small, we can barely
see the Gaussian shape of the pdf. On the other hand, if we make it too large (see
M D 500 in the figure), the number of points per bin quickly becomes too small
as we move away from zero in either direction. The result is a much more noisy
pdf and a worse accuracy at the tail, where the density of points per bin will be the
smallest. This is an intrinsic problem of CBS. Despite of this, the method works
pretty well for the Gaussian pdf examined here.

The story becomes very different if the pdf has a heavy tail. For instance, we will
consider the case of noise distributed according to a Cauchy pdf, LŒ1;0;0;1	.x/ D
1=
.x2 C 1/. The algebraic tail implies that the probability of the very large
events remains always non-negligible (see lower frame in Fig. 2.13). This fact has
a deleterious effect on the CBS method, as can be seen in Fig. 2.14. The method
fails to reproduce the pdf properly, even with 500 bins! To see how badly the tail
of the pdf is captured, we have included an inset in the figure showing the pdf in
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Fig. 2.12 Computation of the pdf of a Gaussian noise signal with N D 100;000 data points using
the CBS method with M D 5; 10; 20; 50; 100 and 500 bins. At the smallest bin sizes, the shape of
the Gaussian is not well reproduced. At the largest ones, the small number of points per bin away
from the center of the pdf introduces noise

log-log format. One can see that the x�2 scaling of the Cauchy is barely captured
with 500 bins. More bins would be needed to capture it properly. But note that in
practical situations, we will rarely have 100;000 data points at our disposal. Thus,
increasing the number of bins is often not an option. Clearly, if we are interested in
reconstructing the tails of power-law distributions, we need to do better than CBS.

2.4.2 Constant Bin Content Method

The first thing one can do to improve the accuracy at the tail region is to abandon the
notion of using bins of a constant size, and to make them larger as we advance into
the tail region. In this way, as the bin size increases, more data values will fall within
the bin, and the accuracy will improve. Some people use logarithmic binning to
achieve this. That is, they use bins with sizes that increase logarithmically as one
advances towards the tail. However, there is a more optimal strategy: to force the
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Fig. 2.13 First 500 points of the Gaussian (upper frame) and Cauchy (lower frame) time series.
The heavy tail of the Cauchy pdf, decaying as p.x/ � x�2 is apparent in the larger presence of
‘large’ (i.e., extreme) events

bins to adjust their size in order to contain always the same number of data values.
We will refer to this method as the constant bin content (or CBC) method.

The method can be implemented as follows. Let’s consider again the sequence
of values of the variable X given by:

X
 D fX1;X2;X3; � � � ;XNg (2.81)

First, we will reorder the data in increasing order,

X

inc D ˚ QX1; QX2; QX3; � � � ; QXN ; with QXi < QXj if i < j

�
: (2.82)

Next, let’s consider a reasonable number of events per bin, say R. Of course, this
number cannot be too large, since we only have N data values at our disposal. Thus
R � 1, but keeping R � N. Since the total number of bins will be M D N=R, it is
advisable to choose R so that M is an integer. The first bin, b1, will then correspond
to the interval:

b1 D Œ QX1; QXR	 ! �b1 D QXR � QX1; (2.83)
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Fig. 2.14 Computation of the pdf of a Cauchy noise signal with N D 100;000 data points using
the constant bin size method (CBS) with M D 20; 50; 100 and 500 bins. Here, the constant size
method fails miserably. Only with the largest number of bins gets the pdf closer to the theoretical
one, LŒ1;0;0;1	.x/ D 1=
.x2 C 1/, shown with a (brown) dashed curve

being�b1 its width. It will be centered at the mid-value,

x1 D QX1 C QXR

2
: (2.84)

The probability of a value falling in this first bin is then given by,

P1 D R

N
; (2.85)

that will be equal to the probability of falling inside any other bin, since all of them
contain the same number of values. However, the value of the probability density
function at that first bin will be different from any other bin, since their sizes will be
different. Indeed, it is given by,

P1 D p1�b1 ! p1 D P1
�b1

D R=N

. QXR � QX1/
: (2.86)
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It is rather straightforward to extend the algorithm to the remaining bins. Indeed,
for the i-th bin we will have that:

bi D Œ QX.i�1/RC1; QXiR	 ! �bi D QXiR � QX.i�1/RC1; (2.87)

with the bin centered at:

xi D
QX.i�1/RC1 C QXiR

2
(2.88)

and its corresponding value of the pdf is,

pi D R=N

. QXiR � QX.i�1/RC1/
: (2.89)

Thus, the numerical pdf computed with the CBC method is given by,

pCBC.X

/ (2.90)

D
(

.xi; pi/ D
 QX.i�1/RC1 C QXiR

2
;

R=N

. QXiR � QX.i�1/RC1/

!

; i D 1; 2 � � � ;M
)

It might happen, however, that some of the values could be found in the sequence
multiple times. That requires to modify the CBC algorithm a bit. First, we need to
reorder the non-repeated data to form an strictly decreasing sequence,

X

inc D ˚

. NX1; r1/; . NX2; r2/; � � � ; . NXP; rP/; with NXi < NXj if i < j
�

(2.91)

Here, P is the number of non repeated values and ri is the number of times the i-th
distinct value is repeated. It must necessarily happen that,

N D
PX

kD1
rk: (2.92)

Then, we should choose the number of bins as M D P=R, where R is a reasonable
number of (non-repeated) events to define each bin. Then, the procedure is identical
to the one described earlier, except for the fact that the probability for each bin will
be calculated using,

pi D
PR

iD1 ri

N. NXiR � NX.i�1/RC1/
; (2.93)

instead of Eq. 2.89. Clearly, both expressions become identical if ri D 1; 8i.
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Fig. 2.15 Computation of the pdf of a Cauchy-distributed noise signal with N D 100;000 data
points using the constant bin content method (CBC) with R D 5; 10; 20 and 50 points per bins.
The method works pretty well, even at the lowest number of points-per-bin, with the pdf quite
close to the theoretical one, LŒ1;0;0;1	.x/ D 1=
.x2 C 1/, shown with a (brown) dashed curve. The
tail behaviour is also very well captured, as shown in the inset

In order to test the CBC method, we will apply it to the same Cauchy-distributed
data that made the CBS method look so bad.38 The results are shown in Fig. 2.15,
where the number of points-per-bin R is varied between 5 and 50. Clearly, the
CBC method works pretty well, even for the smallest number of points per bin
chosen. The tail of the Cauchy distribution, p.x/ � x�2 is resolved almost over
three decades, as it is shown in the inset of the figure. It is worth noting that, as R is
increased, the part of tail resolved is shortened. Therefore, it is important to keep R
meaningful but not too large.

38For Gaussian-distributed data, it must be said that both methods work pretty well.
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2.4.3 Survival/Cumulative Distribution Function Method

There are times when even the CBC method is unable to resolve the tails of a pdf.
This is usually the case if the number of data points available is very small. Say
that one has N = 500 data points. Is that sufficient to tell whether their pdf has
a power-law tail or not? Assuming a minimum number of data values per bin of
R D 5, that gives us 100 bins, which might seem enough to define the tail. However,
when trying to apply it to 500 values from the same Cauchy-distributed time series
we used previously, it does not work very well (see the upper frame of Fig. 2.16).
Clearly, almost no point is obtained in the tail region (much less a full decade!).

Fig. 2.16 Computation of the pdf of a Cauchy-distributed time series with just N D 500 data
points using CBC method with R D 5 points per bins and the CBS method with M D 100 bins. In
the lower frame, the survival function of the data is plotted, in log-log scale, for the positive part
of the data. It exhibits a power-law tail that decays as � x�1 for more almost two decades
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CBS does even worse,39 since the tail seems to be flat. Is there anything better one
can do that does not rely on using bins?

The answer is of course yes. Even for that small amount of data, one can still
compute the survival (Eq. 2.6) and the cumulative distribution functions (Eq. 2.4)
quite accurately. It will be remembered that sf.x/ and cdf.x/ give, respectively, the
probability of the outcome of a measurement being larger or smaller than x. Once
known, one can get the pdf from either of them by simple differentiation (Eqs. 2.7
and 2.5). But in many cases of interest the pdf is not needed.40 One just wants to
know whether the pdf has a power-law tail, and to estimate its exponent. The sf.x/
and cdf.x/ can give us that. The argument goes like this. We have previously said
that the positive tail of a Lévy function of index ˛ scales as,

p.x/ � x�.1C˛/; x ! 1 (2.94)

Therefore, its survival function will have to verify that,

sf.x/ D
Z 1

x
p.x0/dx0 � x�˛; x ! 1 (2.95)

It is thus sufficient with computing the survival function from some given data and
look at the tail! It it scales like Eq. 2.95, with ˛ 2 .0; 2/, the positive side of the pdf
of our data is probably close to a Lévy with that tail index. For analogous reasons, if
one interested instead in determining the tail for large negative x’s, one should then
use the cumulative distribution function.

Let’s see how to estimate sf.x/ from our set of data,41

X
 D fX1;X2;X3; � � � ;XNg (2.96)

Say we want to estimate the survival function because we are interested in the tail for
large, positive X. The first step is to reorder the data to form an strictly decreasing
sequence,

X

dec D ˚ NX1; NX2; NX3; � � � ; NXN ; with NXi > NXj if i < j

�
: (2.97)

Note that min.X
/ D NXN and max.X
/ D NX1, after the reordering. Also, we will
assume for now that no repeated values exist, so that the sequence is indeed strictly
decreasing (we will see how to remove this constraint shortly). Then, we have that

39CBS tends to give flatter tails because, in most bins out there, there is either one point or no point
at all. Since one only plots the bins with non-zero values, the tail seems artificially flatter than it
actually is.
40These methods will in fact yield a very noisy pdf, since numerical derivatives magnify errors!
41To build the cumulative distribution function, cdf.x/, the procedure is identical to the one
discussed here for the survival function, but the initial reordering of the data should be in increasing
order!
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the probability of X being larger or equal than say, NX4, is trivially given by 4=N,
since there is only 4 numbers greater or equal than NX4 in the sequence: NX1, NX2, NX3
and NX4. Thus, by this simple reordering and without any binning we can trivially
construct the survival function as:

sfno�rep.X

/ D




.xi; Si/ D
�

NXi;
i

N

�

; i D 1; 2 � � � ;N
�

(2.98)

It might happen, as in the CBC case discussed in Sect. 2.4.2, that some values
may be repeated in the ordered sequence. That requires to modify the algorithm
slightly. Let’s assume that the repetition index of each distinct value, NXi is given by
the index ri. Then, we reorder the sequence decreasingly as:

X

inc D ˚

. NX1; r1/; . NX2; r2/; � � � ; . NXP; rP/; with NXi � NXj if i < j
�

(2.99)

Here, P is the number of non repeated values. It must necessarily happen that,

N D
PX

kD1
rk: (2.100)

It is still very easy to compute the probability of X being larger or equal than NX4 in
the case of the existence of repeated values. It is simply: .r1 C r2 C r3 C r4/=N. The
survival function is then,

sfrep.X

/ D

(

.xi; Si/ D
 

NXi;
1

N

iX

kD1
rk

!

; i D 1; 2 � � � ;P
)

(2.101)

We proceed now to test the survival function method on the N D 500 points
of Cauchy-distributed data that the CBC and CBS methods could not handle. The
resulting survival function is plotted in the lower frame Fig. 2.16 in a log-log scale.
Only the positive part of the independent variable is included. The survival function
exhibits a power-law decay with an exponent close to �1, that is consistent with
a Cauchy pdf, that decays as p.x/ � x�2. This is quite remarkable, given the very
low number of points available. It is thus clear that the survival function method42

should be a very useful method to use in experimental situations, where data points
are often scarce.

42Or the cumulative distribution function method, if one is interested in estimating the tail for
negative values of the outcome.



2.5 Techniques to Compare Experimentally Obtained Pdfs with Analytical Forms 81

2.5 Techniques to Compare Experimentally Obtained Pdfs
with Analytical Forms

Once a probability density function has been estimated using any of the methods
described in Sect. 2.4, it is often the case than one would like to know whether
the result is close to some analytical form. That is, is the pdf obtained from some
data closer to a Gaussian pdf? Or to a Lévy law? To a Gamma pdf? Or to any
other? The answer is usually obtained in two steps. First, one estimates the values
of the parameters defining these analytical forms (say, � and �2 for a Gaussian
pdf; or ˛, �, �L and �, for a Lévy law) that best reproduce the experimental pdf.
Secondly, one quantifies which of all these analytical forms (if any) provides a
more adequate model for the data. The first part is usually done using some kind
of parameter estimation method [13]. We will describe two (very popular) such
methods: maximum likelihood estimation and minimum chi-square estimation.
To carry out the second part, we will rely on one of the so-called goodness-of-fit
tests [14]: the Pearson’s chi-square test.

2.5.1 Maximum Likelihood Estimators

One of the more widely used methods to estimate the parameters that define
any analytical pdf from experimental data is maximum likelihood estimation
(MLE) [15]. The method was made popular by statistician and biologist Ronald
A. Fisher in the 1920s [16]. The idea is simple. Let’s assume that we have a set of
data,

X
 D fX1;X2;X3; � � � ;XNg (2.102)

for which we have estimated its pdf, p.X
/, perhaps by using any of the methods
described in Sect. 2.4. We will then hypothesize that this pdf could be well
represented by the analytical pdf Op.xj p1; p2; � � � ; pNe/. However, we need to estimate
the collection of parameters pi, that uniquely define the pdf, from the data. How do
we proceed?

First, we will estimate the likelihood, L, that the data set were actually drawn
from the analytical pdf. Assuming that the data are statistically independent,43 we

43Indeed, remember that p.A [ B/ D p.A/p.B/ C p.A \ B/. Thus, the probability of A and
B happening equals the product of their individual probabilities only if events A and B are
independent.
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can estimate it as the product44:

L.X
j p1; p2; � � � ; pNe/ D
NY

iD1
Op.Xij p1; p2; � � � ; pNe/: (2.103)

The next step would be to estimate the collection of parameters that makes
L maximum. However, it is more convenient to work with the so-called log-
likelihood,

log
�
L.X
j p1; p2; � � � ; pNe/

� D
NX

iD1
log Œ Op.Xij p1; p2; � � � ; pNe/	 : (2.104)

The properties of the log-likelihood towards maximization are identical to those of
the likelihood, since the logarithm is a monotonously increasing function. Thus,
their maxima happen for the same parameter values. Using logarithms has the
additional advantage of dealing with sums, instead of products, which simplifies
taking derivatives. The parameter values sought can then be obtained by solving,

@

@pi

˚
log L

�
.X
j p1; p2; � � � ; pNe/

�� D 0; 8i D 1; � � � ;Ne (2.105)

The resulting collection of parameter values, . p

1 ; p



2 ; � � � p


Ne
/ defines the maximum

likelihood estimator of the pdf from the data.

2.5.1.1 MLE Example: The Gaussian Pdf

Let’s work out the maximum likelihood estimator in the case of the Gaussian pdf
(Eq. 2.30). There is only two parameters (i.e., Ne D 2) to be determined, the mean
� and the variance �2. The likelihood for N values is then given by the sum,

LGaussian.X
j�; �2/ D
NY

iD1



1p
2
�2

exp

�

� .Xi � �/2
2�2

��

(2.106)

D
�

1p
2
�2

�N

exp

 

�
PN

iD1.Xi � �/2

2�2

!

;

44The likelihood is not the same as the probability, since it is a product of probabilities densities,
not of probabilities. That is, one would need to multiply each p.Xij p1; 	 	 	 ; pNe / by dXi to get a
probability. In fact, the likelihood is related to the joint pdf of the data set. That is, the probability
of each of the values being between Xi and Xi C dXi simultaneously.
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The log-likelihood is then,

log
�
LGaussian.X
j�; �2/� D �N

2
log.2
�2/� 1

2�2

NX

iD1
.Xi � �/2: (2.107)

Then, we simply look for the extremal values. First,

@

@�



log

�
LGaussian.X
j�; �2/�� D 1

�2

 
NX

iD1
Xi � N�

!

D 0

�! O� D 1

N

NX

iD1
Xi: (2.108)

Then, for the variance, we obtain:

@

@�2



log

�
LGaussian.X
j�; �2/�� D � N

2�2
C 1

2�4

NX

iD1
.Xi � �/2 D 0

�! O�2 D 1

N

NX

iD1
.Xi � �/2 : (2.109)

To conclude, we replace � ! O� in the expression for O�2. The final expression for
the estimator of the variance is45:

O�2 D 1

N

NX

iD1
X2i � 1

N2

NX

iD1

NX

jD1
XiXj: (2.110)

2.5.1.2 MLE Example: The (Bounded from Below) Power-Law Pdf

In later chapters of this book we will discuss power-law statistics at length.46 It is
thus convenient to calculate explicitly the maximum likelihood estimators in this

45It is because of this type of substitution that maximum likelihood estimators are said to be biased
and some authors prefer other approaches [13]. This is a consequence of the fact that, in general,
the estimator for a function of some parameter is usually not exactly identical to the evaluation of
the function at the estimator for that parameter. Or, in other words, that Of .x/ ¤ f .Ox/.
46Power-laws are often (but not always!) related to complex dynamics (see Chap. 3).
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case. We will consider, following [17], the following analytical pdf:

Op.x/ D
�

a � 1
x1�a

min

�

x�a; x � xmin � 0: (2.111)

The need for a lower bound xmin comes from the fact that, otherwise, the analytical
pdf would not be normalizable for a � 1. The value of xmin is usually determined
by direct inspection of the data.

Following the same steps as we did for the Gaussian pdf, but using the power-law
pdf instead, one easily finds that the likelihood for N values becomes,

Lpower.X
ja/ D
�

a � 1

xmin

�N NY

iD1

�
Xi

xmin

��a

; (2.112)

and the log-likelihood is simply:

log
�
Lpower.X
ja/� D n log.a � 1/� n log xmin � a

NX

iD1
log

�
Xi

xmin

�

: (2.113)

The value of the maximum likelihood estimator for a is then obtained by maximiz-
ing the log-likelihood. The result is (see Exercise 2.9) :

Oa D 1C N

"
NX

iD1
log

�
Xi

xmin

�#�1
: (2.114)

It must be said, however, that finding maximum likelihood estimators can be
rather involved for many analytical pdfs. Exact expressions are only available for a
few cases (see Table 2.5, for some examples). In most situations, the estimation must
other be done numerically. This is not difficult and often implies to solve just a few
coupled nonlinear equations47 (see Problem 2.10). Unfortunately, MLE methods
are difficult to apply to one of the most important pdfs in the context of complex
systems: Lévy distributions. The reason is that only the characteristic function
of Lévy pdfs has an analytical expression (Eq. 2.32), not their pdf. Therefore,
constructing their likelihood using Eq. 2.103 is rather involved. Although this could
certainly be accomplished numerically [19], we will soon propose a different

47Usually, one needs to use some numerical algorithm to search for zeros of nonlinear equations.
For instance, a Newton method [18].
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Table 2.5 Maximum likelihood estimators for some common analytical pdfs

Op.x/ Parameters MLE

Uniform 1

b � a
Oa D min.X�/I Ob D max.X�/

Gaussian Eq. 2.30 O� D 1

N

NX

iD1

XiI O�2 D 1

N

NX

iD1

.Xi � O�/2

Exponential Eq. 2.59 O� D 1

N

NX

iD1

Xi

Laplacea 1

2�
exp

�

�jx � �j
�

�

O� D median.X�/I O� D 1

N

NX

iD1

jXi � O�j

Gamma Eq. 2.70
Ǒ ' 1

2

"

log

 
1

N

NX

iD1

Xi

!

� 1

N

NX

iD1

log.Xi/

#
�1

O� D 1

Ǒ
 
1

N

NX

iD1

Xi

!

(Bounded) power law Eq. 2.111
Oa D 1C N

"
NX

iD1

log

�
Xi

xmin

�#�1

a The median is the value m for which P.X � m/ D P.X � m/

technique (not based on maximum likelihood) to estimate Lévy parameters from
an arbitrary number of data (see Sect. 2.5.3).

2.5.2 Pearson’s Goodness-of-Fit Test

Once the parameters of the model pdf have been estimated from the data, one
needs to quantify whether the model is a good representation or not. There are
several methods available in the literature to do this.48 Here, we will describe one
of the most popular ones: Pearson’s goodness-of-fit test [13]. The method, made
popular by Karl Pearson at the beginning of the twentieth century, relies on another
analytical pdf, the chi-square distribution.

48The interested reader may also take a look at the Kolmogorov-Smirnov test [14], or at one of
its refinements, the Anderson-Darling test [20]. Both of them are also used frequently to provide
goodness-of-fit figures of merit.
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Fig. 2.17 Left box: Chi-square distribution for the first integer k indices; on the right, its survival
function, sf.x/ D PŒX � x	 (see Eq. 2.6)

2.5.2.1 Chi-Square Distribution

The chi-square pdf of integer order k is defined as49:

pchi-sq
k .x/ D 1

2k=2� . k
2
/
x

k
2�1e� x

2 ; x � 0: (2.115)

Its mean is � D k, and its variance is �2 D 2k. Figure 2.17 shows the chi-square
pdf for the first ten integer values of k, together with its respective survival functions

49The attentive reader may have noticed that the chi-square distribution is a member of the family
of Gamma pdfs (Eq. 2.70), that we described in Sect. 2.3.4.
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(see Eq. 2.6), given by50:

sfchi-sq.x/ D Pchi-sq
k ŒX � x	 D 1 � �x=2



k
2

�

�



k
2

� ; (2.117)

that will prove very important in this context.
Why is the chi-square distribution relevant for the comparison of data and

models? The reason relies on the following property. Let’s consider the random
variable,

�2 D
kX

iD1
Y2i ; (2.118)

where each Yi is an independent, random variable distributed according to a
Gaussian distribution NŒ0;1	.y/ (see Eq. 2.30). Then, the statistics of �2 follow the
chi-square pdf of order k [13].

2.5.2.2 Pearson’s Test of Goodness-of-Fit

How does one use the chi-square distribution to construct a goodness-of-fit test? The
trick is to consider the hypothesis that the model pdf, Op.x/, that we have inferred
(using Ne maximum likelihood estimators for N data, for instance) is actually an
exact representation of the process, and that any deviation from the model values
found in the experimental pdf (that is, p.Xi/ (i D 1; 2; � � � ;N/ determined using
any of the methods presented in this chapter) is only due to accidental errors.
Since accidental errors are pretty well described by Gaussian statistics with a
zero mean,51 the strategy to follow is to normalize the differences between model
and experimental pdfs at each point (in order to approximate the unit variance
condition), square them and sum them. The resulting quantity should follow the
statistics of a chi-square distribution.

50�x.a/ is the incomplete gamma function, that is defined as:

�x.a/ D
Z x

0

ds sa�1e�s: (2.116)

51In contrast, systematic errors have a non-zero mean, introducing a bias in the quantity being
measured.
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Fig. 2.18 Illustration of Pearson’s test. Once a value for �2model is obtained from the differences
between the model and experimental pdfs using Eq. 2.119, the associated p-value is determined by
estimating the area shown in blue under the chi-square distribution or order N � Ne. That is, by
estimating the probability of observing a value at least as extreme as the observed �2model in a chi-
squared distribution of order N � Ne. In order for the model pdf to be a significant representation
of the data, the resulting p-value should be at least in the range (0.05–0.10)

Pearson’s test does precisely this. It chooses a normalization of the differences
between model and experimental pdfs so that the variable of interest becomes:

�2model WD
NX

iD1

Œ p.Xi/� Op.Xi/	
2

Op.Xi/
; (2.119)

Since the number of independent quantities52 in this sum is, roughly, N � Ne, one
would expect that the statistics of �2model be given by the chi-square distribution of
order N � Ne.

Once the order of the chi-squared pdf has been established, one needs to quantify
how good the obtained for �2model in terms of supporting (or invalidating) the
hypothesis of Op being an exact representation of the statistics of the process. This
is accomplished by computing the so-called p-value of the fit (see Fig. 2.18). This
figure-of-merit is defined as the probability of observing a value at least as extreme
as �2model in a chi-squared distribution of order N �Ne. Or, in other words, using the
survival function of the chi-square distribution (Eq. 2.117),

p-value D Pchi-sq
N�Ne

�
�2 � �2model

� D sfchi-sq
N�Ne



�2model

�
: (2.120)

52The number of independent values, also known as the number of degrees of freedom, is given by
the number of data points N minus the number of parameters that define the model pdf, Ne.
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Table 2.6 Maximum allowed value for �2model for selected p-values for the chi-square distributions
of orders one to ten

N � Ne �2model

1 0:004 0:02 0:06 0:15 0:46 1:07 1:64 2:71 3:84 6:64 10:83

2 0:10 0:21 0:45 0:71 1:39 2:41 3:22 4:60 5:99 9:21 13:82

3 0:35 0:58 1:01 1:42 2:37 3:66 4:64 6:25 7:82 11:34 16:27

4 0:71 1:06 1:65 2:20 3:36 4:88 5:99 7:78 9:49 13:28 18:47

5 1:14 1:61 2:34 3:00 4:35 6:06 7:29 9:24 11:07 15:09 20:52

6 1:63 2:20 3:07 3:83 5:35 7:23 8:56 10:64 12:59 16:81 22:46

7 2:17 2:83 3:82 4:67 6:35 8:38 9:80 12:02 14:07 18:48 24:32

8 2:73 3:49 4:59 5:53 7:34 9:52 11:03 13:36 15:51 20:09 26:12

9 3:32 4:17 5:38 6:39 8:34 10:66 12:24 14:68 16:92 21:67 27:88

10 3:94 4:87 6:18 7:27 9:34 11:78 13:44 15:99 18:31 23:21 29:59

p-Value 0:95 0:90 0:80 0:70 0:50 0:30 0:20 0:10 0:05 0:01 0:001

Due to the properties of the survival function (Eq. 2.6), the p-value tends to zero as
�2model ! 1. That is, when the model and the data are as far apart as possible. On
the other limit, the p-value becomes one when model and data are identical. That
is, if �2model ! 0. As a result, the p-value of any model should lie within 0 and 1.
The closer to 1 it is, the better the model is. In fact, it is widely accepted that the
p-value should be at least in the range (0.05–0.10) for the hypothesis to have any
significance. In the case of several competing models, the one yielding the largest
p-value would thus be the most significant.

On a technical note, finding the p-value requires the evaluation of the survival
function of the chi-square distribution of the proper order (see Eq. 2.117), that must
be done numerically.53 If the order of the chi-square distribution needed is small,
there are tables that make the estimation of the p-value much easier. For instance,
Table 2.6 shows, for the chi-square distributions with orders one to ten, the values of
�2model for ten different p-values. In bold, one can see the maximum allowed value of
�2model, for each order, beyond which the hypothesis Op.x/ D p.X/ should be rejected
if one accepts 0:05 as the minimum acceptable p-value.54

2.5.3 Minimum Chi-Square Parameter Estimation

It turns out that the chi-square distribution can also be used to perform parameter
estimation for pdfs, in a similar vain to maximum likelihood. The idea is quite

53There are many publicly available packages that do it. For instance, the popular statistical
package R is one of them.
54Similar tables can be easily found in the literature. See, for instance, [21].
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simple. Similarly to what we did with Eq. 2.119, one builds the quantity:

�2. p1; � � � ; pNe/ WD
NX

iD1

Œ p.Xi/ � Op.Xij p1; � � � ; pNe/	
2

Op.Xij p1; � � � ; pNe/
: (2.121)

The difference is now that the model pdf depends on the undetermined set of
parameters: p1; � � � ; pNe . Clearly, we would like to determine the values of these
parameters that make �2 as small as possible. One can accomplish this by solving,
perhaps numerically, the set of equations:

@�2. p1; � � � ; pNe/

@pi
D 0; 8i: (2.122)

One can even estimate whether the determined parameter values provide a good
representation by substituting them in Eq. 2.121, which yields a value �2model.
We should then determine the associated p-value, after assuming a chi-square
distribution of order N � Ne. If that p-value is smaller than (0.05–0.10), the model
pdf is not a good representation! And if there are several candidates, the one yielding
the larger p-value would be the better representation for the data.

When should one use minimum chi-square parameter estimation instead of
maximum likelihood? Well, the nice property of the chi-square estimation is that
it also works fine when the two quantities being compared are not pdfs. The only
thing that matters is that the differences are due to accidental errors, not what
the quantities being compared are. For instance, we could compare characteristic
functions instead of pdfs. This becomes particularly handy in the case of Lévy pdfs
(see Problem 2.13) which, as we mentioned earlier, lack an analytical expression for
their pdf, but have one for their characteristic function (Eq. 2.32). We will see other
examples of use of this technique later in the book (Sect. 5.4.1).

2.6 Case Study: The Running Sandpile

The running sandpile introduced by Hwa and Kardar [22] constitutes a standard
paradigm of self-organized criticality (see Sect. 1.3). The complexity of the sandpile
behaviour can be made apparent with many diagnostics. In order to illustrate the
methods introduced in this chapter, we will focus here on those that have to do with
the statistics of some measurable quantity. For reasons that were already discussed
in Sect. 1.3, the statistics of quantities such as the linear extension or the size of the
avalanches that govern transport throughout the sandpile in steady state should scale
as, p.s/ � s�a, with 1 < a < 2, if complex dynamics are dominant.

To try to determine this exponent, we will use a numerical running sandpile with
L D 1000 cells, critical gradient Zc D 200 and toppling size NF D 30. The sandpile
is continuously driven by dropping on each cell Nb D 10 grains of sand with a
probability p0 D 10�6. Note that p0 is chosen to ensure that the average number of
iterations between two successive avalanches, . p0 � L/�1 � 103, is of the order (or
larger than) the system size. In this way, the majority of avalanches triggered in the
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Fig. 2.19 Sketch showing the relationship between the flip time series and avalanches in the
running sandpile. The evolution of the sandpile is represented in a time-space plot, with avalanches
shown as red boxes that contain toppling sites. The flip time series is shown below, with time
running from left to right. A trapezoidal structure in the flip series is associated with each
avalanche. The duration (marked as di) and size (as si) of each avalanche are given by the length
and area of each trapezoidal structure. The waiting time (qi) between avalanches is also shown

system can have time to be finished and the system back at rest before the next rain
of sand comes.55 This is done to minimize avalanche overlapping.

The output of the numerical sandpile of interest to us will be the time series of
the total number of topplings, also called flips, per iteration. That is, the time record
of the number of cells that undergo a toppling in the sandpile. From this time series,
it is easy to calculate both the duration and size of an avalanche. To understand
how, Fig. 2.19 shows a sketch of the time evolution of the running sandpile. The
upper part of the plot shows the domain of the sandpile in the vertical direction,

55The longest avalanches in the absence of overlapping will be of the order of the system size,
since propagation from one cell to the next takes one iteration.
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Fig. 2.20 Calculation of the pdf of the avalanche sizes for the L D 1000 running sandpile
described in the text. Three methods have been used: constant bin size (with M D 150 bins),
constant bin content (with R D 20 points-per-bin) and the survival function method (shown in the
inset). The number of size values available is N D 3186

whilst time runs from left to right. Several possible avalanches are shown in the
figure as red boxes containing the cells that are being toppled as time advances.
Each avalanche starts at a given location and time, and then propagates by causing
the toppling of neighbouring cells both outwards and inwards.56 Eventually, the
avalanche reaches a stopping point and dies away. The corresponding flip time series
is shown in the lower part of the figure. Topplings only happen when an avalanche is
active somewhere in the pile. Each of the trapezoidal figures in the flip time series is
associated with one avalanche. The length and the area of these trapezoids give the
duration and size of the avalanche.57 We can also obtain the waiting-times between
avalanches from the distance between two successive trapezoidal structures.

After running the sandpile to steady state, we have advanced its state for a million
additional iterations. In this period, the flip time-series happens to contain 3186
avalanches. The results of applying the three methods previously discussed to the
time series of their sizes are shown in Fig. 2.20. Clearly, the CBS method with M D

56Although note that the transport of sand in the sandpile always happens down the slope!
57This association certainly becomes more obscure when avalanches overlap either in space and
time. Can the reader explain why? This is the reason for choosing the running sandpile parameters
so carefully. In particular, Nb and p0.
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Fig. 2.21 Calculation of the pdf of the avalanche sizes for the L D 1000 running sandpile
described in the text using the CBC method with R D 10 points-per-bin and N D 300 data
points

150 bins works pretty badly. The reason is similar to the case of the Cauchy example
worked out previously: the existence of a rather heavy tail, p.s/ � s�1:3, that extends
for over three decades. This region is however captured very clearly by the CBC
method using just R D 20 points-per-bin. The survival method, on the other hand,
works also relatively well as shown in the inset of Fig. 2.20.

Finally, to prove the robustness of the CBC method, we have recalculated the pdf
of the avalanche sizes but using only the first N D 300 values in the time-series
of the sizes. That is, using ten times less values than what we used to produce the
results in Fig. 2.20. The result of using CBC with R D 10 points-per-bin is shown
in Fig. 2.21. Clearly, the exponent of the resulting tail is much less accurate, but
the existence of a power-law region is still apparent over three decades with a decay
exponent close to one. That is pretty remarkable, in our opinion, which should make
CBC the first choice if a sufficient number of points is available. When this is not
the case, and CBC is not a realistic option, the survival function (or cumulative
distribution function) methods should at least be able to give us an idea of whether
there is a meaningful tail or not in the data.
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2.7 Final Considerations

In this chapter we have discussed some of the fundamentals of the statistical analysis
of data. The techniques presented are quite useful in practical cases, in particular
the CBC method and the survival/cumulative distribution function methods. We
encourage all readers to put them to practice using synthetic data first, in order to
better hone their skills. We have included, in Appendix 2, some methods to generate
time series with prescribed statistics, including Gaussian, Lévy and exponentially
distributed data. There are other methods available, but it seems to us that these
ones are particular simple to implement. We will use these methods again in later
chapters to explore other features of time series, relevant to the analysis of complex
dynamics.

Appendix 1: The Fourier Transform

The Fourier representation has a very large number of applications in Mathematics,
Physics and Engineering, since it permits to express an arbitrary function as a linear
combination of periodic functions. Truncation of the Fourier representation, for
example, is the basis of signal filtering. Many other manipulations (modulation,
integration, etc.) form the basis of modern communications. In Physics, use of the
Fourier representation is essential for the understanding of resonances, oscillations,
wave propagation, transmission and absorption, fluid and plasma turbulence and
many other processes. In Mathematics, Fourier transforms are often used to simplify
the solution of differential equations, among many other problems.

The Fourier transform of a (maybe complex) function f .x/ is defined as58:

FŒ f .x/	 WD Of .k/ D
Z 1

�1
dx f .x/ exp.ıkx/; (2.123)

where ı D p�1, k is known as the wave number.59 Note that, if f .x/ is real, then
Of .k/ is Hermitian, meaning that Of .�k/ D Of 
.k/, where the asterisk represents the
complex conjugate.

58We adopt here a convention for the Fourier transform that is common in the fields of probability
and random processes, from which many results will be referred to in Chaps. 3–5. This convention
has the benefit of converting the characteristic function into the Fourier transform of the pdf (see
Sect. 2.2.4). In other contexts, however, the positive exponential is often reserved for the inverse
transform, with the negative exponential used in the direct transform. Regarding normalization, it
is also common to find texts that use 2
 ıkx in the exponent of the exponentials (instead of just ıkx),
so that the 1=2
 prefactor of the inverse transform disappears. In other cases, the exponent is kept
without the 2
 factor, but both direct or inverse transforms have a 1=

p
2
 prefactor.

59We will always represent the Fourier transform with a hat symbol, Of . Whenever the real variable
represents a time, t, the wave number is referred to as a frequency, and represented as !.
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The inverse of the Fourier transform is then obtained as,

f .x/ D F�1ŒOf .k/	 WD 1

2


Z 1

�1
dk Of .k/ exp.�ıkx/: (2.124)

This expression is also referred to as the Fourier representation of f .x/.
Some common Fourier transform pairs are collected in Table 2.7. However, it

must be noted that the existence of both the Fourier and inverse transforms is not
always guaranteed. A sufficient condition (but not necessary) is that both f .x/ and
Of .k/ be (Lebesgue)-integrable. That is,

Z 1

�1
dx j f .x/j < 1;

Z 1

�1
dk j Of .k/j < 1; (2.125)

which requires that j f .x/j ! 0 faster than jxj�1 for x ! ˙1, and that j Of .k/j ! 0

faster than jkj�1 for k ! ˙1. But Fourier transforms may exist for some functions
that violate this condition.

Fourier transforms have many interesting properties. In particular, they are linear
operations. That is, the Fourier transform of the sum of any two functions is equal
to the sum of their Fourier transforms.

Secondly, the Fourier transform of the n-th derivative of a function becomes
particularly simple:

F

�
dnf

dxn

�

D .�ık/n Of .k/; (2.126)

as trivially follows from differentiating Eq. 2.124.
Another interesting property has to do with the translation of the argument,

that translates into a multiplication by a phase in Fourier space:

FŒ f .x ˙ x0/	 D exp.
ıkx0/Of .k/: (2.127)

Particularly useful properties are the following two theorems [23]. One is
Parseval’s theorem,

Z 1

�1
dx f .x/g
.x/ D 1

2


Z 1

�1
dk Of .k/Og
.k/ (2.128)

where the asterisk denotes complex conjugation. When f D g, this becomes,

Z 1

�1
dx j f .x/j2 D 1

2


Z 1

�1
dk j Of .k/j2: (2.129)
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Table 2.7 Some useful Fourier transforms

f .t/ Of .k/ Restrictions

1 2
ı.k/

ı.x/ 1

H.x C a/� H.x � a/
sin.ak/

k

sin.ax/

x
2
 ŒH.k C a/� H.k � a/	

jxj�a � .1� a/ka�1 0 < a < 1

1

x2 C a2

 exp.�ajkj/

a
a > 0

exp.�ajxj/ 2a

a2 C k2
a > 0

H.x/ exp.�ax/
1

a � ık
a > 0

exp.�ax2/

r



a
exp

�

� k2

4a

�

a > 0

H.x/ xb exp.�ax/
� .b C 1/

.a � ık/bC1
b > �1, a > 0

jxjb exp.�ajxj/ � .b C 1/

�
.a � ık/bC1 C .a C ık/bC1

�

.a2 C k2/bC1
b > �1, a > 0

H.x/ represents the Heaviside step function (i.e., H.x/ D 1, for x > 0, and H.x/ D 0 for x < 0)
and ı.x/ is the usual Dirac delta function. � .x/ is the usual Gamma function
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j Of .k/j2 is usually known as the power spectrum of f .x/.60

The second important theorem is the convolution theorem. It states that the
convolution of two functions, defined as:

cŒ f ;g	.x/ D
Z 1

�1
f .x0/g.x � x0/dx0 (2.130)

satisfies that its Fourier transform is given by:

OcŒ f ;g	.k/ D Of .k/Og.k/: (2.131)

assuming that the individual Fourier transforms, Of .k/ and Og.k/ do exist.
In the context of scale-invariance, it is useful to note that:

F Œ f .ax/	 D 1

jaj
Of
�

k

a

�

: (2.132)

Similarly, the Fourier transform of a power law (see Table 2.7) is also very useful.
In particular, it can be shown that, the Fourier transform of f .x/ D jxj�a, with
0 < a < 1, is given by another power-law.61 Namely,

F.jxj�a/ D � .1 � a/ka�1; (2.133)

being � .x/ Euler’s gamma function. Furthermore, it can be shown that if a function
f .x/ � jxj�a with 0 < a < 1 for x ! 1, then its Fourier transform Of .k/ � ka�1 for
k ! 0.

Appendix 2: Numerical Generation of Series with Prescribed
Statistics

One of the most commonly used method generate time series with a prescribed set
of statistics is the inverse function method. It is based on passing a time series u

60The name power spectrum was made popular in the context of turbulence, where f usually
represents a velocity or velocity increment. The power spectrum then roughly quantifies the
“amount of energy” contained between k and k C dk. For that reason, this theorem is often
interpreted in Physics as a statement of the conservation of energy. In other context, the
interpretation may vary. In information theory, for instance, Parseval’s theorem represents the
conservation of information.
61It should be noted that jxj�a with 0 < a < 1 is an example of a function that is not Lebesgue
integrable and has a Fourier transform. Its Fourier transform, Of .k/ D � .1 � a/ka�1 , however
diverges for k ! 0 as a result.
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whose values follow a uniform distribution62 in Œ0; 1	 through an invertible function.
That is, we generate a collection of values using:

x D F�1.u/: (2.134)

The series of values for x is then distributed according to the pdf:

p.x/ D dF

dx
: (2.135)

To prove this statement, let’s consider the cumulative distribution function
associated with p.x/ (Eq. 2.4) at x D a, that verifies:

cdf.a/ D P .X � a/ D P



F�1.U/ � a
� D P .U � F.a// D F.a/: (2.136)

The fourth step follows from the fact that the cumulative function being an
increasing function of its argument. The last step is due to the fact that the
cumulative distribution function of the uniform distribution is simply its argument!
If F.x/ D cdf.x/, then Eq.2.135 follows after invoking Eq. 2.5.

Generating time series with prescribed statistics is thus reduced to knowing the
inverse of the cumulative distribution function of the desired distribution.63 For
instance, in the case of the exponential pdf, E� .x/ D ��1 exp.�x=�/, the sought
inverse is,

cdf.x/ D 1 � exp.�x=�/ H) cdf�1.x/ D � log.1� u/

�
: (2.137)

Thus, one can generate a series distributed with an exponential pdf of mean value �
by iterating:

e� D log.1 � u/

�� ; (2.138)

using uniformly-distributed u 2 Œ0; 1	.
Regretfully, many important distributions do not have analytical expressions for

their cdfs. Much less of their inverse! This is the case, for instance, of the Gamma
pdf (Eq. 2.70). Another important example is the Lévy distributions, that only
have an analytic expression for their characteristic function (Eq. 2.32). Thus, the
inverse function method is useless to generate this kind of data. Luckily, a formula
exists, based on combining two series of random numbers, u distributed uniformly in
Œ�
=2; 
=2	, and v distributed exponentially with unit mean, that is able to generate

62Most programming languages provide with intrinsic functions to generate series of data with a
uniform distribution u 2 Œ0:1	. Thus, we will not explain how to do it here!
63This inverse is known as the quantile function in statistics.
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a series of l values distributed according to prescribed Lévy statistics. For ˛ ¤ 1 the
formula reads [24, 25]:

lŒ˛;�;�;�	 D �C � sin .˛u C K˛;�/

Œcos .K˛;�/ cos.u/	1=˛

�
cos ..1 � ˛/u � K˛;�/

v

�1=˛�1
(2.139)

with K˛;� D tan�1 .� tan .
˛=2//. For the case ˛ D 1, one should use instead [25]:

lŒ1;�;�;�	 D �C 2�




(
�


2
C �u

�
tan u � �

"

log

 
v cos u

�




2

C �u
�

!#)

: (2.140)

These formulas reduce to much simpler expressions in some cases. For instance,
in the Gaussian case .˛ D 2; � D 0/, Eq. 2.139 reduces to:

gŒ�;�	 D �C 2�
p
v sin.u/ (2.141)

whilst for the Cauchy distribution .˛ D 1; � D 0/, Eq. 2.140 reduces to:

cŒ�;�	 D �C � tan.u/: (2.142)

Problems

2.1 Survival and Cumulative Distribution Functions
Calculate explicitly the cumulative distribution function and the survival function of
the Cauchy, Laplace and exponential pdfs.

2.2 Characteristic Function
Calculate explicitly the characteristic function of the Gaussian, exponential and the
uniform pdfs.

2.3 Cumulants and Moments
Derive the relations between cumulants and moments up to order n D 5.

2.4 Gaussian Distribution64

Show that for a Gaussian pdf, NŒ0;�2	.x/, all cumulants are zero except for c2 D �2.
Also, show that only the even moments are non-zero and equal to mn D �n.n �1/ŠŠ.
2.5 Log-Normal Distribution
Calculate the first four cumulants of the log-normal distribution defined by Eq. 2.45.
Show that they are given by: c1 D exp.�C�2=2/; c2 D .exp.�2/�1/ exp.2�C�2/;
S D .exp.�2/C2/pexp.�2/ � 1 and K D exp.4�2/C2 exp.3�2/C3 exp.2�2/�6.

64The double factorial is defined as nŠŠ D n.n � 2/.n � 4/ 	 	 	 .
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2.6 Poisson Distribution
Derive the limit of the binomial distribution B.k; nI p/ for n ! 1 and p ! 0,
keeping np D �, and prove that it is the Poisson discrete distribution (Eq. 2.67).

2.7 Ergodicity
Consider the process defined by y.t/ D cos.!t C �/, where ! (the frequency) is
fixed, but with a different values of � (the phase) for each realization of the process.
Under what conditions are the temporal and ensemble views of the statistics of y
equivalent? Or, in other words, when does the process behave ergodically?

2.8 Numerical Estimation of pdfs
Write a code that, given a set of experimental data, fxi; i D 1; 2; � � � Ng, calculates
their pdf using each of the methods described in this chapter: the CBS, CBC and the
survival/cumulative distribution function methods.

2.9 Maximum Likelihood Estimators (I)
Calculate the maximum likelihood estimators of the Exponential pdf (Eq. 2.59)
and the bounded power-law pdf (Eq. 2.111) using the methodology described in
Sect. 2.5.

2.10 Maximum Likelihood Estimators (II)
Prove that, in the case of the Gumbel distribution (Eq. 2.51), the determination of
the maximum likelihood estimators for � and � requires to solve numerically the
pair of coupled nonlinear equations [26]:

O� D �O� log

"
1

N

NX

iD1
exp.�Xi= O�/

#

(2.143)

O� D 1

N

NX

iD1
Xi �

NX

iD1
Xi exp.�Xi= O�/

NX

iD1
exp.�Xi= O�/

(2.144)

Write a numerical code that solves this equation using a nonlinear Newton
method [18].

2.11 Synthetic Data Generation
Write a code that implements Eq. 2.139 to generate Lévy distributed synthetic data
with arbitrary parameters. Use it to generate at least three different sets of data, and
assess the goodness of Eq. 2.139 by computing their pdf.

2.12 Running Sandpile: Sandpile Statistics
Write a code that, given a flip time-series generated by the running sandpile code
built in Problem 1.5, is capable of extracting the size and duration of the avalanches
contained in it, as well as the waiting-times between them. Use the code proposed
in Problem 2.8 to obtain the pdfs of each of these quantities.
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2.13 Advanced Problem: Minimum Chi-Square Parameter Estimation
Write a code that, given fxi; i D 1; 2; � � � Ng, calculates the characteristic function
of its pdf, �data.kj/, with kj being the collocation points in Fourier space. Then,
estimate the parameters of the Lévy pdf that best reproduces the data by minimizing
the target function, �2k.˛; �; �; �/, that quantifies the difference between the
characteristic function of the data and that of the Lévy pdf (Eq. 2.32):

�2k.˛; �; �; �/ D
NX

iD1

ˇ
ˇ
ˇ�data.kj/ � �L

Œ˛;�;�;�	.kj/
ˇ
ˇ
ˇ
2

ˇ
ˇ
ˇ�L
Œ˛;�;�;�	.kj/

ˇ
ˇ
ˇ

; (2.145)

To minimize �2k , the reader should look for any open-source subroutine that can do
local optimization. We recommend using, for example, the Levenberg-Marquardt
algorithm [18].

References

1. Taylor, G.I.: The Spectrum of Turbulence. Proc. R. Soc. Lond. 164, 476 (1938)
2. Balescu, R.: Equilibrium and Non-equilibrium Statistical Mechanics. Wiley, New York (1974)
3. Tijms, H.: Understanding Probability. Cambridge University Press, Cambridge (2002)
4. Feller, W.: An Introduction to Probability Theory and Its Applications. Wiley, New York (1968)
5. Taylor, J.R.: An Introduction to Error Analysis: The Study of Uncertainties in Physical

Measurements. University Science Books, New York (1996)
6. Gnedenko, B.V., Kolmogorov, A.N.: Limit Distributions for Sums of Independent Random

Variables. Addison-Wesley, New York (1954)
7. Samorodnitsky, G., Taqqu, M.S.: Stable Non-Gaussian Processes. Chapman & Hall, New York

(1994)
8. Aitchison, J., Brown, J.A.C.: The Log-Normal Distribution. Cambridge University Press,

Cambridge (1957)
9. Carr, P., Wu, L.: The Finite Moment Log-Stable Process and Option Pricing. J. Financ. 53, 753

(2003)
10. Kida, S.: Log-Stable Distribution in Turbulence. Fluid Dyn. Res. 8, 135 (1993)
11. Kotz, S., Nadarajah, S.: Extreme Value Distributions: Theory and Applications. Imperial

College Press, London (2000)
12. Cox, D.R., Isham, V.: Point Processes. Chapman & Hall, New York (1980)
13. Mood, A., Graybill, F.A., Boes, D.C.: Introduction to the Theory of Statistics. McGraw-Hill,

New York (1974)
14. Chakravarti, I.M., Laha, R.G., Roy, J.: Handbook of Methods of Applied Statistics. Wiley, New

York (1967)
15. Jaynes, E.T.: Probability Theory: The Logic of Science. Cambridge University Press, Cam-

bridge (2003)
16. Aldrich, J.: R. A. Fisher and the Making of Maximum Likelihood (1912–1922). Stat. Sci. 12,

162 (1997)
17. Clauset, A., Shalizi, C.R., Newman, M.E.J.: Power-Law Distributions in Empirical Data. SIAM

Rev. 51, 661 (2009)
18. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes in Fortran

90. Cambridge University Press, Cambridge (1996)



102 2 Statistics

19. Brorsen, B.W., Yang, S.R.: Maximum Likelihood Estimates of Symmetric Stable Distribution
Parameters. Commun. Stat. 19, 1459 (1990); Nolan, J.: Levy Processes, Chap. 3. Springer,
Heidelberg (2001)

20. Stephens, M.A.: EDF Statistics for Goodness of Fit and Some Comparisons. J. Am. Stat. Assoc.
69, 730 (1974)

21. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. National Bureau of
Standards, Washington, DC (1970)

22. Hwa, T., Kardar, M.: Avalanches, Hydrodynamics and Discharge Events in Models of Sandpile.
Phys. Rev. A 45, 7002 (1992)

23. Bracewell, R.N.: The Fourier Transform and Its Applications. McGraw-Hill, Boston (2000)
24. Chambers, J.M., Mallows, C.L., Stucka, B.W.: Method for Simulating Stable Random

Variables. J. Am. Stat. Assoc. 71, 340 (1976)
25. Weron, R.: On the Chambers-Mallows-Stuck Method for Simulating Skewed Stable Random

Variables. Stat. Probab. Lett. 28, 165 (1996)
26. Forbes, C., Evans, M., Hastings, M., Peacock B.: Statistical Distributions. Wiley, New York

(2010)



Chapter 3
Scale Invariance

3.1 Introduction

Scale-invariance is one of the concepts that appears more often in the context of
complexity. The basic idea behind scale-invariance can be naively expressed as: ‘the
system looks the same at every scale’. Or, ‘if we zoom in (or out) our view of the
system, its features remain unchanged’. Although it is true that complex dynamics
are often at work when a system exhibits scale-invariance, it is important to be aware
that this is not always the case. For instance, the random walk [1] is a process that
exhibits scale-invariance but with underlying dynamics that are far from complex in
any sense of the word (see Chap. 5).

Scale-invariance, and thus also complex dynamics, is often claimed whenever
power-laws are exhibited by the statistics of some event. The reason is that
mathematical functions are referred to as scale-invariant (or self-similar1) if they
remain invariant under any dilation of the independent variable(s):

f .�x; �y; � � � / D �Hf .x; y; � � � /; 8� > 0; (3.1)

for some value of the scale-invariant exponent H. The paradigmatic example of
scale-invariance is the power law, f .x/ D xa, for any real a. Indeed,

f .�x/ D .�x/a D �af .x/: (3.2)

1Although we will use these two terms as synonyms throughout this book, mathematicians often
distinguish between scale-invariant functions (i.e., those that satisfy Eq. 3.1) and self-similar
functions. The latter correspond to those that are invariant under discrete dilations, such as any
of the mathematical fractals that can be generated by iterative procedures. Throughout this book,
we will also use the term self-similar to refer to objects or processes that can be broken down in
smaller pieces that are similar (in the best case, identical; in other cases, only approximately or in
a statistical sense) to the original. In other words, we will sometimes abuse the term self-similar
and consider it a weaker (discrete, approximate or statistical) version of scale-invariant.
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Fig. 3.1 Effect of multiplying x by � for the power law f .x/ D x2 . When � D 2 (green), the graph
changes as if we were zooming in into the figure; for � D 1=2, the graph shrinks, as if we were
zooming out of the figure. The original graph is recovered if one multiplies each function by ��2,
given that the self-similarity exponent of the parabola is H D 2

Roughly speaking, the product of x and � represents a dilation of that coordinate.
Figure 3.1 illustrates this fact on the graph of the function f .x/ D x2 by showing
that zooming in takes place if � > 1, and zooming out for � < 1. Scale-invariance
simply means that we could recover the original graph by dilating the independent
variable by ��H .

A famous power-law appears in the study of earthquakes. It was proposed in the
1950s that the number of earthquakes N of at least magnitude M, happening within
any seismically active region, appeared to follow the scaling law:

N.m � M/ / 10�bM; b � 0:5 � 1:5; (3.3)

known as the Gutenberg-Richter law [2]. This law seems to describe quite well
the experimental data available for earthquake magnitudes, as measured by a
seismograph. It must be noted that the magnitude of an earthquake is a logarithmic
quantity. That means that an earthquake of magnitude m C 1 releases 10 times more
energy than an earthquake of magnitude m. If we define its effective size as s D 10m,
the Gutenberg-Richter law becomes (see Problem 3.1),

p.s/ / s�.bC1/; b � 0:5 � 1:5; (3.4)
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showing that the pdf of the effective sizes of earthquakes exhibits a power law.
Equation 3.4 is scale-invariant in a sense of Eq. 3.1. In addition, the fact that the
exponent b might be less than one suggests that a certain type of complex dynamics
known as self-organized criticality (see Sect. 1.3.2) might be at play [3–5].

Similar power-law scalings appear when studying, for instance, the statistics of
the energy released by solar flares [6] (see Chap. 8) or the statistics of the X-ray
emissivity from accretion disks [7]. Examples are not restricted to the realm of
physics and the earth sciences. For example, the mathematician and psychologist
Lewis Richardson found a power-law behaviour when investigating the statistics
of war casualties as early as the 1940s [8]. Similarly, the biologist Max Kleiber
proposed in the 1930s that the metabolic rate, r, and the animal mass, M, were
related by the famous Kleiber law, r / M3=4 [9], whose validity is still contested
to this day in spite of its many successes. In some of these cases, models resting
on the idea of underlying complex dynamics have been proposed to account for the
observed scale invariance.2

Scale-invariance if often encountered beyond the realm of pure mathematical
functions. One could think, for instance, of the energy spectrum of fluctuations
in fully-developed, homogeneous fluid turbulence, that decays with the famous
Kolmogorov law, E.k/ � k�5=3 (k is the spatial wavenumber), over the so-called
inertial range that separates driving and dissipative scales [10]. Objects can also be
scale-invariant on their own. This is the case of many spatial fractal patterns [11],
such as coastlines or the famous Cantor set (see Fig. 3.2), whose aspect is invariant
under spatial rescaling. Some temporal processes, such as fractal Brownian motion
[12], are statistically invariant objects. That is, a single realization may not be
invariant under rescaling, but the average of its properties over many realizations
(i.e., an ensemble average) is, as will be discussed in Sect. 3.3.

In this chapter we will define scale-invariance and introduce some popular
methods to help us find out whether this object or that time process is scale-invariant.
Many of these techniques try to determine whether specific properties of exact
self-similar processes and objects are shared to some degree by natural patterns
or by time series obtained in natural systems. In the case of spatial patterns, the
mathematical models to compare with are fractals. Thus, we will start by discussing
their properties in Sect. 3.2. In the case of time series, one often compares them
against the family of stochastic processes known as fractional Brownian/Lévy
motions, that will be introduced in Sect. 3.3. We will also go beyond pure fractals
and discuss the idea of multifractality, both in space (Sect. 3.2.2) and time
(Sect. 3.3.7). We will conclude, as always, by applying some of the techniques
presented to the characterization of the scale-invariance of our test problem of
choice: the running sandpile (Sect. 3.5). This analysis will let us describe in detail
the idea of the mesorange,3 that is a consequence of the fact that, in real systems,

2In the case of Kleiber law, it has sometimes been suggested that the observed scaling might be
related to the increase in complexity of the fractal-like circulation system as animals get larger.
3We briefly discussed the mesorange in Chap. 1. In particular, in Sects. 1.2.3 and 1.3.2.
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Fig. 3.2 Examples of mathematical fractals (going down, and from left to right): seventh iteration
of the Cantor set (fractal dimension is 0.6309), seventh iteration of Koch’s snowflake (fractal
dimension is 1.2619), ninth iteration of Sierpinski’s triangle (fractal dimension is 1.585), Mandel-
brot’s set (contour’s fractal dimension is 2) and Menger’s sponge (fractal dimension is 2.7268).
Credits: all images from Wikimedia Commons; Cantor set (public domain); Koch’s snowflake
(A.M. Campos; public domain); Sierpinski’s triangle (B. Stanislaus; CC BY-SA 3.0 license);
Mandelbrot set (W. Beyer; CC BY-SA 3.0 license); Menger set (Niabot, CC BY-SA 3.0 license)

self-similarity is always restricted to a limited range of scales, in contrast to the
unrestricted scale-invariance of monofractal mathematical models.

3.2 Scale-Invariance in Space

The first objects that usually come to mind when thinking of self-similarity or scale-
invariance are spatial fractals. Loosely speaking, fractals are self-similar objects
in the sense that they are formed by parts that look very much like the whole
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object; often these parts are themselves again self-similar. Mathematically, it is
traditional to define a fractal as a set of points, distributed within some geometrical
support, whose properties upon rescaling are described by a single non-integer
number—its fractal dimension. In contrast, regular geometrical objects have integer
dimensions—such as a straight line (dimension is 1), the circle (dimension is 2) or a
pyramid (dimension is 3). The possibility of being characterized by a dimension
smaller than one (i.e., fractional) is in fact the origin of the term fractals, first
proposed by the mathematician Benoit B. Mandelbrot in the late 1960s and early
1970s [13].

In most cases, fractals are mathematical objects (see Fig. 3.2). Many are gener-
ated recursively. For instance, the Cantor set is obtained by repeatedly removing the
central piece of all segments in the set at each iteration, after dividing them in three
parts (see Problem 3.2). The iconic Mandelbrot set, on the other hand, is formed
by all initial choices z0 in the complex plane for which the orbit predicted by the
recurrence relation, zkC1 D z2k C z0, does not escape to infinity (see Problem 3.3).

Much more interesting to the physicist and natural scientist is the fact that
some natural systems seem to organize themselves by forming patterns that are
reminiscent of fractals. There are many examples of naturally occurring objects
that look like (approximate) fractals, at least over a relatively wide range of spatial
scales. One could mention coastlines [14], blood and pulmonary vessels, bubbles
in foams [15], veins in leaves and branches in trees, snow flake patterns, fault line
patterns, even the rings of Saturn [16], among many others (see Fig. 3.3). It has
often been suggested that complex dynamics may provide the mechanism through
which these patterns are generated in nature. Be it as it may, the fact is that looking
for properties characteristic of mathematical fractals is probably the best way of
detecting and quantifying self-similarity in natural objects and patterns. Thus the
importance of understanding fractals.

3.2.1 Fractals

The fractal dimension is the most relevant quantity that characterizes the structure
of a fractal [13]. It is often the first quantity that one estimates to assess whether any
object is a fractal or not. Various definitions of fractal dimensions exist, all related
but not equivalent to each other. In what follows, we will discuss the self-similar
dimension and the box-counting (BC) dimension. In fact, it is the BC dimension
that we will be referring to more often. It may not be the most mathematically
rigorous, but its discussion will prove particularly useful for actual applications
to complex systems. In particular, to the determination of fractal properties of
natural objects and patterns. In passing, we will also mention other important fractal
dimensions, such as the Haussdorf dimension, the entropy dimension or the
correlation dimension.
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Fig. 3.3 Fractals in nature (clockwise from the upper, left corner): Norway’s coastline (fractal
dimension, 1.52), snowflakes, Romanesco’s broccoli (1.26), Saturn’s rings (�1.7), dried-out
patterns on river beds, branch systems in trees and bubbles in soap (center). [Credits: images
from Wikimedia Commons: Norway (I. Rarelibra, public domain); snowflake (CC-A 2.0 license);
Romanesco broccoli (J. Sullivan, public domain); foam (A. Karwath, CC BY-SA 2.5 license);
dried riverbed (V. Panicker, CC BY-SA 2.5 license). From Pixabay.com: branches (public image).]
Saturn (©ESA/NASA - Hubble)

3.2.1.1 The Self-Similar Dimension

The self-similar dimension characterizes the properties of an object that is invariant
upon (often discrete) rescaling operations. It is best illustrated through an example.
Let’s take, for instance, the Œ0; 1	 segment of the real line. To start, the segment is
divided in three equal parts and the central part is removed. The process is then
iterated, yielding the collection of points on the real line known as the Cantor set
(see Fig. 3.2). The Cantor set is self-similar because each of the parts generated
at iteration k > 0 is identical to the original segment, but rescaled by a factor
r D 1=3k. Indeed, the segments after the first iteration have a length equal to 1=3
of the original segment, those of the second iteration have a length equal to 1=9 of
the original segment, and so forth. One can easily show (see Problem 3.2) that the
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number of identical parts in the set after having rescaled the Cantor set by a factor
r is:

N.r/ D r�Dss ; (3.5)

with Dss D log 2= log 3 D 0:63. That is, it follows a power law with exponent Dss.
Dss is known as the self-similar dimension. For a general object, it is defined as:

Dss D � lim
r!0

log N.r/

log r
: (3.6)

Why is Dss referred to as a dimension? To understand why, let’s calculate the
length of the Cantor set after the initial segment has been rescaled by r. It is:

Lr D N.r/ � r D r1�Dss ; (3.7)

Therefore, the length of the set goes to zero as r ! 0. However, the Cantor set is not
empty in that limit, even if it does not fill the space in which is embedded as densely
as a regular object. Indeed, if we had not removed the central part of each segment
at each iteration, we would have three parts in the first iteration, nine parts in the
second iteration, and so forth. The number of parts would then scale as N.r/ D r�1,
which would always yield a finite length at any iteration. Therefore, Dss provides
a measure of how densely the embedding space is filled by the parts we have kept.
It is a fractional number for the Cantor set because it lies somewhere in between a
regular line (Dss D 1) and the empty space (Dss D 0).

The same argument can be easily extended to higher-dimensional objects, and
non-integer dimensions between 1 and 2 (for instance, Koch’s curve shown in
Fig. 3.2), or between 2 and 3 (as Menger’s sponge in Fig. 3.2) are thus introduced.
All of these objects also fill their embedding spaces differently from what a regular
figure would do. For instance, Koch’s curve fills a plane more densely than any
regular curve; although less densely than a two-dimensional solid, such as a circle
or a square. Menger’s sponge, on the other hand, fills the three-dimensional space
more densely than a hollow sphere, but less densely than a solid sphere, for instance.
It is because of their non-integer dimensions that these objects are referred to under
the generic name fractals.

3.2.1.2 The Box-Counting (BC) Dimension

The self-similar dimension can only be used with exactly self-similar objects.
However, many objects that are not exactly self-similar are irregular enough as to fill
the space in which they are embedded in a different way from what regular figures
do. Thus, a less restrictive definition is needed that could be applied to these more
general objects and that, if possible, should reduce to the self-similar dimension for
perfectly self-similar objects. One such definition is the box-counting (BC) fractal
dimension.
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l

l/2

Fig. 3.4 To calculate the box-counting dimension of the coastline of Antarctica we cover it using
meshes of non-overlapping squares of some prescribed size, l. Here, two such coverings are shown,
one for half the square linear size than the other. It turns out that the number of squares in the
covering scales as N.l/ � l�1:1 [17], in contrast to the N.l/ � l�1 that one expects for a regular
curve. Credits: Antarctica satellite view (© NASA - Visible Earth)

To illustrate the BC fractal dimension, we will use an example inspired by Benoit
Mandelbrot’s seminal analysis of the coastline of Great Britain [14], and examine
the coastline of Antarctica. At first view, coastlines are just one-dimensional curves
embedded in a two-dimensional space (i.e., the map). But after closer inspection,
many coastlines look kind of rough, with many irregularities. Maybe too irregular
to be just a regular curve. How does one determine whether this is the case or not?
One way is to cover the coastline using a mesh of non-overlapping squares of a
given size, l, (see Fig. 3.4). One then counts the number of squares needed to cover
the coastline. Let’s call this number N.l/. As was done with the Cantor set, one can
then estimate the length of the coastline as,

L.l/ '
N.l/X

iD1
li D N.l/ � l (3.8)

that assumes that each square contains inside approximately a segment of the
coastline of length li ' l. Clearly, if the square size is too large, this is a very
bad approximation. But, in the limit of small l, it should be quite close to the actual
length of the coastline. That is,

L D lim
l!0

N.l/ � l: (3.9)

This limit is however finite only if N.l/ / l�1. That is, the number of boxes in
the covering must be inversely proportional to their length. This is indeed the case
for a regular curve. But does it happen for the coastline of Antarctica? It turns out
that it does not. A similar exercise to the one just described has been done for the
Antarctic coast [17], finding that N.l/ � l�1:1. This scaling, when inserted in Eq. 3.9,
yields an infinite length for the coastline of Antarctica! Therefore, the coastline of
Antarctica behaves rather differently from a regular curve. Similar results have been
obtained for many other coastlines. The first analysis of a coastline was done by
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Mandelbrot for Great Britain, who found that N.l/ � l�1:25 [14]. Although the
most remarkable result is probably that obtained for the coast of Norway, with an
impressive N.l/ � l�1:52 [18]. It is apparent that all these coastlines have a denser
structure than a regular curve, although not as dense as required to completely fill
the two-dimensional space (the map) that contains them. Coastlines are akin to self-
similar fractals, in that sense.

The box-counting (BC) fractal dimension, Dbc, quantifies how dense this
structure is. It is formally defined as4

Dbc D � lim
l!0

log N.l/

log l
; (3.11)

where l gives the size of the non-overlapping grid used to cover the object (see
Problem 3.3).

Using the BC dimension, a measure of the fractal content of an object can be
built that is more proper than the usual length (or area, or volume). Namely,

Mbc D lim
l!0

N.l/ � lDbc ; (3.12)

that is now finite since N.l/ � l�Dbc . If dealing with a regular n-dimensional object,
N.l/ / l�n and thus, Dbc D n. Therefore, Mbc naturally reduces to the expression
for the n-dimensional size (length, for n D 1, area, for n D 2 or volume, for n D 3).

3.2.2 Multifractals

The scaling properties of a fractal are described by a single exponent, its fractal
dimension. However, even fractals are too simplistic models to describe the spatial
distribution patterns found in some natural systems. This seems to be the case, for
instance, of the distribution of certain minerals within the Earth crust, the world
distribution of human disease, the spatial distribution of energy dissipation regions

4The box-counting fractal dimension is closely related to the so-called Hausdorff dimension, but
it is less precise from a mathematical point of view. Although both dimensions coincide for many
real fractals, there are documented cases in which the two yield different results. The Hausdorff
dimension predates the fractal concept. It was introduced as far back as 1918, by the German
mathematician Felix Hausdorff. The idea is to consider the object immersed in a metric space
of dimension n. Then, one counts the number of n-dimensional balls of radius at most r, N.r/,
required to cover the object. One then builds a measure of the size of the object in the form

Md.r/ D
N.r/X

iD1

A.ri/r
d
i ; (3.10)

where A.r/ is a geometrical factor that depends on the metric chosen and the dimensionality. The
Hausdorff dimension is then defined as the value of d D dH that makes that, for all d < dH , the
measure tends to zero. And, that for all d > dH , the measure diverges. In this sense, dH is a critical
boundary between values of d for which the covering is insufficient to cover the space, and values
for which the covering is overabundant.
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in a turbulent flow [19], the distribution of the probability of finding an electron
in three-dimensional disordered quantum systems, or the distribution of galaxies
within clusters throughout the universe [20].

The objects considered in these examples, and many more, still appear to
fill their embedding spaces more densely than regular objects, but they look
more complicated than simple fractals. In fact, they look more like the result of
having several intertwined fractal subsets embedded within the same geometrical
support, but each characterized by a different scaling exponent [18]. This type
of mathematical object does also exist and is known as a multifractal. However,
in order to discuss multifractals, we will need to introduce new concepts such as
singularities, the Holder exponent, the singularity spectrum and the generalized
fractal dimension.

3.2.2.1 Multifractal Measure

We will start to illustrate the idea of multifractality by revisiting the Antarctica
coastline. It will be remembered that, in order to estimate its box-counting fractal
dimension, we introduced a quantitative measure of its fractal content that, for a
given covering with boxes of size l, was (Eq. 3.12):

M.l/ D N.l/ � lD: (3.13)

Here, N.l/ was the number of squares of size l in the covering, and D was the fractal
dimension that ensured that the measure was finite when l ! 0. Clearly, each square
in the covering contributes to the measure in the same amount since, in a fractal,
the scaling properties are assumed to be the same everywhere. In a multifractal,
however, it would be more reasonable to expect that different parts of the object
should contribute differently. Indeed, since the fractal subsets with larger fractal
dimensions are spatially denser (i.e., they fill the space around them more fully),
it follows that those squares that contain larger parts of them will also be more
densely filled. For the same reason, those squares that contain mostly large parts of
the fractal subsets with smaller fractal dimensions will be less densely filled. How
can a multifractal measure be built, in the same spirit that Eq. 3.13, that takes these
subtleties into account?

One way to do it is to assign a weight to each square in the covering that is
proportional to how densely that particular square is filled. To find this weight, we
proceed to cover the i-th square in the original covering with a second covering (see
Fig. 3.5) formed by a mesh of P2 squares of linear size l0 D l=P � l. Next, we count
how many squares of the second covering contain some of the part of the coastline
that lies within the i-th square and call this number pi.l/. The weight associated to
the i-th square is then given by:

wi.l/ D pi.l/=
N.l/X

jD1
pj.l/; i D 1; 2; � � � ;N.l/: (3.14)



3.2 Scale-Invariance in Space 113

Fig. 3.5 Second covering (in red) used to compute the weights used to build the multifractal
measure of the coastline of Antarctica. pi.l/ is the number of squares, in the covering of the i-
th square from the first covering, that contain some of the coastline. Credits: Antarctica satellite
view (© NASA - Visible Earth)

The normalization ensures that the sum of all weights over all the squares in the
original covering equals one. Using these weights, one defines the one-parameter
family of multifractal measures

M.l; q/ D
2

4
N.l/X

iD1
wq

i

3

5 � l�.q/; (3.15)

where q can take any real value. A new family of multifractal exponents �.q/ has
also been introduced, that is determined by requiring that M.l; q/ stays finite when
l ! 0.

It turns out that, by varying the value of q, the family of exponents �.q/
effectively quantifies the multifractal properties (if any) of the coastline. Indeed,
if one considers the values:

• q D 0. The multifractal measure reduces to:

M.l; 0/ D
2

4
N.l/X

iD1
1

3

5 � l�.0/ D N.l/ � l�.0/; (3.16)
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that is the original measure of fractal content defined in Eq. 3.12. Thus, �.0/
coincides with the BC fractal dimension of the object, Dbc.

• Large, positive values of q. The measure M.l; q/ will then favour contributions
from squares in the covering for which the weight is large (larger, the larger q is!).
That is, those coming from parts of the object where the contribution of denser
subsets (i.e., larger fractal dimensions) is dominant.5

• Large, negative values of q. The same game can also be played to favour instead
contributions to the measure coming from the fractal subsets with the smaller
fractal dimensions. We just need to choose q large, but negative!

3.2.2.2 The Family of Multifractal Exponents �.q/

It is customary to estimate �.q/ by introducing the so-called partition function,
N.l; q/, via the expression:

N.l; q/ 	
N.l/X

iD1
wq

i � l��.q/: (3.17)

from which the multifractal exponents can be obtained as:

�.q/ D � lim
l!0

log N.l; q/

log l
; (3.18)

The shape of the function �.q/ characterizes the multifractal properties of an
object. In particular, it should be noted that,

• �.0/ coincides with the box-counting fractal dimension of the object, Dbc.
• �.1/ D 0. This follows from the normalization chosen for the weights,

P
wi D 1.

• if the object is a monofractal (i.e., a traditional fractal that has just a single
scaling exponent), then �.q/ reduces to the (decreasing) linear function of q:

�.q/ D Dbc.1 � q/: (3.19)

This follows from the fact that, for a monofractal, all boxes in the covering are
statistically identical in terms of their rescaling properties. Thus, pi D p, and the
weight associated to each box becomes (see Eq. 3.14):

w D p=
N.l/X

iD1
p D 1

N.l/
: (3.20)

5This simply follows from the fact that, if a number between zero and one is raised to a large
positive power, the result becomes smaller the smaller the number.



3.2 Scale-Invariance in Space 115

The partition function then becomes, using Eq. 3.17,

N.l; q/ D
N.l/X

iD1
wq

i D
N.l/X

1

�
1

N.l/

�q

D ŒN.l/	1�q: (3.21)

Since, N.l/ � l�Dbc for a monofractal, Eq. 3.19 follows.
• for a multifractal, �.q/ will exhibit a more complicated (i.e., nonlinear) depen-

dence on q.

It is traditional to define a generalized fractal dimension associated to the
multifractal exponents �.q/. It is defined as [21]:

D.q/ 	 �.q/

1� q
; (3.22)

that, for any monofractal object, naturally reduces to D.q/ D Dbc; 8q [22]. For
a multifractal, it is a decreasing function of q (see Fig. 3.6). Interestingly, several
popular fractal dimensions are contained in D.q/ [23]. For instance, it becomes the

Fig. 3.6 Typical shape of the generalized dimension D.q/ for a monofractal (red) and a
multifractal (blue). D.0/ is the BC fractal dimension; D.1/, the entropy dimension; D.2/, the
correlation dimension. For a monofractal, all dimensions coincide with the box-counting one. For
a multifractal, they are different with D.0/ � D.1/ � D.2/
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entropy dimension6 when q D 1. If q D 2, the generalized fractal dimension gives
the correlation dimension.7

3.2.2.3 Local Holder Exponent: ˛

The estimation of the family of multifractal exponents �.q/ is not the only way in
which the multifractal character of a set can be exposed and quantified. Another
path uses instead the concept of the local Holder exponent.

To illustrate its meaning, we will return to the Antarctica coastline example. It
will be remembered that, when looking for a multifractal measure, we associated
a weight, wi, to the i-th square of size l in the covering (see Eq. 3.14). For a
monofractal, we argued that this weight should be independent of the square
considered, since the object should scale in the same way everywhere. Thus, we
set wi D w D N.l/�1 � lDbc . However, for a multifractal object, one should expect
that the weights of different squares could scale differently, since different parts of
the object may contain different fractions of each of the fractal subsets that form
them. Thus, we will assume instead that,

wi.l/ � l˛i : (3.26)

The exponent ˛i > 0 is known as the local Holder exponent or, in some contexts,
as the local singularity exponent.8

6One can compute the amount of information associated to the covering of size l by calculating its
Shannon entropy, S.l/ D PN.l/

iD1 wi log wi. The entropy dimension is then defined after assuming:

S.l/ � l�Den ! Den D � lim
l!0

log S.l/

log l
: (3.23)

7The correlation dimension of a set of N points is computed [21] by counting the total number of
pairs of points, np, that have a distance between them smaller than some � > 0. For small �, the
limit of the function known as the correlation integral,

C.�/ D lim
N!1

np

N2
� �Dco ; (3.24)

where Dco is the correlation dimension. It can also be formulated by introducing the function
C.l/ D PN.l/

iD1 w2i , and then defined after assuming:

C.l/ � l�Dco ! Dco D � lim
l!0

log C.l/

log l
: (3.25)

8In the theory of mathematical functions, the Holder exponent appears as a way of quantifying the
degree of singularity of non-differentiable functions at a given point. Indeed, a function f that is
differentiable at x satisfies that, for small ı,

j f .x C ı/� f .x/j / jıj1 ; (3.27)
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3.2.2.4 Singularity or Multifractal Spectrum: f.˛/

The local Holder exponent of a monofractal is the same everywhere and coincides
with its BC fractal dimension. In a multifractal, however, we will have a list with
various values of the Holder exponent, as well as their spatial distribution, once
all the squares in the covering have been characterized using Eq. 3.26. Therefore,
one could easily compute the fractal dimension, f .˛/, of each of the spatial subsets
formed by all squares that share the same Holder exponent, ˛. f .˛/ is known as the
multifractal spectrum or the singularity spectrum [24].

For a monofractal, f .˛/ D Dbcı.˛� Dbc/, where ı.x/ is the Dirac delta function.
Thus, one could quantify the degree of multifractality of an object from the shape
of f .˛/. But instead of estimating it directly, that is rather involved, our next job is
to find out a way to derive f .˛/ from the family of exponents �.q/, in practice more
accessible thanks to the box-counting procedures we described previously.

We will assume that the family of multifractal exponents �.q/ is known (we
follow here [18] closely). The idea is to replace the sum over squares in Eq. 3.17
(effectively, an integral over the space occupied by the multifractal) by a sum over
all the fractal subsets formed by all squares with identical local Holder exponent ˛:

N.l; q/ D
N.l/X

iD1
wq

i �
Z

�.˛/d˛ l�f .˛/ l˛q: (3.31)

Let’s discuss the terms appearing in this integral. First, �.˛/d˛ gives the fraction of
the total space occupied by the fractal subset with Holder exponent between ˛ and

which permits to define its derivative at x as the usual,

df

dx
.x/ D lim

ı!0

f .x C ı/� f .x/

ı
(3.28)

On the other hand, a function with a bounded discontinuity at x (for instance, the Heaviside
step function, that has a jump of one at x D 0), satisfies,

j f .x C ı/� f .x/j / jıj0 ; (3.29)

so that its derivative at x does not exist.
Continuous, but non-differentiable functions behave between one case and the other,

j f .x C ı/� f .x/j / jıj˛ ; 0 < ˛ < 1: (3.30)

The exponent ˛, in this case, quantifies the degree of the singularity of the function at x or, in plain
words, how far it is from being differentiable. It is called the local Holder exponent.

How does this mathematical digression justify referring to ˛i in Eq. 3.26 as a local “Holder
exponent”? Well, fractals are very irregular objects, usually non-differentiable. Thus, it is
reasonable to expect that their local singularities could be describable by some kind of non-integer
exponent. The term “Holder exponent” is then borrowed by mere association. Although it can
take values larger than one. Indeed, for a monofractal we saw that ˛i D DBC, that can take all
non-integer values within the interval (0, 3).
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˛C d˛. Since the fractal dimension of this fractal subset is f .˛/, the contribution of
this region to the partition function N.l; q/must be proportional to l�f .˛/. Finally, the
weight associated to this fractal subset is, logically, l˛q, since ˛ is the local Holder
exponent of all squares in it.9

Since we are interested in how this integral scales with l, we just need to keep
the contribution of the value of ˛ that maximizes the integrand. This value will be a
function of q, referred to as ˛
.q/ in what follows. It is obtained by solving:

d

d˛
Œq˛ � f .˛/	 D 0 ) df

d˛
.˛
.q// D q: (3.32)

But we do not need to worry about solving it explicitly. Instead, we can assume
˛
.q/ known and rewrite Eq. 3.17 as,

N.l; q/ � lq˛
�.q/�f .˛�.q// � l��.q/: (3.33)

It thus follows that the relation between �.q/ and f .˛/ is,

q˛
.q/� f .˛
.q// D ��.q/: (3.34)

Luckily, this relation can be easily inverted by differentiating both sides with respect
to q, and then using Eq. 3.32. The procedure yields the pair of equations:

˛
.q/ D �d�

dq
.q/ (3.35)

f .˛
.q// D �.q/� q
d�

dq
.q/ (3.36)

This solves the problem completely. This pair of equations estimate, for each
value of q, the dominant value of the local Holder exponent that contributes to the
multifractal measure M.l; q/ (Eq. 3.35), as well as the fractal dimension (Eq. 3.36)
of the fractal subset formed by all regions in the multifractal with that local Holder
exponent. Thus, by varying q, obtaining �.q/ and using Eqs. 3.35 and 3.36, one can
estimate all relevant values of ˛, and their related fractal dimension, f .˛/.

3.2.2.5 Properties of the Multifractal (or Singularity) Spectrum f.˛/

Let’s say, to conclude, a few words about the multifractal spectrum f .˛/ that might
be useful to interpret its meaning in practical cases. A plot showing a typical

9It is quite reassuring to note that, in the limiting case in which the multifractal becomes a
monofractal, only one value of ˛ contributes to the sum (i.e., �.˛/ D ı.˛ � Dbc/). On the other
hand, f .˛0/ D Dbc, the BC fractal dimension of the monofractal. And if we take q D 0, we see
that the integral nicely reduces to N.l/ � l�Dbc , as it should be!
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Fig. 3.7 Typical Multifractal spectrum. For a multifractal (blue), the Holder exponent varies
between ˛min and ˛max, with its maximum at ˛.0/. For a monofractal (red), the curve becomes
f .˛/ ' Dbcı.˛ � Dbc/

multifractal spectrum is shown in Fig. 3.7 in order to illustrate some of its typical
features:

1. First, observe that f .˛/ � Dbc; 8˛, where Dbc is the BC fractal dimension of the
whole object, as computed from the fractal measure M.l; 0/.

2. Secondly, it is worth noting that f .˛/ reaches its maximum value, Dbc, when the
Holder exponent ˛ takes the value that solves Eq. 3.35 for q D 0.

3. Next, f .˛/ � ˛; 8˛. This can be trivially proven by exploiting the fact that
�.1/ D 0.

4. Finally, ˛ 2 Œ˛min; ˛max	, where the limiting Holder exponents satisfy,

˛min Œmax	 D � lim
q!C1Œ�1	

�.q/

q
: (3.37)

We showed that, in the limiting case in which the suspected multifractal turns
out to be a monofractal, �.q/ D Dbc.1 � q/ (Eq. 3.19). Consequently, Eqs. 3.35
and 3.36 reduce to:

˛
.q/ D f .˛
.q// D Dbc; 8q: (3.38)

Thus, the multifractal spectrum reduces to f .˛/ D Dbcı.˛ � Dbc/. That is, there is
only one local Holder exponent, and it coincides with the fractal dimension of the
monofractal, as we already mentioned previously.
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3.3 Scale-Invariance in Time

Many scientists face soon in their careers the fact that experimental data comes,
more often than not, in the form of discrete temporal records or time series (see
Fig. 3.8). This used to be certainly the case in the field of turbulence. Temporal
records of local velocity fluctuations were indeed much easier to obtain than
a map of the spatial distribution of those fluctuations at any given time [10].
Although spatial measurements in real time are nowadays much more manageable
in fluids,10 this state of things still holds in many other fields. For instance,
fluctuation measurements are still extremely difficult to make inside the kind of hot
fusion plasmas that are confined in a tokamak. For that reason, most of the turbulent
data available in fusion plasmas is available in the form of temporal records, the
majority of them measured at the plasma edge using local Langmuir probes [25, 26].
Temporal records are also common for much more distant plasma systems, such as
the Sun (see Chap. 7) and other stars, the Earth’s magnetosphere (see Chap. 8) or
accretion disks, to name a few. The characterization of the self-similarity properties
(if any) of time series such as these is the subject of this section. This analysis is done
by comparing the real time series with certain mathematical random processes that
exhibit exact statistical self-similarity, in an analogous way to how one compares
real spatial patterns with mathematical fractals.

Random processes are those in which, at any given time, the value of the
process is a random variable. That is, the value varies randomly from realization

Fig. 3.8 Examples of time series from magnetically confined plasmas. Left: temporal evolution of
the ion saturation current (these fluctuations are considered a surrogate for plasma density turbulent
fluctuations) measured with a Langmuir probe at the edge of the W7-AS stellarator [27]; right:
saturated runaway electron production obtained by a numerical Langevin code that considers the
runaway dynamics in phase space in the presence of a constant electric field [28]

10Thanks in part to the advent of both laser technology and inexpensive high-speed high-resolution
CCD cameras.
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to realization, according to some prescribed statistics.11 A very important role is
played, in this respect, by the families of fractional Brownian and fractional Lévy
motions, that we will discuss in Sects. 3.3.3 and 3.3.4. In order to understand their
properties, we will first introduce several important concepts such as statistical self-
similarity, invariance under temporal translations and stationarity. We will also
rely on a new mathematical object, the process propagator. Although some readers
may find the concept of the propagator rather complicated to grasp, we can say that
gaining a good understanding of its meaning and properties will definitely pay off
in the longer run, since it is by exploiting its properties that many of the methods
used to quantify self-similarity in real time series are possible.12

3.3.1 Self-Similar Time Random Processes

Time series are discrete records obtained, for instance, by recording a continuous
time process at a certain rate. A time process, for the purposes of this book, can be
any arbitrary function of time, y.t/, that may or may not be continuous. If y.t/ is a
random variable for every time t > 0, the process is called random or stochastic.
If the statistics of the random variable at every time are Gaussian, the process is
a Gaussian random process (see Fig. 3.9). Many other statistics are also possible
(for instance, of the Lévy type).

A random process is statistically self-similar13 with self-similarity exponent
H, or simply H-ss, if it satisfies that,

y.t/ 	d a�Hy
� t

a

�
; 8a; t � 0: (3.39)

Although this definition looks similar to Eq. 3.1, that established when a mathe-
matical function is self-similar, they are however not equivalent since the symbol
“	d” used in Eq. 3.39 means equivalence in distribution. This type of equivalence
is rather different from what is meant by the more usual “D” sign that appears in
Eq. 3.1. In the literature, the meaning of “	d” is often explained by saying that
the two sides it relates must have the same statistical properties. But what is

11If one compare fluctuation data measured at the edge of the same fusion device, but for different
plasma discharges with similar conditions, they would all look like different realizations of the
same random process. The same happens for the runaway production signal shown in the right
frame of Fig. 3.8. The different realizations would then correspond to runs done with the same
parameters but initialized with a random generator.
12In addition, propagators will be used heavily in Chap. 5, since they play a dominant role in the
theory of fractional transport.
13In the rest of this book, we will often drop the adjective “statistically” when referring to random
processes, in order to make the discussion more agile. The implication should however not be
forgotten.



122 3 Scale Invariance

Fig. 3.9 Example of a Gaussian random process. In this case, the value of the process at any given
time follows a Gaussian pdf. The process shown here is also stationary, which implies that the pdf
of values at any given time is identical to the pdf of all the values taken in one realization, as will
be explained later (see Sect. 3.3.5). The latter pdf is shown in the inset, together with a Gaussian
fit (in red)

really meant by this statement? To answer this question more precisely, we need
to introduce a new mathematical object associated to the process: its propagator.

3.3.2 Propagator of a Random Process

For the purposes of this book, all statistical properties of interest to us are conveyed
by a single function of the random process: its two-point probability density
function (or two-point pdf). We already discussed pdfs in Chap. 2. Its meaning
was that, if p.x/ is the pdf for a certain variable x, p.x/dx then gives the probability
of that variable taking a value between x and x C dx. Similarly, the two-point pdf
of a time process y.t/ quantifies the probability of y taking a value between y1 and
y1 C dy1 at time t1, and a value between y2 and y2 C dy2 at time t214:

p2. y1; t1I y2; t2/dy1dy2: (3.40)

14Clearly, p2.y1; t1I y2; t2/ does not exhaust all the statistical information that can be retrieved from
the process. One could define a whole hierarchy of higher-order pdfs that connect up to n-points,
with n > 2 as large as desired, all of which are also joint probability distribution functions for the
process. We will not consider any these functions here, though.
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Furthermore, we will always assume that the first point corresponds to the initial
value of the process, y0, at the initial time, t0. The second point, on the other hand,
may correspond to the value of the process at any t > t0. Thus, we can rewrite p2 as:

p2. y0; t0I y; t/ D G. y; tj y0; t0/p. y0/: (3.41)

Here, p.y0/ is the one-point pdf at the initial time. Or, in other words, p.y0/dy0 gives
the probability of the initial value of the process being between y0 and y0 C dy0
at t0. This pdf, p.y0/, is clearly arbitrary and independent of the dynamics of the
process. It simply describes how the process has been initialized. G.y; tj y0; t0/dy,
on the other hand, gives the conditional probability15 of the process taking a value
between y and dy at time t, after assuming that the initial value at t0 was y0. In
contrast to p0.y0/, the function G.y; tj y0; t0/ is intrinsic to the process. It is often
referred to as the propagator of the process.16

3.3.2.1 Information Carried by the Propagator

Very interesting information about the random process becomes accessible once
the propagator is known. For instance, one could obtain all the relevant one-point
statistical information of the process after constructing its one-point pdf from the
propagator. Since the one-point pdf is the pdf of the values that the process takes
after an arbitrary time lapse � , it is given by:

p1. y; � jt0/ D
Z

dy0 p. y0/G. y; � C t0j y0; t0/: (3.43)

Secondly, one can also extract any two-point statistical information of interest
for the process. One just needs to calculate the appropriate expected values (see

15It should be remembered that, in the theory of probabilities, the conditional probability of an
event A happening, assuming that another event B has already taken place, is defined as p.AjB/ D
p.A\B/=p.B/. That is, it is given by the ratio of the joint probability of A and B happening, divided
by the probability of B happening.
16The term “propagator” probably originates from the fact that G.y; tj y0; t0/ satisfies the following
property:

G. y2; t2j y0; t0/ D
Z

dy1

Z

dt1G. y2; t2j y1; t1/G. y1; t1j y0; t0/; t0 � t1 � t2: (3.42)

This relation simply expresses that the probability of reaching the value y2 at time t2, after having
started from the initial value y0 , is the sum of the probabilities of “propagating” the solution through
all the possible intermediate values y1 at all intermediate times t1. It is a direct consequence of the
fact that the total probability must be conserved during the evolution of the process. The propagator
has played an important role in many disciplines within Mathematics and Physics. In particular,
it is one of the building bricks of Richard Feynman’s path-integral reformulation of Quantum
Mechanics [29].
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Sect. 2.2.5). For instance, consider the family of moments (for arbitrary real q) at
time lapse � :

mq.� jt0/ WD hj y.� C t0/ � y0jqi (3.44)

D
Z

dy0 p. y0/
Z

dyj y � y0jqG. y; � C t0j y0; t0/:

These moments quantify how the process diverges from its initial value at time t0.
Another important expected value is the so-called autocorrelation function, that

is defined as (assuming �1 < �2),

Cy.�1; �2jt0/ WD h y.�1 C t0/ � y.�2 C t0/i (3.45)

D
Z

dy0 p. y0/
Z

dy2 y2

Z

dy1 y1 G. y2; �2 C t0j y1; �1 C t0/

G. y1; �1 C t0j y0; t0/:

These quantities will play a very important role in this book. In particular, the
one-point pdf and the moments are often used to test the self-similarity of a time
process. In regards to the autocorrelation function, it will be shown in Chap. 4 that
it gives information about the presence of long-term memory in the process.

3.3.2.2 Translationally Time-Invariant Random Processes

The properties of a random process can be expressed as conditions that its
propagator must fulfil. For instance, an important family of random processes are
those which are invariant under temporal translations. This requires that:

p2. y1; t1I y2; t2/ D p2. y1; t1 C TI y2; t2 C T/; 8T; (3.46)

for any pair of times t1 and t2, and any pair of values y1 and y2. In simple words
Eq. 3.46 means that the probability of the process taking a value y2 at time t2 and
a value y1 at t1 depends only on how much time has passed between t1 and t2, but
not on the actual values of those times. Therefore, p2 must depend only on their
difference, t1 � t2:

p2. y1; t1I y2; t2/ ! p2. y1I y2jt1 � t2/: (3.47)

If we now particularize Eq. 3.47 by assuming that t2; y2 correspond to the initial
time (t0) and value (y0) of the process and y1 D y to the value at any later time
t1 D t > t0, invariance under temporal translations translates, for the propagator,
into:

G. y; tj y0; t0/ ! G. y; t � t0j y0/: (3.48)
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This requirement has consequences for all the quantities we defined in the
previous section. In particular, the one-point pdf (Eq. 3.43) of the process becomes
independent of its initial condition,

p1. y; � jt0/ ! p1. y; �/ D
Z

dy0p. y0/G. y; � j y0/: (3.49)

This property actually quite useful since, if the process is always initialized from the
same value, i.e. p.y0/ D ı.y0�y


0 /, then p1.y; �/ D G.y; � j y

0 /. This property offers

an easy way to estimate propagators numerically, that will be exploited in Chap. 5.
Similarly, all the q-moments defined in Eq. 3.44 become functions of the elapsed

time � D t � t0:

mq.� jt0/ ! mq.�/ D
Z

dy0 p. y0/
Z

dyj y � y0jqG. y; � j y0/: (3.50)

Finally, the autocorrelation function defined in Eq. 3.45 only depends on the values
of the two time lags, �1 D t1 � t � 0 and �2 D t2 � t0:

Cy.�1; �2jt0/ ! Cy.�1; �2/ (3.51)

D
Z

dy0 p. y0/
Z

dy1 y1G. y1; �1j y0/
Z

dy2 y2 G. y2; �2 � �1j y1/:

3.3.2.3 Statistically Self-Similar Random Processes

With the help of the propagator just introduced, we can now make more precise
what statistical self-similarity (i.e., Eq. 3.39) entails. A random process is H-ss if its
propagator satisfies that:

G. y; tj y0; t0/ D a�HG
� y

a
;

t

aH

ˇ
ˇ
ˇ y


0 ; t


0

�
; (3.52)

with the new initial condition given by: y

0 D y0=a and t
0 D t0=aH. Mathematically,

this means that the propagator must be self-affine instead of self-similar. By self-
affine it is meant that each independent variable must be rescaled with a different
factor for the original propagator to be recovered. If Eq. 3.52 is satisfied, it can then
be guaranteed that all the statistical information of interest to us in the original and
the rescaled processes will be identical.

The fact that the propagator is self-affine has important consequences. For
instance, the one-point pdf of the process (Eq. 3.43) also becomes self-affine,

p1. y; t/ D a�Hp
� y

a
;

t

aH

�
: (3.53)
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In addition, the q-moments of the process (Eq. 3.44) will satisfy,

mq.tjt0/ D hj y.t/� y0jqi / jt � t0jqH ; 8q: (3.54)

Equations 3.53 and 3.54 will be the basis of some of the analysis techniques that
will be discussed in Sect. 3.4.1 to test for self-similarity in real time series suspect
of being scale-invariant.

3.3.2.4 Examples of Propagators

In order to illustrate the previous discussion, it is worthwhile to compute the
propagator explicitly for a couple of simple processes.

Cosine Process

We will first consider the following cosine process:

y.1/.t/ D cos.!.t � t0/C �/ (3.55)

where the phase � is fixed by the initial condition, y.t0/ D y0, that we will assume
distributed according to a uniform distribution p.y0/ D 1=2, for y0 in Œ�1; 1	. The
cosine process is random because of the randomness of the initial condition. As a
result, if one looks at the value the process takes at any given time for different
realizations, they would indeed be random (see Fig. 3.10). Next, we would like to
find answers to the following questions. Is the cosine process invariant under time
translations? Is it self-similar? To find out, we need to calculate its propagator.

The propagator of the cosine process can be easily computed by noting that its
phase is set by the initial condition via,

� D cos�1 y0; (3.56)

by rewriting next the relation between y and y0 as,

y D cos


!.t � t0/C cos�1 y0

�
(3.57)

and by finally realizing that the propagator must simply state the fact that these two
values are the only ones that the process can connect between those times:

G.cos/. y; tj y0; t0/ D ı



y � cos


!.t � t0/C cos�1 y0

��
; (3.58)

where ı.x/ is Dirac’s delta function. This is a consequence of the fact that, once the
initial condition is fixed, the evolution of y.t/ is fully deterministic.
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Fig. 3.10 Examples of simple random processes. Above: three instances of the cosine process
defined by Eq. 3.55 using ! D 10 and for y0 D �0:56; 0:33 and 0:91. Once y0 is chosen, the
evolution is deterministic. But if one collects the values of many realizations at any given time,
they behave like a random variable. Below: three realizations of the random time process defined
by Eq. 3.64 for y0 D 0. Since the process is intrinsically stochastic, the realizations diverge as time
advances

We can now try to answer the questions we posed earlier. Clearly, the propagator
depends only on the difference .t � t0/. Therefore, the cosine process is invariant
under time translations. However, it is not true that, if we make the changes y ! y=a
and t ! t=aH , the original propagator can be recovered by doing G ! a�HG for any
exponent H. This is particularly evident if one calculates the associated one-point
pdf using Eq. 3.43. To do it, we need to compute the integral:

pcos
1 . y; t/ D

Z

dy0p. y0/ı



y � cos


!t C cos�1 y0

��
: (3.59)

To do it, we need to invoke a well-known property of Dirac’s delta function. If g.x/
is a function that only vanishes at x D x
, then,

ı.g.x// D ı.x � x
/
jg0.x
/j : (3.60)

In our case, we have that,

g. y

0 / D y � cos



!t C cos�1 y


0

� D 0 �! y

0 D cos.cos�1 y � !t/: (3.61)
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Then, we can calculate,

jg0. y

0 /j D j sin.!t C cos�1 y0/j

q
1C y20

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
y0Dy�

0

D j sin. cos�1 y/j
p
1C cos2.cos�1 y � !t/

: (3.62)

We can now calculate the integral in Eq. 3.59, that yields, since p.y0/ D 1=2,

pcos
1 . y; t/ D 1

2jg0. y

0 /j

D
p
1C cos2.cos�1 y � !t/

2j sin. cos�1 y/j : (3.63)

Equation 3.63 reduces to the pdf of the initial conditions, p.y0/ D 1=2, when t D 0.
But its shape changes with time in a way that is not a simple rescaling, as shown
in Fig. 3.11. Therefore, p1 cannot be self-affine, and the cosine process cannot be
self-similar. This conclusion was to be expected since it was clear from the start that
the cosine process had a well-defined time scale: its period T D 2
=!.

Fig. 3.11 Snapshots at different times of the one-point pdf, pcos
1 .y; t/, for the cosine process

defined in Eq. 3.55 using ! D 10. It coincides with the pdf of the initial condition, p.y0/ D 1=2

at t D 0. But then, its shape changes in a way that is different from a simple rescaling. Thus, the
cosine process cannot be self-similar
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Random Gaussian Process

Secondly, we will consider an example of a random Gaussian process. In
particular, we will look at Langevin’s formulation of one-dimensional Brownian
motion [30]:

yBm.t/ D y0 C
Z t

t0

ds�2.s/: (3.64)

Here, �2.s/ is a random, Gaussian noise with zero mean and variance �2� . Due to
this random noise, the resulting process becomes truly random in the sense that the
values of the process at any time are unpredictable even for realizations that start
from the same initial value (see lower frame in Fig. 3.10). Let’s try to answer the
same questions that were made for the cosine process. Is the process invariant under
time translations? Is it self-similar?

In this case, we will not compute the propagator explicitly since we will do it in
Sect. 5.2.2. We will simply advance the result (see Eq. 5.32):

GBm. y; tj y0; t0/ D 1
q
2
�2� .t � t0/

exp

 

� . y � y0/2

2�2� .t � t0/

!

D NŒ y0;�2� .t�t0/	
. y/:

(3.65)

That is, the propagator is a Gaussian whose variance grows linearly with time as
�2.t/ D �2� .t� t0/. Clearly, the propagator only depends on the elapsed time .t� t0/.
Therefore, it is invariant under temporal translations. At the same time, it is trivial to
see that the propagator of Brownian motion recovers its original form, after carrying
out the transformations y ! y=a and t ! t=aH, simply by multiplying it by a�H

with H D 1=2. Therefore, the propagator is truly self-affine. Brownian motion, on
the other hand, is self-similar with self-similarity exponent H D 1=2.

The same conclusion could have also been reached from the analysis of the one-
point pdf of the process. For simplicity, we will assume that the process always
start with the same initial condition, y.t0/ D y


0 . Therefore, p.y0/ D ı.y0 � y

0 / and

Eq. 3.43 reduces to:

pBm
1 . y; �/ D 1

q
2
�2� �

exp

 

� . y � y

0 /
2

2�2� �

!

D NŒ y�

0 ;�
2
� �	
. y/; (3.66)

with the elapsed time being � D t � t0. That is, the one-point pdf coincides with the
propagator, as expected from a self-affine propagator.17

17The same result is obtained for any other choice for p.y0/, as long as it is positive everywhere
and normalizable to one.
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3.3.2.5 Self-Similar, Translationally Time-Invariant, Random Processes

The Brownian motion we just examined belongs to a larger family of H-ss,
translationally time-invariant processes, whose propagators take the general form,

G. y; tj y0; t0/ D 1

.t � t0/H
˚

�
y � y0
.t � t0/H

�

; (3.67)

for some function ˚.x/, that is arbitrary except for the fact that they must satisfy
that,

˚.x/ � 0; 8x; (3.68)

and
Z 1

�1
dx ˚.x/ D 1: (3.69)

Equations 3.68 and 3.69 ensure that the propagator, that in essence is a probability
density, remains always positive (probabilities cannot be negative!) and normaliz-
able to one.

The case of the Brownian motion corresponds to H D 1=2 and˚.x/ D NŒ0;�2� 	.x/.

However, many other possibilities exist. In particular, given the clear favouritism
of the Central Limit Theorem for Gaussian and Lévy pdfs (see Chap. 2), we will
focus the following discussion on the two most popular members of this family: the
fractional Brownian motion (˚ D Gaussian, H 2 .0; 1	) and the fractional Levy
motion (˚ D symmetric Lévy, H 2 .0;min f1; 1=˛g]).

It is worth saying now that, thanks to their self-similarity, all these processes
share a common property. Their q-moment satisfies,

hj y.t/ � y0jqi D Cqjt � t0jqH ; Cq D
Z

dz jzjq˚.z/; 8q > �1 j Cq < 1:

(3.70)

This property will be of great utility to compare real time series against translation-
ally time-invariant, H-ss processes (See Sect. 3.4).

3.3.3 Fractional Brownian Motion

As already mentioned, Brownian motion belongs to a family of H-ss random
processes known as fractional Brownian motions (fBm). These processes were
introduced by Benoit B. Mandelbrot in the late 60s [12], being defined as:

yfBm;H.t/ D y.t0/C 1

�


H C 1

2

�

Z t

t0

ds .t � s/H�1=2�2.s/; H 2 .0; 1	: (3.71)
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where t0 is an arbitrary initial time18 and � .x/ is the usual Euler’s Gamma function.
The self-similarity exponent H is often referred to, in this context, as the Hurst
exponent (see also Chap. 4). For H D 1=2, fBm reduces to the usual Brownian
motion (Eq. 3.64). For H ¤ 1=2, on the other hand, the non-trivial kernel inside
the temporal integral forces the process to exhibit interesting features that will make
fBm a very important player throughout the rest of this book.

The propagator of fBm can be easily calculated [12, 31]. It is given by the
Gaussian,

GH
fBm. y; tj y0; t0/ D 1

q
2
 O�2� .t � t0/2H

ds exp

 

� . y � y0/2

2 O�2� .t � t0/2H

!

; (3.73)

with O�2� D a.H/�2� , and a.H/ D �
.2H/1=2� .H C 1=2/

��1
. From the inspection of

the propagator,19 it follows that the process is invariant under time translations and
self-similar with exponent H. The shape of the propagator is identical to that of the
pdf of the noise driving it, but with a rescaled variance. As predicted by Eq. 3.70,
the moments of all members of the fBm family verify that,20

mfBm;H
q .tjt0/ D ˝j yfBm;H.t/ � y0jq

˛ / jt � t0jqH; 8q > �1; (3.74)

Physically, this scaling means that the process moves away from its initial
value at a faster rate as the value of H increases. This is apparent from the three
realizations of fBm shown in Fig. 3.12. The values of H used are, respectively, 0:25,
0:50 and 0:75. Clearly, the process with H < 0:5 departs from its initial location
slower (on average) than Brownian motion, whilst the opposite situation happens
for H > 0:5. Since Brownian motion is intrinsically related to diffusive transport
(we will discuss this connection in Chap. 5), these two behaviours are often referred
to as subdiffusion (H < 1=2) and superdiffusion (H > 1=2/.

18In fact, Mandelbrot preferred instead the definition [12],

y.t/ D y.t0/C 1

�


H C 1

2

�

�Z t

�1

ds .t � s/H�1=2�2.s/ (3.72)

�
Z t0

�1

ds .t0 � s/H�1=2�2.s/

#

; H 2 .0; 1	

since he felt that Eq. 3.71 assigned too much significance to the initial time t0, as will be made much
clearer in Chap. 4, where we discuss memory in time processes. We have however preferred to stick
with Eq. 3.71 since some t0 must be chosen to simulate fBm processes numerically or to compare
against experimental data (clearly, no code or measurement can be extended to t ! �1!). In any
case, both definitions lead to very similar properties.
19Clearly, it satisfies Eq. 3.67 with the choice ˚ D NŒ0;O�2� 	.x/ for any H 2 .0; 1	.
20The lower limit comes from the fact that the Gaussian does not have finite moments for q < �1,
since the integrand, 1=jxjq then has a non-integrable divergence at x D 0.
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Fig. 3.12 Realizations of fBm starting at y.0/ D 0 using self-similarity exponents H D 0:25

(black), H D 0:5 (red) and H D 0:75 (green). The H D 0:5 process is Brownian motion. For
the other values of H, the process diverges from its initial value either slower (H < 0:5) or faster
(H > 0:5) than Brownian motion. The former behaviour is usually referred to as subdiffusion; the
second, superdiffusion

Mathematically, Eq. 3.74 also implies that one can associate a unique local
Holder exponent, hs D H, to each member of the fBm family.21 As previously
discussed (see Sect. 3.2.2; also, the discussion that will be had in Sect. 3.3.7), the
local Holder exponent measures the degree of singularity of a function by looking
at the scaling of the increment j y.t C �t/ � y.t/j / j�tjhs . A differentiable
function has hs D 1, whilst a function with a bounded discontinuity would have
hs D 0. Continuous, but non-differentiable functions, such as fBm, have a value
of hs that lies in between 0 and 1. Particularizing Eq. 3.74 for q D 1, we find that
j y.t C�t/ � y.t/j / j�tjH, so hs D H for fBm.22

21In the case of time processes, we will use the symbol hs to refer to the Holder exponent, and
reserve ˛ for the tail-index of Levy pdfs. This is in contrast to what is usually done when carrying
out multifractal analysis on spatial objects, where the symbol ˛ is reserved for the singularity
exponent. That is why we adhered to the popular criteria when discussing spatial multifractals in
Sect. 3.2.2.
22It is somewhat curious that, although H is a measure of a global property (i.e., rescaling) and
hs measures a local property (degree of the local singularities), they do coincide for fBm. The
situation is similar to what was found for spatial monofractals, where the fractal dimension (global
property) and the Holder exponent (local property) were also identical. It is for this reason that it
is sometimes said that H-ss processes have a monofractal character. It is also interesting to remark
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3.3.4 Fractional Lévy Motion

It was discussed in Chap. 2 that the Central Limit Theorem also identified other pdfs,
in addition to the Gaussian law, as preferred attractors: the heavy-tailed Lévy family
(see Sect. 2.3). Since Lévy pdfs are often found in complex systems, it is logical to
expect that a Lévy version of fBm should play a similar role in them. Such a family
of H-ss processes does indeed exist, being known as fractional Lévy motion (fLm)
[32]. It is defined analogously to fBm23:

yfLm
˛;H .t/ D y.t0/ C 1

�


H � 1

˛
C 1

�

Z t

t0

.t � s/H�1=˛ds �˛.s/; (3.76)

with 0 < H � max

�

1;
1

˛

�

:

�˛ is now a zero-mean noise distributed according to a symmetric Lévy law of index
˛ and scale factor �� . That is, according to LŒ˛;0;0;�� 	.�˛/.

24 Figures 3.13 and 3.14
show realizations of fLm for various values of H and ˛.

The first thing to note is that, for H D 1=˛, the kernel vanishes in Eq. 3.76
and the process becomes the Lévy equivalent to Brownian motion, often referred to
as a Lévy flight. Similarly to fBm, the motion diverges faster than a Lévy flight if
H > 1=˛, and slower if H < 1=˛.25 Secondly, all fLm traces exhibit long jumps that
are associated with large noise values that contribute to the tail of each respective
Lévy pdf. Clearly, the importance of these extreme jumps for the overall motion
increases as the value of ˛ decreases.

that the Holder exponent defined for fBm is identical to the one used in the theory of mathematical
functions, whilst the one used for spatial fractals had a different definition (Eq. 3.26). As a result,
the fractal dimension of fBm time traces is not equal to hs, but given by D D 2 � hs D 2 � H
(See Problem 3.5). This is correlated with the fact that, the smaller hs, the more irregular the trace
becomes, so it fills its embedding space more densely.
23As with fBm, another definition for fLm exists that avoids giving too much importance to the
initial time. It is:

yfLm
˛;H .t/ D y.t0/C 1

�


H � 1

˛
C 1

�

�Z t

�1

ds .t � s/H�1=˛�˛.s/ (3.75)

�
Z t0

�1

ds .t0 � s/H�1=˛�˛.s/

#

; with 0 < H � max

�

1;
1

˛

�

:

where t0 < t is again an arbitrary past reference time.
24It is worth mentioning that the theory of fLm processes using non-symmetric Lévy distributions
has not been developed very much so far, in spite of the fact that there are some physical problems
where it might be useful. We will discuss one such example in Sect. 5.5, when we investigate
transport across the running sandpile.
25However, the terms subdiffusion and superdiffusion are not used to refer to any of these
behaviours, as will be discussed in Chap. 5.
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Fig. 3.13 Realizations of fLm with ˛ D 1:5 starting at y.0/ D 0 using self-similarity exponents
H D 0:25 (black), H D 0:5 (red) and H D 0:75 (blue). Here, the uncorrelated motion corresponds
to H D 1=˛ D 0:66. Thus, only the blue realization contains positive correlations, that cause it to
diverge much faster. In contrast, the anticorrelated ones barely move away from the initial location

As with fBm, we will discuss fLms in greater detail in Chap. 5, since they are
of key importance for the theory of fractional transport. Here, we just provide their
propagator, that is given by [33, 34],

G˛;H
fLm. y; tj y0; t0/ D 1

.t � t0/H
LŒ˛;0;0; O�� 	

�
. y � y0/

.t � t0/H

�

; (3.77)

with O�� D a.H; ˛/�� , and the coefficient a.H; ˛/ defined as26:

a.H; ˛/ WD
�

.˛H/1=˛�

�

H � 1

˛
C 1

���1
: (3.78)

All fLm processes are both invariant under time translations and self-similar, as
follows form the fact that the fLm propagator has the canonical form expressed in
Eq. 3.67, with ˚ D LŒ˛;0;0; O�� 	.x/ for any ˛ 2 .0:2/. The shape of the fLm propagator

26Note that a.H; 2/ D a.H/, the function we introduced for fBm in Sect. 3.3.3. For that reason, the
limit of fLm when ˛ ! 2 is fBm with the same value of H.
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Fig. 3.14 Realizations of fLm with H D 0:75 starting at y.0/ D 0 using tail exponents ˛ D 0:75

(black), ˛ D 1:0 (red) and ˛ D 1:5 (blue). Here, the uncorrelated motion corresponds to H D 1=˛.
Thus, only the blue realization contains positive correlations. Also, note that sudden jumps, asso-
ciated to the Lévy extreme events, become more dominant as ˛ gets smaller, due to the fatter tail

also coincides with the pdf of the driving noise, as was the case of fBm, again with
a different rescaling factor. However, in contrast to fBm, its moments verify,27

mfLmI¸;H
q D ˝j yfLm

˛;H .t/ � y0jq
˛ / jt � t0jqH ; � 1 < q < ˛ (3.79)

since the heavy tail of LŒ˛;0;0; O�� 	.x/ makes Cq ! 1 in Eq. 3.70 for q � ˛. It is also
worth remarking that, because of this divergence, one can only define a local Holder
exponent for fLm with 1 � ˛ < 2, in which case it is again given by hs D H.

3.3.5 Stationarity and Self-Similarity

Stationarity is another concept of great importance in the context of time random
processes. Loosely speaking, stationarity means that the process does not change its
statistical features over time. We will formulate this idea more precisely shortly, but

27As with the Gaussian, the lower limit comes from the fact that the symmetry Lévy does not have
finite moments for q < �1, since 1=j y � y0j then has a non-integrable divergence at y D y0.
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Fig. 3.15 Stationary vs. non-stationary time processes: Brownian noise (in black) is stationary.
Brownian motion (in red), the integral of Brownian noise over time, is not a stationary time process

one can easily illustrate the concept by looking at the two time series in Fig. 3.15.
One of them is a realization of Brownian motion (in red); the other one is the series
of its successive increments28 (in black). Clearly, Brownian motion is not stationary.
Its mean value would be very different if estimated using the first or the second
half of the data shown in the figure. The series of its increments, on the other hand,
appears stationary in the sense that both mean and variance are independent of the
section of the signal chosen to estimate them.

Why are stationary time processes important? The main reason is related to the
practical advantages of dealing with stationary data records. Mainly, that stationary
processes are usually ergodic in the sense that temporal and ensemble statistical
analysis yield similar results. Therefore, if dealing with stationary data, one does
not need a large number of different realizations to gather meaningful statistics. A
very long temporal record broken up in pieces is enough, and usually much easier
to obtain.

However, an interesting conundrum often appears in complex systems. Complex
dynamics often abhor characteristic scales, as we have repeatedly stated. As a
result, time processes taking place in them tend to exhibit self-similar features.

28Or, in other words, the noise series used to integrate Eq. 3.64.
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Regretfully, it turns out that self-similarity and stationarity are two mutually
exclusive properties.29 The Brownian motion shown in red in Fig. 3.15, itself a 1=2-
ss process, provides a very nice illustration of this fact.

It might thus seem that, in order to be able to detect the presence of complex
dynamics in natural time processes by looking for self-similarity features, we
would necessarily have to deal with multiple realizations. Luckily, Fig. 3.15 already
suggests one easier solution: instead of looking for self-similarity by comparing
real processes to fBm/fLm, one could just look at the increments of the natural time
series and compare its properties with those of the increments of fBm/fLm processes,
that will be shown to be stationary in what follows.30

3.3.5.1 Definition of an Stationary Random Process

We consider that a random time process is stationary if it is31: (1) translationally
time invariant (see Eq. 3.46); (2) its one-point pdf is independent of the time lag �

(see Eq. 3.49):

p1. y; tjt0/ ! p1. y/I (3.80)

and (3) its autocorrelation function depends only on the lag difference, � D �2 � �1
(see Eq. 3.51):

Cy.�1; �2jt0/ ! Cy.�2 � �1/ D Cy.�/: (3.81)

Clearly, it follows from the fact that the one-point pdf is independent of time
(Eq. 3.80) that all the moments of the process must be also independent of time
(see Eq. 3.50):

mq.�/ ! mq; 8q: (3.82)

Thanks to these properties, the same results should be obtained when calculating
quantities from an ensemble average over a large number of realizations, or from a
temporal average over a sufficiently long part of a single realization. We will take
advantage of this fact in later sections (see Sect. 3.4.2).

29Except for trivially self-similar processes such as the constant process.
30We will also show later that, due to the translational time-invariance of both fBm/fLm, things are
not so bad as stated here, and that methods exist to improve the statistics when dealing with the
integrated process directly even if few (or just one) realizations are available (see Sect. 3.4.1).
31As we also did when discussing scale-invariance, we will only consider two-point statistical
information in this book.
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3.3.6 Self-Similar Processes with Stationary Increments

It is apparent that neither fBm nor fLm satisfy Eq. 3.80 (or Eq. 3.82). Thus, they
are non-stationary random processes. In fact, as hinted out previously, stationarity
and self-similarity are two mutually exclusive properties, except for trivial cases.
Nevertheless, there is a famous theorem by Lamperti [35] that establishes the
relation between H-ss and stationary processes. The theorem simply states that if
y.t/ is an H-ss process, then x.t/ D e�tHy.et/ is a stationary one. Reversely, if x.t/
is a stationary process, then y.t/ D tHx.ln t/ is an H-ss process.32

It is however possible to consider self-similar processes with stationary incre-
ments, often referred to as H-sssi processes (i.e., H-ss with stationary increments).
It turns out that both fBm and fLm are two examples of H-sssi processes, as we
discuss next.

3.3.6.1 Fractional Gaussian Noise (fGn)

Benoit Mandelbrot showed that the increments of fBm (previously defined in
Eq. 3.71) are stationary [12]. Several increment series can be considered, depending
on the chosen spacing h > 0:

�hyfGn;H.t/ WD yfBm;H.t C h/� yfBm;H.t/

h
(3.83)

D h�1

�


H C 1

2

�

�Z tCh

t0

.t C h � s/H�1=2�2.s/

�
Z t

t0

ds .t � s/H�1=2�2.s/
�

; H 2 .0; 1	: (3.84)

The process�hyfGn;H will be referred to as fractional Gaussian noise (fGn).33 Most
interestingly, Mandelbrot also proved that fBm is the only H-sssi process generated
by (zero-mean) Gaussian noise [12].

It turns out that fGn has some interesting properties. Some of them become
particularly handy to compare it with natural stationary series. All of them are direct

32In theory, one might use Lamperti’s theorem to test whether any time series is self-similar (or
stationary). One would just need to apply the Lamperti’s transform to it and check whether the
result is stationary (or self-similar). However, due to the exponentials appearing in Lamperti’s
formulation, this scheme is often difficult to use in practice.
33It is also common in the literature to define fGn simply as yfGn

H .tCh/�yfGn
H .t/ instead, without the

h�1 prefactor [36]. We have decided to adopt the definition that includes h�1 so that we can better
assimilate fGn to a derivative of fBm, in spite of the latter being non-differentiable. The reason
will become clearer when discussing methods to generate numerically fBm (see Appendix 1) using
fractional derivatives. The only differences between one or another choice are that �2h D h2H�2� in

Eq. 3.86, and that the factor r.H�1/ becomes rH in Eqs. 3.87 and 3.88.
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consequences of the properties of fBm. For instance, one can easily prove that the
one-point pdf of fGn is given by:

p1


�hyfGn

H

� D NŒ0;�2h 	.�hy/; (3.85)

i.e., a Gaussian whose variance is given by,

�2h D h2H�2�2� ; (3.86)

with �2� the variance of the Gaussian noise �2. The one-point pdf of fGn is thus
identical to both the pdf of the noise that drives fBm, and the ˚ function that
characterizes the fBm propagator. All of them are Gaussians, although with different
variances.

Equation 3.86 is, in fact, an special case of a very interesting scaling property
of the one-point pdf of fGn with respect to the value of the spacing h, that derives
solely from the scale-invariant nature of fBm.34 Under the transformation h ! rh,
it follows that:

p1.�rhyfGn
H / 	d r.H�1/p1.�hyfGn

H /; (3.87)

This property translates, for all the convergent integer and real moments of the one-
point pdf, into

˝j�rhyfGn
H jq

˛ D rq.H�1/ ˝j�hyfGn
H jq

˛
; 8q > �1; (3.88)

that reduces to Eq. 3.86 if q D 2. Equation 3.88 expresses how the moments change
when fGn is looked at in the different scales that are set by changing the value of r.
The reader will be able to see the practical usefulness of these scaling properties in
Sect. 3.4 (for instance, see Eq. 3.114).

Finally, it is worth mentioning that the local Holder exponent for fGn is given by
hs D 0, since fGn is discontinuous at every point, but the discontinuity is bounded.

3.3.6.2 Fractional Lévy Noise (fLn)

Fractional Lévy motion (fLm) can also be shown to have stationary increments.35

These increments form what is known as fractional Lévy noise (fLn). Similarly to

34Equation 3.87 applies for any arbitrary function ˚ in Eq. 3.67, since it is only due to the scale-
invariance. For example, it is also satisfied by fractional Levy noise, to be introduced next.
35In fact, this is one of the conditions that sets the allowed values of the self-similarity exponent H
to the interval .0;max.1; ˛�1/	. The other one is the requirement of the propagator of the process
being positive everywhere, at every time [37].
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fGn, fLn will be defined, for arbitrary spacing h > 0, as36:

�hyfLn
˛;H.t/ D h�1

�


H � 1

˛
C 1

�

�Z tCh

t0

ds .t C h � s/H�1=˛�˛.s/ (3.89)

�
Z t

t0

ds .t � s/H�1=˛�˛.s/
�

; 0 < H � max




1;
1

˛

�

:

In the case of fLm, however, it is no longer true that Eq. 3.89 is the only H-sssi
processes that can be generated by (zero-mean) Lévy noise [36]. fLm shares some
of the properties of fGn, although adapted to the fact that its moments diverge for
orders equal or larger ˛. In particular, its one-point pdf is given by:

p1


�hyfLn

˛;H

� D LŒ˛;0;0;�h 	.�hy/; (3.90)

whose scale factor is given by,

�h D hH�1�� : (3.91)

Again, the one-point pdf has the same form that those of the noise driving the fLm
and the ˚ function that characterizes the fLm propagator. They all are symmetric
Lévy pdfs of tail-index ˛, although each with a different scale factor.

In addition, the one-point pdf of fLn, due to the scale-invariance of fLm, satisfies
an analogous property to fBm under the transformation of the spacing h ! rh:

p.�rhyfLn/ 	d r.H�1/p.�hyfLn/: (3.92)

This property translates, for all convergent integer and real moments, into the
following scaling rule:

˝j�rhyfLn
˛;Hjq

˛ D rq.H�1/ ˝j�hyfLn
˛;Hjq

˛
; � 1 < q < ˛; (3.93)

that will be shown to be extremely useful in practical cases in Sect. 3.4.
We conclude our discussion of fLn by saying that, as was the case for fGn, the

local holder exponent of fLn (for 1 < ˛ < 2) is hs D 0, since it is discontinuous at
every point, with a bounded discontinuity.

3.3.7 Multifractal Time Random Processes

There are many natural time processes that look irregular, but not in the homoge-
neous way in which fBm or fLm look irregular. Instead, signals such as time records
of the variability of the human heart rate (see Fig. 3.16) or of the neural activity
of the human brain exhibit very different looking singularities over time [38, 39].

36Again, if one adopts the definition of fLn without the h�1 prefactor, �h D hH�� instead in
Eq. 3.91. Also, the factor r.H�1/ becomes rH in Eqs. 3.92 and 3.93.
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Fig. 3.16 Time record of the heart-rate variability of a healthy person obtained from Phys-
ionet.org. The variability is measured using the interval of time between successive R points (see
inset on the top right) of the heartbeat signal as measured in a typical electrocardiogram (ECG).
Different singularities are apparent in the signal as time advances, suggesting that the nature of
the process could be multifractal. Credits: inset from Wikimedia Commons (M. Häggström, public
domain)

Some of them look more like sudden jumps or steps, while others often look more
like spikes or cusps. Mathematically, a different value of the Holder exponent can be
associated to each of these singularities (see Fig. 3.17). Therefore, it is impossible
to capture the nature of these time process with monofractal models such as fBm
or fLm, whose singularities are all of the same type. That is, those with Holder
exponent hs D H, their Hurst exponent.

There has been some efforts to build random processes, based on generalizations
of fBm, to overcome this limitation. One is multifractional Brownian motion
(mBm) [40], and its prescription is rather simple. It is defined similarly to fBm
(Eq. 3.71) but with H becoming a function of time, H.t/ 2 .0; 1	;8t > t0:

ymBm.t/ D y.t0/C 1

�


H.t/C 1

2

�

Z t

t0

.t � s/H.t/�1=2ds �2.s/: (3.94)



142 3 Scale Invariance

Fig. 3.17 Examples of functions that exhibit singularities at x D 0 with different Holder
exponents. Heaviside’s step function (left) has a Holder exponent of hs D 0, since it has a bounded
discontinuity of size one. The function y D jxj1=2 (center) has a holder exponent hs D 1=2. On the
right, y D jxj1=8, has a Holder exponent of hs D 1=8 at x D 0. The smaller the Holder exponent,
the spikier the singularity becomes until eventually, the function becomes discontinuous

It can be shown that, although mBm is no longer globally self-similar in time,
it is still locally self-similar for fixed t, with a self-similarity exponent given by
H.t/. In addition, its local Holder exponent becomes hs.t/ D H.t/, which is no
longer constant. A similar generalization can also be carried out for fLm, known
as multifractional Lévy motion (mLm) [41], that shares many of the properties
of mBm: local self-similarity for fixed t and time-varying Holder exponent, h.t/ D
H.t/, if restricted to 1 < ˛ < 2. Regretfully, both mBm and mLm impose a strong
restriction on the variation of H.t/, that must be a regular function, which precludes
the kind of erratic variation of the local Holder exponent observed in natural series.
Other generalizations of fBm/fLm are in the process of being investigated, that could
allow for the erratic variation of hs with time [42].

We will not get into the details of mBm, mLm, or any other multifractal
time process in this book. Instead, we will focus on building a tool, similar
to the multifractal analysis developed for spatial fractals, that could be used to
characterize multifractal features in time records.37 The idea that was used for
spatial multifractals was relatively simple (see Sect. 3.2.2). We considered coverings
with N blocks of size l, and then we associated to each block a weight wi, that
measured how densely filled the block was, and that was related to a local Holder
exponent via wi / l˛i (Eq. 3.26). Weights were normalized so that

PN
iD1 wi D 1.

Then, we constructed the partition function, N.l; q/ D PN
iD1 jwijq, where q could be

any real number, and we looked for scalings of the kind N.l; q/ / l��.q/ (Eq. 3.17).
From the analysis of �.q/ the multifractal character of the spatial object could
be made apparent, since for a monofractal, a decreasing linear dependence was
expected, �.q/ D Dbc.1 � q/ (Eq. 3.19), with Dbc being its BC fractal dimension.
Let’s see how we can do something similar with time processes.

37The interested reader may also refer to Appendix 3, that discusses an alternative technique based
on the use of wavelets to characterize multifractality in time series.
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3.3.7.1 Family of Multifractal Exponents �.q/

In the case of a time random process, y.t/ we will consider the division of the time
series in Nb non-overlapping blocks of size T to play a similar role to that of the
spatial covering in fractals. Within each block i, we will define a non-normalized
weight given by38:

wi WD j y.ti C T/ � y.ti/j
T

D j�Ty.ti/j / Ths.ti/�1; (3.95)

where hs.ti/ is the local Holder exponent of y.t/ at ti for small T. Note that we
have included a T�1 in the weight on purpose, so that we can use the notation we
introduced for the increments of a process in Eq. 3.83. Next, we build the partition
function, also referred to as the structure function in this context,39;40 as:

N.T; q/ WD 1

Nb

NbX

iD1
wq

i / T�.q/; (3.96)

from which the family of multifractal exponents �.q/, can be obtained as:

�.q/ D lim
T!0

log N.T; q/

log T
: (3.97)

The family of multifractal exponents �.q/ calculated in this way has the
following properties:

• �.0/ D 0. Indeed, this follows from: N.T; 0/ D 1 / T0.
• for fBm with Hurst exponent H, �.q/ D q.H � 1/; 8q > �1. That is, it is a

decreasing linear function of q. This follows from the fact that hs.ti/ D H � 1

for fBm. Thus, N.T; q/ / N�1
b



NbTq.H�1/� / Tq.H�1/.

38Non-normalized weights must be used in the case of time processes since, otherwise, the
normalization,

PNb
iD1 j y.ti CT/�y.ti/j would eliminate the scaling of the weight for a monofractal

(fBm or fLm). The reason is that the support of the time process is a regular line (the temporal axis)
instead of a fractal with dimension D. As a result, Nb / T�1, instead of T�D .
39The name structure function originates from the theory of turbulence, back in the 1940s, when
Kolmogorov formulated his famous law that stated that the structure function of the turbulent
velocity fluctuations scaled as Sp.x/ WD hjV.r C x/� V.r/jpi / r�.p/, with �.p/ D p=3 [43].
In fact, much of multifractal analysis for time processes was originally developed and extensively
applied later to the study of fluid turbulence [19, 44, 45].
40The partition (or structure) function is sometimes introduced a little bit differently from how
we do it here. The main difference is that the factor T�1 that appears in Eq. 3.95 is omitted. As
a result, the generalized Hurst exponent is defined as H.q/ D �.q/=q. The equations that give
the singularity spectrum (Eqs. 3.102 and 3.103) then become h�

s .q/ D d�=dq and f .h�

s .q// D
qh�

s .q/� �.q/C 1.
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• for fLm with Hurst exponent H, it also happens that �.q/ D q.H � 1/ but only
for �1 < q < ˛, being ˛ the tail-index of the Levy noise driving fLm. The sum
of powers of the weight would diverge if q is equal or larger than ˛, as expected.

• a time process is multifractal41 if �.q/ has a more complicated (i.e., nonlinear)
dependence on q. It is traditional to define the generalized Hurst exponent as,

H.q/ WD �.q/

q
C 1: (3.98)

As expected, H.q/ D H; 8q > �1 for fBm with Hurst exponent H, and for fLm
with the same Hurst exponent, as long as �1 < q < ˛.

3.3.7.2 Singularity Spectrum f.hs/

We will continue with the analogy with spatial fractals and derive next an expression
for the singularity spectrum, f .hs/, that gives the fractal dimension of the subset
formed by all points on the temporal axis where the local Holder exponent of the
time process is hs or, in other words, the moments in which singularities with that
Holder exponent happen. To do so, we rewrite the partition function as:

Nb � N.T; q/ D
NbX

iD1
wq

i �
Z

dhsp.hs/T
�f .hs/Tq.hs�1/ � T.�.q/�1/: (3.99)

The explanation for the formation of the integral is the same that we gave in the
case of spatial fractals (see Sect. 3.2.2). To rewrite the sum over blocks that forms
the partition function as a sum over fractal sets of points with Holder exponent hs

that have a fractal dimension f .hs/, we simply have to multiply the fraction of the
temporal axis occupied by each set, �.hs/dhs, by the contribution of the region to the
integral, T�f .hs/, times the weight associated to it, Tq.hs�1/. Since we are interested
in the dominant part of the integral, this will come from the value of hs, that we will
call h


s .q/, that minimizes the exponent qhs � f .hs/. It is given by the solution of,

d

dhs
Œq.hs � 1/� f .hs/	 D 0 H) df

dhs
.h


s .q// D q: (3.100)

We do not need to find the solution to this equation now. Instead, we will assume
that h


s .q/ is known, which allows us to relate �.q/ with the singularity spectrum:

q.h

s .q/� 1/� f .h


s .q// D �.q/ � 1; (3.101)

41Some authors define multifractal as any instance in which H.q/ ¤ H; 8q. Thus, fLm is then
considered as multifractal, since H.q/ ¤ H for q � ˛. We do not adhere to this practice.
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that can be easily inverted, by differentiating both sides with respect to q, and then
use Eq. 3.100 to get:

h

s .q/ D 1C d�

dq
.q/ (3.102)

f .h

s .q// D q.h


s .q/� 1/� �.q/C 1: (3.103)

This solves the problem completely. Indeed, this pair of equations estimate, for
each value of q, the dominant value of the Holder exponent that contributes to the
partition function, as well as the fractal dimension of the fractal subset formed by
all regions in the time axis with that local Holder exponent. Thus, by varying q,
obtaining �.q/ and using Eqs. 3.102 and 3.103, we can quantify the spectrum of
fractal dimensions of the subsets with Holder exponent hs that are intertwined to
form the multifractal time process.

Note that f .hs/ � 1, since it cannot exceed the dimension of the embedding
space, the real line, which is one. It is also reassuring to note that, in the case of fBm
with H as its Hurst exponent, h


s .q/ D H; 8q > �1, as verified by substituting
�.q/ D q.1 � H/ in Eq. 3.102. Also, that the fractal dimension of the subset
containing all parts of the temporal axis where hs D H (the whole axis, in the case
of fBm!) is given by f .hs D H/ D 1, as it should be. The same conclusion applies
also to fLm with H as its Hurst exponent, although only for �1 < q < ˛. Therefore,
as it was the case with spatial multifractals, a broad singularity spectrum is again a
sign of multifractality, with its width quantifying the degree of multifractality of the
time process.42

3.4 Techniques for the Practical Determination
of Scale-Invariance

After having discussed the theoretical fundamentals of scale-invariance in both
spatial objects and time processes, we move the focus next towards the practical
characterization of the scale-invariance in time series.43 Experimental data are often
the result of sampling some quantity at a certain rate. The outcome is a discrete
temporal record,

fYk; k D 1; 2; : : : g ; (3.104)

42One must however be careful, since the spectrum of discrete realizations of fBm and fLm also
have a finite width, caused by their discreteness. We will come back to this issue in Sect. 3.4.3.
43For spatial objects, the box-counting procedures discussed in Sect. 3.2 are very good to calculate
fractal dimensions and the multifractal spectrum. We will not illustrate them here, though.
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where the index k plays the role of a discrete time. In order to decide whether the
data set exhibits scale-invariance, one often tries to determine whether it resembles
(or not) a self-similar process such as fBm or fLm. As we already mentioned, two
main possibilities exist. Namely, one can choose to proceed by analyzing the time
series Y directly or by examining instead the properties of its ordered increments.

In what follows we discuss several simple techniques that can be used to analyze
both the signal and its increments, that will be assumed to be invariant under time
translations, based on the examination of the scaling properties of their moments.
Readers should be aware that other popular techniques also exist to determine self-
similarity. Some of them will be discussed in Chap. 4, since they are intrinsically
related to the concept of memory.44 In addition, we have collected some basic
information about other popular techniques such as detrended fluctuation analysis
(or DFA) in Appendix 2 and wavelet analysis in Appendix 3. DFA, in particular,
has the nice feature of being applicable to both the signal and its increments.

3.4.1 Analysis of Non-stationary Processes

In principle, the detection of scale-invariance in a process reduces to the determina-
tion of whether its propagator resembles Eq. 3.67 for some suitable function ˚ and
some exponent H. We could do even less45 and just try to ensure that the moments
of the process scale according to Eq. 3.70, for some value of the self-similarity
exponent H.

In any case, sufficiently good statistics will be necessary. Since a self-similar
process is never stationary,46 good statistics however require access to a sufficiently
large number of realizations.47 Often, this can be a problem. This can be partially
ameliorated in the case that the process is translationally invariant in time and the
data set is long. Then, one could try to partition the time record in several pieces
and consider each of them as a different realization. We will also discuss how to
implement this procedure in what follows.

44In particular, we will discuss techniques that determine self-similarity through the analysis of the
autocorrelation function of the time process (Sect. 4.4.1), its power spectrum (Sect. 4.4.2) or the
so-called rescaled range (R/S) analysis (Sect. 4.4.4).
45The determination of ˚ is often useful in itself, since it allow us to classify the process under
investigation even further, perhaps relating it to fBm (if ˚ D Gaussian) or fLm (˚ D symmetric
Lévy).
46One should always start by checking whether the provided dataset is stationary or not. If it is, the
process cannot be self-similar, although its increments might be. We will provide some techniques
to test stationarity later in this section.
47If the process is not stationary, temporal and ensemble averaging are no longer equivalent!
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3.4.1.1 Moment Scaling

The easiest test for scale-invariance is to compute the moments of the time series
for each value of time and see whether they scale with the elapsed time as a H-ss
process would (Eq. 3.70). Referring to each available realization by the superscript
r, that is assumed to run from 1 to Mr, one just needs to compute the ensemble
average:

mq
k WD hj Yk � Y1jqi D 1

Mr

MrX

rD1
j Y.r/k � Y.r/1 jq; k D 1; 2; � � � ;N (3.105)

for q > �1. Here, N is the number of points available. If these moments scale as,

mq
k / ke.q/; e.q/ ' qH; (3.106)

for some exponent H, the data resembles that of an H-ss process. In theory, the
scaling should hold for arbitrarily large q. This is not usually the case, though.
Due to the finiteness of the record, the lack of statistics will make that the scaling
eventually fails. Also, if the statistics of the data are Lévy-like, with tail-index ˛, the
scaling should fail for q � ˛.

Before showing some actual tests, it is worth discussing how to break a
single time record into independent pieces to improve statistics. The idea is to
take advantage of the fact that only the first k points of the series are used to
evaluate Eq. 3.105 up to time k. The rest of the record is left unused. However, if we
assume that the process is invariant under temporal translations, we could have also
estimated that moment using the values of the process from the (kC1)-th to the (2k)-
th iteration, or from the .2k C1/-th to the .3k/-th, and so forth. Therefore, one could
produce more estimates of the same moment by breaking the data set into non-
overlapping blocks of size k, for each value of k. Thus, we can better approximate
the moment at time k by averaging over all of the blocks,

mq
k WD 1

Mr

MrX

rD1

2

4 k

N

N=kX

bD1
j Y.r/bk � Y.r/.b�1/kC1jq

3

5 ; k D 1; 2; � � � N; (3.107)

that remains meaningful even for Mr D 1, for k � N since, clearly, block-averaging
only helps to provide significant additional statistics as long as N=k � 1.

To illustrate the method, we apply it first to Mr D 15 independent realizations of
a record with 10;000 values generated by a numerical algorithm that approximates
fBm with any prescribed Hurst exponent (see Appendix 1). In this case, we use
H D 0:8 (see Fig. 3.18). The first ten integer moments, computed using Eq. 3.107,
are shown as a function of k in Fig. 3.19. It is apparent that, up to approximately
q ' 8, the scaling predicted by Eq. 3.70 holds rather well, with H ' 0:82 ˙ 0:02.
As expected, the scaling deteriorates for higher moments due to the finiteness of
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Fig. 3.18 Time traces of five of the fifteen realizations of fBm generated with a prescribed
exponent H D 0:8 and used to estimate the Hurst exponent using the moment method

our temporal record, which misrepresents the statistics of events with very low
probabilities (of the order of 1=N or lower). It is also apparent from Fig. 3.19 that
all moments eventually deviate from the scaling for sufficiently large k due again to
lack of statistics. The sooner, the higher q is.

Next, we carry the same exercise on a 10;000-long data series generated using
a numerical algorithm that generates fLm with prescribed tail index and Hurst
exponent (see Appendix 1). In this case, ˛ D 1:5 and H D 0:8 have been chosen (see
Fig. 3.20). The moments obtained using Eq. 3.107 are shown in Fig. 3.21 for several
real values of q between 1 and 3. The result is rather interesting, since only the for
0 < q < 1:5 do the moments appear to scale with the expected Hurst exponent,
H D 0:78 ˙ 0:03. For larger values of q, the scaling exponent is a much lower
H ' 0:20 ˙ 0:02. As advertised earlier, this is a consequence of the lack of finite
moments for q � ˛ of the fLm with tail-index ˛. In theory, the fat tail makes
the integral that defines Cq in Eq. 3.70 to become infinite. In practice, however, the
divergence does not take place because the finiteness of the data record effectively
truncates the integral to the largest value present in the part of record used to estimate
the moment. Instead, Cq becomes a function of k since, as we increase the part of
the record used by increasing k, even larger values will eventually appear that are
never negligible in the case of Lévy statistics.



3.4 Techniques for the Practical Determination of Scale-Invariance 149

Fig. 3.19 First ten integer moments estimated using Eq. 3.107 using 15 independent realizations
of fBm generated with a nominal Hurst exponent H D 0:8. Above, left: The exponents obtained
from fitting the first eight moments satisfy e.q/ � .0:82˙ 0:02/ 	 q

3.4.1.2 Determination of ˚

In order to determine the shape of the function ˚ that appears in Eq. 3.67 from the
data, we proceed by computing the pdf of the displacement from the initial location
reached by iteration k using all the realizations available. Since k is arbitrary,
the statistics can be improved by including displacements for different values of
k after having rescaled them in time by multiplying each displacement by k�H ,
where H is the Hurst exponent obtained from the moment analysis. Since we are
also assuming that the process is invariant under temporal translations, one could
also break the record into non-overlapping blocks of size k, and treat them as
independent realizations that can provide additional estimates for the displacement
at time lapse k. The results of applying this procedure on both the generated fBm
and fLm data are respectively shown in Figs. 3.22 and 3.23. We have used the
temporal range k 2 Œ2; 500	, as well as non-overlapping block averaging. The
resulting pdfs, calculated using the CBC method (see Sect. 2.4), are very close to
the Gaussian/Lévy pdfs prescribed at the generation of the synthetic data. The much
larger significance of extreme events for the Lévy pdfs is apparent, however, in the
fact that the tails are rather roughly resolved (see Fig. 3.23).



150 3 Scale Invariance

Fig. 3.20 Time traces of five of the fifteen realizations of fLm (˛ D 1:5) generated with a
prescribed exponent H D 0:8 and used to estimate the Hurst exponent using the moment method

3.4.2 Analysis of Stationary Processes

As it was mentioned previously, it is also possible determine whether a temporal
process is scale-invariant by analyzing the properties of its ordered increments and
testing whether they resemble those of fBm or fLm. The advantage of this approach
is that, since the increments should be stationary, temporal and ensemble averaging
are equivalent, which facilitates the estimation. To generate the increments with
unitary spacing of the presumed self-similar time series, f Yk; k D 1; 2; � � � ;Ng,
one just need to compute:

�Y.1/kC1 WD YkC1 � Yk; k D 1; 2; � � � ;N � 1: (3.108)

The original signal could be recovered via the inverse transformation,

Yk D
kX

jD1
�Y.1/j : (3.109)

where we have defined�Y.1/1 D Y1.
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Fig. 3.21 Several q-moments between 1 and 3 estimated using Eq. 3.107 for 15 independent
realizations of fLm (˛ D 1:5) generated prescribing a nominal Hurst exponent H D 0:8. Above,
left: The exponents obtained satisfy e.q/ D .0:78˙ 0:03/ 	 q, but only if restricted to q < ˛

We will also need to generate increments with a time spacing larger than one.
In analogy to how we defined them for fGn/fLn, we will compute them using:

�Y.M/j WD 1

M



YMjC1 � YM. j�1/C1

�
; j D 1; 2; � � � ;Nb: (3.110)

Here, Nb D N=M is the number of non-overlapping blocks of size M in the series.
With the help of Eq. 3.109, they can also be expressed as,

�Y.M/j D 1

M

MjX

kDM. j�1/C1
�Y.1/kC1; j D 1; 2; � � � ;Nb: (3.111)

Thus, the increment of spacing M is equal to the non-overlapping block-average of
the original increment series using blocks of size M.
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Fig. 3.22 Estimate of ˚ (Eq. 3.67) for the generated fBm process. A Gaussian with width w '
1:25 is obtained, that should be compared with the prescribed ˚ in generation, that was a Gaussian
with w ' 1:248. Since the probability of large displacements decrease very quickly for fBm, the
15 realizations used are already sufficient to resolve the function quite clearly

3.4.2.1 Test of Stationarity

Once the increments have been computed for arbitrary spacing, one needs to confirm
that they are indeed stationary.48 The reason is clear, if�Y is not stationary, Y cannot
be H-sssi. However, testing for stationarity can be rather involved. Although there

48Sometimes, experimental data can be “contaminated” by slow-varying trends that mask the
stationarity of a fast-varying component. For instance, one could have an stationary process
superimposed with one or several periodic processes. Think, for instance, of fluctuations in a
turbulent fluid which is itself rotating! In order to be able to check for the stationarity of the
faster process (or the self-similarity of its integrated process), the periodic trend must be removed
first. This could be done by applying some (high-pass) digital filter in order to remove the lower
frequencies associated to the rotation. In other cases, the trend is due to a slowly varying external
drive. This often happens when measuring turbulent fluctuations in a tokamak reactor while the
plasma profiles are ramping up or down. In this case, removing the trend requires the subtraction
of the running-average of the data, that should be calculated using a box with a size of the order of
the characteristic time of the drive variation. In general, it may be difficult to differentiate between
actual trends and features of the process of interest. This is, for example, one of the limitations of
the DFA technique (see Appendix 2). As suggested by the previous examples, some knowledge of
the dynamics is usually needed to guide our hand when dealing with trends.
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Fig. 3.23 Estimate of ˚ (Eq. 3.67) for the generated fLm process. A symmetric Lévy with tail
index ˛ ' 1:4 provides the best fit, whilst the prescribed ˚ in generation was a Lévy law with
tail-index ˛ D 1:5. The small number of realizations (Mr D 15) is the main cause for not having
any that explored the left tail more deeply

are some formal tests,49 we will assume that, for our purposes, the data is stationary
if one can show a reasonable independence with time of both mean and variance. In
order to check this, we proceed by splitting the data in 1 � Nb � N blocks of size
M D N=Nb, and constructing the mean within each block:

�b D 1

M

MX

kD1
Y.b�1/MCk; b D 1; 2; � � � Nb (3.112)

and its variance:

�2b D 1

M

MX

kD1



Y.b�1/MCk � �b

�2
; b D 1; 2; � � � Nb: (3.113)

49For instance, one could mention the Dickey-Fuller test, the Kwiatkowski-Phillips-Schmidt-Shin
test or the Phillips-Perron test, that are widely used in fields such as econometrics [46]. Most of
them are however applicable only to Gaussian random processes.
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Fig. 3.24 Block-averaged means and variances calculated for one 10;000-point realization of fBm
with H D 0:8. Left: using Nb D 20 (M D 500); right: using Nb D 200 (M D 40). Theoretical
values for the mean (D 0) and variance (D 2) are shown in dashed lines

Often, a simple plot can then be used to test for (a reasonable) stationarity of
the data. We have illustrated the procedure by computing mean and averages, for
two different block sizes, for the non-overlapping block partition of one of the fBm
realizations50 used previously (Fig. 3.24).

3.4.2.2 Moment Scaling

Once the stationarity of the �Y series has been established, we can test whether it
behaves as the series of increments of an H-sssi process would. It is sufficient with
proving that the moments of the one-point pdf of the �Y series, upon rescaling,
satisfy Eq. 3.87. Or, in other words, that for q > 0,

˝j�Y.M/jq
˛

hj�Yjqi ' N�1
b

PNb
iD1 j�Y.M/i jq

N�1PN
iD1 j�Yijq

D Me0.q/; (3.114)

and that e0.q/ D q.H � 1/, for some value of the exponent H. The advantage of
dealing with increments, instead of with the integrated process, becomes now clear.
Although the brackets in Eq. 3.114 would require to perform an ensemble average at
time k, the stationarity of the increments have allowed us to replace the ensemble
average by a temporal average over all available blocks. Thus, we can carry out the
moment calculations using just one (sufficiently long) realization.

To illustrate the method, we apply it first to one of the 10;000 point long
realizations of fBm that were used previously, and that were generated with H D 0:8

(see Fig. 3.18). The increment series �YM are constructed according to Eq. 3.111.

50In the case of fLm, one should always apply the stationarity test on a finite moment. That is,
using hjxjqi with 0 < q < ˛!
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Fig. 3.25 First six integer moments, normalized according to Eq. 3.114, for the increments of one
single realization of fBm with 10;000 values generated with a nominal Hurst exponent H D 0:8.
Above, left: The exponents obtained from fitting the first six moments satisfy e0.q/ � .0:22 ˙
0:01/ 	 q, which yields a Hurst exponent H D 0:78˙ 0:01

The ratios that appear in Eq. 3.114 have been evaluated for the first six integer
moments. They are shown in Fig. 3.25 as a function of the block size M. The scaling
predicted by Eq. 3.114 holds rather well,51 with e0.q/ ' .0:22˙ 0:01/q, that gives
a Hurst exponent H D 0:78 ˙ 0:01, quite close to the nominal value. This proves
that the integrated process is, indeed, H-sssi.

Next, we apply the same method to one of the 10;000-point long realizations of
fLm generated with ˛ D 1:5 and H D 0:8. Again, we construct the increments
�Y.M/ and calculate the ratios in Eq. 3.114, but this time for a range of real q values
between 1 and 3. The results are shown in Fig. 3.26. They prove that the integrated
process is indeed H-sssi. As was the case with fLm (see Fig. 3.21), only the moments
satisfying q < ˛ scale adequately. In that range, we obtain an exponent e0.q/ D
0:24˙ 0:03, that corresponds to a Hurst exponent of H D 0:76˙ 0:03, pretty close
to the nominal one.

51The scaling however begins to deteriorate, in this case, for moments higher than 8, due to the
lack of sufficient statistics of the Gaussian tail within the 10;000 points available.
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Fig. 3.26 Several real moments of orders between 1 and 3, normalized according to Eq. 3.114,
for the increments of one single realization of fLm with 10;000 values generated with a tail-index
˛ D 1:5 and a nominal Hurst exponent H D 0:8. Above, left: The exponents obtained satisfy
e0.q/ D .0:24 ˙ 0:03/ 	 q only if restricted to q < ˛. The resulting Hurst exponent is H D
0:76˙ 0:03

3.4.2.3 Determination of the One-Point Pdf

The determination of the ˚ function that defines the propagator of the integrated
process (Eq. 3.67) becomes quite simple when using the increment series, since it
coincides with the one-point pdf of the M D 1 increments (see Eq. 3.85). That
is, the pdf of �Y. The results of calculating it for one realization of the generated
fBm and fLm series, using the CBC method (see Sect. 2.4), are shown in Figs. 3.27
and 3.28. A Gaussian is clearly identified for the fBm case, and a symmetric Lévy
with ˛ ' 1:4 for the fLm case, that is very close to the nominal value (˛ D 1:5).

3.4.3 Multifractal Analysis

It is sometimes observed that, while estimating the Hurst exponent H of a process
suspected of being self-similar by means of its moments,52 the exponent e.q/

52Or, when examining the behaviour of the moments of its increments when the spacing is varied,
one finds that e0.q/ ¤ qH, contrary to what Eq. 3.114 predicts for a self-similar process.
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Fig. 3.27 Estimate of the one-point pdf of fGn for the increments of the generated fBm process
(i.e., h D 1). A Gaussian with width w ' 1:43 is obtained, that should be compared with the
theoretically generated, a Gaussian with w D p

2

deviates from the linear relation, e.q/ D q.H � 1/ that self-similarity dictates
(Eq. 3.106). In some cases, this unexpected q-dependence can be attributed, as we
did in the previous subsection, to poor statistics or the lack of finite moments above
a certain value of q. In other cases, however, it may be a reflection of the fact that the
underlying dynamics are governed by a combination of processes whose importance
varies over time, thus producing a seemingly erratic succession of singularities that
do not correspond to a single Holder exponent.

We illustrate how to quantify the degree to which this happens by means of the
multifractal analysis (see Sect. 3.3.7) in this section. In particular, we will determine
both the family of multifractal exponents �.q/ and the singularity spectrum, f .hs/,
of several time series. We proceed as follows. First, we divide the N-point signal in
Nb non-overlapping blocks of size M D N=Nb. To each block we assign a weight,
given by (Eq. 3.95):

wi D
ˇ
ˇ
ˇ
ˇ
YMiC1 � YM.i�1/C1

M

ˇ
ˇ
ˇ
ˇ D

ˇ
ˇ
ˇ�Y.M/i

ˇ
ˇ
ˇ ; i D 1; � � � Nb; (3.115)
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Fig. 3.28 Estimate of the one-point pdf of fLn for the increments of the generated fLm process.
A symmetric Lévy pdf with tail-index ˛ ' 1:4 is obtained, that should be compared with the
theoretically generated, a symmetric Lévy pdf with ˛ D 1:5. The pdf is now smoother than in the
analysis for fLm done previously, in spite of the fact that we are using just one realization

where we have introduced the series of the block-averaged increments of the signal
(Eq. 3.111). The partition function (Eq. 3.96) is then built as:

N.Mk; qj/ D 1

Nb;k

Nb;kX

iD1
jwijqj D 1

Nb;k

Nb;kX

iD1

ˇ
ˇ
ˇ�Y.Mk/

i

ˇ
ˇ
ˇ
qj / M

�.qj/

k ; (3.116)

where the indices k and j run to produce all the different choices for M and q.
Similarly, Nb;k D N=Mk. The family of multifractal exponents �.q/ is estimated
by performing a least-squares-fit for each qj, concentrated on the smaller values of
M. Then, we find the dominant singularity for each qj with the help of Eq. 3.102,
that in discretized form becomes:

hs;j D 1C �.qjC1/ � �.qj�1/
qjC1 � qj�1

: (3.117)

Finally, the fractal dimension of the space occupied by those instants in the temporal
axis where the Holder exponent is hs D hs;j, is given by the discrete version of
Eq. 3.103:

f .hs;j/ D 1C qj
�
hs;j � 1

� � �.qj/: (3.118)
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Fig. 3.29 Partition function N.M; q > 0/ (Eq. 3.116) estimated for a realization of a synthetic
fBm process generated with a nominal H D 0:8. The fits used to estimate the exponents �.q/ are
shown in dashed red lines

We illustrate the procedure by applying it to the 10;000-point realizations of
synthetic fBm, with nominal exponent H D 0:8 that we used previously. The
resulting partition function, for selected values of q > 0 and M, is shown in
Fig. 3.29. It is clear from the figure that, the larger q is, the more visible the lack
of statistics at the tail becomes. The multifractal exponents �.q/ are then obtained
by fitting the resulting partition function, according to Eq. 3.116, for each value
of qj (see Fig. 3.30). The obtained multifractal exponents looks rather linear for
q > �1, as expected for a monofractal process like fBm. The generalized Hurst
exponent, calculated using Eq. 3.98, is almost constant in that region and equal to
H ' 0:8. However, for q < �1 the q-scaling changes completely, a consequence of
the divergence nature of those moments for the Gaussian distribution. In fact, to be
on the safe side, it is always advisable to restrict the multifractal analysis for q > 0.

This idea is reinforced by calculating the singularity spectrum for the synthetic
fBm (see Fig. 3.31). If all q values are included, one finds a very broad spectrum that
does not look monofractal. However, if only q > �1 are used, the resulting spectrum
is much more compact around H ' 0:8. In fact, the majority of the spectrum is
concentrated below that value, with just a few values scattered to the right of it, that
interestingly correspond to �1 < q < 0. Had we followed our own advice, with
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Fig. 3.30 Multifractal exponents �.q/ obtained by performing power-law fits on N.M; q/ (like
those shown in dashed red in Fig. 3.29) for the synthetic fBm with nominal H D 0:8. As seen
in the inset, the generalized Hurst exponent H.q/ D 1 C �.q/=q � 0:8 for q > 0, as expected.
However, the behaviour of H.q/ for q < �1 is rather different, being a consequence of the lack of
finite negative moments of the normal distribution for q � �1

Fig. 3.31 Singularity spectrum of the synthetic fBm with H D 0:8. A broad spectrum is obtained
(shown in red) if all q values are used. However, if only q > �1 are used, the spectrum (in blue)
piles against H D 0:8 from below, with a width of about �h � 0:03–0:05. The few blue points that
correspond to �1 < q < 0 are those few scattered to the right of H � 0:8
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Fig. 3.32 Multifractal exponents �.q/ obtained by performing power-law fits on N.M; q/ (like
those shown in dashed red in Fig. 3.29) for the synthetic fLm with nominal H D 0:8. As seen in
the inset, the generalized Hurst exponent H.q/ D 1C �.q/=q � 0:8 for 0 < q > ˛, as expected.
However, the behaviour of H.q/ for q < �1 or q > ˛ is rather different, being a consequence of the
lack of finite negative moments for q � �1, or moments of order q � ˛ of any Lévy distribution

calculations restricted to q > 0, the resulting spectrum would have had a width of
about .0:03–0:05/ to the left of H D 0:8.

We have also performed the same analysis on one of the fLm synthetic realiza-
tions generated with ˛ D 1:5 and H D 0:8. The resulting family of multifractal
exponents is shown, for positive and negative q’s, in Fig. 3.32. It is apparent that
�.q/ follows a linear scaling, within the range of q-values for which the symmetric
Lévy has finite moments (�1 < q < ˛), and yields a Hurst exponent H � 0:8 that
is consistent with the nominal value. This is illustrated in the inset, that shows the
generalized Hurst exponent. However, both for q < �1 and q � ˛, the scaling of
the multifractal exponents changes and the associated generalized Hurst exponent
departs from the nominal value. As with the case of fBm, this misbehaviour is
associated with the divergent moments of the Lévy for those values of q. This state
of things is also apparent in the singularity spectrum for fLm, shown in Fig. 3.33.
Again, a broad spectrum is obtained (in red) when all q-values are used. If the
allowed values are restricted to �1 < q < ˛, the spectrum is much narrower and
reminiscent of what we found for fBm. In particular, it piles from below against
H � 0:8, with a few points scattered above H D 0:8 that correspond to �1 < q < 0.
The width of the spectrum is, in this case, larger than for fBm, about .0:1–0:2/.
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Fig. 3.33 Singularity spectrum of the synthetic fLm with H D 0:8. A broad spectrum is obtained
(shown in red) if all q values are used. However, if only �1 < q < ˛ are used, the spectrum (in
blue) piles against H D 0:76 from below, with a width of about �h � 0:03–0:05. The few blue
points that correspond to �1 < q < 0 are those few scattered to the right of H � 0:76

3.5 Case Study: The Running Sandpile

We continue with the characterization of the sandpile started in previous chapters,
but focusing now on another popular diagnostic: the total amount of sand contained
in the sandpile. We will refer to this quantity as its global mass or total mass. It
is defined, at any given iteration k, as Mk D PL

iD1 hk
i , where L is the number of

sandpile cells and hk
i the height of the i-th cell at iteration k. We will use a sandpile

with L D 103, critical slope Zc D 200, toppling size when unstable NF D 20, rain
probability p0 D 10�4 and rain size Nb D 10. It must be noted that the figure-of-
merit .p0L/�1 � 10 � L, meaning that the probability of avalanche overlapping is
larger than for the sandpile we examined in Sect. 2.6 (see Problem 3.7).

In what follows, we will be interested in determining the scale-invariant charac-
teristics (if any) of the global mass M. Since we are in the sandpile steady state,
the mean and other moments of M will be time invariant. In order to construct a
time series that could be similar to a fractional noise, we first subtract the mean
value from the mass time series, and then divide it by its standard deviation. The
resulting time series, �M=� , is shown in Fig. 3.34 for 107 iterations. Clearly, it is
stationary, symmetric around zero, and its time trace seems rather irregular, with a
structure apparently rich in singularities.
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Fig. 3.34 Increments in the total amount of sand (normalized to its variance) contained in a
sandpile (L D 103, NF D 20, Zc D 200, p0 D 10�4 and Nb D 10) as it is advanced for 107

iterations after saturation. Inset: mass increments for a period of 106 iterations. The extension of
the smallest block size considered, M D 20;000 is marked for reference purposes

In order to investigate whether this record of mass increments shares the
properties of either fGn or fLn, we will apply the methods discussed in Sect. 3.4.2.
It is interesting to note, before starting, that a closer look shows that the singularities
all appear to be very similar in shape, suggesting that the signal might be close to a
monofractal (see the inset in Fig. 3.34).

Most interestingly, the time series only appears to experience significant vari-
ations over periods longer than a few thousand iterations. For smaller times, the
signal seems pretty continuous. This observation provides a nice illustration of
something that is often found in natural systems, in contrast to both the fGn and
fLn mathematical models. Meaningful scales are limited from below and from
above in a natural systems, while fGn and fLn exhibit self-similarity for all scales
instead. In the sandpile the minimum scale is set by the cell size; the maximum,
by the sandpile size. It is only in between these scales that self-similarity can be
established. We often refer to this intermediate range of scales as the self-similar
mesorange (see also the discussion in Sect. 1.3.2). A mesorange will also exist for
time scales. In fact, the boundaries of the mesorange will depend on the quantity we
examine, even if all of them are measured in the same system.



164 3 Scale Invariance

Fig. 3.35 Estimate of the one-point pdf of the normalized increments of sandpile global mass.
A Gaussian with width w ' 1:01 is obtained. The value of the width is not surprising, since
increments were normalized to their variance before starting the analysis

The existence of a mesorange becomes apparent after applying the methods
described in Sect. 3.4.2 to the time series of the normalized, demeaned global mass
increments. First, we have computed the ˚ function (see Eq. 3.67) for the �M=�
time series. It turns out to be well approximated by a Gaussian (see Fig. 3.35). Since
all positive moments of the Gaussian exist, we have then examined the rescaling
properties of the moments of the block-averaged mass increments, using blocks
of size M (Eq. 3.114). The first ten integer moments are shown in Fig. 3.36. The
self-similar range is apparent in this figure, that does not show straight lines for all
M (compare with the fBm case, shown in Fig. 3.26), but only within the range of
M values that lies approximately between (30,000–800,000) iterations. Within this
range, a power-law fit yields e0.q/ � .�0:17 ˙ 0:02/q, from which a value of the
self-similarity exponent H � 0:83˙ 0:02 can be inferred. Had this procedure been
applied instead over the range of (1–30,000) iterations, we would have missed the
mesorange and the results would have been rather different (see Problem 3.8).

It thus seems that, across the mesorange that extends in this case between
(30,000–800,000) iterations, the increments of the global mass of the sandpile
resemble fGn with a Hurst exponent H � 0:83. We can check whether such
conclusion is robust by applying the techniques discussed in Sect. 3.4.3 to test for
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Fig. 3.36 First ten integer moments, normalized according to Eq. 3.114, for the increments of the
sandpile total mass. Above, left: The exponents obtained from fitting the first ten moments over
the range M D 40;000–600;000 satisfy e0.q/ � �.0:17˙0:02/ 	 q, which yields a Hurst exponent
H D 0:83˙ 0:02

multifractal behaviour. The structure function, N.M; q/ is shown in Fig. 3.37. It
has been computed according to Eq. 3.116, although restricting the values of M
to those that lie within the self-similar mesorange. It is apparent that the scaling
behaviour of the structure function for q > 0 seems pretty well described by a
power-law, similarly to what happened to fBm (see Fig. 3.32). The computation
of the generalized Hurst exponent (Eq. 3.98) yields a rather uniform value for the
exponent H.q > 0/ � 0:82–0:84, that is also consistent with monofractal behaviour.

Finally, we have also computed the singularity spectrum of the sandpile mass
increments by using Eqs. 3.117 and 3.118. Calculations are again restricted to the
mesorange (i.e., 30;000 < M < 800;000) and for q > 0. The result is that the
singularity spectrum of the time series is concentrated between H D 0:81–0:87 (see
Fig. 3.38). The width of the spectrum obtained is rather narrow and very similar to
that found for fBm. These results reinforce our previous conclusion regarding the
monofractal character of the time trace of the increments of the sandpile mass over
the mesorange.
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Fig. 3.37 Family of multifractal exponents �.q/ obtained by performing power-law fits on the
partition function N.M; q/ of the global mass increments of the sandpile over the range M D
40;000–600;000. As seen in the inset, the generalized Hurst exponent H.q/ D 1 C �.q/=q �
0:82–0:84 for q > 0. The behaviour of H.q/ for q < �1 is to be ignored, due to the lack of finite
moments of the Gaussian for q < �1

Fig. 3.38 Singularity spectrum of the increments of the total mass of the sandpile. By keeping
only the Holder exponents for q > �1, the spectrum (in blue) piles against H D 0:87 from below,
with a width of about �h � 0:04–0:07. The spectrum obtained when all q are included is shown
for comparison
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3.6 Final Considerations

In this chapter we have discussed the basic features of self-similarity and scale-
invariance, both in spatial objects and in time random processes. Several methods
have also been presented that can be used to estimate self-similarity exponents, all
of them based on the comparison of the data of interest with exact monofractal
mathematical models. Additional methods to estimate self-similarity exponents
will be presented in Chap. 4, since self-similarity is also intrinsically connected
to the idea of memory in complex systems. Finally, we have also shown that the
“monofractality hypothesis” may be challenged in practice by means of several
multifractal analysis techniques.

However, one of the most important concepts discussed in this chapter is that of
the mesorange. In real systems, as illustrated by the running sandpile, self-similarity
will always be limited by finite size effects. This will happen both at the smallest
scales (by the properties of the individual components of the system) and at the
largest scales (by the system size, lifespan, time to transverse the system, etc.). This
fact should never be overlooked when examining data from real systems, specially
while comparing them against mathematical models in which the scaling properties
are not limited.

Appendix 1: Numerical Generation of Fractional Noises

Various algorithms have been proposed in the literature to generate numerical
time series that approximate either fGn, or fLm with arbitrary tail-index ˛, for
a prescribed Hurst exponent H [36]. Here, we will discuss one that is based on
rewriting fBm (Eq. 3.71) and fLm (Eq. 3.89) in the form,

yH;˛.t/ D yH;˛.t0/C t0D
�.HC1=˛�1/
t �˛: (3.119)

This equation introduces a new type of operators known as fractional operators
[47]. Equation 3.119 will be formally introduced in Chap. 5 under the name of the
fractional Langevin equation (see Sect. 5.3.2). It is straightforward to show that it
reduces to fBm for ˛ D 2, and yields all symmetric fLms if ˛ < 2.

The operator that appears in the fractional Langevin equation is known as
a Riemann-Liouville fractional operator. They are integro-differential operators
defined as [47],

aDp
t f .t/ D

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

1

� .k � p/

dk

dtk

�Z t

a
dt0.t � t0/k�p�1f .t0/dt0

�

; p > 0

1

� .�p/

�Z t

a
dt0.t � t0/�. pC1/f .t0/dt0

�

; p < 0

(3.120)
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where k is the integer satisfying k�1 � p < k. They are called fractional derivatives
if p > 0, and fractional integrals if p < 0. An introduction to the basic features of
fractional operators53 will be given in Appendix 2 of Chap. 5. For now, it suffices
to say that fractional operators have many interesting properties. Among them, that
for p D ˙k, they coincide with the usual k-th order derivatives (C) or integrals (�)
and, for p D 0, with the identity. They provide interpolations between the usual
integrals and derivatives of integer order. Fractional operators were first introduced
by Gottfried von Leibniz, as early as 1697, although the form given in Eq. 3.120 was
not introduced until the middle of the eighteenth century by Bernhard Riemann and
Joseph Liouville.

We focus now on the properties of fractional operators that will allow us to
generate synthetic fBm and fLm data, following a method introduced by A.V.
Chechkin and V. Yu. Gonchar [48]. The first property is that, when acted on the right
by a normal derivative, they satisfy that (see Appendix 2 of Chap. 5, Eq. 5.135):

dm

dtm
� aDp

t f .t/ D aDpCm
t f .t/; (3.121)

for any positive integer m. Since fGn/fLn is essentially the derivative of fBm/fLm,
fGn/fLn can be obtained by applying a normal derivative to Eq. 3.119 to get:

�yH;˛ WD lim
h!0

�hyH;¸ D dyH;˛

dt
D t0D

�.HC1=˛�2/
t �˛: (3.122)

The second property of interest has to do with the relation between the Fourier
transforms (see Appendix 1 of Chap. 2 for an introduction to Fourier transforms)
of a function and its fractional derivative/integral (see Appendix 2 of Chap. 5,
Eq. 5.139)54:

F
�

aDp
t f .t/

� ' .�ı!/pOf .!/; (3.123)

where ı D p�1 and ! stands for the frequency. Applying the Fourier transform to
Eq. 3.122, one thus obtains:

�OyH;˛.!/ D
O�˛.!/

.�ı!/HC1=˛�2 : (3.124)

53We will discuss these integro-differential operators and their physical meaning at length in
Chap. 5, since they play an important role in the theory of fractional transport.
54Equation 3.123 is only exact if a D �1 [47]. However, we will ‘abuse’ the formula and assume
it as valid when a D t0, so that we can work out a reasonable algorithm to generate fGn/fLn series.
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Thus, in order to generate a synthetic fGn/fLn series with arbitrary Hurst expo-
nent H and tail-index ˛,55 a possible procedure is simply to (see Problem 3.5):

• generate a random Gauss/Lévy noise sequence (see Appendix 2 of Chap. 2);
• carry out a discrete Fast Fourier transform (FFT) of the noise series;
• divide each Fourier harmonic by the corresponding factor .�ı!/HC1=˛�2;
• and Fourier invert the result to get the desired, approximated fGn/fLn series.

In addition, fBm/fLm synthetic series with arbitrary exponents H and ˛ can
easily be obtained by numerically integrating the fGn/fLn series for the same
exponents that have been generated with this method. Or, by reusing the procedure
just described but dividing instead the Gauss/Lévy noise series by .�ı!/HC1=˛�1.

Appendix 2: Detrended Fluctuation Analysis

Detrended fluctuation analysis (or DFA) [49, 50] is a popular method that can be
applied to test for self-similarity in both stationary and non-stationary signals. In
order to introduce the method, let’s consider the series,

y D fyn; n D 1; 2; � � � ;Ng ; (3.125)

that might be stationary or not. The method considers first the associated integrated
motion,

Yn D
nX

iD1
yi � nNy; (3.126)

where the overall average of the motion, Ny D P
yi=N is removed.

Next, for every possible scale l > 0, the integrated motion is divided in (possibly
overlapping) windows of size l. Inside each of these windows, a local least-squared-
fit to a polynomial is done to capture the local trend. That is, if a possible linear
local trend is assumed,56 the fit would be against a straight line, my C b. The total
squared error, �2, for each window k is then given by:

�2k D 1

l

X

i2Wk

.Yi � imk � bk/
2 ; k D 1;N=l: (3.127)

55All synthetic fGn/fLn and fBm/fLm series used in this chapter have been produced in this way.
56There are different orders of DFA, distinguished by the order of the polynomial used to remove
the local trend. The one we just discussed is called DFA1, since it uses linear fits. DFAn, instead,
uses polynomials of order n.
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where Wk stands for the k-th window. The fluctuation value at scale l, F.l/, is given
by the average of the squared-root of the error over all windows Wk of size l:

F2.l/ WD l

N

N=lX

kD1
�2k : (3.128)

If the underlying process is self-similar once the trends have properly been
removed,57 it should happen that F.l/ � la, for some exponent a. The interesting
thing is that, if DFA is applied to fractional Gaussian noise, that is stationary, it is
found that

F.l/ � lH ; (3.129)

for all scales l >> ı, with H being the Hurst exponent that defines the associated
fBm. But, more interestingly, DFA could also have been applied directly to the
fractional Brownian motion signal itself, which is non-stationary. Then, one would
find that,

F.l/ � lHC1; (3.130)

so that the Hurst exponent can be obtained directly from fBm.
DFA can also be extended to probe for multifractality. The procedure is often

referred to as M-DFA [51]. The twist here is to calculate, instead of the squared
error per window, the quantity,

Fq.l/ D
2

4 l

N

N=lX

kD1

ˇ
ˇ�2k
ˇ
ˇq=2

3

5

1=q

: (3.131)

The generalized Hurst exponent is then defined by assuming the scaling,

Fq.l/ / lH.q/; (3.132)

that, for a monofractal58 (i.e., fGn), reduces to H.q/ D H, 8q. The same techniques
that were discussed in Sect. 3.3.7 to the estimation of the multifractal spectrum can
be used here on the H.q/ obtained from the application of MDFA.

57The removal of the hidden trends is where the subtlety of applying DFA correctly lies (see
Problem 3.9). Since in most cases trends are unknown, one could remove more (or less) than the
physically meaningful trends, thus affecting the actual process under examination. As it is the case
of all the other methods in this book, DFA should be handled with care. Some knowledge of the
underlying physics is always needed in order to be able to tell whether any trend that is removed is
actually meaningful and not a feature of the process under study.
58Most DFA practitioners do not consider fLn to be a monofractal either, since M-DFA yields that
H.q/ ¤ q for q � ˛. For instance, for fLm with H D 1=˛ it is found that H.q/ D 1=˛ for q < ˛
and H.q/ D 1=q for q � ˛ [51].
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Appendix 3: Multifractal Analysis Via Wavelets

Wavelets are another powerful technique to test for multifractal behaviour in time
series. We will not discuss the basics of wavelets at any length, since there are some
wonderful review papers and books available that discuss them much better than
what we could do here [44, 45, 52]. Instead, we provide just a brief introduction
to the topic, sufficiently long to clarify their relevance to the investigation of
multifractal features (see also Problem 3.10).

Wavelets were introduced in the mid 1980s as an extension of Fourier analysis
that permitted the examination of local properties in real time [53]. That is, while
Fourier analysis expresses an arbitrary function as a linear combination of sines and
cosines that are localized in frequency but not in time, the wavelet representation
expresses the function as a linear combinations of rescaled versions of a prescribed
basis function˚ , also called wavelet, that is localized both in frequency and in time.

The ˚-wavelet transform of a function, f .t/, at a scale r and time t is defined by
the integral [45]:

Of˚.r; t/ D C�1=2r�1=2
Z 1

�1
˚

�
t � t0

r

�

f .t0/dt0; (3.133)

where the constant C is defined by:

C WD
Z 1

�1
j O̊ .!/j2

j!j d!; (3.134)

where O̊ .!/ is the Fourier transform (in time) of the wavelet basis function. Clearly,
C < 1, if ˚ is to provide a valid wavelet, which requires that O̊ .0/ D 0 (or, in
other words, that ˚ has a zero mean). Of˚.r; t/ can be interpreted as the part of f .t/
that contributes at time t to the scale r. A nice property of Of˚ is that, if:

j f .t C r/ � f .t/j � r˛; r ! 0; (3.135)

then

Of˚.r; t/ � r˛: (3.136)

That is, the local Holder exponent ˛ of f .t/ at any given time can be recovered by
the scaling of local wavelet spectrum with r at the same time.

Therefore, the wavelet analysis of a time process allows in principle the direct
determination of the local Holder exponent as a function of time, which opens up
many new avenues of characterizing multifractality. In addition, wavelet multifractal
analysis has been reported to be more robust (i.e., less sensitive to noise, for
instance) that some of the methods that we have discussed in this chapter. The use
of wavelets has also its own complications. A significant one is how to choose
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the more proper choice of the basis function, ˚ , in order to best characterize
singularities in time processes. Another one lies in the fact that the rescaled
wavelets that enter in the continuous formulation given in Eq. 3.133 do not form
an orthonormal set. Therefore, they provide a redundant representation whose
interpretation can sometimes be confusing. This problem can be partially resolved
through the introduction of discrete, orthonormal wavelet representations [44].

Problems

3.1 Scale Invariance: Power-Laws
Derive Eq. 3.4 from the Gutenberg-Richter law (Eq. 3.3).

3.2 Fractals: Cantor Set
Prove that the self-similar dimension of the Cantor Set is Dss D log.2/= log.3/.

3.3 Fractals: The Mandelbrot Set
Consider the quadratic recurrence zkC1 D z2k C z0 in the complex plane. Mandelbrot
set is composed of all the initial choices for z0 for which the orbit predicted by the
recurrence relation does not tend to infinity. Build a code to generate the Mandelbrot
set. Determine its BC fractal dimension.

3.4 Time Processes: Brownian Motion
Write a numerical code to generate Brownian motion trajectories in two dimensions.
Use the box-counting procedure and show that the BC fractal dimension of 2D
Brownian motion is equal to 2. That is, if given enough time, Brownian motion
would fill the whole plane.

3.5 Time Processes: Fractional Brownian Motion
Prove, by exploiting the self-similarity of fBm, that the fractal dimension of the time
traces of fBm is given by D D 2 � H.

3.6 Generation of Synthetic fGn/fLn Series
Write a code that implements the algorithm described in Appendix 1 in order to
generate synthetic series of fGn/fLn with arbitrary tail-index ˛ and Hurst exponent,
H. Implement the possibility of generating fBm/fLm as well.

3.7 Running Sandpile: Scaling Behaviour for Various Overlapping Regimes
Use the sandpile code (see Problem 1.5) to generate time series for the total mass of
the sandpile over the SOC state using L D 1000, Nf D 30, Zc D 200, Nb D 10, one
for each the following values of p0 D 10�6, 10�5, 10�3 and 10�2. Repeat the scale-
invariance analysis discussed in Sect. 3.5 for each cases. What is the mesorange for
each case? How does the monofractal behaviour change as a function of the figure-
of-merit that controls avalanche overlapping, .p0L/�1?

3.8 Running Sandpile: Scaling Behaviour Below the Mesorange
Use the sandpile code (see Problem 1.5) and generate a time series for the total mass
of the sandpile over the SOC state using L D 1000, Nf D 30, Zc D 200, Nb D 10
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and p0 D 10�4. Then, repeat the scale-invariance analysis discussed in Sect. 3.5, but
for the range of block sizes 1 < M < 30;000. How are the results different from
what was obtained within the mesorange?

3.9 Advanced Problem: Detrended Fluctuation Analysis
Write a code that implements DFA1 (see Appendix 2). Then, use the code to
estimate the Hurst exponent of fGn series generated with Hurst exponents H D
0:25; 0:45; 0:65 and 0:85 (see Problem 3.6). Compare the performance of DFA
with the moment methods discussed in this chapter, both for the fGn series and their
integrated fBm processes.

3.10 Advanced Problem: Wavelet Analysis
Write a code to perform the local determination of the Holder exponent using
wavelets (see Appendix 3). Then, use the code on a synthetic fBm generated with
nominal exponent H D 0:76 and show that the process is indeed monofractal, and
the instantaneous local Holder exponent is constant and given by H. Refer to [45]
to decide on the best option for the wavelet basis function.
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Chapter 4
Memory

4.1 Introduction

Memory is a term that often appears in discussions about complex dynamics. What
is it meant when a scientist says that a certain complex system exhibits ‘memory’?
More often than not it is meant that the past history of the system has some
meaningful influence on its future evolution. Let’s consider, for instance, the case
of earthquakes. It has often been claimed that the process of stress relaxation at a
fault that can lead to the triggering of earthquakes exhibits long-term memory in the
sense that when and where the next earthquake will happen, or how much stress and
energy it will release, are somehow affected by how large past earthquakes were, as
well as when and where they took place [1].

Although this imprecise explanation of the term ‘memory’ grasps the essence of
the idea, the concept must be specified much more if one is to apply it meaningfully
to real systems. An element that needs to be considered is the concept of scale-
invariance, that was discussed in Chap. 3, and that is a typical characteristic of many
complex systems. One would expect that if memory is present in them, it should
somehow inherit and exhibit some sort of scale-invariance. Or, in other words, that
memory in a complex system should lack any characteristic timescale. Going back
to the case of earthquakes previously mentioned, this would imply that it is not just
the few earthquakes triggered during the last few weeks, months or even years that
are important to determine when the next earthquake will happen, but that all the
past history of the fault system would have something to say as well.

We have collected all these somewhat imprecise ideas within a working definition
of memory in a complex system that we will profusely use throughout this chapter:
the ability of past events to act as an influence on future dynamics, that extends in
time in a scale-invariant fashion, being only truncated by finite-size effects, such
as the system size or lifetime. We will try to make each of the terms used in this
sentence more mathematically precise in the next sections.
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4.2 Memory and Correlation

We will start the discussion by describing first the mathematical tools that are
traditionally used to detect and quantify the presence of memory in time processes.
Or, more precisely, in stationary random processes (see Sect. 3.3.5). Readers should
be aware that all these tools make an extensive use of averaging procedures. It is
only fair to warn them at this point that, although the construction of these tools
is often done using ensemble averages, we will shift the weight towards temporal
averaging as soon as possible, thus implicitly assuming a large degree of ergodicity
in the system under study (see discussion at the start of Chap. 2). The reason for this
change is simply that temporal averaging is what most scientists can and do apply
to real data.

The first tools that will be discussed are the popular autocorrelation function
(Sect. 4.2.1) and its associated power spectrum (Sect. 4.2.2). Then, we will describe
the less known autodifference (Sect. 4.2.3), that is one of the options to replace the
autocorrelation function in cases in which the process exhibits divergent power-law
(i.e., Lévy) statistics. Finally, we will discuss the use of waiting-time statistics
(Sect. 4.4.5). We will always try to make as clear as possible the distinction between
situations where a finite memory timescale may be found and those in which it
is absent. It is only in the latter cases that one can actually speak of a “complex
memory”.

4.2.1 The Autocorrelation Function

We will start introducing the autocorrelation function in the language of ensemble
averages, as it is often done in theoretical texts. It is intimately related to the
statistical covariance between two random processes.

4.2.1.1 Ensemble Average Definition of the Covariance Function

The covariance between two random processes, y1.t/ and y2.t/, is defined as the
expected value1 [2, 3]:

CoŒ y1;y2	.t1; t2/ WD h y1.t1/y2.t2/i � h y1.t1/i h y2.t2/i : (4.1)

The covariance is a rather interesting quantity in itself since, whenever the processes
y1 and y2 are independent of each other, its covariance vanishes.2 Indeed, one can

1Expected values were introduced in Sect. 2.2.5 (see Eq. 2.11).
2However, the reverse is not true in general, since the covariance may also vanish in cases in which
the processes are not independent [3].
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easily calculate the expected value in this case by using the fact that the probability
of two independent events is then given by the product of the probabilities of each
event3:

h y1.t1/y2.t2/i D
Z

dy1

Z

dy2 p. y1.t1/[ y2.t2//y1.t1/y2.t2/

D
Z

dy1p. y1.t1//y1.t1/
Z

dy2 p. y2.t2//y2.t2/

D h y1.t1/i h y2.t2/i H) CoŒ y1;y2	.t1; t2/ D 0; 8t1; t2: (4.2)

4.2.1.2 Ensemble Average Definition of the Autocorrelation Function

The autocorrelation function of a stationary random process is in essence the
statistical covariance of the process with a time-delayed copy of itself. It is defined,
for any time lag � > 0, as:

AcŒ y	.�/ WD CoŒ y;y	.t; t C �/

CoŒ y;y	.t; t/
D h y.t/y.t C �/i � h y.t/i h y.t C �/i

h y.t/2i � h y.t/i2 : (4.3)

Here, the numerator is the covariance of the process at time t with a copy of itself
delayed by a time lag � . The denominator reduces to the variance of the process at
time t. It should be noted that, thanks to the assumed stationarity of the process, the
autocorrelation defined in Eq. 4.3 is independent of t.

4.2.1.3 Main Properties of the Autocorrelation Function

The autocorrelation function possesses some important properties. In particu-
lar [4]:

1. it satisfies that jAcŒ y	.�/j � 1, with equality taking place for � D 0;
2. it is symmetric with respect to the lag value. That is, AcŒ y	.�/ D AcŒ y	.��/. That

is the reason why we considered only � > 0;
3. it is non-negative definite in the sense that:

lim
T!1

Z T

0

AcŒ y	.�/d� � 0; (4.4)

3That is, p.A [ B/ D p.A/p.B/. In fact, the degree of dependence between two events is measured
through the probability [4]: p.A \ B/ WD p.A [ B/ � p.A/p.B/, that somewhat resembles the
covariances defined in Eq. 4.1. Naturally, p.A \ B/ D 0 if A and B are independent.
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assuming that the limit of the integral is finite. This limit has an important
physical interpretation in several contexts, as we will see in the next subsections.
The existence of the integral requires, in the first place, that,

lim
�!1 AcŒ y	.�/ D 0; (4.5)

which is usually the case for random processes. Secondly, it must also decay
faster than ��1 for � � 0, which not always happens.

4.2.1.4 Memory and Statistical Dependence

The autocorrelation is useful to investigate the presence of memory or, more pre-
cisely, statistical dependence in a process because it inherits from the covariance
the following properties:

• if AcŒ y	.�/ D 0 for all � > 0, it means that all the values of the process are
independent of each other. That is, the process lacks any kind of memory.

• if AcŒ y	.�/ D 0; 8� > �c, it implies that the process becomes independent of its
past history only after a lapse of time �c. Or, in layman’s terms, that the process
has no memory about itself beyond a lapse �c, that provides a characteristic
memory timescale.

• if AcŒ y	.�/ � ��a; a > 0; � � 0, one might suspect that memory remains
present in the system for all times in a self-similar manner, as made apparent by
the power-law dependence (although some restrictions on the valid values of the
exponent a apply, as will be discussed soon), thus lacking any memory timescale.

In practice, things are never this clear-cut. For instance, the autocorrelation is
almost never exactly zero. Therefore, one has to decide which threshold value
is a reasonable one, below which one can safely consider that autocorrelation as
negligible. Similarly, the presence of power-law decays is not easy to detect either,
since the tails of the autocorrelation are typically very noisy due to lack of statistics.
We will discuss how to deal with all these aspects in what follows.

4.2.1.5 Positive and Negative Correlation

Although the presence of memory (or dependence) can be inferred—between values
of a process separated by certain time lag �—from a non-zero autocorrelation value,
much more can be said when considering the actual autocorrelation value, that could
be anywhere within Œ�1; 1	. What does each of those values mean? Let’s review each
possibility:

• AcŒ y	.�/ D 0, as already discussed, implies that any two values of the process
separated by the time lag � are statistically independent of each other. We often
use the term uncorrelation to describe this situation.
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• AcŒ y	.�/ D 1 is possible only if y.t C �/ D y.t/ for every t. That is, the process
and its shifted copy are identical! In this case, we speak of perfect correlation.
For random processes, this only happens for the trivial case of � D 0.4

• AcŒ y	.�/ D �1 only happens if y.t C �/ D �y.t/. In this case, one speaks of
perfect anticorrelation. This negative extreme value is however never reached
for random processes.5

• If 0 < AcŒ y	.�/ < 1, one usually speaks of positive correlations (or persis-
tence). This word is used because the process y.t/ and its shifted version, y.tC�/,
although not identical at every t, share the same sign (positive or negative) more
often than not. Or, in other words, it is statistically more probable that any two
values of the process separated by that time lag have the same sign.6

• Analogously, one uses the term negative correlations (or anti-persistence)
when �1 < AcŒ y	.�/ < 0. In this case, any two values of the process separated
by a time lag � have opposite signs more frequently than not.

4.2.1.6 Temporal Definition of the Autocorrelation Function

For stationary processes one is entitled to consider an alternative definition of the
autocorrelation function based on temporal averages (see Sect. 2.1). It is given by
the more familiar expression7:

AcŒ y	.�/ D lim
T!1

1

2�2y T

Z T

�T
dt . y.t/ � Ny/. y.t C �/� Ny/; (4.7)

4It may happen for � ¤ 0 for other processes that are not stationary and random; for instance, for
any periodic process when the lag � D nP, being n any integer and P the period of the process.
5Again, the extreme negative value can be reached for periodic processes when the lag is equal to
a semiperiod, � D ˙.n C 1=2/P, with n integer.
6The autocorrelation function (as does the covariance) quantifies statistical dependence, not causal
dependence. That is, it only tells us whether it is statistically more probable that two values share
a sign, not if the sign of the first value causes that of the second value. Assuming causal instead of
statistical dependence is a common misconception. It must always be kept in mind that although
causal dependence often translates into statistical dependence, the opposite is not always true.
Think, for instance, in the case in which two processes are caused by a third one. The first two
processes are statistically dependent, but there is clearly no causal dependence between them.
7The equivalence of Eqs. 4.7 and 4.3 for stationary processes can be made apparent by replacing
the ensemble averages in the latter by temporal averages:

AcŒ y	.�/ D

"

lim
T!1

1

2T

Z T

�T
dt y.t/y.t C �/�

�
1

2T

Z T

�T
dt y.t/

�2#

"

lim
T!1

1

2T

Z T

�T
dt y.t/2 �

�
1

2T

Z T

�T
dt y.t/

�2# : (4.6)

Then, one can easily reorder the terms in order to convert this expression into Eq. 4.7.
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where we have introduced the following notation for the temporal average and
variance of the process,

Ny WD lim
T!1

1

2T

Z T

�T
dt y.t/; �2y D lim

T!1
1

2T

Z T

�T
dt . y.t/ � Ny/2: (4.8)

It is also common to define the temporal definition of autocorrelation as,8

AcŒ y	.�/ D lim
T!1

1

2T

Z T

�T
dt y
.t/y
.� C t/; (4.9)

by introducing the rescaled variable y
.t/ WD .y.t/ � Ny/=�y that represents the
fluctuations of the original process with respect to its mean value, normalized to
its standard deviation.9

4.2.1.7 An Example: Plasma Turbulent Fluctuations

To illustrate the differences between the theoretical results just presented and reality,
it is appropriate to discuss a real example. Figure 4.1 shows the values of the
autocorrelation function for the first thousand time lags obtained10 for a 10,000-
long temporal record of plasma density fluctuations measured at the edge of a
magnetically confined plasma (the TJ-II stellarator, operated in Madrid, SPAIN at
the National Fusion Laboratory) using a Langmuir probe [5]. This is a stationary
signal (see inset in Fig. 4.1) that is rather irregular and seemingly unpredictable,
exhibiting many of the properties that one would expect of a (somewhat smoothed-
out) random process.

Several things are clearly apparent in Fig. 4.1. First, we see that the autocorrela-
tion is equal to 1 only at zero lag, as expected. Then, it quickly decays as the time
lag is increased, although it never vanishes completely, wandering instead around
zero. It maintains a significant positive value (above, say, 0:05 in magnitude) for
lags � < 80�s. For larger lag values, it stays within the interval .�0:05; 0:05/ �s or
so, that is often interpreted as statistical noise.11

A common interpretation of this autocorrelation function would be to say that
within the � < 80�s range local fluctuations are positively correlated, meaning that

8In practice, T will be finite. We will make this dependence explicit, when needed, by adding a T
superscript to the symbol (i.e., AcT

Œ y	.�/ or NyT ). To obtain meaningful results, T must be sufficiently
large so that the dependence of the autocorrelation on T becomes negligible.
9Naturally, the process y� has zero mean and unit variance.
10The precise way in which this autocorrelation function (or the power spectrum to be discussed
later) is obtained will be discussed in Sect. 4.4. Here, to keep the discussion fluid, we just simply
discuss the final results without dwelling too much on the details of how they are computed.
11We will argue soon that one has to be careful with such hasty interpretation of the tail of the
autocorrelation function, though.
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Fig. 4.1 Left: Typical autocorrelation function of turbulent data that corresponds, in this case, to
plasma density fluctuations (shown in the inset) measured at the edge of a plasma magnetically
confined within the TJ-II stellarator (right, above) device operated in the Laboratorio Nacional de
Fusión at CIEMAT (Madrid, SPAIN). The data was recorded by means of a reciprocating Langmuir
probe, that enters the toroidal plasma from the edge (right, below), and measures the ion saturation
current, a surrogate for the plasma density [Credits: TJ-II model, courtesy of Víctor Tribaldos]

they maintain the same sign on average.12 Thus, �c � 80�s gives a first estimate for
the memory timescale for this process. Most scientists would estimate this timescale
in terms of the so-called decorrelation time, �d, for which several prescriptions can
be found in the literature. The most popular one is probably the lag value at which
AcŒ y	.�d/ D 1=e ' 0:368, yielding �c � 40�s for the TJ-II data.13

The reader should be aware that the tail of the autocorrelation beyond � � 80�s
is completely neglected in the analysis. It turns out that, in many complex systems,
the tail becomes more important to characterize the presence of memory than the
central part that defines the classical decorrelation time. Let’s see why.

4.2.1.8 Typical Autocorrelation Tails: Exponentials and Power-Laws

The exact form of the tail of the autocorrelation function will depend on the specifics
of the process at hand. However, there are a couple of shapes that illustrate well what

12Physically, this time would be interpreted as the average amount of time that turbulent structures
take to pass by the Langmuir probe tip, if they are moving, or the average life of the local turbulent
structures, if they remain relatively at rest with respect to the probe tip.
13In our case, we will prefer to use the value of the integral of the autocorrelation function over the
extended temporal range (see Eq. 4.11, that will be discussed next), that yields �d � 60�s.
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is often found in many practical situations.14 In particular, exponential and power-
law decaying tails.

• Exponential tails
Let’s consider first the model autocorrelation function,

AcŒ y	.�/ D exp.�j� j=�c/: (4.10)

This function is always positive, thus corresponding to a process that presents
positive correlations for all lags. The important quantity here is �c, that provides
an estimate for how long the process remembers about itself.15 Why? Because,
for lags � >> �c, the exponential becomes so small that the tail, although still
above zero, is virtually indistinguishable from the case of absence of correlations.

This idea can be easily extended to other tail shapes that, although not strictly
exponential, decay sufficiently fast. This can be done by defining the memory
timescale �m by the limit,

�m WD lim
T!1

Z T

0

AcŒ y	.�/d�; (4.11)

that, for Eq. 4.10, yields

�m D lim
T!1

Z T

0

AcŒ y	.�/d� D
Z 1

0

exp.�j� j=�c/d� D �c; (4.12)

as demanded. This definition will however be also adequate for any other
autocorrelation function for which the limit is finite. These could be functions
with an asymptotically exponential tail (shown in Fig. 4.2, in blue), but also any
other tail behaviours for which the limit converges.

• Power-law tail (type I)
Another type of tail that is often encountered is the decaying power-law. It will

be remembered that we said that power-laws are indicative of scale invariance
(see Chap. 3). Of all possible power-law decays, we will focus on those of the
form (shown in Fig. 4.2, in green),

AcŒ y	.�/ � Bj� j�a; 0 < a � 1; � ! C1; (4.13)

14Things will never be as clear-cut as we discuss them in this section. The direct determination of
the autocorrelation tail from a finite record is usually quite inaccurate. Tails usually exhibit irregular
oscillations and are contaminated by statistical noise, making it rather difficult to tell exponential
from power-law decays by direct inspection. Other methods must be usually called upon for this
task. Be it as it may, the discussion of the tails that follows will still illustrate several important
concepts quite clearly.
15In fact, it is the origin of the previously mentioned prescription, AcŒ y	.�d/ D 1=e.
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Fig. 4.2 Some meaningful autocorrelation function shapes: exponentially decaying (blue); posi-
tively correlated power law decaying (green); negatively correlated power-law decaying (red)

for some constant B > 0. The reason for restricting the exponent range is that,
for 0 < a � 1, the memory timescale �m defined by Eq. 4.11 fails to converge.
Indeed, the dominant contribution to �m is then,16

�m �
Z 1

AcŒ y	.�/ � B�1�a

1 � a

ˇ
ˇ
ˇ
ˇ

1
! C1 (4.14)

Therefore, the case a � 1 corresponds to a very different class of processes,
in which long-term, scale-invariant, positive correlations are present17 for
all lags.18 It should thus come as no surprise that this kind of process is often
encountered in the context of complex systems.

• Power-law tail (type II)
Another interesting case that involves a power-law tail is (shown in Fig. 4.2,

in red),

AcŒ y	.�/ � Cj� j�b; b > 1; (4.15)

16For a D 1, the integral would diverge instead logarithmically.
17Note that B must be positive in the case of the divergent tail; otherwise, Eq. 4.13 would not
exhibit the non-negativeness property we discussed earlier.
18It must be remembered that exact scale-invariance does not happen in nature, as we discussed
in Chap. 3, being always limited to a mesorange set by finite-size effects. Thus, one should never
expect an autocorrelation function with a perfect power-law scaling extending to infinitely long
times, even if long-term memory is present in the system. The scaling should be eventually
overcome by noise.
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with C < 0 taking the precise value that makes the limit that defines �m vanish:

lim
T!1

Z T

0

AcŒ y	.�/ D 0: (4.16)

Note that b > 1 is required here to ensure the convergence of the integral, whilst
C < 0 so that the negative tail can compensate the always positive contribution
of the central region of the autocorrelation around � D 0.

It is important to note that this case is rather different from the completely
uncorrelated case (i.e., the �c ! 0 limit of Eq. 4.10), that also has �m D 0.
Here, the whole extent of the negative asymptotic tail is needed to achieve a total
cancellation of the integral in the limit T ! 1. Thus, there is not a finite lag
value beyond which the tail can be neglected, and still have a good estimate of �m.
As a result, �m loses its meaningfulness as a memory timescale, and the process
is said to exhibit long-term, self-similar, negative correlations. We will see
examples of complex processes with this type of autocorrelation function soon.19

4.2.1.9 An Example: Plasma Turbulent Fluctuations (Continued)

It is illustrative to re-examine now the tail of the autocorrelation function of the
turbulent fluctuations measured at the edge of the TJ-II stellarator (previously
shown in Fig. 4.1) in the light of the discussion we just had. Is the tail close to
an exponential? Or does it scale like a power-law? In the latter case, is the tail fat
enough to reveal the presence of any kind of scale-free, long-term memory?

In order to address these questions, we have magnified the tail of the autocor-
relation function by plotting it using both log-log and log-lin scales (see Fig. 4.3).
Power-law tails appear as straight lines in log-log plots; exponential tails appear
linear in log-lin plots. The result of this exercise illustrates some of the typical

19The definition of �m given by Eq. 4.14 is intimately related to the so-called Green-Kubo relation
that appears in stochastic transport theory [6]. The Green-Kubo relation states that, if v.t/ is a
random variable that represents the instantaneous velocity of a particle, any population of these
particles will diffuse, at long times, according to the famous diffusive transport equation,

@n

@t
D D

@2n

@x2
(4.17)

where n is the particle density, and with the diffusivity D given by the integral:

D D �2
�

lim
T!1

Z T

0

AcŒv	.�/d�

�

: (4.18)

�2 is the velocity variance. There are cases, however, when the velocity fluctuations are such that
this integral may vanish or diverge. We will discuss the type of transport that appears in these
cases in Chap. 5 under the respective names of subdiffusive and superdiffusive transport. Both
correspond to typical behaviours often found in the context of complex dynamics.
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Fig. 4.3 Autocorrelation function of the same TJ-II turbulent data shown in Fig. 4.1 displayed in
log-log (right, above) and log-lin (left, below) representations. In dashed lines, exponential (red)
and power law (blue) fits to the tail are shown

problems of trying to make these estimations directly on the autocorrelation
function. Large fluctuations are seen at the larger lag values, that are least resolved
due to the shortness of the record. As a result, it is difficult to tell the behaviour
of the tail, particularly beyond � � (80–100)�s. However, a power-law scaling as
� ��0:8 seems much more probable than an exponential one, as shown by the dashed
curves included in the figure to help guide the eye. The value of the tail exponent
also appears to be within the interval 0 < a � 1, thus suggesting that long-term,
self-similar, positive correlations might indeed be present in the signal for all scales
above � > 100�s for which data is available.

A final (and important!) observation to make is that, even when a power-law tail
seems probable, the finite length of our time record implies that the integral of the
autocorrelation function over the available data set always remains finite. In this
case, such integral yields �m ' 60�s. The observation of the divergent power-law
tail suggests however that this value is rather meaningless as a memory diagnostic.20

20Indeed, one should expect that, if a longer record was available, one could calculate the
autocorrelation function for larger values of � . The divergent power-law scaling, if maintained
for these larger lags, would then make the value of �m to increase towards infinity as the record
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At any rate, it is clear that the large fluctuations that are apparent over the
tail region make this analysis rather imprecise. Better estimation methods are thus
needed. One such method is based on the power spectrum, that we will discuss
next. An even better method is provided by the R=S analysis, that will be discussed
in Sect. 4.4.4.

4.2.2 The Power Spectrum

The power spectrum of an stationary random process y.t/ is defined as the Fourier
transform of its autocorrelation function [2],

OSŒ y	.!/ DW
Z 1

�1
d� eı!�AcŒ y	.�/: (4.19)

The power spectrum is well defined as long as this Fourier transform can be
computed. As discussed in Appendix 1 of Chap. 2, a sufficient condition for
the convergence of the integral is that the autocorrelation function is Lebesgue
integrable (i.e., that its tail decays faster than j� j�1 as � ! ˙1). However, the
integral may also exist in other cases.

The main reason to use the power spectrum comes from the fact that it can be
estimated directly from the process, without having to calculate the autocorrelation
function first, which is a very nice feature in practice due to the inaccuracies
involved. This can be done by considering that,21

OSŒ y	.!/ D
Z 1

�1
d� eı!�AcŒ y	.�/

D
Z 1

�1
d� eı!�

�

lim
T!1

1

2T

Z T

�T
dt y
.t/y
.� C t/

�

D lim
T!1

1

2T

�Z 1

�1
d� eı!�

�Z T

�T
dt y
.t/y
.� C t/

��

D lim
T!1

jOy

T.!/j2
2T

: (4.20)

Here, Oy

T.!/ is the Fourier transform of the process y
.t/ after it is truncated to the

finite interval Œ�T;T	.22

length is increased. This is in contrast to what would happen for an exponential decay, for which
�m will eventually become independent of the record length.
21We consider here that the process is such that the interchange of limits, averages and integrals is
allowed.
22It is only by introducing the truncated process that we can extend the limits of the last integral in
Eq. 4.20 to infinity, allowing us to invoke the convolution theorem (see Appendix 1 of Chap. 2) to
get the final result for the power spectrum in terms of y�

T .!/.
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It is also nice to note that one can estimate the memory time �m (defined in
Eq. 4.11) directly from the power spectrum:

�m D
Z 1

�1
d� AcŒ y	.�/ D 1

2
lim
!!0

OSŒ y	.!/: (4.21)

4.2.2.1 Typical Power Spectra Shapes

Some further insight, that will be useful to interpret power spectra from real
data, can be gained by analyzing the power spectra associated to the model
autocorrelation tails discussed at the end of Sect. 4.2.

1. Exponential tail In the case of the exact exponential (Eq. 4.10), its power
spectrum can be computed analytically (see Table 2.7). The result is:

OSŒ y	.!/ D
Z 1

�1
d� eı!� exp.�j� j=�c/ D 2�c

1C �2c!
2
; (4.22)

that decays as !�2 for large frequencies (i.e., ! � ��1
c ), and becomes flat for

smaller frequencies (i.e., ! � ��1
c ). The break-point between the two regions

happens at !bp � ��1
c (see Fig. 4.4, in blue), that coincides with the inverse of

the memory timescale of the process (see Eq. 4.21),

�m D lim
!!0

OSŒ y	.w/
2

D �c: (4.23)

Fig. 4.4 Sketch showing the three meaningful types of power spectra discussed in text. They share
the same short-term dynamics (for ! � ��1

c ), but the long-term dynamics are uncorrelated (blue),
self-similarly persistent (red) and self-similarly antipersistent (green). In reality, spectra can be
much more complicated, often including more than two scaling regions
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This flat region is particularly interesting. In the limit �c ! 0 in Eq. 4.22,
that represents a process that is uncorrelated for all lags, the flat region naturally
extends from ! ! 0 towards ! ! 1, thus filling the whole spectrum.
Therefore, we can use the presence of a flat region for ! � ��1

m as an indication
that �m gives the timescale above which correlations disappear. Even more
interestingly, the power spectrum will also become eventually flat for frequencies
! � ��1

m D 2=OSŒ y	.0/ for any other autocorrelation function that is not exactly
exponential but that decays sufficiently fast at long times. Furthermore, the
association of flatness and lack of correlations also holds for any other flat
regions in the power spectrum even if they do not extend for arbitrarily low
frequencies, but are instead restricted to a limited frequency range. Physically,
the flatness means that the available energy is equally distributed over all those
frequencies, without any distinguishing feature. This is in fact how noise is
usually characterized.

On the other hand, the behaviour of the power spectrum for ! � ��1
m ,

however, will depend on the details of the autocorrelation function for � � �m. If
the behaviour is not exactly exponential, the power spectrum could decay either
faster or slower than!�2. Sometimes, it may even exhibit several scaling regions,
depending on how complicated the autocorrelation function structure is.

2. Power-law tail (type I) In the case of an autocorrelation function that decays
with a divergent power law tail (Eq. 4.13), one can invoke a nice property
of Fourier transforms (see Appendix 1 of Chap. 2) to find out the asymptotic
behaviour of the power spectrum. Namely, that if f .t/ � t�s with 0 < s < 1

when t ! ˙1, it then follows that Of .!/ � !�.1�s/; for ! ! 0. Therefore,
the power spectrum we are looking for asymptotically decays according to the
decreasing power law,

OSŒ y	.!/ � !�.1�a/; for ! ! 0: (4.24)

The important thing here is that the ! ! 0 limit of the spectrum now diverges.
As a result, a finite �m does not exist (see Eq. 4.21), as is expected for any
process with long-term, self-similar persistence. Furthermore, similarly to what
happened with finite flat regions, any region in the power spectrum that behaves
like a decreasing power-law with exponent between 0 and �1 can be related
to the action of positive correlations over those frequencies. The decreasing
behaviour implies that more energy exists at the lower than at the higher
frequencies, a reflection of the process tendency to vary slowly, thus keeping
the same sign for extended periods of time.

On the other hand, the behaviour of the power spectrum for ! ! 1 will
depend again on the structure of the autocorrelation function around � D 0, that
may be rather different from the power-law scaling at the other end (see Fig. 4.4,
in red).
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3. Power-law tail (type II) In the case in which the autocorrelation function decays
according to Eq. 4.15, the fact that C < 0 has such value as to make �m vanish
implies that (see Eq. 4.21),

lim
!!0

OSŒ y	.!/ D 0: (4.25)

As a result, the asymptotic behaviour of the power spectrum in this case is given
by the increasing power-law:

OSŒ y	.!/ � !b�1; for ! ! 0: (4.26)

This is the behaviour expected from processes that exhibit long-term, self-similar
antipersistence. Furthermore, any region in the power spectrum that behaves like
an increasing power-law is indicative of the presence of negative correlations
over those frequencies. The increasing behaviour now implies that energy tends
to accumulate at the higher frequencies, that speaks of a process that tends to
vary quickly over time, thus changing sign very often.

As in the other cases, the behaviour of the power spectrum as ! ! 1 will
be determined, by the structure of the autocorrelation function around � D 0

(see Fig. 4.4, in green).

4.2.2.2 An Example: Plasma Turbulent Fluctuations (Continued)

We continue now the analysis of the TJ-II turbulent edge data already discussed in
Sect. 4.2 in the light of what we have said about the power spectrum. Figure 4.5
shows the power spectrum of the data as computed using Eq. 4.20. It has been
represented using a double logarithmic scale, in order to make any power-law
regions that might be present to appear as straight segments.

The first thing one notes from looking at the figure is that, although some
fluctuations are still present, they are definitely of much lower amplitude that in the
autocorrelation function plots (see Fig. 4.3). The spectrum seems to be composed of
three distinct regions, a flat region at the smallest frequencies (! � 10�3 MHz), a
power-law region scaling as � !�0:3 for intermediate frequencies (i.e., 10�3 MHz
� ! � 10�2 MHz), and a second power-law region that extends for all larger
frequencies (! � 10�2 MHz), that scales as � !�0:8.

The presence of a flat region at the lowest frequencies would suggest that the
process becomes eventually uncorrelated. However, it must be noted that Eq. 4.21
gives a memory timescale �m D OSŒ y	.0/=2 ' 60�s, much smaller than the timescale
at which the flat region scaling starts, � � 103 �s. Such a large discrepancy is not
expected for any process for which �m provides the memory timescale, since both
timescales should coincide as discussed earlier (see Fig. 4.4). For that reason, it
seems more plausible that the flat region at the lowest frequencies is caused by
the truncation of the divergent power law region above � ' 103. In fact, if longer
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Fig. 4.5 Power spectrum of the same TJ-II turbulent data shown in Fig. 4.1 displayed in log-log
scale. Also included are a best fit to Eq. 4.22, that yields a “memory time” �c � 60�s (in blue)
and a power-law fit to the flat part of the spectrum (in red)

time records of the same data were available, we should expect the � !�0:3 scaling
region to extend to smaller frequencies, eventually flattening at values of OSŒ y	.0/ that
steadily increase (towards infinity) with increasing record lengths. In this case, the
actual value of �m obtained from our data set would become pretty meaningless.

Let’s focus now on the intermediate region of the power spectrum that scales
as � !�0:3. This exponent value is consistent with what is expected for a process
exhibiting long-term, self-similar persistence (see Eq. 4.24). This result suggests
that some kind of complex dynamics might perhaps be active in the plasma. It is
also interesting to note that the value a ' 0:3 is consistent with the power-law fits
we did over the autocorrelation tail region, that yielded � ��0:8 (see Fig. 4.3). From
this value, one would expect a power spectrum with a decreasing power-law region
at low frequencies with exponent a D 1� 0:8 � 0:2, that is not far from the one we
have obtained now.

We conclude by discussing the last scaling region, that goes like � !�0:8 for the
largest frequencies (i.e., the shortest timescales). This region is determined by the
shape of the autocorrelation function around � D 0, for timescales � < 100�s.
As we mentioned previously, an exponential decay of the autocorrelation function
would appear here as an � !�2 region at the largest frequencies. Here, the decay
is much slower. It is difficult to say what it means without knowing more about the
physics in place. In fact, the decay is sufficiently slow that it might reflect some
other persistent process taking place at the shortest timescales in the local turbulent
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dynamics, maybe related to the dynamics that govern a single eddy. Or it could be
related to the inner workings of the fast response of the Langmuir probe!

4.2.3 The Autodifference Function

The autocorrelation function and the power spectrum have been very popular
approaches to study the presence of correlations and memory in time series for
many years. However, these quantities do not exist for all random processes. In
order to guide the discussion, we repeat here the ensemble average definition of the
autocorrelation function (Eq. 4.3):

AcŒ y	.�/ WD h y.t/y.t C �/i � h y.t/i h y.t C �/i
h y.t/2i � h y.t/i2 : (4.27)

Clearly, this definition ceases to be meaningful if the process y lacks finite second
moments.23 This will be the case, for instance, if the process exhibits any kind of
Lévy statistics (see Sect. 2.3).

This fact has lead to the introduction of other expected values that could replace
the autocorrelation function in order to investigate and quantify the presence of
memory. One such expected value is the so-called s-autodifference function [7],
that is defined for any stationary process as24:

Ads
Œ y	.�/ D

Dˇ
ˇ y#.t C �/

ˇ
ˇs
E

C
Dˇ
ˇ y#.t/

ˇ
ˇs
E

�
Dˇ
ˇ y#.t C �/� y#.t/

ˇ
ˇs
E
; (4.29)

for any 0 < s � 2, and with,

y#.t/ D y.t/ � h y.t/i
.hj y.t/ � h y.t/ijsi/1=s

: (4.30)

It is trivial to check that, for s D 2, the s-autodifference reduces to the autocorre-
lation function. Similarly to the autocorrelation function, the s-autodifference also

23If one uses the temporal-average formulation instead, the signature of the non-existence of the
finite second moment is that AcT

Œ y	.�/, the autocorrelation computed with a record of finite length
T, will never become independent of T. Instead, the autocorrelation will diverge as T ! 1.
24The autodifference is a particular case of more general function known as the s-codifference,
that is defined for two arbitrary time processes with zero mean, x and y, as [7]:

Cds
Œx;y	.�/ D hjx.t C �/jsi C hj y.t/jsi � hjx.t C �/� y.t/jsi : (4.28)

The s-codifference reduces to (twice) the standard covariance for s D 2. In contrast to the cross-
correlation, it can be calculated for processes x and y with divergent variance, as long as the
moments of order s, hj 	 jsi, do exist. It vanishes for any s for which it is finite when x and y
are independent processes.
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vanishes at time lag � , for any s for which it is finite, if y.t/ is independent of
y.t C �/.25 Therefore, the s-autodifference can be used in a similar way to the
autocorrelation, if the statistics of the process of interest lack finite second-order
moments. It is sufficient to choose s sufficiently low so that all s-moments are finite.

In practical applications with time series, however, it is rare to use the ensemble
average version of the s-autodifference. Instead, thanks to the assumed stationarity
of the processes of interest, one can use the expression:

hj y.t/jsi D lim
T!1

1

2T

Z T

�T
j y.t/jsdt; (4.31)

that allows us, to rewrite the s-autodifference as26:

Ads
Œ y	.�/ D lim

T!1
1

2T

Z T

�T
dt
�ˇ
ˇ y#.t C �/

ˇ
ˇs C ˇ

ˇ y#.t/
ˇ
ˇs � ˇ

ˇ y#.t C �/ � y#.t/
ˇ
ˇs
�
:

(4.32)

The interpretation of the autodifference is however somewhat more involved. In
contrast to the autocorrelation, that could take values only within the interval Œ�1; 1	,
the autodifference satisfies that [7]:

1 � Ads
Œ y	.�/ �



0; 0 < s � 1

1 � 2s�1; 1 � s � 2:
(4.33)

The upper bound (i.e., 1) is reached, for any s, for perfect correlation (i.e., when
y.t/ D y.t C �/). However, the lowest possible value for 0 < s � 1 (i.e., 0) is
reached whenever y.t/ is completely independent of y.t C �/; on the other hand,
the lowest possible value for 1 � s � 2 (i.e., 1 � 2s�1 < 0) is reached for
perfect anti-correlation (i.e., y.t/ D �y.t C �/). This requires to interpret the s-
autodifference values with some care (see Problem 4.1). The guiding principle rests
on the mathematical interpretation of the autodifference: the larger it is, the greater
“the dependence” will be between y.t/ and y.t C �/, since a larger autodifference
implies that it is less likely that y.t/ and y.t C�t/ be different from each other [7].
This principle permits us, when 1 < s � 2, to differentiate between regions of
positive dependence (i.e., Ads

Œ y	 > 0) and negative dependence (i.e., Ads
Œ y	 < 0).

Regretfully, the same cannot be done when 0 < s < 1, where the minimum value
corresponds to absence of dependence, but one cannot separate positive and negative
dependences.

25As it happened in the case of the autocorrelation, the inverse is not true in general.
26As it also happened with the autocorrelation, T should be chosen large enough as to guarantee
that the result becomes independent of it.
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4.3 Memory in Self-Similar Time Random Processes

In Chap. 3 we introduced fractional Brownian and Lévy motions as the poster
children of self-similar random processes. In contrast to natural processes, fBm
and fLm are self-similar over all scales. In spite of that, real processes are often
compared against them to reveal their scale-invariant properties. Thus, it is quite
illuminating to discuss how the various tools discussed in the previous sections
perform on them. Or more precisely, on their increments, since fBm and fLm are
not stationary processes (see Sect. 3.3.6).

Not surprisingly, it will be shown that all memory properties of fBm and fLm
are completely determined by their self-similarity exponent H. This is a direct
consequence of their monofractal character. As a result, any method that quantifies
the self-similarity exponent (some of them discussed in Chap. 3) could in principle
be used to characterize the type of memory present in fBm and fLm as well. This
equivalence does however not hold if self-similarity is only valid over a finite range
of scales or when the process is multifractal, as often happens with real data. The
analysis of these cases must then be done with some care, always guided by our
knowledge of the physics at work.

4.3.1 Fractional Brownian Motion

It will be remembered that fractional Brownian motions (Eq. 3.71) are H-sssi
processes, with a self-similarity exponent H 2 .0; 1	. fBm is not a stationary
process. Its increments, however, are stationary for any value of the spacing h
(see Eq. 3.83). They are often known as fractional Gaussian noise (fGn). Their
autocorrelation function and power spectrum have some interesting properties.

4.3.1.1 Autocorrelation Function of fGn

The autocorrelation function for fGn with self-similarity exponent H behaves
asymptotically as [8]:

AcŒ�hyfGn	.�/ � AH.2H � 1/j� j�2.1�H/; A > 0; � � h: (4.34)

That is, it has a power law tail. It is worth analyzing the meaning of the possible
values of its exponent in the light of the discussions had in Sect. 4.2. In the case
H D 1=2 it is apparent that the autocorrelation vanishes for every possible lag value
except � D 0, meaning that the increments are all uncorrelated and that the related
fBm process lacks memory on any scale.

For H > 1=2, however, the fGn autocorrelation tail exhibits a type I power
law scaling (see Eq. 4.13). Indeed, the tail remains positive and the tail exponent is
a D 2.1�H/ 2 .0; 1	. Therefore, fGn with H > 1=2 exhibits long-term, self-similar
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persistence for arbitrarily long lags. Clearly, the degree of persistence will be more
pronounced the closer H is to unity.

The case H < 1=2, on the other hand, exhibits a tail that scales as a type II power
law (see Eq. 4.15). The constant in front becomes negative, and the tail exponent is
now b D 2.1 � H/ > 1. We will soon argue, when discussing its power spectrum,
that the integral of the autocorrelation function actually vanishes for this type of
fGn in the limit h ! 0. As a result, fGn with H < 1=2 also exhibits long-term,
self-similar memory over all scales, but with an antipersistent character instead.
Antipersistence will be more pronounced as H approaches zero.

4.3.1.2 Power Spectrum of fGn

The power spectrum27 of fGn with self-similarity exponent H has been shown to
be [8]:

Of fGn
h .!/ � K.H/

j!j2H�1 ; ! � h�1; (4.35)

with the constant K.H/ > 0; 8H. Let’s discuss this spectrum in the light of our
previous discussions. The first thing one notes is that the exponent of the fGn
autocorrelation function (i.e, a D 2H � 2/ and the fGn power spectrum (i.e.,
c D 1 � 2H) satisfy the relation c D a � 1, as predicted by Eqs. 4.24 and 4.26.
Secondly, we find that the power spectrum becomes flat for H D 1=2; for H > 1=2,
the spectrum is a decreasing power-law over all scales, decreasing more steeply as
H approaches unity, as expected from a persistent process; finally, for H < 1=2, the
power spectrum is an increasing power-law, increasing faster as H approaches zero.
These are precisely the scalings that were predicted, respectively, for uncorrelated,
persistent and antipersistent long-term, self-similar memories (see Sect. 4.2).

4.3.2 Fractional Lévy Motion

Fractional Lévy motion (Eq. 3.76) was the other H-sssi process discussed in Chap. 3
(with H 2 


0;max


1; ˛�1��). In contrast to fBm, fLm lacked any finite moments

for orders r � ˛, where ˛ 2 .0; 2/ is the tail-index that characterizes the symmetric
noise, �˛ that drives it. In particular, all second order moments diverged for any
fLm. They also diverged for the series of their increments, known as fractional Lévy
noise (fLn). As a result, neither the autocorrelation function nor the power spectrum

27The derivation of Eq. 4.35 can be done either by considering the limit of truncated versions of
fGn, along the lines of what we did to derive Eq. 4.20, or by moving to a generalization of the
Fourier representation known as a Fourier-Stieltjes representation [9], that exists for stationary
random processes [10].
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can be used with fLn. Instead, one needs to turn to other diagnostics such as the
autodifference (Eq. 4.29) of the fLn series in order to characterize memory in fLm.

The autodifference of fLn has been studied in detailed in the literature [7]. Its
asymptotic behaviour is given almost everywhere by [7]:

Ad˛;H
Œ�hyfLn	

.�/ � A1.H; ˛/sgn.˛H � 1/ j˛H � 1j˛ ��˛.1�H/; (4.36)

with the constant A1.H; ˛/ > 0. The exception for this scaling is a small region
in ˛ � H space (shown in blue in Fig. 4.6), that is defined by the parameter ranges
˛c < ˛ < 2 and 0 < H < Hc.˛/. The critical values are given by,

˛c D .1C p
5/

2
' 1:618; (4.37)

Hc.˛/ D 1 � 1

˛.˛ � 1/ : (4.38)

Within the excluded region, the autodifference scales instead as:

Ad˛;H
Œ�hyfLn	

.�/ � A2.H; ˛/ .H˛ � 1/ ��.1C 1
˛�H/; (4.39)

with the constant A2.H; ˛/ > 0.

Fig. 4.6 Distribution of scaling regions for the autodifference of fLn in the H�˛ plane. The region
where the scaling Cd

˛
.�/ � ��.1C˛�1

�H/ holds is shown in blue. In the rest, Cd
˛
.�/ � ��˛.1�H/.

The boundary H D 1=˛ is shown in red. Above it, correlation is positive. Beneath it, negative
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Let’s analyze these scalings. The first thing to note is that the fLn autodifference
vanishes if H D 1=˛, for any ˛ 2 .0; 2/. Since H 2 .0; 1	, uncorrelated
fLm is only possible for 1 � ˛ � 2 (see Fig. 4.6). Secondly, inspired by the
fBm terminology, it is customary to say that fLm exhibits long-term persistence
(i.e., positive correlations) for H > 1=˛, and long-term antipersistence (negative
correlations) for H < 1=˛. This naming convention is consistent with the sign of the
asymptotic tail of the autodifference. Indeed, the tail remains positive for H > 1=˛

and negative otherwise. However, note that the fact that H 2 .0; 1	 implies that no
fLm with long-term persistence exists for ˛ < 1 (see Fig. 4.6). For 1 < ˛ < 2, on
the other hand, persistent and antipersistent cases do exist depending on the specific
value of H. It should also be noted that all fLm within the excluded region are
antipersistent.

Finally, it is worth mentioning that the integral of the autodifference (over all lag
values) diverges for any fLm with positive correlations, since the exponent of the
tail is ˛.1 � H/ < 1 when H > 1=˛ and ˛ > 1. This fact is very reminiscent of
what happened for the autocorrelation function in cases of long-term dependence,
such as any fBm with H > 1=2.

4.4 Techniques for Detecting Memory in Stationary
Time Series

We describe now several methods that can be used to characterize the presence of
memory in stationary time series. These methods are reliable, easy to implement
and have a straightforward interpretation.28 We will start by presenting discrete
formulations of the classical autocorrelation function, of the autodifference function
and of the power spectrum that can be readily applied to any stationary time series.
Then, we will proceed to introduce other popular methods such as the study of the
statistics of waiting-times or the R/S analysis, introduced in the 1950s by Harold
E. Hurst to look for correlations in hydrologic data. To illustrate all these methods,
we will apply them to various synthetic series for fGn and fLn with some prescribed
Hurst exponent (generated using the algorithms already discussed in Appendix 1 of
Chap. 3).

28It is worth mentioning at this point that some authors often use many of the methods discussed
in Chap. 3 to characterize scale-invariance (i.e., moment methods, rescaling methods, DFA, etc)
to characterize the presence of memory. The rationale for their use is that, for the monofractal
fBm and fLm processes, the self-similarity exponent H also characterizes completely the memory
properties of their associated noises. However, one must be careful when adhering to this
philosophy since monofractal behaviour does not usually extend over all scales in real data, being
instead restricted to within the mesorange (either because of finite-size effects, or by having
different physics governing the dynamics at different scales). As a result, the self-similarity
exponent H obtained say, from DFA, and the exponent c of the power spectrum of a real set of
data, will often will not verify the relation c D 1� 2H that we found for fBm in Sect. 4.3.1.
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4.4.1 Methods Based on the Autocorrelation Function

Let’s assume the discrete temporal record,
˚

yj; j D 1; � � � ;N�. In order to calculate
its autocorrelation function, one could use the discrete version of Eq. 4.7, that is
given by (for k � 0):

AcN
Œ y	.k/ D 1

.N � k/�2y

N�kX

jD1
. yj � Ny/. yjCk � Ny/; k � 0 (4.40)

where discrete means and variances are given by:

Ny D 1

N

NX

jD1
yj; �2y D 1

N

NX

jD1
. yj � Ny/2: (4.41)

These formulas have some limitations, though. First, N should be sufficiently
large so that the results are independent of it. In addition, the reader must be
aware of the fact that the resulting autocorrelation values become increasingly more
imprecise as k gets larger. The reason is that the number of instances over which
the autocorrelation value at lag k is averaged is n.k/ D N � k, which decreases as
k gets larger. To account for this deterioration, one typically disregards the values
corresponding the largest k’s. But how many of them? We advise to neglect at least
all k � N=10.29

We have illustrated the autocorrelation method by applying it to three inde-
pendent realizations of fGn with nominal self-similarity exponent H D 0:8

(see Fig. 4.7). The only difference between the realizations is their length: one
is 10,000 points long, the second one is five times longer, and the last one is
ten times longer. The fGn autocorrelation decays as a power-law with exponent
given by Eq. 4.34. That is, a D 2.1 � H/ D 0:4. This scaling is also included
in the figure with a blue dashed line to guide the eye. Clearly, the tails of the
three autocorrelation functions obtained from Eq. 4.40 follow the theoretical scaling.
However, fluctuations (with an amplitude that increases with k) are apparent starting
at relatively small lag values. These fluctuations appear, on the one hand, because of
the lack of good statistics as k increases, but also because the monofractal character
is lost in the fGn series at the shortest scales, due to its discreteness.

In fact, the fluctuations become so bad that the tail sometimes become negative,
which should not happen for fGn with H D 0:8 for which antipersistence is absent.
The fluctuations also make more difficult to determine the tail exponent precisely,
which is particularly apparent for the shortest series. One possible technique to
facilitate the extraction of this information, specially for short series, is to consider

29That is the reason why, in the autocorrelation of the TJ-II data we discussed at the beginning of
this chapter, the values only run up to 103 lags, although the data set contained 104 points.



200 4 Memory

Fig. 4.7 Autocorrelation function of three independent realizations of synthetic fGn data gener-
ated with nominal H D 0:8, shown in log-log coordinates to better appreciate any power-law
decay. Inset: the same functions, in cartesian coordinates

the integral of the autocorrelation function up to time lag � instead (see Fig. 4.8):

IcN
Œ y	.k/ D

kX

jD0
AcN

Œ y	.k/; k � 0 (4.42)

Since integration acts as a low-pass pseudo-filter, its application to the auto-
correlation function reduces high-frequency fluctuations. In the case of fGn, the
integrated autocorrelation function should scale as �.2H�1/ for large � , which should
yield an exponent C0:6 for the cases under examination. The values obtained from
the three series examined lie within 0.49–0.64, yielding a self-similarity exponent
H '(0.75–0.82), that is not a bad estimate.

4.4.2 Methods Based on the Power Spectrum

To estimate the power spectrum of the time series f yk; k D 0; 1; � � � ;N � 1g, one
can use a discretized version of Eq. 4.20. The nice thing about this approach is that
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Fig. 4.8 Accumulated autocorrelation function of three independent realizations of synthetic fGn
data generated with nominal H D 0:8, shown in log-log coordinates to better appreciate any
power-law decay. Inset: corresponding autocorrelation functions, in lin-log scales

one does not need to evaluate the autocorrelation.30 The discrete version we will
use is:

OSN
y .!n/ D jOy


N.!n/j2
N

: (4.43)

where the Fourier transform (see Appendix 1 of Chap. 2) is discretized as31:

Oy

N

�
!n D n

N

�
D

N�1X

kD0
ykeınk=N ; n D 0; 1; � � � ;N � 1: (4.45)

30In fact, another way of estimating the autocorrelation of any time series is by computing its
discrete power spectrum first, and then Fourier-inverting it to get the discrete autocorrelation.
31One could also use one of the many fast Fourier transform (FFT) canned routines available [11]
to evaluate Eq. 4.43. In that case, subroutines perform the sum,

N�1X

kD0

yke2
 ınk=N; n D 0; 1; 	 	 	 ;N � 1: (4.44)

that provides the Fourier transform at frequencies !0

n D 2
.n=N/ instead of !n D n=N.
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Fig. 4.9 Power spectra, shown in log-log coordinates, of two same independent realizations of
synthetic fGn data generated with nominal H D 0:8 and whose autocorrelation functions were
shown in Fig. 4.7

We have also calculated the discrete power spectrum (see Fig. 4.9) for the three
fGn signals that were used to illustrate the calculation of the autocorrelation function
in Sect. 4.4.1. The resulting power spectra (see Fig. 4.7) all exhibit fluctuations
whose amplitude grow larger as the frequency increases. In spite of that, all spectra
clearly show a power-law decay, !�c, with the exponent c easily obtained from a
simple power-law fit. The value obtained is c ' .0:60˙ 0:02/ is obtained, which is
very close to the theoretical value c D 2H � 1 D 0:6. It is apparent that the power
spectrum method is much less sensitive to the length of the available signal than the
direct estimate of autocorrelation function, at least for fBm.32

4.4.3 Methods Based on the Autodifference

In the case in which the dataset of interest follows an statistical distribution
that lacks finite second moments (for instance, any Lévy pdf), both its truncated

32However, the interpretation of the power spectrum becomes much more involved when dealing
with non-monofractal signals. We will see an example when applying the technique to the analysis
of the running sandpile, carried out as always at the end of the chapter (see Sect. 4.5).
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autocorrelation function, AcN.�/ and power spectrum OSN.!/, albeit finite, would
scale non-trivially with N. This makes their analysis rather unreliable.33 A possible
way to go around this problem could be to estimate instead their s-autodifference
(Eq. 4.29), using a value of s < ˛, being ˛ the tail index of the signal statistics. One
might be tempted to use a discrete version of the s-autodifference in the same spirit
to what we did for the autocorrelation. Namely,

Ads;N
Œ y	 .k/ D

N�kX

jD1


j yj � Nyjs C j yjCk � Nyjs � ˇ
ˇ. yjCk � yk

ˇ
ˇs
�

N�kX

jD1


j yj � Nyjs C j yjCk � Nyjs
�

: (4.46)

However, this discretization does not work very well in practice. Among other
things, because as s becomes smaller, errors at the tail region become larger,
making the determination of the tail exponent very difficult.34 For that reason, other
estimators for the autodifference have been proposed in the literature [12, 13]. We
encourage the interested readers to study those references, but we will not discuss
them in this book. Instead, we will discuss another method to deal with Lévy signals
using the rescaled range analysis presented in the next section.

4.4.4 Hurst’s Rescaled Range (R/S) Method

There are methods to characterize memory that do not rely on either the autocorre-
lation or the power spectrum. One of the most popular ones is the rescaled range
(or R=S) method, introduced by Harold E. Hurst in the 1950s [14] while studying
the long-term dependencies in the water content of the river Nile over time.

The R=S method must be applied on a stationary time series,

fyk; k D 1; 2; � � � Ng ; (4.47)

that is first demeaned,

Qyk D yk � 1

N

NX

iD1
yi; (4.48)

33Indeed, second moments are infinite for an infinite series; they are finite, for a finite record, but
their values diverge with the length of the series.
34These difficulties were also apparent when computing the discrete autocorrelation function, but
are made more apparent as s becomes smaller.
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Fig. 4.10 Illustration of the R/S method. The range explored by the integrated process Z is shown
at two different times, �1 and �2

and then integrated to form the cumulative variable,35

zk D
kX

iD1
Qyi; k D 1; 2; : : : :;N: (4.49)

Then, the so-called rescaled range is formed (k D 1; 2; � � � ;N):

.R=S/k D ��1
k .max fzi; i D 1; � � � kg � min fzi; i D 1; � � � kg/ : (4.50)

with the variance up to time k, �2k , is defined as:

�2k D 1

k

kX

iD1
Qy2i �

 
1

k

kX

iD1
Qyi

!2

: (4.51)

In essence, the rescaled range measures the size of the range of values explored
by the process during the first k iterations (see Fig. 4.10), normalized to its running
variance up to iteration k. Hurst’s idea was that, if the original stationary series
(i.e., Y) lacked any long-term dependence, its demeaned version should essentially

35The Qy-series is thus formed by the increments of the z-series.
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be a random noise.36 Therefore, the resulting integrated process (i.e., Z) should have
the properties of a random walk, whose range is known to grow as

p
t (see Chap. 5).

Therefore, Hurst expected that, if long-term correlations were present:

.R=S/k � kHR=S
; (4.52)

with HR=S ¤ 1=2 at least over an extended range of scales. More precisely, if
positive correlations were present in QY , the increments should tend to maintain their
sign more often than not, and the range explored should increase faster with k.
That is, HR=S > 1=2 in that case. The limiting value of the R=S exponent should
be HR=S D 1, corresponding to the case in which the process QY is constant, what
would make the range to increase linearly with k. On the other hand, the presence
of long-term negative correlations would favor a frequent sign reversal for the
increments. The explored range would then grow slower than in the uncorrelated
case. Therefore, HR=S < 1=2 would follow. Clearly, the minimum value would be
HR=S D 0.

Hurst first applied his method to several water reservoirs in the Nile river in
the 50s. He found that the temporal series of the maximum level of water in the
reservoirs yielded rescaled ranges that scaled with a Hurst exponent HR=S � 0:7,
that he interpreted as a signature of long-term positive dependence [14]. The R=S
method was made popular by B.B. Mandelbrot in the late 60s, when he showed
that the rescaled range of fractional Brownian motion satisfied Eq. 4.52 for all
scales, with a value of HR=S D H, being H the self-similarity exponent of fBm
(Eq. 3.71) [8]. Since then, the method has remained popular.37

We will illustrate the R=S method on the same three realizations of fGn with
nominal H D 0:8 previously discussed in Sect. 4.4.1. The resulting rescaled ranges
are shown in Fig. 4.11. In order to improve the statistics, we repeat here a trick that
was previously used in Sect. 3.4 when discussing moment methods. Namely, to take
advantage of the fact that, to compute the rescaled range up to iteration k using
Eq. 4.50, only the first k values in the signal are needed. Thus, we can break the
signal in non-overlapping blocks of size k, calculate the rescaled range associated to
each block, and then average the range over the blocks. The result is a much better
resolved rescaled range.38 Fitting the obtained ranges to a power law yields a value
of HR=S D 0:79˙0:01, which is pretty close to the nominal self-similarity exponent.

36Hurst always assumed the statistics of the increment process (i.e., QY), to be near-Gaussian. As
a result, his method only applies, as originally formulated, to processes with statistics with finite
second moments.
37In fact, Mandelbrot showed that this scaling property of the range requires only that the random
process be self-similar with exponent H and with stationary increments. As such, the same range
scaling also applies to fLm.
38Although the average becomes less effective as k grows larger, since the number of blocks in the
signal, roughly N=k, becomes smaller. This is apparent in the increasing perturbations that appear
at the end of each of the curves in Fig. 4.11.
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Fig. 4.11 Rescaled range as a function of time for the same three realizations of fGn with nominal
H D 0:8 that were discussed in Figs. 4.7, 4.8, and 4.9. The loss of effectiveness of the block-
averaging procedure becomes apparent in the form of oscillations at the largest iteration values

Although R=S analysis is very popular tool to look for memory in stationary time
series, many authors prefer other schemes in order to estimate their self-similarity
exponent, such as detrended fluctuation analysis [15] discussed in Appendix 2 of
Chap. 3. The main reason is that R=S gives HR=S ' H for finite realizations of
fGn with H exponents in the range (0.4–0.8), but tends to overestimate H for
H < 0:4 and to underestimate it for H > 0:8, particularly when applied to short
fGn series [16] (see Problem 4.2). Some prescriptions exist that manage to improve
the method, making it to perform much better when the series length goes down to
even just a few hundred data points [17].

In spite of these limitations, we will stick to the R=S method in large parts of
this book because of two of its most outstanding properties. Namely, its robustness
against noise contamination (see Problem 4.3) and its predictable behaviour in the
presence of periodic perturbations39 (see Problem 4.4).

39These two properties are quite important in the context of plasmas [18], due to the fact that signals
are always contaminated by all kinds of noise and, quite often, also by mid- to low-frequency
MHD modes. The R=S analysis provides a robust tool with which self-similarity and memory can
be looked for in these contexts. On the other hand, plasma signals typically have tens (or even
hundreds) of thousands of values, which makes the imprecisions of the R=S technique at small
record lengths less worrisome.
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Fig. 4.12 Distortion of the rescaled for a 50,000 point long realization of fGn with nominal H D
0:8 when random uniform noise is added with a various relative amplitudes (with respect to the
fGn standard deviation). It remains unchanged until the values of the noise relative amplitude is
closer to or larger than unity

To illustrate the performance of R=S in the presence of noise, we have added a
random perturbation to a fGn series generated with nominal H D 0:8:

Qyk D yfGn
k C �� fGnuk; (4.53)

where u is a random, uniform noise in Œ�1; 1	, � > 0 and � fGn is the standard
deviation of the fGn signal. Therefore, for � D 0, the original signal is recovered,
whilst for � D 1, the relative strength of the added noise is 100%. We have applied
the R=S technique to several time series obtained by varying � between 0 and 50.
The results are shown in Fig. 4.12. The good performance of R=S is apparent, since
the scaling remains basically unchanged from the original one until � � 1. That is,
up to the case in which the relative strength of the noise is almost a 100% of the
original fGn signal.

To illustrate the performance of R=S in the presence of a periodic perturbation,
we have constructed the signal,

Qyk D yfGn
k C �� fGn sin.2
k=T/; (4.54)

where T is the periodicity of the perturbation. The resulting rescaled ranges, using
a synthetic fGn with nominal H D 0:8 perturbed with different periodic signals
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Fig. 4.13 Distortion of the rescaled range for a 100,000-long fGn series with H D 0:8 when
perturbed by a periodic signal with period T D 100 and various relative strengths. The rescale
range increases for iterations prior to the external periodicity and flattens behind it. If the estimation
of H is restricted to iterations much larger than the external periodicity, it remains accurate until
the relative amplitude of the external oscillation is close to or larger than unity

with T D 100, are shown in Fig. 4.13. The first thing that becomes apparent is
that the periodicity has the largest effect for the rescaled range at time lags close to
T: it increases for lags just below T, and decreases for lags just above the period.
This signature is in fact extremely useful to detect hidden periodicities in the signal
under examination.40 Once periodicities have been spotted, one can restrict the
determination of H to the timescales much longer than their periods, where the
scaling behaviour of the rescaled range remains pretty much unchanged until the
relative amplitude of the periodic perturbation is of similar to that of the original
signal, as shown in the inset of Fig. 4.13.

4.4.4.1 R=S Analysis for Lévy Distributed Time Series

As we already mentioned in passing, Hurst developed his method with near-
Gaussian fluctuations in mind. If the statistics of the process are however not

40This comes extremely handy in some contexts, such as plasma turbulence, where magnetohydro-
dynamic modes may sometime coexist with the background turbulence.
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Fig. 4.14 Scaling of the s-variance for a 100,000-long fLn series with nominal ˛ D 1:5. For s > ˛
(s D 2 is shown in black) the s-variance diverges with k. It should be noted, however, that although
the s-variance is finite for s < ˛, the closer to ˛ the longer it takes for the s-variance to become
independent of k

near-Gaussian, one could still apply Eq. 4.50, but the resulting exponent HR=S may
no longer coincide with the self-similarity exponent of the process (assuming it has
one). This is, for instance, what happens in the case of fractional Lévy noise. All
instances of fLn lack a finite variance (see Chap. 2). As a result, �2k (Eq. 4.51) will
scale with the fLn series length (see Fig. 4.14). This scaling can be estimated as,

�2k ' 2

Z Qymax
k

0

Qy2L˛;0;� .Qy/dQy � 
Qymax
k

�2�˛ / k.
2
˛�1/; k � 1; (4.55)

where Qymax
k � k1=˛ is the estimated maximum value that the process can take up to

iteration k, if distributed according to a symmetric Lévy pdf of tail-index ˛ [19].
Since fLm has stationary increments (as fBm), it follows that its range should

scale with its self-similarity exponent H [8]. Thus, when normalized to the divergent
variance, the fLn rescaled-range will scale with k as:

.R=S/fLn
k � kH

k
1
˛� 1

2

� kH� 1
˛C 1

2 � kHR=S
; k � 1: (4.56)
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That is, the relation between the exponent obtained form the R=S analysis and the
self-similarity exponent of fLm is no longer the identity, but instead:

H ' HR=S � 1

2
C 1

˛
: (4.57)

This is an interesting result for several reasons. First, because the reader will
remember that H D 1=˛ corresponds to uncorrelated Lévy motion, and that we
previously associated H > 1=˛ with persistence, and H < 1=˛ with antipersistence
(see Sect. 4.3.2). Therefore, if the standard R=S analysis is to be applied to a Lévy-
distributed series, these relations would translate into HR=S D 1=2 for uncorrelated
motion, HR=S > 1=2 for persistence and HR=S < 1=2 for antipersistence. That
is, the same general interpretation already given for near-Gaussian statistics! The
conclusion is thus, that although the R=S method may not give the correct self-
similarity exponent of the time series under examination, it can still be used to
characterize the type of correlations present in it.

Secondly, the possible values of the self-similarity exponent of fLm are restricted
to the interval H 2 


0;max


1; ˛�1�� (see Sect. 3.3.4). This restriction becomes,

when expressed in terms of HR=S,

HR=S 2
�
1

2
� 1

˛
;
3

2
� 1

˛

�

; if 1 < ˛ < 2; (4.58)

and

HR=S 2
�
1

2
� 1

˛
;
1

2

�

; if 0 < ˛ < 1: (4.59)

This means that, although the R=S method can never yield values of HR=S > 1

for any fLn, it could yield negative values for any ˛ < 2.41 This would happen
whenever the square of the variance grows faster than the range with time, that is
possible for sufficiently antipersistent cases.

A possibility to make HR=S and H coincide again for fLm is to modify the
standard R=S procedure as follows. One simply needs to replace the variance used
to normalize the rescaled range by any other finite moment of the process,42

.R=S/sk WD max fZi; i D 1; � � � kg � min fZi; i D 1; � � � kg
"
1

k

kX

iD1
jQxijs

#1=s
; s < ˛; (4.60)

41For instance, for fLn with ˛ D 1, HR=S varies within .�1=2; 1=2	; for ˛ D 0:5, HR=S varies
within .�3=2; 1=2	.
42That is, one that does not scale with the record length!
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Fig. 4.15 s-rescaled range as a function of time for a 100,000 points long realization of fLn with
˛ D 1:6 and nominal self-similarity exponent H D 0:6. Values of s < ˛ used to normalize the
range are shown in the legend

which ensures that .R=S/sk / kH ; k � 1, for any fLm with self-similarity
exponent H. In practice however, it is advisable to choose s much smaller than ˛
since, although all these moments (that we will refer to as s-variances) are finite in
theory, the value of k above which the moment becomes independent of k increases
as k approaches ˛ (see Fig. 4.14). As a result, HR=S may still differ significantly
from the self-similarity exponent H as s approaches ˛ from below. The process
is illustrated in Fig. 4.15 for a synthetic series of fLn with ˛ D 1:6 and nominal
exponent H D 0:6. As can be seen, the standard R=S analysis yields an exponent
HRS ' 0:48.43 If one applies the .R=S/s procedure, the exponent obtained is
virtually identical to H for s < 1, whilst there is a small difference for s > 1 that
increases towards s D 1:6, in spite of the fact that all these s-variances are finite in
theory. The reason for the discrepancy, as explained previously, is the increasingly
longer time series needed for the s-variance to settle to an stationary value for s > 1
(see Fig. 4.14).

43Thus implying slight antipersistence, since HR=S < 0:5, what is consistent with the self-similarity
exponent (H D 0:6 < 1=˛ D 0:625/.
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4.4.5 Waiting Time Statistics

The last technique we will discuss to characterize the presence of memory in time
series is the study of their waiting-time statistics. This technique is often applied
to stationary processes in which relatively large events can be easily made out
from a background of smaller, irregular variations. This is often the case, for
instance, when examining time records of solar activity (see Chap. 7), radioactive
disintegration of a substance, requests on a web server or beats in the human heart,
to name a few.

The procedure consists on quantifying the statistics of the lapses of time in which
no significant activity takes place, often referred to as waiting-times. Memory can
be made apparent from the shape of their pdf. The reason is that the collection of
all the points along the temporal axis at which the triggerings take place can be
considered as a point process [20]. If no correlation exists between the triggerings,
the point process becomes a Poisson process (see Sect. 2.3.4), and the statistics
of the time intervals between successive triggerings (i.e., the waiting times) must
follow an exponential pdf (Eq. 2.59):

E�0.w/ D ��1
0 exp.�w=�0/; (4.61)

with ��1
0 providing the mean triggering rate of the process.

If the waiting-time pdf turns out to be not exponential, one should naturally
suspect of the presence of some kind of correlation between the triggerings of the
meaningful events in the stationary process.44 However, our interest is on detecting
the kind of long-term, self-similar memory that might appear in complex systems. In
this case, observing a non-exponential waiting-time pdf is not sufficient. We should
then expect that the waiting-time pdf has the asymptotic form,

p.w/ � w��; (4.62)

with � 2 .1; 2	 to ensure that no finite triggering rate could be defined (since the
first moment of p.w/, that gives the triggering rate, would then be infinite), while
keeping the pdf integrable.

It must be noted, however, that there is always a certain degree of arbitrariness
when estimating waiting-time statistics. This arbitrariness is introduced while
making the decision of what is to be considered a meaningful event in the time

44In some cases, non-exponential waiting-time pdfs have been interpreted as evidence of non-
stationarity, instead of memory. That is, of processes in which the triggering rate varies with time,
generally known under the name of inhomogeneous Poisson processes [20]. When the triggering
rate is itself a random variable, the process is known as a Cox process. As usual, it is important
to know the physics of the problem at hand, and to contrast any result with other analysis tools,
so that one can distinguish between any of these non-stationary possibilities and truly self-similar
behaviour.
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series. Usually, this is done in practice by choosing a threshold, above which events
are considered meaningful. Luckily, Poisson processes have the interesting property
that, if any subprocess is formed by randomly selecting elements with a certain
probability 0 < p < 1, the resulting subprocess is again a Poisson process but
with the reduced triggering rate p��1

0 [20]. Therefore, the process of thresholding
does not introduce artefacts that could be mistaken by some kind of memory if
memory was absent to begin with! Regretfully, this is not always the case when
correlations are present. A widely prescription to choose a reasonable threshold
is based on estimating the standard deviation (or, a finite s-variance, in case the
variance diverges) of the series, � , and setting the threshold to be a few times � [21],
but many other options are also useful. We will show an example of thresholding
in the next section, when we revisit the analysis of the dynamics of the running
sandpile. Be it as it may, thresholding must always be done carefully and, if possible,
guided by what is known about the physics of the problem at hand.

4.5 Case Study: The Running Sandpile

We continue to characterize the dynamics of the running sandpile, this time by
means of several of the diagnostics discussed in this chapter. In particular, we
will make use of the R=S analysis, the power spectrum and waiting-time statistics.
The signal that will be analyzed is the one usually known as the instantaneous
activity [22], I.t/. It is defined (see inset of Fig. 4.16) as the total number of
unstable cells present in the sandpile at any given time. I.t/ is a positive quantity
by definition, being zero only when the sandpile is inactive. It is also bounded from
above by the total length of the sandpile, L. In this case, we will consider a sandpile
with size L D 200, critical slope Zc D 200, toppling size NF D 20, rain probability
p0 D 10�4 and rain size Nb D 10. As a result, the overlapping figure-of-merit
. p0L/�1 � 50 < L, meaning that the sandpile is effectively driven harder than the
one considered in Sect. 3.5.

The sandpile intensity is rather different from most of the signals that we have
examined in this chapter, since it is not symmetrically distributed. Indeed, Fig. 4.16
shows that its pdf is quite close to an exponential (except at I D 0, that corresponds
to the moments in which the sandpile remains inactive). Most of the tools that
we have discussed in previous sections do not require symmetric statistics to be
applicable, since they only test whether the values of the process are statistically
independent (or not) of each other. However, the lack of symmetry makes drawing
comparisons with symmetric mathematical models, such as fGn or fLn, not just of
little use, but sometimes even misleading.

We start by discussing the power spectrum of the intensity (see Fig. 4.17), that has
been computed following the methodology discussed in Sect. 4.4.2. The obtained
power spectrum has three distinct power-law scaling regions, f .!/ � !�c. This is
in contrast to what one expects from a monofractal signal (such as fGn, for instance),
but is typical of real signals where monofractality can be limited by either finite-size
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Fig. 4.16 Probability density function of the instantaneous intensity of the SOC state of a running
sandpile (L D 200;NF D 20; Zc D 200; p0 D 10�4 and Nb D 10). An exponential fit to it
(excluding its value at I D 0) is also shown as a black dashed line. Inset: intensity time trace for
the first 100,000 iterations showing its irregular nature in time

effects or by different physics governing dynamics at different scale ranges. The
region in the spectrum at the smallest frequencies (! < 10�5) seems to be associated
to some kind of negative correlations, as the increasing power-law behaviour (i.e.,
c � �1:58) reveals. The other two regions exhibit decaying power law behaviours,
possibly associated with some kind of persistence. The first one scales as c � 0:44

for almost three decades, extending from ! � 10�5 to ! � 10�2; the second one
scales as c � 3:32 for ! > 10�2, that dominates at the shortest timescales.

As was already pointed out, the fact that multiple scaling regions are present
points to a global multifractal character for the sandpile intensity, although it
might be dominated by a monofractal component over certain regions. The same
conclusion is reached from the analysis of the results obtained with the R=S method.
Again, three regions are found with different power-law scalings R=s.�/ � �HR=S

(see Fig. 4.18). The first one, at the shortest timescales (i.e., � < 102), scales as
HR=S � 1; a second one scaling as HR=S � 0:78 extends for almost three decades,
between � � 5�102 and � � 5�106; the last one, scaling as HR=S � 0:21, is found
for � > 106. The correlation nature of these regions, as well as the timescales over
which they extend, coincides with those found in the analysis of the power spectrum.
The first two regions are dominated by persistence (i.e., HR=S > 1=2), while the one
at the longest timescales exhibits a strong antipersistent character (i.e., HR=S < 1=2).



4.5 Case Study: The Running Sandpile 215

10–3

10–4

10–5

10–6

10–7

10–8

10–9

10–10

10–11

10–7 10–6 10–5 10–4

frequency

mesorange

∼     
–3.32

P
ow

er
 s

pe
ct

ru
m

10–3 10–2 10–1

ω 

∼     
–0.44ω ∼    

1.58ω 

Fig. 4.17 Power spectrum of the sandpile intensity, exhibiting three different power-law scaling
regions

Fig. 4.18 R=S analysis of the intensity signal of the running sandpile. It exhibits three different
power-law scaling regions, consistently with what was found in the power spectrum
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An important point to make here is that the exponents of the R/S analysis and the
power spectrum do not satisfy the relation c D 2HR=S � 1 that is however satisfied
by fGn. This was to be expected, since our signal is clearly neither monofractal
nor symmetrically distributed. In fact, a one-to-one correspondence between the
exponents c and HR=S should not be expected either in this case. Furthermore, it has
been shown with the running sandpile that, by changing the sandpile drive intensity,
p0, one can significantly change the value of the exponent c in the mesorange whilst
keeping HR=S basically unchanged [23]. It is observed, however, that regions that
appear dominated by persistence (or antipersistence) in the power spectrum, do
exhibit the same type of correlations when looked at using the R=S analysis. Or,
in other words, that extended regions in the power spectrum scaling with exponents
0 < c < 1 are always associated to extended regions, over the same timescales,
that scale with exponents in 1=2 < HR=S < 1. The same happens for those regions
dominated by antipersistence.

The physical interpretation of each of the three distinct regions previously identi-
fied45 is well understood [22, 23]. The only region that is a direct consequence of the
properties characteristic of the SOC state is the one that appears at the intermediate
scales. We have previously referred to it as the mesorange (see Sect. 1.3). This
region is a reflection of the existence of long-term positive correlations (thus the
values of HR=S � 0:78 > 0:5 and c � 0:44 < 1) between the many different
avalanches happening in the sandpile, that is transmitted through the footprints left
in the sand slope profile by previous avalanching activity. It is interesting to note
that the mesorange extends, for this particular case, up to timescales of the order
of 106 iterations, much longer than the duration of typical activity periods, that
are limited for this sandpile finite size to a few hundred iterations. This estimate
is obtained from the extension of the region that appears at the shortest timescales
(largest frequencies), whose scaling is one of almost perfect correlation (as reflected
by the obtained HR=S ' 0:99). This quasi-perfect correlation is related to the average
correlation of each intensity period with itself. The other scaling region that appears
at the longest timescales (or shortest frequencies) is antipersistent, and is a reflection
of finite-size effects. To understand its origin, one needs to consider that, as the
sandpile is driven while in the SOC state, avalanches tend to be initiated at those
locations that are closer to the local slope threshold, and to stop at those cells where
the slope is flatter. As a result of this concomitant process, the slope profile will tend
over time to alternate intermittently between periods where the profile is, almost
everywhere, respectively closer and farther from marginal. When at the former
states, the probability of global, system-size discharges will become much larger.
This situation is maintained until a sufficient number of large events take place that
manage to push the profile away from marginal over large fractions of the sandpile.
The overall avalanching probability then becomes smaller until, under the external
drive, the process starts all over again. This charge/discharge intermittent cycle is a

45Although these three regions are the most relevant regions, it can be shown that other regions can
also appear in the sandpile, particularly as p0 is varied [23] (see also Problem 4.6).
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Fig. 4.19 Probability of the waiting-times between intensity events larger than 1� , 5� and 10� ,
where � is the standard deviation of the intensity signal. When most events are included, the pdf is
very close to an exponential. However, for larger thresholds, a clear power-law behaviour appears,
signalling to the existence of long-range dependences between sufficiently large events

direct consequence of the finite size of the sandpile. Clearly, if L ! 1, the sandpile
could never approach global marginality and this scaling region would not exist.46

We conclude by carrying out the analysis of the waiting-time statistics of the
sandpile intensity. In order to identify the meaningful events, we have chosen the
threshold equal to a prescribed number of times the standard deviation of the
intensity signal. The results for one, five and ten times are shown in Fig. 4.19. As
can be seen in the figure, the behaviour of the waiting-time pdf for the smallest
threshold is exponential, a direct reflection of the random character of the sandpile
drive. Indeed, since sand is dropped randomly on the sandpile, and since avalanches
can only start at locations that have just received some sand, it should be expected
that the triggering process be completely random. The exponential pdf obtained for
one standard deviation, clearly confirms this fact.47 However, the waiting-time pdf
develops an extended power-law region as the threshold value is further increased.

46In fact, as the sandpile size increases, the timescale at which the anticorrelated region appears is
pushed to larger timescales (or smaller frequencies)[23].
47In fact, it was at first believed that such exponential pdf was a fundamental feature of SOC
models [25]. It was later shown that this was not the case (see Sect. 1.3), and that very similar
SOC dynamics could also be obtained in a sandpile driven with coloured noises, which yielded a
power-law waiting-time pdf at small thresholds that reflected the correlation in the drive [24], or
by choosing the location where a random drive is applied in a correlated manner [26].



218 4 Memory

For ten times the standard deviation, such power law scales as � w�1 for more
than two decades, for this sandpile size. It turns out that this change in scaling
behaviour coincides with choosing a sufficiently large threshold so that the events
considered as avalanches lie within the mesoscale of avalanche sizes [24]. The
appearance of the power-law scaling thus warns of the fact that avalanche triggering
is strongly correlated if sufficiently large avalanches are considered. This correlation
is a reflection of the presence of long-term memory present in the sandpile dynamics
(see discussion in Sect. 1.3.2).

4.6 Final Considerations

In this chapter we have discussed the concept of memory, focusing on the type
of self-similar, long-term memory (both persistent and antipersistent) that one
often encounters in complex systems. Several methods have been presented to
search for memory and to characterize it, including popular tools such as the
autocorrelation function, the power spectrum, the R=S analysis or the study of
waiting-time statistics. All these methods can be applied to any stationary time
series. However, there is a tendency in the literature to interpret the results in the
light of what is expected from monofractal, self-similar processes such as fractional
Brownian noises. There is a hidden danger in abusing these associations since finite-
size effects in some cases, and the coexistence of different type of dynamics over
different range scales in others, can distort this simple picture and lead to erroneous
conclusions. The lack of a one-to-one correspondence between exponents in the
power spectrum and the R=S analysis, although valid for fGn, is just one example.
In other cases, it is because of the presence of divergent statistics that the various
methods need to be modified to yield meaningful results.

In addition, the important concept of the mesorange, the intermediate range
of scales over which a real system scales (approximately) as a monofractal, has
appeared again. The analysis of the sandpile activity has shown that the range of
scales over which the mesorange becomes apparent depends on the quantity under
examination, as can easily verified by comparing the relevant scaling regions in
Fig. 4.18 (that shows the power spectrum of the sandpile activity) and in Fig. 3.19
(showing the moments of the sandpile global mass). The neat thing is, however,
that all of them are reflections of the same underlying dynamics. In this case, self-
organized criticality.

Problems

4.1 Autodifference
Prove that the relations given in Eq. 4.33 hold, with the upper bound obtained
for perfect correlation, and the lower bound reached for perfect anticorrelation, for
1 < ˛ < 2.
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4.2 DFA vs R/S: First Round
Generate two fGn series (use the code written for Problem 3.6) with 50,000 points
and nominal self-similarity exponents H D 0:25, H D 0:4, H D 0:75 and H D 0:9.
Then, apply DFA1 and R/S and estimate the Hurst exponent of the series. Which
method performs better for each value of H?

4.3 DFA vs R/S: Second Round
Use a uniform random number generator to add a random perturbation to the two
fGn series with 50,000 points and self-similarity exponents H D 0:25 and H D
0:75. Set the amplitude of the noise to various values (say, �=5, �=2, � and 3�)
relative to the standard deviation of the fGn series. Then, apply DFA1 and R/S to
try to estimate the Hurst exponent of the series. Which method performs better as a
function of the amplitude of the noise?

4.4 DFA vs R/S: Third Round
Generate two fGn series with 50,000 points and nominal self-similarity exponents
H D 0:25 and H D 0:75. Add a periodic perturbation with period T D 300 for
various amplitudes (say, �=5, �=2, � and 3�) relative to the standard deviation of
the fGn series. Then, apply DFA1 and R/S and estimate the Hurst exponent of the
series. Which method performs better as a function of the amplitude?

4.5 Running Sandpile: Global Mass Analysis
Use the sandpile code previously built (see Problem 1.5) and produce a time (at least
108 iterations!) record of the global mass evolution for a sandpile with L D 200,
Zc D 200, Nf D 20, Nb D 10 and p0 D 10�3. Carry out the R=S, power spectrum
and waiting-time analysis done in Sect. 4.5 but for the global mass. Do the results
compare better with what could be expected from fGn than what we found for the
sandpile activity in this chapter?

4.6 Running Sandpile: Effect of Varying Drive
Use the sandpile code previously built (see Problem 1.5) and produce a time record
(at least 108 iterations!) of the global mass evolution for a sandpile with L D 200,
Zc D 200, Nf D 20, Nb D 10 and rain probabilities p0 D 10�5; 10�4 and 10�2.
Carry out the R=S, power spectrum and waiting-time analysis for each of their
activity time records. How do the results change with respect to the case analysed in
Sect. 4.5? Are there any new regions? How do the transition points between regions
change? How about the values of the exponents in each region?
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Chapter 5
Fundamentals of Fractional Transport

5.1 Introduction

In many physical systems, transport plays a central role. By transport we mean
any macroscopic process that moves some physical quantity of interest across the
system. For instance, transport processes are responsible for transporting mass and
heat, including pollutants, throughout the atmosphere. Or for transporting water and
energy, but also debris, across the ocean. Or for transporting plasma density and
energy, but also impurities, out of a tokamak. Or for transporting angular momentum
out of an accretion disk, but also mass and energy into the black hole at its center. In
all these examples, the understanding of how transport behaves and its quantification
are extremely important from a theoretical and practical point of view.1

The most popular phenomenological description of macroscopic transport is
probably Fick’s law, introduced by A. Fick in the mid 1800s [1]. In particular, Fick
proposed that the local flux of any physical quantity of interest was proportional
to the local value of its gradient.2 A linear dependence is indeed the simplest
hypothesis one could make, but it turns out that it can also be often justified
(although not always!) by the dynamics of the microscopic processes responsible,
as we will soon discuss in Sect. 5.2.

If, for the sake of simplicity, one focuses on particle transport only and restricts
the discussion to one dimension, Fick’s law expresses the particle flux at position x
and time t as,

� .x; t/ D �D
@n

@x
.x; t/: (5.1)

1Note also that, in all of these examples, transport is mainly carried out by turbulence!
2Other famous examples that share the same spirit that Fick’s law are Fourier’s law, that
establishes the flux of heat to be proportional to the temperature gradient, q D �
@T=@x, where 

is known as the thermal conductivity; and Newton’s law, that relates the kinematic stress and the
velocity shear in a perpendicular direction, �x D �@ux=@y. � is known as the kinematic viscosity.
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The proportionality coefficient, D > 0, is known as the particle diffusivity. It has
dimensions of (length)2/time. The physical meaning of the minus sign in Fick’s law
is made apparent after introducing the flux into the continuity equation,3

@n

@t
C @�

@x
D S.x; t/: (5.2)

that becomes the famous classical diffusion equation,

@n

@t
D D

@2n

@x2
C S.x; t/: (5.3)

The diffusion equation is very familiar to all physics and science students since
their high school days. The minus sign thus ensures that the transport driven by the
gradient will tend to flatten it out. Once @n=@x vanishes, the flux becomes zero.

In order to use Fick’s law in practical cases, one needs to estimate the constant
that relates flux and gradient. Sometimes this can be done from the knowledge
of the microscopic processes taking place in the system; but more often than not,
these coefficients are directly obtained from experiments. In both cases, however,
the soundness of the linearity behind Fick’s approach is implicitly assumed. This
assumption may not always be justified, though. For instance, this is the situation
in some complex systems for reasons that will be discussed at length throughout
this chapter. Turbulent plasmas seem to be particularly good at providing situations
in which Fick’s law fails. For instance, this seems to be the case of fusion plasmas
magnetically confined in tokamaks, for which multiple observations suggest that
the radial transport of particles and energy does not behave in a Fickian way [2, 3].
Examples can however be found in many other physical systems. For instance, in
the transport of magnetic vortices across Type-II superconductors in the so-called
Bean state [4]. Or in the transport through fractal landscapes and random media [5],
such as the percolation of water through porous rock or the propagation of cracks
across rocks and ice [6].

In all these cases and many others other phenomenological formalisms must
be found to characterize transport. A relationship between flux and gradient that
appears to be sufficiently general to capture transport in many complex systems is4:

� .x; t/ D
Z t

0

dt0
Z 1

�1
dx0K.x � x0; t � t0/

�
dn

dx
.x0; t0/

�

: (5.4)

3The continuity equation simply expresses mathematically the fact that the number of particles
must be conserved.
4This relation could be made even more general since, as it stands, it assumes translational
invariance in time and space. Otherwise, the kernel would depend on either time or space, either
explicitly or through other fields. In this chapter, however, we will always assume, for simplicity’s
sake, that spatial and temporal translational invariance holds.
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Here, a new player has been introduced: the spatio-temporal kernel K.�x; �t/,
that makes it possible to endow transport dynamics with a non-local character in
space, and non-Markovian nature in time. By non-local it is meant that the value
of the gradient at other positions (x0 ¤ x) influences the flux at the current position
x; by non-Markovian, that the value of the gradient at past times (t0 < t) influences
the flux at the current time t.5 Clearly, Fick’s law is recovered from Eq. 5.4 if the
kernel is chosen to be:

K.�x; �t/ D �Dı.�x/ı.�t/; (5.5)

that collapses the integral so that only the local value of the density gradient (in
space and time) is relevant to determine the local flux.

We could say that the main objective of this chapter is to discuss and clarify what
constitutes a reasonable choice for the kernel in order to describe transport across
complex systems that exhibit spatial scale invariance (as discussed in Chap. 3) and
long-term, scale-invariant memory (as discussed in Chap. 4). In order to reach these
goals, we will need to revisit first the physical basis of Fick’s law (Sect. 5.2) and
to identify the reasons why it fails in the case of scale-invariant complex systems.
Once this is well established, we will be able to discuss various generalizations
that resolve the identified shortcomings (Sect. 5.3). The final product of this lengthy
tour will be a generalized phenomenological transport framework, based on the use
of fractional derivatives, that could prove more suitable to model transport in the
context of complex systems.

5.2 Diffusive Transport: Fundamentals

In order to gain some insight on the physical basis of Fick’s law, it is worth to
review two “microscopic” mathematical models6 from which it can be “derived”:
the continuous-time random walk (CTRW) and the Langevin equation.7

5.2.1 The Continuous-Time Random Walk

The continuous-time random walk (or CTRW) is a mathematical model, intro-
duced in the 1960s by E.W. Montroll [7], that generalizes the classical random walk

5This last statement establishes a direct connection between transport and the concept of memory
that was discussed in Chap. 4.
6The quotes are used to stress the fact that these two models are just that: mathematical models
that provide with a naive, although rich, idealization of the processes that might be taking place at
the microscopic level.
7It might appear to some readers that we discuss them in much deeper detail than what would be
needed for the purposes of this subsection. The reasons for doing this will become clearer soon,
since these models will provide the basis of the generalizations leading to fractional transport.
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Fig. 5.1 Sketch of the CTRW. Each walker moves along the real axis by taking successive jumps
of length �xi, i D 1; 	 	 	 ;N. In between jumps, it sits at rest for a lapse of time �ti. The position
of the walker as a function of time is thus given by x.tk � t < tkC1/ D Pk

iD1 �xi, where
tk D Pk

iD1 �ti. The choice for the probability density functions for step lengths, p.�x/ and waiting
times,  .�t/, defines the various CTRW

[8]. The model considers a population of particles (or walkers) whose motion is
defined probabilistically. In its one-dimensional version (see Fig. 5.1) each walker
stays at its initial position, x0, for a waiting time, �t. Then, it carries out a jump of
length�x, that takes it to its new position, x0C�x. The process is repeated infinitely
by each walker. The CTRW is defined8 by prescribing the pdfs of the jump sizes,
p.�x/, and the waiting-times,  .�t/.

How is the CTRW related to the classical diffusion equation (Eq. 5.3)? To
illustrate this point, we have followed numerically (see Prob. 5.1) the evolution of
N D 106 walkers in the case in which p.x/ is a Gaussian law (Eq. 2.30) and  .�t/
is an exponential (Eq. 2.59). That is,

p.�x/ D N0;2�2 .�x/;  .�t/ D E�0.�t/: (5.6)

Figure 5.2 shows the evolution of the walker density when all walkers are initiated
at x D 0. The figure also includes the numerical solution of the classical diffusive
equation using a diffusivity D D �2=�0, starting from n.x; 0/ D Nı.x/.9 It is

8It is possible to define more general CTRWs. For instance, one could define non-separable CTRWs
by specifying instead a joint probability �.�x; �t/ of taking a jump of size�x after having waited
for a lapse of time�t. It is also possible to define CTRWs that are not invariant under spatial and/or
temporal translations, and that depend on time, space or both either explicitly [9, 10] or through
dependencies on other fields [11, 12].
9More precisely, the initial condition distributes the N walkers uniformly in the interval
.�dx=2; dx=2/, where dx is the spacing used to discretize the problem.
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Fig. 5.2 Time evolution of N D 106 walkers, initially located at x D 0, advanced according to a
Gaussian jump size distribution with �2 D 5� 10�5, and an Exponential waiting time distribution
with �0 D 5. In blue, the analytical solution of the classical diffusion equation with D D 10�5 is
shown, at the same times

apparent that the two solutions are very close to each other, which suggests that there
must be a way to derive the classical diffusion equation from the CTRW defined by
Eq. 5.6, at least in some limiting form.10

In order to make this connection we need to solve the CTRW first. That is,
we need to find its propagator, G.x; tjx0; t0/, as a function of the choices made
for p.�x/ and  .�t/.11 Propagators were already introduced in Sect. 3.3. It will
be remembered that G.x; tjx0; t0/ provides the probability of finding a walker at
position x and time t , assuming that they started at position x0 at time t0. Once
known, one can write the general solution of the CTRW, for arbitrary initial

10From our discussions in Chap. 2 about the central limit theorem, the fact that Gaussians seem
to be related to diffusion also suggests that the underlying physical processes behind diffusive
transport are of an additive, and not multiplicative nature. This idea will also play a role when
extending the description of transport beyond diffusion, as will be seen soon.
11The impatient reader may ignore this relatively lengthy calculation and jump directly to the final
result (Eq. 5.18), and continue reading without any loss of coherence.
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condition n0.x/ and external source S.x; t/, as [13]:

n.x; t/ D
Z t

0

dt0
Z 1

�1
dx0G.x; tjx0; t0/Saug.x0; t0/; (5.7)

where the augmented source is defined as Saug.x; t/ D S.x; t/C n0.x/ı.t/.

5.2.1.1 Propagator of the CTRW

The propagator of the unbounded CTRW defined by p.�x/ and  .�t/ is more
easily found in terms of its Fourier-Laplace transform,12;13 NGCTRW.k; s/. Following
Montroll [7], and assuming that t0 D 0 without loss of generality, we first write the
probability of a walker being found at position x at time t as14:

GCTRW.x; tjx0; 0/ D GCTRW.x � x0; t/ D
Z t

0

�.t � t0/Q.x � x0; t
0/dt0; (5.8)

where Q.x � x0; t0/ is the total probability of the walker arriving at x (from x0)
at time t0 after executing any number of jumps, and �.t � t0/ is the probability of
staying at site x for an interval of time �t D t � t0. Note that Q.x � x0; t0/ differs
from GCTRW.x � x0; t0/ in the fact that the latter includes the possibility of having
arrived at x (from x0) at time t0 < t and having stayed there until time t. Temporal
convolutions, as the one appearing in Eq. 5.8, always become much simpler after
transforming them to Laplace-Fourier space (see Appendix 1). Therefore, Eq. 5.8
becomes15:

NGCTRW.k; s/ D Q�.s/ NQ.k; s/: (5.9)

Next, we compute Q�.s/ and NQ.k; s/. Obtaining Q�.s/ is quite straightforward, since
the probability of staying quiet during the time interval Œ0; t	, for any t, is one minus

12A primer on the Laplace transform has been included in Appendix 1 for those readers unfamiliar
with it. The Laplace transform is very useful to simplify the solution of initial-value problems.
When used with partial differential equations, they are often combined with Fourier transforms,
that were already introduced in Appendix 1 of Chap. 2.
13We will use the notation Nf .k; s/ to denote the double Laplace-Fourier transform. It will be
remembered that Of .k; t/ is used for the Fourier transform, whilst Qf .x; s/ is used for the Laplace
transform.
14Since the CTRW, as it has been defined here, is translationally invariant in both time and space,
its propagator can only depend on the difference x � x0 and not separately on x and x0.
15The spatial and temporal variables associated to the Fourier (k) and Laplace (s) variables are,
respectively, �x D x � x0 and � .
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the probability of leaving x between 0 and t (see Appendix 1, Eq. 5.116):

�.t/ D 1 �
Z t

0

 .t0/dt0 H) Q�.s/ D 1 � Q .s/
s

: (5.10)

Finding NQ.k; s/ is a more demanding task. Indeed, since Q.x; t/ gives the total
probability of the walker making it to position x by time t by any possible mean,
all paths to x contribute to it independently of the any number of jumps taken.
By denoting the probability of arriving at x at time t in j steps by Qj.x; t/, we can
calculate this quantity is:

. probability of the walker executing its j-th jump at time t/

�
. probability of the walker reaching x after j jumps/

and respectively referring to each factor by  j.t/ and pn; j.x/, one has that:

Q j.x; t/ D  j.t/pn; j.x/: (5.11)

Thus,

Q.x; t/ D
1X

jD0
Q j.x; t/ D

1X

jD0
 j.t/pn; j.x/: (5.12)

Since  j.t/ gives the probability of the j-th jump occurring at time t is related to
the probability of the . j � 1/-th jump through the following recurrence relation:

 j.t/ D
Z t

0

 .t � t0/ j�1.t0/dt0; (5.13)

where  1.t/ D  .t/, is the waiting-time pdf. Taking again advantage of the
convolution theorem for the Laplace transform (see Appendix 1), we Laplace-
transform Eq. 5.13 to get:

Q j.s/ D Œ Q .s/	j: (5.14)

Similarly, the probability of finding our walker t at a given location x after j
iterations obeys the recurrence formula:

pn;jC1.x/ D
Z 1

�1
p.x � x0/pn; j.x

0/dx0; (5.15)
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where pn;1.x/ D p.x/, the jump size pdf. Taking now advantage of the convolution
theorem for the Fourier transform (see Appendix 1 of Chap. 2), we Fourier-
transform this relation to get to,

Opn; j.k/ D ŒOp.k/	 j : (5.16)

We can now use Eqs. 5.16 and 5.14 into the Fourier-Laplace transform of Eq. 5.11:

NQ.k; s/ D
1X

jD0

� Q .s/Op.k/� j D 1

1 � Q .s/Op.k/ ; (5.17)

after adding the geometric series.
By collecting all these results (namely, Eqs. 5.14 and 5.17), we find that the

Laplace transform of the propagator of the CTRW is given by:

NGCTRW.k; s/ D Œ1 � Q .s/	=s

1 � Q .s/Op.k/ ; (5.18)

that could be Fourier-Laplace inverted to get the propagator in real space, if so
desired. We will write instead the Fourier-Laplace transform of the general solution
for the CTRW (Eq. 5.7), taking advantage again of the convolution theorems for the
Laplace and Fourier transforms:

Nn.k; s/ D NGCTRW.k; s/ � NSaug.k; s/ D 1 � Q .s/
1 � Q .s/Op.k/

NSaug.k; s/

s
: (5.19)

This equation gives the final solution to the CTRW. In order to find the time-space
solution, one needs to Fourier-Laplace invert it to the real time and space variables.
However, we will see that Eq. 5.19 is sufficient for our purposes.

5.2.1.2 Connecting the CTRW to Classical Diffusion

The classical diffusion equation can be derived from the “microscopic” CTRW
model in the so-called fluid limit, in which one only retains the long-distance, long-
time features of the CTRW. This limit is particularly easy to take in Laplace-Fourier
space, since the limit of long distances is tantamount to considering k ! 0, whilst
the limit of long times is equivalent to assuming s ! 0.

In the case of p.�x/ D NŒ0;2�2	.�x/ and  .�t/ D E�0.�t/, their Fourier and
Laplace transforms are respectively given by (see Appendix 1 of Chap. 2):

Op.k/ D exp.��2k2/; Q .s/ D 1

�0s C 1
: (5.20)
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In the fluid limit (k ! 0; s ! 0), these transforms behave as:

Op.k/ ' 1� �2k2; Q .s/ ' 1 � �0s; (5.21)

that inserted into Eq. 5.18 gives the fluid limit of the CTRW propagator,

lim
s!0;k!0

NGCTRW.k; s/ ' 1

s C .�2=�0/k2
: (5.22)

Inserting the asymptotic propagator in Eq. 5.19, that provides the solution of the
CTRW, and after working out some straightforward algebra, one obtains:

Nn.k; s/ ' NSaug.k; s/

s C .�2=�0/k2
: (5.23)

Next, this expression can be easily reordered as,

.sNn.k; s/ � On0.k// D ��
2

�0
k2 Nn.k; s/C NS.k; s/; (5.24)

that is trivially Fourier-Laplace inverted. The result is:

@n

@t
D �2

�0

@2n

@x2
C S.x; t/; ăn.x; 0/ D n0.x/: (5.25)

That is, we obtain precisely the classical diffusive equation (Eq. 5.3) with a diffusive
coefficient D D �2=�0. It is no wonder that the CTRW and the numerical solution
of the classical diffusive equation that were compared in Fig. 5.2 matched so well!

5.2.1.3 Underlying Assumptions: Locality in Time and Space

We have just shown that the classical diffusive equation (and Fick’s law) can
be obtained as the fluid limit of any CTRWs with a Gaussian jump-length pdf
and an exponential waiting time pdf. Or more precisely, as the fluid limit of
any CTRW whose jump-length pdf has a finite second moment so that Op.k/ �
1 � �2k2, and whose waiting-time pdf has a finite mean, so that Q .s/ � 1 � �0s.
Is this result sufficient to explain why Fick’s law seems to provide such an
adequate description of transport in so many practical situations? Of course not.
The CTRW is just a simple mathematical model, and the microscopic reality is
clearly much more complicated and system dependent. However, it is apparent that
the (Gaussian/Exponential) CTRW model somehow manages to capture the basic
features of transport in many of these systems. Which are these basic features?
Clearly, one appears to be that the nature of the underlying transport is rather
additive. The second one is the existence of characteristic scales (in time and
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space) for the transport process. That is precisely what �2 and �0 represent.p
�2 sets a characteristic length, and �0 a characteristic time for the transport

process. It is the existence of these scales that seems to matter in order for the
basics of transport to be well captured by Fick’s law, at least for scales much
longer than �0 and much larger than

p
�2. It is only then that the strong locality

assumptions hidden within Fick’s law—that the flux at one location at a given time
only depends on the present value of the gradient at the same location—become
justified.

Characteristic transport scales can be easily identified in many natural systems.
Take, for instance, the case of particles moving throughout a gas. Particles will move
on average for a mean free path, �, in between successive collisions. The motion
can happen in any direction, thus giving a zero mean displacement. The variance of
the motion, however does not vanish. Instead, it satisfies �2 / �2. Therefore, the
typical scale length for transport is given by �. The characteristic timescale, on the
other hand, is given by the (inverse of the) collision frequency, �c. As a result, one
expects that the effective transport through the gas be well described by considering
a (Gaussian/Exponential) CTRW that ultimately leads to a diffusivity D � �2��1

c .
In a turbulent fluid or plasma, on the other hand, one would think that the typical
turbulent eddy size, le and the typical eddy lifetime �e might play similar roles, and
an effective eddy diffusivity, given by D ' l2e=�e, should do a good job describing
the overall transport for x � le and t � �e. One must be careful here, though, since
there are regimes in turbulent fluids and plasmas in which characteristic transport
scales do not exist in spite of the fact that one can still estimate both le and �e!
As a result, Fick’s law is no longer a good model to model transport in these
regimes.16

5.2.2 The Langevin Equation

The second “microscopic” model that we will discuss is the Langevin formulation
of Brownian motion, introduced by P. Langevin in the early 1900s [14]. We already
introduced the Langevin equation in Chap. 3, when discussing self-similar random
processes.17 The Langevin equation gives the position of a single particle on the
real line at time t as (see Fig. 5.3):

x.t/ D x0 C
Z t

0

dt0�2.t0/; (5.26)

16We will discuss several examples of systems and regimes in which this is indeed the case, in the
second part of this book. Particularly, in Chaps. 6 and 9.
17At that time, we referred to it as the only uncorrelated member of the fractional Brownian motion
(fBm) family (see Eq. 3.64).
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Fig. 5.3 Examples of particle trajectories, all started from x0 D 0 and advanced according to the
Langevin equation Eq. 5.26

where �2.t/ is a Gaussian random variable (or noise) with zero mean and covariance
function (see Chap. 4, Eq. 4.1) given by:

CoŒ�;�	.t; t
0/ D ˝

�.t/�.t0/
˛ D 2Dı.t � t0/: (5.27)

Similarly to the case of the CTRW with jumps distributed according to the
Gaussian p.�x/ and waiting-times following the exponential  .�t/, the Langevin
equation is also closely related to the classical diffusive equation.18 To illustrate this
fact, Fig. 5.4 shows the evolution of the particle density according to the Langevin
equation, for a collection of N D 106 particles all initialized at x D 0 (see Prob. 5.2).
This evolution is compared against that of the numerical solution of the classical
diffusive equation with diffusivity D. It is apparent that the two solutions are indeed
very close. However, in order to establish a more formal connection, we will need
to consider the propagator of the Langevin equation, similarly to what was already
done for the CTRW.

18The additive nature of the physical processes behind diffusion are also apparent in the formula-
tion of Langevin equation, where the noise acts as a surrogate for the instantaneous displacement.
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Fig. 5.4 Time evolution of N D 106 particles, initially located at x D 0, advanced according to
the Langevin equation (Eq. 5.26) using Gaussian noise with a variance �2 D 2 	 10�4. In blue, the
analytical solution of the classical diffusion equation with D D 10�4 is shown, at the same times,
for comparison

5.2.2.1 Propagator of the Langevin Equation

We will calculate the propagator of the Langevin equation through its moments [15].
That is, by estimating the expected values,

h.x � x0/
ni WD

Z

.x � x0/
nGLang.x � x0; t/dx: (5.28)

The moments can be calculated using the equation that defines the particle path
(Eq. 5.26), even if the propagator is not known. For instance, the first moment is
obtained as:

hx � x0i D
�Z t

0

dt0�.t0/
	

D
Z t

0

dt0
˝
�.t0/

˛ D 0: (5.29)

Naturally, we have assumed that the integral and the ensemble averages commute,
and that the noise has a zero mean.
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Regarding the second moment, the calculation goes like this:

˝
.x � x0/

2
˛ D

�Z t

0

dt0�.t0/
Z t

0

ds0�.s0/
	

D 1

2

Z t

0

dt0
Z t0

0

ds0 ˝�.t0/�.s0/
˛ D

D D
Z t

0

dt0
Z t0

0

ds0ı.t0 � s0/ D Dt; (5.30)

where the value of the covariance of the noise (Eq. 5.27) has been used. The
remaining moments can be computed in a similar way (see Prob. 5.3). It turns out
that all odd moments vanish, whilst the even ones are equal to:

h.x � x0/
ni D .Dt/n .n � 1/ŠŠ; (5.31)

where nŠŠ D n.n � 2/.n � 4/ � � � represents the double factorial.
The attentive reader will recognize the moments of a Gaussian distribution in

these formulas (see Prob. 2.4). Therefore, we can conclude that the propagator for
the Langevin equation is given by:

GLang.x; tI jx0; 0/ D 1p
2
Dt

exp

�

� .x � x0/2

2Dt

�

; (5.32)

a Gaussian that spreads out in time. As a result, the center of the propagator, given
by its mean value, remains unmoved and centered at x D x0 throughout the motion.
Its width, on the other hand, grows with time as � / t1=2.

5.2.2.2 Connecting the Langevin Equation to Classical Diffusion

The connection, in this case, is even more direct that in the case of the CTRW
with jumps distributed according to the Gaussian p.�x/ and waiting-times following
the exponential  .�t/. It turns out that the propagator of the classical diffusion
equation, GCDE.x; tjx0; t0/, is also given by Eq. 5.32. Indeed, the propagator is the
solution of the equation,

@

@t
GCDE.x; tjx0; 0/ D D

@2

@x2
GCDE.x; tjx0; 0/; (5.33)

with initial condition given by GCDE.x; 0jx0; 0/ D ı.x�x0/. We proceed by Laplace-
Fourier transforming this equation to find,

s NGCDE.s; k/ � 1 D �Dk2 NGCDE.s; k/ H) NGCDE.s; k/ D 1

s C Dk2
; (5.34)
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that can be easily Laplace-Fourier inverted to yield (see Appendix 1),

GCDE.x; tI x0; 0/ D 1p
2
Dt

exp

�

� .x � x0/2

2Dt

�

D GLang.x; tI jx0; 0/: (5.35)

In passing, one should also note that Eq. 5.34 coincides with the fluid limit of the
CTRW propagator (Eq. 5.22).

5.2.2.3 Underlying Assumptions: Locality in Time and Space

Ultimately, the reason why the ensemble average of the Langevin equation behaves
like the classical diffusion equation is because of the locality assumptions, both in
time and space, implicitly hidden in its formulation. These assumptions are however
hidden in a different way that in the case of the CTRWs with Gaussian p.�x/ and
exponential .�t/, when spatial and time locality is enforced separately. In the case
of the Langevin equation they are enforced jointly when assuming the dependence
of the noise covariance function (Eq. 5.27) and the fact that D, that has dimensions
of length2/time, has a finite value.

5.3 Scale Invariant Formulations of Transport

After having shown that the validity of Fick’s law (and consequently, of clas-
sical diffusion) ultimately relies on the existence of finite characteristic scales
associated to an underlying transport process of additive nature, we are in a
position of exploring what happens when these characteristic scales are absent.
This situation is of relevance for complex systems since they often exhibit scale-
invariance, that impedes the existence of any characteristic scale (see Chap. 3).
Therefore, a question arises regarding which is the proper way of characterizing
“macroscopic transport” in these cases, given that Fick’s law is not suitable for
the job. Clearly, a framework that is devoid of any characteristic scale would
appear to be more adequate. Here, we will discuss two such frameworks. The
first one is based on the use of a particular kind of scale invariant CTRWs. The
second framework employs a self-similar generalization of the Langevin equation
that we have already seen elsewhere (see Sect. 3.3.4): fractional Levy motion
(fLm).

5.3.1 Scale Invariant Continuous-Time Random Walks

CTRWs can be made scale invariant simply by choosing pdfs for the jump
size, p.�x/, and waiting-time,  .�t/, that are themselves self-similar [16–19].
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Furthermore, to ensure that the resulting CTRW also lacks characteristic scales,
one just needs to choose p.�x/ and  .�t/ so that they respectively lack a finite
variance and a finite mean. In fact, the most natural choice should probably be
any member of the family of Lévy distributions (see Sect. 2.3.1) since they, as the
Gaussian law, are also stable attractors favoured by the Central Limit Theorem in
the case of underlying additive processes.

5.3.1.1 Removing Characteristic Scales from the CTRW

We will thus build a CTRW with no spatial characteristic length by choosing the
jump size pdf, p.�x/ from within the family of symmetric, Lévy distributions19:

p.�x/ D LŒ˛;0;0;�	.�x/; ˛ 2 .0; 2/: (5.36)

All of these pdfs lack a finite variance since, asymptotically, they scale as (Eq. 2.33),

LŒ˛;0;0;�	.�x/ � j�xj�.1C˛/; (5.37)

for large (absolute) values of their argument �x. Of particular interest for our
discussion is their Fourier transform, which is given by (Eq. 2.32):

OLŒ˛;0;0;�	.k/ D exp

��˛L jkj˛� � 1 � �˛jkj˛; (5.38)

in the limit of large distances (i.e., k ! 0).
To avoid any characteristic timescale, we will pick the waiting-time pdf  .�t/

from within the family of positive extremal Lévy distributions (see Sect. 2.3.1).
These pdfs all have their asymmetry parameter equal to � D 1, and a tail index
ˇ < 1. As a result, they all lack a finite mean20:

 .�t/ D LŒˇ;1;0;�	.�t/; ˇ 2 .0; 1/; (5.39)

The reason for this choice is that, as discussed in Sect. 2.3.1, extremal distributions
with � D 1 are only defined for positive values of their argument, making them
perfect candidates for a waiting-time pdf [12]. Although extremal pdfs lack an
analytical form as a function of �t, it turns out that their Laplace transform is

19In the sake of simplicity we have assumed symmetry for the underlying microscopic motion.
Naturally, asymmetric CTRWs could also be considered and might be important in some contexts
(see, for instance Sect. 5.5).
20We will refer to the tail-index of these extremal Lévy pdfs as ˇ (instead of ˛) in order to avoid
any confusion with the index of the step-size pdf. We will also use � (instead of � ) for the scale
parameter.
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known [20]:

QLŒˇ;1;0;�	.s/ D exp

�

� �ˇ

cos.
�=2/
sˇ
�

� 1 � �ˇsˇ

cos.
ˇ=2/
; (5.40)

in the limit of long times (i.e., s ! 0).
As an illustration of some of the features of these scale invariant CTRWs, Fig. 5.5

shows the evolution of the particle density for a set of N D 106 particles initiated
at x D 0 that execute jumps distributed according to Eq. 5.36 (using ˛ D 1:25 and
� D 0:01) after having waited for lapses of time distributed according to Eq. 5.39
(using ˇ D 0:75 and � D 5). Each snapshot is compared with its best Gaussian fit.
It is apparent that the CTRW evolution behaves rather differently from an spreading
Gaussian. In particular, note the different tails of the solution at large values of
x, that seem to decay as n.x/ � jxj�2:25, a divergent power law. Also, the CTRW

Fig. 5.5 Time evolution of the particle density for N D 106 walkers, initially located at x D 0,
that are advanced according to a symmetric Lévy jump size distribution with tail-index ˛ D 1:25

and � D �10�2, and an extremal Lévy waiting time distribution with ˇ D 0:75 and �0 D 5. In
blue, Gaussian fits for the particle density are shown, at the same instants, in order to illustrate their
difference. Inset: the same evolution is shown in log-log scale, for x > 0
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density seems to spread away from the initial location faster than the diffusive one.21

Clearly, the diffusive equation would do a very poor job at modelling transport for
this CTRW, no matter the value of D chosen. How can this be done better?

5.3.1.2 Fluid Limit of the Scale Invariant CTRW

In order to obtain a “macroscopic” model for transport, in the spirit of the classical
diffusive equation, but able to capture the scale invariant features of these CTRWs,
we will proceed by taking the same fluid limit that we used with the CTRW
with Gaussian p.�x/ and exponential  .�t/ [16]. This only requires inserting the
asymptotic behaviours of p.�x/ for k ! 0 (see Eq. 5.36), and  .�t/ for s ! 0 (see
Eq. 5.39), into the general solution of the CTRW (Eq. 5.19). One quickly obtains
that,22

Nn.k; s/ ' sˇ�1
�

sˇ C cos.
ˇ=2/
�˛

�ˇ
jkj˛

��1
NSaug.k; s/: (5.41)

After some reordering, this equation can be easily rewritten as [17]:

sNn.k; s/ � On0.k/ D �s1�ˇ
�
D.˛;ˇ/jkj˛ Nn.k; s/�C NS.k; s/: (5.42)

Here, we have defined the coefficient D.˛;ˇ/ WD .�˛=�ˇ/ cos.
ˇ=2/, Also, the
augmented source Saug.k; s/ D n0.k/ C S.k; s/ has been made explicit to reveal
the initial condition n0.k/ and the external source S.k; s/. Therefore, Eq. 5.42 is the
scale invariant version of Eq. 5.24, that represented the Fourier-Laplace transform
of the classical diffusion equation.23

The scale-invariant macroscopic equation we have set ourselves to find is then
obtained by Fourier-Laplace inverting Eq. 5.42. The inverse of the left hand side is
simple, since it is equal to the temporal partial derivative of the density (as it was
in the case of the classical diffusive equation). The inverse of the right hand side is
more involved, though. The source is pretty easy, but the other term is not. In fact,
its inverse cannot be written in terms of ordinary differential operators. One must
use instead fractional derivatives.24

21Or, superdiffusively, as this behaviour is often referred to.
22It should be remarked that the same fluid limit would be obtained if one defines the CTRW in
terms of non-Lévy pdfs, as long as they have the same asymptotic behaviours. This is completely
analogous to what happened in the case of the CTRW with jumps following the Gaussian p.�x/
and waiting times distributed according to the exponential  .�t/.
23In fact, note that the classical diffusion equation is recovered if ˇ ! 1 and ˛ ! 2.
24The date in which fractional derivatives were born is actually known exactly. In a letter to
L’Hôpital in 1695, Leibniz wrote: Can the meaning of derivatives with integer order be generalized
to derivatives with non-integer orders?” Apparently, L’Hôpital was curious about this, and replied
himself writing back to Leibniz: What if the order will be 1/2? Leibniz replied that—with a
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Fractional derivatives are integro-differential operators whose most interesting
property is that they provide interpolations in between integer derivatives [21]. The
easiest way to introduce them is to stay in Fourier-Laplace space. For instance, let’s
consider first the spatial derivative of integer order n > 0 of an arbitrary function
f .x/. The Fourier transform of this derivative is given by (Appendix 1 of Chap. 2):

F
�

dnf

dxn

�

D .�ık/n Of .k/: (5.43)

The fractional derivative of real order r > 0 is then introduced as the operator
whose Fourier transform is25:

F
�
�1Dr

x f
� D .�ık/r Of .k/: (5.44)

It turns out that the Fourier inverse of the right hand side of Eq. 5.44 can be
calculated. The result is [21]:

�1Dr
x f D 1

� .k � r/

dk

dxk

�Z x

�1
.x � x0/k�r�1f .x0/dx0

�

; (5.45)

where k is the integer satisfying k �1 � r < k and � .x/ is the usual Euler’s Gamma
function. Similarly, we can introduce another fractional derivative of order r, but
whose Fourier transform is instead,

F
�1Dr

x f
� D .Cık/r Of .k/: (5.46)

The Fourier inverse of Eq. 5.46 is given by [21]:

1Dr
x f D 1

� .k � r/

dk

dxk

�Z 1

x
.x0 � x/k�r�1f .x0/dx0

�

; (5.47)

where k is again the integer satisfying k � 1 � r < k. As advertised, both fractional
derivatives are integro-differential operators that only reduce to the local usual
derivatives when r D n, being n and integer.

If we go back now to Eq. 5.42, a quick inspection reveals that, in order to Fourier-
Laplace it, we will need to deal first with a term of the form,

� jkj˛ Of .k/: (5.48)

letter dated September 30, 1695—(The idea) will lead to a paradox, from which one day useful
consequences will be drawn. Appendix 2 contains a crash course on fractional derivatives, that
might be worth reading before the reader continues to read this section.
25More specifically,

�1
Da

x is a left-sided Riemann-Liouville fractional derivative of order r, with
starting point at �1 (see Appendix 1).
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Which fractional derivative is this? It turns out it is a combination of the two
derivatives just introduced. Indeed, thanks to the complex identity,

.ık/r C .�ık/r D 2 cos.r
=2/jkjr; (5.49)

we can rewrite that term as:

� jkjr Of .k/ D � 1

2 cos.r
=2/



F
�1Dr

x f
�C F

�
�1Dr

x f
��

(5.50)

and therefore, the fractional derivative we will need to Fourier-Laplace invert
Eq. 5.42 is:

F�1 h�jkjr Of .k/
i

D � 1

2 cos.r
=2/


1Dr
x f C �1Dr

x f
� WD @rf

@jxjr
: (5.51)

This symmetric sum defines a famous fractional derivative: the Riesz symmetric
fractional derivative of order r (see Appendix 3). Its form, in real space, is given
by the integral operator:

@rf

@jxjr
WD 1

2� .r/ cos.r
=2/

Z 1

�1
f .x0/dx0

jx � x0jr�1 : (5.52)

Fractional derivatives can also be introduced as interpolants in Laplace
space, similarly to what we just did in Fourier space. Consider, for instance,
the Laplace transform of the usual first time derivative of a function f .t/ (see
Appendix 1):

L

�
df

dt

�

D s1 Qf .s/ � s0f .0/; (5.53)

where we have abused the identity s0 D 1. in addition, the Laplace transform of f .t/
can also be written as,

LŒ f .t/	 D s0 Qf .s/: (5.54)

Then, one could define the fractional derivative of order q 2 .0; 1/ as the one
whose Laplace transform verifies:

L
�
0D

q
t f
� D sq Qf .s/: (5.55)
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The Laplace inverse of Eq. 5.55 can be computed and is given by26:

0D
q
t f D 1

� .1 � q/

d

dt

�Z t

0

.t � t0/�qf .t0/dt0
�

: (5.56)

This temporal fractional derivative will be useful to deal with the s1�ˇ factor that
appears in Eq. 5.42.

We proceed now to invert Eq. 5.42. We start by Fourier inverting with the help of
Eq. 5.51 to get:

sn.x; s/ � n0.x/ D s1�ˇ
�

D.˛;ˇ/

@˛n

@jxj˛ .x; s/
�

C S.x; s/: (5.57)

Next, we Laplace invert it by invoking Eq. 5.55 to obtain:

@n

@t
D 0D

1�ˇ
t

�

D.˛;ˇ/

@˛n

@jxj˛
�

C S.x; t/: (5.58)

Equation 5.58 is known as a fractional transport equation (or fTe). It will play a
role analogous to that of the classical diffusive equation (Eq. 5.3), but in cases where
transport is self-similar and lacks characteristic scales. The fractional transport
equation has seen a large number of applications in many fields, particularly in the
last few decades [17–19]. Some of its main properties will be discussed in detail in
Sect. 5.3.3.

5.3.1.3 Underlying Assumptions: Absence of Characteristic Scales

The lack of characteristic scales in an underlying “microscopic” transport process
of additive nature (i.e., the CTRW) is made apparent by the two integro-differential
fractional operators that appear in the fTe, one in space (the Riesz derivative) and
one in time (the time fractional derivative). Indeed, the presence of these operators
implies that, in order to calculate the rate of change of n at any point x at the current
time t, one needs to take into account also the values of the density at every other
point in the domain, x0 ¤ x, and at every past time, t0 < t. Or, in other words, that all
scales matter when it comes to setting the value of transport throughout the system.
As a result, the effective “macroscopic” transport equation becomes nonlocal in
space, and non-Markovian in time. Scale-invariance appears because of the power-
law dependence of each of the kernels within the fractional operators. It is quantified
in terms of the two fractional transport exponents, ˛ and ˇ, whose values classify
systems into different classes.

26
0D

q
t is in fact, a left-sided Riemann-Liouville fractional derivative of order q 2 .0; 1/, with

starting point at t D 0 (see Appendix 1).
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5.3.2 The Fractional Langevin Equation

The natural scale-invariant extension of the Langevin equation (Eq. 5.26) is provided
by the fractional Brownian and Lévy motions already discussed in Sect. 3.3. Here,
we will express them using a single, more concise expression, referred to as the
fractional Langevin equation (fLe):

xfLe.t/ D x0 C 0D
�.HC1=˛�1/
t �˛; H 2 .0; 1	; ˛ 2 .0; 2	; (5.59)

expressed in terms of the fractional derivatives we just introduced [22]. In the fLe,
�˛.t/ represents a sequence of noise uncorrelated in time and distributed27 according
to a symmetric Lévy distribution with tail-index ˛ if ˛ < 2, or a Gaussian if ˛ D 2

for ˛ D 2. The equivalence of Eq. 5.59 with the definitions for fBm (Eq. 3.71) and
fLm (Eq. 3.76) can be shown rather trivially by making the fractional derivatives
(Eq. 5.56) explicit.

We already proved in Sect. 3.3 that the ensemble-averaged solutions of Eq. 5.59
were scale-invariant by showing that its propagator was. However, the propagator
was not computed explicitly then. Here, we will not compute it either, but we will
provide a few hints on how this can be done and point to appropriate references
for those interested in doing the calculation themselves. For ˛ D 2, the propagator
can be computed as we did for the Langevin equation: evaluating its moments and
showing that they correspond to those of a Gaussian [23]. Another possibility is to
compute the propagator through the application of path integral techniques to the
trajectories of Eq. 5.59 [24]. For ˛ < 2, however, the moment method fails due to
the lack of finite moments above the tail-index ˛. The path integral method is still
applicable, though [25]. The final result is given by (compare to Eqs. 3.73 for fBm,
and 3.77 for fLm):

GfLang
Œ˛;H	 .x; tjx0; 0/ D LŒ˛;0;0;a.H;˛/�� tH 	.x � x0/; (5.60)

with the constant a.H; ˛/ given by Eq. 3.78. Therefore, the propagator of the
fractional Langevin equation is a Lévy law, with the same tail-index ˛ that the
noise driving it, whose scaling factor grows in time as � / tH . Its center remains
unmoved and fixed at x D x0 throughout the motion.

5.3.2.1 Fluid Limit of the Fractional Langevin Equation

In order to find a macroscopic transport equation for the fLe, we need to take the
fluid limit (i.e., k ! 0, s ! 0) of its general solution, for arbitrary initial condition

27For the sake of conciseness, we will adopt the convention that LŒ2;0;0;�	.x/ becomes the Gaussian
law with zero mean when ˛ D 2. This decision can be justified because the Fourier transform
of the symmetric Lévy pdf, OLŒ˛;0;0;�	.k/ D exp.��˛ jkj˛/ becomes the Fourier transform of the
Gaussian, ONŒ0;2�2	.k/ D exp.��2k2/, for ˛ D 2.
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and external source:

Nn.k; s/ D NGLang
Œ˛;H	.k; s/ NSaug.k; s/: (5.61)

This calculation requires the evaluation of the Fourier-Laplace transform of
Eq. 5.60. The Fourier transform is very simple, since we are dealing with a Lévy
law. It is given by the stretched exponential [20]:

F
h
GLang
Œ˛;H	.x; tjx0; 0/

i
D exp.�a˛.H; ˛/�˛� t˛H jkj˛/: (5.62)

Regretfully, the Laplace transform of the stretched exponential lacks an ana-
lytical expression. For our purposes, it suffices with expressing it via the infinite
series [26, 27]:

L
�
exp.�.t=�/b/� D �bsb�1

1X

nD0

.�1/n
.1C .�s/b/nC1 (5.63)

�
8
<

:

nX

jD0

�
n
j

�

.�1/n�j� .bj C 1/

� . j C 1/

9
=

;
; 0 < b < 1:

Keeping only the leading order of this expression for s ! 0, one finds that the
Fourier-Laplace transform we need scales as:

NGLang
Œ˛;H	.k; s/ � s˛H�1

a˛.H; ˛/�˛� jkj˛ C s˛H
; s ! 0; k ! 0: (5.64)

Inserting this expression into Eq. 5.61, and Fourier-Laplace inverting the result, as
we did for the scale invariant CTRW (Eq. 5.42), we find that the fluid limit of the
fractional Langevin equation is given by:

@n

@t
D 0D

1�˛H
t

�

D0
.˛;˛H/

@˛n

@jxj˛
�

C S.x; t/; (5.65)

with the coefficient D0
.˛;H/ D .a.H; ˛/��/˛ . Therefore, the result is again a

fractional transport equation, in which the lack of characteristic scales of the
transport process is made apparent by the presence of fractional derivatives both
in space and time. Interestingly, the comparison of Eq. 5.65 with the fluid limit of
the scale-invariant CTRW (Eq. 5.58), suggests that the exponents ˇ (from the scale-
invariant CTRW) and the product ˛H (for the fLe) play essentially the same role
with respect to the macroscopic transport dynamics.
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5.3.3 The Fractional Transport Equation

We have just found that the fluid limits of both the scale invariant CTRW (Eq. 5.58)
and of the fLe (Eq. 5.65), take the form of a fractional transport equation (fTe):

@n

@t
D 0D

1�ˇ
t

�

D
@˛n

@jxj˛
�

C S.x; t/; (5.66)

where the actual value of the coefficient D depends on the model considered, and
with ˇ D ˛H in terms of the exponents that define the fLe. The general solution of
the fTe is given by,

n.x; t/ D
Z t

0

dt0
Z 1

�1
dx0Gf Te

Œ˛;ˇ	.x � x0; t � t0/Saug.x0; t0/; (5.67)

with the augmented source defined, as always, as Saug D S.x; t/C n.x; 0/ı.t/.
The Fourier-Laplace transform of the fTe propagator is:

NGf Te
Œ˛;ˇ	.k; s/ D sˇ�1

sˇ C Djkj˛ ; (5.68)

whose inverse does not have a closed analytical form, except in a few special cases.
A useful approach is to express its Laplace inversion by introducing the Mittag-
Leffler function, a generalization of the usual exponential defined by the infinite
series,28

Ea.z/ D
1X

nD0

zn

� .an C 1/
; a > 0: (5.69)

whose Laplace transform verifies,

L ŒEa.cza/	 D sa�1

sa � c
: (5.70)

Thanks to the similarity of this formula with Eq. 5.68, the Laplace inverse of the fTe
propagator can be written in terms of the following Mittag-LeffLer function,29

OGf Te
Œ˛;ˇ	.k; t/ D Eˇ


�Djkj˛tˇ
�
: (5.71)

28Clearly, E1.z/ D exp.z/.
29This expression of the fTe propagator can be useful to avoid the always delicate evaluation of
Laplace transforms at small values of s; instead, we just need to sum the Mittag-LeffLer function
up to the value of the index n that ensures the desired level of convergence. However, the inverse
of the Fourier transform of Eq. 5.71 must be performed numerically.
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We discuss next some of the main features of Eq.5.66. They will clearly depend
on the specific values of ˛ and ˇ [17–19, 28].

5.3.3.1 The Standard Diffusive Case: ˛ D 2, ˇ D 1

It is worth noting first that, for ˛ D 2 and ˇ D 1, the fTe reduces to the classical
diffusive equation (Eq. 5.3). Naturally, its propagator is thus (Eq. 5.35):

Gf Te
2;1 .x; tjx0; 0/ D 1p

2
Dt
exp

�

� .x � x0/2

2Dt

�

(5.72)

5.3.3.2 The Nonlocal, Superdiffusive Case: ˛ < 2, ˇ D 1

In this case, the temporal fractional derivative in the fTe vanishes, and Eq. 5.66
becomes only nonlocal in space:

@n

@t
D D

@˛n

@jxj˛ C S.x; t/; (5.73)

The propagator, in this case, can be easily calculated and found to be (see
Prob. 5.4):

Gf Te
˛;1 .x; tjx0; 0/ D LŒ˛;0;0;.Dt/1=˛ 	.x � x0/: (5.74)

It corresponds to a symmetric Lévy with tail-index 0 < ˛ < 2, whose scale
parameter grows with time as � t1=˛ . We will always use the term superdiffusive
to describe transport in cases like this, in which the propagator spreads with time
faster than the diffusive scaling, � t1=2.

It is also interesting to find an expression for the local flux in this case (see
Prob. 5.5), that could be compared with Fick’s law (Eq. 5.1). Using some basic
properties of fractional derivatives (see Appendix 2), the flux is found to be:

�˛;1.x; t/ D 1

2 cos.˛
=2/

�
�1D˛�1

x n � 1D˛�1
x n

� D � �1.k � ˛ � 1/

2 cos.˛
=2/
(5.75)

� @
k

@xk

�Z x

�1
.x � x0/k�˛�2n.x0; t/ �

Z 1

x
.x0 � x/k�˛�2n.x0; t/

�

;

with the integer k defined as that satisfying k � ˛ � k C 1. Spatially nonlocality
is apparent in Eq. 5.75. The flux at x; t is determined by the value of the density
at x; t (or more precisely, its gradient) only for ˛ D 2, since Eq. 5.75 then reduces
to �@n=@x. For ˛ < 2, on the other hand, all points in the domain contribute to
setting the value of local flux at .x; t/, as made explicit by the integrals. Indeed,
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the derivative starting at �1 collects contributions from x0 < x, whilst the one
ending at x D 1 does the same for x > x0. This nonlocality has some non-intuitive
consequences that are strange for those used to the classical diffusion equation. For
instance, the local flux at x could be non-zero even if the local gradient at x is zero
at time t!

5.3.3.3 The Non-Markovian, Subdiffusive Case: ˛ D 2, ˇ < 1

We examine next the case defined by setting ˛ D 2 and ˇ D 1. Equation 5.66 then
becomes non-Markovian in time:

@n

@t
D 0D

1�ˇ
t

�

D
@2n

@x2

�

C S.x; t/; (5.76)

although it remains local in space. The propagator has, in this case, no closed
analytical expression. It can be shown, however, that its asymptotic form takes the
form of the following stretched exponential for large values of its argument [28]:

Gf Te
2;ˇ.x; tjx0; 0/ � 1

2D1=2tˇ=2

� jx � x0j
Dtˇ

�a

exp

�

�b

� jx � x0j
Dtˇ

�c�

(5.77)

with the exponents given by,

a D .ˇ � 1/

2.2� ˇ/ < 0; b D .2 � ˇ/2� 2
2�ˇ ˇ

ˇ
2�ˇ > 0 and c D 2

2 � ˇ
> 0: (5.78)

Its even moments can also be shown to grow with time as [28]:

hjx.t/� x0jni D � .n C 1/

� .
ˇ

2
n C 1/

t.ˇ=2/n: (5.79)

Therefore, the propagator spreads slower than a diffusive Gaussian propagator
(Eq. 5.72), whose moments grow as � tn=2. Whenever this happens, we will say
that transport becomes subdiffusive.

The local flux is given, in this case, by:

�2;ˇ.x; t/ D �0D
1�ˇ
t

�

D
@n

@x

�

(5.80)

D � D

� .ˇ/

@

@t

�Z t

0

.t � t0/�.1�ˇ/
@n

@x
.x; t0/

�

that reduces to the local Fick’s law (Eq. 5.1) only for ˇ D 1. For ˇ < 1, non-
Markovianity become obvious from the fact that, in order to get the local flux at
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position x and time t, one needs to consider all values of the gradient at x for t0 < t.
Non-Markovianity also has important non-intuitive consequences for those used to
the classical diffusion equation. For instance, that the local flux at x can be non-zero
at time t even if the value of the local gradient at x vanishes at that time!

5.3.3.4 The General Case: ˛ < 2, ˇ < 1

In the general case, when any choice satisfying ˛ < 2 and ˇ < 1 is allowed, the
dynamics become far richer. The propagator has, in general, no closed analytical
expression. Probably, the best one can do is to express it as [28, 29]:

Gf Te
˛;ˇ.x; tjx0; 0/ D

Z 1

0

dyyˇ=˛LŒ˛;0;0;1	

�

yˇ=˛
jx � x0j
D1=˛tˇ=˛

�

LŒˇ;�1;0;1	. y/; (5.81)

that contains a symmetric Lévy of tail-index ˛ and an extremal Lévy of tail-index
ˇ, which is very reminiscent of the choices we made for the scale-invariant CTRW
in Sect. 5.3.1.

For our purposes, however, it is sufficient with knowing the behaviour of its even
moments, that scale with time as30:

hjx.t/ � x0jni � t.ˇ=˛/n: (5.82)

This scaling implies that the transport described by the general fTe (see Fig. 5.6, left
frame) can be superdiffusive when 2ˇ > ˛ and subdiffusive transport if 2ˇ < ˛.
It can even scale diffusively if 2ˇ D ˛, in spite of the fact that the dynamics are
still non-Markovian in time and non-local in space. This classification is in fact
simplified when made in terms of the exponent H D ˇ=˛ (see Fig. 5.6, right frame)
since diffusion needs H D 1=2, subdiffusion H < 1=2 and superdiffusion H >

1=2, as was the case for fractional Brownian/Lévy motions.31

The expression of the local flux is, in this general case,

�˛;ˇ.x; t/ D �0D
1�ˇ
t

�
D

2 cos.˛
=2/

�
�1D˛�1

x n � 1D˛�1
x n

�
�

; (5.83)

thus involving integrals over the previous history of the whole domain in order to
find the flux at any point and any time.

30Due to the assumed symmetry of the underlying motion, all odd moments vanish.
31This exponent, H, corresponds in fact to the self-similarity exponent of both fBm and fLm (see
Chap. 3). It is also the exponent used in the definition of the fractional Langevin equation.
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Fig. 5.6 Possible transport behaviours that the fTe can exhibit, as determined by the values of
the exponents ˛ and ˇ (left), or the values of the exponents ˛ and H D ˇ=˛ (right). Diffusive
behaviour (i.e., H D 1=2 or 2ˇ D ˛) is represented by the red straight line. The classical diffusive
behaviour (˛ D 2, ˇ D 1, H D 1=2/) is represented by a green circle. Superdiffusive areas shown
in red, subdiffusive areas in yellow

5.4 Techniques for the Characterization of Fractional
Transport

In order to characterize the transport across any system as fractional, at least in the
asymptotic sense assumed in Sect. 5.3, one needs efficient methods to determine the
fractional exponents that enter into the fTe (Eq. 5.66). That is, ˛ and ˇ (or H D
ˇ=˛). In this section, we will review several methods that may be useful in practical
situations. We have classified the methods within two large families, eulerian and
lagrangian, depending on the type of data that they require [3]. The discussion that
follows will be restricted to one-dimensional systems, with the idea that the methods
could be applied to any particular direction in a Cartesian system. In order to apply
them to other types of coordinates, suitable modifications might be needed to take
into account additional geometric factors.32

5.4.1 Eulerian Methods

A method to determine the fractional transport exponents is classified as eulerian
if it only requires information at the nodes of a fixed grid in both time and space.
These methods are often the best suited to deal with experimental situations, where
measurements at fixed locations and fixed rates are usually more accessible.

32It is not known how to do this in most other cases. This is in fact an active area of current research
that needs to be developed greatly in the next years.
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5.4.1.1 Full Solution Methods

The more straightforward method to get fractional exponents is by comparing the
solution of the fTe that describes the evolution of the field of interest with the actual
gridded data for the same field.

The solution of Eq. 5.66, in the absence of an external source,33 is given by,

nf Te.x; t/ D F�1
h
L�1

h
Gf Te
˛;ˇ.k; s/On0.k/

ii
D F�1 �Eˇ


�Djkj˛tˇ
�

n0.k/
�
; (5.84)

if the evolution starts from the initial condition n0.x/. Therefore, one can compare
this expression with the measured evolution of the profile of interest, njk D n.xj; tk/,
as recorded on the Eulerian mesh: xj D x1 C . j � 1/�x and tk D .k � 1/�t (for
some �x; �t > 0) and with the indices varying as k D 1; � � � Nt and j D 1; � � � ;Nx.
The advance of Eq. 5.84 can be done by assuming n0.xj/ D n.xj; t1/.

In order to obtain the fractional exponents, it is often convenient to use minimum
chi-square parameter estimation techniques (see Sect. 2.5.3). That is, to minimize
the target function,

�2xt.˛; ˇ;D/ D
NxX

jD1

NtX

kD1

ˇ
ˇnf Te.xj; tk/ � n.xj; tk/

ˇ
ˇ2

ˇ
ˇn.xj; tk/

ˇ
ˇ

; (5.85)

with respect to ˛, ˇ and D using the reader’s preferred method.34 Several variations
of this method exist, depending on how the target function is built. For instance,
one could also choose to build it in .k; s/ space, or in any of the mixed spaces
.k; t/ or .x; s/. The merit of each of these choices must however be weighed against
the complications of performing accurate Laplace transforms on discrete data for
s ! 0, as well as the possible aliasing or Gibbs contamination that the Fourier
transform of discrete, often non-periodic and discontinuous data, may introduce.

5.4.1.2 Propagator Methods

Another popular family of methods tries first to estimate the process propagator
on the Eulerian grid, and then compares it with the fTe propagator (Eq. 5.66).
However, performing this comparison requires a larger degree of control over the
system under examination, since one needs to consider a very localized (in x ) initial

33The method is trivially extended to accommodate external sources, if they are present and
information about them is available. However, the method is no good if the sources are unknown.
One has to use then other approaches, such as the propagator method that is discussed next.
34For instance, one could use local methods such as the Levenberg-Marquardt algorithm, or global
methods, such as genetic algorithms [30].
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condition for n. On the plus side, these methods can be made insensitive to the
presence of any external sources.35

The method goes like this. First, we will assume that a localized initial condition
such as n.xj; t1/ ' ı.xj � xL/ can be made experimentally for some index 1 < L <
Nx, and that its evolution can be followed in time. The evolution of this localized
initial seed, is, in essence, a discrete approximation of the problem propagator. That
is, n.xj; tk/ ' G.xj; tkjxL; t1/. The obtained discrete propagator can be then compared
with the fTe propagator, and optimal parameters estimated, by using the minimum
chi-square estimation technique (Sect. 2.5.3). It requires to minimize the quantity,

�2Prop;xt.˛; ˇ;D/ D
NxX

jD1

NtX

kD1

ˇ
ˇn.xj; tk/� Gf Te.xj; tkjxL; t1/

ˇ
ˇ2

ˇ
ˇGf Te.xj; tkjxL; t1/

ˇ
ˇ

; (5.86)

where the fTe propagator is available from

Gf Te
˛;ˇ.x; tjxL; t1/ D F�1 �Eˇ


�Djkj˛.tk � t1/
ˇ
��
; (5.87)

with k the wave vector associated to x�xL. Or, if one wants to avoid the need to carry
out Fourier transforms completely, one can also use the series representations of the
fTe propagator that are available for ˛ < 2; ˇ < 1 [28]. As happened in the case of
the full solution, one could also build the target function directly in Fourier-Laplace
space, if desired.

Figure 5.7 illustrates the propagator method just outlined. We have evolved
N D 106 particles, all starting from x D 0, according to the scale invariant CTRW
discussed in Sect. 5.3.1. We have chosen a step size pdf given by a symmetric Levy
with tail-index ˛ D 1:25 and � D 2 � 10�2, and a waiting-time pdf given by an
extremal Lévy with tail-index ˇ D 0:75 and � D 5. The target function used in
the minimization is the same as in Eq. 5.86. The minimizing algorithm used was a
standard Levenberg-Marquardt algorithm [31]. The resulting fractional exponents
were ˛ ' 1:28 ˙ 0:05 and ˇ D 0:76 ˙ 0:03, reasonably close to the nominal
values.

5.4.1.3 Other (Simpler) Propagator Methods

It is also possible to take advantage of some of the scaling properties the fTe
propagator (Eq. 5.68) and estimate at least some of the exponents with less hassle,

35Propagator methods require, in many cases, the use of some kind of tracer field or tracer par-
ticles, easily distinguishable from the system background but with similar dynamical behaviour.
These tracers must be initialized in a very localized setup, and then followed in time without any
further addition of tracers. In this way, one could get an estimate of the system transport exponents
without having to consider external sources. We will say more about tracers soon, when discussing
Lagrangian methods.
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Fig. 5.7 Discrete
propagators estimated by
advancing N D 106 particles
following a scale invariant
CTRW with
p.�x/ D LŒ1:25;0;0;10�2	.�x/
and
 .�t/ D LŒ0:75;�1;0;5	.�t/. In
dashed red, the best fit
provided by the minimization
of the target function Eq. 5.86
using a Levenberg-Marquardt
algorithm is also shown
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avoiding the need to carry out any minimization of any kind. As could be expected,
the price to pay is that these methods are not so accurate and must thus be
used with some care, since they do not use the global solution to estimate the
exponents.

One possibility is to take advantage of Eq. 5.82, that tells us that the even (and
finite) moments of the propagator, scale as � t.ˇ=˛/n D tHn. Thus, if we have
at our disposal the temporal evolution of any initially-localized data such that
n.xj; t1/ ' ı.xj � xL/ for some index 1 < L < Nx, we can estimate those moments
as:

hjx.tk/� xLjni ' 1

Nx

NxX

jD1
jn.xj; tk/ � n.xL; t1/jn � .tk � t1/

nH (5.88)

This procedure thus allows to estimate the transport exponent H. Since H D ˇ=˛,
we need to combine it with some other method to get both ˛ and ˇ.
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One simple method to estimate ˛ and ˇ is to take advantage of the asymptotic
behaviour of the fTe propagator (Eq. 5.68). It can be shown that, for fixed tc, it
satisfies that [32, 33],

Gf Te.x; tcjx0; 0/ � jx � x0j�.1C˛/; jx � x0j � D1=ˇtˇ=˛c ; (5.89)

whilst for fixed xc, it satisfies,

Gf Te.xc; tjx0; 0/ � t�ˇ; t � D1=ˇx˛=ˇc ; (5.90)

and

Gf Te.xc; tjx0; 0/ � tˇ; t � D1=ˇx˛=ˇc ; (5.91)

Thus, using again the same temporal evolution of the field of interest starting
from n.xj; t1/ ' ı.xj � xL/, for some index L 2 .1;N/, one could estimate ˛ from
the scaling of,

n.xj; tP/ � jxj � xLj�.1C˛/; (5.92)

for tP � t1 and sufficiently large jxj �xLj. Similarly, ˇ is available from the scalings,

n.xP; tk/ � t�ˇk ; (5.93)

for jxP � xLj � 0 and sufficiently large time, or,

n.xP; tk/ � tˇk ; (5.94)

for jxP � xLj � 0 and sufficiently short time.

5.4.1.4 Kernel Methods

Another family of Eulerian methods are based on the computation of the integro-
differential kernel introduced at the beginning of this chapter (Eq. 5.4), and that
relates the local gradient and the local flux [3, 34].

In the case of the fTe, the kernel can be calculated analytically. Indeed, one starts
by noticing first that the Fourier-Laplace transform of Eq. 5.4 is,

NK.k; s/ D
N� .k; s/

�ıkNn.k; s/ : (5.95)



252 5 Fundamentals of Fractional Transport

Then, we consider the Fourier-Laplace transform of the continuity equation,

@n

@t
C @�

@x
D S.x; t/; (5.96)

permits to express the flux, after introducing once again the augmented source
Saug.x; t/ D S.x; t/C n0.x/ı.t/, in the form,

N� .k; s/ D NSaug.k; s/ � sNn.k; s/
�ık

: (5.97)

Finally, we combine Eqs. 5.95 and 5.97 to obtain:

NK.k; s/ D sNn.k; s/ � NSaug.k; s/

k2 Nn.k; s/ D s NGf Te.k; s/ � 1

k2 NGf Te.k; s/
D �Ds1�ˇjkj˛�2; (5.98)

where we have that the solution of the fTe can be expressed as (see Eq. 5.67):

n.k; s/ D Gf Te.k; s/Saug.k; s/; (5.99)

with the fTe propagator given by Eq. 5.68.
The fractional exponents can then be obtained by comparing Eq. 5.98 and the

estimation of the kernel on the Eulerian grid. This can be done, as we have already
seen several times, by minimizing the target function,

�2Kern, ks.˛; ˇ;D/ D
NkX

jD1

NsX

kD1

ˇ
ˇ
ˇ NK.kj; sk/ � Ds1�ˇk jkjj˛�2

ˇ
ˇ
ˇ
2

Ds1�ˇk jkjj˛�2 : (5.100)

The experimental kernel is estimated on the Eulerian grid as,

K.kj; sk/ D sk Nn.kj; sk/� On0.k/� NS.k; s/
k2 Nn.kj; sk/

(5.101)

Due to the need of carrying out Laplace and Fourier transforms of discrete data, the
kernel method thus suffers from the same difficulties previously mentioned when
discussing full solution methods. In particular, knowledge of the external sources is
required, if these are present during the evolution.

5.4.2 Lagrangian Methods

Lagrangian methods are those that require transport information along the trajec-
tories of advection of the quantity of interest. For instance, if our system is a fluid,
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and if one wants to study how the fluid mass, momentum or energy is transported,
the information will be required along the trajectories dictated by the characteristics
of the flow motion, also known as Lagrangian trajectories.36

In practice, Lagrangian trajectories are approximated by means of tracer parti-
cles.37 That is, marked particles whose evolution, as they are advected by the flow,
can be followed with ease.38 Due to inertial effects, the actual trajectories of physical
tracers do not coincide with the Lagrangian trajectories of the flow but, if chosen
carefully, they can give us a good estimate of what is going on. Tracer particles are
particularly useful in numerical simulations where many of these discrepancies can
be made to go away, if desired, by adjusting their physical properties.39

Sometimes, however, one might be interested in the transport of say, a certain
pollutant in the atmosphere, or of high-Z impurities in a plasma, or some other
quantity that is different from the system carrying out the advection. In that case,
retaining the full physical properties of the tracer is essential, since it is their
trajectories that we will be interested on.

We will discuss next several Lagrangian methods that can be used to estimate
the fractional transport exponents. To do so, we will assume that the successive
positions along some Lagrangian trajectory are available. In particular, we will
consider one Cartesian component of the position40 of N particles, sampled at a
constant rate �t,

x j.tk/; j D 1; 2; � � � ;N; tk D .k � 1/�t; k D 1; 2; � � � ;Nt: (5.102)

All the methods discussed next will try to use these positions to estimate some of
the elements that define one of the two “microscopic” models that we described as
underlying the fTe: the scale-invariant continuous-time random walk (Sect. 5.3.1) or
the fractional Langevin equation (Sect. 5.3.2).

5.4.2.1 CTRW Method

As will be remembered, the scale invariant CTRW was defined in Sect. 5.3.1 in terms
of two pdfs, one for the jump sizes, p.�x/ D LŒ˛;0;0;�	.�x/, with 0 < ˛ < 2, the

36That is, if the flow velocity is defined by the field, v.r; t/, its Lagrangian trajectory that passes
through r0 at time t0 is the solution of the differential equation Pr D v.r; t/, with r.t0/ D r0.
37Eulerian methods, on the other hand, often use tracer fields, such as oil or dye, in order to be
able to follow the evolution in time of a perturbation advected by a system on a Eulerian grid. The
use of the tracer field permits to ignore the presence of any external drive when needed to sustain
the system and that might be unknown. Or to be able to taylor the initial perturbation at will, as it
is required in order to estimate a propagator.
38Think, for instance, of radioactive isotopes or the polyethylene particles or oil droplets used in
particle image velocimetry (PIV) studies of turbulence.
39In fluids, one might want to adjust their mass or buoyancy. In plasmas, on the other hand, one
might also want to use chargeless tracer particles in order to avoid magnetic drifts.
40Since the fTe is one-dimensional, we will assume either that the displacements occur along one
direction of interest, or that we are focusing on one particular component of the motion only.
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second for the waiting-times,  .�t/ D Lˇ;1;0;� .�t/, with 0 < ˇ < 1. However, in
order to derive the fluid limit that connected the CTRW to the fTe, it was sufficient
with having p.�x/ � j�xj�.1C˛/ for large j�xj, and  .�t/ � �t�.1Cˇ/ for
large�t.

One can easily use this information to build a Lagrangian method to estimate
the transport exponents. All one needs to do is to define suitable jump sizes and
waiting-times for the process under examination, that could be easily computed from
the available xj.tk/ series (Eq. 5.102). Once these definitions are available, ˛ and ˇ
could be determined from the scaling behaviour of the tails of their respective pdfs,
computed according to any of the methods described in Chap. 2. In particular, since
we are interested in the tails, it is to better to use either the CBC (Sect. 2.4.2) or
SF/CDF (Sect. 2.4.3) methods.

The subtlety here is clearly to decide how to define waiting-times and jumps
from signals in which, in most cases, there is not a clear alternation of motion and
rest. We will illustrate this difficulty with one example. Let’s consider the motion
of tracer particles along a certain direction while advected by fluid turbulence. In
this case particles are clearly always on the move. There is however is a difference
between those periods of time during which the particle is trapped within a turbulent
eddy, and those during which the tracer is travelling in between eddies. The former
is reminiscent of a trapping period, in which the component of the velocity along
any direction changes sign over a period of time of the order of the eddy turnover
time. The latter, on the other hand, look much more like jumps, during which the
sign of the tracer velocity is maintained. Thus, one could envision defining a jump
size as any displacement of the tracer along the direction of choice during which the
velocity sign is maintained beyond a certain amount of time (that must be prescribed
before hand, and that should be a reasonable estimate of the average eddy turnover
time); a waiting-time, on the other hand, would correspond to the periods of time in
between successive jumps.

Diagnostics such as these have been proven useful many times in many different
contexts, in particular in plasmas [35–37]. However, it is clear that they must rely on
the good intuition of the researcher to find a suitable criterion to define jump sizes
and waiting-times that makes sense for the system at hand. Because of this, in spite
of its usefulness, the resulting exponents often lack the degree of objectivity that
could be desired.

5.4.2.2 fLe Methods

The second Lagrangian method we will discuss is based in comparing the behaviour
of the Lagrangian trajectories available, xj.tk/, with the properties of fractional
Brownian/Lévy motion and their increments, fGn and fLn. The idea is to test
whether the available trajectories resemble (on average) fBm/fLn for some values
of the exponents ˛ and H. This determination can be done by applying any of the
methods already discussed in Chap. 3 and 4 to our trajectories. Finally, one can infer
the temporal exponent of the fTe, ˇ, using ˇ D ˛H (Eq. 5.65).
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For simplicity, we will restrict the discussion here to the investigation of whether
the increments of the x j series behave as either fGn or fLn. To do this, one simply
needs to collect the statistics of the increments (for arbitrary spacing h > 0, as
discussed in Sect. 3.4.2) of each Lagrangian trajectory,

�hx j.tj/ WD x j.tk C .h=2/�t/� x j.tk � .h=2/�t/

h�t
; (5.103)

and characterize its distribution. In fact, one can exploit the fact that we are
assuming translational invariance to improve statistics. Indeed, since all trajectories
should be statistically equivalent, one can use the increments of all trajectories and
build a unique pdf, thus reducing the uncertainties and facilitating a more precise
determination of the tail exponent ˛. It is also advisable that, in order to better
resolve the tail, methods such as the CBC (Sect. 2.4.2) or SF/CDF (Sect. 2.4.3) be
used.

Regarding the estimation of the Hurst exponent H, one starts by determining H
for each x j.tk/ series using the method of choice and averaging the result over all
available trajectories. The Hurst exponent of each time series can be estimated in
many different ways, as we have discussed extensively in Chaps. 3 and 4. A popular
one is to apply the R=S analysis to each trajectory as described in Sect. 4.4.4, and
then average the result over trajectories [38]. Care must be exercised, though, if
the statistics of the increments are Lévy, since in that case HR=S does not coincide
with the self-similarity exponent H. One must then use the modification of R=S
analysis (Eq. 4.50) discussed in Sect. 4.4.4, or estimate the Hurst exponent using
instead Eq. 4.57.

5.5 Case Study: The Running Sandpile

We will conclude the investigation of the sandpile dynamics that we have been
doing at the end of each chapter by characterizing the nature of the transport of
sand through the pile. We will do it by using some of the techniques presented in
this chapter. However, it should be clear from the start that none of the spatially
symmetric, scale invariant models that we have discussed (CTRW, fLe or fTe) will
be adequate in this case, given the fact that transport in the running sandpile is
directed down the slope. Thus, the sandpile will serve as illustration not only of
the methods presented, but also of how to extend and adapt some of these ideas
depending on the features of the problem of interest.

We will consider a sandpile of size L D 1000, critical slope Zc D 200, toppling
size NF D 20, rain probability p0 D 10�4 and rain size Nb D 10, that has already
been run to saturation and whose state is deep into the SOC state. The height of each
sandpile cell is represented by hi, with 1 < i < L. It will be remembered that the
sandpile is advanced, at each iteration, by first dropping Nb grains of sand on each
location with probability p0, and then relaxing the state by moving NF grains from
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each unstable location i where hi � hiC1 > Zc to the i C 1 cell. Therefore, motion
in the sandpile SOC state affects a narrow strip at its surface that has an average
width of the order of NF . It is the propagator associated to transport taking place
within this layer that we will try to estimate in what follows.

We will use N marked grains of sand that will be initially located close to
the center of the pile. The temporal evolution of the marked population, as it is
transported down the pile, will give us the propagator we are looking for. The m-
th marked grain will be positioned, at some initial time, tm

0 , at an arbitrary cell
im, chosen randomly from within a reduced number of cells near the top of the
pile. The initial position of the m-th grain is then xm.0/ D im; its depth in the im
column, as measured from its top, will be initially set to dm.0/ D uNF , where u
is a random number uniformly distributed in Œ0; 1	. As the sandpile is iterated, the
position, xm, and depth dm of the marked grain of sand will change. Their values,
at the k-th iteration, will be updated after finding out which of the following rules
applies [39]:

1. the current cell is stable and no grains of sand have been dropped on it in the
previous driving phase;

then dm.k/ D dm.k � 1/; xm.k/ D xm.k � 1/;
2. the current cell is stable, but Nb grains of sand have fallen on it in the previous

driving phase;
then dm.k/ D dm.k � 1/C Nb; xm.k/ D xm.k � 1/;

3. the current cell is stable, but the previous one is unstable and moves NF grains
over to the current cell;

then dm.k/ D dm.k � 1/C NF; xm.k/ D xm.k � 1/;
4. the current cell is stable, the previous one is unstable and, in the driving phase,

Nb grains have fallen on the current cell;
then dm.k/ D dm.k � 1/C NF C Nb; xm.k/ D xm.k � 1/;

5. the current cell is unstable and NF grains are thus moved to the following cell; no
grains of sand have been dropped on the current cell in the driving phase;

then, if dm.k � 1/ � NF �! dm.k/ D uNF; xm.k/ D xm.k � 1/C 1;
if dm.k � 1/ > NF �! dm.k/ D dm.k/� NF; xm.k/ D xm.k � 1/;

6. the current cell is unstable and NF grains are thus moved to the following cell; at
the previous driving phase, Nb grains of rain have fallen on the current cell:

then, dm.k � 1/ � NF � Nb �! dm.k/ D uNF; xm.k/ D xm.k � 1/C 1;
if dm.k � 1/ > NF � Nb �! dm.k/ D zm.k/ � NF; xm.k/ D xm.k � 1/;

The majority of these rules are rather self-explanatory. Basically, they state that,
when it is time to move NF particles to the next cell, our marked particle will be
transported within that bunch only if its depth in the cell is at most NF . In that case,
the particle will reset its depth at the new cell to a new value, randomly chosen
between 0 and NF .41 If the particle is however deeper than NF , it remains at the
current cell. In the (relatively rare) case that sand has been dropped during the

41It should be remembered that u is a random number uniformly distributed in Œ0; 1	.
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Fig. 5.8 Motion across the sandpile of size L D 1000 of fifteen selected particles, with initial
locations randomly chosen within the central half of the pile. The vertical parts of the trajectories
correspond to periods in which the particle is at rest on some cell; the (almost) horizontal parts, to
periods of time in which the particle is transported radially, carried away by passing avalanches

previous driving phase on the same cell where the marked particle sits, the depth
of the marked particle is increased by Nb.

Figure 5.8 shows the motion across the sandpile of fifteen marked particles for
the first 105 iterations. As can be appreciated, the particles alternate radial dis-
placements when carried by a passing avalanche—that appear as nearly horizontal
segments,42—with periods of rest at the same cell, while the particle remains trapped
there –that appear as vertical segments.

The recorded positions of the marked particles can be used to build a discrete
version of the sandpile propagator. All that is needed is to calculate, at each iteration,
the pdf of the particle displacements with respect to their respective initial locations,
p.�xI i/. Clearly, each marked particle will contribute with the displacement value
�xm.i/ D xm.i/ � xm.0/ (m D 1; � � � ;N) at the iteration i. Since p.�xI i/ thus gives
the probability of a particle having been displaced a distance�x in a time i, averaged
over its initial location, we can write that,

p.�xI i/ ' hG.x0 C�x; ijx0; 0ix0 ; (5.104)

42In fact, they are not horizontal since particles only advance one position per iteration. However,
the scale of the temporal axis used in the figure makes them look so.
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which is the estimate of the propagator we are looking for.43

However, there are some limitations to the goodness of our estimate for the
propagator. They are due to the fact that markers will eventually reach the end of
the sandpile. This implies that Eq 5.104 must no longer be used beyond the average
number of iterations required for the marked particles to reach the pile edge. In
addition, we also need to consider that marked particles are initialized at different
locations in order to improve statistics. Therefore, each particle travels a different
distance to reach the edge of the sandpile. To avoid distortions, Eq. 5.104 will also
be disregarded for any�x larger than the minimum of these distances.

Figure 5.9 shows several snapshots of the propagator obtained for our sandpile
using N D 60;000 marker particles, initialized in cells with im � 150. The
resulting propagator exhibits a power law tail very close to p.�x/ � .�x/�2, that
becomes distorted at times of the order of 30; 000 iterations and above. This number
corresponds to the number of iterations for which a sizeable amount of marked

Fig. 5.9 Estimate of the sandpile propagator for times corresponding to 5000, 10;000 and 30;000
iterations using 60;000 tracer particles for the L D 1000 sandpile with Zc D 200, NF D 30,
Nb D 10 and p0 D 10�4 . The tail seems to exhibit a power-law decay with an exponent that is
best fit by P.�x/ � .�x/�2:09˙0:23 . The scaling line .�x/�2 is shown to guide the eye

43We have implicitly assumed that the range of cells were the marked particles were initially
dropped have similar dynamics, which is the case for the running sandpile.
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particles has already reached the sandpile edge. From it, we can infer a value ˛ � 1

for the spatial fractional exponent (see Eq. 5.92).
We can also characterize the temporal exponent of the propagator by character-

izing the initial growth (Eq. 5.94) and later decay (Eq. 5.93) of the propagator at a
fixed location. In Fig. 5.10, this evolution of the propagator is shown at two different
displacement values,�x D 160 and�x D 240. For the smallest displacement value,
the propagator appears to grow locally as p.�t/ � .�t/0:3 for �t < 104, and then
decrease as p.�t/ � .�t/�0:4 for �t � 104. The decay phase is however not seen
for the largest displacement value within the 106 iterations examined. This is due
to the fact that it takes more iterations for the propagator to build up at so large a
distance from the seeding region.

From Figs. 5.9 and 5.10, one might naively conclude that transport down the
sandpile slope is indeed self-similar, with fractional exponents close to ˛ � 1

and ˇ � 0:35. However, this transport cannot be described by the symmetric fTe
(Eq. 5.66), since the propagator is only defined for�x > 0. As we mentioned at the
beginning, this is due to the fact that sand always travels downwards, towards the
edge of the pile. One needs to take this fact into account when deriving a proper
fractional transport equation for this case.
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Δx = 240 ~ (Δt )0.3±0.1
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Fig. 5.10 Estimate of the evolution of the sandpile propagator at fixed positions �x D 160 and
�x D 240 cells as a function of time using 60; 000 tracer particles for the L D 1000 sandpile with
Zc D 200, NF D 30, Nb D 10 and p0 D 10�4. As expected, the local value first grows and then
decays with power-law with an exponent that is best fit by P.�t/ � .�t/˙0:35
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Fig. 5.11 Pdfs for the jumps (left) experienced by 60; 000 tracer particles, and the waiting times
(right) they remain at rest for the L D 1000 sandpile with Zc D 200, NF D 30, Nb D 10 and
p0 D 10�4. The jump-size pdf exhibits a tail P.�x/ � .�x/�2:1˙0:2 for sizes still far from the
system size. The waiting-time pdf also exhibits a power law tail  .�t/ � .�t/�1:2˙0:1

We will show how to find this equation in what follows by invoking the
CTRW formalism and considering the (almost) horizontal marker displacements as
instantaneous jumps, and the vertical segments as waiting times. We have calculated
the statistics of the jump sizes and waiting-times experienced by the markers in the
sandpile are shown in Fig. 5.11. As can be seen, p.�x/ � .�x/�2:1 only for�x > 0
and  .�t/ � .�t/�1:2, which yields values for ˛ � 1:1 and ˇ � 0:2, not too far
from those obtained with the propagator estimate.

5.5.1 fTe for the Directed Running Sandpile

Since both pdfs are only defined for positive values of the argument, we will
consider a CTRW defined in terms on extremal distributions for both jumps and
waiting times,

p.�x/ D LŒ˛;1;0;�	;  .�t/ D LŒˇ;1;0;�	: (5.105)

As will be remembered, the Laplace transform of these extremal Lévy pdfs is given
by (Eq. 5.40),

QLŒˇ;1;0;�	.s/ � 1 � �ˇsˇ

cos.
ˇ=2/
; s ! 0 (5.106)
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Its Fourier transform also verifies that (Eq. 2.32),

OLŒ˛;1;0;�	.k/ � 1 � �˛jkj˛.1 � ısgn.k/ tan.
˛=2//; jkj ! 0: (5.107)

Inserting these asymptotic behaviours in the general solution of the CTRW
(Eq. 5.19) one obtains,

Nn.k; s/ ' sˇ�1 NSaug.k; s/
�

sˇ C cos.
ˇ=2/�
˛

�ˇ
jkj˛ �1 � ısgn.k/ tan




˛
2

��� : (5.108)

that can be easily reordered as,

sNn.k; s/ � On.k; 0/ ' � sˇ�1
� QD˛;ˇ jkj˛

h
1 � ısgn.k/ tan

�
˛

2

�i�
Nn.k; s/C

C NS.k; s/; (5.109)

where we have defined the coefficient QD˛;ˇ WD cos.
ˇ=2/�˛=�ˇ .
This equation can be now Fourier-Laplace inverted to yield,

@n

@t
D 0D

1�ˇ
t

�
QD.˛; ˇ/ @

˛;1n

@jxj˛;1
�

C S.x; t/ (5.110)

where we have used yet another fractional derivative: one of the two completely
asymmetrical Riesz-Feller fractional derivatives that are discussed in Appendix 3.
In spite of its apparent complexity, the obtained result makes complete physical
sense. Indeed, it should be noted that the new fractional derivative, when written
explicitly, becomes,

@˛;1n

@jxj˛;1 / �1D˛
x n / dk

dxk

�Z x

�1
n.x0/ dx0

.x � x0/˛�kC1

�

; (5.111)

with the integer k defined as the one satisfying k � 1 < ˛ < k. As can be
seen, only points x0 < x contribute to the integral, in complete agreement with
the fact that net transport in the sandpile comes (almost) always from the left.
Therefore, Eq. 5.110 should provide a good effective description for the down-the-
slope sandpile transport in the long times, large scale limit. Given our previous
findings, we should then choose ˛ ' 1 and ˇ ' 0:35 for the particular sandpile
realization analyzed here.

5.6 Final Considerations

In this chapter we have reviewed the basics of the modern theory of fractional
transport. We have also argued that the fractional transport equation (that is,
Eq. 5.66) and its variations are the appropriate framework to describe transport in
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many complex systems, at least those in which the underlying processes are of an
additive nature. For the sake of simplicity, we have limited the majority of our
discussion to unbounded, homogeneous, one-dimensional systems, in which the
underlying motion is symmetric (with the exception of the sandpile study, where
full asymmetry was considered). This is, of course, an oversimplification. It is thus
worth to discuss some of the issues that one might have to deal with when applying
these concepts to real systems.

Symmetry
The assumption of symmetric underlying motion is sometimes too narrow. We
have seen one such example when characterizing the transport dynamics of the
running sandpile. However, the sandpile example has served as an illustration of
the fact that asymmetric motion can be easily accommodated, what has lead us to
the formulation of the asymmetric fTe (Eq. 5.110). Similar modifications might be
needed before one can apply these ideas to other systems.

Boundedness
Real systems are usually bounded in space. This issue has often been addressed
directly at the fTe level,44 by setting the starting and ending points of the fractional
derivatives to finite values that represent the system boundaries. That is, if the
system lives within the Œa; b	 interval, one makes the changes �1 ! a and 1 ! b
in the fractional derivatives of the fTe.

The restriction of the fTe to a bounded system introduces yet another problem
related to the fact that RL fractional derivatives are singular at the starting/ending
points. This is particularly problematic when deriving the kind of discrete approxi-
mations of the fractional derivatives that might be used for the numerical integration
of these equations. To avoid this problem, it is customary to regularize the RL
derivative at the starting/ending points by replacing it by the closely related Caputo
fractional derivative [21]. Caputo fractional derivatives share many of the more
important properties of RL derivatives, but not all. In particular, they are regular at
the starting/ending points. A detailed account of some these technical aspects, that
are essential in order to use these operators in numerical calculations, is given in
Appendix 4.

Dimensionality
Fractional derivatives and integrals have been extensively studied in one dimen-
sion [21, 44, 45]. Regretfully, higher dimensional versions are scarce, although
higher-dimensional versions of the symmetric Reisz fractional derivative exist.

44The consequences of boundedness have also been addressed within the CTRW and fTe
frameworks by considering truncated Lévy distributions [19, 40–43]. It is however much more
complicated to establish a connection with fractional transport equations that in the unbounded
case, since one can no longer rely on the advantages of the Fourier representation to take the long-
time, large-distance limit.
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Clearly, there is still much work to do in this regard. This is an area where a lot
of activity should be expected in the future.

Physical Basis for Fractional Transport
A never-ending discussion among transport modellers is whether the fTe is actually
a good physical model for transport in any real system. In particular, it is often
mentioned that the fact that, for ˛ < 2, any location in the system can influence
the level of transport at any other location, necessarily implies that information is
transported through the system with infinite velocity. Another criticism that is often
made is that all microscopic physical laws are local in space and time, so how could
non-Markovianity and non-locality appear in the first place.45

The best answer that one can provide against this criticism is that the fTe (and
its variations) is not an exact representation of transport in any system, but only
an effective transport model that is a good approximation of the real behaviour,
under certain conditions (i.e., the lack of characteristic scales), in the asymptotic
limit of long times and large distances. Very much like the classical diffusion
equation is in many cases! In that limit, any interaction that traverses a finite
region in a certain amount of time, would appear instantaneous when looked at
from scales that exceed the largest/longest allowed by the system dynamics. Take,
for instance, the running sandpile. Transport events take place through avalanches,
whose linear size and duration is limited only by the system size. This was
apparent, for instance, in the R=S analysis of the sandpile activity examined in
Sect. 4.5, where the region R=S � � that appeared at the shortest timescales was
a reflection of the self-awareness of avalanches. For the sandpile examined there,
with L � 200, the region extended up to timescales of the order of � ' 200

(see Fig. 4.18). Memory, however, survives in the sandpile for timescales much
longer than the largest duration of a single avalanche. In the R=S plot in Fig. 4.18,
these timescales corresponded to the intermediate region scaling as R=s � �0:8,
that extends up to � � 5 � 105. When looked at from scales that large, single
avalanches do indeed appear instantaneous.46 As a result, the local flux effectively
becomes determined by contributions from all the values of the gradient over the
whole spatial domain and the past history. The same argument can be used to
explain how the local interactions that determine the sand toppling can become
effectively non-local and non-Markovian when looked at from the longest and
largest scales.

45In fact, no rigorous derivation of any fTe exists, to the best of our knowledge, that obtains the
values of the fractional exponents from the physical equations of motion based on Newton’s law
or Hamiltonian dynamics.
46This is, in fact, why the marked particle jumps appeared as (almost) horizontal lines in Fig. 5.8!
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Appendix 1: The Laplace Transform

The Laplace transform47 of a function f .t/, t > 0, is defined as [46]:

LŒ f .t/	 WD Qf .s/ 	
Z 1

0

f .t/e�stdt: (5.112)

The main requirement for f .t/ to have a Laplace transform is that it cannot grow
as t ! 1 as fast as an exponential. Otherwise, the Laplace integral would not
converge.48 A list of common Laplace transforms is given in Table 5.1.

The Laplace transform is a linear operation that has interesting properties. A first
one has to do with the translation of the independent variable in Laplace space.
That is,

Qf .s � a/ D L Œexp.at/f .t/	 : (5.113)

Another one, with the scaling of the independent variable,

Qf .s=a/ D aL Œ f .at/	 : (5.114)

The Laplace transform of the n-th order derivative of a function satisfies:

L

�
dnf

dtn

�

D sn Qf .s/� sn�1f .0/� sn�2f 0.0/� � � � � f .n�1/.0/; (5.115)

Table 5.1 Some useful Laplace transforms

f .t/ Qf .s/ Restrictions f .t/ Qf .s/ Restrictions

1 1

s

s > 0 exp.at/ 1

s � a

s > a

t 1

s2
s > 0 exp.ı!t/ 1

s � ı!

s > 0

H.t � t0/ exp.�t0s/

s

t0 � 0, s > 0 cos.!t/ s

s2 C !2
s > 0

ta � .a C 1/

saC1

a > �1, s > 0 sin.!t/ !

s2 C !2
s > 0

H.x/ represents the Heaviside step function

47We will always use the tilde (i.e., Qf ) to represent the Laplace transform of a function (i.e., f .t/)
throughout this book. Also, the Laplace variable will always be represented by the letter s.
48Note that it is not even required that f .t/ be continuous for it to have a Laplace transform.
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whilst the Laplace transform of the integral of a function,

L

�Z t

0

f .t0/dt0
�

D
Qf .s/
s
: (5.116)

These properties are very useful to solve linear systems of ordinary differential
equations [13]. Another interesting result is known as the convolution theorem.
It refers to the temporal convolution of two functions [46],

h.t/ D
Z t

0

f .t0/g.t � t0/dt0; (5.117)

whose Laplace transform is equal to the product of the Laplace transforms of the
two functions,

Qh.s/ D Qf .s/ � Qg.s/: (5.118)

We will also discuss a property particularly useful in the context of self-similar
functions. The Laplace transform of a power law, f .t/ D ta; t � 0 is given by
Qf .s/ D � .a C 1/=s1Ca, for a > �1, where � .x/ is Euler’s gamma function [46].
This result, can also be extended to any function that asymptotically scales as
(a > �1),

f .t/ � ta; t ! 1; ” Qf .s/ � s�.1Ca/; s ! 0: (5.119)

Finally, we will mention that the inverse Laplace transform is given by [46]:

f .t/ D 1

2
i

Z cCi1

c�i1
Qf .s/estds; (5.120)

where s varies along an imaginary line, since c is real and must be chosen so that
the integral converges.

Appendix 2: Riemann-Liouville Fractional Derivatives
and Integrals

Fractional integrals and derivatives were introduced as interpolants between
integrals and derivatives of integer order [21, 44, 45]. In this book, we will
always use the Riemann-Lioville (RL) definition of fractional integrals and
derivatives.
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Riemann-Liouville Fractional Integrals
The left-sided RL fractional integral of order p > 0 of a function f .t/ is defined
as [21]:

aD�p
t f .t/ 	 1

� . p/

Z t

a
.t � �/p�1f .�/d�; (5.121)

A negative superscript, �p, is used to reveal that we are dealing with a RL fractional
integral. a is known as the starting point of the integral.49 As advertised, it can
be shown that Eq. 5.121 reduces, for p D n > 0, to the usual integral of order
n.50 But they have some other interesting properties. For instance, they satisfy a
commutative composition rule [21]. Indeed, one has that for p; q > 0:

aD�p
t � �aD�q

t � f .t/
� Da D�q

t � �aD�p
t � f .t/

� D D�. pCq/
a t f .t/ (5.124)

The Laplace transform of the RL fractional integral, if the starting point is
a D 0, is particularly simple [21]. It is given by:

L
�
0D

�p
t � f .t/

� D s�p Qf .s/: (5.125)

This result naturally follows from the fact that, for a D 0, the RL fractional integral
becomes a temporal convolution of f .t/ with a power law, tp=� .p/. Thus, Eq. 5.125
follows from applying the convolution theorem (Eq. 5.118).

A simple relation also provides the Fourier transform (see Appendix 1 of
Chap. 2) of the RL fractional integral if the starting point is a D �1. It is given
by51:

F
�

�1D�p
t � f .t/

� D .�i!/�p Of .!/: (5.127)

49Right-sided RL fractional integrals can also be defined:

bD�p
t f .t/ � 1

� . p/

Z b

t
.� � t/p�1f .�/d�; (5.122)

b is known as the ending point.
50An integral of order n is equivalent to carrying out n consecutive integrals on f :

In. f / D
Z t

0

dt1

Z t1

0

dt2 	 	 	
Z tn

0

f .tn/dtn: (5.123)

51In the case of the right-sided RL fractional integral, the Fourier transform, for ending point b D
C1, is given by:

F
�
1D�p

t 	 f .t/
� D .�i!/�p Of .!/: (5.126)
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Riemann-Liouville Fractional Derivatives
The left-sided RL fractional derivative of order p > 0 of a function f .t/ is defined
as [21]:

aD p
t f .t/ 	 1

� .k � p/

dk

dtk

Z t

a
.t � �/k�p�1f .�/d�; (5.128)

where the integer k satisfies that k � 1 � p < k. Note that they are simply a
combination of normal derivatives and RL fractional integrals: aD p

t D .d=dt/k �a
D�.k�p/

t . Again, it turns out that, for p D n, the RL fractional derivative reduces to
the standard derivative of order n.52

RL fractional derivatives have interesting, but somewhat not intuitive properties.
The most striking property is probably that the fractional derivative of a constant
function is not zero. Indeed, using the fact that the derivative of a power law can be
calculated to be [21]:

aD p
t � .t � a/� D � .1C �/

� .1C � � p/
.t � a/��p; p > 0; � > �1; t > 0; (5.130)

it is clear that choosing � D 0 does not yield a constant, but .t � a/�p=� .1 � p/.
RL fractional derivatives can be combined with other derivatives (fractional or

integer) and derivatives. But the combinations are not always simple. One of the
simplest cases is when a fractional derivative of order p > 0 acts on a fractional
integral of order q > 0:

aD p
t



aD�q

t f .t/
� Da D p�q

t f .t/: (5.131)

However, the action of a RL fractional integral of order q > 0 on a RL fractional
derivative of order p > 0 is given by a much more complicated expression [21].

If one sets p D q in Eq. 5.131, one finds that the inverse (from the left)
of a RL fractional derivative of order p > 0 is the fractional integral of order
p > 0:

aD p
t



aD�p

t f .t/
� D f .t/: (5.132)

52Again, right-sided RL fractional derivatives can also be defined:

bD p
t f .t/ � 1

� .k � p/

dk

dtk

Z b

t
.� � t/k�p�1f .�/d�; (5.129)

Their properties are analogous to the left-sided counterpart.
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However, note that the RL fractional derivative of order p > 0 is not the inverse
from the left of the RL fractional integral of order p. Instead, one has that [21]

aD�p
t



aD p

t f .t/
� D f .t/ �

kX

jD1

h
�aD p�j

t f .t/
i

tDa

.t � a/p�j

� . p � j C 1/
: (5.133)

The action of normal derivatives on RL fractional derivatives is also simple to
express53:

dm

dtm
� aD p

t f .t/ Da D pCm
t f .t/: (5.135)

But again, the action of the RL fractional derivative on a normal derivative is much
more complicated, and given by the expression:

aD p
t � dm

dtm
f .t/ Da D pCm

t f .t/ �
m�1X

jD0

f . j/.a/.t � a/ j�p�m

� .1C j � p � m/
: (5.136)

Finally, the composition of RL fractional derivatives of different orders is given
by a rather complex expression, that is never equal to a fractional derivative of a
higher order, except in very special cases [21],

Relatively simple expressions also exist for the Laplace transform of the left-
sided RL fractional derivative of order p if the starting point is a D 0:

L
�
0D

p
t � f .t/

� D sp Qf .s/ �
k�1X

jD0
s j
h

0D
p�j�1
t � f .t/

i

tD0 : (5.137)

This expression is very reminiscent of the one obtained for normal derivatives
(Eq. 5.115). Similarly, the Fourier transform of the left-sided RL fractional
derivative satisfies a very simple relation,54 but only for starting point a D �1:

F
�
�1D p

t � f .t/
� D .i!/p Of .!/: (5.139)

53For the right side RL derivatives, this property becomes:

.�1/m dm

dtm
	 bD p

t f .t/ Da D pCm
t f .t/: (5.134)

54For the right-sided fractional integral with ending point b D 1, the Fourier transform is
given by:

F
�

1D p
t 	 f .t/

� D .�i!/p Of .!/: (5.138)
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Appendix 3: The Riesz-Feller Fractional Derivative

The Riesz fractional derivative of order ˛ is defined by the integral55:

@˛f

@jxj˛ WD � 1

2� .˛/ cos.˛
=2/

Z 1

�1
dx0 f .x0/

jx � x0j˛C1 dx0: (5.140)

The most remarkable property of this derivative, and one of the reasons why
it appears so often in the context of transport (see Sect. 5.3.1), has to do with its
Fourier transform, which is given by [47]:

F

�
@˛f

@jxj˛
�

D �jkj˛ Of .k/: (5.141)

Using now the complex identity (ı D p�1),

.ık/˛ C .�ık/˛ D 2 cos
�
˛

2

�
jkj˛; (5.142)

it is very easy to prove that the Riesz derivative can also be expressed as a
symmetrized sum of two (one left-sided, one right-sided) RL fractional derivatives
of order ˛ [21],

@˛f

@jxj˛ D � 1

2� .˛/ cos.˛
=2/



�1D˛

x C 1D˛
x

�
(5.143)

It is also possible to define an asymmetric version of the Riesz-Feller derivative,
often known as the Riesz-Feller fractional derivative of order ˛ and asymmetry
parameter � [48]. This can be done through its Fourier transform, that is given
by:

F

�
@˛;�f

@jxj˛;�
�

D �jkj˛ Œ1 � ı�sgn.k/ tan.
˛=2/	 Of .k/: (5.144)

The indices are restricted, in this case, to ˛ 2 .0; 2/ and � 2 Œ�1; 1	. For � D 0,
the standard symmetric Riesz derivative is recovered. It can also be shown that the
Riesz-Feller derivative can also be expressed as an asymmetric sum of the same two

55The attentive reader will note that we have changed the name of the independent variable (now
x) to represent that the range is no .�1;1/ instead of the range .0;1/ used when defining the
RL fractional derivatives. Similarly, we will referred to the Fourier variable as k, instead of !.
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RL fractional derivatives of order ˛ [49]:

@˛;�f

@jxj˛;� D � 1

2� .˛/ cos.˛
=2/



c�.˛; �/�1D˛

x C cC.˛; �/1D˛
x

�
(5.145)

with the coefficients defined as:

c˙.˛; �/ WD 1
 �

1C � tan.
˛=2/
(5.146)

Thus, in the limit of � D 1, only the left-sided ˛-RL derivative �1D˛
x remains,

whilst for � D �1, only the right-side one 1D˛
x does.

Appendix 4: Discrete Approximations for Fractional
Derivatives

In order to be useful for actual applications, discrete representations of fractional
derivatives are needed that could be easily implemented in a computer [44, 50–
52]. We discuss here one possible way to do this [51]. The main difficulty has to
do with the singularities of the Riemann-Lioville definition, since it turns out that
it becomes singular at the starting point, t D a, whenever a is finite. This will
certainly be the case in practical cases, since a computer must always deal with
finite intervals.

Case 1 < p < 2

One can made these singularities explicit by rewriting the fractional derivative aDp
t f ,

1 < p < 2, as the infinite series [52]:

1

� .1 � p/

f .a/

.t � a/p
C

1X

kD1

f .k/.a/.t � a/k�p

� .k C 1 � p/
(5.147)

simply by Taylor expanding f .t/ around t D a and using Eq. 5.130 to derive the
different powers of x. Clearly, the first two terms of Eq. 5.147 are singular. At least,
unless one sets f .a/ D 0, and f 0.a/ D 0 as well for 1 < p < 2, which puts too much
of a restriction in some cases.

One way to circumvent this problem is to replace in practice the Riemann-
Liouville derivative by the so-called Caputo fractional derivative [21]:

C
a Dp

t f WD aDp
t

2

4 f �
int. p/X

iD0
f .i/.a/.t � a/i

3

5 ; (5.148)
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where int.p/ is the integer part of p.56 The Caputo definition removes the singulari-
ties so that the expression is now well defined and can be easily discretized. To do
it, we give its analytical expression [21],

C
a D p

t f .t/ 	 1

� .k � p/

Z t

a
.t � �/k�p�1f .k/.�/d�; (5.150)

with k�1 � p < k, which is very similar to the RL definition (Eq. 5.128) but with the
integer derivatives acting inside of the integral, instead of outside. It can be shown
that RL and Caputo derivatives are identical, for most functions for a ! �1 and
t ! 1. However, they are different for finite starting points. For starters, it should
be noted that the Caputo derivative of a constant is now zero!

We proceed now to find discrete expressions for the Caputo derivative for 1 <
p < 2 on the discrete regular mesh, ti D .i � 1/�t, with i D 0; 2; � � � ;Nt. The
integral from t D t1 up to t D ti is then discretized57 following the scheme [44, 51],

C
a Dp

t f D 1

� .2 � p/

Z t

a
.t � �/1�pf .2/.�/d� (5.151)
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jD0
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�
. j C 1/2�p � j2�p

�

� .3 � p/.�t/p

#

:

This expression is more conveniently expressed as,

C
a Dp

t f D
iX

jD�1

Wp>1
j

� .3 � p/.�t/p
f .ti � tj/; (5.152)

56For the right-sided derivatives, the divergence of the RL derivative happens at the ending point,
t D b. The Caputo fractional derivative is defined very similarly:

b
CDp

t f WD bDp
x

2

4 f �
int. p/X

iD0

f .i/.b/.b � t/i

3

5 : (5.149)

57Note that we have defined t
�1 as the first point int he series. This is done on purpose, since we

will need it to discretize the integral that starts at t0.
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in terms of the weights, Wp>1
j ,

Wp>1
j D

8
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
:̂

1; j D �1
22�p � 3; j D 0

. j C 2/2�p � 3. j C 1/2�p C 3j2�p � . j � 1/2�p; 0 < j < i � i
�2i2�p C 3.i � 1/2�p � .i � 2/2�p; j D i � 1
i2�p � .i � 1/2�p; j D i

(5.153)

Case 0 < ˛ < 1

When p < 1 there is only one singularity at the starting point a of the fractional
derivative. We can make it explicit by expressing again the fractional derivative
aDp

t f , as the infinite series:

1

� .1� p/

f .a/

.t � a/p
C

1X

kD1

f .k/.a/.t � a/k�p

� .k C 1 � p/
; (5.154)

done by Taylor expanding f .t/ around t D a and using Eq. 5.130 to derive the
different powers of x. Clearly, the first term of Eq. 5.154 is singular. At least, unless
one sets f .a/ D 0.

The solution is again to use the Caputo derivative (Eq. 5.150) instead. Now,
int.p/ D 0 and the integral to discretize is:

C
a D p

t f .t/ 	 1

� .1 � p/

Z t

a
.t � �/�pf .k/.�/d�; (5.155)

For 0 < p < 1, on the other hand, we discretize the integral from t D t0 up to
t D ti as,

C
a Dp

t f D 1

� .1 � p/

Z t

a
.t � �/�pf .1/.�/d� (5.156)
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Again, we can express this formula more conveniently by introducing weights,
Wp<1

j ,

C
a Dp

t f D
iX

jD�1

Wp<1
j

2� .2� p/.�t/p
f .ti � tj/; (5.157)

which are now given by the expressions,

Wp<1
j D

8
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
:̂

�1; j D �1
�.21�p � 1/; j D 0

j1�p � . j � 1/1�p � . j C 2/1�p C . j C 1/1�p; 0 < j < i � i
.i � 1/1�p � .i � 2/1�p; j D i � 1

i1�p � .i � 1/1�p; j D i
(5.158)

Equations 5.152 and 5.157 are not however, the only possible discrete represen-
tation of the Caputo fractional derivative of order p. These formulas are based on
central differencing. But other discretizations also exist, that may sometimes offer
either better accuracy over some ranges of p or higher orders of discretization [44,
50–52]. Equations 5.152 and 5.157 are however sufficient for the purposes of this
book.

Problems

5.1 CTRW: Fluid Limit
Write a code that evolves in time a one-dimensional CTRW that has a Gaussian
jump size distribution, p.�x/ D NŒ0;�2	.�x/, and an exponential waiting time pdf,
 .�t/ D E�0.�t/. In order to generate values for the jumps and waiting times at
run-time, use the algorithms described in Appendix 1 of Chap. 2. Use the code to
calculate numerically the CTRW propagator for �2 D 2 and �0 D 1, using N D
100; 000 particles. Compare the results with its fluid limit: G.x � x0; t/ D NŒ0;2t	

.x � x0/.

5.2 Langevin Equation: Propagator
Write a code that evolves in time a collection of N particles according to the
Langevin equation (Eq. 5.26). Use a uniform noise with autocorrelation given by
Eq. 5.27 with D D 2. Use N D 100; 000 particles to calculate the propagator of
the Langevin equation and compare it with its analytical solution: G.x � x0; t/ D
NŒ0;2t	.x � x0/.
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5.3 Langevin Equation: Moments of the Propagator
Compute all moments of the propagator of the Langevin equation and show that all
odd moments vanish and all even moments n > 2 are given by mn D .Dt/n.n � 1/ŠŠ.
5.4 Fractional Transport Equation: Propagator for ˛ < 2, ˇ D 1

Calculate the propagator of the fractional transport equation (Eq. 5.66) in the case
in which ˇ D 1.

5.5 Scale-Invariant Generalization of Fick’s Law
Find the expression that gives the local particle flux for the fractional transport
equation. To do it, recast Eq. 5.66 into the form @n=@t C r � � D S, using the
properties of fractional derivatives discussed in Appendices 2 and 3.

5.6 Advanced Problem: Propagator of the Running Sandpile
Write a code that uses the rules discussed in Sect. 5.5 to advances an arbitrary
number of tracers on the height profile evolution calculated by the sandpile code
previously developed (see Prob 1.5). Use the code to estimate the numerical
propagator of the running sandpile for a sandpile with L D 2000, Zc D 200,
Nf D 20, Nb D 10 and p0 D 10�4.

5.7 Advanced Problem: Numerical Integration of the fTe
Write a code that integrates the fractional transport equation (Eq. 5.66 ) for ˇ D
1 and arbitrary ˛, arbitrary initial condition, n0.x/, and external source, S.x; t/.
Use, for that purpose, the discrete expressions of the Caputo fractional derivative
(Eqs. 5.152 and 5.157) given in Appendix 4.
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Part II
Complex Dynamics in Magnetized Plasmas

Several instances of possible complex phenomena in magnetized plasmas will be
discussed in the second part of this book. These examples have been selected
from within various fields, such as fusion laboratory plasmas, solar plasmas and
Earth magnetospheric plasmas. After introducing each problem and clarifying their
physics at an introductory level, some of the analysis tools that were introduced in
the first part of this book will be used to characterize the dynamics in these systems.
The approach is not intended to be comprehensive by any means, but illustrative.
That is, it will be used to point out the strengths and weaknesses of the methods, as
well as to suggest the capabilities that these tools offer for the analysis of complex
dynamics in whatever systems might be of interest to our readers, either related to
similar plasmas or to something completely different.



Chapter 6
Laboratory Fusion Plasmas: Dynamics
of Near-Marginal Turbulent Radial
Transport

6.1 Introduction

We start our brief journey across the world of complex behaviours in plasmas by
focusing on those confined by magnetic fields in order to produce fusion energy
on Earth. The field is often referred to as magnetic confinement fusion (MCF). For
those readers unfamiliar with it, we will start by providing a broad overview of MCF.
Those already acquainted with the field are more than welcomed to move directly to
Sect. 6.4, where the basic physics that appear to be responsible for one of the more
important complex behaviours observed in MCF plasmas will be discussed.

The goal of MCF is to reproduce the fusion processes that power the stars in an
Earthly-based reactor and to generate power in an efficient, clean and economically
viable way. It is the expectation of many that the near future of our world will be
a fusion-powered society, perhaps as soon as by the end of the twenty first century.
However, the enterprise of building such a reactor is extremely complicated. MCF
tries to confine a hot, moderately dense plasma inside a toroidal volume, for a
sufficiently long time, by means of external magnetic fields. These toroidal plasmas
are prone to instabilities and are often dominated by strong turbulence. It is precisely
because of turbulence, being the highly nonlinear process that we all know and love,
that complex dynamics can emerge in them in various fashions.

In this chapter, we will examine one of these situations. In fact, it is one that
might probably be of relevance for the operation of any future MCF reactor. The
discussion will focus on the processes that govern the transport of energy and
particles across and out of the confined plasma. These processes are the ones that
ultimately determine for how long energy can be confined, and how large and
expensive these reactors will need to be in order to become feasible power plants.
There are reasons to believe that complex dynamics might be at work behind these
processes, particularly at the near-marginal regimes in which toroidal MCF reactors
will probably be operated. The meaning of this last sentence will become much
clearer as the chapter advances.
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We will conclude the chapter by applying some of the analysis tools described
in the first part of the book to a turbulent dataset obtained with a local (Langmuir)
probe at the edge of a MCF plasma. We will search in this dataset for any evidence
that could support the idea that complex dynamics is indeed governing the radial
transport dynamics in these plasmas. Along the way, we will also point the interested
readers to the abundant literature that exists in this area and that describes many
independent efforts to test these ideas in various fashions and multiple devices. For
now, however, let’s start by discussing what fusion is and how energy might be
obtained from it on Earth in a controlled manner.

6.2 Nuclear Fusion Processes

Fusion processes have been powering the stars for thousands of million of years. The
idea was probably first put forward by Arthur Eddington, as early as 1920 [1]. In
nuclear fusion, light nuclei fuse together to produce heavier nuclei while releasing
energy in the process. Naturally, the net amount of energy released is the difference
in mass between the fusion reactants and the fusion products, given by Einstein’s
famous formula [2]:

Ereleased D .mr � mp/ � c2: (6.1)

The fusion reaction chains that power the stars were first proposed in the late
1930s [3, 4]. They involve four protons (i.e., hydrogen nuclei, 11H) that fuse, either
directly1 or via catalysts,2 to yield a 4

2He nucleus (i.e., an ˛-particle), other things

1The most significant direct proton fusion cycle occurring in our Sun is in fact:

2 � �
1
1H C 1

1H ! 2
1D C ˇC

�
(6.2)

2 � �
2
1D C 1

1H ! 3
2He C � 	 (6.3)

3
2He C 3

2He ! 4
2He C 211H (6.4)

The cycle consumes four protons (i.e., 11H), although six are necessary in order to produce the two
3
2He that will fuse to yield the final 42He and release 26:7MeV of energy. It is believed that this
cycle (known as the pp-I branch) is dominant for temperatures in the range (10–14)�106 K and
accounts for more than 85% of the fusion energy produced in our Sun. It is also worth noting that
the third reaction of this cycle (Eq. 6.4) is not the only one possible, and more complicate reactions
involving lithium or beryllium also happen, although at much lower probabilities [5].
2In this case, the reaction requires the contribution of carbon, nitrogen and oxygen, that act as
catalysts, forming the so-called CNO cycle [5]. The fusion reaction that ultimately dominates the
process depends on the temperature of the star, with the catalystic route being important only
for stars that are much more massive and hotter than our Sun. Higher temperatures than those of
the Sun are also required for the direct proton fusion reactions involving lithium or beryllium to
dominate. And even higher temperatures are needed if heavier elements are to be fused.
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that include photons and neutrinos, and an abundant amount of energy. Our Sun3

carries out approximately 1038 fusion reactions per second, generating a net power
of the order of 1018 GW. This enormous power output4 is what keeps the central part
of the Sun at a balmy temperature of about 107 K.

It is easy to understand why such large temperatures are needed if fusion
processes are to happen significantly. Nuclei, being positively charged, repel each
other at sufficiently large distances (d � 10�15 m), but they attract each other
instead when within the range of the nuclear (strong) forces (d � 10�15 m).
Therefore, nuclei must attain sufficient relative kinetic energy as to overcome the
electrostatic barrier (or more exactly, tunnel through it) and allow the strong force
to engage, for fusion to take place. The probability of such process ending in a
successful fusion reaction is usually quantified in terms of the so-called cross-
section of the process, �.v/, that sort of measures the probability of a successful
reaction as a function of the relative velocity of the reactants, v. Using these cross-
sections, the energy production of any reaction that fuses two reactants, A and B, is
given by (per unit of volume):

PAB D nanb � h�AB � vi � EAB: (6.5)

Here, v is the relative velocity between the reactants, EAB is the energy released in
one reaction, and n represents their number density (i.e., number of particles per
unit volume). < � � v >, the reactivity of the reaction, is the average of the product
� � v over the probability density function (i.e., its pdf) of such relative velocities.
< �v > is a strong function of the plasma temperature.

Figure 6.1 shows the temperature dependence of the reactivity of several
fusion reactions. The reactivity is very low for any reaction it the temperature is
smaller than a million degrees. The reaction whose reactivity peaks at the lowest
temperature corresponds to the fusion of the two isotopes of hydrogen, deuterium
(D) and tritium (T) and requires temperatures of the order of fifty to a hundred
million degrees. At such high temperatures matter is in a plasma state. That is, it
has become an ionized gas formed by free positively charged nuclei and negatively
charged electrons in such proportions so that there is no overall net electric charge,
and that interact with each other via electric and magnetic fields. Interestingly, none
of the main fusion reactions that take place in the Sun are included in Fig. 6.1.
The fusion of four protons (either directly or via catalysts) requires even larger
temperatures to reach its reactivity peak. In fact, at the Sun’s temperature of roughly
107 K, the rate of the reaction is so low that it takes about 109 years for a particular
proton to undergo a fusion reaction. However, the Sun is so massive and large that it

3An extensive introduction to the Sun, its features and its dynamics will be given in Chap. 7.
4To help putting this number in perspective, one should consider that the largest modern power
plant on Earth is the Three Gorges Dam in China, that produces about 22:5GW of power; the
largest nuclear power plant, located in Japan, produces about 8:5GW.
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Fig. 6.1 Plots showing the dependence of the reactivity of several fusion reactions as a function of
temperature. Temperature is given in kinetic units. That is, as KBT. Here, KB is Boltzman constant,
that is equal to KB D 1:38 � 10�23 m2 kg/s2 K, or KB D 8:6 � 10�5 eV/K. The temperature T
is measured in the absolute (Kelvin) scale. Therefore, roughly speaking, 1KeV ' 11:6 � 106 K
[Credits: Kaye & Laby online site at the National Physical Laboratory: http://www.kayelaby.npl.
co.uk/]

may operate very far from its most efficient temperature and still be able to maintain
the thermal pressure required to overcome its gravitational self-implosion.

Achieving an efficient production of energy via fusion in an Earth-based
laboratory is however a complete different story since both mass and volume are
strongly limited. For those reasons, an alternate approach is required. Naturally, the
large majority of them rely on the deuterium-tritium (in short, D � T) reaction:

2
1D C 3

1T ! 4
2He .3:5MeV/C n .14:1MeV/: (6.6)

http://www.kayelaby.npl.co.uk/
http://www.kayelaby.npl.co.uk/
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One can easily work out the conditions that will be required within any Earth-based
reactor that intends to sustain itself using the energy released from D � T fusion.
Such a state is often referred to as one of ignition. In it, the fraction of the energy
produced by the D � T fusion reactions that can be used to maintain the internal
temperature,5 Eheat, must balance all energy losses. The quantitative criterion, first
formulated by John Lawson in the late 1950s [6], can be written as6:

nDnT h�DT � vi Eheat � 3.nD C nT/KBT

�E
: (6.7)

Here, nD and nT represent the deuterium and tritium number densities and the
constant KB D 8:6� 10�5 eV/K is the usual Boltzmann constant. �E is known as the
energy confinement time. It characterizes the quality of the energy confinement
achieved by a particular device, being itself a function of plasma parameters and the
magnetic configuration.

Assuming equal proportions of deuterium and tritium, this inequality can be
recast in terms of the so-called triple product, that is often used as the figure-of-
merit that characterizes the performance of any fusion reactor candidate. The triple
product for D � T reaches its minimum at a temperature of T � 150� 106 K, where
the Lawson criterion becomes,

n � T � �E.n;T; � � � / � 3 � 1021 KeV s=m�3: (6.8)

Since the plasma temperature is fixed, two knobs remain with which one can play to
reach ignition: the plasma (number) density n and the energy confinement time, �E.
The two most promising approaches play with these knobs differently. Magnetic
confinement fusion (MCF) [7], in which the plasma is confined by means of
magnetic fields and heated until suitable conditions are reached, aims at achieving
a moderate7 density n � .1020–1021/m�3 and confinement times of the order of
�E � .1–10) s. Inertial confinement fusion (ICF) [8], in which the plasma is
compressed by means of powerful lasers, aims for much larger densities, n � .1030–
1031/m�3, and much shorter confinement times, �E � .10�9–10�10/ s.

5In the case of D � T fusion, this energy is the one carried by the ˛-particles produced, that
amounts to Eheat D 3:5MeV per reaction. The high energy neutrons (14.1 MeV) produced, lacking
any electrical charge, cannot be confined and leave the plasma barely interacting with it.
6On the right of the inequality, energy losses are expressed as the total plasma energy, given by
3.nD C nT /KBT, divided by the energy confinement time. The plasma total energy is the sum over
all species of .3=2/nKBT, being n the species density and T its temperature. For simplicity, we
assume a quasi-neutral plasma in which both species have the same temperature. The part of the
energy carried by the electrons (one per each ion!) has been absorbed into that of the ions by
dropping the 2 factor in the denominator.
7To put these number densities in perspective, it is worth mentioning that the number density of air
is 2�1025 m�3, that of water is approximately 3�1028 m�3, and that of diamond is 1:7�1029 m�3.
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6.3 Primer on Magnetic Confinement Fusion

Magnetic confinement fusion (MCF) tries to generate fusion power by relying on
magnetic fields to confine a D � T plasma. The basic principle of MCF is that
any plasma constituent has a net electric charge, either positive or negative, and
will thus describe approximate helical trajectories around the magnetic field lines of
the configuration due to the action of Lorenz forces. Thus, MCF aims at providing
a volume where these magnetic field lines are confined, so that plasma particles,
that can freely move along field lines but not perpendicularly to them, can be
accumulated and heated to the conditions required for fusion.

One of the easiest ways to create one such configuration is to dispose coils
toroidally in a way similar to how a toroidal solenoid is constructed (see Fig. 6.2, left
frame). The resulting magnetic field lines are purely toroidal, closing on themselves
after a complete toroidal turn. The problem is that this setup, however, fails to
confine the plasma. It turns out that, due to the 1=R-decrease in field strength forced
by Maxwell equations in toroidal geometry, a particle drift appears in the rB � B
direction that separates vertically the ions and electrons in the confined plasma. This
charge separation creates a vertical electric field that originates a second particle
drift, in the direction of E � B, that ultimately pushes all charged particles radially
out of the confining volume. The easiest way to avoid this undesired ending is to
force the magnetic field lines to rotate poloidally as well, as they advance in the
toroidal direction. Or, in other words, to add a poloidal component to the magnetic
field. If this is done preserving the rotational symmetry of the solenoid in the

Fig. 6.2 (a) Toroidal coil setup leading to a purely toroidal magnetic field; the direction of the
magnetic drift (reversed, for negative charges), that appears because of the radial decay of the
magnetic field amplitude required by Maxwell equations, is shown in red; the electrostatic drift
that ensues, that is independent of charge sign, pushes the plasma out of the device (shown in
blue). (b) by adding a poloidal component to the magnetic field, field lines (in black) wrap around
nested, toroidal magnetic surfaces (in different blue tones). The most central, singular magnetic
surface is a closed curved known as the magnetic axis [Credits: courtesy of Estefanía Cuevas]
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Fig. 6.3 (a) Tokamak configuration: the poloidal magnetic component is added by making
the plasma the secondary of a large transformer represented by the inner cylindrical piece at
the centre of the device (in orange); the resulting confined plasma is toroidally symmetric to a
large approximation (in blue, another set of coils is shown used to keep the plasma from vertical
instabilities). (b) Stellarator configuration: both the toroidal and poloidal components of the
magnetic fields are generated by external coils. The shape of the confined plasma becomes however
much more complicated, and no longer toroidally symmetric [Credits: courtesy of Estefanía
Cuevas]

toroidal direction, each individual magnetic field lines will be contained in one of
many possible nested toroidal surfaces, that are known as magnetic surfaces (see
Fig. 6.2, right frame). Depending on the local relation between poloidal and toroidal
components, a field line may close on itself after a few toroidal transits (in this
case, the magnetic surface that contains it is called a rational surface) or it may
fill the magnetic surface ergodically. If toroidal symmetry is not preserved, more
complicated topologies are possible. In particular, magnetic topologies known as
magnetic islands and stochastic volumes may appear [9], both of which deteriorate
confinement.8 Be it as it may, the fact is that magnetic field lines do now connect
the top and bottom of the torus, effectively short-circuiting any charge separation,
and making the confinement of the plasma possible. The two main MCF toroidal
configurations, tokamaks and stellarators, follow the principles just discussed,
mainly differentiating themselves through the way in which the poloidal twist of
the magnetic field lines is achieved.

6.3.1 Tokamaks

Tokamaks (see Fig. 6.3, left frame) generate the poloidal component of the
magnetic field by driving a large toroidal current, of the order of several millions

8However, the degree to which the nested magnetic surface topology described is broken depends
on how far from exact toroidal symmetry each configuration is. Most current devices are purposely
designed to avoid, or at least restrict as much as possible, the appearance of magnetic islands and
stochastic regions within the confining volume.
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Fig. 6.4 (a) the ITER tokamak is currently under construction in France. Its operation is planned
to start in the early 2020s. The toroidal plasma confined in this device will have a major radius of
about 6m and a minor radius of about 1:5m. All coils are superconducting and create a magnetic
field of about 13T inside the plasma volume. The toroidal plasma current flowing inside is 15MA;
(b) the W7-X stellarator has started operating in Greifswald (Germany) in 2016. It is the largest
stellarator ever built, with a major radius of 5:5m and a minor radius of 0:6m. The configuration is
formed by superconducting coils that generate an interior magnetic field of 3T. The configuration
has been heavily optimized so that the toroidal plasma current is negligible [Credits: copyright of
ITER image belongs to the ITER organization (http://www.iter.org); copyright of the W7-X image
belongs to IPP (http://www.ipp.mpg.de)]

of Amperes, inside of the confined plasma [10]. The poloidal magnetic field created
by the toroidal plasma current is sufficient to achieve the required twist, but is still
significantly smaller than the toroidal component. The current is driven by making
the plasma act as the secondary of a gigantic transformer. As a result, tokamaks are
intrinsically pulsed devices.9

The existence of this large plasma current is, at the same time, good and bad
news. On the plus side, the resulting confined plasma is toroidally symmetric to a
large approximation. Thus, magnetic islands and stochastic are a relatively small
problem. In addition, as it will be remembered from basic Mechanics, the existence
of symmetries is always associated to the conservation of a related quantity.10 These
conservation laws strongly restrict the possible motions of the confined particles.
As a result, tokamaks exhibit good confinement properties. In fact, they confine
much better than any other existing configuration, which is why tokamaks spearhead
current efforts to prove that efficient fusion power production is feasible. The largest
fusion experiment ever planned, the ITER tokamak [13] (see Fig. 6.4, left frame), is

9A large body of research has been carried out over the last three decades, and still continues,
that explores the possibility of operating tokamaks in a continuous mode by applying different
techniques of current drive [11]. These type of scenarios are often known as advanced tokamak
scenarios, and will play an important role in the operation of ITER, the next-step tokamak
experiment currently under construction in Southern France that must prove the feasibility of the
tokamak way of generating energy via fusion. Current drive schemes are also pursued in order to
help control tokamak instabilities, among other things.
10For instance, invariance under temporal translations leads to the conservation of energy.
Invariance under spatial translations, to the conservation of linear momentum. Invariance under
rotations, to the conservation of angular momentum [12].

http://www.iter.org
http://www.ipp.mpg.de
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currently under construction in Southern France, funded by a large international
consortium that includes the majority of the developed world. The operation of
ITER is planned to start in the early 2020s and, if successful, will be the first
device ever to confine an ignited fusion plasma. On the negative side, such a large
current provides a large source of free energy for the development of instabilities.
In particular, disruptive events (known as disruptions [10]) may be excited,
which requires all tokamak operations to be carefully monitored and controlled.
In unchecked, disruptions may lead to a large fraction of the stored plasma energy
being dumped against the reactor walls in a very short period of time, which might
have rather catastrophic consequences for devices of the size of ITER [14]. They
might also lead to the formation of large beams of so-called runaway electrons,
that reach energies of the order of tens of MeV, and that could be dangerous for the
physical integrity of the plasma-facing components of the reactor [15–18].

6.3.2 Stellarators

In stellarators (see Fig. 6.3, right frame), on the other hand, both components of
the magnetic field are created by means of external coils. As an illustration, in
the stellarator configuration shown in Fig. 6.3, the blue coils shown are the ones
responsible for providing the poloidal magnetic field. Many different stellarator
configurations are possible depending on the how coils are laid out: heliotrons,
torsatrons, heliacs and so forth [19]. Since the current flowing toroidally in the
plasma is usually very small, stellarators can be operated continuously and avoid
large current-driven MHD instabilities such as disruptions. These features would
apparently point at stellarators as a better choice (than tokamaks) for a first fusion
reactor. However, a large drawback of any stellarator configuration is that the
confined plasma is no longer toroidally symmetric. Topologies such as magnetic
islands and stochastic regions must now be actively avoided. Otherwise, confine-
ment properties can degrade significantly. In addition, the lack of toroidal symmetry
makes particle motion less constrained and, as a result, confinement properties
are rather worse than those of a tokamak for similar parameters.11 The situation
has been somewhat improved in the last decades by relying on heavy numerical
optimization and with the advent of new design concepts, such as the idea of
quasi-symmetries [20]. The largest member of the coming generation of optimized
devices, that will have to prove the validity of these new design approaches, is the
superconducting W7-X stellarator [21], that started operation in 2016 in Greifswald,
Germany (see Fig. 6.4, right frame).

11That is why the tokamak has remained the king since the late 1970s, although this might change
in future generations of reactors.



288 6 Laboratory Fusion Plasmas: Dynamics of Near-Marginal Turbulent Radial. . .

Fig. 6.5 Left: when a charged particle (shown in orange) suffers a collision with another particle
(in blue) its velocity vector changes its orientation (or pitch). In the presence of a constant
magnetic field, the particle trajectory is a helix along the field line, whose projection onto the plane
perpendicular to the magnetic field is a circle or radius rL D mv

?
=qB centered at the gyrocenter.

After the collision, the gyrocenter is displaced as a result of the change in the velocity vector.
Right: collisions thus may drive transport across the magnetic field. However, since the change in
the velocity pitch is essentially random, there is the same probability of moving the gyrocenter in
any direction. Thus, net particle transport only ensues from regions with more particles to those
with less. That is, in the presence of a density gradient [Credits: courtesy of Estefanía Cuevas]

6.3.3 Main Transport Processes in Toroidal MCF Plasmas

The term transport is used, in the context of fusion toroidal plasmas, to refer to any
process responsible for the exchange of mass, energy and momentum among regions
of the confined plasma. The most relevant direction, though, is the one perpendicular
to the magnetic surfaces (i.e., the radial direction), since radial transport is the one
that leads to losses through the system boundaries. The understanding and control of
radial transport processes is essential when trying to push the triple product of any
configuration towards the ignition threshold (Eq. 6.8). Two are the processes that are
the main dynamical players in toroidal MCF plasmas: collisions and turbulence.

6.3.3.1 Collisions

Collisional transport is due to the change in orientation of the velocity vector
of a particle (ion or electron) caused by the collision with another one [22]. Due
to the long-range nature of Coulomb interactions, these changes are very small,
but accumulate quickly over time.12 When collisions take place in the presence
of a magnetic field, transport in the direction perpendicular to the magnetic field
(and, therefore, across magnetic surfaces) quickly ensues if a gradient exists in that
direction. The fundamentals of the transport process are illustrated in Fig. 6.5, for

12Collisional processes are a good example of additive transport processes, that were discussed
first in Sect. 2.3.1 while introducing the central limit theorem, and then again in Chap. 5.
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a uniform magnetic field B. Charged particles describe helical trajectories along
the magnetic field that, when projected onto the plane perpendicular to the field,
become circles with a (Larmor) radius given by rL D mv?=qB. Here, m and q
are the mass and charge of the particle, and v? is the magnitude of its velocity
perpendicular to the field. The location of the centre of the circle, or gyrocenter,
is set by the initial orientation of the velocity. After a collision takes place, the
sudden change in velocity orientation translates into the gyrocenter being displaced
and, subsequently, to the particle moving across the magnetic field (see Fig. 6.5,
right frame). These gyrocenter displacements are however essentially random in
nature, as are the changes in velocity orientation and the collisions that originate
them.13 Therefore, gyrocenters are displaced on average with equal probability in
any direction. For that reason, a net flux of particles only takes place from the
regions with more particles to those with less particles (i.e., in the presence of a local
gradient). The same principle would also apply for momentum or energy transport,
that are also locally conserved quantities. The difference here is that it is no longer
the number of particles that must vary from one location to another, but the fraction
of them with a given amount of energy or momentum [22].

6.3.3.2 Turbulence

Most plasmas in the universe are turbulent. By this, it is meant that they are strongly
non-linear, high-dimensional systems. The root of this behaviour must be sought in
the fact that all plasma constituents have electrical charge, and thus interact among
themselves via the electric and magnetic fields they create, and that are in turn
quickly affected by the particle motion induced by these interactions. As a result,
small fluctuations in the fields may become unstable and grow, or be quickly damped
away. The resulting state of this complicated zoo of interactions is usually known as
plasma turbulence.

When a plasma is confined by a strong external magnetic field, as it is the case
in a tokamak or stellarator, the turbulent nature of the plasma remains active. The
presence of strong gradients in density, pressure and temperature across magnetic
surfaces and the large plasma currents that might exist provide with abundant free
energy to feed a myriad of possible instabilities [23]. If unchecked, this state of
things may permit the growth of magnetic perturbations that might even lead to
the destruction of the confining magnetic field. In most cases, however, a careful
design prevents the appearance of large instabilities, and perturbations remain at a
relatively small amplitude and size. Their main impact is then the enhancement of

13The process is very reminiscent of the continuous time random walk (CTRW) that we discussed
at length in Sect. 5.2.1, and that provided a microscopic model for diffusive transport.
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Fig. 6.6 Left: snapshot of a numerical simulation of ITG turbulence in a tokamak with concentric,
circular magnetic surfaces (shown in black, for reference purposes). A colour map of electrostatic
potential fluctuations is shown (blue corresponds to negative fluctuations; red, to positive). Right:
sketch showing the formation of local vortical structures, perpendicular to the magnetic field,
associated to the largest (in absolute value) potential fluctuations via E � B drifts with QE D �r Q�.
In red, the enhanced transport across magnetic surfaces driven by these vortical structures is
illustrated, stressing its random nature. Vertical black lines represent magnetic surfaces. The
alignment of the vortical structures with the magnetic surfaces is however exaggerated

transport across the system, including the one taking place along the radial direction
that leads directly out of the device.14

Figure 6.6 illustrates the kind of enhanced transport across magnetic surfaces
that plasma turbulence leads to. On the left, a colour map of electrostatic potential
fluctuations is shown for a snapshot of a tokamak turbulent simulation [24] in
which the dominant unstable mode is the so-called ion-temperature-gradient (ITG)
mode.15 These electrostatic potential fluctuations lead to tube-like vortical structures
that are aligned with the local magnetic field16 that help move particles and energy

14This behaviour is very similar to what takes place in fluid turbulence. In some fluid systems,
enhanced turbulent transport may often be used to our advantage, though. For instance, to make
the combustion of fuel more efficient in car engines. Or to facilitate mixing processes in industrial
environments. For MCF plasmas, however, turbulence is often bad news. Enhanced transport across
magnetic surfaces leads to larger energy losses, which degrades plasma confinement and brings the
triple product value down, thus making power generation much more difficult and expensive.
15The physics of the ITG mode are irrelevant for the point we are trying to make here. It suffices
to say that it is a toroidal mode that feeds from the free energy stored in the large ion temperature
radial gradient that exists between the magnetic axis (the innermost, degenerate magnetic surface)
and the plasma edge. It is also widely accepted that the ITG is one of the dominant modes that
govern ion heat transport in current tokamaks [23].
16Electrostatic potential fluctuations lead to local vortical structures via E � B drifts, where
QE D �r Q�, being Q� the local potential. These fluctuations form vortical structures centred at
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across magnetic surfaces. If these local fluctuations are random in nature, as it is
traditionally assumed, the cross-magnetic-surface motion induced would be similar
to a CTRW process (see discussion in Chap. 5). In that case, these turbulent
fluctuations would not drive a net radial flux unless a radial gradient exists, since
there would be the same probability of being displaced in any (radial) direction.
These gradients are certainly present in MCF toroidal plasmas.

6.4 Are MCF Plasmas Complex Systems?

Radial turbulent transport in MCF plasmas (particularly in tokamaks, but also in
stellarators) has been traditionally described (and by many, also understood) in the
terms outlined in the previous section. Accordingly, turbulence-enhanced transport
of energy, heat or mass has been often modelled in terms of effective transport
coefficients (i.e., diffusivities, conductivities or viscosities), implicitly assuming that
an underlying additive, CTRW-like process is a good approximation to what actually
happens microscopically in these plasmas, at least over sufficiently large and long
scales.17

As discussed at length in Sect. 5.2, any (“microscopic”) CTRW process can
be well represented by its fluid limit at the “macroscopic” level. This limit
corresponds to the classical diffusion equation (Eq. 5.3) with an effective transport
coefficient that can be estimated once the characteristic length and time scales of
the “microscopic” transport process are known. In the case of collisional transport,
the typical displacement of the gyrocenter after a collision is of the order of the
orbit radius, rL. The typical time in between collisions can be estimated by the
inverse collision frequency, ��1

c . Thus, one can infer that the effective collisional
diffusivities and conductivities will be of the order of18:

Dcoll; �coll / r2L�c; (6.9)

being �c the proper collision frequency.

the locations of the extrema of the fluctuating potential, with the orientation of the local rotation
(mostly contained within the plane perpendicular to the local magnetic field) being determined by
whether the extremum is a maximum or a minimum.
17These ideas are also the basis of the pinch-diffusion phenomenological models that are so often
used in MCF [25]. These models consider local fluxes that, in the case of particle transport, take the
general form �n D Vn�Drn, where V is an effective pinch velocity and D an effective diffusivity.
Similar expressions are also used to describe momentum and energy transport.
18It turns out that things are of course much more complicated than this. The toroidal geometry
of MCF plasmas plays a huge role in collisional transport, and a full-fledged theory must be
developed (known as neoclassical theory [22, 26, 27]) to estimate these transport coefficients
properly. Miraculously enough, it turns out that the simple random walk estimates discussed here
are in the right ballpark.
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In the case of turbulence transport, it seems reasonable to assume that the
characteristic length of the process will be of the order the typical size of the vortical
structures in the radial direction, �r (see Fig. 6.6). The characteristic time, on the
other hand, should be of the order the time that a local fluid parcel spends in the
neighbourhood of each vortical structure. It can be estimated in different ways such
as the average lifetime of the structures, �L, the inverse of the linear growth rate of
the instability that creates them, ��1

L and others. Therefore, one could estimate,

Dturb; �turb / �2
r�L; �

2
r=�L; � � � (6.10)

It is also possible to determine effective coefficients phenomenologically after
one has accepted that Fick’s law (Eq. 5.1) provides a proper description. Then, it is
sufficient to simultaneously measure (in experiments or simulations) the local radial
flux and local radial gradient of the quantity of interest, and to obtain the transport
coefficient from its ratio. In this way, one could infer effective (radial) transport
diffusivities and conductivities as (usually by averaging over many realizations),
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; (6.11)

being �n and q the radial particle and heat fluxes, respectively.
However, there are some scenarios in MCF plasmas in which turbulence probably

does not lead to the type of CTRW-like transport just described. Instead, a more
complex type of radial transport dynamics seems to be at work. This should not
come as a surprise since these plasmas, being the strongly coupled systems they
are, contain many of the typical ingredients of complex systems that were listed
in Sect. 1.2.2: they are open and driven systems, are strongly non-linear, have a
very large dimensionality, and contain a plethora of local thresholds that govern
the onset of a myriad of instabilities. In order to understand better when and how
complex dynamics may come to dominate radial transport in MCF plasmas, it is
worth reviewing how the confinement properties of tokamaks and stellarator have
been experimentally found to change as the external power, that is used to heat up
the confined plasma, is increased.

6.4.1 Tokamak Transport Phenomenology

We provide here a brief (and simplified) description of the phenomenology of radial
transport as has been experimentally observed in many tokamaks. By radial, once
again, we mean transport across magnetic surfaces, that is roughly equivalent to
transport along the direction of the minor radius of the torus (see Fig. 6.7). It
has been found over the years that tokamaks go through a variety of confinement
regimes as the external power that heats the plasma is increased.
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Fig. 6.7 Typical radial pressure profiles for the main tokamak confinement regimes reached as
external power is increased: ohmic (black), L-mode (blue), H-mode (red, solid) and advanced
modes (red, dashed). The transition from L-mode to H-mode takes place when the edge transport
barrier develops, above a certain power threshold. The transition to advanced confinement modes
happens when an internal transport barrier is formed at some intermediate radial location [Credits:
courtesy of Estefanía Cuevas]
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Naturally, the first heating method used in tokamaks is Ohmic heating. The
principle is simple. Since a large toroidal current flows in the plasma, the heat
dissipated via the Joule effect effectively heats it, building up the (radial) tempera-
ture and pressure profiles. Ohmic heating must however be soon complemented by
additional external heating due to the fact that, as the plasma temperature increases,
its electrical resistivity diminishes (its resistivity scales as � � T�3=2 [10]). Wave
heating (at the ion or electron cyclotron resonances mostly, but other methods also
exist) and neutral beams (in which highly energetic neutral deuterium is injected in
the plasma centre, mostly along the toroidal direction, where it ionizes, increasing
the plasma density and transferring its kinetic energy to it via collisions) are the
most usual choices.

As the power injected into the plasma was increased, it was observed that the
confinement behaviour of the tokamak changed significantly from that exhibited in
most Ohmic discharges. This new confinement regime was called the L-mode, and
it exhibited some remarkable properties. For instance, the radial plasma profiles—
mostly, temperature and pressure—were remarkably stiff in the sense that their
shape was rather insensitive to the strength and location of the external power
(except at the very edge of the plasma) [28]. In addition, locally-excited perturba-
tions (both hot and cold pulses) were observed to propagate super-diffusively across
magnetic surfaces, instead of diffusively [29]. Furthermore, the global confinement
time, �E, exhibited a scaling (known as Bohm scaling) in which �E / a� with � � 1

(a is the minor radius of the torus), much worse than the diffusive (or gyro-Bohm)
scaling, �E / a2, that would be expected from simple diffusive considerations [30].
A Bohm scaling would have been really bad news since, if such scaling truly held,
much larger (and expensive) tokamaks would be needed to achieve viable fusion
reactors. In order to explain these unexpected observations, it was soon conjectured
that some critical threshold probably existed, close to which the radial plasma
profiles were forced to stay by the intermittent excitation of strong, locally-excited
turbulent transport. Direct evidence of the existence of these thresholds, particularly
for electron and ion temperature gradients, was soon obtained [31–34].

Things kept changing, and getting much more interesting, at even higher
external powers. Above a certain power threshold, it was observed that the plasma
transitioned to a new confinement regime that is known as the H-mode [35]. In the
H-mode, an edge transport barrier (ETB) spontaneously develops (see Fig. 6.7)
where radial transport is importantly reduced. As a result, much larger gradients
must be established across this barrier in order to drive the level of transport
needed to balance the external drive. It is believed that the formation of the edge
barrier is associated with the spontaneous development of a strong poloidal and
toroidal plasma flow, with a large radial shear, very close to the plasma edge.19

19The appearance of a transport barrier at the edge of tokamaks has been likened to the presence of
the tachocline in the Sun, both being thin radial regions sustaining strong sheared-flows, probably
driven by turbulent dynamics in a self-organized way. We will discuss the tachocline and the role
it plays in solar dynamics later in this book, in Sect. 7.3.1. We will also discuss transport across
shear flows in tokamaks in Chap. 9.
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This zonal flow might be driven, among other possibilities, by turbulence itself
via the Reynolds stresses or by radial electric fields associated with several effects
such as ion-orbit losses and others [36]. Curiously, though, the plasma confined
radially inside of the barrier region appears to behave very similarly to its L-mode
counterpart, still exhibiting strong profile stiffness and superdiffusive propagation
of perturbations. The central temperature is however much higher than in L-mode.
The discovery of the H-mode was very good news for the MCF international
program. The presence of the edge barrier not only increased the confinement time
�E, but it also brought its scaling much closer to a gyro-Bohm scaling, thus making
the predicted size of future reactors smaller, and much more attractive from an
economical standpoint. The change in global scaling is probably due to the fact
that radial transport across the zonal flow is probably much more diffusive in nature
(although we will have a lot more to say about this in Chap. 9).

Some bad news also come with the formation of the ETB in H-mode tokamaks,
though. The edge barrier confines the plasma so well that impurities and helium ash
from fusion reactions might accumulate in the inner plasma, reducing the overall
efficiency of the fusion process. At the same time, the edge pressure gradients
gets so steep that they end up hitting an instability threshold20 that leads to a large
percentage of the energy contained in the barrier being released towards the reactor
walls. These quasi-periodic bursts are known as type-I Edge Localized Modes or,
in short, type-I ELMs. ELMs, if left unchecked, might become quite dangerous for
the reactor first wall and its divertor, particularly at sizes as large or beyond that
of ITER. Therefore, a careful control of the discharge is needed to avoid them, or
to keep their size sufficiently small (at the expense of a higher frequency) as to be
manageable [39].

Finally, it is also worth noting that additional advanced confinement regimes can
be reached starting from either the L-mode or the H-mode. Access to them requires
the excitation of internal transport barriers (ITBs). That is, radial regions of
reduced transport that appear in the inner part of the plasma. The formation and
placement of ITB can be accomplished in a variety of ways, as profusely described
in the literature [40, 41].

6.4.2 Stellarator Confinement Phenomenology

Due to the lack of toroidal symmetry, stellarators have much larger collisional (neo-
classical) losses than tokamaks. In fact, neoclassical diffusion probably dominates
transport for a large portion of the central part of currently existing stellarators, with
turbulence dominating transport over the rest of the outer radius [42]. As a result of

20These instabilities are probably related to the excitation of a family of modes known as ideal
peeling-ballooning modes [37]. ELMs are explosive instabilities that have been likened by some
authors to the ones responsible for the formation of solar flares in our Sun [38].
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the much larger diffusive losses, stellarators exhibit a much weaker profile stiffness
than comparable tokamaks, and only at the largest temperatures achieved [34]. This
situation might change, however, as larger, hotter and better confining stellarators
are brought online. Both internal and edge barriers have also been observed in
stellarators, the latter giving access to sort of an H-mode, that even showed edge
relaxations reminiscent of tokamak ELMs [42–44].

6.4.3 Self-organized Criticality and Toroidal MCF Plasmas

It was in the mid 1990s, while the tokamak community was still trying to make
sense of the transport phenomenology of the L-mode, that the concept of self-
organized criticality (SOC) first appeared in the context of MCF plasmas [45–48].
The observation of stiffness in the profiles and the super-diffusive radial propagation
of perturbations found in L-mode, that we discussed in the previous subsection, were
soon connected to the possibility that some plasma profiles might stay rather close
to some local instability threshold in this confinement regime. SOC dynamics may
become important in situations of closeness to a threshold, particularly if it happens
in an open, driven system in steady state in which there is a sufficiently large time
separation between local drive and local relaxation processes, and in the presence of
some local inertia (see Sect. 1.3). It turns out that all of these elements are present
in tokamak plasmas.

In order to identify which processes or elements present in MCF toroidal plasmas
could play these roles, an analogy was drawn between the confined tokamak
plasma and the running sandpile that we introduced in Sect. 1.3.1. Table 6.1 shows
this correspondence, as made by the original proposers [46]. The assignments
are based on the fact that most modes that can be excited in MCF plasmas are
often radially localized around specific magnetic surfaces (the rational surfaces we
mentioned in Sect. 6.3), that would act as the sandpile cells. These local modes

Table 6.1 Analogies between the running sandpile and a MCF plasma drawn in [46]

Turbulent MCF plasma Running sandpile (Sect. 1.3.1)

Localized instability (eddy) Cell

Critical threshold for local instability Local sand slope .Zc/

Heating noise/background fluctuations Intermittent drive . p0/

Local eddy-induced transport Sand toppling .Nf /

Inertia of relaxation Nf > 1

Turbulence able to flatten profiles against drive Nf > 2p0L

Mean plasma temperature/density profiles Sand height profile

Transport event Sand avalanche

Total energy/particle content Total sand in the sandpile

Energy/particle flux Sand flux
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would become linearly unstable first, after some threshold condition was locally
overcome, typically a gradient or a characteristic length of the surface-averaged
plasma temperature, density or pressure. The unstable mode (or modes) would
then grow and saturate, locally flattening the profile in the process by transporting
the relevant quantity to adjacent radial locations until the local critical condition
is no longer exceeded. Inertia would continue the flattening process beyond the
local threshold value before the instability disappeared, leaving behind a footprint
that would impact future relaxations. In addition, the modifications of the profile
at adjacent locations could be sufficiently large as to make the profile unstable
there as well, so that the whole process would repeat itself, starting a transport
event or radial avalanche. Avalanches would propagate radially until they reached
some end location, where the induced modification of the profile would not be
sufficiently large as to turn it unstable. Finding an intermittent component on top
of the average drive in a MCF plasma that could trigger these processes is rather
easy, due to the large number of fluctuating sources and sinks present in the system
(for instance, beam, wave and Ohmic heating coupling efficiencies all fluctuate as
the local density or temperature values quickly change due to the heating itself, the
effect of background fluctuations or many other processes).

The details of which instability is responsible for the unstable mode—and
what its local dynamics are like—would be irrelevant for self-organized criticality
to develop over longer and larger scales, just as one does not care about what
happens within a single sandpile cell. Thus, it could be driven by any of the
well-known tokamak micro-instabilities such as the ion-temperature-gradient (ITG),
the dissipative-trapped electron (DTEM) or the resistive ballooning mode. The
critical element here is that the competition between drive and relaxation must be
such that it keeps the plasma profiles wandering around marginal values, which
means that classic SOC behaviour will only appear in certain regimes. Indeed, if
the drive is too strong relative to the excited turbulent fluxes, the system could
stay supercritical most or all of the time, making almost impossible for SOC
dynamics to be established. In the opposite limit, that of a very weak drive, the
running sandpile would still exhibit SOC dynamics. This is because avalanches
are the only transport process available, although it would take longer for the
profile to become locally critical again since avalanches would become more
sparsely distributed in time. This would not be the case in a MCF toroidal plasma,
though. Other transport channels do exist in these plasmas, such as collisional
classical/neoclassical diffusion or turbulent diffusion associated with one or more
additional supermarginal instabilities.21 If any of these processes can drive the
transport needed to balance the external drive while keeping the profiles below
the local threshold associated to the instability of interest, SOC dynamics could
be importantly modified, and in some cases, even completely absent.

21Additional losses that might be important are ionization/recombination processes near the edge,
radiation, or even plasma fuel spent in fusion reactions at the core.
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Given the variety of regimes we touched upon earlier (Ohmic, L-mode, H-mode,
etc), where should SOC dynamics be expected? Can SOC provide an explanation of
the observed phenomenology in tokamaks? We will just provide some hints about
these questions in the next couple of paragraphs, but all interested readers can find
many more details, both theoretical and experimental, in a recent review that we
wrote to describe the current state of research in this area [49].

For starters, it is clear that L-mode discharges exhibit the most favourable
conditions to exhibit SOC dynamics, due to the near-marginality that might be
inferred from the observed global profile stiffness, that is usually absent in most
Ohmic regimes. The Bohm global energy scaling and the superdiffusive pulse
propagation observed in L-mode discharges are also qualitatively consistent with
SOC-like dynamics. SOC might be operative over the stiff part of the profile,
excluding probably just the most central part. However, the lack of a global stiff
profile does not necessarily exclude SOC dynamics from being dominant at some
locations within lower-powered Ohmic discharges. It is only natural to expect that
profiles would start to approach marginality from the plasma edge, where gradients
are usually the largest,22 with the near-critical region reaching further inwards as
power increases. In fact, the type of driving, be it Ohmic or external, is irrelevant,
since only the amount of power deposited matters. Therefore, regions dominated by
SOC dynamics smaller than in the L-mode cases, that extend inwards from the edge,
could also be expected in sufficiently hot Ohmic discharges.

In the case of H-mode tokamak discharges, it could be argued that the higher
temperature inside (relative to the L-mode) should make profiles inside the edge
transport barrier even stiffer, since turbulent fluxes increase with temperature,
thus becoming more efficient in flattening the profiles and bringing them back
below marginal. SOC dynamics could thus dominate radial transport across the
plasma core. However, the edge transport barrier appears to effectively decorrelate
any SOC-related transport event coming from the core. Therefore, a much more
diffusive-like transport could probably be taking place across the barrier.23 It is
the combination of the transport coming through the barrier, together with the
prompt losses associated to the quasi-periodic type-I ELMs, that must balance
the external drive. Since the global confinement scaling depends on the transport
properties of the region closest to the last closed flux surface (or LCFS), a gyro-
Bohm-like confinement should be expected, even when the inner plasma could still
be dominated by SOC-like dynamics all the way to the edge barrier. However, the
effect of the most interior SOC dynamics could still be felt outside: for instance,
since ELMs are ultimately driven by the amount of transport coming from the inner
plasma into the barrier, the intermittency and/or memory (or lack of it) of the inner
transport might condition the peak size, the size distribution and the frequency of

22These edge gradients might even drive local instabilities different than those that dominate
transport processes further inside.
23It must be said, however, that this diffusive view of transport through the shear flow at the ETB
might provide a too simplistic picture, as we will discuss in Chap. 9.
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ELMs, that impose important requirements on first wall components. In tokamak
enhanced confinement regimes, that may include one or more ITBs, each barrier
region would behave similarly to the H-mode edge transport barrier just discussed.
That is, it would effectively decorrelate any transport event crossing through it from
any other. In the radial areas in between barriers, however, transport may still exhibit
SOC-like features if profiles are close to marginal.

There has been a large effort, in the last decades, to try to search for evidence
of SOC-like behaviour in magnetically confined fusion plasmas. The available
evidence to this day certainly points in this direction, at least in certain regimes.
Most of the experimental data available comes from the plasma edge, though, where
the temperature is sufficiently low as to permit the introduction of local probes
[51–53]. This is unfortunate, though, since SOC is a global phenomenon, but one
naturally expects that the scale-invariance and long-term memory associated to it
should be reflected somehow in local measurements. There is also some evidence,
particularly in tokamaks, that has not been obtained with local probes. For instance,
a glimpse of radial avalanching was reported in some L-mode discharges from the
DIII-D tokamak in the USA. It was detected by the ECE radial array diagnostic
that is used to measure the plasma temperature along different lines of view, that
showed clear evidence of avalanche radial propagation of both hot and cold pulses
[54]. We conclude this section by strong recommending all interested readers to
browse through the review that we mentioned previously [49]. A large amount of
additional information about the many studies carried out in this area during the last
three decades can be found in it, including an extensive list of relevant references.

6.5 Case Study: Analysis of Turbulent Fluctuations
from the Edge of the W7-AS Stellarator

In this section we will examine, using some of the techniques discussed in the first
part of this book, a dataset obtained with a Langmuir probe just inside the plasma
edge of the W7-AS stellarator, that was in operation in Germany until the mid-2000s
[55]. Langmuir probes are the ones most often used in MCF plasmas, typically in a
single or triple-tip configuration [56]. A Langmuir probe is a conducting rod whose
voltage (relative to the plasma) can be varied externally. When its potential is set at
a smaller value than that of the plasma, plasma ions will flow to the probe; if larger,
electrons will flow to the probe and, if equal, there is no current. By operating the
tip in each of these regimes one can easily get estimates of the ion and electron
local densities from the saturation currents measured in the probe, or of the local
electrostatic potential.24 When used in single-tip configuration, the probe is usually

24Some strong assumptions must be accepted though, particularly in what refers to the effect of the
local temperature, and to the degree of intrusiveness of the probe itself, that undoubtedly perturbs
its surroundings considerably.
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Fig. 6.8 Time series of the ion saturation current measured with a Langmuir probe at the edge
of the plasma edge in W7-AS discharge No. 35425 [50]. The ion saturation signal is a surrogate,
under certain assumptions, of the local density fluctuations. The length of the dataset is of about
12ms, with the decorrelation time of the signal being of the order of 20–40�s

set to measure local ion density. The triple-tip configuration, on the other hand,
usually has its central tip prepared to measure the local ion density, and the other
two tips measuring the local potential at neighbouring poloidal locations of the same
magnetic surfaces. In this way, the local radial turbulent flux can be estimated.25

6.5.1 Statistics

The data that we will examine is shown in Fig. 6.8, corresponding to the time series
of the ion saturation current measured by the probe, that acts as a surrogate of the
local ion density. There are 25,000 values within the record, that was sampled at
a frequency of 2MHz. The first thing we will discuss is the pdf of the data, that
is shown in Fig. 6.9. It has been computed using both the constant-bin-size (CBS;

25Here, it is assumed that the dominant turbulent velocity fluctuations come from local E�B drifts.
Since the dominant magnetic field in MCF plasmas is toroidal, the main contribution of the electric
field to the radial flux is via its poloidal component, that can be estimated as the difference of the
two potential values measured by the probe.
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Fig. 6.9 Probability density function for the ion density time series shown in Fig. 6.8, both in lin-
lin (left) and log-log (inset, right) scales. 100 bins were used for the CBS method; 15 events were
used to define each bin in the CBC one. In green, best Gaussian (light green) and Log-normal (dark
green) fits are also shown

see Sect. 2.4.1) and constant-bin-content (CBC; see Sect. 2.4.2) methods that we
discussed in Chap. 2. Since the plasma density is a positive quantity, the pdf has
naturally a non-zero mean. The obtained pdf does not seem to exhibit any power-
law tail, though. We have fitted it against both a normal (Eq. 2.30) and log-normal
(Eq. 2.45) law using a minimum chi-square method (see Sect. 2.5.3). Although both
shapes provide relatively good fits, the log-normal one seems to be a bit better.26

The difference is however not sufficiently large as needed to distinguish between
a possible additive or multiplicative underlying process, though (see discussion in
Sect. 2.3.2).

In order to reveal self-similar features we need to do better than the pdf of
the dataset, though. If we are expecting avalanches to dominate radial transport,
their passing by the probe should appear as extended periods of time over which
the magnitude of the measured saturation current is larger than average. It is the
statistics of these ‘burst events’ that should exhibit extended power-laws. One

26The goodness-of-the-fit parameter �2 is about twice as large for the Gaussian fit, compared with
the log-normal fit.
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Fig. 6.10 PDFs for the ‘burst’ durations (left) and the waiting-time in between successive events
(right) calculated using the SF method (see Sect. 2.4.3). The best fit to Eq. 1.8 is also included (in
dashed red)

can try to separate these bursts by introducing an adequate threshold value,27

and defining an ‘event’ as any period of time when the signal remains above the
threshold, and a ‘waiting time’ as the lapse of time when the signal is below
threshold. We will do just that on our signal. By choosing a threshold value28

of 0:115 in the (arbitrary= units of the dataset (see Fig. 6.8), 471 distinct burst
events can be identified. The pdfs of their durations and waiting times are shown
in Fig. 6.10. The results are now much more interesting. For the event durations,
we find an extended decaying power-law scaling roughly as p.d/ � d�1:82 that
extends for about a decade, from 10 to a 100 ms. The value of the exponent is
sufficiently small (i.e., between 1 and 2) to suggest that a characteristic scale for
event duration is absent, consistent with critical behaviour (see Sect. 1.3.2). The fall-
off at the end of the duration power-law suggests that burst durations are probably
limited by finite-size effects (see discussion in Chap. 1). The pdf of the waiting-
time between bursts also exhibits a decaying power-law scaling p.w/ � w�1:59 that
extends for a bit more than a decade, from about 20 to 200 ms. The fact that the
waiting-times do not follow an exponential power law implies that their triggering
is not random, and the small value of the exponent points gain towards some kind
of critical behaviour (see Sect. 4.4.5). We have gone even further and defined an
“effective burst size” as the area subtended by the signal over the duration of each
event. The pdf of these sizes is shown in Fig. 6.11 using a log-log scale. A very clear
power-law scaling p.s/ � s�1:75 becomes apparent, extending for a bit more than a
decade, thus pointing once more to a divergent size scale in the sense discussed in
Sect. 1.3.2.

27It is also possible to do it by using wavelet techniques [50].
28The value for the threshold that we have chosen is, naturally, relatively arbitrary. We have chosen
0:115 because, after a quick visual inspection of the dataset, this number worked very well and
introduced very few artefacts. Various practical criteria have been proposed in the literature to
choose the threshold in this context. Among them, it is rather popular to calculate first the mean �
and standard deviation of the signal, � , and then choose the threshold to be � plus a few times � .
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Fig. 6.11 PDF for the ‘burst sizes’ (defined in the text) estimated by means of the SF method (see
Sect. 2.4.3) shown in log-log scale

6.5.2 Power Spectrum

Next, we show the power spectrum of the data, calculated according to Eq. 4.20. The
power-spectra of probe data has been often used to search for possible evidences of
the type of scale-invariance that SOC demands. In particular, the observation of
power-law regions in the power spectra [52, 53, 57], as well as the empirical self-
similarity of different spectra measured in different devices have been often cited
as pieces of evidence that support the SOC interpretation of the confined plasma
dynamics. It has also been the subject of recent controversies, with some authors
[58] claiming that the observed power spectra were better fit by exponential laws
(see Table 2.1); other authors, including ourselves, have shown that this is not what
is found in data from tokamaks and stellarators at sufficiently large power, where
power-laws are indeed apparent [50, 59].

The power spectrum of the W7-AS dataset is shown in Fig. 6.12. The best fit to
an exponential law obtained using a minimum chi-square method (see Sect. 2.5.3)
is also shown (in dashed-red). Also, to help guide the eye, straight lines shown the
!�1 and !�2 slopes are included. It seems clear to us that a power-law region,
with an exponent close to (but slightly larger than) �1 is indeed present in the data,
across the frequency range [1–10] KHz. The power-law scaling is however not as
robust as one would desire, in part due to the fact that is not extended beyond a
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Fig. 6.12 Power spectrum of the ion density time series shown in Fig. 6.8 in log-log scale. The
best exponential fit to the spectrum is also included (in red), corresponding to a mean frequency of
approximately !0 � 2:9KHz

single decade. Therefore, the evidence this particular power spectrum offers is more
suggestive than probatory. It would be certainly stronger if scale-invariance could
be confirmed by other diagnostic tools.

6.5.3 R/S Analysis

Therefore, we proceed now to look for scale-invariant, long-term correlations in
the dataset using the RS analysis (see Sect. 4.4.4 for details). The rescaled range
(Eq. 4.50) is shown, as a function of the time lag, in Fig. 6.13. As previously seen
with the running sandpile (see analysis in Sect. 4.5), several distinct power-law
regions are apparent in it. There are three different regions. The first one spans
from the shortest time lag up to � (50–70)�s, where the rescaled range grows
almost linearly with lag. This timescale coincides with the decorrelation time of the
signal, �d � 60�s, that is often used to estimate the typical duration of the bursts
it contains. Then, a second region exists (i.e., a mesorange, using the terminology
introduced in Chap. 1) that spans the range [0.07–2]ms, over which R=S � �0:61.
Finally, a last scaling behaviour appears at larger lags than 2ms, although the
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Fig. 6.13 Above: rescaled range as a function of temporal lag for the data set shown in Fig. 6.8 in
log-log scale. Below: instantaneous Hurst exponent for the same data

unavailability of data makes it difficult to determine the exponent there.29 The
extension and the value of the Hurst exponent over each region is more clearly seen
in the lower frame of Fig. 6.13, where the instantaneous Hurst exponent is shown.
This quantity is defined as:

H.�/ WD d.log.R=S/

d log.�/
: (6.12)

The instantaneous Hurst exponent is a very useful tool because, if the rescaled
range scales as R=S � �H over a certain range of scales, H.�/ � H over those
same scales. Thus, any regions of scale-invariance present in the data would appear
as flattish regions when plotting H.�/ as a function of the time lag. In the case
of the W7-AS, this is certainly the case. A flattish region is seen over range of
timescales (0.07–2)ms with a value of H � 0:6–0.65. As it will be remembered,
any Hurst exponent H > 0:5 means, for a close-to-Gaussian distributed dataset, that

29In fact, the change of scaling itself might be related to the lack of statistics, and not to a change
in the dominant physics. Whether this is the case or not, it is impossible to say with the amount of
data available in the dataset.
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persistent long-term, scale-invariant correlations are present in the data. Particularly,
since these scales are much longer than the typical local turbulent scales, previously
estimated by the turbulent decorrelation time, �d � 0:06ms. Interestingly, the range
where persistence is found here overlaps with the [1–10] KHz frequency range (that
corresponds to the temporal range [0.1–1] ms) where a (possibly) decaying power-
law scaling was previously identified in the power spectrum. This fact reinforces the
interpretation given to this scaling region in previous paragraphs.

The R/S analysis has been frequently applied to MCF fluctuation data, mostly
gathered at the plasma edge but sometimes also from the plasma core [49]. Results
similar to what we have found here have been previously reported for many different
devices, both tokamaks and stellarators, with persistent, scale-invariant regions
found for timescales starting at around (50–100)�s, and extending for one or more
decades [60–62]. The values of the Hurst exponent found are usually in the range
H � 0:6–0.8 in most of these devices, dropping to H � 0:5 in cases in which a
strong, radially-sheared poloidal flow is present, or in regions or devices with open
field lines. In the first of these cases,30 it is believed that the presence of radially-
sheared flows can decorrelate radial avalanches as they pass through, effectively
breaking any long-term correlations [46]. In the second, it has been theorized that
the possibility of losses along the open-field lines provides a dominant memory-
erasing mechanism that erases away any inhomogeneities in the radial profile that
would act as a memory reservoir, in the sense discussed in Sect. 4.5.

6.5.4 Multifractal Analysis

Finally, we will proceed to characterize the multifractal properties of the W7AS
dataset using the techniques discussed in Sect. 3.3.7. The degree of multifractality
of probe data in MCF plasmas has also been the subject of long discussions and
controversies among MCF researchers. Some authors have reported a significant
degree of multifractality [63, 64], with singularity spectra much wider than what
one would expect from a monofractal time-series (see Sect. 3.3.7). This has been
suggested as proof of the irrelevance of SOC in this context. Other authors, however,
report instead that the degree of monofractality is much larger by restricting the
multifractal analysis to the same range of scales (i.e., the mesorange) over which the
R/S analysis or the power-spectra exhibits a clear power-law [65]. Both approaches
are, of course, legitimate. However, we think that it is the latter interpretation that
makes sense from a physical point of view. In our opinion, it simply reflects the
fact that any instance of scale-invariance must be limited by finite-size effects in
real systems. In the case of our Langmuir probe signals, scale-invariance may only
appear beyond the local timescale of the turbulence, which is usually of the order of

30We will revisit transport across sheared flows again in Chap. 9, since there are some interesting
dynamics there that are worth looking at with the tools of fractional transport discussed in Chap. 5.
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Fig. 6.14 Family of multifractal exponents for the W7-AS data. They have been computed
considering different range of box sizes, as shown in the labels. In the inset, the associated
generalized Hurst exponent is shown for each case

a few tens of �s. If tests for scale-invariance are however extended over all possible
timescales, scale-invariance would simply not appear.

In the case of the W7-AS data, we have calculated the family of multifractal
exponents �.q/ (defined in Eq. 3.97), that are shown in Fig. 6.14. In the same figure,
the generalized Hurst exponent H.q/ (defined in Eq. 3.98) is shown in the inset
for q > 0. As it will be remembered, any monofractal time series should have
H.q/ D H0;8q. It turns out that, if H.q/ is computed using the techniques described
in Sect. 3.3.7 for all possible box sizes, the result for the W7-AS dataset (shown in
green) is clearly not mono-fractal, with values of H varying between 0:7 and 0:47.
However, the R=S analysis previously discussed already warned us about the fact
that the dynamics are rather different for timescales shorter than a few tens of �s,
where local fluctuations dominate, compared with scales larger than 70�s, where
some scale-invariant behaviour seems indeed present. Thus, we have calculated the
family of multifractal exponents and their associated generalized Hurst exponent
limiting the analysis to boxes with sizes within three different ranges. The results
are also shown in Fig. 6.14. For the shortest range, with boxes of length up to 90�s
included, H.q/ � 0:8 over a wide range of q. This behaviour is clearly related
to the auto-correlation dynamics of turbulent fluctuations with themselves, that we
know are strongly persistent (see discussion in Chap. 4). In the intermediate range
of box sizes between (0.1–0.9)ms, H.q/ � 0:6 is however found for all q’s, that is
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consistent with the value of the Hurst exponent previously found in the R/S analysis.
Finally, for boxes with sizes longer than 1ms, a much more multifractal behaviour is
apparent, that varies from H � 0:7 at the lowest q’s to an antipersistent H � 0:1 for
q > 5. It is interesting to note that a similar trend towards a very anti-persistent Hurst
exponent was also apparent in the R/S analysis for time lags larger than (3–4) ms
(see Fig. 6.13). Whether this anti-persistent behaviour has a real physical meaning
or not,31 it remains to be seen.

6.6 Conclusions

In this chapter we have discussed situations in toroidal MCF plasmas in which com-
plex dynamics are probably at play. In particular, we have focused the discussion
on the dynamics of radial turbulent transport in conditions in which the turbulence
is near-marginal. By that, it is meant that those plasma profiles whose gradients
feed the turbulence sit close to the local thresholds for the onset of instabilities.
As repeatedly said throughout this chapter, these conditions might be of relevance
for the operation of future MCF reactors, since the larger temperatures expected
(compared with that of the tokamaks and stellarators currently in operation) will be
able to drive stronger turbulent fluxes, that should in turn be more capable of quickly
relaxing plasma profiles below threshold. Therefore, the understanding of this type
of complex dynamics is important not only from a fundamental perspective, but also
urgent from an applied point of view.

We have also illustrated the usefulness and the dangers of some of the tools
available to us to detect and characterize complex behaviour. The analysis of W7-
AS edge turbulent data carried out in Sect. 6.5 is complementary to the analysis
done in Chap. 4, using similar Langmuir data from the edge of the TJ-II stellarator.
The most important message to take home is that a good knowledge of the data
and of the underlying physics is essential to correctly interpret the results that these
tools may provide. There is an innate tendency in all of us to expect that features
be present to an extent that only mathematical models can satisfy. At best, many of
these properties are often apparent in real systems over a vert limited range of scales,
that is what we referred to repeatedly as the mesorange. Due to this limitation,
approaches that are equivalent in mathematical models (such as the one-to-one
relationships between exponents in the power spectra and in the rescaled range,
that are exact only for monofractal systems) simply do not hold in real systems. If
this fact is not kept in mind, the analysis of the data and the interpretation of the
results may be obscured and valuable information about the underlying dynamics,
ignored.

31It might be perhaps related to the anti-correlation dynamics that we found in the running sandpile
at the longest timescales, due to its finite size (see Sect. 5.5). It could also be due to lack of
meaningful statistics at the longest scales.
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Chapter 7
Space Plasmas: Complex Dynamics
of the Active Sun

7.1 Introduction

The second example of complex plasma dynamics we will discuss takes us to our
own Sun. The suspicion that complex dynamics might govern some of the inner
workings of the Sun has been rooted, over the years, in many observations gathered
with both telescopes and satellites. For example, in the fact that the Sun sustains
a self-generated, strong magnetic field that plays a central role in most of the
solar dynamics. Solar flares and coronal mass ejections also exhibit scale-invariant
features over many decades. In addition, the active areas on the surface of the Sun
also appear to be distributed following some kind of fractal-like patterns.

We will start by providing a brief introduction to the physics of the Sun. Those
readers already familiar with the subject can choose to jump directly to Sect. 7.3,
where some of the experimental evidence that points to complex behaviour is briefly
presented, mostly in the context of solar flaring. We will conclude the chapter, as
always, by applying some of the analysis tools described in the first part of this
book to a dataset that contains information about the size, duration and speed of
the coronal mass ejection events (or CMEs) that have been detected by the SOHO
satellite between 1996 and 2016. We will try to look for evidence of complex
behaviour in this data while, simultaneously, discussing the state of research in this
field and pointing the interested reader to several relevant references.

7.2 Our Own Star: The Sun

The study of our star, the Sun, is an activity that humans have pursued since the
dawn of history. Although the Sun is a fairly ordinary star by the universe standards,
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it has the unique charm of being our own.1 Solar eclipses fascinated the ancient
Greeks, Chinese and Egyptians. The Sun played an important role in Aztec and
Mayan cultures. It was the center of Copernicus’ famous plight against the Catholic
Church in the sixteenth century. In the 1800s it was first suggested that the Sun might
be a gaseous sphere, its famous 11-year cycle was proposed by Samuel Schwabe,
and solar prominences were properly identified as such. In the 1900s, the important
role that magnetic fields play in the Sun dynamics became more clearly understood,
the fusion of hydrogen was identified as the engine powering the Sun, and the
first laboratory experiments attempting to generate fusion energy in a controlled
environment were started.

The Sun is a star of around 5000 million years of age that is at the top tier
of the yellow dwarf family [1, 2]. Its mass is about 2 � 1030 kg and its radius
is approximately 700;000 km.2 It is, like all stars, a massive ball of hot plasma
confined by its own gravitational attraction.3 It is essentially made of hydrogen
(about 90%) and helium (the remaining 10%), mostly in a fully ionized state.4 The
central temperature of the Sun is about ten million degrees, which is sufficient to
drive the fusion processes that power it. In fact, about five million tons of hydrogen
are fused in the solar core each second. On the surface, the temperature is much
lower, about 5000–6000ı. In what follows, we provide a brief introduction to its
structure and some of its more salient dynamical features.5

7.2.1 Structure of the Sun

The structure of the Sun is sketched in Fig. 7.1. There are three main regions, each
of them named after the physical process that dominates the local transfer of the
fusion energy produced at the core [1, 2]. These regions are the core, that extends for
approximately the first fourth of the radius of the Sun; the radiative zone extending

1Paraphrasing Prof. Philip Scherrer of Stanford University, ”The Sun is also the only star known to
grow vegetables!”
2In comparison, the Earth mass is 6� 1024 kg and its radius 6000 km.
3The acceleration of gravity at the surface of the Sun is 274m2=s; on Earth’s surface, it is 9:8m2=s.
4Some heavier atoms such as oxygen, nitrogen and carbon also exist, although in very slow
percentages (< 0:1%).
5The physics of the Sun is very complex and, being ourselves fusion plasma physicists, it lies
outside of our field of expertise. Therefore, it is not our intention here to provide a comprehensive
description of the different physical processes that govern its most important dynamics. There are
many books and reviews available that cover the Sun physics in detail, and that we strongly advise
our readers to read [1–4]. Instead, we provide here an sketchy, but sound view of the main facts that
will be of relevance to understand the discussion on whether the Sun behaves as a complex system
or not. In particular, the first sections of this chapter borrow heavily from E.R. Priest’s wonderful
book, Solar Magnetodydrodynamics [2]. Priest’s treatise is, in our opinion, very engaging and
extremely clear, greatly succeeding at providing a vivid picture of the Sun dynamics.
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Fig. 7.1 Structure of our Sun. Credits: from Wikipedia.org (Kevin Ma, CC BY-SA 3.0 license)

to about 70% of the radius; and the convection zone, that runs all the way to the
surface. The core is where 99% of all the energy is produced via fusion processes.
It occupies about one fiftieth of its volume, but contains almost half of the total
mass of the Sun. The core is surrounded by the radiative zone. Here, the energy is
transferred towards the surface via radiative diffusion. By this name, it is meant that
photons are the main carriers of the produced energy, being absorbed and emitted
multiple times as they travel radially outwards.6

As one moves radially out from the core across the radiative region, the transport
of energy via radiative diffusion eventually becomes less efficient than the transport
carried by convection. As a result, huge convective cells (with linear sizes of
the order hundreds of thousands of kilometres) populate what is known as the
convective zone. Here, buoyancy is the main drive to push energy (together with
mass and magnetic fields) towards the surface, very much as what happens in the
case of water boiling in a pot. The boundary region between the radiative and
convective zones is known as the tachocline [5, 6]. This is a particularly interesting
region because it is a thin radial layer (its width is less that 4% of the Sun radius)
where a very large latitudinally-differential rotation exists (with the equator rotating
about a 30% faster than the regions close to the poles), in contrast to the solid
rotation of the inner part of the Sun. The existence of this differential rotation makes
the tachocline a very important player in the self-generation and sustainment of
magnetic fields in the Sun: the so-called solar dynamo [7, 8]. Magnetic field lines
get twisted, tensioned and deformed here; then, they are buoyantly pushed towards
the surface by the huge convective cells that are present in the convective region.

6In fact, the absorption/emission processes undergone by these photons are so intensive that it
would take on average a core photon almost ten million years to reach the surface of the Sun.

Wikipedia.org
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These magnetic fields, as they reach the surface, play an important part in much of
the zoology that makes the Sun such an interesting system to study: active regions,
sunspots, solar flares, prominences, etc. We will discuss many of them in Sect. 7.2.2.

The last part of the Sun is its atmosphere. It is a mostly ionized, low-density
plasma that is often partitioned in three distinct regions according to the different
physics that take place in them[1, 2]. The one closest to the surface is a very thin
layer of plasma (a few hundred of kilometres wide) known as the photosphere. This
is the part of the Sun that emits most of the solar radiation, being relatively dense
and opaque, with a temperature of about 5000–6000ı. It is also very granular in
nature. This granulation is believed to represent the top of convective cells as they
buoyantly ascend to the surface from the convection zone. The majority of these
granules are of a size of about a thousand kilometres, and last for about 10 min
or so. However, much larger granules—supergranules—are sometimes observed,
with sizes up to tens of thousands in kilometres, being able to last for several days.
The structure of the magnetic field in the photosphere is also very complicated,
consisting of small magnetic domains that rapidly evolve and move around, but
that are still able to organize themselves in large-scale structures. Among them,
it is worth mentioning sunspots, that are regions with very large concentrations
of magnetic flux and unipolar regions, that are very large, long-lived areas with
linear dimensions of hundred of thousands of kilometres in which the magnetic has
a dominant polarity (either radially inwards or outwards).

Above the photosphere lies the chromosphere, that extends for 2000–3000km
above the surface of the Sun. It is a region populated by the so-called spicules,
which are plasma jets pointing radially outwards as they are ejected from the top of
the convective cells that form the aforementioned supergranules, probably along the
direction of the local magnetic field. Spicules can have lengths of a few thousand
kilometres, and the ejected plasma reaches velocities of about 20 or 30 km/s. The
chromosphere ends suddenly, in a narrow layer across which the plasma temperature
increases suddenly by several orders of magnitude up to a few million degrees,7

that provides the start of the so-called solar corona. The corona expands outwards
from the Sun engulfing all the planets of the solar system and beyond. It is mostly
invisible in white light, being originally observed only during eclipses. The plasma
in the corona has a very low density, that further decreases as one moves away from
the Sun. The corona is not uniform, and regions known as coronal holes are found
in it. They form at those parts of the surface of the Sun where the magnetic field is
unipolar and field lines are open (that is, these lines do not enter back into the Sun,
as it happens in a solar prominence; for reference, one such prominence is shown in
the upper, right frame of Fig. 7.2), thus allowing the plasma to flow outwards to form
the solar wind (SW). In addition to particles and energy, the solar wind also takes

7This huge increase in temperature is one of the major, and still unresolved, problems in solar
physics. Many explanations have been forwarded over the years (each championing for different
players as responsible, including magnetic field reconnection, Alfven wave heating, plasma
turbulence, and so on), but a definite answer is still lacking [2].
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Fig. 7.2 Left: H˛ image of a solar flare; Right: solar prominence with the form of an arc standing
over the surface of the Sun (above) and coronal mass ejection or CME (below). Credits: all images
(© ESA/NASA - SOHO/LASCO)

angular momentum, in sufficient amounts as to slow down the Sun significantly over
its lifetime. It takes the solar wind about 5 days to reach the Earth, in comparison to
the 8 min that solar light needs.

7.2.2 The Active Magnetic Sun

The Sun is a very active system. A closer look at its photosphere and overlying
atmosphere reveals a plethora of activity. So-called active regions appear as bright
regions in H˛ photographs8 (see Fig. 7.2), that are associated to moderate local
concentrations of magnetic field (of the order of a hundred Gauss or so). Active
regions form as emerging magnetic flux pops up from below the photosphere due to
buoyancy.

Within the active regions, darker areas often appear that are associated to intense
concentrations of magnetic fields. These darker areas are known as sunspots, and
they are cooler than their surroundings. Sunspots often appear close to the equator,

8H˛ images are photographs taken with an H˛ filter. The H˛ line is the first of six spectral lines
of hydrogen in the visible part of the spectrum. It lies in the red part of it, at a wavelength of
656.28 nm. H˛ filters work by rejecting all but the narrow sliver of H � ˛ light. In this way, direct
imaging of the lower part of the chromosphere—where the temperature is high enough (about
10;000ı) so that the lower energy levels of hydrogen are often excited—, can be done while at the
same time removing the excessive brightness coming from the underlying photosphere.
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usually in pairs of opposite polarity (i.e., with a different sign of the component of
the magnetic field normal to the surface of the Sun), and drift away from the equator
at the highest activity periods. They are believed to mark the footprints of magnetic
field flux tubes that are being brought out of the surface by buoyancy forces (see
inset of Fig. 7.3), and that eventually may give rise to filaments and prominences,
solar flares or coronal mass ejections (or CMEs). The state of activity of the
Sun is often measured by counting the number of sunspots that are visible at any
given time. It has been known since the late 1800s that this number has a cyclic
behaviour, with a periodicity of about 11 years, although it is known to vary quite a
bit, occasionally becoming as short as eight and as long as 17 years. However, the
number eleven has stuck and the sunspot cycle is often referred to as the 11-year
solar cycle. There is also a wide variation in the number of sunspots appearing at
shorter timescales than the 11-year cycle.

Prominences, flares and CMEs are different kinds of violent phenomena that
release mass, energy and magnetic field towards the outer corona as a result of
violent instabilities that affect part of an active-region magnetic field [2]. The
distinction between them is, to a certain extent, phenomenological. Prominences
are basically arcs of plasma that erupt from the surface of the Sun, but that keep
their feet buried deep into the photosphere (see middle frame in Fig. 7.2; also the
inset in Fig. 7.3). The plasma within the prominence is usually cooler and denser
than typical coronal values. Prominences can sometimes last for months, being held
above the Sun surface by strong magnetic fields that remain attached to the Sun
main body. Solar flares and CMEs, on the other hand, differ from prominences in
that, instead of being held above the surface of the Sun by the underlying magnetic
fields, they manage to break free and be ejected away from the Sun, into open space
(see lower frame in Fig. 7.2).

Solar flares are huge explosions that occur often near sunspots, usually along the
boundaries that separate regions with different magnetic polarity, and that accelerate
plasma particles to very high speeds. It is believed that they are the result of a
huge release of energy caused by the reconnection of the magnetic field at or near a
sunspot. The accelerated particles lead to a large X-ray emission (usually at energies
larger than a few tens of KeV) as a result of their (Coulombian) interaction with the
background plasma. Smaller flares are also possible (known respectively as micro-
and nano-flares), that contribute to the total emissivity at lower frequencies. Solar
flares can be identified as very bright flashes in H˛ photographs (see left frame of
Fig. 7.2).

Coronal mass ejections or CMEs, on the other hand, are huge, balloon-shaped
bursts that are ejected by the Sun, carrying with them plasma with a mass in the
order of tens to hundreds of billions of kilograms. As they follow the magnetic field
of the Sun, they may heat up to tens of millions of degrees. It is also believed that
CMEs, as solar flares, are the result of a reconnection event of the surface magnetic
field within an active region, but one that is sufficiently powerful as to result in
changes of the magnetic topology that liberate large packets of plasma from the
main body of the Sun. The ejected mass is dragged away by its own inertia. Often,
solar flares and CMEs are seen to happen together, near the same location.
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Fig. 7.3 Sketch illustrating the formation of a prominence leading to a CME event. A magnetic
flux tube raises out of the photosphere due to buoyancy, forming the standing arc known as a
prominence. The different polarity of the foots of the arc are marked by the different sign of the
component of the magnetic field perpendicular to the surface of the Sun, where the sunspots would
be. If the magnetic field is able to reconnect in such a way that the magnetic field in the arc region
detaches itself from the main body of the Sun, the prominence ends up triggering a CME event.
Credits: courtesy of Estefanía Cuevas

7.3 Is Our Sun a Complex System?

Our Sun is a very large system, and a very complicated one as well. The very brief
description we just gave in Sect. 7.2 already shows some of the reasons that have
led many to believe that the Sun might behave as a complex system. As discussed at
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length in Chap. 1, a complex system must exhibit self-organization and emergence.
That is, it must self-organize itself and permit the emergence of new complex
behaviours and dynamics that allow it to carry out its goals most effectively.
Complex systems are also usually open systems, formed by many constituents that
interact nonlinearly among themselves. As a result of the many interactions among
these constituents, complex systems often exhibit scale-invariance and memory, and
sometimes criticality, among other features.

With these ideas in the back of our minds, it takes little time to admit that the
Sun indeed looks like a pretty good candidate for a complex system. Our star is
an open system driven by the fusion energy produced at its core. Due to its large
temperature, it is also a huge ball of (mostly ionized) plasma, with ions and electrons
interacting nonlinearly with themselves via electric and magnetic fields. It sustains
large radial gradients in density, pressure and temperature, that can provide abundant
free energy for the onset of instabilities. To them, one must add gravity, rotation and
an always evolving magnetic field. Finally, there are emergent behaviours in the Sun
that appear via self-organization. Some examples are provided by the solar flares
and coronal mass ejections just discussed. Another one, particularly interesting, is
the tachocline.

7.3.1 The Tachocline: A Case of Self-Organization

The tachocline, as discussed in Sect. 7.2 is the thin radial boundary that exists
between the radiative and convective zones [5]. In it, a large latitudinally differential
rotation (i.e., from the North to the South pole) is present, as recently confirmed by
helioseismic experimental evidence [9]. The origin of the tachocline is not clear,
although there are theories that propose that it is of a turbulent nature9 and the
result of self-organization [12]. Be it as it may, the tachocline definitely plays an
essential role within the solar global dynamo that must sustain the magnetic field of
the Sun.10 The differential rotation at the tachocline shears and twists any magnetic
flux tubes that travel through it, strengthening the magnetic field at the cost of
transferring kinetic and thermal energy from the plasma to it [8]. The strengthened
magnetic field then keeps traveling radially outwards towards the photosphere and
beyond, mostly carried by the buoyancy forces that push the surrounding plasma

9We discussed another region with a large differential rotation at the edge of tokamaks in Chap. 6.
In tokamaks, they are known as (poloidal and toroidal) zonal flows. It is believed that they are
self-driven by the plasma turbulence through the Reynolds stresses in order to dissipate energy
more efficiently. As a result, these poloidal and toroidal zonal flows help to keep under control
the radial transport that turbulence induces, improving plasma confinement in the process [10].
Regimes of operation with large zonal flows are in fact being considered as the standard operational
configuration of the next-step ITER tokamak [11].
10In the absence of the solar dynamo, and given the magnetic resistivity of the Sun, any primordial
magnetic field that might have been trapped during the formation of the Sun should be long gone.
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to the surface. Once there, the magnetic field then plays a very active role in most
(if not all) of the phenomena that take place in the solar atmosphere, and that we
touched upon earlier: solar flares, CMEs, prominences, sunspots, etc. In the end,
all of these phenomena provide avenues through which the energy that is produced
at the core through fusion processes can leave the Sun, so that a stationary state
can be maintained. The reason why these phenomena emerge, and not others, is
probably because they happen to be the most efficient to transport energy given the
state of the Sun in terms of how much fusion energy it produces, the magnitude of
its gravitational forces, its temperature and so on.

7.3.2 Scale-Invariance of Solar Flare Data

Solar flares can also be considered to be an emergent phenomenon of a complex
Sun.11 There is some direct experimental evidence that supports such a claim.
Over the years, the observation of solar flares, both from telescopes and satellites,
has provided extensive catalogs that contain a plethora of information about these
phenomena extending for more than 70 years. These catalogs contain information
about the time when flares happened, their type, their duration, the energy that
was released in them, and so on. Several interesting facts have been found while
analysing data from many of these catalogs. We will not provide an extensive
discussion of the results here, since some excellent reviews already exist [14, 15].
We will just mention that, if a composite of the flare frequency distribution (akin to
the pdf we introduced in Chap. 2) is made as a function of the flare released energy
using all the available data [16–20], an enormous power-law scaling is obtained that
extends for more than eight decades in energy [15]. This is probably the longest we
have seen for any system! Such a display of scale-invariance is indeed remarkable,12

including flares with energies that range from the hard X-ray (HXR) part of the
electromagnetic spectrum to the extreme-ultraviolet.

The exponent that best fits the scaling of the experimental solar flare data overall
is about �1:8, although uncertainties exist due to the different origin of the data [15].
As we mentioned in Sect. 1.3.2, power-law scalings with exponents smaller than 2
are not only a signature of scale-invariance, but a telltale signal of an underlying lack
of characteristic scales that might be related to criticality. Therefore, the observed
scaling tells us that the size of solar flares lacks such a characteristic scale, and

11The appearance of self-organized shear flows such as the ones at the solar tachocline is not the
only similarity between the active Sun and fusion plasmas confined in a tokamak. Explosive events
also take place at the edge of tokamaks that are known as ELMs (see Chap. 6). In fact, some
theoretical studies have proposed that the physical mechanism that drives ELMs, believed to be
of the Rayleigh-Taylor type and that involves the interchange between neighbouring magnetic flux
tubes, might not be all that different from what happens in the case of solar flares [13].
12It is also interesting to note that, when including only flares from a single active region instead,
similar power-law scalings are also obtained [21].



322 7 Space Plasmas: Complex Dynamics of the Active Sun

that their size is not limited by the physical process that causes it (probably, local
reconnections of the magnetic fields at the active regions in the photosphere), but by
finite size effects. Or, in other words, that a larger Sun would yield even larger flares,
together with a larger mesorange over which scale-invariance would be apparent. In
the language we introduced in Chap. 1, one could say that the observed statistics of
solar flare energy are not just scale-invariant, but that they suggest criticality as well.

Another interesting piece of experimental evidence has to do with the statistics of
waiting-times between successive flares. As it would be remembered, we discussed
in Sect. 4.4.5 that random triggering usually translates into exponential waiting-time
pdfs, a characteristic feature of Poisson processes. The pdf of the waiting-times
between solar flares appears to scale instead as p.w/ � w�.1:8�2:2/, as reported by
many authors [22–24]. This scaling is consistent with the presence of some (long-
term, scale-invariant, persistent) memory of the kind discussed at length in Chap. 4.
However, it is fair to say that this is not the only possible interpretation of these pdfs.
In particular, a double-exponential fit has also been proposed, that would imply
a very different interpretation in which at least two different triggering processes
are active, each with a different triggering rate. Another popular proposal is that
of a time-dependent Poisson process, in which the triggering rate varies over time
with power-law statistics [23, 25]. The controversy between these two views (time-
varying Poisson vs. power-law) has been raging for the last two decades and it does
not show any sign of receding just yet [23, 26, 27].

The last result about solar flares that we will mention has to do with their spatial
scale-invariance, in the sense discussed in Chap. 2. Photographs of the solar corona
provide views of the active areas on the surface of the Sun affected by individual
solar flares, as defined by setting a minimum threshold for the local intensity.
Box-counting algorithms can then be used to determine the spatial BC fractional
dimension (Sect. 3.11) associated to these areas. One such exercise was carried out
on images obtained by the TRACE satellite [28], yielding a mean BC dimension of
1:55. It has long been suggested that fractals appear in nature as a result of complex
dynamics [29].

7.3.3 Lu-Hamilton SOC Flaring Model

In the case of our Sun, it is observations such as the ones just discussed that
suggested that ideas such as self-organized criticality (see Sect. 1.3.2) might provide
a possible dynamical paradigm to understand the Sun dynamics.

The power-law scaling of solar flare energies that we discussed earlier has been
known for a long time. This knowledge was the main driver for a cellular automata
model proposed by Lu and Hamilton (LH) in 1991 [30], in the wake of the self-
organized criticality boom started by P. Bak a few years earlier [31]. The LU model
was very simple. It considered a 3D lattice grid as a rough representation of the solar
photosphere. At each point of that grid, labeled by the index i, a (scalar) magnetic
field variable Bi was assigned representing its magnitude. A local gradient of this
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field was defined as:

�Bi D Bi � 1

N

X

k

BiCk; (7.1)

where N D 6was the number of nearest-neighbours considered, and k is the nearest-
neighbour stencil (that corresponds to the nearest point to the left, to the right, above,
below, in front and behind). This gradient was to be interpreted as a measure of the
tension stored in the local curvature of the magnetic field. The dynamics of the
automata were then set as follows. First, a critical threshold for this gradient, �Bc,
was prescribed. At any cell in the lattice where j�Bj > �Bc, a next-neighbour
redistribution of magnetic field energy would follow. This was done according to13:

Bi �! Bi � 6

7
�BcI BiCk �! BiCk C 1

7
�Bc; 8k: (7.2)

The field at the nearby positions to i in the grid might then satisfy also the instability
criterion, resulting in additional reconnection events, that would form an avalanche.
The total energy released at site i would be given by:

Ei D 6

7
j�Bcj2I (7.3)

whilst the total energy released in the avalanche would be the sum of the energies
released over all the sites affected by the relaxation.

The LH cellular automata exhibits power-law scalings for avalanche energies and
their durations, among other things, behaving in way that is reminiscent to that of the
running sandpile that we examined at length during each of the chapters of the first
part of this book. The LU automaton provides in fact another popular realization of
self-organized criticality (see Sect. 1.3.2). It certainly has all its basic ingredients:
it is an open system that is slowly driven, has a local instability threshold and a
fast relaxation rule. Lu and Hamilton argued that their cellular automata captured
some of the bare essentials of the solar flare dynamics by invoking some well-known
theories of that time. For instance, they suggested that the action of the convective
motion coming to the photosphere from below would result in a sufficient random
twisting of flux tubes as to guarantee a random, slow, local drive. They also justified
the inclusion of a local instability threshold by enumerating several threshold-based
instabilities that had been previously proposed by others as responsible for the
triggering of local, explosive reconnections of the magnetic fields. In particular,
they mention the proposal by E.R. Parker [32] of a minimum threshold value for
the angle subtended by magnetic field vectors at opposite sites of any given current
sheet that should be overcome for any explosive reconnection to take place [7], but
other possibilities also exist [33].

13It is worth to point out that the redistribution rule is conservative in the field B, but not in the
energy, that is proportional to B2.
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One thing that the LU cellular automata, as originally built, failed however to
reproduce was a waiting-time pdf with a power-law scaling. Instead, the pdf of
waiting-times between reconnections was exponential. At the time, this fact was
used to argue against the validity of self-organized criticality as a relevant concept
in the study of solar flare dynamics [34]. However, it was later shown with other
SOC models that this is not the case. An exponential pdf for the waiting times is
just a reflection of the random character of the drive, but the dynamics at the SOC
state are pretty insensitive to the type of drive used as long as the system is not
overdriven (see Sect. 1.3.2). It is in fact possible to change the pdf of the waiting-
times to a power-law scaling. For instance, this can be done by using a correlated
drive instead of random, without significantly changing the SOC dynamics [35].
Furthermore, if only avalanches of a sufficiently large size (as to be within the
mesoscale are considered, the pdf of their waiting-times does follow power-law
scalings in SOC systems. Given these facts, and considering the distance to the
Sun and the finite resolution of the measuring equipment, the unavoidable effective
thresholding present in the measured data might also determine the type of scaling
seen [35, 36].

The impact of the Lu and Hamilton cellular automata on the solar physics
community has been pretty remarkable.14 It started a trend that encouraged to look
at the Sun and the physics that govern it from a different perspective.15 It has also
lead to the import to solar and astrophysical problems of techniques that were used
in many other complex systems and in widely different fields, as it is the case of the
ones introduced in the first part of this book. We will illustrate the use of some of
these techniques in the next section, although we will apply them to the analysis of
CME data, instead of solar flares.

7.4 Case Study: Analysis of the SOHO-LASCO CME
Database (1996–2016)

The dataset that we will examine in this section belongs to the SOHO-LASCO CME
catalog [39]. It contains information about all coronal mass events (or CMEs) that
could be manually identified16 between January 1996 and May 2016 from within
the data collected by the Large Angle and Spectrometric Coronagraph (LASCO)
that is on board of the Solar and Heliospheric Observatory (SOHO) mission.

14The number of citations of the Lu and Hamilton 1992 paper are close to one thousand at the
beginning of 2017.
15Several good reviews exist that discuss the impact of this paper and of the large number of
contributions that followed [15, 19, 37, 38]. We strongly recommend any interested readers to use
them as guides to dig deeper into this very interesting area of research.
16As stated by the maintainers of the database at NASA themselves, the list included in the catalog
is necessarily incomplete because of the manual nature of the identification process.
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There are several quantities of interest to us that are included in the LASCO
catalog for each identified CME event, among many others. In particular, we will
consider their exit speed, vexit, as they move away from the Sun; their ejected
mass, mejected; and their ejected energy, that is estimated from the other two using
Eejected ' mejectedv

2
CME=2. Although there are three different speed values listed

in the catalog, we will only analyze their linear speed, that is obtained by fitting
a straight line to the height-time measurements. This linear value may not be the
most physically representative, particularly for those CMEs that might experience a
significant acceleration, but it provides an average speed that is convenient in order
to group different CMEs together in a consistent manner. In regards to the ejected
mass, there is a significant uncertainty in the numbers provided in the catalog. The
estimation of the mass involves a number of unconfirmed assumptions, as mentioned
in the catalog description, that advise to consider the values as more representative
than realistic.

Before embarking in the analysis of the data, a last comment worth making is that
a temporal gap exists in the dataset corresponding to the month of January of 1999.
This gap might represent a problem for some of the analysis we will do to search
for long-range time correlations and memory, such as by introducing artefacts. For
that reason, we will restrict the analysis to the part of the CME dataset that extends
from the period January 1999–May 2016 (see Fig. 7.4). There is a total of 17,051

Fig. 7.4 Time series for the linear speed (above), ejected mass (middle) and ejected energy
(below) of all CME events detected by the LASCO diagnostic between January 1999 and May
2016. The temporal axis measures the interval of time (in seconds) passed from the first CME
event in the series (that happened on Jan. 1, 1996). The ejected energy is derived as Eejected '
mejectedv

2
CME=2 [For reference, 1 day = 8:64 � 104 s; 1 year = 3:15� 107 s]
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CMEs identified in the catalog within that period. The data spans a period of 17
years, which means that it will include roughly one 11-year cycle.17 Thus, a very
low frequency modulation is expected in the data (see Fig. 7.4, where it can be seen
rather clearly), that must be considered when interpreting the results.

7.4.1 Waiting-Time Statistics

The first thing that we have calculated for the CME dataset is the pdf of the waiting-
times in between successive events. The result, shown in Fig. 7.5 in both log-lin
and log-log scalings, has been obtained using the constant-bin-size (CBS) method
with 150 bins (see Sect. 2.4.1), and the constant-bin-content (CBC) method (see
Sect. 2.4.2) with 25 events per bin. As mentioned in Sect. 2.3.4, the main feature of
a Poisson process is an exponential pdf for its waiting-times, a direct consequence
of its underlying random triggering process. However, the CME waiting-time pdf
obtained here is not well fit by any exponential. Instead, it appears to have a power-
law tail that scales as p.w/ � w�2:2, which is very reminiscent of what has been
reported elsewhere for solar flares (see Sect. 7.3.2). The power-law is clearly defined
over a little bit more than a decade, which is indeed suggestive of some complex
dynamics.

The presence of a power-law, and the physical consequences regarding the role
of complexity that it would lead to, must again be taken with caution. As happened
in the case of solar flares (see discussion in Sect. 7.3.2), Fig. 7.5 also shows that a
combination of (at least) two different exponentials, with average triggering rates
that are respectively of the order of less than half a day and about 2 days, might also
provide a reasonable fit. If this second interpretation was the correct one, it would
suggest that at least two different mechanisms for triggering CMEs might coexist.18

7.4.2 Linear Speed Analysis

We turn now our attention to the analysis of the CME exit speed time series. Its pdf,
as obtained by the methods described in Chap. 2, is shown in Fig. 7.6. For CBS, we
use 150 bins; for CBC, we define a bin as one that includes 25 distinct events. At
first inspection, it would appear that a power-law scaling p.s/ � v�3:87

exit could exist
for a range of exit speeds in between 600–2000 km/s. However, the range for this

17A modulation on the timescale of the length of the record can be indeed appreciated in the
amplitudes shown in Fig. 7.4.
18This discussion parallels the one we already described for solar flares in Sect. 7.3.2, with some
authors analyzing the solar flare waiting-time pdfs in terms of time-dependent Poisson processes.
In fact, some authors have argued that the CMEs waiting-time data should be modelled in this
manner as well [27, 40], instead of by means of power-law scalings.
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Fig. 7.5 Probability density functions for the waiting-times between successive CMEs in the
LASCO catalog shown in log-linear (below) and log-log (above). The pdfs have been obtained
using both the constant-bin-size (in blue) method described in Sect. 2.4.1 and the constant-bin-
content method discussed in Sect. 2.4.2. The time is shown in seconds, as provided in the catalog
[For reference, 1 day = 8:64� 104 s; 1 year = 3:15 � 107 s]

scaling is too short and the exponent in that range too large to suggest any kind of
complex behaviour.19 Furthermore, the log-normal distribution that was discussed in
Chap. 2 fits the exit speed pdf quite well (shown in the figure using a maroon dashed
line). This fact might be suggestive of the existence of an underlying process of
multiplicative nature that leads to the CME acceleration,20 in principle devoid of any
meaningful long-term memory (see discussion in Sect. 2.3.2 about the significance
of log-normal distributions), as responsible for the explosive acceleration of the
CME.

Although the CME exit speed pdf that we have obtained does not seem to
point to any complex behaviour, we have other tools at our disposal. Therefore, we
have also tested the speed data time series directly for any evidence of scale-free,

19The tail exponent should be smaller than 2 for a mean exit speed to be undefined, given that the
exit speed is a positive definite quantity.
20In fact, some proposals in the literature suggest that cascades of reconnection processes could
lead to solar flares and, possibly, to CMEs as well [41].
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Fig. 7.6 Pdfs for CME exit velocities as obtained by means of the CBS (red; Sect. 2.4.1), CBC
(green; Sect. 2.4.2) and SF (blue; Sect. 2.4.3) methods. In maroon dashed-line, the best lognormal
fit to the data is also shown, corresponding to LogNŒ5:9;0:6	.x/ (see Eq. 2.45)

long-term memory. The results of applying the R/S analysis (see Sect. 4.4.4) to the
dataset results in the rescaled range shown in the upper frame of Fig. 7.7.21 The
related instantaneous Hurst exponent (see Eq. 6.12) is shown in the lower frame as
a function of the elapsed time. This instantaneous Hurst exponent is very useful to
determine scale-invariant regions, that should appear as flattish, horizontal regions
in HR=S.�/. As will be remembered, H � 0:5 is expected for any uncorrelated series
with a finite variance (see Sect. 4.4.4). Instead, an extended range is found here,
between a few days and a few years, where the exit velocity series exhibits strong
positive correlations, since H � 0:75. Accordingly, exit speeds values above average
tend to cluster together more often than not over that range of times, as also do exit
speed values below average. Since this behaviour extends to timescales of the order

21It is worth mentioning that the R/S analysis must be done here a bit differently from what was
explained in Sect. 4.4.4, since the CME data is not sampled at a uniform rate. Therefore, the R/S
algorithm must be slightly modified to take this into account. It is not difficult to do. One simply
needs to define blocks differently. Instead of by the number of data points they contain, as we did
in Sect. 4.4.4, one must define them by their duration. In addition, all the sums that were previously
calculated over blocks (to compute, say, means, variances or ranges) become now sums over all
those data points that take place at times that are contained in each particular block. The rest of the
analysis and its interpretation, remains unchanged.
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Fig. 7.7 Rescaled range analysis (see Sect. 4.4.4) for the CME exit velocity time series. The
rescaled range .R=S/ is shown in the upper frame as a function of the time lag (in seconds)
measured from the first CME in the examined record; in the lower frame, the instantaneous scaling
exponent HŒR=S	.�/ (see Eq. 6.12) is also shown [For reference, 1 day = 8:64 � 104 s; 1 year =
3:15� 107 s]

of years, much longer than the typical duration of a CME, that is a symptom of
complex behaviour. It is also worth mentioning that a clear flattening in the rescaled
range is observed for � � 7 years (i.e. � � 2 � 108 s). This flattening is due to
the low-frequency modulation present in the data, most probably associated to the
11-year cycle. Due to the shortness of the available time series (roughly 17 years),
the R/S analysis cannot say whether the detected persistence is maintained for even
longer times or not.

7.4.3 Ejected Mass Analysis

Next, we turn our attention to the analysis of the CME ejected mass time series. Its
pdf is shown in Fig. 7.8, this time calculated using only the CBC method (using 75
distinct events to define each bin) introduced in Chap. 2. Interestingly, a mesorange
can be clearly identified in the plot. It spans the interval 5 � 1013–2 � 1016 g, where
the power-law scaling �m�.1:2�1:4/ is apparent. The exponent value is sufficiently
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Fig. 7.8 Pdfs for CME ejected masses estimated by means of the CBC method (see Sect. 2.4.2).
Two best-fits obtained by chi-square minimization techniques (see Sect. 2.5.3) are also included.
One against Eq. 1.8 (shown in red), and a second using an exponential law (in green). The first fit
is clearly much better (its chi-square value is more than an order of magnitude smaller), yielding a
mesorange extending between .0:1� 30/ � 1015 g

small (less than 2, as it should be for a positive quantity) as to point not only to scale-
invariance, but to a lack of characteristic scales as well. Or, in other words, it tells
that the average ejected mass is not well defined in the sense that it would scale with
the system (i.e., the Sun) size (see discussion in Sect. 1.3.2). This is an interesting
finding, since it is rather different from the exponential pdf reported by other authors
for CME data gathered by the SOLWIND satellite [42]. An exponential pdf would
point to a (presumably random) Poisson process. Instead, the pdf obtained here is
similar to the ones often reported for solar flares, that prompted several authors to
propose the relevance of concepts such as self-organized criticality to the problem
of solar flaring [14, 30].

We have also tested the mass time series for any evidence of long-term memory.
The rescaled range that results from applying the R/S method to the data is shown
in Fig. 7.9. A mesorange clearly exists in the data, extending again from a few
days to a few years, over which HŒR=S	 � 0:65. This value is again suggestive of
the existence of long-term positive correlations. As in the case of the exit speeds,
these correlations imply that larger[smaller]-than-average mass ejections are more
frequently than not clustered together over time. Again, the lack of clear flattish
regions in the R/S also points to a lack of strong periodicities. There is a very



7.4 Case Study: Analysis of the SOHO-LASCO CME Database (1996–2016) 331

Fig. 7.9 Rescaled range analysis (see Sect. 4.4.4) for the CME ejected mass time series. The
rescaled range .R=S/ is shown in the upper frame as a function of the time lag (in seconds)
measured from the first CME in the examined record; in the lower frame, the instantaneous scaling
exponent HŒR=S	.�/ (see Eq. 6.12) is also shown [For reference, 1 day = 8:64 � 104 s; 1 year =
3:15� 107 s]

narrow decrease of H around 26 days (i.e., � � 2:2 � 106 s) that one might be
tempted to associate to the rotation of the Sun around its own axis. Similarly, there
is also a decrease at around 7 years (i.e. � � 2 � 108 s), a consequence of the low-
frequency modulation of the data that could be related to the 11-year solar cycle.
None of these periodicities seems however to be sufficiently strong as to affect the
rescale range significantly (see discussion in Sect. 4.4.4). Also, as in the case of the
exit velocities, the shortness of the record prevents us from analyzing whether the
observed persistence may extend for a period longer than a few years.

Since both the ejected mass pdf and its R/S analysis have revealed mesoranges
across which scale-invariance appears to exist, we have gone ahead an tested the
level of monofractality of the CME mass time series. We have used the multifractal
analysis presented in Chap. 4.22 The family of multifractal exponents �.q/ (see

22Again, due to the fact that the CME data is not uniformly distributed in time, the prescriptions
given in Chap. 4 must be modified. Analogously to what we did in the case of the R/S analysis, a
block must be defined again by its temporal duration, not by the number of data points it contains.
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Fig. 7.10 Multifractal exponents �.q/ obtained for the CME ejected mass time series. As seen in
the inset, the generalized Hurst exponent H.q/ D 1C �.q/=q has different behaviours depending
on the timescales of the blocks included in the analysis. When boxes larger than 5 � 106 s are
used, a scale-invariant behaviour seems to appear for q > 2, with a Hurst exponent value close to
H � 0:6

Eq. 3.97) that is obtained for the CME ejected mass time series when including
blocks of all sizes is shown (in black) in Fig. 7.10. As discussed in Sect. 3.3.7, one
would theoretically expect that the generalized Hurst exponent (Eq. 3.98) satisfies
H.q/ D 1 C �.q/=q � H; 8q > �1 if the time series is a monofractal with self-
similarity exponent H. Although H.q/ is never really constant for any finite time
series, the generalized Hurst exponent for the CME masses varies over a much wider
range than what is obtained for fBm23 when blocks of all possible sizes are included
in the calculation. However, if we limit the analysis to the range of block sizes
that lies within the mesorange previously identified in the R/S analysis (namely,
for durations between 5 � 106–5 � 108 s or, equivalently, for blocks larger than 2

In addition, all sums and operations should be computed including only those data points whose
time of occurrence lies within the block of interest.
23For instance, one could compare Fig. 7.10 with Fig. 3.30, that shows the family multifractal
exponents and the related generalized Hurst exponent for a numerical realization of fBm with
self-similarity exponent H D 0:8.
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Fig. 7.11 Pdf of the CME ejected energy as obtained with the SF method (see Sect. 2.4.3). In
addition, best-fits to an exponential law (in green) and to Eq. 1.8 (in red), obtained with the
minimum chi-square method (see Sect. 2.5.3), are included. The second fit is much better (its
chi-square value is two orders of magnitude smaller), providing an estimate for the self-similar
mesorange within the interval .0:05� 300/ � 1030 erg

months), the spread of generalized Hurst exponent becomes much narrower. In fact,
H.q/ is confined within the range H � 0:6 � 0:7, as shown in the same figure.24

7.4.4 Ejected Energy Analysis

We complete the analysis of the CME data in the LASCO catalog by examining
the time series of the CME ejected energies. The ejected energy is a derived
quantity, calculated using Eejected D .1=2/mejected � v2ejected. The pdf of the energies,
obtained this time by applying the survival function method (see Sect. 2.4.3), is
shown in Fig. 7.11. The result is rather remarkable, since it exhibits a scale-invariant
mesorange that extends for almost four decades, approximately over .0:05� 300/�
1030 erg. The scaling over this mesorange is p.E/ � E�1:45, again with an exponent

24In a sense, these results suggest that R/S is often more reliable than multifractal analysis to
identify the presence of a mesorange in real data.
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Fig. 7.12 Rescaled range analysis (see Sect. 4.4.4) for the CME ejected energy time series. The
rescaled range .R=S/ is shown in the upper frame as a function of the time lag in years, as measured
from the first CME in the examined record; in the lower frame, the instantaneous scaling exponent
HŒR=S	.�/ (see Eq. 6.12) is also shown

smaller than two, as needed to impede a well-defined mean energy. This scaling
behaviour suggests once more that complex dynamics might be at play here (see
Sect. 1.3.2), leading to the observed lack of characteristic scales.25

We proceed now to look for evidence of long-term correlations by carrying out
the R/S analysis of the ejected energy time series. The obtained rescaled range
is shown in the upper frame of Fig. 7.12, with the instantaneous HŒR=S	 exponent
(Eq. 6.12) in the lower frame. Again, an extended range is found—for roughly the
same timescales as those found for the ejected mass time record—across which
a power-law scaling with a Hurst exponent significantly larger than 0.5. This is a
consequence of the persistent correlations that were found in both the speed and time
series, that contribute to the establishment of similar positive correlations between
the successive CME energy ejections. The value of the Hurst exponent is however
a tad smaller than for the other two series, with H � 0:62 � 0:64. This might be

25This result, although similar to that found for solar flares (see Sect. 7.3.2), is however at odds
with other reports that have found CME energy pdfs much closer to exponentials [43].
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a consequence of the fact that the energy is a derived quantity, as explained earlier,
which introduces decorrelations and reduces the overall value of H.

7.5 Conclusions

In this chapter we have discussed the possibility of our Sun behaving a complex
system. In particular, we have discussed how complex features may be detected
in dynamical processes such as those related to solar flaring, or to the ejection
of CMEs. The main experimental piece of evidence found in favour of complex
behaviour is probably the enormous power-law scaling that is seen in the frequency
distribution of flares, spanning more than seven orders of magnitude in energy. Also,
the value of the scaling exponent itself, that suggest that concepts such as criticality
might be relevant to the understanding of the dominant dynamics (see discussion in
Sect. 1.3.2). From the analysis of the CME data gathered from the SOHO satellite,
we have found that a similar scaling is also exhibited by the pdf of the CME ejected
energies, that extends for more than four orders of magnitude with a critical scaling
exponent. In addition, the R/S analysis has showed clear evidence of long-term,
persistent correlations in the CME records, confirming what other authors have
reported in the literature for solar flares. These correlations appear to extend from
a few days to at least few years, although they might extend for much longer.26

These timescales are much longer scales than the typical duration of a solar flare or
a CME, that are usually of the order of tens of minutes. The presence of these long-
term correlations thus suggests that long-term memory is somehow stored inside
the solar corona, perhaps in the intricate magnetic field patterns that result from the
reconnection events that lead to flaring and/or CME events. Finally, the analysis
carried out has also illustrated the importance of having a deep knowledge of the
underlying processes and the physics of the system. Otherwise, it becomes very
difficult to make any sense of the results provided by many of the methods use to
characterize complex behaviour.
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Chapter 8
Planetary Plasmas: Complex Dynamics
in the Magnetosphere of the Earth

8.1 Introduction

It was around 1600 when William Gilbert, then physician to Queen Elisabeth I
of England, first proposed that the Earth acted as a permanent magnet with the
form of a sphere. Since then, the study of the structure of the magnetic field of
the Earth, its origin, how it is sustained and the ways it interacts with the Sun
(mainly, by its reaction to the solar wind; see Chap. 7) have captivated the interest of
many researchers. Not just because of scientific curiosity, but also because its mere
existence plays a crucial role in our own. Indeed, life on Earth would have been
very different (if it had appeared at all) in the absence of a magnetic field that could
shield it from the solar wind (SW) and other highly-energetic cosmic radiations.

The aurora has also fascinated humans for centuries. This natural display of
light and colour that is often visible close to the Earth poles, but sometimes also
at much lower latitudes, is mentioned in works from as far back in time as ancient
Greece and Rome or the Middle Ages, often related to religious sentiments. The
aurora was first associated to the magnetic field of the Earth at the beginning of
the eighteenth century, probably by Edmund Halley [1]. Its intimate relationship
with solar phenomena was not realized until the 1850s, though. The relation was
established after noticing the coincidence between periods of strong solar activity
and the appearance of powerful auroras. However, the physical reasons behind this
connection were not clear at the time.1 It was not until the end of the 19th and the
beginning of the twentieth centuries that the idea of a magnetic storm was clearly
formulated for the first time. It was then theorized that a “flying cloud of charged
particles” was emitted from sunspots after a solar flare had taken place, leading to
a sudden increase of the geomagnetic field and to powerful auroras in the sky a few

1In fact, even the famous Lord Kelvin asserted in an important speech to the Royal Society that
such correlation was just a lucky coincidence [2].
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days later [3]. Magnetic storms could last from a few hours to a few days. Although
it was at first thought that these particles were mainly ions, it was soon realized that
only a quasi-neutral plasma could avoid its dispersion (a consequence of its mutual
Coulombian repulsion) during their trip to Earth [4].2

In this chapter we will provide a brief introduction to the magnetosphere of the
Earth and to some of its main dynamics, including how it is shaped by its interaction
with the solar wind. As it has been the case for all chapters in the second part of
this book, the discussion does not intend to be comprehensive,3 but aims instead at
providing the fundamental materials needed for the understanding of the conditions
that may lead to complex dynamics. These conditions stem, on the one hand, from
the interaction with the solar wind4 and, on the other hand, from the turbulent
motions of conducting media that take place within the Earth core and that sustain
the geomagnetic field. As a result, the magnetosphere of the Earth can be considered
as an open, driven system—both by the solar wind and by the turbulent Earth core—
with a large number of degrees of freedom that interact nonlinearly. Therefore,
it contains many of the ingredients required to develop complex dynamics (see
discussion in Chap. 1). Those readers already familiar with the inner workings of the
magnetosphere of the Earth may decide to jump directly to Sect. 8.3, where we will
discuss several possible complex behaviours that might be happening in this system,
focusing mainly on the phenomena known as magnetic storms and substorms. We
will conclude the chapter, as always, by analyzing various datasets of interest in
Sect. 8.4 by means of some of the tools presented in the first part of this book.

8.2 The Magnetosphere of the Earth

The magnetic field that exists around our planet and that we referred to under the
general name of magnetosphere is formed by the addition of two main components:
(1) the magnetic field generated by the turbulent motion of the conducting fluid
metals present at the Earth core, also known as the geomagnetic field, and (2) the
magnetic field generated in the Sun by the processes discussed in Chap. 7 and that

2In fact, many people identifies this suggestion as the start of modern space plasma physics [5].
3Some great texts do exist that provide a much more thorough description of this area of research,
including both the geomagnetic field and the magnetosphere [5–11]. We are particularly fond of [5]
and [8]. We have followed [11] closely in certain areas such as the storm/substorm dynamics, that
are covered in it with great clarity. Those readers interested in a more in-depth look at any of
these topics, either from a more theoretical or observational perspective, are strongly encouraged
to browse through them.
4Interestingly, the solar wind is itself a result of the complex dynamics that could be taking place
in the Sun (see Sect. 7.3). This fact suggests the interesting possibility of studying a system, the
magnetosphere of the Earth, that might self-generate its own complex behaviour while, in addition,
being driven by an external source that might also possess its own complex features. In Sect. 8.4
we will analyze several datasets, using the tools presented in the first part of this book, to try to
discern which one of these components, if any, might be dominant.
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is transported to us by the solar wind. This magnetic field is usually referred to as
the interplanetary magnetic field or, simply, the IMF.

8.2.1 The Geomagnetic Field

The magnetic field of the Earth is believed to be generated and sustained by the
motion of the electrically conductive fluid material that exists at its core [10].
The core is the region of the Earth extending radially outwards from its centre to
approximately 3000–3200km.5 With a temperature of about 6000K, the iron alloys
that form the Earth core are in a fluid state. The process by which a magnetic field
is generated from fluid (or plasma) motion is known as a dynamo. It all starts with
the motion of parcels of conductive material at the core, mainly driven by rotation
and buoyancy, in the presence of a seed magnetic field.6 When a conductor moves
in a magnetic field it drags with it the surrounding magnetic field, resulting in an
opposing (Lorenz) force to its motion [12]. In this process, the field can get twisted,
tensioned and reinforced; the process is more efficient, the more complicated the
motion pattern becomes. In this way, given a seed magnetic field, the dynamo
process just sketched could reinforce and sustain a magnetic field for as long as the
mass motion continues, assuming that it becomes sufficiently turbulent. The specific
details of this process are however very complicated, and intense theoretical and
modelling work is still carried out to try to understand all its intricacies [9, 13].

As a result of rotation and its associated Coriolis forces, mass motion at the core
has a dominant component in the plane perpendicular to the rotation axis of Earth.7

For this reason, the geomagnetic field becomes endowed with a strong dipole-like
structure similar to the one illustrated in Fig. 8.1, in which a few of its magnetic
surfaces8 are shown. Magnetic field lines are thus basically parallel to the surface
of the Earth at the Equator, enter into the crust in the neighbourhood of the North
pole, and exit around the South pole.9 Also, magnetic surfaces will have a larger

5As a reference, the radius of the Earth is about 6400 km.
6This seed could have been perhaps provided by any remnant magnetic field that might have got
trapped in the process of formation of the Earth.
7Convective, rotating structures are formed that are strongly elongated in the direction of rotation
of Earth. They are often known as Taylor columns.
8Magnetic surfaces are surfaces to which the magnetic field is tangent everywhere. Magnetic field
lines, on the other hand, are those curves to which the field is always tangent. Magnetic field lines
are contained within magnetic surfaces, assuming that the latter can be defined. If not, magnetic
field lines may ergodically fill a volume, or escape to infinity (see Chap. 6 for a more detailed
discussion).
9This is how the geomagnetic field is directed nowadays. However, the geomagnetic field is known
to reverse its orientation intermittently, although over a timescale of hundred of thousands of years,
as has been found in ferromagnetic sediments from the ocean floor. In fact, the geomagnetic field
is far from quiet, even at smaller timescales. For instance, scientists have found that the North
magnetic pole is also drifting northwards at a rate of a few tens of miles per year [14].
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Fig. 8.1 Sketch illustrating the dipole-like geomagnetic field in the close neighbourhood of Earth.
A few magnetic surfaces (in yellow, orange and red) and some magnetic field lines (in black) are
also shown, including the magnetic axis [Credits: courtesy of Estefanía Cuevas]

poloidal cross section as the point of entrance[exit] of the magnetic field lines they
contain approaches the North[South] pole. Eventually, magnetic surfaces degenerate
into a single curve known as the magnetic axis that crosses the Earth from North to
South, as shown in the figure. The magnetic axis does not coincide exactly with
the rotation axis of the Earth, though, being tilted about ten degrees from it. The
strength of the geomagnetic field is small, being about 20–60�T at the surface.10

As we mentioned, its direction is mostly horizontal (i.e., parallel to the surface) at
the Equator, and vertical (i.e., perpendicular to the surface) at the poles.

8.2.2 Structure of the Magnetosphere of the Earth

The dipole shape of the geomagnetic field is not a bad approximation close to
the surface of the Earth. However, at a distance of just a few times the radius
of the Earth, the actual magnetic field becomes rather different due to the ever-
present contribution of the interplanetary magnetic field (IMF). That is, of the solar
magnetic field that is carried to us by the solar wind (SW). This solar stream, that
brings to us both a quasi-neutral energetic plasma and the magnetic field trapped
with it, is continuously present, although its strength may change considerably over
time, particularly after a solar flare or a CME reaches the Earth.

10The geomagnetic field is still sufficiently strong as to have measurable effects, as sailors from all
ages have learnt to appreciate while using compasses for navigation.
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Fig. 8.2 Main regions of the magnetosphere of the Earth [Credits: public domain image created
by NASA; labelling has been added by the authors]

The constant presence of the solar IMF strongly modifies the structure of the
magnetic field around the Earth. The general layout of the magnetosphere is
illustrated in Fig. 8.2. Several different parts can be distinguished in it. The bow
shock is the outermost layer of the magnetosphere. At the bow, a shock wave forms
due to the fact that the SW speed (of the order of 400 km/s) suddenly drops from
supersonic to subsonic as a result of the encounter with the geomagnetic field.
The bow shock is located at about 90;000 km from the planet, on its dayside,
and its thickness is about 100 km. At the bow shock, the solar wind is not only
slowed down, but compressed and heated as well. The bow shock is stationary and
the processes taking place inside are mostly collisionless. That is, they occur in
such a low-density medium that collisions among SW particles become negligible,
with most of the energy and momentum transfer happening via wave-particle
interactions.11

The first region downstream from the bow shock, mostly occupied by the
“shocked” solar wind, is known as the magnetosheath. The magnetic field becomes
very irregular in this region, that contains a very turbulent plasma of a density that is
much lower than in the bow shock. The magnetosheath is essentially the transition
region between the inner magnetosphere and the solar wind. As such, it controls the
influx of particles from the solar wind that make it into the magnetosphere.

The magnetopause is the first region within the magnetosphere. It is an abrupt
region where the pressure of the geomagnetic field manages to balance the kinetic

11Some SW particles are reflected back from the shock, populating a region known as the
foreshock. The foreshock is extremely active and turbulent, with many waves and instabilities
being generated there that often propagate downstream along the magnetosheath.
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Fig. 8.3 Layout of the magnetosphere of the Earth that shows the main currents that flow in
the different regions, both parallel and perpendicular to the magnetic field [Credits: courtesy of
Estefanía Cuevas]

pressure of the solar wind.12 It effectively sets the boundary between solar wind and
magnetosphere, determined dynamically by this balance. As a result, the position
and shape of the magnetopause changes as the pressure of the incoming solar wind
changes over time.13 This boundary does not insulate the inner magnetosphere com-
pletely, though. When large blobs of solar plasma travel along the magnetopause
they can give rise to instabilities that lead to the breaking and reconnection of local
magnetic field lines, opening paths through which SW particles can traverse into the
inner magnetosphere.

The region in between the magnetopause and the Earth is known as the
magnetosphere.14 In the part of the Earth that faces the solar wind (i.e., the
dayside), it retains a structure similar to that of (a compressed) dipole-like field. On

12These two contributions are the dominant ones since the magnetic and thermal pressures of the
solar wind are negligible compared with its kinetic pressure [11].
13The width of the magnetopause is not that small, extending for a few thousand kilometers. The
reason for this width is that charged particles within the solar wind do penetrate to a certain depth
before being deflected black by Lorenz forces. Since the Lorenz force has a different sign for
positive and negative charge, this deflection gives rise to a current in the magnetopause that is
known as the Chapman-Ferraro current (see Fig. 8.3).
14Although many authors, as we have done, also use this name to refer to the whole magnetic field
around the Earth.
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the downstream part, however, a magnetotail develops, where the magnetosphere
extends far beyond the Earth (the length of the magnetotail can easily exceed a few
millions of km). Further downstream the tail breaks into two lobes (referred to as the
Northern and Southern lobes). Magnetic field lines in the upper lobe point towards
the Earth, whilst lines in the lower lobe point away from it. They are separated by a
plasma sheet, where the magnetic field is much weaker,15 that collects all the solar
plasma that comes down the magnetotail, simultaneously drifting in the direction
perpendicular to it. As a result, the plasma sheet builds up a relatively large density.
Maxwell equations also predict that a current must flow within the plasma sheet,
that is known as the neutral sheet current. This current is perpendicular to the
magnetic field in the magnetotail. The resulting current loop is closed by two other
currents, known as the tail currents, that are also shown in Fig. 8.3, one around the
Northern lobe, the other around the Southern one.

Another important part of the magnetosphere are the two so-called polar cusps
that form on the dayside part of the magnetosphere, one on the Northern hemisphere,
the other on the Southern one (see Figs. 8.2 and 8.3). The polar cusps correspond
to the two singularities that form in the region where the closed field lines on
the dayside separate from open field lines that are swept to the magnetotail in
the nightside. Since the magnetic field vanishes in the cusps, particles and plasma
can penetrate freely into the magnetosphere through them, crossing the lower
atmosphere and reaching the surface of the Earth. The cusps are however not
connected with the dipole axis, but at lower latitudes of around 800.

The inner part of the magnetosphere is known as the plasmasphere, shown in
violet in Figs. 8.2 and 8.4. It is located just above the ionosphere, the last layer
of the upper atmosphere that owes its name to the fact that is ionized by solar
radiation. In the plasmasphere, a very low density plasma exists, and the dipole-
like structure of the geomagnetic field is the dominating one.16 The location of the
outer boundary of the plasmasphere varies over time, depending on the strength of
the solar wind above all, but it is usually within 30;000–50;000 km from the Earth
surface. It mostly corotates with Earth. Its role is very important, particularly for us
and for any other form of life on Earth, since it provides shielding against cosmic
and solar highly energetic particles.

Two other important regions exist in the magnetosphere, known as the Van Allen
radiation belts, that are shown (in red) in Fig. 8.4. These regions are tyre-shaped
belts where highly energetic particles (of the order of a few MeVs) are trapped by the
geomagnetic field.17 The Van Allen belts overlap partially with the plasmasphere,

15In fact, there are regions in the plasma sheet where the magnetic field will vanish. These regions,
whose location will vary over time as the whole magnetosphere changes, provide the seeds where
the reconnection processes that lead to magnetic substorms happen, as we will discuss later.
16As a result, the plasmasphere has a doughnut shape that is very reminiscent of the geometry of
the tokamaks used in MCF and that we described lengthily in Chap. 6.
17Trapped particles are a very common occurrence in tokamak plasmas as well. In both cases,
particle trapping happens because the magnetic field is inhomogeneous, and because particle
gyromotion is much faster than any other process [15]. In those conditions, it can be shown that
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Fig. 8.4 Positions of the inner (shown in yellow) and outer (in orange) Van Allen radiation belts
with respect to the plasmasphere of the Earth (in red) [Credits: courtesy of Estefanía Cuevas]

with the inner belt located at about 6000–10;000 km from the Earth surface, and the
outer one at about 30;000–45;000 km. Depending on the size of the plasmasphere,
as determined by the solar activity at any specific time, the outer Van Allen belt
can be fully inside (as in Fig. 8.4), partially outside, or even fully outside of it. In
addition to forming the Van Allen belts, particles trapped within them also drift
perpendicularly to the magnetic field, giving rise to the so called ring current that
flows within the belts as shown in Fig. 8.3.

In addition to the ring current, the tail currents, the Chapman-Ferraro current and
the neutral sheet current, all of which are perpendicular to the local magnetic field,
there are also some currents in the magnetosphere that flow parallel to the local
magnetic field. These field-aligned currents, known as Birkeland current, flow at
high latitudes (see Fig. 8.3, in yellow), forming a closed circuit with parts in which
(mostly electrons) flow from the ionosphere to the magnetosphere and reversely.18

the magnetic moment of a particle, defined as � D mv2
?

=2B, remains essentially constant as
the particle moves along the magnetic field (here, m is the particle mass, B the magnetic field
strength and v

?
is the part of the particle velocity perpendicular to the magnetic field). Since the

particle energy, E D .m=2/.v2
k

Cv2
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/must also be conserved, the velocity of the particle along the

magnetic field must be given by v
k

D p
2E=m � �B. Therefore, if a particle moves in a direction

in which the magnetic field strength B increases, it may happen that it reaches a point where v
k

vanishes, and where the particle has to reverse its motion. When all other drifts are considered, in
addition to parallel motion, the resulting trajectory has a poloidal cross-section that looks like a
banana. This is the reason for the tyre-shape of the Van Allen belts. It is also the reason why these
type of orbits are known under the general name of banana orbits in tokamaks [16].
18The evolution and distribution of Birkeland currents is closely related to auroras at quiet periods
of solar activity, that are usually observed at those locations where the electrons stream down to
the ionosphere (i.e., where the Birkeland current flows upwards).
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8.2.3 Dynamics of the Magnetosphere of the Earth

The magnetosphere isolates the surface of the Earth from the majority of ultra-
energetic particles, either of solar or cosmic origin. However, a fraction of the
charged particles does penetrate into the magnetosphere, more abundantly during
periods of high solar activity. Some do it by funnelling down the polar cusps that
were described earlier. Others will spiral down magnetic field lines19 and permeate
into the lower atmosphere, usually near the Northern and Southern regions.

The more interesting dynamics happen, however, when a reconnection of
magnetic field lines driven by local instabilities takes place near a point with zero-
magnetic field (or X-point), and results in plasma transfer, among other things. The
general process is sketched in Fig. 8.5.20 For the discussion, we will follow closely
[11]. The process starts with some IMF (line 1 in Fig. 8.5) that is brought by the
solar wind is assumed to have a southward direction.21 Since this orientation is
opposite to that of the geomagnetic field in the dayside magnetosphere, an X point
will eventually form and reconnection follows. The reconnected line (line 2) thus
mixes together the IMF and Earthly fields. These magnetic lines are then convected
tailwards with the solar wind, eventually becoming part of the magnetotail (lines
3–5). During the convection, plasma from the magnetosheath will be convected into
the tail and the neutral plasma sheet. At the same time, magnetic flux is also being
transferred from within the region with closed field lines (the plasmasphere of the
Earth) into the magnetotail. Clearly, this magnetic flux must somehow make it back
to the magnetosphere, since the latter manages to maintain its overall structure over
time. The way in which this happens takes place at the nightside magnetosphere,
deep in the plasma neutral sheet. An X point will eventually form at some location
where field lines from the Northern and Southern lobes of the magnetotail meet (line
6). When the proper conditions are met, reconnection will take place there, forming
a closed geomagnetic field line (line 7) and a purely IMF field line further down
the magnetotail (line 8). As magnetic tension relaxes, the reconnected geomagnetic
field line will move sunwards carrying the lost magnetic flux back within the
plasmasphere (line 9). Plasma from the plasma sheet will also be convected, making
it down the closed, dipole-like magnetic field lines into the lower atmosphere, and
causing strong auroral displays at high latitudes. At the same time, the tension in the

19Any charged particle in the presence of a constant magnetic field will tend to follow a helical
trajectory around the magnetic field line, in a direction determined by its parallel velocity to the
magnetic field. In addition, if an electric field exists, it will also be subject to a drift perpendicular
to the magnetic field and the electric field. If the field is not uniform, additional drifts exist
perpendicular to the magnetic field and its gradient and curvature. These drifts are, in fact, the
reason for the formation of the Van Allen belts, as was discussed earlier.
20The figure has been put together inspired by Fig. 8.27 of [11], which is itself a reprint of a figure
from [17].
21Interesting things also happen when the direction of the solar magnetic field points in the
northward direction, but its effects are much weaker [11].
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Fig. 8.5 Illustration of the interaction of the magnetosphere of the Earth with a southwards IMF
that gives rise to a magnetic storm [Credits: courtesy of Estefanía Cuevas]

IMF line leads to its shortening, and its subsequent pulling beyond Earth along the
magnetotail.

8.2.3.1 Magnetic Storms

The process just sketched is the main ingredient of what is referred to as a
geomagnetic storm. These storms are usually associated to a coronal mass ejection
(CME) from the Sun (see Chap. 7). Therefore, magnetic storms take place more
frequently during the maximum of the solar 11-year cycle.22 A few days after the
CME took place in the Sun, the large amount of mass and the embodied magnetic
field ejected with it will reach the Earth, compressing the geomagnetic field at
the equator and increasing its value at the surface. The effect is more dramatic if
the direction of the IMF is southwards, as we mentioned earlier. It is possible to

22Magnetic storms can also happen around the solar minimum, though. In this case, they are
associated to high speed solar streams that are intermittently ejected from within regions of open
field lines that often appear in between sunspots, and that are known as coronal holes (see Chap. 7).
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detect geomagnetic storms23 by measuring with magnetometers the variation on the
horizontal component of the geomagnetic field at the Equator. The time series of
this variation (expressed in nanoTeslas) is known as the Dst index24 [18, 19]. The
typical pattern that is observed during a storm is a sudden increase of the Dst index
followed by a rapid and irregular decrease below its usual value.25 Then, a much
slower recovering back to the stationary value takes place. Typical durations of each
phase are a few hours for the initial increase, maybe up to a day for the decrease,
and several days for the recovery. In total, magnetic storms typically last up to a
week [19]. The typical range of change of the horizontal magnetic field is between
(10–1000)nT, being the smaller values naturally much more frequent.

8.2.3.2 Magnetic Substorms

The action of the solar wind on the magnetosphere of the Earth is however incessant,
even if at a much lower level than that taking place during geomagnetic storms.
As a result, particles are continuously convected into the plasma sheet within the
magnetotail. A so-called plasmoid can thus form and grow over time within the
magnetotail (see Fig. 8.626), fed by the particles and energy convected by the solar
wind that manage to make it into the neutral plasma sheet. As the plasmoid grows
in size and density, an X-point (i. e, a point where the magnetic field vanishes)
will eventually form between the plasmoid and Earth (see frames 3–5 in Fig. 8.6,
where the X-point location is marked by the left arrow). Eventually reconnection
will take place at the X-point, pushing the plasmoid tailwards while simultaneously
accelerating a smaller amount of plasma towards the Earth. Disturbances in the
geomagnetic field will grow as a result of this process, leading to the formation
of the aurora at the high-latitude nightside of the Earth (since that is the direction
from where the plasma is coming). This process is usually referred to as a magnetic
substorm. After the substorm passes, the emptied magnetotail will start again to be
slowly filled by the solar wind and the whole process repeats itself. It must be noted,
however, that magnetic substorms are not periodic or quasi-periodic, but happen
instead intermittently. In addition, it is also appears that substorms are not triggered
randomly with a well-defined mean triggering rate (i.e., as in the typical Poisson
process discussed in Sect. 4.4.5), but they appear to be instead a persistent process

23In addition, magnetic storms lead to the observation of auroras at latitudes lower than usual. They
also may have an strong impact on global communications, power grids or satellites.
24Dst is an abbreviation for Disturbance Storm Time.
25Physically, the increase phase is related to the initial compression of the geomagnetic field by the
CME; the decrease is related to the growth of the ring current that follows the injection of particles
from the plasma sheet into the radiation belts. The larger ring current creates a magnetic field that
opposes the geomagnetic field, causing the rapid reduction of the Dst index.
26The figure has been put together inspired by Fig.11.6 of [11] which is itself a reprint of a previous
figure from [20].
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Fig. 8.6 Sketch illustrating the development of a magnetic substorm: formation of a plasmoid
via convection to the plasma sheet (1–3); formation of X-point and reconnection of the field (4);
ejection of the plasmoid (5) aurora formation and return to the initial state (6) [Credits: courtesy of
Estefanía Cuevas]

that, to a certain extent, lacks characteristic scales. We will come back to discuss
these peculiarities soon, in Sect. 8.3.

Experimentally, substorms can be tracked by means of the so-called auroral
electrojet (AE) index [21]. Similarly to the Dst index, the AE index also measures
the excursion of the horizontal component of the magnetic field as compared with
stationary values.27 But in contrast to the Dst index, the AE index is measured at
much higher latitudes. In particular, at several positions around the auroral oval
where the effect of substorms is felt much more strongly, as discussed previously.
The geomagnetic disturbances associated to magnetic substorms are usually in the
range of (200–2000)nT, typically lasting between 1 and 3 h.28

8.2.3.3 Auroras

We have mentioned the aurora several times already in this chapter. It is a
phenomenon that is typical of high latitudes where, under suitable conditions (no
full moon, clear sky), it can be often observed. It goes under several names, such
as aurora (Boreal or Austral, depending on the hemisphere), Northern lights or
polar lights. It usually appears as a coloured arc or band that extends in the sky

27Physically, these excursions of the magnetic field at the surface of the Earth are caused by the
electrical currents that appear associated to the auroras. This is the reason for the index name.
28Any temporal variation with a timescale much shorter than any of these is usually related to other
phenomena, such as magnetospheric waves or pulsations [11].
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from east to west, and that evolves in time exhibiting various, highly-structured
patterns that may change rather quickly. Auroral patterns are usually named after
their appearance [22]: draperies, rays, coronas, etc. Their colour also varies, ranging
from green to red, depending on different factors that we will enumerate soon.
Auroras are closely related to solar activity, and one could in fact use the frequency
of auroral activity at mid-latitudes as a proxy for solar activity with amazing success.

The physics behind the aurora are as follows. As charged particles are accelerated
in the plasma sheet within the magnetotail (say, by the occurrence of a magnetic
substorm), they move towards the Earth and penetrate into the atmosphere down the
magnetic field lines, entering predominantly at high latitudes. From space, auroras
look like bright coronas (see Fig. 8.7) that become more intense on the dayside
(if caused by a magnetic storm, that pushes the field mainly from the direction
of the sun) or nightside (by a magnetic substorm, that pushes particles from that
tail towards the nightside of the Earth) depending on their cause. While energetic
particles move along the field towards the surface of the Earth, they excite the
atoms and molecules present in the atmosphere, which in turn emit the light seen
as aurora. The colour of the aurora then depends on which is the dominant element
excited (say, nitrogen and oxygen, either in atomic or molecular form). Since the
composition of the atmosphere changes with height, the different colours that we see
simply tell us how deep into the atmosphere the incoming particles made it, which
ultimately depends on their initial energy.29 Thus, a red aurora is usually related to

Fig. 8.7 Left: auroral corona as seen from space by the IMAGE spacecraft. Right: green (above)
and red (below) auroral displays [Credits: coronal space view (© NASA—IMAGE); green aurora
(courtesy of José M. Reynolds); red aurora (© ESA/NASA—ISSS, courtesy of Scott Kelly)]

29Although this is the general picture of the relevant physics, there are still some unsolved problems
with it. Since the magnetic field has a dipole structure, the magnitude of field gets stronger
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the excitation of atomic nitrogen (N2) at about 70–90 km of height; green is usually
a signal of atomic oxygen (O) being excited at about 100–150km30; violet-purple is
usually emitted by ionized nitrogen (NC) that get excited at heights > 1000 km.

8.3 Is the Magnetosphere of the Earth a Complex System?

The picture we just drew in the last section, put together thanks to the hard work
and dedication of many researchers over the last 100 years, provides a great insight
regarding the nature of the magnetosphere of the Earth but it is, undoubtedly,
too simplistic. The magnetosphere is a system that is dynamically alive, highly
structured over many scales and with such a degree of complexity that any
description based solely on the paradigms of reconnection and convection—under
the external drive of the solar wind—is unable to fully capture. The magnetotail
and its neutral plasma sheet have been experimentally probed over the years by
various satellites (among others, the Geotail, AMPTE and THEMIS missions lead
by NASA, or the CLUSTER mission lead by the European Space Agency), that
have shown that their dynamics are turbulent, anisotropic, multiscale and strongly
intermittent [24, 25]. The strong turbulence present in the magnetotail [26] leads
to complicated spatial structures in which plasma vortices and bursty flows,31

current sheets and local magnetic fields coexist while being strongly modified over
many different scales. All this evidence has led to the conclusion that the type of
slow-convective-loading, fast-release-via-reconnection cycle previously described
as conducent to a magnetic substorm is not a smooth process, but the result of
many incremental processes spread over a wide variety of scales that involve the
intermittent generation, growth, drift and merging of coherent plasma structures and
their embodied magnetic field. Eventually, the accumulation of the consequences of
such processes build up to the global, non-linear instability that becomes a magnetic
substorm.

as one moves towards the Earth. Having a finite energy, and since their magnetic moment �
needs to be conserved, particles will eventually be deflected back towards the magnetosphere way
before reaching the surface. In fact, considering their typical energy spectrum, the majority of
the incoming particles should be reflected back at about a 1000 km, which is too high for any
significant light emission to occur. It is therefore believed that some additional acceleration must
take place along the magnetic field lines, that is probably associated to some kind of electric field
that develops naturally. The origin of this electric field is still not well understood [23].
30Red auroras can also be due to the excitation of atomic oxygen, but the process then happens at
higher altitudes (> 200 km) where less energetic particles may excite a different transition.
31In particular, the so called bursty bulk flows or (BBFs) [27], that are intermittent high-speed
flows that predominantly travel earthwards, perpendicularly to the local magnetic field, with
durations of up to a few minutes. Some authors have linked BBFs to local reconnections of the
magnetic field [28, 29], although there are also others that report cases in which these flows are
detected with no apparent evidence of any reconnection of the nearby current sheets [27].
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It was in the late 80s and early 90s that the dynamics of the magnetotail started
to be looked at in the light of modern chaos theory. Using various indices—among
them, the AE index previously described—as surrogates for substorm activity,
it was established that magnetospheric substorm dynamics exhibited properties
characteristic of low-dimensional chaotic systems such as self-similarity and frac-
tality [30–32]. These properties are also characteristic of high-dimensional complex
systems that exhibit dynamics such as self-organized criticality (see Sect. 1.3.2). The
situation in the mid 90s was thus ripe for the proposal of new paradigms based on
those ideas to try to understand, at least at a qualitative level, what was really going
on in the magnetotail.

8.3.1 Chang’s SOC Substorming Model

The plasma sheet in the magnetotail is an open system, driven by the solar wind, in
which a large separation of timescales exist between loading (slow) and release
(fast). In addition, the plasma sheet is in a highly turbulent state, interacting
nonlinearly with itself via electric and magnetic fields, in a landscape in which local
instability thresholds possibly abound. A separation of spatial scales over many
decades thus exists, extending from the relevant microscopic scales (mainly, the
ion gyroradius and the ion inertial length, which are of the order of a few tens
or hundreds of kilometers) to the magnetotail global size (of the order of several
millions of kilometers). Therefore, it seems clear that the plasma sheet is a system
in which many of the ingredients that are required for the onset of complex dynamics
(see Chap. 1) appear to be present. Therefore, it is no wonder that the first proposal
to understand the magnetotail dynamics based on the concept of self-organized
criticality (SOC; see Sect. 1.3.2) was proposed by Tom Chang in the early 1990s
[33], just a few years after Per Bak’s seminal paper on SOC [34] was published.

The main ingredient of Chang’s proposal was the spontaneous emergence of
coherent structures in the plasma sheet, in the form of magnetic flux tubes, at
locations where the energy carried by existent MHD waves (such as Alfven waves
[28, 33] or whistler waves [35], among other possibilities) would accumulate due
to the fact that their propagation vector, k became perpendicular to the local,
fluctuating magnetic field B, which impedes its propagation. In this way, a large
number of flux tubes, the majority of which would be aligned with the direction of
the dominant neutral-sheet current, would appear effortlessly (see Fig. 8.8). Each
flux tube could then interact with other tubes and, depending on the respective
polarity of their magnetic fields and the magnitude of their enclosed currents, they
could either merge and grow in size,32 or break apart. The process would in principle

32The merging would happen, under certain conditions, it the two flux tubes with the same
magnetic field polarity approach. In this case, the region of the two structures facing each other
would be similar to an X point, where reconnection might eventually take place. Chang went as far
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Fig. 8.8 Sketch illustrating the formation of multiscale coherent structures at the magnetotail
according to Chang’s SOC model, inspired by Figs. 1 and 2 of [28] [Credits: courtesy of Estefanía
Cuevas]

remain the same over structures of very different scales, resulting in a turbulent
landscape which is intrinsically anisotropic, inhomogeneous and multiscale. The
conclusion was that, continuously fed by the solar wind drive, this landscape would
evolve into large structures that would trigger the global instability that causes the
substorm in the magnetotail. If one assumes that, in addition, the growth process
lacks any characteristic scales,33 it is easy to envision how substorms would also
lack any characteristic scales. Furthermore, if the modifications to the turbulent
landscape caused by previous substorms could survive for sufficiently long times,
they would also provide the needed mechanism to store memory in the magnetotail
that might result in strong, scale-free long-term correlations among substorms.

Chang’s original proposal, however, is somewhat different from other popular
SOC models such as the paradigmatic running sandpile or the SOC model for
tokamak radial transport discussed in Sect. 6.4.3. The most important difference
probably is, as stated by the authors themselves, that a local threshold condition

as to suggest that the result of these reconnection, if successful, was precisely the excitation of the
bursty bulk flows (BBFs) that various satellites have detected inside the magnetotail [33].
33In this case, the growth of a particular flux tube would somewhat resemble a percolation process.
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is not required to control the local merging between structures, in contrast to
what happens in these two other examples.34 In the absence of a local threshold
condition, a well-defined global SOC state with average profiles close to threshold
(see Sect. 1.3) cannot be defined. Instead, the plasma sheet would evolve through a
time-dependent global state determined by the temporal variations of the external
drive provided by the solar wind [36]. Chang argued that, if the timescale over
which the solar wind varies significantly is long compared with the timescales in
which the coherent structures change and grow, it should still be possible for the
system to store memory in the disturbances of the turbulent landscape carved by
previous substorms. Such a dynamical state has been termed forced criticality by
some authors [35, 36], in order to distinguish it from more standard SOC models.
Studies towards elucidating the main features of forced criticality are still being
carried out to this day, either by means of cellular automata [37] or using simplified
MHD simulations [35].

It is however not clear to us that local thresholds for reconnection are necessarily
absent in the flux tube merging process that could be taking place at the magnetotail.
Recent kinetic simulations [38] of island (i.e., the cross section of a flux tube)
coalescence for a range of system sizes greatly exceeding the kinetic scales show
that the coalescence process is driven by the attraction of the currents associated
with two neighbouring flux tubes. As they approach each other, a current sheet is
formed between them that may become susceptible to reconnection. If reconnection
does not take place, the magnetic field in the region between the tubes would pileup
until the repulsive force due to the magnetic field gradient balances the attraction
of the currents, which causes the flux tubes to repel each other and bounce. Thus,
the local threshold is probably related to a maximum amount of flux that may pile
up between the flux tubes beyond which reconnection does not happen. If this was
indeed the case, a model closer in spirit to standard SOC might perhaps be more
adequate for the magnetotail [39, 40].

In addition, there is another factor that must also be taken into account regarding
the fact that the solar wind that intermittently drives magnetic substorms is also
a product of another complex system, our Sun (see Chap. 7). The solar wind thus
exhibits some complex features on its own (see also Sects. 8.4.3 and 8.4.4, where
some SW datasets will be analyzed), that might also influence the magnetospheric
dynamics. The important question then arises regarding whether the complex
features of the substorm cycle are really due to just the internal magnetotail

34In the running sandpile, local relaxations are controlled by Zc; the instantaneous profile, when
compared with Zc, provides the memory storage. In tokamaks, on the other hand, the local threshold
condition is that of the dominant tokamak instability, that has been experimentally seen to be
related to a temperature or pressure gradient.
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dynamics or if they might be a mere reflection of those in the SW drive.35 We will
have more to say about this question in the next few sections.

8.3.2 Evidence of Critical Dynamics in the Magnetotail

In recent years, many works have been published that try to substantiate, using
experimental data, the claim that criticality (either forced or standard, or even
some other variant) is relevant to the understanding of substorm dynamics.36 A
large number of these studies have consisted of statistical analysis of indices of
various types such as the AE index previously discussed, as well as of satellite data
regarding the detection of bursty bulk flows (BBFs). For instance, it has been shown
by several authors that the AE index exhibit self-similar properties that extend for
several decades under various conditions [37, 46–48]. Similar results have also
been obtained when analyzing the statistics of BBFs [49]. In regards to evidence
of temporal self-similarity, long-term persistence has been found in the analysis of
AE data using the R/S method [48], as well as in the form of power-law statistics
for the waiting-times between AE events above a certain threshold [36, 42]. The
aforementioned question of which is the origin of these complex features—whether
they are due to internal magnetospheric dynamics or have a solar origin through
the SW drive—remains however open and is an active field of investigation. For
example, the connection of some AE features with those of the solar wind has also
been addressed, suggesting that at least their waiting-time distribution are certainly
related [42, 43].

8.4 Case Study: Magnetospheric and Solar Wind Indices

In this section we will first apply some of the analysis tools described in the first
part of this book to the two indices that were previously mentioned in this chapter:
the Dst index, that provides a surrogate to study storm dynamics, and the AE index,
that plays a similar role to investigate magnetic substorm dynamics. In the analysis

35In the context of the SOC running sandpile, it is known that a correlated drive, as long as
its strength is not sufficiently large as to overdrive the system, does not essentially change the
underlying SOC dynamics. Its main effect seems to be to change the avalanche waiting-time
distribution, that ceases to be exponential and reflects instead the character of the drive [41]. For
instance, by developing power-law tails. Several studies of satellite SW data seem to suggest that
the substorm waiting-time distribution might actually be dictated by the nature of the solar wind
[42, 43], being thus consistent with this view.
36We do not intend to be comprehensive here, since we are not experts in this area. A much more
detailed description of the state-of-the-art in this area can be found in any of the several excellent
reviews that have recently appeared on the subject [44, 45].
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of the Dst index, one should expect to find complex features that are a reflection of
the dynamics of solar CMEs, these being the main reason for the storm triggering.
The AE index should be a different story, though, since substorm dynamics could
be the result of complex dynamics intrinsic to the Earth magnetosphere under the
intermittent, but incessant action of the solar wind drive. The analysis carried out
here will be useful to illustrate how to make apparent complex features in this type
of data, that requires a considerable amount of interpretation. In addition, we will
also examine a couple of indices that are often used to characterize the properties of
the solar wind (SW) that drives the magnetosphere. We expect that, by comparing
the results obtained for the AE and the SW datasets, we might shed some light on
the possible origin of the substorm complex features.

8.4.1 Analysis of the Dst Index (1957–2008)

As previously discussed, the Dst index is derived from hourly readings of low-
latitude (i.e., near the equator) variations of the horizontal component of the
geomagnetic field. The index reflects any changes in the globally symmetrical
westward equatorial ring current, that is the main culprit of the depression of the
horizontal component of the magnetic field during large magnetic storms. For that
reason, it is so often used as a surrogate to investigate storm dynamics. The data,
as provided by NOAA/NGDC, provides the daily average of the index after being
treated to remove secular trends, including the latitude dependence of the various
measuring sites.

The time series that we will analyze is shown in Fig. 8.9, with the temporal
axis showing the elapsed time (in days) from the first value present in the record.
In the inset of the figure, a zoom of the time series exposes the typical shape of
a magnetic storm as detected by the Dst index (see Sect. 8.2.3.1): a rapid initial
increase, followed by a slightly slower decrease and a much longer recovery (see
Sect. 8.2.3.1). The typical duration of a storm is usually stated to be between 7 to
10 days,37 thus giving a first estimate for the typical time that solar CMEs need to
overcome the obstacle that Earth sets in their paths. However, as we will argue later,
the existence of a well-defined characteristic storm duration may not be completely
supported by the data.

8.4.1.1 Statistics

The pdf of the Dst signal is shown in Fig. 8.10, calculated by using both the CBC
and CBS methods introduced at the end of Chap. 6. At first inspection, it might
appear that a power-law scaling p.d/ � d�3:6 could exist for a range of values

37 For that reason, we will express the elapsed time (from the first point in the series) also in days.
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Fig. 8.9 Time series of the Dst index in the period Jan. 1990–Dec. 2008. [Source: Solar and
Terrestrial Physics Division, NOAA/NGDC; public domain.] In the inset, the meaning of storm
duration, waiting-time and threshold is illustrated using a zoom out of the signal

between 100–300 nT. However, the range is too short and the exponent too large
to suggest any kind of complex behaviour, at least from such a simple analysis.
However, the statistics of the Dst signal by itself carries little physical meaning. It is
much more meaningful to estimate the statistics of the storms themselves. We can
identify them by choosing a suitable threshold to separate the different events. We
have used �50 nT as the threshold value (see inset of Fig. 8.9, where it is marked
with a red horizontal line on a zoomed-out part of the dataset), so that periods of
time when the signal is below the threshold (i.e., more negative) are considered as
magnetic storms, and periods when the signal is above as waiting times. Using his
value of the threshold, 3548 distinct magnetic storms can be identified within the
dataset.38

38The value used for the threshold is, naturally, rather subjective. We have used �50 nT because,
after a quick visual inspection of the dataset, it worked very well and introduced very few artefacts.
One could have chosen even a more negative threshold, but the number of storms then diminishes
quickly. For instance, the number of distinct events is 627 for �100 nT. Power-law scalings are
still apparent in the statistics using �100 nT, though, but they are naturally much noisier. Various
practical criteria have been proposed in the literature to choose a threshold value in situations like
this one. Among them, it is rather popular to calculate first the mean � and standard deviation of
the signal, � , and then choose the threshold to be � plus a few times � .
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Fig. 8.10 PDF for the Dst data estimated by means of the CBC (using 25 events to define each
bin; see Sect. 2.4.2) and CBS (200 bins; Sect. 2.4.1) methods shown in lin-lin and log-log scales.
The best fit to a normal distribution (Eq. 2.30) is also included (in dashed brown)

Fig. 8.11 PDFs for the magnetic storm durations (left) and the waiting-time in between successive
storms (right) calculated using the SF method (see Sect. 2.4.3). The best fit to Eq. 1.8 is also
included (in dashed red)

The pdfs obtained (applying the SF method, Sect. 2.4.3) for the durations and
the waiting-times between storms larger than the selected threshold are shown in
Fig. 8.11. The results are now much more interesting. For the storm durations, we
find an extended decaying power-law scaling roughly as p.d/ � d�1:42 that extends
for almost two decades, from one to a hundred days. The value of the exponent
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is sufficiently small (i.e., between 1 and 2) to suggest that a characteristic scale for
storm duration is absent, consistent with critical behaviour (see Sect. 1.3.2). The fall-
off at the end of the duration power-law suggests that storm durations are probably
limited by finite-size effects (see discussion in the next paragraph). The pdf of the
waiting-time between magnetic storms sufficiently large also exhibits a decaying
power-law scaling p.w/ � w�1:19 that extends for almost three decades, from 1 day
to a few years. The fact that the waiting-times do not follow an exponential power
law implies that their triggering is not random, and the small exponent again points
to critical behaviour (see Sect. 4.4.5). We have also defined an “effective storm size”
as the area subtended by the signal over the duration of each event. The size pdf is
shown in Fig. 8.12 in log-log scale. A very clear power-law scaling p.s/ � s�1:21
is then apparent for more than two decades, which points once more towards a
divergent size scale in the sense discussed in Sect. 1.3.2 since the exponent is less
than two.

Since each magnetic storm is triggered by a large solar event reaching the Earth,
be it a CME or a massive ejection from within a coronal hole, it is thus reasonable
to expect that the scaling behaviour just shown should somehow be a reflection
of the solar dynamics. As we discussed in Chap. 7, solar CMEs appear to lack a
well-defined characteristic size scale in the sense that their size is only limited by
finite-size effects. Therefore, the lapse of time required by these CMEs to pass by the

Fig. 8.12 PDF for the ‘storm sizes’(defined in the text) estimated by means of the SF method (see
Sect. 2.4.3) shown in log-log scale
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Earth would also lack a characteristic scale, which might be the reason for the scale-
free nature found in the storm durations. Similarly, it was also shown in Sect. 7.4
that solar CMEs appear to exhibit long-term persistent correlations that extended,
at least, from a few days to tens of years. Accordingly, the pdf of waiting-times
between magnetic storms, that should reflect this correlation, is not exponential and
exhibits instead power-law scalings (see discussion in Sect. 4.4.5).

8.4.1.2 Power Spectrum

Next, we have calculated the power spectrum of the Dst signal by means of Eq. 4.43.
The result, shown in Fig. 8.13, is rather interesting. The first thing to notice is that
there are two distinct scaling regions, one scaling as f �1:8 for timescales shorter than
roughly a hundred days, and a second one scaling as f �0:6 for longer timescales that
extends for as long as data is available (circa 50 years). As we discussed at length
in Sect. 4.2.2, scaling exponents between 0 and �1 are characteristic of self-similar,
persistent dynamics. The breakpoint between the two scalings happens at about 15–
20 weeks, separating a region dominated by storm self-correlation at the higher
frequencies from a region with long-term persistence at the smaller frequencies. As
discussed previously, this persistence is probably just a reflection of correlations
within the solar drive (i.e., among CMEs) and that have their origin in the Sun. We
will have more to say on this later in this section.

It is also interesting to note that there are several periodicities that appear very
clearly in the power-spectrum and that have been marked with vertical arrows in
Fig. 8.13. The easiest ones to interpret are the one appearing at about 26 days, that
probably corresponds to the solar synodic rotation, and the one showing up at about
12 years, that is very possibly related 11-year cycle discovered by Schwabe (see
Chap. 7). Another one, that appears at about 700 days, is probably related to the
so-called quasi-biennial oscillations [50] that are found in many other records of
solar magnetism, such as the number of solar flares, the solar magnetic field index
and the sunspot areas. It is however not clear what the other peaks in the spectrum
correspond to, although we suspect that some of them are just higher harmonics of
the already mentioned ones.

8.4.1.3 R=S Analysis

We have also applied Hurst’s rescaled range analysis to the signal in order to look for
further evidence of long-term correlations. The rescaled range R=S of the Dst record
is shown, as a function of time lag (measured in days) in Fig. 8.14. Two distinct
scaling regions are clearly appreciated in the plot, particularly in the inset where
the instantaneous Hurst exponent (Eq. 6.12) is shown. A first region, across which
R=S � �0:92, extends up to time lags of approximately 100–200 days, consistent
with the scaling region found in the power spectrum at the highest frequencies.
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Fig. 8.13 Power spectrum of the Dst data. Peaks corresponding to the terrestrial and solar periods
(and some of their harmonics) are identified with arrows

More interestingly, a second region is found, for time lags � > 1000 days, where
R=S � �0:81 that also seems consistent with the persistent scaling region found in
the power spectrum at the lowest frequencies. However, the latter extended all the
way to time lags of the order of a few hundred. In the case of the rescaled range,
the intermediate region extending between (200–900) days lacks a clear scaling
due to a periodicity that clearly shows up at about 700 days, causing the expected
flattening in the rescaled range around it (see discussion in Sect. 4.4.4). As we
already mentioned, this periodicity is probably related to the solar quasi-biennial
oscillations. The amplitude of this perturbation must be significant, since it distorts
the R/S scaling considerably over this range. The remaining periodicities identified
in the power spectrum are also apparent in the instantaneous H exponent. The first
one, corresponding to the solar synodic rotation (� 26 days) is probably of rather
small amplitude since it has almost no effect on the rescaled range. The second
periodicity, related to the 11-year cycle (� 12:4 years), has a larger effect than the
solar rotation, but still not too dramatic. Although this is probably due to the fact
that the record is just 50 years long, so that it just contains three or four oscillations.

In any case, we can conclude that the results of the R/S analysis and the power
spectra are pretty consistent with each other, and combining them, one can conclude
that persistent, self-similar memory is indeed present starting at about � > (100–
200) days, and extending for at least as long as the record allows (about 50
years). The location of this break-point is probably related to the self-correlation
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Fig. 8.14 Rescaled range analysis (see Sect. 4.4.4) for the Dst record. The rescaled range (R=S) is
shown in the upper frame as a function of time lag (with respect to the first point in the record)
in days; in the lower frame, the corresponding instantaneous Hurst exponent (see Eq. 6.12) is also
shown. Some periodicities present in the record are identified with arrows

of magnetic storms. Its value suggests that they appear to last much longer than the
usually stated 7–10 days, being closer to a few hundred days (and probably limited
only by finite-size effects, as we discussed earlier). This finding is not necessarily
inconsistent with previous results, being just related to how one defines the duration
of storm. For example, the inset of Fig. 8.9 shows a couple of events in the Dst signal
that take times closer to a hundred days to get back to stationary values, although
the largest changes associated to the storm certainly take place during the first ten
days or so. These long duration values are not unusual for magnetic storms due to
the slow power-law decay of their statistics, as revealed by the storm duration pdf
that was calculated earlier (see Fig. 8.11, left frame).

8.4.2 Analysis of the AE Index (1990–2008)

The record of the AE index that we will examine next corresponds to the 18-year
long period between January 1, 1990 and December 31, 2008 (see Fig. 8.15). The
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Fig. 8.15 Time series of the auroral electrojet (AE) index in the period Jan. 1990–Dec. 2008.
[Source: Solar and Terrestrial Physics Division, NOAA/NGDC; public domain.] The temporal
axis gives the time lag in hours, as measured from the beginning of the record

index is constructed by estimating the separation between the upper and lower
envelopes of the superposed plots of the horizontal component of the magnetic
field measured hourly at various auroral-zone magnetic observatories.39 Scientists
have relied for decades on the AE index as a measure of the level of geomagnetic
disturbance that results from the auroral electrojets and hence, by proxy, of the
state of the magnetosphere [21]. Since the magnetometers used to calculate it are
at higher latitudes, the AE index is more sensitive to distortions due to magnetic
substorms, as previously discussed. Magnetic substorms last typically just a few
hours, in contrast to storms that lasted from several days to a few weeks. In addition,
events in the AE index do not seem to have a characteristic temporal pattern, being
much more irregular in shape, amplitude and duration. The lack of a characteristic
pattern makes it more difficult to reliably separate individual substorms, in contrast
to what happened for magnetic storms.

39In fact, the upper and lower envelopes are used to define two other indices, the so-called AU and
AL indices. Clearly, AE D AU � AL.
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Fig. 8.16 PDF for the AE data estimated by means of the CBC (using 25 events to define each
bin; see Sect. 2.4.2) and CBS (200 bins) methods shown in lin-lin and log-log scales

8.4.2.1 Statistics

We start by looking at the pdf of the AE record. The result is shown in Fig. 8.16, as
calculated by using both the CBC and CBS methods introduced at the end Chap. 6.
In contrast to the Dst index that we discussed previously, one can see here a clear
power-law scaling p.AE/ � AE�1:16 that extends for more than a decade, between
50–700nT. The value of the scaling exponent is sufficiently small (between 1 and 2,
as discussed in Sect. 1.3.2) as to suggest that a typical AE amplitude may not exist,
at least across that mesorange, which points to some kind of critical behaviour.40

As we did for magnetic storms, we have also tried to determine the statistics of
individual magnetic substorms by means of a threshold (marked in red in Fig. 8.15).
We have found adequate to use now 500 nT as the threshold value, that results

40The reason why the pdf of the AE data exhibits critical behaviour whilst the pdf of the Dst dataset
did not deserves some comments. It is probably related to the fact that the sampling rate of the AE
signal analyzed, in which data is provided every hour, is relatively close to the typical magnetic
substorm duration (a few hours). In contrast, in the case of the Dst index, the sampling rate was one
per day while magnetic storm often extended to almost a hundred days. For that reason, it appears
that, in the case of the AE index, the statistics of the amplitude of the signal probably reflect better
the underlying scaling of the substorm durations.
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Fig. 8.17 PDFs for the magnetic substorm durations (left) and the waiting-time in between
successive substorms (right) calculated using the SF method (see Sect. 2.4.3). The best fit to Eq. 1.8
is also included for the waiting-time pdf (in dashed red)

in 6988 distinct ‘substorm events’. The pdfs for the resulting substorm durations
and waiting-times are shown in Fig. 8.17. Clearly, their waiting-time pdf exhibits a
fat power-law tail, scaling as � w1:55. This value of the exponent implies that the
substorm triggering process is correlated. The case of the substorm duration pdf,
though, is more complicated to interpret. The reason is, as we mentioned before,
that the large sampling rate of the signal (every hour) is very close to the substorm
usual durations (a few hours). As a result, the duration values span just a decade,
and it is very difficult to claim any power-law scaling with such a short range
(we have included the scalings d�2 and d�3 in Fig. 8.17 to help guide the eye).
We have defined also an “effective substorm size”, using again the area subtended
by the signal over the duration of each event, where this scaling is much clearer.
The size pdf is shown in Fig. 8.18 in log-log scale. A very clear power-law scaling
p.s/ � s�1:9 is then apparent for more than a decade, which points to a divergent
size scale in the sense discussed in Sect. 1.3.2.

8.4.2.2 Power Spectrum

Next, we have calculated the power spectrum of the AE signal. The result, shown in
Fig. 8.19, brings another piece of evidence that suggests critical behaviour. A power-
law scaling region, p.!/ � !�0:9, is present in the range that goes between 10 and
400 h. The value of the exponent, between �1 and 0, is suggestive of the presence
of self-similar, persistent correlations.41

For timescales longer than 400 h, the power spectrum become more flattish,
although it is difficult to say due to the appearance of several strong periodicities. In

41It is worth noting that this range of timescales is well below the one across which self-similar,
persistent memory was found for magnetic storms while analyzing the Dst index, that started at
about a hundred days and extended to much longer times.
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Fig. 8.18 PDF for the ‘substorm sizes’(defined in the text) estimated by means of the CBC method
(using 20 events to define each bin; see Sect. 2.4.2) shown in log-log scale

Fig. 8.19 Power spectrum of the AE data. Peaks corresponding to the terrestrial and solar periods
(and some of their harmonics) are identified with arrows



368 8 Planetary Plasmas: Complex Dynamics in the Magnetosphere of the Earth

particular, there is a periodicity that appears at about 640 h that seems to be pretty
strong (several of its harmonics are also present in the signal), that could be related
with the solar synodic period (approximately, � 26 days). That periodicity might
be responsible for the flattening, since the power spectrum seems to increase again
at even lower frequencies. Thus, the persistence range might extend to even lower
frequencies, although a longer data would be required to explore this possibility
using the power spectrum. It is interesting to note that, in the case of the Dst

index, the impact of this periodicity was rather small.42 The explanation probably
is that, whilst storms are triggered mostly by CMEs, substorms are triggered by the
incessant action of the solar wind. If the latter is being fed primarily by specific
active areas on the surface of the Sun, they should be strongly modulated by the
solar rotation that would effectively switch them on[off] as the Earth enters[exits]
their line-of-view.

Finally, at the largest frequencies, a second breakpoint appears at approximately
2–3 h. This breakpoint marks the temporal scale below which the self-correlation of
individual substorms dominates. In fact, a few hours is what is usually stated for the
average substorm duration. This finite value, in the case in which critical dynamics
were indeed operative, would be a consequence of finite-size effects.

8.4.2.3 R=S Analysis

We have looked for additional evidence of persistence by means of the R=S analysis
of the AE data, using the prescription given in Sect. 4.4.4. The resulting rescaled
range is shown in Fig. 8.20 as a function of the temporal lapse (in hours) with
respect to the first datapoint in the record. The rescaled range shows two distinct
scaling regions, one scaling as �0:83 for times between 2–3 and 400–500h; a second
one, scaling as �0:9, exists for timescales longer than 1000 h. The first scaling region
coincides quite well in range with the persistent scaling region we found in the
power spectrum. The influence of the solar synodic rotation is again felt strongly
in the rescaled range. It is revealed by the deep flattening that appears around that
value, between 500–1000h. This becomes particularly clear in the time trace of
the instantaneous Hurst exponent, shown in the inset, that goes down to about 0:3
in the neighbourhood of the periodicity. Regarding the second scaling region, the
one appearing at times longer than 1000 h, the fact that the scaling exponent is
just slightly larger than the one seen at lower timescales suggests that we might be
looking at a continuation of the same type of dynamics that dominated the previous
region, and that the power spectrum just hinted at.

42Additionally, the periodicity associated to rotation of the Earth (that is, 24 h) also appears in the
spectrum, although its effect on the AE spectrum seems to be rather small.
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Fig. 8.20 Rescaled range analysis (see Sect. 4.4.4) for the AE data. The rescaled range (R=S) is
shown in the upper frame as a function of time lag (with respect to Jan 1, 1990) in hours; in the
lower frame, the instantaneous Hurst exponent (see Eq. 6.12) is also shown

8.4.3 Analysis of the Scalar B in the Solar Wind (1963–2017)

The analysis of the AE data has revealed self-similar and persistent features in the
magnetospheric substorm cycle. Whether these features are the result of (complex)
dynamics intrinsic to the magnetosphere (as suggested, for instance, by Chang’s
SOC model [33] and many others [26, 39, 40, 44, 45]) or if they are a mere reflection
of the properties of the solar wind drive, it remains to be seen. In order to investigate
this question a bit, we will analyze now two different data records that can be used
as proxies of the solar wind dynamics. These records provide values of the plasma
density and magnetic field magnitude (among many others) in the solar wind (SW)
as measured over the last 50 years by a number of geostationary satellites around
the L1 Lagrange point that is located in front of the Earth, at about 225 times its
radius. This database has been put together as part of the OMNI initiative at NASA
[https://omniweb.gsfc.nasa.gov].

We will examine first the SW scalar magnetic field B. The complete data record
is shown in Fig. 8.21, with the horizontal axis corresponding to the lapse of time
(in hours) passed from the beginning of the record (November 28, 1963) and the
vertical one giving the magnetic field magnitude in nanoteslas. The record provides

https://omniweb.gsfc.nasa.gov
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Fig. 8.21 Time series of the scalar magnetic field in the solar wind during the period extending
from Nov. 1963 to Jul. 2017. [Source: OMNI initiative at NASA; public domain.] The temporal
axis gives the time lag in hours, as measured from the beginning of the record

hourly values for B, although there is a significant percentage of entries are missing
(a few are marked in red in the inset of the figure for illustration purposes).

8.4.3.1 Statistics

We start by looking at the pdf of the SW magnetic field record. The result is shown
in Fig. 8.22, as calculated by using both the CBC and CBS methods introduced at the
end Chap. 6. In contrast to the power-law scaling previously found in the pdf of AE
index, there is no meaningful power-law scaling here. Of if there is, it corresponds
to exponent values too large to provide any evidence of critical dynamics.

Again, we will define a “magnetic burst” by introducing a meaningful threshold
in the SW magnetic field series, in a analogous way as how we treated magnetic
storms and substorms previously. After various considerations, we have chosen
the value 7:75 nT as the threshold (see Fig. 8.21), that allows to differentiate 8893
distinct SW magnetic bursts. Pdfs for the burst durations, the waiting-time between
successive bursts and their effective size (again, defined as the area subtended by the
signal over the duration of a burst) are respectively shown in Figs. 8.23 and 8.24.

From the figures, it is once more apparent that the SW magnetic field dataset
exhibits self-similar scalings for at least two decades in durations and sizes, with
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Fig. 8.22 PDF for the SW magnetic field data estimated by means of the CBC (using 25 events to
define each bin; see Sect. 2.4.2) and CBS (200 bins) methods shown in lin-lin and log-log scales.
Best fits to the normal (Eq. 2.30) and log-normal (Eq. 2.45) pdfs are also included

Fig. 8.23 PDFs for the SW magnetic field bursts (left) and the waiting-time in between successive
bursts (right) calculated using the SF method (see Sect. 2.4.3). The best fit to Eq. 1.8 is also included
for the waiting-time pdf (in dashed red)

values of the scaling exponents between 1 and 2, thus pointing to the action of some
kind of divergent, critical dynamics (see Sect. 1.3.2). In the case of the durations,
this scaling extends up to about 10–30 h. In addition, the pdf of the waiting-times
between magnetic bursts also exhibits a divergent power law that extends at least
until a couple hundred hours, suggesting that magnetic bursts are not triggered
randomly, but in a correlated way.
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Fig. 8.24 PDF for the SW magnetic field ‘burst sizes’ (defined in the text) estimated by means of
the CBC method (using 20 events to define each bin; see Sect. 2.4.2) shown in log-log scale

These results are rather interesting and deserve some comments. If the SW
magnetic field data had lacked any self-similar properties, one could easily conclude
that the presence of those properties in the AE data suggests that some process
internal to the magnetosphere is responsible for the observed dynamics. The fact
that the SW data exhibits self-similar properties does not mean, on the other hand,
that the AE features are a reflection of them since there are many examples of
systems driven by a correlated drive (for instance, the running sandpile [41]) that
are able to establish their own internal dynamics at sufficiently long time scales.
However, an interesting observation comes from the fact that the fall-off of the
waiting-times or the SW data happens at about 100–200 h, whilst the one for the
“substorm events” we introduced earlier happens at about 1000 h (see Fig. 8.17).
This gap suggests that the magnetosphere might be loading up (via convection and
reconnection process) for much longer timescales than those of the drive before
unloading via the triggering of a substorm, which points to a possible important role
for the internal magnetospheric processes.
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Fig. 8.25 Rescaled range analysis (see Sect. 4.4.4) for the SW magnetic data. The rescaled range
(R=S) is shown in the upper frame as a function of time lag (with respect to Nov 28, 1967) in hours;
in the lower frame, the instantaneous Hurst exponent (see Eq. 6.12) is also shown

8.4.3.2 R=S Analysis

The R=S analysis of the SW magnetic field data is shown in Fig. 8.25 as a function
of the temporal lapse (in hours) with respect to the first point in the record.43 This
rescaled range is very interesting, since it clearly shows two distinct scaling regions,
one scaling as �0:88 for time lags between 1 and 300–400h; a second one, scaling

43As we already mentioned in Chap. 8, while analyzing CME data with the R/S technique, the
analysis must be done here a bit differently from what was explained in Sect. 4.4.4. The reason is
that the SW data, although sampled in principle at a uniform rate, has many missing entries. The
R/S algorithm must be slightly modified to take this into account or, otherwise, temporal scales and
possibly exponents could be estimated wrongly. The changes are not difficult to do. One simply
needs to define the averaging blocks differently. Instead of by the number of data points they
contain, as we did in Sect. 4.4.4, one must define them by their real temporal duration. In addition,
all the sums that were previously calculated over blocks (to compute, say, means, variances or
ranges) become now sums over all those data points that take place at times that are contained in
each particular block. The rest of the analysis and its interpretation, remains unchanged. We will
have a chance to use this modified approach again when analyzing the CME data in Chap. 7. In
that case, the uneven sampling is real, not an artefact of the measuring process.
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as �0:98, that exists for timescales longer than 1000–2000 h. In between these two
regions there is a large flattening of the rescaled range, extending between 400–
1000 h, that reveals the strong effect of a periodicity. In this case, it is probably the
solar synodic rotation, for the same reasons that were explained when discussing
the AE results (the reader should compare Fig. 8.20 with Fig. 8.25). If nothing else,
this similarity suggests that some of the AE features (at the very least, the impact of
various solar periodicities) might indeed be a reflection of the SW drive.

At the largest time lags, the rescaled range of the SW magnetic field shows that a
second periodicity is also felt, although much more weakly that the synodic rotation.
In fact, its the famous 11-year cycle, that can also be appreciated by inspecting the
SW magnetic data directly (see Fig. 8.21). It is probable that the strong influence
of the synodic rotation, combined with the 11-year periodicity, is what causes the
scaling exponent to go above 1 across the second range.

8.4.4 Analysis of the Proton Density in the Solar Wind
(1963–2017)

The second record from the OMNI catalog that we will analyze is that of the SW
proton density, n, that provides information of the plasma component of the solar
wind. The complete data record is shown in Fig. 8.26, with the horizontal axis
corresponding to the lapse of time (in hours) passed from the beginning of the record
(November 28, 1963) and the vertical one giving the proton density in particles per
cubic centimetre. The record provides hourly values for n, when available. In fact,
the percentage of missing entries (a few are marked in red in the inset of the figure
for illustration purposes) is larger than in the case of the SW magnetic field dataset.

8.4.4.1 Statistics

As we did previously, we start once again by looking at the pdf of the SW proton
density record. The result is shown in Fig. 8.27, as calculated by using both the
CBC and CBS methods introduced at the end Chap. 6. As with the SW magnetic
field, there is no meaningful power-law scaling here. Of if there is, it corresponds
again to exponent values too large to provide any evidence of critical dynamics.

Once more we will define a “plasma burst” in a similar way to how we
introduced the “magnetic burst” previously. The threshold has been set, in this
case, to 15 part=cm�3 (see Fig. 8.26), that allows to identify 5242 distinct SW
plasma bursts. The resulting pdfs for the burst durations, the waiting-time between
successive bursts and their effective size (again, defined as the area subtended by the
signal over the duration of a burst) are respectively shown in Figs. 8.28 and 8.29.

From the figures, it is apparent that the SW plasma density dataset also exhibits
self-similar scalings for at least one decade in durations and two decades in sizes



8.4 Case Study: Magnetospheric and Solar Wind Indices 375

Fig. 8.26 Time series of the proton density in the solar wind during the period extending from
Nov. 1963 to Jul. 2017. [Source: OMNI initiative at NASA; public domain.] The temporal axis
gives the time lag in hours, as measured from the beginning of the record

Fig. 8.27 PDF for the SW magnetic field data estimated by means of the CBC (using 25 events to
define each bin; see Sect. 2.4.2) and CBS (200 bins) methods shown in lin-lin and log-log scales.
Best fits to the normal (Eq. 2.30) and log-normal (Eq. 2.45) pdfs are also included
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Fig. 8.28 PDFs for the SW plasma bursts (left) and the waiting-time in between successive bursts
(right) calculated using the SF method (see Sect. 2.4.3). The best fit to Eq. 1.8 is also included for
the waiting-time pdf (in dashed red)

Fig. 8.29 PDF for the SW plasma ‘burst sizes’ (defined in the text) estimated by means of the
CBC method (using 20 events to define each bin; see Sect. 2.4.2) shown in log-log scale

with values of the scaling exponents between 1 and 2, thus pointing once more
to the action of some kind of divergent, critical dynamics (see Sect. 1.3.2). In the
case of the durations, the power-law scaling extends up to about 8–10 h, that is a
bit shorter that what we found for the SW magnetic field.44 In addition, the pdf of

44This may not be all that significant, since it depends a bit on the threshold values used.
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the waiting-times between plasma bursts also exhibits a divergent power law that
extends at least until a couple hundred hours suggesting, as was also found in the
case of the SW magnetic bursts. This value is much shorter than the few thousand
hours needed for the AE waiting-time pdf to exhibit its fall-off. This difference
again suggests to us that several plasma bursts (and magnetic bursts, as we saw
earlier) may take place during the magnetospheric loading process that leads to a
magnetic substorm, thus pointing again to a possible important role for the internal
magnetospheric dynamics in the substorming process.

8.4.4.2 R=S Analysis

The R=S analysis of the SW proton density data is shown in Fig. 8.30 as a function
of the temporal lapse (in hours) with respect to the first point in the record. The
result is quite similar to that of the SW magnetic field examined earlier. As then,
the density rescaled range shows two distinct scaling regions, one scaling as �0:85

for time lags between 1 and 300–400h; a second one, scaling as �0:91, that exists
for all timescales longer than 1000–2000h. In between these two regions one finds

Fig. 8.30 Rescaled range analysis (see Sect. 4.4.4) for the SW proton data. The rescaled range
(R=S) is shown in the upper frame as a function of time lag (with respect to Nov 28, 1967) in
hours; in the lower frame, the instantaneous Hurst exponent (see Eq. 6.12) is also shown
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the same large flattened region that was found in the rescaled range for the SW
magnetic data, that extends between 400–1000h revealing the strong influence of
the solar synodic rotation. At the largest time lags, the plasma SW rescaled range
also shows a second minor flattening that is probably a consequence of the 11-year
cycle.

8.5 Conclusions

In this chapter we have discussed the main physics of the magnetosphere of the
Earth, that can be envisioned as a complex open system driven by the (itself
complex) Sun, be it via CMEs, coronal hole ejections or the incessant action of the
intermittent solar wind. In particular, we have explored the possibility that complex
dynamics internal to the magnetosphere are responsible for the magnetic substorm
cycle, as suggested by several authors (see Sect. 8.3.1). We have also examined
several datasets of relevance in this context by means of some of the tools that
were presented in the first part of this book. These datasets have included various
proxies for the magnetic storm (i.e., the Dst index) and substorm (the AE index)
activities, as well as for the strength of the action of the solar wind (via local
SW magnetic field amplitude and proton density records). From these analysis, it
seems clear that all these records exhibit self-similar, divergent properties and long,
persistent correlations. In addition, the comparative analysis of the AE index and
the SW records have revealed some evidence (in the form of rather different cutoff
values in their waiting-time pdfs) regarding the fact that internal magnetospheric
dynamics are important in the substorming process, as suspected by many authors.
However, it is clear that there is still much more to be done in this area. We hope that
some of the tools that were presented in the first part of this book might be helpful
in this task, assuming that any of our readers is up for the challenge.45
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Chapter 9
Laboratory Plasmas: Dynamics
of Transport Across Sheared Flows

9.1 Introduction

In this last chapter, we will go back to the same laboratory plasmas discussed
in Chap. 6 to look for our last example of complex behaviour in plasmas. In
particular, we will discuss the dynamics of turbulent transport across sheared
flows. Sheared (or shear) flow is a label used to refer to any kind of flow that varies
in space. Naturally, small-scale sheared flows are always present in any turbulent
medium. For instance, any turbulent vortex (or ”eddy”) is a region where the local
flow (mostly directed around the center of the eddy) varies quickly as one moves
away from the center. The action of turbulence also tends to generate local patterns
of flow that vary quickly in space and time to facilitate the dissipation of energy at
the (usually very small) viscous scales. These are not the kind of sheared flows that
interest us, though. We will be concerned about large-scale sheared flows instead.
That is, flows that maintain their coherence over scales much larger and longer than
any local turbulent scales. Large-scale sheared flows are somewhat rare in nature
because shear very often drives instabilities of the Kelvin-Helmholtz (KH) type
[1]. It is only in special conditions that shear flows can be kept stable, at least for
sufficiently long times as to have an strong impact in the system dynamics. Shear
flows are stabilized, usually, by either differential rotation or magnetic fields. For
that reason, large-scale sheared flows often appear in stars, planetary atmospheres
and oceans or in magnetized fusion toroidal plasmas, to name just a few (see
Fig. 9.1). In the context of magnetic confinement fusion (MCF), they are usually
referred to as zonal flows.1

1In MCF, it is sometimes usual to distinguish between mean (over time) and fluctuating shear
flows; in that case, the term “zonal flow” is used to denote the fluctuating part of the shear flow. In
this chapter, however, we will not make that distinction.
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Fig. 9.1 Left: latitudinal shear flow patterns around the northern pole of Jupiter’s atmosphere.
Right: isocontours of turbulent electrostatic potential from a tokamak Ion-Temperature-Gradient
(ITG) turbulence simulation showing the presence of a strong, radially-shear poloidal flow. Credits:
Jupiter image (© ESA/NASA - Hubble)

We will start the chapter by providing a brief introduction to turbulent sheared
flows in Sect. 9.2, with a particular focus on how and why they appear in tokamaks.
We will then discuss one of the main consequences of the presence of zonal flows in
any system: the reduction of turbulent transport across them.2 For us, this process
is of interest because it turns out that turbulent transport across shear flows often
becomes endowed with non-Guassian and subdiffusive features, in contrast to the
more traditional understanding of how shear flows acted on transport. We will briefly
sketch the probable physical origin of both subdiffusion and non-Gaussianity in
Sect. 9.2.3. As a result of these features, Fick’s law no longer provides a good
phenomenological description of transport across shear flows and other paradigms
are needed. We will illustrate, as in every other chapter, this phenomenology by
analyzing data from gyrokinetic simulations of tokamak turbulence (see right frame
in Fig. 9.1) in Sect. 9.4. In this case we will employ some of the tools that were
introduced in Chap. 5, particularly those related to the propagator of the fractional
transport equation (Eq. 5.3.3).

9.2 Stable Sheared Flows

It is often the case in hydrodynamics that sheared flows are unstable, generating
turbulence usually via the excitation of Kelvin-Helmholz (KH) instabilities [1].
Some examples of this behaviour are provided, for instance, by jets, flows past
obstacles or flows close to walls. Turbulence is generated in all these cases and any

2As it is often the case, in some systems this reduction might be bad news; but in the case of fusion
toroidal plasmas, this reduction of radial transport becomes extremely handy!
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large-scale sheared flow pattern that might be present quickly disappears [2]. There
are however situations in which sheared flows can be stabilized, maintaining their
coherence for very long times. This usually happens in the presence of differential
rotation or space-varying magnetic fields [3].

9.2.1 Differential Rotation and Magnetic Fields

Hydrodynamic shear flows are sometimes stabilized by some kind of differential
rotation [3]. The simplest example is possibly that of a two-dimensional circular
vortex, whose own vorticity profile makes it stable.3 Other examples found in nature
are any of the many shear flows that exist in planetary atmospheres, that are stable
at least most of the time [4]. In the Earth’s atmosphere, for instance, one has the
so called jet streams that have such an enormous impact on air travel. In other
planets, such as Jupiter, latitudinal banded zonal flows are clearly visible from
afar in its atmosphere (see left frame of Fig. 9.1). Stable sheared flows stabilized
by differential rotation also exist in the ocean, as it is the case of the Antarctic
circumpolar current.

Strong, space-varying magnetic fields can also stabilize shear flows under certain
conditions. In confined toroidal fusion plasmas, such as in tokamaks or stellarators,
stable shear flows (known as zonal flows) may also develop, either spontaneously
or driven externally. Zonal flows are usually established over narrow radial regions,
known as transport barriers (see right frame in Fig. 9.1), with mass motion taking
place within a magnetic surface.4 The reason for using the word “transport barrier”
will be clear soon.

3The vorticity of a flow is defined as the curl of the local velocity vector, w � r � v. Thus, the
vorticity is zero everywhere for a uniform flow. For a solid-rotation in two-dimensions, though, it
can be shown that its vorticity vector w / ˝, being ˝ the angular velocity vector that satisfies
v D r � ˝. In a more general two-dimensional flow, the relation between vorticity and angular
velocity changes, but regions where the vorticity is large are still indicative of an intense local
rotation. In particular, turbulent eddies can be seen as regions where vorticity accumulates, with
the orientation of the local rotation (clockwise or counterclockwise) being consistent by the sign
of the local vorticity.
4It should be remembered that the tokamak and stellarator magnetic topology can be approximated
by a family of nested, toroidal magnetic surfaces to which the magnetic field is tangent. The radial
direction is the one perpendicular to these magnetic surfaces. The two directions on the surface
are the poloidal and toroidal ones. The magnetic field has, therefore, both a poloidal and toroidal
component, being the latter much larger. The flow motion that constitutes a zonal flow in tokamaks
appears to be of electrostatic origin, thus flowing in the direction of the E�B drift, that is contained
in the magnetic surface but perpendicular to the magnetic field.
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Fig. 9.2 Action of a linear shear flow (in blue), vy.x/ D Ax; A > 0, on eddies containing vorticity
of different sign: positive (in red) and negative (in red). The shear flow will stretch both type of
eddies along the shear direction, strengthening the one with vorticity of the same sign as that of the
shear flow (wshear

z D A) and weakening the other one

9.2.2 Turbulence Suppression by Sheared Flows

The presence of a stable shear flow affects turbulence in different ways. The most
evident one is that it distorts eddies in such a way that their characteristic scales
(in space, time and amplitude) are changed [5]. The way in which this happens is
best understood by means of the sketch shown in Fig. 9.2. In it, the action of a flow
(along y) with a spatial dependence (on x) on a two dimensional eddy is shown. The
eddy is stretched and distorted because its different parts would travel at different
velocities, as dictated by the shear flow. The characteristic size of the eddy across the
flow could thus be significantly reduced, as shown in the figure. Other things also
happen. First, depending on the sign of the vorticity of the eddy, its local rotation
may be enhanced (in red) or suppressed (in green). In addition, because the eddy is
part of a turbulent flow, its lifetime may also be reduced. The reason is that the life
of any eddy is determined by how long it takes for its neighbouring eddies to shear
it apart. This time could be reduced by the shear flow because the stretching might
bring the eddy faster into the domain of influence of its neighbours; the more, the
further it becomes stretched. Finally, the average fluctuating energy in the turbulence
could also be reduced, due to the aforementioned shortening of the eddy lifetime.
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After considering all these facts, it should come as no surprise that, if the
conditions in which the shear flow is acting on turbulence are appropriate, the
effective turbulent transport across the shear flow could be significantly reduced.
Indeed, by invoking plain diffusive arguments, one could estimate the across-the-
shear-flow eddy diffusivity by means of a CTRW-like argument (see discussion
on turbulent diffusion in Chap. 5; see also Fig. 6.6), leading to an effective eddy
diffusivity of the order of: D � l2=� � lv � v2� , being l the typical eddy size
along the direction of transport, v the mean amplitude of the turbulent velocity
fluctuations and � the typical eddy lifetime. Clearly, if the eddy lifetime, its size and
the turbulent amplitude are all reduced by the action of the shear flow, the resulting
eddy diffusivity for across-the-shear transport would also be much smaller.5

Which are the conditions that a shear flow must satisfy to effectively suppress
turbulence and reduce transport according to the picture we just draw? Naturally,
the shear flow must be stable to begin with. This implies that strong turbulence
suppression would more often than not be observed in the presence of either strong
differential rotation or space-varying magnetic fields. In addition, several other
conditions must also be met. First, if the eddy stayed at rest with respect to the
shear flow, the characteristic size of the eddy l should be of the order (or larger)
of the length over which the sheared flow varies significantly, Lv ' v.dv=dx/�1.
However, eddies are often not static, being pushed around by the background flow.
Therefore, this condition must be replaced by a temporal condition that requires
that �S, the time that the shear flow needs to act effectively on the eddy (i.e., its
rate of differential advection), be shorter than �v , the time that the eddy needs to
cross the sheared region. A second condition that must be fulfilled is that the time
the shear flow needs to act effectively must also be shorter than the eddy lifetime,
�l. Otherwise, the eddy would disappear before the shear can act on it. Or, in other
words,

�S � �v; �l: (9.1)

It is worth commenting now that there are cases in which a shear flow might
affect transport across it even if some of the aforementioned conditions are not met.
One example is the kind of situation discussed in Chap. 6, where we considered
transport in regimes of near-marginal turbulence.6 In these cases, turbulent transport
does not resemble the type of CTRW-like motion around single eddies that appears
in the diffusive view of turbulent transport (see Chap. 5). Instead, in near-marginal
conditions turbulent transport is dominated by avalanche processes that result from
the successive concatenation of instabilities excited at nearby locations along a

5This type of argument, that heavily relies on a diffusive description of the transport process, has
however been challenged recently, as we will discuss in Sect. 9.2.3.
6In these cases, the transport dynamics were heavily reminiscent of those of the running sandpile,
the poster child of self-organized criticality (see Chap. 1).
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certain direction.7 In this type of situations, any shear flow with a characteristic
scale much longer than that of a typical eddy could still reduce turbulent transport by
decorrelating the avalanching process, whose scale length diverges with the system
size. In a certain sense, the shear flow acts effectively in order to short-circuit any
long-range radial propagation [6]. We will however not deal with these type of
situations in this chapter.8

9.2.3 Zonal Flows in Tokamaks

Shear flows are of particular importance in fusion toroidal plasmas because they
are associated with the formation of the so-called edge transport barriers (ETB).
These barriers were first seen in tokamaks in the late 1980s, forming spontaneously
very close to the plasma edge after a certain heating-power threshold was overcome
[10] (see Fig. 9.3; see also the discussion on tokamak confinement regimes in
Sect. 6.4.1). This operational regime is usually known as the H-mode, being the
standard operation regime for next step tokamaks, such as the ITER experiment
[11]. The H-mode is remarkably universal. Almost every tokamak with access to
sufficient external power9 has been able to reproduce H modes [12].10 The general
properties of tokamak H-modes were already outlined in Sect. 6.4.1, but we will
repeat the three most important ones here. First, there is a minimum external
power requirement that must be overcome, known as the H-mode power threshold.
Secondly, temperature and pressure profiles become rather steep across the transport
barrier, a consequence of having to balance the same local flux with a much lower
local transport. And third, there is a very strong radially sheared (poloidal and
toroidal) flow at the ETB, that seems to have a clear electrostatic nature, as has
repeatedly been shown by experiments [3]. By electrostatic nature it is meant that
the flow observed is very close to the one estimated by computing the E � B drift
using the measured mean electric field.

In the case of the H-mode, the shear flow appears spontaneously, probably self-
generated by turbulence via the Reynolds stress tensor [14], thanks to the anisotropy
and inhomogeneity that is inherent to any toroidal fusion plasma.11 In contrast
to what often happens in fluid turbulence—where any flow shear typically drives

7In the case of tokamaks, it is the radial direction; for a sandpile, it is down the slope.
8The interested reader can find additional information about the action of shear flows on near-
marginal transport in several papers recently published in the literature [7–9].
9In addition, access to the H mode also requires a divertor configuration, as shown in Fig. 9.3, that
permits to insulate the plasma from the wall sufficiently well.
10Other MCF toroidal devices, such as stellarators, have also produced H-modes and ETBs [13].
11ETBs have also been externally induced in tokamak plasmas, mostly via plasma biasing [15]. In
this technique, a potential difference is forced between the plasma and the edge, that results in a
radial electric field and an associated E � B flow shear that acts on edge turbulence, reducing its
levels and associated transport, and causing a steepening of the plasma profiles.
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Fig. 9.3 Typical radial pressure profiles for the main tokamak confinement regimes reached as
external power is increased: ohmic (black), L-mode (blue), H-mode (red, solid) and advanced
modes (red, dashed). The transition from L-mode to H-mode takes place when the edge transport
barrier develops, above a certain power threshold. The transition to advanced confinement modes
happens when an internal transport barrier is formed at some intermediate radial location. Credits:
courtesy of Estefanía Cuevas
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turbulence via KH instabilities, leading to stronger turbulence—, the edge shear flow
is stable and reduces local fluctuations and turbulence as we discussed previously.
Since tokamak plasmas are driven systems, the reduced levels of turbulence lead to
a reduced effective transport, which subsequently leads to a further steepening of
the gradients (or plasma temperature or density) to balance the external drive. As a
result, energy and plasma confinement are both improved. The conditions that limit
how large a shear flow can become are still not completely clear, being probably
situation-dependent [14]. Among them, one probably have to consider drag, the
excitation of secondary instabilities of the shear flow (possibly of KH nature), or
the excitation of other types of instabilities that affect the plasma gradients (such as
the pressure-gradient-driven modes that are thought responsible for the excitation of
ELMs, as we discussed in Chap. 6).

9.3 Non-diffusive Transport Across Sheared Flows

The traditional understanding of how the suppression of radial transport by the kind
of radially sheared zonal flow that takes place in a tokamak has traditionally been
based on the same diffusive arguments we introduced previously. Let’s discuss in
detail how it goes. In turbulence theory, turbulent radial fluxes can be expressed as:

Q�n ' hQn Qvri and Qq ' n0
˝ QT Qvr

˛
; (9.2)

where the first one is the particle flux, and the second the heat flux. In them, Qn
and QT represent the advected fields (say, density or temperature) whilst Qvr is the
fluctuating radial velocity (n0 is the average background density). In all cases, the
bracket stands for ensemble average. The suppression of transport caused by the
shear flow leads to a reduction of these fluxes. This can be accomplished either via
a reduction in the amplitude of any of the fluctuating fields, a change in the phase
between them or both. These fluctuating quantities are very difficult to calculate,
even for the simplest geometries. For that reason, one traditionally assumes that
some effective (eddy) transport coefficient (i.e., diffusivity or conductivity) could
be used to estimate these radial fluxes as (see discussion in Chap. 5):

Q�n � �Deffrn and Qq � �n�effrT: (9.3)

Using CTRW-like arguments, one can then assume Deff; �eff � v2� � l2=� � vl
where l, � and v the (space, time or amplitude) represent characteristic scales of
the turbulence. These typical scales must then be determined either theoretically,
experimentally or from numerical simulations.

If this interpretation is accepted as essentially valid, it is then natural to reduce
the action of the shear flow to changes in either l, v or � , according to the principles
that we briefly sketched in Sect. 9.2.2. The key point here is to note that the whole
argument rests on the hypothesis (usually assumed implicitly) that the nature of



9.3 Non-diffusive Transport Across Sheared Flows 389

radial transport must be and remains to be diffusive. Or, more precisely, that the
underlying transport dynamics must be and remain (near)-Gaussian and (near)-
Markovian, thus guaranteeing that l, � and v are physically meaningful quantities
(see discussion in Chap. 5).

Recently, several works made within our research group have investigated this
question and expressed some doubts about the validity of this paradigm [16–18].
In the context of simulations of a turbulent toroidal plasma in a tokamak geometry,
these studies have tested whether the nature of transport across a shear flow remains
diffusive or if it becomes something different instead. The results appear to suggest
that, in contrast to the aforementioned diffusive picture, radial turbulent transport
across poloidal shear flows become endowed with marked subdiffusive and non-
Gaussian features. The characteristics become more increasingly non-diffusive as
the shear in the flow becomes stronger.

Possible physical mechanisms responsible for the emergence of both subdif-
fusion and non-Gaussianity have also been identified [18]. Subdiffusion appears
to be a consequence of the differential effects that the shear flow has on eddies
with positive or negative vorticity (see Fig. 9.2), as we discussed earlier. Since
only eddies of the same vorticity as that of the shear flow are enhanced, while the
others are suppressed, the resulting vorticity landscape in which transport across
the flow takes place is dominated by a single local rotation. This situation leads
to subdiffusive transport across the flow due to the fact that reversing the direction
of transport becomes then more probable than staying on course. The reasons are
more clearly visualized in two-dimensional turbulent simulations than in three-
dimensional toroidal runs. For instance, Fig. 9.4 shows the vorticity of a drift-wave
turbulence [19] simulation carried out on a period two-dimensional slab in which the
magnetic field is perpendicular to the plane using the BETA code [8, 20]. Being two-
dimensional, the local vorticity of the flow (akin to local rotation, as we mentioned
earlier) always points in the perpendicular direction to the plane of the simulation.
In the figure, red is used for positive vorticity, blue for negative. The right frame
shows a situation without any significant shear flow. In it, vortices of both sign are
clearly seen, with a rather uniform distribution in space (and time).

Turbulent convection, in the neighbourhood of any pair of vortices, can reverse
its direction or continue its course depending on the relative sign of their vorticity
(as shown by means of sketches at the right side of Fig. 9.4). In the absence of
shear flow, this leads to an approximate CTRW with a step-size of the order of the
eddy size and a timescale of the order of the eddy lifetime. Diffusive behaviour
is then expected. In the presence of a shear flow (we use a sinusoidal profile
along x, as shown at the top of the same figure), however, the landscape changes
significantly, with the majority of space occupied with areas of the same sign of
vorticity as the shear flow. Thus, convection is more probable to reverse than to
continue on its current course, which is the seed for subdiffusion. The same general
picture can be used to understand subdiffusive in toroidal simulations, although
some modifications must be made to account for the more complex geometry [18].
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Fig. 9.4 Typical vorticity landscape in two simulations of drift-wave plasma turbulence in a two-
dimensional periodic slab. In the absence of a shear flow (right), positive (in red) and negative
(blue) vorticity are distributed intermittently in space and time, without any preferred pattern.
However, in the presence of the shear flow vy.x/ D A cos.x/; A > 0, the resulting vorticity is
dominantly negative (blue) on the left half of the slab, and positive (right) on the right half due to
the action of the shear flow on the background turbulence. As a result, transport across the shear
flow (i.e., along x) tends to reverse its direction more often compared with the case in which there
is not a preferential vorticity sign, as shown with the two sketches shown at the right side of the
figures. The successive accumulation of these reversals leads to subdiffusion along x [18]. In a
three-dimensional toroidal plasma, a similar argument can be made using the component of the
vorticity parallel to the magnetic field

It is interesting to remark that, in the case just described, the observed subd-
iffusive behaviour across the shear flow is not, in itself, a complex behaviour.12

Instead, it is much more similar to the kind of transport that takes place in a fractal
landscape, as might be the case of water percolating through a bed of porous rocks.
Subdiffusion is, in these cases, a mere reflection of the structure of the underlying
landscape and not a dynamical response.13 Indeed, transport across externally-
driven shear flows have also been shown to behave subdiffusively [16].

The reasons for transport across shear flows to exhibit non-Gaussian features are,
however, quite different. In the context of the same tokamak plasma simulations,
its origin could be traced to a complex, nonlinear interaction between local
turbulent fluctuations and local fluctuations of the shear flow amplitude [18]. The
dynamics between them was found to be very reminiscent of a predator-prey type

12At least, not in the sense of cases such as the near-marginal transport discussed in Chap. 6, where
transport was a consequence of the complex dynamics taking place in the system.
13Whether the origin of the fractal structure or the shear flow is due to complex dynamics or not,
is another matter. In the case of the self-generated edge transport barrier that appears in tokamaks,
it certainly is!
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of interaction, with the shear flow being the predator and the local fluctuations,
the prey. The situation is more or less, as follows: whenever there is a location
where fluctuations become larger (or smaller) than the average, they will tend to
drive[inhibit] the local shear flow via the Reynolds stresses. The action of this
reinforced[weakened] local shear flow on the local fluctuations will shear and stretch
them, whilst at the same time pushing them to nearby radial locations. As a result,
the local levels of turbulence at these nearby locations may increase[decrease], and
the whole process repeats itself, propagating radially in avalanche-like manner. The
radial propagation of the leading fluctuations and pursuing shear flows were found
to lack any characteristic spatial scale, which leads to the observed non-Gaussian
(i.e., Lévy-like) features.

9.4 Case Study: Transport Across Self-Consistent Zonal
Flows in Ion-Temperature-Gradient (ITG) Tokamak
Turbulence

We will investigate the nature of transport across shear flows in simulations of (ITG)
tokamak turbulence by means of (some of) the analysis tools introduced in Chap. 5.
In particular, we will illustrate the use of propagators as tools to characterize the
nature of transport (see Sect. 5.4.1). All numerical simulations have been carried
out using the UCAN2 gyrokinetic code [21, 22] in a simplified tokamak geometry,
with circular toroidal cross-sections, with typical tokamak parameters (details can
be found in [16]).

UCAN2 is a so-called particle-in-cell code (or PIC) that solves a (gyro-averaged)
kinetic equation [23] for the plasma ion distribution function14 coupled to a simpli-
fied Poisson equation. Electrons, on the other hand, are considered to be adiabatic.15

Once the ion distribution function is known, the plasma density, flow velocity and
temperature can be easily obtained in the usual way, by taking velocity moments
[25]. The Poisson equation, on the other hand, provides the temporal evolution
of the electrostatic potential consistent with the changing charge distributions that
result from the ion and electron motions. An illustration of the output of a UCAN2
simulation is provided in Fig. 9.5, that shows four different instants of the evolution

14To be more precise, UCAN2 is a so-called global ıf code, that assumes closeness to an
equilibrium distribution f0 that contains the plasma equilibrium profiles (i.e., plasma density, flow
and temperature), so that only the deviations from f0 are followed in time. These type of setups are
very useful to evolve turbulence over a large domain as long as the variations of the profiles are
not too large. For that reason, they would not be good for turbulence simulations in near-marginal
conditions, where intense profile evolution is expected at the fluctuation scales. The approach is
however adequate for the kind of study carried out here.
15This means that electrons are considered to be extremely mobile, being able to move along the
field lines to provide any force balance required. This approximation importantly simplifies the
simulations, since the electron distribution function does not need to be computed [24].
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Fig. 9.5 Successive
snapshots of electrostatic
potential fluctuations in the
UCAN2 toroidal simulations
showing the development of a
strong poloidal shear flow
(second frame from above),
that breaks the linear ITG
structures (top frame), and
shears eddies reducing their
typical size, as shown in the
last two frames. The last
frame corresponds to the
starting time considered for
the propagator studies carried
out in this chapter to
determine the nature of radial
transport, that is already well
inside the nonlinearly
saturated phase

(time increases from top to bottom) of the electrostatic potential for a run in
which the dominant instability was the so-called ion-temperature-gradient (ITG)
mode.16 The sequence of frames selected is particularly interesting since it shows,
in its second frame, that an intense poloidal shear flow is being self-driven by the
turbulence and that it shears apart the linear turbulent structures present in the top
frame. The final result, at saturation, is a turbulent state with much smaller turbulent
structures (see last frame).

16ITG instabilities are thought to be responsible for a large fraction of the radial ion heat transport
in tokamaks [19].
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Fig. 9.6 Typical gyro-averaged ion trajectories from the UCAN2 toroidal simulations studied
here. Left: trajectory of a trapped ion gyrocenter in 3D (below), and its intersection (above)
with the toroidal plane � D 0. Right: trajectory of a passing ion gyrocenter in 3D (below) and
intersection with the � D 0 plane (above). Passing particles are identified by circular intersections,
whilst trapped particles exhibit banana-like shapes

The fact that UCAN2 is a PIC code is particularly useful for us. The reason is
that PIC codes solve the gyro-averaged ion kinetic equation by means of marker
particles [26]. That is, they follow the trajectories of selected ion gyrocenters
in phase space,17 from which the gyro-averaged ion distribution function can be
easily built, instead of discretizing the phase space on which the gyro-kinetic
equation must be solved using a discrete mesh. The spatial part of these trajectories
correspond to the Lagrangian (gyro-averaged) trajectories that the gyrocenters of
actual ions would follow in the toroidal domain of the simulation (see Fig. 9.6).
Two main types of gyrocenter trajectories appear in these simulations: passing and
trapped. The distinction is due to the fact that the magnetic field is not uniform in
strength, but has a strong (decaying) dependence with the major radius of the torus

17The usual phase space in which any kinetic equation is solved has six dimensions, three spatial
ones corresponding to position and another three that correspond to the velocity vector. In gyro-
kinetics, however, the averaging over the gyro-motion eliminates one velocity dimension [23]. The
velocity part of phase space is thus reduced to two dimensions, one for v

?
and another for v

k
,

respectively the perpendicular and parallel components of the velocity with respect to the local
magnetic field. v

?
is no longer a vector since the gyro-phase, that gives its orientation, is gone

after the averaging.
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(i.e., B / 1=R). Since the gyro-averaging process makes the magnetic moment � D
mv2?=2B of each ion to be conserved [23] and since its energy, E D m.v2k C v2?/=2,

is also conserved in the motion,18 it follows that the parallel velocity of the ion
gyrocenter with respect to the magnetic field is given by v2k D 2E=m � �B. As a
result, if an ion gyrocenter moves in a region where B is increasing, it may reach a
position where �B > 2E=m, forcing the particle to reverse its parallel direction.19

This usually happens, for ions with sufficiently small energy, in the inside part of
the torus as illustrated in Fig. 9.6. This distinction will be important in what follows.

PIC codes have advantages and disadvantages, as any other numerical method
does. For us, however, the fact that they employ marker particles is great news
since we can easily use their trajectories to build the kind of Lagrangian diagnostics
discussed in Chap. 5 to characterize the nature of turbulent transport in the simu-
lations. In particular, we will use them to build radial propagators (discussed in
Sect. 5.4.1). The case we will study corresponds to a UCAN2 simulation in which
the dominant instability is the ion-temperature-gradient mode. The geometry is a
torus of major radius R D 1:7m and minor radius a D 0:4, with a magnetic
field value at the magnetic axis B0 D 1:87T. The actual profiles of the rotational
transform, density and temperature profiles considered can be found elsewhere [16],
since we will consider here the same simulation data used in that paper.20 For
the purpose of this discussion, it suffices to say that the plasma profiles are such
that they are well above the local instability threshold for ion-temperature-gradient
modes, thus excluding the possibility of any near-marginal dynamics. These choices
allow us to focus exclusively on the effect of the shear flow on radial transport.
The simulations have been run for a long time (of the order of a few milliseconds,
that must be compared with the local turbulent timescales, of the order of a few
microseconds), sufficient for shear flows to develop and saturate with the turbulence
(see Fig. 9.7). It is only for times beyond the saturation time (roughly given by t0
in Fig. 9.7) that the nature of radial turbulent transport is examined. It is also worth
mentioning that the poloidal zonal flows that are established at the steady state of
this simulation extend over the whole radius, as shown in the right inset of Fig. 9.7,
which gives us ample radial space to run the diagnostics.

18We use the common practice of denoting v
?

and v
k

as the components of the ion velocity
perpendicular and parallel to the local magnetic field.
19When all other drifts are considered, in addition to parallel motion, the projection of the trajectory
of any trapped particle on any toroidal cross section has a crescent moon or banana shape. For that
reason, trapped ion orbits are usually known as banana orbits.
20The same goes for the numerical details of the simulation, such as the number of cells considered,
the number of particles per cell included or the time resolution used.
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Fig. 9.7 Time evolution of the total electrostatic energy of the simulation (namely, the volume
integral of j Q�j2) showing three distinct phases: (a) the linear ITG growth phase (up to 0.3–0.4 ms);
(b) the slower growth phase that corresponds to the build-up of the shear flow and its saturation
with the background turbulence (from 0:4 to 4:5 ms); (c) the quasi-steady phase (for times larger
than t0 ' 5:7ms). The characterization of transport is done over the quasi-steady phase. A snapshot
of the potential fluctuations and the poloidal flow at the � D 0 toroidal cross-section are shown for
the instant marked with a circle

9.4.1 Radial Propagator Analysis

A propagator, G.x; tjx0; t0/, is just the probability of finding a particle at position x
and time t if it was previously at position x0 at time t0. We talked about propagators
lengthily in Chaps. 3 and 5. In Sect. 5.4.1, we also discussed how propagators can be
used to characterize the nature of transport. In the simplest implementation of these
methods, one simply took advantage of the fact that their asymptotic behaviour is
known for model transport equations of special significance, such as the classical
diffusive equation (Eq. 5.3) or the fractional transport equation (Eq. 5.66), and use
this knowledg to estimate the values of the fractional transport exponents (using, for
instance, Eqs. 5.89 and 5.82).

However, in order to illustrate the full power of using propagators, we will fit the
evolution of the full numerical ion gyrocenter propagator to that of the propagator
of the fractional transport equation (Eq. 5.60) using the chi-square minimization
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Fig. 9.8 Variance of the ion radial propagators as a function of the elapsed time, as measured from
t0. The times corresponding to the propagators in Fig. 9.9 are marked with vertical red lines

procedure described in Sect. 5.4.1. The outcome of the minimization will yield the
values of the two fractional exponents, ˛ and ˇ, that define the fractional transport
equation that provides the best effective description for the process. The numerical
propagator is obtained by considering the evolution in time of a sub-population
of gyrocenters that is initially localized around the radial location r=a ' 0:4,
sufficiently close to the center of the simulation box to minimize finite-size effects.
In order to improve the statistics, all gyrocenters initially localized in the range
r=a ' 0.39–0.41 were used, amounting to approximately 75;000 of the 4 million
particles used in the UCAN2 simulation. The propagators are then constructed, at
every time step up to a maximum elapsed time of 5ms, by calculating the pdf of
their radial displacement with respect to their initial condition. The initial time was
chosen to be t0 D 5:7ms to ensure that the turbulence was already well within the
saturated area.

There is however an issue that must be dealt with before the minimization that
will yield the exponents can be carried out. Figure 9.8 illustrates the problem by
showing the variance of the propagator as a function of the time lag measured from
t0. Clearly, a subdiffusive scaling (the variance would scale linearly for a diffusive
process) is exhibited at time lags longer than half a millisecond, which is longer
than the turbulent characteristic timescale (of the order of tens of microseconds).
At shorter times, however, motion is not just ballistic as one would expect from
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self-correlation. Instead, an almost flat scaling region is found at around 0.1–0.2 ms,
that suggests that the gyrocenters barely move radially over that timescale. It turns
out that his timescale coincides with the average banana bouncing time, the time
that ion gyrocenters need to complete one banana orbit when they are trapped (see
left frame of Fig. 9.6). Since the gyrocenter of any trapped ion comes back to its
initial radial location after exploring a radial extension of the order of the banana
width, the fact that flattening is observed suggests that the trapped population is
significant in these simulations. Since it is long-term radial transport dynamics that
we are interested in, we need to adapt the minimization process accordingly to avoid
trapping effects.

We proceed as follows to determine the fractional exponents ˛ and ˇ. First, we
build a target function according to Eq. 5.86, that includes the difference between
the numerical and the analytical propagator as a function of the exponents. In order
to circumvent the trapping issue just mentioned, we only considered propagators for
�t > 0:4ms in order to calculate the target function. Snapshots of the propagator
are shown in Fig. 9.9 for two different values of the elapsed time. A Levenberg-
Marquardt minimization of the target function then leads to a value of the spatial
fractional exponent ˛ � 1:42 and a value of the temporal fractional exponent ˇ �
0:43 as the ones that provide the best fit. Therefore, the transport dynamics across
the shear flow present in the UCAN2 simulation are strongly non-Gaussian and non-
Markovian. The resulting transport exponent is then H D ˇ=˛ � 0:30, that shows
that radial transport across a strong poloidal shear flow is clearly subdiffusive.

9.4.2 Other Considerations

The analysis just described shows that, by means of the tools introduced in Chap. 5,
it is possible to show that radial transport across the poloidal shear flow generated
by the ITG turbulence in the UCAN2 run is both subdiffusive and non-Gaussian,
at least for timescales much longer than the local turbulent decorrelation times
(and the banana bouncing time). It does not prove, however, that the poloidal shear
flow is the cause of the observed subdiffusion and non-Gaussianity, nor it provides
an explanation of why this behaviour takes place. These questions can however
be addressed by applying similar techniques. In particular, the role played by the
shear flow can be characterized by repeating the same analysis used here on another
UCAN2 simulation, with the same parameters, but with the shear flow artificially
zeroed-out at each iteration. This was done within our group and we found that the
resulting radial transport became Gaussian and diffusive. This different behaviour
pointed to the shear flow as the main culprit for the observed change in the nature
of transport[16]. We also carried out additional UCAN2 simulations that included
either stronger or weaker turbulence drives, resulting in shear flows with different
shearing capabilities. By means of the propagator analysis of these runs, it was
also shown that subdiffusion became more pronounced (i.e., H gets smaller) as the
shearing capability of the flow becomes larger [17]. We also found that transport



398 9 Laboratory Plasmas: Dynamics of Transport Across Sheared Flows

Fig. 9.9 Numerical radial propagators obtained after 0:75ms and 1:15ms have passed since the
initial time at t0 D 5:7ms. The best fit found for the data, using a Levenberg-Marquardt algorithm
to minimize the target function defined in Eq. 5.86, yields a value of the fractional spatial exponent
˛ D 1:42 and fractional temporal exponent ˇ D 0:43 The associated transport exponent is H D
ˇ=˛ D 0:3, that is strongly subdiffusive

of a similar nature was observed independently of the origin of the shear flow by
carrying out simulations that replaced the self-consistent, time-evolving shear flow
with a time-independent, externally imposed shear flow with a radial profile given
by the time-average of the self-consistently generated one. The value of H was then
found to be very similar in both cases, although the non-Gaussian features were
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absent in the externally-driven cases [17]. Finally, the reasons for the appearance of
non-Gaussian features was explored and discussed in [18].

9.5 Conclusions

In this chapter we have shown that transport across shear flows may become
endowed with non-diffusive features if the shearing capability of the flow is
sufficiently strong. We have also proved that the use of propagators can be a very
useful tool to investigate the non-diffusive nature of transport in complex systems.
In fact, propagators have been used extensively in the literature, particularly in the
context of numerical simulations. For instance, without leaving the field of magnetic
confinement fusion, propagators have also been employed to characterize transport
dynamics in near-marginal conditions similar to those discussed in Chap. 6. The
codes used in these studies did not use particle techniques and, therefore, required
the introduction of tracer particles [27]. Lagrangian techniques, such as those
discussed in Sect. 5.4.2, provide an alternate approach that has also been used in
this context [8, 28]. The usefulness of all these methods is by no means restricted
to fusion plasmas, though, and many of them have also been applied to many other
contexts where complex dynamics are at work [29, 30].
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