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Preface

This book is the product of the efforts of a group of people affiliated with the
Committee on Artificial Intelligence Applications to Environmental Science of the
American Meteorological Society (AMS). This committee has sponsored four two-
day short courses or workshops on the applications of Artificial Intelligence (AI)
techniques in the environmental sciences and is currently planning its seventh con-
ference. Although it began as a loose knit group of AI practitioners, it has evolved
with the field to help guide the development of new methods and their applications in
the environmental sciences. Several authors and editors have authored or coauthored
full books of their own, some on the AI methods themselves and others related to
specific environmental science topics.

The idea to band together to write a book grew during the planning phase for
the third Short Course held in Atlanta, GA in January 2006 in conjunction with
the Annual Meeting of the AMS. While preparing materials for a short course, we
wondered why not also compile our lectures and demonstrations in book form? The
idea began there, but continued to expand. We did not want to be merely an amalga-
mation of different topics, but rather to have a sensible organization and a common
theme. The organization was suggested by the Springer reviewers who convinced us
to divide the book into a teaching portion (Part I, which motivates and introduces
the primary AI techniques) and a showing portion (Part II, which comprises example
applications of the techniques). Developing the common theme required many email
exchanges between the editors and a final real-life discussion between authors at the
2006 Short Course. Thus was born the “red thread” that weaves the book together.
The red thread blends cultures in several senses. The American editors talked about
weaving a thread through the book to tie it together while the Italian editor wrote
about drawing a “red line” through the book to make the connections clear. So the
“red thread” is a cultural blending of ideas in very much the same sense as AI is a
blending of traditional techniques with the more recent ones for making sense of data.
We wish to be careful to avoid too much of a contrast, since in some sense, AI is just
a new terminology for codifying very old ways of making sense of data. Chapter 1
emphasizes this point by showing the development of traditional dynamics-based
modeling for weather forecasting, then developing the basic data-based AI concepts.
In a similar vein, Chapter 2 relates some traditional statistical models with more
recent ideas developed in AI and machine learning circles.

Although our styles of presentation may differ, this book was edited to maintain
a consistent “spirit.” We have used the red thread to weave the fabric of the methods
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into a tapestry that pictures the “natural” data-driven AI methods in the light of the
more traditional modeling techniques.

The editors wish to thank the Springer editors; the American Meteorological
Society, particularly the Scientific and Technological Activities Commission that
sponsors the Committee and has supported our conferences, short courses, and
workshops; and particularly, all the participants in our events who have helped us
to continue to think of fresh ideas for applications.

Sue Ellen Haupt, Antonello Pasini, and Caren Marzban
2008
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1Environmental Science Models
and Artificial Intelligence

Sue Ellen Haupt, Valliappa Lakshmanan, Caren Marzban,
Antonello Pasini, and John K. Williams

1.1 On the Nature of
Environmental Science

Environmental science is one of the oldest scientific
endeavors. Since the dawn of humanity, along with the
ability to reason came the ability to observe and inter-
pret the physical world. It is only natural that people
would observe patterns then build basic mental models
to predict a future state. For instance, records indicate
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that there has long been a version of the adage “Red at
night, sailor’s delight. Red in the morning, sailors take
warning.”1 This saying is a simple predictive model
based on generations of experience, and it often works.
Over time people noted relationships between observa-
tions of the sky and subsequent conditions, formed this
mental model, and used it to predict future behavior of
the weather (Fig. 1.1).

The age of enlightenment following the Renais-
sance brought a more modern approach to science.
Careful experimentation and observation led to uncov-
ering the physics underlying natural phenomena. For
instance, a modern understanding of “Red at night,
sailor’s delight” is based on the theory of Mie scat-
tering. Light rays are scattered by large dry dust par-
ticles to the west in the setting sun. According to
this theory, large particles tend to scatter the longer
wavelength red light forward more than they do the
other frequencies of visible light. The long trajectory
of the solar beams through the atmosphere when the
sun is at a very low zenith angle (such as at sunset
or sunrise) compounds this effect. Thus, when light
rays from the setting sun are scattered by large dry
dust particles associated with a high pressure system to
the west, more red light reaches the observer, and the
sky appears red. Since prevailing winds in the mid lat-
itudes (where this adage is common) blow from west
to east, more Mie scattering at dusk implies that a dry
weather pattern is approaching. “Red in the morning,
sailors take warning,” refers to a similar process at

1 For instance, see the quote in Matthew 16:1-2 of the Bible: “He
replied, ‘When evening comes, you say, ‘It will be fair weather,
for the sky is red,’ and in the morning, ‘Today it will be stormy,
for the sky is red and overcast’ ” (NIV).

S. E. Haupt et al. (eds.), Artificial Intelligence Methods in the Environmental Sciences 3
© Springer-Verlag Berlin Heidelberg 2009
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dawn when the low zenith angle in the east would pro-
duce more scattering associated with a high pressure
system that has already passed, thus suggesting the
possibility that a low pressure system is now approach-
ing and wet weather may follow. This example exem-
plifies the types of physical explanations of observed
phenomena that developed in the environmental
sciences.

Emergence of modern mathematical techniques
gave scientists a new language to describe the natural
world. The new physical understanding was codified
into partial differential equations (PDEs) that repre-
sent the details of the physics. These PDEs can be
used to predict the future evolution of a system given
its initial state. Modern meteorology began with the
development of the primitive equations that describe
the conservation of mass, momentum, and energy in
the atmosphere. It was necessary to specify the exter-
nal forcings, including solar insolation and the Earth’s

rotation. Appropriate boundary and initial conditions
had to be applied. Numerical techniques were devel-
oped to discretize interlinking equations to form alge-
braic equations that can be solved simultaneously.
In the 1920s, a pioneer of modern meteorology, L.F
Richardson, attempted to integrate the full primitive
equations by hand. Unfortunately, he did not know
about the importance of filtering the equations to avoid
the effects of fast gravity and acoustic waves, which
caused his integration to “blow up” (Richardson 1922).
In spite of the fact that he obtained a very unphysical
solution and that the hand integration of the equations
took much longer than the weather itself, Richardson
made a huge impact on the science of weather fore-
casting through demonstrating that the equations could
be used for prediction and by foreseeing the impact
of modern parallel computing. In his 1922 treatise, he
imagines an orchestration of human “computers” for
numerical weather prediction:

Fig. 1.1(a) “Red at night, sailor’s delight.” Source: Copyright B.A. Haupt (2005)
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Fig. 1.1(b) “Red in the morning, sailor’s take warning.” Source: Copyright B.A. Haupt (2005)

Imagine a large hall like a theatre, except that the circles
and galleries go right round through the space usually
occupied by the stage. The walls of this chamber are
painted to form a map of the globe. The ceiling repre-
sents the north polar regions, England is in the gallery,
the tropics in the upper circle, Australia on the dress
circle and the antarctic in the pit. A myriad of computers
are at work upon the weather of the part of the map
where each sits, but each computer attends only to one
equation or part of an equation. The work of each region
is coordinated by an official of higher rank. Numerous lit-
tle “night signs” display the instantaneous values so that
neighbouring computers can read them. Each number is

thus displayed in three adjacent zones so as to maintain
communication to the North and South on the map. From
the floor of the pit a tall pillar rises to half the height of
the hall. It carries a large pulpit on its top. In this sits
the man in charge of the whole theatre; he is surrounded
by several assistants and messengers. One of his duties
is to maintain a uniform speed of progress in all parts
of the globe. In this respect he is like the conductor of
an orchestra in which the instruments are slide-rules and
calculating machines. But instead of waving a baton he
turns a beam of rosy light upon any region that is running
ahead of the rest, and a beam of blue light upon those
who are behindhand.
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(a)

(b)

Fig. 1.2 Schematic of the Norwegian Cyclone Model. (a) Horizontal and (b) vertical cross-sections

Four senior clerks in the central pulpit are collect-
ing the future weather as fast as it is being computed,
and despatching it by pneumatic carrier to a quiet room.
There it will be coded and telephoned to the radio trans-
mitting station. Messengers carry piles of used comput-
ing forms down to a storehouse in the cellar. (Richard-
son 1922)

At the same time, weather observations continued and
more formal models of repeated patterns were for-
mulated. For instance, in meteorology, the Norwegian
cyclone model emerged in the early 1920s, attributed
primarily to V. Bjerknes and J. Bjerknes (Reed 1977).
It describes a weather system in terms of warm fronts,
cold fronts, and occluded fronts (see Fig. 1.2). In
between the warm and cold fronts is a warm sec-
tor. High cloudiness is expected to precede the warm
front, which brings in warm southerly winds some-
times preceded by a band of light showers. The warm
air rises over both the old cold air being pushed out

as well as the new cold air ushered in by the cold front.
This conveyer belt of rising warm air produces con-
vection, cooling, condensation, and rain. Convective
motion causes showers in the warm sector and deep
convection near the cold front often results in violent
thunderstorms. So before scientists could accurately
model cloud physical processes and their relationship
to precipitation mathematically, they could use the
Norwegian cyclone model to interpret the skies and
predict associated precipitation patterns. Once again,
lots of observations came together to form a more
formal model of atmospheric phenomena useful for
prediction.

With the advent of electronic computers in the
1950s, meteorological research returned to numeri-
cal weather prediction, this time aided by the rapid
calculations of a machine. The first operational com-
puter, the ENIAC (Electronic Numerical Integrator
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and Computer) at Aberdeen Proving Grounds became
the forecasting tool of Jules Charney, John von Neu-
mann, and R. Fjortoft. They wrote the dynamical
relationships in the form of the barotropic vorticity
equation, which does not include the fast gravity and
acoustic waves that had plagued Richardson. Their
efforts met success in 1950 when they produced the
first useful numerical weather forecast on the ENIAC
(Charney et al. 1950; Lorenz 2006). The field of
Numerical Weather Prediction (NWP) was thus born.
The field advanced (and continues to advance) through
the development of finer resolution models with
smaller time steps that can capture more details
of the physics. These NWP models have grown to
include cloud microphysics, details of radiative trans-
fer, interactions with the biosphere and cryosphere,
and dynamic oceanic forcing, among other important
dynamical and physical processes. For quite some
time, the accuracy of short term prediction contin-
ued to improve. Some even thought that if researchers
could continue to better define the physics and refine
the spatial and time scales, they would eventually be
able to perfectly predict the weather arbitrarily far in
advance.

This hope was dashed by the famous rediscovery
by Ed Lorenz at MIT of what has become known as
chaos theory (Lorenz 1963). Dr. Lorenz was study-
ing a version of the atmospheric equations simplified
to just three nonlinearly coupled ordinary differential
equations (Gleick 1987). He started a numerical inte-
gration of his “simple” system of equations then went
to lunch. When he came back, his computer run had
stopped and he wanted to restart it. He went back
several steps and entered the solution at that time as
an initial condition for the next run. Then he real-
ized that the numbers coming out of the computer
did not quite exactly match those from the succeeding
steps of the previous run. Computers were supposed to
exactly reproduce their prior computations. What was
different? The cause of the disparity was eventually
traced to the fact that when he typed in the numbers
to restart the program, he did not type in all the digits.
The small round-off error grew with time. What he
discovered was that in nonlinear dissipative systems,
there is sensitivity to initial conditions. This sensitivity
means that when a computer model is started with
two sets of initial conditions that differ only slightly,
the resulting solutions can diverge rapidly in time.
Lorenz’s observation led to the discovery of chaotic

flow and of the limits to predictability in systems of
equations such as those representing the atmosphere.
What does this imply for forecasting the weather by
integrating the dynamical equations? It implies that
there is a limit to predictability. No matter how big and
fast our computers become, we cannot expect to ever
forecast accurately beyond this inherent limit. There is
hope, however, that we can find the “strange attractor”
of the system, and we are assured that the solution will
be somewhere on that manifold of possible solutions.
Thus, it might be possible to say something about the
likely weather pattern, even without pinpointing the
specific conditions. Figure 1.3 pictures the “butterfly”-
shaped strange attractor of Lorenz’s three equation
system in the chaotic regime.

Several new research fields emerged to deal
with the discovery of the limits to predictability.
The first involves trying to transform atmospheric
measurements into an appropriate “initial condition”
for a forecast model run. This process is known as ini-
tialization. Various complex statistical techniques can
be used to first assimilate and interpolate the monitored
data to the grid of the model and find a best fit to the
steady state model equations. In this manner, the initial
condition is tuned to have the lowest possible error to
help keep it closer to the solution that could be repre-
sented by the model. (See Daley 1991 or Kalnay 2005
for more discussion.)

A second new direction that has emerged is using
statistical and data-based approaches to weather pre-
diction. One class of methods is model output statis-
tics (MOS), which compares past model predictions
to corresponding records of the observed actual condi-
tions to tune the model or adjust its forecasts (Glahn
and Lowry 1972). Another class of methods involves
addressing sensitivity to initial conditions head-on by
using multiple initial conditions to initialize ensembles
of NWP model runs. The forecaster must then interpret
the multiple forecasts to make a prediction, but is pro-
vided a measure of uncertainty via their variance. At
the lowest level, this approach has returned to using
the human art of forecasting to distinguish between
and synthesize the ensemble of solutions. Of course,
it was not long until advanced statistical techniques
attempted to emulate that human process by using
methods reminiscent of model output statistics to tune
the ensemble model runs (Gnieting and Raftery 2005).

Now that statistical techniques have been applied
to the forecasting problem, it is natural to ask whether
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Fig. 1.3 The Lorenz attractor

a completely statistical approach could be developed.
Some recent research has attempted to do that to
a limited extent. Among the nascent techniques are
empirical methods that are no longer based on the
deterministic physics, but instead seek ways to glean
past information for predictive modeling and to code
it into PDEs. Such empirical stochastic methods have
been successful at predicting some major atmospheric
phenomena such as the El Nino/Southern Oscillation
(Penland and Matrosova 1998) and for determining
how the atmosphere responds to an imposed forcing
(Branstator and Haupt 1998).

These developments leave environmental science in
general, and numerical weather prediction in partic-
ular, at a crossroads. There are two totally different
approaches to forecasting: the first is deterministic or
dynamics-based and depends on our ability to write
all the dynamical and physical processes mathemati-
cally and to discretize them so that they can be solved
numerically; the second is empirical or data-based,
and depends on the available data and how we choose
to use it statistically for prediction. Both approaches
typically require large scale computing resources.

Even newer are forecasting techniques that attempt
to return to the early methods of recognizing useful
patterns without employing formal statistical theory.
These methods are empirical data-based methods that
do not directly depend on dynamics, but instead seek
to model some natural process. The goal of this book

is to demonstrate how these “artificial intelligence”
methods can be successful at recognizing patterns, per-
forming regression for the purpose of prediction, and
optimizing solutions to difficult nonlinear problems.
These methods are different from the prior directions
of numerically integrating carefully derived dynami-
cal physics equations. Researchers who use artificial
intelligence methods are never able to include every
tiny detail of the physics in their equations. There is
inherent uncertainty in both the measurements and the
equations. But looking at how the environment has
previously changed will help us predict how it will
change the next time, even without modeling all the
details. We can use the patterns we recognize, whether
they are cold fronts and warm fronts or clustering in
some phase space to tell us what typically happens
in such a situation. Lorenz’s work (1963) implies that
we will never be able to exactly predict the future
behavior of these complex systems, but it does not
inform us whether our dynamics-based methods are
likely to be any better than our data-based methods.
Many researchers have been highly trained in the phys-
ical dynamics-based deterministic methods, and that is
certainly helpful background for our adventure into the
empirical data-based AI methods.

These developments in weather forecasting are
indicative of the types of challenges that arise in
the broader field of environmental science. Solid
earth geophysicists have explored physical models,
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data-based models, and artificial intelligence methods
to advance their field. So have wildlife biologists, ecol-
ogists, water resource managers, air pollution experts,
and space scientists, among the many other branches
of environmental science.

Many environmental fields deal with complex sys-
tems: the atmosphere and the climate system, for
instance, or, even more complex living ecosystems and
their environment. From a dynamical point of view, we
can look at these systems as built on a very high num-
ber of component subsystems that interact with each
other with feedback. The dynamical approach to grasp-
ing this complexity is based on a “decomposition-
recomposition” strategy: look at the fundamental sub-
systems and interactions, phenomena and processes;
describe them via dynamical equations; and, finally,
simulate the complex system in a computer by means
of one or more systems of coupled equations (see
Pasini 2005 for an introduction to this dynamics-based
approach to modeling in weather and climate studies).

Due to the complexity of the physical systems ana-
lyzed, dynamics-based models can suffer from sig-
nificant problems, such as the difficulty of correctly
balancing the “strength” of the many interactions
and feedbacks. Often, the modeler must fine-tune the
values of the coupling parameters to obtain realis-
tic behavior: obviously, this makes it impossible to
uniquely reconstruct the simulated system, thus weak-
ening the reliability of the simulation results coming
from the deterministic model. Therefore, the challenge
of complexity seems to hint at the need for a more
phenomenological approach where the system can be
considered as a whole and its behavior can be analyzed
in terms of the evolution in time of some representative
or important variables of the system, subject to all the
interactions and feedbacks. In this framework, artifi-
cial intelligence methods have proven useful.

1.2 On the Nature of Artificial
Intelligence

Artificial intelligence (AI) has grown out of modern
computing combined with a plethora of data to inter-
pret and engineering problems to solve. In some sense,
it returns to the earlier methods of analyzing data and
trying to build predictive models based on empirical
data in a “natural” way. In this sense, AI techniques are

typically more data-based than dynamics-based. This
use of data can make fast, robust, and skillful forecasts
possible in domains that might be intractable by a
dynamics-based approach. As Einstein once remarked,
“So far as the laws of mathematics refer to reality, they
are not certain. And so far as they are certain, they do
not refer to reality” (Einstein 1922).

A 19th century scientist would be astonished by
the capability of today’s computers – solving multi-
variable PDEs, running numerical models of the
atmosphere, or simulating debris flows, for instance.
Yet, that scientist would be equally astonished by the
incapabilities of modern computers – their limitations
in recognizing a face in a crowd or responding to
spoken language, for example. Humans, on the other
hand, find that recognizing faces is a cinch but solving
multi-variable equations is hard. This is not how it was
supposed to be. The earliest computers were billed
as machines that could think. Indeed, AI has been
defined as enabling machines to perceive, understand,
and react to their environments. Although perceptive
humanoid robots have been a staple of science fic-
tion for many decades, they are still quite impracti-
cal. Rather, successful applications of AI have concen-
trated on single tasks, such as optimally managing the
gates at an airline terminal or successfully classifying
cells as benign or cancerous.

AI started out by attempting to build upon
Aristotelian ideas of logic. Thus, initial research
emphasized induction and semantic queries. The goal
was to build a system of logic by which computers
could “reason” their way from simple bits of data to
complex conclusions. After all, humans do this sort
of reasoning effortlessly. However, it slowly became
apparent that there is more to human reasoning than
just induction. Humans, it turns out, are naturally good
at many things in ways that current computer designs
may never match.

AI researchers scaled back their overly ambitious
initial goal to that of building systems that would com-
plement human users and do tasks that humans found
onerous. Computers are good at unflaggingly process-
ing reams of data and performing complex computa-
tions, but poor at obtaining a holistic view of systems.
Humans, good at higher-level thinking, find it hard
to do mind-numbing calculations. AI researchers also
approached the problem with a new awareness of the
impressive performance of biological systems. Thus,
many of the new AI approaches were intentionally
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modeled on the way human experts thought or behaved
or on how underlying biological systems such as the
human brain worked.

Rather than building an AI system that would
replace a human’s multifaceted capabilities, resear-
chers concentrated on building special purpose sys-
tems that could do one thing well. Thus, instead of
building a system that would conduct a wellness check
on a patient, for example, they developed a system
that would determine an appropriate drug dosage for a
cancer patient. The solutions to such targeted problems
were called expert systems, because they encoded the
rules that an expert in the field would follow to come
to his or her conclusions. Computers proved capable of
quickly and objectively determining answers to prob-
lems where the methodology was precisely defined.
The rules in such expert systems are often in the form
of decision trees, where the answer to one question
narrows down the possibilities and determines what
question is asked next, until all possible conclusions
but one (or a few) are eliminated.

One fundamental problem in expert systems is
how to represent and apply the domain knowledge
of experts. Experts often state their knowledge ver-
bally using imprecise words like “not very hot” and
“less water.” Such words do not lend themselves well
to decision trees since the ambiguity can span mul-
tiple branches of the tree at each step. This issue
is addressed by another AI technique: fuzzy logic.
Fuzzy logic provides a framework for encoding impre-
cise verbal rules – such as those provided by sub-
ject domain experts – and aggregating them to yield
a final answer. It also allows partial, ambiguous or
uncertain evidence to be maintained and efficiently
synthesized in the production of the final result. The
most celebrated successes of fuzzy logic have been in
Japan, where numerous engineering control systems
have been built based on encoding expert knowledge
in fuzzy rules that are then combined for prediction or
control.

Fuzzy logic can be used to create automated
decision support systems that model what a human
expert would do under similar circumstances. Because
humans are considerably skilled at recognizing
patterns and often understand the underlying processes
that lead to the data, the verbal rules formulated by
human experts are often quite robust, even to unseen
data and unanticipated situations. A fuzzy logic
system, by piggy-backing on such effective analysis,

can possess considerable skill. Because fuzzy logic
systems are relatively simple to encode and do not
require training datasets, they are also fast to create
and implement. Another advantage of these systems,
often a deciding factor in many applications, is that
the fuzzy rules and their synthesis can be naturally
interpreted by a human expert. If a training dataset
is available, it can be used to optimize the fuzzy
logic algorithm’s parameters, though this step is not
required. Thus, a fuzzy logic system can provide
considerable skill and a human-understandable,
tunable system for very little investment.

Fuzzy logic systems often provide good solutions to
problems for which reliable expert knowledge is read-
ily available and can be represented with verbal rules
or heuristics. While there are many situations where
this is the case, there are also many others in which
either no experts are available or their knowledge
cannot easily be represented with verbal rules. One
might gauge the suitability of a fuzzy logic approach
by assessing whether different experts tend to agree
on data cases; if they don’t, it might be necessary to
code and evaluate multiple fuzzy logic algorithms to
represent the range of solution methodologies, which
might not be practical. It may also be difficult to deter-
mine whether the verbal rules that experts identify
is really all that they use to come to their conclu-
sion. Humans often underestimate the role of intuition
or the subconscious knowledge brought to bear on a
problem. Moreover, many domains in the environ-
mental sciences are exceedingly complex and poorly
understood to begin with, so a method capable of auto-
matically recognizing patterns from data may be more
appropriate.

Fortunately, another AI method excels at modeling
complex, nonlinear systems based on data – the neural
network (NN), Like many AI methods, NNs are bio-
logically inspired. The name comes from the fact that
they were initially modeled on the way neurons fire,
with the accumulated firings of many neurons together
determining the brain’s response to any particular set
of stimuli. The most common architecture used in NNs
comprises three layers of neurons – an input layer, a
layer of “hidden nodes” and a final output layer. Such
an NN can represent any continuous function on a
compact domain arbitrarily closely, even a nonlinear
one, if it has enough hidden nodes – though choosing
the optimal number of hidden nodes for a particular
problem may require some effort (Cybenko 1989).
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Feed-forward NNs are members of the class of
supervised learning machines. In a process called
“training”, such a learning machine is presented with
patterns – sets of inputs and target values, or ideal
output corresponding to desired responses to those
inputs. The target values may either be provided by
an expert in the field, or can be obtained from field
surveys, measurements and other information; as such,
the target values are often referred to as “ground truth.”
At the end of training, if all goes well, the learning
machine will have created a function that approxi-
mately maps the training inputs to the associated tar-
gets. Subsequently, when this function is presented
with a new set of inputs, it determines a response based
on the evidence generalized from the training speci-
mens. Thus, if viewed as an expert system, NNs learn
previously unknown relationships or knowledge that
experts may not be able to represent with verbal rules.
This is because supervised learning machines approx-
imate expert learning behavior, not by approximating
the logic that experts use and inexactly describe, but by
creating a new mapping to the ground truth associated
with the inputs. Specifically, NNs are trained by adjust-
ing their parameters to minimize a cost (or objective)
function – a quantity that is usually some function
of the difference between the target values and the
approximation thereof produced by the network.

Although NNs can represent any continuous func-
tion and avoid the problem of depending on expert
descriptions by learning data relationships instead,
that flexibility comes with a price. First, although
the NN learns to approximate the mapping from
training samples to target values, the actual function
used to represent this approximation is encoded in
a large set of connection weights that usually yield
no insights. Thus, unlike an expert system, an NN
representation is generally not human-understandable,
though researchers have found ways to extract approx-
imate rules from an NN in some specific cases (see, for
instance, Setiono et al. 2002). The inability to explain
in simple terms the behavior of an NN has led to it
being called a “black box.” However, it is important
to point out that this opaqueness is not specific to
NNs but applies to many nonlinear models, which may
represent the physical world very well but resist being
neatly summarized. The fact is that the human desire to
explain relationships in simple terms may be inconsis-
tent with the competing requirement to have the most
accurate predictions possible, a trade-off that is not

peculiar to AI; more details on this will be provided
in Chapter 2.

NNs’ ability to fit any data places severe require-
ments on the data necessary for training them. Many
NNs have a large number of parameters (weights) that
must be estimated during the training phase. The esti-
mates can be highly unreliable if the size of the train-
ing data set is not sufficiently large. An abundance of
parameters can also lead to overfitting (see Chapter 2),
which in turn can adversely affect NNs’ performance
on “new” data (i.e., not included in the training set).
In short, properly training an NN requires lots of data.
How much? That question is difficult to answer, but
Chapter 2 describes some methods that can help in
addressing it.

Another set of biologically-inspired methods are
Genetic Algorithms (GAs). They derive their inspira-
tion from combining the concept of genetic recom-
bination with the theory of evolution and survival of
the fittest members of a population. Starting from
a random set of candidate parameters, the learning
process devises better and better approximations to
the optimal parameters. The GA is primarily a search
and optimization technique. One can, however, pose
nearly any practical problem as one of optimization,
including many environmental modeling problems. To
configure a problem for GA solution requires that the
modeler not only choose the representation methodol-
ogy, but also the cost function that judges the model’s
soundness. As mentioned above, training an NN usu-
ally involves minimizing some cost function, and that
process usually requires differentiating the cost func-
tion. By contrast, the learning/training process for a
GA does not place any restriction on the differentia-
bility of the cost function, so any measure of perfor-
mance may be used. The GA is also capable of finding
optimal solutions to problems such as those in design.
Indeed, genetic algorithms may be used to train either
an NN or a fuzzy logic system! Using genetic algo-
rithms to train an NN gives us the ability to use non-
differentiable cost functions (see Chapter 18), while
using GAs to train a fuzzy logic system allows us to
improve on human-devised rules by optimizing their
parameters.

Another method for inferring the relationship
between inputs and targets is to automatically build
a decision tree based on the training data set. This
approach is also among the fastest in terms of train-
ing speed: decision trees can often be trained on
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substantial data sets in a fraction of the time required
by competing techniques. Decision trees, like fuzzy
logic systems, also have the advantage of being
human-understandable. Unlike fuzzy logic, however,
one doesn’t need to know the rules beforehand – the
rules are learned from training data. Decision trees fell
out of favor because the skill realizable with decision
trees often lags what is possible using other super-
vised learning techniques. Recent advances in machine
learning – averaging decision trees trained on sub-
sets of the training sets (“bagging”) and continually
focusing the training on the training data cases that
the decision trees get wrong (“boosting”) – have made
decision trees viable again, but at the cost that the
resulting decision trees are no longer human readable.
However, aggregate statistics obtained from decision
trees are useful in gaining insights into how the deci-
sion trees come to their decisions. This is yet another
illustration of the aforementioned trade-off between
pure performance and transparency.

One of the problems with all of the above data-
based methods is that the data on which they are based
are always imperfect, corrupted by measurement noise
or other artifacts, as are the “ground truth” answers
provided in the training data set. Artificial intelligence
and statistical methods are closely related in that they
both attempt to extract information from noisy data.
AI techniques can be utilized to create a practical rep-
resentation whereas statistical methods can be used to
measure how confident we may be that the extracted
representation is correct.

1.3 On the Use of Artificial Intelligence
in Environmental Science

It is only natural that AI should find applications in
the environmental sciences. Let’s return to our his-
torical example of weather forecasting, in particular,
precipitation forecasting on timescales of about a day.
We described a progression from basic generalizations
such as “red at night . . . ” through modern numerical
weather prediction with model output statistics and
ensemble runs to help deal with inherent error due to
sensitivity to initial conditions. What other methods
could be used to predict precipitation as well as to
address the many other environmental problems?

In Chapter 17, we will see the application of fuzzy
logic to analyzing Doppler radar data and to predicting
atmospheric turbulence for aviation users. In Chap-
ter 18, neural networks trained with a genetic algo-
rithm will be demonstrated for building models to
predict hail. Chapter 11 describes how the radiation
physics model in a climate model can be replaced by
a much faster Neural Network model with no degra-
dation in the results. The complexity of the Lorenz
strange attractor is modeled with a GA in Chapter 18
and an NN in Chapter 12. Some very specific nonlin-
ear phenomena including the El Nino-Southern Oscil-
lation (ENSO) are modeled by NN-based nonlinear
principal components in Chapter 8. The use of NNs
for assimilating satellite data is developed in Chapter 9
and a specific application described in Chapter 10.
Interpreting climate data using an NN is described
in Chapter 12. An NN is also used to model the
boundary layer height based on radon data in Chap-
ter 13. Chapter 14 describes how a GA is applied to
back-calculate the initial conditions of a toxic release
if sensor data are available. Chapter 16 discusses
advances in image processing techniques through
using AI. Habitat suitability modeling using NNs is
described in Chapter 19. These chapters sample the
utility of AI techniques in a variety of environmental
problems.

This book does not try to cover all of the sta-
tistical techniques used for environmental study or
prediction (there are already excellent entire books
on that topic) but instead concentrates on Artificial
Intelligence methods. We describe many of these
methods and demonstrate their usefulness on some
problems addressed by the authors. But we cannot
hope to be exhaustive, for it is a very broad field.
Similarly, no attempt is made to cover any particular
method in great detail. We instead reference the many
good treatises that provide details of the methodolo-
gies. In attempting to give an overview of many appli-
cations, we are unable to provide depth. What we hope
to do is to give the reader an introduction to some AI
methods and a sampling of the sorts of things that
can be done and invite him or her into the field to
help make progress in developing and testing alterna-
tive methods for modeling the natural world. Plenty
of challenges in environmental science have not yet
been addressed, and lots of relatively new AI methods
could be applied to meet these challenges. The primary
purpose of this book is to describe some of the basic
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AI techniques, demonstrate some applications in the
environmental sciences, and whet the reader’s appetite
for trying them on his or her own applications. Let the
adventure begin.
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2Basic Statistics and Basic AI: Neural Networks

Caren Marzban

2.1 Introduction

There is a little book with the title “What do you
believe, but cannot prove?” (Brockman 2006). In it,
the editors compile the answer to that question given
by 50 of the greatest thinkers alive. The editors did
not solicit my answer, but if they had it might have
been “I believe but cannot prove that Artificial Intel-
ligence (AI) and statistics are mostly the same; and
when they are not, the differences are within the nat-
ural variations occurring within each field.” Fortu-
nately, AI and statistics have already been compared
and contrasted thoroughly.1 As a result, there is a
large body of knowledge that can be employed to
create a proof for my claim. However, I also believe
that the body of knowledge accumulated is actually
more interesting and fruitful than the original ques-
tion itself, i.e., whether AI and statistics are the same.
In fact, I would claim that it does not matter at all
whether AI and statistics are, or are not, the same.
One characterization that is probably reasonable is
that the difference between AI techniques and tradi-
tional statistics is not in kind, but in degree. In other
words, one may argue that most techniques belong to
a continuum, but with different techniques having dif-
ferent degrees of “AI-ness” or “statistic-ness.” By the
way, in this chapter, AI is synonymous with machine
learning.

Caren Marzban (*)
Applied Physics Laboratory and Department of Statistics,
University of Washington,
Seattle, WA 98195-4323, USA
Phone: +(206) 221-4361; fax: +(206) 685-7419,
email: marzban@stat.washington.edu

Certainly, however, any problem dealing with data
is inherently statistical. As such, tools and concepts
that have been traditionally developed in statistical
circles should not be ignored. The concepts of a ran-
dom variable and a probability distribution (or his-
togram), or the difference between a population and
a sample, are all extremely important in the analysis
and modeling of data. For instance, the results of a
study that ignores the difference between a sample
and a population are apt to be generally unreliable
(or ungeneralizable), because the results are based on
a single sample taken from a larger population, and
therefore do not pertain to the latter. The question of
whether one can generalize the results from the sample
to the population is again one that statistics is designed
to address. Alas, some AI-related studies generally
ignore such issues.

The notion of a probability distribution is also
important in any data analysis, although some AI prac-
titioners would disagree. Consider the problem of pre-
dicting a quantity Y from another quantity X (e.g.,
wind speed). If Y is a continuous variable, e.g., tem-
perature in Farenheit, then the problem is referred to
as a regression problem. By contrast, a classification
problem refers to the situation where Y is a categor-
ical quantity, e.g., occurrence or non-occurrence of
tornado. The central quantity in both is the conditional
probability density p(Y |X), namely the probability of
obtaining some value of Y , given that X takes some
value. Two examples are: the probability of temper-
ature = 65 F, given that it is cloudy, or the proba-
bility of having a tornado, given that wind speed is
10 knots. The whole business of developing a model

1Just google “AI Statistics”!
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for predicting Y is equivalent to the problem of infer-
ring p(Y |X) from sample data. There are a few AI
techniques that do not fit this probabilistic paradigm,
but then again they do not produce probabilistic pre-
dictions anyway.

Why do we care about probabilistic predictions?
A probabilistic prediction conveys a measure of
uncertainty, which can be taken into account in further
decision making. It is important to acknowledge that
everything computed from data is subject to uncer-
tainty, and probabilities offer a concise way of convey-
ing that uncertainty. For example, in a search engine
we may have a query that matches 10 possible items,
but we would like to present the matches in a descend-
ing order of importance. Probabilistic predictions read-
ily allow for this type of ranking. Even in so-called
distribution-free techniques which produce strictly
categorical predictions (e.g., K-Nearest Neighbor;
Section 2.7), one often uses some other criterion to
allow for the computation of probability.

The main aim of this chapter is to make the reader
aware that most data-related tasks are inherently statis-
tical, and so a statistical framework should be adopted.
To that end, the focus is on one question that arises in
most (if not all) model being tasks, namely “Which
model, if any, is best?”. The various models could
differ in the choice of their predictors, their degree of
nonlinearity, or they may be completely different mod-
els altogether. Even with a specific measure of good-
ness in hand (discussed in Chapter 3), that question
turns out to be difficult to answer. The partial answers
provided here are sufficiently general (and true) to be
useful, regardless of which community – statistics or
AI – claims their ownership.

Finally, I believe that any sufficiently elementary
treatise is indistinguishable from lies.2 It is possible
that I have been excessive in attempting to simplify
matters. Therefore, let the reader be warned that many
of the statements in this chapter may be on the verge of
being blatantly false, when viewed by experts. If such
falsehood is sensed, one of the more technical refer-
ences should be consulted. A good place to start would
be ftp://ftp.sas.com/pub/neural/FAQ.html . However, I
maintain that in most applications, delving deeper in
rigor amounts to polishing the proverbial cannonball.

2 Variation on a theme by Arthur C. Clarke “Any sufficiently
advanced civilization is indistinguishable from magic.”

2.2 The Plan

It will help the reader to have a overview of this
chapter. First, the emphasis is on regression and
classification problems, where one is interested in pre-
dicting some quantity from another. In AI circles,
the canonical tool for solving such problems is the
neural network, or more specifically, the multilay-
ered perceptron. I will utilize very simple and tradi-
tional (i.e., statistical) regression/classification models
in order to “derive” neural networks. Consequently, the
first half of the chapter is mostly basic statistics, with
minimal mention of neural nets. When the multilay-
ered perceptron does appear in Section 2.8, I make a
point to maintain a statistical spirit. In other words, I
emphasize statistical model building and its pitfalls.
I will not delve into the intricacies of optimization
(training) algorithms, for I think their impact on the
final results is often over-stated, especially when one
acknowledges that the results are subject to statistical
uncertainty.

In this chapter, the span of techniques considered is
sufficiently wide to include techniques that have more
AI-ness to those which have higher levels of statistic-
ness. I have attempted to provide computer code that
implements most of the techniques examined. The
codes are written in R, which is a computing environ-
ment similar to S or MATLAB, but it is freely available
from http://cran.r-project.org. If the reader manages to
work through the codes, chances are she will be able to
tailor them to her own problems. If the code is not used
at all, I hope the reader will leave this chapter, at the
least, with a sense that many problems dealing with AI
or statistics should be viewed in terms of distributions
and histograms, or alternatives that acknowledge and
convey uncertainty.

2.3 Dining Table – Regression

I measured the length of our dining table. It read
228.6 cm (nearly 90 in.). I then measured it again, and
recorded 228.7 cm. To assure that the table was not
perversely growing, I decided to measure its length
n = 100 times, once an hour. This much of the story
is mostly true, but the rest is not. I then, plotted a
histogram of the measurements. It resembled that in
Fig. 2.1. Clearly, the measurements varied quite a bit,
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from a minimum of 226.89 cm to a maximum of
229.20 cm. The so-called sample mean and sample
standard deviation of the length measurements were

y = 1

n

∑

i

yi = 227.98

s =
√

1

n − 1

∑

i

(yi − y)2 = 0.517, (2.1)

where yi denotes the i th observation of table length. A
point estimate of the true length of the table is given
by the sample mean, a measure of the center of the
histogram. The standard deviation measures the spread
of the histogram. (The quantity s2 also has a name
– sample variance.) Visually, the numerical values of
both the sample mean and the sample standard devia-
tion are consistent with the location and width of the
histogram shown in Fig. 2.1.

I was almost ready to declare that the length of
my dining table is 227.98 cm. Then I realized that the
mean and standard deviation I computed are based on
a sample of only 100 measurements. In other words,

the true length of the table – called the population
mean – may be something different. Basic statistics
(Devore and Farnum 2005), teaches us that we can be
about 95% confident that the true mean of my table
is somewhere in the range x ± 2 s/

√
n = 227.98 ±

2(0.517)/
√

100 = (227.9, 228.1). This is called an
interval estimate of the true length of the table. As
such, on any time of day, I could predict the length
of my dining table to be 227.98 ± 0.1. Now, that may
not seem much of a prediction, but in fact, it is. It just
happens to be a relatively simple prediction; a less-
trivial prediction follows, next.

It then occurred to me that the table is next to a
window where the daytime sun clearly shines on it for
a good portion of the day. As such, the temperature
of the table would have been varying from daytime to
nighttime hours. Knowing a bit about physics and how
things expand when heated, the natural question was
how much of the s = 0.517 cm spread in my measure-
ments of the table was due to changes in temperature?
If I could quantify the contribution from temperature,
I would be able to come up with a more precise esti-
mate/prediction of the table length. To answer this
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Fig. 2.2 Scatterplot of length and temperature for the 100 measurements, and the regression fit

question, I made another 100 measurements, but this
time of both the table and its ambient temperature. I
then plotted the numbers on what is called a scatterplot
(Fig. 2.2).

The proper procedure for answering questions of
the type “How much of the variance in one variable
is explained by other variables?” is called regression
(Draper and Smith 1998). One writes an equation such
as

yi = α + βxi + εi , (2.2)

where xi and yi are the i th measurement of tempera-
ture and table length, respectively. Of course, at this
stage, one does not know the values of α and β, but
let us assume for now that we know their values. The
term εi represents an “error”; after all, it is unlikely
that my data (xi , yi ) fall exactly on a straight line
y = α + βx . If they did, I could claim that given the
temperature x , I can predict the length of the table
to be exactly α + βx . So, εi is simply the difference
between the actual measurement of the table length on
the i th try (i.e., yi ) and what I would predict that length
to be if there were a perfect linear relationship between

temperature and length. Figure 2.2 shows the various
elements of this discussion. In statistical jargon, the
temperature is an example of a predictor, and the table
length is called the response. In AI circles, they are
called input and target, respectively. It is important
to distinguish between the target, and the output; the
former refers to the actual observed table length, while
the latter refers to the predicted table length, α + βxi ,
according to the regression line (i.e., the straight line
in Fig. 2.2).

Indeed, this way of interpreting εi , suggests a cri-
terion for coming-up with values for α and β. Note
that these parameters of the regression model represent
the slope and y-intercept of the regression line. It is
natural to ask what slope and y-intercept would give
the smallest overall error. But there are n errors; how
can one minimize all of them? Well, one cannot; but
one can minimize some scalar function of the εi . A
common choice is the Mean Squared Error (MSE). As
the name suggests, it is defined as

MSE = 1

n

n∑

i=1

ε2
i . (2.3)
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To see that this quantity is actually a function of the
parameters, let us re-write it using equation (2.2):

MSE(α, β) = 1

n

n∑

i=1

(yi − α − βxi )
2. (2.4)

We can now minimize this MSE with respect to α

and β using basic calculus;

∂(MSE)

∂β
= −2

1

n

n∑

i=1

(yi − α − βxi )xi , (2.5)

∂(MSE)

∂α
= − 1

n

n∑

i=1

(yi − α − βxi ). (2.6)

The values of α and β which render these derivatives
zero are called the Ordinary Least Squares (OLS) esti-
mates, and are labeled α̂ and β̂. The line with these
particular estimates minimizes the mean squared error.
According to equations (2.5) and (2.6), the following
system of two linear equations with two unknowns (α̂
and β̂) must hold true:

xy − α̂x − β̂x2 = 0, y − α̂ − β̂x = 0, (2.7)

and so,

β̂ = xy − x y

x2 − x2
, α̂ = x2 y − xy x

x2 − x2
. (2.8)

Note that these OLS estimates of α and β can be
computed from various averages computed from the
sample data:

x = 1

n

n∑

i

xi , y = 1

n

n∑

i

yi , x2 = 1

n

n∑

i

x2
i ,

xy = 1

n

n∑

i

xi yi , (2.9)

For the data at hand, α̂ = 219.51, β̂ = 0.116. It also
turns out that a quantity called R2 can also be com-
puted from these averages; it expresses the percentage
of the variance in the table length (i.e., 0.5172) which
can be attributed to the linear relationship with tem-
perature (Draper and Smith 1998). For the table data,
it is 68.5%. In short, the next time I want to predict
my table length, I am better off to use the regression
equation 219.51 + 0.116 × (temperature), because it
will give me a more precise estimate than the sample
mean y = 227.98 .

Finally, if I suspect other culprits contributing
to the variance in the length of my dining table –
e.g., humidity, or how many books are piled on
top – then I can include them in my multiple regres-
sion model as additional predictors, y = α + β1x1 +
β2x2 + . . ..3

The moral of this story is that the parameters of
the model (α, β) can be estimated according to some
criterion, in this case the OLS criterion, directly from
sample data (xi , yi ), i = 1, 2, . . . , n.

Now, in a book dealing with artificial intelli-
gence and neural networks, why do we need to talk
about estimating parameters? Because such parame-
ters appear everywhere in neural nets – they are
called weights – and even in some so-called non-
parametric methods. Also what AI folk call “train-
ing” is nothing but parameter estimation; the sam-
ple data set employed for the estimation is called the
“training set.” Equally important, when we want to
assess how well a model does, what we are really
doing is estimating another population parameter –
the prediction error. More on this, later. And why
do we make such a big deal about the OLS crite-
rion? Because the minimization of the MSE (i.e., the
OLS criterion) is equivalent to the maximization of
the probability of obtaining the data. More on this,
next.

2.4 Basic Statistics – Parameter
Estimation

In the previous section, I made the rather dramatic
claim that if one minimizes MSE, then one has max-
imized the probability of obtaining the data. But
what does that really mean? Surely, one cannot talk
about the “probability of data” in complete generality.
Indeed, one cannot. In order for claims like that to
make any sense, one must have a probability model
for the data. In this section, I will discuss two such
models.

But, first: In the previous section I also referred
to population and sample. These are two of the most
important concepts in statistics. The former refers to

3 The index i on these x’s pertains to the different predic-
tors, not the i th case of a single predictor, as in equations
(2.2)–(2.9).
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some “larger” set which for various reasons is often
unavailable to us. What is available is only a sample
taken from the population. A summary measure in
the former is referred to as a (population) parameter,
and one in the latter is called a (sample) statistic. For
a data set consisting of a continuous variable – say,
hourly temperature measured in centigrade, to 0.01
accuracy – an example of a summary measure is the
mean. If the data are categorical, e.g., consisting of
the occurrence or non-occurrence of some event – say
a tornado – then a summary measure might be the
proportion of the data that fall in each category. The
business of parameter estimation is to infer something
about the population parameter from sample statis-
tic(s) computed from a single sample.

Often one describes the population in terms of an
assumed probability distribution. For the purposes of
this chapter, a probability distribution is a function
that gives the probability of obtaining a single piece
of data – an individual case. For all practical purposes,
one can think of it as the histogram one would obtain
(analogous to Fig. 2.1) for the entire population, if
one had the entire population. Also often, these prob-
ability distribution functions have certain parameters
appearing in various places in them. The parameters
are usually introduced in strategic places in order to
give them a natural interpretation. For the dining table
example, one would arrange for one of the parameters
in the distribution to represent the true (i.e., popula-
tion) table length. Then, the question becomes if one
can estimate that parameter from sample data? If so,
then one has inferred the true length of the table from
a single sample of observations.

To illustrate all this, let us consider two of the most
famous distributions around, one for describing a cat-
egorical variable, and one for a continuous variable.

2.4.1 Binomial

Consider a coin, for which the probability of heads,
labeled “1”, is π . We all know that if we toss this coin
n times, and if the tosses are independent (i.e., that
the result of one toss does not affect the probability
of another), then the probability of getting y heads in
n tosses is given by the binomial distribution:

p(y; π) = n!
y!(n − y)!π

y (1 − π)n−y . (2.10)

The quantity π is the parameter of the distribution.4 As
mentioned above, the choice of the term “parameter”
to describe π is not accidental; indeed, we will use the-
oretical distributions like the binomial to describe the
population, and as such, it is the parameter π which we
would be interested in estimating. The notation on the
left hand side of the equation denotes the probability
of obtaining some value for the number of heads, y, if
the data are described by a binomial distribution with
parameter π . In other words, the equation tells us the
probability of obtaining y heads, out of n tosses of
a coin whose probability “heads” on each toss is π .
Clearly, the possible values of y are 0, 1, 2, . . . , n.

Now, suppose we perform an experiment wherein
the coin is tossed n times, and we find precisely n1

heads. This, then, is our sample data. Can we estimate
the value of the population parameter π? Most of us
would not even think twice about our answer: n1/n.
But it turns out that that intuitive answer is actually
based on the criterion that our estimate of π should
maximize the conditional probability of obtaining the
observed data, given the binomial model with parame-
ter π . Observe! The probability of getting the data (i.e.,
n1 heads out of n tosses), according to the model with
parameter π , is

p(data; π) = n!
n1!(n − n1)!π

n1 (1 − π)n−n1 .

(2.11)

To maximize this quantity we can simply differentiate
it with respect to π , and set the result to zero. The alge-
bra is considerably simplified if one instead maximizes
the logarithm of the probability. I.e.,

∂ log(p(data; π))

∂π
= n1

π
− n − n1

1 − π
. (2.12)

The value of π at which this quantity is zero (labeled
π̂ ) is π̂ = n1/n, namely the anticipated/intuitive
answer.

The moral of this story is that an objective way for
estimating a parameter of a population (or distribution)
from a sample is to maximize the conditional proba-
bility of obtaining the observed sample, given some
model for the distribution. This criterion is called the
maximum likelihood criterion.

4 n is also a parameter of the distribution, but for the sake of
notational simplicity, only π is written on the left hand side of
the equation.
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2.4.2 Gaussian

A similar argument applies when y is a continuous
variable. For example, y may have a Gaussian (or
Normal) distribution. The parameters of the normal
distribution are labeled μ and σ , and they appear in
the distribution as follows5:

p(y; μ, σ) = 1√
2πσ 2

exp− 1
2 (

y−μ

σ
)2

. (2.13)

For now, resist the temptation to call them mean and
standard deviation; they are simply parameters of the
distribution. As in the binomial case, the probability
on the left hand side is the probability of obtaining an
observation y, given that it is described by a normal
distribution with parameters μ and σ .

Now, given a sample of size n, yi , i =
1, 2, 3, . . . , n, can we estimate the parameters of
the distribution which describes the population?
If the probability of getting any individual y is
given by equation (2.13), and if the observations are
independent, then the probability of getting the whole
data set is given by the product

p(data; μ, σ) = �n
i=1

1√
2πσ 2

exp− 1
2 (

yi −μ

σ
)2

.

(2.14)

What are the values of the parameters that maximize
this probability? Let us call them μ̂ and σ̂ . Again, to
find them we just maximize the logarithm, and set the
result to zero. But now we have two parameters, and
so we must set both derivatives equal to zero:

∂

∂μ
p(data; μ, σ)|μ̂,σ̂ = 0 = ∂

∂σ
p(data; μ, σ)|μ̂,σ̂ .

(2.15)

These two equations yield

μ̂ = 1

n

n∑

i=1

yi , σ̂ 2 = 1

n

n∑

i=1

(yi − μ̂)2. (2.16)

One can see now why the parameters μ and σ may
be called the mean and the standard deviation of the

5 I am a bit cavalier in referring to this quantity as a probability
distribution. When y is a continuous variable, p(y;μ, σ) is
not the probability of y. Technically, it is a probability density,
which means that its integral (or the area under it) between
two limits represents probability. After all, the expression given
for p(y;μ, σ) is not even restricted to the 0 − 1 interval.
So, to be more rigorous, every p(y) in this chapter should be
multiplied by a dy before interpreting the product of the two as
a probability.

distribution (or the population) – because they are esti-
mated with the mean and the standard deviation of the
sample; see equation (2.1).6 So, just as in the case of
the binomial, the maximum likelihood criterion can be
employed to estimate population parameters.

2.4.3 Back to Dining Table

What is a probability model for my dining table? In
other words, what is the analog of equations (2.10)
and (2.13)? These equations pertain to a single variable
we call y, but the dining table example involves two
variables – y, the length of the table, and x , the tem-
perature. It turns out that a probability model is given
by equation (2.13), but with the parameter μ replaced
by a function of x , denoted μ(x) 7:

p(data; μ(x), σ ) = �n
i

1√
2πσ 2

exp− 1
2 (

yi −μ(x)

σ
)2

.

(2.17)

The specific choice μ(x) = α + βx is the one we
adopted in equation (2.2) when we were attempting
to find a linear relationship between temperature (x)
and length (y). In fact, for this specific linear model,
equation (2.17) becomes

p(data; μ(x), σ ) = 1√
2πσ 2

exp
− 1

2

∑n
i

(
yi −μ(x)

σ

)2

= 1√
2πσ 2

exp
− 1

2

∑n
i

(
yi −α−βxi

σ

)2

= 1√
2πσ 2

exp− 1
2 nM SE(α,β), (2.18)

where M SE(α, β) was defined in equation (2.4).
We are finally prepared to make sense of the state-

ment made at the end of the previous section: Maxi-
mizing the probability of the data, i.e., the left hand
side of equation (2.18), is equivalent to minimizing
the exponent on the right hand side, i.e., MSE. A
more elegant way of saying this is as follows: for
a Gaussian probability model (i.e., when the errors,

6 From equation (2.1), we see that s2 has an (n − 1) in its

denominator, while σ̂ 2 in equation (2.16) has an n in its denom-
inator. But for sufficiently large n, that difference is small any-
way.
7 Note that the parameter σ is assumed to be a constant, inde-
pendent of x . In regression circles, this is referred to as the
assumption of homoscedasticity.
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εi are normally distributed), the maximum likelihood
estimate of the population parameter is equal to the
OLS estimate (equation (2.8)).

In passing, let us note that, motivated by equation
(2.16), we call μ the mean of y in the population. A
calculation similar to that leading to equation (2.16)
suggests that μ(x) is in fact the conditional mean of y.
In other words, the output α + βx is the mean of the
response y, for a given value of the predictor x . This is
exactly what we would want as the output of a model –
the mean of the response, given the predictor.

2.4.4 Estimation Criteria

We have seen how the business of estimating the
parameter of some probability distribution can be
cast into the problem of minimizing some error (or
cost, or loss) function. For example, in simple linear
regression, to estimate the parameter, μ(x), of the
Gaussian distribution, we minimize the mean-squared
error (1/n)

∑
i (yi − μ(x))2; see equations (2.5) and

(2.6). We called the resulting parameter estimates OLS
estimates. However, we might have simply decided
that the OLS estimates are what we consider to be rel-
evant, without any attention to the connection with the
underlying probability distribution. Of course, what
will be lost in that case is the interpretation of the
outputs as a conditional mean (see end of previous
section), but so what? Perhaps, we do not care about
that interpretation, and all we want is a regression
model that makes predictions which are “optimal” or
“best” according to some non-probabilistic measure.

The point is that one can adopt any criterion for
parameter estimation, independently of a probability
model. And that is one place where AI and statistics
have some differences; although certainly many statis-
ticians have in the past chosen to estimate parameters
by minimizing some error function regardless of the
connection with a probability distribution, one can jus-
tifiably give more of the credit (or the blame) for that
practice to AI folk.

Either way, let us see how some popular criteria do
lead to sensible estimates. For purposes of illustration,
consider a single variable y. Suppose we have some
data on this variable: yi , i = 1, 2, 3, . . . , n. Now, let
us ask what is the “best” prediction/forecast f we can
make for the next value of y. For instance, y may be
daily temperature highs for January 1, and so, yi label

all the highs for n years. Based on this data, what
should be our prediction for next year’s temperature
high on Jan. 1?

The notion of “best” is quantified by adopting some
criterion. Suppose we adopt the criterion that the fore-
cast should minimize the mean squared error, i.e.,

1

n

n∑

i

(yi − f )2. (2.19)

Simply differentiating this expression with respect to f,
and setting the result to zero, yields the “best” forecast

f = 1

n

n∑

i

yi , (2.20)

which we recognize as the sample mean of the data.
So, the criterion of minimizing the mean squared error,
is tantamount to estimating f by the sample mean of y.

Another interesting criterion is to minimize the
mean absolute error, i.e.,

1

n

n∑

i

|xi − f |1. (2.21)

It is possible to show that the f that minimizes this
quantity is the median of the data. With a little more
work one can also show the curious, but not very use-
ful, result that the forecast which minimizes

1

n

n∑

i

|xi − f |α (2.22)

as α → ∞, is the midrange (xmin + xmax )/2, if the x-
values are restricted to the range [xmin, xmax ].

All of these criteria deal with the estimation of a
single quantity ( f ). But the results generalize to the
case where f is itself a function of some predictor, if
the word “conditional” is inserted in the right place.
For example, minimizing the mean absolute error in
regression, assures that the output represents the con-
ditional median of the response, i.e., the median of y,
for a given x . The next section gets deeper into the
intricacies of conditioning.

2.5 Regression and Classification

The whole business of regression and classification is
about estimating the relationship between two sets of
variables from data. Depending on the field, the two
sets of variables are called by different names. In this
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chapter, I will refer to one set as input variables, inputs,
or predictors; the other set includes output variables,
outputs, target variables, or response. As mentioned in
Section 2.3, one important distinction should be made
within the latter set: The output of regression is not
necessarily the target, but some approximation to it.
This can be seen in Fig. 2.2, where the y-values of
the regression line (i.e., its outputs) are not identical
to the y-values of the points (i.e., targets). In a regres-
sion problem, the map or the function of interest is
the one that literally maps the inputs to the targets in
some optimal sense. The straight line in Fig. 2.2 is one
example. In a classification problem the analog is the
(decision) boundary that best demarcates the regions
occupied by the various classes. Look ahead at Fig. 2.8
for an example of a nonlinear boundary between two
classes.

As advertised in the introduction section, central
to regression and classification problems is the condi-
tional probability, p(Y = y|X = x), the probability of
Y taking some value y, given that X takes some value
x . If Y is continuous, it tells one the probability of any
y value, given some x value. The expression in equa-
tion (2.17) is an example of such a probability. And if
Y is categorical, then, for example, p(Y = 1|X = 10)

could be the probability of a tornado occurring, if wind
speeds happen to be 10 knots.

Let us now explore regression and classification
problems more closely. This will set the stage for the
neural network.

2.5.1 Linear Regression

We have already dealt with linear regression in Sec-
tions 2.3 and 2.4.3 of this chapter, but there is more
to know. Regression models come in two types: lin-
ear, and nonlinear. It is important to realize that those
adjectives refer to the parameters of the model, and
not the relationship between the input and output vari-
ables. A model like y = α + βx2 is really a problem
in linear regression, in spite of the quadratic nature of
the relation between x and y. One way to see why, is
to note that one can simply square the values of x in
the data, and then do linear regression between y and
x2. The other way is to note that the equation is linear
in the parameters α, β. This implies a unique solution
that can be obtained via the OLS criterion; see equa-
tion (2.8). A truly nonlinear regression model would

be something like y = eβx + α. The corresponding
expression for mean squared error for such a problem
is nonlinear in the α, β parameters, and so cannot be
minimized simply. In such a case, one is truly in the
realm of nonlinear optimization where unique solu-
tions for the parameters often do not exist. As we shall
see, neural nets fall into this category.

Let me mention in passing that a given problem
may be treated as a regression or a classification prob-
lem. For example, suppose we are interested in predict-
ing wind speed from knowledge of pressure difference,
and whether or not clouds are present. This could be
cast as a regression problem with wind speed as the
response; the predictors would be pressure difference
and the presence/absence of clouds. But one can also
encode wind speeds as “slow”, “medium”, or “fast”.
Then, we can treat the problem as a classification
problem. One may wonder what type of problem –
regression or classification – one is dealing with if the
target variable is categorical, but with a large number
of categories, e.g., the thousands of letters appearing
in the Chinese language. Given the large number of
classes, one may be tempted to treat this as a regression
problem, but in fact, because the classes have no inher-
ent order, it is much more suitable as a classification
problem. Although it is not always obvious whether
one should treat the problem as regression or classi-
fication, if the target is not ordinal (i.e., if the classes
have no inherent order), then classification is the better
way to go. And that is the topic of the next section.

2.5.2 Discriminant Analysis

A traditional classification model, called Discriminant
Analysis, is an enlightening ancestor of neural nets.
Let us look at the simple case of one input variable, x ,
and two classes labeled as i = 0, 1 (e.g., non-tornado,
and tornado). The model begins by assuming that the
likelihood of x , when it happens to belong to class i , is
Gaussian. In other words, the conditional probability
of x , given class i , is written as

Li (x) ≡ p(x |C = i) = 1√
2πσ 2

i

exp− 1
2 (

x−μi
σi

)2

(2.23)

where μi and σi are the mean and standard devia-
tion of x when it belongs to the i th class. Note that
L0 + L1 �= 1.
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For forecasting purposes, this likelihood is the
wrong probability to look at. We are not interested
in the probability of finding, say, wind speed = 50
km/h, given that there is a tornado on the ground. We
want to know the probability that there is a tornado
on the ground, given that wind speed = 50 km/h. This
other probability, p(C = i |x), is called the posterior
probability, and the laws of probability imply that it is
given by

Pi (x) ≡ p(C = i |x) = pi Li (x)

p0 L0(x) + p1 L1(x)
,

i = 0, 1, (2.24)

where p0, p1 are called prior (or climatological) prob-
abilities for the two classes. These prior probabili-
ties are independent of x , and are usually estimated
with N0/N , and N1/N , respectively, where Ni is just
the sample size of the i th class, and N = N0 + N1

is the total sample size. Note that p0 + p1 = 1 and
P0 + P1 = 1.

When we observe some value of x , if P1(x) >

P0(x), then we forecast (or classify) it as a 1 (i.e., a tor-
nado). Actually, instead of P1(x) > P0(x), it is more
convenient to look at log(P1(x)/P0(x)) > 0, because
we can then write the left-hand side as

log(P1(x)/P0(x)) = 1

2
D2(x), (2.25)

where the so-called discriminant function, D2(x), is
given by

D2(x) =
(

1

σ 2
0

− 1

σ 2
1

)
x2 − 2

(
μ0

σ 2
0

− μ1

σ 2
1

)
x

+
(

μ2
0

σ 2
0

− μ2
1

σ 2
1

)
+ 2 log

(
σ0

σ1

)

−2 log

(
1 − p1

p1

)
. (2.26)

This equation follows in a straightforward way by
combining equations (2.23)–(2.25). Note that this dis-
criminant function is equivalent to the decision bound-
ary discussed at the beginning of Section 2.6, except
that there we were considering two predictors. The
point is that by setting the discriminant function to a
constant, and solving the resulting equation for the pre-
dictor(s), leads to the equation for the decision bound-
ary. In this one-predictor example, a decision boundary
simply refers to one or two values (i.e., thresholds)

of x , namely the zeroes of the discriminant function
(2.26).

“Training” in discriminant analysis refers to esti-
mating the means and standard deviations appearing in
equation (2.26). Consequently, training refers to esti-
mating some optimal value for the above-mentioned
thresholds. Again, an observation x from either train-
ing set or an independent set is forecast as (or assigned
to) class 1 (e.g., tornado), if D2(x) > 0, otherwise it is
classified (forecast) as a 0 (e.g., non-tornado).

It can be seen from equation (2.26) that if the vari-
ances of the two classes are equal, then the discrim-
inant function is linear, and the posterior probability,
P1(x), in equation (2.24) becomes a smoothed step
function:

P1(x) = 1

1 + exp−(α+β x)
, (2.27)

where α = μ2
0−μ2

1
2σ 2 − log(

1−p1

p1
), and β = μ1−μ0

σ 2 . Func-
tions of the type (2.27) are called logistic and will be
seen again, below, in dealing with neural networks.
For now, just note that the logistic function arises
naturally in dealing with linear discriminant analysis.
Meanwhile, with unequal variances one allows for a
quadratic discriminant function. In that case, P1(x) can
behave more non-trivially. Figure 2.3 shows the above
ingredients in both the linear and quadratic case.

In spite of its simplicity, discriminant analysis is
a very powerful classification model. But as seen
from equation (2.26), the best it can do is to handle
quadratic decision boundaries. It will not do well if
the boundary underlying the data is more nonlinear
than that. Of course, the source of this limitation is
the starting assumption – normality, equation (2.23).
However, there exist classification methods where the
assumption of normality is either dropped or relaxed,
and in those methods the decision boundaries can be
much more general. Neural nets constitute one way
of addressing this distributional constraint. They allow
for almost any distribution, and as a consequence, they
allow for highly nonlinear decision boundaries. Even
if you never see or hear about discriminant analysis
again, one lesson that should be learned from it is that
the distribution of the data is related to the nonlinearity
of the decision boundary. In my personal experience,
discriminant analysis is also a worthy competitor of
neural nets, and so I strongly urge the reader to develop
it along side a neural net.
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Fig. 2.3 The ingredients of discriminant analysis. The likelihoods for each of two classes (L0 and L1), and the posterior P1(x) for
linear (left) and quadratic (right) discriminant analysis

2.5.3 Support Vector Machines

At the start of Section 2.5.1, I mentioned a trick of
taking a problem that looks nonlinear, and linearizing
it. There is one more lesson that can be learned from
that trick. Let me, first, restate it. A linear regression
model is y = α + βx , and it is an appropriate model
if the relationship between x and y is linear. What
if the relationship is not linear, say, quadratic? Easy:
the appropriate linear regression model is then y =
α + β1x + β2x2. The model is still linear because it is
linear in the parameters α, β1, β2, but the relationship
between x and y is now nonlinear. Continuing this line
of thinking, it becomes evident that a polynomial of
order P , with sufficiently large P , can accommodate
(almost) any amount of nonlinearity in the data. Note
that the terms in such a polynomial can be treated as
a different predictors/inputs in a multiple regression
model.

Cortes and Vapnik (1995) asked themselves how
many inputs it will take to separate a two-class data
set with a second-order polynomial boundary. On the
one hand, we can simply employ p inputs of the
form x1, x2, . . . , x p, and allow a nonlinear model to
map those to a binary output. On the other hand we
could use a linear model that in addition to the p
inputs also includes another p inputs of the form
x2

1 , x2
2 , . . . , x2

p, plus another p(p − 1)/2 inputs of the
form x1x2, x1x3, . . . , x px p−1. After taking symmetry
into account, that amounts to a total of p(p + 3)/2
inputs, feeding into a linear classifier.

As such, the data is mapped to a larger-dimensional
space where the decision boundary is a linear hyper-
plane. This is the main idea behind Support Vec-
tor Machines (for classification) and Support Vector
Regression, the latter described in Chapter 7. One cri-
terion for selecting a hyperplane fitting through the
data is to simply pick the one that maximizes the geo-
metric margin between the vectors of the two classes.
The main advantage of this choice is that it requires
only a portion of the training set, namely those closest
to the hyperplane, often referred to as support vectors.

I will not pursue this topic much further. The only
reason I mention it here is to demonstrate that even
a technique that most people would consider an AI
technique, is firmly founded in traditional notions of
regression and classification.

2.6 Model Selection and/or Averaging

We are now in position to discuss a large topic, one
that effects many statistical models – traditional or oth-
erwise. Consider a multiple regression model involv-
ing one output and multiple, say, p, inputs: y = β0 +
β1x1 + β2x2 + · · · βpx p. We already know how to esti-
mate the βi parameters from a training set. The equa-
tions are analogous to those given in equation (2.8)
for the case p = 1. But how do we decide what the
best value of p is? Even worse, suppose the regression
model we are trying to fit to the data is a polynomial
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Fig. 2.4 Examples of an underfit (left), a good fit (middle), and an overfit (right)

of some order, in multiple predictors. How many pre-
dictors, which predictors, and what order polynomial
should we allow in our model? In other words, we can
train a model with a given structure, but how do we
decide on the structure itself? The body of knowledge
developed to address that problem is called Model
Selection.

Why do we need to worry about model selection
at all? Why can we not throw every possible predictor
in a huge-order polynomial regression model, and not
worry about which number of predictors and what
order optimal? Indeed, we could, if we had infinite
data. But with a finite sample size, we cannot, because
of something called overfitting.

Consider the situation where we have 11 cases
in our data, and just suppose the two variables are
related via a cubic equation. Figure 2.4 shows an
example of such data (i.e., the circles). In fact, I
can tell you that the underlying relationship is indeed
cubic, because that is how I made this data: I took the
line y = 0.01x3 − 1.5x2 + 56.5x + 0.01 and added
some noise to the y.8 The dark solid line shows the
cubic relation itself. What would happen if I fit a
second-order polynomial to this data? The left panel

8 Here is the R code that made the data, in case the reader would
like to play with it:

set.seed(1)
x = 100*runif(11, 0, 1) # select random x
y = 0.01 ∗ x ˆ3 − 1.5 ∗ x ˆ2 + 56.5 ∗ x + 0.01 +

rnorm(11, 0, 40) # add normal noise to polynomial

in Fig. 2.4 shows the resulting fit. It is clearly not
capturing all the features of a cubic relation, and as
such, it is underfitting the data. How about a cubic
fit? The middle panel shows that one. It looks good,
and indeed the estimated parameters from this sample
are 0.01007, −1.50207, 55.99351, −6.10929 – pretty
close to the true (population) values. So, a cubic fit
actually comes very close to capturing the true under-
lying relation. In other words, if you take this cubic
fit and make predictions with it on new data from the
population, independent of the 11-case training data, it
will do well.

Finally, what if I were overly generous with the
order of the polynomial and decided to fit the data with
a 10th-order polynomial? The result is the curvy line
in the right panel. Clearly, this is not the right fit – it is
called an overfit. Overfitting occurs because the model
has too many parameters, compared with the size of
(and noise in) our data. But what is wrong with this
overfit anyway? What is wrong is that it will produce
nonsensical predictions when it is tested on new data.
Just consider the predictions (i.e., the y-values) in the
range x = 10 to x = 20; the predictions should be near
the dark line, but our polynomial model is predicting
values literally off the chart. If you were predicting
temperature from wind speed, the forecast would be
for an exceedingly hot day (and my dining table would
not fit in the dining room).

One may object to my argument by pointing out
that the region with x in the 10 to 20 range is a par-
ticularly data-sparse region, and that we should expect
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the predictions to be bad in that region. But, consider
the region with x ∼ 90; it is a data-dense region, and
yet the predictions vary violently from very large y-
values to very small y-values. So, however one looks
at this model, it is a bad fit, and we would lose money
using it.

2.6.1 Hold-Out and Resampling Methods

We ended the previous section by noting that an overly
simple model will underfit the data, and an overly com-
plex one will overfit. In practice, of course, we do not
know what the underlying relationship is, and we can-
not even plot the data on a scatterplot (like Fig. 2.4),
because we may have tens or even hundreds of predic-
tors, instead of the single x in the above discussion.
So, instead of looking at the fits, one simply computes
some measure of how close the fit comes to the data;
for example, mean squared error, (1/n)

∑
(ti − yi )

2,
where ti are observed y-values, and yi are the corre-
sponding predictions from the fit. The mean squared
errors for our three fits are 34700.76, 8668.13, and 0,
respectively. So, we could select a model based on this
training error (also called the apparent error, when the
training set is the entire sample); but the problem is
that this training error is guaranteed to fall off with
increasing model complexity (e.g., order of the poly-
nomial). So, if we select a model with the lowest train-
ing error, we are likely to select a model that overfits
the training data, and will therefore perform poorly on
new data.

To avoid this problem, one often divides the data
into two parts – a training set and a validation set. The
first is employed for estimating the parameters of the
model (just like we did above), and the second set is
used for a variety of purposes. If the validation set is
reasonably large and representative of the population,
then one can legitimately claim that the value of the
error on the validation set is a reasonable estimate
of the error if the model were to be applied to the
population. The latter is called the prediction (or gen-
eralization) error, and estimating it is the business of
model assessment. One can use a large validation set
also for model selection, by simply selecting the model
that has the best performance on the validation set. In
addition to training and validation sets, one often reads
about a third “test set”. In those situations, the training

set is used for estimating the parameters of the model,
the validation set is used for selecting the best model,
and the test set is for obtaining an unbiased estimate
of the prediction error. But with the methods described
next, there is no need for a test set.

The problem sets in when the validation (or test)
set is small. Consider model selection: In the so-called
hold-out scheme, one trains several models – with
varying levels of complexity – on the training set,
and then selects the model with the lowest error on
the validation set. This may make sense, because it
certainly looks like we are avoiding overfitting the
training set. However, the flaw in this scheme is that
the model that has the lowest error on the validation
set is now overfitting the validation set. After all, there
is no reason to expect future data to be anything like
the single validation set on which the model does best,
especially if the validation set is small. As such, the
model selected in this way is still not the best model to
use on future data.

Having taken the step of dividing the data into
two sets – training and validation – it is natural to
go one step further. If we want to avoid overfitting a
given training and a given validation set, why not have
several training and validation sets, say 1,000 training
sets, and 1,000 validation sets? Note that I am not
talking about a training set of size 1,000, but 1,000
different training sets, each of some size. If we can
somehow devise a scheme that utilizes a number of dif-
ferent training sets and a number of different validation
sets, then there is little chance of overfitting anything.
And where will we get 2,000 different training and
validation sets? Data does not usually grow on trees.
Here, I will discuss two tricks of the trade – cross-
validation and bootstrapping – without arguing for or
against either one. In practice, one should explore both
of them, if one has that luxury, because they tell differ-
ent stories and have their own pros and cons (Kohavi
1995).

It is important to point out that these methods can be
used for model assessment and model selection. The
emphasis in the former is to obtain a good estimate of
some population parameter, for example the prediction
error. In other words, we want to know how well a
given model will perform on the population at large.
The second purpose is to decide which model is better.
Of course, we can always obtain estimates of the pre-
diction error for each of the models, and then pick the
model with the lowest prediction error. That would be
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only one criterion for model selection. Other criteria
may not involve the prediction error at all.

One way to generate multiple training and valida-
tion sets from a single data set is to divide-up the
data into several chunks, say k, train on k − 1 of the
chunks and validate on the unused kth chunk. This
way we can have k different training and validation
sets. This method is the basic version of what is gen-
erally called cross-validation (Stone 1974). The case
with k = 2 is known as the split-sample method. At
the other extreme, when k is as large as the sample
size itself, the method is called leave-one-out cross-
validation, for obvious reasons. For the theoretically-
inclined reader, Zhang (1992), and Shao (1993, 1996)
show that leave-one-out cross-validation is asymptoti-
cally inconsistent, which means that as the size of the
sample approaches infinity, the probability of select-
ing the true model (in a predictive sense) does not
approach 1. I will not go into its details here; Fu
et al. (2005), and Zucchini (2000) provide a thorough
discussion of the nuts and bolts of cross-validation, at
large.

Another way of producing multiple training and
validations sets is to appeal to resampling. In resam-
pling methods (Cherkassky and Mulier 1998; Hastie
et al. 2001; Hjorth 1999; Masters 1995) one typically
takes a sample from the entire data set and uses it for
training. The remainder of the data can then be treated
as a validation set. Given that the training set is drawn
randomly from the sample, we can always take lots
of different samples from a given data set, and that is
how we are going to collect our 1,000 training sets.
In fact, we can resample ad nauseum, unlike cross-
validation where a maximum of k training sets can
be drawn. Two questions that arise are (1) how large
should each sample be, and (2) should the sampling
be done without or with replacement? Intuitively, the
advantage of sampling without replacement is that a
training set does not end-up having multiple copies
of the same case. The disadvantage is that a training
set will end-up being smaller than the whole data set.
This disadvantage is not too important in the context
of model selection, but it is important if one is using
the resampling method for estimating the prediction
error. In the model selection context, sampling without
replacement has been employed in the literature, but
not enough to have earned its own name. One can
describe it as hold-out cross-validation with random
subsampling (Kohavi 1995).

When the sampling is done with replacement, then
one can draw a training set as large as the original
sample itself. As mentioned above, this is important
in the context of model assessment, because one gen-
erally desires to produce an interval estimate for some
parameter (e.g., prediction error), and for a given sam-
ple size. In resampling lingo, a sample taken with
replacement, as large as the data itself, is called a
bootstrap sample (Efron and Tibshirani 1998), and the
number of times the resampling is performed is called
the number of bootstrap trials. The most crude estimate
of the prediction error involves averaging the training
error over all the boostrap trials. This average training
error, as we have been saying repeatedly, constitutes
an optimistically biased estimate, because a larger net-
work will generally lead to a lower value of this error.
A better estimate (Efron and Tibshirani 1997) is called
the leave-one-out bootstrap estimate, and is denoted
Err (1):

Err (1) = 1

N

N∑

i

1

|B−i |
∑

b∈B−i

Li,b, (2.28)

where N is the sample size, B−i is the set of bootstrap
trials that do not include the i th case in the data, and
Li,b is the error committed on the i th case, by a model
trained on the bth bootstrap sample. Note that Err (1)

averages over the bootstrap trials, first, and then over
the cases. Two common choices for Li,b are given in
equations (2.32) and (2.33), specifically in the argu-
ment of the sum. Err (1) is better because it does not
refer to a single training or validation set. However,
it has been shown that the resulting estimate of the
prediction error is, in fact, pessimistically biased. In
other words, it over-corrects for the faults of the basic
bootstrap estimate. To correct for that over-correction,
Efron (1983) and Efron and Tibshirani (1997) propose
what is called the 0.632 estimate. The name originates
from the fact that in the long run only (1 − 1

e ) =
63.29% of the cases in the original sample are utilized
for training. The conclusion of the analysis is that a
pretty decent estimate of the prediction error is given
by the following weighted average of the apparent
error and the leave-one-out bootstrap estimate:

Prediction Error = 0.368 × Apparent Error

+ 0.632 × Err (1) (2.29)



000–0–00–000000–0 02-Haupt-c02 SHB0024-Haupt (Typeset by SPi, Delhi) page 29 of 48 October 3, 2008 15:14

2 Statistics and Basic AI 29

where,

Apparent Error = 1

N

N∑

i

Li (2.30)

and Li is the error committed on the i th case in
the data, by a model trained on the entire data. All
sorts of variations on this theme have been explored:
The 0.632+ method (Efron and Tibshirani 1997), out-
of-bootstrap (Rao and Tibshirani 1997), and bagging
(Breiman 1996), as well as numerous others are nicely
discussed in Hastie et al. (2001).

The estimate I use for the example illustrated in
Section 2.8.3 is the one given in equation (2.29).
To summarize, given a data set of size n, I draw a
sample (with replacement) of size n, treating it as a
training set, and the remainder as the validation set.
A number of models are trained on the training set,
and the performance of each model on the respective
validation set is recorded. The sampling procedure is
repeated many times, say 1,000. As such, 1,000 mod-
els are trained on 1,000 training sets, and validated on
1,000 validation sets. Err (1) is computed according
to equation (2.28), and the apparent error is obtained
by training the model one time on the entire data set.
These two are used in equation (2.29) to estimate the
prediction error. The model with the lowest prediction
error is expected to perform best in the population, i.e.,
has the best generalization performance (in AI lingo).

Now, note that all of this resampling has gone to
produce a single point estimate of the prediction error.
Although that may suffice for many applications, it
does not when model selection is the task. To properly
select the best model, we need an interval estimate of
the prediction error. After all, the prediction error is
a random variable, and therefore, a point estimate of
prediction error is subject to variability. In deciding on
a good model, it is important to have some sense of the
variability of the prediction error. Efron and Tibshirani
(1997) report some analytic formulas for computing
the standard error of prediction error, but the formulas
do not apply to all performance measures. That is not
a problem, because one can again rely on resampling
techniques to estimate the variability of the prediction
error. One can justifiably refer to this approach as a
double-bootstrap, where one (inner) bootstrap is done
to obtain a point estimate of the prediction error, and
then another (outer) bootstrap is done to get the empir-
ical sampling distribution of that estimate. The idea of

the double-bootstrap was introduced by Efron (1983),
but the specific application of double-bootstrap for
model selection has been addressed, most recently, by
Hall and Maiti (2006), and Tian et al. (2007). As sim-
ple as that idea seems to be, its proper formulation is
subtle and complicated. Here, I will not get into those
details. Instead, I will illustrate what may be called
the “poor man’s double bootstrap.” What that entails is
simply taking multiple samples (without replacement)
from the data, and then computing a point estimate of
the prediction error for each sample via proper boot-
strapping. Then histograms or boxplots of prediction
errors will give us a sense of the variability of the
prediction error.

One last technical (but important) point remains.
Suppose we have completed this type of double-
bootstrap and have obtained two boxplots of prediction
errors, one from model A, and another for model B.
Can we simply compare these boxplots by placing
them side-by-side and noting their relative position?
For example, if there is significant overlap between the
two boxplots, can we conclude that the two models are
statistically equivalent? As tempting as it may be to
answer in the affirmative, that answer would be correct
only if we were to assume that the data that go into
making the boxplot for model A are independent of the
data that go into making the boxplot for model B. In
the scheme outlined above, that assumption is violated,
because each point estimate of prediction error, for
model A and model B, is based on the same data set!
This happens because often one takes a sample from
the data set – the outer bootstrap sample – and then
computes the prediction error – via the inner bootstrap
– for model A and model B. As such, the values of
the prediction error for model A and model B are
not independent across the outer bootstrap trials. In
statistics they are said to be “paired data.” In such a
situation, one examines the boxplot of the difference
of the prediction errors from model A and model B.
Then the position of this boxplot, relative to zero, is a
measure of whether or not the two models are statis-
tically equivalent. Suppose the difference is taken as
“model A – model B”. If the boxplot of this difference
in the prediction errors is completely above zero, then
we may conclude that model B has a statistically lower
prediction error than model A. Similarly, model A has
a statistically significant lower prediction error than
model B, if the boxplot of the difference is entirely
below zero. And finally, if the boxplot includes zero,
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then one cannot conclude that one model is better than
another, at least not based on the data at hand.9

All of this methodology for model selection is com-
pletely general. It is not specific to finding the optimal
order of a polynomial regression; it may be used to
select the right number of inputs into some model.
Quite generally, it can be used to determine the opti-
mal structure of any model, given data. It is unfortu-
nate that the methodology does not tell us how much
data we need to prevent overfitting, but it does tell us
whether or not we are overfitting the data at hand. In
Section 2.8.3, the above methodology is applied to a
concrete example in order to address the complexity
of a neural network model.

2.6.2 Right Structure but Now What?

Suppose we have utilized this model selection
method to select the order of a polynomial regression
model. But which one of the 1,000 models with
this specific order should we use when we want to
make predictions on new data? There are at least
two answers: (1) Take all 1,000 polynomials, and
average their predictions to obtain a single prediction.
This idea is based on what Breiman (1996) calls
bagging (for bootstrap aggregation), an example of a
larger class of techniques called model averaging.10

It is nice because it can also give us a sense of the
spread/uncertainty in the forecast. (2) Alternatively,
one can take a model with the optimal order, as
suggested by the model selection method, and retrain
it on the entire data. This option yields a single model
that can be used on new data. In my experience, either
one is good enough – and better than the hold-out
method, especially when one has small validation sets.

Bagging is even more general than the manner in
which I presented it. Theoretically, the advantage of
bagging is that one does not have to worry about model
complexity at all! In other words, you can set the

9 Of course, one can turn all of this into p-values, which in turn
can be used to reject (or not) the null hypothesis that two models
are equivalent. But, in my opinion, the boxplots offer a more
complete comparison of the two models.
10 Technically, bagging refers to averaging the predictions of
different models developed on different bootstrap samples, but
model averaging refers to averaging the predictions of different
models on a given data set.

order of the polynomial to some huge number, and
proceed with its training on the bootstrap training sets.
Of course, each polynomial model trained on a given
bootstrap sample may overfit the training set, but each
polynomial will overfit a different sample. The idea is
that the average of all these different overfit models is
itself a model that does not overfit.

2.7 Nonparametric Models

The regression equation y = α + βx is called a para-
metric model of data, not because of the parameters
α and β in the equation, but because it cannot fit a
wide range of relationships. A nonparametric statis-
tical model generally refers to an algorithm that has
sufficient flexibility to capture a wide range of rela-
tionships in the data. As such, polynomial regression
is a nonparametric model, in spite of the abundance
of parameters in it. Its flexibility comes from having a
special parameter that controls nonlinearity – the order
of the polynomial. And, as discussed in the previous
section, one can use either model selection or model
averaging methods to address this order parameter.

Another type of nonparametric regression is one
where no parametric equation is written down at all.
As we saw in Sections 2.4.3 and 2.4.4, it is possible to
interpret the output of regression as a conditional mean
of the response variables. So, if all we want from our
statistical model is the ability to predict a y value from
an x value, why can we not simply average the y values
in the data, for a given x value, and call that average
our prediction? Indeed, we can. The fancy name for
that idea is kernel regression.

Of course, there are a few details which one has to
worry about. For instance, suppose we have our data
(xi , yi ), and we want to make a prediction for a new
case – call its x value x0. If x0 does appear in the data
set, i.e., if it is one of the xi , then the idea is to average
all the y-values in the sample whose corresponding
x is x0. Then we can use that average value as our
prediction for the y-value associated with x0. But what
if x0 does not appear in the data? Then, the natural
thing to do would be to find the nearest x value in
the sample, and do the same thing as before. But that
opens up a possibility: Why not average the y-values
not just for a given x , but also for some nearby x’s?
The only other question is how near is near? Usually,
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Fig. 2.5 An illustration of a
K-Nearest-Neighbor model
with K = 5

when a question like that comes up, one smart thing to
do is to simply average over all the possible values, but
simply give a heavier weight to the close ones. In other
words, our prediction for the y-value corresponding
to x0 is the weighted average of all the y-values in
the data, with the weights falling off with the distance
between x and x0. The weights are called kernels, and
one very common one is a Gaussian ∼ exp−ω (x−x0)

2
.

The parameter ω is called the smoothing parameter;
it is the parameter that allows for the model to fit a
wide range of relations. It is the analog of the order
of a polynomial. It is the parameter that makes kernel
regression nonparametric! For small values, the output
of the model is practically the original data, i.e., the
model overfits; For large values, the output is just the
overall mean of the y values, i.e., the model underfits.
For intermediate values, the output is the local aver-
age of the y values, i.e., the conditional mean of y,
given x . The question, then, is what is an intermediate
value? Again, the model selection methods described
in the previous section are capable of providing the
answer.

Note one other difference between polynomial
regression and a kernel regression model: When asked
to make a prediction for a new case, polynomial regres-
sion does not require the data that was employed for
estimating the parameters in the polynomial – one

simply uses the polynomial itself for making a pre-
diction. But kernel regression requires the entire data
set, because it needs to identify the cases in the data
that are nearest to some case, and then average them in
the way described above. As such, there is no training
phase in kernel regression. For a particular application,
this may be a pro or a con.

This same, almost trivial, idea of averaging over
nearby points comes up in classification problems,
under the name K-Nearest-Neighbor (KNN). To make
a prediction of class-membership for a new case, KNN
finds the K nearest cases in the sample data, identifies
the “majority vote” among those K cases, and issues
the corresponding class as its prediction. An example
with K = 5 is given in Fig. 2.5.

The next extension of this simple idea is to associate
a probability with each categorical prediction. The
simplest way is to take the proportion of the majority
class among the nearest neighbors, and treat that as
a probability; these are the numbers shown as p =
in Fig. 2.5. However, these probabilities are not truly
p(C |x), which is what we would need for making
predictions. But a model called Naive Bayes can be
developed in conjunction with KNN to produce class-
membership probabilities (Frank et al. 2003; Jiang
et al. 2005). Needless to say, model selection or model
averaging can be used to address K.
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The main point of this section is to show that non-
parametric models, in spite of their name, are not too
different from their parametric counterparts. One still
needs to address overfitting and model complexity of
nonparametric models; and moreover, the notion of a
distribution is always lurking around. As we will see
in the next section, neural networks are no different in
this respect.

2.8 Multilayered Perceptron

There have been numerous claims made about the
stature of Multilayered Perceptrons (MLP) – or Neural
Networks (NNs).11 Most, however, are exaggerated
or even blatantly wrong. In this section, I show that
NNs are just another regression and classification tool,
closely related to many of the classical models men-
tioned in the previous sections. NNs do, however, have
certain properties that make them useful on a wide
range of problems.

In fact, I think it is sufficient to mention just one of
these properties, namely the manner in which neural
nets handle the “curse of dimensionality”. The best
way to illustrate this point is by returning to polyno-
mial regression. How many parameters does a polyno-
mial regression have? First, recall that the number of
parameters in a model is basically one of the factors
that controls overfitting; too many parameters increase
the chances of overfitting data. Also, too many para-
meters increase the uncertainty in each parameter’s
estimate. All of this makes perfect intuitive sense if
we remind ourselves that all we have at our disposal is
some finite sample, and that this sample contains some
information that we are trying to distill into a model.
The finite information in the data can only go so far in
estimating the unknown parameters of the model.

Returning to the question of the number of para-
meters in a polynomial, if we have only one predictor,
then a polynomial of order M will have M + 1 para-
meters. That is not too bad. But for p predictors, then
we have many more because of the interaction terms,
i.e., the cross terms between the predictors. In fact, the

11 Neural Networks, in general, come in a variety of types. Con-
sult Masters (1993) or Bishop (1996) for a taxonomy. Usually,
however, an in this chapter, neural network and multilayered
perceptron are used interchangeably.

number of coefficients that must be estimated grows
exponentially with p (Bishop 1996, p. 32). This makes
it difficult to keep up with the demands of the model in
terms of sample size. By contrast, as we will see below,
the number of parameters in neural nets grows only lin-
early with the number of predictors. Meanwhile, they
are sufficiently flexible to fit nonlinearities that arise
in most problems. In short, they are “small” enough to
not overfit as badly as some other models, but “big”
enough to be able to learn (almost) any function.

Now, let us talk about the MLP. In terms of an
equation it is simply a generalization of the regres-
sion equation y = β0 + β1x1 + β2x2 + . . . + βP xP =∑P

i=0 βi xi , which we saw at the start of Section 2.6:

y(x, ω, H) = g

⎛

⎝
H∑

i=1

ωi f (

Nin∑

j=1

ωi j x j − θi ) − θ

⎞

⎠ .

(2.31)

The θ and ω terms are the analogs of α, β in the
regression equation. They are the parameters of the
network – also called weights. The picture that accom-
panies equation (2.31) is shown in Fig. 2.6. This net-
work would be referred to as an MLP (or NN) with
Nin input nodes, one output node, and two hidden
layer of weights (or equivalently, one hidden layer of
nodes). The generalizations to multiple output nodes,
or multiple hidden layers, are all straightforward.

Let us count the parameters: Each line connecting
nodes in Fig. 2.6 is a weight, and there are Nin H +
H Nout of them. But, each of the hidden nodes and the
outputs is also accompanied by a parameter – the θ ’s
in equation (2.31) – and there are H + Nout of them.
In sum, the network has (Nin + 1)H + (H + 1)Nout

parameters. Note the linear growth with Nin . This is
how neural nets manage to address the aforementioned
curse of dimensionality. For a given number of predic-
tors, they do not have too many parameters, at least
compared with polynomial regression.

H is the number of hidden nodes, and it plays
the role of the order of the polynomial regression.
f (x) and g(x), called activation functions, are some
prespecified functions; their job is to transform the
predictors x j , just like we did in Sections 2.5.1 and
2.5.3 when we squared x and then did regression
between y and x2. The only difference is that in neural
nets circles, one does not use powers of x , but func-
tions that look like a smoothed step function. Such
step functions are generally called sigmoidal, and two
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ω13
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h2 h3

Fig. 2.6 An MLP with four input nodes, three hidden nodes on one hidden layer, and one output node. Some of the weights are
also shown

common choices are tanh(x) and 1/(1 + e−x ), with the
latter also known as the logistic function, whom we
met in equation (2.27) when dealing with discriminant
analysis. For regression problems, one usually uses
one of these for f (x), and then sets g(x) = x ; this
combination of f and g allows the network sufficient
nonlinearity, while allowing the output of the network
to take the full range of values that a continuous target
variable usually takes. For classification tasks, ones
sets both f and g to some sigmoidal function. These
are all common but not universal or absolutely unique
choices.

Without going into details, we can now see why an
MLP can fit (almost) any data. Just think of f (x) as
a basis function; equation (2.31) then says that any
function relating y to the xi ’s can be approximated
with the function given in equation (2.31), given some
values for the parameters, and given a sufficiently
large H . For those readers who feel comfortable with
Fourier decomposition, this is analogous to Fourier’s
claim that any time series can be written as a sum of
a bunch of sines and cosines. The MLP analog is that

any function can be written as a linear combination of
a bunch of sigmoidal functions.

Incidentally, I say “any function”, but I should be
saying “most functions.” There are some functions
that cannot be represented by equation (2.31). Many
of them can be represented by MLPs with more hid-
den layers. One can continue making equation (2.31)
increasingly flexible in order to allow it to fit increas-
ingly complicated functions, but in most practical
problems it is unnecessary to go beyond one hidden
layer of nodes.

2.8.1 Estimating Weights – Training

Let us recall where we are going. The task is to take
some data set that relates some number of predictors
xi to a response y, and then estimate all the parameters
appearing in equation (2.31). When we are done, we
can take our MLP and start predicting with it; feed
it inputs, and see what it predicts for the response.
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However, as you can probably guess from our regres-
sion experience, there are two types of parameters in
equation (2.31), and they require separate treatment.
The estimation of the weights is called training, and H
can be addressed within either a model selection or a
model averaging scheme.

Again, just as in regression, training involves min-
imizing some error function, denoted E . But keep
in mind that the minimization is just a pragmatic
approach to the maximization of the probability of
obtaining the data.12 For regression problems the com-
mon choice is the mean squared error (MSE)

E(ω) = 1

n
�[y(x, ω) − t]2, (2.32)

and for classification problems, it is the so-called
cross-entropy,

E(ω) = −1

n

∑
[t log y(x, ω) + (1 − t)

log(1 − y(x, ω))], (2.33)

both of which are related to the likelihood of the data,
mentioned in Section 2.4. One looks at the difference
between the truth and the prediction, while the other
looks at (the log of) their ratio.

In these so-called error functions, ω refers to all the
parameters in equation (2.31), except H . The sums are
over the n cases in the training data, but for the sake
of clarity, I have suppressed the corresponding index.
So, y(x, ω) is given by equation (2.31), and the t are
the corresponding targets. Note the slight change in
notation: in statistical circles, the observed data are
denoted (xi , yi ), but in AI circles, they are written as
(xi , ti ) with y(x) reserved for the output of the model.
This explains the difference between equations (2.32)
and (2.4).

For regression problems, t takes a continuous
range, but for classification problems, it is a discrete
variable. For a two-class problem, it is sufficient to
let t be 0 or 1, denoting the two classes. But if the
problem has more classes – especially if the classes
have no inherent order – then it is wise to encode
them among several output nodes. For example, if the
problem has three classes, then our MLP should have
three output nodes, taking the values (1,0,0), (0,1,0),

12 In the Bayesian approach, one actually maximizes the “other”
probability, i.e., the probability of obtaining some parameter,
given the data (MacKay 1996; Bishop 1996).

(0,0,1) for the three classes, respectively. Note that
these are the target variables for training a classifier;
when the classifier is being employed for prediction,
then the outputs are not necessarily 0 or 1. In fact,
they are continuous numbers between 0 and 1 (because
g(x) is logistic), and it can be shown that the output
of the j th output node is the conditional probability of
belonging to the j th class, given the inputs (see below).
This scheme is called 1-of-c encoding.

Although the choice of mean squared error in equa-
tion (2.32) is not surprising, the expression appear-
ing in equation (2.33) may seem arbitrary. However,
the fact is that both of these expressions are derived
from assumptions on the underlying distributions. Just
as in Sections 2.4.3 and 2.4.4, the minimization of
equation (2.32) is equivalent to the maximization of
the probability of data, if the errors are normally dis-
tributed. Similarly, for a classification problem, com-
paring the logarithm of equation (2.11) with equa-
tion (2.33) reveals that the binomial distribution has
been assumed at some stage. As such, one should be
cautious of claims that MLPs are assumption-free, at
least if one desires a probabilistic interpretation of the
outputs.

More specifically, recall that the minimization of
mean squared error assures that the output of a regres-
sion model can be interpreted as the conditional mean
of the target values, given the input (Sections 2.4.3
and 2.4.4). The same is true of an MLP in regression-
mode, i.e., when the targets are continuous and we
minimize mean squared error (Bishop 1996). The anal-
ogous result for a classification MLP is this: if the
activation functions f and g are logistic, then the min-
imization of cross-entropy guarantees that the output
is a posterior probability of class membership, given
the inputs (Richard and Lippmann 1991). In equa-
tion form: y(x, ω) = p(C |x). This probability is pre-
cisely the type of probability required for assessing
or conveying uncertainty in predicting class member-
ship. By the way, for the output to have this proba-
bilistic interpretation, the various classes in the train-
ing data must appear in their “natural” (or climato-
logical) proportion. If the number of cases in each
class is artificially equalized – as is sometimes done
– then the output must be scaled in a special way
to maintain the probabilistic interpretation (Bishop
1996).

Now, let us return to the minimization task. Given
the nonlinearity of E(ω) on ω, it is impossible to
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Fig. 2.7 An illustration of
local minima

solve the ∂ E/∂ω = 0 equations exactly. The usual
approach is to adopt some iterative approach that
converges to the minimum of E(ω). The brute force
approach could be something like this: Vary all the
weights over their full range in some small increments.
Calculate the E at each increment, and then select
the weight values that yield the lowest E . The good
news is that there exist much smarter ways of finding
the minimum of E . Some of the more popular ones
are gradient descent, backpropagation, (scaled) conju-
gate gradient, simulated annealing, genetic algorithms,
etc. (Masters 1993; Bishop 1996; Haupt and Haupt
1998). They all involve initializing the weights ran-
domly, and then proceeding to vary them in increments
and in a way that is designed to minimize the error
function.

The fly in the ointment is that there almost always
exist (too) many local minima. In other words, if you
pick some random initial weights and start training
(i.e., minimizing E), you will find that after some time
E does not seem to decrease any further. You might

think that you have found a minimum. However, if you
start training from different random initial weights,
you will probably find a different minimum – different
both in the value of E and the corresponding final
weights. These are all local minima.

Figure 2.7 provides an qualitative illustration of
local minima. The x-axis represents a single weight,
while the y-axis denotes the error function being mini-
mized, say, MSE. If the initial weight corresponds to
the points labeled 2 or 3, then a training algorithm
will reduce the MSE, and land us in the global min-
imum. An initial weight corresponding to point 4 will
land us in a local minimum. In this illustration, the
local minimum is actually not too bad, because the
corresponding MSE is close to the one at the global
minimum. As such, even this local minimum would
suffice. By contrast, if the network’s initial weights
place it at points 1 or 5, then the weight shrinks
continually, or diverge to infinity, respectively. What
awaits in these two extremes is either a deeper global
minimum, or nonphysical solutions. One never knows
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with certainty – hence, the art of training a neural
network.

There are many methods for both avoiding local
minima and escaping them, but none of them guar-
antee that a global minimum has been found, at least
not in practice. Actually, it turns out that the desire to
find the global minimum is unnecessarily obsessive.
In statistical settings, i.e., dealing with data, a suf-
ficiently deep local minimum usually suffices. What
is “sufficiently deep”? The answer depends on the
specific problem/data. So, it is best if one just trains
from many (say 100) different initial weights, and
plots the distribution of the final E’s. This will show
not only the most likely local minima but also the
“chance” of landing in a global minimum. The code
provided here does allow one to explore the vari-
ous local minima, and I will illustrate their effect in
Section 2.8.3.

2.8.2 Estimating Complexity – Model
Selection and/or Averaging

I have said that H is the analog of the order of a
polynomial, and so, it affects the nonlinearity of the
relationship between the input and output variables.13

The fact is that there are several parameters which
effect the nonlinearity of a network. In addition to H,
there is the magnitude of the weights, and the number
of iterations toward the minimum (also called epochs).
In the context of MLPs, then, model selection refers
to finding the “optimal” values for these parameters.
Although, it turns out that we do not really need to
optimize every one of these parameters, it is good to
know that they exist.

To see how the magnitude of the weights enters
the game, examine the logistic activation function,
and its Taylor series expansion: f (x) = 1

1+e−ωx = 1
2 +

1
4 (ωx) − 1

8 (ωx)3 + . . . . Suppose we are dealing with
a regression problem, and so we pick the identity func-
tion for g in equation (2.31). If the magnitude of ω

is “small”, then f (x) is linear in x , and the whole

13 H = 0 means an MLP with no hidden layer of nodes. Such a
model, also called a Perceptron, is equivalent to linear or logistic
regression depending on the choice of the activation function.
Marzban (2004) shows the close relationship between logistic
regression, discriminant analysis, and MLPs.

MLP equation (2.31) becomes linear in x . In other
words, if the weights of the MLP are small, then it
is a linear function, regardless of how many hidden
nodes it has, or how many epochs it is trained for.
Said differently, the entire MLP is nothing but a linear
regression model. At the same time, for large |ω|, f (x)

is very nonlinear in x . Then, even for a moderately
small number of hidden nodes, the MLP can end up
being quite nonlinear.

The magnitude of the weights itself is effected by
two other “knobs” that enter at the training phase:
the range of the initial weights, and what the train-
ing algorithm does to them. The first one is con-
trolled through the standard deviation (or range) of
the distribution from which the random weights are
drawn, and the second one is controlled by the intro-
duction of a term in the error function being min-
imized, e.g., equations (2.32) or (2.33). It is called
the weight decay term, and its job is to penalize
the error function when the weights get too large.
In its simplest implementation, it looks like ν

∑
ω2,

where the sum is over all the weights in the network.
In this form, the single coefficient ν determines the
over-all effect of weight-decay. The larger ν is, the
smaller the weights, and the more linear the network
becomes.

Looking at the Taylor series expansion of f (x),
it is clear that the adjectives “small” and “large” are
relative to the size of x ; and that is where another
parameter enters the scene, namely the range of the
inputs. If the inputs vary over a small range, then even
a large ω may not yield a large enough (ωx) to make
the logistic function nonlinear. To control this effect on
nonlinearity, a common practice is to either scale the
inputs to some reasonable range (e.g., −1 to +1), or to
standardize them as z = (x − x)/s, where x refers to
all the cases in one input, and x and s are the sample
mean and standard deviation of that input. This trans-
formation of the inputs is statistically pleasing because
the transformed variables (also called z-scores) will
have a mean of zero and a standard deviation of 1, plac-
ing different inputs all on the same footing. Anyway,
the point is that we also need to worry about the range
of the inputs, and preprocess them in some intelligent
way.

Finally, to control the number of epochs, i.e., the
number of times the weights are updated on their way
to the minimum, one does what is called called early
stopping. And that is exactly what it sounds like: one
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simply terminates training. When to stop is determined
by monitoring the performance of the network on a
validation set. Whereas the training error continues to
decrease, the validation error decreases initially, and
then either fails to decrease or even begins to increase.
One simply halts the training when the validation
error begins to rise. This hold-out method (Section
2.6), however, has some problems with small data sets
(Goutte 1997).

The aforementioned parameters are not all indepen-
dent. For example, if H is such that the parametric
structure of equation (2.31) simply does not allow a
proper representation of the underlying function relat-
ing the inputs to the outputs, then a larger number of
epochs will not get us anywhere. As such, it is recom-
mended to fix most of these parameters, and employ
model selection methods (Section 2.6) to address the
rest. One can set H to a large value (even exceedingly
large), initialize the weights from a wide distribution,
and then let ν control nonlinearity. Alternatively, one
can set ν = 0, and then vary H. In both cases, one
should set the number of epochs to some very large
number. In this chapter, I will follow the latter. Having
said all of that, I must also confess that there is an
element of art in deciding what is large and what is
small. The best way is to play and get a feeling of how
things go.

And there is more! One facet of neural net develop-
ment which I have ignored is their training method.
Backpropagation, conjugate gradient, Levenberg-
Marquardt, simulated annealing, and genetic algo-
rithms, are all training algorithms designed to min-
imize some error function. They do their business
differently, though. The first three are based on the
derivative of the error function with respect to the
parameters; simulated annealing relies on ideas from
condensed matter physics to minimize the error func-
tion without taking any derivatives, and genetic algo-
rithms (Chapter 5) do the same but with ideas from
evolutionary biology. The trouble is that they too come
along with a host of parameters the user is expected to
set. A good discussion of all of these methods is given
in Masters (1993).

To close this section, let us recall again, that the
reason we are worrying so much about overfitting is
that we desire to develop a model that performs well
in the population, and not specifically on any given
sample. I will now turn to illustrations of all these
ideas.

2.8.3 A Classification Example

Model selection methods are designed to identify the
best model, or the true model (if one does exist). By
“best” we mean good predictions on unseen data. So,
let us test this claim. Let us pick a known function,
create some data from it, and see if our model selection
method can identify the underlying function from the
data alone. We already considered such an exercise in
Section 2.6, with polynomial regression. So, this time,
let us try a classification problem attacked with neural
nets.

To that end, I picked an MLP with two input nodes,
H = 6 hidden nodes, and one output node. I then
generated 1,000 random pairs of numbers between −1
and +1, and fed these as inputs to the network. With
randomly initialized weights, I added a bit of noise
to the outputs (normal, with a mean of zero and a
standard deviation of 0.3), and assigned 0 (1) to the
target, if the output was less than (greater than) 0.5.
The resulting data are shown in Fig. 2.8. The boundary
between the 0s and 1s in Fig. 2.8 is then our true under-
lying boundary. Note that I did not use an MLP to learn
any data; I used an MLP structure to generate data.
The question is if our model selection method will be
able to identify the correct underlying boundary, i.e.,
the correct number of hidden nodes, i.e., 6?14

So, I took the generated data – all 1,000 of them –
and went to work. Given that we are dealing with
a classification problem, all the activation functions
were logistic; the error function was cross-entropy
without a weight-decay term, and I allowed the train-
ing algorithm to converge to minimum (i.e., no early
stopping). I then developed three networks with H =
0, 4, and 6 hidden nodes. Why these specific values?
You will see! The model selection method I used was
the double-bootstrap, as described in Section 2.6. The
number of “outer” bootstrap trials was 60; in other
words, I took 60 different samples from the data, each
of size 700. Then, for each of these 60 samples, I
used proper bootstrap to get a point-estimate of the
prediction error. The number of “inner” bootstrap trials

14 Of course, there is more to the boundary in Fig. 2.8 than just
the number of hidden nodes of the network; namely, the specific
values of the weights of the network. But, as I have mentioned,
upon training a network with six hidden nodes on the training
set, the only ambiguity in the particular weights is due to local
minima. As such, we should still try a few other initializations
and get a sense of the range of variability.
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Fig. 2.8 Artificial data with
two predictors (x1, x2), and
one binary target (0/1) made
with an MLP with six hidden
nodes

was 70. Recall, that the “outer” boostrap gives us the
sampling distribution of the prediction error. This way,
we will have some sense of the uncertainty of the
prediction errors for each of the three models. These
numbers were chosen almost randomly; however, there
are some theoretical reasons to take the number of
outer trials to be approximately the square root of the
inner trials (Kuk 1989).

Figure 2.9 shows the boxplots for the average (over
“inner” bootstrap trials) training errors (left) and pre-
diction errors (right). As expected, the training error
falls off with increasing complexity. However, as seen
in the right panel, the prediction errors are gener-
ally lower for the model with four hidden nodes. The
H = 0 model underfits the data, and the H = 6 model
overfits it. Yes, the H = 6 network overfits the data,
and so, it is not the best model for the data at hand. So,
are we to conclude that our model selection method
failed, because it did not arrive at the correct answer,
6? No, the method did not fail. The resolution to the
discrepancy is in the way I generated the data. Re-
visit the beginning of this section, where I described
the way the data was generated. I did indeed take a
network with H = 6 hidden nodes, but such a network
includes, as special cases, functions that can be repre-
sented with lower values of H . Just imagine setting
some of the weights in the H = 6 network to zero,
so that it would represent only functions learnable by
H = 4, or even H = 0 networks. It is doable, and in

this case it happened. In other words, when I assigned
random weights to the H = 6 network, the resulting
network was one that could easily fall within the space
of H = 4 networks. That is why the model selection
method arrived at the H = 4 model as the best one for
the data at hand.
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Fig. 2.9 The performance of the various models in terms of
the average training Q (left) and the Prediction Q (right), on
60 “outer” bootstrap trials. A brief description of boxplots is
in order: The dark horizontal line in the middle of each box
marks the median, and the lower (upper) edge of the box marks
the first (third) quartile of the data. The whiskers at the ends of
the vertical lines denote the range of the data, but only after the
outliers (the circles) have been removed. There exist different
notions of an outlier, but here everything beyond 1.5 × (third
quartile – first quartile) is defined as an outlier.
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That is one explanation of the apparent failure of
the methodology. The other explanation is this: The
H = 4 model is the right one for the data at hand, i.e.,
the 700 cases that are selected for actual training. Had
our original data been larger, it is possible that a larger
value of H would turn out to be optimal. It is impor-
tant to realize that the notion of “the best” model is
contingent on the available data. And by the way, this
is why I chose not to consider networks with H > 6
– because all larger networks would overfit even more
so than the H = 6 network. As for the specific choice
of 0, 4, and 6: there is no particular reason! You may
choose 0, 3, and 6 if symmetry is pleasing; I suspect
the prediction errors will be comparable to the 0, 4, 6
cases. I usually take some even numbers, but I try to
include 0, because a H = 0 network is equivalent to
logistic regression – a simple but powerful model that
makes for a good benchmark.

Now, let us return to Fig. 2.9 and discuss the box-
plots a bit more. Yes, the H = 4 model is producing
generally lower prediction errors than the other two
models; but what about the spread in these errors,
reflected in the range of the box as well as the
whiskers? In this case, we are lucky in that there is
almost no overlap between neighboring models. So,
modulo the assumption that the prediction errors are
not paired between the models (see below), we may
conclude that the model with H = 4 hidden nodes
is not only the best model, but it is better than the
other two in a statistically significant sense. However,
if there had been significant overlap between the box-
plots, then we would have to conclude that, given the
data, we cannot decide which model is better. Said
differently, we would have to conclude that all the
models are statistically equivalent. That is why it is
important to look at these boxplots.

It is worthwhile to view the above results in one
other way. The top three panels in Fig. 2.10 show
the histograms of the average training errors (on left)
and the prediction errors (on right), for the three
models with H = 0, 4, and 6. Again, note the steady
shift of the training histogram to lower errors as the
model becomes more complex. From the prediction
histogram, it can be seen that the model with four
hidden nodes has lower errors than the H = 0 model
and the H = 6 network.

Let us remind ourselves what these histograms
actually tell us. In addition to selecting the right model,
they also tell us about the error the model is expected

to make in the long run. For example, the histogram
for the H = 6 network tells us that if we use this net-
work for prediction, then we expect to make an error
of about 0.24 ± 0.05, these numbers being the mode
and the standard deviation of the prediction histogram.
Granted, this error is in cross entropy – not exactly
a commonplace measure. But all of these histograms
could have been for some other measure, like root-
mean-square error (RMSE) of surface temperature, in
Centigrade. Suppose the mode and the standard devia-
tion of the prediction histogram of temperature RMSE
turned out to be 10 and 1.2, respectively. Then, we
would conclude that our model is expected to make
an error of 10◦C ± 1.2◦C when it is used on new data.
This is the kind of important information that should
accompany any predictive algorithm. Without it, we
have no idea how good the algorithm really is.

And there is still one more way of viewing the
results. The bottom panel in Fig. 2.10 shows what I
call the “tv-diagram” (Marzban 2000). It is a scatter-
plot of all “outer” bootstrap trials, with the average
training error on the x-axis and the prediction error
on the y-axis. The cluster of 60 dots to the right
corresponds to a network with zero hidden nodes,
the middle/low cluster is for an H = 4 network, and
the cluster immediately to the left comes from a net-
work with H = 6. The scatter of the dots gives one a
visual sense of the spread in cross-entropy, as well as
the correlation between training and prediction errors.
Again, it can be seen that the training errors for mod-
els with more hidden nodes are systematically lower,
but the H = 4 model has generally lower prediction
errors than the other two. Furthermore, the training
and prediction errors for H = 0 network are highly
correlated; i.e., a lower training error almost guaran-
tees a lower prediction error. This, however, is not
true of the larger networks, at least not to the same
extent. There appears to be a weakening of the cor-
relation for larger networks, and I suspect it can be
attributed to the increase in number of local minima
as a network grows larger. More on local minima,
below.

With Figs. 2.9 and 2.10, we can feel relatively con-
fident that the correct model for the data at hand is a
network with H = 4. As discussed in Section 2.6, at
this stage we would train such a network on the entire
data, and ship it out for use. Alternatively, we could
ship out all 60 networks with H = 4, and average their
predictions.
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Fig. 2.10 The top three
panels show the histograms of
the prediction error, Q, for
H = 0, 4, 6, respectively. The
bottom panel shows the
scatterplot of average training
errors and prediction errors
(“tv-diagram”) for 60 “outer”
bootstrap trials for MLPs with
H = 0 (most left cluster), 4
(middle, and lowest cluster),
and 6 (most right cluster)
hidden nodes

Now, what about the assumption (from five para-
graphs above) that the prediction errors are not paired
between the two models being compared? The notion
of “paired data” was discussed in the penultimate para-
graph of Section 2.6.1. There, I pointed out that a
comparison of two sets of numbers, in terms of the
boxplots of each set, is valid only if the two sets are
independent of each other. But, here in comparing
the set of prediction errors from one model to that
of another model, the two sets of prediction errors

are not independent, because they are estimated from
the same outer bootstrap trial sets. The solution is
to simply take the difference, across models, of all
60 prediction errors, and then look at the boxplot of
the differences. Figure 2.11 shows these boxplots. “4-
0” denotes the difference “(prediction error of H = 4
network – prediction error of H = 0 network)”. Sim-
ilarly, “6-4” denotes (prediction error of H = 6 net-
work − prediction error of H = 4 network), etc. So,
given the all-negative values of the “4-0” boxplot, we
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Fig. 2.11 Boxplots of the
difference of prediction
errors. “4-0” denotes the
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prediction errors of a H = 4
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conclude that the prediction errors of the H = 4 net-
work across the outer bootstrap trials are all lower
those of the H = 0 network. Similarly, the “6-4” box-
plot implies that for each and every outer bootstrap
trial, the H = 6 network produces larger prediction
errors than the H = 4 network. The last boxplot sug-
gests that the H = 6 network and the H = 0 network
are statistically indistinguishable. In short, the con-
clusion is still the same – that the best model is the
network with four hidden nodes.

Finally, it is possible to “explain” the spread in
the prediction errors. In MLPs, there are at least two
sources of variation: due to bootstrap resampling and
due to local minima. To assess how much of the vari-
ation in the error values is due to local minima, I
selected a single bootstrap trial and trained a H =
4 network 100 times starting with different initial
weights. Figure 2.12 shows the histogram of the train-
ing errors. Comparing the range of the values on the
x-axis in this figure with those appearing in Figs. 2.9
or 2.10, one can conclude that a good deal of the
variation in the errors is due to local minima. Marzban
(1997) attempts to compare the magnitude of these two
sources of variation. But as far as I know, no general
results exist on this matter.

Although we have expended a good deal of energy
to arrive at the “best model”, it is important to re-
iterate that often a range of H values will produce
comparable results, all of them equally good. This is
analogous to the case of local minima, where it is suf-
ficient to find a relatively deep local minimum, and not
necessarily the absolute global minimum. By model
selection, we just want to assure that H is in the right
ballpark.

2.9 Final Comments

Preprocessing of the data is a crucial part of any model
building task. In the examples employed in this chap-
ter, I was unable to make this point, because the data
were artificially made. In practice, a great deal must
be done to both the inputs and the outputs, in order to
make the data conform to requirements of the model,
either mathematical constraints or probabilistic. Either
way, one should make the job of the MLP as easy as
possible. Masters (1993) offers a good deal of guid-
ance, and Marzban (2004) does more of the same.

And the reader can get a sense of different types of
preprocessing by reading Chapters 12 and 13 in this
book.

Some of the preprocessing involves just “looking”
at the data. Scatterplots and histograms are the basic
tools for that purpose. The utility of these two tools
is even more impressive when they are conditional,
i.e., conditioned on some other quantity. Figure 2.10
contains examples of class-conditional histograms (top
three panels), and a scatterplot conditioned on H .
Of course, these figures pertain to the outputs of the
model, but similar plots can be viewed to study the
data before they are fed to a model.

Another preprocessing step involves reducing the
number of inputs as much as possible. This reduces
the number of parameters in the model, and therefore
reduces the chance of overfitting. One method relies on
finding linear combinations of the inputs that contain
most of the information in the data. In other words,
one does data compression on the inputs. The classic
method for this is called principal component analy-
sis. Given data on p predictors, it finds p different
linear combinations of the predictors (called principal
components), and orders them in terms of the percent-
age of the variance in the whole data explained by
each linear combination. Usually, the first few linear
combinations account for most of the variance in the
data.15 So, instead of the p predictors, one can use
only the first few principal components of the data as
inputs into the model. I have included a piece of code
that can do this, within a neural net code. The only
draw-back of this practice is that it can actually lead
to some loss of information, because principal compo-
nent analysis does not refer to the target values at all;
it is done on the inputs only. Bishop (1996) presents
some pathological examples to illustrate this point. But
in my experience, the examples are truly pathological
in the sense that I have never come across one, in
practice.

Finally, the performance of a statistical model can
be assessed in terms of measures that are often dif-
ferent from the error function being minimized. The
performance of a classifier is often assessed in terms
of a hit rate and a false alarm rate, even though it is

15 Chapter 8 discusses a nonlinear principal components analy-
sis, where nonlinear combinations of variables are taken. Ironi-
cally, an MLP is employed to take the nonlinear combinations.
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Fig. 2.13 ROC curves for 10
bootstrap trials

developed by minimizing cross entropy.16 Many per-
formance measures are discussed in Chapter 3, and
the model selection methods described in Section 2.6
here allow for assessing their uncertainty as well. For
example, the hit rates and false alarm rates from a
classifier are often reported in the form of a Relative
(or Receiver) Operating Characteristic (ROC) curve,
which is a plot of the former versus the latter, for dif-
ferent values of a threshold placed on the output of the
model; see Chapter 3 for a more complete description.
Figure 2.13 shows 10 ROC curves from 10 bootstrap
trials of the H = 6 network examined in the previous
section. Such a plot clearly shows the range of vari-
ability of ROC curves. And this can help in model
selection, if one desires to select a model with the
best performance on ROC rather than on cross entropy.
Do recall, however, that the above-mentioned issue of
“paired data” affects how one should compare ROC
curves, as well.

One last comment: Throughout this chapter I have
presented the case that many (if not all) techniques
generally considered as “traditional statistics” are
really not that different from machine learning or

16 Marzban and Haupt (2005) propose a method of directly
minimizing the performance measure of interest, even when
the performance measure is not a differentiable function of the
model parameters.

artificial intelligence techniques. Prejudice may have
swayed me to write in favor of the former; however,
there is one feature of AI techniques which I believe
has been unjustly used to their disadvantage. Specifi-
cally, some people have been referring to neural net-
works as a “Black Box”, because one is generally
unable to decipher what it is that they do. Those people
have been using this fact – and yes, it is a fact – to argue
against neural networks. There is, however, a fallacy
in their argument: The opaqueness of neural networks
is not a property of neural networks; it is a property
of the data which the network is attempting to model.
For example, suppose we have gone through our model
selection method and have arrived at a neural network
with multiple hidden nodes, and even multiple hidden
layers, as the optimal model. As such, the underlying
function relating the inputs to the outputs is probably
highly complex, with strong nonlinearity and interac-
tions among the variables. Well, that knowledge alone,
quite independently of the neural network, is sufficient
to render the problem opaque, because it is then gen-
erally impossible to explain the underlying function in
a simple, meaningful way. For example, one can no
longer uniquely quantify the predictive strength of a
given input, because that quantity would depend on
the values of all the other predictors. In short, if one
knows from some source, e.g., from a neural network,
that the relation underlying data is complex, then one
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should not expect to be able to explain the relationship
in a simple way. Then, it is the problem itself which is
opaque, and the neural network is simply the messen-
ger who ought not be shunned.

To close, recall that we began this chapter with
some elementary concepts in statistics, and have now
naturally ended-up with what many might call “new”
methods, e.g., neural nets. One of the aims of this
chapter was to makethe transition sufficiently smooth

in order to make it difficult to disambiguate between
the new and the old. Another aim was to illustrate how
basic statistical concepts (e.g., distributions, variation,
etc.) are indispensable for a proper development of
any model, now and old alike. Which brings us to
the main theme of the book itself, namely the “red
thread” that smoothly connects apparently disparate
set of techniques and methodologies in environmental
sciences.

2.10 Computer Code

###################################################################
# This code performs classification with Linear Discriminant Analysis (LDA) or
# with a Multilayered Perceptron (MLP). It also has the option of using
# Principal Components (PC) as inputs; but it will require some revision by hand.
# It generates specific plots in Figure 2.8. The data consists of 2
# predictors and 1 binary target. The first few lines of the data, in a
# file called “class.dat” (not included in this book), look like:
#
# 0.71390560 0.17791940 0
# 0.38786700 −0.25662960 1
# 0.64317600 −0.73170410 0
# −0.61998590 −0.09877737 1
# −0.68146780 −0.36785700 1
#
# The first pair of numbers on each line are the values of the predictors,
# and the 3rd number is the target.
###################################################################

rm(list=ls(all=TRUE)) # Clears things up.
library(MASS) # For LDA.
library(nnet) # For MLP.
library(verification) # For ROC plot.

n.bootin = 70 # No. of inner bootstrap trials.
n.bootout = 60 # No. of outer bootstrap trials.
n.in = 2 # No. of input nodes.
n.hd = 6 # No. of hdn nodes, on 1 hdn layer.
n.out = 1 # No. of output nodes.
wtdecay = 0.00 # 0.00 for no weight decay.
range = 10.0 # Range of initial weights in MLP.
max.iter = 400 # No. of epochs.
eps = 1e-10 # To avoid log(0).

dat = as.matrix(read.table(“class.dat”, header=F))
n = dim(dat)[1]
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n.trn = 700 # Size of samples on which bootstrap is done.
tpred = matrix(nrow=n.bootin,ncol=n.trn) # Allocate memory.
vpred = matrix(nrow=n.bootin,ncol=n.trn)
err.trn = numeric(n.bootout)
err = numeric(n.bootout)

for(trialout in 1:n.bootout){ # Start of sample selection.
set.seed(trialout) # Set seed for reproducibility of results.
sampout = c(sample(1:n,n.trn,replace=F)) # Sample on which bootstrap is done.
input = dat[sampout,1:2] # Select inputs,
target = dat[sampout,3] # and target.
input = matrix(as.vector(input),ncol=n.in) # Re-label the row numbers.
cases = seq(1,n.trn,1) # The index of the cases in the data.
e0 = matrix(nrow=n.trn,ncol=n.bootin) # Allocate memory
e1 = matrix(nrow=n.trn,ncol=n.bootin) # for storing errors.
e0[,] = e1[,] = NaN # Makes it easier to compute E1, below.

for(trialin in 1:n.bootin){ # Start of bootstrap trials.
set.seed(trialin) # Set seed for reproducibility of results.
samp - c(sample(cases,n.trn,replace=T)) # Bootstrap = sampling with replacement.
# mod = lda(input[samp,1:n.in], target[samp] ) # For linear discrim.
mod = nnet(input[samp,], target[samp],

size = n.hd, rang = range, decay = wtdecay,
maxit = max.iter,entropy=T,linout=F)

for(i in 1:length(cases[samp]) ) # Store the trn and vld predictions.
tpred[trialin,cases[samp][i]] =

t(predict(mod,newdata=input[samp,]))[i]
for(i in 1:length(cases[-samp]) )
vpred[trialin,cases[-samp][i]] =

t(predict(mod,newdata=input[-samp,]))[i]

for(i in cases){ # Compute trn and vld errors.
e0[i,trialin] = -(target[i]*log(tpred[trialin,i]+eps)

+ (1-target[i])*log(1-tpred[trialin ,i]+eps))
e1[i,trialin] = -(target[i]*log(vpred[trialin,i]+eps)

+ (1-target[i])*log(1-vpred[trialin ,i]+eps))
}
# A = verify(target[-samp], vpred, # If ROC is required.
# frcst.type= “prob”, obs.type= “binary”)
# roc.plot(A, plot.thres=F,show.thres=F)
} # End of trialin.
err.trn[trialout] = mean(apply(e0,1,mean,na.rm=T),

na.rm=T) # Mean over trials.
E1 = mean(apply(e1,1,mean,na.rm=T),na.rm=T) # Mean over cases.

mod = nnet(input, target, # Now get the apparent error.
size = n.hd, rang = range, decay = wtdecay,
maxit = max.iter,entropy=T,linout=F)
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err.app = mod$value/n.trn
err[trialout] = .368*err.app + 0.632*E1 # Prediction error.
} # End of trialout
boxplot(err.trn) # As in Figure 9 (left).
boxplot(err) # Ibid (right).
hist(err,breaks=50) # As in Figure 10 (top).
plot(err.trn,err) # Ibid (bottom).
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3Performance Measures and Uncertainty

Caren Marzban

3.1 Introduction

Many artificial intelligence algorithms or models are
ultimately designed for prediction. A prediction algo-
rithm, wherever it may reside – in a computer, or in a
forecaster’s head – is subject to a set of tests aimed at
assessing its goodness. The specific choice of the tests
is contingent on many factors, including the nature of
the problem, and the specific facet of goodness. This
chapter will discuss some of these tests. For a more
in-depth exposure, the reader is directed to the refer-
ences, and two books: Wilks (1995) and Jolliffe and
Stephenson (2003). The body of knowledge aimed at
assessing the goodness of predictions is referred to as
performance assessment in most fields; in atmospheric
circles, though, it is generally called verification. In
this chapter, I consider only a few of the numerous
performance measures considered in the literature, but
my emphasis is on ways of assessing their uncertainty
(i.e., statistical significance).

Here, prediction (or forecast) does not necessarily
refer to the prediction of the future state of some vari-
able. It refers to the estimation of the state of some
variable, from information on another variable. The
two variables may be contemporaneous, or not. What
is required, however, is that the data on which the
performance of the algorithm is being assessed is as
independent as possible from the data on which the

Caren Marzban (*)
Applied Physics Laboratory and Department of Statistics,
University of Washington,
Seattle, WA 98195-4323, USA
Phone: +(206) 221-4361, fax: +(206) 685-7419;
email: marzban@stat.washington.edu

algorithm is developed or fine-tuned; otherwise, the
performance will be optimistically biased – and that
is not a good thing; see Section 2.6 in Chapter 2.

Historically, performance has been assessed in
terms of scalar measures of performance, i.e., single
numbers computed from data, capturing some facet of
performance. The mean squared error (Chapter 2), for
example, is a measure of accuracy. Other facets are
discussed in the next paragraph. More recently, how-
ever, the ubiquity of computer graphical techniques
has allowed for a more complete and faithful assess-
ment, based on diagrams and other graphic means. It
is generally true that a diagram can convey more about
performance than a single number can. For this reason,
many of the ideas presented in this chapter are based
on diagrams.

The most important lesson from this chapter is that
performance is a multifaceted concept. For example,
consider a dart-board whose center represents the
truth. Now, consider the following two players/
forecasters: Player A’s darts all land in a tightly clus-
tered region to the lower-left of the center. But player
B is visually challenged, and so his darts land ran-
domly across the entire dart board. Who is the bet-
ter player/forecaster? In technical jargon, player A is
said to be precise but inaccurate. As unintuitive as it
may sound, player B is accurate, though imprecise. He
is accurate because accuracy measures the difference
between the truth and the mean of the forecasts; on
the average, player B is right on the bull’s eye. So, it
is not easy to decide who is better. For a statistician,
accuracy and precision are related to bias and variance
of the errors, respectively. As we shall see below, these
two measures constitute two different components of
the mean squared error.

S. E. Haupt et al. (eds.), Artificial Intelligence Methods in the Environmental Sciences 49
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The above example illustrates that it is entirely pos-
sible for one forecasting model to outperform another
forecasting model in terms of one measure of per-
formance but not in terms of another. That is why it
is important to choose the measure of performance
thoughtfully. Unfortunately, that is easier said than
done. In many situations it is difficult to decide what
the “right” measure should be. And that is why most
people just pick a measure with some nice and simple
properties. Given that approach, the least one should
do is to examine several measures, and to assure that
the measures do not contradict the assumptions of the
model or properties of the data.

Finally, since a performance measure is computed
from data, it is equally important to assess the statisti-
cal variations of its numerical value. After all, it would
be a bad thing to fire a forecaster (or to cut funding
for the development of some AI algorithm) if the dif-
ference between its performance measure and that of
a contender is within naturally occurring variations. If
the difference is not statistically significant, then one
can either keep both, or choose some other criterion
for comparing the two, e.g., cost of development. Two
articles that address this issue are (Jolliffe 2007) and
(Ferro 2007).

3.1.1 The Plan

The goals of this chapter are as follows: (1) Review
some basic measures of performance, (2) discuss some
of their peculiarities, and (3) point out that a perfor-
mance value is subject to natural fluctuations, and so,
(4) should be accompanied by some measure of uncer-
tainty. But I will also illustrate that (5) uncertainty
measures can be misleading and even useless, sug-
gesting that (6) “looking at data”, using clever graphs,
speaks more to the issue of performance and its uncer-
tainty.

Given the somewhat contradictory nature of these
aims, it is appropriate to work somewhere in the twi-
light zone between uncertainty measures and graphs
of data. To that end, most of the “looking” is done
by producing graphs of boxplots. This may make it
difficult to provide simple answers to questions like
“Which forecast/algorithm is better?”, but at least the
assessments will be less ad hoc.

3.2 Details

Suppose we have n pairs of observations and forecasts
of hourly temperature, denoted xi and yi , respectively.
We compute the mean squared error

MSE = 1

n

n∑

i=1

(yi − xi )
2 (3.1)

and obtain some number. We have now assessed the
performance of the forecasts. What could be simpler?
Indeed, the procedure is straightforward, but the prob-
lem is that this single number has several defects: (1)
It may not mean what we think it does, (2) it does not
tell us how to improve the forecasts, and (3) we are
uncertain as to how much it would vary for a differ-
ent sample (but still dealing with the same problem).
The following three subsections delve deeper into the
meaning of performance measures, whether or not they
are diagnostic, and their sampling variations.

3.2.1 Meaning

A performance measure does not always mean what
we may think it does. For example, the Pearson corre-
lation coefficient (Devore and Farnum 2005):

r = xy − x y

sx sy
(3.2)

where, in the notation of Chapter 2, the overline refers
to sample means, e.g., xy = 1

n

∑n
i xi yi , and sx refers

to the sample standard deviation of x , etc.. It is a
measure of the (linear) association between forecasts
and observations. If the forecasts are accurate, then
r approaches 1; and if the forecasts are inaccurate,
then r approaches 0. However, it is tailored to deal
with continuous variables, ranging from −∞ to +∞.
It does even better if the two variables have rela-
tively symmetric and bell-shaped distributions. Under
these conditions, it does indeed tell us how well the
forecasts match the observations. If the variables are
inherently bound on one side (e.g., the number of tor-
nadoes occurring in a month) or on both sides (e.g.,
humidity, measured in percent), or with most of the
data clustered around one side, then r simply conveys
the wrong information about the association between
the two variables. It can be near 1 when in fact the
accuracy is poor, and it can be near zero when the
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accuracy is high in reality. If we insist on using r
to measure accuracy, then, it may be better to com-
pute it not for x and y, but for log(x) and log(y),
because taking the log of a variable often makes its
distribution more symmetric. Of course, this “defect”
does not imply that r cannot be computed for any x
and y. It can. One can even compute it for binary fore-
casts and observations, but then it ends up measuring
something other than linear association. The point is
that we need to be aware of whether the choice of
our performance measure is appropriate for the data at
hand.

Another example of how a measure may be mis-
leading can be found in the situation where both the
forecasts and observations are binary, i.e., a yes/no
forecast of a yes/no event. In this situation, one often
computes what is called the fraction correct, which
is the proportion of cases where a “no” observation
is correctly forecast as a “no”, and a “yes” observa-
tion is correctly forecast as a “yes.” As intuitive and
meaningful as this measure may appear, it has at least
one defect: If the events we are trying to forecast are
rare, then it approaches 1, quite independently of how
accurate or inaccurate the forecasts really are (Doswell
et al. 1990; Marzban 1998; Stephenson et al. 2004).
Suppose I have an algorithm that predicts whether or
not I will win a hundred US dollars on a given day.
Even if my algorithm is producing completely random
forecasts, the fraction of times it will be correct is
still quite high, because of all the times that it will
forecast “no win” and will be correct. In fact, it turns
out that this rare event situation is one wherein many
performance measures become meaningless. What to
do? Marzban (1998) and Stephenson et al. (2004) sug-
gest a few measures that are relatively healthy; but
caution is always recommended in picking a measure.
As the proverb goes “Caution and measure will win
you treasure.”

3.2.2 Diagnostic

Suppose the previously mentioned problems have been
addressed, i.e., we have a performance measure that is
appropriate for our problem, and that we are in a non-
rare-event situation. To be specific, let us assume that
both forecasts and observations have normal distri-
butions. Then, r may be used to assess accuracy.

Suppose we get r = 0.9. Now what? Well, there is a
great deal one can do: assess uncertainty (next sub-
section), compare with some standard of reference,
etc. But there is nothing we can learn from r = 0.9
about how we may possibly improve our forecasts.
Now, suppose we had instead chosen to assess the
performance using MSE (equation (3.1)); and suppose
we obtained MSE = 0.01. By itself, MSE is again a
non-diagnostic measure, but as we shall see in Section
3.3.4, it has a very nice decomposition into two other
measures (bias and variance), which in turn suggests a
simple transformation of the forecasts that can improve
their quality. Diagnostic measures are not too preva-
lent, and indeed, whether or not they are diagnostic
depends on the problem at hand. Two other quantities
which are commonly acknowledged as offering diag-
nostic information are Relative Operating Character-
istic (ROC) curves and reliability diagrams, both of
which are discussed further in this chapter.

3.2.3 Uncertainty

The following is a fictional account: In the beginning
there were 100 pairs of forecasts and observations, and
a measure – call it SS – which was known to be 0 for
random forecasts, and nonzero otherwise, with SS =
±∞ corresponding to perfect forecasts. The observed
value of SS for the 100 pairs was 0.13. That is, until
someone else computed it on a different set of forecasts
and observations for the same problem, and came-
up with SS = −0.05. After that, every time someone
computed SS it had a different value, all scattered
about zero. Then, someone proposed that the entire
data – call it the population – is not available to us
humans, and that different people are actually observ-
ing different samples taken from that population. Not
only would that explain the variations observed in SS
values, it would also open the possibility of asking
and answering questions like “If the population were
made up of a bunch of random forecasts (in which
case the true SS value would be 0.0) what would be
the probability that a single sample would yield an
SS value of 0.13 (or more extreme)?” In other words,
it was known that SS values have an inherent spread
due to sampling, but the question was if the observed
SS value was sufficiently far from zero to make it an
unlikely outcome. That is an important question if we
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are interested in determining whether or not the fore-
casts have any skill at all (beyond random guessing).
The business of answering that question is what statis-
ticians call Inference – as in, inferring something about
a population parameter (e.g., the true value of SS),
from a single sample. An alternative, but equivalent
question is “What is the typical range of possible SS
values, if the population really does consist of random
forecasts?” Statisticians have a name for that business
as well: interval estimation – as in, estimating an inter-
val wherein the population parameter may reside, with
some confidence. End of story.

The probability of obtaining an SS value beyond
±0.13 of zero, given some assumption about the pop-
ulation (e.g., forecasts are random), is an instance of
what is called the p-value. The assumption itself is
called the null hypothesis. If the p-value is small,
one may reject the null hypothesis in favor of the
alternative, SS �= 0. In that case, it would follow
that the forecasts have skill, beyond random chance.
But if the p-value is large, then the data simply
do not provide sufficient evidence to contradict the
assumption. In other words, one cannot reject the
null hypothesis. In that case, the claim that the fore-
casts are as good as chance cannot be ruled out. In
short, the p-value is what decides whether or not the
observed value of a performance measure is suffi-
ciently extreme (compared to what one might expect
if the forecasts were random) to call it statistically
significant.

The interval-estimation approach is basically a dif-
ferent packaging of the same ingredients. In it, one
computes a confidence interval for the population
value of SS, at some confidence level. The confidence
interval can still be used to infer something about
the true value of SS. For example, if the 95% confi-
dence interval for SS does not include zero, then we
may conclude that it is unlikely that a sample from
a population of random forecasts would lead to the
observed value of SS = 0.13. As such, we would con-
clude that the forecasts have statistically significant
skill.

Note that, even though both approaches involve a
single sample, they are based on a fictional account, or
a thought experiment, wherein lots of different sam-
ples are taken from the population. In fact, a crucial
concept in both of these approaches is the histogram of
the SS values. This histogram, or rather the distribution
of all SS values is called the sampling distribution of

SS. In both approaches one must make some assump-
tions about the population from which the sample is
drawn, or about the sampling distribution itself.

There is an alternative that avoids those assump-
tions. It aims to approximate the sampling distribu-
tion with the histogram of lots of SS values com-
puted from subsamples taken from the single sample.
In other words, one treats the observed sample as a
population, and literally performs the aforementioned
thought experiment. There is a large class of such
resampling techniques for parameter estimation, and
we have already seen one of the more famous ones
in Chapter 2, i.e., the bootstrap (Efron and Tibshirani
1993; Hastie et al. 2001).

In Chapter 2, we employed bootstrap ideas for
optimizing the complexity of a statistical model. The
procedure called for taking a subsample (called a
bootstrap sample) from the original sample, devel-
oping a model on the bootstrap sample, and then
repeating the procedure for different bootstrap samples
drawn from the original sample. The final product of
the procedure was a point estimate of the prediction
error. Another “outer” bootstrap was then done to
approximate the sampling distribution of the predic-
tion error. The sampling distribution can then be used
for computing an interval estimate of the prediction
error.

But, what if we do not have the luxury of retraining
a model on different bootstrap samples? For example,
what if the forecasts are generated by an algorithm
to which we have no access? An example of this sit-
uation is so-called Model Output Statistics (MOS),
which the National Weather Service produces (Glahn
and Lowry 1972). Or what if it is simply not feasible
to run the algorithm producing the forecasts numer-
ous times, e.g., numerical weather prediction models,
which are simply too computationally intensive to run
1,000 times? Finally, what if the forecasts are gener-
ated by a human? In all of these situations, it is difficult
to apply the bootstrap idea to estimate performance.
However, one can still apply it to a given set of fore-
casts and observations. The procedure is similar: draw
a bootstrap sample from the sample, compute a perfor-
mance measure (e.g., SS), and repeat. The histogram
of the performance values approximates the sampling
distribution of the performance measure. As such, it
tells us something about the possible range of values
for the performance measure. The width – or more
accurately, the standard deviation – of this histogram
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plays an important role in assessing uncertainty. It is
called the standard error of the performance measure,
and shows up in the confidence interval for the mea-
sure.

3.2.4 Inference

From the previous section, it should be evident that
when I use the term uncertainty I am referring to
how much a quantity computed from a single sample
may change if it is computed for multiple samples
taken from a population. In statistics, one way to for-
mulate that uncertainty is to assume that there is a
unique value of that quantity, called the population
parameter. Then, the data at hand is treated as a single
sample taken from the population; the value of the
quantity when it is evaluated on the sample is called
the observed sample statistic. There are two standard
approaches to quantifying how much the sample statis-
tic varies from sample to sample. One involves build-
ing a confidence interval for the population parameter,
and the other relies on the probability of observing a
statistic more extreme than the observed sample statis-
tic; the latter probability is called the p-value.

Confidence intervals and p-values can be employed
for many purposes, but in the context of performance
assessment, they are used to decide questions of the
type “Is the skill of algorithm X statistically signifi-
cant?”, which simply asks if the forecasts of the algo-
rithm are better than chance. Another typical question
is “Is algorithm X superior to algorithm Y at a statisti-
cally significant level?” This last question asks if the
difference between two algorithms can be attributed
to natural/random variations. If so, then one cannot
conclude that one algorithm is truly better than the
other.

Formulas for confidence intervals and p-values can
be found in many statistics text books, including
Devore and Farnum (2005). Seaman et al. (1996), and
Jolliffe (2007) address many of these same issues.
All I will point out here is the connection to typical
performance measures. Text books invariably discuss
two quantities – the mean of a continuous quantity, and
the proportion of a discrete quantity. Classic examples
are the mean lifetime of batteries, and the proportion
of defective light bulbs, respectively. It turns out that
many performance measures fall into one of these

types. For instance, a measure called Bias is nothing
but the mean of errors,

Bias = 1

n

n∑

i

(yi − xi ), (3.3)

and another measure called probability of detection
(Section 3.3.1) is the proportion of cases (out of the
cases where an event did occur) where an event is cor-
rectly forecast as an event. The central limit theorem
tells us that means and proportions generally have nor-
mal sampling distributions, and so, confidence inter-
vals for these performance measures are readily avail-
able. The general formulas for the 95% confidence
interval of the population mean and proportion are

x ± 1.96
s√
n
, p ± 1.96

√
p(1 − p)

n
, (3.4)

where x and p are the sample values for the mean and
the proportion, s is the sample standard deviation, and
n is the sample size.1

The correlation coefficient (equation (3.2)) is one
measure that is a bit difficult to handle, but approxi-
mate formulae do exist for its confidence interval. One
of the simpler ones is the following 95% confidence
interval (Jolliffe and Stephenson 2003):

r ± 1.96
1 − r2

√
n

. (3.5)

Standard formulas also exist for the difference
between means, and the difference (or ratio) between
proportions. These formulae are important for model
comparison, i.e., for deciding if algorithm 1 produces
more accurate forecasts than algorithm 2. Again, gen-
eral 95% confidence intervals are given by

(x1 − x2) ± 1.96

√
s2

1

n1
+ s2

2

n2
,

(p1 − p2) ± 1.96

√
p1(1 − p1)

n1
+ p2(1 − p2)

n2
, (3.6)

where the labels 1 and 2 refer to the two algorithms.
These formulas assume that the two samples are inde-
pendent; if they are not, then the data are called

1 These formulas are based on some assumptions and approx-
imations. So, the pedantic reader/researcher is encouraged to
check the validity of those conditions (Devore and Farnum
2005).
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“paired” and a different set of formulas should be
used. They look similar to those in equations (3.4) and
(3.6), but with some important differences (Devore and
Farnum 2005).

Again, even though these formulas refer to means
and proportions (and correlations), in general, they
apply readily to verification measures: e.g., Bias qual-
ifies as a mean, and probability of detection qualifies
as a proportion. One may wonder why mean squared
error does not qualify as a mean? It is certainly the
mean of a bunch of things. The problem is that the
bunch of things are squared errors and so may not have
a normal distribution. The above formulas for means
rely on the normality of something – either of the pop-
ulation and/or of the sampling distribution of the mean.
That is where ±1.96 comes from; 95% of the area
under the normal distribution is contained within 1.96
standard deviations of its mean. The quantity multiply-
ing the 1.96 in these equations is called the standard
error of the respective quantity. Even if the assump-
tions are violated these formulas work reasonably well
as long as the distributions are bell-shaped. For non-
bell-shaped distributions (e.g., distribution of counts
or squared errors), they do break down. Still, if your
choice is between producing interval estimates using
wrong formulas, and not producing interval estimates
at all, I suggest you go the first way; this way you will
have acknowledged that your performance values are
subject to variation.

Now, suppose we want to compare the forecasts
from some algorithm with random forecasts. This is
a rather lenient test, but there are times when it does
arise. Although the previous methods can be adapted
to answer that question, there is an alternative which
is very powerful and smart. It belongs to a class of
techniques called permutation and randomization tests
(Good 2005a), which are a subset of resampling tech-
niques (Good 2005b). The idea is quite simple: Think
of the forecasts and observations as two columns of
numbers (categorical or continuous). We can then
compute a performance measure, say MSE. Call that
value the observed MSE. If the forecasts are random,
then we should be able to permute the numbers in the
forecast column, and get a similar performance value.
By chance alone, some MSE values will be better
than the observed one, although most will be worse.
The resulting histogram will give a graphic expres-
sion of the distribution of all performance values, if
the forecasts are random. The area to the left of the

observed MSE, is the number of permutations that
give better MSE values. Converting that number to a
proportion, by dividing the area by the total number
of permutations, defines a p-value. It is the probability
of obtaining more extreme sample values, under the
null hypothesis. If it is below something called an α-
level, then we may conclude that the forecasts are not
random. Otherwise, they may be. Some typical values
of α are 0.05 and 0.01, and you (the user) have to
choose it. I have discussed this test, because it is a
clever test; but I am not delving too deeply into it,
because hopefully, our algorithm is doing sufficiently
well that we do not need to compare it with the prover-
bial monkey.

Finally, there is the other resampling technique
which we have seen many times – the bootstrap. It can
provide an interval estimate of the performance mea-
sure. Specifically, take some number of bootstrap sam-
ples, and compute the performance measure for each.
Then a 1 − α confidence interval may be computed
by taking the α/2 and 1 − (α/2) percentiles of the
histogram of performance measures. Again, someone
(e.g., the user) has to choose the specific value of α,
because it is not determined by any objective criterion.

3.2.5 Why to Not Infer

Having set up all of the above foundation for uncer-
tainty assessment, also called inference, it is time to
point out the trouble with it. Consider the confidence
intervals given in equation (3.4). Note that all we
need to compute these interval is a bunch of sample
quantities – we do not need to know much about the
population. That is the good news. The bad news is
that the intervals shrink as n increases. Why is this
bad news? On the one hand, it makes perfect sense for
the confidence interval to shrink with increasing sam-
ple size – conveying a lower level of uncertainty. On
the other hand, and without loss of generality, sup-
pose the value of the performance measure is 0 if the
forecasts are random. Then, it is bad news, because
no matter how close the observed value is to zero,
by simply taking a sufficiently large sample, I can
arrange for zero to fall outside of the interval. In other
words, with a sufficiently large sample, I can always
conclude that my forecasts are not random, even if they
really are! Said differently, statistical significance can
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be obtained by simply taking a sufficiently large sam-
ple. This is a problem with confidence intervals, but
p-values have the same problem; it is easy to show that
for a sufficiently large sample size, one can arrange for
the p-value to be infinitely close to zero. Recall that
with an infinitely small p-value, we will always reject
the null hypothesis that the forecasts are random.

What do statisticians do? Some go ahead and do
all of this anyway, but stay aware of the size of the
sample. They keep in mind that if something is found
to be statistically significant, it may be simply because
the sample size is large, and not because the effect is
large. Others do not even do this type of inference;
they simply “look” at the data, by selecting appropriate
summary measures that can be graphed in useful ways.
A compromise is to look at these graphs, but also
to display some measure of their uncertainty due to
sampling. This is the point of view that I will be taking
in the rest of this chapter. Specifically, I will assess
uncertainty in performance measures graphically, by
“looking” at their sampling distribution. The looking
is done through boxplots, and the sampling distribution
is obtained empirically, via bootstrapping.

3.3 Special Cases

There is no shortage of performance measures (Jolliffe
and Stephenson 2003; Marzban 1998). One reason is
that different problems need different measures. That
is a valid reason for creating new measures. Another
reason is that every measure has some “defect.” When
people get their hands dirtied with performance assess-
ment, they usually rediscover these defects on their
own, and are then inclined to come-up with a measure
that is disease free. This process has yielded a plethora
of measures, but none that is perfect. The basic reason
is that there are just too many criteria that a perfect
measure must satisfy; a good measure must be consis-
tent, efficient, sufficient, proper, equitable, insensitive
to priors, and more. Here, I will not delve into each of
these concepts, but will instead describe some of them
in the context of a few currently fashionable measures.

Performance measures come in a variety of styles,
depending on the type of forecast and observation.
Both forecasts and observations can be categorical or
continuous. Whether or not a tornado touches ground
is an example of a two-class (binary) categorical obser-

vation. Surface temperature is an example of contin-
uous quantity. One might wonder why temperature
cannot be treated as a categorical variable, with a large
number of categories. One may; but the methodology
for handling categorical variables becomes unwieldy
for a large number of categories. Also, the various
categories in a categorical quantity are assumed to
have no specific “order” to them. Variables whose
categories have an order are called ordinal, and they
need a different methodology than that of categorical
data. In AI circles, most common types of observa-
tions and forecasts fall into one of the following cat-
egories: (1) both forecasts and observations are cate-
gorical (here denoted Cat-Cat), (2) both are continuous
(denoted Cont-Cont), and (3) observations are binary,
but forecasts are probabilistic. These are the only cases
I consider in detail in this chapter, although others are
discussed in passing.

3.3.1 Cat-Cat

Consider the problem of forecasting hail size
(Marzban and Witt 2001). “Size” can be measured
in millimeters or it may come in categories. One
common set of categories is coin-size, golfball-size,
and baseball-size. Those are the observed categories –
label them as 0, 1, and 2. If the forecasts fall into the
same categories, then the starting point for assessing
the performance of the forecasts is the contingency
table:

C-table =
⎛

⎝
n00 n01 n02

n10 n11 n12

n20 n21 n22

⎞

⎠ , (3.7)

where n01 is the number of class 0 cases incorrectly
forecast as class 1, etc.2 In my (nonuniversal) con-
vention, the rows correspond to observations, and the
columns represent forecasts. This means that the row-
marginal n00 + n01 + n02 is the total number of class
0 observations in the data. Similarly, the column-
marginal n00 + n10 + n20 is the total number of class
0 forecasts in the sample, etc.

What we call a performance measure is typically
a summary measure based on the contingency table.
There are many ways we can combine the elements

2 I use “class” and “category” interchangeably.
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in the table to come-up with a summary measure, but
most do not represent anything useful. Gerrity (1992)
and Murphy (1991) have studied this multi-category
problem, coming up with some relatively useful mea-
sures. Livezey (2003) has also argued in favor of Ger-
rity’s score, especially if the observations and forecasts
are ordinal. The 2 × 2 case, however, has a longer list
of summary measures, and it is better suited for this
chapter, as well. For that reason, I will specialize to
the 2 × 2 case only. Note that this does not restrict the
forecasts and observations to be binary; it just means
that we can treat them as binary. For example, the
three-class hail-size problem can be broken down to
three two-class problems: class 0 or otherwise, class 1
or otherwise, and class 2 or otherwise. Although this
treatment of a three-class problem can lead to some
loss of information, the loss is partially compensated
by the availability of numerous graphical summary
measures that do not have simple three-class (or larger)
generalizations (e.g., ROC in Section 3.4.1).

Here is the 2 × 2 contingency table:

C-table =
(

n00 n01

n10 n11

)
, (3.8)

Three common measures derived from this table are
the Probability of Detection (POD) (or hit rate), False
Alarm Rate (FAR), and False Alarm Ratio (FAO). If
the class we are forecasting is the one labeled 1, then

POD = n11

n10 + n11
, FAR = n01

n00 + n01
,

FAO = n01

n01 + n11
.

Their meaning is evident from these definitions. Each
of these three measures does not involve all the ele-
ments of the contingency table, and so can be artifi-
cially manipulated. For example, by simply forecast-
ing “class 1” for all the cases in the data, one will
have POD = 1. Of course, in that case one will also
have FAR = 1, i.e., not good! One relatively healthy
measure that involves all the elements is called the
Heidke Skill Score:

HSS =
2(n00n11−n01n10)

(n00 + n01)(n01 + n11)+ (n10 + n11)(n00 + n10)
. (3.9)

In spite of the unenlightening form of this expression,
it is a measure of forecast accuracy relative to random
chance (Heidke 1926). In other words, it is zero, if

the forecasts are random; positive values imply skill,
while negative values also suggest skill but in an anti-
correlated sense.

As mentioned above, there is no single good mea-
sure for all problems. I have selected these four only
for illustration purposes. And what I am about to illus-
trate is how to obtain the empirical sampling distribu-
tion for these measures, i.e., a histogram that conveys
the sampling variation of the measures. To that end,
I have selected a famous (infamous) data set due to
Finley (Wilks 1995).3

In the convention of equation (3.7), with “0” label-
ing “no-tornado”, and “1” denoting “tornado”, the con-
tingency table for the Finley data is

(
2680 72

23 28

)
. (3.10)

The values of the performance measures are

POD = 0.549, FAR = 0.026,

FAO = 0.720, HSS = 0.355. (3.11)

The numbers are more meaningful if one compares
them with what one would expect for them, if the fore-
casts and observations were not associated at all, i.e., if
the forecasts were random. Under the null hypothesis
that the forecasts are random, one obtains the follow-
ing expected contingency table (Devore and Farnum
2005):

(
2653.82 98.18

49.18 1.82

)
. (3.12)

So, if we were issuing random forecasts, then the per-
formance measures would be:

POD = 0.036, FAR = 0.036,

FAO = 0.981, HSS = 0.0. (3.13)

Note that, Finley has drastically better-than-chance
POD, and mildly better-than-chance FAR and FAO
values. HSS for random forecasts is zero, by the defi-
nition of HSS. So, this way, we can compare the fore-
cast performance with those obtained under the null
hypothesis.
In passing, I should mention what happens in case the
events being forecast are rare. The contingency table in

3 Note that the sampling distribution of POD, FAR, and FAO are
all known, because they are proportions (see Section 3.2.4). But
I will pretend that we do not have that information.
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(3.10) is typical of what one gets in “rare event” situ-
ations. In such a situation most performance measures
become pathological (Marzban 1998; Stephenson et al.
2004). For example, consider the measure often called
accuracy: it is the proportion of correct forecasts, i.e.,
(n00 + n11)/((n00 + n01 + n10 + n11). It can be shown
that this measure becomes increasingly large the more
rare an event is, and this happens quite independently
of the true accuracy of the forecasts. For the Finley
data, it is (28 + 2860)/2803 = 96.6%. Note that if the
forecasts had been a constant forecast of “no tornado”
for the entire data set, we would obtain a higher accu-
racy: 2,752/2,803 = 98.2%! This is an example of how
a measure can be misleading when the situation is just
wrong.

Returning to uncertainty, so far we have compared
the performance measures with those obtained from

random forecasts. That is somewhat useful; but now
we must also assess the sampling variations. This is
where we will turn to bootstrapping. Figure 3.1 shows
the empirical sampling distribution of all four mea-
sures. I do not aim to summarize these distributions,
because the whole distribution carries useful infor-
mation, but do note that each histogram is centered
on the respective values given in equation (3.11), as
expected. But, now, we can also get a sense of their
sampling variation. In fact, it is the standard deviation
of these histograms which is precisely the standard
error, appearing in equations (3.4), and discussed in
Section 3.2.4.

Let us briefly examine these results before proceed-
ing to the next section. For example, we can see that
POD has a wide spread, ranging from 0.3 to 0.8. By
contrast, FAR is tightly clustered around 0.036. The
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low value of FAR and its tight spread are due to the
large number of nontornadic cases in the data. FAO
varies from about 0.6 to 0.8. Finally, HSS can range
from 0.2 to 0.5. To reiterate, these numbers are all
useful as summary measures, but the histograms speak
a great deal more.

The code for producing these histograms is
included in Section 3.8. Although the code may have
minor bugs in it, the procedure is likely to produce
the sampling distribution for any performance mea-
sure. It should be relatively simple to revise it to suit
your own data, and your own favorite performance
measure.

3.3.2 General Framework

Murphy and Winkler (1987, 1992) developed a frame-
work that not only includes the case of categorical
forecasts and observations, but is sufficiently gen-
eral to include any type of forecast and observation.
This is a good stage for me to mention it because it
suggests how one should handle the non-categorical
situations.

First, let us start with the Cat-Cat case, and divide
all the elements in the contingency table by n, the total
number of forecast/observation pairs in the data. The
resulting table, denoted p(x, y), is (an estimate of)
what is called the joint probability density of obser-
vations and forecasts. In the 2 × 2 case, for example,
x and y are both binary. Given that it is a proba-
bility density, it can be decomposed in two famous
ways:

p(x, y) = p(x |y) p(y), p(x, y) = p(y|x) p(x),

(3.14)
where p(x |y) is the conditional probability of obser-
vations, given forecasts. The other conditional prob-
ability is defined similarly, and the p(x) and p(y)

are the unconditional probability of observations and
forecasts, respectively.

To make contact with the measures in the previous
section, with the same labeling of 0s and 1s, note

POD = p(y = 1|x = 1), FAR = p(y = 1|x = 0),

FAO = p(x = 0|y = 1). (3.15)

Evidently, these conditional probabilities are some of
the more commonly used measures. p(x = 1) is the

a priori probability of a “1” (e.g., tornado), period,
independently of the forecasts; and p(y = 1) is the
probability of forecasting a “1”. For the Finley data,
they are (23 + 82)/2,803 = 0.037, and (72 + 82)/

2,803 = 0.055, respectively.
Although, we started this subsection by thinking of

the Cat-Cat case, when we write performance mea-
sures in terms of the joint probability density of fore-
casts and observations, p(x, y), then x and y can be
anything – categorical or discrete. The next subsection
shows how to assess performance of a set of contin-
uous forecasts and observations within the framework
of the joint probability density.

3.3.3 Cont-Cont

Now, let us consider a problem in which both forecasts
and observations are continuous, e.g., hourly surface
temperature (in Farenheit) over Indianapolis between
March 2 and June 5, 2002.4 The best way of assessing
the quality of continuous forecasts of a continuous
quantity is through a scatterplot (Fig. 3.2, left). If the
predictions were perfect, all 5,307 dots would have
fallen on the diagonal line. Evidently, the predictions
are not perfect. There is some scatter about the diago-
nal, and there even appears to be a general overpredic-
tion of the temperature (this is reflected by the overall
right-shift of the dots relative to the diagonal). Both
of these issues can be quantified, and the next section
shows how.

3.3.4 A Decomposition of MSE

Given n forecasts yi , and observations xi , many perfor-
mance measures take the form of an average of squared
errors. The Mean Squared Error (MSE) is one popular
example. Such measures have two desirable properties
which render them somewhat diagnostic, in the sense
that they can convey correcting action on the part of
the forecaster or model builder.

4 The predictions were made by a numerical weather prediction
model which at the time was state-of-the-art; it was/is called
Advanced Research Prediction System (ARPS).
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Fig. 3.2 Left: scatterplot of observed and predicted hourly surface temperature (in Farenheit) over Indianapolis between March 2
and June 5, 2002. Right: the same, but for the bias-corrected predictions

The first decomposition is referred to as the bias-
variance decomposition:

MSE = 1

n

n∑

i=1

(yi − xi )
2 (3.16)

= (yi − xi )2 (3.17)

= (y − x)2 − [(y − x)]2 + [(y − x)]2 (3.18)

= s2
y−x + (y − x)2 (3.19)

= Variance + Bias2 (3.20)

Again, an overline over a quantity denotes the mean of
that quantity. The first term (Variance) is the variance
of the errors, and Bias is the difference between the
average of the forecasts and that of the observations.
This is a useful decomposition because the forecasts

can be easily transformed to eliminate the Bias term,
without affecting the Variance term. This transforma-
tion thereby reduces MSE.

For our temperature example, the value of MSE is
71.45, and it decomposes into a variance of 50.03, and
a bias of 4.63. These two numbers quantify the above-
mentioned qualitative observations about the scatter
and shift of the dots. It is a good practice to report
both of them, because they tell two different stories
about the quality of the forecasts. Moreover, we can
now correct the bias. All we need to do is to shift all of
the forecasts by the constant amount 4.63; the resulting
MSE will be 50.03 (instead of 71.45). In general, a
shift of the forecasts according to yi → (yi − Bias)
eliminates the Bias term, while leaving the Variance
term unaffected. This reduces MSE down to the vari-
ance of the errors; but more importantly, it eliminates
bias.
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The scatterplot of the bias-corrected forecasts is
shown in the left panel of Fig. 3.2. It is clear that
the bias correction has worked. However, it is also
evident that the bias is worse for higher and lower tem-
peratures, as compared to mid-range temperatures. As
such, the bias appears to depend on (i.e., is contingent
on) the temperature itself. How are we to assess this
particular facet of performance?

The wording of the last paragraph should suggest
conditional probabilities. One should consider p(x |y)

and p(y|x), because as we have seen they tell dif-
ferent and useful stories. Here, I will examine only
the former. Recall that x and y refer to observa-
tions and forecasts, respectively (in spite of the fact
that the axes appear switched in Fig. 3.2). p(x |y)

is the probability of an observed temperature, for a
given forecast temperature. However, given that x is
now a continuous variable, it is more convenient to
compute the conditional mean (or expected value),
E(x |y).

How are we to estimate this quantity from data?
Recall that probabilities are estimated as fractions;
e.g., p(y = 32) is estimated as the fraction of cases
in the data that have y = 32. In theory, though, with
continuous variables, each value of y will appear only
one time in the data, in which case every value of y will
have the same probability. That is not a terribly good
estimate of the probability. So, what one does is to bin
the data. In other words, we will partition the predic-
tions into several intervals, and compute the fraction
of cases that fall within each interval. In other words,
we estimate p(y) with a histogram of y. Note that the
size of the bins is important, because it determines the
number of cases falling within each interval. With a
terribly small bin size, we are back to having a single
case in each interval; and with a huge bin size, we will
not be able to see how p(y) depends on y. So, pick a
reasonable bin size.

Returning to the scatterplot, we now know how to
estimate E(x |y) from data: bin the y’s (the forecasts),
and compute the average of the observed temperatures
for each bin. The resulting means can be plotted on
the vertical axis, as a function of the forecasts. Such a
plot is called a reliability plot, and assesses conditional
bias.5

5 In the literature, one usually sees reliability plots when dealing
with probabilistic forecasts of binary events; Section 3.4.2. Note,
however, that we have just shown that the Murphy-Winkler

But, given that we are now talking of computing
a (conditional) mean, a natural issue is the sampling
variation of that mean. In other words, how much do
we expect the conditional means to vary from sample
to sample? As the reader may anticipate, the bootstrap
approach answers that question. I performed 1,000
bootstrap trials on the conditional mean of observed
temperatures. Figure 3.3 shows the “reliability plot”,
and much more (which is why I use quotes). It shows
boxplots of the conditional mean of the observed tem-
perature, given the forecasts.6 In this way, we can not
only visually assess the reliability of the forecasts –
by comparing the position of the boxplots relative to
the diagonal – we can also say something about uncer-
tainty. For example, relative to a midrange forecast
(say 42), a forecast of a high temperature (say 77) is
accompanied by a larger variation in the corresponding
observed temperatures. In short, the high-temperature
forecasts are less reliable, because they are generally
lower than the observed temperature; but we should
be less certain about that unreliability, because the
boxplots are larger.

It is time for a warning. It is tempting to monitor
the overlap of the boxplots with the diagonal line.
One may be tempted to conclude that if a boxplot
extends to the diagonal line, then the corresponding
forecasts are reliable. However, this conclusion would
be unwarranted. Here is why: By employing boxplots,
we are effectively looking at the sampling distribution
of the conditional mean. Recall that the width of the
sampling distribution decreases with sample size (Sec-
tion 3.2.4). As such, the same problems that plague
the confidence interval also effect these boxplots. Here
is a facetious way of making the point: Given the
inverse relationship between sample size and the width
of the sampling distribution of the mean, we could
guarantee reliable forecasts by shrinking the sample
size, because then the boxplots are guaranteed to cover
the diagonal!

So, then, what is the purpose of the boxplot version
of the reliability plot? As we said before, the pur-
pose is to give a visual means of assessing sampling

framework allows for a similar plot for continuous observations
and forecasts, as well.
6 The horizontal bar in the box marks the median of the con-
ditional means; the lower and upper side of the box denote the
first and third quartiles, and the whiskers show the minimum and
maximum of the conditional means.
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Fig. 3.3 The “reliability
plot” for the Indianapolis
temperature forecasts. The
traditional reliability plot
would show only the
conditional mean of the
observations along the
vertical axis, and not the
boxplots. Hence the quotes
around “reliability plot”

variations. For example, Fig. 3.3 is telling us that for
midrange temperatures, the forecasts are reliable and
also do not vary much; forecasts in the high tempera-
ture range are not reliable and vary more, as well. In
summary, where the forecasts are reliable (i.e., close
to the diagonal), they are also certain (small boxplots),
and vice versa. This is the kind of behavior one should
consider “good”. The other purpose is that boxplots
convey something about the shape of the sampling
distribution itself. For example, if the horizontal line
is not in the middle of the box, then one can conclude
that the distribution is skewed. That kind of informa-
tion can be useful in correcting the forecasts. And
speaking of correcting the forecasts; it is clear that the
prediction algorithm in Indianapolis would be better
by underforecasting temperatures above 60 F, and in
between −5 F and 15 F. By how much? The answer is
in Fig. 3.3.

To recapitulate, recall that we decomposed MSE
into bias and variance, and then ended-up discussing
conditional bias (i.e., reliability) and its sampling vari-
ation at great length. All because bias – conditional, or
not – is an important, intuitive, and diagnostic measure
of performance. But what happened to the variance

term? We are not paying too much attention to it,
because it is not a diagnostic quantity. Estimating it
will give us a measure of performance (and we did that,
above), but there is not much we can do to the forecasts
to improve their performance in terms of variance.
I have included in Section 3.8 a code that does the
bias-variance decomposition, and should generate the
analog of Fig. 3.3 for any other data set involving
continuous forecasts of continuous observations.

3.4 Probabilistic Forecasts of
Binary Events

Now consider the case where the observations are
binary – x = 0, 1 – but the forecasts, y, are prob-
abilistic, say the probability of x = 1. The condi-
tional probabilities take the form p(x = 1|y), p(y|x =
0), p(y|x = 1), and the unconditional probabilities are
p(y) and p(x = 1). The x = 0 elements can be writ-
ten in terms of these. Note that all of these proba-
bilities involve the forecasts y, and so say something
about forecast quality, except the last one – p(x = 1);
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it refers only to the prior probability of having an
event, independently of the forecasts; in weather cir-
cles, it is called the climatological probability of an
event.

To avoid confusion, let me emphasize that there are
two different sets of probabilities in this section: one is
the probability of an event, e.g., probability of tornado.
The other is the joint probability density of forecasts
and observations. The former is a forecast probability,
while the latter provides a framework for assessing the
quality of the former. When in the previous paragraph
I said y is the probability of x = 1, that does not mean
y = p(x = 1). More accurately, y is the conditional
probability of x = 1, given any information that has
gone into making the forecasts. For example, y =
p(x = 1|data), or y = p(x |forecaster’s knowledge),
y = p(x |some predictor). The special case of y =
p(x = 1) corresponds to when the forecasts are based
only on the a priori (or climatological) probability of
x = 1.

3.4.1 Avoiding Probabilities

Before proceeding with the assessment of probabilistic
forecasts, let me mention that it is possible to avoid
probabilities altogether! This can be done by cate-
gorizing the forecast probability; you simply pick a
number between 0 and 1 (because probability lives
in that range) and then say that any forecast proba-
bility less than that number belongs to class 0, and
any forecast larger than that threshold belongs to class
1. In this way, one can reduce a continuous quantity
like probability into a binary one, and the procedure
described in Section 3.3.1 can be employed. In order
to not restrict oneself to a fixed threshold, one can
compute some performance measure (e.g., HSS), and
plot it as a function of the threshold. These curves
usually have a single maximum, and so, the probability
threshold at that maximum is a useful number to note.
Marzban and Stumpf (1998) produce plots like this for
numerous performance measures.

A variation on that theme is the idea behind the
Relative Operating Characteristic (ROC) curve; see
Fawcett (2006), Marzban (2004) and the references
therein. At each value of the threshold, one can com-
pute a contingency table. From the contingency table,

one can compute not one performance measure (like
HSS), but two – POD and FAR. The set of all thresh-
olds manifests itself as a “curve” on a plot of POD vs.
FAR. This curve is called the ROC curve. If the ROC
curve is diagonal, then the forecasts are as good as
random, and the more the curve bows to the upper left,
the better are the forecasts. The ROC curve constitutes
a decent measure of performance, even for probabilis-
tic forecasts because it expresses performance without
a specific reference to a unique threshold. A specific
choice of the threshold would call for knowledge of the
costs of misclassification which are user dependent. In
this way, an ROC diagram offers a user-independent
assessment of performance.

Keep in mind though, that an ROC diagram does
not present a complete view of all the facets of per-
formance. Given that it involves POD and FAR, a
look at equation (3.15) reveals that the ROC diagram
captures only the components of the joint distribution
that are contingent on observation. The components
conditioned on the forecast are left out of the picture.
We will return to this, below, when we look at the reli-
ability plot; it is conditioned on forecasts. In general,
it is a good idea to assess performance using “compli-
mentary measures” that are conditioned on forecasts
and observations, respectively, e.g., ROC plots and
reliability plots.

In Chapter 2, we came across ROC plots. There, we
were occupied with model development and selection;
we used re-sampling to produce a number of differ-
ent ROC curves for a given model structure, thereby
obtaining a visual sense of the spread in the curve.
In this chapter, we are dealing with a fixed set of
forecasts, but we can still employ the bootstrap to get
a sense of the sampling variation of the ROC curve.
Although, we can use equation (3.4) for placing error-
bars on POD and FAR, it is more instructive to view
the entire distribution of POD and FAR. Macskassy
and Provost (2004) provide a thorough account of
how one should produce confidence bands for ROC
curves. Here, though, I will again turn to bootstrap for
help.

To illustrate, I chose a problem where a neural net-
work is designed to distinguish between a solid sphere
configuration of the Earth and another configuration
with a cavity (e.g., oil reservoir) just under the sur-
face, based on the gravitational field around the Earth.
In that problem I had 1,000 pairs of forecasts and
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Fig. 3.4 The ROC diagram
of 100 bootstrapped ROC
“curves”, effectively
displaying the full sampling
distribution of POD and FAR.
The traditional ROC diagram
would involve one curve,
or a set of curves. However in
the bootstrap scheme, it
makes more sense to plot all
the dots, without connecting
them with lines

observations. I drew 100 bootstrap samples from the
data, and plotted the ROC curves. However, instead
of drawing the curves, I plotted only the points cor-
responding to the aforementioned thresholds. The
result is shown in Fig. 3.4. This diagram effectively
shows the empirical sampling distribution of the ROC
“curve”. This type of plot clearly shows the full distri-
bution of possible ROC variations due to sampling. In
this particular case, the conclusion is that my classifier
was definitely capable of performing the classification,
in a manner that can be called highly statistically sig-
nificant, because the ROC cloud does not cover the
diagonal line. The code producing this plot is included
in Section 3.8.

Let me end this section by reminding the reader that
if one is comparing two ROC clouds from two different
models – perhaps, for the purpose of choosing the bet-
ter model – then one should wonder if the data between
the two models are somehow paired. If the data are
paired, then one should look at the difference between
ROC curves. Given that an ROC curve involves two
quantities (POD and FAR), the difference can be taken
either in the POD direction, or the FAR direction. The

choice is not a priori obvious, and so, it may be worth
looking at both.

3.4.2 Avoiding Probabilities, but Less

In the previous section, even though we were dealing
with probabilistic forecasts, we converted the probabil-
ity to a binary quantity, and thus, assessed performance
using tools designed for binary forecasts and observa-
tions, e.g., 2 × 2 contingency table, and the ensuing
POD and FAR. But note that converting the forecasts
to binary is tantamount to binning the forecasts into
two intervals – less than threshold, and greater than
threshold. Why not bin the forecasts into finer inter-
vals, say K = 10? We can, and that will convert the
forecasts into a categorical variable with 10 categories.
So, may we then use a 2 × 10 contingency table to
assess performance? Again, we could, but then we
would be throwing away a great deal of information
in the ordered nature of the 10 categories. By binning
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probabilities into multiple intervals, one ends-up with
an ordinal variable. But that is exactly the situation
in which we found ourselves back in Section 3.3.3
when we were dealing with continuous forecasts and
observations. There, we binned both the forecasts and
observations into intervals. So, why can we not do the
same thing? We can, and we will. In other words, we
will bin the forecast probabilities into some number of
intervals (conventionally 10).

In fact, we can proceed with using the same
machinery we developed for continuous forecasts. For
example, we can compute the reliability of the fore-
casts, E[x |y]. Again, recall from Section 3.3.4, that we
like this performance measure because it is diagnostic,
i.e., it tells us how to fix the forecasts. Also, recall that
it is estimated by taking the average of observations
(i.e., x values), for a given range of forecasts (i.e., y
values). But, since we are considering binary obser-
vations (i.e., x = 0, 1), what does it mean to take the
average of the x values? It is easy to show that the
average of a bunch of 0s and 1s is nothing but the frac-
tion of 1’s. In other words, E[x |y] = p(x = 1|y). So,
a reliability plot becomes nothing more than a plot of
an estimate of p(x = 1|y) (i.e., observed fraction) ver-
sus a set of binned y values. Needless to say, reliable
forecasts are those for whom p(x = 1|y) is equal (or
at least close) to y itself. In other words, the reliability
“curve” should fall on, or around, the diagonal line on
the plot of p(x = 1|y) vs. y; for a deeper discussion of
reliability diagrams, and a more sophisticated version
called the attributes diagram, see Wilks (1995). Hamill
(1997) discusses the multicategory generalization of
reliability diagrams for probabilistic forecasts.

But then the question of sampling variation arises
again. How much does the reliability curve fluctuate
due to sampling? Again, given that we are dealing with
proportions, we could develop a formula, but let us
use the bootstrap procedure again. Figure 3.5 shows
the result for the forecasts I mentioned in the context
of the ROC plot, in the previous Section. The code
for generating these results is included in Section 3.8.
The set of boxplots present a visual summary of the
conditional (on forecast) sampling distribution of the
fraction observed. In this particular example, the good
news is that the boxplots generally do fall along the
diagonal. The bad news is that some forecasts are gen-
erally below the diagonal; e.g., at 0.1 and 0.5. Also,
mid-range probabilities (say, 0.3–0.7) are generally
associated with longer boxes and whiskers, and so,

are generally associated with more uncertainty in the
corresponding observed fraction.

What are we to do with all this information? Given
that we are dealing with conditional bias, we already
know how to improve the forecasts in this regard;
see, Section 3.3.4. When the boxplot falls below the
diagonal line, one says that there is overforecasting.
For example, when the forecast probability is 0.1, the
fraction observed is less than that number. To fix this
problem, one should issue less 0.1 forecasts. Under-
forecasting is remedied in a similar way. What do we
learn from the boxplots? As advocated all along, they
give us a visual display of uncertainty. So, for example,
we cannot be too certain about whether or not the
forecasts at 0.45 are reliable, at least relative to the
forecasts at 0.95. As such, we should be less inclined
to correct our 0.45 forecasts.

3.4.3 Another Decomposition of MSE

We have seen that MSE decomposes into variance and
bias. We have also seen that conditional bias is related
to reliability. Is there a decomposition of MSE that
involves reliability? And if so, what is in the rest of
the decomposition?

For probabilistic forecasts of binary events, MSE
has another decomposition motivated by the factoriza-
tion of the joint probability density, equation (3.14).
Recall from the previous section that the probabilis-
tic forecasts yi can be binned into K non-overlapping
intervals. For instance, for K = 10 the intervals could
be 0–0.1, 0.1–0.2, . . . , 0.9–1.0. Let these intervals be
denoted by fk, k = 1, 2, . . . , K . Then the sum appear-
ing in MSE can be re-grouped as follows (Murphy and
Winkler 1987, 1992; Wilks 1995):

MSE = 1

n

n∑

i=1

(yi − xi )
2

= 1

n

K∑

k=1

nk( fk − xk)
2 − 1

n

K∑

k=1

nk(xk − x)2

+ x(1 − x)

= Reliability − Resolution + Uncertainty,

(3.21)

where xk is the mean of the observations (i.e., the
observed fraction) in the kth interval.
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Fig. 3.5 The reliability
diagram for the probabilistic
forecasts from the gravity
neural network

So, the answer to the first question asked at the
beginning of this section is in the affirmative. It is
easy to see why the first term is called reliability: it
is a weighted average of the difference between the
reliability curve and the diagonal line in the reliabil-
ity diagram. This term can be thought of as a scalar
summary measure of the reliability diagram. Do note,
however, that in looking at a reliability diagram one
talks about “high reliability” as a good thing; but given
equation (3.21), good forecasts correspond to a small
reliability term in the decomposition.

The second term gauges the amount of spread of
the observed fractions in the kth interval (xk) about x ,
which for x = 0, 1 is nothing but the overall fraction
of 1’s, i.e., the prior probability of an event. According
to the decomposition, we would want this term to be
as large as possible, because of its negative sign.

The last term refers only to the observations, and
so cannot be affected by the forecasts. So, it does
not enter the picture of performance assessment. It is
called uncertainty, but technically, it is the variance of
a Bernoulli variable, i.e., a random variable taking only
0, 1 values.

I will not include in this chapter the results of this
decomposition on our gravity example. But suffice it to

say that we can use the bootstrap approach to produce
histograms that represent the sampling distribution of
the first two terms appearing in equation (3.21).

3.4.4 Beyond Reliability

As we mentioned, p(x, y) has two useful factoriza-
tions. For binary events, the quantities of interest are
p(x = 1|y), p(y|x = 0), p(y|x = 1), and p(y). The
first one we have already addressed – it measures
reliability. The last one, is called refinement, and its
estimate would be the histogram of all the forecast
probabilities. So, it tells us something about the range
of forecasts probabilities, and their frequency. If the
forecast probabilities are all clustered around 0 and
1, then, one speaks of the probabilities as not being
refined. By contrast, if the probabilities vary over the
full range between 0 and 1, then we may consider the
probabilities as being refined. I will skip refinement,
here, and move on to the more interesting factors.

The other two factors, p(y|x = 0) and p(y|x =
1) can be visualized with histograms as well – the
conditional histogram of the probabilities for only
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Fig. 3.6 The discrimination
plot for the probabilistic
forecasts from the gravity
neural network

non-events (x = 0), and for events (x = 1), separately.
When these two histograms are placed on a single plot,
the resulting diagram is called a discrimination plot. It
exhibits the extent to which the forecasts discriminate
between the classes. Ideally, there should be many
low-probability forecasts for x = 0, and many high-
probability forecasts for x = 1. Figure 3.6 shows the
discrimination plot for our gravity example. Recall that
y is the forecast probability that the neural network
produces, and x denotes the true class (0/1). Given
the separation of the two histograms, we can conclude
that the forecasts are quite discriminatory. The code
for generating this figure (and Fig. 3.7) is included in
Section 3.8. The boxplots on the top of the figure sum-
marize the distribution of the two histograms; again,
the lack of an overlap between the boxes shows that the
neural net can properly discriminate between x = 0
and x = 1 classes.

As you may suspect, the question then is how
to quantify the uncertainty in the two histograms?
To that end, we return to our bootstrap approach. I
took 500 bootstrap trials, and computed p(y|x = 0)

and p(y|x = 1) for each trial. Again, the business of
“paired data” surfaces itself; because we are trying
to compare p(y|x = 0) with p(y|x = 1), but they are
both estimated from the same bootstrap sample. As
such, they are not independent, and so, we should be
looking at their difference, and asking if the boxplot of
the difference includes the number zero. Alternatively,
we can examine their ratio, and ask if the boxplot of
the ratio includes the number 1. Here, I will look at the
difference – the absolute value of the difference, to be
specific.

An ideal discrimination plot consists of two
well-separated histograms. Consequently, the absolute
value of the difference between the two histograms
would display a U-shaped pattern (not necessarily
symmetric), with the bottom portion of the U touching
the x-axis. Of course, due to sampling variations, in
practice things do not look that simple, and that is
why we look at the boxplot of the difference. If the
boxplots in the bottom portion of the U include zero,
then that is a good thing. Meanwhile, we would want to
see the boxplots for the extreme forecast probabilities
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Fig. 3.7 Boxplots of the
sampling distribution of the
difference |p(y|x = 0) −
p(y|x = 1)|, where y denotes
the forecast probability
(plotted along the x-axis).
What we look for, here, is
whether or not the boxplots
extend down to the horizontal
axis at 0

far away from zero. Figure 3.7 shows the result of
performing 500 bootstrap trials, and boxplotting the
difference |p(y|x = 0) − p(y|x = 1)| for the gravity
example. The number of intervals along the horizontal
axis is 20. Evidently, within the variations reflected in
the boxplots, the forecasts from the neural net are dis-
criminatory – almost ideally discriminatory. As such,
there is no reason to try to improve the forecasts as
far as discrimination is concerned. On the other hand,
there would be good reason to examine how the neural
net was trained, if the boxplots in the bottom portion
of the U did not extend to the x-axis, or if the boxplots
for the extreme forecast probabilities did extend to the
x-axis.

In summary, the quality of probabilistic forecasts
of binary events can be assessed by the joint distri-
bution of forecasts and observations. This joint dis-
tribution can be factored into components which can
be readily presented as three diagrams – reliability (or
calibration, or conditional bias), refinement, and dis-
crimination diagrams. In interpreting these diagrams,
it is important to take into account sampling variations.
Resampling techniques (e.g., bootstrapping) can be

employed to literally view the effect of the sampling
variation on the various diagrams.

3.5 Final Comments

3.5.1 Beyond Quality

Murphy argued that the goodness of a model has three
different components: quality, consistency, and value
(Murphy 1993). Everything we have discussed above
has been in regards to quality.

The issue of consistency arises because certain sit-
uations allow for, and even encourage, a forecaster to
change his/her forecasts. The term “situation” refers
to a combination of the choice of the performance
measure, and the way in which the measure is allowed
to feed back on the forecasts. Some related concepts
are equitability (Gandin and Murphy 1992; Gerrity
1992; Marzban and Lakshmanan 1999) and hedging
(Murphy and Epstein 1967). An example will serve
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to demonstrate the concept. Suppose a forecaster is
in possession of a box that is guaranteed to produce
high-quality, high-reliability, and high-value forecasts.
But suppose this forecaster’s boss evaluates him on the
basis of his MSE. It is easy to show that the forecaster
can actually improve his evaluations by not issuing the
probabilities that the box produces, but issuing proba-
bilities that are closer to the a priori (climatological)
probability. In the long run, his MSE will be lower
than if he had followed the advice of the box. This
forecasting system is referred to as improper, in that
it encourages the forecaster to issue forecasts that are
not necessarily best in any useful sense.

The above paragraph refers to a “forecaster”, sug-
gesting a human element present in the “situation”.
However, even without a human element present, e.g.,
an AI algorithm producing forecasts autonomously, it
is still possible for the developer of the algorithm to
have produced an algorithm that is implicitly inconsis-
tent. After all, it does not take much to insert a line or
two at the end of an AI algorithm that simply hedge
the outputs in one way or another. In most cases this
type of postprocessing is justified, but it is good to be
aware and concerned over the possibility of developing
an inconsistent forecasting system – AI-based, or not.

As for the value of forecasts, the term “value” refers
to economic value. It is important to realize that assess-
ing the quality of forecasts is usually independent from
assessing their economic value. Roebber and Bosart
(1996) present a real-life illustration of how quality
and value are entirely different facets of performance.
This point becomes obvious as soon as one notes that
the construction of performance measures does not
involve any information regarding the cost of taking
action (e.g., moving the car into the garage), and the
loss associated with not taking any action, if an event
(e.g., hail) does occur. Whether or not one should take
action is a matter of decision making, and not of the
quality of the forecasts. In order to assess the value of
the forecasts, it is possible to set-up economic models
that quantify the aforementioned costs and losses. One
of the simpler models leads to a single scalar measure
of forecast quality that ends-up depending only on the
cost/loss ratio. In that simple case, one can actually
plot the performance measure as a function of cost/loss
ratio. Although these plots are still measures of fore-
cast quality, they go beyond forecast quality because
they do convey information that is more useful for

decision making. Richardson (2000) and Wilks (2001)
report on several such value curves. It would be inter-
esting to see how these curves respond to sampling
variation.

3.5.2 Probabilistic Forecasts of
Continuous Events

The observed event considered in the previous section
was binary (x = 0, 1), and the probability was for x=1
to occur. What if the observed quantity is continuous,
but we still want to produce probabilistic predictions?
We can do what we did in Section 3.3.3 when han-
dling continuous observations – categorize them into
multiple intervals; then, we can assess the probabilities
in each category. A full discussion of that analysis
will take us beyond the scope of this chapter. I refer
the reader to the following references. I have already
mentioned Hamill (1997) who considers the multicat-
egory generalization of the reliability diagram. Roul-
ston and Smith (2002) approach the problem from an
information theoretic point of view, but their emphasis
is on finding a good scalar measure of performance.
Gneiting and Raftery (2005) also discuss that problem,
and put forth the Continuous Ranked Probability Score
(CRPS) as a measure that satisfies many of the require-
ments of a good performance measure. A more general
and diagnostic framework is developed in Gneiting
et al. (2007).

3.5.3 Ensembles

We have learned how to assess the quality of proba-
bilistic forecasts. But that presumes that the forecasts
are probabilistic. Many algorithms naturally produce
probabilities as their output (e.g., neural networks),
while other algorithms can be coaxed into producing
probabilities (e.g., k-nearest-neighbor); see Chapter 2.
However, there are situations wherein a handful of
forecasts are available for a given observations. This
is the case in what is commonly known as ensem-
ble forecasting systems. An ensemble is composed of
some number of algorithms, each typically producing
a single deterministic forecast. Wilson et al. (1999)
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devise a framework for assessing the quality of such
forecasts. Gneiting et al. (2005) introduce a scheme for
calibrating the forecasts (i.e., rendering them reliable)
by minimizing the CRPS mentioned above. Raftery
et al. (2005) reach the same goal but by “combining”
the deterministic forecasts from each ensemble mem-
ber to produce a single, reliable probabilistic forecast.

3.5.4 Spatial Forecasts

Another situation that I have not addressed here is the
evaluation of predictions that have a spatial structure.
The best example is an algorithm that produces fore-
casts of precipitation (i.e., rain) across some region.
We all know from weather maps shown on television
that weather has a spatial structure. A typical weather
map may have a dominant cluster of rain in one region,
scattered showers in another region, mixed with any-
thing else one can imagine. An algorithm may pro-
duce forecasts that resemble the actual weather map,
but perhaps place the clusters in the wrong place. Or
the clusters may be in the right place, but with the
wrong amount of rain. The clusters may be of the
wrong size, or they may not have the correct clus-
ter structure at all. You can see that there are many
more facets to the assessment of spatial forecasts.
And when we try to make the forecasts probabilistic,

the problem is exacerbated. Some recent attempts to
solve these problems have been proposed by Baldwin
et al. (2002), Brown et al. (2004), Casati et al. (2004),
Du and Mullen (2000), Ebert and McBride (2000),
Nachamkin (2004), Marzban and Sandgathe (2006,
2007), Marzban et al. (2008), and Venugopal et al.
(2005).

3.6 In Closing

At the start of this chapter, I may have given the reader
the impression that rigor and unambiguity will play an
important role in what is to be discussed. Now, at the
end of the chapter, it may all seem very convoluted and
confusing. Part of that may be attributed to my own
confusions; but a hopefully larger part can be attributed
to the fact that the topic of performance assessment is
highly complicated in and of itself. And, then, assess-
ing the uncertainty of performance measures makes
matters even worse. The fact is that in dealing with
complex issues, there are no simple answers. That is
why everything I have presented here ends-up being
somewhat qualitative, in spite of the equations and the
graphs. However, what I hope the reader will take away
from this chapter is an appreciation of the complexity
of the issues, and a set of tools designed to shed some
some light on the matter.

3.7 Computer Code

###############################################################
# This code produces the sampling distribution of several performance
# measures computed on Finley’s tornado data.
###############################################################

rm(list=ls(all=TRUE)) # Clears things up.
###############################################################
# Function for computing the Heidke skill statistics for a contingency table.

heidke function(dim, ct)
{ ct = ct/sum(ct)
margin.table(ct,1)
margin.table(ct,2)
a = b = 0
for(i in 1:dim){
a = a + ct[i,i]
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b = b + margin.table(ct,1)[i]*margin.table(ct,2)[i]
}
if(b!=1)
(a-b)/(1-b)
else
0
}

###############################################################
x1 = matrix(rep(c(0,0),2680),ncol=2,byrow=T) # Make Finley’s data.
x2 = matrix(rep(c(0,1),72),ncol=2,byrow=T)
x3 = matrix(rep(c(1,0),23),ncol=2,byrow=T)
x4 = matrix(rep(c(1,1),28),ncol=2,byrow=T)
dat = rbind(x1,x2,x3,x4)
obs = dat[,1] # The observations.
pred = dat[,2] # The forecasts.
ct = table(obs,pred) # The contingency table.
n.trial = 1000 # Start of bootstrapping.
perf = numeric(n.trial)
for(trial in 1:n.trial){
samp = c(sample(1:sum(ct),sum(ct),replace=T))
ct = table(o[samp],f[samp])
perf[trial] = heidke(2,ct)
# perf[trial] = ct[2,2]/margin.table(ct,1)[2] # Prob Of Detection.
# perf[trial] = ct[1,2]/margin.table(ct,2)[2] # False Alarm Rate.
# perf[trial] = ct[1,2]/margin.table(ct,1)[1] # False Alarm Ratio.
}
hist(pod,breaks=50,xlim=c(0,1)) # The sampling distribution of perf.

###############################################################
# This code computes the conditional mean of observation, given prediction.
# It produces the results in terms of boxplots summarizing the sampling
# distribution of the conditional mean of the observations. The observations
# and predictions are in a file called “tempr.dat”, the first few lines of
# which look like this:
# 43.9 25.0
# 37.9 27.0
# 37.6 25.0
# 36.3 24.1
# 34.3 24.1
###############################################################

rm(list=ls(all=TRUE)) # Clears things up.
library(fields) # For bplot().

dat = read.table(“tempr.dat”,header=FALSE)
pred = dat[,1]
obs = dat[,2]
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# bias-variance decomposition:
mse = mean ((pred-obs)2) # MSE
bias = mean(pred-obs) # Bias
variance = var(pred-obs) # Note: mse = var + bias2

pred.fix = pred - bias # Bias-corrected forecasts.

n.trial = 1000 # Number of bootstrap trials.
bin = 2.0 # Bin size for prediction.
n.samp = length(pred.fix) # Sample size per trial = pop size
xbin = seq(min(pred.fix),max(pred.fix),bin)
ybin = matrix(nrow=n.trial,ncol=length(xbin))

set.seed(1)
for(trial in 1:n.trial){ # Start bootstrap trials.
samp = c(sample(1:n.samp,n.samp,replace=T))
u = pred.fix[samp] # pred or pred.fix
v = obs[samp]

for(i in 1:length(xbin)) # For all xs in each bin
ybin[trial,i] = mean(v[abs(u-xbin[i]) <= bin]) # mean of y’s .

}

bplot(ybin,pos=round(xbin,digits=2), outlier=F,
xlab=“Prediction”, ylab=“Conditional Mean of Observation”)

abline(0,1) # Figure 3 .

#####################################################################
# This code computes the ROC cloud obtained from bootstrapping. The predictions
# and the target (0 or 1) are saved in a file called “gravity.dat”, the 1st few
# lines of which look like this:
0.0724929 0
0.7511006 1
0.2094030 1
0.1746261 0
0.7371982 0
#####################################################################

rm(list=ls(all=TRUE)) # Clears things up.

dat = read.table(“gravity.dat”,header=FALSE)
pred = dat[,1] # Predictions,
obs = dat[,2] # and observations.

n.trial = 100 # Number of bootstrap trials.
pod = matrix(nrow=100,ncol=n.trial)
far = matrix(nrow=100,ncol=n.trial)
for(trial in 1:n.trial){ # Start bootstrap.
samp = c(sample(1:length(pred),length(pred),replace=T))

for(i in 1:99){ # Vary threshold to make ROC curve.
thresh = i/100
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class = 0.5*(1+sign(pred-thresh)) # class=0 if pred < thresh. Etc.
ct = table(obs[samp],class[samp]) # Contingency table at each threshold.

if(dim(ct)[2]==2){ # ROC only for 2 × 2 contingency tables.
c00 = ct[1,1]; c01 = ct[1,2];
c10 = ct[2,1]; c11 = ct[2,2];
pod[i,trial] = c11/(c10+c11)
far[i,trial] = c01/(c00+c01)
}

}
}

plot(far,pod,type=“p”,cex=0.2,xlim=c(0,1),ylim=c(0,1),xlab=“FAR”,ylab=“POD”)
abline(0,1)

###################################################################
# This code computes the reliability diagram boxplot obtained from bootstrapping.
# The predictions and the target (0 or 1) are saved in a file called
# “gravity.dat”, the 1st few lines of which look like this:
0.0724929 0
0.7511006 1
0.2094030 1
0.1746261 0
0.7371982 0
###################################################################

rm(list=ls(all=TRUE)) # Clears things up.
library(fields) # For bplot().

dat = read.table(“gravity.dat”,header=FALSE)
pred = dat[,1] # Predictions,
obs = dat[,2] # and observations.

n.trial = 100 # Number of bootstrap trials.
bin = 0.05 # 0.05 gives good-looking results.
n.samp = length(pred) # Sample size per trial = pop size.

xbin = seq(min(pred),max(pred),bin)
ybin = matrix(nrow=n.trial,ncol=length(xbin))

for(trial in 1:n.trial){
samp = c(sample(1:n.samp,n.samp,replace=T))
u = pred[samp]
v = obs[samp]

for(i in 1:length(xbin)) # For all xs in each bin
ybin[trial,i] = mean(v[abs(u-xbin[i]) <= bin]) # mean of y’s .

}
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bplot(ybin,pos=round(xbin,digits=2),
xlab=“Forecast Probability”,ylab=“Observed Fraction”)

abline(0,1)

###############################################################
# This code generates a discrimination plot, as well as the boxplot of the
# difference |p(y|x = 0) − p(y|x = 1)| obtained from bootstrapping.
# The predictions and the target (0 or 1) are saved in a file called
# “gravity.dat”, the 1st few lines of which look like this:
0.0724929 0
0.7511006 1
0.2094030 1
0.1746261 0
###############################################################

rm(list=ls(all=TRUE)) # Clears things up.
library(fields) # For bplot().
library(verification) # For discrimination.plot().

dat = read.table(“gravity.dat”,header=FALSE)
pred = dat[,1] # Predictions,
obs = dat[,2] # and observations.

discrimination.plot(obs, pred) # A single discrimination plot.

n.trial = 500 # Number of bootstrap trials.
bin = 0.05 # 0.05 makes nice-looking plots.
n.samp = length(pred) # Sample size per trial = pop size.

n0 = length(pred[obs==0]) # Number of class=0 cases in data.
n1 = length(pred[obs==1]) # Ibid for class=1.
xbin = seq(0,1-bin,bin)
nperbin0 = matrix(nrow=n.trial,ncol=length(xbin)) # N(y—x=0).
nperbin1 = matrix(nrow=n.trial,ncol=length(xbin)) # N(y—x=1).

for(trial in 1:n.trial){ # Start bootstrap trial.
samp = c(sample(1:n.samp,n.samp,replace=T))
u = pred[samp]
v = obs[samp]

for(i in 1:length(xbin)){
nperbin0[trial,i] = length( u[ u-xbin[i] < bin & u-xbin[i]>=0 & v==0 ])
nperbin1[trial,i] = length( u[ u-xbin[i] < bin & u-xbin[i]>=0 & v==1 ])
}

}
xpos = c(round(xbin+bin/2,digits=3),round(xbin+bin/2+0.01,digits=3))
bplot(abs((nperbin1/n1)-(nperbin0/n0)),pos=xpos,

xlab=“Forecast Probability”,ylab=“Difference”,width=0.01)
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4Decision Trees

G. R. Dattatreya

4.1 Introduction

Statistical decision-making is widely used in experi-
mental earth sciences. The topic plays an even more
important role in Environmental Sciences due to the
time varying nature of a system under observation and
the possible necessity to take corrective actions. A set
of possible corrective actions is usually available in a
decision-making situation. Such a set is also known
as the set of decisions. A number of observations of
physical attributes (or variables) would also be poten-
tially available. It is desirable for the corrective action
selected in a situation to minimize the damage or cost,
or maximize the benefit. Considering that a cost is a
negative benefit, scientists and practitioners develop a
composite single criterion that should be minimized,
for a given decision-making problem. A best decision,
one that minimizes the composite cost criterion, is also
known as an optimal decision.

The process of obtaining or collecting the values
that the physical variables take in an event is also
known by other names such as extracting features (or
feature variables) and making measurements of the
variables. The variables are also called by other names
such as features, feature variables, and measurements.
Among the many possible physical variables that
might influence the decision, collecting some of them
may pose challenges. There may be a cost, risk, or
some other penalty associated with the process of col-
lecting some of these variables. In some other cases,

G. R. Dattatreya (*)
Department of Computer Science, University of Texas at Dallas,
Richardson Texas 75083-0688, USA
Phone: 972-883-2189; fax: 972-883-2349;
email: datta@utdallas.edu

the time delay in obtaining the measurements may also
add to the cost of decision-making. This may take the
form of certain losses because a corrective action could
not be implemented earlier due to the time delay in the
measurement process. These costs should be included
in the overall cost criterion. Therefore, the process of
decision-making may also involve deciding whether or
not to collect some of the measurements.

A mathematical space of the entire set of variations
in the variables and their costs can be imagined in such
a decision-making situation. Associated with every
combination of values of variables, the overall cost
of assigning a decision, including any measurement
costs, can be imagined. Following this, the optimal
decision for each combination of feature measure-
ments can also be imagined. Such a mathematical rep-
resentation of inter-relationships between all the vari-
ables involved is known as a “model.” The variables
of feature measurements, the costs, the parameters
used for combining the costs to a single criterion, and
every other mathematical quantity and function used
in the representation of inter-relationships are relevant
aspects of the model.

Unfortunately, a precise mathematical space of
costs of decisions and hence the map of optimal deci-
sions is merely hypothetical or ideal. Usually, there
are uncertainties in exactly quantifying the mathemati-
cal inter-relationships required for such a construction.
Some of the relationships may be deterministic. Some
others may be statistical. There may be limited a priori
knowledge to precisely quantify the statistical relation-
ships. Finally, even with an imagined perfect mathe-
matical space of inter-relationships, their representa-
tion and evaluation of optimal decisions may require
formidable amounts of computer memory space and
computations. Artificial Intelligence approaches for

S. E. Haupt et al. (eds.), Artificial Intelligence Methods in the Environmental Sciences 77
© Springer-Verlag Berlin Heidelberg 2009



000–0–00–000000–0 04-Haupt-c04 SHB0024-Haupt (Typeset by SPi, Delhi) page 78 of 102 October 17, 2008 15:42

78 G. R. Dattatreya

modeling and decision-making are helpful in many
such situations. They are useful in reducing the com-
plexity of representations. In some cases, they dynami-
cally develop the representations of the model through
the course of decision-making, instead of attempting
to build a possibly unmanageably large static repre-
sentation. They are also useful for approximate repre-
sentation of imprecise relationships. Finally, they are
useful in reducing the complexity of the computation
required to evaluate optimal decisions, through the
use of heuristics to evaluate nearly optimal decisions.
Decision Trees is one of the Artificial Intelligence
approaches and is the subject of the present chapter.

The purpose of working with a model is to help
us in decision-making. In qualifying models, clarifi-
cations between various adjectives such as exact, pre-
cise, complete, and statistical are in order. A complete
model accounts for all possible inter-relationships. A
precise model specifies the inter-relationships without
ambiguity. For example, the statement “high ambient
Ozone levels cause considerable discomfort for people
with respiratory sensitivity” specifies a relationship.
But it is not mathematically precise due to the sub-
jectivity of words such as “high,” and “considerable.”
A specification may be precise, but only approximate,
as opposed to being exact. Some relationships may be
statistical, as opposed to being deterministic. Statisti-
cal relationships with complete, precise, and correct
specifications are as good as similarly specified deter-
ministic relationships in the following sense. In the
case of statistical relationships, the statistical mean or
the expected overall cost of the decision is minimized
to obtain an optimal decision, as opposed to minimiz-
ing the exact overall cost.

Clearly, from the above arguments, a complete and
exact model cannot usually be constructed in many
Environmental Sciences applications. Even if a prac-
titioner is willing to accept approximate but com-
pletely specified models, they may not be available in
a timely fashion for many applications. Models may
be only partially specified or the parameters of the
model may not be accurate if observations are made
and decisions are required to be made with limited
resources; time is one of the resources. Meteorology
is such an application. Meteorological phenomena are
observable weather events. These are influenced by
temperature, pressure, and water vapor, among oth-
ers. These physical variables interact with one another.
Their variations over the three dimensional space and

time are also physical attributes and these contribute
significantly to the occurrence of a meteorological
event. Furthermore, the above physical attributes are
very useful in predicting future meteorological events,
within reasonable time frames. Although tremendous
advances in research have increased the accuracy of
forecasting, there is always room for improvement.
Determination of ranges of various physical attributes
and their combinations for accurate identifications of
various important events is extremely useful. There
is virtually no limit to the number of various trans-
formations of variables and combinations of trans-
formations that may potentially increase the accuracy
of such classification. Moreover, different transforma-
tions over different ranges of attributes (and their com-
binations) may be required. Therefore, research on this
topic is open-ended.

The present chapter studies a class of approaches
for classification (decision-making) algorithms. These
methods integrate models based on partial informa-
tion about logical inter-relationships with statistical
representations. The overall objective is to develop
guided decision-making algorithms called Decision
Trees. The approach is applicable in many experi-
mental areas of earth sciences for reasons mentioned
above. The final algorithm in this class is also known
by other names such as Multistage Classification and
Hierarchical Classification.

4.2 Decision-Making and Pattern
Classification

4.2.1 Statistical Pattern Classification

In its simplest form, pattern classification (Duda et al.
2001) requires that a given data vector x be assigned to
one of several known categories, ω1, · · · , ωk . The data
vector variable x is composed of m measurements so
that

x = [x(1), x(2), · · · , x(m)]. (4.1)

As mentioned earlier, each measurement is also called
a feature, whose value is influenced by the pattern class
corresponding to the data vector x. Each feature may
be cardinal, ordinal, or nominal valued. A cardinal val-
ued variable takes values over continuous segments of
a real line. An ordinal valued variable, over a countable
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set of ordered values, such as integers. A nominal
valued variable takes values from a finite set in which
the values in the set have no natural order. An example
of a nominal variable is the presence or absence of
a phenomenon, such as the presence or absence of a
particular pollutant in a material sample.

In many completely designed classification appli-
cations, we know the a priori class probabilities, Pi

respectively, for each class ωi . We also know the class
conditional probability density functions, p(x |ωi ), for
each class ωi and for all vector points {x} in the obser-
vation space. We then maximize the a posteriori prob-
ability of the class to be assigned to the observed data.
That is, assign class ωi to the observed data vector x if
the a posteriori probability of class ωi ,

P[ωi |x] ≥ P[ω j |x], for every j ∈ {1, 2, · · · , k}.
(4.2)

Using the Bayes theorem in probability theory, an a
posteriori class probability can be expressed as a func-
tion of its a priori class probability and class condi-
tional density functions, as follows.

P[ω j |x] = p(x|ω j )Pj∑k
l=1 p(x|ωl)Pl

, for every

j ∈ {1, 2, · · · , k}. (4.3)

The denominator in the right hand side of the above
equation is independent of j . Therefore, the decision
rule in equation (4.2) simplifies to maximizing the
numerator of the right hand side of equation (4.3) over
all j . That is, assign class ωi to the observed data
vector x if

p(x|ωi )Pk ≥ p(x|ω j )Pj , for every j ∈ {1, 2, · · · , k}.
(4.4)

The above approach to decision-making depends on
the ability to statistically represent all the variations of
the data, over the entire multivariate space of all the
measurements.

4.2.2 Use of Logical Inter-relationships

Purely statistical approaches constitute one extreme
way to model data for decision-making. At the other
extreme is a set of pure logical inter-relationships.
Such logical inter-relationships may be constructed

through various types of data analyses other than
with pure statistical models. These inter-relationships
may be completely deterministic or approximated to
be deterministic. In practice, a combination of logi-
cal inter-relationships and statistical data analysis is
commonly employed. Logical inter-relationships can
be considered to be perfect if its use is guaranteed
to be error-free in every instance that it is used to
make decisions. The same information can be con-
sidered to be complete if its application is guaranteed
to lead to a final decision (as opposed to a partial
decision) for every combination of measurements. An
availability of such complete and perfect logical inter-
relationships obviates statistical approaches. Such an
ideal case is seldom found in applications. In real
life applications, we usually have only imperfect and
incomplete information about the model. This is also
usually accompanied by past cases of data and any
decisions that may have been made using such data.
Such data are called training pattern samples. Practical
decision-making algorithms are best designed with the
help of both available information about logical inter-
relationships and statistical training data. The follow-
ing illustrates this approach with the help of simple
fictitious example.

A patient visits his family-practice physician with
flu-like symptoms. The cause may be upper respira-
tory allergies or a viral infection. Although there is
no cure for viral infection, a secondary bacterial infec-
tion may follow in either case, under some conditions.
Patients with a history of such risks should be treated
differently in comparison with those having no such
history. A possible model of logical inter-relationships
is shown in Fig. 4.1.

The physician examines if the patient has fever. For
three possible levels (or grades) of fever, the courses

Low

Yes No

WaitC

Fever?

Risky?

NoHigh

WaitA&C

Fig. 4.1 A simple example illustrating model and statistical
training
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of actions are different. For low fever, the doctor exam-
ines the patient’s records to check if he has risk factors.
If the patient is at risk, the doctor prescribes medicines
to relieve symptoms of Cold (indicated by a decision C
in the figure). If the patient’s fever is high, the doctor
prescribes both antibiotics and Cold medicines (indi-
cated by A & C). Under other conditions, the physician
does not prescribe any medication. Of course, if the
symptoms worsen within a day or two, the patient will
return to the doctor’s office. This is indicated by the
decision “Wait.” This is an example of a model of
logical inter-relationships. This example assumes that
the physician has a list of risk factors and there is no
ambiguity about risk factors. However, this model is
still imperfect since there is no specification of how to
distinguish between low and high grades of fever. The
final decision-making algorithm requires a threshold
of body temperature to decide between low and high
fever. A good threshold can be determined with the
help of numerous past cases of how patients’ condi-
tions changed starting from different observed temper-
atures. The threshold determination may also be influ-
enced by how past patients with different temperatures
responded to different treatments. The observations
about the past patients constitute statistical training
data. In the above example, the physician arrives at a
final decision through a sequence of partial decisions.
At each stage, some information about the case (the

patient in the above example) is examined and fur-
ther actions are contemplated. At each stage, one of
the possible actions is selected. Such an approach to
decision-making is called the decision tree approach.
The corresponding pictorial representation of the
decision-making scheme is called the decision tree.

In a general decision-making scheme (including
in decision trees), there is an optimal decision asso-
ciated with every combination of feature measure-
ments. Thus, the mathematical space of measurements
is divided into regions of different optimal decisions.
These regions are called decision regions. The bound-
aries between adjacent regions of different decisions
are called decision boundaries.

4.3 Decision Regions

Decision-making algorithms induce decision bound-
aries and decision regions in the data space {x}, as
noted in the above section. That is, the multidimen-
sional data space is divided into many regions and a
class label is assigned to each region. There may be
multiple disjoint regions constituting a single class.
The following is a hypothetical example. Figure 4.2
shows an example of decision regions with four classes
and two measurements, x and y.

x

y
1

2

3

4

4 12 16

4

8

12

8 20Fig. 4.2 An example of
decision regions
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In this example, the x axis segment extends from
0 to 24 units. The y axis segment extends from 0 to
16. The decision region for class 1 is inside an ellipse
with its major axis parallel to the x axis. The ellipse is
centered at (4, 12). Its major axis measures 6 and its
minor axis, 4. The decision region for class 4 is inside
a circle centered at (12, 8) with radius 4. The decision
region for class 3 is above and to the right side of the
inclined line segment passing through the two points
(12, 16) and (24, 8). The rest of the area corresponds
to class 2.

If the data vector also has ordinal and/or nominal
features, the space of the feature measurements will be
composed of continuous as well as discrete variables.
In practice, the a priori class probabilities and the
class conditional probability density functions of the
observations are not accurately known. Design of pat-
tern classifiers are then based on finite sample training
data sets. There are several approaches to designing
classifiers starting from training data sets. Typically,
we may have access to several data vectors from each
class. A labeled sample set of training data consists of
the set of classes is {ω1, · · · , ωk} with k classes, and ni

data vectors from class ωi where

xij, j = 1, · · · , ni and i = 1, · · · , k (4.5)

is the j-th data vector from class ωi . In some appli-
cations, the relative numbers of training data samples
may adequately represent the a priori class probabili-
ties. That is,

ni∑k
j=1 n j

(4.6)

may be a good estimate for Pi . In other applications,
there may be attempts to supply a training data set
with a maximum possible size. In such a case, the
relative numbers of samples from different classes may
not approximate the a priori class probabilities. The
relative proportions in field, that is in the real appli-
cation, may be known or estimated by other means.
For example, during a particular season, we may know
that the weather for the midday (without any additional
information) has the following probabilities.

P[sunny] = 0.75, (4.7)

P[rain] = 0.15, (4.8)

P[cloudy] = 0.07, and (4.9)

P[snow] = 0.03. (4.10)

In yet other applications, it may be reasonable to
assume equal a priori probabilities for all classes.
The data sets for individual pattern classes may be
used to estimate the parameters of class conditional
probability functions based on a known or assumed
family of probability density function. An example of
a family of probability density functions is the set of
Gaussian probability density functions representing a
single feature measurement. Different values for the
mean and variance correspond to different members
of this family of probability density functions. The
mean and variance of the density function are known
as the parameters of the probability density function.
Other families of probability density functions may
have parameters other than (or in addition to) the mean
and variance. For example, a uniform probability dis-
tribution of a continuous random variable is conve-
niently represented by the extreme (the lowest and the
highest) values that the random variable can take. In
this case, these extreme values are the parameters of
the probability density function. The probability den-
sity function of a random variable is the derivative of
the probability distribution function. The latter is also
called the cumulative distribution function. A com-
pletely specified statistical model for pattern classifi-
cation or decision-making uses a probability density
(or distribution) function for the feature measurements
for objects (or events) from each class of patterns.
The a priori class probabilities of the occurrence of
the classes in nature are also used. All the parameter
values required for decision-making are required for a
complete specification. This approach of employing a
family of probability density functions and using esti-
mated values for these parameters to design a pattern
classifier is known as the parametric approach. The
final classification algorithm assigns a class label for
every data point in the space of feature measurement,
following a maximum probability of correct classifi-
cation rule of equation (4.4) developed in Section 4.2.
The resulting map of the class assignment divides the
feature space into decision regions.

4.4 Discriminant Functions

There are alternatives to the above described paramet-
ric approach. After all, the final classifier is required
to specify decision regions in the data space of the
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available features. Of course, once the decision regions
are specified, it is desirable to have an efficient algo-
rithm to sift through the decision regions to arrive at
the class label corresponding to an observed data vec-
tor. There are approaches to use parametric forms for
the decision boundaries and optimize the parameters
to minimize a function of the errors, based on training
sets. This approach determines the parameters of such
“discriminant functions.” In simple cases, a discrimi-
nant function is associated with each class label. The
classification algorithm evaluates these discriminant
functions, for the given data, for all the classes and
picks the class label that maximizes the discriminant
function. In this sense, the a posteriori class probabil-
ities in equation (4.2) and the joint probability density
function in equation (4.4) are discriminant functions.

A classifier that uses linear discriminant functions
(Duda et al. 2001) for classification is known as a
linear classifier. As a simple example, consider the
decision regions in Fig. 4.2. If the classification prob-
lem is to decide between class 3 and all other classes,
there would be only two decision regions, on either
side of the straight line separating class 3 and all other
classes. The resulting classifier is a linear classifier.
Linear classifiers are very popular for several reasons.
The resulting decision regions are easy to visualize
geometrically, in the data space. The determination
of optimal parameters of linear discriminant functions
are often simpler than in the nonlinear case. In some

cases, original data vectors are subjected to nonlin-
ear transformations and then optimal linear discrim-
inant functions are developed. In the original case
of full knowledge of a priori class probabilities and
class conditional probability density functions, it can
be shown that there is nothing gained by using any
transformation of existing feature variables, in terms
of performance of the classifier, for example in the
probability of correct classification. However, in the
case of design from a finite sample training data set,
some nonlinear transformations may lead to a simple
classification algorithm and with better accuracy of
classification. A very simple generalization of linear
classifiers uses piecewise linear functions. This is very
easily illustrated with the help of another example
below.

Figure 4.3 depicts decision regions for an applica-
tion.

The overall rectangular region of measurements is
24 units wide and 16 high. The intercept values indi-
cated for the line segments completely define each
straight line. Every closed region has an assigned class
label indicated in the figure. The broken portions of
some line segments in the figure do not separate class
labels. They are drawn only to clearly specify the lines.
In a field application of the above pattern classifier, an
observation (data) vector (x, y) would be given and
the task of the classification scheme is to determine the
final class label corresponding to the point (x, y) in the
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decision regions. A particularly convenient approach
to implement the classification algorithm for the deci-
sion regions of Fig. 4.3 is to examine which side of
the different straight line segments that a given point
(x, y) falls. This requires a few steps and the corre-
sponding scheme is appropriately known as a multi-
stage decision-making algorithm. An elegant and con-
venient way to represent such a classification scheme
is with the help of a decision tree. Trees are a sub-
class of mathematical structures (objects, entities, etc.)
called graphs. In many cases, such decision trees are
extracted from graphs. Therefore, an elementary study
of definitions and properties of graphs and trees is use-
ful. The next section introduces principles of graphs
and trees.

4.5 Graphs and Trees

In a graph, we have a set of vertices or nodes com-
monly denoted by set V . Distinct nodes are identified
by numbers, letters, names, etc. Each node may repre-
sent a physical or an abstract object. An edge in a graph
is an entity different from a node. An edge connects
two nodes. The set of edges is commonly denoted by
E . Edges are also known by other names such as arcs,
branches, and links. At most one edge may be present
from a vertex to another. An edge may also connect
a vertex to the same vertex. The following are formal
definitions.

A graph G is a set {V, E} where V is a set of
vertices and E is a set of edges defined over V . Vertices
and Edges are defined as follows. A vertex is a physical
or an abstract entity. An edge is a pair of vertices. A set
of vertices induces a set of all possible edges. Edges
can also be identified by numbers, letters, names, etc.
If the same type of identifiers are used for both vertices
and edges, it is important to be able to distinguish
between a node identifier and an edge identifier. In
the literature, it is not too uncommon to find graphs
with numbers used for identifying nodes as well as
edges. In such a case, we need to avoid confusion by
explicitly referring to them as “vertex k” and “edge
k.” Pictorially, a vertex is represented by a heavy dot,
a small circle, an ellipse, or a square, etc. An edge is
represented by a straight or curved line drawn from one
vertex to another. We use the following descriptions
with obvious meanings. An edge connects its two ver-
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Fig. 4.4 An undirected graph

tices. A vertex touches its edges. An edge originates at
a vertex and terminates at a vertex, etc.

Figure 4.4 depicts a graph.
Its vertex set is V = {A, B, C, D, E} and its edge

set is

E = {e1, e2, e3, e4, e5, e6, e7, e8}. (4.11)

We find that e1 = (A, C), e2 = (C, E), e3 = (C, D),
e4 = (D, E), e5 = (B, D), e6 = (A, B), e7 =
(A, D), and e8 = (B, E). In some graphs, a direction
may be associated with every edge. If an edge is not
directed (also called undirected), it is considered to
connect from each of its two vertices to the other. It is
convenient to have all edges of a graph as directed, or
all of them as undirected. This is not restrictive, since,
an undirected edge can always be represented by two
directed edges in opposite directions. Therefore, each
pair of vertices identifying a corresponding edge in
Fig. 4.4 is an unordered pair.

If all the edges of a graph are unordered pairs of
vertices, the graph is said to be undirected. If all the
edges of a graph are ordered pairs of vertices, the graph
is said to be directed. If (R, S) is an ordered pair
representing a directed edge, by convention, the edge
originates at the vertex R. The number of edges origi-
nating and/or terminating at a vertex is often an impor-
tant characteristic of the vertex. These are defined
separately for undirected and directed graphs. In an
undirected graph, the degree of a node is the number
of edges that the node touches. In a directed graph, the
number of edges terminating at a node is known as the
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Fig. 4.5 A directed graph

in-degree of the node. The number of edges originating
from a node is known as the out-degree of the node.

Figure 4.5 shows a directed graph.
It is constructed by making the following modifica-

tions to the undirected graph of Fig. 4.4. Specific direc-
tions have been imposed for edges e1, e2, e3, e4, e5, and
e8 of the original undirected graph of Fig. 4.4. Each of
the other two edges e6 and e7 of the original undirected
graph are duplicated to create corresponding edges in
opposite directions. Therefore, the vertex set for this
directed graph is the same as in the above undirected
graph example, given by V = {A, B, C, D, E}. The
edge set E has the following ordered pairs of ver-
tices for edges. Edge e1 = (A, C), e2 = (E, C), e3 =
(C, D), e4 = (D, E), e5 = (D, B), e6 = (B, A),
e7 = (A, D), e8 = (B, E), e9 = (D, A), and e10 =
(A, B). The in-degree of vertex A is 2 and its out-
degree is 3. The in-degree of vertex C is 2 and its
out-degree is 1. Clearly, an n vertex directed graph can
have a maximum of n2 edges. An n vertex undirected
graph can have a maximum of n(n+1)

2 edges. These
numbers include possible edges from a node to itself.
If we exclude possible edges from a node to itself, the
number of possible edges in an n-vertex directed graph
is n(n − 1); for an undirected graph, it is n(n−1)

2 .
A path, in a graph, is a sequence of k + 1 vertices

{v0, v1, · · · , vk} and a corresponding sequence of k
edges

{(v0, v1), (v1, v2), · · · , (vk−2, vk−1), (vk−1, vk)},
(4.12)

provided such edges exist in the graph to create the
path {v0, v1, · · · , vk}. Note that vi is a variable vertex
in the above definition, in the sense that vi is some
vertex of the graph under consideration. The number
of edges in a path is known as the number of hops,
length of the path, etc. The first vertex in the sequence
of vertices forming a path is known by different names
such as the initial, originating, beginning, or the start-
ing vertex of the path. Similarly, the last vertex in a
path is known by different names such as final, ter-
minating, ending vertex. We use descriptions such as
“traversing the path,” “traversing the graph through the
path,” etc. Some simple examples help in understand-
ing the definition of a path. In the undirected graph of
Fig. 4.4, the sequence of vertices {A, D, C, E} is a
path of length 3. The sequence of vertices {A, B, C}
is not a path since the graph has no edge between the
vertices B and C . In Fig. 4.4, again, the sequence of
vertices {C, A, B, D, A} is a path of length 4 from
C to A, even though the vertex A is traversed twice.
In many applications, such paths are undesirable and
paths without repeating vertices are desired. In the
directed graph of Fig. 4.5, the sequence of vertices
{A, C, D, B} is a path of length 3 from node A to
node B. The sequence of nodes {A, B} is also a path,
of length 1, from node A to node B. However, the
sequence of nodes {A, C, E} is not a path since there
is no directed edge (C, E) in this directed graph.

A path originating from a node and terminat-
ing at the same node is called a cycle. For exam-
ple, {A, B, D, E, C, A} in the undirected graph of
Fig. 4.4 is a cycle of length 5. The path {C, D, E, C}
in the same figure is also a cycle, of length 3. In
the directed graph of Fig. 4.5, each of the paths
{A, B, A} and {B, E, C, D, A, B} is a cycle. An
undirected graph is said to be connected if there is a
path from every vertex to every other vertex. The undi-
rected graph of Fig. 4.4 is a connected graph. A con-
nected undirected graph without any cycle is called a
tree.

We usually form a tree from a connected undirected
graph by removing some edges to satisfy the require-
ments. Since there are no cycles in a tree, there must
be one and only one path from any vertex to any other
vertex. The reason such a graph is called a tree is that
we can identify any node and branch out to all other
nodes, just as a real tree starts from the ground and
branches off to its ends. The following is a fundamen-
tal result in Graph theory.
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An n > 0 vertex tree has exactly n − 1 edges. The
statement is proved by induction as follows. A tree
with one vertex has no other vertex to connect to and
hence has no edges. A tree with two vertices must have
exactly one edge connecting the two nodes. Therefore,
the theorem is valid for trees with n ≤ 2 nodes. Let
every tree with a particular value of k > 2 nodes have
exactly k − 1 edges. Now, add a node to such a tree
to make it a k + 1 node graph. In order to make the
new graph connected, we must add an edge between
the newly added (k + 1)-th node and any other node,
increasing the number of edges to k. When we add this
new node and a corresponding new edge, we will have
a path from every node to every other node, so that
the graph is connected. If we now add an additional
(k + 1)-th edge between any two nodes, say, between
nodes A and B, we create a second path between nodes
A and B, since there was already an existing path. The
two paths create a cycle and hence adding the (k + 1)-
th edge destroys the tree. Similarly, any additional
number of edges over and above k edges will create
one or more cycles. This shows that if every k node
tree has (k − 1) edges, then every (k + 1) node tree
has k edges. Since the property is known to be true for
k = 1 and 2, it follows that every n > 0 vertex tree has
exactly n − 1 edges.

In a rooted tree, any particular node of the tree is
identified as the root node. If a node of a rooted tree is
not its root and if its degree is one, we call it a leaf node
or a terminal node. Figure 4.6 shows a rooted tree. It is
a sub-graph of the undirected graph in Fig. 4.4. Node
B is identified as the root node. Nodes C , D, and E
are leaf nodes.

Starting from the root of a tree, we can reach all the
nodes by the following informal traversal algorithm.
Start from the root node. Traverse along any path with-
out reversing the direction of traversal. Color or mark
every traversed edge. Also mark the direction in which
every edge is traversed. When a leaf node is reached,
start from any non-leaf node that has been reached in
an earlier traversal and that touches an unmarked edge.
Continue traversing until another leaf node is reached.
Continue this procedure until all edges are marked.
Notice that once we start traversing from a node, we
never reach a node that has already been visited, since
there are no cycles in the tree. The second observa-
tion is that every edge is traversed only once. As a
consequence, the above procedure assigns directions
to every edge in the tree. Every direction moves away
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Fig. 4.6 A tree obtained from the graph of Fig. 4.4

from the root node and towards leaf nodes. The third
observation is that given a rooted tree, the directions
associated with every edge along every path towards a
leaf node is unique.

A rooted tree in which obvious directions are
assigned for every edge to create a (directed) path from
the root node to every leaf node is a rooted and directed
tree. Along every path to a leaf node, a non-root node
is called the child of the node preceding the node in
the path under consideration. All the child-nodes of a
node are called siblings. If a node B is a child node of
the node A, then A is called the parent node of node B.
Clearly, the root node has no parent. Every leaf node
has no child node. A consequence of the property that
directions of edges in a rooted and directed tree are
unique is that we may elect to not explicitly show the
directions of edges in figures. In this sense, a rooted
tree and the corresponding rooted and directed tree are
one and the same. In the rooted tree of Fig. 4.6, nodes
A, D, and E are siblings and all these are the child-
nodes of the node B. It is convenient to redraw a rooted
tree with the root node at the top and all its child nodes
below the root node. Similarly, all succeeding child
nodes of all newly drawn nodes are drawn below the
corresponding parent nodes. Such modifications to a
graph do not change a graph, since the definition of the
graph (that is, the set of vertices, the set of edges over
the set of vertices, directions of edges, if any, and the
root node), are not changed. Figure 4.7 shows a such a
redrawn tree of the one in Fig. 4.6.

The height of a rooted tree is the length of the
longest path from the root node to any leaf node in
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Fig. 4.7 The tree of Fig. 4.6 with a root at the top and branching
downwards

the tree. The height of the rooted tree in Fig. 4.7 is
two.

A directed graph that has no cycles is called a
directed acyclic graph (DAG). Unlike in a tree formed
from an undirected graph, it is not necessary for a
DAG to have a node from which there are paths to all
other nodes. Figure 4.8 is a simple example of a DAG
illustrating this peculiarity.

Multiple paths between a pair of nodes are allowed
in a DAG. For example, the DAG in Fig. 4.8 has
two paths from node A to node E . In some decision
tree design algorithms, decision trees are extracted as
subgraphs of DAGs. If in a rooted tree, every non-leaf
node has exactly two child nodes, the tree is called a
binary tree. We are now ready to define a decision tree.
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Fig. 4.8 A DAG with no unique root node, constructed as a
subgraph of Fig. 4.5

Consider a rooted (and directed) tree. Let every
non-leaf node examine a data vector. The data vector
is specific to the non-leaf node under consideration.
The data vector examined at a node can be a spe-
cific transformation of the overall data vector in the
application system. Let the set of possible outcomes
of the examined data vector be partitioned into as
many proper subsets as the number of child nodes of
the non-leaf node under consideration. Let there be a
simple test at every non-leaf node to determine which
child node to traverse to, at every non-leaf node. Let
every leaf-node be assigned a decision from a set of
decisions. Such a tree is called a decision tree. The
motivation for such a definition is the following. If the
data vector used at the root node is specified, the partial
decision of which of its child nodes to traverse to can
be determined. If the data vector at that child node is
available, the next level child node to traverse to can
be determined. This process can continue with partial
decisions until a leaf node is reached. The decision tree
is merely an approach or an algorithm to determine
the final decision for every possible overall data vector
point. We say that every non-leaf node “tests” a given
data vector and decides the child node to which the
decision-making algorithm traverses. Note that two or
more different leaf nodes may be identified with the
same decision. Decisions can be identified by num-
bers, names, subscripted symbols, etc. A decision tree
extracted from a DAG has one node from which there
are paths to all terminal nodes of the DAG. Such a
DAG is identified by the following definition.

If a DAG has one node from which there is a path
to every terminal node of the DAG, the DAG is said
to be a rooted and directed acyclic graph (RDAG).
Figure 4.9 shows an RDAG extracted from the directed
graph of Fig. 4.5. Since the edges in an RDAG are
directed, the root node is the unique node D, in
Fig. 4.9.

A binary decision tree is a binary tree as well as
a decision tree. Each test in a decision-making node
of a binary decision tree is a test with two possible
outcomes, “yes” or “no.” In this chapter, we use the
convention that the left branch of a decision-making
node in a binary decision tree corresponds to the out-
come “yes,” and the right branch, to “no.” Figure 4.10
is a binary decision tree; it is obtained by modifying
the original (non-binary) decision tree of Fig. 4.1.

The above definitions of the decision tree and the
binary decision tree are very general. It is clear that a



000–0–00–000000–0 04-Haupt-c04 SHB0024-Haupt (Typeset by SPi, Delhi) page 87 of 102 October 17, 2008 15:42

4 Decision Trees 87

A

B
C

D
E

e

e

e

e

2

4

5

6

e
89

e

Fig. 4.9 An RDAG extracted from the directed graph of
Fig. 4.5

decision tree simply specifies decision regions in the
overall data space. That is, a decision tree is merely
a convenient artifice to implement a decision-making
algorithm over a completely specified set of decision
regions. To be useful, the tests at individual non-leaf
nodes must be simple. Therefore, the art of designing
decision trees can actually influence the partitioning
of the overall data space into decision regions, often
in an interactive and iterative approach. We will study
design of decision regions and decision trees in later
sections; the following section illustrates implemen-
tation of decision trees for given decision regions,
through examples.
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NoYes
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A&C
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C Wait

No

No
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Risky?

Fig. 4.10 A binary decision tree obtained by modifying the
decision tree of Fig. 4.1

4.6 Decision Tree Examples

The implementation of a pattern classifier algorithm
for a given set of decision regions (for example, the
decision regions in Fig. 4.2 or Fig. 4.3) requires a
sequence of steps. Typically, for a given data point,
that is, a point (x, y), we should sequentially deter-
mine on which side of various straight or curved lines
the point (x, y) falls. If we have a three dimen-
sional data vector, the geometrical figure separating
two adjacent regions is a surface. If we have a higher
dimensional data vector, the mathematical equation
separating two adjacent regions in the data space is
referred to as a hypersurface. If we are careful, it
may not always be necessary to determine the cor-
rect side of every line (in our two dimensional data
vector cases) found in the overall region of possible
measurements. In a sequence of steps, results of cur-
rently examined lines can direct us to select which
line to examine next, until a final determination of
the class label is made. Such algorithms are appro-
priately called multistage classification schemes. The
distinction between a general multistage classifier and
a decision tree is somewhat subjective. Generally, in
decision trees, the evaluation of the test function and
determination of the next action at every stage is very
simple. As an example, a decision to pick one of two
options based on a threshold comparison of a single
variable at every stage is a very simple multistage
classifier. Such a classifier is also a binary decision
tree.

Figure 4.11 shows decision regions for another pat-
tern classifier. Notice that every decision boundary is a
straight line segment parallel to one or the other of the
two coordinate axes. Again, the overall rectangle is 24
units wide and 16 units high, starting from the bottom
left corner as the origin. The abscissa and ordinate
values of the line segments, as necessary, are given
outside the overall rectangle to completely specify
the decision regions. The class labels of the regions
are the numbers 1, 2, 3, 4, and 5, and these are given
inside the decision regions.

We can implement a decision making algorithm for
this classifier in the form of a decision tree. In par-
ticular, we consider a binary form of decision trees.
Recall that in a binary decision tree, each decision-
making node examines a condition, the result of which
can be yes or no, until a final decision about the class
label is unambiguous. Figure 4.12 shows such a binary



000–0–00–000000–0 04-Haupt-c04 SHB0024-Haupt (Typeset by SPi, Delhi) page 88 of 102 October 17, 2008 15:42

88 G. R. Dattatreya

8 14

10

7

10

13

74

x

y
1

2

3
4

5

5

4 12 16

4

8

12

Fig. 4.11 Rectangular
decision boundaries

tree in which each stage is a comparison of one of the
features, x or y to a specified threshold.

The first stage examines if y < 7. As stated earlier,
the left branch is for yes (or true), and right branch, for
no (or false), a convention used here.

Clearly, we can construct such decision trees in
which a test at a particular stage can produce one
of many (more than two) possible outcomes. In this
case, the result is not a binary tree but a more
general tree. Figure 4.13 shows such a tree for
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tree for the example of
Fig. 4.11
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Fig. 4.13 A non-binary decision tree for the example of Fig. 4.11

implementing a decision-making algorithm for the
example in Fig. 4.11.

In Fig. 4.13, if the test node indicates a condition
with only two answers, the left branch is for the “true”
answer and the right branch, for the “false” answer to
the test. At some stages, multiple branches indicate the
conditions under which a particular branch should be
followed.

We can also construct decision trees in which a test
can involve more than one feature variable. An appeal-
ing example is the following. The decision boundaries
in Fig. 4.3 are all straight line segments. But these
straight lines are not parallel to either the x or the
y axis. However, each straight line is expressed by a
simultaneous linear equation involving both the vari-
ables x and y. The two sides of one such equation is
specified by the two possible outcomes of the corre-
sponding inequality. Thus we can construct a binary
tree for the decision regions of Fig. 4.3 in which each
test is the examination of an inequality involving a
linear combination of both the variables x and y. Con-
structing such a tree for the decision regions of Fig. 4.3
is a comprehensive exercise and is suggested for the
reader.

The decision boundaries are not required to be
straight line segments to implement the decision mak-
ing algorithm as a decision tree. Of course, if tests at
individual stages of a decision tree are very compli-
cated, the use of the tree approach to decision-making
is questionable. Let us implement a decision tree for
classification over the decision regions of the example
in Fig. 4.2. The basic equation for an ellipse whose
center is the origin of the coordinate plane and whose
major and minor axes are respectively collinear with

the coordinate axes x and y is

x2

a2
+ y2

b2
= 1 (4.13)

where a is the intercept on the positive x axis and b, on
the positive y axis. The major axis, the longest distance
between two extremities of the ellipse and passing
through its origin is 2a. The minor axis, the shortest
distance, is 2b. Shifting the center of the ellipse and
substituting for the values of the semi-major and semi-
minor axes for our example, we have the equation for
the ellipse as

(x − 4)2

9
+ (y − 12)2

4
= 1. (4.14)

Simplifying, we obtain the equation for our ellipse as

4x2 − 9y2 − 32x − 216y + 1324 = 0. (4.15)

The region corresponding to the inside of the ellipse is
class label 1 and it is the set of all (x, y) following the
inequality

u = 4x2 − 9y2 − 32x − 216y + 1324 < 0.

(4.16)
In the above inequality (4.16), the variable u is defined
to be a composite feature variable, one that is derived
as a transformation from the original feature measure-
ments of x and y.

The equation for a circle of radius r and centered at
the origin is

x2 + y2 = r2. (4.17)

Translating to the center of the circle in our example
and using the radius of 4 units, we have

(x − 12)2 + (y − 8)2 = 16 (4.18)
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which simplifies to

x2 + y2 − 24x − 16y + 192 = 0. (4.19)

The region corresponding to class 4 is inside and it is
the set of all (x, y) satisfying the inequality

v = x2 + y2 − 24x − 16y + 192 < 0. (4.20)

As in the earlier case, the variable v is a composite
feature variable, derived from the original feature mea-
surements x and y.

If a straight line passes through two points (x1, y1)

and (x2, y2), its equation is given by

y − y1

x − x1
= y2 − y1

x2 − x1
. (4.21)

The straight line delineating class 3 from other classes
in our example lies on the two points (12, 16) and (24,
8). Therefore, its equation is

y − 16

x − 12
= 8 − 16

24 − 12
. (4.22)

Simplifying, the equation for the straight line is

2x + 3y − 72 = 0. (4.23)

The region of class 3 is the set of all (x, y) corre-
sponding to the inequality

w = 2x + 3y − 72 > 0. (4.24)

Again, w is a derived feature variable from the origi-
nal measurements x and y. With this preparation, the
decision tree implementation for classification in this
example is simple. Figure 4.14 shows such a tree.
The tests at individual stages in the tree are simple
threshold comparison; however, the variables which
are compared with the thresholds are nonlinear trans-
formations for the ellipse and the circle and an affine
transformation for the straight line.

The above examples demonstrate several charac-
teristics of decision trees, their constructions and
manipulations. All these decision trees are constructed
with the help of three different examples of deci-
sion regions marked and given to us. Thus, these
approaches are directly useful if any of the following is
satisfied.

1. We know the decision regions.
2. We know the a priori class probabilities and

the class conditional probability distribution func-
tions of the measurement vector. In this case,

3

1

4

w > 0 

u < 0

v < 0

3

Fig. 4.14 A binary decision tree for the example of Fig. 4.2

the decision regions can be mathematically devel-
oped with the help of the maximum a posteri-
ori probability decision-making scheme, given by
equation (4.4).

In many practical applications, pattern classifiers are
required to be designed with the help of partial
knowledge about the physical system, some training
data with sample sets of known class labels, unclassi-
fied data, or some combination thereof. In such cases,
we can attempt to design classifiers that can be imple-
mented as efficient decision trees. That is, instead of
designing the decision boundaries and then converting
them to decision trees (as is the case in earlier exam-
ples), the design of decision regions and a correspond-
ing decision tree can proceed hand in hand. But, first,
the design of decision trees from a given set of decision
regions is discussed in the next section.

4.7 Decision Tree Design from
Decision Boundaries

The above examples in Section 4.6 illustrate the devel-
opment of decision trees from given decision regions.
In this section, a systematic design methodology and
possible optimization approaches are studied for the
same problem. The decision boundaries may be given
merely as a convenient approach to partition the space
of feature measurements. But the actual assignment
of a class label (decision) to each region enclosed by
the the decision boundaries may not be available. In
such a case, assignment of a class label to the decision
regions is part of the decision tree design problem.
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This section develops the concepts of the overall graph
from which decision trees can be extracted, an appeal-
ing criterion for optimization, and descriptions of the
general approach to optimal tree design. A simple but
fairly general example of decision boundaries is used
to illustrate the concepts and approaches. A detailed
presentation appears in Dattatreya and Kanal (1985),
which also includes a discussion on its suitability for
problems with a modest number of features, each of
which is quantized to only a modest number of levels.

4.7.1 The Feature Space

The decision boundaries are assumed to be hyper-
plane segments parallel to the coordinate axes of the
m feature variables x(1), · · ·, x(m). As demonstrated
with examples in Section 4.6, this assumption is not
restrictive since nonlinear transformations can be rep-
resented by new feature variables. Let the feature vari-
able x(i) be partitioned into ni segments with ni − 1
threshold values. Name these segments as 0, 1, · · ·,
ni − 1 for convenience. That is if x(i) is in the j-
th segment, we say that x(i) = j . The entire feature
space is partitioned into �m

i=1ni regions. Each region
is bounded by hyperplanes parallel to the coordinate
axes. Each such region is represented by a point in a
lattice mathematically represented by the vector x =
[x(1), · · · , x(m)]. Each point can be called a cell in the
lattice. A sublattice is obtained by fixing one or more
of the x(i) variables to some constants. Sublattices can
also be formed by successively cutting and considering
one part of the lattice parallel to one or more coordi-
nate axes.

4.7.2 Problem Formulation

The pattern classification problem is that a class
label from the set of classes � = {ω1, · · · , ωk} be
assigned for every cell, with a minimum expected
cost of decision-making. In the completely specified
probabilistic framework, we will also be given the a
priori class probabilities P1, · · · , Pk respectively for
the k classes, the class conditional probability values
P[x|ωi ] for each cell and for each class ωi , and the
elements ci j of the cost matrix of classifying a data
vector belonging to class ωi with a decision of ω j .

4.7.3 Optimization Criterion

Clearly, if the only cost involved in assigning a deci-
sion to a data vector (pattern sample) is the classifica-
tion cost, we should determine the expected costs of
assigning a cell to different classes and choose a class
label for each cell based on the criterion of minimum
expected cost. The expected cost of assigning a cell
x = [x(1), · · · , x(m)] to the class label ω j is obtained
as follows. Let S(ω j ) be the random variable cost of
assigning class ω j .

E[S(ω j )|x] =
k∑

i=1

ci j
P[x |ωi ]Pi∑k

l=1 P[x |ωl]Pl

. (4.25)

However, if obtaining feature measurements
involves costs, then for some cases, it may be
advantageous to make a class assignment based on
less than all the feature measurements. The following
applications illustrate this scenario. In medical
diagnosis, obtaining some test measurements may
be time consuming (risking a worsening condition),
costly, invasive, or risky to the body. In meteorology,
numerous measurements and numerically evaluated
derived features are potentially available. Some of
them require fine grain modeling of the atmosphere
and are computationally inefficient to calculate all
the time. However, certain combinations of other
routine measurements may require a more careful
consideration of these expensive features, especially
for decisions on severe weather patterns. Other
applications are in banking and other financial
institutions to determine whether or not to increase
interest rates, whether or not to change prices of
commodities, process control, root cause analysis
(Wilson et al. 1993) of adverse event occurrences in
industry, etc. In all these, decisions may normally be
made based on commonly available measurements.
The overall expected cost of decision-making may
be less if additional, expensive measurements are
extracted for certain combinations of values taken
by the commonly available measurements. Let ri be
the cost of making the measurement to extract the
feature x(i). Of course ri and cij are in the same
physical dimensions so that the total expected cost
of assigning a class label to a data vector is the sum
of the feature measurement costs and the expected
cost of classification, conditioned on the observed
measurements. The decision tree design problem is
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to develop a tree that minimizes the expected overall
cost of making the decision on a pattern sample.

4.7.4 Solution Approach

The general approach to designing decision trees uses
the “Principle of Optimality.” If we already know the
optimal decision-making algorithms for some sublat-
tices, the principle of optimality helps us in optimiz-
ing over larger sublattices that can be formed by the
union of original sublattices. Algorithms that use the
principle of optimality are known as “Dynamic Pro-
gramming” algorithms. The principle of optimality is
stated as follows. Let a problem B be a subproblem
of problem A. Consider an optimal solution to the
problem A. Let the optimal solution to problem A also
solve the subproblem B. In such a case, the solution
of the subproblem B used by the optimal solution for
the problem A is an optimal solution for the subprob-
lem B. Some general conditions are required for the
principle of optimality to hold for a class of problems.
In our case, ri ≥ 0 for i = 1, · · · , m is true. Also,
cij ≥ cii, j = 1, · · · , k and i = 1, · · · , k. That is, the
feature measurements may incur a positive or no cost.
But feature measurement costs cannot be negative. A
correct classification does not incur more cost than an
incorrect classification. These are sufficient conditions
for the principle of optimality to hold for the present
problem.

To illustrate the solution approach, consider a spe-
cific case with three feature measurements x , y, and z.
Let x take values 0, 1, or 2 only. Let y take values 0,
1, 2, or 3 only. Let z take values 0 and 1 only. Let
the number of classes be four. Figure 4.15 shows a

directed acyclic graph of all possible feature sequences
and with all their possible outcomes.

At the lowest level, every node has the measure-
ments of all the features. Each of the lowest level
nodes represents a cell. Edges from the third row of
nodes to the fourth row of nodes are not drawn in
Fig. 4.15 to reduce clutter. Also, all the edges in the
graph are directed downwards and the tips of arrows
are not drawn in the figure. The minimum expected
cost of each node is the sum of the costs of all the
features measured so far plus the minimum expected
cost of classification. At each of the lowest level of
nodes, all the feature measurements (x , y, and z)
have already been obtained, incurring corresponding
measurement costs. Therefore, there are no other fea-
ture measurements to consider at these lowest level
nodes and a final class label decision is required to
be made. Intermediate nodes represent values of mea-
surements obtained with one or at most two of the
features x , y, and z. In Fig. 4.15, if a feature is not
measured, it is represented by a hyphen. Therefore,
(2, −, z) represents a node at which the feature x has
been measured and found out to be 2, feature y is
not measured, and a decision to measure z is being
considered. In the Fig. 4.15, within each node, the
measurements are written top-down, for lack of space.
At the node (2, −, z), in addition to the possibility
of measuring the feature z, the option to assign a
minimum classification cost class label based on the
available information of x = 2 is possible. In order
to make an optimal decision, we need to compare
such minimum expected cost of classification with the
overall expected cost of the alternative decision, that
is of recommending making the measurement of the
feature z. That is, we should already know the expected
overall cost of the optimal rooted and directed acyclic
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Fig. 4.15 Universal graph for optimal tree design example
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Fig. 4.16 A possible optimal decision tree in the form of a rooted acyclic graph, developed from Fig. 4.15

subgraph rooted at the node (2, −, z), in Fig. 4.15. The
decision tree can be designed in a bottom-up fash-
ion, starting from assigning class label decisions to
the bottom-most nodes in the DAG of Fig. 4.15. The
principle of optimality plays an important role here.
As a consequence of the principle, we know that if the
node (2, −, z) eventually becomes a part of the optimal
rooted and directed acyclic graph(RDAG), then the
sub-graph below the node (2, −, z) must be an optimal
subgraph for the intermediate problem of dealing with
the partial information (2, −, z). We can separate the
leaf nodes of the optimal RDAG so that the final result
would be a decision tree. A possible RDAG as an
optimal solution extracted from the Fig. 4.15 is drawn
in Fig. 4.16. In this figure, every final decision of a
class label is depicted by a separate node so that the
figure is a decision tree.

4.7.5 Efficient Implementation of Binary
Trees from Decision Regions

In some applications requiring representation of deci-
sion tables through efficient binary trees, the class
assignment for every cell is rigid and given. Such
a problem of efficient implementation of decision-

making through the use of binary trees can also be
solved by dynamic programming procedures similar
to the above approach (Payne and Meisel 1977). Many
such optimal decision tree design problems are com-
putationally complex (Murthy 1998). The fundamen-
tal reason for this is that the number of subcases to
be examined increases exponentially as a function of
some key parameter. Even in the case of designing a
binary decision tree to examine which of the n bins
a given scalar measurement falls into, the complex-
ity is exponential in n. Therefore, many researchers
recommend the use of heuristics to design decision
trees. However, these comments apply more to large
directory look-up problems. In practice, many pattern
classification problems have only a modest number of
measurements and a modest number of quantization
levels. Computations for the design of optimal trees in
these cases are indeed feasible.

4.8 Decision Tree Design from Labeled
Training Samples

A very common starting point for the design of deci-
sion trees in application areas is with a set of labeled
training samples. Simple approaches to designing
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decision trees in such cases is the subject of study
here. The problem of developing optimal separating
hypersurfaces from the training data set is not the
topic here. So far, we have seen ample evidence to
the effect that the most convenient form of decision
boundaries for decision tree design are segments of
hyperplanes parallel to the coordinate axes of the fea-
ture space (data vector space). Hyperplane segments
inclined to the coordinate axes form a second choice
set. In practice, a good combination of these two types
of decision boundaries serves the best. It is always
possible to separate a set of labeled training samples,
even from multiple classes, with the help of hyperplane
segments.1 However, the use of a decision tree is in
applying the classification algorithm to new data sam-
ples. Although the new samples come from the same
cause as the training samples do, the finite set training
samples do not perfectly depict all the characteristics
and variability in all possible samples from the original
cause.

4.8.1 Linear Discriminant Functions

Decision regions separated by hyperplanes are
obtained through the use of linear discriminant func-
tions. A linear discriminant function separates the fea-
ture space into two regions separated by a hyperplane.
Decision regions formed through the use of j multiple
linear discriminant functions divide the feature space
into a maximum of 2 j regions. It is not necessary for
all of these 2 j regions to be assigned a different class
label. Indeed, if the number of class labels is k, we
merely need j ≥ log2(k) and (2 j − k) regions in the
feature space have class labels repeated from the other
k regions. The general form of a linear discriminant
function is

m∑

j=1

w j x( j) + w0. (4.26)

All the data vectors that satisfy

m∑

j=1

w j x( j) + w0 > 0 (4.27)

1 The only exception is if two or more training samples from
different classes are identical in all feature measurements.

lie on one side of the corresponding hyperplane and all
the data vectors satisfying

m∑

j=1

w j x( j) + w0 < 0 (4.28)

lie on the other side. Data vectors satisfying

m∑

j=1

w j x( j) + w0 = 0 (4.29)

lie exactly on the hyperplane separating the two
regions. A linear discriminant function for a decision
boundary that is perpendicular to the x( j) axis and
parallel to all other coordinate axes is of the form

x( j) + w0. (4.30)

The approach suggested here develops optimal
hyperplanes between neighboring pairs of classes.
This leads to decision regions separated by piecewise
hyperplanes. Linear combinations of the data vectors
are formed that lead to rectangular decision regions in
a transformed feature space. The approaches of Sec-
tion 4.7 are then applicable for completion of decision
tree design. Figure 4.17 shows a simple example of
data samples generated with random numbers.

Two-dimensional data samples from four classes
are plotted with different symbols for points from dif-
ferent classes. Such plots are called scatter plots. These
random numbers are generated to simulate the decision
boundaries in Fig. 4.2, except for the data of class
2. Representative straight line segments are drawn for
possible decision boundaries. The line segment paral-
lel to the y axis completely separates samples from
classes 2 and 3. One of the line segments also com-
pletely separates samples from classes 3 and 4. The
other two line segments separate samples from corre-
sponding pairs of classes, but these boundaries result
in a few misclassified samples. It is clear that there
is no single straight line that separates samples from
classes 1 and 2. Similarly, It is also clear that there is no
single straight line that separates samples from classes
1 and 3. It is possible to draw several straight line
segments to completely separate the sets of samples
from different categories to be in different regions.
For example, the straight line parallel to the x-axis in
Fig. 4.17 may be replaced by a set straight line seg-
ments to correctly classify all the given labeled train-
ing samples. Each such line would be parallel to the x-
axis or the y-axis. Together, these line segments would
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Fig. 4.17 A scatter plot example with four classes

retain all the samples belonging to class 2 on the lower
side of such a complicated boundary, and all the sam-
ples belonging to class 1 on the higher side of the same
boundary. However, no such approach to correctly
classify all the given labeled training samples can guar-
antee perfect classification of future pattern samples.
Such an attempt to classify all or most of labeled
training samples with complicated boundaries is called
“over-fitting.” Such over-fitting leads to larger decision
trees in which a decision region is split into multiple
sub-regions with different classes. A large decision
tree can be pruned to eliminate some over-fitting.

The above characteristics about decision bound-
aries constructed with straight lines give us clues on
the types of optimizations used to find good straight
lines. These are briefly described here. In the case of
labeled sample sets, the distance between the mean
values of samples from different classes allow us to
form pairs of neighboring classes. Therefore, proce-
dures for determining straight lines can attempt to con-
centrate on neighboring pairs of classes.

1. Lines parallel to coordinate axes
Examining one-dimensional scatter plots in each
feature dimension is very simple. The entire interval

over which all the samples fall can be divided into
several regions, based on whether or not these lines
reasonably well separate the samples. This proce-
dure can be applied for each individual measure-
ment.

2. Hyperplanes with arbitrary orientations
There are two subcases in this category:

(a) In the first one, there exists a hyperplane that
can completely separate samples from two
classes. Such pairs of classes are called linearly
separable classes. The straight line separating
samples from classes 3 and 4 in Fig. 4.17 is
such an example. Given two sets of training
samples, one for each class label, whether or
not they are linearly separable can be deter-
mined through linear programming. Intuitively,
the best hyperplane to separate a linearly sep-
arable pair of classes is the one that has equal
and the largest distance from the hyperplane
to the nearest samples, from each class. There
are mathematical programming techniques to
find such an optimally separating hyperplane.
The resulting hyperplane is called a Support
Vector Machine. There is a rich class of other
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criteria and corresponding mathematical pro-
gramming algorithms to determine optimal sep-
arating hyperplanes. Duda et al. (2001), is an
excellent book on this topic.

(b) In the second case, there is no hyperplane
that can perfectly separate samples from two
classes. Samples from classes 1 and 3 in
Fig. 4.17 constitute such an example. In this
case, optimization problems to minimize some
meaningful criteria are formulated and solved
to find optimal hyperplanes. An example of
such a criterion is the minimum of the sum
of squared distance from all the samples of
both the classes to the hyperlane. This problem
can be solved through the use of the pseudo-
inverse of a matrix formed with labeled data
vector samples from both the classes (Duda
et al. 2001).

These are only some general suggestions to develop
linear decision boundaries. The task of decision
tree design from such boundaries follows approaches
developed in earlier sections.

4.9 Unsupervised Decision Tree Design

In some applications, we have unlabeled or unclassi-
fied pattern samples for training. Each pattern sample
is a point in the data vector space. There is no decision
or class label assigned to any of the samples. Infer-
ring the existence of any natural grouping of samples,
designing a scheme to separate them into such groups,
and designing a classification scheme to assign future
appearances of pattern samples to one such group –
all fall under unsupervised learning and classification
approaches. The structure of the data set may indicate
that the set naturally groups into a few categories.
Each category may correspond to some physical sig-
nificance. Specifically, observations within a group
may point to some strongly likely consequences. In
meteorology, for example, certain physical conditions
may result in an unstable state or cause an imbalance.
Such temporary conditions may cause further changes
until the overall state stabilizes. In the multidimen-
sional mathematical space of all physical variables,
there may be several regions of stable states sepa-
rated by regions of unstable states. This may be the

underlying reason for the data to be found in subjec-
tively distinct groups. Some combinations of unstable
physical attributes may result in regenerative effects
creating severe weather patterns. An example of phys-
ical conditions causing regenerative effects is in the
occurrence of snow avalanches in mountains. A dis-
turbance causing some movement of snow at high alti-
tudes may trigger more disruption in the snow. Beyond
a critical point, the regenerative effect can be very
strong.

Another example of occurrence of natural clusters
is in biological taxonomy. The overall set of plants
and/or animals is hierarchically (repeatedly) split into
finer and finer groups. Members in a group have
strong similarities and members in different groups
have strong dissimilarities. There may be cases (mem-
bers) that do not clearly belong to one or another class,
but such cases are rare. One reason for natural forma-
tion of such distinct hierarchical groups is that certain
combinations of physical attributes favor regenerative
survival.

Clustering of unlabeled data is a first step in design-
ing a decision tree from unlabeled pattern samples.
The emphasis in this chapter is not on general cluster-
ing approaches. Anderberg (1973) is a classic book on
clustering. Kaufman and Rousseeuw (1990) is a more
recent one on the same topic. Clustering approaches
can be influenced for better design of decision trees.
That is, decision boundaries parallel to the coordinate
axes of the space of features are sought whenever
feasible. There are two main approaches to cluster-
ing. The bottom-up or the data driven approach starts
grouping data samples into pairs, groups of three, etc.,
and grow into larger clusters all the way to a single
group. This approach is called agglomerative cluster-
ing. Some subjectively appealing quantitative criteria
to determine a reasonable number of distinct clusters
are available. Alternatively, top-down or model driven
approaches are also available. In its most elementary
form, the unlabeled training samples are divided from
an initial single group all the way down to separate
groups for individual data samples. This approach is
known as divisive clustering. Again, appealing criteria
are available to stop at a reasonable number of clusters.

Such clustering approaches finally lead to deci-
sion assignments for every sample in the entire set
of pattern samples. These results should be fed to
algorithms for determining decision regions. That is,
instead of assigning decisions to data points in the
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data space, larger regions should be identified for deci-
sion regions. Simpler approaches construct piecewise
hyperplane segments parallel to the coordinate axes
in the data space. Other approaches with arbitrarily
oriented hyperplanes and even nonlinear hypersurfaces
are possible.

In both the top-down and bottom-up methods,
attempts should be made to incorporate all available
information about the application system and data.
Often, much of such information may be in subjective
forms. The decision tree designer would use judg-
ments and mathematical interpretations of such infor-
mation. These approaches go hand-in-hand with the
above approach of determining decision regions from
clustered data. A particular example of such a refine-
ment technique is “pruning of decision trees.” After
designing a decision tree, the designer can examine the
worthiness of distinguishing some pairs or groups of
decisions (either at intermediate or at final decision-
making stages). Merging some decision regions with
this approach eliminates some nodes in the tree and
results in a pruned tree.

4.9.1 Bottom-Up Method

A pure bottom-up method of clustering successively
combines (merges) sets of samples until a specified
number of classes (groups) is reached. Usually, such
combinations are continued until all the samples are
in one single group. Thereafter, it is a little easier
to decide on the number of classes and this may be
influenced by a suggested number of classes. Central
to determining which pair of a partition of the sample
set are the closest for merging is the definition of a
distance measure between two sets of samples. A sim-
ple distance is the Euclidean distance between the cen-
troids of the two sample sets. If {x1 j , j = 1, · · · , n1}
and {x2 j , j = 1, · · · , n2} are the two sets of samples,
the mean data vector of the set i is

μi = 1

n1

ni∑

j=1

xi j . (4.31)

The Euclidean distance between two m-
dimensional vectors y = [y(1), · · · , y(m)] and
z = [z(1), · · · , z(m)] is simply the geometric distance

given by

d( y, z) =
√√√√

m∑

l=1

[y(l) − z(l)]2. (4.32)

A drawback of the Euclidean distance is that it treats
relative distances along all the feature measurement
axes in the same way. In reality, different features may
have different physical dimensions and may require
normalization. Kaufman and Rousseeuw (1990), intro-
duce methods for combining variables of different
types into a single dissimilarity measure.

Attempting to separate the samples with hyper-
planes parallel to the coordinate axes is preferable
for the eventual implementation of a decision tree.
This will also avoid the problem of different scales
along different axes. However, during a hierarchical
separation of a set of points along a line (along one
feature measurement), we do not know the number of
classes to split the data into. Therefore, separating or
clustering over individual axes in the feature space is
recommended only if sample sets are “well separated.”
If such an approach is viable, the resulting clusters
may be further separated by the usual hierarchical
approaches. A quantitative criterion of well separate-
ness considers the spread of data samples within each
class as well as the spread between the two clusters.
Following is one appealing definition of such a mea-
sure. The mean square distance of all samples within
a class to its centroid is a measure of spread within a
class.

σ 2
i = 1

ni

ni∑

j=1

m∑

l=1

[xi j (l) − μi (l)]2. (4.33)

The inter-class spread is the square of the distance
between the centroids of the two classes,

d2(μ1, μ2) =
m∑

l=1

[μ1(l) − μ2(l)]2. (4.34)

A normalized measure of separateness between these
two populations is the ratio of the average of the intra-
class spread to the inter-class spread,

σ 2
1 + σ 2

2

2d2(μ1, μ2)
. (4.35)

The above quantities are based on multi-
dimensional data vectors. If data sets over individual
measurement variable are considered, m = 1 in
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Fig. 4.18 A scatter plot of unlabeled samples well separated into two groups along x axis

equations (4.33–4.35). In the case of one dimension,
the above normalized measure of separateness is
invariant to scale. If the measure is less than one, the
two groups of samples may be considered to be well
separated. Figure 4.18 shows data samples that can be
separated into two sets along the x axis by a threshold
value of about 10.

4.9.2 Top-Down Method

Instead of combining individual samples into pairs,
and larger groups up to a desired number of clusters,
the overall data set can be considered to be a single
group in the beginning and repeatedly divided until we
have a desired number of clusters. This approach is
known as divisive clustering. An advantage of divisive
clustering over agglomerative clustering is that known
information about inter-relationships can be incorpo-
rated into the divisive clustering algorithm. For exam-
ple, in an application, approximate locations of the
central portions of data vectors for one or more of the
classes may be known. Alternatively, some examples
of causes and effects may be known and these may be

used to obtain a skeletal versions of trees for further
refinement using many unlabeled samples. Kaufman
and Rousseeuw (1990), present a divisive hierarchical
clustering algorithm called the DIANA.

4.9.3 Interactive Approaches

In many practical applications, the decision tree design
criterion is not well-specified at all. It is hoped that the
above sections provide helpful approaches at various
stages of data analysis and design of decision-making
algorithms. Typically, the overall design may require
some trial and error approaches and iterative refine-
ments, at least at some stages of development. One
example of these is eliminating outliers from consider-
ation. One or a few data samples that lie significantly
away from all other samples in the feature space can
tilt the resulting solutions unreasonably. They may be
eliminated from consideration. A second example of
interactive changes is the pruning of decision trees. If
a sub-tree covers very few samples, having a subtree
for correct decisions within them may result in over-
fitting. Such a decision region may be merged with a
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neighboring subtree. In the feature space, this amounts
to combining small distinct regions with larger neigh-
boring regions for simplification of the resulting tree.

4.10 Further Reading

The book by Duda et al. (2001), is a standard text
and reference for pattern classification. It has detailed
treatment of Bayesian decision theory, parameter esti-
mation, linear discriminant functions, and clustering.
It also has a section on support vector machines and
two sections on decision trees. Anderberg (1973), and
Kauffman and Rousseeuw (1990), are books on clus-
tering. Breiman et al. (1984), is a book on developing
trees from a purely statistical perspective. Decision
trees are commonly covered in the wider topics of arti-
ficial intelligence (Russell and Norvig 2002) and data
mining (Han and Kamber 2006). The book, by Quinlan
(1993), is on programs for machine learning and has
detailed discussions on many issues in decision tree
development.

From time to time, survey articles on decision trees
appear in literature. Most of these articles extensively
cite and survey research reports on decision trees from
numerous different points of view such as tree mod-
els from the nature of applications, logical approach
to decision-making, problems in directory searching,
computational complexity, their relations with neural
networks, heuristics, and applications. Moret (1982),
and Murthy (1998), are both extensive and scholarly
surveys. The main emphasis in Moret (1982), is on
representing Boolean functions as decision trees. On
the other hand, Murthy (1998), is a more general sur-
vey of representation of data with decision trees. Other
survey articles include the following. A synthesis of
work on tree-structures in many application areas such
as pattern recognition, decision tables, fault location,
coding theory, and questionnaire design appears in
Payne and Preece (1980). Dattatreya and Kanal (1985)
is an overview of decision trees in pattern recognition.
Various existing methods for designing decision tree
classifiers and their potential advantages over single
state classifiers are surveyed in Safavian and Land-
grebe (1991).

The treatment of decision tree design in this chapter
is introductory. Many specialized techniques for deci-
sion tree design have been developed and reported in

the research literature. Some of these are application
specific and some are general. These approaches are
very helpful for an advanced study and for a serious
designer in applications areas. Manago and Kodratoff
(1991), develop an algorithm called KATE that learns
decision trees from complex structured data. Evalu-
ation of which feature to use at which point in the
tree design is a well investigated problem. Rules for
these are based on information theory, distance mea-
sures, or dependence measures (Ben-Bassat 1982). A
more recent reference on feature selection measures
is Kononenko and Hong (1997). Neural networks and
decision trees are related approaches for decision-
making. Such decision trees with parametric classifiers
with small experts at decision-making nodes is stud-
ied by Jordan and Jacobs (1994). Chai et al. (1996),
study genetic algorithms to develop linear splitting at
decision-making nodes. Various methods for pruning
trees have been suggested and investigated. Kim and
Koehler (1994), analyze the conditions under which
pruning improves the accuracy. Rastogi and Shim
(1998), integrate decision tree construction with tree
pruning.

Several commercial software packages are avail-
able for help with decision tree design, research, and
applications. A good list of current software packages
is available on the Knowledge Discovery and Nuggets
web-page,

http://www.kdnuggets.com/software.html (4.36)

Within the class of commercial software for deci-
sion trees, there are two widely cited packages. One
is CART, developed by Breiman et al. (1984), and
upgraded from time to time. The second package
is C5.0, developed following the book by Quinlan
(1993). The older version of this, C4.5, is available
as free software from the same web site. The web-site
also has several other commercial packages as well as
free software packages.

Following are recent articles that use decision
tree principles for applications related to environmen-
tal sciences. Cannon and Whitfield (2002), use tree-
based recursive partitioning models to develop map-
pings between synoptic-scale circulation fields and
the leading linear and nonlinear principal components
of weather elements observed at a surface station.
Goel et al. (2003), use decision trees and artificial
neural networks to identify weed stress and nitrogen
status of corn. They use hyperspectral data from a
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compact airborne spectrographic imager. Li and Clara-
munt (2006), design decision trees for the classifica-
tion of geographical information. Their approach takes
into account spatial autocorrelation phenomena in the
classification process.

4.11 Conclusion

The practice of environmental sciences frequently
encounters the problem of decision making in uncer-
tainty. The task of decision making typically involves
the measurement of some physical attributes and the
assignment of a decision. The desired objective of
decision making is to minimize some overall cost
criterion. The mathematical relationships among the
various aspects of the measurement and the deci-
sion making process govern the cost incurred through
the process. The class of mathematical relationships
includes the subclass of statistical relationships. In
reality, the availability of such relationships are limited
in three ways. All the aspects of relationships may
not be available. Among those that are available, some
may be represented ambiguously, instead of being rep-
resented accurately. Some of the relationships may
be unambiguously represented but the representations
may differ slightly from the corresponding real rela-
tionships. In addition to these drawbacks, development
of good decision making algorithms may pose the
following additional challenge. A conceived decision
making algorithm may require prohibitive amount of
computer time and/or memory. Artificial intelligence
approaches help us to strike a compromise between
(1) approximate representation of relationships, (2)
computational complexities, and (3) the quality of the
final solution to the problem at hand. Decision making
through the use of decision trees is one such artifi-
cial intelligence approach. Quinlan (1990) focuses on
techniques that discover classification rules based on
knowledge about classified objects.

Decision trees are useful in many data analysis and
classification applications, including medical diagno-
sis, meteorology, agriculture, pollution monitoring,
and remote sensing. They are useful in applications
in which hierarchical cause-effect relationships occur
naturally. They are useful in applications with the
peculiarity of a naturally recursive division of classes
within classes. They are useful in applications in which

expensive measurements are to be undertaken only if
other readily available data so indicate. Finally, even
in applications without any such model-driven reason
for the use of decision trees, it may simply turn out
to be convenient to design and implement decision-
making algorithms as trees. Therefore, there are no
global decision tree design approaches. A designer
should use all available information about the nature
of the problem, cause-effect relationships, and the
structure of the training data for decision tree design.
Ideas and approaches developed in this chapter can be
used at any stage of the development of the decision-
making algorithms, directly, or with modification. If
decision regions are explicitly given, the design of a
decision tree is conceptually simple. If possible deci-
sion boundaries are suggested, this information will
help in the joint task of decision (pattern class label)
assignment and decision tree design. If labeled or unla-
beled training samples are given, the goal of design-
ing a decision tree classifier influences the structure
of decision boundaries. Approaches and techniques to
jointly determine such decision boundaries and design
decision trees are developed here.

The literature on Decision Trees is vast. Some
recent books on pattern classification, clustering,
artificial intelligence, and data mining are suggested
for the interested reader. There are many survey
articles on decision trees, some very general, and
some with special emphasis. A few such articles are
also cited. These are also invaluable resources of
annotated bibliographies. Several research articles
dealing with specific methods for decision tree design
are included for readers interested in exploring
advanced techniques. Recent research articles with
applications of decision trees in areas related to
environmental sciences are listed and suggested for
the reader to gain an experimental perspective. Finally,
many commercial software packages are available for
the applied researcher. Location of these services on
the world-wide web are given.
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5Introduction to Genetic Algorithms

Sue Ellen Haupt

5.1 Motivation

The world is full of optimization problems. Nature
constantly optimizes each of her configurations. Each
ecosystem fits together to use the symbiotic nature
of each element. Species have evolved to have the
characteristics that are most likely to lead to survival.
The wind blows in directions that best alleviate any
imbalances in forces. The planets orbit in ways that
best fulfill the laws of motion. In understanding the
environment, we often have to discern the optimization
problem to fully understand its solution.

Evolution is one of the most interesting optimiza-
tion problems. Why have humans evolved to have
two hands, two eyes, two legs, one head, and a large
brain while other species have not? Does that make
humanity the pinnacle of the optimization problem?
Why do guppies evolve to have different character-
istics in dissimilar environments? Can the process
of evolution be codified to understand these issues
better?

Many problems that we address in environmental
science can be configured into an optimization prob-
lem. As an example, let’s consider guppies evolving
in an environment where they need to survive on
the available food, attract mates for reproduction, and
avoid predators. Figure 5.1 illustrates the pieces of a
general optimization problem. We begin with input
parameters that we wish to optimize. For our guppies,
these variables might include attractiveness (to mates),

Sue Ellen Haupt (*)
Applied Research Laboratory and Meteorology Department,
The Pennsylvania State University, P.O. Box 30, State College,
PA 16802, USA
Phone: 814/863-7135; fax: 814/865-3287;
email: haupts2@asme.org

disease tolerance, food requirements, appeal to their
predators, and ability to hide from predators. The com-
bination of the values of these variables makes the
guppy an individual. There must be some method to
rate the survivability of the guppy based on its specific
variable values. There must be some way to balance
its attractiveness to potential mates with its visibility
to its predators. If the environment is harsh, it must
be hardy. If the current is swift, it must have a long
enough tail to swim fast. The objective, or cost, func-
tion codifies these considerations and weights them
to rate the guppy survivability. The “most fit” gup-
pies survive while those that do not meet the speci-
fications of the objective function are destined to die
off in a harsh environment or are eaten by a preda-
tor. The final piece of the optimization scheme is the
optimization algorithm that finds some way of con-
figuring new guppies so that they evolve into a viable
species for their environment. The optimization algo-
rithm typically minimizes some “cost,” or equivalently,
optimizes the objective.1 Some common optimization
algorithms include Newton’s method for optimiza-
tion, conjugate gradient, and Nelder-Mead downhill
simplex method. Unfortunately, it is difficult to code
guppy coloration, food requirements, and attractive-
ness to either mates or predators in a way to use these
gradient seeking methods. More innovative methods
are required.

A genetic algorithm (GA) is one such versatile opti-
mization method. Figure 5.2 shows the optimization

1 In optimization terminology, an objective function could be
either minimized or maximized. When the name cost function
is applied, we always minimize. In contrast, a fitness function
is maximized. Therefore, we concentrate on minimization prob-
lems. It is trivial to turn a maximization problem into one in
minimization with a negative sign.

S. E. Haupt et al. (eds.), Artificial Intelligence Methods in the Environmental Sciences 103
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Fig. 5.1 Flowchart of the
optimization process

process of a GA – the two primary operations are
mating and mutation. The GA combines the best of
the last generation through mating, in which parameter
values are exchanged between parents to form off-
spring. Some of the parameters mutate. The objective
function then judges the fitness of the new sets of para-
meters and the algorithm iterates until it converges.
With these two operators, the GA is able to explore
the full cost surface in order to avoid falling into local
minima. At the same time, it exploits the best features
of the last generation to converge to increasingly better
parameter sets. GAs are remarkably robust and have

been shown to solve difficult optimization problems
that more traditional methods can not. Some of the
advantages of GAs include:

• They are able to optimize disparate variables, whe-
ther they are inputs to analytic functions, experi-
mental data, or numerical model output.

• They can optimize either real valued, binary vari-
ables, or integer variables.

• They can process a large number of variables.
• They can produce a list of best variables as well as

the single best solution.

Fig. 5.2 Flowchart of
optimization with a genetic
algorithm
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• They are good at finding a global minimum rather
than local minima.

• They can simultaneously sample various portions of
a cost surface.

• They are easily adapted to parallel computation.

Some disadvantages are the lack of viable convergence
proofs and the fact that they are not known for their
speed. As seen later in this chapter, speed can be
gained by careful choice of GA parameters. Although
mathematicians are concerned with convergence, often
scientists and engineers are more interested in using
a tool to find a better solution than obtained by other
means. The GA is such a tool.

5.2 Genetic Algorithm Overview
and Guppy Evolution

A genetic algorithm combines the concepts of genetics
and evolution into an algorithm to optimize a function
or to search a solution space. GAs were first introduced
by John Holland (1975) at the University of Michigan
(UM). David Goldberg (1989) popularized GAs begin-
ning with his Ph.D. dissertation at UM where he used
it to optimize a gasline piping problem, a problem that
was quite difficult to solve via conventional means.
De Jong (1975) demonstrated the utility of GAs for
function optimization and studied how to best choose
GA parameters. GAs have become a popular tool in
the engineering literature but have thus far found fewer
applications in the environmental sciences. More dis-
cussion of applications can be found in Chapters 14
and 18.

GAs can be configured as either binary or real val-
ued. The GA literature began with the binary version,
so we will start there too. Figure 5.2 depicts the opti-
mization process for the GA. The basic process is the
same as in Fig. 5.1, but now the GA operations of
mating and mutation are specified.

The basic building block of a genetic algorithm is a
gene, which represents each problem variable. For our
guppy problem, the genes encode each characteristic
of the guppy that we wish to consider. Table 5.1 shows
the encoding of eight variables relevant to guppy
evolution into eight genes. Each variable is encoded
into a 2 bit gene, meaning that each variable can have
up to four separate realizations. For instance, there
may be four gradations of attractiveness to mates, in
this case coded as:

11 = drop-dead gorgeous
10 = very handsome
01 = passable
00 = only if females are desperate

The genes are then concatenated to form a chromo-
some. The guppy encoded in Table 5.1 is then rep-
resented by a chromosome: 1001010001001100. The
genetic algorithm is begun by creating a population of
chromosomes using a random number generator. Since
many computer languages generate random numbers
between 0 and 1, for the binary GA the random number
is simply rounded. We generate eight randomly con-
figured guppies, each with eight 2 bit genes, and our
population looks like:

pop =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1001010001001100
0110001001001110
0000111010101110
0101001110010111
0011000111001010
1100011010001101
0001100110100111
0110011001110010

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.1)

In this matrix, each row represents a chromosome, or
complete guppy configuration.

The fitness of each member of the population is then
evaluated via the cost function. For the guppy exam-
ple, the cost function depends on the environment.

Table 5.1 Example guppy encoded into binary genes

Attractiveness
(to other guppies) Tail

Attractiveness
(to predator)

Dappling
(blending into
environment)

Temperature
tolerance

Disease
tolerance

Food
requirements

(amount)

Feeding
requirements

(time between)

Very handsome Short Tasty None Little Hardy Bottomless pit Frequent feeder
10 01 01 00 01 00 11 00
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Each gene of the guppy is first assigned an adapta-
tion value. For instance, the attractiveness gene, which
determines the guppy’s likelihood to attract a mate, is
assigned adaptation values denoted in the MATLAB
code below:

attractive = x(:,1:2); %grabs the first two bits which
form the first gene

%likeliness to mate
%attractiveness (brightness positive)
if attractive(ind,:)==[1 1]
adapt(ind,1)=2.0; %drop dead gorgeous
elseif attractive(ind,:)==[1 0]
adapt(ind,1)=1.5; %very handsome
elseif attractive(ind,:)==[0 1]
adapt(ind,1)=1.0; %passable
else %[0 0]
adapt(ind,1)=0.5; %if the female guppies are

desperate
end

In this case, the more attractive the guppy, the higher
adaptation value is assigned. The second aspect of
the guppy cost function weights the importance of
each gene for survivability in a particular environment.
Each adaptation value is weighted according to how
likely that characteristic will result in the guppy (1)
mating or (2) being eaten by a predator. Specifically,
for a bright, well lighted pool with lots of predators,
weights are assigned as:

%habitat 1
wts(1,:)=[1.0, 0.8, 0.0, 0.7, 0.0, 0.0, 0.0, 0.0];

%probability of mating
wts(2,:)=[0.0, 0.0, 0.5, 0.8, 0.6, 0.2, 0.9, 0.4]

%probability of getting eaten

The final step of judging the adaptability of each guppy
is writing a cost function that multiplies the adaptabil-
ity values for the guppy by the environment weights
and weighting the importance of mating versus getting
eaten for this habitat:

f = − ( (wts(1,:)*adapt’)’ + 3*(wts(2,:)*adapt’)’ );

Note that a negative sign is applied to the cost func-
tion since the GA routine is configured to look for
minima. Each member of the guppy population is

judged via the cost function and the costs assigned
as:

Cost

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1001010001001100
0110001001001110
0000111010101110
0101001110010111
0011000111001010
1100011010001101
0001100110100111
0110011001110010

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−5.4
−4.7
−2.1
−4.2
−6.7
−7.3
−5.9
−1.8

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.2)

The next step is simply sorting the costs with the small-
est cost (most fit) chromosomes put at the top:

Cost

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1100011010001101
0011000111001010
0001100110100111
1001010001001100
0110001001001110
0101001110010111
0000111010101110
0110011001110010

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−7.3
−6.7
−5.9
−5.4
−4.7
−4.2
−2.1
−1.8

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.3)

Now we are ready for the natural selection to occur. In
terms of the guppies, the less fit half of the population
is eaten by predators or simply dies without reproduc-
ing. We are left with only the top half (most fit four) of
the population matrix above.

The GA operations of mating and mutation come
into play. In mating, we select two members of the
population to exchange information to produce off-
spring. For the guppy problem, we will use tour-
nament selection. Here, three members of the pop-
ulation are randomly selected and the two most fit
individuals (smallest cost function values) of that tour-
nament will then mate. The algorithmic mating pro-
cedure mimics the genetic recombination of meio-
sis. In meiosis, the chromosomes line up and join at
a kinetochore. When the chromosomes separate, the
left portion of the mother chromosome conjoins with
the right portion of the father chromosome to com-
plete the process known as crossover. In our binary
chromosomes, the process is equivalent. A random
kinetochore, or crossover point, is selected and the
genes to the left of this point on parent 1 are con-
catenated with those to the right of that point on
parent 2. In this case, we form two new individu-
als. An example of the guppy chromosomes mating
is:
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1100011011001010
cost

0011000110001101
=

1100011010001101cost =
0011000111001010

−7.3
−6.7

−7.4
−3.7

We see that one of the offspring guppies is more fit
than either parent and one is less fit.

The second GA operation is mutation. Before
mutating, we typically apply elitism and set aside the
most fit (lowest cost) individual of the entire popula-
tion and do not allow it to mutate. Then we go into
the matrix and randomly change the bit value of a
predetermined percentage of bits. After mating and
mutation, the guppy population looks like:

cost

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1100011010001101
0011000111001010
0001100110100111
1001010001001100
1100011011001010
0011000110001101
0001100110100111
0011000111001010

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−7.3
−6.7
−7.6
−5.4
−5.2
−3.7
−7.7
−2.1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.4)

The first row (italics) is the best “elite” guppy chro-
mosome. The next three are the other parents that
remain in the population from the last generation, but
have now been subject to bit changes due to mutation
(bold). The last four rows are the offspring guppy
chromosomes after mutation. The first iteration has
completed. The process is iterated until convergence is
obtained. For the guppies, convergence means a stable
population with all individuals about equally adapted
(i.e. the average population is fairly stable). The low-
est cost individual becomes a prototype for the guppy
population with some variation around it. Figure 5.3
shows the convergence for a run of the guppy problem
using a population size of 16, crossover rate of 0.5,
and mutation rate of 0.2. The “best” guppy is identified
after about 11 generations, but it takes a bit longer for
the population to stabilize. Convergence is both prob-
lem dependent and run dependent. Since the GA relies
on random numbers to generate problems and perform
the mating and mutation operations, each run of the
GA will produce slightly different results. Often, the
primary difference is how many iterations are required
to produce convergence.

This example merely serves as a basic introduc-
tion to GAs. Many variations are possible, often

-24
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-30
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-40

0 10 20 30 40
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generation

Fig. 5.3 Convergence of the
GA for the guppy evolution
problem
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interpretable as limiting branches of the basic GA
discussed here. For instance, some GAs are purely
“asexual,” that is, they reproduce without a mating
operator, using only mutation. That scenario is equiv-
alent to using a crossover rate of zero. Tuning the GA
parameters will be discussed in Section 5.5.

5.3 Binary Genetic Algorithms and
Function Optimization

We saw how GAs can be applied to a problem in evo-
lution where the use of a GA is more “obvious.” More
often, we have some function we wish to optimize,
subject to constraints. Here, we’ll examine solving a
specific function of two variables and use this example
to observe the process of convergence in more detail.
We wish to minimize:

f (x, y) = sin(x)J1(y) (5.5)

where J1 is the Bessel function of the first kind of order
1. We’ll call this function, “Besin.” Equation (5.5) is
solved subject to the constraints:

0 ≤ x ≤ 10

0 ≤ y ≤ 10

Figure 5.4 shows plots of the equation on the given
interval using both a three dimensional view and a
contour plot. The exact solution, (x, y) = (4.71, 1.81),
is indicated on the plots.

The first step of solving our “Besin” optimization
problem with a GA is initializing the population. We
choose to code our binary GA with an 8 bit represen-
tation of each of the two (x, y) variables. For instance,
the 16 bit chromosome with two genes representing x
and y is:

[0 1 1 1 0 0 0 0 0 1 0 1 0 0 0 0] = (4.3922, 3.1373)

The initial population of 16 chromosomes is shown in
Fig. 5.5 as asterisks on the contour plot. Costs of each
(x,y) point are computed via (5.5). The minimum cost
of this initial population is −0.46082 and the mean
cost is 0.0096951.

The solution is evolved by the GA using a crossover
rate of 0.5, population size of 16, and mutation rate of
0.2. Figure 5.6 shows the next four iterations of the
GA, the sixth iteration, and the fortieth iteration. We
see that the GA initially explores the entire solution

Table 5.2 Convergence of the GA solution of (5.5)

Iteration Min cost Mean cost x y

Initial −0.46082 0.0096951 5.3333 1.5686
1 −0.46082 −0.064677 5.3333 1.5686
2 −0.46082 −0.084943 5.3333 1.5686
3 −0.50994 −0.12589 4.6275 1.2549
4 −0.50994 −0.044344 4.6275 1.2549
5 −0.57378 −0.023693 4.5490 1.8824

10 −0.58001 −0.23114 4.7843 1.8824
15 −0.58151 −0.11361 4.7059 1.8824

Exact −0.58186 4.71 1.81

space, particularly in the local minima. By the sixth
iteration, the best chromosome is near the exact solu-
tion and by the fortieth iteration many of the popula-
tion members are in the global solution well.

Table 5.2 shows the convergence for this prob-
lem. We see a rather good convergence after only
5 iterations and total convergence after 15 itera-
tions. Notice that although the best solution con-
verges rather quickly, the GA continues to explore the
solution space. Therefore, the mean cost converges
rather slowly. In fact, Fig. 5.7 plots the convergence
of the solution. We see that the population average
cost continues to oscillate. This behavior is due to
the large mutation rate specifically chosen to force
continued exploration of the solution space for this
wildly oscillatory function. Thus we conclude that
the choice of GA population and mutation parameters
affects the performance of the algorithm. This is most
certainly true and will be discussed in more detail
below. But first, let’s look at another way to solve this
problem – directly using the real values of the (x, y)

coordinates.

5.4 Continuous Variable GA –
Application to Optimization

We began with the binary GA because that is where
the field started. This beginning also helps explain why
certain methods are used for the operations of mating
and mutation that we do when working with real num-
bers. Plus there are problems, like the guppy evolution
example, where choices are not in terms of real-valued
variables. Many of the problems that we encounter,
however, involve optimizing real number continuous
variables, so why not work directly with continuous
variables and dispense with coding in binary? In fact,
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Fig. 5.4 Three dimensional (a) and contour (b) plots of the function of (5.5)
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Fig. 5.5 Initial population
for the binary GA solution to
(5.5) superimposed on a
contour plot of the function
value

that is precisely what is now done with many real-
valued problems.

The continuous variable GA works much the same
as its binary cousin. Figure 5.8 is a flowchart of the
continuous GA. It looks much the same as the flow-
chart for the binary GA (Fig. 5.2). The only differences
are in the way certain operations are performed. In
particular, chromosome definition, application of the
cost function, and implementation of the operations of
mating and mutation are modified to be appropriate
for real values and are the only substantative changes.
Let’s look at each of these in more depth.

When initializing the population for continuous
optimization with a GA, we must initialize the chro-
mosome for the number of variables that we wish to
find. In particular, given Npar variables to initialize,
we define a chromosome consisting of parameters or
variables each denoted by pi as:

chromosome = [
p1, p2, p3, · · · pNpar

]
(5.6)

Thus, when we define the cost function, it is in terms
of a function of those variables:

cost = F(chromosome) = F
[

p1, p2, p3, · · · pNpar

]

(5.7)

The operations of mating and mutation are also altered
to take into account these real-valued continuous

variables. There are numerous methods of mating and
mutation, but the ones demonstrated here are rather
straightforward and most closely mimic the binary ver-
sions. For mating, the first step is to randomly choose
the crossover point. The parents are then selected
according to some selection criterion and labeled as
m and d (mom and dad):

parentm = [
pm1 pm2 · · · pmα · · · pm Npar

]

parentd = [
pd1 pd2 · · · pdα · · · pd Npar

] (5.8)

The process of crossover then blends the informa-
tion from the two parents. A way that most closely
matches the binary GA swaps the portions of the
chromosome to the right of the crossover point and
blends the variable chosen as the crossover point
(kinetochore):

pnew1 = pmα − β
[

pmα − pdα

]

pnew2 = pdα − β
[

pmα − pdα

] (5.9)

Here, β is the blending parameter between 0 and 1.
The result is offspring of the form:

offspring1 = [
pm1 pm2 · · · pnew1 · · · pd Npar

]

offspring2 = [
pd1 pd2 · · · pnew2 · · · pm Npar

] (5.10)
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Fig. 5.6 Evolution of the GA population for solution of (5.5)
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Fig. 5.7 Plot of convergence
of the solution of (5.5). The
solid line is the single best
solution and the dotted line
depicts the population mean

Altering the mutation operator is even more simple.
For a continuous GA, we merely generate a new ran-
dom number, pinew , to replace the original value. So if
the original chromosome is

chromosome = [
p1, p2, p3, p4, · · · pNvar

]
(5.11)

and we wish to mutate the third parameter, the new
chromosome will look like

mutated chromosome = [
p1, p2, p3new, p4, · · · pNvar

]

(5.12)

Let’s revisit the solution of (5.5) with the continu-
ous GA. We choose to use a population size of 12,

Fig. 5.8 Flow chart of a
continuous parameter GA
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Table 5.3 Initial population (guesses) of solutions to (5.5) for
the continuous GA and their associated costs

x y Cost

7.7109 0.4337 0.20967
6.7016 0.7454 0.14116
3.5830 8.9600 −0.10674
9.9596 0.6927 −0.16617
1.0709 3.6673 0.05914
8.9394 6.7496 −0.03752
4.3533 0.8984 −0.37954
6.3978 0.3043 0.01720
7.5431 5.7726 −0.29981
7.0620 0.6602 0.21947
0.3515 6.3859 −0.06386
8.9856 8.0849 0.10452

mutation rate of 0.2 and crossover rate of 0.5. Table 5.3
indicates the initial population which is also plotted on
the contour plot of Fig. 5.9.

Let’s follow the mating process carefully for this
example. The population of Table 5.3 is sorted and
the least fit chromosomes are discarded. This process
leaves the following chromosomes:

4.3533 0.8985
7.5431 5.7726
9.9596 0.6928
3.5830 8.9600
0.3516 6.3859
8.9394 6.7496

These remaining chromosomes are then ranked for
mating. The probability of mating is determined here

by rank weighting. To do that we make a table of prob-
abilities of mating and the cumulative probability as:

probability of mating cum probability

0.28571 0.28571
0.2381 0.52381
0.19048 0.71429
0.14286 0.85714
0.095238 0.95238
0.0476191 1.00000

We now use a roulette wheel selection process where
a random number generator determines

pick1 = 0.26006
pick2 = 0.89538

These correspond to chromosomes ranked 1 and 5.
Now the random number generator is applied again to
choose the crossover point, which is chosen here in the
second variable. The value of β is randomly chosen
as 0.32178. So the new offspring generated and their
associated costs are:

x y cost
Offspring 1: 4.3533 2.6642 −0.2689
Offspring 2: 0.3516 4.6202 −0.2496

The next step is mutation, that is, randomly chang-
ing some of the values of the parameters. Table 5.4
shows the new population. Highlighted values denote
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Table 5.4 The new
population at iteration 1 of
solving (5.5) with a
continuous parameter GA.
Mating and mutation have
altered the population.
Highlighted values denote
mutations. The original six
chromosomes do not mutate,
but 4 out of the 12 values in
the six offspring mutate this
generation

Original x Original y Original cost Mutated x Mutated y Mutated cost

4.3533 0.8985 −0.37954 4.3533 0.8985 −0.37954
7.5431 5.7726 −0.29981 7.5431 5.7726 −0.29981
9.9596 0.6928 −0.16617 9.9596 0.6928 −0.16893
3.5830 8.9600 −0.10674 3.5830 8.9600 −0.10674
0.3516 6.3859 −0.06387 0.3516 6.3859 −0.06387
8.9394 6.7496 −0.03753 8.9394 6.7496 −0.03753
4.3533 2.6642 −0.42353 7.2802 4.9394 −0.26890
0.3516 4.6202 −0.09000 0.8155 4.6202 −0.24959
0.3516 5.7588 −0.10909 0.3516 5.7588 −0.10909
9.9596 1.3199 −0.26825 0.3702 1.3199 0.19042
4.3533 3.5033 −0.12733 4.3533 3.5033 −0.12733
3.5830 6.3552 0.08275 0.3583 6.3552 0.08275

mutations. The original six chromosomes are not
mutated here, but four of the twelve values mutate in
the new generation.

The continuous GA was iterated to complete the
solution process. The correct solution was found after
10 iterations. Figure 5.10 shows the population clus-
tered around the exact solution at the completion of the
tenth iteration. Figure 5.11 denotes convergence. We
see that the cost function value for this particular run
tended to generally decrease for the entire population
rather than just for the best individual.

We must be careful, however, about overinterpret-
ing convergence. We should always remember that,
because the GA uses random numbers for its initial-
ization and operations, every time we run the GA
we’ll obtain a somewhat different result. If we have
carefully chosen our parameters and done enough gen-
erations, we usually converge to the correct solution.
Occasionally, however, our luck will be bad and we
may either not get to the solution in the allowed
number of iterations or convergence will be slow.
Each set of initial parameters, each mating operation,

10
final population

8

6

y

4

2

0
0 2 4 6

x
8 10

0.4

0.3

0.2

0.1

-0.1

0

-0.2

-0.3

-0.4
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after 10 generations cluster
near the exact solution to (5.5)
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Fig. 5.11 Convergence of the
continuous GA solution to the
Besin problem (5.5)

and each application of mutation will have different
results: therefore, the convergence plot and behavior
of the solutions will differ with each run. So how do
we assure ourselves that the GA is performing ade-
quately? The answer is that we recognize these issues
and deal with them directly. We never fully believe the
results of a single GA run. Instead, we make a habit
of always doing repeated applications. When we run
the GA 10 times with essentially the same result, we
are assured that the GA is behaving solidly for this
problem and the solution is well optimized.

5.5 Optimizing GA Application

We have now observed several applications of a GA.
So far, we have arbitrarily chosen performance para-
meters such crossover rate, crossover methodology,
mutation rate, and population size. Let’s look at these
GA tuning parameters in a bit more detail.

5.5.1 Continuous vs. Binary GA

First, we have used both binary and continuous vari-
able GAs. Which one is better? The answer, of course,

depends on the problem. When we have either/or
choices or choices between a small number of potential
realizations (Is the stream of the guppies’ environment
rocky or smooth? Is the guppy dappled or plain?) then
the binary GA is most appropriate. If we instead are
searching for all real numbers, then one might as well
use a continuous GA. Of course, one can always code
continuous numbers in binary notation, but in general,
the resulting GA is not as efficient as the continuous
form. What if our parameters are mixed – we have
some that are more conducive to binary coding and
others toward continuous? We can always use a binary
GA with the continuous variables coded into binary.
New methods that mix the binary with the continu-
ous have recently been developed and show promise
for very efficient GA application (Haupt 2007, Haupt
et al. 2008).

5.5.2 Variable Normalization

A related issue is whether and how to normalize
our variables. If all of our variables are similar (for
example, if we’re on an (x, y) Cartesian grid from 5
to 10), normalization is irrelevant. The behavior of
the GA does not depend on whether every number in
the problem is divided by the same value. If however,
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we have variables that are wildly disparate in nature,
we may want to normalize them to be on the same
order of magnitude. If we’re on an (x, y) Cartesian
grid where x varies from 10−6 to 10−5 and y varies
from 105 to 106, then we would want to divide all
x’s by the mean x and all y’s by the mean y before
the search and cost function evaluation. One common
technique is to always normalize all variables to a scale
from 0 to 1. This approach has several advantages: (1)
it assures that the behavior of the GA is not biased to
any one variable, (2) it avoids normalizing the variable
each time it is sent to a cost function, and (3) it makes
generating random numbers rather easy since most
random number generators give numbers between 0
and 1. For some problems, it may make more sense
to map a variable with some function before doing
a GA application. An example from air pollution in
Chapter 14 maps the monitored concentrations onto a
logarithmic scale for GA solution.

5.5.3 Mate Selection

The methods of selecting mates vary rather widely.
The simplest methods are random without respect to
any weighting. For instance, one can just randomly
choose two parents to mate. This method is known as
unweighted roulette wheel pairing. The more prevalent
methods are based on either a rank or cost weighting
method. The most basic ranked method is to pair the
sorted chromosomes in order – the first chromosome
mates with the second, the third with the fourth, and
so on. The more refined ranked methods compute the
probability of mating according to the ordering after
the chromosomes are sorted from best to worst. That
was the method demonstrated in Section 5.4. Proba-
bility of mating varies according to cumulative order
of the rank. Cost weighting is computed according to
the actual values of the cost function – a very low cost
chromosome is much more likely to be selected for
mating than the one that may be next in line. The costs
are merely summed, then each cost divided by the total
to obtain its probability of selection.

Once the selection probabilities are computed
via either ranked weighting or cost weighting, the
selection can occur via any of several methods.
A common method is the roulette wheel selection
(demonstrated in Section 5.4) where a random number
is chosen and mapped to the cumulative probability
of the ranked or cost weighted chromosomes.

Another common method is tournament selection
(demonstrated in Section 5.2). Three (or some other
number) potential parents are selected according to
random number selection matched to the computed
probability of mating. The two with the lowest costs
then mate. One can go into much more detail on
the mate selection methods and we refer the reader
to any of the GA books to read more (Goldberg
1989; Mitchell 1996; Davis 1991; Haupt and Haupt
2004).

5.5.4 Mating

Once the mates are selected, the crossover tech-
nique must be specified. The first decision regards the
crossover rate, that is, how many population members
should be replaced with offspring at each generation.
In general, although some investigators have looked at
this sensitivity, it doesn’t make much impact on GA
performance what rate is used. Using a crossover rate
(X rate) of 0.5 so that the number kept (Nkeep) is half of
the population size (Nkeep = X rate × Npop) is as good
as any and is the typical choice.

The next issue is how to perform the crossover. The
examples above used single point crossover. For the
binary GA, it is easy to extend the crossover to two
points, three points, or use three parents in a rather
straightforward way. Uniform crossover can be per-
formed by creating a random mask of 0s and 1s to
determine whether to use the value in the mother or
the father chromosome at each element.

For the continuous parameter GA, equations (5.9)
and (5.10) blend the information along the axes of the
parent chromosomes. When the blending parameter, β,
is less than or equal to 1, the values of the offspring
will be between the parents. When β is allowed to be
greater than 1, then the axes are extended beyond the
magnitude of the parent values, which is sometimes a
good choice. A more simplistic continuous GA mating
scheme merely swaps values of the real-encoded genes
between the parents. If the parents are denoted as in
(5.8), and we choose to swap between genes 2 and 5,
we would obtain

offspring1 =
[pm1, pm2, ↑ pd3, pd4, ↑ pm5, pm6, . . . , pm Nvar ]

offspring2 =
[pd1, pd2, ↑ pm3, pm4, ↑pd5, pd6, . . . , pd Nvar ]

(5.13)
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The problem with this simple scheme is that no new
values are ever generated. The opposite extreme is
uniform random crossover where each gene is assigned
a random blending parameter βi and the resulting off-
spring are constructed as

offspring1 = parent1 − [β1(pm1 − pd1),

β2(pm2 − pd2), · · · , βNvar(pm Nvar − pd Nvar)]
offspring2 = parent2 + [β1(pm1 − pd1),

β2(pm2 − pd2), · · · , βNvar(pm Nvar − pd Nvar)]
(5.14)

A scheme similar to this was used for extended runs
of the air pollution source characterization problem of
Chapter 14.

5.5.5 Choosing Population Size
and Mutation Rate

The choice of the GA parameters of population size
and mutation rate can make a large impact on algo-
rithm performance. The performance measure that we
will concentrate on here is the number of cost function
evaluations required to meet a pre-specified tolerance
level of accuracy of the solution. We prefer this mea-
sure because: (1) it is easy to keep track of how many
times the cost function has been called, (2) as applied
scientists, we often want to find the “best solution”:
thus, the number of calls to find that best solution is the
relevant quantity in measuring required computer time,
and (3) it is not dependent on the type of computer
being used.2 Of course, measuring function calls does
not represent all aspects of the GA (such as population
generation, mating, mutation, sorting, etc.). For large
problems that are computationally intensive, however,
the number of function evaluations is often the con-
trolling factor for measuring GA speed. Since the GA
begins with random numbers, each new run of the GA
will take a different number of function evaluations to
“solve” the problem.

2 Note that we are assuming a serial computer for this discus-
sion. Application on parallel machines is beyond the scope of
this chapter. Application on a parallel machine will change the
performance as a function of mutation rate and population size,
depending on how the GA is adapted to optimize the parallelism
of the type of machine being used.

We present a sensitivity analysis of the number of
function evaluations necessary to solve the Besin prob-
lem (5.5) for both the binary and continuous GA. Since
we know the exact solution for this construed problem,
we can easily determine convergence. Here, we stop
the GA when the error in the solution becomes less
than 5 × 10−3 or we surpass 5,000 iterations. Ten sep-
arate sensitivity runs are completed for each combina-
tion of population size (4, 8, 12, 16, 20, 32, 40, 48, 56,
64, 72, 80, 88, and 96) and mutation rate (0.001, 0.005,
0.01, 0.05, 0.075, 0.1, 0.12, 0.125, 0.15, 0.175, 0.2,
0.225, and 0.25). The number of function evaluations
for each combination of population size and mutation
rate of those 10 runs are then averaged to produce plots
(Fig. 5.12 for the binary GA results and Fig. 5.13 for
the continuous variable GA) of average performance
as a function of population size and mutation rate. Both
plots contour the logarithm (base 10) of the number
of function calls. We see that for both the binary and
continuous GA, using too small of a mutation rate
prolongs the calculation.

Figure 5.12 plots the number of function evalua-
tions required to solve equation (5.5) using a binary
GA. Note that using the smallest mutation rates
requires more calls to the cost function to solve the
problem. This observation implies that a sufficient
number of mutations is required to push the popu-
lation into the global solution basin for this highly
oscillatory cost function. The fewest number of func-
tion evaluations are required when the population size
is relatively small (≤32) and the mutation rate is
moderately large (0.075 to 0.25). For this problem,
mutation is a critical operator that keeps the solution
from prematurely converging toward the wrong local
minimum. The “best” combination for this problem
using the binary GA is a population size of 8 and
mutation rate of 0.15. The results for the continu-
ous GA appear in Fig. 5.13. In this case, in addition
to small mutation rates causing too many function
evaluations, too small a population (≤20) also results
in a very slow convergence. The “best” combination
for the continuous variable GA applied to the Besin
problem is a population size of 12 and mutation rate
of 0.25.

Our prior work confirms this finding that using
relatively small population sizes in combination with
high mutation rates is often effective for minimiz-
ing the number of function evaluations (Haupt and
Haupt 1998, 2000, 2004). One should be careful, how-
ever, to note that this conclusion is problem dependent.
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When there are a large number of unknowns and the
cost function has fewer local minima, larger popula-
tion sizes are sometimes more efficient. We still find,
though, that the mutation rate must be sufficiently
large.

5.5.6 When to Use a GA

How does the GA compare in speed to other methods?
When do we choose to use a GA on our optimization
problem rather than a more traditional technique? In
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general, if we have a well behaved bowl shaped con-
tinuously differentiable function and we wish to find
the minimum, the gradient descent methods can’t be
beat. Such methods were designed for those cases and
work well there. The GA will not match their speed.
In contrast, if we have a very complicated function
with lots of local optima, the gradient algorithms will
typically find the nearest minimum, which is often
local, not global. The usual situation for the practicing
scientist or engineer is that he or she configures a prob-
lem in a rather large solution space and isn’t quite sure
what the function looks like in solution space. In that
case, it is often wise to try the gradient algorithms first
using various different first guesses. If the algorithm
finds a different solution for each initialization, the
cost function likely has local minima and that is what
the algorithm is finding. Then the practitioner knows
that using a more robust technique is merited. Those
cases are where the GA shines.

Many optimization experts prefer to combine the
strengths of the various techniques on their difficult
problems. One strategy is to use a hybrid GA; that
is, to begin the solution process with a GA until the
correct solution basin is discovered, then switch to a
fast gradient descent method. One strategy that this
author uses is to employ the GA for a specified number
of iterations or until a plateau in the convergence plot
is reached, then switch to a descent technique. This
strategy is often successful at using the GA to deter-
mine the basin of attraction then using the ability of the
gradient descent method to zoom to the bottom of that
basin rapidly. Chapter 14 demonstrates this strategy on
a difficult air pollution problem.

5.5.7 Genetic Algorithms on a
Parallel Computer

Everything we have said thus far about the speed
expected of a GA assumes that we are using a serial
computer. There are ways to speed GAs on a par-
allel computer that (1) make them competitive with
other techniques in speed, (2) make efficient use of the
processors, and (3) may even tune the GA to produce
global minima more quickly. It is beyond our scope
to go into too much detail here, but we do want to
point out that for some problems, creating co-evolving
populations not only makes the algorithm amenable to

distributing among processors, but it also helps dis-
cover a more global minimum and speeds the con-
vergence, even if implemented on a single processor
machine. The many brands of parallel GAs can be
characterized grossly into three primary categories:
master-slave, island GA, and cellular GA. Figure 5.14
is a graphical depiction of these three parallel imple-
mentations.

The master-slave implementation of the GA is the
most similar to the serial GAs that we have been dis-
cussing: they merely distribute the cost function eval-
uations to be done by slave processors that report their
results to the master processor. This method is easy to
implement and no subpopulations are required.

The island GA allows simultaneous evolution
of independent populations. There is often a pre-
scription for some periodic migration between these
subpopulations to increase diversity. Although this
method is a bit more difficult to implement, it is
often successful at increasing the diversity of the
overall population while speeding evolution of the
individual populations through independent evolution
that doesn’t need to wait for communication from any
master.

The cellular implementation of parallelism is ideal
for architectures where communication with near-
est neighbor nodes is faster than for more dis-
tant processors. In this case, each individual often
evolves on its own node with options of mating only
with its nearest neighbors. More detail on parallel
GAs can be found in Gordon and Whitley (1993),
Alga and Tomassini (2002), and Haupt and Haupt
(2004).

5.5.8 Cost Function Construction

Finally, we would be negligent if we did not emphasize
the importance of wise construction of the cost func-
tion. This element is, of course, unique to the problem
at hand. The cost function is often the determining
factor for both how much CPU time is required as
well as how quickly the GA converges to the solution.
A few of the typical general programming tips hold
especially true for the GA since the cost function is
called repeatedly – vectorize the code where possi-
ble (taking advantage of the storage order and special
vectorization tools of the language being used) and
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Fig. 5.14 Schematic of the
three general types of parallel
GA configurations

avoid using constructs known to slow down the code
(such as contingencies). In addition, the GA allows
more creative design of cost functions than many tradi-
tional techniques. For instance, many traditional prob-
lems minimize the L2 norm (sum of the squares) of
some difference from a known or previous value. With
a GA, it is easy to explore using other powers of
the difference – in some cases an L1 norm (absolute
value of the differences) is preferable while in oth-
ers, higher powers are useful if we want to weight
the technique to avoid outliers. In yet other problems,
least squares need not play any role. For instance,
in developing contingency tables for occurrences of
a meteorological condition (e.g. predicting whether
or not it will hail), the models are traditionally built
using a least squares methodology, but then judged
using more complex metrics such as Fraction Cor-
rect, Critical Success Index, or Heidke Skill Scores.
The GA is capable of training the model using those
same metrics to optimize agreement with past data
(Marzban and Haupt 2005 and Chapter 18 of this vol-
ume). Therefore, one additional strength of using a
GA to optimize a function is the greater freedom in
designing the function to be optimized. In addition,

it may be appropriate to weight different portions of
a cost function differently. We did this for the initial
guppy problem (Section 5.2) when balancing the com-
peting parameters of the attractiveness to mates versus
the likelihood of being eaten by a predator.3 Finally, in
some cases, constraints can be built directly into cost
functions to avoid specific portions of parameter space.
If such a constraint is necessary, one could simply
add a term to the cost function to increase the cost if
the function value strays too far from that expected –
i.e. impose a penalty for straying too far in parameter
space.

5.6 Application to a Dynamical
Systems Problem

Let’s revisit our initial problem of optimizing a
population of guppies to survive in a particular

3 An alternative approach would be to map the pareto front of
the competing parameters. That technique is beyond the scope
of this chapter but is covered in Haupt and Haupt (2004).
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Fig. 5.15 Time evolution of the predator-prey equations (5.15)

environment populated by a predator. In Section 5.2
we directly optimized the guppy population using a
binary value GA. Modern population biologists often
instead model population dynamics with differential
equations. For instance, the classic predator-prey prob-
lem, also known as the Lotka-Volterra equations (see
Chapra and Canale 1998 for a brief discussion of these
equations) is formulated as:

dx

dt
= ax − bxy

(5.15)
dy

dt
= −cy + dxy

where

x = number of prey (guppies)
y = number of predators
a = guppy birth rate
c = predator death rate
b,d = interaction coefficients

This is a nonlinear system with coupling of the rate
equations for the change in the number of prey and
predators. It is reasonably trivial to integrate this equa-
tion in time and to characterize it in phase space.

Setting the parameters a = 1.2, b = 0.6, c = 0.8, and d
= 0.3 and doing a Runge-Kutta time integration with
a time step of 0.01 produces a time series as shown
in Fig. 5.15. Figure 5.16 is a plot in the phase space
of guppies versus predators. The egg shaped pattern
denotes a limit cycle that is repeated indefinitely. The
nonlinear coupling of these equations is what makes
this limit cycle occur.

What if we had measured data of the time evolution
of the guppies and their predators but didn’t know the
functional form? What if we wished to come up with a
model for the rate of change of guppies and predators
given this data that we had obtained? For the moment,
let’s assume that this time series we generated through
integrating equations (5.15) is that data. We wish to use
these data to reproduce the time dependent behavior of
the guppy/predator interaction.

The first step in solving such a problem is to
generate a likely form for the solution. The simplest
approach is to assume a linear model, such as:

st = Ls + C (5.16)

where s is the vector of variables (x,y), the subscript
t denotes its time variation, L is the linear matrix
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operator, and C is a constant matrix. One doesn’t need
an optimization algorithm to fit data to this model:
just use standard least squares parameter estimation
to determine the unknown elements of matrices L and
C. Doing that and using equation (5.16) to integrate it
forward in time produces the time series observed in

Fig. 5.17. We see here that this linear model finds a
solution of one predator and a monotonically growing
number of guppies in time. The corresponding phase
space plot appears as Fig. 5.18. It is obvious that this
diverging solution is not a very good match to the
actual solution of Figs. 5.15 and 5.16.
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The next approach is to try configuring a nonlin-
ear model of the guppy/predator time behavior. We
conjecture (given that we know the solution) that
the nonlinearity is quadratic. Therefore, the simplest
time dependent model that includes both a linear and

quadratic term is:

st= NsTs + Ls + C (5.17)

This nonlinear equation can not be as simply solved
using least squares techniques. An equation to do that

guppies
predators

3

2.5

2

1.5

1

0.5

nu
m

be
r 

of
 in

di
vi

du
al

s

0

-0.5

-1.5
0 5 10 15

time
20 25 30

-1

Fig. 5.19 Time series of GA
solved nonlinear empirical
model fit (equation 5.17) to
the Lotka-Volterra equations
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can be found (Haupt 2006), but its solution involves
inverting a fourth order tensor, which is not a trivial
problem. Instead, we choose to configure this problem
as one in optimization where we seek to minimize:

cost = st − (
NsTs + Ls + C

)
(5.18)

Given that we have the data of s and its tendency, st, we
can then directly solve for the elements to the matri-
ces N, L, and C. In addition, we use information on
the symmetries and relations expected between these
matrices to minimize the number of real variables that
we need to find (Haupt 2006). A GA is used to find

population average
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Fig. 5.21 GA convergence
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the solution – the time tendency appears as Fig. 5.19
and phase space plot as Fig. 5.20. The match to the
original data (Figs. 5.15 and 5.16) is not perfect, but
the general shape and oscillatory nature of the behavior
is obtained. Figure 5.21 is the GA convergence curve.
We see that it took very few iterations (10 for this
run) to converge to the optimal solution. Note that
reproducing the exact balance for a nonlinear model
with an empirical model is extremely difficult and
it is amazing that we have come this close with an
optimization algorithm. Chapter 18 further develops
this technique in the context of a chaotic dynamical
system.

5.7 Conclusions

This chapter strives to give a basic introduction to
genetic algorithms. We saw that GAs can be a useful
technique to solve optimization problems. We also saw
that they can be used for building models, whether
of natural processes such as guppy evolution or of
dynamical systems such as the Lotka-Volterra equa-
tions. We have only begun to scratch the surface of
potential GA applications or of how to best apply the
GA. There are entire books on what GAs are and
how to apply them (Holland 1975; Goldberg 1989;
Davis 1991; Mitchell 1996; Haupt and Haupt 1998,
2004). Chapter 18 gives a smattering of examples of
how to configure a problem for a GA and reviews prior
use of GAs in the environmental sciences. Chapter 14
delves into detail on how a GA was used in a specific
problem in source characterization of a source of air
contaminant and how that problem could be reconfig-
ured due to GA robustness to additionally solve for
meteorological variables.

The GA is a useful tool, but it is not always the
first tool to try on an optimization problem. As stated
in Section 5.5, traditional methods may be more time
efficient on easy-to-solve problems. The strength of
the GA is in optimizing difficult problems with lots
of local minima. A carefully configured GA is one
of the most robust tools for finding such solutions. It
may not be as fast, but it is amazingly successful at
identifying the basin of the global minimum. As will
be demonstrated in Chapter 14, a hybrid approach of
using the GA to that point, then switching to a gradient
descent method is often the quickest way to a difficult
solution.

The hope of this author is that we have provided the
reader with enough of a view of GAs to capture his
or her interest and have helped motivate the reader to
apply it to his or her own problems.
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6Introduction to Fuzzy Logic

John K. Williams

6.1 Introduction

In the early 1990s, scientists at the National Center for
Atmospheric Research were asked to help the Federal
Aviation Administration objectively determine which
flight service stations throughout the United States
handled the most hazardous weather conditions, and
hence should be spared from congressional budget
cuts. They had access to 15 years of meteorological
data from each location, including winds, temperature,
fog, rain, and snow at 1-min intervals, as well as infor-
mation about the air traffic density and a number of
other factors. However, the level of aviation hazard
was not indicated by any single statistic, but by the
nature, frequency and duration of the conditions and
their combinations. How could the stations be ranked
in a reasonable, objective way?

The scientists began by surveying a group of subject
domain experts – pilots, meteorologists, and airline
dispatchers – quizzing them on what factors, or com-
binations of factors, they considered most dangerous.
Using the results of these surveys along with the repos-
itory of historical data, they then computed a hazard
score for each flight service station, and ranked them.
When the final report was presented to the group of
experts, they opened it and began to laugh – every-
one agreed that the stations with the most hazardous
weather were at the top of the list. Unwittingly, the
NCAR scientists had created a fuzzy logic algorithm,

John K. Williams (*)
Research Applications Laboratory
National Center for Atmospheric Research
P.O. Box 3000, Boulder, CO 80307, USA
Phone: 303-497-2822; Fax: 303-497-8401;
Email: jkwillia@ucar.edu

efficiently encoding the experts’ knowledge in a set of
rules that reproduced their approach to assessing the
level of hazard presented by each unique set of weather
conditions.

The purpose of artificial intelligence algorithms,
broadly stated, is to perform tasks in a way that mimics
human intelligence. Many of the approaches to creat-
ing artificial intelligence algorithms presented in this
book are machine learning algorithms that automati-
cally recognize patterns or functional relationships in
data. By training on a historical dataset or incremen-
tally adapting as new examples are gathered, these
approaches mimic a human’s ability to draw infer-
ences from data. Of course, a machine doesn’t truly
“learn” as a human does; rather, it uncovers statistical
relationships. To achieve meaningful results, a human
expert is still required to select an appropriate machine
learning technique for a given problem, determine a
representative data set, design data preprocessing or
feature representation, set the evaluation criteria, and
experiment with algorithm parameters to obtain opti-
mal learning behavior.

Fuzzy logic presents an alternative approach to arti-
ficial intelligence by providing a framework for imitat-
ing a human expert’s approach to solving a particular
problem. This approach falls under the class of arti-
ficial intelligence algorithms called “expert systems”
that encode expert knowledge as a set of heuristics,
or rules. For instance, a medical expert system might
help diagnose a disease based on a patient’s answers
to a series of questions. With each answer, the num-
ber of likely possibilities would diminish until finally
the most probable diagnosis was determined. A key
motivation for developing fuzzy logic expert systems
is the recognition that human experts rarely make
decisions based on a sequence of well-defined logical
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statements. For instance, many questions that might
be asked by a doctor diagnosing an illness may not
have clear or definitive answers, and even the questions
themselves might be ambiguous. Rather, humans often
draw inferences from a preponderance of the evidence
available to them – even if it is incomplete – with each
source of information weighed according to its relia-
bility and the strength of its connection to the outcome
being evaluated.

A distinctive contribution of fuzzy logic is that it
provides a conceptual framework for representing nat-
ural language concepts and reasoning by expanding on
the traditional notion of a set, or collection of objects.
For instance, the noun “chair” is in a sense equivalent
to the set of objects identified as chairs. The set of
green chairs is the intersection of the set of objects that
are chairs and objects that are green. A proposition like
“all chairs have legs” is a claim that the set of chairs is
a subset of the set of objects having legs. The “fuzzy”
part of fuzzy logic arises from a recognition that the
sets of objects referred to by words are not “crisp” like
the sets of traditional mathematics in which a given
object is either in a particular set or outside it. Rather,
in everyday language – and, by extension, in human
reasoning – concepts often have “fuzzy” boundaries.
For instance, take the concept of being a chair. Do
thrones, or benches, or bean bags, or step stools, or tree
stumps count as “chairs”? In traditional logic, each of
these objects is either a chair or it isn’t. In fuzzy logic,
on the other hand, set membership is allowed to be
partial. Thus, on a scale of 0 to 1, we might say that
a throne is a chair to the degree 0.9, while a tree stump
might be a chair to the degree 0.1. The proposition “all
chairs have legs” can then be the understood as apply-
ing to different objects only to the degree that they are
members in the set of “chairs”. Reasoning with fuzzy
logic accommodates and even exploits ambiguity, a
feature that turns out to be immensely powerful for
expert systems.

By formally accommodating the ambiguity of nat-
ural language, fuzzy logic makes it possible to encode
human knowledge into relationships between concepts
represented as fuzzy sets. Reasoning involves logical
manipulation of these statements, and multiple lines
of reasoning may be aggregated to form a conclusion.
Thus, fuzzy logic can be viewed as the extension of
classical logic to fuzzy sets and their manipulation.
In addition, in many research communities the term
“fuzzy logic” has come to be applied more broadly

to the theory and practice of computing with fuzzy
sets, or indeed any expert system or set of heuristics
that preserves the uncertainty or ambiguity in data
until a final “decision point.” Fuzzy logic systems have
become increasingly popular, both in industrial and
environmental science applications, because they use
information efficiently, are relatively simple to design
and implement, and often perform impressively well.
They do not require training data, models, or con-
ditional probability distributions; they are robust to
uncertain, missing and corrupted data; they naturally
constrain the possible output to “reasonable” values;
and they often have a “common sense” structure that
makes them relatively easy to interpret and modify.
While they may not always produce the optimal solu-
tion, fuzzy logic algorithms fall within the increasingly
popular domain of “soft computing” methods that pro-
duce very good, practical and relatively inexpensive
solutions to many problems.

This chapter presents a brief history of the devel-
opment of fuzzy logic; describes fuzzy sets, fuzzy set
theory, fuzzy numbers and fuzzy logical operations;
discusses two types of fuzzy inference and a couple
of variants; presents a fuzzy clustering method; and
explains how these pieces can be used to create fuzzy
logic algorithms that may be “tuned” using empirical
data if desired. The field of fuzzy logic theory and
techniques is very broad, though, and this short chapter
is only able to introduce a brief overview of elements
that have been found most useful to the author. Inter-
ested readers are encouraged to consult the texts by
Chi et al. (1996), Klir and Folger (1988), McNiell
and Freiberger (1993), Tanaka (1996), or Zimmer-
man (1996) and the collections of original papers in
Klir and Yuan (1996) or Yager et al. (1987) for a more
thorough exposition.

6.2 A Brief History

Fuzzy logic owes its existence to Lotfi Zadeh, who
in 1965 published an article entitled “Fuzzy Sets”
in a journal he edited, Information and Control,
after having it rejected from several other journals
(Zadeh 1965). Faced with skepticism from his contem-
poraries, Zadeh struggled for years to gain the recog-
nition that his revolutionary ideas deserved. How-
ever, some researchers were quick to see the practical
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utility of his work. In 1973, Ebrahim Mamdami and
Sedrak Assilian successfully used fuzzy logic to build
a controller for a steam engine. In 1978, Laritz Peter
Holmblad and Jens-Jorgen Østergaard developed and
commercialized a fuzzy logic controller for industrial
cement kilns. And in 1979, Hans Berliner’s BKG 9.8
program beat the backgammon world champion by
the convincing score of 7-1. The use of fuzzy logic
developed particularly rapidly in Japan, where a sub-
way system developed by Hitachi using predictive
fuzzy controllers entered service in Sendai in 1987.
These early successes were followed by an explo-
sion of applications in consumer electronics and appli-
ances, finance, and industrial process control, first in
Asia and eventually also in Europe and the United
States.

The value of fuzzy logic algorithms in the envi-
ronmental sciences gained recognition beginning in
the early 1990s. In 1993, MIT Lincoln Labora-
tory developed a fuzzy logic algorithm for detecting
gust fronts from Doppler radar data (Delanoy and
Troxel 1993). In 1994, researchers at the National
Center for Atmospheric Research created an algorithm
for detecting microbursts – wind events associated
with thunderstorms that had been responsible for a
number of airplane crashes – based on Doppler radar
data (Albo 1994, 1996; see also Merritt 1991). Fuzzy
logic was soon employed in algorithms for process-
ing sensor data, recognizing hazardous weather condi-
tions, producing short-range forecasts, and providing
weather decision support information to aviation, state
departments of transportation, and other users. By the
early 21st century, a large number of the decision sup-
port systems produced by NCAR’s Research Applica-
tions Laboratory incorporated fuzzy logic in one way
or another. Some of these applications are described in
detail in Chapter 17.

6.3 Classical and Fuzzy Sets

A fundamental concept of fuzzy logic is that of the
fuzzy set. As mentioned earlier, a fuzzy set is an exten-
sion of the classical notion of a set: whereas a classical
set divides the universe of objects into two distinct
categories, those in the set and those outside it, a
fuzzy set permits intermediate degrees of membership.
More formally, every classical set is determined by its

characteristic function, a mapping that assigns every
object in the set a membership value of 1, and every
object outside it a value of 0. For instance, the set of
“tall people” might have a characteristic function that
assigns 0 to all people having heights less than 5′ 9′′
and 1 to those with height 5′ 9′′ or greater. The equiv-
alent concept for fuzzy sets is that of a membership
function, which assigns every object a value between
0 and 1 representing its degree of membership in a
set. The membership function for the fuzzy set of “tall
people” might be 0 for people less than 5′ 4′′ tall, then
rise gradually to 0.5 for people 5′ 9′′ tall, and then
continue to rise to a value of 1 for people 6′ 3′′ tall or
taller. Most of us would agree that this representation
more accurately represents the concept of being a “tall
person”: rather than enforcing a discontinuous cutoff
at some particular height, the fuzzy set quantifies the
ambiguity (Fig. 6.1).

The reader may have noticed that the concept of
fuzzy membership is reminiscent of probability theory,

Fig. 6.1 (Top) A classical set characteristic function (0 or 1)
for “tall” as a function of a person’s height. (Bottom) A fuzzy
set membership function representing continuous “degrees of
tallness” as a function of height.
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Fig. 6.2 Depiction of the
classical set operations
complement, intersection and
union. Black shading
represents elements in the
resultant set.

in which “events” are assigned values between 0 and 1
representing their likelihood. Both fuzzy memberships
and probabilities can be interpreted as “measures”
and manipulated mathematically. However, probabil-
ities and fuzzy set memberships are really quite dif-
ferent concepts. While probabilities capture summary
information about random events – for instance, the
likelihood that a person chosen randomly from a crowd
will have a height above 5′ 9′′ – a fuzzy membership
captures the ambiguity in a concept itself, e.g., what
we mean by the very notion of “being tall”.

Classical set theory defines several important oper-
ations on sets that are useful in formal logic. For
instance, the complement of a set A, denoted Ac, is the
set of all objects not in A (Fig. 6.2). The characteristic
function for Ac is the binary opposite of that for A;
that is, when the characteristic function for A is 1, the
characteristic function for Ac is 0, and vice versa. Writ-
ing the characteristic function for A in the traditional
fashion as χA (here χ is the Greek letter “Chi”) and
that of Ac as χAc , this relationship can be expressed in
an equation as χAc = 1 − χA. (Note that this is a func-
tional equation, that is, one that involves a relationship

between functions rather than numbers. It is equiv-
alent to saying that the functions χAc and χA share
the same domain, and that χAc(a) = 1 − χA(a) for all
elements a in that domain.) As an example, suppose
A is the classical set of “tall people” as defined in the
previous paragraph, and suppose Peter is 5′ 8′′. Then
χA(Peter) = 0 and χAc(Peter) = 1 − χA(Peter) = 1.
The complement of “tall people” is the set of people
who are not tall – a set that includes Peter.

In fuzzy set theory, the binary characteristic func-
tion is replaced by a continuous membership func-
tion that can take on any value between 0 and
1 (Fig. 6.3). Writing the membership function for
the fuzzy set B as μB (μ is the Greek letter
“Mu”) and that of its fuzzy complement Bc as μBc ,
then μBc = 1 − μB . Since fuzzy sets and member-
ship functions are equivalent, this functional equation
defines the fuzzy set complement. Now suppose that
the fuzzy set B of “tall people” is defined so that
μB(Peter) = 0.4. Then χBc(Peter) = 1 − χB(Peter) =
1 − 0.4 = 0.6. In words, one could say that Peter is
a member of “tall people” to the degree 0.4, and a
member of “not tall people” to degree 0.6. As another
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Fig. 6.3 Depictions of fuzzy
set operations. The degree of
membership in the resultant
set is represented by shades of
gray, with white points having
membership 0 and black
points having membership 1.
Dotted red circles represent
the 0.1 membership contours
of the original fuzzy sets.

example, consider colors. When an object is identi-
fied as “blue”, there is really quite a range of fre-
quency values on the electromagnetic spectrum that
could be referred to, ranging from blue-green to almost
purple. Figure 6.4 (top) illustrates membership func-
tions for the concept “blue” and its complement, “not
blue”.

Other elements of classical set theory have similarly
natural analogues for fuzzy sets. The union of two clas-
sical sets A and B, written A ∪ B, is the set of all ele-
ments in either set A or set B, or both. In terms of the
characteristic function, χA∪B = max(χA, χB); that is,
χA∪B = 1 when either χA = 1 or χB = 1 (or both). For
fuzzy sets A and B, the union is defined by the mem-
bership function equation μA∪B = max(μA, μB), as
illustrated using the color concepts “blue” and “green”
in Fig. 6.4 (middle). The intersection of two classical
sets A and B, written A ∩ B, is the set of all objects
in both sets A and set B. In terms of the characteris-
tic function, χA∩B = min(χA, χB); that is, χA and χB

must both be 1 for χA∩B to be 1. The intersection of
two fuzzy sets A and B is defined by the member-
ship function equation μA∩B = min(μA, μB). This is

illustrated in Fig. 6.4 (bottom). For two classical sets A
and B, we say that A is a subset of B and write A ⊂ B
if all objects (or elements) of A are also in B. That is
the same as saying that the characteristic function of A
can be 1 only when the characteristic function of B is
1, that is, χA ≤ χB . Similarly, for fuzzy sets A and B,
A is a subset of B if all elements of A are also in B to at
least an equal degree, that is, if μA ≤ μB (see Fig. 6.5).

Several consequences of these definitions that hold
for classical sets also hold for fuzzy sets. For instance,
if A ⊂ B and B ⊂ C , then A ⊂ C since μA ≤ μB

and μB ≤ μC implies μA ≤ μC . And if A ⊂ B and
B ⊂ A, then A = B because μA ≤ μB and μB ≤ μA

implies μA = μB . The reader may similarly verify
that many properties of classical set operations also
hold true for fuzzy sets, including idempotency: A ∪
A = A and A ∩ A = A, commutativity: A ∪ B = B ∪
A and A ∩ B = B ∩ A, associativity: (A ∪ B) ∪ C =
A ∪ (B ∪ C) and (A ∩ B) ∩ C = A ∩ (B ∩ C), dou-
ble negation: (Ac)c = A, and De Morgan’s Laws: (A ∪
B)c = Ac ∩ Bc and (A ∩ B)c = Ac ∪ Bc. However,
the law of contradiction, A ∩ Ac = ∅ (where ∅ is the
empty set, having membership function 0 everywhere)
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Fig. 6.4 An illustration of the fuzzy set operations complement,
union and intersection using color concepts. The tables to the
right provide numerical examples for several sample member-

ship function values. Note that for the binary (0 or 1) cases, the
fuzzy set operations produce the same results as those used in
classical logic.

does not hold for fuzzy sets since an element may
have nonzero membership in both a fuzzy set and its
complement.

The logical operations of complement (not), inter-
section (and), and union (or) have been defined above
by a mathematical operation on the sets’ membership
functions, as “one minus”, “min”, and “max”, respec-
tively. This is intriguing, since it suggests that other

mathematical operations on membership functions
may also be interpreted as logical operations on
fuzzy sets. Indeed, the arithmetic mean of two mem-
bership functions, (μA + μB)/2, or geometric mean,
(μA · μB)1/2 are both frequently used in fuzzy logic
algorithms, offering “softened” versions of “or” and
“and” as illustrated in Fig. 6.6. Using different expo-
nents and weights can allow further manipulation of
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Fig. 6.5 Illustration of fuzzy
sets A and B defined over a
common domain with A ⊂ B.

Fig. 6.6 Some functions of two variables that can be used as fuzzy-logical operations. The functions’ output values are depicted
by colors ranging from 0 (blue) to 1 (red) as illustrated by the colorbar at right.
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Fig. 6.7 An example 2-D membership function for “W-band radar Rayleigh scattering” as a function of reflectivity and linear
depolarization ratio (LDR).

these means’ behavior. Many other manipulations of
fuzzy sets are possible, leading to great flexibility
in the design of fuzzy logic algorithms. However, it
is worth reiterating that for fuzzy sets having only
binary (0 or 1) membership values, fuzzy logic’s stan-
dard logical operations are completely equivalent to
those for classical sets. Thus, fuzzy logic is equiv-
alent to classical logic for “crisp” fuzzy sets, and
fuzzy set theory is truly an extension of classical set
theory.

Finally, it should be noted that while it is con-
venient to illustrate fuzzy membership functions as
being functions of a single variable, they may actu-
ally be functions of arbitrarily many. In environmental
science applications, the variables might be multiple
attributes or measurements of the environmental state.
As an example, consider the problem of determining
whether the droplets in a cloud are small enough that
they produce Rayleigh scattering of a radar signal,
which is important for some remote sensing applica-
tions. A possible membership function for “W-band

Rayleigh scattering” (W-band is a radar frequency
near 95 GHz), based on the radar-measured linear
depolarization ratio (LDR) and reflectivity (dBZ), is
shown in Fig. 6.7. This fuzzy set is most conve-
niently defined in 2-D because of the complicated
interaction of these two quantities (Vivekanandan et al.
1999).

6.4 Fuzzy Numbers

Although we usually think of numbers as being inher-
ently precise, they often actually represent approxi-
mations or are subject to uncertainty. For instance,
someone might say “I’ll be ready at 7 pm” or “it will
take 15 minutes to get there”, but the first sentence
is often understood to be approximate and the second
is an estimate whose accuracy may vary considerably
based on travel conditions. One way to propagate this
sort of “fuzziness” through a calculation or take it into
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account when comparing two quantities is through the
concept of fuzzy numbers.

Before defining fuzzy numbers, it is helpful to
establish some descriptors for different kinds of fuzzy
sets. We say that a fuzzy set A is convex if its
membership function contains no local “dips”, or, for-
mally, if for any elements x1 and x2 and any num-
ber λ between 0 and 1, μA ((1 − λ)x1 + λx2) ≥ (1 −
λ)μA(x1) + λ μA(x2). A fuzzy set A is normal if there
is at least one element x for which μA(x) = 1. Using
these concepts, a fuzzy number is defined to be a con-
vex, normal fuzzy set with a continuous membership
function having the property that {x : μA(x) = 1} is
either a single element or a connected region (e.g.,
an interval). Common examples of fuzzy numbers
include “triangle” functions and Gaussian bell-curve
functions.

Any function f that operates on ordinary numbers
may become a mapping of fuzzy numbers through the
extension principle. If f : X → Y, then the image
of a fuzzy set A defined in the space X is a fuzzy
set f (A) in the space Y with membership function
μ f (A)(y) = sup {μA(x)| f (x) = y} when y is in the
range of f (that is, there is at least one element
x ∈ X for which f (x) = y), or 0 otherwise. Here
“sup” stands for supremum, the smallest number
that is greater than or equal to every member of
the set of values within the curly brackets; it is
the same as the maximum if the set in brackets is
“closed.” The extension principle basically says that
the membership value of f (A) at a point y is the
biggest of the membership values μA(x) for the
points x that are mapped to y. If f takes multiple
arguments, so that f : X1 × X2 × . . . Xn → Y, then
the fuzzy set A = A1 × A2 × . . . An may be defined
by μA(x1, x2, . . . , xn) = min(μA1(x1), μA2(x2), . . . ,

μAn (xn)) and the extension principle says
μ f (A)(y) = sup{min(μA1(x1), μA2(x2), . . . , μAn (xn))|

f (x1, x2, . . . , xn) = y} when y is in the range of f ,
and 0 otherwise.

Computing the image of a fuzzy set can be compu-
tationally difficult, particularly for multivariate func-
tions. However, there are some cases in which it is
relatively easy. For instance, if f is an invertible
function, and y is in the range of f , then μ f (A)(y) =
μA

(
f −1(y)

)
. In particular, if f is linear (and nonzero)

and A has a piecewise-linear membership function,
then f (A) is a piecewise-linear function determined
by simply mapping the vertices of the membership
function for A via f . For instance, the membership
function for the fuzzy number “about 3” shown in
Fig. 6.8 has vertices (2.5, 0), (2.875, 1), (3.125, 1), and
(4.0, 0); its image under a linear function f is again
piecewise linear with vertices ( f (2.5), 0), ( f (2.875),
1), ( f (3.125), 1), and ( f (4.0), 0). The image of “about
3” under a monotonic but nonlinear map g may not
be piecewise linear, as the example in Fig. 6.8 shows.
Nevertheless, a piecewise linear approximation with
vertices (g(2.5), 0), (g(2.875), 1), (g(3.125), 1), and
(g(4.0), 0) would probably be adequate for many prac-
tical applications.

Computing with fuzzy numbers provides a way
to propagate uncertainty or ambiguity in input val-
ues through a formula or algorithm. For instance,
fuzzy numbers may be used to represent environmen-
tal quantities subject to small-scale spatial or tempo-
ral variability or random measurement noise. If these
are then used as inputs to a mathematical model or
other formula, the answer will be a fuzzy number
whose shape will indicate the spread or uncertainty
in the result. For example, a method for remotely
detecting the liquid water content L in clouds using
measurements from two radars operating at different
frequencies is based on a formula that relates L to
the range derivative of the difference in measured
reflectivity:

L(r) ≈ (dBZ1(r + �r) − dBZ2(r + �r)) − (dBZ1(r − �r) − dBZ2(r − �r))

2 �r AL(r)
(6.1)

where r represents a range along the radar beams,
�r is the range spacing between adjacent measure-
ments along a beam, dBZ denotes reflectivity on
a decibel scale, and AL is a differential absorption
coefficient whose value is a function of the two
radar frequencies and the temperature (Williams and

Vivekanandan 2007). The uncertainty in estimating the
temperature at r leads to an uncertainty in AL , and
random noise affects each of the dBZ measurements.
Using fuzzy numbers to represent each of these quan-
tities yields a fuzzy number L(r) that provides infor-
mation about the distribution of possible true values
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Fig. 6.8 (Top) One possible membership function for a fuzzy number “about 3”. (Left) Membership function for f (“about 3”)
where f (x) = −5/3x + 6. (Right) Membership function for g(“about 3”) where g(x) = 1/(x − 2).

of liquid water content. This characterization of uncer-
tainty might be very important to a decision support
application – for instance, in assessing the risk that
an aircraft flying through the measured region might
experience hazardous icing conditions.

6.5 Fuzzy Logic

In classical logic, many logical statements may be
represented in terms of set relations. For instance, a
common form of reasoning is modus ponens, which
states that if the sentence “if P , then Q” and the state-
ment “P” both hold true, then it necessarily follows
that the statement “Q” must also hold true. The state-
ment “if P , then Q” is equivalent to the set inclusion

A ⊂ B, where A is the set of elements for which P
is true and B is the set of elements for which Q
is true. Said another way, suppose x is an element,
e.g., an environmental state, with attributes a(x) and
b(x). Then the statement, “if a(x) ∈ A then b(x) ∈ B”
means that the set of elements x for which a(x) ∈ A is
a subset of the elements x for which b(x) ∈ B, that is,
A ⊂ B. In terms of characteristic functions, if χA ≤
χB and χA(x) = 1, then it follows from this state-
ment that necessarily χB(x) = 1; on the other hand,
if χA(x) = 0, nothing is known about χB(x). In fact,
it is possible to write an equation for modus ponens
in terms of characteristic functions that expresses the
value of χB(x) given a value for a(x) and the state-
ment “if a(x) ∈ A then b(x) ∈ B” (“A → B” for
short). One such equation is χa(x),A→B(b(x)) = min
(1, 1 − χA(x) + χB(x)). To see why, note that if
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a(x) ∈ A, then χA(x) = 1 and it follows that
χa(x),A→B(b(x)) = min(1, χB(x)) = χB(x), that is,
b(x) ∈ B. Otherwise, χA(x) = 0 and it follows that
χa(x),A→B(b(x)) = min(1, 1 + χB(x)) = 1, represent-
ing the convention in classical logic that a logical state-
ment is always held to be true when the premise is
not satisfied, or, equivalently, that the statement gives
no information about whether b(x) ∈ B in this case.
Thus, the modus ponens equation shows that for each
value a(x) in the domain of A, the classical logic
statement “A → B” produces a set over b(x) in the
domain of B; this set may either be B itself or the
entire domain of B. Since fuzzy logic is an exten-
sion of classical logic, the fuzzy logic equivalent to
modus ponens must be defined to also generate such a
set.

In fuzzy logic, the statements P and Q are not
necessarily either true or false, but may be only par-
tially true. If A and B are fuzzy sets with member-
ship function μA representing the degree to which
P is true and μB representing the degree to which

Q is true, then by analogy with classical logic, the
statement “if P , then Q” should mean μA ≤ μB .
However, this tempting interpretation turns out to be
nonsensical. For instance, it might happen that the
fuzzy set B is not normal, that is, Q is a state-
ment that is never fully true. Then μB is always less
than one, but it should still be possible to form a
meaningful fuzzy logical statement “A → B” where
A is normal, that is, μA may be 1 and the premise
completely true! For instance, consider the state-
ment “if a dessert includes chocolate, then it is deli-
cious”, so that P = “a dessert includes chocolate” and
Q = “a dessert is delicious”. The fuzzy set A of
desserts including chocolate certainly has members
with truth value one. On the other hand, the fuzzy
set B of “delicious desserts” may not have any incon-
trovertible members – particularly if a cantankerous
professional food critic is setting the scale. The crux
of the issue is that fuzzy logic gives information about
the consequent Q even when the premise P is not
completely true or the consequent itself is ambiguous.

Fig. 6.9 Illustration of Mamdami’s fuzzy implication. The top
two plots provide possible definitions of the concepts “raining”
in terms of precipitation rate and “overcast” in terms of solar

light extinction, respectively; the lower plot illustrates the fuzzy
set resulting from the statement “If it is raining, then it is over-
cast” given a measured precipitation rate value of 1 cm/h.
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There are a number of different definitions for
fuzzy modus ponens that define the resultant fuzzy set
μa(x),A→B(b(x)) in a way that achieves this. One was
proposed by Mamdami (1974): μa(x),A→B(b(x)) =
min(μA(x), μB(x)). For a given value of a(x), μA(x)

has a specific value between 0 and 1 and the right
hand side of this equation represents a fuzzy set over
attribute b of x that is equal to μB(x) but trun-
cated at an upper bound of μA(x). In words, this
definition of fuzzy logical implication means some-
thing like, “if attribute a of x is a member of set
A to the extent μA(x) and A → B, then attribute b
of x is a member of set B to at most the extent
μA(x).” Mamdami-style inference is illustrated in
Fig. 6.9 for the statement, “If it is raining, then it
is overcast.” Other definitions for μa(x),A→B(b(x))

include one proposed by Zadeh: min(1, 1 − μA(x) +
μB(x)); the product: μA(x)μB(x); the bounded prod-
uct: max(0, μA(x) + μB(x) − 1); and the Boolean
logic implication: max(1 − μA(x), μB(x)).

In most cases, additional pieces of evidence and
associated logical statements are necessary to refine
the fuzzy set resulting from fuzzy modus ponens. The
process of combining different sources of evidence
using logical rules and determining a final “crisp” out-
put is called fuzzy inference.

6.6 Mamdami-Style Fuzzy Inference

The ultimate purpose of an artificial intelligence algo-
rithm is to map a set of inputs to one or more
outputs. In environmental science applications, the
inputs often consist of environmental measurements or
measurement-derived quantities, and the outputs typ-
ically represent an estimate of some attribute of the
system’s state or a recommended action to be taken.
Such mappings may be complex, and will often be
nonlinear. Fuzzy inference provides a way to build up a
mapping of this sort using logical rules like those often
employed in human natural language, as described
in the previous section. Because an “if. . . then” state-
ment involving fuzzy sets applies for any degree
of truth of the antecedent and provides only weak
information about the consequent, many such fuzzy
rules may need to be combined to provide conclu-
sive evidence. The ability to make use of multiple

sources of ambiguous information is one of the great
strengths of fuzzy logic inference. Not only does it
allow information to be used efficiently, but the fact
that many different rules are employed means that if
some input data are missing, the fuzzy inference sys-
tem can still function using the remaining rules. For
this reason, fuzzy logic algorithms are generally quite
robust.

To explore the structure of a fuzzy inference
system more concretely, suppose that the goal
of the system is to predict a value for a state
parameter u(x) based on a number of environmental
attributes a(x), b(x), . . . , d(x). If a number of rules
exist connecting these environmental attributes
(measurements or derived quantities, for instance)
to the state parameter being predicted, then the
antecedents and consequents of these rules must be
fuzzified, i.e., defined as appropriate fuzzy sets over
the domain of the relevant attribute. The rules can
then be expressed as a set of fuzzy logic statements
like those discussed in the previous section, e.g.,
A → R, B → S, . . . D → T . Using the known values
of the various environmental attributes in conjunction
with these statements and an appropriate definition of
fuzzy implication, each rule will yield a fuzzy set over
the domain of the parameter u(x). These resulting
fuzzy sets may then be aggregated to form a final
resultant fuzzy set over u(x). The most common way
to perform this aggregation is by taking the maximum
of the membership functions resulting from the
various rules. In this case. the membership function
resulting from the input values and fuzzy rules is
given by μa(x),b(x),...,d(x),A→R,B→S,...,D→T (u(x)) =
max(μa(x),A→R(x), μb(x),B→S(x), . . ., μd(x),D→T (x)).
If the Mamdami definition of fuzzy
implication is used, for example, this
becomes μa(x),b(x),...,d(x),A→R,B→S,...,D→T (u(x)) =
max(min(μA(x), μR(x)), min(μB(x), μS(x)), . . . ,

min(μD(x), μT (x))) and is called Mamdami-style
inference. Other methods for aggregation include
taking the sum of the membership functions resulting
from the various rules and either capping it at 1 or
renormalizing the sum so that the maximum value
is 1.

Once the resultant fuzzy set is obtained by aggre-
gating the results of the fuzzy rules, it is often desirable
to produce a final, “crisp” estimate of the value u(x)

through a process called defuzzification. One way to
perform defuzzification is to compute the centroid of
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Fig. 6.10 Illustration of Mamdami-style inference for deter-
mining a quantity u given four fuzzy rules and input values
a, q, r , and s. Aggregation is performed by taking the

maximum of the four truncated sets and defuzzification is
achieved by computing the centroid of the aggregated fuzzy
set.

the aggregated fuzzy set:
∫

u(x) μa(x),b(x),...,d(x),A→R,B→S,...,D→T (u(x)) dx
/

∫
μa(x),b(x),...,d(x),A→R,B→S,...,D→T (u(x)) dx (6.2)

This is the method illustrated in Fig. 6.10. Other meth-
ods for defuzzification include taking the value of
u(x) for which μa(x),b(x),...,d(x),A→R,B→S,...,D→T (u(x))

obtains its maximum, or computing the centroid over
only those values for which it exceeds some threshold.

A concrete example may help clarify the Mam-
dami fuzzy inference procedure. Suppose that a certain
teenager, who is in charge of watering the lawn each
Saturday, appears to need some assistance in knowing
how much to water each week. If you had a soil
moisture sensor, you could devise a formula to pre-
scribe a precise watering time. But without a sensor,
you might come up with the following simple rules as
a guide:

Rule 1: If the weather has been cool or wet, water
a little.

Rule 2: If the weather has been hot or dry, water a lot.

These are precisely the kind of natural language rules
that can be turned into a fuzzy logic expert system.
The first step is fuzzification, that is, defining the
appropriate fuzzy sets for the concepts involved. Cool

and hot are weather attributes that might naturally be
defined based on the average temperature measured
over the past week, t ; see Fig. 6.11. Similarly, dry
and wet are precipitation concepts that could be
defined in terms of the total precipitation over the
past week, p. Finally, watering a little or a lot in
this context could be defined by the number of hours
the water is to be left on, h. Now on any given
Saturday, a review of weather records over the past
week will yield t and p. Recalling that the fuzzy set
union (“or”) may be represented by the maximum
of the sets’ membership functions, it follows
that μcool or wet(week) = max(μcool(t), μwet(p)) and
μhot or dry(week) = max(μhot(t), μdry(p)). To eva-
luate Rule 1 under Mamdami-style fuzzy inference,
we compute the antecedent, μcool or wet(week),
and use it to “cap” the membership function of
the consequent, μa little(h), resulting in the fuzzy
set μ1(h) = max(min(μcool or wet(week), μa little(h))).
Similarly, evaluating Rule 2 yields the fuzzy set
μ2(h) = max(min(μhot or dry(week), μa lot(h))). Next
we must aggregate the results of these two
rules, for instance, by taking their maximum:
max(μ1(h), μ2(h)). Finally, we wish to determine
a precise number of hours to water, which
we do through defuzzification. This may be
accomplished, for instance, by taking the centroid∫

h max(μ1(h), μ2(h)) dh /
∫

max(μ1(h), μ2(h)) dh,
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Fig. 6.11 Fuzzy sets for use in determining watering time: temperature concepts (top), precipitation concepts (middle), and
watering time concepts (bottom).
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Fig. 6.12 Watering time as a
function of the previous
week’s temperature and
precipitation, produced by
substituting pairs of values of
t and p into the example
Mamdami-style fuzzy logic
inference system described in
the text.

where the integrals are computed via an appropriate
sum or quadrature. The ultimate result of this inference
procedure is the function depicted in Fig. 6.12 that
maps a week’s average temperature t and total
precipitation p into a prescribed number of hours h to
water the lawn. The function is surprisingly complex
given the simplicity of the rules, and is nonlinear
despite the fact that all the membership functions are
piecewise-linear. The addition of other rules could
help refine it further. For instance, specifying that no
watering is needed if it is cool and wet would allow
the watering time to approach zero in those conditions,
which the initial function does not. And including
linguistic rules involving other factors, such as soil
type, season of year, or type of grass used in the lawn,
could make the function more general. Nevertheless,
the fact that Mamdami-style fuzzy inference based
on two simple rules produces a function having
basically the correct behavior clearly illustrates the
power of this approach.

6.7 Takagi-Sugeno Fuzzy Inference

The language of science is of course not only lin-
guistic, but also mathematical. Thus, another form

of human scientific reasoning involves determining
when the environmental conditions are those in which
a known physical relationship applies. For example,
photosynthesis in plants may be limited by light,
water, carbon dioxide or nutrient availability, so dif-
ferent models for photosynthesis may be applicable
under different soil, weather and atmospheric con-
ditions. One might apply each of these models to
make a prediction of photosynthesis, then perform
a weighted average of the predictions using weights
that represent their degree of applicability based on
the current environmental conditions. A version of
fuzzy inference that accommodates this form of rea-
soning is called Takagi-Sugeno-style fuzzy inference,
named for the researchers who proposed it (Takagi and
Sugeno 1985).

In Takagi-Sugeno inference, a linguistic rule is used
to determine the degree of applicability of a given for-
mula for determining the variable of interest. The con-
sequent of a Takagi-Sugeno fuzzy rule is not a fuzzy
set as it is for Mamdami-style inference, but instead
a direct estimate of the variable determined by the
formula. So if the goal of the fuzzy inference system is
to predict a value for a state parameter u(x) based on
a number of environmental attributes a(x), b(x), . . . ,
d(x), a fuzzy rule might then have the structure, “If
A, then u(x) = f (a(x), b(x), . . . , d(x))”, where A is
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a fuzzy set dependent on some number of environmen-
tal attributes. (In a common formulation of Takagi-
Sugeno fuzzy inference, the function f is assumed
to be linear and to use only the variables involved
in the linguistic rule, but these restrictions are not
necessary.) Given n rules of the form, “If Ai , then
u(x) = fi (a(x), b(x), . . . , d(x))”, the resulting esti-
mate of u(x), denoted û(x), is then determined by the
weighted average

û(x) =

n∑
i=1

μAi (x) fi (a(x), b(x), . . . , d(x))

n∑
i=1

μAi (x)

(6.3)

In some cases, there may be some rules which
have greater relevance than others even when their
antecedents are equally true. In this case, a researcher
might assign an importance weight wi to each rule and
compute the estimate of u(x) via the formula

û(x) =

n∑
i=1

wi μAi (x) fi (a(x), b(x), . . . , d(x))

n∑
i=1

wi μAi (x)

(6.4)

Note that no additional defuzzification step is
needed for Takago-Sugeno fuzzy inference because
the result is the numerical estimate û, not a fuzzy set.

This makes Takago-Sugeno fuzzy inference compara-
tively efficient, while the ability to use arbitrary func-
tions f as the consequents of the fuzzy rules makes it
quite flexible. In addition, algorithms using this archi-
tecture are inherently robust because if some data are
missing, the remaining data may still be sufficient to
compute (6.4) with some values of i left out.

A special form of Takagi-Sugeno fuzzy inference
occurs when the functions fi are simply constant
values, that is, when the fuzzy rules have the form, “If
A, then u(x) = c.” In this case (6.3) may be interpreted
as averaging a number of numerical predictions, with
the weight of each prediction being given by the degree
of truth of the antecedent to each rule. It is interesting
to note that the final result in this case is the same as
it would be if the consequents are interpreted as fuzzy
sets and Mamdami-style fuzzy inference is employed
along with the centroid method of defuzzification. For
example, Takagi-Sugeno style rules for the watering
time example from the previous section might be writ-
ten as:

Rule 1: If the weather has been cool or wet, watering
time h1 = 0.75 h.

Rule 2: If the weather has been hot or dry, watering
time h2 = 2.15 h.

Then the resulting estimate of required watering time
is given by the function:

ĥ(t, p) = μcool or wet(t, p) (0.75) + μhot or dry(t, p) (2.15)

μcool or wet(t, p) + μhot or dry(t, p)

= max(μcool(t), μwet(p))(0.75) + max(μhot(t), μdry(p) )(2.15)

max(μcool(t), μwet(p)) + max(μhot(t), μdry(p) )
(6.5)

where the membership functions for cool, wet, hot,
and dry are again defined by the plots in Fig. 6.11.
This function ĥ is nearly indistinguishable from the
function resulting from the Mamdami-style inference
system described in the previous section and plotted in
Fig. 6.12. Indeed, the Mamdami-style system would
be identical to (6.5) if the fuzzy sets for “water a
little and “water a lot” were replaced by their “typ-
ical” values, that is, the singleton sets μa little(h) ={

1 if h = 0.75
0 otherwise and μa lot(h) =

{
1 if h = 2.15
0 otherwise , turning the

centroid defuzzification step into the simple weighted
mean. A Mamdami-style inference system can fre-
quently be simplified using this technique without

substantial loss of information, particularly if the con-
sequent fuzzy sets are symmetric or nearly so and do
not overlap substantially.

6.8 Fuzzy Consensus Methods

A somewhat simplified form of Takagi-Sugeno fuzzy
inference may be interpreted as one of the class of arti-
ficial intelligence techniques called consensus meth-
ods or mixtures of experts. In this interpretation, each
member of a group of “experts” evaluates various
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attributes of the environmental state and makes a pre-
diction of some variable of interest. The results are
then averaged, using weights for each expert’s predic-
tion based on some measure of his or her reputation
or past skill. In addition, the experts might accompany
each prediction with a 0 to 1 measure of their confi-
dence in it, with greater confidence being expressed
when the required data are available and of good qual-
ity and the theory or experience being applied by the
expert is judged appropriate to the conditions at hand.
If the reasoning of each expert from evidence to pre-
diction is described by a function f , this procedure
corresponds precisely to that described in (6.4), but
with the fuzzy set membership values μAi (x) replaced
by each expert’s “confidence”, ci :

û(x) =

n∑
i=1

wi ci(x) fi(x)

n∑
i=1

wi ci(x)
(6.6)

Said another way, the fuzzy consensus reasoning for-
mula (6.6) is a special version of Takagi-Sugeno fuzzy
inference in which the antecedent Ai for each rule is
taken to be the fuzzy set, “the required data are of good
quality and the predictive function is appropriate for
this scenario.” Many applications in the environmental
sciences are naturally handled using fuzzy consensus
reasoning, taking as inputs several environmental mea-
surements or features, using an assortment of methods
to predict a variable of interest, and then combining
the results. For instance, in forecasting thunderstorm
initiation, researchers might utilize data from satellite-
measured cloud-top growth rates, numerical weather
models, and radar measurements, each of which can be
used to give a prediction of whether initiation is likely
to occur, and then combine them to obtain a more
reliable forecast than any of the inputs could provide
by themselves.

In many applications, assigning the confidences ci

is a very important part of the fuzzy consensus algo-
rithm. In fact, the confidences are often computed
using data quality values and assessments of relevance
that are themselves determined by separate fuzzy logic
algorithms. The assignment of a confidence to each
prediction also allows the final output given by the
fuzzy logic algorithm to itself be assigned a confidence
value that will aid users in interpreting it for deci-
sion making purposes. For instance, if an atmospheric
turbulence detection algorithm estimates severe turbu-

lence in a region but has low confidence in this assess-
ment, it might not make sense to re-route air traffic
around the area without other confirming information
that a hazard is present. The confidence associated
with the estimate in (6.6) might be computed as

ĉ(x) =

n∑
i=1

wi (ci(x))
m+1

n∑
i=1

wi (ci(x))
m

(6.7)

if any product wi ci (x) > 0, and 0 otherwise, where
m ≥ 0. For example, if one chooses m = 0, the for-
mula (6.7) simply produces the weighted-mean con-
fidence. If m > 0, then the confidences become part
of the averaging weights, and as m → ∞, ĉ(x) →
max{i | wi >0} ci (x). More generally, since confidences
are equivalent to fuzzy membership function values,
they may also be combined using fuzzy-logical oper-
ations, such as AND (min) or a weighted geometric
average such as

ĉ(x) =
n∏

i=1
ci (x)wi

/∑n
k=1 wk (6.8)

which yields a large final confidence ĉ only if all of the
input confidences ci with wi > 0 are not too small.

Returning to the example of determining the opti-
mal lawn watering time based on the previous week’s
temperature and precipitation, predictive functions or
interest maps based on t and p alone might be cho-
sen as depicted in Fig. 6.13; although these happen
to be piecewise-linear functions, that is for illustrative
purposes and is not a requirement. Suppose that for
a particular week both predictions have equal confi-
dence (say 1), and that the temperature interest map
is given a weight of 0.4 and the precipitation interest
map a weight of 0.6. Then the function resulting from
applying the fuzzy consensus reasoning formula (6.6)
is displayed in Fig. 6.14. Note that Fig. 6.14 is quite
similar to Fig. 6.12 except that it is piecewise linear
(being a linear combination of piecewise linear func-
tions in this example). If the confidence in t and p were
not equal, then the interest map with higher confidence
would begin to dominate. Of course, in a practical
application there would ideally be many inputs pro-
viding somewhat redundant information so that loss of
confidence in one or two input variables would only
slightly degrade performance.

Two applications of the fuzzy consensus reason-
ing technique deserve special mention. The first is an
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Fig. 6.13 Possible interest maps for determining watering time given precipitation (left) or temperature (right) for use in a fuzzy
consensus reasoning system.

Fig. 6.14 Watering time as a function of t and p from the fuzzy consensus reasoning example described in the text.

application to data smoothing or interpolation. Sup-
pose that a quantity of interest is available over some
domain (usually spatial or spatio-temporal), and each
value xi is assigned a confidence estimate ci , e.g., from
a data quality control procedure. A standard smoothing
or interpolation approach is to convolve a smooth-
ing kernel, say a Gaussian, with the data field. Fuzzy
consensus smoothing additionally makes use of the

confidences to reduce the influence of lower-quality
data, and also produces a confidence estimate for each
smoothed point. For each target location, the smooth-
ing kernel is “centered” at that point and the weight
wi for each data point xi in the neighborhood is deter-
mined by the value of the smoothing kernel there. Then
the smoothed value may be computed via an applica-
tion of (6.6), with fi (x) replaced with the data value xi
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and ci (x) replaced with ci ; the confidence associated
with the smoothed value may be computed via (6.7).
When the quality control procedure is imperfect so that
some outliers are assigned nonzero confidence, then
the data points in the neighborhood may first be sorted
and the top and bottom p% of the corresponding wici

set to 0 before (6.6) and (6.7) are applied, where p
is between 0 and 50%. This method may be referred
to as fuzzy confidence-weighted trimmed-mean kernel
smoothing. If p = 0, no trimming occurs, while if
p = 50%, the method becomes a confidence-weighted
median.

A closely related application is a fuzzy version
of the popular k-nearest neighbor (k-NN) algorithm
for generalizing from examples. In the classical k-
NN, a set of labeled data are used to infer the class
of a new example based on the class occurring most
frequently among the k nearest labeled points. For
instance, the data points might consist of vectors hav-
ing as components measurements from various sensors
(e.g., temperature, pressure, humidity) recorded at 9
am on a number of different days, and the classes could
be what sort of weather was observed that afternoon
(e.g., clear, cloudy, light rain, thunderstorm). Given
a value of k, a distance metric, and a vector of sen-
sor measurements from a subsequent morning, the k-
NN algorithm would determine a weather prediction
based on the historically best-matching observed class
among the k nearest neighbors to that data vector. In
the fuzzy version of k-NN, the class labels of the his-
torical points are replaced by fuzzy class membership
values between 0 and 1, and the membership of the
new example is given by a distance- and membership-
weighted consensus of the k nearest neighbors. More
precisely, suppose a collection of data vectors {x j }
have fuzzy class memberships μCi for classes {Ci |1 ≤
i ≤ N }, k is chosen as the number of neighboring
points to consider, and m > 1 (smaller values corre-
spond to “tighter”, more localized influence). A metric
d must be specified so that d(xi , x j ) represents the
“distance” between the two vectors xi and x j . Com-
mon choices for d are the standard Euclidean distance
(the square root of the sum of squared differences of
the vector elements) or the Manhattan distance (the
sum of the absolute values of the vector element dif-
ferences). It is sometimes useful to first re-scale the
data so that the range of values for each vector com-
ponent is approximately the same. If {yn|1 ≤ n ≤ k}
are the k points from the set {x j } that are closest

to a new data vector x, then fuzzy k-NN assigns
the class membership of x for each class Ci via the
formula

μCi (x) =

k∑
n=1

μCi (yn) d(x, yn)
− 2

m−1

k∑
n=1

d(x, yn)
− 2

m−1

(6.9)

If the original class memberships are defined so
that their sum for each data point is 1, that is,∑N

i=1 μCi (xn) = 1 for each xn , then it can be shown
that

∑N
i=1 μCi (x) = 1 as well. In contrast to the stan-

dard k-NN algorithm, which yields only the best-
matching class, the class memberships μCi (x) returned
by fuzzy k-NN provide much richer information about
the ambiguity of the similarities identified between the
new data and the historical examples. In the weather
forecasting example, the historical data class member-
ships could accommodate ambiguities in the observed
weather (e.g., the degree of cloudiness), and the mem-
berships assigned via (6.9) would provide some notion
of the uncertainty in the nearest neighbor prediction.
Moreover, even if the class with the highest mem-
bership is ultimately chosen as the final “defuzzified”
prediction, the fuzzy k-NN method is somewhat more
nuanced than the original version because it weighs
the neighborhood data closest to the point being clas-
sified more strongly than more distant – and hence
potentially less relevant – examples. For instance, in
Fig. 6.15, classical k-NN with k = 5 assigns the point
at “x” to the class “green”, since the three of the
five nearest points (shown in the dotted circle) are
labeled as green. Fuzzy k-NN assigns non-zero mem-
berships to both “blue” and “green”, with the precise
values depending on the distance weighting function
and value of m chosen. If m is small, membership in
“blue” could be greatest since a blue point is closest to
the “x”.

6.9 Fuzzy c-Means Clustering

Fuzzy c-means (FCM) clustering is an algorithm for
partitioning a multivariate dataset into a prespecified
number of fuzzy “clusters”, each represented by a
fuzzy set defined over the points in the dataset. It
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Fig. 6.15 k-nearest neighbor
example for three classes (red,
green and blue) and k = 5.

is a fuzzy variant of the familiar classical method
called k-means clustering, which separates data into k
“crisp” sets. While the result of k-means clustering is
a partition of the data points into disjoint classical sets,
under FCM clustering the data points may have partial
membership in several different fuzzy sets. Both clus-
tering methods are unsupervised learning methods that
find patterns in data without the benefit of “labeling”
by a human expert. In environmental science applica-
tions, the points being clustered will usually be vectors
comprised of several measurements or derived quanti-
ties that represent features of the environmental state
at a particular time and location. Clustering can reveal
the different major domains or attractors in a dynam-
ical system – weather patterns, for example – which
may then be analyzed separately to determine their
important characteristics. Using fuzzy sets in place of
classical ones makes for a more robust clustering algo-
rithm and may provide richer information about the
data.

Fuzzy c-means clustering begins with c (a predeter-
mined number) cluster centers, or prototypes, which
may be arbitrarily initialized or chosen based on prior
knowledge of the data. The distance from each of

the dataset points to each of the cluster prototypes is
computed, and each point is assigned a membership
in each of the c clusters based on these distances.
New prototypes for each fuzzy cluster are then com-
puted by taking the cluster-membership-weighted cen-
troid of all the points, and the process is repeated
until the change in the prototypes becomes small. Fig-
ure 6.16 shows an example of fuzzy c-means clus-
tering used to find two clusters in two-dimensional
data.

More formally, suppose that the dataset consists of
N vectors {x1, x2,. . ., xN ). As in the k-nearest neigh-
bor technique described earlier, the FCM algorithm
requires that a metric d is specified so that d(x, y)

represents the “distance” between vectors x and y. A
number c is selected for the number of fuzzy clus-
ters desired, and initial prototype points v1, . . . , vc are
specified or chosen randomly. A parameter m > 1 is
chosen to represent the “tightness” of the clusters: val-
ues of m near one will produce more distinct or crisp
clusters, while larger values of m will allow more over-
lap or “fuzziness”. Finally, a convergence threshold
ε > 0 is chosen to determine when to stop the iteration,
which proceeds as follows:
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Fig. 6.16 Fuzzy c-means clustering example with two fuzzy
sets and six iterations shown. The points are colored according to
the membership in set “A”, so that points with high membership

in set “A” are colored red and points with low membership in set
“A” (hence high membership in set “B”) are colored blue. An
“x” marks each cluster center.
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1. Define the membership of each data point xk in the
i th cluster, Ci by

μCi (xk) =
⎛

⎝
c∑

j=1

(
d(xk, vi )

d(xk, v j )

) 1
m−1

⎞

⎠
−1

. (6.10)

2. Compute new cluster prototypes vi via

vi =

N∑
k=1

xk
(
μCi (xk)

)m

N∑
k=1

(
μCi (xk)

)m
. (6.11)

3. If the absolute value of the change in each clus-
ter prototype is less than ε for every vector ele-
ment, then the iteration stops. Otherwise, return to
step (1).

The final result is a set of fuzzy clusters Ci

defined in such a way that for each data vector
xk,

∑c
i=1 μCi (xk) = 1, that is, the total membership of

xk in all c fuzzy clusters is one.
As is true for many machine learning techniques,

the choice of the number of clusters, c, and the “fuzzi-
ness” parameter m is a bit of an art form, and may
require a trial-and-error approach to get meaningful
results. And while there are formulas in the literature
for determining the “goodness” of a given clustering,
its utility may really be dependent on the final appli-
cation. Note also that the FCM algorithm will not nec-
essarily identify the same fuzzy clusters in different
runs unless the initial prototypes are the same each
time; thus, a careful choice of the initial prototypes
or performing a number of independent runs may be
worthwhile.

In addition to identifying structures in data, fuzzy
clustering might also provide an important step to
developing a fuzzy inference system when human
expertise in solving a problem is incomplete. As
an example, using clustering to identify different
“domains” in weather sensor data might aid in creating
a forecast based on those data by training a differ-
ent predictive model (a multilinear fit, for example,
or even a neural network) separately on each cluster.
Then a Takagi-Sugeno-style fuzzy inference system
could be constructed that combines the various models
based on the degree of membership of a point in the
antecedent fuzzy cluster.

Fig. 6.17 Anatomy of a typical fuzzy logic algorithm.

6.10 Fuzzy Logic Algorithms

A typical fuzzy logic algorithm consists of several
elements in addition to the fuzzy inference component
(see Fig. 6.17). For instance, input data must often
be pre-processed to derive desired features and per-
form appropriate quality control. Extracting features
from the raw data may require complicated compu-
tations, such as convolving a kernel function with an
image to identify boundaries, or computing contours,
curvatures, derivatives or averages. These are then
used to compute fuzzy set memberships or as inputs
to interest maps. In conjunction with this process,
input data should be quality controlled to ensure that
corrupt data are censored or flagged with low confi-
dence values so that their influence can be mitigated
downstream. In environmental science applications,
assessing data quality is often a vital component of
a fuzzy logic algorithm that may even require a full-
fledged fuzzy logic algorithm in its own right. After
features and confidences have been computed, they
may be used as input to fuzzy rules in the form of
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Mamdami, Takagi-Sugeno, or fuzzy consensus reason-
ing. The outcomes of these rules are then aggregated
and, if necessary, the result is “defuzzified” to pro-
duce a “crisp” output prediction or action. Fuzzy logic
algorithms may also involve iterative components that
run several times until a desired level of quality or
certainty is achieved. And fuzzy logic algorithms may
use combinations of different kinds of fuzzy reasoning,
fuzzy numbers or even heuristics developed just for
a particular problem; their common characteristic is
that they mimic the human problem-solving approach
of accommodating and exploiting ambiguity and post-
poning a “crisp” conclusion until the very last possible
moment.

In the end, the fuzzy logic algorithm comprises a
set of computations that provide a mapping from input
data to an output prediction or action, and the methods
described in this chapter are simply efficient ways for
creating an appropriate mapping. If the human expert
knowledge encoded in the fuzzy logic algorithm is of
high quality and the algorithm is implemented cor-
rectly, the algorithm will usually do a good job on
the problem it was designed to solve. On the other
hand, if the human understanding of how to solve a
given problem is inaccurate or incomplete, the fuzzy
logic algorithm might not work as well as it potentially
could.

One solution to this predicament is to use training
data – pairs of input vectors and the associated ideal
output, or “truth” values – to tune the fuzzy logic
algorithm’s parameters to optimize its performance.
For instance, a training dataset might consist of the

data used as input to a forecast algorithm along with
subsequent measurements representing what actually
happened. In this approach, the fuzzy logic algorithm
is considered a function whose behavior can be mod-
ified by changing various parameters, which we may
refer to collectively as the vector α. These might
include values that control data preprocessing, para-
meters that describe each fuzzy set membership func-
tion (e.g., the vertices and values defining a piecewise-
linear function), or the weights used in computing
a fuzzy consensus. Indeed, tuning fuzzy logic algo-
rithms is quite similar to training neural networks. In
neural network case, the architecture of the network
is defined by the number of hidden layers and nodes
and the activation functions, and the parameters are
the connection weights. Training occurs by modifying
the weights to minimize the error between the neural
network’s outputs and the “truth” data, either by the
gradient-descent backpropagation technique or some
other method. A fuzzy logic algorithm has a differ-
ent architecture, but it is still controlled by a set of
parameters that can be adjusted to improve its perfor-
mance (see Fig. 6.18). When fuzzy logic systems are
optimized using training data, the result is sometimes
called a neuro-fuzzy system. This approach to tuning
a fuzzy logic system can be immensely powerful. It
means that if a researcher has a good idea of what fea-
tures are important and what the correct form (archi-
tecture) of an algorithm is but is not sure about some
of the details – e.g., the ideal definition of each interest
map – those details can be “filled in” using training
data.

Fig. 6.18 Diagram
illustrating how a fuzzy logic
algorithm, represented as a
function f determined by a
set of parameters α, may be
tuned to improve its
performance when training
data in the form of xi , yi pairs
are available.
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Several considerations might inform how the fuzzy
logic algorithm is tuned. First, the error function (e.g.,
sum of squared differences between the predicted and
target values) will be easy to write down in closed form
only for the simplest algorithms, so a gradient-descent
style optimization method would usually require esti-
mating the gradient using multiple evaluations. How-
ever, for some fuzzy logic systems the error function
may not be differentiable or even continuous in the
parameters α, or it might have numerous local minima
besides the global minimum that could trap a gradient
descent technique. Furthermore, minimizing a simple
error metric like the sum of squared errors is not
necessarily what is desired for environmental science
applications. Often, a forecaster might be interested
in maximizing the True Skill Score or another skill
statistic, and a remote sensing system might be eval-
uated based on the area under the Receiver Operating
Characteristic (ROC) curve (see Chapter 2). Evaluat-
ing a decision support system might involve a compli-
cated simulation of the costs and benefits associated
with using the system. Such evaluation functions are
in general not differentiable with respect to the fuzzy
logic algorithm’s parameters. Therefore, a general and
effective way to tune a fuzzy logic algorithm is to
use a genetic algorithm, representing the vector of
parameters as a chromosome (see Chapter 5). Genetic
algorithms do not make any assumptions about the
differentiability or even continuity of the evaluation
function and have been shown to work well for tuning
fuzzy logic algorithms. The most difficult task may be
to define an evaluation function that fully captures the
salient details of performance, carefully treating issues
of rare events, for instance. Sometimes, in fact, the
evaluation function itself might best be implemented
as a fuzzy logic algorithm that appropriately balances
performance tradeoffs in different situations.

When a fuzzy logic algorithm is tuned “on line” as
it is operating, the result is called an adaptive fuzzy
system. For instance, the combination weights wi in a
Takagi-Sugeno system (6.4) or fuzzy consensus sys-
tem (6.6) may be modified based on the recent per-
formance of the associated predictive function, giving
those functions that are doing well a bit more weight
when they are corroborated and reducing the weight
for those that poorly match the verification data. Since
the dynamics of many natural systems tend to tran-
sition between distinct domains (e.g., as they orbit
strange attractors), each of which has different charac-

teristics or phenomenology, this capability allows the
fuzzy algorithm to adapt appropriately as the situation
changes. However, a fuzzy system that relies heavily
on this sort of dynamic tuning may not perform well
when the environmental system being measured transi-
tions suddenly from one domain to another, and it may
mask a problem in a data source that might best be
dealt with directly. Whenever possible, it is probably
preferable to identify the different domains or hidden
variables that underlie the changing performance and
incorporate them into the fuzzy logic algorithm itself.
On the other hand, many environmental systems are
quite complicated, and treating them with an adaptive
fuzzy system may be the only practical approach.

6.11 Conclusion

Fuzzy logic provides a framework for creating expert
systems that use information efficiently, encode human
knowledge and heuristics, and are relative straightfor-
ward to implement. A central concept is that of fuzzy
sets, which may be used to represent unsharp concepts
like those commonly used in human communication
and reasoning. A mathematical definition for fuzzy
sets, accompanied by rules for manipulating them in
analogy to classical sets, has been presented. A dis-
cussion of how fuzzy membership functions may be
formed and combined via logical operations was fol-
lowed by a description of Mamdami, Takagi-Sugeno
and fuzzy consensus methods of inference. The fuzzy
consensus method provides a basis for the confidence-
weighted smoothing of data and the fuzzy k-nearest
neighbor method for classifying data based on a col-
lection of examples. Fuzzy clustering was presented
as a way to discover structure in datasets that could
be used as a step in developing a Takagi-Sugeno style
fuzzy inference system. Fuzzy logic provides a natural
way to integrate data quality control and information
about measurement uncertainty into algorithms. When
training data are available, the performance of a fuzzy
logic algorithm can be optimized by using a genetic
algorithm or another technique to tune the parameters
governing its behavior, though a careful choice of the
objective function is necessary to obtain good results.
If tuning is done during algorithm operation as veri-
fication data become available, the resulting adaptive
fuzzy system can maintain good performance despite
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gradual changes in the environment or data sources.
Fuzzy logic algorithms do not necessarily achieve the
very optimum performance possible; rather, they fall
into the category of “soft computing” methods that are
robust, relatively easy to create and maintain, and per-
form very well on complex problems. These features
make fuzzy logic a valuable tool for many environ-
mental science prediction and decision support appli-
cations.
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7Missing Data Imputation Through Machine
Learning Algorithms

Michael B. Richman, Theodore B. Trafalis, and Indra Adrianto

7.1 Introduction

How to address missing data is an issue most
researchers face. Computerized algorithms have been
developed to ingest rectangular data sets, where the
rows represent observations and the columns represent
variables. These data matrices contain elements whose
values are real numbers. In many data sets, some of the
elements of the matrix are not observed. Quite often,
missing observations arise from instrument failures,
values that have not passed quality control criteria,
etc. That leads to a quandary for the analyst using
techniques that require a full data matrix. The first
decision an analyst must make is whether the actual
underlying values would have been observed if there
was not an instrument failure, an extreme value, or
some unknown reason. Since many programs expect
complete data and the most economical way to achieve
this is by deleting the observations with missing data,
most often the analysis is performed on a subset of
available data. This situation can become extreme in
cases where a substantial portion of the data are miss-
ing or, worse, in cases where many variables exist with
a seemingly small percentage of missing data. In such
cases, large amounts of available data are discarded
by deleting observations with one or more pieces of
missing data. The importance of this problem arises
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as the investigator is interested in making inferences
about the entire population, not just those observations
with complete data.

Before embarking on an analysis of the impact of
missing data on the first two moments of data distri-
butions, it is helpful to discuss if there are patterns
in the missing data. Quite often, understanding the
way data are missing helps to illuminate the reason
for the missing values. In the case of a series of
gridpoints, all gridpoints but one may have complete
data. If the gridpoint with missing data is considered
important, some technique to fill-in the missing val-
ues may be sought. Spatial interpolation techniques
have been developed that are accurate in most situ-
ations (e.g., Barnes 1964; Julian 1984; Spencer and
Gao 2004). Contrast this type of missing data pattern
to another situation where a series of variables (e.g.,
temperature, precipitation, station pressure, relative
humidity) are measured at a single location. Perhaps
all but one of the variables is complete over a set of
observations, but the last variable has some missing
data. In such cases, interpolation techniques are not
the logical alternative; some other method is required.
Such problems are not unique to the environmental
sciences. In the analysis of agriculture data, patterns
of missing data have been noted for nearly a century
(Yates 1933). Dodge (1985) discusses the use of least
squares estimation to replace missing data in univariate
analysis.

The majority of multivariate analysis techniques
require that all variables be represented for each obser-
vation; hence, some action is required in the presence
of missing data. In multivariate data sets, the patterns
of missing data range from random to ordered. An
example of the latter exists when some factor impacts
a set of variables simultaneously (e.g., an ice storm

S. E. Haupt et al. (eds.), Artificial Intelligence Methods in the Environmental Sciences 153
© Springer-Verlag Berlin Heidelberg 2009
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encrusting the anemometer blades for several sites).
Traditionally, the most common method to address
this type of missing data is with complete case dele-
tion (Afafi and Elashoff 1966). This does have several
advantages, including simplicity and all calculations
are performed on the same observations. However, dis-
advantages arise from discarding information, includ-
ing loss of precision and introduction of bias, in situ-
ations where the missing data are not exactly totally
random. The loss of efficiency is due to increasing
the variance of data after missing observations have
been removed. The impact can be particularly insidi-
ous, for matrices with moderate to large numbers of
variables. For example, in a network of 100 gridpoints,
where each variable independently has a 1% chance of
being missing, then the expected proportion of com-
plete cases is 0.99100 = .366. Therefore, only 36.6/.99
= 37% of the data values will be retained. With the
availability of very large high-density global datasets
with thousands of variables, even a tiny percentage
of missing data on each variable can result in unex-
pectedly large fractions of the data removed by com-
plete case deletion. The impact of such removal varies.
For data that are independent, and with data that are
missing completely at random, there is no correlation
between variables and the issues of bias and variance
inflation can be ignored (the assumption is that what
remains is a perfect sample from the population and
the variance can be adjusted by knowing the number of
missing data) (Wilks 1932). However, such a situation
is rarely encountered in meteorology, where sets of
highly correlated variables are the norm. What occurs
most often is an unknown increase in bias and inflation
of the variance. A variation of patterns of missing
data applies to certain observational networks (e.g., the
National Climatic Data Center’s Cooperative Observ-
ing Network for temperature and precipitation). These
networks were established around 1900 and increased
in density throughout much of the 20th century, had a
maximum density in the 1970s and a decreasing den-
sity since that time. For a fixed data set based on these
cooperative data (e.g., The Lamb-Richman datasets;
Richman and Lamb 1985), temporal extensions of the
network run into problems as long-existing stations
drop out. Using such datasets for research requires spe-
cial sampling strategies. One can partition such data
sets into blocks of available stations, with successively
smaller blocks as stations cease operation. Each block
is analyzed separately to address missing data. Such

techniques have been used successfully in the social
sciences (Marini et al. 1980). Recalling the example
of 1% missing data on a modestly sized analysis, it is
apparent that with large data sets a possible outcome
is that two or more variables may not share any obser-
vations. One variable may be present at times where
another is missing and vice versa. This will make any
partial associations between these variables meaning-
less.

In all the situations mentioned, the analyst must
resolve how to proceed. There are several implicit
assumptions that would suggest the analyst search for
a value to impute or replace the missing data. The
first assumption is that data that are missing represent
values that are meaningful for subsequent analyses.
This is the key reason why it is worthwhile to examine
the efficacy of imputation methods. In meteorological
analyses, sometime extreme weather conditions lead to
instrument failures. Such information may be impor-
tant to the analysis and suggests that the mechanism
that gives rise to missing data may be important. If this
is true, then the distribution may be worth investigat-
ing (Rubin 1976). The importance of this lies in the
skewness of the distribution. More missing data may
reside in the right or left tail of the distribution and
replacement by random generation from a uniform or
normal distribution could lead to bias.

In multivariate analyses, such as principal compo-
nents, the data are reduced to a sample mean vec-
tor and a covariance matrix of the variables. Several
options exist, including complete case analysis, insert-
ing the sample mean for each piece of missing data
and imputation of some modeled value. In the first
case, a considerable amount of data may be discarded,
and biased results emerge. The second option reduces
the variances and covariances, leading to distortions
in the eigenvalues and eigenvectors. Less is known
about the third possibility. If the data can be assumed
multivariate normal, the mean vector and covariance
matrix can be estimated by maximum likelihood (Cox
and Hinkley 1974). This involves replacing missing
values on one variable by regressing it on a vari-
able without missing data and calculating the predic-
tions from the regression equation. A more general
algorithm is based on expectation-maximization (EM)
algorithm (Meng and Rubin 1991). The key to the
EM algorithm is an iterative regression approach that
converges to an appropriate value to impute. With
the advent of nonlinear modeling techniques, such as
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artificial neural networks (ANNs) and support vector
regression (SVR), there is no reason to limit the itera-
tive procedure to linear models.

The literature on the impacts of missing data in the
atmospheric sciences, while not as extensive as that in
statistics, is substantial. Despite this, several studies
have noted decisions made to address missing data
can have a profound impact on subsequent analyses
(e.g., Kidson and Trenberth 1988; Duffy et al. 2001
summarize the importance of this issue). Additionally,
proxy-based reconstruction methods are sensitive to
the technique used to relate the data that are present
to those that are missing (Rutherford et al. 2005;
Mann et al. 2005). Climate monitoring issues impacted
by gaps of missing data was reported by Stooksbury
et al. (1999). For analysis of temperature observing
networks, Kemp et al. (1983) compared several meth-
ods, finding regression yielded the smallest errors.
However, using temperature records to track potential
climate change has been hampered by missing data.
In a study by Lund et al. (2001), only 359 of 1,221
stations in a network were used owing to missing data.
Noting such problems, Lu et al. (2005) used more
recent imputation methodology with results exhibiting
smooth variations in gradients.

In cases where the individual observations are
thought not important, deletion of every observation
missing one or more pieces of data (complete case
deletion) is common. This appears to be fostered by the
wide use of data analysis packages (e.g., nancov, isnan
in MATLAB Statistics Toolbox 2007) owing to the
ease of its implementation. As the amount of missing
data increases, tacit deletion can lead to bias in the
first two statistical moments of the remaining data and
inaccuracies in subsequent analyses. In datasets, where
extreme values are of importance, extremes in wind
speed and rainfall may be associated with meteoro-
logical conditions that lead to instrument failure and
loss of data. Significantly, it is those extreme values
that are of interest. If the data are deemed important to
preserve, some method of filling in (or imputing) the
missing values should be used.

Historically, if missing data were replaced, the sta-
tistical mean has been used most often as it was
thought to minimize perturbations. Despite that, the
use of the mean injects the same value into every
instance of missing data and has been shown to create
artificially low variation (Roth et al. 2005). What is
desired is a principled method that uses information

available in the remaining data to predict the missing
values. Such techniques include substituting nearby
data, interpolation techniques and linear regression
using nearby sites as predictors. One class of technique
that uses the information available to model uncer-
tainty is known as iterative imputation.

The results from any technique used to estimate
missing data depend, to a large extent, on the patterns
of interrelated data (the degree of oversampling) and
the manner in which the data are missing. The mech-
anism responsible for missing data should be assessed
as random or systematic. In some cases, a few con-
secutive missing observations can be estimated with
little error; however, if a moderate to large amount of
data is missing, the results would be different. Moti-
vated by such design questions, the present analysis
seeks to examine how a number of techniques used to
estimate missing data perform when various types and
amounts of missing data exist. Imputation using EM
algorithms have been applied to a wide range of prob-
lems (Meng and Pedlow 1992). The technique was
developed in its present form by Hartley (1958) and
further refined by Orchard and Woodbury (1972). The
term EM was coined by Dempster et al. (1977). Sev-
eral research studies have investigated various types of
imputation. Rubin (1988) showed the improvements
when using multiple imputation rather than single
imputation. Variations of regression forms of impu-
tation techniques have been applied to climate data
(e.g., EM algorithm, Schneider 2001) with promising
results.

In this work, different types of machine learn-
ing techniques, such as support vector machines
(SVMs) and artificial neural networks (ANNs) are
tested against standard imputation methods (e.g., mul-
tiple regression EM). These are compared to older
techniques to document if they have the potential to
offer improvement over older techniques. All methods
are used to predict the known values of synthetic or
randomly-generated data which have been thinned or
altered to produce missing data. These data sets are
on the order of 10 variables and 100 observations.
Both linear and nonlinear synthetic data are used for
comparison.

The data used in the analyses are described in
7.2. A brief overview of the methodology and exper-
iments is provided in 7.3–7.4. The results are sum-
marized in 7.5 and suggestions for implementation
presented in 7.6.
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7.2 Data Sets

Linear and nonlinear synthetic data are used in this
study. Two linear synthetic data sets are randomly sam-
pled from populations with two different correlations
(0.3 and 0.7). These values span the range of correla-
tion associated with the majority of geophysical data.
A nonlinear synthetic data set is generated using the
following function with 10 variables:

y = 5 sin 10x1

10x1
+ 2x3

2 − 3 cos 10x3 + 4 sin 5x4

5x4

− 3 sin 4x5 − 4x2
6 − 9

sin 3x7

7x7
+ 3

cos x8

+ 4 sin 3x9 − 3x4
10 + ζ (7.1)

where −1 ≤ xi < 1 for i = 1, . . . , 10, with a 0.02
increment, and ζ is the uniformly distributed noise
between 0 and 0.5. The scatter plot of all pairs of
variables used in the analyses, for each data set, can be
found in Figs. 7.1–7.3. The degree of linearity (non-
linearity) can be assessed by visual examination of all
pairs of variables.

All data sets consist of 100 observations with 10
variables. As missing data can occur in random or
block patterns, both configurations are tested in this
study. Each data set is altered to produce missing data
by randomly removing one or more data and several

blocks of data in two different percentages (10% and
40%) of the observations. In the case of blocks, the
block size is 5% of the data set. For both percentages
of missing data, multiple blocks of 5% are removed.
In every case, since the data removed are known and
retained for comparison to the estimated values, infor-
mation on the error in prediction and the changes in
the variance structure are calculated.

7.3 Methodology

The support vector machines (SVMs) and artificial
neural networks (ANNs) are machine learning algo-
rithms used in this research to predict missing data.
Several standard methods such as casewise deletion,
mean substitution, simple linear regression, and step-
wise multiple regression, are employed for compari-
son.

7.3.1 Support Vector Machines

The SVM algorithm was developed by Vapnik and has
become a favored method in machine learning (Boser
et al. 1992). The version of SVMs for regression,
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correlation of 0.3. Each row or
column represents a variable
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Fig. 7.2 A scatter plot matrix
for the linear synthetic data
set with the population
correlation of 0.7. Each row or
column represents a variable

called support vector regression (SVR), is used in this
study. Trafalis et al. (2003) applied SVR for prediction
of rainfall from WSR-88D radar and showed that SVR
is more accurate, in terms of generalization error, than
traditional regression.

The SVR formulation by Vapnik (1998) can be
described as follows. Given a training set {(xi , yi )}�i=1

of � observations, our objective is to construct a func-
tion for approximating expected values y : f (x) =
〈w · x〉 + b where w is the weight vector and b is a
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Fig. 7.4 The ε-insensitive loss function

bias. Vapnik (1998) proposed the linear ε-insensitive
loss function in the support vector regression (SVR)
formulation (Fig. 7.4). The linear ε-insensitive loss
function is defined by:

Lε (x, y, f ) =
{

0 if |y − f (x)| ≤ ε

|y − f (x)| − ε otherwise
(7.2)

The SVR formulation can be represented as follows
(Vapnik 1998):

min φ(w, ξ, ξ ′) = 1

2
‖w‖2 + C

l∑

i=1

(ξi + ξ ′
i )

subject to (〈w · xi 〉 + b) − yi ≤ ε + ξi ,

yi − (〈w · xi 〉 + b) ≤ ε + ξ ′
i ,

ξi , ξ
′
i ≥ 0, i = 1, . . . , l (7.3)

where w is the weight vector, b is a bias, C is a
user-specified parameter, and ξi , ξ

′
i are slack variables

representing the deviations from the constraints of the
ε-tube.

The SVR formulation in equation 7.3 can be trans-
formed into the dual formulation using Lagrange
multipliers αi , α

′
i . Note that w = ∑l

i=1

(
α′

i − αi
)

xi .
Using the linear ε-insensitive loss function, the dual

formulation becomes (Vapnik 1998):

max Q(α, α′) =
l∑

i=1

yi (α
′
i − αi ) − ε

l∑

i=1

(α′
i + αi )

−1

2

l∑

i=1

l∑

j=i

(α′
i − αi )(α

′
j − α j )〈xi · x j 〉

subject to
l∑

i=1

(α′
i − αi ) = 0,

0 ≤ αi , α
′
i ≤ C, i = 1, . . . , l (7.4)

In the case of nonlinear problems (Fig. 7.5), if a func-
tion φ : x → φ(x) exists, which maps x from the input
space into a higher dimensional feature space, the
inner product

〈
xi · x j

〉
in equation 7.3 can be replaced

by a kernel function k(xi , x j ) = 〈
φ(xi ) · φ(x j )

〉
.

The following kernel functions are used in this
study:

1. Linear: k(xi , x j ) = 〈xi · x j 〉.
2. Polynomial: k(xi , x j ) = (〈xi · x j 〉 + 1)p, p is the

degree of polynomial.
3. Radial basis function (RBF): k(xi , x j ) =

exp(−γ ‖xi − x j‖2), where γ is the parameter
that controls the width of RBF.

′

Fig. 7.5 Nonlinear regression problem
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7.3.2 Artificial Neural Networks

Feedforward ANNs (Haykin 1999) are used with one
hidden layer and different activation functions (linear
and tangent-sigmoid) for the hidden and output layers.
The scaled conjugate gradient backpropagation net-
work is utilized for the training function. The formula-
tion of feedforward ANNs is explained in Chapter 2.

7.3.3 Iterative Imputation

Fig. 7.6 shows the flowchart of the iterative imputation.
The iterative imputation scheme used in this chapter
can be described as follows:

Step 1. Given a data set of multiple observations
(rows) and variables (columns). Identify which
rows and columns have missing data.

Step 2. Separate the observations that do not contain
any missing data (set 1) from the observations
that have missing data (set 2).

Step 3. Initialization (Iteration 1). Suppose we have
n missing data. For each column in set 2 that
has missing data, construct a regression func-
tion using set 1. The dependent or response
variable is the column that has missing data
and the independent or predictor variables are
the other columns. Predict the missing data for
each column in set 2 using the correspond-
ing regression function. Therefore, we create
values v1

i , where i = 1, . . . , n, to impute the
missing data in set 2.

Step 4. Iteration 2. Merge the imputed set from the
previous step with set 1. For each column in
set 2 that has missing data, construct again
a regression function using this merged set.
Predict the missing data for each column in
set 2 using the new corresponding regression
function. In this iteration, we recreate values
v2

i , where i = 1, . . . , n, to impute the missing
data in set 2.

Step 5. Calculate the difference (δ) between the pre-
dicted values from the current iteration (vk

i )
with the ones from the previous iteration
(vk−1

i ) for all i = 1, . . . , n, where k is a pos-
itive integer: δ = 1

n

∑n
i=1

∣∣vk
i − vk−1

i

∣∣.

Fig. 7.6 A flowchart of the iterative imputation

Step 6. If δ ≤ δmin, stop the iteration, where δmin is a
user-defined small positive value, otherwise go
to Step 7.

Step 7. Iteration 3. The same as Iteration 2.

Several iterations can be applied to construct imputed
data sets. The iteration should be stopped when the
difference between the predictive values at the current
iteration and the ones at the previous iteration ≤ δmin.
In this study, we apply SVR, ANNs, and stepwise-
regression to construct the regression functions for
iterative imputation methods. For non-iterative impu-
tation methods, we perform mean substitution and
simple linear regression.

In order to document the accuracy of our methods
to estimate the first statistical moment of our data,
we use the mean squared error (MSE) to measure the
difference between the actual values from the original
data set and the corresponding imputed values. For n
missing values, the MSE is the average squared error
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between the actual values yi and the imputed values vi

for i = 1, . . . , n. The MSE formulation can be written
as: MSE = 1

n

∑n
i=1 (yi − vi )

2.
We cannot use the MSE to measure the perfor-

mance of casewise deletion because there is not any
imputation to replace missing data. However, we can
compare the variance and covariance structures of the
original data set to the imputed data set with the case-
wise deletion. The difference of variance between the
original data set and the imputed data set is measured
using the mean absolute error (MAE). For m columns
with missing values the MAE is the average absolute
error between the variance of variables in the original
data set si and the variance of variables in the imputed
data set ti for j = 1, . . . , m. The MAE formulation for
the variance difference can be expressed as: MAE =
1
m

∑m
j=1 |s j − t j |. Furthermore, the difference between

the lower triangle of the covariance matrix of the orig-
inal data set and the one of the imputed data set is also
measured using the MAE. Suppose q is the number of
elements the lower triangle of the covariance matrix,
the MAE is the average absolute error between the
lower triangle elements of the covariance matrix of the
original data set cj and the ones of the imputed data
set d j for j = 1, . . . , q . The MAE formulation for the
lower triangle of the covariance matrix difference can
be expressed as: MAE = 1

q

∑q
j=1 |c j − d j |.

7.4 Experiments

For each data set (10%, 40%, blocks of 5% missing
data), we resample 100 times to obtain stable statistics
and confidence intervals. The locations of missing data
are assigned randomly or in blocks of missing data
for five consecutive observations in several locations at
one column. Then we applied the imputation method-
ology as described in 7.3 to predict missing data where
SVR, ANNs, and stepwise-regression are used. For
these experiments, three iterations are applied for each
method. Additionally, the same data sets are used for
non-iterative imputation methods using mean substitu-
tion and simple linear regression to substitute missing
data.

The experiments are performed in the MATLAB
environment. The SVR experiments use LIBSVM
toolbox (Chang and Lin 2001) whereas the ANN, sim-
ple linear and stepwise regression experiments utilize

the neural network and statistics toolboxes, respec-
tively.

7.5 Results

7.5.1 Results for the Observations with
Random Missing Data

Table 7.1 and Fig. 7.7 show the MSE results for each
method with two different percentages of the obser-
vations that have one or more missing data for the
linear synthetic data sets. The average MSE from 100
different randomly seeded data sets is reported as well
as bootstrapped resampled confidence intervals. For
SVR experiments, different combinations of kernel
functions (linear, polynomial, radial basis function)
and C values are applied to determine the parameters
that give the lowest MSE. After experimentation, the
“best” SVR parameters use the linear kernel and ε-
insensitive loss function with ε = 0.3, and C = 0.05.
For ANNs, we train several feed-forward neural net-
works using one hidden layer with different number of
hidden nodes (from 1 to 10) and different activation
functions (linear and tangent-sigmoid) for the hidden
and output layers. The scaled conjugate gradient back-
propagation network is used for the training function.
To avoid overfitting, the training stops if the number
of iterations reaches 100 epochs or if the magnitude of
the gradient is less than 10−6. The neural network that
gives the lowest MSE has one hidden node with the
linear activation function for both hidden and output
layers. For stepwise regression, the maximum p-value
that a predictor can be added to the model is 0.05
whereas the minimum p-value that a predictor should
be removed from the model is 0.10. For mean substi-
tution, the missing data in a variable are replaced with
the mean of its variable. Simple linear regression uses
only one independent variable that has the highest cor-
relation with the response variable to predict missing
data. Only a single solution (no additional iterations)
is used for simple regression.

Results for this experiment for an underlying pop-
ulation correlation of 0.3, where the amount of miss-
ing data are 10%, show that substitution of the mean
is worst in terms of recovering the true information
removed from the analysis (Table 7.1; Fig. 7.7a).
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Table 7.1 The average MSE for all methods with 10% and 40% of the observations missing for the linear data sets with 0.3 and
0.7 correlations

Correlation
% of the observations

missing Iteration SVR
Stepwise

reg. ANN
Mean
subst.

Simple
lin. reg.

1 0.766 0.850 0.791 1.022 0.911
10% 2 0.754 0.832 0.784

0.3 3 0.754 0.829 0.784

1 0.821 0.904 0.865 1.028 0.934
40% 2 0.787 0.847 0.820

3 0.787 0.849 0.823

1 0.345 0.404 0.365 0.873 0.533
10% 2 0.342 0.396 0.363

0.7 3 0.342 0.398 0.364

1 0.362 0.419 0.386 0.826 0.511
40% 2 0.352 0.398 0.370

3 0.353 0.405 0.373

The bootstrap resampling indicates the substitution of
the mean model is statistically different from a non-
iterative simple regression (i.e., the bootstrapped confi-
dence intervals on the mean substitution do not overlap
the mean of that based on simple linear regression).
Of the iterative techniques applied, the support vector
regression has the smallest MSE, though it was statis-
tically indistinguishable from either ANN or stepwise
regression by the third iteration. For these data, the
SVR, stepwise regression and ANN had lowest errors
after two iterations. As the amount of missing data was
increased to 40%, the mean substitution was clearly
the most inaccurate imputation technique, followed by
simple linear regression (Table 7.1; Fig. 7.7b). The
three iterative techniques are all clearly superior to
the aforementioned techniques by the second itera-
tion where the minimum MSE was achieved, and the
confidence intervals do not overlap either noniterative
method.

The next experiment increased the population cor-
relation structure to 0.7. In theory, this should result
in more accurate imputations as there is more linear
structure among the data. This can be seen clearly by
comparing the results for 10% missing data (Table 7.1;
Fig. 7.7c) to those for a lower population correla-
tion (Table 7.1; Fig. 7.7a). In the experiment with
0.7 population correlation, the MSE for mean impu-
tation decreases by over 10% whereas, for the simple
regression it decreases about 40%. The best results
can be seen clearly for the iterative imputations where
the confidence intervals do not overlap the means

of the noniterative techniques (Fig. 7.7c). When the
amount of missing data is increased, results (Table 7.1;
Fig. 7.7d) are consistent to the 10% experiment
(Fig. 7.7c) with a slight increase in MSE for every
technique due to the additional missing data. At 40%
missing data (Table 7.1; Fig. 7.7d), these trends toward
slightly larger MSE continue but the hierarchy of three
distinct levels of accuracy remain unchanged (mean
substitution worst, simple linear regression, iterative
imputation best). In all cases, the iterative imputation
techniques are most accurate and two iterations result
in convergence of the MSE values. When there is a
large correlation among the variables in an analysis,
all the iterative imputation techniques are much more
accurate than using the mean. This is expected since,
if the population correlation were zero, then the best
regression would be the mean.

The impact of casewise deletion and the various
imputation techniques on the variance and covariance
structure was investigated. As expected, casewise dele-
tion had the most noteworthy negative impact on the
true variance and covariance (Fig. 7.8) at all per-
centages of missing data for both 0.3 and 0.7 corre-
lations. Unlike the MSE errors in the replaced data
elements (Fig. 7.7), which were modest within any
technique, the impact of increasing the amount of
missing data on the variance and covariance struc-
tures is obvious (compare Fig. 7.8a, b or 7.8c, d) with
no overlap in the bootstrapped confidence intervals.
Of the imputation techniques, substituting the mean
had the expected result of underestimating the true
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Fig. 7.7 The average MSE for all methods after three iterations
with 95% confidence intervals when (a) 10% of the observations
missing for 0.3 correlation, (b) 40% of the observations missing

for 0.3 correlation, (c) 10% of the observations missing for 0.7
correlation, and (d) 40% of the observations missing for 0.7
correlation

variance and covariance (Fig. 7.8) for both 0.3 and
0.7 correlations. The remaining techniques were con-
siderably more accurate in coming closer to the true
variance structure. The iterative techniques were sta-
tistically indistinguishable as their confidence intervals
overlap.

For the variance structures (Fig. 7.8a, b), casewise
deletion leads increased error by a factor of 2.5 to 3
over the iterative techniques. This is highly significant
and considerably worse than the second most inaccu-
rate method, mean substitution. As the percentage of

missing data increases, the iterative techniques emerge
with lower MAE compared to the noniterative tech-
niques or casewise deletion. For the covariance struc-
tures (Fig. 7.8c, d), the difference is significant at
all percentages of missing data and the differential
between the casewise deletion and the remaining tech-
niques increases. It is clear how deleterious casewise
deletion is for variance/covariance reconstruction.

The same experiments are applied for the nonlinear
synthetic data set. Table 7.2 and Fig. 7.9 illustrate the
results for each method with four different percentages
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Fig. 7.8 Bar charts with 95% confidence intervals illustrating
the difference of variance between the original and imputed data
sets with (a) 0.3 and (b) 0.7 correlations. Bar charts with 95%

confidence intervals illustrating the difference between the lower
triangle of the covariance matrix of the original data set and the
one of the imputed data set with (c) 0.3 and (d) 0.7 correlations

of the observations that have one or more missing
data. Different combinations of kernel functions and
C values are applied for SVR experiments to choose
parameters that give the lowest MSE. The best SVR
parameters use the radial basis function kernel and ε-
insensitive loss function with γ = 0.2, ε = 0.1, and
C = 10. Also, we train several feed-forward neural
networks using one hidden layer with different number
of hidden nodes (from 1 to 10) and different acti-
vation functions (linear and tangent-sigmoid) for the
hidden and output layers for these nonlinear data. The

scaled conjugate gradient backpropagation network is
used for the training function. The training ends if
the number of iterations reaches 100 epochs or if the
magnitude of the gradient is less than 10−6. Owing
to the nonlinearity, the best neural network with the
lowest MSE has four hidden nodes with the tangent-
sigmoid activation function for the hidden layer and
the linear activation function for the output layer. For
stepwise regression, mean substitution, and simple lin-
ear regression, the same procedure was used as for the
linear data sets.
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Table 7.2 The average MSE
for all methods with 10% and
40% of the observations
missing for the nonlinear data
set

% of the observations
missing Iteration SVR

Stepwise
reg. ANN

Mean
subst.

Simple
lin. reg.

1 0.010 0.035 0.014 0.362 0.142
10% 2 0.009 0.034 0.012

3 0.009 0.034 0.011
1 0.046 0.086 0.044 0.362 0.152

40% 2 0.017 0.045 0.022
3 0.015 0.044 0.018

Results for the nonlinear experiment at 10% miss-
ing data (Table 7.2; Fig. 7.9a) were fundamentally
different than for the linear analyses (Table 7.1;
Fig. 7.7a). The mean substitution had errors well over
an order of magnitude larger than the iterative imputa-
tion techniques. Furthermore, the simple linear regres-
sion had the second worst MSE in this experiment. The
most striking difference was that both ANN and SVR
had errors that were about one third those for stepwise
regression and the bootstrapped confidence intervals
for ANN and SVR did not overlap those of stepwise
regression (the traditional EM approach). The itera-
tion number had no significant impact on the MSE in
these experiments. As the amount of missing data was
increased to 40%, the MSE increased dramatically for
the iterative imputation techniques and remained rel-
atively constant for the mean substitution and simple
regression (Table 7.2; Fig. 7.9b). Despite that, the

iterative techniques were indisputably more accurate
than either the mean substitution or the simple regres-
sion. ANN and SVR iterative imputation were the
most accurate of all the techniques tested. The same
behavior can be seen for the variance reconstructions
(Fig. 7.10a) and the covariance MAE (Fig. 7.10b). In
both cases, the best imputation techniques (ANN and
SVR) had errors close to an order of magnitude less
than casewise deletion.

7.5.2 Results for the Observations with
Blocks of Missing Data

Table 7.3 and Fig. 7.11 illustrate the results for
each method with two different percentages of the

Fig. 7.9 The average MSE for all methods after three iterations with 95% confidence intervals when (a) 10% and (b) 40% of the
observations missing for the nonlinear data set
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Fig. 7.10 (a) A bar chart with 95% confidence intervals illus-
trating the difference of variance between the original and
imputed nonlinear data set for random missing data. (b) A bar
chart with 95% confidence intervals illustrating the difference

between the lower triangle of the covariance matrix of the origi-
nal nonlinear data set and the one of the imputed nonlinear data
set for random missing data

observations that have blocks of missing data for the
nonlinear synthetic data sets. The same settings used
in the random missing data experiments for the non-
linear data sets are employed for all methods in this
experiment. Results for 10% missing data (Table 7.3;
Fig. 7.11a) indicated that the mean substitution had an
order of magnitude larger MSE than stepwise regres-
sion. The simple linear regression had about four times
the error of stepwise regression. ANN and SVR, both
have errors about one fourth those of stepwise regres-
sion, indicating the improvement that can be gained
when switching to modern machine learning methods.
At 40% missing data, the errors for ANN and SVR
are about the same (Table 7.3; Fig. 7.11b). In con-
trast, the MAE results for the variance are relatively

similar for all imputation techniques at 10% missing
data (Fig. 7.12a) and much larger for casewise deletion
(confidence intervals do not overlap). As the percent-
age of missing data increase from 10% to 40%, the
negative impact on the variance of using the mean can
be seen. For the covariance results (Fig. 7.12b), the
insertion of the mean no longer had a negative impact
on for the nonlinear data with block removal but rather
had the lowest MAE by a slight amount for 10% and
40% missing data. This can be explained by visualiz-
ing a nonlinear function with a substantial proportion
of the pattern removed, so much that the original pat-
tern is not recognizable to train. It is obvious that the
data requirements to fit the proper nonlinear surface to
data are considerably higher than to fit a linear feature

Table 7.3 The average MSE
for all methods with 10% and
40% of the observations have
blocks of missing data for the
nonlinear data set

% of the observations
missing Iteration SVR

Stepwise
reg. ANN

Mean
subst.

Simple
lin. reg.

1 0.011 0.043 0.012 0.366 0.136
10% 2 0.011 0.042 0.011

3 0.011 0.041 0.011
1 0.011 0.038 0.015 0.342 0.124

40% 2 0.011 0.038 0.013
3 0.011 0.038 0.013
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Fig. 7.11 The average MSE with 95% confidence intervals for all methods with (a) 10% and (b) 40% of the observations have
blocks of missing data for the nonlinear data set

Fig. 7.12 (a) A bar chart with 95% confidence intervals illus-
trating the difference of variance between the original and
imputed nonlinear data set for blocks of missing data. (b) A bar
chart with 95% confidence intervals illustrating the difference

between the lower triangle of the covariance matrix of the origi-
nal nonlinear data set and the one of the imputed nonlinear data
set for blocks of missing data
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or to use the mean value. In all cases casewise deletion
continued to cause highest MAE in the variance and
covariance structures.

7.6 Conclusions and Actionable
Recommendations

Linear and nonlinear synthetic data sets are tested
to determine the impact of removing data in random
and block configurations on imputed values and the
variance-covariance structure of the datasets. Elements
are removed from these data matrices randomly in
increments of 10% and 40%. Casewise deletion, mean
substitution, simple regression, and imputation with
stepwise linear regression, ANN and SVR, are tested
to determine how well the techniques can estimate the
missing values (except for the casewise deletion where
it is impossible to estimate the missing values).

Results of extensive experimentation with the
aforementioned methods provide interesting findings
and implications. By estimating the missing data and
then comparing these estimates with the known values,
the amount of signal that can be recovered is identi-
fied. In all experiments, the use of casewise deletion
causes large errors in the variance and covariance of
the estimates. For data that have largely linear relation-
ships, the use of mean substitution leads to large errors
in the imputed values and in the variance estimates.
Simple linear regression is a minor improvement over
use of the mean. The lowest errors are found for the
iterative imputation methods. Among the imputation
techniques tested, ANN and SVR are ranked lowest
in data error reported. Experiments testing the impact
of the type of pattern of missing data (random versus
block) suggest generally a similar behavior between
the two types of missing data, although the accuracy
was usually lower for block removal of data. Since
learning methods were nearly always superior to mul-
tiple linear regression, more widespread use of ANN
and SVR over traditional EM techniques is warranted
in situations when it is important to obtain accurate
estimates of missing data.

The investigator desiring to analyze a data set con-
taining missing values can be guided by the results of
this study. Small amounts of missing data, in the 1–5%
range, had a measurable impact on the results in a more

extensive study (not shown herein, but similar to those
results shown for 10% missing data). In an applied
setting, with a dataset containing missing values, there
are no known values for the missing data. Given the
poor performance, across all of the experiments, of
casewise deletion in distorting both the variance and
covariance structures of the data, that approach can-
not be recommended. Similarly, under most circum-
stances, imputation using the mean value leads to
poor estimates of the missing data, underestimation of
the variance and moderate errors in the covariances.
In general, that method cannot be recommended.
Synthesizing the findings based on the remaining
techniques reveals that understanding the types of
relationships among the data is a prerequisite to
using the results presented. If the relationships are
roughly linear, and if the covariance structure among
the sample variables is not independent, then an itera-
tive imputation technique can be recommended. For
this type of data configuration, iterative imputation
based on an EM algorithm was nearly as accurate as
nonlinear machine learning methods, such as ANN
and SVR. The stronger the relationships among the
variables, and the fewer missing data, our results
showed the more accurate the imputed value. The
linearity can be assessed visually through the use of
biplots or scatterplots. In the special case of few miss-
ing data with strong covariances between the variables,
simple (non-iterative) regression may suffice if the
analyst is willing to accept somewhat higher errors in
the imputed values. For this case only, the variance
estimates given by simple regression are fairly accu-
rate. However, iterative multiple regression is more
accurate than simple regression.

If the data are nonlinearly related or of unknown
relationship, this research shows that iterative impu-
tation using machine learning algorithms is supe-
rior to all other methods. Once again, casewise
deletion will lead to errors in estimation of the vari-
ance and covariance structures of an order of mag-
nitude higher than machine learning techniques. If
the actual missing values are needed with nonlin-
ear relationships, the worst method was substituting
the mean, followed closely by simple linear regres-
sion. Of the iterative techniques, we recommend
either ANN or SVR over multiple regression, as the
errors are reduced by over 50% compared to EM
methodology.
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If the missing data are not randomly spaced but,
rather, missing in blocks, the recommendation is to
use a machine learning algorithm. The errors associ-
ated with the EM method are about three times larger
than either ANN or SVR. Both noniterative simple
regression and mean substitution lead to errors of an
order of magnitude or more than the machine learning
algorithms. The use of casewise deletion leads to mas-
sive errors in the variance and covariance estimation,
whereas simple linear regression leads to higher errors
in the variance field.
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8Nonlinear Principal Component Analysis

William W. Hsieh

8.1 Introduction

In environmental sciences, one often encounters large
datasets with many variables. For instance, one may
have a dataset of the monthly sea surface tempera-
ture (SST) anomalies (“anomalies” are the departures
from the mean) collected at l = 1,000 grid locations
over several decades, i.e. the data are of the form
x = [x1, . . . , xl], where each variable xi (i = 1, . . . , l)
has n samples. The samples may be collected at times
tk (k = 1, . . . , n), so each xi is a time series containing
n observations. Since the SST of neighboring grids are
correlated, and a dataset with 1,000 variables is quite
unwieldy, one looks for ways to condense the large
dataset to only a few principal variables. The most
common approach is via principal component analysis
(PCA), also known as empirical orthogonal function
(EOF) analysis (Jolliffe 2002).

In the example with 1,000 variables, imagine we
have plotted out all the n samples in the 1,000-
dimensional data space, with each sample being a
data point in this space. We then try to fit the best
straight line through the data points. Mathematically,
PCA looks for u, a linear combination of the xi , and
an associated vector e (which gives the direction of the
desired straight line), with

u(t) = e · x(t) , (8.1)

so that

〈‖x(t) − e u(t)‖2〉 is minimized, (8.2)
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where 〈· · ·〉 denotes a sample mean or time mean. Here
u, called the first principal component (PC) (or score),
is often a time series, while e, called the first eigen-
vector (also called an empirical orthogonal function,
EOF, or loading), is the first eigenvector of the data
covariance matrix C, with elements Cij given by

Cij = 1

n − 1

n∑

k=1

[xi (tk) − 〈xi 〉] [x j (tk) − 〈x j 〉] .
(8.3)

Together u and e make up the first PCA mode. In the
above example, e simply describes a fixed spatial SST
anomaly pattern. How strongly this pattern is mani-
fested at a given time is controlled by the time series u.

From the residual, x − eu, the second PCA mode
can similarly be extracted, and so on for the higher
modes. In practice, the common algorithms for
PCA extract all modes simultaneously (Jolliffe 2002;
Preisendorfer 1988). By retaining only the leading
modes, PCA has been commonly used to reduce the
dimensionality of the dataset, and to extract the main
patterns from the dataset.

Principal component analysis (PCA) can be per-
formed using neural network (NN) methods (Oja
1982; Sanger 1989). However, far more interesting is
the nonlinear generalization of PCA, where several
distinct approaches have been developed (Cherkassky
and Mulier 1998). As PCA finds a straight line which
passes through the ‘middle’ of the data cluster, the
obvious next step is to generalize the straight line
to a curve. The multi-layer perceptron (MLP) model
(see Section 1.8) has been adapted to perform non-
linear PCA (Kramer 1991; Hsieh 2004). Alternative
approaches are the principal curves method (Hastie
and Stuetzle 1989; Hastie et al. 2001), the kernel PCA
method (Schölkopf et al. 1998) and the self-organizing
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map (SOM) technique (Kohonen 1982; Cherkassky
and Mulier 1998).

In this chapter, we examine the use of MLP NN
models for nonlinear PCA (NLPCA) in Section 8.2,
the overfitting problem associated with NLPCA in
Section 8.3, and the extension of NLPCA to closed
curve solutions in Section 8.4. MATLAB codes for
NLPCA are downloadable from http://www.ocgy.
ubc.ca/projects/clim.pred/download.html.The discrete
approach by self-organizing maps is presented in
Sections 8.5, and the generalization of NLPCA to
complex variables in Section 8.6.

8.2 Auto-Associative Neural Networks
for NLPCA

The fundamental difference between NLPCA and
PCA is that PCA only allows a linear mapping (u =
e · x) between x and the PC u, while NLPCA allows
a nonlinear mapping. To perform NLPCA, Kramer
(1991) proposed using the MLP NN in Fig. 8.1a where
there are three hidden layers of neurons (i.e. variables)
between the input and output layers. The NLPCA
is basically a standard MLP NN (see Section 1.8)
with four-layers of activation functions (i.e. transfer
functions) mapping from the inputs to the outputs.
One can view the NLPCA network as composed of
two-standard two-layer MLP NNs placed one after
the other. The first two-layer network maps from the
inputs x through a hidden layer to the bottleneck layer
with only one neuron u, i.e. a nonlinear mapping u =
f (x). The next two-layer MLP NN inversely maps
from the nonlinear PC (NLPC) u back to the original
higher dimensional x-space, with the objective that the
outputs x′ = g(u) be as close as possible to the inputs
x, where g(u) nonlinearly generates a curve in the
x-space, hence a 1-dimensional approximation of the
original data. Because the target data for the output
neurons x′ are simply the input data x, such networks
are called auto-associative NNs. To minimize the MSE
(mean square error) of this approximation, the objec-
tive function (also called cost function or loss func-
tion) J = 〈‖x − x′‖2〉 is minimized to solve for the
parameters of the NN. Squeezing the input informa-
tion through a bottleneck layer with only one neuron
accomplishes the dimensional reduction.

In Fig. 8.1a, the activation function f1 maps from
x, the input column vector of length l, to the first

Fig. 8.1 (a) A schematic diagram of the autoassociative feed-
forward multi-layer perceptron NN model for performing
NLPCA. Between the input layer x on the left (the 0th layer)
and the output layer x′ on the far right (the 4th layer), there are
three layers of ‘hidden’ neurons (the 1st, 2nd and 3rd layers).
Layer 2 is the ‘bottleneck’ with a single neuron u giving the
nonlinear principal component (NLPC). Layers 1 and 3, each
with m hidden neurons, are called the encoding and decoding
layers, respectively. (b) The NN model used for extracting a
closed curve NLPCA solution. At the bottleneck, there are now
two neurons p and q constrained to lie on a unit circle in the p-q
plane, giving effectively one free angular variable θ , the NLPC.
This network is suited for extracting a closed curve solution
(Reprinted from Hsieh 2001. With permission from Blackwell)

hidden layer (the encoding layer), represented by h(x),
a column vector of length m, with elements

h(x)
k = f1((W(x)x + b(x))k), (8.4)

where W(x) is an m × l weight matrix, b(x), a column
vector of length m containing the offset (i.e. bias) para-
meters, and k = 1, . . . , m. Similarly, a second acti-
vation function f2 maps from the encoding layer to
the bottleneck layer containing a single neuron, which
represents the nonlinear principal component u,

u = f2(w(x) · h(x) + b
(x)

). (8.5)
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The activation function f1 is generally nonlinear (usu-
ally the hyperbolic tangent or the sigmoidal function,
though the exact form is not critical), while f2 is usu-
ally taken to be the identity function.

Next, an activation function f3 maps from u to the
third hidden layer (the decoding layer) h(u),

h(u)
k = f3((w(u)u + b(u))k) , (8.6)

(k = 1, . . . , m); followed by f4 mapping from h(u) to
x′, the output column vector of length l, with

x ′
i = f4((W(u)h(u) + b

(u)
)i ). (8.7)

The objective function J = 〈‖x − x′‖2〉 is mini-
mized by finding the optimal values of W(x), b(x), w(x),
b

(x)
, w(u), b(u), W(u) and b

(u)
. The MSE between the

NN output x′ and the original data x is thus minimized.
The NLPCA was implemented using the hyperbolic
tangent function for f1 and f3, and the identity func-
tion for f2 and f4, so that

u = w(x) · h(x) + b
(x)

, (8.8)

x ′
i = (W(u)h(u) + b

(u)
)i . (8.9)

Furthermore, we adopt the normalization condi-
tions that 〈u〉 = 0 and 〈u2〉 = 1. These conditions are
approximately satisfied by modifying the objective
function to

J = 〈‖x − x′‖2〉 + 〈u〉2 + (〈u2〉 − 1)2 . (8.10)

The total number of (weight and offset) parameters
used by the NLPCA is 2lm + 4m + l + 1, though the
number of effectively free parameters is two less due
to the constraints on 〈u〉 and 〈u2〉.

The choice of m, the number of hidden neurons
in both the encoding and decoding layers, follows a
general principle of parsimony. A larger m increases
the nonlinear modeling capability of the network, but
could also lead to overfitted solutions (i.e. wiggly solu-
tions which fit to the noise in the data). If f4 is the
identity function, and m = 1, then (8.9) implies that
all x ′

i are linearly related to a single hidden neuron,
hence there can only be a linear relation between the
x ′

i variables. Thus, for nonlinear solutions, we need to
look at m ≥ 2. Actually, one can use different numbers
of neurons in the encoding layer and in the decoding
layer; however, keeping them both at m neurons gives
roughly the same number of parameters in the forward
mapping from x to u and in the inverse mapping from u
to x′. It is also possible to have more than one neuron at

the bottleneck layer. For instance, with two bottleneck
neurons, the mode extracted will span a 2-D surface
instead of a 1-D curve.

Because of local minima in the objective function,
there is no guarantee that the optimization algorithm
reaches the global minimum. Hence a number of runs
with random initial weights and offset parameters was
made. Also, a portion (e.g. 15%) of the data was ran-
domly selected as validation data and withheld from
the training of the NNs. Runs where the MSE was
larger for the validation dataset than for the train-
ing dataset were rejected to avoid overfitted solutions.
Then the run with the smallest MSE was selected as
the solution.

In general, the presence of local minima in the
objective function is a major problem for NLPCA.
Optimizations started from different initial parameters
often converge to different minima, rendering the solu-
tion unstable or nonunique. Adding weight penalty
terms to the objective function (also called “regular-
ization”) is an answer.

The purpose of the weight penalty terms is to
limit the nonlinear power of the NLPCA, which came
from the nonlinear activation functions in the net-
work. The activation function tanh has the property
that given x in the interval [−L , L], one can find a
small enough weight w, so that tanh(wx) ≈ wx , i.e.
the activation function is almost linear. Similarly, one
can choose a large enough w, so that tanh approaches
a step function, thus yielding Z-shaped solutions. If
we can penalize the use of excessive weights, we
can limit the degree of nonlinearity in the NLPCA
solution. This is achieved with a modified objective
function

J = 〈‖x − x′‖2〉 + 〈u〉2 + (〈u2〉 − 1)2

+ P
∑

ki

(W (x)
ki )2, (8.11)

where P is the weight penalty parameter. A large P
increases the concavity of the objective function, and
forces the weights W(x) to be small in magnitude,
thereby yielding smoother and less nonlinear solutions
than when P is small or zero. Hence, increasing P also
reduces the number of effectively free parameters of
the model. We have not penalized other weights in the
network. In principle, w(u) also controls the nonlinear-
ity in the inverse mapping from u to x′. However if
the nonlinearity in the forward mapping from x to u
is already being limited by penalizing W(x), then there



000–0–00–000000–0 08-Haupt-c08 SHB0024-Haupt (Typeset by SPi, Delhi) page 176 of 190 September 29, 2008 10:52

176 W. W. Hsieh

is no need to further limit the weights in the inverse
mapping.

In summary, one needs to choose m large enough
so that the NN model has enough flexibility to approx-
imate the true solution well. The weight penalty P can
be regarded as a smoothing parameter, i.e. if P is large
enough, zigzags and wiggles in the curve solution can
be eliminated. How to choose P and m objectively
has only recently been addressed, and is discussed in
Section 8.3.

In effect, the linear relation (u = e · x) in PCA is
now generalized to u = f (x), where f can be any non-
linear continuous function representable by an MLP
NN mapping from the input layer to the bottleneck
layer; and 〈‖x − g(u)‖2〉 is minimized. Limitations
in the mapping properties of the NLPCA are dis-
cussed by Newbigging et al. (2003). The residual,
x − g(u), can be input into the same network to extract
the second NLPCA mode, and so on for the higher
modes.

That the classical PCA is indeed a linear version of
this NLPCA can be readily seen by replacing all the
activation functions with the identity function, thereby
removing the nonlinear modeling capability of the
NLPCA. Then the forward map to u involves only a
linear combination of the original variables as in the
PCA.

In the classical linear approach, there is a well-
known dichotomy between PCA and rotated PCA
(RPCA) (Richman 1986). In PCA, the linear mode
which accounts for the most variance of the dataset
is sought. However, as illustrated in Preisendorfer
(1988, Fig. 7.3), the resulting eigenvectors may not
align close to local data clusters, so the eigenvec-
tors may not represent actual physical states well.
One application of RPCA methods is to rotate the
PCA eigenvectors, so they point closer to the local
clusters of data points (Preisendorfer 1988). Thus
the rotated eigenvectors may bear greater resem-
blance to actual physical states (though they account
for less variance) than the unrotated eigenvectors,
hence RPCA is also widely used (Richman 1986;
von Storch and Zwiers 1999). As there are many
possible criteria for rotation, there are many RPCA
schemes, among which the varimax (Kaiser 1958)
scheme is perhaps the most popular. We will com-
pare NLPCA with PCA and RPCA in the following
subsection.

8.2.1 Applications of NLPCA

The NLPCA has been applied to the Lorenz (1963)
three-component chaotic system (Monahan 2000;
Hsieh 2001). For the tropical Pacific climate vari-
ability, the NLPCA has been used to study the SST
field (Monahan 2001; Hsieh 2001) and the sea level
pressure (SLP) field (Monahan 2001). The Northern
Hemisphere atmospheric variability (Monahan et al.
2000, 2001) and the subsurface thermal structure of
the Pacific Ocean (Tang and Hsieh 2003) have also
been investigated by the NLPCA. In remote sensing,
Del Frate and Schiavon (1999) applied NLPCA to the
inversion of radiometric data to retrieve atmospheric
profiles of temperature and water vapour.

The tropical Pacific climate system contains the
famous interannual variability known as the El Niño-
Southern Oscillation (ENSO), a coupled atmosphere-
ocean interaction involving the oceanic phenomenon
El Niño and the associated atmospheric phenom-
enon, the Southern Oscillation. The coupled interac-
tion results in anomalously warm SST in the eastern
equatorial Pacific during El Niño episodes, and cool
SST in the central equatorial Pacific during La Niña
episodes (Philander 1990; Diaz and Markgraf 2000).
ENSO is an irregular oscillation, but spectral analy-
sis does reveal a broad spectral peak at the 4–5 year
period. Hsieh (2001) used the tropical Pacific SST data
(1950–1999) to make a three-way comparison between
NLPCA, RPCA and PCA. The tropical Pacific SST
anomaly (SSTA) data (i.e. the SST data with the cli-
matological seasonal cycle removed) were pre-filtered
by PCA, with only the three leading modes retained.
PCA modes 1, 2 and 3 accounted for 51.4%, 10.1%
and 7.2%, respectively, of the variance in the SSTA
data. Due to the large number of spatially gridded
variables, NLPCA could not be applied directly to the
SSTA time series, as this would lead to a huge NN with
the number of model parameters vastly exceeding the
number of samples. Instead, the first three PCs (PC1,
PC2 and PC3) were used as the input x for the NLPCA
network.

The data are shown as dots in a scatter plot in the
PC1-PC2 plane (Fig. 8.2), where the cool La Niña
states lie in the upper left corner, and the warm El Niño
states in the upper right corner. The NLPCA solution is
a U-shaped curve linking the La Niña states at one end
(low u) to the El Niño states at the other end (high u),
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Fig. 8.2 Scatter plot of the SST anomaly (SSTA) data (shown
as dots) in the PC1-PC2 plane, with the El Niño states lying in
the upper right corner, and the La Niña states in the upper left
corner. The PC2 axis is stretched relative to the PC1 axis for bet-
ter visualization. The first mode NLPCA approximation to the
data is shown by the (overlapping) small circles, which traced
out a U-shaped curve. The first PCA eigenvector is oriented
along the horizontal line, and the second PCA, by the vertical

line. The varimax method rotates the two PCA eigenvectors
in a counterclockwise direction, as the rotated PCA (RPCA)
eigenvectors are oriented along the dashed lines. (As the varimax
method generates an orthogonal rotation, the angle between the
two RPCA eigenvectors is 90◦ in the 3-dimensional PC1-PC2-
PC3 space) (Reprinted from Hsieh 2001. With permission from
Blackwell)

similar to that found originally by Monahan (2001).
In contrast, the first PCA eigenvector lies along the
horizontal line, and the second PCA, along the vertical
line (Fig. 8.2). It is easy to see that the first PCA eigen-
vector describes a somewhat unphysical oscillation,
as there are no dots (data) close to either ends of the
horizontal line. For the second PCA eigenvector, there
are dots close to the bottom of the vertical line, but no
dots near the top end of the line, i.e. one phase of the
mode 2 oscillation is realistic, but the opposite phase is
not. Thus if the underlying data has a nonlinear struc-
ture but we are restricted to finding linear solutions
using PCA, the energy of the nonlinear oscillation is
scattered into multiple PCA modes, many of which
represent unphysical linear oscillations.

For comparison, a varimax rotation (Kaiser 1958;
Preisendorfer 1988), was applied to the first three PCA
eigenvectors. The varimax criterion can be applied to
either the loadings or the PCs depending on one’s
objectives (Richman 1986; Preisendorfer 1988); here
it is applied to the PCs. The resulting first RPCA

eigenvector, shown as a dashed line in Fig. 8.2, spears
through the cluster of El Niño states in the upper
right corner, thereby yielding a more accurate descrip-
tion of the El Niño anomalies (Fig. 8.3c) than the
first PCA mode (Fig. 8.3a), which did not fully rep-
resent the intense warming of Peruvian waters. The
second RPCA eigenvector, also shown as a dashed
line in Fig. 8.2, did not improve much on the sec-
ond PCA mode, with the PCA spatial pattern shown
in Fig. 8.3b, and the RPCA pattern in Fig. 8.3d). In
terms of variance explained, the first NLPCA mode
explained 56.6% of the variance, versus 51.4% by
the first PCA mode, and 47.2% by the first RPCA
mode.

With the NLPCA, for a given value of the NLPC u,
one can map from u to the three PCs. This is done
by assigning the value u to the bottleneck neuron and
mapping forward using the second half of the network
in Fig. 8.1a. Each of the three PCs can be multi-
plied by its associated PCA (spatial) eigenvector, and
the three added together to yield the spatial pattern
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Fig. 8.3 The SSTA patterns (in ◦C) of the PCA, RPCA and the
NLPCA. The first and second PCA spatial modes are shown in
(a) and (b) respectively, (both with their corresponding PCs at
maximum value). The first and second varimax RPCA spatial
modes are shown in (c) and (d) respectively, (both with their
corresponding RPCs at maximum value). The anomaly pattern

as the NLPC u of the first NLPCA mode varies from (e) max-
imum (strong El Niño) to (f) its minimum (strong La Niña).
With a contour interval of 0.5◦C , the positive contours are
shown as solid curves, negative contours, dashed curves, and the
zero contour, a thick curve (Reprinted from Hsieh 2004. With
permission from American Geophysical Union)

for that particular value of u. Unlike PCA which
gives the same spatial anomaly pattern except for
changes in the amplitude as the PC varies, the NLPCA
spatial pattern generally varies continuously as the
NLPC changes. Figure 8.3e, f show respectively the
spatial anomaly patterns when u has its maximum
value (corresponding to the strongest El Niño) and
when u has its minimum value (strongest La Niña).

Clearly the asymmetry between El Niño and La
Niña, i.e. the cool anomalies during La Niña episodes
(Fig. 8.3f) are observed to center much further west
than the warm anomalies during El Niño (Fig. 8.3e)
(Hoerling et al. 1997), is well captured by the first
NLPCA mode – in contrast, the PCA mode 1 gives
a La Niña which is simply the mirror image of the
El Niño (Fig. 8.3a). The asymmetry explains why El
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Niño has been known by Peruvian fishermen for many
centuries due to its strong SSTA off the coast of Peru
and its devastation of the Peruvian fishery, whereas the
La Niña, with its weak manifestation in the Peruvian
waters, was not appreciated until the last two decades
of the 20th century.

In summary, PCA is used for two main purposes: (i)
to reduce the dimensionality of the dataset, and (ii) to
extract features or recognize patterns from the dataset.
It is primarily purpose (ii) where PCA can be improved
upon. Both RPCA and NLPCA take the PCs from PCA
as input. However, instead of multiplying the PCs by
a fixed orthonormal rotational matrix, as performed
in the varimax RPCA approach, NLPCA performs a
nonlinear mapping of the PCs. RPCA sacrifices on the
amount of variance explained, but by rotating the PCA
eigenvectors, RPCA eigenvectors tend to point more
towards local data clusters and are therefore more rep-
resentative of physical states than the PCA eigenvec-
tors.

With a linear approach, it is generally impossi-
ble to have a solution simultaneously (a) explain-
ing maximum global variance of the dataset and (b)
approaching local data clusters, hence the dichotomy
between PCA and RPCA, with PCA aiming for (a)
and RPCA for (b). Hsieh (2001) pointed out that with
the more flexible NLPCA method, both objectives (a)
and (b) may be attained together, thus the nonlinearity
in NLPCA unifies the PCA and RPCA approaches.
It is easy to see why the dichotomy between PCA
and RPCA in the linear approach automatically van-
ishes in the nonlinear approach. By increasing m, the
number of hidden neurons in the encoding layer (and
the decoding layer), the solution is capable of going
through all local data clusters while maximizing the
global variance explained. (In fact, for large enough
m, NLPCA can pass through all data points, though
this will in general give an undesirable, overfitted
solution.)

The tropical Pacific SST example illustrates that
with a complicated oscillation like the El Niño-La
Niña phenomenon, using a linear method such as PCA
results in the nonlinear mode being scattered into sev-
eral linear modes (in fact, all three leading PCA modes
are related to this phenomenon) – hence the impor-
tance of the NLPCA as a unifier of the separate linear
modes. In the study of climate variability, the wide use
of PCA methods has created the somewhat misleading
view that our climate is dominated by a number of

spatially fixed oscillatory patterns, which may in fact
be due to the limitation of the linear method. Applying
NLPCA to the tropical Pacific SSTA, we found no
spatially fixed oscillatory patterns, but an oscillation
evolving in space as well as in time.

8.3 Overfitting in NLPCA

When using nonlinear machine learning methods, the
presence of noise in the data can lead to overfitting.
When plentiful data are available (i.e. far more samples
than model parameters), overfitting is not a problem
when performing nonlinear regression on noisy data.
Unfortunately, even with plentiful data, overfitting is a
problem when applying NLPCA to noisy data (Hsieh
2001; Christiansen 2005; Hsieh 2007). As illustrated
in Fig. 8.4, overfitting in NLPCA can arise from the
geometry of the problem, rather than from the scarcity
of data. Here for a Gaussian-distributed data cloud,
a nonlinear model with enough flexibility will find
the zigzag solution of Fig. 8.4b as having a smaller
MSE than the linear solution in Fig. 8.4a. Since the
distance between the point A and a, its projection
on the NLPCA curve, is smaller in Fig. 8.4b than
the corresponding distance in Fig. 8.4a, it is easy to
see that the more zigzags there are in the curve, the
smaller is the MSE. However, the two neighboring
points A and B, on opposite sides of an ambiguity
line, are projected far apart on the NLPCA curve
in Fig. 8.4b. Thus simply searching for the solution
which gives the smallest MSE does not guarantee that
NLPCA will find a good solution in a highly noisy
dataset.

Hsieh (2001) added weight penalty to the Kramer
(1991) NLPCA model to smooth out excessively
wiggly solutions, but did not provide an objective
way to select the optimal weight penalty parameter
P . With NLPCA, if the overfitting arise from the
data geometry (as in Fig. 8.4b) and not from data
scarcity, using independent data to validate the MSE
from the various models is not a viable method for
choosing the appropriate P . Instead, Hsieh (2007)
proposed an “inconsistency” index for detecting the
projection of neighboring points to distant parts of
the NLPCA curve, and use the index to choose the
appropriate P .
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Fig. 8.4 Schematic diagram illustrating overfitting on noisy
data. (a) PCA solution for a Gaussian data cloud, with two
neighboring points A and B shown projecting to the points a
and b on the PCA straight line solution. (b) A zigzag NLPCA
solution found by a flexible enough nonlinear model. Dashed
lines illustrate ambiguity lines where neighboring points (e.g. A
and B) on opposite sides of these lines are projected to a and
b, far apart on the NLPCA curve (Reprinted from Hsieh 2007.
With permission from Elsevier)

For each data point x, find its nearest neighbor x̃.
The NLPC for x and x̃ are u and ũ, respectively. With
C(u, ũ) denoting the (Pearson) correlation between all
the pairs (u, ũ), the inconsistency index I was defined
in Hsieh (2007) as

I = 1 − C(u, ũ). (8.12)

If for some nearest neighbor pairs, u and ũ are assigned
very different values, C(u, ũ) would have a lower
value, leading to a larger I , indicating greater incon-
sistency in the NLPC mapping. With u and ũ standard-
ized to having zero mean and unit standard deviation,
(8.12) is equivalent to

I = 1

2
〈(u − ũ)2〉 . (8.13)

In statistics, various criteria, often in the context of
linear models, have been developed to select the right
amount of model complexity so neither overfitting
nor underfitting occurs. These criteria are often called
“information criteria” (IC) (von Storch and Zwiers
1999). An IC is typically of the form

IC = MSE + complexity term, (8.14)

where MSE is evaluated over the training data and
the complexity term is larger when a model has more
free parameters. The IC is evaluated over a number of
models with different free parameters, and the model
with the minimum IC is selected as the best. As the
presence of the complexity term in the IC penalizes
models which use excessive number of free parame-
ters to attain low MSE, choosing the model with the
minimum IC would rule out complex models with
overfitted solutions.

In Hsieh (2007), the data were randomly divided
into a training data set and a validation set (containing
85% and 15% of the original data, respectively), and
for every given value of P and m, the model was
trained a number of times from random initial weights,
and model runs where the MSE evaluated over the val-
idation data was larger than the MSE over the training
data were discarded. To choose among the model runs
which had passed the validation test, a new holistic IC
to deal with the type of overfitting arising from the
broad data geometry (Fig. 8.4b) was introduced as

H = MSE + inconsistency term (8.15)

= MSE − C(u, ũ) × MSE = MSE × I, (8.16)

where MSE and C were evaluated over all (training
and validation) data, inconsistency was penalized, and
the model run with the smallest H value was selected
as the best. As the inconsistency term only prevents
overfitting arising from the broad data geometry, val-
idation data are still needed to prevent “local” over-
fitting from excessive number of model parameters,
since H , unlike (8.14), does not contain a complexity
term.

Consider the test problem in Hsieh (2007): For a
random number t uniformly distributed in the inter-
val (−1, 1), the signal x(s) was generated by using a
quadratic relation

x (s)
1 = t, x (s)

2 = 1

2
t2. (8.17)
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Isotropic Gaussian noise was added to the signal x(s) to
give the noisy data x with 500 samples. NLPCA was
performed on the data using the network in Fig. 8.1a
with m = 4 and with the weight penalty P at vari-
ous values (10, 1, 10−1, 10−2, 10−3, 10−4, 10−5, 0).
For each value of P , the model training was done 30
times starting from random initial weights, and model
runs where the MSE evaluated over the validation data
was larger than the MSE over the training data were
deemed ineligible. In the traditional approach, among
the eligible runs over the range of P values, the one
with the lowest MSE over all (training and validation)
data was selected as the best. Figure 8.5a shows this
solution where the zigzag curve retrieved by NLPCA
is very different from the theoretical parabolic signal
(8.17), demonstrating the pitfall of selecting the lowest
MSE run.

In contrast, in Fig. 8.5b, among the eligible runs
over the range of P values, the one with the lowest
information criterion H was selected. This solution,
which has a much larger weight penalty (P = 0.1)
than that in Fig. 8.5a (P = 10−4), shows less wiggly
behaviour and better agreement with the theoretical
parabolic signal.

Even less wiggly solutions can be obtained by
changing the error norm used in the objective function
from the mean square error to the mean absolute error
(MAE), i.e. replacing 〈‖x − x′‖2〉 by 〈∑ j |x j − x ′

j |〉
in equation (8.11). The MAE norm is known to be
robust to outliers in the data (Bishop 1995, p. 210).
Figure 8.5c is the solution selected based on minimum
H with the MAE norm used. While wiggles are elimi-
nated, the solution underestimates the curvature in the
parabolic signal. The rest of this paper uses the MSE
norm.

In summary, with noisy data, not having plentiful
samples could cause a flexible nonlinear model to
overfit. In the limit of infinite samples, overfitting can-
not occur in nonlinear regression, but can still occur in
NLPCA due to the geometric shape of the data distri-
bution. A new inconsistency index I for detecting the
projection of neighboring points to distant parts of the
NLPCA curve has been introduced, and incorporated
into a holistic IC H to select the model with the appro-
priate weight penalty parameter and the appropriate
number of hidden neurons. An alternative approach for
model selection was proposed by Webb (1999), who
applied a constraint on the Jacobian in the objective
function.
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Fig. 8.5 The NLPCA solution (shown as densely overlapping
black circles) for the synthetic dataset (dots), with the parabolic
signal curve indicated by “+” and the linear PCA solution by
the dashed line. The solution was selected from the multiple
runs over a range of P values based on (a) minimum MSE,
(b) minimum IC H , and (c) minimum IC together with the
MAE norm (Reprinted from Hsieh 2007. With permission from
Elsevier)
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8.4 NLPCA for Closed Curves

While the NLPCA is capable of finding a continu-
ous open curve solution, there are many phenomena
involving waves or quasi-periodic fluctuations, which
call for a continuous closed curve solution. Kirby and
Miranda (1996) introduced an NLPCA with a circular
node at the network bottleneck [henceforth referred
to as the NLPCA(cir)], so that the nonlinear principal
component (NLPC) as represented by the circular node
is an angular variable θ , and the NLPCA(cir) is capa-
ble of approximating the data by a closed continuous
curve. Figure 8.1b shows the NLPCA(cir) network,
which is almost identical to the NLPCA of Fig. 8.1a,
except at the bottleneck, where there are now two neu-
rons p and q constrained to lie on a unit circle in the
p-q plane, so there is only one free angular variable θ ,
the NLPC.

At the bottleneck in Fig. 8.1b, analogous to u in
(8.8), we calculate the pre-states po and qo by

po = w(x) · h(x) + b
(x)

, and

qo = w̃(x) · h(x) + b̃(x), (8.18)

where w(x), w̃(x) are weight parameter vectors, and b
(x)

and b̃(x) are offset parameters. Let

r = (p2
o + q2

o )1/2, (8.19)

then the circular node is defined with

p = po/r, and q = qo/r, (8.20)

satisfying the unit circle equation p2 + q2 = 1. Thus,
even though there are two variables p and q at the
bottleneck, there is only one angular degree of freedom
from θ (Fig. 8.1b), due to the circle constraint. The
mapping from the bottleneck to the output proceeds as
before, with (8.6) replaced by

h(u)
k = f3((w(u) p + w̃(u)q + b(u))k). (8.21)

When implementing NLPCA(cir), Hsieh (2001)
found that there are actually two possible configura-
tions: (i) A restricted configuration where the con-
straints 〈p〉 = 0 = 〈q〉 are applied, and (ii) a general
configuration without the constraints. With (i), the con-
straints can be satisfied approximately by adding the
extra terms 〈p〉2 and 〈q〉2 to the objective function. If
a closed curve solution is sought, then (i) is better than
(ii) as it has effectively two fewer parameters. How-
ever, (ii), being more general than (i), can more readily

model open curve solutions like a regular NLPCA. The
reason is that if the input data mapped onto the p-q
plane covers only a segment of the unit circle instead of
the whole circle, then the inverse mapping from the p-
q space to the output space will yield a solution resem-
bling an open curve. Hence, given a dataset, (ii) may
yield either a closed curve or an open curve solution.
It uses 2lm + 6m + l + 2 parameters.

Hsieh (2007) found that the IC H not only alleviates
overfitting in open curve solution, but also chooses
between open and closed curve solutions when using
NLPCA(cir) in configuration (ii). The inconsistency
index and the IC are now obtained from

I = 1 − 1

2

[
C(p, p̃) + C(q, q̃)

]
, and

H = MSE × I, (8.22)

where p and q are from the bottleneck (Fig. 8.1b), and
p̃ and q̃ are the corresponding nearest neighbor values.
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Fig. 8.6 The NLPCA(cir) mode 1 for a Gaussian dataset, with
the solution selected based on (a) minimum MSE and (b) min-
imum IC. The PCA mode 1 solution is shown as a dashed line
(Reprinted from Hsieh 2007. With permission from Elsevier)



000–0–00–000000–0 08-Haupt-c08 SHB0024-Haupt (Typeset by SPi, Delhi) page 183 of 190 September 29, 2008 10:52

8 Nonlinear Principal Component Analysis 183

For a test problem, consider a Gaussian data cloud
(with 500 samples) in 2-dimensional space, where the
standard deviation along the x1 axis was double that
along the x2 axis. The dataset was analyzed by the
NLPCA(cir) model with m = 2, . . . , 5 and P = 10, 1,
10−1, 10−2, 10−3, 10−4, 10−5, 0. From all the runs,
the solution selected based on the minimum MSE has
m = 5 (and P = 10−5) (Fig. 8.6a), while that selected
based on minimum H has m = 3 (and P = 10−5)
(Fig. 8.6b). The minimum MSE solution has (normal-
ized) MSE = 0.370, I = 9.50 and H = 3.52, whereas
the minimum H solution has the corresponding val-
ues of 0.994, 0.839 and 0.833, respectively, where
for easy comparison with the linear mode, these val-
ues for the nonlinear solutions have been normalized
upon division by the corresponding values from the
linear PCA mode 1. Thus the IC correctly selected a
nonlinear solution (Fig. 8.6b) which is similar to the

linear solution. It also rejected the closed curve solu-
tion of Fig. 8.6a, in favour of the open curve solution
of Fig. 8.6b, despite its much larger MSE.

For an application of NLPCA(cir) on real data,
consider the quasi-biennial oscillation (QBO), which
dominates over the annual cycle or other variations in
the equatorial stratosphere, with the period of oscil-
lation varying roughly between 22 and 32 months.
Average zonal (i.e. westerly) winds at 70, 50, 40, 30,
20, 15 and 10 hPa (i.e. from about 20 to 30 km altitude)
during 1956–2006 were studied. After the 51-year
means were removed, the zonal wind anomalies U at
seven vertical levels in the stratosphere became the
seven inputs to the NLPCA(cir) network (Hamilton
and Hsieh 2002; Hsieh 2007). Since the data were
not very noisy (Fig. 8.7), a rather complex model was
used, with m ranging from 5 to 9, and P = 10−1, 10−2,
10−3, 10−4, 10−5, 0. The smallest H occurred when
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Fig. 8.7 The NLPCA(cir) mode 1 solution for the equatorial
stratospheric zonal wind anomalies. For comparison, the PCA
mode 1 solution is shown by the dashed line. Only three out of
seven dimensions are shown, namely the zonal velocity anomaly

U at the top, middle and bottom levels (10, 30 and 70 hPa). Panel
(a) gives a 3-D view, while (b–d) give 2-D views (Reprinted
from Hsieh 2007. With permission from Elsevier)
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Fig. 8.8 Contour plot of the NLPCA(cir) mode 1 zonal wind
anomalies as a function of pressure and phase θweighted, where
θweighted is θ weighted by the histogram distribution of θ (see
Hamilton and Hsieh 2002). Thus θweighted is more representative
of actual time during a cycle than θ . Contour interval is 5 m
s−1, with westerly winds indicated by solid lines, easterlies by
dashed lines, and zero contours by thick lines (Reprinted from
Hsieh 2007. With permission from Elsevier)

m = 8 and P = 10−5, with the closed curve solution
shown in Fig. 8.7. Thus in this example, by choosing a
rather large m and a small P , the H IC justified having
considerable model complexity, including the wiggly
behaviour seen in the 70 hPa wind (Fig. 8.7c). The
wiggly behaviour can be understood by viewing the
phase-pressure contour plot of the zonal wind anom-
alies (Fig. 8.8): As the easterly wind anomaly descends
with time (i.e. as phase increases), wavy behaviour
is seen in the 40, 50 and 70 hPa levels at θweighted

around 0.4–0.5. This example demonstrates the benefit
of having an IC to objectively decide on how smooth
or wiggly the fitted curve should be.

The observed strong asymmetries between the east-
erly and westerly phases of the QBO (Hamilton 1998;
Baldwin et al. 2001) are captured by this NLPCA(cir)
mode – e.g. the much more rapid transition from east-
erlies to westerlies than the reverse transition, and
the much deeper descend of the easterlies than the
westerlies (Fig. 8.8). For comparison, Hamilton and
Hsieh (2002) constructed a linear model of θ , which
was unable to capture the observed strong asymmetry
between easterlies and westerlies.

The actual time series of the wind measured at
a particular height level is somewhat noisy and it is
often desirable to have a smoother representation of
the QBO time series which captures the essential fea-
tures at all vertical levels. Also, the reversal of the

wind from westerly to easterly and vice versa occurs
at different times for different height levels, rendering
it difficult to define the phase of the QBO. Hamilton
and Hsieh (2002) found that the phase of the QBO as
defined by the NLPC θ is more accurate than previ-
ous attempts to characterize the phase, leading to a
stronger link between the QBO and northern hemi-
sphere polar stratospheric temperatures in winter (the
Holton-Tan effect) (Holton and Tan 1980) than previ-
ously found.

The NLPCA(cir) approach has also been used suc-
cessfully in capturing the non-sinusoidal propagation
of underwater sandbars off beaches in the Nether-
lands and Japan (Ruessink et al. 2004). Hsieh and
Wu (2002) developed a nonlinear singular spectrum
analysis method based on the NLPCA(cir) model.

8.5 Self-Organizing Maps

In this section, we examine a discrete version of
NLPCA. The goal of clustering or cluster analysis is to
group the data into a number of subsets or “clusters”,
such that the data within a cluster are more closely
related to each other than data from other clusters. By
projecting all data belonging to a cluster to the cluster
center, data compression can be achieved.

The self-organizing map (SOM) method, intro-
duced by Kohonen (1982, 2001), approximates a
dataset in multidimensional space by a flexible grid
(typically of one or two dimensions) of cluster cen-
ters. Widely used for clustering, SOM can also be
regarded as a discrete version of NLPCA (Cherkassky
and Mulier 1998).

As with many neural network models, self-
organizing maps have a biological background (Rojas
1996). In neurobiology, it is known that many struc-
tures in the cortex of the brain are 2-D or 1-D. In con-
trast, even the perception of color involves three types
of light receptors. Besides color, human vision also
processes information about the shape, size, texture,
position and movement of an object. So the question
naturally arises on how 2-D networks of neurons in
the brain can process higher dimensional signals.

Among various possible grids, the rectangular grid
is most commonly used by SOM. For a 2-dimensional
rectangular grid, the grid points i j = (l, m), where
l and m take on integer values, i.e. l = 1, . . . ,
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L , m = 1, . . . , M , and j = 1, . . . , L M . (If a
1-dimensional grid is desired, simply set M = 1).

To initialize the training process, PCA is usually
first performed on the dataset, and a grid z j (0) is
placed on the plane spanned by the two leading PCA
eigenvectors, with each z j (0) corresponding to i j on
the integer grid. As training proceeded, the initial flat
2D surface of z j (0) is bended to fit the data. The
original SOM was trained in a flow-through manner
(i.e. samples are presented one at a time during train-
ing), though algorithms for batch training are now also
available. In flow-through training, there are two steps
to be iterated, starting with n = 1:

Step (i): At the nth iteration, select a sample x(n)

from the data space, and find among the points z j (n −
1), the one with the closest (Euclidean) distance to
x(n). Call this closest neighbor zk(n), corresponding
to the integer grid point ik(n).

Step (ii): Let

z j (n) = z j (n − 1) + η h(‖i j − ik(n)‖2)

×[x(n) − z j (n − 1)], (8.23)

where η is the learning rate parameter and h is a neigh-
borhood or kernel function. The neighborhood func-
tion gives more weight to the grid points i j near ik(n),
than those far away, an example being a Gaussian
drop-off with distance. Note the distance of the neigh-
bors are computed for the fixed grid points (i j =
(l, m)), not for their corresponding positions z j (n) in
the data space. Typically, as n increases, the learning
rate η is decreased gradually from the initial value
of 1 towards 0, while the width of the neighborhood
function is also gradually narrowed (Cherkassky and
Mulier 1998).

As an example, consider the famous Lorenz
‘butterfly’-shaped attractor from chaos theory (Lorenz
1963). Describing idealized atmospheric convection,
the Lorenz system is governed by three (nondimen-
sionalized) differential equations:

ẋ = −ax + ay, ẏ = −xz + bx − y,

ż = xy − cz, (8.24)

where the overhead dot denotes a time derivative,
and a, b and c are three parameters. A chaotic sys-
tem is generated by choosing a = 10, b = 28, and
c = 8/3. The Lorenz data is fitted by a 2-dimensional
SOM (from the MATLAB neural network toolbox) in
Fig. 8.9, and by a 1-dimensional SOM in Fig. 8.10. The
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Fig. 8.9 A 2-dimensional self-organizing map (SOM) where a
7 × 7 mesh is fitted to the Lorenz (1963) attractor data

1-dimensional fit resembles a discrete version of the
NLPCA solution found using auto-associative neural
networks (Monahan 2000).

SOM has been applied to the classification of
satellite-sensed ocean color (Yacoub et al. 2001), sea
surface temperature (Richardson et al. 2003), sea level
height (Hardman-Mountford et al. 2003), scatterome-
ter winds (Richardson et al. 2003) and ocean currents
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Fig. 8.10 A 1-dimensional self-organizing map (SOM) where
a curve with seven nodes is fitted to the Lorenz (1963) attractor
data
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(Liu et al. 2006). Villman et al. (2003) applied SOM to
not only clustering low-dimensional spectral data from
the LANDSAT thematic mapper, but also to the high-
dimensional hyperspectral AVIRIS (Airbourn Visible-
Near Infrared Imaging Spectrometer) data where there
are about 200 frequency bands. A 2-D SOM with a
mesh of 40 × 40 was applied to AVIRIS data to clas-
sify the geology of the land surface.

Cavazos (1999) applied a 2 × 2 SOM to cluster
the winter daily precipitation over 20 grid points in
northeastern Mexico and southeastern Texas. From the
wettest and driest clusters, composites of the 500 hPa
geopotential heights and sea level pressure were gen-
erated, yielding the large scale meteorological con-
ditions associated with the wettest and driest clus-
ters. Cavazos (2000) and Cavazos et al. (2002) also
applied SOMs with more clusters to other areas of the
world.

8.6 NLPCA for Complex Variables

Complex principal component analysis (CPCA) is
PCA applied to complex variables. In the first type of
application, a 2-dimensional vector such as the wind
(u, v) can be treated as a complex variable w = u + iv
and analyzed by CPCA. In the second type of appli-
cation, a real time-varying field can be complexified
by the Hilbert transform and analyzed by CPCA, often
called Hilbert PCA (von Storch and Zwiers 1999) to
distinguish from the first type of application.

Earlier in this chapter, we have examined the auto-
associative multi-layer perceptron NN approach of
Kramer (1991) for performing nonlinear PCA. Here
we will discuss how the same approach can be applied
to complex variables, giving rise to nonlinear complex
PCA (NLCPCA).

In the real domain, a common nonlinear activation
function is the hyperbolic tangent function tanh(x),
bounded between −1 and +1 and analytic everywhere.
For a complex activation function to be bounded and
analytic everywhere, it has to be a constant function
(Clarke 1990), as Liouville’s theorem states that entire
functions (i.e. functions that are analytic on the whole
complex plane) which are bounded are always con-
stants. The function tanh(z) in the complex domain has
an infinite number of singularities located at ( 1

2 + l)
π i , l ∈ �. Using functions like tanh(z) (without any

constraint) leads to non-convergent solutions (Nitta
1997).

Traditionally, the complex activation functions used
focussed mainly on overcoming the unbounded nature
of the analytic functions in the complex domain.
Some complex activation functions basically scaled
the magnitude (amplitude) of the complex signals
but preserved their arguments (phases) (Georgiou and
Koutsougeras 1992; Hirose 1992), hence they are
less effective in learning non-linear variations in the
argument. A more traditional approach has been to
use a “split” complex nonlinear activation function
(Nitta 1997), where the real and imaginary compo-
nents are used as separate real inputs for the activation
function. This approach avoids the unbounded nature
of the nonlinear complex function but results in a
nowhere analytic complex function, as the Cauchy-
Riemann equations are not satisfied (Saff and Snider
2003).

Kim and Adali (2002) proposed a set of elementary
activation functions with the property of being almost
everywhere (a.e.) bounded and analytic in the complex
domain. The complex hyperbolic tangent, tanh(z), is
among them, provided the complex optimization is
performed with certain constraints on z. If the magni-
tude of z is within a circle of radius π

2 , then the singu-
larities do not pose any problem, and the boundedness
property is also satisfied. In reality, the dot product
of the input and weight vectors may be ≥ π

2 . Thus a
restriction on the magnitudes of the input and weights
is needed.

The NLCPCA model proposed by Rattan and Hsieh
(2004, 2005) uses basically the same architecture
(Fig. 8.1a) as the NLPCA model of Kramer (1991),
except all the input and output variables, and the
weight and offset parameters are now complex-valued.
The magnitude of input data are scaled by dividing
each element in the r th row of the l × n data matrix
Z (with l the number of variables and n the number of
observations) by the maximum magnitude of an ele-
ment in that row, so each element of Z has magnitude
≤1. The weights at the first hidden layer are randomly
initalized with small magnitude, thus limiting the mag-
nitude of the dot product between the input vector and
weight vector to be about 0.1, and a weight penalty
term is added to the objective function J to restrict
the weights to small magnitude during optimization.
The weights at subsequent layers are also randomly
initialized with small magnitude and penalized during
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optimization by the objective function

J = 〈‖z − z′‖2〉 + P
∑

j

|w j |2, (8.25)

where z is the model output, z′, the target data, w j , the
individual weights from hidden layers 1, 2 and 3, and
P , the weight penalty parameter.

Since the objective function J is a real function
with complex weights, the optimization of J is equiva-
lent to finding the vanishing gradient of J with respect
to the real and the imaginary parts of the weights
(Rattan and Hsieh 2005). All the weights (and off-
sets) in the model are combined into a single weight
vector w. Hence the gradient of the objective function
with respect to the complex weights can be split into
(Georgiou and Koutsougeras 1992):

∂ J

∂w
= ∂ J

∂wR
+ i

∂ J

∂wI
(8.26)

where wR and wI are the real and the imaginary com-
ponents of the weight vector. The two components
can be put into a single real parameter vector dur-
ing nonlinear optimization using an algorithm for real
variables.

The tropical Pacific wind anomalies (expressed
as w = u + iv) have been analyzed by NLCPCA in
Rattan and Hsieh (2004), where a comparison between
the first mode of CPCA and that of NLCPCA revealed
a large difference in the spatial anomaly patterns dur-
ing strong El Niño episodes but a much smaller dif-
ference during strong La Niña episodes, indicating
stronger nonlinearity was manifested in the El Niño
side than the La Niña side of the oscillation.

The second type of NLCPCA application is for
nonlinear Hilbert PCA. In Rattan et al. (2005), evolu-
tion of the offshore bottom topography at three sandy
barred beaches were studied. All three sites were char-
acterized by sandbars with interannual quasi-periodic
offshore propagation. A bar cycle comprises bar birth
in the inner nearshore, followed by up to several years
of net offshore migration and final disappearance in
the outer nearshore zone. CPCA was applied to the
complexified topographic anomaly data, and the five
leading CPCs were retained as inputs for the NLCPCA
NN model. The first NLCPCA mode and the first
CPCA mode of the topographic anomalies at Egmond
aan Zee (The Netherlands) were compared. The topo-
graphic anomalies reconstructed from the nonlinear
and linear mode were divided in 8 θ classes, each π/4

in width, where θ is the phase of the (nonlinear or
linear) complex PC. Figure 8.11 shows how the shape
of the topographic anomalies change with phase. The
CPCA shows sinusoidal-shaped topographic anom-
alies propagating offshore, while the NLCPCA shows
non-sinusoidal anomalies – relatively steep sandbars
and shallow, broad troughs. The percentage variance
explained by the first NLCPCA mode was 81.4% ver-
sus 66.4% by the first CPCA mode. Thus, using the
NLCPCA as nonlinear Hilbert PCA successfully cap-
tures the non-sinusoidal wave properties which were
missed by the linear method.

8.7 Summary and Discussion

The nonlinear generalization of the classical PCA
method has been achieved by a number of different
approaches (neural networks, principal curves, ker-
nel methods, etc.). We have presented nonlinear PCA
(NLPCA) using neural network methods. The tropical
Pacific SST example illustrates that with a compli-
cated oscillation like the El Niño-La Niña phenom-
enon, using a linear method such as PCA results in
the nonlinear mode being scattered into several linear
modes. In the study of climate variability, the wide use
of PCA methods has created the somewhat misleading
view that our climate is dominated by a number of
spatially fixed oscillatory patterns, which may in fact
be due to the limitation of the linear method.

By using a curve instead of a straight line to fit
the data, NLPCA is susceptible to overfitting, yield-
ing excessively wiggly curves. The introduction of a
weight penalty parameter P in the objective function
allowed the wiggles to be smoothed, but the lack of an
objective selection criterion for P (hence the amount
of smoothing) has been a weakness in NLPCA, until
recent advances have allowed the objective selection
of P and m (which controls the number of hidden neu-
rons, hence model complexity). While the information
criterion introduced by Hsieh (2007) for model selec-
tion worked well in climate datasets where there is
one dominant signal (e.g. ENSO in the tropical Pacific
SST; QBO in the stratospheric wind), it remains inad-
equate for dealing with datasets which contain two or
more distinct signals of roughly comparable strength –
e.g. in the extratropical N. Hemisphere climate, where
there has been considerable controversy on the use of
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Fig. 8.11 Sequence of topographic anomalies as a function of
the offshore distance at Egmond in π/4-wide θ classes centered
around θ = −π to θ = 0.75π based on (a) NLCPCA mode 1
and (b) CPCA mode 1. The results for each phase class have

been vertically shifted for better visualization. The phase gener-
ally decreases with time, so the anomalies gradually propagate
offshore (Modified from Rattan et al. 2005)

NLPCA (Christiansen 2005, 2007; Monahan and Fyfe
2007), there are two signals of comparable magnitude,
the Arctic Oscillation and the Pacific-North American
teleconnection. The reason is that if there are two com-
parable signals, the total signal forms a 2-D surface
whereas the NLPCA model will be trying to fit a 1-
D curve to this surface, resulting in a hybrid mode
with attributes from both signals. While it is possible to
have two neurons in the bottleneck layer in the NLPCA
network, so that a 2-D solution is extracted, there is no
simple way to separate the two signals. Clearly more
research is needed in developing model selection cri-
teria in NLPCA for such complicated noisy datasets.

NLPCA has also been generalized to closed curve
solutions, and to complex variables. Self-organizing
maps (SOM) provide a discrete version of NLPCA.
Due to space limitation, further generalization to

nonlinear singular spectrum analysis and nonlinear
canonical correlation analysis have not been presented
here (see the review by Hsieh 2004).
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9Neural Network Applications to Solve
Forward and Inverse Problems in Atmospheric
and Oceanic Satellite Remote Sensing

Vladimir M. Krasnopolsky

List of Acronyms

BT – Brightness Temperature
DAS – Data Assimilation System
FM – Forward Model
MLP – Multi-Layer Perceptron
NWP – Numerical Weather Prediction
PB – Physically Based
RMSE – Root Mean Square Error
RS – Remote Sensing
SSM/I – Special Sensor Microwave Imager
SST – Sea Surface Temperature
TF – Transfer Function

9.1 Introduction

Here we discuss two very important practical appli-
cations of the neural network (NN) technique: solu-
tion of forward and inverse problems in atmospheric
and oceanic satellite remote sensing (RS). A par-
ticular example of this type of NN applications –
solving the SAR wind speed retrieval problem – is
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also presented in Chapter 10 by G. Yung. These
applications and those that we discuss in Chapter 11,
from the mathematical point of view, belong to the
broad class of applications called approximation of
mappings. A particular type of the NN, a Multi-Layer
Perceptron (MLP) NN (Rumelhart et al. 1986) is usu-
ally employed to approximate mappings. We will start
by introducing a remote sensing, mapping, and NN
background.

9.1.1 Remote Sensing Background

Estimating high quality geophysical parameters (infor-
mation about the physical, chemical, and biological
properties of the oceans, atmosphere, and land surface)
from remote measurements (satellite, aircraft, etc.) is a
very important problem in fields such as meteorology,
oceanography, climatology and environmental mod-
eling and prediction. Direct measurements of many
parameters of interest, like vegetation moisture, phy-
toplankton concentrations in the ocean, and aerosol
concentrations in the atmosphere are, in general, not
available for the entire globe at the required spatial and
temporal resolution. Even when in situ measurements
are available, they are usually sparse (especially over
the oceans) and located mainly at ground level or at
the ocean surface. Often such measurements can be
estimated indirectly from the influence of these geo-
physical parameters on the electromagnetic radiation
measured by a remote sensor. Remote measurements
allow us to obtain spatially dense measurements all
over the globe at and above the level of the ground
and ocean surface.
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Satellite RS data are used in a wide variety of appli-
cations and by a wide variety of users. Satellite sen-
sors generate measurements like radiances, backscatter
coefficients, brightness temperatures, etc. The appli-
cations usually utilize geophysical parameters such
as pressure, temperature, wind speed and direction,
water vapor concentration, etc. derived from satellite
data. Satellite forward models, which simulate satel-
lite measurements from given geophysical parame-
ters, and retrieval algorithms, which transform satel-
lite measurements into geophysical parameters, play
the role of mediators between satellite sensors and
applications. There exists an entire spectrum of differ-
ent approaches in extracting geophysical information
from the satellite measurements. At one end of this
spectrum ‘satellite only’ approaches are located; we
will call them standard or traditional retrievals. They
use measurements performed by one particular sen-
sor only, sometimes from different channels (frequen-
cies, polarizations, etc.) of the same sensor to estimate
geophysical parameters. Variational retrieval tech-
niques or direct assimilation techniques are located
at the other end of the spectrum. They use an entire
data assimilation system (DAS), including a numer-
ical weather prediction (NWP) model and analysis
(Prigent et al. 1997), which in turn includes all kind of
meteorological measurements (buoys, radiosondes,
ships, aircrafts, etc.) as well as data from numer-
ous satellite sensors. Data assimilation is a method
in which observations of the current (and possibly,
past) state of a system (atmosphere and/or ocean) are
combined with the results from a numerical model
to produce an analysis, which is considered as ‘the
best’ estimate of the current state of the system. The
analysis can be used for many purposes including ini-
tialization of the next step of the numerical model inte-
gration. Many approaches have been developed which
belong to the intermediate part of this spectrum. These
approaches use measurements from several satellite
sensors, combine satellite measurements with other
kinds of measurements, and/or use background fields
or profiles from NWP models for regularization of the
inverse problem (retrievals) or for ambiguity removal,
i.e., these approaches use some type of data fusion
to regularize (see Sections 9.1.2 and 9.4 below) the
solution of the inverse problem.

It is noteworthy that over the last few years,
direct assimilation of some geophysical parameters
into modern DASs has been successfully developed

and implemented. It improved the quality of assimi-
lated products and numerical forecasts that use some of
these products as initial conditions. Direct assimilation
replaces or eliminates the need for using retrievals
of these geophysical parameters in DASs. However,
there are still many other geophysical parameters (e.g.,
precipitations, atmospheric ice) that have not yet been
included, or it is not clear from both theoretical and/or
practical considerations how they could be included
into DASs through direct assimilation. There are also
other users of the retrieved geophysical parameters.
Therefore, there is still an urgent need to use the stan-
dard retrievals for these geophysical parameters and
to develop the corresponding retrieval algorithms to
which the NN technique could be efficiently applied.
Direct assimilation is discussed below at the end of this
subsection in the description of variational retrieval
techniques.

The remote measurements themselves are usually
very accurate. The quality of geophysical parameters
derived from these measurements varies significantly
depending on the strength and uniqueness of the signal
from the geophysical parameter and the mathematical
methods applied to extract the parameter, i.e., to solve
RS forward and/or inverse problems (see Section 9.2).
The NN technique is a useful mathematical tool for
solving the forward and inverse problems in RS accu-
rately. The number of NN RS applications has been
increasing steadily over the last decade.

A broad class of NN applications has been devel-
oped for solving the forward and inverse problems in
RS in order to infer geophysical parameters from satel-
lite data, i.e., to produce so-called satellite retrievals.
A brief review of RS NN applications was presented
by Atkinson and Tatnall (1997). Examples of such
applications follow. The NN technique was applied for
the inversion of a multiple scattering model to estimate
snow parameters from passive microwave measure-
ments (Tsang et al. 1992). Smith (1993) used NNs for
the inversion of a simple two-stream radiative trans-
fer model to derive the leaf area index from Moder-
ate Resolution Imaging Spectrometer data. In other
studies, NNs were applied to simulate scatterometer
measurements and to retrieve wind speed and direction
from these measurements (Thiria et al. 1993; Corn-
ford et al. 2001); to develop an inversion algorithm
for radar scattering from vegetation canopies (Pierce
et al. 1994); to estimate atmospheric humidity profiles
(Cabrera-Mercader and Staelin 1995), atmospheric
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temperature, moisture, and ozone profiles (Aires
et al. 2002) and atmospheric ozone profiles (Mueller
et al. 2003). Stogryn et al. (1994), and Krasnopol-
sky et al. (1995) applied NNs to invert Special Sen-
sor Microwave Imager (SSM/I) data and retrieve sur-
face wind speed. Davis et al. (1995) applied NNs
to invert a forward model to estimate soil moisture,
surface air temperature, and vegetation moisture from
Scanning Multichannel Microwave Radiometer data.
Using a NN technique, a fast SSM/I forward model
(Krasnopolsky 1997) and SSM/I multi-parameter
retrieval algorithm (Krasnopolsky et al. 1999, 2000;
Meng et al. 2007) have been derived from empir-
ical data (buoy SSM/I collocations). Abdelgadir
et al. (1998) applied NNs to the forward and inverse
modeling of canopy directional reflectance. Schiller
and Doerffer (1999) used a NN technique for invert-
ing a radiative transfer forward model to estimate the
concentration of phytoplankton pigment from Medium
Resolution Imaging Spectrometer data.

9.1.2 Mapping and Neural Networks
Background

A mapping, M , between two vectors X (input vector)
and Y (output vector) can be symbolically written as,

Y = M(X); X ∈ �n, Y ∈ �m (9.1)

where X ∈ �n means that the vector X has n com-
ponents and all of them are real numbers. A large
number of important practical geophysical applica-
tions may be considered mathematically as a mapping
like (9.1). Keeping in mind that a NN technique will
be used to approximate this mapping, we will call it a
target mapping, using a common term from nonlinear
approximation theory (DeVore 1998). The target map-
ping may be given to us explicitly or implicitly. It can
be given explicitly as a set of equations based on first
principles (e.g., radiative transfer or heat transfer equa-
tions) and/or empirical dependencies, or as a computer
code. Observational records composed of Xs and Y s
represent an implicit target mapping. In this case, it is
assumed that the unknown target mapping generates
the data.

The mapping (9.1) is a complicated mathematical
object with many important characteristics like map-

D

nℜ

R
mℜ

Y M

Y = M(X)

X

Fig. 9.1 The mapping (1), M ; its input vector, X ; output vector,
Y ; domain, D and range, R

ping dimensionalities, domain, range, complexities,
etc. Some of them are illustrated by Fig. 9.1.

Among the applications considered in this chapter,
we will find inverse problems that can be considered
as continuous unique mappings (9.1); however, for
these mappings small perturbations in X may cause
large changes in Y and the problem is then called ill-
posed (Vapnik 1995). Large changes in Y may occur
because an ill-posed problem may have more than one
solution, or the solution may depend discontinuously
upon the initial data (Hadamard 1902). It is also known
as improperly posed problem. Ill-posed problems
usually arise when one attempts to estimate an
unknown cause from observed effects (most of the geo-
physical inverse problems belong to this class, e.g., the
satellite retrieval problem considered in Section 9.2.1)
or to restore a whole object from its low dimensional
projection (e.g., estimating the NN Jacobian consid-
ered in Aires et al. 2004 and Krasnopolsky 2006). If
X contains even a low level of noise, the uncertain-
ties in Y may be very large. To solve ill-posed prob-
lems additional a priori information about the solution
(regularization) should be introduced into the solution
approach (Vapnik and Kotz 2006).

The simplest MLP NN is a generic analytical non-
linear approximation or model for mapping, like the
target mapping (9.1). The MLP NN uses for the
approximation a family of functions like:

yq = N N (X, a, b) = aq0 +
k∑

j=1

aqj · z j ;

q = 1, 2, . . . , m (9.2)

z j = φ(b j0 +
n∑

i=1

bji · xi ) (9.3)

where xi and yq are components of the input and out-
put vectors respectively, a and b are fitting parameters,
and φ is a so called activation function (a nonlinear
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function, often a hyperbolic tangent), n and m are the
numbers of inputs and outputs respectively, and k is
the number of the nonlinear basis function z j (9.3) in
the expansion (9.2). The expansion (9.2) is a linear
expansion (a linear combination of the basis func-
tion z j (9.3)) and the coefficients aqj (q = 1, . . . , m
and j = 1, . . . , k) are linear coefficients in this expan-
sion. It is essential that the basis functions z j (9.3)
are nonlinear with respect to inputs xi (i = 1, . . ., n)

and to the fitting parameters or coefficients bji ( j =
1, . . . , k). As a result of the nonlinear dependence
of the basis functions on multiple fitting parameters
bji, the basis {z j } j=1,...,k turns into a very flexible set
of non-orthogonal basis functions that have a great
potential to adjust to the functional complexity of the
mapping (9.1) to be approximated. It has been shown
by many authors in different contexts that the family
of functions (9.2, 9.3) can approximate any contin-
uous or almost continuous (with a finite number of
finite discontinuities, like a step function) mapping
(9.1) (Cybenko 1989; Funahashi 1989; Hornik 1991;
Chen and Chen 1995a, b). The accuracy of the
NN approximation or the ability of the NN to resolve
details of the target mapping (9.1) is proportional to the
number of basis functions (hidden neurons) k (Attali
and Pagès 1997).

In this chapter and in Chapter 11, we use the terms
an emulating NN or a NN emulation for NN (9.2, 9.3)
that provides a functional emulation of the target map-
ping (9.1) that implies a small approximation error for
the training set and smooth and accurate interpolation
between training set data points inside the mapping
domain D. The term “emulation” is introduced to dis-
tinguish between these NNs and approximating NNs
or NN approximations that guarantee small approxi-
mation error for the training set only.

When an emulating NN is developed, in addition
to the criterion of small approximation error at least
three other criteria are used: (i) the NN complexity
(proportional to the number k of hidden neurons when
other topological parameters are fixed) is controlled
and restricted to a minimal level sufficient for good
approximation and interpolation; (ii) independent val-
idation and test data sets are used in the process of
training (validation set) to control overfitting and after
the training (test set) to evaluate interpolation accu-
racy; (iii) redundant training set (additional redun-
dant data points are added in-between training data
points sufficient for a good approximation) is used for

improving the NN interpolation abilities (Krasnopol-
sky 2007).

9.2 Deriving Geophysical Parameters
from Satellite Measurements:
Standard Retrievals and Variational
Retrievals Obtained Through Direct
Assimilation

9.2.1 Standard or Conventional
Retrievals

Conventional methods for using satellite data (stan-
dard retrievals) involve solving an inverse or retrieval
problem and deriving a transfer function (TF) f , which
relates a geophysical parameter of interest G (e.g., sur-
face wind speed over the ocean, atmospheric moisture
concentration, sea surface temperature (SST), etc.) to a
satellite measurement S (e.g., brightness temperatures,
radiances, reflection coefficients, etc.)

G = f (S) (9.4)

where both G and S may be vectors. The TF f , (also
called a retrieval algorithm) usually cannot be derived
directly from first principles because the relationship
(9.4) does not correspond to a cause and effect prin-
ciple and multiple values of G can sometimes corre-
spond to a single S. Forward models (FM),

S = F(G) (9.5)

where F is a forward model, which relate a vector G to
a vector S, can usually be derived from first principles
and physical considerations (e.g., a radiative transfer
theory) in accordance with cause and effect princi-
ples because geophysical parameters affect the satellite
measurements (but not vice versa). Thus, the forward
problem (9.5) is a well-posed problem in contrast to
the inverse problem (9.4) which is often an ill-posed
one (Parker 1994); although, from a mathematical
point of view, both FM (9.5) and TF (9.4) are continu-
ous (or almost continuous) mappings between the two
vectors S and G. Even in the cases where the mapping
(9.4) is not unique, this multi-valued mapping may be
considered as a collection of single-valued continuous
mappings. In order to derive the TF (9.4), the FM
(9.5) has to be inverted (an inverse problem has to be
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solved). The inversion technique usually searches for
a vector G0 which minimizes the functional (Stoffelen
and Anderson 1997)

‖�S‖ = ∥∥S0 − F(G)
∥∥ (9.6)

where S0 is an actual vector of satellite measurements.
Since the FM F is usually a complicated nonlinear
function, this approach leads to a full-scale nonlinear
optimization with all its numerical problems, like slow
convergence, multiple solutions, etc. This approach
does not determine the TF explicitly; it assumes this
function implicitly, and for each new measurement
S0 the entire process has to be repeated. A simpli-
fied linearization method to minimize the functional
(9.6) can be applied if there is a good approximation
for the solution of the inverse problem, that is, an
approximate vector of the geophysical parameters G0.
Then the difference vector �S is small and there is a
vector G in close proximity to G0 (|�G| = |G − G0|
is small) where �S(G) = 0. Expanding F(G) in a
Taylor series and keeping only those terms which are
linear with respect to �G, we can obtain a system
of linear equations to calculate the components of the
vector �G (e.g., Wentz 1997),

n∑

i=1

∂ F(G)

∂Gi
|G=G0�Gi = S0 − F(G0) (9.7)

where n is the dimension of vector G. After �G
is calculated, the next iteration of (9.7) with G0 =
G0 + �G is performed. The process is expected to
converge quickly to the vector of retrievals G. Again,
in this case the TF, f , is not determined explicitly but
is only determined implicitly for the vector S0 by the
solution of (9.7). This type of retrieval can be called
a “local” or “localized” linear inversion. These tech-
niques (9.6, 9.7) are usually called physically based
retrievals. It is important to emphasize that the phys-
ically based algorithms (9.6, 9.7) are by definition
multi-parameter algorithms since they retrieve several
geophysical parameters simultaneously (a complete
vector G).

Empirical algorithms are based on an approach
which, from the beginning, assumes the existence of
an explicit analytical representation for a TF, f . A
mathematical (statistical) model, fmod, is usually cho-
sen (usually some kind of a regression), which con-
tains a vector of fitting (or regression) parameters

a = {a1, a2, . . .},
Gk = fmod(S, a) (9.8)

where these parameters are determined from an
empirical (or simulated) matchup data set {Gk, S}
collocated in space and time and use, for example,
statistical techniques such as the method of least-
squares. This type of retrieval can be called a “global”
inversion as it is not restricted to a given vector of
satellite measurements. The subscript k in Gk stresses
the fact that the majority of empirical retrieval algo-
rithms are single-parameter algorithms. For exam-
ple, for Special Sensor Microwave Imager (SSM/I)
there exist algorithms which retrieve only wind speed
(Goodberlet et al. 1989), water vapor (Alishouse
et al. 1990; Petty 1993), or cloud liquid water (Weng
and Grody 1994). Krasnopolsky et al. (1999, 2000 )
showed that single-parameter algorithms have addi-
tional (compared to multi-parameter retrievals) sys-
tematic (bias) and random (unaccounted variance)
errors in a single retrieved parameter Gk .

The obvious way to improve single-parameter
retrievals (9.8) is to include other parameters in the
retrieval process using an empirical multi-parameter
approach, which as in the physically based multi-
parameter approach (9.6, 9.7), inverts the data in
the complete space of the geophysical parameters
(Krasnopolsky et al. 1999, 2000). Thus, the com-
plete vector of the related geophysical parameters is
retrieved simultaneously from a given vector of satel-
lite measurements S,

G = fmod(S, a) (9.9)

where G = {Gi } is now a vector containing the
primary, physically-related geophysical parameters,
which contribute to the observed satellite measure-
ments S. These retrievals do not contain the additional
systematic and random errors just described. Because
equations (9.4), (9.5), (9.8), and (9.9) represent con-
tinuous mappings, the NN technique is well suited for
emulating the FM, TF, and fmod.

The standard retrievals derived using TF (9.4) have
the same spatial resolution as the sensor measurements
and produce instantaneous values of geophysical para-
meters over the areas where the measurements are
available. Geophysical parameters derived using stan-
dard retrievals can be used for many applications, such
as the NWP DASs. In this case, a contribution to the
variational analysis cost function χG from a particular
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retrieval, G0, is:

χG = 1

2
(G − G0)T (O + E)−1 (G − G0) (9.10)

where G0 = f (S0) is a vector of the retrieved geo-
physical parameter, S0 is a vector of the sensor mea-
surements, G is a vector of the geophysical parameters
being analyzed, O is the expected error covariance of
the observations, and E is the expected error covari-
ance of the retrieval algorithm.

9.2.2 Variational Retrievals Through the
Direct Assimilation of Satellite
Measurements

Because standard retrievals are based on the solu-
tion of an inverse problem which is usually mathe-
matically ill-posed (Parker 1994), this approach has
some rather subtle properties and error characteris-
tics (Eyre and Lorenc 1989) which cause additional
errors and problems in retrievals (e.g., an amplification
of errors, ambiguities, etc.). As a result, high-quality
sensor measurements might be converted into lower-
quality geophysical parameters. This type of error can
be avoided or reduced by using a variational retrieval
technique (or an inversion) through direct assimilation
of satellite measurements (Lorenc 1986; Parrish and
Derber 1992; Phalippou 1996; Prigent et al. 1997;
Derber and Wu 1998; McNally et al. 2000).

Variational retrievals or direct assimilation of satel-
lite data offer an alternative to deriving geophysical
parameters from the satellite measurements. They use
the entire data assimilation system for the inversion (as
a retrieval algorithm). In this case, a contribution to
the analysis cost function χS from a particular sensor
measurement, S0, is:

χS = 1

2
(S − S0)T (O + E)−1 (S − S0) (9.11)

where S = F(G), and F is a FM which relates an
analysis state vector G (or a vector of geophysical
parameters in the analysis) to a vector of simulated
sensor measurements S, O is the expected error covari-
ance of the observations, and E is the expected error
covariance of the forward model. The forward problem
(9.5) is a well-posed problem in contrast to the inverse
problem (9.4). However, a background term has to be

added to (9.11) to prevent the data assimilation prob-
lem from being ill-posed (Parrish and Derber 1992).

The retrieval in this case results in an entire field
(global in the case of the global data assimilation
system) for the geophysical parameter G (non-local
retrievals) which has the same resolution as the numer-
ical forecast model used in the data assimilation sys-
tem. This resolution may be lower or higher than
the resolution of standard retrievals. The variational
retrievals are also not instantaneous but usually aver-
aged in time over the analysis cycle; however, the
field is continuous and coherent (e.g., it should not
have problems such as directional ambiguity in the
scatterometer winds). The variational retrievals are the
result of fusing many different types of data (includ-
ing satellite data, ground observations, and numerical
model first guesses) inside the data assimilation sys-
tem. Sparse standard retrievals can be converted into
continuous fields using the regular data assimilation
procedure (9.10) that fuses sparse observations with
the numerical model short term prediction producing
the integrated product on the model grid.

It is important to emphasize a very significant dif-
ference between the use of the explicit TF for standard
retrievals and the use of FM in variational retrievals.
In standard retrievals, the explicit TF (9.4) is usually
simple (e.g., a regression) and is applied once per sen-
sor observation to produce a geophysical parameter. In
variational retrievals the FM, which is usually much
more complicated than a simple explicit TF, and its
partial derivatives (the number of derivatives is equal
to m × n, where m and n are the dimensions of the
vectors G and S, respectively) have to be estimated for
each of the k iterations performed during the cost func-
tion (9.11) minimization. Thus the requirements for
simplicity of the FM used in the variational retrievals
are restrictive, and variational retrievals often require
some special, simplified and fast versions of FMs.

9.3 NNs for Emulating Forward Models

FMs are usually complex due to the complexity of
the physical processes which they describe and the
complexity of the first principle formalism on which
they are based (e.g., a radiative transfer theory).
Dependencies of satellite measurements on geophys-
ical parameters, which FMs describe, are complicated
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and nonlinear. These dependencies may exhibit dif-
ferent types of nonlinear behavior. FMs are usu-
ally exploited in physically based retrieval algorithms
where they are numerically inverted to retrieve geo-
physical parameters and in data assimilation systems
where they are used for the direct assimilation of
satellite measurements (variational retrievals). Both
numerical inversions and direct assimilation are iter-
ative processes where FMs and their Jacobians are
calculated many times for each satellite measurement.
Thus, the retrieval process becomes very time consum-
ing, sometimes prohibitively expensive for operational
(real time) applications.

For such applications, it is essential to have fast and
accurate versions of FMs. Because the functional com-
plexity of FM mappings (complexity of input/output
relationships) is usually not as high as their physi-
cal complexity, NNs can provide fast and accurate
emulations of FMs. Moreover, a NN can also pro-
vide an entire Jacobian matrix with only a small addi-
tional computational effort. This is one of NN applica-
tions where the NN Jacobian is calculated and used.
Because a statistical inference of Jacobian is an ill-
posed problem, it should be carefully tested and con-
trolled.

To develop a NN emulation for the FM, a train-
ing set which consists of matched pairs of vectors
of geophysical parameters and satellite measurements,
{G, S}i=1,...,N , has to be created. If a physically based
FM exists, it can be used to simulate the data. Other-
wise, empirical data can be used. The resulting data
set constitutes the training set and will be employed to
develop the NN emulation.

9.4 NNs for Solving Inverse Problems:
NNs Emulating Retrieval Algorithms

NNs can be used in several different ways for retrieval
algorithms. In physically based retrieval algorithms a
fast NN, emulating the complex and slow physically
based FM and its Jacobian, can be used to speed up the
local inversion process (9.7). NNs can be used in many
cases for a global inversion to explicitly invert a FM.
In such cases, after an inversion the NN provides an
explicit retrieval algorithm (or TF), which is a solution
of the inverse problem and can be used for retrievals.
To train a NN which emulates an explicit retrieval

algorithm, a training set {G, S}i=1,...,N , is required. As
in the case of FMs, simulated or empirical data can be
used to create the training set.

In addition to the complications related to FMs
(complexity, nonlinearity, etc.), retrieval algorithms
exhibit some problems because they are solutions
of the inverse problem, which is an ill-posed prob-
lem. This is why mathematical tools which are used
to develop retrieval algorithms have to be accurate
and robust in order to deal with these additional
problems. NNs are fast, accurate and robust tools
for emulating nonlinear (continuous) mappings and
can be effectively used for modeling multi-parameter
retrieval algorithms. One of serious problems related
to retrieval algorithms is the problem of regularizing
the solution of the inverse problem. Without regu-
larization, from very accurate satellite measurements
only poor quality or ambiguous geophysical parame-
ters can usually be retrieved. To regularize an ill-posed
inverse problem, additional (regularization) informa-
tion should be introduced (Vapnik and Kotz 2006).
The NN technique is flexible enough to accommodate
regularization information as additional inputs and/or
outputs and as additional regularization terms in the
error or loss function. For example, in their pioneering
work on using NNs for the simultaneous retrieval of
temperature, water vapor, and ozone atmospheric pro-
files (Aires et al. 2002; Mueller et al. 2003) from satel-
lite measurements, the authors made good use of this
NN flexibility by introducing the first guess from the
atmospheric model or DAS as additional regularizing
inputs in their NN based retrieval algorithms.

9.5 Controlling the NN Generalization

NNs are well suited to modeling complicated nonlin-
ear relationships between multiple variables, as is the
case in multispectral remote sensing. Well-constructed
NNs (NN emulations) have good interpolation prop-
erties; however, they may produce unpredictable out-
puts when forced to extrapolate. The NN training data
(simulated by a FM or constructed from empirical
data sets) cover a certain manifold DT (a sub-domain
DT ∈ D) in the full domain D. Real data to be fed into
the NN, fNN , which emulates a TF, may not always lie
in DT . There are many reasons for such deviations of
real data from the low dimensional manifold DT of
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training data, e.g., simplifications built into a model
design, neglecting the natural variability of parameters
occurring in the model and measurement errors in the
satellite signal not taken into account during the gen-
eration of the training data set. When empirical data
are used, extreme events (highest and lowest values
of geophysical parameters) are usually not sufficiently
represented in the training set because they have a
low frequency of occurrence in nature. This means
that during the retrieval stage, real data in some cases
may force the NN emulation, fNN , to extrapolate. The
error resulting from such a forced extrapolation will
increase with the distance of the input point from DT

and will also depend on the orientation of the input
point relative to DT .

In order to recognize NN inputs not foreseen in
the NN training phase and, thus, out of the scope
of the inversion algorithm, a validity check (Schiller
and Krasnopolsky 2001) can be used. This check may
serve as the basis for a quality control (QC) procedure.
Some kind of QC procedure is usually applied to the
satellite retrievals in DAS. Let the model S = F(G)

have an inverse G = f (S), then, by definition S =
F( f (S)). Further, let fNN be the NN emulating the
inverse model in the domain DT . The result of G0 =
fNN(S0) for S0 /∈ DT may be arbitrary and, in general,
F( fNN(S0)) will not be equal to S0. The validity of
S = F( fNN(S)) is a necessary condition for S ∈ D.

Now, if in the application stage of the NN, fNN , S is
not in the domain ST , the NN is forced to extrapolate.
In such a situation the validity condition may not be
fulfilled, and the resulting G is in general meaning-
less. For operational applications, it is necessary to
report such events to make a proper decision about
correcting this retrieval or removing it from the data
stream. In order to perform the validity test, the FM
must be applied after each inversion. This requires a
fast but accurate FM. Such a FM can be achieved by
developing a NN that accurately emulates the original
FM, S = FNN(G). Thus, the validity check algorithm
consists of a combination of inverse and forward NNs
that, in addition to the inversion, computes a quality
measure for the inversion:

δ = ||S − FNN( fNN(S))|| (9.12)

In conclusion, the solution to the problem of a scope
check is obtained by estimating δ (9.12) where S is the
result of the satellite measurement. This procedure (i)
allows the detection of situations where the forward

model or/and transfer function is inappropriate, (ii)
does an “in scope” check for the retrieved parameters
even if the domain has a complicated geometry, and
(iii) can be adapted to all cases where a NN is used to
emulate the inverse of an existing forward model.

9.6 Neural Network Emulations for
SSM/I Data

In previous sections, we discussed the theoretical pos-
sibilities and premises for using NNs for modeling TFs
and FMs. In this section, we illustrate these theoretical
considerations using real-life applications of the NN
approach to the SSM/I forward and retrieval prob-
lems. SSM/I is a well-established instrument, flown
since 1987. Many different retrieval algorithms and
several forward models have been developed for this
sensor and several different databases are available
for algorithm development and validation. Various dif-
ferent techniques have been applied to the algorithm
development. Therefore, we can present an extensive
comparison of different methods and approaches for
this instrument. A raw buoy-SSM/I matchup database
created by the Navy was used for the NN algorithm
development, validation, and comparison. This data-
base is quite representative, with the exception of
high latitude and high wind speed events. In order to
improve this situation the data sets were enriched by
adding matchup databases collected by the high lati-
tude European ocean weather ships Mike and Lima to
the Navy database. Various filters have been applied to
remove errors and noisy data (for a detailed discussion
see Krasnopolsky 1997, and Krasnopolsky et al. 1999).

9.6.1 NN Emulation of the Empirical FM
for SSM/I

The empirical SSM/I FM represents the relationship
between the vector of geophysical parameters G and
vector of satellite brightness temperatures (BTs) S,
where S = {T 19V, T 19H, T 22V, T 37V, T 37H}
(TXXY means XX frequency in GHz and Y polar-
ization). Four geophysical parameters are included
in G (surface wind speed W , columnar water vapor
V , columnar liquid water L , and SST or Ts). These
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Table 9.1 Comparison of
physically based radiative
transfer and empirical NN
forward models under clear
and clear + cloudy (in
parentheses) weather
conditions

BT RMS Error (K)

Author Type Inputs Vertical Horizontal

P & K (1992) PB W, V, L, SST, Theta1, P02, 1.9 (2.3) 3.3 (4.3)
HWV3, ZCLD4, Ta5, G6

Wentz (1997) PB W, V, L, SST, Theta1 2.3 (2.8) 3.4 (5.1)
Krasnopolsky (1997) NN W, V, L, SST 1.5 (1.7) 3.0 (3.4)
1Theta – incidence angle
2 P0 – surface pressure
3 HWV – vapor scale height
4 ZCLD – cloud height
5Ta – effective surface temperature
6G – lapse rate

are the main parameters influencing BTs measured
by satellite sensors, which were used as inputs in
the physically based FMs of Petty and Katsaros
(1992, 1994) (referenced to below as PK) and
Wentz (1997) (see Table 9.1). The NN emulation FM1
(Krasnopolsky 1997), which implements this SSM/I
FM has four inputs {W, V, L , SST }, one hid-
den layer with 12 neurons, and five nonlinear BT
outputs {T 19V, T 19H, T 22V, T 37V, T 37H} (see
Fig. 9.2). The derivatives of the outputs with respect
to the inputs, which can be easily calculated, con-
stitute the Jacobian matrix K[S] = {∂Si/∂Gj }, which
is required in the process of direct assimilation of
the SSM/I BTs when the gradient of the SSM/I con-
tribution to the cost function (9.11) χs is calculated

FM1

T19V T19H T22V T37V T37H 

W V L SST 

Fig. 9.2 SSM/I NN forward model, FM1 that generates bright-
ness temperatures S = T X XY (X X– frequency in GHz, Y –
polarization) if given the vector G of four geophysical para-
meters: ocean surface wind speed (W ), water vapor (V ), liquid
water (L) concentrations, and sea surface temperature (SST)

(Parrish and Derber 1992; Phalippou 1996). Esti-
mating an NN emulation of FM and its derivatives
is a much simpler and faster task than calculat-
ing radiative transfer forward models. The quality
of the Jacobian matrix was evaluated in (Krasnopol-
sky 1997).

The matchup databases for the F11 SSM/I have
been used for training (about 3,500 matchups) and
validating (about 3,500 matchups) our forward model.
FM1, the NN emulation of FM, was trained using all
matchups that correspond to clear and cloudy weather
conditions in accordance with the retrieval flags
introduced by Stogryn et al. (1994). Only those
cases where the microwave radiation cannot pene-
trate the clouds were removed. Then, more than 6,000
matchups for the F10 instrument were used for the
testing and comparison of the FM1 with physically
based forward models by PK and Wentz (1997). The
RMS errors for FM1 are systematically better than
those for the PK and Wentz FMs for all weather con-
ditions and all channels considered. With the FM1, the
horizontally polarized channels 19H and 37H have the
highest RMSE, ∼3.5 K under clear and ∼4. K under
clear and cloudy conditions. For the vertically polar-
ized channels RMSEs are lower, 1.5 K under clear and
1.7 K under partly clear and partly cloudy conditions.
The same trend can be observed for the PK and Wentz
FMs. Table 9.1 presents total statistics (RMS errors)
for the three FMs discussed here. RMS errors are aver-
aged over different frequencies separately for the verti-
cal and horizontal polarizations. RMS errors are higher
under cloudy conditions because the complexity of the
forward model increases due to the interaction of the
microwave radiation with clouds.

Thus, FM1 gives results which are compara-
ble or better in terms of RMSEs than the results
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obtained with more sophisticated physically-based
models (shown in Table 9.1), and is much simpler
than physically based FMs. FM1 is not as general as a
radiative transfer model; it was developed to be applied
to the data assimilation system for variational retrieval
and direct assimilation of SSM/I BTs at particular
frequencies from a particular instrument. However,
for this particular application (direct assimilation) and
particular instrument it has a significant advantage (it
is significantly simpler and faster), especially in an
operational environment. This is also one of the appli-
cations where the accuracy of the NN Jacobian is
essential. FM1 simultaneously calculates the BTs and
Jacobian matrix. Krasnopolsky (1997) has demon-
strated that for this particular application the NN Jaco-
bian is sufficiently smooth. A generic NN ensemble
technique is discussed by Krasnopolsky (2007) that
improves the stability and reduces uncertainties of the
NN emulation Jacobian if desired.

9.6.2 NN Empirical SSM/I Retrieval
Algorithms

The SSM/I wind speed retrieval problem is a perfect
example illustrating the general discussion presented
in Section 9.2.1. The problems encountered in the case
of SSM/I wind speed retrievals are very representa-
tive, and the methods used to solve them can easily
be generalized for other geophysical parameters and
sensors. About 10 different SSM/I wind speed retrieval
algorithms, both empirical and physically-based, have
been developed using a large variety of approaches
and methods. Here these algorithms are compared

in order to illustrate some properties of the different
approaches mentioned in previous sections, and some
advantages of the NN approach.

Goodberlet et al. (1989) developed the first
global SSM/I wind speed retrieval algorithm. This
algorithm is a single-parameter algorithm (it retrieves
only wind speed) and is linear with respect to BTs
(a linear multiple regression is used). Statistics for
this algorithm are shown in Table 9.2 under the
abbreviation GSW. This algorithm presents a linear
approximation of a nonlinear (especially under cloudy
sky conditions) SSM/I TF (9.8). Under clear sky
conditions (Table 9.2), it retrieves the wind speed
with an acceptable accuracy. However, under cloudy
conditions where the amount of the water vapor and/or
cloud liquid water in the atmosphere increases, errors
in the retrieved wind speed increase significantly.

Goodberlet and Swift (1992) tried to improve the
GSW algorithm performance under cloudy conditions,
using nonlinear regression with a rational type of non-
linearity. Since the nature of the nonlinearity of the
SSM/I TF under cloudy conditions is not known pre-
cisely, the application of such a nonlinear regression
with a particular fixed type of nonlinearity may not
be enough to improve results, as happens with the
algorithm we refer to as GS. In many cases the GS
algorithm generates false high wind speeds when real
wind speeds are less than 15 m/s (Krasnopolsky et al.
1996).

A nonlinear (with respect to BTs) algorithm (called
the GSWP algorithm here) introduced by Petty (1993)
is based on a generalized linear regression. It presents
a case where a nonlinearity introduced in the algorithm
represents the nonlinear behavior of the TF much bet-
ter. This algorithm introduces a nonlinear correction

Table 9.2 Errors (in m/s) for different SSM/I wind speed algorithms under clear and clear + cloudy (in parentheses) conditions

Algorithm Method Bias Total RMSE W > 15 m/s RMSE

GSW1 Multiple linear regression −0.2 (−0.5) 1.8 (2.1) (2.7)
GSWP2 Generalized linear regression −0.1 (−0.3) 1.7 (1.9) (2.6)
GS3 Nonlinear regression 0.5 (0.7) 1.8 (2.5) (2.7)
Wentz4 Physically-based 0.1 (−0.1) 1.7 (2.1) (2.6)
NN15 Neural network −0.1 (−0.2) 1.5 (1.7) (2.3)
NN26 Neural network (−0.3) (1.5) –
1Goodberlet et al. (1989)
2Petty (1993)
3Goodberlet and Swift (1992)
4Wentz (1997)
5Krasnopolsky et al. (1996, 1999)
6Meng et al. (2007)
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for the linear GSW algorithm when the amount of
water vapor in the atmosphere is not zero. Table 9.2
shows that the GSWP algorithm improves the accuracy
of retrievals compared to the linear GSW algorithm
under both clear and cloudy conditions. However, it
does not improve the GSW algorithm performance at
high wind speeds because most of high wind speed
events occur at mid- and high-latitudes where the
amount of water vapor in the atmosphere is not signif-
icant. Here, the cloud liquid water is the main source
of the nonlinear behavior of the TF and has to be taken
into account.

NN algorithms have been introduced as an alter-
native to nonlinear and generalized linear regressions
because the NN can model the nonlinear behavior of a
TF better than these regressions. Stogryn et al. (1994)
developed the first NN SSM/I wind speed algorithm,
which consists of two NNs, each with the surface
wind speed as a single output. One performs retrievals
under clear and the other under cloudy conditions.
Krasnopolsky et al. (1995) showed that a single NN
with the same architecture (a single output) can gener-
ate retrievals for surface winds with the same accuracy
as the two NNs developed by Stogryn et al. (1994)
under both clear and cloudy conditions. Application
of a single NN emulation led to a significant improve-
ment in wind speed retrieval accuracy under clear con-
ditions. Under higher moisture/cloudy conditions, the
improvement was even greater (25–30%) compared to
the GSW algorithm. The increase in areal coverage
due to the improvements in accuracy was about 15%
on average and higher in areas where there were sig-
nificant weather events (higher levels of atmospheric
moisture).

Both described above NN algorithms give very sim-
ilar results because they had been developed using
the same matchup database. This database, however,
does not contain matchups for wind speed higher
than about 20 m/s and contains very few matchups
for wind speeds higher than 15 m/s. These algorithms
are also single-parameter algorithms, i.e., they retrieve
only the one parameter of wind speed; therefore,
they cannot account for the variability in all related
atmospheric (e.g., water vapor and liquid water) and
surface (e.g., SST) parameters (which is especially
important at higher wind speeds). This is why these
NN algorithms pose the same problem; they cannot
generate acceptable wind speeds at ranges higher then
18–19 m/s.

The next generation NN algorithm – a multi-
parameter NN algorithm developed at NCEP (NN1 in
Table 9.2) by Krasnopolsky et al. (1996, 1999) solved
the high wind speed problem through three main
advances. First, a new buoy/SSM/I matchup database
was used in the development of this algorithm. It con-
tained an extensive matchup data set for the F8, F10,
and F11 sensors, provided by Navy Research Labo-
ratory, and augmented with additional data from the
European Ocean Weather Ships Mike and Lima for
high latitude, high wind speed events (up to 26 m/s).
Second, the NN training method was improved by
enhancing the learning for the high wind speed range
by weighting the high wind speed events. Third, the
variability of related atmospheric and surface parame-
ters was taken into account; surface wind speed (W ),
columnar water vapor (V ), columnar liquid water (L),
and SST are all retrieved simultaneously. In this case,
the output vector of geophysical parameters is pre-
sented by G = {W, V, L , SST }. The NN1 algorithm
uses five SSM/I channels, including 19 and 37 GHz
for horizontal and vertical polarization and 22 GHz for
vertical polarization (see Fig. 9.3).

Meng et al. (2007) (NN2 in Table 9.2) use the
NN multi-parameter retrieval approach developed by
Krasnopolsky et al. (1996, 1999) to design another NN
multi-parameter retrieval algorithm for SSM/I. They

NN1

T19V T19H T22V T37V T37H 

W V L SST 

Fig. 9.3 SSM/I retrieval algorithm (NN1) emulating the inverse
model to retrieve vector G of four geophysical parameters:
ocean surface wind speed (W ), water vapor (V ), liquid water (L)

concentrations, and sea surface temperature (SST) if given five
brightness temperatures S = TXXY (XX – frequency in GHz,
Y – polarization)
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use all 7 SSM/I BTs as inputs. Their output vec-
tor also has four components G = {W, Ta, H, SST }
where surface wind speed (W ), surface air temperature
(Ta), humidity (H), and SST are retrieved simultane-
ously. In this case, the training database was limited
by maximum wind speeds of about 20 m/s. Moreover,
there are only a few higher speed events with W > 15–
17 m/s.

Table 9.2 shows a comparison of the performance
of all the aforementioned empirical algorithms in
terms of the accuracy of the surface wind speed
retrievals. It also shows statistics for a physically based
algorithm developed by Wentz (1997), which is based
on a linearized numerical inversion (9.7) of a phys-
ically based FM. The statistics presented in Table
9.2 were calculated using independent buoy-SSM/I
matchups. Table 9.2 shows that the NN algorithms
outperform all other algorithms. All algorithms except
the NN algorithms show a tendency to overestimate
high wind speeds. This happens because high wind
speed events are usually accompanied by a significant
amount of cloud liquid water in the atmosphere. Under
these circumstances the transfer function f becomes
a complicated nonlinear function, and simple one-
parametric regression algorithms cannot provide an
adequate representation of this function and confuse
a high concentration of cloud liquid water with very
high wind speeds. Krasnopolsky et al. (1999, 2000 )
showed that single-parameter algorithms have addi-
tional (compared to multi-parameter retrievals) sys-
tematic (bias) and random (unaccounted variance due
to other parameters) errors in a single retrieved para-
meter because of described effects. NN1 shows the
best total performance, in terms of bias, RMSE, and
high wind speed performance.

As mentioned above, one of the significant advan-
tages of NN1 algorithm is its ability to retrieve
simultaneously not only the wind speed but also the
three other atmospheric and ocean surface parame-
ters columnar water vapor V , columnar liquid water
L , and SST. Krasnopolsky et al. (1996) showed that
the accuracy of retrieval for other geophysical para-
meters is very good and close to those attained by
the algorithms of the Alishouse et al. (1990) (for
V ) and Weng and Grody (1994) (for L). In addi-
tion, Krasnopolsky et al. (1999, 2000 ) have shown
that the errors of multi-parameter NN algorithms
have a weaker dependence on the related atmospheric

and surface parameters than the errors of the single-
parameter algorithms considered. The retrieved SST
in this case is not accurate (the RMS error is about
4◦C, see Krasnopolsky et al. 1996); however, including
SST in the vector of retrieved parameters decreases
the error in other retrievals correlated with the SST.
For the multi-parameter NN algorithm NN2 (Meng
et al. 2007), the choice of the additional outputs sur-
face air temperature (Ta) and humidity (H), that are
closely and physically related and correlated with
SST, makes the accuracy of the retrieved SST sig-
nal higher (the bias is about 0.1◦C and RMS error
1.54◦C). In accordance with the classical, “linear”
remote sensing paradigm, the SSM/I instrument does
not have the frequency required to sense SST. How-
ever, due to the nonlinear nature of the NN emulation
and the proper choice of output parameters the multi-
parameter NN algorithm is probably able to use weak
nonlinear dependencies between NN inputs and out-
puts and between NN outputs to retrieve SST with a
high accuracy.

9.6.3 Controlling the NN Generalization
in the SSM/I Case

The NN1 retrieval algorithm was judged so successful
that it has been used as the operational algorithm in
the global data assimilation system at NCEP/NOAA
since 1998. Given five brightness temperatures, it
retrieves the four geophysical parameters ocean sur-
face wind speed, water vapor and liquid water concen-
trations, and sea surface temperature. At high levels
of liquid water concentration the microwave radia-
tion cannot penetrate clouds and surface wind speed
retrievals become impossible. Brightness temperatures
on these occasions fall far outside the training domain
DT . The retrieval algorithm in these cases, if not
flagged properly, will produce wind speed retrievals
which are physically meaningless (i.e., not related to
actual surface wind speed). Usually a statistically-
based retrieval flag, based on global statistics, is used
to indicate such occurrences. Under complicated local
conditions, however, it can produce significant num-
ber of false alarms, or does not produce alarms when
needed.



000–0–00–000000–0 09-Haupt-c09 SHB0024-Haupt (Typeset by SPi, Delhi) page 203 of 206 September 22, 2008 16:11

9 NNs for Satellite Remote Sensing 203

N
N

1
F

M
1

T19V 

T19V’ 

T19H 

T19H’ 

T22V 

T37V 

T37H 

T22V’ 

T37V’ 

T37H’ 

ε<′−∑ TT

W

V

L

SST

W

V

L

SST
Quality

Flag

Validity Check 

Fig. 9.4 SSM/I retrieval algorithm (NN1) emulating the inverse
model to retrieve vector G of four geophysical parameters:
ocean surface wind speed (W ), water vapor (V ) and liquid
water (L) concentrations, and sea surface temperature (SST) if
given five brightness temperatures S = TXXY (XX – frequency

in GHz, Y – polarization). This vector G is fed to the FM1
emulating the forward model to get brightness temperatures
S′ = TXXY ′. The difference �S = |S − S′| is monitored and
raises a warning flag if it is above a suitably chosen threshold

The validity check shown in Fig. 9.4, if added to
a standard retrieval flag, helps indicate such occur-
rences. The NN SSM/I forward model FM1 is used
in combination with the NN1 retrieval algorithm. For
each satellite measurement S, the geophysical para-
meters retrieved from brightness temperatures S are
fed into the NN SSM/I forward model which pro-
duces another set of brightness temperatures S′. For
S within the training domain (S ∈ DT ) the differ-
ence, �S = |S − S′|, is sufficiently small. For S out-
side the training domain the larger difference raises a
warning flag, if it is above a suitably chosen thresh-
old. Krasnopolsky and Schiller (2003) showed the
percentage of removed data and improvement in the
accuracy of the wind speed retrievals as functions
of this threshold. They showed that applying the
generalization control reduces the RMS error signifi-
cantly; the maximum error is reduced even more. This
means that this approach is very efficient for removing
outliers.

9.7 Discussion

In this chapter we discussed a broad class of NN appli-
cations dealing with the solution of the RS forward
and inverse problems. These applications are closely
related to the standard and variational retrievals, which
estimate geophysical parameters from remote satel-
lite measurements. Both standard and variational tech-
niques require a data converter to convert satellite mea-
surements into geophysical parameters or vice versa.
Standard retrievals use a TF (a solution of the inverse
problem) and variational retrievals use a FM (a solu-
tion of the forward problem) for this purpose. In many
cases the TF and the FM can be considered as con-
tinuous nonlinear mappings. Because the NN tech-
nique is a general technique for continuous nonlinear
mapping, it can be used successfully for modeling
TFs and FMs.

Theoretical considerations presented in this section
were illustrated using several real-life applications that
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exemplify a NN based intelligent integral approach
(e.g., the approach and design presented in Fig. 9.4)
where the entire retrieval system, including the quality
control block, is designed from a combination of sev-
eral specialized NNs. This approach offers significant
advantages in real life operational applications. This
intelligent retrieval system produces not only accurate
retrievals but also performs an analysis and quality
control of the retrievals and environmental conditions,
rejecting any poor retrievals that occur.

The NN applications presented in this section illus-
trate the strengths and limits of the NN technique for
inferring geophysical parameters from remote sensing
measurements. The success of the NN approach, as
any nonlinear statistical approach, strongly depends on
the adequacy of the data set used for the NN train-
ing. The data availability, precision, quality, represen-
tativeness, and amount are crucial for success in this
type of NN application. However, NNs successfully
compete with other statistical methods and usually
perform better because they are able to emulate the
functional relationship between inputs and the outputs
in an optimal way. NNs can successfully compete with
even physically based approaches because, in many
cases, explicit knowledge of very complicated physi-
cal processes in the environment is limited and a NN
based empirical approach is more appropriate. It can
take into account more physics implicitly using the NN
ability to learn from data inherent dependencies, than
a physically based approach would include explicitly.

References

Abdelgadir, A. et al. (1998). Forward and inverse modeling of
canopy directional reflectance using a neural network. Inter-
national Journal of Remote Sensing, 19, 453–471.

Aires, F., Rossow, W. B., Scott, N. A, & Chedin, A. (2002).
Remote sensing from the infrared atmospheric sounding
interferometer instrument. 2. Simultaneous retrieval of tem-
perature, water vapor, and ozone atmospheric profiles. Jour-
nal of Geophysical Research, 107, 4620.

Aires, F., Prigent, C., & Rossow, W. B. (2004). Neural network
uncertainty assessment using Bayesian statistics with appli-
cation to remote sensing. 3. Network Jacobians. Journal of
Geophysical Research, 109, D10305.

Alishouse, J. C. et al. (1990). Determination of oceanic total
precipitable water from the SSM/I. IEEE Transactions on
Geoscience and Remote Sensing, GE-23, 811–816.

Atkinson, P. M., & Tatnall, A. R. L. (1997). Neural networks
in remote sensing – introduction. International Journal of
Remote Sensing, 18(4), 699–709.

Attali, J.-G., & Pagès, G. (1997). Approximations of functions
by a multilayer perceptron: A new approach. Neural Net-
works, 10, 1069–1081.

Cabrera-Mercader, C. R., & Staelin, D. H. (1995). Passive
microwave relative humidity retrievals using feedforward
neural networks. IEEE Transactions on Geoscience and
Remote Sensing, 33, 1324–1328.

Chen, T., & Chen, H. (1995a). Approximation capability to
functions of several variables, nonlinear functionals and
operators by radial basis function neural networks. Neural
Networks, 6, 904–910.

Chen, T., & Chen, H. (1995b). Universal approximation to non-
linear operators by neural networks with arbitrary activation
function and its application to dynamical systems. Neural
Networks, 6, 911–917.

Cornford, D., Nabney, I. T., & Ramage, G. (2001). Improved
neural network scatterometer forward models. Journal of
Geophysical Research, 106, 22331–22338.

Cybenko, G. (1989). Approximation by superposition of sig-
moidal functions. Mathematics of Control Signals and Sys-
tems, 2, 303–314.

Davis, D. T. et al. (1995). Solving inverse problems by Bayesian
iterative inversion of a forward model with application to
parameter mapping using SMMR remote sensing data. IEEE
Transactions on Geoscience and Remote Sensing,33, 1182–
1193.

Derber, J. C., & Wu, W.-S. (1998). The use of TOVS cloud-
cleared radiances in the NCEP SSI analysis system. Monthly
Weather Reviews, 126, 2287–2299.

DeVore, R. A. (1998). Nonlinear approximation. Acta Numer-
ica, 8, 51–150.

Eyre, J. R., & Lorenc, A. C. (1989). Direct use of satellite sound-
ing radiances in numerical weather prediction. Meteorology
Magazine, 118, 13–16.

Funahashi, K. (1989). On the approximate realization of con-
tinuous mappings by neural networks. Neural Networks, 2,
183–192.

Goodberlet, M. A., & Swift, C. T. (1992). Improved retrievals
from the DMSP wind speed algorithm under adverse weather
conditions. IEEE Transactions on Geoscience and Remote
Sensing, 30, 1076–1077.

Goodberlet, M. A., Swift, C. T., & Wilkerson, J. C. (1989).
Remote sensing of ocean surface winds with the special
sensor microwave imager Journal of Geophysical Research,
94, 14547–14555.

Hadamard, J. (1902). Sur les problèmes aux dérivées partielles
et leur signification physique. Princeton University Bulletin,
13, 49–52.

Hornik, K. (1991). Approximation capabilities of multilayer
feedforward network. Neural Networks, 4, 251–257.

Krasnopolsky, V. (1997). A neural network-based forward
model for direct assimilation of SSM/I brightness tem-
peratures. Technical note (OMB contribution No. 140).
NCEP/NOAA, Camp Springs, MD 20746.

Krasnopolsky, V., Breaker, L. C., & Gemmill, W. H. (1995).
A neural network as a nonlinear transfer function model
for retrieving surface wind speeds from the special sensor
microwave imager. Journal of Geophysical Research., 100,
11033–11045.

Krasnopolsky, V., Gemmill, W. H., & Breaker, L. C. (1996). A
new transfer function for SSM/I based on an expanded neural



000–0–00–000000–0 09-Haupt-c09 SHB0024-Haupt (Typeset by SPi, Delhi) page 205 of 206 September 22, 2008 16:11

9 NNs for Satellite Remote Sensing 205

network architecture. Technical note (OMB contribution No.
137). NCEP/NOAA, Camp Springs, MD 20746.

Krasnopolsky, V. M. (2007). Reducing uncertainties in neural
network Jacobians and improving accuracy of neural net-
work emulations with NN ensemble approaches. Neural Net-
works, 20, 454–461.

Krasnopolsky, V. M., & Schiller, H. (2003). Some neural net-
work applications in environmental sciences. Part I: Forward
and inverse problems in satellite remote sensing. Neural Net-
works, 16, 321–334.

Krasnopolsky, V. M., Gemmill, W. H., & Breaker, L. C. (1999).
A multiparameter empirical ocean algorithm for SSM/I
retrievals. Canadian Journal of Remote Sensing, 25, 486–
503.

Krasnopolsky, V. M., Gemmill, W. H., & Breaker, L. C. (2000).
A neural network multi-parameter algorithm SSM/I ocean
retrievals: Comparisons and validations. Remote Sensing of
Environment, 73, 133–142.

Lorenc, A. C. (1986). Analysis methods for numerical weather
prediction. Quarterly Journal of Royal Meteorology Society,
122, 1177–1194.

McNally, A. P., Derber, J. C., Wu, W.-S., & Katz, B. B. (2000).
The use of TOVS level 1B radiances in the NCEP SSI
analysis system. Quarterly Journal of Royal Meteorological
Society, 126, 689–724.

Meng, L. et al. (2007). Neural network retrieval of ocean surface
parameters from SSM/I data. Monthly Weather Review, 126,
586–597.

Mueller, M. D. et al. (2003). Ozone profile retrieval from
global ozone monitoring experiment data using a neural
network approach (Neural Network Ozone Retrieval System
(NNORSY)). Journal of Geophysical Research, 108, 4497.

Parker, R. L. (1994). Geophysical inverse theory (400 pp.).
Princeton, NJ: Princeton University Press.

Parrish, D. F., & Derber, J. C. (1992). The national meteorologi-
cal center’s spectral statistical-interpolation analysis system.
Monthly Weather Review, 120, 1747–1763.

Petty, G. W. (1993). A comparison of SSM/I algorithms for the
estimation of surface wind. Proceedings of Shared Process-
ing Network DMSP SSM/I Algorithm Symposium, Monter-
rey, CA, June 8–10, 1993.

Petty, G. W., & Katsaros, K. B. (1992). The response of the
special sensor microwave/imager to the marine environment.
Part I: An analytic model for the atmospheric component
of observed brightness temperature. Journal of Atmospheric
Oceanic Technology, 9, 746–761.

Petty, G. W., & Katsaros, K. B. (1994). The response
of the SSM/I to the marine environment. Part II: A
parameterization of the effect of the sea surface slope dis-
tribution on emission and reflection. Journal of Atmospheric
Oceanic Technology, 11, 617–628.

Phalippou, L. (1996). Variational retrieval of humidity profile,
wind speed and cloud liquid–water path with the SSM/I:
Potential for numerical weather prediction. Quarterly

Journal of Royal Meteorological Society, 122, 327–
355.

Pierce, L., Sarabandi, K., & Ulaby, F. T. (1994). Application
of an artificial neural network in canopy scattering inver-
sion. International Journal of Remote Sensing, 15, 3263–
3270.

Prigent, C., Phalippou, L., & English, S. (1997). Variational
inversion of the SSM/I observations during the ASTEX cam-
paign. Journal of Applied Meteorology, 36, 493–508.

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986).
Learning internal representations by error propagation. In D.
E. Rumelhart, J. L. McClelland, & P. R. Group (Eds.), Paral-
lel distributed processing (Vol. 1, pp. 318–362). Cambridge,
MA: MIT Press.

Schiller, H., & Doerffer, R. (1999). Neural network for emula-
tion of an inverse model - operational derivation of case II
water properties from MERIS data. International Journal of
Remote Sensing, 20, 1735–1746.

Schiller, H., & Krasnopolsky, V. M. (2001). Domain check
for input to NN emulating an inverse model. Proceed-
ings of International Joint Conference on Neural Networks,
Washington, DC, July 15–19, pp. 2150–2152.

Smith, J. A. (1993). LAI inversion using a back-propagation
neural network trained with a multiple scattering model.
IEEE Transactions on Geoscience and Remote Sensing, GE-
31, 1102–1106.

Stoffelen, A., & Anderson, D. (1997). Scatterometer data inter-
pretation: Estimation and validation of the transfer func-
tion CMOD4. Journal of Geophysical Research, 102, 5767–
5780.

Stogryn, A. P., Butler, C. T., & Bartolac, T. J. (1994). Ocean sur-
face wind retrievals from special sensor microwave imager
data with neural networks. Journal of Geophysical Research,
90, 981–984.

Thiria, S., Mejia, C., Badran, F., & Crepon, M. (1993). A neural
network approach for modeling nonlinear transfer functions:
Application for wind retrieval from spaceborn scatterometer
data. Journal of Geophysical Research, 98, 22827–22841.

Tsang, L. et al. (1992). Inversion of snow parameters from pas-
sive microwave remote sensing measurements by a neural
network trained with a multiple scattering model. IEEE
Transactions on Geoscience and Remote Sensing, GE-30,
1015–1024.

Vapnik, V. N. (1995). The nature of statistical learning theory
(189 pp.). New York: Springer.

Vapnik, V. N., & Kotz, S. (2006). Estimation of dependences
based on empirical data (Information Science and Statistics)
(495 pp.). New York: Springer.

Weng, F., & Grody, N. G. (1994). Retrieval of cloud liquid water
using the special sensor microwave imager (SSM/I). Journal
of Geophysical Research, 99, 25535–25551.

Wentz, F. J. (1997). A well-calibrated ocean algorithm for
special sensor microwave/imager. Journal of Geophysical
Research, 102, 8703–8718.



000–0–00–000000–0 10-Haupt-c10 SHB0024-Haupt (Typeset by SPi, Delhi) page 207 of 216 September 22, 2008 16:11

10Implementing a Neural Network Emulation
of a Satellite Retrieval Algorithm

George S. Young

10.1 Introduction

As shown in Stogryn et al. (1994), Krasnopolsky
et al. (1995), Thiria et al. (1993), Cornford
et al. (2001), and many other studies summarized
in Chapter 9, neural networks (NN) can be used to
emulate the physically-based retrieval algorithms
traditionally used to estimate geophysical parameters
from satellite measurements. The tradeoff involved
is a minor sacrifice in accuracy for a major gain in
speed, an important factor in operational data analysis.
This chapter will cover the design and development of
such networks, illustrating the process by means of an
extended example. The focus will be on the practical
issues of network design and troubleshooting. Two
topics in particular are of concern to the NN developer:
computational complexity and performance shortfalls.
This chapter will explore how to determine the
computational complexity required for solving a
particular problem, how to determine if the network
design being validated supports that degree of
complexity, and how to catch and correct problems in
the network design and developmental data set.

As discussed in Chapter 9, geophysical remote
sensing satellites measure either radiances using
passive radiometers or backscatter using a trans-
mitter/receiver pair. The challenge is then to esti-
mate the geophysical parameters of interest from
these measured quantities. The physics-based forward

George S. Young (*)
Department of Meteorology, The Pennsylvania State University,
PA, USA
Address: 503 Walker Building, University Park, PA 16802, USA
Phone: 814-863-4228; fax (814) 865-9429;
email: young@meteo.psu.edu

problem (equation 9.4) captures the cause and effect
relationship between the geophysical parameters and
the satellite-measured quantities. Thus, the forward
problem must be a single-valued function (i.e. have
a single possible output value for each set of input
values) if we have access to all of its input parameters.
As a result, the forward problem is generally well-
posed, i.e. variations in the input parameters are not
grossly amplified in the output. One could, however,
imagine some geophysical processes for which the for-
ward problem was ill-posed for some parameter values
as a result of a sudden transition from one regime
of behavior to another (e.g. the onset of fog forma-
tion producing a sharp change in shortwave albedo in
response to a minor change in air temperature).

In contrast to the forward problem, the inverse prob-
lem of deducing geophysical parameters from satellite
measurements does not follow cause and effect and so
is not necessarily single-valued over the bulk of the
input parameter space. Thus, these satellite retrieval
problems are often ill-posed over a significant part of
their input parameter space. As a result, the transfer
function (equation 9.5) can be multi-valued, having
a finite number of solutions at each point in some
regions ofthe input parameter space and an infinite
number of solutions at points along the borders of
these regions. These issues must be addressed via
some form of regularization (i.e. using prior knowl-
edge of the problem’s physics to constrain the solution
in some way). The extended example described below
exhibits all of these problems.

The example examined here is the classic problem
of retrieving sea surface wind speed from satellite
measurements of sea surface backscatter. In this case,
a Synthetic Aperture Radar (SAR) is used to measure
the backscatter from short-wavelength, wind-driven
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ocean waves. Because the wave amplitude is driven by
the wind-induced surface stress, the forward or causal
direction is from wind speed to backscatter. Thus, the
problem of interest for remote sensing is the inverse or
retrieval problem.

The traditional approach to solving the SAR
wind speed retrieval problem makes use of a semi-
empirical model that exists for the forward problem
(Monaldo et al. 2001). The version used here is called
CMOD4 (Stoffelen and Anderson 1997a, b). This for-
ward model is, however, too complex to invert analyt-
ically, so that approach can’t be used to produce an
analytic model for the inverse problem. Instead, the
traditional approach is to run the forward problem for
the full range of expected wind speeds, and then select
the speed for which it predicts a backscatter value clos-
est to that observed. This approach involves running
the computationally expensive physics-based forward
model many (typically 25) times for each pixel in a
SAR image, thus restricting realtime applications and
bulk data analysis.

NN, however, are well suited to emulating smooth
nonlinear functions such as that in the forward
(CMOD4) model (see Chapter 9). This raises a num-
ber of questions concerning their potential for improv-
ing the efficiency of the wind speed retrieval process.
Could we achieve speed up (i.e. use fewer or faster
floating point operations and intrinsic function calls)
by using a NN to emulate the forward model? Could
we go one step further and use a NN to emulate the
inverse model even though its analytic form is not
known? Because we have a physics-based analytic
model for the forward problem we can generate the
data required to train a NN for either the forward or
inverse problem as discussed in Chapter 9.

There are, thus, several ways in which NN could be
applied to solve the SAR wind speed retrieval prob-
lem. First, one can emulate the forward model with a
NN and retain the current brute-force-search approach
(i.e. examining each of the 25 candidates) to finding a
wind speed that yields the observed backscatter. While
likely to succeed because the forward physics is gen-
erally well-posed, this approach maintains the funda-
mental inefficiency of the traditional method, using
many forward model runs to obtain the answer for each
pixel. Second, one can emulate the inverse model with
a NN. This is a potentially more challenging problem
because the physics is apt to be ill-posed in at least part
of the input parameter space. It does, however, offer a

distinct advantage in terms of efficiency because only
one model run is required per pixel. We’ll explore the
pros and cons of these two approaches as the example
unfolds below. Third, one can follow the approach
suggested by Thiria et al. (1993) for similar prob-
lems in scatterometry, emulating the inverse model
with a categorization rather than regression NN. This
approach only partially mitigates the inefficiency of
using a multi-run forward model to solve the retrieval
problem because, although the NN is run only once,
the network’s output layer has a node for each of the
discretized values of wind speed. The activation output
of each of these output nodes is the coefficient of like-
lihood for the corresponding value of wind speed. A
continuous value of wind speed is obtained by fitting
an interpolation curve to the peak of this likelihood
function. The Thiria et al. method does, however, offer
the interesting benefit of documenting whether the
inverse function is single- or multi-valued: a single
peak will occur in the plot of likelihood coefficient ver-
sus wind speed if inverse function is single-valued and
multiple peaks will occur if it is multi-valued. Thus,
this third approach can serve a valuable diagnostic
role, guiding the development of more efficient meth-
ods based on the inverse regression model approach.

10.2 Method

The success of a NN development project depends
crucially on two factors, use of an appropriate train-
ing data set and design of a minimally complex, but
sufficient network. As we shall see as the example
progresses, both of these factors can pose serious chal-
lenges in ill-posed retrieval problems.

10.2.1 Developmental Data

As pointed out in Chapter 9, the existence of an ana-
lytic forward model such as CMOD4 offers several
advantages when developing a NN for the correspond-
ing retrieval problem. Using the forward model to gen-
erate the training datasets allows us to cover the entire
parameter space with cases, including types of events
that would be rare in observations. This eliminates one
of the common problems encountered when training
a NN from observations wherein the observation set,
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and thus the network’s fitness, is dominated by the
climatologically most likely parts of the input parame-
ter space. By using the physics-based forward model
to uniformly cover all parts of the parameter space
with cases, we can ensure that the NN is trained to
perform as well in the rarer parts of the input para-
meter space as it does in the more commonly encoun-
tered cases. A NN trained in this manner functions in
interpolation mode for all cases rather than having to
extrapolate from the training set when dealing with the
rarer events. As discussed in Chapter 9, this approach
leads to better generalization, i.e. better performance
in actual operations.

For the SAR wind speed problem the parameters
are surface wind speed, backscatter, incidence angle,
and the radar look direction relative to the surface
wind direction (Monaldo et al. 2001). For the forward
model all but backscatter are input parameters and for
the inverse model all but wind speed are. Thus, to
obtain developmental data for both the forward and
inverse models, CMOD4 was used to create a uniform
four-dimensional grid of backscatter values with cases
spaced every 1◦ in incidence angle, every 1◦ in radar
look angle relative to the wind direction, and at 450
values of wind speed from 0 to 60 ms−1. This results in
5,670,000 cases, more than can be processed in a rea-
sonable time via the NN training algorithm. Therefore
two samples of 10,000 cases are selected at random,
one for training the network, a second for validation,
and a third for final validating. Given the independence
of the samples, high performance on the validation set
indicates that the NN has been fit robustly across the
input parameter space. Of course, if the same valida-
tion set is used repeatedly when optimizing the NN
architecture, the resulting NN will be biased towards
it as it is towards the developmental data. Therefore,
a third set of 10,000 cases is used to recalculate the
skill of the final network, eliminating this source of
false optimism. Alternatively, one could use a different
validation set on each of the NN architectures in order
to achieve this independence.

10.2.2 Neural Network Design

The basics of NN are discussed in chapter Y-NN and
one approach to universal function emulation using
NNs is explored in Chapter 9. Although details can

vary from one implementation to another, the basics
are the same. The network’s input layer consists of
a data source for each of the input parameters. All
of these values are fed into each of the processing
nodes of the next layer, often called a hidden layer.
Each processing node first computes the output of a
linear equation, which takes its input from the input
layer. The coefficients can differ between processing
nodes, so differing computations are done in parallel
by the nodes of a processing layer. The results of each
equation are then “squashed” into the range −1 to 1
using the hyperbolic tangent or a similar activation
function. At this point the squashed results may be fed
into an output layer as in Chapter 9 or into additional
processing layers as in Reed and Marks (1999). The
latter approach will be used in the example discussed
in this chapter. In either case, the results of the final
processing layer are fed through one more linear equa-
tion, called an output node. If the result is to be a
probabilistic or categorical (yes/no) prediction, than
a squashing function is applied to the output layer’s
result. If, as in the SAR wind speed retrieval problem,
the desired output is numerical, no squashing function
is applied to the output node.

Training of the NN involves finding values for all
of these coefficients. This can be done via various
forms of the back propagation of errors (Reed and
Marks 1999) or by using a general purpose nonlinear
optimization tool such a genetic algorithm (GA, Haupt
and Haupt 2004) (Jones 1993; Munro 1993). Neither
of these approaches is necessarily best for all retrieval
problems. For example, training a NN to emulate some
nonlinear functions is “GA-easy” while training the
network to emulate other functions of equivalent com-
plexity is “GA-hard”. The “GA-hard” problems are
those where the under-constrained nature of NNs leads
to multiple distinct solutions, each at a local mini-
mum in the network’s forecast error, that, when bred,
yield solutions of lower rather than higher skill (Reed
and Marks 1999). Likewise networks trained by back
propagation can become trapped in such local minima
(Yamada and Yabuta 1993; Reed and Marks 1999).
Back propagation techniques are popular, particularly
in the data mining community, (e.g. Alpsan et al. 1995;
Reed and Marks 1999; Witten and Frank 2005) and
will be employed here.

As mentioned in Chapter 9, NNs with a single hid-
den layer are adequate to fit any continuous nonlin-
ear function provided enough hidden nodes are used.
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Thus, the design process for a single-layer network
consists of simply increasing the number of nodes until
good performance is achieved on independent valida-
tion data.1 The smallest network that achieves good
performance is then used in practice, both because
it is more efficient than larger networks and because
it is less likely to be over-fit and so will generalize
better. The design problem is more complex when
the network includes multiple processing layers. The
designer not only has to decide on the number of lay-
ers, but also on the number of nodes per layer. The
design space is thus multidimensional. One could, of
course, use a genetic algorithm or some other general
purpose nonlinear optimizer to develop the network
design (Dodd 1990; Reed and Marks 1999), but in
practice one often simply tries a number of likely can-
didates learning enough from each to design a likely
successor.

While this iterative design process includes two rel-
atively distinct aspects, determining how many layers
to use and determining how many nodes to include
in each, there is a tradeoff between the two because
increasing the number of layers decreases the number
of nodes required in each. The design tactic employed
here is to alternately tune the number of nodes and
the number of layers, starting first with the nodes and
then cycling back and forth until performance stops
improving. Experience suggests that three hidden lay-
ers makes a good starting point with the first layer
having as many nodes as there are predictors and the
other layers progressively less. The network designer
then tunes the number of nodes per layer by trying
greater and lower node counts in the networks and
seeing which produces the best result. This is just the
manual version of the various gradient descent meth-
ods common to nonlinear optimization (Nelder and
Mead 1965). Once the optimal number of nodes is
found, one should check the weights in the last hidden
layer. If each node has the same weight values as all
the others, then they’re all making the same calculation
and the layer is probably redundant. In some cases
the results will improve by eliminating that layer and
in other cases by reducing the number of nodes it
contains until the weights differ from node to node.
If the nodes in the last hidden layer differ, one could

1 In a more general setting, for example with noisy data, the
optimal NN is the one that has the lowest average error over
multiple validation sets.

try adding an additional layer of two nodes. If perfor-
mance improves, one could start tuning the number of
nodes again, otherwise go back one design and stop
iterating. If this approach seems too complex, stick
with a single hidden layer as described in Chapter 9.

10.2.3 Network Training

We could easily develop our own back propaga-
tion training program following, for example, Reed
and Marks (1999). Ready built open source tools
such as Weka (Witten and Frank 2005) are, how-
ever, readily available for download (http://www.cs.
waikato.ac.nz/ml/weka/), so that approach is often
more efficient. Weka will be used here because it offers
good documentation, a point-and-click interface, and
extensive support for troubleshooting and validation.
No matter which development tool we use, the phases
are the same.

• Data ingest
• Predictand and predictor selection
• Cross-validation setup (in this example using a val-

idation set)
• Network design
• Network building (i.e. tuning the regression coeffi-

cients)
• Network testing on independent validation data

Following each validation stage the network is
redesigned as described above and the build and val-
idate cycle is repeated. Clearly, to make this cycle
converge, careful consideration must be given to how
the validation results vary with network design. The
final design must yield a high accuracy solution but
do so with the minimum number of nodes, thereby
minimizing computational cost.

10.3 Results

The NN development tactics described above are
applied to both the forward and inverse problems link-
ing SAR backscatter with surface wind speed. The
results will be presented in the order originally encoun-
tered when this project was under development. Each
of the problems that arose during this development
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process will be discussed at the stage where it was first
diagnosed. Thus, the results discussion will focus on
how the problems were detected and then addressed by
appropriate regularization. The section will conclude
with a discussion of efficiency issues and a compar-
ison of the various NN approaches to the traditional
CMOD4 approach they are designed to replace.

10.3.1 Forward Model

Table 10.1 shows a sample of network designs for
the forward (wind speed to backscatter) problem. The
network design is described via a comma separated
list giving the number of nodes in each hidden layer.
Training was undertaken for 500 cycles (Epochs) in
all but one case. The model performance is described
in terms of percent variance explained (i.e. r2) and
mean absolute error (MAE). Each network’s compu-
tational cost is computed from a count of the various
floating point operations and intrinsic function calls
using times estimated for each of these actions via a
procedure described in Section 10.3.4 below. The cost
value is then normalized by the similarly computed run
time estimate for the analytic CMOD4 code. Lower
values of cost are of course to be preferred over high
values. Note that these values are not the cost of net-
work development, but rather the computational cost to
apply the network in operational SAR image analysis.

The first NN, with a single hidden layer of four
nodes shows skill, but is not accurate enough to serve
as a replacement for the analytic CMOD4 forward
model as the MAE remains large relative to operational
requirements. Performance improves when two more
hidden layers are added and further improves when
the number of nodes in these layers is increased past
a total of 20. There is, however, some decrease in skill

for the most complex networks, suggesting either over-
fitting or an inadequate number of training epochs for a
network of that degree of network complexity. Because
the skill improves markedly when the most complex
network is redeveloped using 5,000 epochs instead of
500, we can conclude that inadequate training rather
than over-fitting was the problem. This final NN was
reevaluated on an independent set of test data yielding
a percent variance explained of 0.9998, the same value
obtained with the validation data set. Thus, we can
conclude that the NN was not over-fit, a fact attribut-
able to the noise free synthetic data and the large num-
ber of cases in the developmental data set. The MAE
of 0.0052 is accurate enough that the NN could be used
as a replacement for the analytic CMOD4 forward
model. It is, however, a factor of five more costly in
computational time than the analytic CMOD4 model.
Clearly, if NNs are to be of aid in the SAR wind speed
analysis it must be in the inverse rather than forward
problem, where it would replace multiple runs of the
analytic CMOD4 model instead of just one.

10.3.2 Inverse Model

Given the successful emulation of the analytic
CMOD4 forward model, it is reasonable to ask
whether the neural net approach can be applied to emu-
late the inverse problem for which no analytic model
exists. Doing so would eliminate the need for multiple
runs of the analytic forward model to make up for
the lack of an analytic inverse model. As Table 10.2
shows, however, the initial NN results are quite
disheartening.

The skill demonstrated by each NN was markedly
worse on the inverse problem than it had been on
the forward problem discussed in the section above.

Table 10.1 Neural net design
and performance for the
forward problem. Those
values of r2 and MAE in
parentheses were computed
using an independent set of
test data, the rest were all
computed using a single set of
validation data

Network design Training epochs r2 MAE Relative cost

4 500 0.9577 0.15 0.28
4,3,2 500 0.9616 0.10 0.63
8,4,2 500 0.9631 0.12 1.03
12,6,2 500 0.9956 0.050 1.55
16,8,4 500 0.9972 0.023 2.29
24,12,2 500 0.9984 0.015 3.98
32,16,2 500 0.9962 0.035 4.84
32,16,4 500 0.9884 0.043 5.06
32,16,4 5,000 0.9998 (0.9998) 0.0053 (0.0052) 5.06
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Table 10.2 Neural net design and performance for the inverse problem. Those values of r2 and MAE in parentheses were computed
using an independent set of test data, the rest were all computed using a single set of validation data

Network design Training epochs r2 MAE (ms−1) Relative cost

12,6,3 500 0.8188 5.02 0.0912
16,8,4 500 0.8714 4.03 0.1281
24,16,2 500 0.8712 3.75 0.2195
32,16,2 500 0.8571 4.53 0.2713
32,16,4 500 0.8709 4.12 0.2832
32,16,4 5,000 0.8541 (0.8506) 3.80 (3.82) 0.2832

Indeed, the best r2 value was near 0.87 rather than
above 0.999. Another sign that the NN is not perform-
ing well is that further training on the inverse problem
did not provide a performance improvement the way
it did on the forward problem. Thus, something about
the inverse problem is making it much more challeng-
ing for neural net emulation. The problem cannot be
attributed to reuse of the validation data because sim-
ilar skill was obtained for the most complex network
when it was reevaluated using an independent set of
test data.

Examination of the relationship between wind
speed and backscatter in CMOD4 quickly reveals the
source of the problem. For a number of incidence angle
and wind direction combinations, such as that shown
in Fig. 10.1, the relationship is multi-valued in wind
speed. Thus, while each wind speed corresponds to one

backscatter value, a single backscatter may correspond
to two widely different wind speeds. Because the NN
has only one output it can’t fit a multi-valued function,
and thus fails over much of its input parameter space.

There are two obvious approaches for solving this
problem. One approach is to redesign the training set
and the NNs to support two output values. These val-
ues would differ for those parts of the input parameter
space where wind speed is a multi-valued function of
backscatter, while being the same where the function
is single-valued. This approach leaves the decision as
to which value is correct to the end user, thus putting
off the required regularization of the inverse problem.
The second approach is to regularize the data in the
training set as described in Chapter 9, so that the NN is
developed to return only one of the two possible wind
speed values. This approach most closely follows the
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current practice with the analytic CMOD4 model and
so will be followed in the sections below.

10.3.3 Regularization of the Inverse
Model

A simple regularization of the training data set can
be achieved by eliminating those cases for which the
wind speed takes on the higher of two possible val-
ues. This follows the current CMOD4 practice (N. S.
Winstead 2006, personal communication) of assum-
ing that the lowest wind speed consistent with the
backscatter is most likely to be correct. This regu-
larization makes the function to be emulated single-
valued and thus should improve the NN’s performance
on the inverse problem.

As shown by comparing Tables 10.2 and 10.3, how-
ever, this improvement does not occur (except for the
r2 statistic for one network design). Rather, the per-
cent variance explained dropped slightly and the MAE
increased. Why did the regularization fail to make the
problem more tractable? Reexamination of Fig. 10.1
sheds light on the problem. Not only is wind speed
potentially a multi-valued function of backscatter, but
also it exhibits a zone of hypersensitivity to backscat-
ter near the peak of this latter parameter. Thus, for
backscatter observations near this peak value, major
changes in wind speed result from minor changes in
backscatter. So backscatter provides little information
on wind speed in that zone. This sensitivity makes
the NN hard to train and would in any case cause
the resulting network’s output to be highly sensitive
to observational errors in its input. This sensitivity rule
applies not just to NNs, but to any model as mentioned
in the discussion of ill-posed systems in Chapter 9.

The lesson to be learned from this failure is that if
the gradient of input with respect to output is small,

then output is hypersensitive to input because the gra-
dient of output to input is huge. Thus, careful examina-
tion of the Jacobian of the problem can greatly aid in
planning a successful regularization strategy. This task
can be undertaken either numerically, or by examina-
tion of the plotted function as was done above.

Full regularization requires elimination of these
zones of hypersensitivity as well as resolution of
any regions where the function to be emulated is
actually multi-valued. Users of the analytic CMOD4
model do this by limiting analysis to wind speeds
of less than some threshold, typically 25 ms−1 (N. S.
Winstead 2006, personal communication). It is sim-
ple enough to apply this same approach to neural net
development, eliminating all cases with higher wind
speeds from the training. Note that there are many
other forms of regularization. This is just the one that’s
appropriate for the SAR inverse problem. Note also
that, as pointed out in Chapter 9, the resulting NN
is apt to be wildly inaccurate outside of its training
domain. Thus, in making operational use of the NN, all
output wind speeds above 25 ms−1 should be truncated
to that value and the value itself viewed as an out-of-
domain error flag. This is the current practice with the
analytic CMOD4 model, so the NN results shown in
Table 10.4 are a fair test of performance relative to the
analytic code.

This time the regularization achieves its desired
effect. The skill of the fully regularized inverse model
is almost as good as that of the forward model. This
result holds up when the network is reevaluation on
an independent set of test data, demonstrating that
over-fitting did not take place. Some hint of the chal-
lenge remains in that it took an order of magnitude
more training epochs to achieve near perfection on the
percent variance explained statistic. The best network
yielded an MAE of about 0.1 ms−1, about one tenth
of the typical error of the CMOD4 analytic model in
comparison with observations (Monaldo et al. 2001).

Table 10.3 Neural net design and performance for the single-
valued inverse problem. Those values of r2 and MAE in

parentheses were computed using an independent set of test data,
the rest were all computed using a single set of validation data

Network design Training epochs r2 MAE (ms−1) Relative cost

12,6,3 500 0.8521 8.98 0.0913
16,8,4 500 0.8545 7.40 0.1281
24,16,2 500 0.8321 5.05 0.2195
32,16,2 500 0.8697 7.75 0.2713
32,16,4 500 0.8722 7.32 0.2832
32,16,4 5,000 0.8668 (0.8673) 5.37 (5.33) 0.2832
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Table 10.4 Neural net design
and performance for the fully
regularized inverse problem.
Those values of r2 and MAE
in parentheses were computed
using an independent set of
test data, the rest were all
computed using a single set of
validation data

Network design Training epochs r2 MAE (ms−1) Relative cost

4,2 5,000 0.8416 2.67 0.0235
12,6,3 5,000 0.9857 0.77 0.0913
16,8,4 5,000 0.9878 0.57 0.1281
20,10,5 5,000 0.9894 0.56 0.1681
20,20,2 5,000 0.9984 0.42 0.2208
24,16,2 5,000 0.9988 0.34 0.2195
27,9,3 5,000 0.9974 0.24 0.1886
32,16,2 5,000 0.9982 0.19 0.2713
32,16,2 50,000 0.9990 (0.9990) 0.10 (0.12) 0.2713

Thus, emulation of the CMOD4 analytic model by an
appropriate NN would not substantially increase error
in operational applications. The remaining question is
then, would such a replacement be more efficient in
terms of computational cost.

10.3.4 Computational Cost

Estimation of wind speed from SAR backscatter
using the analytic CMOD4 forward model is a costly
process, both because the model must be run for each
candidate wind speed and because the model itself
includes a number of calls to costly intrinsic func-
tions such as cosine and hyperbolic tangent. The first
problem can be solved by using a NN to emulate
the inverse model as discussed above. Unfortunately,
from the computational cost perspective, each NN
node includes a call to the hyperbolic tangent intrinsic
function and so is, itself, fairly costly. An estimate
of the computational cost of the existing CMOD4
code and the NN inverse model can be obtained

by counting the number of these operations in each
approach.

The computational cost for each of the floating
point operations and intrinsic function calls is obtained
by a benchmarking program that executes each instruc-
tion enough times to obtain accurate timing informa-
tion. The values shown in Table 10.5 were obtained
using the default floating point variables in MAT-
LAB version 7 running on a 3.2 GHz Intel Pentium 4
Windows XP PC. These timing results will of course
vary with computer language, hardware, and float-
ing point precision, but the final results reported in
Tables 10.1 through 10.4 are, to a certain extent, nor-
malized when the NN time estimates are scaled by
that for the analytic CMOD4 model. The full opera-
tion count for CMOD4 and a multi-layer NN are also
shown in Table 10.5.

The key result of this timing analysis is that intrinsic
function calls such as cosine and hyperbolic tangent
are much more costly than the basic floating point
operations of add, multiply, and divide. Thus, the NN
times reported in Tables 10.1 through 10.4 are dom-
inated by the hyperbolic tangent calls and are there-
fore approximately linear with the number of nodes.

Table 10.5 Inputs for the computational cost calculation for CMOD4 and the neural networks. The functions in this table are those
used in the analytic CMOD4 code and the neural network

Operation or intrinsic
function call Time in nano-seconds Uses in CMOD4 Uses in neural network

Add 7 31 Sum over all layers of number of inputs plus
one times number of nodes

Multiply 11 36 Sum over all layers of number of inputs times
number of nodes

Divide 13 4 0
Cosine 117 2 0
Tangent 174 2 0
Power 477 4 0
Log to base 10 462 1 0
Square root 144 1 0
Hyperbolic tangent 359 2 Equals number of hidden nodes
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A 32,16,4 network has 52 such calls and would thus
require roughly twice the computer time as a 16,8,2
network. In comparison, the CMOD4 analytic model
has only two hyperbolic tangent calls, but does invoke
a number of other expensive intrinsic functions.

The key advantage of the neural net inverse model
over the analytic CMOD4 model is that it need be run
only once instead of 25 times. Thus, even the most
complex networks shown in Tables 10.1 through 10.4
require only one fourth of the time of the ana-
lytic model. As a result, replacement of the analytic
CMOD4 model by a NN inverse model can yield a
substantial savings in computational time at the price
of a modest increase in wind speed retrieval error.

In light of NN’s success on the problem, it is worth
considering whether more traditional methods could
have achieved a similar speedup in the SAR wind
speed retrieval. For example, the search strategy used
in the operational CMOD4-based retrieval is to run the
analytic forward model at 1 ms−1 intervals from 1 to
25 ms−1. If the more efficient binary search algorithm
(Knuth 1997) was used instead, only seven runs of
the forward model would be required to bracket the
answer to this precision, not 25. This speed ratio of
0.28 is almost identical to the 0.27 achieved by the
high accuracy neural net emulation. Thus, there are
multiple means of accelerating the SAR wind speed
retrieval process. The sole obvious advantage of a NN
over binary search is that it does not require branching
code and so should pipeline better on modern micro-
processors.

10.4 Conclusions

As demonstrated in Chapter 9 and the example above,
NNs can provide accurate emulations of smooth non-
linear functions, as long as they are well-posed.
NNs can exhibit a substantial speed advantage when
computing the desired function would be otherwise
cumbersome, for example when the traditional
approach involves iterative improvement or examina-
tion of many trial solutions. The latter situation occurs
for the example problem described above, so a NN
with one fourth of the computational cost can emu-
late the operational retrieval algorithm to within one
tenth of the operational model’s own accuracy. So, for
a slight increase in error and total loss of physical

insight, the NN provides a massive improvement in
computational efficiency. In contrast, neural net emu-
lation of the forward problem exhibits a substantial
cost penalty. This difference between inverse and for-
ward problems results from the efficiency of the ana-
lytic forward model, CMOD4, and the inefficiency of
the multi-run brute force search strategy traditionally
used in applying it to the inverse problem. Interest-
ingly, replacing the brute force search with a binary
search using the analytic forward model would yield a
run time improvement almost identical to that achieved
via NN emulation. Clearly the paths to wisdom are
many and varied.
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RMSE – Root Mean Square Error, see equation (11.8)
SWR – Short Wave Radiation

11.1 Introduction

The past several decades revealed a well pronounced
trend in geosciences. This trend marks a transi-
tion from investigating simpler linear or weakly
nonlinear single-disciplinary systems like simplified
atmospheric or oceanic systems that include a limited
description of the physical processes, to studying com-
plex nonlinear multidisciplinary systems like coupled
atmospheric-oceanic climate systems that take into
account atmospheric physics, chemistry, land-surface
interactions, etc. The most important property of a
complex interdisciplinary system is that it consists of
subsystems that, by themselves, are complex systems.
Accordingly, the scientific and practical significance of
interdisciplinary complex geophysical/environmental
numerical models has increased tremendously during
the last few decades, due to improvements in their
quality via developments in numerical modeling and
computing capabilities.

Traditional complex environmental numerical mod-
els (ENM) are deterministic models based on “first
principle” equations. For example, general circula-
tion models (GCM) a.k.a. global climate models are
numerical atmospheric and oceanic models for climate
simulation and weather prediction that are based on
solving time-dependent 3-D geophysical fluid dynam-
ics equations on a sphere. The governing equations of
these models can be written symbolically as,

∂ψ

∂t
+ D(ψ,x) = P(ψ,x) (11.1)
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where ψ are 3-D prognostic or dependent variable
or set of variables (e.g., temperature, wind, pres-
sure, moisture); x is a 3-D independent variable
(e.g., latitude, longitude, and pressure or height);
D is the model dynamics (the set of 3-D partial dif-
ferential equations of motion, thermodynamics, etc.,
approximated with a spectral or grid-point numerical
scheme); and P is the model physics and chemistry
(e.g., the long- and short-wave atmospheric radiation,
turbulence, convection and large scale precipitation
processes, clouds, interactions with land and ocean
processes, etc., and the constituency transport, chem-
ical reactions, etc., respectively). These environmen-
tal models are either fully coupled atmosphere-ocean-
land/biosphere-chemistry models or partially coupled
models (e.g., with the chemistry component calcu-
lated off-line, driven by the flow simulated by an
atmosphere-ocean-land model).

Another example of a complex ENM is an ocean
wind wave model developed for simulation and fore-
cast purposes (Tolman 2002). It is based on a form of
the spectral energy or action balance equation

DF

Dt
= Sin + Snl + Sds + Ssw (11.2)

where F is the 2-D Fourier spectrum of the ocean
surface waves, Sin is the input source term, Snl is the
nonlinear wave-wave interaction source term, Sds is
the dissipation or “whitecapping” source term, and Ssw

represents additional shallow water source terms.
It is important to emphasize that the subsystems of a

complex climate (or weather, or ocean) system, such as
physical, chemical, and other processes, are so compli-
cated that it is currently possible to include them into
GCMs only as 1-D (in the vertical direction) simplified
or parameterized versions (a.k.a. parameterizations).
These parameterizations constitute the right hand side
forcing for the dynamics equations (11.1, 11.2). Some
of these parameterizations are still the most time con-
suming components of ENMs (see examples in the
next subsection).

Thus the parameterizations have a very compli-
cated internal structure, are formulated using rel-
evant first principles and observational data, and
are usually based on solving deterministic equations
(like radiation equations) and some secondary empir-
ical components based on traditional statistical tech-
niques like regression. Accordingly, for widely used
state-of-the-art GCMs all major model components

(subsystems) are predominantly deterministic; namely,
not only model dynamics but the model physics and
chemistry are also based on solving deterministic first
principle physical or chemical equations.

In the next section, we discuss the concepts of
hybrid parameterization (HP) and hybrid environmen-
tal models (HEM). HEMs are based on a synergetic
combination of deterministic numerical modeling (first
principle equations) with NN emulations of some
model physics components. We discuss the concep-
tual and practical possibilities of developing a hybrid
GCM (HGCM) and HEM; namely, the possibility of
combining accurate and fast NN emulations of model
physics components with the deterministic model
dynamics of a GCM or ENM, which are the types
of complex environmental models used for modern
atmospheric and ocean climate modeling and weather
prediction.

11.2 Concepts of a Hybrid Model
Component and a Hybrid Model

One of the main problems in the development
and implementation of modern high-quality high-
resolution environmental models is the complexity of
the physical, chemical, and other processes involved.
Here we will discuss NN emulations for model
physics, keeping in mind that the approach is applica-
ble to other model components (chemical, hydrolog-
ical and other processes) as well. Parameterizations of
model physics are approximate schemes, adjusted to
model resolution and computer resources, and based
on simplified physical process equations and empirical
data and relationships. The parameterizations are still
so time-consuming, even for the most powerful
modern supercomputers, that some of the parameter-
izations have to be calculated less frequently than the
model dynamics. Also, different physical parameteri-
zations are calculated at different frequencies inversely
proportional to their computational complexity. This
may negatively affect the accuracy of climate and
other environmental simulations and predictions.

For example, in the case of a complex GCM, calcu-
lation of a physics package (including the atmospheric
and land physics) at typical (a few degrees) resolution
as in the National Center for Atmospheric Research
(NCAR) Community Atmospheric Model (CAM)
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takes about 70% of the total model computations. This
is despite the fact that while the model dynamics is
calculated every 20 min, some computationally expen-
sive parts of the model physics (e.g., short wave radi-
ation) are calculated every hour. The most time con-
suming calculations of the model atmospheric physics,
full long wave radiation including calculation of opti-
cal properties, are done only once every 12 h while
the heating rates and radiative fluxes are calculated
every hour. More frequent model physics calculations,
desirable for temporal consistency with model dynam-
ics, and the future introduction of more sophisticated
model physics parameterizations will result in a further
increase in the computational time spent calculating
model physics.

In the wind wave model (11.2), the calculation of
the source term, Snl requires roughly 103 to 104 times
more computational effort than all other aspects of the
wave model combined. Present operational constraints
require that the computational effort for the estimation
of Snl should be of the same order of magnitude as for
the remainder of the wave model.

This situation is a generic and important motivation
in looking for alternative, faster, and most importantly
very accurate ways of calculating model physics,
chemistry, hydrology and other processes. During the
last decade, a new statistical learning approach based
on NN approximations or emulations was applied for
the accurate and fast calculation of atmospheric radia-
tive processes (e.g., Krasnopolsky (1997); Chevallier
et al. (1998)) and for emulations of model physics
parameterizations in ocean and atmospheric numerical
models (Krasnopolsky et al. 2000, 2002, 2005a, b). In
these works, the calculation of model physics com-
ponents has been accelerated by 10 to 105 times as
compared to the time needed for calculating the cor-
responding original parameterizations of the model
physics.

Approaches formulated by Chevallier et al. (1998,
2000) and Krasnopolsky et al. (2000, 2002, 2005) rep-
resent two different ways of introducing a hybridiza-
tion of first principle and NN components in the
physics parameterizations as well as in complex
ENMs. These approaches introduce hybridization at
two different system levels, at the level of the sub-
system (a single parameterization) and at the level
of the entire system (ENM). These two approaches
lead to the concepts of a hybrid parameterization
(HP) (Chevallier et al. 1998, 2000) and a hybrid

environmental model (HEM) or hybrid GCM (HGCM)
(Krasnopolsky et al. 2000, 2002, 2005; Krasnopolsky
and Fox-Rabinovitz 2006a, b). These two concepts are
discussed in the following sections.

11.3 Hybrid Parameterizations
of Physics

Chevallier et al. (1998, 2000) considered a com-
ponent of the complex GCM (the ECMWF global
atmospheric model) – the long wave radiation (LWR)
parameterization. Putting it in terms of the system lev-
els, this single parameterization is considered to be the
system and its constituents, with the blocks calculating
fluxes, the blocks calculating cloudiness, etc., as the
subsystems. The hybridization of first principle com-
ponents with NN emulations is introduced on the level
of these constituents and inside the system, which in
this case is the LWR parameterization. A generic LWR
parameterization can be represented as a mapping (see
Chapter 9, Section 9.1.2),

Y = M(X) (11.3)

in this particular case the input vector X =
(S,T ,V ,C), where the vector S represents surface
variables, T is a vector (profile) of atmospheric tem-
peratures, C is a profile of cloud variables, and the
vector V includes all other variables (humidity profile,
different gas mixing ratio profiles, etc.). The output
of the LWR parameterization, vector Y , is composed
of two vectors Q and f , Y = (Q, f ). Here Q is a
profile of cooling rates Q = (C1

r , C2
r , . . . , C L

r ), where
C j

r is the cooling rate at the j-th vertical model level,
and f is a vector of auxiliary fluxes computed by the
LWR parameterization. Because of the presence of the
cloud variable C , the mapping (11.3) may have finite
discontinuities, that is, it is almost continuous.

The ECMWF LWR parameterization considered
by Chevallier et al. (1998, 2000) is based on the
Washington and Williamson (1977) approach which
allows separate cloud variables C . In this parameter-
ization, level fluxes are calculated as,

F(S, T, V, C) =
∑

i

αi (C)Fi (S, T, V ) (11.4)

where each partial or individual flux Fi (S, T, V )

is a continuous mapping and all discontinuities
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related to the cloudiness are included in αi (C). In
their hybrid parameterization “NeuroFlux”, Cheval-
lier et al. (1998, 2000) combined calculations of
cloudiness functions αi (C) based on first princi-
ple equations with NN approximations for a par-
tial or individual flux Fi (S, T, V ). Thus, the flux at
each level (11.4) is a linear combination of approx-
imating NNs and cloud physics coefficients αi (C).
As the result, the “NeuroFlux” hybrid LWR para-
meterization developed by Chevallier et al. (1998,
2000) is a battery of about 40 NNs (two NNs –
one for the upward and another one for the down-
ward radiation fluxes – for each of vertical level
where clouds are possible). To calculate “NeuroFlux”
outputs, namely the cooling rates Cr s, linear com-
binations of the individual approximating NNs F
(equation 11.4) are differentiated at each vertical
level,

Cr (P) = ∂ F(P)

∂ P
, (11.5)

where P is atmospheric pressure.
The “NeuroFlux” has a very good accuracy; its

bias is about 0.05 K/day and RMS error is about
0.1 K/day compared to the LWR parameterization by
Washington and Williamson (1977). It is eight times
faster than the parameterization by Washington and
Williamson (1977). This HP approach has already
led to the successful operational implementation of
“NeuroFlux” in the ECMWF 4-DVar data assimilation
system.

As for limitations of the HP approach, the main
one stems from a basic feature of the HP approach;
it is based on the analysis of the internal structure
of a particular parameterization. The final design of
HP is based on and follows this internal structure.
Because all parameterizations have different internal
structures, the approach and design of a HP developed
for one parameterization usually cannot be used, with-
out significant modifications, for another parameteri-
zation. For example, the approach used by Chevallier
et al. (1998, 2000) and the design of the HP “Neu-
roFlux” is completely based on the possibility of sepa-
rating the dependence on the cloudiness (see equation
11.4). Many other LWR parameterizations, like the
NCAR CAM LWR parameterization (Collins 2001;
Collins et al. 2002) or the LWR parameterization
developed by Chou et al. (2001), do not allow for
such separation of variables. Thus, for these LWR

parameterizations as well as the short wave radiation
(SWR) and the moisture model physics block parame-
terizations, the HP approach developed by Chevallier
et al. (1998, 2000) cannot be applied directly; it should
be significantly modified or redesigned for each partic-
ular new parameterization.

11.4 Hybrid Numerical Models:
Accurate and Fast NN Emulations
for Parameterizations of Model
Physics

A new concept of a complex hybrid environmental
model (HEM) has been formulated and developed
by Krasnopolsky et al. (2000, 2002, 2005a) and by
Krasnopolsky and Fox-Rabinovitz (2006a, b). The
hybrid modeling approach considers the whole GCM
or ENM as a system. Dynamics and parameteriza-
tions of physics, chemistry, etc., are considered to be
the components of the system. Hybridization in this
case is introduced at the level of components inside
the system (ENM). For example, the entire LWR (or
SWR) parameterization is emulated by a single NN as
a single/elementary object or block. The NN emulation
approach is based on the general fact that any para-
meterization of model physics can be considered as a
continuous or almost continuous mapping (11.3) (see
Chapter 9, Section 3.1.2).

Here we use the NCAR CAM (see Journal of Cli-
mate (1998) for the description of the model), a widely
recognized state-of-the-art GCM used by a large mod-
eling community for climate predictions, and the state-
of-the-art NCEP wind wave model (Tolman 2002) as
examples of a complex GCM and ENM. After apply-
ing the hybridization approach to the first principle
based components of these models by developing NN
emulations of model physics parameterizations, these
models become the examples of an HGCM and HEM,
correspondingly.

Krasnopolsky and Fox-Rabinovitz (2006a, b) for-
mulated a developmental framework and test criteria
that can be recommended for developing and testing
the statistical learning components of HGCM, i.e., NN
emulations of model physics components. The devel-
opmental process consists of three major steps:
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1. Problem analysis or analysis of the model com-
ponent (i.e., the original parameterization) to be
approximated to determine the optimal structure
and configuration of the NN emulations – the num-
ber of inputs and outputs and the first guess of
the functional complexity of the original parame-
terization that determines an initial number of hid-
den neurons in one hidden layer of (see Chapter 9,
Eqs. 9.2, 9.3).

2. Generation of representative data sets for training,
validation, and testing. This is achieved by using
data for NN training that are simulated by running
an original GCM, i.e., a GCM with the original
parameterization. When creating a representative
data set, the original GCM must be run long enough
to produce all possible atmospheric model simu-
lated states, phenomena, etc. Here, due to the use
of simulated data, it is not a problem to generate
the sufficiently representative (and even redundant)
data sets required to create high quality NN emula-
tions. Using model-simulated data for NN training
allows a high accuracy of emulation to be achieved
because simulated data are almost free of the prob-
lems typical in empirical data (like a high level
of observational noise, sparse spatial and temporal
coverage, poor representation of extreme events,
etc.).

3. Training the NN. Several different versions of NNs
with different architectures, initialization, and train-
ing algorithms should be trained and validated. As
for the NN architecture, the number of hidden neu-
rons k should be kept to the minimum number that
provides a sufficient emulation accuracy to create
the high quality NN emulations required.

Testing the HGCM that uses the trained NN emulation
consists of two major steps. The first step is testing the
accuracy of the NN approximation against the original
parameterization using the independent test data set.
In the context of the hybrid approach, the accuracy
and improved computational performance of NN emu-
lations, and eventually the HGCM is always measured
against the corresponding controls, namely the original
parameterization and its original GCM. Both the orig-
inal parameterization and its NN emulation are com-
plicated multidimensional mappings. Many different
statistical metrics of the emulation accuracy should
be calculated to assure that a sufficiently complete
evaluation of the emulation accuracy is obtained. For

example, total, level, and profile statistics have to be
evaluated (see Section 11.5.1). The second test step
consists of a comprehensive comparison and analysis
of parallel HGCM and GCM runs. For the parallel
model simulations all relevant model prognostic (i.e.,
time-dependent model variables) and diagnostic fields
should be analyzed and carefully compared to assure
that the integrity of the original GCM and its para-
meterization, with all its details and characteristic fea-
tures, is precisely preserved when using a HGCM with
NN emulation (see Section 11.5). This test step involv-
ing model simulations is crucially important. GCMs
are essentially nonlinear complex systems; in such
systems, small systematic, and even random, approxi-
mation errors can accumulate over time and produce a
significant impact on the quality of the model results.
Therefore, the development and application frame-
work of the new hybrid approach should be focused
on obtaining a high accuracy in both NN emulations
and HGCM simulations.

11.5 Atmospheric Applications: NN
Emulation Components and HGCM

The NCAR CAM and NASA NSIPP (Natural
Seasonal-to-Interannual Predictability Program) GCM
are used in this section as examples of GCMs. The
NCAR CAM is a spectral model that has 42 spectral
components (or approximately 3◦ × 3.5◦ horizontal
resolution) and 26 vertical levels. The NSIPP model is
a grid point GCM that has 2◦ × 2.5◦ latitude × longi-
tude horizontal resolution and 40 vertical levels. Note
that the model vertical levels are distributed between
the surface and upper stratosphere, which is at approx-
imately 60–80 km. NN emulations were developed for
the two most time consuming components of model
physics, LWR and short wave radiation (SWR). The
NCAR and NSIPP models have different LWR and
SWR parameterizations. The complete description of
the NCAR CAM atmospheric LWR is presented by
Collins (2001) and Collins et al. (2002), and the NSIPP
LWR by Chou et al. (2001). The full model radiation
(or total LWR and SWR) calculations take ∼70% of
the total model physics calculations. It is noteworthy
that the results presented in this section were obtained
using the two latest versions of NCAR CAM – the
CAM-2 and CAM-3. The version of CAM used in the
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calculations is specified in the corresponding subsec-
tions below.

11.5.1 NCAR CAM Long Wave Radiation

The function of the LWR parameterization in
atmospheric GCMs is to calculate the heating fluxes
and rates produced by LWR processes. As was
already mentioned, the entire LWR parameterization
can be represented as an almost continuous mapping
(equation 11.3). Here a very general and schematic
outline of the internal structure of this parameteriza-
tion is given in order to illustrate the complexity that
makes it a computational “bottleneck” in the NCAR
CAM physics. This information about the internal
structure of the LWR parameterization was not used
when creating the LWR NN emulation.

The method for calculating LWR in the NCAR
CAM is based on LW radiative transfer equations in an
absorptivity/emissivity formulation (see Collins 2001
and references there),

F↓(p) = B(pt ) · ε(pt , p) +
p∫

pt

α(p, p′) · dB(p′)

F↑(p) = B(ps) −
ps∫

p

α(p, p′) · dB(p′) (11.6)

where F↑(p) and F↓(p) are the upward and the down-
ward heat fluxes, B(p) = σ · T 4(p) is the Stefan-
Boltzmann relation; pressures ps and pt refer to the top
and surface atmospheric pressures, and α and ε are the
atmospheric absorptivity and emissivity. To solve the
integral equations (11.6), the absorptivity and emis-
sivity have to be calculated by solving the following
integro-differential equations,

a(p, p′) =

∞∫

0
{dBν(p′)/dT (p′)} · [1 − τν(p, p′)] · dν

dB(p)/dT (p)

ε(pt , p) =

∞∫

0
Bν(pt ) · [1 − τν(pt , p)] · dν

B(pt )
(11.7)

where the integration is over wave number ν, and
B · (pt ) is the Planck function. To solve equations

(11.7) for the absorptivity and emissivity, additional
calculations have to be performed and the atmospheric
transmission τν has to be calculated. This calcula-
tion involves a time consuming integration over the
entire spectral range of gas absorption. Equations
(11.6, 11.7) illustrate the complexity of the LWR inter-
nal structure and explain the poor computational per-
formance of the original NCAR CAM LWR para-
meterization, which in this case is determined by
the mathematical complexity of the original LWR
parameterization.

The input vectors for the NCAR CAM LWR para-
meterization include ten vertical profiles (atmospheric
temperature, humidity, ozone, CO2, N2O, CH4, two
CFC mixing ratios (the annual mean atmospheric mole
fractions for halocarbons), pressure, and cloudiness)
and one relevant surface characteristic (upward LWR
flux at the surface). The CAM LWR parameterization
output vectors consist of the vertical profile of heating
rates (HRs) and several radiation fluxes, including the
outgoing LWR flux from the top layer of the model
atmosphere (the outgoing LWR or OLR). The NN
emulation of the NCAR CAM LWR parameterization
has the same number of inputs (220 total) and outputs
(33 total) as the original NCAR CAM LWR parame-
terization.

NCAR CAM was run for 2 years to generate rep-
resentative data sets. The first year of the model sim-
ulation was divided into two independent parts, each
containing input/output vector combinations. The first
part was used for training and the second for validation
(control of overfitting, control of a NN architecture,
etc.). The second year of the simulation was used to
create a test data set completely independent from both
the training and validation sets. This data set was used
for testing only. All approximation statistics presented
in this section were calculated using this independent
test data set.

The NN emulations developed were tested against
the original NCAR CAM LWR parameterization. Both
the original LWR parameterization and its NN emula-
tion are complex multidimensional mappings. Because
of their complexity, many different statistics and statis-
tical cross-sections were calculated to obtain a com-
plete enough comparison between these two objects
and to evaluate the accuracies of the NN emulations.
The mean difference B (bias or systematic error of
approximation) and the root mean square difference
RMSE (a root mean square error of approximation)
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between the original parameterization and its NN emu-
lation are calculated as follows:

B = 1

N × L

N∑

i=1

L∑

j=1

[Y (i, j) − YNN(i, j)]

RMSE =

√√√√√
N∑

i=1

L∑
j=1

[Y (i, j) − YNN(i, j)]2

N × L
(11.8)

where Y (i, j) and YNN(i, j) are outputs from the orig-
inal parameterization and its NN emulation, respec-
tively, where i = (latitude, longitude), i = 1, . . . , N is
the horizontal location of a vertical profile; N is the
number of horizontal grid points; and j = 1, . . . , L is
the vertical index where L is the number of the vertical
levels.

These two error characteristics (equations (11.8))
describe the accuracy of the NN emulation integrated
over the entire 4-D (latitude, longitude, height, and
time) data set. Using a minor modification of equations
(11.8), the bias and RMSE for the mth vertical level of
the model can be calculated:

Bm = 1

N

N∑

i=1

[Y (i, m) − YNN(i, m)]
(11.9)

RMSEm =

√√√√√
N∑

i=1
[Y (i, m) − YNN(i, m)]2

N

The root mean square error can also be calculated for
each i th profile:

prmse(i) =
√√√√ 1

L

L∑

j=1

[Y (i, j) − YNN(i, j)]2

(11.10)

This error is a function of the horizontal location of the
profile. It can be used to calculate a mean profile root
mean square error PRMSE and its standard deviation
σPRMSE which are location independent:

PRMSE = 1

N

N∑

i=1

prmse(i)

(11.11)

σPRMSE =
√√√√ 1

N − 1

N∑

i=1

[prmse(i) − PRMSE]2

The statistics (11.11) and (11.8) both describe the
accuracy of the NN emulation integrated over the
entire 4-D data set. However, because of a different
order of integration it reveals different and comple-
mentary information about the accuracy of the NN
emulations. The root mean square error profile can be
calculated:

prmse( j) =
√√√√ 1

N

N∑

i=1

[Y (i, j) − YNN(i, j)]2

(11.12)

Several NNs have been developed that all have one
hidden layer with 20 to 300 neurons. Varying the num-
ber of hidden neurons allows one to demonstrate the
dependence of the accuracy of NN emulation on this
parameter, which is actually the complexity of the NN
emulation, as well as selecting an optimal NN emu-
lation (Krasnopolsky et al. 2005) with the minimal
complexity that still provides an emulation accuracy
sufficient for a successful multi-decadal climate model
integration.

All NN emulations (Krasnopolsky et al. 2005;
Krasnopolsky and Fox-Rabinovitz 2006a, b) devel-
oped for the NCAR CAM LWR have almost zero or
negligible systematic errors (biases). Figure 11.1 illus-
trates convergences of root mean square errors (11.8,
11.9, and 11.11) that are random errors in the case
of negligible biases. The figure shows that an error
convergence has been reached when the number of
hidden neurons k ≈ 100. However, the convergence
becomes slow and non-monotonic at k ≈ 50. The final
decision about the optimal NN emulation (in terms
of sufficient accuracy and minimal complexity) to be
implemented into the model is based on decadal (40
year) integrations using the NN emulations within
HGCM (Krasnopolsky et al. 2005; Krasnopolsky and
Fox-Rabinovitz 2006a, b). For assessing the impact
of using an NN emulation of the LWR parameteri-
zation in the HGCM, parallel climate simulation runs
were performed with the original GCM (NCAR CAM
including the original LWR parameterization) as the
control run and with the HGCM (NCAR CAM includ-
ing the NN emulations of LWR described above).
The climate simulations were run for 50 years. As
is usually done in climate simulations the simulated
fields for the first 10 years, that potentially include
the climate model spin-up effects, are not used for the
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Fig. 11.1 The convergence of root mean square errors (11.8, 11.9, and 11.11). Solid line – RMSE26 (11.9) dashed line – RMSE
(11.8), and dotted line – PRMSE (11.11)

analysis of the simulation results, leaving the remain-
ing 40 year period to be used for that purpose.

The NN emulation with k = 50 (NN50) is the sim-
plest NN emulation that could be integrated into the
model for decadal (40 years or longer) climate sim-
ulations without any visible (significant) accumula-
tions of errors in climate simulations, compared to the
control run with the original LWR parameterization.
This is the main indicator (in the framework of this
NN application) that the accuracy of this NN emu-
lation is sufficient for this application. Figure 11.2
shows the vertical error profile (11.12) prmse(j) for
the “optimal” NN emulation with 50 hidden neurons
(NN50). It shows that the errors are very small; at the
top 10 levels the error does not exceed 0.2 K/day, at
the top 20 levels it does not exceed 0.3 K/day and
reaches just about 0.6–0.8 K/day at the lowest level,
which does not lead to significant errors in the 40 year
climate simulations with HGCM. In addition to having
sufficient emulation accuracy, the NN50 NN emula-

tion performs about 150 times faster than the original
NCAR CAM LWR parameterization in a code by code
comparison.

Comparisons between the control and NN emu-
lation runs are presented in Table 11.1. They are
done by analyzing the time (40-year) and global
mean differences between the results of the paral-
lel runs, as is routinely done in climate modeling.
In the climate simulations performed with the orig-
inal GCM and with HGCM, the time and global
mean mass or mean surface pressure are precisely
preserved, which is the most important preservation
property for climate simulations. For the NN50 run,
there is no difference in mean sea surface pressure
between the NN and control runs (see Table 11.1).
Other time global means, some of which are also
presented in Table 11.1, show a profound similar-
ity between the parallel simulations for these terms.
These very small differences indicate the very close
results from the parallel climate simulations. Other
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Fig. 11.2 The vertical error
profile (11.10), prmse(j), for
the “optimal” LWR NN
emulation with 50 hidden
neurons (NN50)

simulations (with NN90, NN150, NN200, etc.) also
show that the HGCM results are profoundly similar to
those of the original GCM (Krasnopolsky et al. 2005;
Krasnopolsky and Fox-Rabinovitz 2006a, b). It is note-
worthy that the differences between these parallel runs
(HGCM and GCM) do not exceed the differences seen
in two identical GCM runs performed on different
supercomputers.

11.5.2 NASA NSIPP Long Wave Radiation

The robustness of the NN emulation approach was
investigated using another GCM. The NASA NSIPP
GCM (with a different LWR parameterization and
other different model components compared to the
NCAR CAM and its LWR parameterization) was used
for this purpose. The input vector for the NSIPP LWR

Table 11.1 Time (40-years) and global means for mass (mean
sea level pressure) and other model diagnostics for the NCAR
CAM-2 climate simulations with the original LWR para-

meterization (in GCM), and its NN emulation (in HGCM) using
NN50 and their differences (in %)

GCM with the original HGCM with NN
Field LWR parameterization emulation Difference (in %)

Mean sea level pressure (hPa) 1,011.48 1,011.48 <10−3

Surface temperature (K) 289.02 288.97 0.02
Total precipitation (mm/day) 2.86 2.89 1.04
Total cloudiness (fractions, %) 60.71 61.26 0.9
Wind at 12 km (m/s) 16.21 16.16 0.3
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includes surface temperature and five vertical pro-
files of cloud fraction, pressure, temperature, specific
humidity and ozone mixing rate, for a total of 202
inputs. The NSIPP LWR output vector consists of a
profile of heating rates and one surface parameter, for
a total of 41 outputs.

The NN emulation accuracy and complexity results
in this case (Krasnopolsky et al. 2005; Krasnopolsky
and Fox-Rabinovitz 2006a, b) are very similar to the
ones presented above for NCAR CAM. This illustrates
the robustness of the NN emulation approach.

11.5.3 NCAR CAM Short Wave Radiation

The second component of atmospheric radiation is
short wave radiation (SWR). LWR and SWR together
comprise the total atmospheric radiation. The function
of the SWR parameterization in atmospheric GCMs
is to calculate the heating fluxes and rates produced
by SWR processes. A description of the NCAR CAM
atmospheric SWR parameterization is presented in a
special issue of Journal of Climate (1998). The input
vectors for the NCAR CAM SWR parameterization
include twenty-one vertical profiles (specific humid-
ity, ozone concentration, pressure, cloudiness, aerosol
mass mixing ratios, etc.) and several relevant surface
characteristics. NN emulations for the CAM-2 and
CAM-3 versions of NCAR CAM SWR parameteri-
zations have been developed (Krasnopolsky and Fox-
Rabinovitz 2006a, b). The major difference between
the CAM-2 and CAM-3 SWR versions is that CAM-
3 uses significantly more information about aerosols.
This extended aerosol information is responsible for
a substantial increase in the number of inputs into
the CAM-3 SWR parameterization as compared with
CAM-2. The CAM SWR parameterization output vec-
tors consist of a vertical profile of heating rates (HRs)
and several radiation fluxes.

The data sets for training, validating, and testing
SWR emulating NNs were generated in the same way
as those for the LWR NN emulations described above.
SWR NN emulations were tested against the original
NCAR CAM SWR parameterizations using the inde-
pendent test set.

The NN emulations of NCAR CAM-2 and CAM-
3 SWR parameterizations have 173 and 451 inputs,
respectively, and 33 outputs, which are the same

numbers as the inputs and outputs for the original
NCAR CAM-2 and CAM-3 SWR parameterizations.
As in the case of the LWR parameterizations, several
NNs were developed that all have one hidden layer
with 20 to 300 neurons. In the case of the SWR para-
meterizations, the convergence of root mean square
errors (11.8, 11.9, and 11.11) is very similar to that
for the LWR parameterization shown in Fig. 11.1. The
convergence is reached when the number of hidden
neurons k ≈ 100. However, it becomes slow and non-
monotonic at k ≈ 50. The NN emulation with k = 55
(NN55) is the simplest NN emulation that satisfies
the sufficient accuracy criterion; it could be integrated
in the HGCM for multi-decadal simulations without
visible (significant) accumulations of errors in climate
simulations as compared to the control run with the
original SWR parameterization. Figure 11.3 shows the
vertical error profile (11.12) prmse(j) for the “optimal”
NN emulation NN55. It shows that the errors are very
small; at the top 20 levels the error does not exceed
0.2 K/day and reaches just about 0.45 K/day at the
lowest level, which does not lead to significant errors
in the HGCM climate simulations. In addition to suf-
ficient emulation accuracy, the NN55 SWR NN emu-
lation performs about 20 times faster than the original
NCAR CAM SWR parameterization in a code by code
comparison.

Comparisons between the control and NN emula-
tion runs are also presented in Table 11.2 (see the
Table 11.1 explanation in the text above). For the
NN55 run there is a negligible difference between
the NN and control runs for sea surface pressure (see
Table 11.2). Other time global means, some of which
are also presented in Table 11.2, show a profound sim-
ilarity between the parallel simulations for these terms,
with differences usually within about 0.3%. These very
small differences indicate the very close results from
the parallel climate simulations. Other simulations
(with NN100, NN150, etc.) also show that the HGCM
results are profoundly similar to those of the original
GCM (Krasnopolsky and Fox-Rabinovitz 2006a, b).

11.5.4 NCAR CAM Full Radiation

It was shown in the previous subsections that both
components of radiation, LWR and SWR, can be suc-
cessfully emulated using the NN approach. This means
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Fig. 11.3 The vertical error
profile (11.10), prmse(j), for
the “optimal” SWR NN
emulation with 55 hidden
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that these most time consuming components of model
physics can be significantly sped up without any nega-
tive impact on the accuracy of the climate simulations.
The next logical step is to combine these two NN emu-
lations (LWR and SWR) to emulate the total model
radiation. The NN50 LWR emulation and NN55 SWR
emulation described in the previous subsections were
combined together in one HGCM. This HGCM with
the NN emulations of the total model radiation was
integrated for 40 years and the results of the climate
simulation were compared with those of the NCAR

CAM-2 GCM simulation control run with the original
NCAR CAM LWR and SWR parameterizations. In
addition to having a sufficient emulation accuracy, the
total radiation NN emulations perform about 12 times
faster in the model than the original NCAR CAM para-
meterizations in terms of model time spent to calculate
total radiation.

Comparisons between the control and NN emu-
lation runs are presented in Table 11.3 (see the
Table 11.1 explanation in the text above). For the
total radiation run there is a negligible difference of

Table 11.2 Time (40-years) and global means for model diagnostics from NCAR CAM-2 climate simulations with the original
SWR (in GCM), its NN emulation (in HGCM) using NN55, and their differences (in %)

GCM with the original HGCM with SWR
Field SWR parameterization NN emulation Difference (in %)

Mean sea level pressure (hPa) 1,011.48 1,011.49 0.001
Surface temperature (K) 289.01 288.97 0.01
Total precipitation (mm/day) 2.86 2.86 <0.1
Total cloudiness (fractions, %) 60.73 60.89 0.3
Wind at 12 km (m/s) 16.21 16.20 0.06
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Table 11.3 Time (40-years) and global means for model
diagnostics from NCAR CAM-2 climate simulations with the
original LWR and SWR (in GCM), their NN emulations (in

HGCM) using NN50 (LWR) and NN55 (SWR), and their dif-
ferences (in %)

GCM with the original LWR HGCM with LWR and
Field and SWR parameterizations SWR NN emulations Difference (in %)

Mean sea level pressure (hPa) 1,011.48 1,011.50 0.002
Surface temperature (K) 289.02 288.92 0.03
Total precipitation (mm/day) 2.86 2.89 1.04
Total cloudiness (fractions, %) 60.71 61.12 0.6
Wind at 12 km (m/s) 16.21 16.29 0.5

0.002% between the NNs and control runs for sea
surface pressure (see Table 11.3). Other time global
means, some of which are also presented in Table 11.3,
show a profound similarity between the parallel simu-
lations for these terms. These very small differences
indicate the very close results from the parallel climate
simulations.

11.6 Ocean Application of the Hybrid
Model Approach: Neural Network
Emulation of Nonlinear
Interactions in Wind Wave Models

The ocean wind wave model used for simulation and
forecast purposes is another example of an ENM. It
is based on a form of the spectral energy or action
balance equation (11.2) and has the nonlinear wave-
wave interaction source term Snl as a part of the model
physics in the right hand side of the equation. In its full
form (e.g., Hasselmann and Hasselmann 1985) the cal-
culation of the Snl interactions requires the integration
of a six-dimensional Boltzmann integral:

Snl
(	k4

) = T ⊗ F
(	k)

= ω4

∫
G

(	k1, 	k2, 	k3, 	k4
) · δ

(	k1 + 	k2 − 	k3 − 	k4
)

× δ
(
ω1 + ω2 − ω3 − ω4

) [
n1 · n3 · (

n4 − n2
)

+ n2 · n4 · (n3 − n1
)]

d	k1d	k2d	k1 (11.13)

n
(	k) = F

(	k)

ω
; ω2 = g · k · tanh(kh)

where the complicated coupling coefficient G contains
moving singularities; T is a symbolic representation
for the mapping. This integration requires roughly 103

to 104 times more computational effort than all other
aspects of the wave model combined. Present opera-
tional constraints require that the computational effort
for the estimation of Snl should be of the same order
of magnitude as the remainder of the wave model.
This requirement was met with the development of
the Discrete Interaction Approximation (DIA, Hassel-
mann et al. 1985). Two decades of experience with the
DIA in wave models has identified significant short-
comings in the DIA (Tolman et al. 2005). It is not
sufficiently accurate and, in many physically important
cases, significantly deviates from the equation (11.13)
deteriorating the prediction capabilities of the wind
wave model (11.2).

When considering the above, it is crucially impor-
tant for the development of third generation wave mod-
els to develop an economical yet accurate approxima-
tion for Snl . A Neural Network Interaction Approx-
imation (NNIA) was explored to achieve this goal
(Krasnopolsky et al. 2002; Tolman et al. 2005). NNs
can be applied here because the nonlinear interaction
(11.13) is essentially a nonlinear mapping, symboli-
cally represented by T , which relates two vectors F
and Snl (2-D fields in this case). Discretization of S and
F (as is necessary in any numerical approach) reduces
(11.13) to a continuous mapping of two vectors of
finite dimensions. Modern high resolution wind wave
models use descretization on a two dimensional grid
which leads to S and F vector dimensions on the order
of N ∼ 1,000. It seems unreasonable to develop a NN
emulation of such a high dimensionality (about 1,000
inputs and outputs). Moreover, such a NN will be grid
dependent.

In order to reduce the dimensionality of the NN
and convert the mapping (11.13) to a continuous
mapping of two finite vectors that are less dependent
on the actual spectral discretization, the spectrum F
and source function Snl are expanded using systems of
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two-dimensional functions, each of which (�i and �q)

creates a complete and orthogonal two-dimensional
basis

F ≈
n∑

i=1

xi�i , Snl ≈
m∑

q=1

yq�q , (11.14)

where for the coefficients of decomposition/com-
position xi and yq ,

xi =
∫∫

F�i , yq =
∫∫

Snl�q , (11.15)

where the double integral identifies integration over
the spectral space. Now, the developed NN emulation
relates vectors of coefficients X and Y: Y =TNN(X).

To train the NN emulation TNN , a training set has
to be created that consists of pairs of the vectors X
and Y. To create this training set, a representative set
of spectra Fp has to be generated with corresponding
(exact) interactions Snl,p using equation (11.13). For
each pair (F, Snl)p, the corresponding vectors (X,Y)p

are determined using equation (11.15). These pairs of
vectors are then used to train the NN to obtain TNN .
After TNN has been trained, the resulting NN Inter-
action Approximation (NNIA) algorithm consists of
three steps: (i) decompose the input spectrum F by
applying equation (11.15) to calculate X; (ii) estimate
Y from X using NN; and (iii) compose the output
source function Snl from Y using equation (11.14).

A graphical representation of the NNIA algorithm is
shown in Fig. 11.4.

Two approaches have been used for the basis func-
tions. The first is the mathematical basis used in
Krasnopolsky et al. (2002). As is usually done in the
parametric spectral description of wind waves, separa-
ble basis functions are chosen where the frequency and
angular dependence are separate. The advantage of this
choice of basis functions is the simplicity of the basis
generation. The disadvantage is the slow convergence
of the decompositions. As an alternative, a second
approach to the basis functions choice has been inves-
tigated. In this approach Empirical Orthogonal Func-
tions (EOFs) or principal components (Lorenz 1956;
Jolliffe 2002) are used (Tolman et al. 2005).

EOFs compose a statistically optimal basis. In
the case considered, the basis functions �i and �q

are functions of two variables f and θ . The set of
spectra F and source terms Snl , which are used for
the training of the NN, are also used to generate
the EOFs for decomposing F and Snl . When using
EOFs the basis generation procedure is computation-
ally expensive, with the cost increasing as the res-
olution of the model increases. However, as in NN
training the basis generation needs to be performed
only once. Stored results can be used without the
need to recalculate in the final NNIA algorithm. The
main advantage of EOFs is the fast convergence of
the decomposition.
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Table 11.4 Approximation RMSes (in nondimensional units)
and performance (DIA calculation time is selected as a unit) for
DIA, NNIA, NNIAE, and exact Snl calculation (original)

Algorithm RMSE Performance

DIA 0.312 1
NNIA 0.088 4
NNIAE 0.035 7
Original parameterization 0. ∼8. × 105

To distinguish between NN algorithms using dif-
ferent basis functions for decomposition, we use the
abbreviation NNIAE for our NN algorithm that used
the EOF basis. Table 11.4 demonstrates comparisons
of the accuracy and performance of DIA with the two
NN emulations NNIA and NNIAE, all versus the exact
calculation of Snl original parameterization. Approx-
imation errors (RMSEs) are calculated in nondimen-
sional units and performance is measured in DIA cal-
culation times (taken as a unit). The NNIAE is nearly
ten times more accurate than DIA. It is about 105 times
faster than the original parameterization. As in the
case of the atmospheric long wave radiation, a care-
ful investigation of the parallel runs with the original
ENM (the wave model with the original wave-wave
interaction) and the HEM run with the NN emulation
should be performed for the final test of the NN emu-
lation (Tolman et al. 2005).

11.7 Discussion

11.7.1 Summary and Advantages of the
Hybrid Modeling Approach

In this chapter, we reviewed a new hybrid paradigm in
environmental numerical modeling. Within the frame-
work of this paradigm a new type of ENM – a hybrid
environmental model (HEM) based on a synergetic
combination of deterministic modeling and statistical
learning within an HEM (using a NN technique) is
introduced. This approach uses NNs to develop highly
accurate and fast emulations of model physics compo-
nents. The presented results show:

(i) The conceptual and practical possibility of devel-
oping HEMs with accurate NN emulations of
model components, which preserve the integrity
and all the detailed features of the original
ENM.

(ii) NN emulations of model physics parameteriza-
tions developed by Krasnopolsky et al. (2000,
2002, 2005) are practically identical to the orig-
inal physical parameterizations, due to the capa-
bility of NN techniques to very accurately emu-
late complex systems like the model physics. This
fact allows the integrity and level of complexity
of the state-of-the-art parameterizations of model
physics to be preserved. As a result, for example,
a HGCM using these NN emulations produces
climate simulations that are practically identical
to those of the original GCM. It is noteworthy that
the NN emulation developed has the same inputs
and outputs as the original parameterization and
is used precisely as its functional substitute within
the model.

(iii) That accurate NN emulations are robust and very
fast (10 to 105 times faster than the original para-
meterization) so the significant speed-up of HEM
calculations can be achieved without compromis-
ing accuracy.

(iv) That statistical (NN) components can be success-
fully combined with deterministic model compo-
nents within the HEM so their synergy can be effi-
ciently used for environmental and climate mod-
eling without any negative impacts on simulation
quality.

(v) That this productive synergy or new combina-
tion of state-of-the-art deterministic and NN emu-
lation approaches leads to new opportunities in
using HEMs for environmental and climate sim-
ulations and prediction. For example new more
sophisticated parameterizations, or even “super-
parameterizations” such as a cloud resolving
model, that are extremely time consuming or even
computationally prohibitive if used in their orig-
inal form will become computationally “afford-
able” in ENMs when using their accurate and
computationally much more efficient NN emula-
tions in HEMs.

11.7.2 Limitations of the Current Hybrid
Modeling Framework

The development of NN emulations, the core of the
hybrid modeling approach, depends significantly on
our ability to generate a representative training set
to avoid using NNs for extrapolation far beyond the
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domain covered by the training set. Because of high
dimensionality of the input domain that is on the order
of several hundreds or more, it is rather difficult to
cover the entire domain, especially the “far corners”
associated with rare events, even when we use simu-
lated data for the NN training. Another related problem
is that NN emulations are supposed to be developed
for an environmental or climate system that changes
in time. This means that the domain configuration for
a climate simulation may evolve over time, for exam-
ple, when using a future climate change scenario. In
both situations described the emulating NN may be
forced to extrapolate beyond its generalization ability
and may lead to errors in NN outputs and result in
simulation errors in the corresponding HEM. The next
subsection is devoted to addressing these issues.

11.7.3 Current and Future Developments
of the Hybrid Modeling Approach

Two new techniques are being developed to take care
of the kind of problems outlined in the previous sec-
tion and to make the NN emulation approach suitable
for long-term climate change simulations and other

applications – a compound parameterization (CP) and
a NN dynamical adjustment (DA) (Krasnopolsky and
Fox-Rabinovitz 2006a, b). Here they are only briefly
outlined.

CP consists of the following three elements: the
original parameterization, its NN emulation, and a
quality control (QC) block. During a routine HEM
simulation with CP, QC block determines (at each time
step of integration at each grid point) based on some
criteria whether the NN emulation or the original para-
meterization has to be used to generate physical para-
meters (parameterization outputs). When the original
parameterization is used instead of the NN emulation,
its inputs and outputs are saved to further adjust the
NN emulation. After accumulating a sufficient num-
ber of these records, a DA of the NN emulation is
produced by a short retraining using the accumulated
input/output records. Thus, the adapted NN emulation
becomes dynamically adjusted to the changes and/or
new events/states produced by the complex environ-
mental or climate system.

There were different possible designs considered
for QC (Tolman and Krasnopolsky 2004, Krasnopol-
sky and Fox-Rabinovitz 2006a, b). The first and sim-
plest QC design is based on a set of regular phys-
ical and statistical tests that are used to check the
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Fig. 11.5 Compound parameterization design for the NCAR
CAM SWR. For each NN emulation (NN55 in this case), addi-
tional NNs (Error NN) is trained specifically for predicting, for
a particular input, X , the errors, Yε , in the NN emulation output

YNN . If these errors do not exceed a predefined threshold (mean
value plus two standard deviations in this case), the SWR NN
emulation (NN55) is used; otherwise, the SWR original para-
meterization is used instead of the NN emulation
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Fig. 11.6 Probability density distributions of emulation errors
for the SWR NN emulation NN55 (solid line) and for the
compound SWR parameterization (dashed line) are shown in
Fig. 11.5. Both errors are calculated vs. the original SWR

parameterization. Compound parameterization reduces the
probability of medium and large errors an order of magnitude.
Vertical axis is logarithmic

consistency of the NN outputs. This is the simplest,
mostly generic but not sufficiently focused approach.

The second more sophisticated and effective QC
design is based on training, for each NN emulation,
an additional NN to specifically predict the errors in
the NN emulation outputs from a particular input. If
these errors do not exceed a predefined threshold the
NN emulation is used; otherwise, the original para-
meterization is used instead. A CP of this design was
successfully tested for the NCAR CAM SWR. For
the SWR NN55 (see Section 11.5.3) an error NN
was trained which estimated a NN55 output error
prmse(i) (11.10) for each particular input vector Xi .
The design of the CP in this case is shown in Fig. 11.5.
Figure 11.6 shows the comparison of two error
probability density functions. One curve (solid line)

corresponds to the emulation errors of NN55, another
(dashed line) corresponds to the emulation errors of the
CP shown in Fig. 11.5 (both errors are calculated vs.
the original parameterization on the independent test
set; vertical axes are logarithmic). Figure 11.6 demon-
strates the effectiveness of CP; the application of CP
reduces medium and large errors by about an order
of magnitude. Figure 11.7 demonstrates the effec-
tiveness of CP in removing outliers, and Table 11.5
shows improvements in other statistical measures. It
is noteworthy that for this CP less than 2% of the
SWR NN emulation outputs are rejected by QC and
calculated using the original SWR parameterization.
Further refinement of the criteria used in the QC may
result in a reduction in the already small percentage of
outliers.
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Fig. 11.7 Scatter plot for HRs calculated using the SWR NN
emulation NN55 (left figure) vs. the original SWR parameter-
ization (left and right horizontal axes) and for HRs calculated
using the SWR compound parameterization (right figure) vs. the

original SWR parameterization. Gray crosses (left figure) show
outliers that will be eliminated by the compound parameteriza-
tion (right figure)

The third QC design is based on the domain check
technique proposed in the context of NN applications
to satellite remote sensing (see Chapter 9, Section 9.5).
In this case, QC is based on a combination of forward
and inverse NNs. This design has already been suc-
cessfully applied, as a preliminary study, to the ocean
wave model (Section 11.6) (Tolman and Krasnopol-
sky 2004). Figure 11.8 illustrates the CP design in the
case of the NNIA described in Section 11.6.

The parameterization Jacobian, a matrix of the first
derivatives of parameterization outputs over inputs,
may be useful in many cases. For example, in
data assimilation applications (an optimal blending
of observational and simulated data to produce the
best possible fields) a Jacobian is used to create an
adjoint (a tangent-linear approximation). A Jacobian
is also instrumental for a statistical analysis of the
original parameterization and its NN emulation. An
inexpensive computation of the Jacobian when using
a NN emulation is one of the advantages of the

X YNN
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NN

iNN

Original
Parameterization

||X-X‘||<e

F(f,q)

No

Yes
Snl

Snl(f,q)YNN

CP

Snl

Fig. 11.8 Compound parameterization design for the NNIA
and NNIAE algorithms described in Section 11.6 and shown
in Fig. 11.4. Due to the use of the EOF decomposition and
composition procedures the inverse NN (iNN) and QC block is
implemented on the level of composition coefficients X and X ′

NN approach. Using this Jacobian in combination
with the tangent-linear approximation can addition-
ally accelerate the calculations (Krasnopolsky et al.
2002). However since the Jacobian is not trained, it is
simply calculated through the direct differentiation of

Table 11.5 Error statistics for SWR NN emulation NN55 and SWR compound parameterization: Bias and RMSE (25), RMSE26
(26), and Extreme Outliers (Min Error & Max Error)

Bias RMSE RMSE26 Min error Max error

SWR NN55 4.10−3 0.193 0.434 −46.1 13.6
SWR CP 4.10−3 0.171 0.302 −9.2 9.5
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an emulating NN. In this case the statistical inference
of a Jacobian is an ill-posed problem and it is not guar-
anteed that the derivatives will be sufficiently accurate.

It is noteworthy that for the type of NN applications
considered in this section, the NN emulation approach
that treats a parameterization of model physics as a sin-
gle object offers a simple and straightforward solution
that alleviates the need for calculating the NN Jaco-
bian explicitly. The adjoint tangent-linear approxima-
tion of a parameterization (e.g., of a radiation parame-
terization) may be considered as an independent/new
parameterization, the NN emulation approach can be
applied to such a parameterization, and a separate
NN emulation can be trained to emulate the adjoint.
For other applications that require an explicit cal-
culation of the NN Jacobian, several solutions have
been offered and investigated (Aires et al. 1999, 2004;
Krasnopolsky 2006).
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12Neural Network Modeling in Climate
Change Studies

Antonello Pasini

12.1 Introduction

At present, climate change is a “hot topic”, not
only in scientific analyses and papers by researchers,
but also in wider discussions among economists and
policy-makers.

In whatever area you are, the role of modeling
appears crucial in order to understand the behavior of
the climate system and to grasp its complexity. Fur-
thermore, once validated on the past, a model repre-
sents the only chance to make projections about the
future behavior of the climate system.

In this framework, AI methods (more specifically,
neural networks – NNs) have recently shown their use-
fulness in modeling studies dealing with the climate
system. Thus, the aim of this paper is to review and
discuss the applications of neural network modeling
to climate change studies. In doing so, we will meet
at least two strategies of application: the first one is
“complementary” to the standard dynamical modeling
via Global Climate Models (GCMs), due to its sub-
stantial nature of NN post-processing of GCM outputs;
the second one is more “alternative” to dynamical
modeling, because it is founded on the direct modeling
of the climate system by NNs in an empirical and data-
driven way.

Thus, in the next section we will present stud-
ies about GCMs downscaling via neural networks, an
activity that has become quite standard in research
papers during the last few years, even if not even
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thoroughly applied. Then, considerations about the
application of dynamical modeling to a complex
system like climate will lead us to recognize some
weaknesses in the simulated reconstruction of the sys-
tem itself. In particular, as we will see, this can lead
us to criticize this kind of modeling (when applied to
complex systems) and to not rely on its results.

In this unsatisfactory situation, a more phenomeno-
logical approach to the analysis of climate behavior
can be applied. In Section 12.3 we will initially show
how some modelers used neural network modeling for
studying and forecasting the occurrence of specific
phenomena, like El Niño. Then, in what follows, a
comprehensive analysis of the influence of natural and
anthropogenic forcings on global and regional temper-
ature behaviors will be performed by NNs, shedding
light on the most important forcings that drove the
observed trends in the past.

Furthermore, in Section 12.4, a particular applica-
tion of neural network modeling to the analysis of pre-
dictability on unforced and forced Lorenz attractors,
which can mimic present and future climatic condi-
tions, will be presented and discussed.

Finally, in the last section, brief conclusions will
be drawn and prospects of future applications will be
envisaged.

12.2 Post-processing of GCMs and
Downscaling

As discussed in the first chapter of this book, the dis-
covery of deterministic chaos in meteorological mod-
els (by Lorenz) led to reconsidering statistical methods
for the forecasting activity, like MOS or Perfect Prog
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(see Marzban et al. 2005, for a brief discussion of these
methods, and for the introduction of a new method that
is bias-free and shows lower uncertainty than MOS
and Perfect Prog). These methods are usually applied
to the post-processing of a meteorological model, too,
essentially for achieving a local prediction starting
from an area forecast given by the dynamical model,
characterized by a finite resolution.

Recently, NNs have been used for this aim, due
to their capacity for modeling nonlinear relationships
between large-scale variables/patterns and local vari-
ables of fundamental importance, like temperature and
precipitation. The reader can see Casaioli et al. (2003),
Marzban (2003), and Yuval and Hsieh (2003) for fur-
ther information and examples of applications.

Due to the fact that climate models are generally
endowed with coarser resolution than those of meteo-
rological models, one should expect that a kind of post-
processing must be applied to GCMs if one wants to
achieve high-resolution reconstructions or projections
of climate at a regional scale. And this is exactly what
happens!

12.2.1 Rationale of Downscaling

As a matter of fact, due to the very large amount
of computer time needed for global simulations over
several decades even on big and expensive supercom-
puters, the GCMs are rarely endowed with a hori-
zontal grid spacing less than 100–150 km. This fact
leads to spatially averaged reconstructions and projec-
tions that do not correctly simulate the influence of
mesoscale and microscale features on regional or local
climate.

The rationale for downscaling is depicted in
Fig. 12.1. Here, given a certain averaged simulation
result by a GCM over a grid area (bottom part of the
figure), we obtain a unique value for meteo-climatic
variables, like temperature and precipitation, in this
area. This value should be representative of several
places in the area that, on the other hand, are char-
acterized by different physiographic features, like the
presence of flat land or mountains, rivers, arid lands
or forests, and human-induced changes, like land use,
urbanization and the presence of industrial activities
(upper part of the figure). Of course, in the past
these features led to differences in parameters like the

Fig. 12.1 The rationale of downscaling. Source: Australian
Bureau of Meteorology, copyright Commonwealth of Australia.
Reproduced by permission

monitored surface air temperature and the amount of
precipitation at different sites inside the area.

Thus, the climatic reconstruction of a GCM at
regional and local scales cannot be accurate; its projec-
tions for the future would be even worse. The problem
of downscaling is therefore how to pass from global
reconstructions and projections to regional and local
ones.

12.2.2 Statistical Downscaling

Following a dynamical paradigm, the basic idea for
solving this problem is to enhance resolution, either
by using a purely meteorological model driven by
lower boundary conditions coming from a complete
GCM, or by “nesting” a complete regional climate
model (RCM) in a GCM just for a limited area of
the globe, with all the boundary conditions coming
from the GCM and, possibly, taking the feedbacks of
the regional scale on the global one into account. In
either method one can run the models at high reso-
lution to obtain a dynamical downscaling. Here we
do not discuss features, results, or pros and cons of
these methods: we just note that RCMs seem to guar-
antee a better consistency with the global picture given
by GCMs, even in the absence of feedbacks from
the regional scale to the global one. The interested
reader can see Wang et al. (2004) for a recent review
of RCMs.
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From another point of view, as we have seen,
the problem of climate downscaling is analogous to
that of achieving local forecasts from meteorologi-
cal models. Thus, it is not astonishing that statistical
methods (and NNs) can play a role in this activity.
As a matter of fact, at present, statistical downscaling
is under active investigation in the field of climate
modeling and it is performed mainly through the
following techniques: regression modeling, weather
classification and weather generators. Here we concen-
trate on regression modeling: for weather classifica-
tion schemes and weather generator models, see Wilby
et al. (2004).1

In short, statistical downscaling (and regression
modeling in particular) is based on the viewpoint that
the regional/local climate is conditioned by two fac-
tors: the large-scale climatic state and the regional/
local physiographic features (e.g., topography, land/
sea distribution, land use). So the standard process for
a statistical downscaling reads as follows:

– To work out and validate a statistical model that is
able to link large-scale climate variables (predic-
tors) with regional/local variables (predictands)

– To feed the large-scale output of a GCM to the
statistical model

– To estimate the corresponding regional/local cli-
mate characteristics

Given these features of statistical downscaling, it is
not difficult to realize that it shows several advan-
tages when compared with dynamical downscaling.
For instance, the techniques used for building and
applying the statistical model are usually quite inex-
pensive from the computer-time point of view, at least
if compared with the long runs needed by RCMs.
Furthermore, the statistical methods can be used to
provide site-specific information, which can be critical
for many climate change impact studies.

On the other hand, one must be aware that these sta-
tistical models suffer from a major theoretical weak-
ness, because we are not able to verify the basic
assumption that underlies them. That is to say, we
cannot be sure that the statistical relationships devel-

1 Recently, even stochastic models, such as nonhomogeneous
hidden Markov models, have been applied to a downscaling
activity, namely for estimation of multi-site precipitation: see
Mehrotra and Sharma (2005) and references therein, for further
information on these approaches.

oped for the present-day climate also hold under the
different forcing conditions envisaged for the future:
requiring this is a sort of “stationarity” assumption. We
have to stress, however, that this is a limitation that also
affects the physical parameterizations of GCMs.

What’s about the choice of predictors and predic-
tands? Of course, they must be chosen carefully. First
of all, we have to consider the influence of predictors
on predictand and choose the most relevant ones. Fur-
thermore, we must be sure that predictors relevant to
a regional/local predictand are adequately reproduced
by the GCM to be downscaled. For instance, we know
many global or regional patterns, like El Niño South-
ern Oscillation (ENSO) or the North Atlantic Oscil-
lation (NAO), which are very relevant for determin-
ing the climate over particular regions: we must be
sure that their course, variability and phenomenology
are well reproduced by the global model. Therefore,
predictors have to be chosen on the balance of their
relevance to the target predictand and their accurate
representation by GCMs.

Among the many regression methods available for
statistical downscaling, the most important and com-
monly applied are: multiple linear regression, canon-
ical correlation analysis (CCA) and NNs. Here we
obviously concentrate on downscaling by NNs, though
in Subsection 12.2.4 we will briefly discuss some inter-
comparison studies and suggest some references for
further mastering.

12.2.3 Downscaling by NNs

Among the regression models, NNs appear peculiar
for their characteristic feature of achieving nonlinear
relationships between predictors and predictands. This
feature is obviously very important in the nonlinear cli-
mate system, characterized by the many closed loops
of cause-effect interactions and the relative feedbacks.
Furthermore, this inherent nonlinearity of the method
could become increasingly crucial when dealing with
regional/local variables (predictands) which are het-
erogeneous and discontinuous in space and time, such
as daily precipitation.

With reference to Chapter 2 of this book and to
the major class of feed-forward networks described
therein, we would like to stress that their architecture
is just ready to incorporate predictors in input and
predictands in output to build a nonlinear relationship
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between them. Furthermore, if the number of hidden
neurons is quite low and the phenomenon of overfitting
on the training set can be controlled, we can expect
to find a “law” that is realistic and not physically
inadmissible such as those coming from high-order
polynomial regressions.

Due to these useful features of feed-forward NNs
and to their extensive use in applications, we will con-
centrate on the application of this particular (but very
general) class of networks to GCMs downscaling, by
analyzing recent scientific literature. Nevertheless, one
must recognize that other kinds of networks (such as
Kohonen networks) can be used fruitfully as shown at
the end of this subsection.

Based on examples from a pioneering study by
Trigo and Palutikof on the daily temperature down-
scaling at a single site in Portugal from GCM grid data
(Trigo and Palutikof 1999), we can show a standard
methodology for obtaining downscaled quantities via
NNs. Then we will move to describe further devel-
opments in this field, both in the application of NNs
and in the coupled choice of downscaled quantities and
predictors.

We demonstrate a standard approach to downscal-
ing temperature: as explained in the previous sub-
section, even this case requires an identifying the
‘significant relationships between the observed large-
scale atmospheric circulation and local climate, which
are subsequently applied to GCM output’ (Trigo and
Palutikof 1999). In order to do this, one needs time
series of historic temperature values at the downscal-
ing site and reanalysis data for an area that includes
the site itself. Once these data are obtained, one may
choose some large-scale predictors as inputs and train
the NN with synchronous temperature data from his-
torical observed time series (targets), to derive a down-
scaling transfer function for the network. Once this
transfer function is fixed, one can extract the same
predictors from runs of a GCM and use them as input
to the NN (initialization) for the same period as the
reanalysis data, to obtain a downscaled present-day
scenario for local temperature as output. Finally, if
we initialize the NN model with GCM data pertain-
ing to the future, we will obtain a downscaled future
scenario.

As cited above, the choice of predictors is very
crucial. In the work by Trigo and Palutikof (1999), as
in other studies about temperature downscaling, this
choice was concentrated on indices related to general

Table 12.1 The choice of circulation indices for temperature
downscaling at two levels: 500 hPa and sea level pressure

Predictor 500 hPa SLP

24 h mean (nearest grid point) ∗
24 h north-south gradient ∗ ∗
24 h east-west gradient ∗ ∗
24 h geostrophic vorticity ∗

Source: Adapted from Trigo and Palutikof 1999. With permis-
sion from Inter-Research

atmospheric circulation. At present, particular atten-
tion is devoted to the combination of dynamical and
moisture variables as predictors, especially as far as
the downscaling of quantities such as precipitation,
that are more sensitive to humidity values, is con-
cerned. Table 12.1 shows the six atmospheric indices
(indicated by ∗) chosen by Trigo and Palutikof as pre-
dictors. These indices were considered for the same
day of the temperature target and for the day before;
furthermore, sin and cos of the Julian day were incor-
porated as inputs to account for the annual cycle.
Thus, a total of 14 inputs were chosen and several
networks were endowed with a single output, repre-
senting maximum or minimum temperature (Tmax or
Tmin), and a variable number of hidden neurons have
been considered.

The relevance of these indices for the reconstruc-
tion of local Tmax and Tmin has been tested by means
of simple linear correlation coefficients. Recently, the
use of a nonlinear correlation coefficient (the so called
Correlation Ratio), that can account for nonlinear
influences among variables, has been discussed for
nonlinear systems to be analyzed by NNs (see, for
instance, Pasini et al. 2001). Moreover, the ability of
the GCM chosen to reproduce the large-scale variables
has been verified for the HadCM2 model at a synoptic
scale over Portugal.

Without entering into details about training and val-
idation of the NN model,2 it is worthwhile to focus
our attention on the good reconstruction of present-
day Tmax and Tmin, when the NN model is initial-
ized by the large-scale indices related to the decade
1970–1979. This result is shown in Fig. 12.2a, b,
where the HadCM2 reconstruction and the observed
values are also shown to allow comparison. A major

2 We just cite that usually ensemble runs of NNs with differ-
ent initial random weights are performed in order to quantify
the uncertainty of the final neural result. We will discuss this
approach in the following section.
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Fig. 12.2 Ten-year daily means scenarios for Coimbra (Portugal). Source: From Trigo and Palutikof 1999. With permission from
Inter-Research

improvement by NN downscaling has been obtained
in the cold season.

Once the downscaling model is validated on his-
toric data, one is ready to apply the trained network
to downscaling of the future climate, by feeding the
network values of large-scale indices as projected into
the future by the GCM. Figure 12.2c, d shows the
scenarios obtained by Trigo and Palutikof for the 10-
years daily averaged Tmax and Tmin during the period
2090–2099.

The analysis just outlined shows a standard down-
scaling procedure by NNs. During recent years, how-
ever, many researchers developed particular applica-
tions in this field. We would like to describe them
briefly in what follows.

First of all, several studies (which can be called
“pre-downscaling” ones) have been performed: in that
research the ability of NNs to spatially interpolate
observed atmospheric data has been shown, even in
regions of complex terrain (see, for instance, Snell

et al. 2000; Antonić et al. 2001). These studies fur-
ther suggest using NNs for GCM downscaling if the
observed atmospheric data to be interpolated (predic-
tors) are substituted as input by GCM grid data.

As we have seen in Trigo and Palutikof (1999)
standard indices of general atmospheric circulation are
usually chosen as predictors for downscaling tempera-
ture with a NN. Generally, other recent studies confirm
this tendency, although with some differences related
to the region investigated. The situation appears more
critical for precipitation downscaling. We have already
cited, for example, that the importance of moisture
variables or indices has been recognized in these cases.
A paper that addresses this problem in a comprehen-
sive way for daily precipitation is that by Cavazos and
Hewitson (2005).

A number of papers about different climatic appli-
cations of downscaling, different types of NN archi-
tectures used and different strategies in applying them
recently appeared in the scientific literature. Without
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any claim of completeness, we will cite or briefly
describe some of the most interesting results.

As far as the application domain is concerned,
the paper by Sailor et al. (2000) is notable as an
attempt at assessing the wind power implications
of climate change by GCM downscaling via stan-
dard feed-forward NNs. In another context, the same
kinds of networks have been used by Moriondo and
Bindi (2006) for achieving an estimation of crop devel-
opment in future climatic scenarios. In particular, those
authors show the higher accuracy of NN downscal-
ing for reconstructing present-day Tmax and Tmin, in
comparison with GCM and RCM outputs: note that
these variables are critical for the correct evaluation
of extreme events that can affect crops.

Of course, one of the main fields of application
for downscaling studies is hydrology. Usual multi-
layer perceptrons have been used in this field by
Cannon and Whitfield (2002) even if with a pecu-
liar ensemble method (known as bootstrap aggrega-
tion: see Breiman (1996)) that admits several runs of
the networks and permits the decreasing of the final
error in generalization performance. They downscaled
large-scale atmospheric conditions from reanalysis
and found the capability of NNs for correctly pre-
dicting the changes in streamflow that occurred dur-
ing recent decades in a region of Canada. A com-
parison with stepwise linear regression has also been
performed and NNs have shown the best results in this
nonlinear environment.

Every study concerning rainfall variability and
extremes obviously pertains to hydrological applica-
tions (and to many other impact studies). Recently,
there has been a big effort to increase the performance
of downscaling techniques applied to these quantities.
As far as the use of NNs is concerned, we would like
to cite the work by Olsson et al. 2001, where extreme
rainfall has been reconstructed by standard NN down-
scaling, for when the rainfall amount has been divided
into classes of precipitation.

More sophisticated schemes have been developed
by Tatli et al. (2004) and Dibike and Coulibaly (2006).
In particular, in the former paper the authors used
recurrent NNs for reconstruction of the patterns of
monthly total precipitation over Turkey after a pre-
processing activity based on principal component
analysis (PCA). In the latter paper the authors applied
a time lagged feed-forward NN (TLFN) in order to
downscale daily precipitation amount, Tmax and Tmin

on a river basin in Canada. They also described the
results of a comparison with a multiple linear regres-
sion method in which NNs outperform that technique
for daily precipitation extremes and variability.

In a recent paper, Cannon (2006b) showed the
importance of considering multivariate NNs, that is to
say standard multi-layer perceptrons with more than
one output, in order to account for inter-site correla-
tions in building a pattern of a certain downscaled vari-
able. Furthermore, he worked out a hybrid NN/analog
model that performs well in multi-site climate down-
scaling.

Of course, as already cited, other types of net-
works, that do not resemble the structure of multi-layer
perceptrons, are also applied to climate downscal-
ing. The most common example is that of Kohonen
networks, also called self-organizing maps (SOMs).
A pioneering work on these applications is that by
Cavazos (2000) who used SOMs and more standard
NNs to investigate extreme events of wintertime pre-
cipitation amounts in the Balkans. In particular, SOMs
have been employed to obtain climate modes and
anomalies in the atmospheric patterns over the region
considered, while feed-forward NNs have been used
for the final downscaling activity.

Hewitson and Crane (2006) applied SOMs in a very
original way, i.e. they characterized the atmospheric
circulation on a quite local domain by SOMs and
generated probability density functions (PDFs) for the
rainfall distribution associated with each atmospheric
state. For real downscaling, they took the GCM out-
puts, matched them to the SOM characterization of
the states and, for each circulation state in the GCM
data, randomly selected precipitation values from
the associated PDF. They finally computed precip-
itation projections for South Africa, also perform-
ing a comparison of results by different downscaled
GCMs.

Another “high-level” application of SOMs to clus-
terization and downscaling is described in the paper
by Gutierrez et al. (2005). They applied this kind of
network to seasonal forecasts by ensembles of models.
The reader is invited to refer to their paper for technical
details.

Furthermore, we stress that NNs have been recently
applied to evaluating dynamical models’ skill and
searching for an optimal combination of GCM
ensembles, finally giving projections in probabilis-
tic terms, if possible. For the first attempts in this
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direction, see Knutti et al. 2003, 2005, and Boulanger
et al. 2006, 2007.

As a final remark, we note that some researchers
stressed the importance of a cross-validation of the
downscaling model from observational and reanalysis
data for periods that represent independent or different
climate regimes: for instance the last 25–30 years,
characterized by an evident climate change, and the
previous decades. In this way one somewhat validates
the “stationarity” assumption, i.e. the most critical
point of statistical downscaling techniques.

12.2.4 Intercomparison Studies

How do NNs perform in downscaling when compared
with other statistical or dynamical techniques? As we
have seen in the previous subsection, some papers
about NNs applied to downscaling also addressed this
problem, generally concluding that NNs present some
advantages if compared with other methods: see, for
instance, Cannon and Whitfield (2002), Moriondo and
Bindi (2006), Dibike and Coulibaly (2006). Due to
the importance of this topic, specific intercomparison
studies have been performed recently. Here, we briefly
describe them.

As clearly stated in Chapter 3 of this book, the
statistical analysis of model performance is not an easy
task, many indices of performance can be used and
univocal conclusions can not always be drawn. Some
general trends, however, in downscaling performances
of different techniques can be observed.

An intercomparison study for performances in
downscaling daily Tmax and Tmin, daily precipitation
and total monthly precipitation has been performed
by Schoof and Pryor (2001) in the framework of
regression-based techniques of statistical modeling.
After having chosen as predictors some indices of the
large-scale circulation derived from PCA and cluster
analysis, they tested the downscaling performance of
multiple linear regression and NNs (multi-layer per-
ceptrons). Even if differences among the various sea-
sons are sensible, in general NNs perform better for
downscaling T (especially Tmax), for comparing cor-
relation coefficients between predicted and observed,
but also with regard to bias and to the simulation
of mean and standard deviation of the predictand.
Furthermore, in this study both linear and nonlinear

methods substantially failed in downscaling daily pre-
cipitation, even if NNs show a quite good agreement
in total monthly rainfall reconstruction.

In Trigo and Palutikof (2001) an analysis of perfor-
mance in downscaling has been performed taking the
“complexity” of NNs into account. The main result of
this paper is that linear NNs and NNs with many hid-
den neurons perform worse than NNs of intermediate
complexity for downscaling precipitation.

In Weichert and Bürger (1998) standard linear tech-
niques and a radial basis function (RBF) NN are com-
pared for downscaling temperature, precipitation and
water vapor. The main result is that NN achieves the
best results for reconstructing mean and variability of
these quantities. In particular, heavy summer convec-
tive rainfall events, which are predominantly nonlin-
ear, are often “detected” by the NN, while the linear
method misses them completely.

In Miksovsky and Raidl (2005) three nonlinear
techniques (local linear models, standard multi-layer
perceptrons and RBF NNs) are compared for time
series prediction and downscaling daily temperatures.
No definite conclusion about performance has been
drawn by this comparison for nonlinear downscaling
techniques, even though all these methods perform
better than multiple linear regression. Some considera-
tion has been made of the practical application of these
methods, stressing how multi-layer perceptrons have
the problem of avoiding local minima, a drawback that
cannot be easily handled in practice.

In Khan et al. (2006) the authors compared NNs
(in particular TLFNs) and two other techniques for
statistical downscaling in terms of uncertainty assess-
ments exhibited in their downscaled results for daily
precipitation and daily Tmax and Tmin. In general the
results were achieved by calculating means and vari-
ances of downscaled quantities and by comparing
them with the analogous quantities from observations.
In general, even if results change month by month,
NNs do not appear particularly capable of reproduc-
ing some statistical characteristics of observed data
in downscaled results. In our opinion, this problem
could be overcome, at least partially, if ensemble runs
of NNs would be considered more extensively in the
future.

Finally, in Haylock et al. (2006) a comparison of
dynamical and statistical methods of downscaling has
been performed for reconstruction and projection of
heavy precipitation over the UK through some indices.
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NNs were found to be the best technique for model-
ing the inter-annual variability of these indices and,
by a novel approach, they also partially overcome the
known problem of underestimation of extreme events.
As a final note, we stress that even this work, as with
many other studies regarding dynamical modeling,
suggests the using ensemble runs of models in order
to achieve reliable projections for future climate.

Even if there are differences among the results of
the many intercomparison studies, a general conclu-
sion is that NNs have an important role in statistical
downscaling of GCMs, especially where nonlinearities
among predictors and predictands are important. At
present NN modeling represents an important tool for
downscaling studies. Furthermore, NNs scores (and in
general the scores of methods of statistical downscal-
ing) are comparable with those coming from the “state
of the art” dynamical downscaling via RCMs.

12.3 Neural Network Modeling as an
Empirical Strategy for Climate
Analysis

In the previous section we have analyzed and reviewed
the most common application of NN modeling in cli-
matic studies, i.e. downscaling. Now we will discuss
other interesting and original developments of NN
applications in this field.

12.3.1 Some Non-downscaling Specific
Applications of NNs in Climatic
Studies

First of all, we would like to remind the reader
that applications of NN modeling to specific cli-
mate topics have been already presented in this
book. In particular, in Chapter 10, William Hsieh
described the foundations of nonlinear principal com-
ponent analysis via NNs and showed its application
to the study of phenomena of climatic relevance,
like El Niño and the Quasi Biennial Oscillation in
the equatorial stratosphere. Furthermore, in Chapter
11, Vladimir Krasnopolsky presented a NN use still

related to dynamical climate models, such as down-
scaling, but now applied in a way that is very origi-
nal and not dependent on model outputs. In fact, he
described how NN independent modules can be sub-
stituted for physical parameterization routines in cli-
mate models and focused on the advantages of this
development.

A further well founded application of NN mod-
eling to studies with a climatic “flavor” is seasonal
forecasting of sea surface temperatures (SSTs) in the
tropical Pacific, which predicts the phases of El Niño
Southern Oscillation (ENSO). In Wu et al. (2006)
and references therein, the reader can find details of
this activity and its results. Here we would like to
stress that this nonlinear technique leads to forecast-
ing improvements when compared with results from a
linear method and that these improvements are espe-
cially relevant in the western equatorial Pacific region.
Even if ENSO is traditionally focused on the SST
variability over the central-eastern Pacific where the
SST has the largest variance, the main atmospheric
convective activity occurs in the western region, which
is the warmest one. Thus, the possibility of improving
forecasts of even small changes in the SST in this
zone can lead to improvements in capturing extra-
tropical climate behavior if predicted SSTs are used
as bottom boundary conditions for an atmospheric
model.

Other meteo-climatic phenomena, like monsoons,
have been analyzed with the help of some kind of
NNs. For instance, Cavazos et al. (2002) performed
a classification of wet monsoon modes in southeast
Arizona by means of SOMs, which permits study-
ing the intraseasonal variability of that zone. Further-
more, Leloup et al. (2007) used SOMs for detecting
decadal changes in ENSO and suggested the use of this
methodology for studying ENSO seasonal predictabil-
ity, too.

Finally, we would like to cite the interesting papers
by Wu and Hsieh (2002) and by Cannon (2006a) where
a nonlinear canonical correlation analysis and a non-
linear principal predictor analysis have been developed
in terms of NNs and applied to the study of tropi-
cal Pacific features (in the former paper) and to the
Lorenz attractor (in the latter one: as we will see in
the next section, the Lorenz model is a toy model
that mimics some characteristic features of the climate
system).
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12.3.2 Drawbacks of Dynamical Climate
Modeling and the Need for an
Alternative Strategy

If we briefly digress to reconsider the history of sci-
ence, since from the first observations of the natural
world by ancient Greek philosophers through experi-
mental and theoretical studies on nature by modern sci-
entists, we can recognize a big “jump” in the “style” of
scientific investigations carried out by Galileo Galilei
in the seventeenth century. Since Galilei adopted his
experimental scientific method, more and more scien-
tists have studied a “simplified reality” in their labo-
ratories, for instance by extracting and investigating a
single phenomenon under the influence of one or few
causes, and decoupling it from other influences that are
present in the real world.

In doing so, we achieved a lot of experimental
data and theoretical knowledge (laws) in basic areas
of investigations: at present all the so called “hard
sciences” are based on this scientific praxis. In this
manner, for instance, we discovered the fundamental
laws of thermodynamics and fluid dynamics and, once
we considered air as a mixture of gases (and of water
in its three states) or as a fluid, we can apply those laws
to describe its behavior.

In general, the way to obtain knowledge in less sim-
plified and more realistic situations is also clear: one
has to add further influences, one at once, in the lab-
oratory and look at their effect on the laws previously
found. Thus, for instance, we could add the influence
of friction in the study of motion over a surface and
find that it leads to the insertion of a further term in the
equation of motion.

But, unfortunately, realistic natural systems are
often composed by many subsystems and the inter-
actions among them can be very complex, i.e. full of
nonlinear cause-effect chains with feedbacks. In these
situations, even if we can “decompose” the system into
subsystems and study them separately in a laboratory,
usually we are not able to add the influences of other
subsystems and to “recompose” the complexity of the
real system in experimental conditions. This is the case
for both the atmosphere and the climate system.

Thus, until a few decades ago, meteorology and
climatology remained observational disciplines: the-
oretical syntheses were obtained only with great dif-
ficulty. Recently, dynamical modeling has allowed

scientists to recompose real systems in a “virtual lab-
oratory”, the computer, and to mimic their behav-
ior by means of simulation. In these models, fun-
damental subsystems, phenomena and processes are
described by dynamical equations (and parameteriza-
tion routines for sub-grid processes) and the interac-
tions (with feedback) among them are simulated by
coupling these equations in one or more mathematical
systems.3

Despite this great merit of dynamical models,
which allow us to handle real-life complex systems,
their “decomposition-recomposition” strategy suffers
at least from a major drawback in climate applica-
tions. In fact, modelers are often forced to fine tune
in order to establish the values of coupling parame-
ters that lead to a correct balance of the “strength”
of the many interactions/feedbacks and permit a sat-
isfying simulation/validation of the model in recon-
structing the observed climate. Even if the choice of
these values is sometimes strongly driven by theoret-
ical considerations, nevertheless the “need” for this
choice makes evident the impossibility of achieving
a univocal reconstruction of the simulated system in
our virtual laboratory. Of course, this fact weakens
our confidence in the reliability of GCM simulation
results.

This drawback, together with recognizing the very
simple structure of the simulated routines for several
processes, leads to the search for an approach to study-
ing the climate system that can overcome these prob-
lems, by avoiding the details of subsystems and feed-
backs, that, as we have seen, cannot be reconstructed
univocally by a GCM. Perhaps, it is worthwhile to have
an overall look at the climate system and to analyze its
behavior when considering it as the result of all the
interactions and feedbacks among the various subsys-
tems that compose it. In this way, for instance, we can
search for relationships among different macroscopic
variables that shed light on the climate behavior.

In this framework, in which the dynamics-based
method of GCMs has been analyzed and has shown
some drawbacks, an alternative data-based or more
empirical technique could be applied. It will be done
in the next subsection by NN modeling.

3 A journey “from observations to simulations” through ideas
and techniques of dynamical modeling in weather and climate
studies is performed in Pasini (2005).
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12.3.3 An Application of NN Modeling to
Analysis of Forcings/Temperatures
Influence in the Climate System

Usually, the strength of a dynamical approach to the
study of a system is its capacity of linking causes
and effects by some dynamical relationships and of
“weighting” the influences of the single causes on
the final effect. In this way one is able to under-
stand which are the driving causes for a particular
effect. This general property of dynamical models
is obviously present also in GCMs: for instance, a
cause-effect analysis of forcings on global tempera-
ture has recently been performed and presented in the
IPCC third assessment report (Houghton et al. 2001,
p. 710). The main result obtained by this activity is
that the behavior of global temperature in the last 140
years cannot be reconstructed if anthropogenic forc-
ings are not considered as causes of this change. Nev-
ertheless, the complex dynamical structure of GCMs,
the simplifications adopted to describe the climate
system and the characteristic problem of balancing
through “fine-tuned” coupling parameters weaken the
reliability of cause-effect analyses in these models:
at present, these results are under critic for this
reason.

In this framework, an independent and overall
analysis can certainly be performed by a NN, due
to its characteristic features as a multivariate non-
linear regression model that can be considered as a
global correlative law-finder. In particular, as we have
previously seen, the structure of feed-forward net-
works allows us to naturally link predictors (in input)
and predictands (in output). Thus, in what follows
we will briefly describe such an analysis by Pasini
et al. (2006). In doing so, we will stress didactical pro-
cedures and fundamental results: for more technical
details, refer to that paper.

The fundamental scope of this analysis is to test
the ability of simple NNs to establish nonlinear links
between forcings/circulation patterns (predictors) and
global or regional temperature variations (predictands)
that can explain a large amount of variance. In doing
so, particular attention has been devoted in order to
“weight” the magnitude of different external “causes”
(predictors) on a single “effect” (predictand), so that
the more important influences are identified and a plau-
sible attribution study can be performed for the recent
warming.

We will perform a global and a regional case study.
We consider data on annual global temperature anom-
alies and Central England Temperatures (CET) dur-
ing extended winters as predictands. Our predictors
are solar irradiance anomalies (representative of solar
activity), stratospheric optical thickness at 550 nm
(representative of the volcanic activity in terms of the
optical properties of the lower stratosphere), global
concentration of carbon dioxide (CO2), global emis-
sions of sulfates (SOx ), Southern Oscillation Index
(SOI), related to ENSO, and the monthly NAO index.

Hereafter, we will consider solar irradiance and
stratospheric optical thickness as indices of natural
forcings to the climate system, while CO2 concentra-
tion and sulfate emissions will be considered as anthro-
pogenic forcings, i.e. influences mainly due to human
activities.

A NN development environment has been created
previously (Pasini and Potestà 1995) and, after suc-
cessive improvements, it is now a quite complete
tool for meteo-climatic applications, endowed with
some original features. Our NNs are feed-forward with
one hidden layer. Backpropagation rules, with the
presence of both gradient descent and momentum
terms, are considered for updating weights. Our trans-
fer functions are sigmoids, in which the arguments of
the exponential function are normalized with respect
to the number of connections converging to a sin-
gle neuron of the hidden and output layer, respec-
tively. A discussion of this choice and its advantages,
both for handling data from nonlinear systems and to
avoiding overfitting problems, can be found in Pasini
et al. 2001, 2003); a sketch of this normalization will
be presented in the next chapter of this book. An early
stopping method is also used in order to further prevent
overfitting.

We stress that some specific tools are present in our
development environment in order to handle historical
data and to train NNs starting from quite short time
series. We will see a first example of these training
tools in what follows and another example in Chapter
13 of this book.

In the present application we deal with small net-
works, endowed with just one output, up to five inputs
and four or five hidden neurons. Once trained, every
NN is nothing but a function that maps input patterns
(physical-chemical forcings and/or circulation indices)
to values of temperature at the same time. However,
due to the nonlinear nature of a NN regression, a neural
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Fig. 12.3 The “all-frame” procedure. Source: From Pasini
et al. 2006. With permission from Elsevier

model would be able to exactly mimic the target values
without extracting any correlation law if the correspon-
dent inputs-target patterns are included in the training
set and a sufficiently large number of hidden neurons
are allowed. Thus, first we consider few hidden neu-
rons; second, we exclude some inputs-target pairs from
the training set on which we build the correlative law.
Once the network is trained, these pairs will be used
as a validation/test set in order to assess the model-
ing performance on new cases that are unknown to
the NN.

In this climatic application problem the statistics
available are quite limited (about 140 inputs-target
patterns for each case study). Therefore, we choose
a facility of our tool (the so called “all-frame” proce-
dure4) for estimating every temperature value at a time
after the exclusion of the correspondent inputs-target
pattern from the training set used for fixing the connec-
tion weights. This procedure is sketched in Fig. 12.3,
where the white squares represent the patterns of the
training set, while the gray square (one single pattern)
represents the test set. At each step of this procedure
of training + test cycles, the relative compositions of
training and test sets change; a “hole” in the complete
set, that represents the test set, moves across this total
set of patterns, thus allowing us to estimate all the
temperature values at the end of these training + test
cycles.

Runs for NN and multivariate linear regression
models have been performed when the models them-
selves were fed data about:

4 Better known as “leave-one-out” cross-validation.

Table 12.2 Performance of reconstruction for global annual
temperature

Input forcings Linear model Neural model

Natural 0.661 0.622 ± 0.014
Anthropogenic 0.818 0.847 ± 0.005
Nat. + anthr. 0.828 0.852 ± 0.005
Nat. + anthr. + ENSO 0.844 0.877 ± 0.004

Source: Adapted from Pasini et al. 2006. With permission from
Elsevier

(a) Natural forcings only
(b) Anthropogenic forcings only
(c) Natural + anthropogenic forcings
(d) Natural + anthropogenic forcings + ENSO

Our NN analysis is exactly comparable with the
dynamical analysis via GCM runs described in
Houghton et al. (2001, p. 710). Now, data regarding
ENSO are also considered because of the direct influ-
ence of this phenomenon on SST in the Pacific and its
recognized teleconnections with other regions of the
world.

Table 12.2 shows the performance of linear and
NN models, simply assessed through the values of
the linear correlation coefficient R (observed T vs.
estimated T).5 Here the uncertainty of NN results is
quantified by means of ensemble runs with different
initial random weights, so that each network is able to
widely explore the landscape of its cost function. Each
error bar indicates ±2 standard deviations.

From these first results, we understand that NNs
permit better reconstruction of temperature in the last
three cases, when the NN model is able to catch
nonlinearities hidden in the data and to grasp their
influence in finding a nonlinear correlative law. On
the other hand, the relationship between natural forc-
ings and temperature is probably characterized by a
weak nonlinear component which does not allow us
to overcome the linear performance. When anthro-
pogenic forcings are taken into account, the increase
in NN performance is statistically significant (outside
the error bars) when compared with the result related
to the first case (natural forcings only). The further
consideration of SOI index data leads to another sta-
tistically significant improvement.

A hint for interpreting these results comes
from an analysis of the specific time evolution of

5 Further assessments obtained by calculus of other indices of
performance give the same trend results.
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Fig. 12.4 Observed annual global temperature (black curve)
vs. estimated annual global temperature by NN modeling (gray
curve) when the networks are fed by inputs related to: (a) natural
forcings only, (b) anthropogenic forcings only, (c) natural +

anthropogenic forcings, (d) natural + anthropogenic forcings +
ENSO. Source: Adapted from Pasini et al. 2006. With permis-
sion from Elsevier

reconstructed temperature by NNs versus the observed
temperature record: see Fig. 12.4, where we show the
results coming from a NN run for each case (a–d).
The first case shows a clear failure in reconstruct-
ing the annual temperature course when just natural
forcings are taken into account as inputs to the NN
model. A very evident increase in performance can be
appreciated in cases (b) and (c), when anthropogenic
forcings are inserted as inputs. In particular, in these
cases the trends are well reconstructed, in spite of
an overestimation of the absolute minimum and an
underestimation of the relative maximum around 1945.
Furthermore, it is evident that now the amount of vari-

ance not explained by the NN model is almost com-
pletely due to the inter-annual variability of the tem-
perature signal. Finally, when we add a further input
neuron for incorporating the SOI index in the input
patterns, just a better match to inter-annual variability
is visible in Fig. 12.4d.

As a partial conclusion, we can say that this analy-
sis shows the necessity of including anthropogenic
forcings if we want to recover the time structure of
the global temperature signal; therefore, these forcings
are major influences on the temperature behavior.
Moreover, ENSO clearly leads to better capturing
inter-annual variability and it seems to act as a
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second-order corrector to the estimation obtained by
the case (c) in Fig. 12.4, even if, obviously, in a nonlin-
ear system we cannot separate the single contributions
to the final result.

As cited above, the importance of anthropogenic
forcings for correctly simulating the behavior of tem-
perature in the recent past has been recognized in
dynamical studies by GCMs. The new result presented
here by NN modeling confirms this “feeling”. The
convergence of two distinct and independent methods
of considering the anthropogenic forcings as a funda-
mental cause that drove our climate in the last 140
years increases our confidence in the reliability of this
result. Of course, this fact has important consequences
for the present debate about climate change.

In Pasini et al. (2006), two other problems were
analyzed: here we cite them and briefly describe the
results obtained by the authors. For a deeper analysis
and technical details, refer to that paper.

The amount of variance not explained by the final
NN model (case (d) in Fig. 12.4) is quite low, so that
one is led to ask if this amount is due to the nat-
ural variability of climate or to some hidden dynamics
coming from one or more neglected dynamical causes.
In order to possibly answer this question, an analysis of
residuals has been performed, also by means of sophis-
ticated techniques, such as Monte Carlo Singular
Spectrum Analysis (MCSSA). Even if no undoubted
conclusion can be reached by this analysis (it is well
known how difficult it is to distinguish between noise
and chaotic dynamical signals in short geophysical
time series), we can be confident that major causes
of temperature change have been considered and
only 2nd-order dynamics has been neglected in this
study.

Secondly, through the same strategy adopted in
the global case study just described, a regional case
study has been performed, analyzing the fundamen-
tal elements that drive the temperature behavior at a
regional scale. Using data from Central England dur-
ing extended winters (December to March), NN mod-
eling shows that global forcings have little influence
on the behavior of these temperatures, while NAO is
the dominant factor for its time series reconstruction.
NAO is a natural oscillation, even if at present there is a
scientific debate about the possibility that its behavior
can be influenced by the recent warming.

As a partial conclusion, we can affirm that a NN
non-dynamical approach has aided simple assessments

of the complex climate system. At a global scale, we
are able to reconstruct the temperature behavior only if
the anthropogenic forcings are taken into account. At a
regional scale, the result obtained for Central England
shows how to identify the fundamental elements that
must be simulated correctly by a GCM, if one wants to
achieve a correct downscaling on the zone influenced
by these elements.

Finally, since identifying this phenomenological
NN tool and considering its good performance in the
case studies presented here, it is certainly worthwhile:

– To consider an extension to inputs related to other
kinds of forcings, circulation patterns and oscilla-
tions

– To apply this NN method to other regions of the
world

– To extend this treatment to the reconstruction of
precipitation regimes

12.4 NN Modeling for Predictability
Assessments on Unforced and
Forced Lorenz Attractors

As cited in Chapter 1 of this book, the paper by
Lorenz 1963, for the first time showed limits to pre-
dictability in systems that represent the atmosphere
or some atmospheric phenomena, such as convection,
even if in a simplified manner. This discovery con-
tributed to opening new areas of investigation. At
present, predictability is a relevant and well-developed
topic in meteo-climatic studies.

The important feature of the so called Lorenz model
(a simple mathematical system of nonlinear differen-
tial equations: see next subsection) is that it mimics
some characteristics of both the atmosphere and the
climate system, for instance their chaotic behavior and
the presence of preferred states or “regimes”. Further-
more, the local predictability associated with points
on the Lorenz attractor resembles the predictability
of single real states: for example, different points are
characterized by different local Lyapunov exponents,6

6 On a map or on a discrete integration of a dynamical system,
the local Lyapunov exponents are the exponential rates of sep-
aration of trajectories due to a perturbation in the initial point
over n steps.
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just as different meteorological situations (states) are
endowed with different predictabilities.7

In this framework, initially we will study the prob-
lem of estimating local predictability of the classical
Lorenz attractor by means of NN modeling. Once we
obtain satisfying results on this problem, we will add a
little external forcing to the mathematical system as a
toy simulation of an increase in anthropogenic forcings
in the climate system, and study the related changes in
predictability, still through NNs.

As usual, our treatment will be quite didactical. The
reader can find more technical details in Pasini and
Pelino (2005) (a first attempt at using NNs in this
framework) and in Pasini (2007) (a further evolution
of this approach).

12.4.1 The Lorenz Model and the
Bred-Vector Growth as a Measure
of Local Predictability

The Lorenz system of equations reads as follows:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

dx

dt
= σ (y − x)

dy

dt
= rx − y − xz

dz

dt
= xy − bz

(12.1)

As in Lorenz (1963) in this study the values of para-
meters (σ = 10, b = 8/3, r = 28) are chosen in order
to achieve chaotic solutions. The evolving trajectories
are computed by a 4th-order Runge-Kutta integration
scheme with time step �t = 0.01.

The predictability of a state on the Lorenz attractor
can be studied by considering the rate of divergence of
the trajectories starting from points that are close to the
state under study. Figure 12.5 graphically shows three
distinct situations: note that predictability dramati-
cally decreases when, at the middle of the attractor,

7 Predictability of a weather state is usually estimated by means
of “ensemble integrations” of a model, which start from pertur-
bations in the initial state. This operational activity shows differ-
ences in the predictability horizons of forecasting for different
meteorological situations: for instance, blocking situations are
generally more predictable than non-blocking ones.

trajectories undergo a “bifurcation” towards the left or
the right wing of the attractor itself.

Recently, in a very interesting paper (Evans
et al. 2004), the authors studied the local predictability
of the Lorenz attractor by means of the so called bred-
vector growth, a method which is quite similar to the
computation of the local Lyapunov exponents cited
above (see Kalnay et al. 2002, for a comparison of
these two methods). Here, we adopt this technique for
estimating local predictability.

A bred vector is a vector δ�x which simply repre-
sents the 3D-Euclidean distance between two states
(points) on the Lorenz attractor after a certain number
(n) of time steps in two model runs, if the second run is
originated from a slight perturbation (δ�x0) in the initial
conditions. We define the bred-growth rate g as:

g = 1

n
ln

( |δ�x |
|δ�x0|

)
(12.2)

As shown in Evans et al. (2004) g can be used to
identify regions of distinct predictability of the Lorenz
attractor. By adopting this method, after having fixed
n = 8, we calculated 20,000 bred-growth rates related
to points on the attractor. This allows us to distinguish
zones with different predictabilities on the attractor
itself and confirms in a more global manner what
was anticipated in Fig. 12.5. For an overall view, see
Fig. 12.6, where four classes of values of bred-growth
rate are plotted at points where the related trajectories
arrive on the attractor. We go from black points, where
g < 0 and the perturbations are decaying, to the dark
gray points at the bottom of the attractor and in the
low parts of the wings, where a big spread (g ≥ 0.064)
between original and perturbed trajectories is evident;
two further light gray classes identify intermediate
(positive) values of g.

12.4.2 Is NN Forecasting Performance
Related to Local Predictability?

Upon obtaining a clear estimation of local predictabil-
ity of the Lorenz attractor, and considering the good
performances shown by NN models in forecasting the
behavior of nonlinear systems and maps, it is worth-
while to ask if there is a relationship between the
scores of these performances and the values of pre-
dictability. The final idea could be: if we find a clear
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Fig. 12.5 Simulation of ensemble runs of the Lorenz model starting from perturbations in the initial states for three distinct regions
of the attractor. Source: ECMWF

link between them, NN modeling can represent an
alternative method to estimate predictability.

Due to different theoretical motivations (see Pasini
and Pelino 2005), previous approaches to forecasting
the Lorenz system essentially deal with the time series
prediction of a single variable. Here, instead, we con-
sider the full 3D dynamics of the Lorenz system and
analyze the NN performance in forecasting state tra-
jectories. In doing so, we apply the NN tool briefly
described above.

By considering integrated data and fixing n = 8,
we train our NN to make a single-step forecast from
t0 to t0 + 8. The total set of Lorenz simulated data
(20,000 input-target patterns) is divided into a training
set (80% of data) and a validation/test set (20%). The
NN topology is fixed by 3 inputs (data coordinates
in the Euclidean space), 15 neurons in a single hid-
den layer and 3 outputs (the 3D position after 8 time
steps of integration). The number of hidden neurons is

sufficient to obtain a good representation of the under-
lying function, but not too big to overfit the data.
Finally, the 3D-Euclidean distances between output
and target points represent the errors made by the NN
in forecasting: the mean distance error for each class
of bred-growth rate can be therefore considered as a
global measure of NN forecast performance.

NN performance on the test set are shown in
Table 12.3. Even in this application, as in Section 12.3
for the forcings/temperatures analysis, the error bars
associated with the performance measure come from

Table 12.3 Performance of NN forecasts on the test set in terms
of mean distance error

Bred-growth rate Mean distance error in NN forecasts

g < 0 5.66 ± 0.15
0 ≤ g < 0.04 6.58 ± 0.25
0.04 ≤ g < 0.064 6.62 ± 0.24
g ≥ 0.064 8.36 ± 0.41
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Fig. 12.6 Regions of different predictability of the Lorenz attractor estimated through classes of bred-growth rate

ensemble runs of the model with different initial ran-
dom weights and represent ±2 standard deviations. It
is evident that the best performance is achieved for
negative values of g and the worst one for its largest
values; intermediate performance is obtained for the
other two classes, which cannot be distinguished from
each other by NN forecast errors but are well sep-
arated (outside the error bars) from the former two
classes.

For each single run of the NN model, we can ana-
lyze the frequency distributions of distance errors for
each class defined above. In this way, a clear shift
from unimodal distributions (for g < 0.04) to quasi-
bimodal distributions (for g ≥ 0.04) can be appreci-
ated. An example of these distributions is shown in
Fig. 12.7. This fact further shows how NN forecast
performance is sensitive to regions where a change
of regime is possible and two close trajectories could
evolve to opposite wings of the attractor. In this case,
a secondary maximum is present in the distribution
for large errors, when the NN forecasts a trajectory to
arrive onto the wrong wing.

Thus, to our knowledge, a clear relationship
between local predictability in some regions of the

Lorenz attractor and the forecasting performance of
a NN model has been established for the first time.
This result shows that NNs can be used to identify
these regions and this is quite important. However, we
have to stress that this identification is obtained here
by comparing NN forecasting results with “observed”
targets (the final points of the integrated trajectories),
while in an operational estimation of predictability we
would like to assess it for future times, when obser-
vations are still not available. Then, how should we
proceed in order to study the feasibility of a fully
operational estimation of predictability for the Lorenz
attractor?

In this didactical chapter we will not deal with this
problem and its possible solutions. However, we stress
that some hints for achieving these solutions could be
inferred by our analysis: for instance, with reference
to Table 12.3, we note that there is an increase in the
amplitude of the error bars associated with NN perfor-
mance when going from low bred-growth rates to high
ones. This increased spread in the ensemble runs of the
NN model can be related to the more complex struc-
ture of the cost function for the classes characterized
by “bifurcations” and could lead to an “a priori” NN
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Fig. 12.7 Error distributions of distance between target and output coordinates for the two classes of bred-growth rate g < 0
(a) and 0.04 ≤ g < 0.064 (b). Source: Adapted from Pasini and Pelino 2005. Copyright IEEE

estimation of predictability for the regions themselves.
Furthermore, as far as the predictability to be associ-
ated to single points of the attractor is concerned, one
can even think of adopting a more classical “ensem-
ble” strategy of a dynamical origin: i.e., one could
start from several perturbed initial conditions and run
a NN model several times to estimate a final distrib-
ution of arrival points. The spread of this distribution
could be a measure of the predictability of the initial
state.

Another approach is also possible: we can perform
a NN forecast of bred-growth rates for any point on
the attractor. This leads us to obtain a direct estimation
of this variable, which well represents the local pre-
dictability values. The reader can refer to Pasini (2007)
for developments of this latter approach.

12.4.3 A Forced Lorenz System and
Changes in Predictability over
Its Attractor

If the Lorenz model can mimic some features of
the atmosphere and the climate system, is it able to
answer to changes in external forcings in a way that
resembles the real systems to real forcings? In recent
papers (Palmer (1999); Corti et al. 1999), the authors
noted that the climate change of the last decades
can also be observed not only in changes of the

mean relevant meteo-climatic quantities, but it can be
interpreted ‘in terms of changes in the frequency of
occurrence of natural atmospheric circulation regimes’
(Corti et al. 1999). In this framework, they found
that a weak external forcing added to the classical
Lorenz system leads to changes in the total persis-
tence time of states in the two regimes (wings), i.e.
in the frequency of occurrence of its regimes. This
weak external forcing could be a toy simulation of the
recent increase of anthropogenic forcings in the real
system.

This interesting behavior of a forced Lorenz model
and the fact that, to our knowledge, no paper about its
predictability has appeared in the scientific literature,
leads us to apply the previous (dynamical and NN)
methods to its study.

A simple forced Lorenz system can be written as
follows:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

dx

dt
= σ (y − x) + f0 cos θ

dy

dt
= rx − y − xz + f0 sin θ

dz

dt
= xy − bz

(12.3)

Following an example by Palmer and coworkers (Corti
et al. 1999), we choose f0 = 2.5 and θ = 90◦ for the
new free parameters of this model.

The integration of the forced system and the cal-
culation of bred-growth rates for 20,000 trajectories
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Table 12.4 Comparison of mean distance errors of the NN
model in the forecasting activity on unforced and forced Lorenz
attractors

Bred-growth Mean distance Mean distance
rate error (unforced) error (forced)

g < 0 5.66 ± 0.15 5.41 ± 0.10
0 ≤ g < 0.04 6.58 ± 0.25 6.66 ± 0.29
0.04 ≤ g < 0.064 6.62 ± 0.24 6.59 ± 0.27
g ≥ 0.064 8.36 ± 0.41 8.15 ± 0.42

allows us to obtain a picture that is very similar to
that shown in Fig. 12.6. This means that the shape of
the attractor is not deformed substantially and that just
the frequency of occurrence of its regimes changes.
An increase (about 1%) in the total number of cases
with g < 0 is found and, at the same time, a 2%
decrease of the less numerous cases with g ≥ 0.04
can be observed. This suggests a global increase of
predictability for the new attractor.

By applying the NN model to a forecasting activity
in this forced case, we can establish that the global
average forecast error decreases slightly. In partic-
ular, as shown in Table 12.4, a statistically signif-
icant forecast improvement is shown for the class
of points characterized by decaying perturbations
(g < 0), while for the most critical class endowed with
g ≥ 0.064 a little increase in performance is found,
but not statistically significant. The NN performance
on the other two classes is very similar to that of
the unforced case study. Moreover, even now some
kind of bimodality in the frequency distribution of
forecast errors is present for classes characterized by
g ≥ 0.04.

Thus, in this forced situation a global increase in
predictability is shown by both a dynamical and a NN
analysis. However, the slight difference in average val-
ues of bred-growth rate and NN error does not permit
attributing this change to a more frequent permanence
of the system’s state in regions of high predictabil-
ity, or to a modification in local predictability of sin-
gle points, or, finally, to both of these phenomena. A
deeper dynamical analysis (Pasini and Pelino 2005)
shows that this is due to the very similar dynami-
cal properties of the unforced and the forced systems
considered here, suggesting an increase in the value
of the external forcing, for instance by considering
f0 = 5. This allows us to obtain distinct dynamical
conditions and, meanwhile, to preserve a clear chaotic
behavior.

In this framework of a doubled forcing, pre-
dictability increases and, analogously, NN perfor-
mance increases as well. This result clearly shows the
sensitivity of NN forecasting to the values of local
predictability and leads to rediscovery of an increase of
predictability in forced situations by a non-dynamical
method. Furthermore, when an operational forecast of
local predictability (represented by the value of bred-
growth rate) is performed, we recognize that it is better
forecasted in a forced situation (Pasini 2007).

The analysis performed here obviously represents
a preliminary attempt at NN predictability estima-
tion on a toy model like the Lorenz system. Several
improvements to this approach can be made: refer to
Pasini (2007) for actual developments and discussion
about further prospects.

12.5 Conclusions and Prospects

Modeling the complex dynamics of the climate system
is a very difficult task. In this framework, we have
shown that NN modeling begins to help in grasp-
ing this complexity and in shedding light on climate
behavior, both as a complementary technique that may
be used together with GCMs and as an empirical alter-
native strategy to dynamical modeling.

In this paper, characteristic features and good qual-
ities of NNs, original approaches and application
results have been presented in this particular domain.
This has allowed us to understand that, at present, NN
modeling represents a helpful tool for facing climate
change challenges.

Obviously, if downscaling by NN modeling is quite
well established and the related developments of NN
techniques and application methods have been exten-
sively studied, the alternative strategy presented in
Sections 12.3 and 12.4 is taking the first steps. Just for
this reason, prospects of future development are partic-
ularly exciting in this framework, where new domains
of application will certainly be opened in the future.
Furthermore, the complexity of climatic problems will
likely require testing new application methods and NN
models endowed with more sophisticated structure and
learning behavior.

If some reader is stimulated to contribute to further
original applications of NNs to climate change studies,
the aim of this chapter will be achieved.
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13Neural Networks for Characterization
and Forecasting in the Boundary Layer
via Radon Data

Antonello Pasini

13.1 Introduction

The complexity of air-pollution physical-chemical
processes in the boundary layer (BL) is well known:
see, for instance, Stull (1988) and Seinfeld and Pan-
dis (1998). In this framework, we do not make any
attempt at reviewing the manifold use of neural net-
works (NNs) for air-pollution assessments and fore-
casting. Instead, we focus just on the (complex)
physics of the BL and discuss the coupled use of an
original index of the BL properties (radon concentra-
tion) and of NN modeling in order to obtain interesting
results for characterizing and/or forecasting important
variables in the BL, like the concentration of a danger-
ous primary pollutant (benzene) and the 2-h evolution
of stable layer depth. In this scenario, the particular
strategies for applying a NN model are described,
showing how they lead to important original results,
for grasping the BL physical behavior. In doing so, one
can discover the usefulness of an empirical AI data-
driven approach to investigating a complex system that
is very difficult to deal with in terms of dynamical
models.

In the next section, a brief introduction to funda-
mentals of radon detection will be presented and the
qualitative and quantitative relevance of radon concen-
tration for summarizing the physical state of the BL
will be discussed. In particular, we will present the
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structure of a box model (based on radon data) for
estimating the nocturnal stable layer depth.

In Section 13.3, after having introduced simple lin-
ear indices that characterize days and nights in terms
of meteorological predisposition to a primary pollution
event, generalized nonlinear indices are built up by a
NN model: they show the ability of NNs at capturing
nonlinearities in the data and achieving better model-
ing results.

In Section 13.4, by applying NN modeling and a
particular preprocessing activity, we will show how
we are able to achieve reliable short-range forecasts
of radon concentration and stable layer depth in an
urban environment. These forecasts represent funda-
mental information for assessing dispersion properties
and their related influence on pollutant concentrations.

Finally, in the last section, brief conclusions will
be drawn and prospects of future developments in this
field will be envisaged.

13.2 Relevance of Radon in Studies
of the Boundary Layer

As well known, radon is an important factor that
can lead to lung cancer (see www.epa.gov for fur-
ther information). Due to this fact, many epidemio-
logical studies on radon have been performed during
the last decades, especially in indoor environments.
Less known is the role of radon as a “tracer” of the
physical characteristic features of the lower layers of
the atmosphere.

Despite this fact, it is worthwhile to stress that the
first studies on the role of radon in characterizing BL
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dispersion properties dated back to the late 1970s,
when French researchers began to consider this noble
gas, which undergoes no chemical reaction, as a per-
fect tracer of the BL dilution features. They found
that counts of beta radioactivity, coming from the
decay of short-lived radon daughters, represent a sim-
ple index of the stability state of the BL (see Guedalia
et al. 1980, and references therein).

In general, the search for an index which is able
to summarize the characteristic features of a system is
seen merely as a simplification (sometimes used for
working out a conceptual model of the behavior of the
system) that is unnecessary and can be overcome by a
dynamical description of the system itself. Neverthe-
less, in a highly nonlinear system, the knowledge of
a suitable index whose time development mimics the
behavior of some intrinsic property of the system itself
gives us key information, certainly in a qualitative way
and, hopefully, also in a more quantitative manner.

13.2.1 Semi-quantitative Information
by Estimating an Equivalent
Mixing Height

Without discussing the instrumentation for detect-
ing beta counts from the decay of short-lived radon
progeny, we just stress that the fraction attached to
particulate matter is usually detected (see Allegrini
et al. 1994, for details). As shown in Fig. 13.1, the
typical time patterns of beta counts are maxima dur-
ing the night in conditions of nocturnal stability and
minima during the day when the mixed layer is well
developed (the more enhanced is the stability of the
nocturnal stable layer, then the higher are the maxima
in radioactivity counts). Otherwise, low quasi-constant
values are found in advective situations characterized
by mechanical turbulence. This qualitative analysis
suggests that, in general, the number of beta counts can
be inversely proportional to the “degree” of stability of
the lower layers.

Especially interesting cases are nocturnal stable
situations over towns, when anticyclones at synoptic
scale and local physiographic and emissive features
can create conditions for the development of strong
stable layers and peak events of primary pollution.
In these cases, rain is absent, relative humidity and

pressure are quite constant and the spacetime interval
to be analyzed is limited (a night and a town). Thus,
if we limit our study to these situations, then radon
exhalation from the ground can be considered constant
in time and spatially homogeneous, the attached frac-
tion of radon daughters also constant and the radon
concentration directly proportional to the number of
beta counts detected.

Further evidence (see Lopez et al. 1974, for pio-
neering work and Vinod Kumar et al. 1999, for more
recent results) shows that radon and radon daughters’
concentrations are approximately homogeneous with
altitude in the nocturnal stable layer and that they
undergo a rapid transition to background values above
the mixing height in the so-called residual layer. This
fact induced Guedalia et al. (1980) to use a box model
of the nocturnal stable layer endowed with a homoge-
neous radon concentration in the vertical. The top of
this box, named equivalent mixing height he, has been
found to be a good index of the dispersion properties
of this layer in a semi-quantitative way, because low
(high) values of he are related to low (high) dispersion
power and high (low) concentrations of primary pollu-
tants.

In Guedalia et al. (1980) the calculation of the top of
the box has been performed by means of the following
equation:

he(t) = ��t

C(t) − C0
(13.1)

Here � is the radon flux at the surface, �t is the time
interval from the start of accumulation, C(t) is the
radon concentration at time t and C0 is the radon con-
centration at the beginning of accumulation (evening).

13.2.2 A Physical Interpretation of the
Equivalent Mixing Height

Guedalia et al. (1980) wondered what he should rep-
resent from a physical point of view. They correctly
asserted that it is different from the inversion layer
thickness, and that instead, it should be identified with
the base of the inversion, although even this option
is not the precise one (in particular, for ground-based
inversions, the box model is no longer applicable).

The correct solution to this puzzle has been given
by Allegrini et al. (1994). They show that he can be
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Fig. 13.1 A typical time series of beta counts: the first three maxima refer to stable nights and then one must appreciate a transition
to conditions of moderate advection

identified with the height at which a parcel of air
coming from the ground halts its free convection, at
least in nocturnal stable situations dominated by the
thermal factor. They confined their research to some
experimental campaigns in a town and used the funda-
mental phenomenon of the urban heat island that, even
in the presence of ground inversions in suburban sites,
permits the creation of a shallow mixed layer where
convection is not suppressed.

In order to quantify the nocturnal stable layer
depth over a town, they used a thermal profile from
a radiosonde station in the suburbs and the surface
air temperature at the radon detection site inside the
town. With a potential temperature method or, equiv-
alently, by means of a simple graphical representa-
tion (see Fig. 13.2), they were able to estimate an
urban mixing height, hu , from meteorological data.
A statistical analysis show that he and hu are highly
correlated, so inducing to think that the box model
output represents a correct estimation of the urban
mixing height, at least in situations of high nocturnal
stability.

In general, we must be aware that he and hu can
differ from the real value of the stable layer depth,
the equality being valid at the limit of null mechanical
turbulence, when the physical features of the BL are
completely driven by the vertical thermal state of the
atmosphere. Furthermore, while hu has no chance to
be sensitive to nonthermal factors, he represents an

Fig. 13.2 Estimation of the urban mixing height: TR is the tem-
perature at the radiosonde station, TT is the temperature inside
the town, �D is a dry adiabat drawn from TT that intercepts the
vertical profile

index whose value is determined by all the factors that
influence the dilution properties of the BL.

As a final remark, we note that, if direct measure-
ments of � are not available, its value can be estimated
by inverting equation (13.1) in which we substitute he

with its meteorological estimation hu at a certain hour
in the evening, at the beginning of accumulation.

13.2.3 An Improved Box Model

Thus, in strong stable situations during the night, we
are able to monitor the height of the stable layer
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over a town by means of radon detection and the
application of a simple box model. This estimation fur-
nishes important physical information about the vol-
ume available for the dilution of pollutants emitted
at the ground. In particular, this method allowed us
to explain critical peak events of primary pollution
during the night due to negative fluctuations (reduc-
tions) of the stable layer depth. Sometimes, however,
the nocturnal fluctuations in he, shown by the box
model, assume wide unphysical values: then, in order
to achieve more realistic modeling of the nocturnal BL
behavior and to avoid these problems, a new version of
the model has been recently worked out and prelimi-
narily presented in Pasini et al. (2002).

As a matter of fact, the structure of the box model
described above is too simple for at least two rea-
sons: first, radon decay is neglected; secondly, entrain-
ment of air with different radon concentrations is not
allowed from the top of the box (this is critical just
in situations characterized by nocturnal fluctuations
of the stable layer depth). A new model structure,
which includes these elements, is briefly presented
here.

In Fig. 13.3 “compressions” are the situations
in which the stable layer depth decreases (i = 1,
2, 3, 6) and “expansions” are the cases when he

increases (i = 4, 5). In what follows, λ represents
the decay constant of radon, �t is our sampling
rate (usually 2 h), Ca is the calculated concentra-
tion in the residual layer and we adopt the symbolic
form �he(n, m) = he(n) − he(m) for the difference
between equivalent mixing heights at time n and m,
respectively.

Fig. 13.3 Time evolution of the nocturnal stable layer (gray
box). The white area above represents the residual layer

In compression cases the generalization of equation
(13.1) reads as follows:

he(i) = �

λ

1 − exp(−λ�t)

Ci − Ci−1 exp(−λ�t)
(13.2)

The concentration left in the residual layer after the i th
compression is:

Ca
i =

Ca
i−1 exp(−λ�t)·�he(0, i−1)+Ci−1 exp(−λ�t)·�he(i−1, i)

�he(0, i)

(13.3)

If the stable layer depth increases and overlying air is
included in the box, i.e. in cases of expansions, the
equivalent mixing height can be calculated as:

he(i) =
(�/λ)[1− exp(−λ�t)]+he(i−1)(Ci−1−Ca

i−1) exp(−λ�t)

Ci − Ca
i−1 exp(−λ�t)

(13.4)

and the concentration over the top of the box is of
course

Ca
i = Ca

i−1 exp (−λ�t) (13.5)

This enhanced structure of the box model, tested on
past results, leads to a little increase (about 1%) in
the value of the linear correlation coefficient between
the total set of he estimated by the new model and the
total set of hu . The actual, relevant and statistically sig-
nificant improvement is obtained in critical situations
such as nocturnal fluctuations of the stable layer depth,
when the application of equations 13.2–13.5 prevents
the estimation of wide unphysical oscillations.

Thus, data from radon progeny measurements well
represent (in a synthetic way) the dilution properties
of the lower layers of the atmosphere and the analysis
performed here has led to characterizing these features
both qualitatively and quantitatively. In the next sec-
tion, after having presented another useful application
of radon data to primary pollution characterization in
an urban environment, we will begin to “handle” these
data with a NN model.
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13.3 Linear Stability Indices and Their
Nonlinear Generalization by NNs

As we have seen, knowledge of radon concentration,
or simply of the beta counts coming from the decay
of short-lived radon daughters, gives us information
about the physical state of the BL. If we consider the
so-called primary pollutants, their concentration in the
lowest layers of the atmosphere is driven by two main
factors: the emission flux and the mixing properties
of the BL. In this situation, our knowledge of these
physical properties can lead to studying the role of the
BL in the accumulation of these pollutants.

13.3.1 Linear Stability Indices

Some years ago, Italian researchers (Perrino
et al. 2001) developed stability indices based on
radon data in order to characterize days and nights
(in every season) in terms of their meteorological
predisposition to a primary pollution event.

Substantially, these indices are scalars: they are
the results of equations (coming from multiple linear
regressions) that aim at reconstructing the mean con-
centration of benzene on a 12-h interval. The multi-
ple linear regression considered 2-h beta count data
and their time derivatives as predictors and benzene
concentration during night or day as predictand. For
these calculations the year has been divided in three
periods, according to different duration and inten-
sity of the solar radiation (winter period: October to
February; summer period: May to July; intermediate
period: March, April, August, September). A total of
six indices has been therefore obtained.

The correlation between the values of these indices
and the concentration of benzene is generally good,
but it must be highlighted that these indices take into
account only one of the two driving forces in deter-
mining primary pollutant concentration (the mixing
properties of the BL), so that a one-to-one correlation
could be possible only in the theoretical case of a con-
stant emission flux. Thus, the scope of indices deter-
mination must not be estimating the correct value of
observed benzene concentrations, but, more properly,
these indices can become a tool for uncoupling the
roles of meteorology and emissions for determining
the concentration of a primary pollutant.

In fact, these indices allow us to estimate the con-
centration of a primary pollutant uniquely due to the
contribution of the meteorological factor. Therefore,
the environmental applications of these indices are
especially important in the study of the differences
between this estimation and the primary pollutant
concentration actually observed. This is of help in
identifying days when the atmospheric pollution is
heavier (lighter) than predictable on the basis of the
atmospheric mixing and allows us to evaluate, for
example, the real effect of traffic restriction measures.
Also, at a longer range, we are able to understand if a
decrease in the air concentration of a given primary
pollutant from one year to another is due to a real
improvement of the air quality or, instead, only to a
lighter meteorological situation.

For further details on the calculation of these linear
indices and their application, see Perrino et al. (2001).

13.3.2 Nonlinear Stability Indices
via NN Modeling

As stated in the previous subsection, the aim in using
the stability indices is not the accurate reconstruc-
tion of benzene values in every situation, since these
indices take only the BL dilution factor into account
and neglect the contribution of emission variations
to benzene concentration. With a change of perspec-
tive, we recently asked if this meteorological contribu-
tion to benzene behavior is correctly modeled (Pasini
et al. 2003c). In fact, if we consider that the linear
stability indices are obviously not able to fully capture
the complex nonlinear relationships among different
variables in the BL, we can suggest the use of a more
complex nonlinear regression method and hope that its
use can lead to an increase of the amount of variance
explained by the linear regression. Therefore, after a
preliminary statistical analysis of the data available,
in order to discover nonlinearities hidden therein, a
NN model is applied to the problem of reconstructing
benzene concentrations by means of radon data, even
in cases not included in the training set.

As far as the neural model is concerned, the NN
development environment briefly described at Sub-
section 12.3.3 of the previous chapter is used even
in this case study. We briefly remind that our NNs
are multi-layer perceptrons endowed with one hidden
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layer and backpropagation training. Furthermore, it
is worthwhile to stress that some specific tools are
present in our development environment in order to
handle historical data and to train NNs starting from
quite short time series. We have seen a first example
of these training tools in Chapter 12 of this book and
we will meet another example in the next section,
where a sketch of our normalized sigmoids will be also
be presented, together with a discussion of their
influence on the model structure.

The application of a nonlinear NN model is sug-
gested by the results of an a priori bivariate statis-
tical analysis that is able to estimate linear and non-
linear correlations between each predictor/input (a 2-h
radon detection or its time derivatives) and the predic-
tand/target (mean benzene concentration during day
or night). By this analysis we compare values of the
linear correlation coefficient R and values of the so-
called correlation ratio, a nonlinear generalization of
R (see Pasini et al. 2001, 2003a for technical details on
the fundamentals of such an analysis). Differences are
found between linear and nonlinear correlation values
for the same input-target sets and, sometimes, inputs
showing low linear correlation with the target assume
high nonlinear correlation values. In short, even if the
correlation ratio does not measure all types of non-
linearity, for our problem it allows us to understand
that some nonlinearities are hidden in the relationships
among the variables. In particular, as a consequence
of this statistical analysis, the inputs considered for an
optimal nonlinear regression can be generally different
from the variables chosen for an optimal linear regres-
sion.

As in the development of linear stability indices,
we consider six records of cases (diurnal and noc-
turnal situations for winter, summer and intermediate
periods). Each record is divided into three sets: the
first months represent the training set and include the
validation set (useful in order to establish the threshold
for early stopping and chosen as 15 random days inside
these first months), the last month of each record is the
test set on which we assess the networks’ ability to
generalize. When comparing linear and NN models’
performance on the test set, we obtain a statistically
significant improvement in “simulating” the behavior
of day and night mean benzene concentrations: our
NN model explains 77% of the variance in benzene
data, while the linear model achieves a performance
of 68%.

Table 13.1 Performance in the modeling of benzene
concentrations on the test sets

Period Linear model Neural model

Winter – morning 0.786 0.809 ± 0.038
Winter – evening 0.740 0.812 ± 0.020
Summer – morning 0.558 0.576 ± 0.037
Summer – evening 0.639 0.725 ± 0.031
Intermediate – morning 0.664 0.877 ± 0.012
Intermediate – evening 0.698 0.795 ± 0.038

Source: Adapted from Pasini et al. (2003c). With kind permis-
sion of Società Italiana di Fisica.

More specifically, the values of several indices
of performance have been calculated and consistent
results are obtained on the test sets in the six cases
cited above. In Table 13.1 the results of both the linear
model and the NN model are shown in terms of the
linear correlation coefficient (detected vs. modeled).
Here, as in applications described in the previous chap-
ter, the error bars associated with the NN performance
come from ensemble runs of the model with different
initial random weights, so that each network is able to
widely explore the landscape of its cost function, and
represent ±2 standard deviations.

As one can see, the majority of improvements
obtained by the application of the fully nonlinear NN
model is statistically significant. Furthermore, the cal-
culation of the bias allows us to appreciate that, even
in the few cases when the statistical significance of
performance improvement is not sure, the systematic
error in the results of the NN model is lower than that
of the linear model: this gives us more reliable results.

In short, the application of NNs to this problem
leads to better modeling the meteorological contribu-
tion to the behavior of mean benzene concentration
over days and nights in distinct periods of the year, if
compared with a multiple linear regression.

13.4 Neural Forecasting of the Radon
Concentration and Short-Range
Estimation of the Nocturnal Stable
Layer Depth

Once the ability of a NN model for characterizing the
meteorological-induced behavior of a primary pollu-
tant is shown, it would be interesting to test this model
in forecasting BL physical features. In this framework,
using the knowledge of radon behavior and applying
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the box model previously developed, we concentrate
on stable nocturnal situations in the BL.

As a preliminary remark, it is worthwhile to note
that the physics of the nocturnal stable layer has been
recognized as very complex and modeling in this
domain represents a major challenge for physicists of
the atmosphere (see, for instance, Mahrt 1998). Thus,
once again, an AI empirical data-based method (NN
modeling) could help in a framework where dynamical
modeling shows drawbacks.

In what follows, several forecasting strategies will
be considered and particular attention will be paid
to didactical aspects rather than technical details: see
Pasini and Ameli (2003), Pasini et al. (2003a, b) for a
more detailed treatment.

13.4.1 A Time Series Approach: Black Box
vs. Preprocessing

The Institute of Atmospheric Pollution of the Ital-
ian National Research Council has sponsored several
extended duration monitoring campaigns to detect beta
counts from radon progeny decay. Thus, long time
series at the time resolution of 2 h are available: here,
we analyze data from the entire year 1997, detected in
a site near Rome, Italy.

Since the development of the model of multi-layer
perceptron, NNs have shown their ability to forecast
time series data for some steps in the future and they
often beat other methods in intercomparison studies:
see, for instance, Weigend and Gershenfeld (1993).
Therefore, it is natural to apply NNs to a short-range
forecast of beta-count time series in order to obtain
accurate estimations for the values of this index of the
BL dilution capacity.

Usually, when the global dynamics of the system
under study is unknown, a NN is used as a black box
that outputs future values of the time series, given
input of a sequence of its past values. Of course, we
can follow this approach even in the treatment of our
forecasting problem in the BL: as we will see, this has
actually been done with quite good results. Neverthe-
less, here a part of the dynamics is known: for instance,
the influence of a day-night cycle is very clear in sit-
uations characterized by nocturnal stability and well
developed diurnal mixed layers (look at the first 3 days
in Fig. 13.1). Furthermore, a 24-h periodicity and its

Fig. 13.4 Fourier spectrum of our time series of beta counts

sub-harmonics are evident in a Fourier spectrum of
our time series (see Fig. 13.4). In this situation, this
part of dynamics can be modeled or, at least, sim-
ply described, leading to using this knowledge before
applying a NN for studying the system.

In practice, we chose to preprocess our data. We
filtered out the known periodicities (by means of the
so-called Seasonal Differencing (SD) method1), sub-
tracted this signal from the detected data and modeled
the residuals with NNs. In this manner we left the
network model the hidden (unknown) dynamics. Of
course, the forecasting results of the neural modeling
must be added to the preprocessing function in order
to obtain final forecasts of the original time series.

The NN tool cited above and briefly described in the
previous chapter has also been used in this case study.
The choice of inputs is widely discussed in Pasini and
Ameli (2003) and the reader can refer to that paper for
details. Here we just stress that a particular training-
test iterative procedure has been applied. Due to the
recognition of a negative effect of old data on forecast-
ing results, we fix a “50-day memory” of training cases
and update it for every new forecast, thus limiting the
training to the same “season” of any forecast case.
Figure 13.5 shows this “moving window” strategy:
the window is the 50-day memory (training set), it
is updated every 2 h by inserting the latest detected

1 In our application, SD consists in subtracting from the time
series a replica of the series itself delayed by a 24-h time lag. In
doing so, we obtain a residual series that is practically lacking
in those periodicities shown by the original data.
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Fig. 13.5 The “moving window” procedure for training and
test (forecast) of historical data

data and discarding the oldest ones, then allowing new
training and a new forecast.

Once our data is preprocessed by SD, we obtain a
residual time series that looks like noise, so that a man-
made analysis does not allow us to glean additional
clear dynamics in these data. In this situation, the
application of a NN model to forecasting this residual
time series and to evaluating its forecasting perfor-
mance could lead to determining whether nonlinear
dynamics is hidden in these data, or rather, if they are
actually random.

As a matter of fact, we found quite good perfor-
mance on the test set of residuals when forecasts were
extended to 2, 4 and 6 h after the most recent data
in the time series. In particular, we calculated the
linear correlation coefficient (modeled vs. detected)
and obtain R(t0 + 2) = 0.675 ± 0.006, R(t0 + 4) =
0.500 ± 0.008 and R(t0 + 6) = 0.431 ± 0.009. Even
if these values are not very high (remember that
the time series looks like noise), they still indicate
a clear signal of nonlinear dynamics hidden in the
residuals. In this way the NNs show their ability in
capturing this dynamics and can add information to
modeling the system. In particular, they allow us to
improve our forecasting performance on the system
itself.

Furthermore, a black box strategy and a preprocess-
ing one can be compared in NN modeling on this
case study. Table 13.2 shows the performance of the
direct application of NNs to forecasting the original
time series (TS) and of the joint application of SD and
NN forecasting of the residuals (SD-TS): the SD-TS
approach outperforms the black box one in all cases
and the increment in performance is particularly high
at the longer ranges.

Table 13.2 Performance on the test set for the black box
(TS) and the preprocessed (SD-TS) strategies in a time series
approach

Period R(t0 + 2) R(t0 + 4) R(t0 + 6)

TS 0.812 ± 0.010 0.735 ± 0.017 0.672 ± 0.017
SD-TS 0.894 ± 0.004 0.870 ± 0.004 0.861 ± 0.005

In general, the shape of the signal for beta detec-
tions/radon concentrations is well forecasted by SD-
TS on all the 24-h interval (nights, days, intermediate
periods). In particular, SD-TS prevents the forecast-
ing of counter-tendency behaviors in radon evolution
(e.g., increasing beta counts for situations of a detected
decrease of beta counts), which are quite often present
in the TS forecasts.

If we concentrate on nights with stable conditions
in the lower layers, we can apply the box model cited
above and obtain forecasts for the depth of the noc-
turnal stable layer. In Fig. 13.6 an example of he 2-h
forecasts is presented for three nights: one can recog-
nize the very good results obtained by the joint appli-
cation of preprocessing and NN model (SD-TS). Due
to the very impact of nocturnal BL depth fluctuations
on primary pollutants’ behavior, a useful feature of this
approach is that it generally leads to a correct forecast
for the sign of derivatives in he records, while the
black box approach often presents counter-tendency
derivatives in its forecasts.

13.4.2 A Synchronous Pattern Approach
with Meteorological Data

In the previous subsection a typical time series
approach has been adopted for NN application by
using delayed values of beta counts data as input.
When the behavior of an index-variable (here beta
counts) is influenced by the state of a physical system
(here the BL), however, it is a good idea to estimate
this state at a time t0 through the values of certain
critical variables and to search for a relationship link-
ing this estimation at time t0 with future values of the
index-variable by means of NNs.

An estimation of the state of the BL can be given
through monitoring performed by a standard weather
station in situ. In our case study, 1-h weather parame-
ters were available from the local meteorological sta-
tion, so that we considered the following synchronous
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Fig. 13.6 The depth of the
nocturnal stable layer
calculated by the box model
for detected data (square),
non-preprocessed forecast
values by TS (circle) and
preprocessed forecast values
by SD-TS (triangles)

pattern of variables which describes the BL state at
time t0: hour of the day (expressed in two inputs
as [sin(π t/12) + 1]/2 and [cos(π t/12) + 1]/2), beta
counts, time derivatives of beta counts with respect
to 2 h before, sky covering and height of the lowest
cloud layer, temperature, dew point, pressure, horizon-
tal wind speed, and visibility.

Thus, the first attempt can be to apply this approach
and to analyze the related NN forecasting perfor-
mance. Linear and nonlinear statistical bivariate analy-
ses between any test set of a single input variable and
the set of detected beta counts at t0 + 2, t0 + 4 and
t0 + 6 h, however, show that some inputs are poorly
correlated with the output. This induces prune some
of the inputs.

Pruning is a consolidated technique and the descrip-
tion of its advantages can be easily found in the lit-
erature. Here we just stress that, as cited in Sub-
section 12.3.3 of the previous chapter, the transfer
functions in our tool are sigmoids in which the argu-
ments of the exponential function are normalized
with respect to the number of connections converging
to a single neuron of the hidden and output layer,
respectively. For the hidden layer, for instance, we
have:

g j

(
hµ

j

)
= 1

1 + exp
(
− hµ

j√
nhl

) (13.6)

where nhl is the number of connections converging to
a single neuron of the hidden layer.

Figure 13.7 shows the consequences of this normal-
ization on the shape of sigmoids: in practice, it leads to
transfer functions which are less nonlinear when one
moves from networks with few connections to bigger
ones. In short, this leads to different models for differ-
ent networks, with more nonlinear transfer functions
for small NNs: this could even lead to an increase in
forecasting performance when pruning is applied in a
strongly nonlinear system.

The best performance with a pruned network came
from considering: the hour of the day (two inputs), the
horizontal wind speed, beta counts, and time deriva-
tive of beta counts. Thus two networks with 11 and
5 inputs, respectively, have been applied to this fore-
casting activity. The performance results are shown in

Fig. 13.7 Form of sigmoids in our NN tool for different num-
bers n of connections converging to a single neuron of the hidden
or output layer: solid curve, n = 3; heavy dashed curve, n = 8;
shaded curve, n = 20; shaded dashed curve, n = 50 Source:
Pasini et al. (2001). Copyright AGU
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Table 13.3 Performance on the test set in a synchronous pattern
approach for the full set of inputs (SP) and in the pruned case
(SP-PR)

Period R(t0 + 2) R(t0 + 4) R(t0 + 6)

SP 0.849 ± 0.003 0.821 ± 0.005 0.788 ± 0.006
SP-PR 0.854 ± 0.002 0.820 ± 0.005 0.773 ± 0.007

Table 13.3 in terms of the linear correlation coeffi-
cient between modeled (forecasted) and detected beta
counts.

A comparison of these results with those presented
in Table 13.2 for the time series approach allows us
to recognize that the synchronous pattern approach
always outperforms the original time series approach
(TS) in a statistically significant way. This bears wit-
ness to the relevance of meteorological information
to better characterize the BL state for short range
forecasting. Pruning leads to a little improvement at
t0 + 2 h, while the results at t0 + 4 and t0 + 6 h are
comparable and worse, respectively, with respect to the
runs without pruning.

On the other hand, the recognizing periodicities and
preprocessing the time series (SD-TS in Table 13.2)
leads to even better performance results, especially
at t0 + 4 and t0 + 6 h. This bears witness to the
importance of using dynamical information when
available.

In Subsection 13.4.4 we will combine the strong
points of these two approaches in order to build a
hybrid approach that allows us to obtain better fore-
casting performance. Now, we would like to briefly
analyze performance through indices calculated on
contingency tables.

13.4.3 Some Measures of Performance

As discussed in Chapter 3 of this book, the problem of
performance assessment is manifold. Here we do not
enter into details of which index is more appropriate to
“measure” the performance in our case. Nevertheless,
we show that useful information comes from calcu-
lating some indices on contingency tables of events
and nonevents related to detected and forecasted beta
counts.

As usual in analyzing forecasting performance,
we divide detections and forecasts into classes, build
contingency tables and assess performance in a

Table 13.4 Contingency table at a fixed threshold distinguish-
ing between events and nonevents

DET\FOR No Yes Sum

No a b g
Yes c d h
Sum e f n

dichotomic form. By limiting ourselves to the analy-
sis of the t + 2 forecasting performance, we choose
100 equidistant thresholds and divide our range in 100
classes, so obtaining 100 contingency tables. Our nota-
tions are referred to Table 13.4, where a = number
of nonevents predicted as nonevents, b = number of
nonevents predicted as events, c = number of events
predicted as nonevents, d = number of events pre-
dicted as events. For each threshold we calculated the
following indices:

BIAS = f/h;
POD (Probability Of Detection) = d/h;
FAR (False Alarm Ratio) = b/ f ;
HR (Hit Rate) = (a + d)/n;
EFF (EFFiciency) = (a/g) × (d/h);
CSI (Critical Success Index) = d/(b + h);
HSS (Heidke’s Skill Statistics) = [2(ad − bc)]/

(g f + he).

Once the values of these indices for each thresh-
old are calculated, one can plot them on graphs
built with the value of the threshold as abscissa and
the value of the index as ordinate, thus obtaining
pictures of global performance for every range of
data. This can be done for every forecasting strat-
egy adopted in our case study. Due to the fact that
the performance of the synchronous pattern approach
with and without pruning are very similar, just SP-
PR, TS and SD-TS are considered in these graphs
in order to make them more clearly readable. Fur-
thermore, calculations of FAR, HR and CSI reveal
that the differences in performance among these
three modeling strategies are nearly absent in these
indices, so that the related graphs are not shown
here. In Fig. 13.8 the results for BIAS, POD, EFF
and HSS are shown: they imply some considera-
tions.

The high values of the SD-TS curves for the first
low thresholds in BIAS and POD plots account for
an overestimation of the low values of beta counts
detected. This is primarily due to the transition peri-
ods from situations driven by the thermal cycle to
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Fig. 13.8 Forecasting performance on the test set of beta counts
for the black box time series approach (TS: black curves), the
preprocessed time series approach (SD-TS: dashed curves) and

the synchronous approach with pruning (SP-PR: gray curves).
The four plates refer to BIAS (a), POD (b), EFF (c) and
HSS (d)

advective situations when the SD modulation leads to
very low final forecast values. Of course, this repre-
sents a negative feature of this preprocessing method
and suggests adopting some different preprocessing
methods during these transition periods.

The graph of EFF (Fig. 13.8c) indicates that the
two time series approaches outperform SP-PR at high
thresholds. The difference between SD-TS and SP-PR
above abscissa 30 (in threshold units) is particularly
large.

Undoubtedly, the most interesting results come
from analyzing the graph related to HSS (Fig. 13.8d).
First of all, HSS is a very good measure of perfor-
mance (see, for instance, the discussion in Chapter 3

and in Marzban 1998). Furthermore, Fig. 13.8d shows
that the time series approach reveals very good features
for high thresholds; in particular, SD-TS is always bet-
ter than other approaches for thresholds >23 abscissa
units (about 6,000 beta counts). On the other hand,
SP-PR outperforms TS until a threshold of about 46
abscissa units. Finally, we stress that all the approaches
lead to a maximum of performance for a threshold
around 19 abscissa units (about 5,000 beta counts):
this is very important for us, because this value can
be considered as the threshold that allows us to distin-
guish between advective situations and maxima due to
the presence of nocturnal stable layers driven by the
vertical thermal state of the lower atmosphere.
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13.4.4 A Hybrid Approach and Its
Forecasting Results

The results discussed above showed that the using a
synchronous pattern of meteorological parameters as
inputs to the neural model leads to better results than
a standard (non-preprocessed) time series approach.
This bears witness to the importance of having infor-
mation about the initial physical state of the BL. On
the other hand, using our a priori knowledge of day-
night periodicities, and the consequent preprocess-
ing activity via SD, outperforms both TS and SP
strategies.

Taking these results into account, we now wish to
explore the possibility that meteorological conditions
could give improvements in capturing nonlinearities
when periodic contributions to the BL dynamics are
subtracted by SD. Therefore, once we recognize that
the day-night cycle affects the radon time series as
well as time series of meteorological parameters, even
if sometimes at a different degree, we apply SD pre-
processing to available meteorological data, as well.

Therefore, first we apply SD to the time series of
beta counts and to the records of meteorological para-
meters. Then we concentrate on the following three
different choices of inputs for the networks to be
trained on the residual series:

– SD-MET: The inputs are the residuals coming from
the application of SD to several meteorological
variables (wind speed, pressure, temperature, dew
point, sky covering and height of the lowest cloud
layer, meteorological visibility) and to values of beta
counts and the time derivative of beta counts at t0.

– SD-TS + V: The inputs are the residuals coming
from the application of SD to both the delayed val-
ues of the time series and the wind speed. Wind is
considered very important because it characterizes
the mechanical turbulence in the BL and, in particu-
lar, the situations of advection, when the periodicity
in the time series (essentially due to the day-night
cycle) is broken.

– SD-TS + MET: The inputs are the residuals coming
from the application of SD on both the delayed val-
ues of the time series and the same meteorological
variables considered also in SD-MET.

In this subsection our aim is to compare these
approaches with the SD-TS approach previously dis-
cussed in order to see if the insertion of residuals of

Table 13.5 Forecasting performance on the residual series
when SD is applied also to records of meteorological variables

Method R(t0 + 2 h)
SD-TS 0.675 ± 0.006
SD-MET 0.571 ± 0.008
SD-TS+V 0.687 ± 0.004
SD-TS+MET 0.679 ± 0.005

Method R(t0 + 4 h)
SD-TS 0.500 ± 0.008
SD-MET 0.297 ± 0.006
SD-TS+V 0.528 ± 0.007
SD-TS+MET 0.544 ± 0.006

Method R(t0 + 6 h)
SD-TS 0.431 ± 0.009
SD-MET 0.151 ± 0.012
SD-TS+V 0.456 ± 0.008
SD-TS+MET 0.496 ± 0.007

Source: Pasini et al. (2003b). Copyright IEEE.

meteorological variables into the input layer leads to
better results. In doing so, we compare the ability of
the distinct networks in capturing the hidden dynamics
on just the residual series.

The results on the test set are presented in a con-
cise form in Table 13.5, where the calculation of the
linear correlation coefficient between targets and out-
puts is reported. Note that, contrary to Tables 13.2
and 13.3, here the forecasting results refer to the NN
performance on only the residual series, without any a
posteriori composition with the SD signals.

A brief analysis of these results indicates that the
information on the meteorological parameters alone in
the SD-MET approach (even if data on beta counts
and its derivatives is included) is not able to capture a
satisfying hidden dynamics or to improve forecasting
results on the residual series. On the other hand, the
same meteorological parameters contribute (in a sta-
tistically significant manner) to improving the results
of the SD-TS approach when inserted into the input
layer together with data on the time series itself. In
a certain sense, one could say that the meteorological
parameters act as second-order correctors to the fore-
cast obtained by the SD-TS approach. Nevertheless,
we must stress again that in a non-linear system we
are not able to accurately separate the contributions of
each “influence factor” to the final result.

The increase in performance obtained through
application of the SD-TS + V and SD-TS + MET
approaches is more evident at the longest ranges, so
that we can envisage a shift of the predictability hori-
zon for forecasting radon from observations beyond 6
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h. Furthermore, we want to stress that networks fed
with TS and all the meteorological parameters in the
input layer are obviously larger than networks with TS
and wind only. The particular structure of our sigmoids
allows us to obtain better results in the very short-range
with a little network and wind only, which is corre-
lated (linearly and non-linearly) quite well with the
target. When, at the following time steps, this correla-
tion decreases, other meteorological inputs become so
important to invert the situation of performance scores
between SD-TS + V and SD-TS + MET.

13.5 Conclusions and Prospects

In this chapter, the role of NNs has been analyzed
for modeling some features of a complex system such
as the BL, whose dynamical modeling is very critical
(especially in nocturnal stable situations) due to the
many interactions and feedbacks that occur therein.
In doing so, the BL physical dispersion properties
have been summarized by means of a suitable index,
the beta counts coming from the decay of short-lived
radon progeny. Once this index is identified as a
critical variable for describing BL behavior, several
approaches have been presented for NN processing its
data, with the aim of both BL diagnostic characteriza-
tion and forecasting.

In this framework, interesting goals have been
achieved: we stress the improved forecasting results
from jointly applying our knowledge of the day-night
cycle’s periodicities via SD and the NN forecasting of
the residual series. Here, in particular, NNs are able
to find a hidden dynamics in what appears as a noise
signal, leading to a substantial improvement in fore-
casting performance when compared with a black box
NN application. Furthermore, the results of the hybrid
approach described in the last subsection appear quite
promising.

Once more, the applications described in this paper
imply that, at present, the identification of key vari-
ables in a complex system and its data-driven modeling
by NNs can represent a valid alternative to dynamical
modeling.

Of course, although these investigations are prelim-
inary, the scope of this paper was merely to introduce
the reader to specific applications of NN modeling in
another complex system, the BL, after the previous

chapter dedicated to climate. This preliminary research
leaves several open questions and directions for further
development, considering that, for instance, only very
standard NNs have been used and a very simple kind
of preprocessing has been adopted. Nevertheless, in
an introductory book to techniques and applications,
I believe that this is not a fault, but rather a spur for the
reader to further research this field.
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14Addressing Air Quality Problems with
Genetic Algorithms: A Detailed Analysis
of Source Characterization

Sue Ellen Haupt, Christopher T. Allen, and George S. Young

14.1 Introduction

14.1.1 Fitting the Model to the Purpose

The purposes for modeling air contaminants have
evolved, and the models themselves have co-evolved to
meet the changing needs of society. The original need
for air contaminant models was to track the path of
pollutants emitted from known sources. Therefore, the
initial purpose of the models was to track and estimate
the downwind transport and dispersion (T&D). Since
dispersion results from turbulent diffusion, which is
best modeled as a stochastic process, most models for
the dispersion portion are based on a Gaussian spread.

Because many environmental problems have their
sources in a region that is far from the impact, there
came a need to identify remote sources of pollution.
For instance, the acid rain problem that was highly
studied in the 1980s was widely thought to be caused
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by upwind polluters. Power plant emissions in the
Ohio Valley were blamed for acid rain in New York
and New England. To test this conjecture, receptor
models were developed. This type of model begins
with monitored pollution concentrations and back cal-
culates the sources. Some models of this type were
based on a backward trajectory analysis while oth-
ers separated out the mix of chemical species present
in the sample and computed likely sources given
knowledge of the species composition of the potential
sources. These models pointed to the Ohio Valley for
the source of the acid rain precursors. Receptor mod-
els are still popular for attributing pollutants to their
sources.

A more recent application analyzes the impact that
a toxic release of chemical, biological, radiological, or
nuclear (CBRN) material might have on a nearby pop-
ulation. Such a release could be due to an accident at a
nearby plant or in transit, intentional release by a ter-
rorist, or enemy action in a military situation. In such
cases, there is often a need for a full spectrum of mod-
eling, beginning with characterizing the likely source,
then estimating contaminant transport and dispersion
as well as their uncertainty, and finally estimating the
impact on nearby populations and facilities for the pur-
pose of deciding how best to respond to the situation.
Such scenarios require rapid models for source char-
acterization, T&D, and human effects (mortality rates,
casualty rates, etc.); so including the full physics and
dynamics is computationally prohibitive. Therefore,
faster artificial intelligence techniques may become
competitive. But such techniques are only as good as
the dynamics-based models on which they are built.
We show here how a genetic algorithm has proven
useful for coupling backward looking receptor models
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with the forward T&D models to leverage the strengths
of each in addressing the source characterization prob-
lem. We demonstrate here how to characterize the
strength, location, height, time, and meteorological
conditions of a release given field data. We begin by
demonstrating the GA-based technique using synthetic
data and a very basic T&D model and progress toward
incorporating a realistic advanced applications T&D
model and validating the techniques with field experi-
ment data.

14.1.2 The Problem of Turbulent
Dispersion and Real Data

Pollutant released into a turbulent atmospheric bound-
ary layer is subject to chaotic motions on a variety of
scales in both time and space. Thus, we cannot defin-
itively predict an exact concentration for a specific
location at an instant in time. As a result, predictive
T&D models typically compute an ensemble average
by solving a diffusion equation to yield a Gaussian
spread. We must remember what such a model can
and cannot do. It can predict an expected ensemble
mean concentration and its standard deviation. It can-
not, however, predict the expected concentration for a
specific realization (Wyngaard 1992).

In contrast, concentration measurements represent a
specific realization of turbulent dispersion. Currently,
there is not a good evaluation method for comparing
the single realization of a field experiment with the
ensemble average statistics from model output (NRC
2003).

In addition to this stochastic variability of time
averages, the pollutant emission rates are often
poorly characterized; therefore, the dispersion prob-
lem appears intractable. Here we detail a method that
uses artificial intelligence to directly treat the problem
of inherent uncertainty through coupling a dispersion
model to a receptor model. The goal is to blend the
predictions of the T&D models with the monitored
data, which are grounded in reality. Since blending
these two disparate models becomes a complex opti-
mization problem, the genetic algorithm (GA) is an
appropriate tool to couple the field measurements to
the dynamically based T&D model.

The GA-coupled model described here has evolved
in parallel with the focus of the application. The initial

formulation was for characterizing sources of air pol-
lution by using the GA to link a forward T&D model
with a backward looking receptor model. That model
is described in detail in Section 14.2. Two applications
with synthetic data are presented in Section 14.3: the
first is in an artificial simple geometry and a second is
in a realistic geometry. Although the model is shown
to perform well, we immediately notice some cases
for which the model is ill-posed. A statistical analysis
of model performance appears in Section 14.4, which
also describes model performance in the presence of
random noise. In these initial sections, our goal is to
apportion the fraction of monitored pollutant to each
of a list of pre-identified sources. In Section 14.5,
we begin to address the issues that are relevant for
homeland security: what if we don’t have a list of
candidate sources and what if the local meteorolog-
ical conditions aren’t known? In this case, we apply
the GA directly to identify the location, strength, and
time of the release as well as to determine the direc-
tion of the wind that is transporting the contaminant.
To accomplish this feat requires multiple receptors,
each monitoring concentrations as a function of time.
Section 14.6 is devoted to making the GA coupled
model more realistic by incorporating a highly refined
T&D model, SCIPUFF. This refinement requires refor-
mulating the model to minimize calls to SCIPUFF
and to optimize GA performance. With this refine-
ment, we are able to examine model performance
on actual field-monitored data, also presented in
Section 14.6.

This problem of source characterization and charac-
terizing the meteorological conditions is a very practi-
cal one that several government agencies are address-
ing. The application of the genetic algorithm to this
problem demonstrates the real world applicability of
artificial intelligence to such problems.

14.2 Coupled Model Formulation

The purpose of the coupled model is to assimilate
field monitored data and back calculate the source
characteristics of the emission. Several previous inves-
tigators used information on dispersion or chemical
transport in computing source apportionment. Qin and
Oduyemi (2003) apportioned particulate matter to its
sources by using a receptor model and incorporating
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dispersion model predictions from vehicle emission
sources. Cartwright and Harris (1993) used a GA
to apportion sources to pollutant data monitored at
receptors. Loughlin et al. (2000) also used a GA to
couple an air quality model with a receptor model.
They minimized the total cost of controlling emission
rates at over 1,000 sources in order to design cost
effective control strategies to meet attainment of the
ozone standard. Kumer et al. (2004) estimated appor-
tionment factors that match monitored data by com-
bining factor analysis-multiple regression with disper-
sion modeling. We describe here how we have built
on these prior studies to couple a Gaussian plume
model with a receptor model via a genetic algorithm
to compute the source calibration factors necessary
to best match the measured pollutant (Haupt and
Haupt 2004; Haupt 2005; Haupt et al. 2006; Allen
et al. 2006, 2007). Camelli and Lohner (2004) com-
puted the location of a source that would cause the
maximum amount of damage using a GA and a com-
putational fluid dynamics model. Note that all the
works mentioned here use Artificial Intelligence (AI)
techniques to solve a difficult problem of blending two
types of models.

14.2.1 Model Formulation

One method to apportion monitored concentrations to
the expected sources is with a chemical mass bal-
ance (CMB) receptor model. Such a model starts with
receptor data consisting of different monitored chemi-
cal species and a list of the emission fractions for each
of those species for the potential sources in the locale.
Mathematically:

Cmnr · Sn = Rmr (14.1)

where Cmnr is the source concentration profile matrix
denoting the fractional emission from source n; Rmr

is the concentration of each species measured at a
receptor r , and Sn is the apportionment vector, also
called calibration factors, to be computed. Subscript
n denotes the source number, m the species index, and
r the receptor number. The monitored data provides
the Rmr matrix denoting the amount of each chemical
species present at receptor r . If the chemical compo-
sition of the emissions from each source is known,
a fit to the data produces the fractional contribution

from each source, Sn . Although our coupled model
is inspired by the CMB model, we do not assume
mass fractions of different species, but rather substitute
varying meteorological periods. That is, m denotes the
meteorological period for our reconfigured model. In
the coupled model framework, the emission fractions
in Cmnr are replaced with pollutant concentrations pre-
dicted by a T&D model at each receptor for each mete-
orological period. The receptor data Rmr matches the
same meteorological periods. The vector, Sn , appor-
tions or calibrates the expected transport model dis-
persed emissions to match actual concentrations mea-
sured at the receptor.

14.2.2 The Solution Method – A
Continuous Genetic Algorithm

While one might begin to solve (14.1) with stan-
dard matrix inversion methods, one would quickly
discover that the matrix is usually poorly conditioned
and not easily inverted. This poor conditioning results
because the meteorological periods are seldom inde-
pendent. Therefore, we pose it as an optimization prob-
lem. Traditional optimization methods such as least
squares and conjugate gradient perform poorly (Haupt
et al. 2006). We did find, however, that other iterative
methods such as the Moore-Penrose pseudoinverse
(Penrose 1955) can produce an accurate solution for
some of the simpler problems solved here. When we
tried that method with more complex configurations,
it did not produce a viable solution (Haupt 2005). In
addition, we aim toward optimizing more than just
the source calibration factors (see Section 14.5), so
we expect the optimization problem to progress well
beyond a matrix solution. Thus, we require a very
robust optimization method that can solve this difficult
matrix problem while simultaneously estimating other
unknown parameters. We achieve this by using a GA
as the coupling mechanism that minimizes the differ-
ence between the monitored concentrations and the
predicted concentrations. The GA was introduced in
Chapter 5 of Part I. The continuous GA is appropriate
for application to this problem since all parameters are
real continuous numbers.

The cost function used here measures the root mean
square difference between the left-hand side of (14.1)
and the right-hand side, summed over the total number
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of meteorological periods considered and normalized.
This normalized residual is:

Cost =

√
M∑

m=1

R∑
r=1

(Cmnr · Sn − Rmr )
2

√
M∑

m=1

R∑
r=1

R2
mr

(14.2)

where M is the total number of meteorological periods
and R is the total number of receptors. We assume that
Rmr are monitored data. Thurs, the crux of the model
is now to use an appropriate transport and dispersion
model to estimate Cmnr .

14.3 A First Validation

There are many ways to estimate the dispersed emis-
sions that form Cmnr . The first validation problem uses
Gaussian plume dispersion:

Cmn = Qmn

uσzσy2π
exp

(
−y2

mn

2σ 2
y

) {
exp

[−(zr − He)
2

2σ 2
z

]

+ exp

[−(zr + He)
2

2σ 2
z

]}
(14.3)

where: Cmn = concentration of emissions from source
n over time period m at a receptor location

(x, y, zr ) = Cartesian coordinates of the receptor
in the downwind direction from the source

Qmn = emission rate from source n over time period
m

u = wind speed for meteorological period m
He = effective height of the plume centerline above

ground
σy, σz = dispersion coefficients in the y and z direc-

tions, respectively

The dispersion coefficients are computed from
Beychok (1994).

σ = exp
{

I + J [ln(x) + K (ln(x)]2} (14.4)

where x is the downwind distance (in km) and I ,
J , and K are empirical coefficients dependent on the
Pasquill Stability Class, in turn dependent on wind
speed, direction, and solar radiation. The coefficients
can then be looked up in tables (Beychok 1994).

Initially, we consider data from a single receptor
but allow for multiple potential sources of the pollu-
tant to be apportioned. Thus, the receptor index, r, in
(14.3) collapses to 1.0 and no longer needs included
for this first problem. The pollutant predicted by the
forward model form Cmn of (14.3) and the monitored
data become the right hand side, Rm , that is, the mon-
itored data for the same meteorological periods. The
meteorological periods are common to those metrics.
The remaining vector, Sn , is thus the source calibration
factor, which is tuned to optimize agreement between
the model predicted concentrations and the receptor
observations. If we had perfect world knowledge (of
source characteristics, dispersion processes, meteoro-
logical conditions, turbulence, and monitored concen-
trations), Sn would be composed of all 1.0s. Therefore,
the difference of this factor from 1.0 can be interpreted
as an error or uncertainty in the modeling process in
comparison to the monitored data.

Figure 14.1 summarizes the coupled model process.
Given assumed geometry, meteorology, and emis-
sions concentrations, we compute each source’s dis-
persion plume. Then we estimate the contribution
of each plume to the total concentration at the
monitor with the forward model, which fill the con-
centration matrix. The monitor has recorded actual
concentrations, Rm , for the same meteorological peri-
ods. The computed calibration factors then assign the
portion to each source. Total emissions from a source
can then be computed by multiplying the originally
assumed emission rate by the source calibration factor.

14.3.1 Synthetic Data on a Circle

The coupled receptor/dispersion model technique was
first validated in a simple geometry. A receptor was
sited at the origin of a circle and 16 sources were
spaced every 22.5◦ at a distance of 500 m. Receptor
data were generated using the same dispersion model
to be used for the coupled model optimization (equa-
tions (14.3) and (14.4)). This approach is sometimes
called an identical twin experiment (Daley 1991). To
estimate the calibration factors for 16 sources requires
at least 16 independent meteorological periods. This
independence was achieved by using wind directions
from 16 points of the wind rose and representative
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Fig. 14.1 Schematic of the GA coupled model. The monitored receptor data appears in matrix R, the concentration estimates in
matrix C, and the GA computes the apportionment vector S to identify sources

wind speeds. Neutral stability was assumed for ease of
comparison. The dispersion model was run using 1 h
averaging over the meteorological data and specifying
calibration factors, Sn , that we hoped to match with the
coupled model.

The coupled receptor/dispersion model was then
tested with this synthetically generated data. The first
tests set calibration factors to 0.0 except for a single
source that was set to a 1.0 to simulate identifying
which single source might cause a contaminant event.
The genetic algorithm, when run with a sufficient num-
ber of iterations, successfully evolved the correct solu-
tion. For this problem, the number of iterations deter-
mines the smallness of the cost function. Figure 14.2
shows the GA convergence over 200,000 iterations,
much more than would be used in a typical run. The
decrease in the residual is monotonic. So how many
iterations are actually necessary or useful to get an

acceptably small residual with a reasonable amount
of computer time? Table 14.1 shows the results of
a sensitivity study of residuals versus the number of
iterations. Since the GA randomly generates the initial
set of solutions, a different residual is expected for
each run. Thus, for this table, each configuration was
run five times and the mean and standard deviation
of the residuals is listed. The results of Fig. 14.2 are
confirmed: more iterations result in a smaller mean
residual. The standard deviation also decreases with
the number of iterations. Thus we expect this method
to produce reliable results with a moderate number of
iterations. If we are able to average multiple runs or
to use a large number of iterations, the GA is even
more likely to converge to a reliable solution. We now
have confidence in our approach. Similar results hold
for other configurations with two or more sources con-
tributing.
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Fig. 14.2 Convergence for
GA solution to the circular
geometry problem

14.3.2 Actual Emission Configuration
with Synthetic Meteorological
Data

A second identical twin experiment used an actual
emission configuration for Cache Valley, Utah. The
source locations were obtained from the state of Utah
emission inventory and source heights were estimated.
Each source was assigned the same artificial emission
rate. The receptor location is the actual monitor located
on Main Street in Logan, Utah. Table 14.2 details the
source data relative to the monitor. For verification pur-
poses, the meteorological data were produced synthet-
ically to systematically sample the range of possible
winds. Source apportionment factors were assumed,
once again assigning a factor of 0.0 to all except those
chosen for a synthetic emission.

Table 14.1 Residual size as a function of the number of GA
iterations for the circular source configuration. Statistics for all
but the last row are based on five separate runs

Iterations Best residual Mean residual Standard deviation

500 0.179 0.269 0.096
1,000 0.155 0.191 0.030
2,000 0.052 0.077 0.034
5,000 0.034 0.052 0.020

50,0001 5.36 × 10−4

1Based on a single run.

Using a real source configuration is a much more
difficult problem than placing sources in a concen-
tric circle. For instance, consider the case where two
sources lie at the same angle from the receptor but at
different distances. If the wind speed was not variable,
it would be impossible to distinguish between the con-
tributions from those two sources and so the problem
would be ill-posed. Thus, we use a variety of meteo-
rological conditions to produce a correct allocation of
source apportionment factors.

Table 14.2 Source configuration for Cache Valley, UT

Source Distance from Angle from monitor
number monitor (m) (◦ from north)

1 1,492 26.4
2 25,031 8
3 8,550 176
4 25,096 8
5 25,700 9
6 4,789 350
7 13,854 5
8 6,030 178
9 2,227 171

10 9,998 4
11 11,540 245
12 23,285 5
13 2,328 55
14 13,802 4
15 17,994 152
16 569 71



000–0–00–000000–0 14-Haupt-c14 SHB0024-Haupt (Typeset by SPi, Delhi) page 275 of 296 October 7, 2008 16:31

14 Genetic Algorithms in Air Quality 275

Fig. 14.3 Source apportionment for a single source (source 1) for the Cache Valley, UT configuration

The first validation example had only one source
factor of 1.0 so only a single source contributed to
the observed concentration. The source chosen was
1.5 km west of the receptor, a direction with no other
sources. As seen in Fig. 14.3, the algorithm identified
the correct source in less than 10,000 iterations. Some
spurious contribution was attributed to source 4; but
since that source is 25 km away, its contribution would
be well dispersed by the time it reached the receptor.
The normalized residual for this run was quite small:
0.0047604.

A second example was intentionally made more dif-
ficult to solve by setting an apportionment factor of 1.0
for three sources while the rest were assigned 0.0. The
apportionment factors were optimized by the coupled
model using 64 meteorological periods and 10,000
iterations. The results appear in Fig. 14.4. The three
sources that were given 1.0s were well captured. An
additional four sources were spuriously assigned large
apportionment factors, in spite of the relatively small
residual of 0.070144. Three of those, sources 2, 4, and
5, are located 23–25 km away from the receptor. Thus,
their contribution was likely to disperse to a nearly
zero concentration by the time it reached the receptor
using the Gaussian plume model. Their apportionment

factors, when multiplied by near zero, have little
impact on the residual and are meaningless. Source 12
is 8.5 km away and therefore more likely to contribute,
but it is in the same direction as the three sources that
are making a real contribution. The lack of directional
distinction makes it difficult to correctly identify only
those sources that contribute to receptor pollutant con-
centration with the current configuration of the cou-
pled model. The problem is depicted in Fig. 14.5. If a
source that is 2 km from the receptor is much stronger
than one that is only 1 km from the receptor, either
could produce an equivalent concentration.

14.3.3 Model Sensitivity to Cost
Function Formulation

Would a different formulation of the cost function
produce different results? A cost function with a
higher power on the difference than the root mean
square (RMS) value in (14.2) would weight the outliers
more heavily. To evaluate how this might impact the
results, we look at alternate formulations for the cost
function.
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Fig. 14.4 Source apportionment for three sources (sources 7, 10, and 14) for the Logan, UT configuration

Case a: Strong
source 2 km from
receptor

Wind

Wind

Case b: Weaker
source 1 km from
receptor

Fig. 14.5 Schematic of plume from two different sources at the same wind angle
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Table 14.3 Evaluation of
different cost function
formulations for a circular
geometry

Case & Metric RMS SqRoot AbsVal FourthRoot EighthRoot RMSAbs

RMS 0.050919 0.048137 0.044658 0.056269 0.063798 0.049764
Max 1.02305 1.02045 1.02457 1.02503 1.0352 1.02443
Min 0.97063 0.9727 0.97757 0.97215 0.97195 0.97546
In 0.01 10.5 11.2 11.3 8.0 9.8 11.2

The normalization method makes no difference
since the GA mating function used here is based on
ranking rather than absolute difference. The formula-
tion of the cost function’s numerator, however, could
make a difference in the results or in the convergence
properties of the model. We showed in Fig. 14.2 that,
for this problem, the more GA iterations performed,
the lower the cost function. We choose to lump accu-
racy and convergence properties into a single issue by
holding the number of iterations in each GA coupled
model run to 20,000.

Five additional cost function formulations are con-
sidered:

SqRoot =

(
M∑

m=1

√|C · S − R|
)2

(
M∑

m=1

√|R|
)2 (14.5)

AbsVal =

M∑
m=1

|C · S − R|
M∑

m=1
|R|

(14.6)

FourthRoot =
4

√
M∑

m=1
(C · S − R)4

4

√
M∑

m=1
(R)4

(14.7)

EighthRoot =
8

√
M∑

m=1
(C · S − R)8

8

√
M∑

m=1
(R)8

(14.8)

RMSAbs = RMS + AbsVal (14.9)

Table 14.3 summarizes the results for the circular
geometry with all sources assigned a calibration factor
of 1.0. The results reported there are for the average of
six coupled model runs of 20,000 iterations each. The
four different metrics used are:

1. RMS: The RMS difference from the calibration fac-
tor that was used to create the synthetic data. We
hope to see this minimized.

2. Max: The maximum calibration factor for each
run, averaged over the six runs. We hope to see
this as close to the actual as possible (1.0 for the
circle).

3. Min: The minimum calibration factor each run,
averaged over the six runs. We again hope to see
this as close to the actual (1.0) as possible.

4. In 0.01: The number of sources calibrated within
1% of actual. A higher value for this metric implies
a better result. For the circle case that includes 0.0
apportionment factors, this means within 1% of 1.0.

As seen in the table, there is no clear winner among
the cost functions, although the higher power cost
functions perform somewhat worse than the SqRoot,
AbsVal, RMS, and RMSAbs. For the circular con-
figuration, the AbsVal function works best, closely
followed by the SqRoot. For a different geometry
the results were somewhat different, but performance
differences between the cost functions are relatively
small.

A few runs of the GA coupled model with 200,000
iterations for the RMS and AbsVal cost functions con-
firmed the results of Table 14.3. Thus, although genetic
algorithm results can be sensitive to formulation of
the cost function, for this problem, any of the cost
functions described above will give similar results. We
conclude that our original choice of an RMS cost func-
tion was reasonable and easy to compare with other
methods that are based on RMS differences (Haupt
et al. 2006).

14.3.4 Tuning the GA to the Problem

We saw that for both a simple geometry and for a
more realistic geometry, the coupled model is able to
correctly apportion concentrations to sources in spite
of a few spurious apportionments for the most difficult
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Fig. 14.6 The number of cost function evaluations required to reach a tolerance of 0.01 as a function of population size and
mutation rate, averaged over 10 runs

situations. Now we wish to analyze which combina-
tions of GA parameters optimize model performance.
When we move to more refined dispersion models
(Section 14.6 below), we expect the computation of
the dispersion matrix to be computationally expensive,
so we wish to determine the best combinations of pop-
ulation size and mutation rate to minimize the number
of calls to the cost function, similar to the analysis
given in Chapter 5. We noted that for this problem, the
GA convergence depends on the number of iterations.
Since the solution is known for these identical twin
experiments, we can stop the GA when the error has
reached a pre-specified tolerance level, in this case
0.01. We wish to explore a wide range of parameter
combinations. The goal is to minimize the number of
cost function evaluations required to reach this level
in an effort to minimize the CPU time. Mutation rates
examined are 0.001, 0.005, 0.01, 0.05, 0.075, 0.1,
0.125, 0.15, 0.175, 0.2, 0., and 0.25. Population sizes
are 4, 8, 12, 16, 20, 32, 40, 48, 56, 64, 72, 80, 88, and
96. We run the GA for each combination of population
size and mutation rate and count the total number of
calls to the cost function to achieve convergence (pop-
ulation size times the number of generations, reduced
by the number of members that have not changed from

one generation to the next). Since the convergence
of the GA progresses differently with each random
initialization, we average ten separate runs for each
mutation rate/population size combination to produce
the results in Fig. 14.6. It shows that for this problem,
there are various ways to combine population size
with mutation rate to produce fast convergence. One
way is to use relatively small mutation rates (order of
0.01). The other is to use moderately small population
sizes (8–20), even with larger mutation rates (0.15 to
0.2) such as we did in the previous runs. The lowest
average number of function evaluations occurred when
the mutation rate was 0.05 and the population size
was 12. Such a configuration for running the GA is
sometimes referred to as a micro-GA due the small
population size. These results are similar to those of
Chapter 5. Parameter ranges such as these tend to
emphasize the impact of mutation and are preferred
when there are multiple closely spaced local min-
ima. When such parameter combinations are used, the
emphasis is on finding the single best solution rather
than evolving the entire population. This is why the
mean residual in Fig. 14.2 remained relatively constant
in spite of the rapid decrease for the best solution. Note
that using elitism, which maintains the best individual
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in the population unchanged, is essential for such
applications.

The analysis presented here has assumed a serial
computer. The analysis would be quite different if a
large number of parallel processors were available and
the GA was coded to take advantage of them as dis-
cussed in Chapter 5.

14.4 Statistical Analysis of Model
Performance

14.4.1 The Monte Carlo Approach

This statistical analysis revisits the circular geometry
consisting of a single receptor surrounded by 16 poten-
tial sources at a radius of 500 m. As discussed above, a
single run of a GA coupled model is typically sufficient
to estimate the actual calibration factor to within two
significant digits for this case.

To analyze confidence in the ability of the GA-
optimized coupled model methodology to match a
known solution, a Monte Carlo technique is used.
The GA is run on the same problem 100 times with

different initial random seeds. From the resulting sam-
ple of solutions we are able to estimate the mean,
median, and error bars. Figure 14.7 depicts the mean
calibration factor at each source as found by the GA
along with the corresponding error bars. The inner
error bars represent one standard deviation. The outer
bars denote the 90% confidence interval; that is, 5%
of the solutions are above the highest bar and 5% are
below the lowest. We see that we are 90% confident
that solutions range between 0.97 and 1.03 for each
source, closely bracketing the true solution of 1.0.
The mean of the 100 cases ranges between 0.9976 for
source number 1 through 1.003 for source 11. Thus,
the mean value computed from 100 runs is even more
reliable than the already good solutions from a sin-
gle GA coupled model run. Therefore, a single GA-
optimized coupled model run is accurate to within 3%
and the mean of 100 runs accurate to 0.3%.

Our prior work confirmed that these results are
not unique to this prescribed configuration – either
the specific calibration factors or the geometry (Haupt
et al. 2006). When a spiral geometry, ranging in
source-receptor distance of 250–1,750 m, was used
instead, the results showed that the GA coupled model
can correctly apportion the sources and that using the
mean of the 100 Monte Carlo runs reduced the error.
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denote the 90% confidence
level
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Fig. 14.8 Error bars from
100 Monte Carlo runs of the
GA coupled model for the
circular source configuration
with correct apportionment
factors all set to 1. White
noise is added with amplitude
equal to that of the signal:
(a) Additive noise
and (b) multiplicative noise.
The inner solid black line
marked by diamonds is the
mean solution. Error lines
denote one standard deviation
(long dash marked by crosses)
and 90% confidence level
(short dashes marked by
squares)

14.4.2 Analysis Including Noise

Real-world data do not have the pure signal avail-
able in our synthetically constructed data. Typical sit-
uations involve errors and uncertainties in both the
emission and receptor data as well as the meteorolog-
ical data. In addition, there is an inherent mismatch
between the ensemble average nature of the model

predictions and the single realizations yielded by the
monitor measurements. In our analysis here, we simu-
late the aggregate uncertainty by incorporating white
noise into the data, and then using the GA coupled
model to optimize the calibration factor. No assump-
tion is made of the source of this noise. It represents
errors in both the monitored data and in the modeling
process (ranging from uncertainty in source strength,
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Fig. 14.9 Error bars from
100 Monte Carlo runs of the
GA coupled model for the
circular source configuration
with correct apportionment
factors all set to 1. White
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the mean solution. Error lines
denote one standard deviation
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meteorological data, numerical error, and model-
ing simplifications, including the ensemble averaging
assumption).

We again consider the circular geometry (see Sec-
tion 14.3.1) with meteorological data representing 16
points of the wind rose. The Monte Carlo analysis uses
assumed source calibration factors of all ones to create
the receptor data. In this case, however, two separate
methods of including white noise with an amplitude

equal to that of the signal are used to simulate errors
and uncertainties in the modeling process. First, white
noise with mean amplitude of 1.0 is added to the
dispersion model when creating the synthetic receptor
data. The second analysis uses white noise to multiply
the signal. Thus, the receptor data that goes into Rmr in
equation (14.1) includes as much noise as signal. The
GA coupled model is then used to compute the optimal
calibration factors.
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Figure 14.8 shows the mean, standard deviation,
and 90% confidence interval for 100 runs of the GA
coupled model. Figure 14.8a depicts additive noise
while Fig. 14.8b depicts the multiplicative noise. In
both cases, the curves depicting the error span a much
wider range than for the case with no noise shown in
Fig. 14.7. Aggregating the full 1,600 source cases (16
sources all with actual apportionment value of 1.0 over
100 runs) is equivalent to having 1,600 runs for a sin-
gle source. Such an aggregation produces a mean value
of 1.0066 for additive noise, quite close to the actual
value of 1.0. The mean standard deviation of the aggre-
gated 16 sources is 0.02595, an order of magnitude
larger than for the case without noise (0.0015109) but
still sufficiently small to provide confidence in model
performance with imperfect information. Figure 14.8b
indicates that the spread of the standard deviation and
90% confidence interval curves is greater for the mul-
tiplicative noise than for additive noise. In this case,
the standard deviation for the multiplicative noise is
0.07449, which is greater because variability is pro-
portional to the data itself.

Figure 14.9 depicts the performance of the coupled
model over a range of signal to noise ratios (SNRs) for
the additive and multiplicative noise cases. This plot
aggregates the data over all 16 sources. We see that as
long as log(SNR) > 1, the solutions are quite close to
the actual solution of 1.0 and the scatter is quite small.
As noise becomes greater than the signal (log(SNR)
< 0), however, the computed solution diverges from
the actual and the scatter becomes wider. Note that
the mean of the solutions is still 1.0. At log(SNR) =
0 the noise equals the signal and we have the case pre-
sented in Fig. 14.8 above. As expected, when the noise
becomes much larger than the signal, as on the left side
of the plot, the coupled model no longer reconstructs
the solution reliably. In fact, the mean solution tends
to 2.5, which is the center of the range allowed in
the optimization routine. The standard deviation and
90% confidence lines approach the limits of the range.
For multiplicative noise, the variability increases with
decrease in SNR more rapidly than for the additive
noise.

Haupt et al. (2006) report results for SNR analysis
of other source configurations. The results described
above generally hold and can be summarized as: (1)
when multiple runs are averaged, confidence in the
results is higher and (2) the GA coupled model run in
Monte Carlo mode can apportion the sources correctly

in the presence of noise of the same order of magnitude
as the signal.

14.5 Tuning Meteorological Data

Accurate transport and dispersion modeling of pollu-
tant releases requires accurate meteorological data – in
particular, an accurate wind field. For most dispersion
modeling applications, we don’t have the meteorolog-
ical fields at the preferred resolution, making precise
computation of atmospheric dispersion quite difficult.
Moreover, available wind data are not always accurate
or representative. Thus, accurate source characteriza-
tion can be difficult.

Here we present a new GA-based method that
addresses the uncertainty associated with meteorolog-
ical data by using a GA to tune the surface wind
direction in addition to pollutant source characteristics.
This method is an extension of the GA-coupled model
described in Section 14.2. This extended method has
an advantage over the original GA-coupled model in
that it is far less sensitive to the uncertainty in meteo-
rological data.

14.5.1 Architecture

Because this problem is different than the sim-
pler source characterization problem presented earlier,
changes must be made in the model architecture. As
discussed in Section 14.2, the coupled model consid-
ers an array of candidate source locations, and the
GA optimizes the strength of each candidate source
by comparing dispersion model predictions with mon-
itored receptor data. The source(s) with non-zero
strengths are then assumed to be the actual emitters
of the pollutant. In the method presented in this sec-
tion, however, potential source locations are not known
a priori. Neither is the wind direction. Instead, the
source location comprises two of the GA-tunable para-
meters (x and y location) so that the model is free
to choose any location within the domain. The wind
direction can be any number between 0◦ and 360◦.
Thus, the performance of the method is not depen-
dent on the appropriateness of a pre-defined candidate
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source array or the presumed wind direction. Those are
now free parameters, as is the source strength.

14.5.1.1 Forward Model

The disadvantage of this new architecture is that
because the source locations and wind directions
change as the GA evolves the population, the model
must recalculate the pollutant dispersion from all can-
didate solutions at each iteration, thereby increasing
the required CPU time. We use the Gaussian plume
model (14.3) to test the method. This method uses
concentration forecasts for each trial solution created
using equation (14.3), receptor data for an arbitrary
number of sites, and the GA to find the combination of
source location, strength, and surface wind direction
that provides the best match between the monitored
receptor data and the expected concentrations.

14.5.1.2 Cost Function

The cost function used by the GA to evaluate each
candidate solution is the root mean square difference
between concentrations predicted by (14.2) and recep-
tor data values, summed over all receptors. The cost
function is similar to (14.2), except for changes in
notation associated with the context of the current
problem. Specifically, the cost function is defined as:

Cost =

√
TR∑

r=1

(
log10 (aCr + 1) − log10 (a Rr + 1)

)2

√
TR∑

r=1

(
log10 (a Rr + 1)

)2

(14.10)

where Cr is downwind concentration at receptor r as
calculated by (14.3), Rr is the receptor data value at
receptor r , TR is the total number of receptors, and a
is a constant. It is necessary to add 1.0 to the concentra-
tions because the logarithm of zero is undefined. Doing
this has the beneficial side effect of minimizing the
contribution from the weakest concentrations values
whose magnitudes are many orders of magnitude less
than 1.0. The data must therefore be scaled since many
of the Cr and Rr values are several orders of magnitude
less than 1.0. The scaling factor, a, depends on the sum

of all data values over all receptors:

a = max

⎛

⎜⎜⎜⎝
1

TR∑
r=1

Rr

, 1

⎞

⎟⎟⎟⎠ (14.11)

If the receptor data sums to a value greater than 1.0,
then a is 1.0. Otherwise, a is greater than 1.0, so that
at least some values are comparable in magnitude to
1.0. Scaling the concentration values allows the cost
function to retain sensitivity to signal while still reduc-
ing sensitivity to noise via the logarithm.

14.5.1.3 Mating Scheme

In prior sections, the GA used a continuous version
of single point crossover discussed in Chapter 5. For
this reformulated problem, we obtain better GA per-
formance by using a uniform crossover mating scheme
that blends all parameters rather than just a single
parameter. The uniform crossover method improves
the average skill score (see Appendix for the definition
of skill scores – lower skill scores are better) across six
runs from 0.613 to 0.061, a remarkable improvement.

The superiority of this uniform crossover scheme
to single-point crossover used in the models is most
likely due to correlations between the effects of differ-
ent parameters, specifically the dependence of plume
structure on both wind direction and source location.
Each wind direction has a unique optimal source loca-
tion resulting in the best match to the receptor data. If
the GA finds this location for a particular wind direc-
tion, and the wind direction is modified, the location is
no longer optimal. Single-point crossover tends to con-
verge to one of these “optimal” locations while failing
to progressively improve the wind direction. Blending
all parameters ensures that both the wind direction and
source location are modified simultaneously, allowing
both parameters to be progressively improved through
the GA and decreasing the likelihood of premature
convergence. Because of the correlations described
above, the changes resulting from simultaneous modi-
fication of the wind direction and source location must
complement each other. In a general sense, effects of
parameters that are highly correlated in other applica-
tions are expected to exhibit similar behavior here.
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14.5.1.4 GA Parameters

With the all-blending mating scheme, we have chosen
to alter the GA parameters toward larger population
sizes and smaller mutation rates. With a population
size of 1,200, the GA can find the solution in a single
run with 100 iterations or less. Larger population sizes
than 1,200 and longer runs than 100 iterations result
in slightly better performance, but the improvement is
not significant when compared to the extra computing
time. Smaller population sizes often converged too
quickly to an incorrect solution, even when using a
high mutation rate. Here, we use a mutation rate of
0.01 and a crossover rate of 0.5 for this problem of
finding source location and wind direction in addition
to source strength.

14.5.2 Demonstration

To demonstrate and validate the method of tuning
meteorological data and source characteristics, we use
synthetic data produced by (14.3) as receptor data.
We place the receptors on a grid surrounding a single
source with 2,000 m separating each receptor, and the
source located in the center of the receptor domain
at the point defined as the origin (0,0). To determine
the dependence of model performance on the quan-
tity of receptor data available, model runs are per-
formed using 2-by-2, 4-by-4, 8-by-8, 16-by-16, and
32-by-32 grids of receptors. Synthetic data is produced
for each receptor configuration for two different wind
directions, 180◦ and 225◦. These two wind directions
represent opposite scenarios: a wind direction of 180◦
places the plume centerline directly between receptors,
and a wind direction of 225◦ places the plume center-
line directly over the receptors located along the x = y

x

x

x

x

x

x

x

x

x

x

x
2000m
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Fig. 14.10 The synthetic setup for a 4-by-4 grid of receptors.
The black dot in the center represents the source and the X’s
are the receptors, each separated by 2,000 m. The dashed lines
represent the plume centerline for the two wind directions con-
sidered in the synthetic data sets, and the shaded area represents
a sample plume for the 225◦ wind direction

diagonal in the northeast quadrant of the domain. Fig-
ure 14.10 shows the source and receptor setup for a 4-
by-4 grid of receptors, where the black dot in the center
is the source, the Xs are the receptors, and the dashed
lines are the plume centerlines for the 180◦ and 225◦
wind directions. Model runs are performed for these
five receptor configurations and two wind directions.

Table 14.4 shows the results for six different setups
(receptor grids of 8-by-8, 16-by-16, and 32-by-32, for
each of two wind directions) using a population size
of 1,200 and 100 iterations. All GA runs produced a
solution close to the actual, and some a tolerance of
0.01◦ in wind direction, 1% of source strength, and
1.0 m in source location. It may be puzzling at first that
one of the 32-by-32 runs returned a worse result than

Table 14.4 GA-produced wind directions, source strengths,
source locations, and skill scores for six synthetic configurations
using a population size of 1,200, mutation rate of 0.01, after 100

iterations, for a single GA run. The correct solution is θ = (180◦
or 225◦), strength = 1.00, and (x, y) = (0, 0). Appendix describe
skill scores

Configuration θ Strength (x, y) (in m) Skill score

8-by-8, θ = 180◦ 184.12◦ 2.96 −417, 1,346 1.4581
8-by-8, θ = 225◦ 223.95◦ 1.06 −26, − 56 0.1952

16-by-16, θ = 180◦ 180.01◦ 1.00 −1, 0 0.0029
16-by-16, θ = 225◦ 225.01◦ 1.00 −1, 1 0.0019
32-by-32, θ = 180◦ 180.00◦ 1.00 0, 0 0.0000
32-by-32, θ = 225◦ 220.27◦ 1.12 −123, 519 0.6870
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either of the 16-by-16 runs, but this occurred because
each GA run begins with a random initialization, and
the results in Table 14.4 reflect a single “test” run, not
an average over many runs. The 32-by-32, 225◦ test
run was just not as fortunate in its initialization. In
general, runs with a 32-by-32 receptor grid perform at
least as well as runs with fewer receptors.

14.5.2.1 Refinement

The solution after the 100th GA iteration is often
close to, but not exactly at the global minimum of
the cost function. Increasing the number of iterations
above 100 does not greatly improve the solution for
this reformulated problem. Therefore, we investigate
whether a hybrid GA incorporating a traditional gra-
dient descent method such as the Nelder-Mead Down-
hill Simplex NMDS method (Nelder and Mead 1965)
could further improve the solution more efficiently
than a GA does after the 100th iteration. The NMDS
starts from a previously chosen point on a multi-
dimensional surface (i.e. the cost function) and finds a
local minimum in the vicinity of the starting point. For
our application, we use the best GA-produced solution
after 100 iterations as the starting point for the NMDS
method. Gradient descent methods such as the NMDS
are ineffective alone, however, as the it can only find
the global minimum if the first guess is in the correct
valley.

The NMDS method was run using each solution
from Table 14.4. Each time, the NMDS returned a
solution within our close tolerance limits, even for GA-
generated starting points that were not “close enough”.
This improvement suggests that even though some of
the specific values in the solutions from Table 14.4
are not within the tolerances, they are within the same
cost function basin as the true solution. Under these
circumstances, the NMDS can be used effectively to
further improve the accuracy of the solution after the
termination of the GA. The procedure as a whole is
often called a hybrid GA, where a GA first is used
to locate the basin of the global minimum of the cost
function, and then the more traditional NMDS method
is used to fine-tune the minimum. This hybrid GA pro-
duces a consistently good solution, better than either
the GA or the NMDS method alone, in less computa-
tion time than the GA alone.

Table 14.5 Number of runs (out of six) that produced a solution
within tolerance for the given combination of population size
and number of iterations. The rows are different population
sizes, and the columns are different numbers of iterations

Iter = 50 Iter = 100 Iter = 150 Iter = 200

Pop = 400 3 4 4 5
Pop = 800 4 4 4 5
Pop = 1,200 5 6 6 6
Pop = 1,600 5 6 6 6

Running the GA beyond the 100th iteration does
continue to improve the solution, but not as efficiently
as the NMDS algorithm. Thus, we wish to run the GA
just long enough to get to a solution that is an in-basin
starting point for the simplex method. To determine
where we should stop the GA, we ran the hybrid GA
using 16 combinations of population size and number
of iterations (each of which is proportional to comput-
ing time) to determine how much computing time is
necessary to obtain an in-basin starting point.

Table 14.5 shows how many of six runs returned a
solution within the tolerance after application of the
NMDS method for each combination of population
size and number of GA iterations. The combination
of population size of 1,200 and 100 iterations was
the most efficient to achieve this level of accuracy for
all six runs made with the least computing time, the
reason we use these values here.

Since the NMDS method is fairly efficient, could
we just randomly generate initial guesses and still con-
verge to the solution? Has the GA added any value?
To answer these questions, we make multiple NMDS
runs originating with random starting points within
the solution domain. Table 14.6 indicates the num-
ber of function calls (a uniform unit of computing
time) required by the GA and the random initialization
NMDS method to find a solution within tolerance. The
results were averaged over two runs for each receptor
and wind direction configuration, for a total of 12 runs.
The number of function calls required in any individ-
ual run using the NMDS varies greatly because the
success of the NMDS method depends on the starting
point, and the total number of function calls required
is simply a function of how long it takes to produce
an in-basin first guess. Because these first guesses are
random in this experiment, it is not surprising that in
some instances, the NMDS method found the solu-
tion faster than the GA. The performance of the GA,
however, is far more consistent than NMDS over the
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Table 14.6 Number of cost function evaluations required to
find the solution for the GA and the Nelder-Mead downhill
simplex, averaged over two runs for each configuration. Each
configuration consists of an n-by-n receptor grid and a wind
direction of either 180◦ or 225◦

GA function Nelder-Mead
Configuration calls function calls

8-by-8, θ = 180◦ 19,200 17,180
8-by-8, θ = 225◦ 1,200 123,225

16-by-16, θ = 180◦ 13,800 60,874
16-by-16, θ = 225◦ 3,600 121,035
32-by-32, θ = 180◦ 10,200 16,996
32-by-32, θ = 225◦ 23,400 133,034

12 runs performed, because it is able to overcome
an unfortunate starting population and find the basin
of the global minimum. Averaged across all six con-
figurations tested, the GA took an average of 11,900
function calls to find a solution within tolerance, while
the NMDS method took an average of 78,725 function
calls. Thus, running the simplex from random starting
points until the solution is found is inefficient com-
pared to the GA, and particularly to the GA-NMDS
hybrid. Moreover, if we did not know the correct
solution a priori, the hybrid GA would assure us of
convergence, particularly with multiple runs while the
NMDS method alone would not.

14.5.2.2 Receptor Grid

How much receptor data is necessary to determine
both wind direction and the source characteristics? The
reason Tables 14.4 and 14.6 do not give results for the
2-by-2 and 4-by-4 receptor grids is that correct solu-
tions could only be found consistently when using at
least an 8-by-8 grid of receptors. For a 2-by-2 receptor
grid, solutions were nearly random. For a 4-by-4 grid,
solutions were somewhat better, but not nearly as good
as the 8-by-8 grid solutions. This result suggests that
a 4-by-4 grid of receptors does not provide enough
receptor data to distinguish the effects of wind direc-
tion from those of source location and source strength.
It does not imply that more than 16 total receptors are
needed, as only two or three of the receptors in a 4-by-
4 grid provide useful data (the others are outside the
plume or nearly so). Because there are four parameters
to be tuned (wind direction, source strength, and two
for source location), having fewer than four data values
does not provide enough information to resolve all the

unknowns. In contrast, for an 8-by-8 grid, the number
of receptors inside the plume exceeds the number of
unknowns, so the hybrid GA is successful.

14.5.2.3 Noisy Observations

The success of the synthetic data runs is partly due
to the exact match between the synthetic receptor
data and the expected concentrations calculated by
(14.3). This was also the case with synthetic data in
Section 14.3 with the GA-coupled model. Therefore,
we again contaminate our synthetic data with white
noise to simulate the variability and errors present in
monitored receptor data in order to gauge our new
hybrid GA’s performance when faced with inexact
receptor data.

Twelve model runs are performed for each combi-
nation of receptor grid size and signal-to-noise ratio
(SNR). Six SNRs are tested: infinity (no noise), 100,
10, 1, 0.1, and 0.01. Analyses are made for wind direc-
tions of both 180◦ and 225◦. It is expected that runs
with more receptors are less sensitive to noise than
runs with fewer receptors. While an 8-by-8 receptor
grid provides sufficient information to produce the
solution with no noise, it may not provide enough
information when degraded by noise.

Figure 14.11 shows median skill scores across
twelve runs for each combination of SNR and n-by-
n receptor grid. Recall that lower skill scores denote
better solutions as described in Appendix. The median
is used instead of the mean, because the median is
less sensitive to outliers and is more indicative of
what to expect in a single run. Figure 14.11 shows
the results for multiplicative noise; results for additive
noise are similar. The figure shows that the ability
of the model to compute the correct solution is not
significantly affected as long as the magnitude of the
signal is greater than the magnitude of the noise (i.e.
SNR > 1). For SNR = 1 where the signal and noise are
of equal magnitude, the model performs slightly better
with more data beyond an 8-by-8 grid. Performance
at this point has deteriorated, however, as indicated
by the sharp skill score gradient between SNR = 10
and SNR = 1. For runs with more noise than signal
(SNR < 1), the GA is unable to compute the solution
to any acceptable degree of accuracy.

Recall that in the synthetic data runs with no
noise, the NMDS algorithm can further improve the
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Fig. 14.11 Contour plot of
median skill score for various
n-by-n receptor grids and
signal-to-noise ratios (SNRs)
for multiplicative noise. The
median skill scores are taken
over 12 runs. Lower skill
scores denote better solutions

solution found after the 100th GA iteration. In the runs
with noise, however, application of the NMDS algo-
rithm after the 100th GA iteration did not appreciably
improve the solution. The average skill score of the
GA-produced solutions across all SNRs and receptor
grids was 1.578, while the average skill score after
the application of the Nelder-Mead downhill simplex
was 1.582, which is slightly worse. This result is not
surprising, because after the receptor data is contam-
inated with noise, the solution corresponding to the
lowest cost function value is usually not the correct
solution. While the NMDS method may find a lower
cost function value than the GA, the objective skill
score does not consider the cost function value, only
the specific values of each parameter.

14.5.3 A Parting Look

To help cope with the uncertainty in meteorological
data, we have described a method that tunes wind
direction and contaminant source characterization

simultaneously by using a GA. The model works
extremely well for synthetic data given a grid of at
least 8-by-8 receptors. A smaller set of receptors, such
as a 4-by-4 grid, does not provide enough data to
distinguish wind direction from source characteristics.
Using synthetic data contaminated with white noise,
as long as the magnitude of the noise does not exceed
the magnitude of the signal, the GA can still find the
wind direction, source location, and source strength
fairly well. Increasing the quantity of available data
increases the amount of noise the GA can cope with
in determining the approximate solution.

For demonstration purposes, the meteorological
tuning experiments presented here use a Gaussian
plume equation to calculate expected downwind con-
centrations in order to reduce the computational com-
plexity. For a real data application, a more sophisti-
cated dispersion model can provide a closer match to
the receptor data than the Gaussian plume equation.
The current model configuration, however, requires a
new set of dispersion calculations in each GA iteration,
so the direct use of a more complex model would
impose substantial computational cost.
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14.6 Incorporating Realism: SCIPUFF
and Field Test Data

We have shown that the GA-coupled model can deter-
mine the source characteristics for pollutant emissions
using synthetic data produced by the Gaussian plume
equation. We now wish to use the coupled model as
a source characterization tool in the context of an
operational dispersion model and real data. Thus, we
replace the Gaussian plume equation (14.3) with a
more sophisticated dispersion model, SCIPUFF. This
new coupled model can then be tested with real con-
taminant data. If successful, such a coupled model
could be useful in determining the source character-
istics for those hazardous release events where mon-
itored contaminant concentrations are available. For
this section, we also assume that the meteorological
data are known. The general architecture of the GA
coupled model of this section returns to that described
in Section 14.2.

14.6.1 Adding SCIPUFF as the
Dispersion Model

The primary upgrade to the GA coupled model of
Section 14.2 is the replacement of the Gaussian
plume equation (14.3) with the much more sophisti-
cated SCIPUFF dispersion model (Sykes et al. 1998).
As the forward component of the coupled model,
SCIPUFF calculates the contributions from each
potential source. These contributions are represented
by matrix C in (14.1).

SCIPUFF, the Second-order Closure Integrated
PUFF model, is an ensemble average transport and
dispersion model that computes the field of expected
concentrations resulting from one or more sources
at multiple times. The model solves the transport
equations using a second-order closure scheme, and
treats releases as a collection of Gaussian puffs (Sykes
et al. 1986; Sykes and Gabruk 1997). SCIPUFF can
be used for dispersion applications requiring expected
concentrations of source material. SCIPUFF is a suit-
able choice for insertion in our GA coupled model
because of its ability to compute expected concen-
trations over predefined time periods for any number
of sources, and the ease in integrating its output into
matrix C of (14.1).

SCIPUFF is run once for each potential source con-
sidered by the coupled model. The output from each
SCIPUFF run corresponds to a particular column in
the C matrix. This use of SCIPUFF does not impose
substantial computational cost, because the SCIPUFF
runs only need to be executed once prior to the GA
initialization and not in every GA iteration.

The parameters of the GA return to those of Sec-
tion 14.2, with a population size of 8, mutation rate of
0.2, crossover rate of 0.5, and the same cost function
(14.2).

14.6.1.1 Validation with SCIPUFF

To gauge the impact of upgrading the GA coupled
model’s forward component, the validation technique
performed in Section 14.4 using the Gaussian plume
equation is repeated for the coupled model incorporat-
ing SCIPUFF. The validation consists of model runs
using synthetic data produced by SCIPUFF. Subse-
quent tests, including validation with real data, can
then be performed with confidence that any issues
encountered are not related to incorporating SCIPUFF
into the coupled model.

For the validation phase, SCIPUFF was used to
create synthetic receptor data, representing matrix
R in (14.1). The synthetic receptor data are instan-
taneous contaminant concentrations at a previously
defined receptor location 5 m above the surface, with
each time-dependent observation corresponding to one
value of R. Sets of synthetic data corresponding to
particular source configurations were created using a
synthetic two-dimensional wind field using the same
circular geometry used in Section 14.3.1, with 32
independent meteorological periods (here, hours) and
16 potential sources. The validation runs also use
the same synthetic meteorological data as in Sec-
tion 14.3.1. The validation uses a 100-run Monte Carlo
simulation for each set of synthetic data as done in Sec-
tion 14.4. Three source configurations were analyzed
with similar results; this section focuses on a spiral
configuration with varying source strength (S = [0, 1,
2, 3, . . . , 0, 1, 2, 3]T ). Allen et al. (2006) provides
results for the other source configurations along with
more detailed analysis.

Table 14.7 shows the means and standard deviations
for 4 of the 16 sources, each corresponding to a differ-
ent S value (0, 1, 2, or 3). All of the means are very
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Table 14.7 Means and standard deviations for four sources in
the spiral configuration setup across 100 Monte Carlo runs

Source 1 Source 6 Source 11 Source 16

Calibration factor 0 1 2 3
Mean 0.0142 0.9996 2.0004 2.9998
Std Dev 0.0145 0.0142 0.0193 0.0167

close to the known solutions (with the slight exception
of source 1), and all of the standard deviations are less
than 0.02. The mean for source 1 is further from the
solution than for the other sources because the GA
imposes a lower bound of 0 on the solutions. Overall,
the GA does an exceptional job of approaching the
solution, not just in terms of the mean across all 100
Monte Carlo runs, but also for single runs, as shown
by the small values of the standard deviations.

As in Section 14.4, additional Monte Carlo sim-
ulations were run using synthetic data contaminated
with noise. The noise simulates the impact of impre-
cise monitoring data, errors in the meteorological data,
and the disparity between the ensemble average nature
of the model as compared to data from a specific

realization. Figure 14.12 summarizes the results for the
spiral configuration using multiplicative noise. The fig-
ure shows the GA-computed S for 4 of the 16 sources
as a function of the logarithm of the signal-to-noise
ratio. These four sources are representative of each of
the four different solutions. Dashed error bars signify
plus and minus one standard deviation from the mean,
and the dotted error bars represent the 90% confidence
interval. A detailed discussion of the results can be
found in Allen et al. (2007).

The graphs and results from other source config-
urations (not shown) are quite similar. This suggests
that the choice of dispersion model used within the
coupled model does not affect the performance of the
GA in obtaining the optimal solution, allowing mod-
els of increasing complexity to be used in the cou-
pled model with no performance-related side effects.
Computing time depends more on the GA than the
dispersion model, because the dispersion model is only
run once for each source, further supporting the use of
a dispersion model of any level of complexity within
the coupled model. Of course, this does not mean

Fig. 14.12 Calibration factor as a function of the signal-to-
noise ratio (SNR) for the spiral source configuration using multi-
plicative noise. Four sources with different S values are shown:

Source 1 (S = 0), Source 6 (S = 1), Source 11 (S = 2), and
Source 16 (S = 3). Mean (solid), standard deviation (dashed),
and 90% confidence interval (dotted) are shown
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incorporating SCIPUFF into the coupled model does
not upgrade the performance in a general sense, but
only that it does not increase the programming com-
plexity or hinder the performance of the GA.

14.6.2 Verification with Monitored Data

Now that we have validated the GA coupled model
incorporating SCIPUFF, we can conduct coupled
model runs using real data – specifically, neutrally
buoyant tracer concentration data from the Dipole
Pride 26 (DP26) field tests. These runs are used to
demonstrate the model’s ability to characterize pollu-
tant sources correctly despite the stochastic scatter of
realizations around the forecast ensemble mean.

The DP26 field experiments took place in Novem-
ber 1996 at the Nevada Test Site (Biltoft 1998). The
tests released sulfur hexafluoride (SF6), a passive
tracer, at locations nearby a domain of 90 receptors.
Seventeen different field tests were carried out during
the DP26 experiments. Our study only used data from
14 of these tests due to missing data in the other three
tests. Figure 14.13 shows the test domain and the ori-
entation of sources and receptors. N2, N3, S2, and S3
are the source locations, and the thick black lines show
the approximate receptor locations. Further details on
these field experiments can be found in Biltoft (1998)
and Watson et al. (1998).

Chang et al. (2003) used the DP26 data to vali-
date various dispersion models, including SCIPUFF.
While SCIPUFF performed as well as the other disper-
sion models they tested, about 50–60% of SCIPUFF-
predicted concentrations came within a factor of two
of the observations. Most large errors occurred when
the modeled puff missed the receptors altogether due
to errors in the wind field. To alleviate the effects of
these large errors and other issues associated with real
data, several changes need to be made to the coupled
model architecture.

In order to use data from all 90 receptors, the C
and R matrices in (14.1) are expanded so that r > 1.
Because the purpose of the GA-coupled model is to
find a single source apportionment vector, S providing
the best fit across all receptors, the calibration vector
S remains a one dimensional vector. If the model
matches the data perfectly, a single S vector would be
all 1.0s.
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Fig. 14.13 Dipole Pride 26 test domain as represented in cou-
pled model. N2, N3, S2, and S3 are the emission source loca-
tions. The thick black lines represent the approximate loca-
tions of the receptors (30 along each line). The thin black
lines represent terrain contours, corresponding to heights of
1,000–1,519 m. Source: Modeled after similar figures in
Biltoft (1998) and Chang et al. (2003).

Two modifications also must be made to the cost
function (14.2) – due to the large errors in contaminant
magnitude often found in real data applications. First,
the cost function incorporates the natural logarithm of
the squares of differences as in Section 14.5.

RMS =
90∑

r=1

√
M∑

m=1

(
log10 (Cmnr · Sn + 1) − log10 (Rmr + 1)

)2

90∑
r=1

√
M∑

m=1

(
log10 (Rmr + 1)

)2

(14.12)

Second, it is necessary to add 1.0 to the concen-
tration values before taking the logarithm because
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the logarithm of zero is undefined. For this appli-
cation, the concentration values are typically several
orders of magnitude greater than 1.0, so the values
are not dwarfed. Section 14.5 discusses a scheme for
applications where most concentration values are less
than 1.0.

Allen et al. (2007) shows that the logarithmic cost
function (14.12) is more effective in determining the
source characteristics than the linear cost function
(14.2), particularly for finding the source location and
emission time of an instantaneous release. This loga-
rithmic variable transformation acts to ameliorate the
order of magnitude differences that often arise in con-
centration data. This behavior is desired because the
primary issue in source identification is not strictly
the magnitude, but rather the non-zero nature of each
source’s contribution (i.e. whether or not a source’s
puff passes over a particular receptor at all). For exam-
ple, if the receptor data value is 200 parts per tril-
lion (ppt), but the model’s predicted concentration is
2,000 ppt, a logarithmic cost function rates the value
of 2,000 ppt more highly than a value near 0.0 ppt.

Haupt et al. (2006) and Section 14.3.3 above show
that the RMS cost function produced the most effi-
cient convergence. Therefore, all cost functions con-
sidered here involve some form of a squared differ-
ence. The two normalization schemes discussed here
affect model performance, but the specific normaliza-
tion values used are arbitrary, because the GA mating
mechanism is based on ranking rather than absolute
difference.

One more issue with real data applications such as
DP2 is that it is difficult to characterize non-emitting
sources whose potential plumes disperse completely
outside the receptor domain. For instance, some poten-
tial source may be downwind of the receptors. We
deal with this issue by introducing a scale factor that
adjusts each source’s maximum allowed magnitude.
This scale factor sums each column in the C matrix
representing the pollutant contribution of each source
n, and normalizes that sum by the maximum contri-
bution from any source to produce a number ranging
from 0.0 to 1.0.

scale(n) =

90∑
r=1

M∑
m=1

Cmnr

max

(
90∑

r=1

M∑
m=1

Cmnr

) (14.13)

The scale factor (14.13) is then multiplied by a prede-
fined upper limit to give the maximum source strength
allowed by the GA for each source. Sources that can-
not emit into the domain have scale factors of 0.0,
forcing the GA to limit these sources’ Sn values to
0.0. This method does not assume any prior knowl-
edge regarding which sources are potential emitters,
but does provide objective estimates of each source’s
potential contribution to the domain. This process
eliminates the 50% of the candidate sources that are
downwind of the receptor for the Dipole Pride data
set.

A possible side effect of using the scale factor is
limiting the maximum allowable strength for the cor-
rect sources below their actual strengths. To account
for this side effect, the range of strengths allowed by
the GA should be set beyond the expected range of
possible strengths. The range should not be made too
large, however, since the run-to-run variability in solu-
tions is proportional to this range. Thus, S values are
set to range from 0 to 10, increased beyond the original
range of 0 to 5.

Several initial runs were made with the GA cou-
pled model using the DP26 data and these coupled
model modifications. The goal of these runs was to
characterize the emission locations and times (strength
characterization is the focus of subsequent sections).
These runs used the four emission locations (N2,
N3, S2, S3) at two times each, for a total of eight
sources. Sn should be equal to 1.0 at the emitting
sources (one or two sources in each field test), and
0.0 for all non-emitters, if all else is perfect. In other
words, it should detect which source was the actual
emitter for each field. In the initial runs, the correct
source and time of emission were identified 64% of the
time.

14.6.3 Performance Optimization

Now we seek to optimize the performance of the
coupled model with the DP26 data set by perform-
ing various tests, each designed to determine the
impact of different parameters. While the optimiza-
tion is specific to DP26, many of the results can be
applied to the coupled model in general for other data
sets.
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Fig. 14.14 Minimum cost function value as a function of iteration number for the GA (dashed) versus a random search method
(solid), carried out to 20,000 iterations

14.6.3.1 GA vs. Random Search

The first test determines if solving the matrix problem
requires the GA at all. The GA’s performance is com-
pared to the performance of the random search method
in Fig. 14.14, which shows the minimum cost for one
of the DP26 tests, as found by the GA (dashed) and the
random search (solid), averaged over five runs, each
with 20,000 iterations. While the “number of itera-
tions” is specific to the GA, the corresponding comput-
ing time for the random search method is normalized
to be equivalent to the number of GA iterations, so
that the graph provides a fair comparison. The random
search clearly took much longer to find a solution with
a sufficiently low cost function value. In fact, out to
20,000 iterations, the random search never caught up
to the GA while the GA converged to the optimal
solution in about 7,000 iterations. This result shows
that a random search is inefficient, and that a more
sophisticated optimization method such as a GA is
required.

14.6.3.2 Population Sizes and Mutation Rates

Section 14.3.4 presented a sensitivity study on GA
population sizes and mutation rates using synthetic
data and found that two combinations of sizes and rates
were most efficient in converging to the solution: high
population sizes coupled with relatively low muta-
tion rates, and low population sizes coupled with high
mutation rates. To determine if the same conclusion
applies to a real-data application, a similar sensitivity
study is made using the DP26 data set using 5 of the
14 field tests. The goal is to determine which combi-
nation of population size and mutation rate minimizes
the number of cost function evaluations required for
convergence to a correct solution.

Figure 14.15 shows the number of cost function
calls required for 80 combinations of population sizes
and mutation rates, averaged across five runs for each
field test. The optimal mutation rate was 0.15, and
the optimal population size was in the range of 4 to
12, similar to the results in Section 14.3.4. Unlike the
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Fig. 14.15 Contour plot of
average number of cost
function calls versus mutation
rate and population size for
the coupled model. Darker
contours correspond to fewer
cost function calls. The
number of cost function calls
has been normalized by the
natural log for viewing
purposes

case in Section 14.3.4, however, a high population
size coupled with a low mutation rate was not efficient
in finding the solution. A possible reason for this
difference is that these runs were conducted with a
candidate source array of size 8 (N2, N3, S2, and S3
at two times each). The scale factor eliminates four of
the sources, leaving four. With only four significant
GA parameters in the chromosome, mating is less
effective than mutation for finding progressively better
solutions. Therefore, a relatively high mutation rate
coupled with a rather small population size works well
for this specific application.

14.6.3.3 Other Studies and Multi-stage Process

Other sensitivity studies were performed, resulting in
the following conclusions, which are elaborated on in
Allen et al. (2007) and Allen (2006):

• The DP26 data set provides receptor data every
15 min. SCIPUFF can also output values every
15 min; however, the DP26 receptor data are
not instantaneous concentrations, but rather time-
integrated averages. Shortening the output interval

in SCIPUFF to 5 min and then averaging back up to
15 min improves the GA’s performance; shortening
the output interval beyond 5 min did not further
improve solution accuracy.

• It is necessary to include all 90 receptors in the
analysis to have the best solution accuracy. Using
fewer than 90 receptors improves computing time,
but at the expense of less accurate solutions.

• DP26 includes upper-air meteorological data, but
the upper-air data was found to have little effect
on the source characterizations that are based on
surface data only.

• The run-to-run variability in solutions is propor-
tional to the range of values allowed by the GA.
As discussed earlier, this range should be larger
than the range of all possible strengths because of
the scale factor. Because correct sources had scale
factors as low as 0.1 in some instances, the range
of values allowed by the GA should be an order
of magnitude larger than the range of presupposed
possible strengths.

• In a typical model run, the source strength is under-
estimated because the GA attributes small amounts
of pollutant to non-emitting sources, thus decreas-
ing the calculated strength at the correct source.
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Fig. 14.16 Illustration of the steps in the multi-stage process for source characterization

A more accurate source strength is obtained in a
model run by including only the correct source(s)
in the candidate source array, thus forcing the GA to
attribute all pollutant to only the correct source(s).

These observations helped us to produce an automated
multi-stage process that best characterizes the location,
time, and strength of the pollutant source(s) assuming
as little a priori information about the sources as possi-
ble. Figure 14.16 provides an outline of the multi-stage
process. The first stage uses a coarse grid designed to
estimate the number of emission sources and time of
each emission. The second stage performs a separate
coupled model run for each emission time found in
the first iteration. The third stage pinpoints the most
probable emission time for each release by running
the coupled model once for each emission with the
locations found in the second stage in the source array.
The final stage then calculates the strength of each
emission. The final result is a list of emission locations,
times, and strengths.

14.7 Summary and Prospects

This chapter has followed the development of an AI
technique to solve a real world problem. We are
attempting to identify and characterize a source of
contaminant in spite of imprecise knowledge of source
location, emission rate, and time of release; uncer-
tain and changing meteorological conditions; monitor-
ing errors; and the inherent uncertainty of turbulent

transport and dispersion. In spite of these formidable
problems, our GA coupled model is shown to work
rather well. It was developed and tested using synthetic
identical twin experiments and contrived geometries to
test the limits and tune the method (Section 14.3.1).
A realistic geometry (Section 14.3.2) revealed some
additional limitations along with the successes. We
saw that certain geometries could produce ill-posed
problems for that model formulation. We also studied
GA performance by varying the GA parameters of
population size and mutation rate. For this complicated
cost surface, the mutation operator is critical for GA
convergence.

Next, a statistical analysis of model performance
using Monte Carlo runs revealed that the average of
multiple runs produces an even better solution. In
spite of applying either additive or multiplication white
noise to simulate the highly uncertain model envi-
ronment, the GA coupled model is successful in the
Monte Carlo framework, even when the noise level is
of the same magnitude as the signal. As noise over-
shadows the signal, however, confidence in the solu-
tion degrades.

What about situations where either no meteorologi-
cal data are available or the wind data are not represen-
tative of local conditions? Section 14.5 demonstrates
an extended GA model to simultaneously search for
source location, emission rate, and wind direction. A
different mating scheme is required for this applica-
tion, which leads to quite different choices for GA
parameters of population size and mutation rate. This
GA application combined with a more traditional
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NMDS method speeds convergence once the GA
has found the correct solution basin for the simplex
starting point. Note that this traditional gradient-based
method did not work well without the GA to provide
that first guess.

These initial demonstrations were done in the con-
text of a very basic Gaussian plume T&D model. To
incorporate more realism into the dispersion process,
Section 14.6.1 replaced the Gaussian plume with the
refined SCIPUFF model. The GA coupled model can
be validated much the same as the original version.
The most realistic test was accomplished on data from
the Dipole Pride 26 field test with all its inherent errors
and uncertainties. Note that prior modeling studies had
difficulty matching the T&D for these data. The GA
model still showed success on some of the trials.

Subsequent work has used similar techniques to
back-calculate up to seven modeling parameters: two-
dimension location, emission height, source strength,
time of release, wind direction, and wind speed (Long
et al. 2008; Long 2007). A mixed integer genetic
algorithm is able to characterize atmospheric stability
(Haupt et al. 2008).

The GA coupled model is not perfect. Neither is any
other model attempting to solve this difficult source
characterization problem. The exercise does demon-
strate, however, that an AI-based technique is compet-
itive for solving a real world environmental problem.
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Appendix: Skill Scores

For the evaluation of results in the simultaneous tuning
of surface wind direction and source characterization,
an objective skill score is required to evaluate the
proximity of solutions to the actual solution. The skill
score used here is designed to weight the error in wind
direction, source strength, and source location equally.
The errors in each parameter are normalized to a [0,1]
scale, with a score of 0 given to exact solution, and
a score of 1 when inaccuracy exceeds a predefined
upper bound. These scores are then added up to give
a final score from 0 to 3, with a score of 0 for an exact
solution.

The formulas for the three skill score components
are:

Swind = ln (|θGA − θact| + 1)
/

5.199 (14.14)

Sstr = max

((
SGA

4 ∗ Sact
− 1

4

)
,

(
Sact

4 ∗ SGA
− 1

4

))

(14.15)

Sloc = 1.0746 ∗ (− exp
(−dist

/
1500

) + 1
)

(14.16)

where θGA is the wind direction found by the GA, θact

is the actual wind direction, SGA is the source strength
found by the GA, Sact is the actual source strength,
and dist is the distance from the GA-computed source
location to the actual source location in meters.

The constants in these equations were computed to
give the desired scores for various solutions – specif-
ically, to give a score of 0 for an exact solution, and
a score of 1 for a solution at or above a predefined
threshold (180◦ for wind direction, a factor of 5 for the
source strength, and 4,000 m for the source location).
For example, in the wind direction equation (14.14),
ln(181) is approximately equal to 5.199, so the con-
stant 5.199 results in a score of 1 for the highest pos-
sible error of 180◦. For each equation, if the computed
value exceeds 1, the value is truncated to 1. The final
skill score is Swind + Sstr + Sloc, where 0 is a perfect
score, and 3 is the worst possible score.
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15Reinforcement Learning of
Optimal Controls

John K. Williams

15.1 Introduction

As humans, we continually interpret sensory input to
try to make sense of the world around us, that is, we
develop mappings from observations to a useful esti-
mate of the “environmental state”. A number of artifi-
cial intelligence methods for producing such mappings
are described in this book, along with applications
showing how they may be used to better understand
a physical phenomenon or contribute to a decision
support system. However, people don’t want simply to
understand the world around us. Rather, we interact
with it to accomplish certain goals – for instance, to
obtain food, water, warmth, shelter, status or wealth.
Learning how to accurately estimate the state of our
environment is intimately tied to how we then use that
knowledge to manipulate it. Our actions change the
environmental state and generate positive or negative
feedback, which we evaluate and use to inform our
future behavior in a continuing cycle of observation,
action, environmental change and feedback.

In the field of machine learning, this common
human experience is abstracted to that of a “learning
agent” whose purpose is to discover through inter-
acting with its environment how to act to achieve its
goals. In general, no teacher is available to supply
correct actions, nor will feedback always be imme-
diate. Instead, the learner must use the sequence of
experiences resulting from its actions to determine

John K. Williams (*)
Research Applications Laboratory
National Center for Atmospheric Research
Address: P.O. Box 3000, Boulder, CO 80307, USA
Phone: 303-497-2822;
Fax: 303-497-8401;
Email: jkwillia@ucar.edu

which actions to repeat and which to avoid. In doing
so, it must be able to assign credit or blame to actions
that may be long past, and it must balance the exploita-
tion of knowledge previously gained with the need
to explore untried, possibly superior strategies. Rein-
forcement learning, also called stochastic dynamic
programming, is the area of machine learning devoted
to solving this general learning problem. Although the
term “reinforcement learning” has traditionally been
used in a number of contexts, the modern field is
the result of a synthesis in the 1980s of ideas from
optimal control theory, animal learning, and temporal
difference methods from artificial intelligence. Find-
ing a mapping that prescribes actions based on mea-
sured environmental states in a way that optimizes
some long-term measure of success is the subject
of what mathematicians and engineers call “optimal
control” problems and psychologists call “planning”
problems. There is a deep body of mathematical lit-
erature on optimal control theory describing how to
analyze a system and develop optimal mappings. How-
ever, in many applications the system is poorly under-
stood, complex, difficult to analyze mathematically,
or changing in time. In such cases, a machine learn-
ing approach that learns a good control strategy from
real or simulated experience may be the only practical
approach (Si et al. 2004).

This chapter begins with a brief introduction to
the origins of reinforcement learning, then leads the
reader through the definitions of Markov Decision
Processes (MDPs), policies and value functions and
the formulation of the Bellman Optimality Equation,
which characterizes the solution to an MDP. The
notion of Q-values is presented with a description of
how they can be used to improve policies and how
value functions and Q-values may be estimated from
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an agent’s experience with the environment. Optimal
Q-values, which are associated with optimal policies
for MDPs, may be learned through Q-learning or sev-
eral related algorithms, which are described next. Par-
tially observable MDPs, in which only partial state
information is available, are discussed. It is then shown
how reinforcement learning algorithms may be applied
to MDPs for which the state and action spaces are large
or continuous through the use of function approxima-
tion, including neural networks. Finally, three sample
applications are presented: dynamic routing in a wire-
less sensor array, control of a scanning remote sensor,
and optimal aircraft route selection given probabilis-
tic weather forecasts. Some readers may wish to read
the first few sections and then jump to the applica-
tions, returning as needed to the theoretical sections
as needed to understand the notation and techniques
illustrated there.

15.2 History and Background

As mentioned above, the field of reinforcement learn-
ing synthesizes ideas from the fields of mathematics,
engineering, and psychology. A key mathematical con-
cept is dynamic programming, developed in the 1950s
by Richard Bellman (Bellman 1957). Bellman built
on earlier work by Hamilton and Jacobi, including
the formulation of the Hamilton-Jacobi equation for
classical mechanics (Hamilton 1835). Dynamic pro-
gramming addresses how to find optimal controls in
dynamical systems subject to a degree of randomness.
In a standard formulation of the problem, actions drive
transitions from one state of the system, or “environ-
ment,” to another, with each transition accompanied
by a “cost”. Both the transitions and the costs may be
random variables that are functions of the starting state
and the action taken. Bellman showed that the optimal
control strategy in such a problem can be determined
from the solution to a certain equation, now called
the Bellman or Hamilton-Jacobi-Bellman Optimality
Equation (see Section 15.5). Dynamic programming
techniques solve the optimal control problem by solv-
ing this equation, and it is fundamental to the rein-
forcement learning methods described in this chapter.

On the other hand, reinforcement theories of ani-
mal learning are a cornerstone of psychology. It has
long been recognized that an animal’s behavior when
presented with a given situation can be modified by

rewarding or punishing certain actions. Trial-and-error
learning algorithms for computers based on this sort
of feedback or “reinforcement” date back to the work
of A. M. Turing in the 1940s (Turing 1948, 1950).
The idea of temporal difference learning, described in
Section 15.8, may also owe its genesis to psychology
via the concept of a secondary reinforcer. In animal
behavior studies, a secondary reinforcer may be paired
with a primary reinforcer (reward or punishment)
through training. After establishing the association
with the primary reinforcer, the animal may be trained
using the secondary reinforcer in place of the pri-
mary reinforcer. For example, a pigeon may be trained
to perform a task to receive a food reward, where
the food is accompanied by a musical tone. Later,
the pigeon can be taught to learn tasks for which the
“reward” is the tone itself, even if a food treat no longer
accompanies it. Temporal-difference methods provide
a way to propagate feedback information “backward”
in a sequence of experiences so that actions leading to
a successful outcome are reinforced even when their
ultimate payoff is significantly delayed. The success-
ful use of temporal-difference algorithms in artificial
intelligence dates back to Arthur Samuel’s famous
checkers-playing program (Samuel 1959), and has
been used successfully for many game playing and
other practical applications since.

These ideas – dynamic programming, trial-and-
error learning, and temporal differences – were
brought together by Chris Watkins in his 1989
Ph.D. dissertation, Learning from Delayed Rewards,
in which he presented the “Q-learning” algorithm
(Watkins 1989; see also Watkins and Dayan 1992).
The simplicity and versatility of Q-learning quickly
made it one of the most popular and widely used
reinforcement learning algorithms, and its invention
helped spawn the expansion of reinforcement learning
into a broad field of research. Dozens, if not hundreds,
of reinforcement learning algorithms have since been
proposed and applied to a wide variety of optimal
control problems.

In real-world applications, the possible environ-
mental states and actions for an optimal control prob-
lem often cannot reasonably be enumerated, so learn-
ing a “lookup table” that prescribes an action for
each possible state may not be practical. Reinforce-
ment learning algorithms accommodate large or con-
tinuous state and action spaces by using function
approximators, including linear maps and neural net-
works, to represent the information needed to map
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states to actions. Neural networks offer the advan-
tage that well-formulated methods exist for incremen-
tally updating their parameters as new “training” data
become available, and they often work well when
states and actions are encoded in such a way that
similar states and actions reliably lead to similar state
transitions and feedback. Because of the popularity
of this approach, some researchers have coined the
term “neuro-dynamic programming” to describe the
fusion of ideas from neural networks and dynamic pro-
gramming (Bertsekas and Tsitsiklis 1996). However,
reinforcement learning with function approximation
has been shown to be unstable and to fail to converge
for some problems and algorithms. The theory and
methods described in this chapter are presented first for
finite state and action spaces, thereby illustrating many
essential issues in reinforcement learning in this more
straightforward domain. The integration of function
approximation with these algorithms is discussed in
Section 15.12.

Of course, it is only possible to cover a few high-
lights of reinforcement learning theory and its appli-
cations in this single short introductory chapter. For a
more comprehensive treatment, the reader is referred
to the excellent texts Neuro-Dynamic Programming

by Bertsekas and Tsitsiklis (1996) and Reinforcement
Learning by Sutton and Barto (1998).

15.3 Markov Decision Processes

Before reinforcement learning algorithms can be
described in detail, it is first necessary to define
the problems to which they apply, which are called
Markov decision processes or Markov decision prob-
lems (MDPs). In an MDP, the learning agent is able
to interact with its environment in a limited fashion:
it observes the state of the environment, chooses one
of several available actions, and receives feedback, or
reinforcement, in the form of some numerical cost or
reward as a result of the action taken and the resulting
state transition. The goal of the agent is to devise a
policy – a rule for choosing actions based on observed
states – that minimizes some measure of long-term
costs (or, equivalently, maximizes long-term rewards).
This policy could be either a deterministic mapping
from states to actions or a rule specifying a probability
distribution from which an action is to be randomly
chosen in each state. Figure 15.1 shows a diagram of

Fig. 15.1 Diagram of a reinforcement learning agent inter-
acting with its environment: observations provide information
about the environmental state that in turn may be used to deter-

mine an action based on the current policy. The action may
result in a change to the environment and a cost or reward
reinforcement signal that can be used to modify the policy.
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this interaction between learning agent and a real or
simulated environment. The key feature of an MDP
(the “Markov property”) is that the probabilities of
state transitions and costs are a function only of the
present state and action taken, not the past history of
actions or states. In other words, the state of the envi-
ronment by itself contains all the information needed
to determine the result of a course of action, at least in
a probabilistic sense.

To be more mathematically precise, the possible
states obtained from observations of the environment
comprise a set S, and from each state i ∈ S there is a
set of available actions that may be denoted U (i). For
the sake of simplicity, we shall initially assume that
both S and U (i) are finite sets, though infinite and even
continuous state and action spaces may be dealt with
via function approximation (see Section 15.12). The
probability of a transition from state i to state j under
action u may be written as Pu(i, j) and is assumed
not to change as a function of time. The cost of a state
transition from i to j under action u is a random vari-
able g(i, u, j) that we will assume has a finite expected
(mean) value ḡ(i, u, j) and finite variance. As in the
field of economics, where the same approach is used to
compute the present value of future assets and liabili-
ties, the MDP is equipped with a discount factor, α, a

number between 0 and 1. A cost incurred one time unit
in the future must be multiplied by the discount factor
to compare it to an immediate cost. Thus if α = 1, it
means that future costs are valued the same as present
costs; if α < 1, future costs are less significant than
immediate costs of the same amount. For example,
given an inflation rate of 5% per timestep, α might be
about 0.95, meaning that a future asset or liability of
$1.00 next year is worth only $0.95 in current value,
making it worthwhile to take rewards immediately,
while their values are highest, while delaying the pay-
ment of fixed costs as long as possible. MDPs may
be categorized according to the value of α. If α < 1,
the MDP is called a discounted problem (DCP), since
future costs are discounted. If α = 1 and there is a
“final” state that ends the process (usually denoted as
state 0), it is called a stochastic shortest path problem
(SSPP) since a typical problem of this sort is finding
a shortest path through a maze or a network. For a
thorough exposition of MDPs, the reader is referred
to the text by Puterman (2005). A summary of the
symbols used in this chapter for describing MDPs and
the concepts and reinforcement learning algorithms for
solving them may be found in Table 15.1.

If the transition probability values Pu(i, j) and
average costs ḡ(i, u, j) are known to the learning

Table 15.1 Descriptions of some common symbols used in this chapter to describe MDPs and reinforcement learning algorithms.

Symbol Description

S Set of environmental states for an MDP.
U (i) Set of actions available from state i .
Pu(i, j) Probability of transition from state i to state j under action u.
g(i, u, j) Random variable cost of transition from state i to state j under action u.
ḡ(i, u, j) Expected (mean) cost of transition from state i to state j under action u.
α Discount factor between 0 and 1.
it , ut State and action taken at time t .
μ A deterministic policy, which maps states to actions.
π A stochastic policy, which maps state-action pairs to probabilities.
Jμ The value function for the policy μ; see (15.1).
J ∗ The optimal value function.
Qμ The action-value function, or Q-value, for the policy μ; see (15.13).
Q∗ The optimal Q-value.
Jt , Qt Value function and Q-value iterates for a learning algorithm at time t .
γ Learning rate or step size parameter.

R(N )
t N -step return beginning at time t ; see (15.22).

Rλ
t λ–return (average of N -step returns) beginning at time t ; see (15.23).

δt One-step temporal difference at time t ; see (15.25).
e Eligibility trace for a state or state-action pair.
M Set of messages for a POMDP.
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Fig. 15.2 A trajectory of an MDP, with a sequence of actions generating state transitions accompanied by feedback signals
(“costs”).

agent for all states i , j and actions u, we say that a
model of the environment is available. When a model
is not provided, the learning problem is model-free.
Some reinforcement learning algorithms use experi-
ence (e.g., simulation with various choices of actions)
to estimate a model of the environment, then use
dynamic programming methods to solve for the opti-
mal value function and policy. Other algorithms, such
as Q-learning and temporal difference learning, are
model-free, operating directly on the cost and tran-
sition experiences as they are obtained. To refer to
the sequence of states, actions, and costs experienced
by a learning agent in these algorithms, we use sub-
scripts to count the timesteps. So, for instance, it

refers to the state occupied at the t th timestep, ut

refers to the t th action, and the cost incurred in the
transition to the next state is g(it , ut , it+1), which
is sampled from a random variable having mean
value ḡ(it , ut , it+1) and finite variance. The trajec-
tory of the MDP is then written as the sequence
of states, actions, and costs: i0, u0, g(i0, u0, i1), i1,
u1, g(i1, u1, i2), . . . (see Fig. 15.2). The goal of a
reinforcement learning algorithm is to use such a
sequence of experiences to determine an optimal
policy.

15.4 Policies and Value Functions

Solving an MDP means finding an optimal policy:
a mapping from states to actions which, when used
for action selection, minimizes some measure of long-
term costs. For an MDP, it turns out that there is always
an optimal policy that minimizes the expected sum
of future discounted costs for each state (see below);
this policy is deterministic and does not change as
a function of time. However, in the process of find-
ing an optimal policy, a learning agent must balance

between acting according to the best policy found so
far and exploring new, untried actions that may lead
to even better results. This is the famous “exploitation
vs. exploration” conundrum of reinforcement learning.
One way to perform this balance is to use action selec-
tion that includes some degree of randomness while
learning, that is, a stochastic policy that specifies a
probability distribution over available actions for each
state. Defining these concepts formally, a deterministic
policy μ is a mapping from states to actions such that
μ(i) ∈ U (i) for all states i ∈ S. A stochastic policy
π is a mapping from state-action pairs to probabilities
such that (a) 0 ≤ π(i, u) ≤ 1 for all states i ∈ S and
actions u ∈ U (i), (b) π(i, u) = 0 whenever u /∈ U (i),
and (c)

∑
u∈U (i) π(i, u) = 1 for each state i ∈ S. The

sequence of states encountered in the MDP while act-
ing under a fixed policy is called a Markov chain. For
SSPPs, the policies that create a Markov chain that
is guaranteed to terminate (with probability one) are
called proper policies.

In order to evaluate a policy, we must specify an
objective way to measure its success. A common met-
ric, and the main one used in this chapter, is the
“expected” (i.e., mean) total long-term discounted cost
incurred from executing the policy. This long-term
expected cost is a function of the starting state, and is
called the policy’s value function. Formally, the value
function for the deterministic policy μ, written J μ, is
defined for each state i ∈ S by

J μ(i) = E

[ ∞∑

t=0

αt g(it , μ(it ), it+1) | i0 = i

]
(15.1)

The “E” in (15.1) denotes the expected value – the
mean or average over all the randomness in the state
transitions and costs g resulting from the prescribed
actions – and the vertical line “|” means “such that”.
Thus, this equation defines the value function for state
i as the expected value of the infinite sum of future
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Fig. 15.3 Example MDP with two states, two available actions and deterministic state transitions represented by the arrows. Costs
associated with the state transitions are indicated in parentheses, and α = 0.9, making this a discounted problem (DCP).

discounted costs incurred when beginning in state iand
choosing actions according to the policy μ. The value
function for a stochastic policy π is denoted J π and is
similarly defined by

J π (i) = E

[ ∞∑

t=0

αt g(it , ut , it+1) | i0 = i ; (15.2)

each ut chosen according to π

]

We will make assumptions on the MDPs and policies
that ensure that the value functions defined in (15.1)
and (15.2) are finite; for instance, this will be true in
the common case that the costs g are bounded and the
discount factor α < 1.

Rewriting the expectation in (15.1) by pulling out
the first term of the sum leads to the so-called consis-
tency or Bellman equation:

J μ(i) = E j
[
g(i, μ(i), j) + αJ μ( j)

]

=
∑

j∈S

Pμ(i)(i, j) (ḡ(i, μ(i), j) + αJ μ( j))

(15.3)

where the expectation E j is over the (possibly) ran-
dom cost g and random transition to a next state
j . It can be shown that, for any deterministic pol-
icy, μ, J μ is the unique solution to the consis-
tency equation, that is (15.3) completely character-
izes J μ (this is a corollary to the Bellman Optimality
Equation presented in the next section). The consis-
tency equation for stochastic policies may be written
analogously.

An optimal value function is one that has the small-
est achievable value for each state. That is, if we denote
the optimal value function by J ∗, then for all states
i ∈ S, J ∗(i) ≤ J π (i) for all policies π and J ∗(i) =
J π (i) for some policy π . It will be shown in the next

section that, under certain reasonable assumptions,
there is at least one deterministic policy μ such that
J ∗(i) = J μ(i) for all states i ∈ S. Briefly, this is a
result of the fact that, due to (15.3), any change of
a policy that reduces the expected discounted sum of
future costs from one state can only cause an improve-
ment in other states as well. Naturally, any policy
whose value function is equal to the optimal value
function is called an optimal policy. The next section
characterizes such policies. First, though, we consider
two examples to make these concepts more concrete.
Figure 15.3 shows a representation of a two-state MDP
with discount factor α = 0.9, making it a DCP. In
State 1, two actions are possible: Action 1 causes a
transition to State 2 with a cost of 5, and Action 2
exacts a cost of 2 but doesn’t change the state. In
State 2, Action 1 causes a transition to State 1 with
a cost of 0, and Action 2 loops back to State 2 with
a cost of 2. The four possible policies are given in
Table 15.2 along with their value functions. For exam-
ple, the policy here arbitrarily called Policy 2, given
by {μ(1) = 1, μ(2) = 2}, has transition probabili-
ties Pμ(1)(1, 1) = 0, Pμ(1)(1, 2) = 1, Pμ(2)(2, 1) = 0
and Pμ(2)(2, 2) = 1 with costs ḡ(1, μ(1), 2) = 5 and
ḡ(2, μ(2), 2) = 1. Under this policy, if the initial state
is State 1, the first step will transition to State 2 with

Table 15.2 Policies and value functions for the MDP depicted
in Fig. 15.3

Policy 1 {μ(1) = 1, μ(2) = 1} J (1) = 500/19 ≈ 26.3
J (2) = 450/19 ≈ 23.7

Policy 2 {μ(1) = 1, μ(2) = 2} J (1) = 14
J (2) = 10

Policy 3 {μ(1) = 2, μ(2) = 1} J (1) = 20
J (2) = 18

Policy 4 {μ(1) = 2, μ(2) = 2} J (1) = 20
J (2) = 10
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a cost of 5 and then the Markov chain will remain in
State 2 with an additional cost of 1 per timestep. Thus,
the value function for this policy may be computed via
(15.1) as

J μ(1) = 5 + α · 1 + α2 · 1 + α3 · 1 + . . .

= 5 +
∞∑

t=1

αt = 5 + α

1 − α
= 5 + 9 = 14

J μ(2) = 1 + α · 1 + α2 · 1 + α3 · 1 + . . .

=
∞∑

t=0

αt = 1

1 − α
= 10 (15.4)

or by solving the system of equations given by (15.3):

J μ(1) = 5 + αJ μ(2)

J μ(2) = 1 + αJ μ(2) (15.5)

which yields the same result. If the transitions had a
random element so that, for instance, Action 2 in State
2 would occasionally cause a transition to State 1, then
(15.1) or (15.3) would become a bit more complicated,
accounting for the cost of all possible trajectories along
with their probabilities, but the main idea remains the
same. As can be seen from Table 15.2, Policy 2 is the
optimal policy since its value function is smallest.

A second problem, a very small “robot maze” SSPP,
is depicted in Fig. 15.4. In both State 1 and State
2, the robot may attempt to move north, south, east
or west, but the only possible transitions to a new
state are from State 1 to State 2 by moving east
or from State 2 to State 0 by moving south. Each
attempted move incurs a cost of 1, representing the
robot’s energy usage or the elapsed time, and the
trajectory ends when State 0 is reached, represent-
ing escape from the maze. The optimal policy is the
one that leads most quickly out of the maze, which
in this case is {μ(1) = East, μ(2) = South}. For
this policy, J μ(1) = 2 and J μ(2) = 1; for any other
deterministic policy μ, J μ(1) = ∞, and J μ(2) =
∞ unless μ(2) = South, in which case J μ(2) = 1.
Thus {μ(1) = East, μ(2) = South} is the optimal pol-
icy, and in fact is the only proper deterministic policy
because it is the only one that produces a trajectory
guaranteed to terminate regardless of the initial state.
Again, these calculations would become more com-
plex if the transitions were not deterministic, e.g., if
there were some chance that the robot could knock
over a wall or trip when passing through a doorway.

Fig. 15.4 Three state “robot maze” problem. Dotted lines rep-
resent open doorways, and solid lines represent walls. The robot
may attempt to move north, south, east or west, but will only be
successful in moving east from State 1 and west or south from
State 2. Each move has a cost of 1, and the discount factor α =
1, making this a stochastic shortest path problem (SSPP).

15.5 The Bellman Optimality Equation

In the 1950s, Richard Bellman formulated an equa-
tion – or, more precisely, a system of equations – that
characterizes the optimal value function for an MDP
(Bellman 1957). This equation forms the cornerstone
of the classical theory of dynamic programming, and
it is essential to reinforcement learning theory as well.
The following version is adapted from those stated and
proved in Bertsekas (1995) for SSPPs and Bertsekas
and Tsitsiklis (1996) for DCPs.

The Bellman Optimality Equation

Suppose that an MDP is either a DCP or an SSPP
such that there exists a proper deterministic policy
and such that, for every improper deterministic pol-
icy, μ, J μ(i) = ∞ for some i ∈ S. Then the optimal
value function J ∗ exists, has finite components, and
is the unique solution to the equations

J ∗(i) = minu∈U (i) E j
[
g(i, u, j) + αJ ∗( j)

]

= minu∈U (i)

∑

j∈S

Pu(i, j)(ḡ(i, u, j)

+ αJ ∗( j)) (15.6)

for all states i ∈ S, where the expectation is over the
random cost g and next state j .
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All theoretical results presented in this chapter for
MDPs will assume that the MDP under discussion sat-
isfies the hypotheses of the Bellman Optimality Equa-
tion.

Returning to the examples from the previous sec-
tion, we note that for the DCP the optimal value func-
tion with J ∗(1) = 14 and J ∗(2) = 10 does satisfy
(15.6) because

minu∈U (i) E j
[
g(1, u, j) + αJ ∗( j)

]

= min
{
ḡ(1, 1, 2) + αJ ∗(2), ḡ(1, 2, 1) + αJ ∗(1)

}

= min {5 + (0.9)(10), 2 + (.9)(14)}
= min {14, 14.6} = 14 = J ∗(1) (15.7)

and

minu∈U (i) E j
[
g(2, u, j) + αJ ∗( j)

]

= min
{
ḡ(2, 1, 1) + αJ ∗(1), ḡ(2, 2, 2) + αJ ∗(2)

}

= min {0 + (0.9)(14), 1 + (.9)(10)}
= min {12.6, 10} = 10 = J ∗(2) (15.8)

Similarly, for the SSPP example,

minu∈U (i) E j
[
g(1, u, j) + αJ ∗( j)

]

= min
{
ḡ(1, “east”, 2) + αJ ∗(2), ḡ(1, “south”, 1)

+ αJ ∗(1), ḡ(1, “west”, 1) + αJ ∗(1), . . .
}

= min {1 + (1)(1), 1 + (1)(∞), 1 + (1)(∞),

1 + (1)(∞)} = 2 = J ∗(1) (15.9)

and

minu∈U (i) E j
[
g(2, u, j) + αJ ∗( j)

]

= min
{
ḡ(2, East, 2) + αJ ∗(2), ḡ(2, South, 0)

+ αJ ∗(0), ḡ(2, West, 1) + αJ ∗(1), . . .
}

= min {1 + (1)(1), 1 + (1)(0), 1 + (1)(2),

1 + (1)(1)} = 1 = J ∗(2) (15.10)

The Bellman Optimality Equation is important for
several reasons. First, its characterization of the opti-
mal value function is useful for theoretical purposes.
Second, it leads to direct methods for computing the
optimal value function. One procedure, called value
iteration, performs an iteration based on (15.6) to
successively approximate J ∗. The Bellman Optimal-
ity Equation can also be written as a linear program,
which can be solved by classical methods for small

state and action spaces (Bertsekas and Tsitsiklis 1996,
p. 37):

maximize
∑

i∈S

J (i)

subject to J (i)≤
∑

j∈S

Pu(i, j) (ḡ(i, u, j) + αJ ( j))

(15.11)

Third, the Bellman Optimality Equation provides a
connection between the optimal value function and
optimal policies. It can be shown that a deterministic
policy μ is optimal if and only if

E j
[
g(i, μ(i), j) + αJ ∗( j)

]

= minu∈U (i) E j
[
g(i, u, j) + αJ ∗( j)

]
(15.12)

for all states i ∈ S (see Williams 2000). That is, a
policy is optimal if and only if the action it prescribes
for each state is one that achieves the optimal value
function as characterized by the Bellman Optimality
Equation.

If a model of the MDP is available, the transition
probabilities Pu(i, j) and expected costs ḡ(i, u, j)
may be substituted into (15.6) and it can be solved
iteratively, or the linear program in (15.11) could be
used. Once J ∗ is found, (15.12) determines an optimal
policy. If a model is not available, a learning agent
could use exploratory actions and their resulting costs
and state transitions to create one by estimating the
transition probabilities and associated expected costs,
then use one of these approaches. Alternatively, the
learning agent could use the same experience to iter-
atively improve an estimate of the optimal value func-
tion, but then an alternative to (15.12) must be found
for determining an optimal policy. This approach to
learning from experience can be achieved via itera-
tive methods that use an extended concept of value
functions that apply to pairs of states and actions, as
described in the following section.

15.6 Q-Values

The total expected future discounted cost obtained
when a certain action is executed in some state and
then a fixed policy is followed thereafter is called an
action value function or, for historical reasons, a Q-
factor or Q-value. Q-values are particularly useful
in determining how to change a policy to improve
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Fig. 15.5 Diagram of the possible transitions from taking
action u in state i , along with their probabilities and expected
costs. The Q-value for a policy μ, Qμ, may be computed
by taking a probability-weighted combination of all the tran-

sition costs plus discounted value functions of the resulting
states, Jμ, as given by (15.14). The optimal Q-value, Q∗, is
similarly computed from the optimal value function, J∗, in
(15.15).

it. Furthermore, the optimal policy for an MDP can
be determined directly from its optimal Q-value,
denoted Q∗, without requiring a model of the envi-
ronment. Formally, we define the Q-value for a policy
μ by

Qμ(i, u) =

E

[
g(i0, u, i1) +

∞∑

t=1

αt g(it , μ(it ), it+1) | i0 = i

]

(15.13)

Here the expectation is taken over all possible trajecto-
ries and transition costs under the policy μ after action
u is taken in state i . Note that (15.13) is different from
(15.1) only in that the action taken in state i0 is not nec-
essarily the one prescribed by the policy μ; however,
Qμ(i , μ(i)) = J μ(i). The Q-value for a stochastic
policy π is defined similarly to (15.13), but with all
actions following the first one being chosen according
to π .

As is true for the value function, there is a consis-
tency equation for Q-values that follows immediately
from their definition and the definition of the value

function. For any deterministic policy μ,

Qμ(i, u) = E j
[
g(i, u, j) + αJ μ( j)

]

=
∑

j∈S

Pu(i, j) (ḡ(i, u, j) + αJ μ( j))

(15.14)

for each state i ∈ S and action u ∈ U (i), where the
expectation is over the random cost g and next state j .
A similar equation holds for stochastic policies. The
right side of (15.14) may be thought of as following
all the possible state transitions and costs that can
result from taking action u in state i and weighting the
results – the transition costs plus the discounted value
function of the resultant state – according to their prob-
abilities. This is diagrammed in Fig. 15.5. Equation
(15.13) could also be represented by an infinitely large
tree of the possible trajectories, where the discounted
costs of each transition weighted by their probabilities
are added up over all the branches.

An optimal Q-value is one which has the small-
est achievable value for each state-action pair. That
is, if we denote the optimal Q-value function by
Q∗, then for all states i ∈ S and actions u ∈ U (i),
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Q∗(i, u) ≤ Qπ (i, u) for all (deterministic or stochas-
tic) policies π and Q∗(i, u) = Qπ (i, u) for some pol-
icy π . It follows from (15.14) and the definition of
the optimal value function that the optimal Q-value
satisfies the equation

Q∗(i, u) = E j
[
g(i, u, j) + αJ ∗( j)

]
(15.15)

for all states i ∈ S and actions u ∈ U (i). Thus (15.6)
may be written in terms of the optimal Q-value as

J ∗(i) = minu∈U (i) Q∗(i, u) (15.16)

The Bellman Optimality Equation for value functions
can also be stated in terms of Q-values. In particu-
lar, under the hypotheses for the Bellman Optimality
Equation, the optimal value function Q∗ exists, has
finite components, and is the unique solution to the
equations

Q∗(i, u) = E j
[
g(i, u, j) + α minv∈U ( j) Q∗( j, v)

]

=
∑

j∈S

Pu(i, j) (ḡ(i, u, j)

+ α minv∈U ( j) Q∗( j, v)) (15.17)

for all states i ∈ S and actions u ∈ U (i). Furthermore,
it follows from (15.12) and (15.15) that the determin-
istic policy μ is optimal if and only if

Q∗(i, μ(i)) = minu∈U (i) Q∗(i, u) (15.18)

for all states i ∈ S. According to this characteriza-
tion, an optimal policy can be determined directly
from the optimal Q-value even in the absence of
a model of the environment by simply selecting an
action in each state that has the smallest value of
Q∗. This is a powerful advantage for a wide range of
problems.

In words, (15.15) or (15.17) define Q∗(i, u) as the
total of the future discounted costs expected from tak-
ing action u in state i , assuming that the optimal pol-
icy is followed for every action thereafter. The “robot
maze” problem described earlier and illustrated in
Fig. 15.4 allows a particularly concrete interpretation:
Q∗(i, u) is the expected minimum number of steps
from state i to the exit (state 0), including the result
of action u. The values of Q∗ for this problem are
depicted in Fig. 15.6. For example, Q∗(2, East) = 2
because trying to move east from State 2 (and bounc-
ing off the wall) uses one step, and then moving south
and out of the maze requires a second step. The short-
est path to the exit can be found by simply moving

Fig. 15.6 The three-state robot maze with optimal Q-values
displayed for each state in the direction of the associated move.
For this problem, the Q∗ values represent the minimum number
of steps to the “exit” including the given action.

in the direction associated with the smallest value of
Q∗ in each state. Thus, finding the optimal Q-value is
tantamount to finding the optimal policy.

15.7 Policy Improvement

Even when a model of the environment is available,
there are various reasons to seek other solution meth-
ods for an MDP than value iteration using (15.6)
or the linear program in (15.11). Value iteration can
be computationally intensive, and other methods may
often be faster. Linear programming techniques are
effective for small state and action spaces, but may
not work well for large problems. And a model of
the MDP that is estimated from experience may have
errors that lead to a poor solution with either approach.
Finally, if something is known a priori about a good
policy, a learning framework that can make use of
that knowledge is desirable. For these reasons, a wide
variety of reinforcement learning algorithms that make
direct use of experience obtained from interacting with
the environment have been proposed. Many of these
use some sort of policy iteration. At the root of this
method is the observation that, from (15.14) and the
fact that J μ(i) = Qμ(i, μ(i)) it follows that for any
two policies μ and μ′, if Qμ(i, μ′(i)) ≤ Qμ(i, μ(i))
for all states i ∈ S, then J μ′

(i) ≤ J μ(i) for all i ∈ S; if
in addition Qμ(i, μ′(i)) < Qμ(i, μ(i)) for some state
i ∈ S, then J μ′

(i) < J μ(i) for that state. This result
is called the Policy Improvement Theorem. Policy



000–0–00–000000–0 15-Haupt-c15 SHB0024-Haupt (Typeset by SPi, Delhi) page 307 of 328 October 31, 2008 14:30

15 Reinforcement Learning 307

Fig. 15.7 A high-level
diagram illustrating policy
iteration: the cycle of
improvement may continue
until an optimal policy is
found. Many practical
reinforcement learning
algorithms have this form.

iteration operates by iteratively improving a policy
until it becomes optimal. This is done by evaluat-
ing the Q-value for a policy and then choosing a
new policy that, for each state, uses an action that
appears better (or at least equally good) based on
the Q-value. It may be described more precisely as
follows.

Policy Iteration Algorithm

Select an initial policy μ0, either at random or based
on a priori knowledge of a good solution to the
MDP. At each subsequent time t ≥ 0, evaluate Qμt

exactly and update the policy according to

μt+1(i) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

μt (i) if Qμt (i, μt (i))
= minu∈U (i) Qμt (i, u), or

any element v for which Qμt (i, v)

= minu∈U (i) Qμt (i, u) otherwise

(15.19)

for all states i ∈ S. Repeat this process until μt+1 =
μt , then stop. μt+1 is an optimal policy.

A high-level diagram of the Policy Iteration Algo-
rithm is shown in Fig. 15.7. The Policy Iteration Algo-
rithm will eventually end because there are only a
finite number of possible policies, and at each step the
policy improvement theorem guarantees that J μ′

(i) ≤
J μ(i) for all i ∈ S and J μ′

(i) < J μ(i) for at least
one state i ∈ S, preventing any policy from being
repeated.

Policy iteration provides a method for improving a
policy once its Q-values for all state-action pairs are
known, but it does not address how these values are

to be obtained. The process of computing the value
function or Q-value for a policy is called policy eval-
uation or prediction. If a model of the environment is
known, computing the value function is sufficient since
each Q-value component can be obtained from a “one-
step lookahead” using (15.14). In this case, there are a
number of classical methods in dynamic programming
for policy evaluation, including the iterative solution
of (15.3). Another possibility is to use a Monte-Carlo
approach: execute the policy many times starting from
each state and average the returns, as suggested by
(15.1); the law of large numbers ensures that this aver-
age eventually converges to the value function. The
temporal difference algorithms discussed in the next
section provide a parameterized combination of these
two approaches that may be used in the model-free
case.

Algorithms that use the framework of policy iter-
ation but do not evaluate the Q-value exactly before
updating the policy are commonly called general-
ized or optimistic policy iteration algorithms. Many
practical reinforcement learning algorithms are of this
type.

15.8 Temporal Difference Learning

Temporal difference (TD) algorithms provide a way
for a learning agent to learn from experience with the
environment. The basic idea is to update an estimate
of the MDP’s value function based on the difference
of successive estimates of the value of a state as new
experience is obtained. For instance, suppose an esti-
mate at time t of the value of state it for the policy
μ is Jt (i). Starting in state it and executing the action
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μ(it ) may result in a transition to state j accompanied
by a cost g(it , μ(it ), j), and the new state j will
have an associated value function estimate Jt ( j). The
quantity g(it , μ(it ), j) + αJt ( j) is an estimate of the
right-hand side of (15.3), called the one-step return. Of
course, this estimate involves only one sample of what
may be a noisy random process, and it is also impacted
by whether or not Jt ( j) is a good estimate of J μ( j).
Therefore, it is not advisable to immediately replace
Jt (it ) with this new estimate, but rather to “nudge”
Jt (it ) a small step toward it. This may be accomplished
by choosing a small step-size γt between 0 and 1 and
making the assignment

Jt+1(it ) = (1 − γt )Jt (it )

+ γt (g(it , μ(it ), j) + αJt ( j))

= Jt (it ) + γt (g(it , μ(it ), j)

+ αJt ( j) − Jt (it )) (15.20)

This equation represents moving Jt (it ) a fraction
γt of the distance toward g(it , μ(it ), j) + αJt ( j).
The quantity g(it , μ(it ), j) + αJt ( j) − Jt (it ) is called
a temporal difference, and the update method just
described is called a one-step temporal difference algo-
rithm, or TD(0). If the iteration (15.20) is performed
repeatedly for all possible initial states it ∈ S and the
values of γ t converge to 0 in an appropriate fashion,
the estimates Jt will converge to J μ. This iteration
of successive “nudges” is called a stochastic approx-
imation or Robbins-Monro approach to the solution
of the consistency equation (15.3); see Robbins and
Monro (1951) and Kushner and Yin (1997). A famil-
iar example of stochastic approximation is the incre-
mental calculation of a population mean as new sam-
ple values are obtained. For instance, suppose Mt =
mean({x1, x2, . . . , xt }) and now a new sample xt+1 has
become available. Then the new mean, Mt+1, may be
written

Mt+1 = 1

t + 1

t+1∑

n=1

xn = 1

t + 1
(t Mt + xt+1)

= Mt + 1

t + 1
(xt+1 − Mt ) (15.21)

This equation has the same form as (15.20), with
the sample value xt+1 representing a new (though
noisy) estimate for the population mean and the step-
size γt = (t + 1)−1. Of course, as t → ∞, the law
of large numbers guarantees that the values of Mt+1

defined by (15.21) will converge to the mean of the
distribution from which the xt are drawn (assum-
ing the distribution is well-behaved, e.g., bounded).
In fact, convergence to the mean will occur for any
sequence γt between 0 and 1 so long as

∑∞
t=0 γt =

∞ and
∑∞

t=0 γ 2
t < ∞. (Note that the second condi-

tion implies that γt → 0.) These are standard step-
size conditions for stochastic approximation methods.
For many more results and applications of stochas-
tic approximation, see the text by Kushner and Yin
(1997).

Analogs of (15.20) can be formulated using N -step
returns, that is, results from a sequence of N successive
actions instead of just one, along with the value of
the final state. Formally, an N-step return beginning
at time t in state it is defined by

R(N )
t =

N−1∑

k=0

αk g(it+k, ut+k, it+k+1) + αN Jt+N (it+N )

(15.22)

As is true for one-step returns, the N -step return pro-
vides a new estimate for the value function of the
initial state. Larger values of N generally will pro-
duce higher variance N -step returns since they involve
more random transitions, but lower bias since the
value function of the final state has less influence.
In fact, if N is allowed to go to infinity, the N -step
return approaches an unbiased Monte-Carlo return. An
algorithm having the form of (15.20) but using N -
step returns under a fixed policy might be called an
N -step temporal difference algorithm. However, such
algorithms are rarely used in practice. Much more
common is to use a weighted average of all the N -
step returns, parameterized by a value λ between 0
and 1. The λ-return beginning at time t in state it is
defined by

Rλ
t = (1 − λ)

∞∑

N=1

λN−1 R(N )
t (15.23)

Recall that (1 − λ)
∑∞

N=1 λN−1 = 1 for 0 ≤ λ < 1,
so (15.23) represents a weighted average of the R(N )

t

terms with coefficients that sum to 1. Of course, the
λ-return for a state it cannot generally be computed
at the original time the state is visited, since future
experience is required to determine the N -step returns.
Fortunately, the λ-return update can be decomposed in
a clever way that makes it possible to continue nudging
the value function towards the λ-return as that future
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experience is obtained. For λ between 0 and 1, we
may write the λ-return temporal difference as shown

below. (Here the time subscripts on the value function
estimates J have been omitted for conciseness.)

Rλ
t − J (it ) = (1 − λ)

∞∑

N=1

λN−1 R(N )
t − J (it )

= (1 − λ)

∞∑

N=1

λN−1

(
N−1∑

k=0

αk g(it+k, ut+k, it+k+1) + αN J (it+N )

)
− J (it )

= (1 − λ)

∞∑

N=1

N−1∑

k=0

λN−1αk g(it+k, ut+k, it+k+1) + (1 − λ)

∞∑

N=1

λN−1αN J (it+N ) − J (it )

= (1 − λ)

∞∑

k=0

∞∑

N=k+1

λN−1αk g(it+k, ut+k, it+k+1) + (1 − λ)

∞∑

N=1

λN−1αN J (it+N ) − J (it )

=
∞∑

k=0

λkαk g(it+k, ut+k, it+k+1) +
∞∑

k=0

λkαk+1 J (it+k+1)−
∞∑

k=0

λkαk J (it+k)

=
∞∑

k=0

λkαk (g(it+k, ut+k, it+k+1) + αJ (it+k+1) − J (it+k)) (15.24)

Thus, the difference between the λ-return and the ini-
tial value function estimate for state it may be written
as a weighted sum of quantities very close to one-step
temporal differences, except that they are based on the
original estimate J instead of the estimate available
when the action is taken. Denoting the one-step tem-
poral difference at time t by

δt = g(it , ut , it+1) + αJt (it+1) − Jt (it ) (15.25)

the formula in (15.24) can be approximated as

Rλ
t − Jt (it ) ≈

∞∑

k=0

λkαkδt+k (15.26)

The one-step temporal difference update in (15.20)
may be replaced with one based on λ-returns,

Jt+1(it ) = Jt (it ) + γt

∞∑

k=1

(λα)kδt+k (15.27)

The full sequence of one-step temporal differences is
not immediately known when state it is visited, but
(15.27) can be used to continue adjusting the current
estimate of J (it ) as additional experiences (and hence,
additional terms in the sum) are gathered. The basic
idea of this approach is illustrated in Fig. 15.8: at each
timestep, the latest temporal difference may be used
to adjust the value functions for all states visited so
far. In particular, k steps after time t , Jt+k(it ) can be

incremented by γt (λα)kδt+k . In a practical application
of this approach, it is convenient to keep track of
the temporal difference discount factor (λα)k for each
state using a so-called eligibility trace, which starts
out at one when a state is visited and then “decays”
by a factor λα at each subsequent timestep. These
ideas lead to the formulation of a temporal difference
algorithm known as TD(λ), described formally below;
the timestep subscripts on e and γ are omitted for
simplicity.

TD(λ) Algorithm

Suppose that a stepsize γ between 0 and 1 has been
chosen. Initialize J0 arbitrarily, and let e(i) = 0 for
all states i ∈ S. Simulate the MDP, selecting actions
ut as prescribed by the fixed policy μ. After each
transition to a new state it+1, perform the following
updates:

δt = g(it , ut , it+1) + αJt (it+1) − Jt (it )

e(it+1) = e(it+1) + 1

(or “replacing traces” variant: e(it+1) = 1)

Jt+1(i) = Jt (i) + γ e(i) δt for all i ∈ S

e(i) = λ α e(i) for all i ∈ S (15.28)
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State it−2 State it−1 State it+1State it
Cost
gt−2

Cost
gt−1

Cost
gt

J(it−2) J(it−2) J(it+1)J(it)
Action m(it−2) Action m(it−1) Action m(it)

dt

Fig. 15.8 Illustration of temporal difference learning of the
value function for a policy μ. The estimate of J for every
state visited so far is updated based on the temporal difference

obtained from the latest timestep, δt = gt + α J (it+1) − J (it ),
where gt = g(it , μ(it ), it+1).

The variant of TD(λ) in which the eligibility trace
for a state is reset to one after each visit is called
a first-visit or replacing traces method, in contrast
to the every-visit or accumulating traces method in
which the eligibility trace is always incremented by
one. If λ = 0, this algorithm reduces to the one-step
temporal difference algorithm, TD(0), described ear-
lier. If λ = 1, it becomes an on-line Monte-Carlo
algorithm. When the fixed stepsize γ is replaced by an
appropriately decreasing sequence γt and every state is
visited infinitely often, TD(λ) has been shown to con-
verge to the optimal value function under fairly general
conditions (Bertsekas and Tsitsiklis 1996; Dayan and
Sejnowski 1994; Jaakkola et al. 1994). Several variants
of TD(λ) have also been proposed; for instance, λ

may be changed or “tuned” during learning to improve
performance, or the eligibility traces may be updated
differently.

One weakness of TD(λ) is that it learns the pol-
icy’s value function, J μ, not its Q-value. This is a
significant deficiency in the model-free case, since
policy improvement via (15.19) requires knowing the
Q-value. In general, temporal difference methods for
learning Q-values directly in the context of policy iter-
ation can be problematic, both practically and theoret-
ically. However, an algorithm that uses one-step tem-
poral differences to learn the optimal Q-value directly
is described in the next section.

15.9 Q-Learning

The temporal difference algorithms described in
the previous section were stochastic approximation

methods for solving the consistency equation (15.3)
for a fixed policy. In contrast, Q-learning is a
stochastic approximation to value iteration for solving
(15.17), thus learning the optimal Q-value, Q∗,
directly. This algorithm, proposed by Chris Watkins
in his 1989 Ph.D. dissertation (Watkins 1989), was
a major breakthrough in reinforcement learning
theory. By learning Q∗, Q-learning immediately
yields the optimal policy via (15.18). Another
powerful feature of Q-learning is that it allows
the learning agent to learn about the optimal
policy while executing a completely arbitrary
policy.

The basic idea of Q-learning is to update an
estimate Qt of Q∗ at every timestep based on
the one-step temporal difference δt = g(it , ut , it+1) +
α minv∈U (it+1) Qt (it+1, v) − Qt (it , ut ). The quantity
g(it , ut , it+1) + α minv∈U (it+1) Qt (it+1, v) from the lat-
est interaction with the environment provides a
new (but noisy and possibly biased) estimate for
Q∗(it , ut ), and so the stochastic approximation “nudg-
ing” approach described in the previous section is used
to refine the current Q∗ estimate based on this new
information. This process is illustrated in Fig. 15.9 and
described formally below.

Q-Learning Algorithm

Suppose γt (i, u) ≥ 0 for all times t , states i ∈ S
and actions u ∈ U (i), and initialize Q0 arbitrarily.
Simulate the MDP under any policy, not neces-
sarily deterministic or even stationary. After each
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Fig. 15.9 Diagram of the Q-learning algorithm update. A one-step temporal difference based on the latest transition cost and
minimum Q-value in the new state is used to update the optimal Q-value estimate for the action taken in the previous state.

transition from a state it to a new state it+1 under
action ut , perform the following update:

Qt+1(it , ut )= Qt (it , ut )+γt (it , ut )
(
g(it , ut , it+1)

+α min
v∈U (it+1)

Qt (it+1, v) − Qt (it , ut )
)

(15.29)

If the stepsizes γ t get small in an appropriate fashion
as t → ∞ and each state-action pair (i ,u) is visited
infinitely often, then it can be shown that limt→∞Qt =
Q∗. To guarantee that every action is explored in every
state infinitely often as the learning agent interacts with
the environment, Q-learning requires that a stochastic
or non-stationary policy be used. On the other hand, to
maintain low transition costs and perhaps speed con-
vergence, it is common to give priority to those actions
that appear best under the current Q-estimate (the so-
called greedy actions). One strategy for achieving this
balance between exploration and exploitation is to exe-
cute an ε-greedy policy which in state i takes an action
having the smallest Q-value with probability 1 – ε and
an action chosen randomly from U (i) with probability
ε, where ε is between 0 and 1. Another is to use the
Boltzmann policy, defined for all states i ∈ S and all
u ∈ U (i) by

πt (i, u) = exp (−Qt (i, u)/T )∑
v∈U (i) exp (−Qt (i, v)/T )

(15.30)

where T > 0 is called the temperature. An equivalent
but numerically more stable alternative is to use the
“advantages” At (i, u) = Qt (i, u) − minν∈U (i)Qt (i, ν)

in place of the Q-values in (15.30). By taking ε → 0
or T → 0 sufficiently slowly under an ε-greedy or
Boltzmann policy, one can ensure that the Q-learning
algorithm converges to Q∗ while also allowing the
policy being executed to approach the optimal policy
(see Bertsekas and Tsitsiklis 1996, p. 251). Choosing
a schedule for ε or T that provides a good rate of
convergence to Q∗ for a particular MDP may require
experimentation or tuning using a separate optimiza-
tion technique. In some practical on-line applica-
tions, convergence may not be desired: choosing an
appropriate fixed value of ε or T allows the learn-
ing agent to continue exploring, which may be quite
useful for adapting to changes when the MDP being
solved isn’t truly stationary. In this case, the choice
of a good fixed value for T depends on the magni-
tude of the values of Q and the desired amount of
exploration.

15.10 Temporal Difference Control

The Q-learning algorithm described in the previous
section is, in a sense, a complete solution to the classi-
cal reinforcement learning problem. It learns the opti-
mal Q-value for an MDP, and hence the optimal pol-
icy, while offering significant flexibility in the policy
actually followed. However, Q-learning uses only a
one-step temporal difference return; not only does this
lead to potentially high bias in an update when the
next state’s Q-estimate is lousy, but it also means that
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only the very next experience following a visit to a
state-action pair is used to improve its Q-estimate.
The rate of convergence of Q-learning is therefore
slower than might be achieved by using more expe-
rience (longer sequences of actions and transitions)
per update. For this reason, a number of algorithms
have been proposed that combine ideas from eligibi-
lity traces, policy iteration, and Q-learning with the
goal of providing faster convergence; among these are
Sarsa(λ) and several versions of Q(λ). The main idea
of these methods is to use eligibility traces and tempo-
ral differences to update the Q-value estimate; some
also use this estimate to attempt to improve the current
policy.

The two Q(λ) algorithms described below attempt
to duplicate Q-learning’s ability to learn the opti-
mal Q-value while following an arbitrary policy. The

first of these is due to Watkins (1989). Motivated by
an expansion of (15.17), his algorithm makes use of
all N -step returns beginning from a state-action pair
(i, u) in a manner similar to TD(λ). However, these
returns are terminated as soon as a non-greedy action
is selected.

Watkins’ Q (λ)

Let the stepsizes γ (i, u) be between 0 and 1,
e(i, u) = 0, and initialize Q0 arbitrarily. Simulate
the MDP under any policy, not necessarily deter-
ministic or even stationary. After each transition to
a new state it+1 and selection of the next action
ut+1, perform the following updates:

δt = g(it , ut , it+1) + α minv∈U (it+1) Qt (it+1, v) − Qt (it , ut )

e(it , ut ) = e(it , ut ) + 1 (or “replacing traces” variant: e(it , ut ) = 1)

Qt+1(i, u) = Qt (i, u) + γ (i, u) e(i, u) δt for all i ∈ S and u ∈ U (i)

e(i, u) =
{

λ α e(i, u) if Qt (it+1, ut+1) = minv Qt (it+1, v), or

0 otherwise for all i ∈ S and u ∈ U (i)

(15.31)

For the replacing traces variant in this and other algo-
rithms that use eligibility traces to learn Q-values,
a slight enhancement is available. In addition to set-
ting e(it , ut ) = 1, one may set e(it , u) = 0 for all
u 
= ut , thus terminating all N-step returns when a
state is revisited. This strategy has been shown empir-
ically to outperform both the every-visit and stan-
dard replacing traces methods (Singh and Sutton
1996).

The main weakness of Watkins’ Q(λ) algorithm
is that the lengths of the backups will be very
short when many exploratory actions are taken. If
actions are selected based on an ε-greedy or Boltz-
mann policy with ε or T decreasing with time, this
will often be the case early in the learning process.
A second “optimistic” or “naïve” Q(λ) algorithm,
proposed by Sutton and Barto (1998) as a simpler
alternative to a similar algorithm due to Peng and

Williams (1996), ameliorates this problem by allow-
ing all returns to be used – even those following an
exploratory action. Although this will result in some
technically incorrect updates being performed, the ini-
tial rate of learning should be higher than in Watkins’
Q(λ) algorithm, and the algorithms become nearly
identical as the probability of exploratory actions is
decreased.

Naïve Q(λ)

Let the stepsizes γ (i ,u) be between 0 and 1,
e(i ,u) = 0, and initialize Q0 arbitrarily. Simulate
the MDP under any policy, not necessarily deter-
ministic or even stationary. After each transition to
a new state it+1, perform the following updates:
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δt = g(it , ut , it+1) + α min
v∈U (it+1)

Qt (it+1, v) − Qt (it , ut )

e(it , ut ) = e(it , ut ) + 1 (or “replacing traces” variant: e(it , ut ) = 1)

Qt+1(i, u) = Qt (i, u) + γ (i, u) e(i, u) δt for all i ∈ S and u ∈ U (i)

e(i, u) = λαe(i, u) for all i ∈ S and u ∈ U (i) (15.32)

Note that Q(0) under either Watkins’ or Naïve Q(λ)
is simply ordinary Q-learning. In order for Qt to
converge to Q∗, it is generally necessary to replace
the stepsizes γ (i ,u) with sequences decreasing to zero
in an appropriate fashion, and to guarantee that each
state-action pair is visited infinitely often; additional
conditions may also be required. Under any of these
methods, once Q∗ is found, an optimal policy may be
determined via (15.18).

A final temporal difference control algorithm,
Sarsa(λ), is so-named because it uses temporal differ-
ences based on State-action-reward(cost)-state-action
sequences. Unlike the Q-learning or Q(λ) algorithms,
its temporal differences do not use the minimum Q-
value of the next state, but rather the Q-value for the
action actually selected. For this reason, Sarsa(λ) is
called an on-policy algorithm; it learns the Q-value

of the policy being executed, not the optimal Q-value.
In particular, as in the Naïve Q (λ) algorithm, returns
are not terminated when non-greedy actions are taken.
Indeed, the N -step returns used by Sarsa(λ) can be
thought of as samples of a multi-step version of the
Q-value consistency equation 15.14 rather than of the
Bellman Optimality equation 15.17.

Sarsa(λ)

Let the stepsizes γ (i ,u) be between 0 and 1, e(i ,u)

= 0, and initialize Q0 and π0 arbitrarily. Simulate
the MDP, selecting actions ut at each timestep as
prescribed by π t . After each transition to a new
state it+1 and selection of the next action ut+1, per-
form the following updates:

δt = g(it , ut , it+1) + αQt (it+1, ut+1) − Qt (it , ut )

e(it , ut ) = e(it , ut ) + 1 (or “replacing traces” variant: e(it , ut ) = 1)

Qt+1(i, u) = Qt (i, u) + γ (i, u) e(i, u) δt for all i ∈ S and u ∈ U (i)

e(i, u) = λ α e(i, u) for all i ∈ S and u ∈ U (i) (15.33)

and determine a new policy π t+1 using some func-
tion of t + 1 and Qt+1.

There are many ways that the new policy π t+1 may
be determined; for instance, it may be an ε-greedy
or a Boltzmann policy, where ε or T decreases with
time. In order that limt→∞ Qt = Q∗, the step sizes
γ should be replaced with an appropriately decreas-
ing sequence. The sequence of policies must even-
tually assign positive probabilities only to actions
that are greedy with respect to the Q-estimate while
ensuring that each state-action pair is visited infi-
nitely often. Such a sequence of policies is called
greedy in the limit with infinite exploration (GLIE)

in Singh et al. (2000), where it is proven that one-
step Sarsa, Sarsa(0), converges under GLIE policy
sequences. Additional results on the convergence of
optimistic policy iteration algorithms may be found in
Tsitsiklis (2002).

15.11 Partially Observable MDPs

The techniques presented in this chapter are effec-
tive for solving MDPs, but in some practical appli-
cations, the exact state of the environment may not
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Fig. 15.10 Example POMDP. The underlying MDP has two
distinct states, two available actions and deterministic state tran-
sitions represented by the arrows; costs associated with the state

transitions are indicated in parentheses. However, the learning
agent cannot sense the precise states but only a single message
that fails to distinguish them.

easily be determined. With only an estimate of the
state available, the history of past actions may influ-
ence future costs and transition probabilities, violating
the Markov hypothesis. When these effects are small
or the problem is otherwise well-behaved, traditional
reinforcement learning methods such as Q-learning
may still provide good solutions. However, in general
these Partially Observable Markov Decision Processes
(POMDPs) may be much more difficult than MDPs to
solve (Lovejoy 1991).

To formalize the notion of a POMDP, we assume
that the environment has the structure of an MDP but
the learning agent perceives only an observation, or
message, from a set M = {m1, m2, . . . mM }, with the
message determined according to a conditional proba-
bility distribution P(m|i) for message m given the true
state i . The learner will in general not have a model
for the underlying MDP or even know the number of
true states. Thus, while actions continue to drive state
transitions in the MDP, only the costs incurred and
the current message will be available to the learning
agent.

One approach to solving POMDPs is to use the
history of observations, actions, and costs to try to
obtain an improved estimate of the true, hidden state
(e.g., Chrisman 1992), but such methods can be com-
putationally expensive and may not scale well for large
problems. An alternative approach is to learn the best
stochastic memoryless policy, i.e., a policy that pre-
scribes a probability distribution over available actions
based only on the immediately available message.
Such policies are the natural solution to a wide class of
problems including games and their economic analogs,

since an intelligent opponent could adapt to exploit
any fixed, deterministic policy. A simple example of
a POMDP for which the optimal memoryless policy is
stochastic is depicted in Fig. 15.10. Although there are
two distinct states in the underlying MDP, the learning
agent receives a message that fails to distinguish them.
If action 1 is always taken, a cost of 2 will be incurred
at every timestep following the first one. The same
is true if the policy is to always take action 2. Thus,
either deterministic policy will result in an average
cost per timestep of 2. However, a stochastic policy
that prescribes taking action 1 with probability 0.5 and
action 2 with probability 0.5 will result in an average
cost per timestep of 1; this is the optimal memory-
less policy for the POMDP. Since stochastic policies
include deterministic policies, which simply set the
probability of all but one action in each state to 0, it
always makes sense to look for the optimal memo-
ryless policy for a POMDP in the class of stochastic
policies.

Unlike in an MDP, where there exists an optimal
policy that simultaneously produces the minimum pos-
sible value function for each state, there may not be
such a policy for a POMDP. Thus, a measure of per-
formance other than the expected sum of discounted
costs (the measure used for MDPs) may be required.
One such measure is given by the asymptotic average
cost per timestep that a stochastic policy π achieves,
as described in the example above. A method for com-
puting estimates of Q-values related to this quantity
and using them to incrementally improve a stochastic
policy is described in Jaakkola et al. (1995). A modi-
fied version of this method was used in Williams and
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Singh (1999) to learn stochastic policies for several
problems including a matrix game, a robot navigating
a maze with imperfect state sensor, and the dynamic
assignment of jobs in a server queue. An alternative
approach, which uses the idea of gradient descent in
a parameterized stochastic policy space, may be found
in Baxter and Bartlett (2000).

15.12 Learning with Function
Approximation

Although the theory and algorithms described so far in
this chapter have assumed that the states and actions
are discrete and sufficiently small in number that
their value function or Q-values could be stored and
updated in “table-lookup” fashion, this may not be
true for many practical control problems. For exam-
ple, realistic navigation problems do not take place
within a simple maze in which only four moves are
possible; rather, the locations may be described via
distances from certain landmarks, the terrain may be
variable, and movements in any direction may be pos-
sible. In cases of very large, infinite, or continuous
state and action spaces, it becomes necessary to rep-
resent value functions and Q-values via a parameter-
ized function approximator – e.g., a linear approx-
imation or a neural network. When the reinforce-
ment algorithm being utilized calls for a stochastic
approximation Q-value update, the function approxi-
mator’s parameters are adjusted in such a fashion that
the Q-value it represents for the relevant state and
action is nudged moves in the direction of the new
estimate.

To make this more precise, let us consider on-
line learning algorithms that operate on Q-values and
suppose that Q(i, u) = fw(i, u), where w is a vector
of parameters for the approximation function f. For
instance, if f were a neural network, w might rep-
resent the vector of all connection weights and acti-
vation thresholds; in a polynomial approximation, it
might represent the set of all coefficients. At time t ,
the vector wt yields a Q-value Qt (it , ut ) = fwt (it , ut )

and the learning algorithm produces a new estimate
Q̂t+1(it , ut ) for Qt+1(it , ut ). The vector wt must
now be incrementally changed so that fwt+1(it , ut ) is
“nudged” towards Q̂t+1(it , ut ). Here nudging is used

in place of simply adjusting wt to make fwt+1(it , ut ) =
Q̂t+1(it , ut ) because the latter could unduly degrade
the Q-value representations of other nearby state-
action pairs. In fact, the manner in which state-action
pairs (it , ut ) are chosen for updates can be quite
important in determining whether the approximation
fwt behaves as desired (Tsitsiklis and Van Roy 1997;
Tadic 2001). Interaction with a real or simulated envi-
ronment while following a GLIE policy seems to be
a good approach to producing a suitable sampling of
state-action pairs, but choosing an appropriate sched-
ule for diminishing exploration may require experi-
mentation.

Once a method for generating actions is chosen,
wt may be adjusted by performing a single step of
gradient descent on the squared difference between
the function approximator output and the new Q-value
estimate:

wt+1 = wt − 1

2
ξt ∇wt

[
fwt (it , ut ) − Q̂t+1(it , ut )

]2

= wt − ξt

[
fwt (it , ut ) − Q̂t+1(it , ut )

]
∇wt fwt (it , ut )

(15.34)

where ξt is a stepsize parameter between 0 and 1
and ∇w f is the gradient of f – the vector of partial
derivatives of f with respect to the components of
w. If f is a neural network, the update of wt may
be performed using standard on-line backpropagation,
where the association (it , ut ) �→ Q̂t+1(it , ut ) is con-
sidered a training example. In a learning algorithm that
produces a new Q estimate of the form Q̂t+1(it , ut ) =
Qt (it , ut ) + γt δt , (15.34) becomes

wt+1 = wt + ξt γt δt ∇wt fwt (it , ut ) (15.35)

Both ξt and γt must diminish towards zero in an appro-
priate fashion as learning continues in order for wt+1

to converge. If eligibility traces are used in the learning
algorithm, as in Q(λ) or Sarsa(λ), they must now be
replaced with eligibility traces over the components
of w. A common approach is to update the vector of
eligibility traces, e, as

et+1 = λ α et + ∇w f (it , ut ) (15.36)

so that future adjustments via wt+1 = wt + ξt γt δt et

will continue to update the components of w as new
information is obtained, thus speeding learning.

It should be noted that there are very few the-
oretical results that guarantee the convergence of
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reinforcement learning algorithms when function
approximation is used, and even for the case of lin-
ear function approximation with Q-learning there are
counterexamples for which the Q-values diverge to
infinity (Baird 1995; Precup et al. 2001). Nevertheless,
there are also many success stories demonstrating the
potential usefulness of this approach, and a number of
techniques and rules of thumb have been developed
for handling optimal stopping and other problems that
arise (Bertsekas and Tsitsiklis 1996). As is always the
case in using neural networks or other function approx-
imators, it is very important that a data representation
be carefully chosen. In particular, it is desirable to
derive features of the states and actions for use as
inputs to the function approximator; these should be
chosen so that, to the extent possible, “nearby” features
lead to similar costs and state transitions. Experience
and experimentation will likely be necessary to get the
best results.

15.13 Applications of Reinforcement
Learning

This section presents applications of reinforcement
learning to three sample problems relevant to environ-
mental science: dynamic routing of sensor data in a
wireless array, control of a scanning remote sensor,
and aircraft routing in an environment for which prob-
abilistic weather hazard information is available.

15.13.1 Dynamic Routing in Wireless
Sensor Arrays

Wireless arrays of small, battery or solar-powered in
situ sensors are beginning to provide an exciting new
technology for environmental science research. Unlike
many traditional research deployments, such arrays
can be quickly and easily deployed in an ad hoc fash-
ion to measure biogeochemical and other environmen-
tal processes at a high temporal and spatial resolution.
In order to be most flexible and efficient, the sen-
sors are placed in the locations of scientific interest
and then self-organize their communications to relay
or “hop” measurements back to a base station that
records them. This approach, known as mesh network-

ing, allows the sensor network to work well even when
many of the sensors are out of line-of-sight with the
base station (e.g., behind a tree or over the crest of a
hill); moreover, it allows the use of smaller radios and
lower-power transmissions than would be necessary
for each sensor node to communicate directly with the
base station.

Equipping a wireless sensor array to learn a good
network communications structure and adapt it as con-
ditions change can be accomplished using reinforce-
ment learning techniques. One way to formulate the
problem would be to consider it an SSPP similar to
the “robot maze”, where the goal is to relay a mes-
sage from the originating node to the base station in
the minimum number of steps. However, the sensor
array communications routing problem is not really
an SSPP because the connection strengths between
nodes, available battery power, and network traffic are
all variable and may change over time, and occasion-
ally a node may fail altogether. These changes will
alter the cost of transmission and the probability that a
message will be successfully received. For example, if
the shortest path to the base station is used repeatedly,
some nodes may experience much more traffic than
others and hence greater battery drain and more rapid
failure. In order to ensure a robust network, the routing
scheme should balance the transmission loads on the
different nodes to the extent possible; thus, the perfor-
mance metric to be optimized should incorporate not
only the number of hops a message has to take, but
also the traffic on the most power-limited nodes in the
network.

There are many ways to formulate this problem,
and we will use a fairly simple one. We choose as
“states” the nodes in the network, with actions given by
the choice of which target node to attempt to transmit
to. If the message is received, the receiving node will
include information on its battery power and its current
minimum Q-value in the acknowledgement signal; in
practice, this acknowledgement of reception may be
obtained by “overhearing” the message’s retransmis-
sion. We define the cost of a transmission to be 1/(frac-
tion of battery power remaining) for the receiving
node. If no acknowledgement signal is received in a
certain time period, then the transmission is deemed to
have failed, presumably because the targeted receiving
node is out of range, has insufficient battery power,
or is busy with another transmission. In this case, the
state returns to the sending node, which is then also
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Fig. 15.11 Random deployment of a wireless sensor array con-
sisting of 25 nodes, with the base station at the origin. The size
of the blue circle representing each node is proportional to the
frequency with which messages originate at that node. Nodes are

numbered in order from closest to farthest from the base station,
and the shortest-path routes (those with the lowest mean number
of transmissions required to get a message to the base station)
are indicated by dotted lines.

considered the receiving node for the purpose of deter-
mining the cost of the transmission. This formulation
is not truly an MDP because the transition probabilities
and costs are not stationary; rather, they change in
time based on the history of past transmissions. Nev-
ertheless, we will demonstrate that a straightforward
application of Q-learning is capable of finding good
policies for routing messages through the network and
adapting the policies as conditions change.

We create a scenario for testing this approach via
simulation by randomly placing 25 sensor nodes in a
2 × 2 unit domain with the base station in the cen-
ter, as shown in Fig. 15.11. Each node is assigned a
randomly-chosen probability for producing a message
at each timestep. This probability accounts for the
fact that sensor nodes may employ adaptive reporting
strategies, with each node transmitting measurements
more frequently when “interesting” phenomena are
detected at its location. To model uniform time-based
reporting, these probabilities could be set to 100%,
or a regular reporting schedule could be implemented

for each node. The probability that a message will be
received by a target node and successfully acknowl-
edged is determined by a function of the distance
between the two nodes, as shown in Fig. 15.12. (This
function was chosen for the purpose of this didactical
example and does not necessarily represent the perfor-
mance of any specific radio technology.) Each trans-
mission reduces the sending node’s remaining battery
power by a fixed amount, and we assume that each bat-
tery begins with the capacity for sending 100,000 mes-
sages. Each node maintains a set of Q-values that are
used to determine the transmission policy as described
below and are updated after each transmission based
on information received from the acknowledgment sig-
nal, or from the sending node if no acknowledgment is
received.

The Q-learning algorithm described in Section 15.9
is a good choice for solving this on-line learning
problem because information from the next state
(node) is naturally available via the acknowledg-
ment signal, whereas the multi-step backups needed
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Fig. 15.12 Probability of a successful transmission from one
sensor node to another, including receipt of an acknowledge-
ment, as a function of the distance between them.

by Q(λ) or Sarsa(λ) would require additional trans-
missions. We use the Boltzmann exploration policy
from (15.30) with advantages At (i, u) = Qt (i, u) −
minv∈U (i) Qt (i, v) replacing Q-values and a choice of
T = 0.05. Note that smaller values of T would tend
to lead to fewer random “exploratory” transmissions
and less ability to adapt to changing conditions, while
larger values of T lead to more exploratory transmis-
sions and lower network efficiency. The learning rate
was chosen as γ = 0.2. Smaller values of γ would lead
to more stable and possibly more accurate Q-values
and a more consistent transmission strategy, while
larger values allow quicker adaptation to changing
conditions. The best choice of exploration and learning
rates depends in part on the size of the network and the
timescales of the changes that affect sensor reporting
frequencies and transmission success; experimentation
or tuning via simulation may be necessary to obtain
optimal results.

Figure 15.13 shows comparative results from
the fixed shortest-path routes (those with, on aver-
age, the smallest number of transmissions required to
reach the base station) indicated by the dotted lines in
Fig. 15.11 and the online adaptive Q-learning strategy
described above. For each episode of the simulation,
an originating node is chosen at random according
to the origination probabilities, the message is trans-
mitted through the network according to the current
routing policy, and the episode ends when the message
is received at the base station. The left panels show a

running average of the total number of transmissions
required for each message on a log-log plot, and the
right panel shows the battery power remaining for each
of the 25 sensors as a function of the cumulative num-
ber of messages received at the base station. While the
number of transmissions per message remains constant
over time for the static routing strategy (with some
fluctuation due to the randomness in the simulation)
and the battery power for each node decreases linearly
with time, the results for the adaptive method shows
an initial reduction in the average number of transmis-
sions for each message as the network learns a good
strategy and then an eventual increase as the network
reorganizes to reduce the strain on the most-utilized
nodes. The static routing strategy results in the failure
of node 6 due to exhausted battery power after 213,967
messages are received at the base station, whereas
the adaptive method successfully transmits 507,715
messages before failure. Thus, the adaptive approach
is able to lengthen the lifetime of the entire network
by more than a factor of two for this scenario. Of
course, these results represent only single simulation
runs using each method, and results can be expected
to vary somewhat due to the random elements of the
simulation.

Traditional mesh networks reorganize their rout-
ing topology periodically to adapt to changing con-
ditions or the failure of some of the network nodes,
and so avoid the stark failure illustrated here. A stan-
dard technique for reorganizing is to send a flood
of transmissions, or “beacon”, from the base station
down to the nodes, which results in additional drain
on the node batteries. The adaptive Q-learning method
achieves the same objective while avoiding the extra
transmission costs for periodic wholesale network re-
formation. A precise comparison of the two methods
would require a more realistic simulation or in situ test
for a specific application, but it is clear from this exam-
ple that a technique based on reinforcement learning
has the potential to produce efficient adaptive network
routing strategies.

15.13.2 Adaptive Scanning Strategy
for a Remote Sensor

An optimal control problem that arises frequently
in environmental science research is how to target
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Fig. 15.13 (Top row) Results from using the shortest path
routes indicated by the dotted lines in Fig. 15.11. (Bottom row)
results from using dynamic routing based on Q-learning as
described in the text. The plots on the left show a running aver-
age over 20 messages of the number of transmissions utilized
for the message to reach the base station. The right hand side
shows the remaining battery power in each node as a function of

the message number. In order from the least to greatest battery
power remaining after message number 2 × 105, the traces in the
upper plot are for nodes 6, 5, 3, 4, 17, 20, 12, 24, 8, 14, 7, 23,
1, 9, 25, 21, 16, 18, 15, 13, 10, 11, 19, 2, and 22, respectively,
and in the lower plot are for nodes 5, 6, 2, 1, 3, 17, 14, 7, 4,
8, 20, 24, 9, 16, 12, 23, 25, 21, 10, 15, 18, 13, 11, 19, and 22,
respectively.

observations to produce the greatest benefit in under-
standing environmental processes, supplying data for
modeling or forecasting, or providing timely warn-
ing of hazardous conditions. For example, adaptive
scanning is employed by spaceborne remote sen-
sors to improve their ability to capture significant
meteorological phenomena using limited resources
(Atlas 1982). Developers of the National Science
Foundation’s Collaborative Adaptive Sensing of the
Atmosphere (CASA) X-band radar network plan to
use coordinated adaptive sensing techniques to better
capture precipitation events and detect flash floods or
tornadoes (McLaughlin et al. 2005). And the United
States’ operational NEXRAD Doppler radars employ

a number of volume coverage patterns (VCPs) appro-
priate to different weather scenarios, which may be
selected automatically or by a human operator. Rein-
forcement learning can be used to develop an adap-
tive sampling strategy for a scanning remote sensor
that balances a need for enhanced dwell-times over
significant events with maintaining adequate temporal
or spatial scanning coverage to quickly capture new
developments.

In particular, we consider the problem of control-
ling a scanning remote sensor such as a radar, lidar, or
scanning radiometer capable of taking measurements
in one of four directions: north, east, south or west.
At each timestep, the sensor may rotate clockwise,
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maintain its current orientation, or rotate counterclock-
wise; it then detects the state of the atmosphere in the
new sector, characterized as “clear” (e.g., no clouds),
“developing” (e.g., significant clouds), or “hazardous”
(e.g., tornadic supercell). The sensor memory stores
the most recent observations made in each sector
and the elapsed times since they were last scanned.
This information, coupled with the current observa-
tion, comprise the system state and will be the basis
for the decision of which direction the sensor should
rotate in the next timestep. In order to ensure a min-
imal temporal coverage and also limit the number of
possible states in the MDP, the sensor reverts to a
standard clockwise scan strategy whenever the elapsed
time for any sector reaches 10 or more. Thus, the state
is determined by the last observation in each of the
four directions and the elapsed time in the directions
not currently being observed, for 34 · 123 = 139,968
possible states. Of course, not all of these states are
actually “reachable” – for instance, no two sectors can
have the same elapsed times in practice. Moreover,
symmetry can be used to further reduce the effective
number of states; in essence, we assume that the sensor
only rotates clockwise but the order of the sectors can
be reversed.

Our goal is to train the sensor to quickly detect
significant events (e.g., hazardous weather) and dwell
on them to the degree possible to improve the quality
of their characterization and reduce the lead time for
warnings to the public. To achieve this, we impose a
cost function that at each timestep charges a penalty
for each sector in which there is hazardous weather.
The amount of the penalty is based on the elapsed
time, 
t , since the sector was scanned: for 
t = 0,

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 timesteps,
we define g(
t) = 0, 1, 2, 3, 4, 5, 6, 8, 10, 12, 14, 17,

20, respectively. Note that 
t is encoded in the
MDP’s state, so the cost function g is a deter-
ministic function of the state. We choose a value
of α close to 1 so that future costs are not dis-
counted too much, say α = 0.995. Finally, the man-
ner in which the weather, wt , changes with time
may be specified via a conditional probability matrix
such as

P(wt+1|wt ) =
⎡

⎢⎣
0.98 0.17 0.00

0.02 0.79 0.08

0.00 0.04 0.92

⎤

⎥⎦ (15.37)

which may be interpreted as follows: if wt = 1
(“clear”), the probability is 98% that wt+1 = 1, 2%
that wt+1 = 2 (“developing”), and 0% that wt+1 = 3
(“hazardous”); if wt = 2 the probabilities are 17%,
79%, and 4%; and if wt = 3 the probabilities are 0%,
8%, and 92%, respectively. If the conditional proba-
bility matrix P doesn’t change with time, a standard
result from Markov theory tells us that at any later time
t + k,

P(wt+k |wt ) = P(wt+1|wt )
k (15.38)

where the exponent by k, a positive integer, represents
the matrix multiplied by itself k times. In fact, as k →
∞, we can compute

lim
k→∞ P(wt+k |wt ) = lim

k→∞ P(wt+1|wt )
k

=
⎡

⎣
0.85 0.85 0.85
0.10 0.10 0.10
0.05 0.05 0.05

⎤

⎦ (15.39)

showing that for the choice of P given by (15.37) the
weather probability distribution will asymptotically
reach the hypothetical climatological averages: “clear”
85% of the time, “developing” 10% of the time, and
“hazardous” 5% of the time, regardless of the initial
weather conditions.

We have now specified a model of the MDP, which
comprises all the information needed to simulate the
sensor observations, actions, state transitions and costs
in order to use Q-learning, Q(λ) or Sarsa(λ) to find
the optimal Q-value and hence the optimal scanning
policy. However, the large number of states and the
relative rareness of hazardous weather means that
these methods can be quite slow and very sensitive
to the choice of learning rates and exploration strat-
egy. The computational requirements could be reduced
by employing state aggregation – i.e., grouping the
elapsed times into categories such as “short”, “long”
and “very long” – to reduce the effective number of
states, or by using function approximation, but either
reduces the problem to a POMDP and may result in
learning a good but not optimal policy. A faster and
more accurate alternative is to utilize the MDP model
in value iteration, solving (15.6) directly and then
computing the optimal policy using (15.12). For every
initial state and action, we compute the probability
distribution over weather conditions in all four direc-
tions via (15.38) using the last recorded observations
and the elapsed times. These in turn determine the
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Fig. 15.14 Maximum change in the optimal value function
estimate, J , after each cycle of updates during the value iteration
process used to solve the remote sensor adaptive scanning prob-
lem. Because the estimate is initialized as J = 0, the changes
are always positive.

probabilities of the three possible state transitions for
each action (the new state is given by the deterministic
elapsed times and random weather in the new scanning
direction) and the mean cost of each transition (based
on the random weather in all the other sectors). The
value function J is initialized as 0 for all states, so
that value iteration causes a monotonic increase in J
for all states; if an elapsed time greater than 12 in
any sector occurs, the value of that “state” is taken
as 20(1 − α)−1 = 4,000 for the purpose of computing
the right hand side of (15.6). Figure 15.14 shows the
rate of convergence of the value iteration, as mea-
sured by the maximum change in the value function,
maxi∈S |Jt+1(i) − Jt (i)|, after each pass through all
states. After rapid initial progress, the rate of conver-
gence becomes exponential.

To evaluate the policy obtained from the final J -
iterate via (15.12), separate 107-step simulations were
performed for both the learned policy and a standard
scan that simply rotated clockwise at every timestep.
The average costs per timestep were found to be 0.16
and 0.30, respectively, showing that the learned policy
improved performance by nearly a factor of two over
the standard scan. In addition, for each occurrence of
“hazardous” weather in any sector and at any timestep,
the total number of timesteps elapsed since the sec-
tor containing it was last scanned were tabulated. As
suggested by (15.39), “hazardous” weather occurred
about 5% of the time, meaning that about 2 × 106

instances occurred in the four sectors over the course
of each simulation. The results in Fig. 15.15 show that
an elapsed time of 0 – the ideal value – was achieved
about 2.5 times more frequently by the learned policy
than the standard scan, while elapsed times of 1, 2
or 3 occurred less frequently. However, the learned
policy did very occasionally, about 2.5% of the time,
yield elapsed times of 4 or greater. The tradeoff
between increased dwell over sectors with hazardous
weather and the potential for occasional instances of
long elapsed times is determined by the cost func-
tion, g, which can be altered to obtain different
behavior.

Of course, this formulation of the scanning prob-
lem solved here is significantly simplified relative to
those often encountered in practice, where weather
or another phenomenon being measured is correlated
from sector to sector and the scan strategy includes
selection of elevations as well as azimuths. Never-
theless, this example provides a suggestion of how
reinforcement learning might be used to help develop
improved observing strategies.

15.13.3 Aircraft Routing Using
Probabilistic Forecasts

An important goal of meteorology and environmen-
tal science is to provide reliable forecasts to aid
planning and decision making. For instance, the
U.S. Federal Aviation Administration’s Joint Plan-
ning and Development Office (JPDO) has devel-
oped a Next Generation Air Transportation System
vision (JPDO 2006) that requires probabilistic fore-
cast grids to guide the routing of aircraft around
potentially hazardous weather and improve the safety
and efficiency of the National Airspace System
(NAS).

The specific problem we consider is how to use
probabilistic forecast grids at various lead times to
plan aircraft routes that balance a desire to conserve
fuel use with the need to avoid potential accidents.
We focus on the problem of routing a single aircraft
to a target airport, though in the NAS the safe separa-
tion of multiple aircraft must be considered as well.
For the sake of simplicity, we use only 2-D Carte-
sian probabilistic forecast grids of aviation hazards
(e.g., thunderstorms or turbulence) at a specified flight
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Fig. 15.15 Results from 107-step simulations of the scanning
remote sensor using the optimal policy determined via rein-
forcement learning (blue) and a standard clockwise rotation at
each timestep (red). The histograms show the total number of
occurrences in all sectors and timesteps of the elapsed time since

hazardous weather was scanned, where lower elapsed times are
better; hazardous weather existed in each sector about 5% of the
time, so the total number of occurrences was about 2 × 106 for
each simulation.

level, but the approach illustrated here easily gener-
alizes to 3-D grids in an appropriate map projection.
The balance between fuel use and accident risk will
depend on factors like the type of aircraft being flown;
for instance, large aircraft are less fuel efficient but
may be better equipped to mitigate hazards posed by
atmospheric turbulence, icing, lightning or windshear.
For a given flight, the probabilistic weather grids must
be mapped to an assessment of the risk of a signif-
icant hazard to the aircraft’s operation, which may
be naturally quantified in terms of its potential eco-
nomic impact to the airline; this allows it to be com-
pared with other risks and impacts to form a basis for
decision making. The MDP’s state is given by the time
and location of the aircraft. For the purpose of this
example, a timestep is 5 min, the aircraft flies at a
constant speed of 480 knots (40 nautical miles, nmi,
per timestep), the cost of fuel is $500 per timestep,
and the weather forecast grids at each time t are
scaled into the probability ft of an accident costing

$2,500,000 for every timestep (5 min) spent in those
conditions. For planning purposes, the cost of each
flight segment is estimated as the sum of the fuel cost
and the cost of an accident times its probability (that
is, its “expected cost”). To be precise, the mean cost
incurred at time t along a one-timestep flight segment
from xt along a vector r having length 40 nmi is
given by

ḡ ({xt , t}, r, {xt + r, t + 5})

= $500 + $2,500,000

1∫

0

ft (xt + τ r) dτ (15.40)

More complex versions of (15.40) could be devel-
oped to incorporate the cost of a delay after the flight
exceeds a certain duration, or probabilities of multiple
types of accidents or incidents and their associated
costs due to, for example, taking an aircraft out of
service for inspection or repair, providing worker’s
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Fig. 15.16 Weather hazard probability forecasts and learned
route vectors for the aircraft routing problem over a period of
3 h. The color scale gives the probability that an accident cost-

ing $2.5 million will occur during 5 min of flight through the
conditions forecast at that location and time, and the destination
airport is depicted on the east side of the domain.

compensation for an injured flight attendant, settling
a passenger injury claim, or sustaining damage to the
airline’s reputation that reduces future ticket sales. An
example set of forecasts ft shown for t = 0, 1, 2 and
3 h (times 0000, 0100, 0200 and 0300) is given by the
color-scaled grids in Fig. 15.16. This example depicts
a scenario in which a line of thunderstorms is forecast
to develop and block a direct route from the west to
an airport in the east. Grids of ft are available at 5 min
intervals between 0 and 3 h, after which we assume the
forecasts don’t change; that is, we take ft = f0300 for
t ≥ 0300.

The aircraft routing problem as defined above is
an SSPP with states given by the aircraft’s posi-
tion and the time, actions given by the direction
of travel, and deterministic state transitions accom-
panied by costs prescribed by (15.40). Because the
possible states and actions are not discrete but
occupy a continuum, it is necessary to employ func-

tion approximation in solving this MDP. We use a
lookup table representation of the value function on a
grid {(i x̂, j ŷ) | i = 0, . . . , 37; j = 0, . . . , 25}, where
x̂ and ŷ are vectors of length 40 nmi pointing east and
north, respectively; the value function at intermediate
locations is estimated by linear interpolation. More
precisely, the value function for the state {a x̂ + b ŷ, t},
where t is a non-negative multiple of 5 min and a and
b are real numbers with 0 ≤ a ≤ 37 and 0 ≤ b ≤ 25,
respectively, is approximated by

J̃ ({a x̂ + b ŷ, t})
= (a� − a) (b� − b) J

({�a� x̂ + �b� ŷ, t})

+ (a� − a) (b − �b�) J
({�a� x̂ + b� ŷ, t})

+ (a − �a�) (b� − b) J
({a� x̂ + �b� ŷ, t})

+ (a − �a�) (b − �b�) J
({a� x̂ + b� ŷ, t})

(15.41)
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Here J denotes the value function at a grid point,
the ceiling function a� represents the smallest inte-
ger greater than or equal to a, and the floor func-
tion �a� represents the largest integer less than or
equal to a. The optimal value function, J ∗, may be
found using value iteration, with the right hand side
of (15.6) approximated by the minimum over direc-
tions 0◦, 10◦, 20◦, 30◦, . . . , 350◦, the transition costs
determined by (15.40), and the value function of the
new state approximated by (15.41). We first perform
value iteration to find J ∗ for the static SSPP with time
“frozen” at t = 0300. In order to speed convergence,
we initialize J as the cost of flying directly to the
destination airport in the absence of weather hazards
(which is easily computed from the distance) and then
update J at grid points chosen in order of increasing
distance from the airport during each iteration. Next
we reduce t by 5 min intervals and perform just one
sweep through all grid points, computing J ∗ for that
time using (15.6). The reason that only one iteration
at each time is now sufficient is that the optimal value
function for the next time – and, therefore, the next
state – has already been determined. These calcula-
tions are continued until t = 0. Finally, the learned
policy for each state (position and time) may be com-
puted using (15.12), that is, we choose a policy μ such
that

ḡ
({a x̂ + b ŷ, t}, μ({a x̂ + b ŷ, t}), {a x̂ + b ŷ + rμ, t + 5})

+ J̃ ∗ ({a x̂ + b ŷ + rμ, t + 5})

= min{r | ‖r‖=40 nmi}

[
ḡ

({a x̂ + b ŷ, t}, r, {a x̂ + b ŷ + r, t + 5})

+ J̃∗ ({a x̂ + b ŷ + r, t + 5})
]

(15.42)

where J̃ ∗ represents the linear interpolation of the
learned optimal value function and rμ is shorthand
for the displacement traveled in 5 min of flight in the
direction specified by the policy μ. The learned policy
μ may not strictly be optimal due to the use of function
approximation, under which Bellman’s Equality is not
guaranteed to hold. Nevertheless, the policy should be
near-optimal if the grid on which the value function
J is represented has an appropriate scale. The vectors
in Fig. 15.16 show the learned policy determined via
(15.42) for each point on the 40 nmi grid at t = 0000,
0100, 0200 and 0300, where again for simplicity we
have limited consideration to directions specified at
10◦ increments.

The learned policy shown in Fig. 15.16 may be
interpreted as follows. At each time shown, the vec-
tors show the direction that an aircraft starting or
continuing from that location should take based on
the sequence of probabilistic forecasts of future haz-
ards. The optimal route is determined by following
this “flow” as it changes at each subsequent time.
Note that the domain has been chosen so that an air-
craft could nearly traverse its width (1,480 nmi) in
3 h. At time 0000, the vectors in the western 2/3 of
the domain are already adjusting routes to avoid the
weather hazard that is forecast to develop. By time
0100, the western region shows three distinct rout-
ing strategies depending on location: go to the north
of the developing line of storms, south of it or, if
within about 500 nmi, fly through the gap. By 0200,
the area in which aircraft are directed towards the
gap has shrunk as it begins to close, and by 0300
the line of storms has fully developed and aircraft are
directed around it or attempt to exit it as quickly as
possible.

In addition to finding the optimal route, another
important consideration may be whether to fly at
all. Figure 15.17 shows the result of subtracting the
learned value function from the optimal value function
found in the absence of weather, a difference that rep-
resents the expected increased cost due to the weather
hazard of a flight originating or continuing from the
indicated location and time, assuming that it follows
the prescribed optimal route from that point onwards.
At time 0000, a slight increase in cost may be seen,
primarily in the western part of the domain, due to the
slight elongation of the optimal flight path or enhanced
likelihood of an accident. By time 0100 this cost has
grown substantially, particularly in the region in the
west from which the aircraft is routed around the north
or south of the line. The costs increase further at times
0200 and 0300, particularly for aircraft that will have
to deviate substantially to avoid the storm or those that
are already in it. An airline dispatcher might use this
marginal “cost-to-go” information to help determine
whether it would be worthwhile to delay or cancel
a flight, or even divert an en route flight to another
airport.

The method and results presented for this aircraft
routing example can be extended in a straightforward
way to more complicated scenarios. For instance, cur-
rent routing in the NAS requires aircraft to fly along
pre-specified “jetways” or between defined waypoints.
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Fig. 15.17 The added (marginal) flight cost due to the weather
hazard for flights originating or continuing from the indicated
location and time. These values were obtained by subtracting

the optimal value function, J ∗, for a no-hazard situation from
the optimal value function learned for the scenario depicted in
Fig. 15.16 using the method described in the text.

Restricting routes to certain paths would actually
substantially simplify the MDP by reducing the num-
ber of states and actions, allowing tabular representa-
tion of the value function and obviating the need for
function approximation. As previously mentioned, a
third dimension (altitude) can easily be added to the
forecast grids and routes, and the cost function can be
modified to account for the increased cost of flying
at lower levels where aerodynamics are less favor-
able. The effect of winds, including the jet stream,
can be accommodated by adding the wind vector to
the aircraft’s velocity at each timestep. The cost func-
tion would be specific to each aircraft type, since
models have different capabilities, fuel use and ability
to withstand weather and other hazards. Finally, the
effects of congestion (unsafe density of aircraft) may
be included as an additional hazard whose expected
cost is added in (15.40). Starting with an initial fore-
cast of congestion, the method described above may be

used to find the optimal routes for all aircraft desiring
to occupy the NAS, or to determine that a ground delay
program or cancellation is appropriate. The optimal
paths of all those flights may then be traced to revise
the congestion forecast for each location and time.
Then new optimal routes may be chosen based on
this new cost information, and the process repeated.
If this iteration is done carefully (e.g., as a relaxation
method), a good overall set of routes may be obtained.
Marginal costs like those shown in Fig. 15.17 may
again be used to determine what flights should be
delayed, cancelled or diverted to avoid undue costs and
risks. Thus, reinforcement learning may have a lot to
offer in designing practical solutions to this important
and difficult problem. For a more detailed treatment
of the topic of routing aircraft given weather hazard
information, the reader is invited to consult Bertsimas
and Patterson (1998), Evans et al. (2006), and Krozel
et al. (2006).
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15.14 Conclusion

Reinforcment learning builds on ideas from the
fields of mathematics, engineering and psychology
to develop algorithms that identify optimal or near-
optimal control policies based on simulated or real
interaction with a stochastic environment. Unlike tra-
ditional methods that require the underlying dynamical
system to be modeled by a set of probability transition
matrices or differential equations, reinforcement learn-
ing techniques can be applied to complex problems
for which no model exists, This chapter has presented
an introduction to the theory underlying reinforcement
learning and the Markov Decision Processes (MDPs)
to which they apply, described several practical rein-
forcement learning algorithms, and presented three
sample applications that demonstrated the powerful
potential of reinforcement learning to solve problems
that arise in the environmental sciences.

Acknowledgements Satinder Singh first introduced me to rein-
forcement learning, and my Ph.D. advisor, Kent Goodrich, gen-
erously allowed me to explore some of its mathematical aspects
for my doctoral dissertation despite its unfamiliarity to him. The
idea for the aircraft routing example came from discussions with
Bill Myers, whose dissertation (Myers 2000) examines how the
depiction of forecast hazard data can affect humans’ routing
decisions. The wireless sensor array application was inspired
by conversations with Lynette Laffea. Several friends and col-
leagues provided valuable feedback on a draft of this chapter,
including Kent Goodrich, Lynette Laffea, Emily Mankin, and
Matthias Steiner. I very much appreciate their assistance.

References

Atlas, D. (1982). Adaptively pointing spacebome radar for pre-
cipitation measurements. Journal of Applied Meteorology,
21, 429–443.

Baird, L. C. (1995). Residual algorithms: Reinforcement learn-
ing with function approximation. In A. Prieditis & S. J.
Russell (Eds.), Proceedings of the Twelfth International Con-
ference on Machine Learning (pp. 30–37). 9–12 July 1995.
Tahoe City, CA/San Francisco: Morgan Kaufmann.

Baxter, J., & Bartlett, P. L. (2000). Reinforcement learning in
POMDP via direct gradient ascent. Proceedings of the 17th
International Conference on Machine Learning (pp. 41–48).
29 June–2 July 2000. Stanford, CA/San Francisco: Morgan
Kaufmann.

Bellman, R. E. (1957). Dynamic programming (342 pp.). Prince-
ton, NJ: Princeton University Press.

Bertsekas, D. P. (1995). Dynamic programming and optimal
control (Vol. 1, Vol. 2, 387 pp., 292 pp.). Belmont, MA:
Athena Scientific.

Bertsekas, D. P., & Tsitsiklis, J. N. (1996). Neuro-dynamic pro-
gramming (491 pp.). Belmont, MA: Athena Scientific.

Bertsimas, D., & Patterson, S. S. (1998). The air traffic flow
management problem with enroute capacities. Operations
Research, 46, 406–422.

Chrisman, L. (1992). Reinforcement learning with perceptual
aliasing: The perceptual distinctions approach. Proceedings
of the Tenth National Conference on Artificial Intelligence
(pp. 183–188). 12–16 July 1992. San Jose/Menlo Park, CA:
AAAI Press.

Dayan, P., & Sejnowski, T. (1994). TD(0) converges with prob-
ability 1. Machine Learning, 14, 295–301.

Evans, J. E., Weber, M. E., & Moser, W. R. (2006). Integrating
advanced weather forecast technologies into air traffic man-
agement decision support. Lincoln Laboratory Journal, 16,
81–96.

Hamilton, W. R. (1835). Second essay on a general method in
dynamics. Philosophical Transactions of the Royal Society,
Part I for 1835, 95–144.

Jaakkola, T., Jordan, M., & Singh, S. (1994). On the conver-
gence of stochastic iterative dynamic programming algo-
rithms. Neural Computation, 6, 1185–1201.

Jaakkola, T., Singh, S., & Jordan, M. (1995). Reinforcement
learning algorithm for partially observable Markov decision
problems. In G. Tesauro, D. S. Touretzky, & T. Leen (Eds.),
Advances in neural information processing systems: Pro-
ceedings of the 1994 Conference (pp. 345–352). Cambridge,
MA: MIT Press.

Joint Planning and Development Office (JPDO). (2006). Next
generation air transportation system (NGATS)—weather
concept of operations (30 pp.). Washington, DC: Weather
Integration Product Team.

Krozel, J., Andre, A. D. & Smith, P. (2006). Future air traffic
management requirements for dynamic weather avoidance
routing. Preprints, 25th Digital Avionics Systems Conference
(pp. 1–9). October 2006. Portland, OR: IEEE/AIAA.

Kushner, H. J., & Yin, G. G. (1997). Stochastic approximation
algorithms and applications (417 pp.). New York: Springer.

Lovejoy, W. S. (1991). A survey of algorithmic methods for
partially observable Markov decision processes. Annals of
Operations Research, 28, 47–66.

McLaughlin, D. J., Chandrasekar, V., Droegemeier, K., Frasier,
S., Kurose, J., Junyent, F., et al. (2005). Distributed Col-
laborative Adaptive Sensing (DCAS) for improved detec-
tion, understanding, and prediction of atmospheric hazards.
Preprints-CD, AMS Ninth Symposium on Integrated Observ-
ing and Assimilation Systems for the Atmosphere, Oceans,
and Land Surface. 10–13 January 2005. Paper 11.3. San
Diego, CA.

Myers, W. L. (2000). Effects of visual representations of
dynamic hazard worlds on human navigational perfor-
mance. Ph.D. thesis, Department of Computer Science, Uni-
versity of Colorado, 64 pp.

Peng, J., & Williams, R. J. (1996). Incremental multi-step Q-
learning. Machine Learning, 22, 283–290.

Precup, D., Sutton, R. S., & Dasgupta, S. (2001). Off-policy
temporal-difference learning with function approximation.
In C. E. Brodley and A. P. Danylok (Eds.), Proceedings
of the 18th International Conference on Machine Learning
(pp. 417–424). 28 June–1 July 2001. Williamstown, MA/San
Francisco, CA: Morgan Kaufmann.



000–0–00–000000–0 15-Haupt-c15 SHB0024-Haupt (Typeset by SPi, Delhi) page 327 of 328 October 31, 2008 14:30

15 Reinforcement Learning 327

Puterman, M. L. (2005). Markov decision processes: Discrete
stochastic dynamic programming (649 pp.). Hoboken, NJ:
Wiley Interscience.

Robbins, H., & Monro, S. (1951). A stochastic approximation
method. Annals of Mathematical Statistics, 22, 400–407.

Samuel, A. L. (1959). Some studies in machine learning using
the game of checkers. IBM Journal on Research and Devel-
opment, 3, 211–229.

Si, J., Barto, A. G., Powell, W. B., & Wunsch, D. (Eds.). (2004).
Handbook of learning and approximate dynamic program-
ming (644 pp.). Piscataway, NJ: Wiley-Interscience.

Singh, S. P., & Sutton, R. S. (1996). Reinforcement learn-
ing with replacing eligibility traces. Machine Learning, 22,
123–158.

Singh, S. P., Jaakkola, T., Littman, M. L., & Szepasvari,
C. (2000). Convergence results for single-step on-policy
reinforcement-learning algorithms. Machine Learning, 38,
287–308.

Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning:
An introduction (322 pp.). Cambridge, MA: MIT Press.

Tadic, V. (2001). On the convergence of temporal-difference
learning with linear function approximation. Machine Learn-
ing, 42, 241–267.

Tsitsiklis, J. N. (2002). On the convergence of optimistic policy
iteration. Journal of Machine Learning Research, 3, 59–72.

Tsitsiklis, J. N., & Van Roy, B. (1997). An analysis of
temporal-difference learning with function approximation.
IEEE Transactions on Automatic Control, 42, 674–690.

Turing, A. M. (1948). Intelligent machinery, National Physical
Laboratory report. In D. C. Ince (Ed.). 1992, Collected works
of A. M. Turing: Mechanical intelligence (227 pp.). New
York: Elsevier Science.

Turing, A. M. (1950). Computing machinery and intelligence.
Mind, 59, 433–460.

Watkins, C. J. C. H. (1989). Learning from delayed rewards.
Ph.D. thesis, King’s College, Cambridge University, Cam-
bridge, 234 pp.

Watkins, C. J. C. H., & Dayan, P. (1992). Q-learning. Machine
Learning, 8, 279–292.

Williams, J. K. (2000). On the convergence of model-free policy
iteration algorithms for reinforcement learning: Stochastic
approximation under discontinuous mean dynamics. Ph.D.
thesis, Department of Mathematics, University of Colorado,
Colorado, 173 pp.

Williams, J. K., & Singh, S. (1999). Experimental results on
learning stochastic memoryless policies for partially observ-
able Markov decision processes. In M. S. Kearns, S. A. Solla,
and D. A. Cohn (Eds.), Advances in neural information
processing systems 11. Proceedings of the 1998 Conference
(pp. 1073–1079). Cambridge, MA: MIT Press.



000–0–00–000000–0 16-Haupt-c16 SHB0024-Haupt (Typeset by SPi, Delhi) page 329 of 346 September 17, 2008 15:8

16Automated Analysis of Spatial Grids

Valliappa Lakshmanan

16.1 Introduction

Environmental data are often spatial in nature. In this
chapter, we will examine image processing techniques
which play a key role in artificial applications operat-
ing on spatial data. These AI applications often seek to
extract information from the spatial data and use that
information to aid decision makers.

Consider for example, land cover data. Since dif-
ferent locations have different types and amounts of
forestry, land cover information has to be explicitly
tied to geographic location. Such spatial data may be
collected either through in-situ (in place) measure-
ments or by remote sensing over large areas. An in-
situ measurement of land cover, for example, would
involve visiting, observing and cataloging the type of
land cover at a particular location. A remotely sensed
measurement of land cover might be carried out from
a satellite. The remotely-sensed measurement would
cover a much larger area, but would be indirect (i.e.,
the land coverage would have to be inferred from
the satellite channels) and would be gridded (i.e., one
would get only one land cover value for one pixel of
the satellite image). Users of land-cover data often
wish to use the data to recover higher-level information
such as determining what fraction of a particular coun-
try is wooded – AI applications help provide such an
answer, building on well understood image processing
methods.

In this chapter, we will consider spatial data that
are on grids, or that can be placed in grids. Spatial
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grids are digital in nature and arranged in rows and
columns of approximately equal resolution in space.
Depending on the application, there may be a time
sequence of gridded data (as with weather imagery) or
the temporal nature may be irrelevant (as is often the
case with hazard maps).

In this chapter, we will use the standard matrix
notation because it is the one most commonly used
in image processing. The first dimension is the row
number and the second number is the column number.
Thus, (0,0) is the top-left corner and (0,1) is the first
row, second column. One potentially confusing effect
of the standard matrix notation is that the first dimen-
sion increases southwards. If the images are in a cylin-
drical equidistant projection, then latitude decreases
in the first dimension and longitude increases in the
second dimension.

16.2 Gridding of Point Observations

In-situ measurements may be placed on spatial grids to
enable easier interpretation and analysis by automated
applications. Spatial interpolation (see Fig. 16.1) is
used to place point observations onto a spatial grid.
If the point observations are very close together, so
that the average distance between the observations is
smaller than, or similar in magnitude to, the resolution
of the grid resolution, a technique known as kriging
may be used. If, as is more common, the observations
are far apart, spatial interpolation relies on balancing
the competing concerns of a smooth field and a field
that matches the point observations exactly at the loca-
tions that the in-situ measurements were carried out. A
Cressman analysis favors the creation of smooth fields;
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Fig. 16.1 Spatial interpolation is required to take in situ obser-
vations (shown by the pluses) and place them on to grids

a Barnes analysis is less smooth but attempts to match
the point observations better.

Regardless of the method chosen, care should be
taken that the pixel resolution is reasonable. If the
chosen pixel resolution is too fine, sharp gradients
in the underlying data will be smoothed away by
the interpolation. If the chosen pixel resolution is
too coarse, multiple observations will end up being
averaged to obtain a single pixel value, resulting in
degraded data quality. As a rule of thumb, it is wise
to choose as the pixel resolution a large fraction (typ-
ically half) of the mean distance between the original
observations.

Cressman (1959) introduced a technique of objec-
tive analysis, of interpolating observation data onto
spatial grids. Consider Fig. 16.1. In Cressman analysis,
the value at a pixel (x,y) is given by:

Ixy =
∑

i
Ii

R2−(x−xi )
2−(y−yi )

2

R2+(x−xi )2+(y−yi )2

∑
i

R2−(x−xi )2−(y−yi )2

R2+(x−xi )2+(y−yi )2

The impact of an observation at a pixel falls with its
distance away from the pixel, so that closer observa-
tions have a much impact than observations far away.
The parameter, R, determines the scaling or “the radius
of influence”. The larger the value of R, the more the
effect of far-away points is.

Barnes analysis (Koch et al. 1983) improves on the
Cressman analysis in two ways. Rather than using a
polynomial weighting function, Barnes analysis uses
exponential weighting functions. As our discussion
on convolution filters later in this chapter will show,

Gaussian functions have the nice property of providing
the best possible trade-off between noise-reduction
and spatial fidelity. In a Barnes scheme, the weights
for interpolation are given by: e−r2/σ 2

where r is the
distance between the grid point and the observation.

One problem with interpolation techniques is that
after gridding, even grid points at the same location
as the observations have different values from the
observations. This is because of the impact of farther-
away points, and is often desirable in case the obser-
vation in question is faulty. If a better match to the
observation point is desired, Barnes analysis allows
for successive corrections. The difference between the
observed values and the interpolated values at each of
the observation points is interpolated onto the spatial
grid and subtracted (with a fractional weight) from
the result of the previous iteration. This is carried out
until either a maximum number of iterations is reached
or until the magnitude of the difference field is small
enough. It should be kept in mind that a n-pass Barnes
analysis is very sensitive to incorrect data at any of the
observation points and can lead to non-smooth grids.
However, it can also capture sharp boundaries much
better than a 1-pass filter.

Kriging is an interpolation technique that assumes
that the co-occurrence of data values can be used to
gain a better interpolation. The co-occurrence is esti-
mated by constructing a variogram – a function of
correlation between pixel values against the distance
between the pairs of pixels. The variogram is then
used to make predictions at unobserved locations. See
Oliver and Webster 1990 for more details.

16.3 Extraction of Information from
Spatial Grids

It is often desired to extract information from spatial
grids. For example, it might be desirable to extract
from an image of land cover data, all tree-covered
areas where drought conditions prevail. Or it might be
desired to identify, from a weather satellite’s visible
channel, where a storm front is. This involves process-
ing the image using automated applications looking for
features that make it likely that an area is tree covered
or undergoing drought or that the pixels of the image
correspond to a storm front.



000–0–00–000000–0 16-Haupt-c16 SHB0024-Haupt (Typeset by SPi, Delhi) page 331 of 346 September 17, 2008 15:8

16 Automated Analysis of Spatial Grids 331

Fig. 16.2 The workflow of a typical AI application operating on spatial grids

There is a considerable body of literature and tech-
niques for such automated analysis of images, finding
predetermined objects and patterns and acting on the
analysis. Image processing applies the mathematics of
signal processing to two dimensions. Thus, the con-
cept of filtering an image, reducing noise, accentu-
ating features to make them easier to find, etc. have
been the subject of much research in the electrical
engineering and computer science communities. Pat-
tern recognition follows the same approach to images
but rather than simply filter images, pattern recogni-
tion approaches yield objects as results. Thus, pat-
tern recognition adds to the image processing arsenal
tools for segmentation (finding distinct areas in an
image) and morphological operations (processing data
on shape). Data mining is a larger field of study, of
extracting information from all types of data, including
data in a relational database. Knowledge discovery is a
relatively new sub-discipline that in the context of spa-
tial grids often refers to the extraction of relationships
between objects that have been identified in the grids.

Image processing and pattern recognition are spe-
cific forms of data mining, concerned with processing
and identifying objects in images. Although image
processing and pattern recognition have been the sub-
ject of decades of research and development (and
movies and TV crime shows!), these techniques work
only in highly controlled environments. The pres-
ence of noise, entities that have a variety of shapes
and sizes and incomplete or faulty data, pose signifi-
cant problems for AI techniques. The most successful
implementations of AI techniques are in such environ-
ments as factory floors, where unexpected objects are
unlikely, all parts are within carefully selected para-
meters and incomplete data can be engineered away.
AI applications in environmental science are some
of the most challenging, because in many cases, it

the expected size of objects is unknown, and signifi-
cant artifacts pollute to the imagery presented to these
techniques. The rest of this chapter presents the most
mature sub-disciplines of these fields and highlights a
few applications of these techniques in the automated
analysis of real-time weather images.

16.3.1 Work Flow of a Typical
AI Application

A typical AI application that operates on spatial
imagery to find the presence or absence of some entity
within the image is organized as shown in Fig. 16.2.

Preprocessing typically involves taking the spatial
data and remapping it so that the grid resolution is
locally uniform. If the input data are not in gridded
form preprocessing may even involve placing the data
in a locally uniform grid.

Uniform spatial grids are filtered to remove arti-
facts, noise and features that the system designer
deems unnecessary or potentially disrupting to the rest
of the AI process. Depending on the type of informa-
tion being mined for, the gridded and filtered data are
subject to either edge finding or segmentation. Edge
finding finds strong gradients in the spatial data, con-
nects them up and creates cartoons which are then
subject to feature extraction and/or pattern recogni-
tion. Segmentation finds contiguous data and com-
bines them into objects that are then subject to feature
extraction and/or pattern recognition.

Features are properties computed from either the
edges or the objects. For example, the eccentricity
of the shape and the size and texture of the object
are commonly used features. These features are then
presented to a classifier such as a neural network,
support vector machine or a genetic algorithm. The
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output of the classifier typically indicates the presence
or absence of some feature that is the goal of this AI
application.

16.3.2 Markov Random Process

A basic assumption behind most image processing
operations is that the image pixels can have any
value, but that the value of a pixel is interwoven with
the value of its immediate neighbors. This intuitive
idea is formalized by assuming that the pixels of an
image are generated through first-order Markov ran-
dom processes. Two pixels are correlated if, and only
if, they are adjacent to each other. For example, con-
sider three adjacent pixels:

A B C

The pixels A and B are correlated as are the pixels B
and C. The first-order Markov assumption means that
the correlation between A and C is captured solely by
the correlation between A–B and B–C.

This neighborhood assumption will be seen clearly
in the filtering and segmentation operations. These
image processing operations do not work well on
fields where the pixel values of neighboring pixels
are uncorrelated. Visually, such images are highly
speckled, like that of a television set with no sig-
nal. Most environmental data, however, are relatively
smooth spatially. Such data can be processed with
image processing operations.

Gridding using spatial interpolation methods such
as the Cressman and Barnes operations leads to
extremely smooth fields because pixel values are
obtained through interpolation of the point observa-
tions. Ideally, the grid resolution is chosen to be no
more than half the maximum of the distances between
every point observation and its nearest neighbor. At
higher resolutions, interpolation artifacts can become
evident and the neighborhood size for pattern recog-
nition has to be made larger – a first order Markov
process won’t fit the data anymore. The artifacts and
large neighborhood sizes can make pattern recognition
harder to perform. It is recommended, therefore, that
pattern recognition be performed on data gridded at a
reasonable resolution.

When changing the geographical projection of a
spatial grid, it is possible that, in the new projection, a
couple of pixels may derive their value from the same

pixel in the original image. Such repetition of pixels
can also lead to spatial artifacts. It is recommended,
therefore, that image processing and pattern recogni-
tion be performed on data as close as possible to the
native format of the data.

Amongst image processing operations, certain
operations operate only on the neighborhood of a
pixel. Other operations act on the image globally or
are greedy – they process as many pixels as do sat-
isfy some predetermined constraints. Global or greedy
operations are unsafe on grids where the size of a
pixel varies dramatically over the image. Consider,
for example, a spatial grid covering the Northern
Hemisphere projected in a Mercator projection. The
area covered by a pixel at the northern extremity of
the image is much smaller than that of a pixel near the
equator. This affects the validity of global or greedy
operations since the pixels at different areas of the
image are quite different. The same problem affects
the processing of radar data in their original polar
(actually a flattened cone, in 3D) format. Pixels closer
to the radar are smaller than pixels farther away. In
such situations, it is preferable to process data in a
format or projection where the area of a pixel is con-
stant. Examples of such area-preserving projections
include the Albers conic and Lambert azimuthal equal-
area projections. Naturally, this recommendation is at
odds with the previous recommendation of perform-
ing image processing in a native format. It might be
necessary to perform the operations in both a native
format and in an area-preserving projection to discover
what works best for a given application. In the case
of radar data, the equal-area projection would be to
map the radar data onto a Cartesian grid, probably
one tangent to the earth’s surface at the location of
the radar. Repeated pixels then become problematic at
long ranges. It may be necessary to try the operation
both in the native polar format and in the Cartesian
grid projection to discover what works best.

16.4 Convolution Filters

Intuitively, one way to reduce the noise in an image is
to replace the value of a pixel with some sort of neigh-
borhood average. Surprisingly, this very simple con-
cept leads to very powerful local operations on images.
Instead of simply using neighborhood average, more
complex mathematical and statistical operations may
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be performed on the set of values in the neighborhood
of a pixel. For example, the median of the neighbor-
hood values is one of the best speckle filters avail-
able. Sorting the neighborhood values and computing
a weighted average of the sorted set is an excellent way
to identify edges in an image. Changing the shape of
the neighborhood and the weight assigned to neigh-
borhood pixels provides the ability to identify differ-
ent types of objects in images. This operation, often
replacing a pixel with a weighted sum of its neighbors,
is termed convolution.

Mathematically, replacing a pixel by a local average
can be written as:

Ixy = 1

(2k + 1) · (2k + 1)

i=x+k∑

i=x−k

j=y+k∑

j=y−k

Iij

where I represents the image, x,y represents the pixel
at row number x and column number y and k is the
half-size of the neighborhood. The above equation
means that for every pixel xy, we need to look in a
two-dimensional neighborhood, up all the values and
divide by the number of pixels. For example, if k were
to be 2, we would be computing a 5 × 5 average
around the pixel and dividing by 25. Figure 16.3 shows
the effect of such local averaging operation on an
infrared satellite image. Note that the jaggedness of the
edges has been considerably reduced. Note also that
the image is considerably smoother. Such an operation,
which reduces high spatial variations in the image, is
termed a smoothing operation.

16.4.1 Gaussian Filters

One need not provide the same weight to all the neigh-
bors of a pixel. Often, a higher weight is assigned to
pixels that are closer in to the center value. The above
equation may be generalized as follows:

Ixy =
i=x+k∑

i=x−k

j=y+k∑

j=y−k

Wij Iij

where the weight W essentially determines the type of
operation that is performed. Technically, this operation
is cross correlation. However, if one is using symmet-
ric matrices (as we almost inevitably will be), cross
correlation and convolution are the same thing. In the
case of a 3 × 3 local average, the weight matrix is

given by:

W = 1

9

⎡

⎣
1 1 1
1 1 1
1 1 1

⎤

⎦

The local average weight matrix, often called the box-
car kernel, is a poor choice for smoothing because it
can result in large spatial relocations of maxima. A
better convolution kernel for smoothing is one where
the weight matrix has large values in the center and
smaller values around the edges. That way, values far
away from the center pixel have a lesser effect on the
final value than do values closer in. A Gaussian convo-
lution kernel offers the best trade-off between spatial
smoothness and the moderate variability within the
image that are characteristic of local maxima. Because
the features do not smudge as much, one can smooth
a lot more effectively with a Gaussian kernel. In the
Gaussian kernel, the values of the weight matrix are
computed using this equation:

Wxy = 1

σ 2
e

(x)2+(y)2

−2σx 2

where x and y range from −k to k. Since the Gaussian
has infinite range, one needs to be careful to choose an
appropriate value of k – approximately thrice the value
of sigma typically works well. Note that the above
matrix equation does not add up to one within the
neighborhood. Therefore make sure to divide by the
total weight. The higher the value of sigma, the more
smoothing happens. A comparison of smoothing with
the Gaussian kernel and a nearly equivalent boxcar
kernel is shown in Fig. 16.4. Note that the Gaussian
provides a smoother image with less smudging of max-
ima (the smudging of maxima is evident in the figure
(top) in the greenness of the thin vertical line at the
bottom left of image).

16.4.2 Matched Filters

By changing the weights in the convolution kernel, it
is possible to extract a wide variety of features. For
example, thin vertical lines may be extracted using the
weight matrix shown below:

W = 1

3

⎡

⎣
1 0 −1
1 0 −1
1 0 −1

⎤

⎦
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Fig. 16.3 Top: an infrared satellite image. Bottom: the same image with a 5 × 5 local average applied to it

Note that the above weight matrix when applied to an
image results in high values, wherever there are high
values to the left of low values. In areas where there
is very little change, the positives and negatives can-
celed each other out, resulting in very small and pixel
values in the in the result. The result of this operation

when applied to an infrared image is shown in
Fig. 16.5.

As a general principle, a convolution kernel may
be used to extract features that look like it. In other
words, convolution may be thought of as a matched
filter operation. To avoid simply getting high values in
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Fig. 16.4 Top: The infrared image of Fig. 16.3a smoothed with a box kernel with a half-size of 3. Bottom: The same infrared image
smoothed with a Gaussian kernel with a sigma of 3 (and half-size of 9)

the result wherever there are high values in the input
image, one needs to normalize the kernel result at a
pixel by the smoothed value at that pixel. The kernel
used in Fig. 16.5 returns large magnitudes for thin
vertical lines, because if one were to think off it as a

topographic map, the weight matrix is appears like a
ridge. Of course, as Fig. 16.5 shows, the matched filter
is not perfect – the operation returns large values for
anything where the values of the left are higher than
the values on the right, not just thin lines.
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Fig. 16.5 Bottom: the effect of applying a vertical-line detection kernel to the infrared image on the top

16.4.3 Filter Banks

The matched filter idea may be used to find objects
in an image. Unfortunately, though, convolution fil-
ters are both scale and orientation dependent. Thus,
if one needs to find ridges that are five pixels thick,
the convolution kernel needs to be five pixels thick. If
the boundary of interest is not vertical, but horizontal,

the matched filter needs to have its ones and zeros
oriented horizontally. This makes matched filters
extremely hard to use to find objects whose scale and
orientation are not known in advance.

Most commonly, matched filters to find objects are
used as part of a filter bank, as shown in Fig. 16.6. Sev-
eral filters of different sizes and orientations are used to
filter an image. The final result at a pixel is determined
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Fig. 16.6 A matched filter is typically used as part of a filter bank, with filters of different scales and operations. The best response
from the individual filters is chosen at each pixel to provide the final result

by combining the result of the different convolution
filters at that pixel. The combination method may be to
take the average of the individual filter responses or to
choose the best response, for example the maximum.

A general purpose smoothing convolution filter that
can be used to match regions of different sizes and
orientations is shown below:

Wxy = 1

σx
2 + σ 2

y

e
(x cos θ)2+(y sin θ)2

−(σx 2+σ2
y )

This is a Gaussian, where the two sigmas determine the
vertical and horizontal scales while theta represents the
orientation off the object that could be matched.

A number of boxcar convolution filters at different
orientations (but not scales) are used in a filter bank
to identify storm fronts by Wolfson et al. 1999. They
then choose the maximum filter response to be the final
output of the smoothing operation. Doing so achieves
the nice effect of smoothing along the storm front.

There are several drawbacks to performing multi-
scale or orientation analysis using a matched filter
bank. Because repeat convolutions have to be per-
formed on the original image, filtering can take a very
long time. Also, because the results of the filters are not
related, it may not be possible to perform higher level
operations based on just filter banks. Several simplifi-
cations are possible in order to improve the efficiency
and usability of filter banks. Firstly, as Section 16.3.5
illustrates, convolution itself may be sped up to by
taking advantage of Fourier transforms and separable

filters. If the resulting features are related, it is pos-
sible to first identified the objects, and then combine
them outside the filter bank. If the resulting images
themselves are related, it is possible to use wavelets
to perform higher level operations on the related set of
images.

16.4.4 Missing Data and Image
Boundaries

Often, parts of the domain will not have been mea-
sured. The sensor may have had equipment problems.
The point of view of the sensor may have been such
that some part of the domain is out of range. The beam
may have been blocked. Yet, numerical operations like
image processing operators can not deal properly with
such missing data. If one needs to compute a local
average around the center pixel:

5 2 X
4 3 6
4 2 X

and “X” denotes a pixel that was not measured, how
can a local average be computed? There are two broad
approaches: (a) compute the average only on the non-
missing pixels, in which case, the answer would be
26/6 = 4.3 or (b) assume that a pixel when missing
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is a “typical” value, say 5, in which case, the answer
would be 36/8 = 4.5.

Computing the value using only non-missing data
usually yields better, more representative results with
fewer artifacts. However, the second approach of fill-
ing unmeasured pixels with a default value is con-
ducive to several optimizations, in particular of per-
forming operations in a transform domain. The prob-
lem, of course, is of correctly choosing the default or
“typical” value.

The same problem occurs in a different guise when
the operations lead to the edge of the image. The sim-
plest approach is to add an imaginary row or column,
assuming that the entire row/column is missing and use
one of the above two approaches. The exception is in
the case of radar data where the radials “wrap” back
around, so that the boundary condition is only when
the data go out of radar range.

16.4.5 Speeding Up Convolution
Operations

One problem with using Gaussian filters is that the
scale of the filters tends to get quite large. This trans-
lates directly to filter size. So, the larger the filter,
the more time it takes to compute a local average. If
Gaussian filters are used in a filter bank, this loss of
performance adds up to become a critical bottleneck.
There are two ways to speed up a matched filter bank
made up of Gaussian filters.

Convolution can be performed in Fourier transform
space. The original image and awaiting matrix are both
transformed into Fourier space. In Fourier transform
space, convolution is merely pixel to pixel multiplica-
tion. Thus, convolution even with very large weighting
matrixes takes only as long as the time it takes to com-
pute the two Fourier transforms – the larger the kernel
the more dramatic the speed up (Lakshmanan 2000).
There is one drawback, however, to performing convo-
lution in Fourier transform space. In order to compute
a Fourier transform, it is necessary for the entire image
to consist of valid values. If certain pixels within the
grid went unsensed, Fourier transform methods cannot
be used directly. Instead, in the preprocessing step,
missing pixels have to be set to some default value.
Traditionally, this default value is either zero or the
mean of the entire image.

The following steps will perform convolution in
Fourier transform space:

1. Pad weighting kernel to nearest power of 2 or other
small prime

2. Compute Fourier Transform of weighting kernel
3. Pad image to nearest power of 2 or other small

prime
4. Preprocess the image and fill all missing pixels with

a default value, say zero
5. Compute Fourier Transform of image
6. Multiply the two transforms pixel-by-pixel
7. Compute the inverse transform of image

The reason for padding the image for computing the
Fourier transform is that fast methods (called Fast
Fourier Transforms, FFTs) exist to compute Fourier
transforms on digital data.

Fourier transform methods cannot be used on
images, such as radar data, that commonly have miss-
ing values. A second alternative exists for speeding
up convolution operations. This is to formulate the
weighting matrix as a separable function. For example,
the Gaussian kernel without any orientation can be
written in separable form as:

Wxy = 1

σ 2
e

(x)2+(y)2

−2σ2
x = 1

σ 2
e

(x)2

−2σ2
x e

(y)2

−2σ2
x

Separable convolution filters can be implemented in
a fast manner by first processing the image row by
row, and then processing it column by column. If the
weighting kernel were 25 × 25, convolution using
the inseparable form would require 625 operations at
every pixel. On the other hand, the separable form can
get away with just 50. Therefore, the separable form of
convolution can lead to significant speedups, although
not as dramatic as the Fourier transform methods. For
an approximation to oriented Gaussian filters in a sep-
arable form please see Lakshmanan 2004.

16.4.6 Wavelets

Wavelets are a multiresolution technique. They pro-
vide a way by which images may be broken up
into sub-images such that one of the sub-images is a
smaller but faithful representation of the larger image.
The smooth images in Fig. 16.7 (S0, S1, S2, etc.)
are decomposed to yield three detailed images (D0,
D1, D3, etc.). That sub-image can itself be broken up
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Fig. 16.7 Using wavelet
analysis, images are
decomposed into detailed
images (left) and a smaller
smoothed image (right)

into the more sub images. At each stage, the four sub
images can be combined to yield the larger image that
was decomposed to yield the sub images.

In order to decompose images such that the
smoothed images have the above relationship, only
specific convolution weight matrices may be used. The
most commonly used convolution filters in wavelet
analysis are the Haar function and the Daubechies p-
functions. If all that is required is to be able to process
images at multiple scales, wavelets are overkill. Sim-
ply filtering the image using Gaussian filters at differ-
ent sigmas may suffice.

16.4.7 Edge Finding

The line finding filter described in Section 9.3.2 is not
a robust way to find edges. Just as using a boxcar
kernel to smooth images leads to abrupt transitions,
using a box-like line finding filter results in smudging
of the lines that are detected. To identify lines in an
image, use the Canny edge-finding filter (Canny 1986).
The Canny filter involves using the weighting matrix
shown below:

Wxy =
(

1

2
− x2 + y2

σ 2

)
e− x2+y2

σ2

After applying the above convolution filter (known as
the Laplacian of a Gaussian because it is obtained by

differentiating the Gaussian equation twice), look for
zero crossings in the convolution result. Connecting up
the zero crossings provides the location of the edges in
the image.

16.4.8 Texture Operations

Convolution involves computing the weighted average
of the pixel in the neighborhood of a central pixel.
Other operations, however, can be performed once the
values of the pixel’s neighbors have been extracted.
In fact, the boxcar kernel may be thought off as a
statistical operation – the mean – on the neighboring
values. Taken together, these statistical operators are
called texture operators.

Texture provides a good way to distinguish different
objects based on something other than just their data
values. Even if two objects have the same mean value,
the distribution of values within the objects may be
different. Texture operators attempt to capture this dif-
ference in the distribution of data values. Commonly
used texture operators include those based on second
and third order statistics. Variance and standard devia-
tion capture the range of values – high values of these
are associated with “noisy” regions. Homogeneity is a
third order statistic that captures how smooth the data
values are in the neighborhood of the pixel. Another
very useful texture operator is the entropy, which is
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Shannon’s measure of information content. It is com-
puted by taking all the data values in the neighborhood
and forming a histogram. If p is the fraction of pixels
in each bin of the histogram, the entropy is given by:

∑
i

pi log(pi )

The entropy is low in regions where all the pixels
fall in the same bin (because the logarithm of one is
zero and the probability in the all other bins is zero as
well). The entropy is highest in regions where there
is a large diversity of pixel values. Typically, very

high entropies are associated with noise while very
low entropies are associated with instrument artifacts.
Of course, the actual thresholds have to be found by
experiment.

16.4.9 Morphological Operations

In addition to convolution filters and texture operators,
the neighborhood values may be sorted and operators

Fig. 16.8 Spatial dilation and erosion operations may be performed by replacing a pixel with the maximum or minimum of the
values of its neighbors
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Fig. 16.8 (Continued.)

based on the sorted values may be applied to the
images. The median value off the neighborhood val-
ues is an excellent smoothing filter. The median filter
works especially well, and should be chosen in prefer-
ence over Gaussian filters, when the noise has speckle
characteristics.

Taking the minimum value of the pixel values in
a neighborhood has the effect of eroding the image
spatially, so that regions become smaller and small
regions get removed. Similarly, taking the maximum
has the effect of dilating the image spatially. The
minimum and maximum are affected detrimentally,
if there is noise present in the images. Taking some-
thing like the fifth or 95th percentile may help trade-
off the noise characteristics of the image. Alternately,
taking the second-lowest or the second-highest value
in the neighborhood also helps to reduce the impact
of noise. Spatial erosion and dilation where the sec-
ond lowest and highest values are chosen is shown in
Fig. 16.8.

16.4.10 Filter Banks and Neural Networks

So far, we have looked at the number of operations
that can be performed on the neighborhood values of
the pixel. These include convolution filters (boxcar,

Gaussian, matched filters, orientation detectors), tex-
ture operators (variance, homogeneity, entropy) and
morphological operators (erosion, dilation). Several of
these filters may be applied in to an image, either in
parallel or one after the other, to an image as part of a
filter bank as shown in Fig. 16.9.

For every pixel in the original image, we will obtain
a vector of filter results. A neural network or some
other classifier can take all of these input and clas-
sifying each vector into two or more categories. In
other words, each pixel provides a pattern to the neural
network. Since a 1,000 × 1,000 image will provide one
million patterns, one may have to be selective about
whether all the pixels in an image get presented to
the neural network for training and/or classification.
Because many of the pixels in an image are highly
correlated, one must be careful to not assume that the
patterns from a single image are independent training
samples to the neural network. A good rule of thumb is
to treat all the patterns from a single image as simply
one data case when deciding whether one has enough
of a training or validation set.

As an example of an AI application that pro-
ceeds from images to filters through a neural net-
work towards the classification result, consider the
radar reflectivity quantity control system described in
(Lakshmanan 2006). In that application, radar reflec-
tivity, velocity and the spectrum width polar data are
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Fig. 16.9 The output of a filter bank may be used to provide patterns to a neural network for classifying an image pixel-by-pixel

converted to a uniform resolution and indexed polar
grid. A variety of texture operators are applied to the
three polar grids at each elevation. The results of the
filters at each pixel form the patterns that are pre-
sented to a classification neural network. The output
of the neural network is thresholded at 0.5 to determine
whether the pixel in question corresponds to good data
or to non-meteorological artifacts. Not all the pixels
are presented to the neural network. Instead, a pre-
classification step classifies those pixels that can be
done quite easily based on a rule engine. The pix-
els that are presented to the neural network comprise
the hard to classify pixels. If the pixels are classified
solely by the neural network and the rules engine, the
resulting field will have different classifications even
for adjacent pixels that are part of the same storm or
artifact. In order that regions off the radar image all
get classified the same, it is necessary to average the
results of the classification over objects found in the
images rather than treat the pixels as being indepen-
dent. How to do this is the focus of the next section.

16.5 Segmentation: Images to Objects

So far, we have looked at ways of processing images.
Convolution filters, texture operators, edge detection
and morphological operators all have, as their output,
images. In most applications, however, what is desired
is to be able to identify objects and to classify or track

these objects as entities. Classifying pixels makes no
sense, because pixels are ultimately just an artifact of
the remote sensing instrument. In this section, we will
look at how to identify objects from grids.

16.5.1 Hysterisis, to Convert Digital Data
to Binary Images

The process of identifying self-similar groups of pixels
and combining them into objects is called segmen-
tation. Segmentation algorithms work only on binary
data. Therefore, the pixel values have to be converted
to zeros and ones before segmentation can begin.
Using just one threshold to convert the data into binary
typically results in lots of very tiny objects (if the
threshold is too high), a few very large objects (if the
threshold is too low) or in objects that have lots of
holes (if a moderate threshold is chosen).

To avoid the problems associated using only one
threshold, employ hysteresis to convert pixel values
into zeros and ones. Hysteresis involves picking two
thresholds, say t1 and t2. Pixel values below the first
threshold are always set to zero and pixel values above
the second threshold are always set to one. Pixels with
values between the two thresholds are set to one only if
they are contiguous to a pixel that has already been set
to one – this condition is easily applied during region
growing, discussed in the section. The use of this tech-
nique mitigates, but does not completely prevent, the
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problems associated to with a single threshold – the
choice of the two thresholds t1 and t2 has to be made
through experiment.

16.5.2 Region Growing

The segmentation process is done through region
growing. In the region growing algorithm, contiguous
pixels are assigned the same label such that all the pix-
els that have the same label together form a region. The
steps of a region growing algorithm are listed below:

1. Initialize an image called the label image. All of its
pixels are set to zero.

2. Initialize current label to zero.
3. Walk through the image pixel by pixel and check if

the pixel value of the image is greater than t2 (see
Section 16.4.1 on hysteresis) and if the label at this
pixel is zero. If both conditions are true:

(a) Increment current label.
(b) Set label at this pixel to be the current label.
(c) Check all eight neighbors of this pixel. If a

neighbor’s pixel value is greater than t1, repeat
steps b and c at the neighboring pixel.

At the end of the above steps, the label image has a
region number assigned to every pixel. Pixels where
the label image has a value of zero do not belong to any
region. Two pixels with the same label are part of the
same region. Therefore, region properties may be com-
puted from the original image’s pixel values by main-
taining a list of statistics (one for each region), walking
through the pixels of the original image and updating
the statistic for the corresponding region (read out
from the label image) that the pixel belongs to. This
way, a vector of properties or statistical features is
obtained for each region. These features may be pre-
sented to a neural network or other classifier to classify
the identified regions into two or more categories.

16.5.3 Vector and Hierarchical
Segmentation

Although with hysteresis, one uses two thresholds
to reduce the incidence of disconnected regions, the

determination is made ultimately on a single pixel
value. The incidence of disconnected regions could
be reduced even further if the values of neighboring
pixels could be considered when creating the regions.
In other words, it would be better if a filter bank could
be applied to an image, and the results from all the
filters in the filter bank could be used to determine
which region a pixel belongs to. Such a segmentation
technique is called a vector segmentation technique
because it operates on a vector of inputs, not just one
value at every pixel.

Another drawback of using the hysteresis-based
region growing approach is that it is not possible to
obtain hierarchical regions with overlapping thresh-
olds. In real-world AI applications, it helps to be able
to identify regions and place them into larger regions.
Regions, sorted by size, can be used for different
tasks and to evaluate different types of constraints.
Such a segmentation technique is termed a hierarchical
approach.

The classical hierarchical segmentation tech-
nique is the watershed algorithm of (Vincent and
Soille 1991). The technique consists of first sorting
the pixel values within the image in ascending order
of magnitude and then slowly raising a “flood” level.
Connected regions, identified through region grow-
ing, form a hierarchy with the flood level determining
how high up in a hierarchy a region exists before it
is subsumed into a larger region. The saliency of a
region, the maximum “depth” of a region, provides
an indication of how important it is. Unfortunately,
watershed segmentation works very poorly in images
with statistical noise. Watershed segmentation may
work quite well on model fields and other smooth
datasets, so it is worth trying before attempting more
complex techniques. Statistical noise is a given in
most remotely sensed images, so a better hierarchical
technique, ideally one that works on vector data, is
required.

Lakshmanan 2003 describes a technique where an
explicit trade off is made between the self-similarity of
a region and the idea that a region should be compact
and consist of contiguous pixels. A pixel is similar to a
region if the Euclidean distance between the result of a
filter bank applied to the image at that pixel is close to
the mean of the filter bank results of all the pixels that
are already part of the image. This is essentially the K-
Means clustering approach, of arbitrarily choosing K
regions and then updating the regions based on which



000–0–00–000000–0 16-Haupt-c16 SHB0024-Haupt (Typeset by SPi, Delhi) page 344 of 346 September 17, 2008 15:8

344 V. Lakshmanan

pixels get added or removed from them. When the
set of pixels in a region does not change, or if the
magnitude of those changes is quite small, the clus-
tering is stopped. This vector segmentation approach
is made hierarchical by using steadily relaxing the
allowed inter-cluster distance before regions are
merged.

16.6 Processing Image Sequences

So far, we have considered processing images (or spa-
tial grids) individually. In many applications, the tem-
poral change of spatial data is important. For example,
one might wish to study the change in forest cover
over a decade or the movement of a hurricane over
ocean. In motion picture processing, individual images
are termed “frames” and a set of frames arranged in
temporal order forms a “sequence”. There has been
quite bit of research into techniques for processing
image sequences, mainly for applications such as the
compression of video and for automated security mon-
itoring using video cameras.

16.6.1 Detecting Change

The most common requirement in processing image
sequences is to simply determine whether a change
has occurred. The simplest way of identifying changes
is to compute a pixel-by-pixel difference between
selected frames of a sequence. Pixels where the
absolute maximum of the change is high indicate loca-
tions where a change has occurred.

The differencing technique works well for
sequences where objects suddenly appear or disappear.
For example, in a forestry application, it is possible to
use differencing to monitor whether areas of a forest
have been cleared.

The differencing technique works poorly in appli-
cations where the objects are moving from one loca-
tion to another. This is because the magnitude of the
difference field will be high only in areas where the
object has completely moved to or away. Where there
is an overlap, the magnitude of the difference will be
small. Thus, a single movement might appear to be
two separate areas of change. This limits the utility of

differencing techniques in applications such as storm
tracking.

16.6.2 Tracking by Object Association

One way to mitigate the problems associated with
pixel-by-pixel differencing is to compute differences
on a region-by-region basis. In other words, segment
the frames of a sequence, associate objects between
frames and then tabulate changes in aggregate statistics
(such as size, mean value, etc.) of the regions.

This is easier said than done. Several hard prob-
lems arise in the technique outlined above. Segmen-
tation is a notoriously noisy operation – the change
of magnitude in a few pixels can drastically change
the objects that are identified. Since successive frames
in a sequence are slightly different, the results of
segmentation on these frames may result in dramati-
cally different region identification. This makes asso-
ciating regions problematic. Even if the segmentation
problems are resolved satisfactorily so that slightly
different images yield only slightly different regions,
the region association problem is not insignificant. In
storm tracking, for example, individual storm cells
may split or merge – this needs to be accounted for
in the object association.

If the objects are large enough and move slow
enough for them to overlap significantly, the associ-
ation problem is not difficult. A minimum overlap in
terms of spatial correlation may suffice for associating
objects. This is the strategy commonly employed in
tracking mesoscale convective systems. See for exam-
ple Carvalho and Jones 2001.

When there are numerous small features identified,
it can be unclear as to what the optimal assignment
ought to be. A principled way of associating objects
would be to minimize a global measure of fitness,
such as the total Euclidean distance between the vec-
tors of properties between associated objects. This is
the approach followed by Dixon 1993, where a lin-
ear programming approach is employed to minimize
a least squares metric. A less principled approach,
but one that works quite well, is to extrapolate the
movement of regions and then simply choose the
region in the next frame closest to the anticipated loca-
tion. This is the method employed by Johnson et al.
1998.
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16.6.3 Estimating Movement Using
Optical Flow

Object association techniques tend to identify move-
ment only at the scale of the objects. If the objects
are ephemeral or difficult to identify, the quality of
the movement estimated from object tracking methods
suffers.

A better way of estimating movement may be
to ignore object identification altogether. Instead, the
image is considered a fluid field and the movement
at a pixel is assumed to be that movement which
when removed from the current field would result in
the smallest magnitude difference field to the previ-
ous frame. To compute this, a neighborhood of pixels
around a central pixel is moved around in the previous
frame until the point at which the difference is mini-
mal is identified. This movement is the movement at
that pixel. This process is repeated for each of the
pixels in the current frame. Such a technique usually
minimizes the sum of the squares of the differences
in pixel values, and is therefore termed spatial cross-
correlation. Tuttle and Gall (1999), for example, take
rectangular subgrids of radar data, move it around the
previous frame and use the minimal movement to esti-
mate movement of tropical cyclones.

Wolfson et al. 1999 improved the basic cross-
correlation technique by smoothing the images with a
filter bank consisting of elliptical convolution filters (to
smooth along the storm front), added smoothing crite-
ria so that adjacent pixels do not have wildly different
motion estimates and incorporated a global motion
vector to eliminate outliers at the expense of being
unable to track circular movements such as hurricanes.
The Lagrangian technique of Turner et al. 2004 explic-
itly formulates this as a multi-variable optimization
problem but avoids the global motion vector criterion
to retain the ability to track continent-scale flows in
multiple directions.

Object association techniques yield more accurate
wind speeds for small-scale storms, but the movement
of larger-scale features is better predicted by optical
flow methods. One drawback of optical flow meth-
ods is an inability to obtain long-term statistics about
the trends of object properties, because no objects are
identified in these techniques. Lakshmanan et al. 2003
introduced a hybrid technique that estimates move-
ment of objects identified through hierarchical seg-
mentation using optical flow techniques. Because the

optical flow movement is estimated, not on rectangular
subgrids of the image, but on templates the size and
shape of the identified clusters, the clusters can be
displaced through multiple historical frames to yield
object statistics.

16.6.4 Trends of Geographic Information

So far, we have looked at temporal changes in objects,
such as storm systems, that move. How about obtain-
ing the temporal properties from a stationary view-
point, such as the total precipitation that falls within
the boundaries of a city?

The simplistic approach is to map the geographic
data onto the same grid as the remotely sensed data and
then perform the accumulation operation on the pixels
that correspond to the city. However, gridding geo-
graphic information system (GIS) data is not always
practical. Ideally, it would be possible to leave GIS
data in its original vector form and compute spatial
properties that fall within the vector.

To decide whether a pixel falls within a polygon,
simply map the vertices of the polygon to the gridded

Fig. 16.10 Count the number of times an edge of a polygon is
encountered to determine whether a pixel in question falls within
the polygon
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reference i.e. convert the polygon vertices to (x,y)
locations. Assuming, for simplicity that the polygon
is completely within the grid, walk row-wise from
the grid boundary to the pixel of interest, counting
the number of times that the sides of the polygon are
crossed (this can be done by finding the intersection
point of the line corresponding to the row and the line
corresponding to each of the edges of the polygon – see
any geometry book for details on the formulae to do
this). If the total number of crossings is odd both when
walking row-wise (see Fig. 16.10) and when walking
column-wise, the pixel falls inside the polygon and its
pixel value contributes to polygon statistics.

16.7 Summary

In this chapter, we have looked at how image process-
ing plays a key role in artificial applications that oper-
ate on spatial data. We discussed techniques to con-
vert in situ observations into spatial grids. We also
examined ways to reduce noise, find edges and iden-
tify objects from spatial grids. Finally, we looked at
purely image-driven AI applications such as tracking
and the extraction of spatial properties within vector
boundaries.
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17Fuzzy Logic Applications

John K. Williams, Cathy Kessinger, Jennifer Abernethy,
and Scott Ellis

17.1 Introduction

Fuzzy logic originated in the mid-1960s with the work
of Lotfi Zadeh, as described in Chapter 6. However,
it wasn’t until the 1990s that it was widely recog-
nized as a valuable tool in the atmospheric and other
environmental sciences. One of fuzzy logic’s first suc-
cessful applications in the atmospheric sciences was
the Machine Intelligence Gust Front Detection Algo-
rithm (MIGFA) developed at the Massachusetts Insti-
tute of Technology’s Lincoln Laboratory (Delanoy and
Troxel 1993). Since then, a wide range of environmen-
tal science problems have been successfully addressed
using fuzzy data analysis and algorithm development
techniques. The purpose of this chapter is to supple-
ment the introduction to fuzzy logic presented in Chap-
ter 6 by describing a few selected applications of fuzzy
logic that provide a flavor of the power and flexibility
of this approach.
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The unique contribution of fuzzy logic is that it pro-
vides a practical approach to automating complex data
analysis, data fusion, and inference processes that are
usually performed by human experts with years of for-
mal training and extensive experience. For instance, in
developing a weather forecast, meteorologists consult
data from various observations and models, each hav-
ing a different level of relevance and reliability. Tell-
tale patterns are sought in satellite and radar images,
with contamination identified and disregarded. Sound-
ings and surface data are analyzed and compared for
consistency. Numerical weather models are consulted
and weighed, with attention given to their past perfor-
mance. Each bit of information provides a new piece of
the puzzle, and may suggest a reanalysis of other data
in an iterative process. Eventually, the available infor-
mation is synthesized to form an overall consensus
view, and perhaps also an assessment of confidence in
the resulting forecast. This is exactly the type of com-
plex procedure that a fuzzy logic expert system might
automate. A fuzzy logic algorithm solution would first
develop modules for analyzing and performing qual-
ity control on the various sources of information. For
example, standard image processing techniques might
be used to measure local characteristics in the radar
or satellite data, or to identify features such as fronts
by convolving appropriate templates with the image.
Physical models or function approximation, including
trained neural networks or other empirical models,
might be used to relate raw sensor measurements to a
quantity of interest – for example, determining temper-
ature profiles from radiometer measurements. Statisti-
cal analyses might be employed to help determine data
quality, or to determine conditional probabilities based
on historical data. Human input such as hand-drawn
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fronts or boundaries might also be incorporated. The
evidence supplied by these multiple data sources
would be weighted by quality and by relevance, and
used to perform fuzzy inference. The inference steps
might be multi-layered or even iterative, feeding back
into the data analysis; they could be tuned based on
a training set or dynamically adjusted online using
recent verification data. As this description suggests,
a fuzzy algorithm can be quite complex – enough so,
in fact, to represent many aspects of a human expert’s
reasoning process. Like human experts, the best fuzzy
logic algorithms make use of all available information,
saving any hard thresholding or binary decisions until
the last step whenever possible. They also often pro-
vide a “confidence” value that lets downstream deci-
sion processes know how trustworthy the results are
likely to be.

The applications of fuzzy logic presented in this
chapter are drawn from those developed at the National
Center for Atmospheric Research (NCAR) with which
this chapter’s authors are most familiar. The use of
fuzzy logic at NCAR is extensive and can be divided
into several problem areas: improving sensor mea-
surements, performing data quality control, character-
izing current weather phenomena, forecasting future
weather, knowledge discovery and verification. Some
of the most common application areas include decision
support systems for aviation, road weather, national
security, and societal impacts.

For example, one of the first applications of fuzzy
logic at NCAR was the development of an auto-
mated algorithm for detecting microburst signatures
in Doppler weather radar data (Albo 1994, 1996,
building on work by Merritt 1991). Microbursts are
small scale downdrafts usually associated with thun-
derstorms (Fujita and Byers 1977; Fujita and Cara-
cena 1977; Hjelmfelt 1988) that can be extremely haz-
ardous to aircraft when encountered at low altitudes.
The Microburst Automated Detection (MAD) algo-
rithm analyzes the radar data to look for areas of low-
level, divergent outflow occurring near a storm, having
a characteristic size and shape and a lifetime of a few
minutes. If a microburst is identified, the sensitivity
of detection in that region is automatically increased
since microbursts often occur in lines or clusters. The
automated microburst detection capability provided by
radar and other ground-based warning systems, along
with pilot training, has virtually eliminated aviation
accidents due to microbursts at fully-equipped U.S.
airports since the mid-1990s.

Other fuzzy logic algorithms developed at NCAR
include techniques for identifying hydrometeor types
(e.g., rain, ice, snow) using polarimetric radar mea-
surements (Vivekanandan et al. 1999; Barthazy
et al. 2001), a system for identifying and forecast-
ing aircraft icing conditions (McDonough et al. 2004;
Bernstein et al. 2005), a method for generating
automated weather forecasts for cities (Gerding and
Myers 2003), systems for merging observation and
model data to produce short-term thunderstorm fore-
casts (Mueller et al. 2003; Roberts et al. 2006), tech-
niques for forecasting ceiling and visibility for avi-
ation users (Herzegh et al. 2004), and a method for
performing automated quality control on time series
data (Weekley et al. 2003). In addition, fuzzy logic
is playing an increasingly important role in verifying
forecast products through the use of “object oriented”
techniques that award partial credit even when the time
and position matches of a forecast with subsequent
measurements are imperfect (e.g., Davis et al. 2006).
Fuzzy clustering techniques and self-organizing maps
are also being used to analyze large datasets and
attempt to identify “weather regimes” that may lead
to improved forecasts.

Because it is impossible to give in-depth exposi-
tions of all of these applications in a single chapter,
detailed descriptions are provided below for just three:
the NCAR Improved Moments Algorithm (NIMA)
for improving Doppler wind profiler measurements,
the Radar Echo Classifier (REC) technique for clas-
sification and quality control of Doppler radar data,
and the Graphical Turbulence Guidance (GTG) sys-
tem for forecasting clear-air turbulence. While these
examples by no means supply a comprehensive catalog
of how fuzzy logic may be applied in the environ-
mental sciences, they do offer a suggestive overview
of several successful applications of fuzzy logic
concepts.

17.2 Improved Wind Measurements

Remote sensing of atmospheric quantities is a valu-
able capability for meteorological research and oper-
ational weather systems. For optimal performance of
downstream applications, the input data must be of the
highest possible quality with all suspect data recog-
nized and identified as such. While trained researchers
are often able to examine visualizations of raw or
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processed sensor data and identify contamination
or spurious measurement results while isolating the
desired signal, it is increasingly worthwhile to auto-
mate these processes – particularly when the sensor
data are needed for operational, real-time use. This
section describes a fuzzy logic algorithm for extract-
ing high-quality winds and wind confidences from
velocity spectrum data such as those produced by
wind profilers, radars, lidars, and other Doppler instru-
ments. The method, known as the NCAR Improved
Moments Algorithm (NIMA), uses a combination of
image processing and fuzzy logic techniques and was
deliberately constructed to mimic the reasoning of
human experts. By weighing and combining vari-
ous sources of “evidence” in a multi-step process-
ing sequence, NIMA provides more robust and accu-
rate measurements than those produced using tradi-
tional methods. NIMA was originally presented in
Cornman et al. (1998) and Morse et al. (2002);
a comprehensive verification study was given in
Cohn et al. (2001), and NIMA’s operational applica-
tion to Doppler wind profiler data was described in
Goodrich et al. (2002).

17.2.1 Doppler Moment Estimation

Although it was originally designed to operate on
wind profiler data, NIMA may be applied to data
from any of a number of Doppler instruments with
appropriate modification. Such devices generally emit
a focused, modulated signal of radio, light, or sound
waves, detect backscattered echoes, and use signal
processing techniques to analyze the resulting data and
produce a velocity spectrum at a series of discrete dis-
tances called range gates along the beam. For instance,
the National Weather Service’s (NWS) Weather Sur-
veillance Radar-1988 Doppler (WSR-88D; also called
Next Generation Weather Radar or NEXRAD) radars
currently have Doppler measurement range gates at
250 m intervals out to a slant range of 230 km, while
the vertically-pointing wind profiler data presented
below utilizes a 55 m range gate spacing up to about
2.5 km. The velocity spectrum represents the returned
power for each radial velocity detected by the instru-
ment (within its resolvable velocity range or Nyquist
interval), and may be interpreted as showing the
distribution of radial velocities for all the scatterers
(hydrometeors, dust, aerosols, or variations in the air’s

refractive index) contained within a measurement vol-
ume around that location. The spectral power value
at range gate r and velocity v may be represented
as a function f (r, v). In the absence of contamina-
tion or velocity aliasing (folding around the maximum
resolved value or Nyquist velocity), the k th moment of
the spectrum for range r may be computed as

Mk(r) =
vn∫

−vn

vk
[

f (r, v) − N (r)
]

dv (17.1)

or the equivalent sum when the velocities v are dis-
crete; here vn represents the Nyquist velocity and N (r)

represents the random “noise” contribution to the sig-
nal at range r . The 0th moment may be related to the
total backscattering cross-section in the measurement
volume, commonly called reflectivity; the 1st moment
gives the mean radial velocity; and the square root
of the 2nd moment, called the spectrum half-width, is
related to turbulence and wind shear within the mea-
surement volume. Together, these quantities – mea-
sured at each range gate along a beam and for a
succession of times during which the instrument may
be rotated or translated – provide valuable character-
ization of the state of the atmosphere. For a review
of how Doppler weather radars and profilers work,
the reader is referred to the comprehensive text by
Doviak and Zrnić (1993).

17.2.2 The Spectrum Contamination
Problem

Unfortunately, in practice, background radiation and
random fluctuations in the signal detection, amplifi-
cation, and other processing generate random “noise”
that is added to each velocity spectrum value and must
be accurately estimated in order for (17.1) to produce
correct results. Moreover, the spectrum f is often con-
taminated by non-atmospheric returns such as clutter
(caused when part of the signal bounces off the ground,
ocean, or fixed or moving objects on those surfaces),
point scatterers (e.g., birds, bats or airplanes), or radio-
frequency interference (RFI) caused by radio sources
like cellphones, microwave ovens, other radars or pro-
filers, or the sun. One way that human experts detect
such contaminants is by representing the spectral func-
tion f (r, v) for each beam as a 2-D colorscaled image.
For example, Fig. 17.1 shows data for a single beam
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Fig. 17.1 (Top) Contoured,
color-scaled stacked-spectra
plot for a single beam from
the Lemon Creek 915-MHz
profiler in Juneau, Alaska,
with range gates along the
y-axis and radial velocity
along the x-axis. Overlaid are
the radial velocity (“*”) and
spectrum width (“+”) from
the traditional POP moment
algorithm. “Features”
comprising the weather signal
and ground clutter, point
target, and radio-frequency
interference contamination
are also indicated. (Bottom)
The power spectrum
represented as a line plot for
the range gate at 220 m.
Source: Adapted from Fig. 1
of Morse et al. (2002).

from the Lemon Creek 915-MHz profiler in Juneau,
Alaska. Several “features” in the velocity spectra hav-
ing continuity along both the range and radial velocity
dimensions immediately become evident. Overlaid on
the image are indications of the radial velocity (“∗”
symbols) and spectrum width (“+” symbols) estimates
produced by a traditional processing method called
Profiler On-line Program (POP; Carter et al., 1995).
It is clear that POP is frequently being misled by the

various sources of contamination and is therefore pro-
ducing spurious moment estimates.

17.2.3 NIMA’s Fuzzy Logic Solution

NIMA’s goal is to mimic a human analysis of the spec-
tral data by identifying the source of each feature and
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Fig. 17.2 High-level flow diagram depicting the processing elements used in NIMA. A key to interpreting the colors and lines is
given in the upper left. Source: Figure provided by Cory Morse.

using that information to isolate the weather signal,
reconstructing the weather signal if it overlaps one of
the contamination features, and then applying (17.1) at
each range gate to derive the moments. A quality con-
trol index, or “confidence”, is also associated to each
moment to reflect an estimate of its quality. Although
we focus on the processing applied to a single beam
in the simplified description here, information from
other beams adjacent in space and time may also be
used by NIMA to provide additional information for
disambiguating feature sources.

A simplified high-level depiction of NIMA’s data
flow is shown in Fig. 17.2. The algorithm uses sep-
arate fuzzy inference procedures in several different
steps, each focusing on a different scale or type of
feature membership. Each procedure can be iterative,
and the algorithm can also iterate between two steps
(such as between steps four and five, below) in order
to mimic a human expert’s decision-making process.

The five basic steps of NIMA’s processing sequence
are described in greater detail in the remainder of this
section. Briefly, they are:

1. Prior to NIMA, the radar signal processor soft-
ware averages spectra obtained over a prescribed
time period to reduce noise and artifacts. NIMA
performs local 2-D median filtering over a range,
velocity window to eliminate outlier pixels and
further improve the data, resulting in a smoothed
spectral function f (r, v). Both the original and
smoothed spectra may be used in later steps.

2. Perform calculations (e.g., gradient, curvature,
symmetry) at or around each (r, v) pixel to produce
derived quantities (also called image characteris-
tics) that are used by a fuzzy inference process to
assess whether that pixel is likely associated with
clutter, point targets, RFI, weather, or another phe-
nomenon.
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3. Use the results from (2) in an additional iterative
fuzzy inference procedure to identify 2-D “fea-
tures” (regions of interest) for the weather and con-
taminants.

4. Estimate the random “noise” level for each spec-
trum, reconstruct the weather spectrum for each
range gate if it overlaps a contamination feature,
and calculate its moments and associated confi-
dences.

5. Evaluate the continuity of the moments in range,
and repair egregious discontinuities using interpo-
lation, extrapolation, and/or revisiting (4) to see if
choosing a different feature as the weather signal
for the suspect range gates provides a more consis-
tent result.

The averaging and median filtering in step (1) are
required to improve the quality of the spectra by reduc-
ing the magnitude of the random noise perturbations.
The law of large numbers from probability theory
guarantees that averaging a sufficiently large num-
ber of spectrum samples, each contaminated by (rea-
sonably well-behaved) random noise, will converge
toward the underlying true spectrum. In practice, the
fact that the weather changes in time limits the number
of spectrum measurements that can be meaningfully
averaged, so the noise may not be adequately removed.
However, the fact that a weather spectrum should usu-
ally be continuous in both r and v allows a 2-D median
filter to be applied to further reduce the noise and
other small-scale contaminants that may remain. The
filter is applied by centering a “window”, typically five
velocity bins by three range bins, around each (r, v)
point and replacing the value at that point, f (r, v),
with the median of all points in the window. Note that
in a region where f (r, v) is constant, linear, or even
just monotonic, the median filter does not change the
spectral value, but it completely removes isolated out-
liers or features that are small compared to the window

size. The result of this operation for the data shown in
Fig. 17.1 is the “cleaned up” stacked spectra shown
in Fig. 17.3, which also has NIMA’s final spectral
moments overlaid. The large-scale features are now
more coherent and somewhat more easily identified.

Step (2) begins by computing local characteristics
of the stacked spectra image around each (r, v) point
and then using them to determine a membership value
in each pixel for “weather feature”, “clutter feature”,
“RFI feature” or another contaminant feature. Cal-
culations may be performed in either original spec-
trum units, the logarithmic decibel (dB) scale, or with
renormalization of the spectrum at each range gate so
that its maximum value is 1. For example, a ground
clutter feature is comprised of a set of points char-
acterized by (a) f is generally symmetric or nearly
symmetric around zero velocity, (b) f has a large
positive slope ∂ f (r, v)/∂v to the left of zero and a
large negative slope to the right, (c) f has small range
slope ∂ f (r, v)/∂r , (d) f has a large negative velocity
curvature ∂2 f (r, v)/∂v2, (e) f has small range cur-
vature ∂2 f (r, v)/∂r2, (f) f has a narrow Gaussian
shape, and (g) f matches well with a user-provided
“clutter template”. Each of these characteristics com-
prises “evidence” of a ground clutter feature, although
none by themselves may uniquely identify it. For each
pixel, each of these characteristics is mapped into a
value from 0 to 1 to form a set of “interest” values or
proto-membership function values that are later com-
bined to obtain the ground clutter membership value
for that pixel. For instance, the proto-membership for
ground clutter based on symmetry might be written
μGC

a (r, v), and the proto-membership for ground clut-
ter based on the local match to the clutter template,
μGC

g (r, v). These proto-memberships are then com-
bined in a weighted arithmetic mean, similar to the
“fuzzy consensus reasoning” described in Chapter 6,
but here comprising a fuzzy logical operation similar
to a softened “OR” (see Chapter 6, Section 6.3):

μGC(r, v) = αGC
a μGC

a (r, v) + αGC
b μGC

b (r, v) + · · · + αGC
g μGC

g (r, v)

αGC
a + αGC

b + · · · + αGC
g

(17.2)

for various coefficients α between 0 and 1. Note that
if one or more of the characteristics (a)–(g) is not
available at a given pixel, the corresponding coeffi-
cients α may be set to 0 and (17.2) will still give

the consensus membership based on the remaining
characteristics. Both the proto-membership functions
and the coefficients are tuned based on the profiler
location and the characteristics of clutter there. For
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Fig. 17.3 Stacked spectra
plot for the same profiler
beam shown in Fig. 17.1.
The spectra have been
median-filtered, and the
overlaid moments are from
NIMA. Source: Adapted
from Fig. 1 of Morse et al.
(2002).

instance, the developers of NIMA report that typi-
cal sea clutter contamination tends to be shifted from
0 ms−1 in velocity by an amount that varies with
the site. Membership functions for point targets, RFI,
weather, and other phenomena are computed similarly
and also tuned for each site.

In step (3), 2-D sets of points, or “features”, are
identified and refined based on the pointwise mem-
bership values for weather and clutter, point tar-
gets, RFI, and other contaminants. The process starts
by constructing a “proto-feature” for each phenom-
enon based on the set of all points having mem-

bership values above a certain threshold. For exam-
ple, the RFI proto-feature might be estimated as{
(r, v)|μRFI(r, v) > TRFI

}
, where TRFI is a member-

ship threshold value between 0 and 1, say 0.5. Each
proto-feature has various characteristics that may be
used to determine whether or not it is really asso-
ciated with RFI. A true RFI feature should have (a)
a medium-sized average width in the velocity coor-
dinate, (b) low variance of the width over the range
gates in the feature, (c) small variance of the width
when normalized (i.e., divided by) the number of
range gates in the feature, (d) low variance in the
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peak velocity over the range gates in the feature, (e)
low variance in the velocity midpoint over the range
gates in the feature, (f) small variance of the velocity
midpoint when normalized by the number of range
gates in the feature, (g) a small absolute slope of
the velocity midpoints with range and (h) a location
close to a (temporally trended) RFI feature identi-
fied in the previous measurement. As with the orig-
inal pixel identification, each of these characteristics
may be used to compute proto-membership values
μ

RFI feature
a (n), . . . , μ

RFI feature
h (n), where n represents

the proto-feature number. These values may be com-
bined via a weighted sum as in (17.2). However, it
is also known that a feature is likely to be from RFI
only if (i) the number of range gates covered by the
feature is large and (j) the average difference over
range gates between the midpoint velocity and the RFI
velocity previously measured is small. If either of these

characteristics is not present, the RFI membership
value of the proto-feature must be suppressed. For
this purpose an additional proto-membership function
μ

RFI feature
i (r, v) is defined in such a way that it is

0 for “small” numbers of range gates in the proto-
feature and 1 for “large” numbers, and μ

RFI feature
j (r, v)

is defined to be 1 for velocities v “far” from the veloc-
ity measured in the previous timestep, and to have a
value near 0 otherwise. These two proto-membership
function values are combined together with the con-
sensus from the other proto-membership functions
using a geometric average, which was introduced as
a soft version of “AND” in Chapter 6, Section 6.3
(see Fig. 6.6). The membership of the nth proto-feature
in the set of RFI features is then given by the fol-
lowing formula, in which the “RFI feature” super-
scripts have been omitted on the right-hand side for
conciseness:

μRFI feature(n) =
(

αa μa(n) + · · · + αh μh(n)

αa + · · · + αh

)αA

· (
μi (n)αi · μ j (n)α j

)αG (17.3)

for some coefficients αa, . . ., α j , αA and αG ; NIMA
uses αA = (αa + αb + · · · + αh)

/
(αa + αb + . . . +

α j ) and αG = 1
/(

αa + αb + · · · + α j
)

so that the sum
of all the exponents is 1. Note that if either μi (n) = 0
or μ j (n) = 0 is zero, then μRFI feature(n) = 0;
otherwise, their impact is modulated by the choice of
exponents. A similar approach generates membership
values for each proto-feature for the various different
possible sources: clutter, point targets, weather,
etc. After the proto-features are generated, they are
evaluated by yet another fuzzy logic procedure to
judge whether they are adequately coherent. For
instance, if a proto-feature for “weather” contains
a number of “holes” or is suspiciously narrow, the
threshold Tweather might be lowered and step (3)
repeated. In addition, disjoint weather proto-features
may be joined so that the weather feature covers all
range gates. These processes may be iterated several
times until a satisfactory set of features is identified.

In step (4), the “best” weather signal is identi-
fied and used as the basis for computing the Doppler
moments. For each range gate, the spectral values at
the velocities falling within the weather signal feature
may be used to compute the moments via (17.1), so
long as there is no overlap with other features. If there
is overlap, NIMA uses another fuzzy-logic procedure

to identify the region around the peak spectral value
within the weather signal that may safely be associated
predominantly with the weather, and uses a Gaussian
fit to those points to replace the suspect spectral values.
For each range gate, the random “noise” level and
its variance are calculated using the method of Hilde-
brand and Sekhon (1974). This technique also gener-
ates statistics, including the “signal to noise” ratio, that
are used along with the quality of a Gaussian fit to the
weather signal, the difference between the Gaussian
moments and direct moment calculations, and the local
continuity of the resulting moments in range in con-
structing a fuzzy membership function providing the
“confidence” in each moment for each range gate. This
confidence is a number between 0 and 1 that assesses
the quality of the estimate, though not in a precise
statistical sense.

Finally, step (5) evaluates the moment confidences
for each range gate to identify intervals of low-
confidence, suspect values that should be “repaired”.
For range intervals in which this confidence is small,
NIMA repeats step (4) using a “second guess” at the
location of the weather signal. The location may be
chosen using the “second best” weather feature at
that range or by using the moments from neighboring
“good” ranges to interpolate a “first guess” weather
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signal velocity to use in place of the peak spectral
value for reconstructing the weather signal using a
Gaussian fit. This process may be repeated more
than once until a “best” set of moment estimates are
identified.

17.2.4 Summary

The NIMA algorithm provides a good example of how
a fuzzy logic procedure can be constructed to dupli-
cate a human expert approach to a complicated prob-
lem. It applies both local and global image analysis,
uses iteration to improve initial results, and provides
a “confidence” value in each of the final moment esti-
mates. Such confidences are very valuable to down-
stream applications. For instance, the original motiva-
tion for developing NIMA was to provide improved
rapid-update wind-profiler measurements of horizon-
tal winds for use in detecting wind shear and terrain-
induced turbulence hazardous to aviation along the
approaches to the Juneau, Alaska airport (Goodrich
et al. 2002). The wind profiler points nearly vertically,
measuring radial velocity as it tilts slightly to the north,
south, east and west. These radial velocities are then
used to calculate a best-fit horizontal wind at each level
above the ground. By providing confidences associated
with each velocity measurement, the horizontal wind
computation is able to weight each velocity measure-
ment appropriately; only three good radial velocity
measurements at each level are necessary to estimate
the horizontal wind. Moreover, the confidences are
used by the horizontal wind algorithm to produce a
confidence value for the final wind measurement. Not
only does this use of confidence values improve the
overall quality of the wind measurements, but the con-
fidences also propagate into the hazard warning system
so that the likelihood that contamination could cause
a false aviation hazard alert is greatly reduced. The
practical benefit is that unnecessary airspace closures,
rerouting, and delays may be significantly diminished.

17.3 Operational Radar Data Quality
Control

Ground clutter contamination within weather radar
moment data has two sources: normal propagation

(NP) ground clutter return from stationary targets such
as buildings, power lines, or terrain, and anomalous
propagation (AP) ground clutter return that arises from
particular atmospheric conditions within the planetary
boundary layer (i.e., temperature inversions and strong
humidity gradients) that bend or duct the radar beam
towards the ground. In the United States, conditions
conducive to AP are most prevalent during summer
months (Steiner and Smith 2002). Because NP targets
are stationary and unchanging for long periods of time,
they are relatively easy to remove through the use of
clutter maps that direct where clutter filters are applied.
However, AP clutter return can evolve and dissipate
as atmospheric conditions change, thus necessitating
automatic detection and removal since a fixed clutter
map does not include AP clutter locations.

Radar base data contamination from the sea sur-
face occurs when the radar beam grazes the sea sur-
face or when strong return is captured through the
beam’s sidelobes. The sea state mostly determines the
amount of sea clutter detected and is influenced by
factors such as wave height, wind speed, wind direc-
tion relative to the direction of the radar beam, the
direction of the waves relative to the direction of the
radar beam, whether the tide is incoming or outgoing,
or the presence of swells or waves, to name a few
(Skolnick 1980). Radar system characteristics can also
have an effect on the amount of sea clutter detected.
Further, under AP conditions, the range over which sea
clutter occurs can be considerably extended.

While an adaptation of the NIMA method described
in the previous section might in principle be used
to identify and automatically remove ground and
sea clutter during the radar signal processing, such
a system has not yet been implemented on opera-
tional Doppler weather radars in the U.S. Therefore,
clutter contaminant removal within the radar base
moment data (reflectivity, radial velocity, and spec-
trum width) is necessary to ensure that downstream
analysis algorithms are provided only high quality
output. Using a consensus fuzzy logic methodology
(see Chapter 6, Section 6.8), the Radar Echo Clas-
sifier (REC; Kessinger et al. 2003) identifies various
categories of scatterer at each radar range gate to
facilitate the removal of NP and AP ground clutter
as well as sea clutter contamination. The REC has
a modular design and consists of three algorithms:
the Anomalous-Propagation ground clutter Detection
Algorithm (REC-APDA), the Precipitation Detection
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Fig. 17.4 Schematic showing the processing steps within the
Radar Echo Classifier. These processing steps include: ingesting
the base data for reflectivity (Z), radial velocity (V), and spec-
trum width (W); generation of features that are derived from the

base data fields; use of a fuzzy logic “engine” to determine the
initial interest output; application of the appropriate threshold
and de-fuzzification; and the final output product for the type of
radar echo being considered.

Algorithm (REC-PDA) and the Sea Clutter Detec-
tion Algorithm (REC-SCDA). Initial development
of the REC-APDA was accomplished by Cornelius
et al. (1995) and Pratte et al. (1997) with additional
refinements added by Kessinger et al. (2003). Radar
base moment fields of reflectivity, radial velocity and
spectrum width are inputs for each REC algorithm.

The REC-APDA was deployed within the NWS
WSR-88D (Crum and Alberty 1993) Radar Prod-
uct Generator (RPG; Saffle and Johnson 1997; Crum
et al. 1998; Reed and Cate 2001) system in September
2002 as part of the AP Clutter Mitigation Scheme
(Keeler et al. 1999). The REC-APDA removes AP
ground clutter contamination from the reflectivity field
before the calculation of the radar-derived rainfall rate.
The REC-SCDA and a modified REC-APDA were
deployed on the United Arab Emirates (UAE) radar
network in October 2002 (NCAR Research Applica-
tions Program 2003).

17.3.1 Schematic of REC Algorithms

Each REC module processes the input fields of radar
reflectivity (dBZ), radial velocity (m s−1) and spec-
trum half-width (m s−1) to identify the type of scatterer
that is present within each range gate, whether it is
a “ground clutter target”, a “precipitation target” or a
“sea clutter target” (Fig. 17.4). As in NIMA, various

characteristic (or “feature”) fields are then computed
and mapped into a value between zero and unity to
obtain the “interest” or proto-membership function
values that are combined in a weighted, normalized
arithmetic mean (similar to “fuzzy consensus reason-
ing” described in Chapter 6) to ascertain the likelihood
that the scatterer of interest is present. After applica-
tion of the appropriate threshold value, the final binary
output is the detection product that indicates whether
or not the scatterer type of interest is present at a
particular range gate.

17.3.2 Methodology for Creating a REC
Algorithm

In this section, the step-by-step procedures for devis-
ing a detection module for the REC are described.
Following the REC schematic described above, the
first step is to calculate all potential characteristic
(or feature) fields that might be used to detect the
radar scatterer of interest. Next, using histograms,
each feature field is quantified through comparisons
with validation data sets to ascertain the best dis-
criminators of the desired scatterer type from other
types. After the feature fields providing the best dis-
crimination are selected, the histograms are used to
devise the membership functions to scale the feature
fields between zero and unity, in accordance with their
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distributions for the different scatterer types. Each step
is described below.

17.3.2.1 Feature Field Calculation

First, the radar moment fields (reflectivity, radial
velocity and spectrum width) are input into the
“feature generator” (Fig. 17.4) to calculate derived

quantities such as the “texture”, mean, standard devi-
ation, median, and the “SPINchange” (Steiner and
Smith 2002). These derived quantities can be applied
to any or all of the radar’s moment fields. For the
WSR-88D, they are calculated over a local area
that typically encompasses a data kernel of 3 adja-
cent beams and 8 or 16 range bins. For a given
moment X , the texture, mean and standard deviation
are,

Texture(X), TX =
⎛

⎝
Nbeams∑

j=1

Ngates∑

i−1

(
Xi, j − Xi−1, j

)2

⎞

⎠
/

(Ngates × Nbeams) (17.4)

Mean(X), X̄ =
⎛

⎝
Nbeams∑

j=1

Ngates∑

i=1

Xi, j

⎞

⎠
/

(Ngates × Nbeams) (17.5)

Standard Deviation(X), σX =
⎡

⎢⎣

⎛

⎝
Nbeams∑

j=1

Ngates∑

i=1

(Xi, j − X̄)

⎞

⎠
2/

(Ngates × Nbeams − 1)

⎤

⎥⎦

0.5

(17.6)

where Ngates is the number of range gates and
Nbeams is the number of adjacent beams within the
local area.

The SPINchange variable indicates the percentage
within the data kernel of changes in sign of the gate-
to-gate reflectivity difference field, dBZi, j − dBZi−1, j ,
that exceed a minimum difference threshold, dBZthresh.
While Steiner and Smith used a value of dBZthresh =
2.0, the value of dBZthresh was set to 3 dBZ within
the REC-APDA due to differences in the implemen-
tation. They also formatted the reflectivity data within
Cartesian space whereas the REC-APDA retains the
reflectivity data in polar coordinates.

Within sea clutter radar return, the vertical gradient
of reflectivity is typically large with a rapid decrease
in value as vertical distance from the ocean’s surface
increases. The gate-to-gate difference in reflectivity
values between adjacent elevation angles (�elevdBZ)

is used to aid in the discrimination of sea clutter return
and is calculated as follows:

�elevdBZ = dBZu − dBZl (17.7)

where dBZu is the reflectivity value at the upper ele-
vation angle, dBZl is at the lower elevation angle and
�elev indicates their difference.

The �elevdBZ variable is used three ways. First,
it is used directly to discriminate sea clutter. Second,

stratiform precipitation at long radar ranges will also
have large values of �elevdBZ due to the shallow extent
of the precipitation echo. To account for stratiform
situations, the �elevdBZ field is multiplied by the range
weighting function (RangeWgt; shown in Fig. 17.5) as
specified in (17.8) to create the range-weighted vertical
difference in reflectivity (R�elevdBZ) field.

R�elevdBZi = �elevdBZi × RangeWgti (17.8)

where i is the range gate number. The scaling factor
RangeWgti is chosen to reduce large vertical reflectiv-
ity differences at long ranges.

Third, �elevdBZ is divided by the sine of the angular
difference between the two elevation angles to cal-
culate the vertical gradient of the reflectivity field,

0           40                  120                   200                      300 
Range (km) 

1

0

Fig. 17.5 Range weight function (RangeWgt) used in calculat-
ing the feature field R�elevdBZ.
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�d B Z
�z , as below
(

�dBZ

�z

)

i

= �elevdBZi

/
[sin (θu − θl)] (17.9)

where �z is the change in vertical distance, θu is the
upper elevation angle, θl is the lower elevation angle,
and i is the range gate number along the beam.

17.3.2.2 Data Characterization Through the Use
of Validation Data Sets

Choosing those feature fields that best discriminate
between the scatterer type of interest and all others is
a critical first step in designing a fuzzy logic consen-
sus scheme. Understanding the nature of the feature
fields allows for the selection of those fields with best
performance at discrimination. Using a validation data
set (or validation field) informs the selection process.
Two methods for devising a validation field are used
here: a human expert manually defines all scatterer
types present in the radar scan, or an independent
identification algorithm is used. Use of an indepen-
dent algorithm can be preferable to manual definition
because it can be more easily accomplished and allows
many more radar scans to be examined; however,
this algorithm must have excellent performance at

discriminating scatterer types. The manual definition
process used by an expert requires the use of a radar
data-editing program such as the NCAR SOLO pro-
gram (Oye et al. 1995) and can be a time-consuming
and tedious process.

For manual validation, the expert defines the vali-
dation categories by examining the various radar fields
and their derived products. All regions of the lowest
elevation scan (typically 0.5-degree) are characterized
as ground clutter, precipitation, sea clutter, clear air
return (typically from insects), or “other”. Figure 17.6
shows an example of an expert validation field that was
manually drawn. Typically, ground clutter (whether
from NP or AP sources) is characterized by a near-zero
radial velocity, low spectrum width, and high texture
of the reflectivity field, among others. The expert can
examine the scan at higher elevation angles to deter-
mine if the radar echo in question has vertical conti-
nuity. A lack of vertical continuity does not guarantee
that the echo is AP clutter, but gives more information
into the decision-making process. Once the expert has
determined where the AP clutter is, a polygon is drawn
to set the appropriate value of the validation field.

A limitation of defining the validation categories in
this manner is the lack of independence between the
validation field and the radar fields used as input into
the REC, because the fields used by both are the same.

Fig. 17.6 An example of the subjective validation data set as
drawn by human experts on WSR-88D data from Chicago, IL
(KLOT). Fields shown include (a) the reflectivity (dBZ) and (b)
the expert validation field. Validation categories are shaded such

that gold is precipitation, red is clear air return from insects,
green is ground clutter, and white is unclassified return. The
0.5-degree elevation angle is shown with range rings at 50 km
intervals.
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Table 17.1 The radar scatterers identified by the Particle Iden-
tification (PID) algorithm are listed in the left column, with the
assigned PID category number in the center, and with the cor-
responding Radar Echo Classifier (REC) algorithm that uses the
PID output as the objective validation field in the right column.

PID Used as validation
PID category number for

Light rain 3 REC-precipitation
Moderate rain 4 detection

algorithm
Heavy rain 5
Hail 6
Rain and hail mixture 7
Graupel and small hail 8
Graupel and rain 9
Dry snow 10
Wet snow 11
Ice crystals 12
Irregular ice crystals 13
Super-cooled liquid droplets 14
Ground clutter 17 REC-AP detection

algorithm

A preferable methodology is to have an independent
data source for determination of truth regions. The
data available from the NCAR S-Pol dual-polarimetric
radar (Keeler et al. 2000) provides an opportunity to
obtain an independent determination of the validation
field through use of the Particle Identification (PID)
algorithm (Vivekanandan et al. 1999). The additional
measured fields of dual-polarimetric radars not only

provide the desired independent data, but also make
robust ground clutter determination relatively easy. At
each range gate, the PID uses polarimetric and moment
data to classify the hydrometeor type using a fuzzy
logic methodology that also includes categories for
ground clutter and insects. An input sounding deter-
mines the freezing level to separate liquid from frozen
hydrometeor types. Echo types that are classified by
the PID and used as the validation field for a particular
REC algorithm are listed in Table 17.1.

To construct the validation field for evaluation of
the REC algorithms, PID categories can be grouped.
For the APDA, the one category of “ground clutter”
defines the validation field. For the PDA, the cate-
gories from “light rain” through “irregular ice crystals”
are combined to define the location of precipitation
echoes. Sea clutter is not yet a category within the
PID. Comparison of Fig. 17.7a (shows all the PID
categories) to Fig. 17.7b (precipitation categories have
been combined) illustrates how the precipitation PID
categories are combined to form a validation region
(i.e., gold region in Fig. 17.7b).

17.3.2.3 Histograms of Data Characteristics

Histogram plots of the feature fields are made using
the validation field to distinguish between the types

Fig. 17.7 Conversion of the multiple categories of (a) the
Particle Identification (PID) algorithm output is accomplished
to create (b) an objective validation field for NCAR S-Pol data.

Table 17.1 lists the category numbers for each color value in (a).
See Fig. 17.6 for the color key for (b). Data on the 0.5-degree
elevation scan are shown.
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Precipitation plus Insects Clutter

Fig. 17.8 Histogram plots showing the frequency of range
gates containing each feature field within clutter (left column)
and within precipitation plus clear air return from insects (right
column) as determined by the validation field. Fields shown are

(a and b) texture of the reflectivity (TdBZ; dBZ2) and (c and d) the
mean radial velocity field (VE; m s−1). Source: Data were taken
from the Dodge City, KS, WSR-88D (KDDC) at 0.5 degree
elevation angle.

of radar echoes. Figure 17.8 shows examples of his-
tograms of two variables used in the REC-APDA
as derived from data taken by the Dodge City, KS
(KDDC) WSR-88D radar. Fields shown include the
texture of the reflectivity (TdBZ) and the mean radial
velocity (VE). These figures show that ground clutter
is characterized by high values of TdBZ and by near-
zero values of VE while precipitation plus return from
insects is characterized by low values of TdBZ and by
a broad distribution of VE values. These two feature
fields are good discriminators of ground clutter from
other echo types.

Histograms are computed in this manner for each
potential feature field and used to find the best dis-

criminators for the echo type of interest. Feature fields
with the best discrimination performance are used in
the REC modular algorithms.

17.3.2.4 Membership Functions

After the appropriate feature fields are selected, the
histograms are used to devise the membership func-
tions that scale the values between zero and unity
and output the “interest” field. Within the interest
field, a zero value indicates “no likelihood” that the
feature field is associated with the radar return type
of interest, while unity indicates a “high likelihood”.
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Fig. 17.9 Use of a histogram to design a membership function
to detect ground clutter. The radar base moment fields of (a)
reflectivity (dBZ) and (b) radial velocity (m s−1) are shown with
regions of precipitation and ground clutter (blue oval) indicated.
Radial velocity values near zero are shaded cyan. A feature field,
the (c) reflectivity texture field (TdBZ; dBZ2), is shown where

grey values within the oval are >80 dBZ2. From the data in (c),
a histogram (e) is computed that shows the distribution of values.
A stepwise linear membership function is drawn (red line) from
the histogram and applied to (c) to scale the values between zero
and unity, with the resultant interest field shown in (d).

Figure 17.9 illustrates how the values within the
histogram can be used to devise the membership
function.

From the base moment data of reflectivity
(Fig. 17.9a), the feature field of reflectivity texture
(TdBZ) is calculated using (17.4) with the result shown
in Fig. 17.9c. The corresponding radial velocity field is
shown (Fig. 17.9b) for reference purposes only. From

the reflectivity texture field, a conditional histogram
is computed that shows the distribution of values for
different echo sources. Regions of low texture are gen-
erally precipitation while regions of high texture are
generally ground clutter. Notice that there is a region
of overlap (indicated by the grey shading) where the
reflectivity texture values could indicate either precip-
itation or ground clutter.
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Fig. 17.10 Statistical
performance curves for the
REC-APDA as computed
using only one elevation scan
from the NCAR S-Pol radar.
In (a), performance curves of
percent correct (%Correct),
Critical Success Index (CSI),
Probability of Detection
(POD), False Alarm Ratio
(FAR) and the Heidke Skill
Score (Heidke) are shown at
increasing values for the
de-fuzzification threshold and
indicates that optimal
performance is achieved at the
0.55 threshold. In (b), the
ROC curve is shown for the
same scan.

Using the validation field, the statistical skill of the
interest field realized after application of the mem-
bership function can be determined. Statistical skill
scores such as the percent correct, the Critical Suc-
cess Index (CSI), the Heidke Skill Score (HSS), the
probability of detection (POD), the false alarm ratio
(FAR) (Donaldson et al. 1975, Wilks 1995; see also
Chapter 2 of this volume) among others can all be
used to measure performance. Interest field perfor-
mance is examined by increasing the applied thresh-
old (such as 0, 0.1, 0.2. . .1.0) to reveal where dis-
crimination performance is maximized for any skill
score used for optimization (Fig. 17.10a) and allows a
Relative (or Receiver) Operating Characteristic (ROC,
Hanley and McNeil 1982; see also Chapter 2) plot to
be drawn (Fig. 17.10b). REC-APDA output is shown
(Fig. 17.10) from one scan of S-Pol radar data where
the PID algorithm is used as the validation data set.
Maximum skill scores are obtained by the CSI and the
HSS at a threshold value of 0.55, indicating the pre-
ferred threshold value for this one scan. The optimal

performance threshold value must be determined with
many more scans. Using these types of plots, the mem-
bership function for each feature field can be adjusted
until the statistical performance is maximized near an
interest value of 0.5, the midpoint interest value. This
ensures that each feature field has optimum perfor-
mance near the same threshold value.

17.3.2.5 Weight Selection and De-fuzzification

Each interest field is assigned a weight that reflects
its level of skill to detect the scatterer of interest.
Using the validation field, the statistical performance
of each interest field is used to devise the appropri-
ate weight, in a similar methodology as for tuning
the membership functions. This “de-fuzzification” step
reduces the interest field to a binary indicator for
the presence/absence of the desired scatterer type. To
accomplish this, an appropriate threshold is selected
and applied to the mean weighted sum of the input
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Fig. 17.11 Membership functions for each of the feature fields
within the Radar Echo Classifier AP ground clutter Detection
Algorithm (REC-APDA). Membership functions shown are for

(a) reflectivity texture (Td B Z ; dBZ2), (b) radial velocity (m s−1),
(c) reflectivity SPINchange (%), (d) standard deviation of the
radial velocity (m s−1), and (e) spectrum width (m s−1).

interest fields. The threshold is typically selected as
the midpoint (i.e., 0.5 interest), the same value for
which the individual membership functions are tuned.
Therefore if the mean weighted sum of interest values
is greater (less) than 0.5, the binary output = 1 (0)
indicating the radar return type in question is detected
(not detected).

17.3.3 REC AP Ground Clutter Detection
Algorithm (REC-APDA)

Under NP conditions, ground clutter from station-
ary targets is removed by application of ground clut-
ter filters at pre-determined locations on a clutter
map. Ground clutter filters are not universally applied
because they negatively bias reflectivity values in
precipitation whenever the radial velocity is near
zero. Stratiform rain or snow returns are especially
biased in this situation. Under AP conditions, ground
clutter contamination can evolve rapidly, preventing
the formulation of a clutter map. Until recently, the
WSR-88D system did not have an automated method
for identification of AP ground clutter. When AP

conditions are present, radar operators must apply
clutter filters to the contaminated areas by manual
selection. To facilitate the automated identification and
removal of ground clutter during AP conditions, the
REC-APDA was implemented within the WSR-88D
system.

The REC-APDA uses the following feature fields:
the texture of the reflectivity, the radial velocity, the
reflectivity SPINchange using a reflectivity threshold
of 3 dBZ, the standard deviation of the radial velocity
and the spectrum width. As implemented within the
WSR-88D system, the membership functions for each
feature field are shown in Fig. 17.11. A weight of unity
is applied to each interest field in the computation of
the weighted mean sum.

17.3.4 REC Precipitation Detection
Algorithm (REC-PDA)

Because few, if any, algorithms achieve 100% detec-
tion efficiency, a Precipitation Detection Algorithm
(REC-PDA) was devised to improve the discrim-
ination between precipitation and ground clutter.
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The REC-PDA is designed to detect both strat-
iform and convective precipitation return without
distinction.

The REC-PDA uses the following feature fields
derived from a local area around each range gate: the
texture of the reflectivity, the standard deviation of
the radial velocity, the reflectivity SPINchange using a
reflectivity threshold of 3 dBZ and the standard devia-
tion of the spectrum width. The membership functions
for each feature field are shown in Fig. 17.12. In the
computation of the weighted mean sum, a weight of
unity is applied to the first three interest fields and
a weight of 0.25 is applied to the standard devia-
tion of the spectrum width interest field. For summer-
time convective storm situations, a final threshold is
applied to remove all range bins where the reflectivity
is ≤18 dBZ. For wintertime, stratiform situations, the
reflectivity threshold is set to ≤ 0 dBZ.

17.3.5 Application of the REC-APDA and
the REC-PDA

The REC-APDA and the REC-PDA can be used in
conjunction to enhance the discrimination between
AP ground clutter contamination and precipitation
such that data quality is improved. A case from the
Boston, MA WSR-88D (KBOX) is used to illustrate
the improvement. Figure 17.13 shows the reflectiv-
ity and velocity fields where the precipitation echo
is to the south and the AP and NP ground clutter

return is to the north of the radar. Output from the
REC-APDA and the REC-PDA (Fig. 17.14) shows
that both algorithms perform well at detecting their
respective radar return types. The REC-APDA detects
“pure” clutter (REC-APDA > 0.5) while the REC-
PDA detects “pure” precipitation return (REC-PDA
> 0.5). Base data are determined to be clutter or
clutter-biased (precipitation mixed with clutter) if one
of the two conditions is met: the REC-APDA > 0.5
or the REC-PDA < 0.5. Using both rules results in
the removal of clutter regions and regions of clut-
ter mixed with precipitation from the Hybrid Scan
Reflectivity (HSR), a NEXRAD product. Figure 17.15
shows the HSR as computed with (a) only the REC-
APDA used to threshold the data and (b) with the
REC-APDA and REC-PDA used in combination. A
clear improvement in performance is realized with the
second method as the clutter return to the north of
the radar is greatly reduced. This means that radar
rainfall estimates will be of higher quality. A second
example (Fig. 17.16; note the difference in color tables
in the two rainfall panels) shows the HSR and the 4-h
accumulated rainfall that result from using only the
REC-APDA and the REC-APDA/REC-PDA in com-
bination. For the first case, the maximum erroneous
rainfall was equal to 3.68 in. while erroneous rainfall
estimates were much reduced for the second case. The
improvement stems from the REC-PDA identification
of clutter mixed with clear air echoes as not being
precipitation and their subsequent removal. The REC-
APDA correctly identified those echoes as not being
pure ground clutter.
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Fig. 17.13 Radar base moment fields from the Boston WSR-88D (KBOX) on 14 July 2003 at 1201 UTC. Fields shown are
(a) reflectivity (dBZ) and (b) radial velocity (kts). The 0.5 degree elevation angle is shown with range rings at 50 km intervals.

Fig. 17.14 Same as Fig. 17.13 except that the fields shown are the output from the (a) REC-APDA and the (b) REC-PDA. Warmest
(red) colors indicate a likelihood approaching 1 (or 100%).

Fig. 17.15 Same as Fig. 17.13 except that the fields shown are
the output from the (a) HSR with only the REC-APDA used
to remove ground clutter contamination and the (b) HSR with

both the REC-APDA and the REC-PDA used to remove ground
clutter contamination.
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Fig. 17.16 A comparison of the HSR and the radar-derived
rainfall amounts after 4 h of accumulation for an approaching
squall line near the Chicago, IL (KLOT) WSR-88D. Fields
shown are (a) the HSR (dBZ) when only the REC-APDA
removes ground clutter contamination, (b) the HSR when both
the REC-APDA and REC-PDA remove ground clutter conta-
mination, (c) the 4-h accumulated rainfall (in) using the HSR

illustrated in (a) and (d) the 4-h accumulated rainfall (in) using
the HSR illustrated in (b). Note that the color table in (c) extends
to twice the range of the color table in (d) due to the spurious
high values near the radar. Range rings are at 10 km intervals
in all panels, but (c) and (d) extend to a farther range than (a)
and (b).

17.3.6 REC Sea Clutter Detection
Algorithm (REC-SCDA)

Sea clutter poses a particularly difficult echo classi-
fication problem because, unlike ground clutter, sea
clutter return typically has non-zero radial velocity.
Likewise, discriminating precipitation return from sea
clutter return can be difficult and, for this reason, the
REC-SCDA is only applied over ocean regions to min-
imize the incorrect removal of precipitation return. A
terrain mask is computed using a detailed terrain map
to calculate which radar range gates are over water and
which are over land. The REC-APDA is applied over

both land and sea surfaces because second trip ground
clutter return has been observed to occur over the sea
under strong AP conditions.

Further, sea clutter characteristics can change
depending on the sea state which, in turn, affects the
performance of the REC-SCDA. At times, the fea-
ture field characteristics within sea clutter (such as
reflectivity texture) resemble ground clutter (i.e., tex-
ture values are high) and at other times, feature fields
more closely resemble precipitation (i.e., texture val-
ues are low). Because retaining precipitation echo is
more important than removing all sea clutter return,
the REC-SCDA membership functions are tuned for
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Fig. 17.17 Membership functions for each of the feature fields
within the REC-SCDA. Membership functions shown are for
(a) reflectivity texture (dBZ2), (b) spectrum width (m s−1), (c)
reflectivity SPINchange (%), (d) standard deviation of the radial

velocity (m s−1), (e) the change in reflectivity between elevation
angles (�elevdBZ) and the range-corrected change in reflectiv-
ity between elevation angles (R�elevdBZ) and (f) the vertical
gradient of reflectivity ( �dBZ

�z ).

times when the sea clutter characteristics most closely
resemble ground clutter.

In the United Arab Emirates (UAE), both AP
ground clutter and sea clutter return can be extensive
and in excess of 40–50 dBZ due to the presence of
extreme moisture gradients near the top of the plane-
tary boundary layer. The REC-APDA and the REC-
SCDA were deployed at the coastal radars (NCAR
Research Applications Program 2003). Each radar has
slightly different system characteristics and, therefore,
required that membership functions be tuned individu-
ally. As a result, membership functions for a partic-
ular feature field are not necessarily uniform for all
radars.

The REC-SCDA uses the following feature fields:
the reflectivity texture, the spectrum width, the reflec-
tivity SPINchange using a reflectivity threshold of
2 dBZ, the standard deviation of the radial veloc-
ity, change in reflectivity between elevation angles
(�elevdBZ), the range-weighted change in reflectivity
between elevation angles (R�elevdBZ) and the ver-
tical gradient of reflectivity (�dBZ

�z ). As implemented
within the Dalma radar, the membership functions for

each feature field are shown in Fig. 17.17. In the
computation of the weighted mean sum, a weight of
unity is applied to the interest fields of spectrum width,
SPINchange, �elevdBZ, R�elevdBZ and �dBZ

�z while a
weight of 0.5 is applied to the reflectivity texture and
the standard deviation of the radial velocity.

Figure 17.18 shows the (a) original and (b) thresh-
olded reflectivity from the UAE Dalma radar. This case
was selected to show the good discrimination achieved
between the precipitation return and the sea clutter
return. While some sea clutter is retained in (b), the
overall quality of the thresholded data is high, with
only a few gates of precipitation removed incorrectly.

17.3.7 Summary

High quality radar moment data can be identified
through the use of a fuzzy logic consensus method-
ology called the Radar Echo Classifier (REC). The
REC consists of several modular algorithms that are
designed to detect particular types of scatterers. Once
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Fig. 17.18 The reflectivity (dBZ) field is shown from the
UAE Dalma radar on 19 December 2004. The field is shown
(a) in its original state with precipitation, ground clutter and

sea clutter return and (b) after application of the REC-APDA
and the REC-SCDA to remove the ground and sea clutter
returns.

an undesirable scatterer is identified, it can be removed
from the radar moment data. Likewise, the identifica-
tion of desirable scatterers allows them to be retained.
Before implementation of the REC-APDA, the WSR-
88D radar network had no automated means of iden-
tifying AP ground clutter. Through examination of
REC-APDA output, the radar operators can see when
AP conditions are creating additional ground clutter
and take steps to apply additional clutter filters to
remove the contaminants. In the future, fuzzy logic
techniques for clutter detection and discrimination
from precipitation will occur within the WSR-88D
Radar Data Acquisition (RDA; Dixon et al. 2007)
such that human intervention will not be required
and improved data quality will be achieved. For
the UAE radar network, the REC-APDA and the
REC-SCDA are applied automatically without human
assistance.

17.4 Forecasting Clear-Air Turbulence

Pilots’ ability to avoid turbulence during flight affects
the comfort and safety of the millions of people who
fly commercial airlines and other aircraft every year.
Of all weather-related commercial aircraft incidents,
65% can be attributed to turbulence encounters, and
major carriers estimate that they receive hundreds of

injury claims that cost tens of millions of dollars per
year (Sharman et al. 2006). At upper levels, clear-air
turbulence (CAT) is particularly hard to avoid because
it is invisible to both the eye and traditional remote
sensing techniques. To plan flight paths that avoid tur-
bulence, air traffic controllers, airline flight dispatch-
ers, and flight crews must know where CAT pockets
are likely to develop. Encountering unexpected turbu-
lence is a serious safety risk, but diverting or canceling
flights to avoid regions of suspected turbulence can
cause added fuel expenditures or significant air traffic
disruptions, so it is important that decision makers
have information that is as accurate and reliable as
possible.

Currently, the National Oceanic and Atmospheric
Administration’s (NOAA’s) Aviation Weather Cen-
ter (AWC) disseminates advisories called Airmen’s
Meteorological Information (AIRMETs) and Signifi-
cant Meteorological Information (SIGMETs) for tur-
bulence and other hazardous weather conditions.
AIRMETs, issued regularly on a six-hour schedule,
warn of moderate turbulence of any kind, surface
winds greater than 30 knots, or low-level wind shear.
Turbulence SIGMETs, valid for up to four hours, are
issued when conditions indicate severe to extreme
clear-air or other turbulence not related to a thunder-
storm. Both types of advisories cover an area of at least
3,000 square miles using flight waypoints, airports
and known geographical features to define a polygon
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demarcating the advisory area boundary (Federal Avi-
ation Administration 2008).

While AIRMETs and SIGMETs have long pro-
vided vital information on hazardous conditions for
pilots and flight planners, the products have limited
utility due to their constrained resolution in time and
space and limited information on the type and inten-
sity of turbulence. Less than 1% of the atmosphere
is thought to contain moderate or greater turbulence
at any one time (Frehlich and Sharman 2004), and
frequently only a small fraction of a 3,000 square
mile or larger advisory area may contain hazardous
conditions. Moreover, the locations of those areas may
change over the 4 or 6 h period for which an advisory
is valid, both geographically and in altitude. While
pilots distinguish between light, moderate, severe and
extreme turbulence intensities in their in-flight reports,
AIRMETs and SIGMETs identify only moderate or
severe-to-extreme intensities. In addition, SIGMETs
warn pilots specifically of CAT only if it is severe or
extreme, but not if the CAT is moderate, a level of
turbulence that pilots still prefer to avoid.

To address the challenges of turbulence forecasting
and improve upon the spatial, temporal and intensity
resolution of AIRMETs and SIGMETs, an automated
CAT forecasting decision support product, Graphi-
cal Turbulence Guidance (GTG), was developed at
NCAR and NOAA under direction and funding from
the Federal Aviation Administration (FAA), and cur-
rently runs operationally at the AWC. The GTG algo-
rithm integrates qualitative and quantitative reasoning
about atmospheric conditions and observations using
fuzzy logic to produce a CAT forecast every hour,
for every flight level at a 20 km horizontal resolution.
An example of the graphical forecast output as dis-
played on the AWC’s Aviation Digital Data Service
(ADDS; http://adds.aviationweather.gov) is shown in
Fig. 17.19. The purpose of this section is to describe
how GTG was developed using a fuzzy logic method-
ology.

17.4.1 Challenges Affecting Algorithm
Development

One might assume that the best way to forecast tur-
bulence would be to derive it from high-resolution
numerical weather prediction (NWP) model wind

fields. NWP models initialize grids using current
observations, and simulate dynamical and physical
processes to produce a forecast of the weather. The
resolution, or spatial scale, of the model determines
what weather processes it can predict accurately. For
instance, a model with a horizontal resolution of 20 km
cannot identify exactly where a thunderstorm cell, typ-
ically less than 10 km across, might develop; in NWP
terms, this model cannot resolve thunderstorm-scale
weather events.

Turbulence is an even larger (or smaller!) prob-
lem to resolve. Turbulence exhibits structure at many
scales, all of which trade energy with one another
in complicated ways. Forecasting the individual gusts
that can bounce an aircraft up and down would require
high-resolution observations and accurate fine-scale
models (perhaps 25 m resolution) that are well beyond
the capability of current technology. And even if mod-
ern computing power were sufficient, the nonlinear
dynamics of the atmosphere would sharply limit the
time over which such small-scale motions could be
accurately predicted. However, turbulence can be char-
acterized as a stochastic (random) cascade of energy
from large-scale forcing to small-scale eddies, and
estimating the average magnitude of the aircraft-scale
eddies is more tractable. Still, currently operational
NWP models employ horizontal resolutions that are
on the order of 10–100 km, or two to three orders
of magnitude larger than the scales of turbulence that
affect aircraft. While models exist that directly sim-
ulate aircraft-scale turbulence, they can only be run
retrospectively on large multiprocessor systems for
research purposes. To extend these models to the entire
U.S. airspace would require several orders of magni-
tude more computing power, communications band-
width, and data storage capacity than is available today
or will be in the foreseeable future. These computa-
tional constraints necessarily affect the development
of an operational forecasting system such as GTG: the
product must be able to run in a timely manner using
available operational computing and storage resources.

17.4.2 Links to Large-Scale Atmospheric
Conditions

Since computational resource requirements preclude
direct predictions of turbulence, coarser operational
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Fig. 17.19 Sample GTG 6-h forecast of CAT potential for
0000 UTC 25 October 2005 at FL300 (30,000 ft) as provided
on the operational ADDS website (http://adds.aviationweather.
gov/turbulence). The colorscale for the turbulence intensity con-
tours is provided at the bottom of the image and ranges from
“none” (white) to “extreme” (dark red). For the time shown,

no turbulence is predicted over most of the western and mid-
western U.S., with some light to moderate turbulence regions
expected on both the east and west coasts and a narrow region of
moderate to severe turbulence off the northern California coast.
Source: Figure 1 from Sharman et al. (2006).

NWP model output must be used instead and analyzed
for atmospheric conditions that may be conducive to
turbulence. This approach should be physically sound,
since research has shown that the energy associated
with turbulent eddies at aircraft scales cascades down
from larger scales of atmospheric motion (e.g., Nas-
trom and Gage 1985; Lindborg 1999, 2006; Koshyk
and Hamilton 2001). Through years of producing man-
ual forecasts, forecasters developed “rules of thumb”
from their experience about what atmospheric con-
ditions typically indicated turbulence. These rules of
thumb were an attempt to link the large-scale meteo-
rological data that was available and the micro-scale
CAT. Researchers later quantified some of these rules
into CAT diagnostics that are computed directly from
the NWP model output.

For instance, a major cause of CAT is thought
to be Kelvin-Helmholtz instability (e.g., Dutton and

Panofsky 1970), that can occur in areas of low
Richardson number (Ri, the ratio of static stability
to wind shear). Thus, one CAT diagnostic derives Ri
from the NWP model output fields of temperature (to
derive static stability) and wind (to derive wind shear).
Other diagnostics can be similarly derived from the
NWP model output variables. There are 40 different
CAT diagnostics available for use in GTG, each link-
ing a large-scale atmospheric condition to small-scale
turbulence. Some of these are described in Sharman
et al. (2006). Their predictive powers vary, depending
on how directly the large-scale condition is linked to
turbulence, and some of them are correlated. Currently,
GTG uses sets of about ten of the available diagnostics
in each of its forecast domains.

Airline pilots provide occasional reports of condi-
tions encountered during flight, called Pilot Reports
(PIREPs) that may characterize turbulence as “light”
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or “moderate to severe”, for instance, at a specific time
and location. These qualitative observations helped
forecasters build the human knowledge base that
resulted in the quantitative diagnostic equations avail-
able today. Now, researchers use PIREPs to gauge how
well a diagnostic – or a combination of diagnostics – is
currently predicting turbulence. Using PIREPs to
evaluate the diagnostics’ predictive skill as synoptic
conditions change is integral to the GTG algorithm.

17.4.3 GTG Algorithm

The goal of GTG is to use NWP model output,
PIREPs, and other observations of turbulence to sup-
ply reliable CAT forecasts in a system capable of
running operationally within the computational limi-
tations present at NOAA’s AWC. The CAT forecast
product is generated at the same frequency as the NWP
model grids on which it is based, providing timely
updates to aid users in planning flight paths to avoid
turbulence. Therefore, the algorithm must be com-
putationally efficient; in addition, it should combine
multiple CAT diagnostics to capture all the conditions
known to induce aircraft-scale turbulence. However,
different sources of turbulence may predominate at
different times, so it is also desirable to evaluate how
well each diagnostic has performed recently based on
comparisons with PIREPs and weight the diagnostic
accordingly. Unfortunately, the relative infrequency
of turbulence encounters and PIREPs means that not
enough training data are available to produce stable
performance by most machine learning algorithms.

Researchers found a solution in fuzzy consensus
reasoning (see Chapter 6, Section 6.8). Every hour,
CAT diagnostics are calculated from the NWP model
analysis, or zero hour forecast, at every model grid
point, and their values are compared to any available
PIREPs from the corresponding time period and
location. If a diagnostic value agrees well with
available PIREPs (observations) of turbulence, the
algorithm increases the weight of that diagnostic;
otherwise, it lowers the weight. This process, which
is described in detail below, is similar to how a human
forecaster might reason about how different large-
scale conditions are currently indicating turbulence.
The forecast at 1, 2, 3, 6, 9 and 12 hours is produced
by using the weighted sum of the diagnostic values

on the forecast grids according to the fuzzy consensus
reasoning equation (6.6). In this case, there are n
diagnostics and x represents a physical location,
or grid point, in the forecast area. Note that no
de-fuzzification is needed; with fuzzy consensus
reasoning, û(x) is the forecasted turbulence intensity
at location x . Since the diagnostics are derived from
NWP model output, which is assumed equally good
everywhere, the data quality control “confidences” are
all taken to be 1. The weight wi represents the relative
value of diagnostic fi based on its recent performance
evaluated over the forecast area; if PIREPs were more
temporally and spatially dense, the weights could be
computed separately for different regions. If the n
weights are chosen so that they sum to 1, the GTG
weighted sum equation can be simplified to:

û(x) =
n∑

i=1

wi fi (x) (17.10)

To determine the weights, the qualitative PIREPs must
be compared to the quantitative diagnostic values.
A pilot reports turbulence as null, light, moderate,
severe or extreme turbulence. These sets have fuzzy
boundaries due to the differences in pilot experience,
subjective judgment, and the flight conditions and size
of the airplane (atmospheric turbulence will generally
affect a small plane more than a large plane). In
addition, pilots sometimes report a turbulent event
as “light to moderate”, for example, translating into
partial membership in both the light and moderate sets.
In contrast, a turbulence diagnostic is a quantitative
value in some continuous range. To scale raw
turbulence diagnostic values to a consistent turbulence
scale comparable to PIREPs, the values are mapped
using thresholds based on long-term empirical studies:
thresholds (T1, T2, T3, T4, T5) represent the medians
of the raw diagnostic value corresponding to null,
light, moderate, severe and extreme turbulence
PIREPs, respectively (see Sharman et al. 2006). Using
the thresholds, raw diagnostic values are remapped to
the range 0 (null turbulence) to 1 (extreme turbulence),
with diagnostic values falling between two thresholds
scaled linearly between them as shown in Fig. 17.20.
PIREPs are represented as discrete values according to
the assignments 0 = null, 0.125 = null/light, 0.25 =
light, 0.375 = light/moderate, 0.5 = moderate,
0.625 = moderate/severe, 0.75 = severe, 0.875 =
severe/extreme, and 1 = extreme. Note that since the
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Fig. 17.20 Diagnostic mapping diagram. The raw values of the
diagnostic are read along the abscissa, with specified thresholds
T1 corresponding to the diagnostic value for null, T2 for light,
T3 for moderate, T4 for severe, and T5 for extreme turbulence
values. These are mapped to a 0–1 scale as indicated on the
ordinate, with 0.25 being the light, 0.5 the moderate, 0.75 the
severe, and 1.0 the extreme threshold. Note that raw diagnostic
values < T1 are always mapped to null, and raw diagnostic
values > T5 are always mapped to extreme. Source: Figure 3
from Sharman et al. (2006).

remapped diagnostic values all fall between 0 and 1,
the consensus turbulence value provided by (17.10)
will also be in this range.

While turbulence may be characterized by multi-
ple categories, pilots tend to be most concerned with
avoiding turbulence that is of moderate or greater
(MOG) intensity. Light turbulence may not be enough
of a safety or comfort hazard to warrant the cost
of re-routing around it, and research has shown that
“light” is the most subjective category of turbulence
PIREPs, lessening researchers’ confidence in using it.
Therefore, the GTG algorithm is tuned to discriminate
between MOG turbulence and less than MOG turbu-
lence, termed Null turbulence for simplicity. Note that
the MOG set encompasses the moderate, severe, and
extreme sets, and light/moderate PIREPs have partial
membership in the MOG set. The Null turbulence set
is the complement of MOG, MOGC, and includes only
null (smooth or light turbulence) PIREPs. For sim-
plicity, the partial membership of the light/moderate
PIREPs is represented as binary membership value of
1 in the MOG set. Therefore, the MOG threshold is
quantified as 0.375 on GTG’s 0–1 turbulence scale.

Table 17.2 An example of a contingency table for a CAT diag-
nostic at one forecast time. PIREP observations are compared
to each diagnostic’s predictions of turbulence intensity at that
location. Correct predictions are listed in the upper left (correct
MOG predictions) and lower right (correct Null predictions).
PODY and PODN can be calculated from the contingency table
values; PODY, for example, is the number of correct MOG pre-
dictions (34) divided by the total number of MOG observations
(34 + 15).

MOG Null
diagnostic diagnostic
prediction prediction

MOG observations 34 15
Null observations 12 50

If the PIREP and the remapped diagnostic value at a
certain location x are both above or both below 0.375,
they are considered in agreement, and the diagnostic
has correctly classified turbulence at that location. For
each NWP model analysis time, counts of agreement
and disagreement with recent PIREPs are tallied in
a contingency table for each diagnostic, an example
of which is shown in Table 17.2. The Probability
of Detection of a MOG turbulence event, POD-Yes
(PODY), is the fraction of correct MOG classifications
out of the set of all MOG PIREP observations (see
Chapter 2). Likewise, POD-No (PODN) is the fraction
of correct Null classifications out of the set of all Null
PIREPs. From these PODY and PODN values, the
diagnostic’s True Skill Score (TSS) is calculated:

TSS = PODY + PODN − 1 (17.11)

Each diagnostic is then evaluated according to its
TSS and the fraction of MOG turbulence ( fMOG) it pre-
dicts over the forecast area (low levels of atmospheric
turbulence are expected at any given time), resulting in
a score, φ, defined by

φ = TSS + 1.1

1 + C ( fMOG)p (17.12)

Currently, GTG uses C = 1 and p = 0.25. The weight
for the i th diagnostic is then formed via:

wi = φi
n∑

m=1
φm

(17.13)

where n is the number of diagnostics; note that (17.13)
ensures that

∑n
i=1 wi = 1. The scaled diagnostics fi

are then combined using these weights to form the
GTG consensus forecast according to (17.10), where x
ranges over all positions in the 3-D forecast grid. The
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same set of weights is applied to the scaled diagnostic
values calculated from each NWP model forecast to
produce the GTG forecasts. The GTG forecast at each
grid point is between 0 and 1 and may be interpreted
on the PIREP scale described above. These sets are
represented as shaded contours in the GTG graphical
output display shown in Fig. 17.19.

17.4.4 GTG Operational Details

The previous section outlined the GTG algorithm. To
build the algorithm into an operational decision sup-
port product, the system has to coordinate receiving
the NWP model data and observation data from differ-
ent sources and producing graphical output for users,
in addition to simply implementing the fuzzy logic
algorithm. The schematic of the GTG forecasting sys-
tem is shown in Fig. 17.21.

GTG currently uses the National Center for Envi-
ronmental Prediction’s (NCEP’s) operational Rapid
Update Cycle (RUC) weather model (Benjamin
et al. 2004) output at 20 km resolution as a repre-
sentation of large-scale atmospheric processes and
the basis for computing the turbulence diagnostics.
Pilot reports, obtained from some airlines and the

NWP Full Resolution Grids

Real-Time PIREPS Ingest NWP Grids

GTG Nowcast
and Forecast
Generator

FTP Site for Grids

User
Community

User
Community

Real-Time
Verification System
and Post-Analysis

ADDS Display

Real-Time
Lightning Flash
Data

Fig. 17.21 The operational GTG forecasting system and its
inputs and outputs Source: Figure provided by Robert Sharman.

NWS, and cloud-to-ground lightning flash data from
the National Lightning Detection Network (NLDN;
Murphy et al. 2006) are also used as observation data
inputs. Lightning flashes are signs of thunderstorms;
lighting data are used to filter out PIREPs near convec-
tion, since GTG is designed for forecasting only CAT
and not convectively-induced turbulence (CIT). The
fuzzy consensus reasoning takes place in the “GTG
Nowcast and Forecast Generator” box. Every hour, the
AWC receives RUC analysis time (zero hour “now-
cast”) and 1, 2, 3, 6, 9, and 12 h forecast files. Pilot
reports and lightning flash data are updated every few
minutes. The system looks at the time of the pilot
report to determine whether to include it as an obser-
vation in the current hourly run of the algorithm. If
there are fewer than 100 PIREPs in the applicable
time window, as often happens at night, a default set
of climatologically-derived weights is used for that
hour’s nowcast and forecasts in place of the weights
determined by (17.13).

Currently, GTG uses ten CAT diagnostics to make
nowcasts and forecasts for 20,000 to 45,000 ft (upper
levels), and nine CAT diagnostics for 10,000 to 20,000
ft (mid-levels), each with its own set of weights (Shar-
man et al. 2006). This distinction is made because dif-
ferent mechanisms are responsible for CAT at different
atmospheric levels. While GTG is not the only turbu-
lence forecasting system to use multiple diagnostics, it
appears to be the first to combine them dynamically at
forecast time.

17.4.5 GTG Performance

Turbulence forecast performance may be verified
against PIREP observation data from the forecast valid
time; a six-hour forecast at 12 UTC, for instance,
has a valid time of 18 UTC and would be verified
against observations from 18 UTC. Turbulence fore-
cast accuracy may be measured by the Receiver Oper-
ating Characteristic (ROC) curve (e.g., Hanley and
McNeil 1982; Marzban 2004; see also Chapter 2),
which plots PODY against PODN as the MOG iden-
tification threshold is varied between 0 and 1. Higher
PODY-PODN combinations over the range of thresh-
olds, which produce a larger area under the ROC
curve, imply greater skill in distinguishing MOG and
Null turbulence. ROC curves for GTG and numerous
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Fig. 17.22 Individual diagnostics and GTG PODY-PODN per-
formance statistics (individual diagnostics as thin grey, GTG
combination as heavy black solid and GTG combination using
climatological weights as heavy black dashed ROC curves).
These statistics were derived from one year (2003) of (a) 1800
UTC analyses (zero-hour forecasts) using 37,878 PIREPs and

(b) 1800 UTC 6-h forecasts (valid 0000 UTC) using 49,703
PIREPs, for upper levels (FL200-FL460). For comparison, also
shown is the diagonal “no skill” line, and the 2003 average
AIRMET performance (with amendments) at upper levels for
times around 2100 UTC (black dot). Source: Figure 5 from
Sharman et al. (2006).

other turbulence diagnostics are shown in Fig. 17.22.
The consensus fuzzy reasoning algorithm used by
GTG produces a more accurate CAT forecast than
does any single CAT diagnostic or the operational
AIRMET.

17.4.6 Future Algorithm Development

Recently, objective turbulence observation data –
termed in situ data – has become available through
an effort by the FAA, some of the major airlines, and
NCAR (Cornman et al. 1995, 2004). In situ measure-
ments are obtained from onboard avionics data and
recorded by special software on commercial aircraft
at every minute during flight. The turbulence metric,
which is computed and recorded at one-minute inter-
vals, is the eddy dissipation rate (EDR), a quantitative
measure of atmospheric turbulence intensity. These
automated reports do not have the human subjectiv-
ity, aircraft-dependence and reporting delay issues of
PIREPs (Schwartz 1996); moreover, they are produced
routinely in flight regardless of whether there is turbu-
lence or not.

The availability of these new data will allow
researchers to reassess their choice of turbulence fore-
casting algorithms, and researchers are continuing to
look to the AI community for efficient and effective
approaches. The first step is to reassess CAT diag-
nostics’ forecasting accuracies with this more objec-
tive observation data. For example, CAT climatologies

suggest that the skill of various turbulence diagnostics
vary regionally and seasonally. Researchers are explor-
ing the topic of feature subset selection and employ-
ing searches to find well-performing subsets of diag-
nostics for different regions or synoptic conditions,
with a goal of using fuzzy logic and other machine
learning approaches to develop the next generation
of GTG.

17.4.7 Summary

Adaptive fuzzy consensus reasoning provides a suc-
cessful approach to clear-air turbulence forecast-
ing and is currently being used operationally in
the Graphical Turbulence Guidance (GTG) system.
GTG utilizes atmospheric forecast information on a
scale much coarser than the aircraft-scale turbulence,
along with sparse, subjective reports of turbulence by
pilots. The algorithm uses recent PIREPs to adapt
its fuzzy consensus weights according to the vary-
ing forecasting performances of the model-derived
turbulence diagnostics, which change in their util-
ity over time as the mechanisms producing turbu-
lence vary. Turbulence forecasting is a good exam-
ple of a domain from a field of environmental sci-
ence often dominated by explicit simulations. How-
ever, until computational resources to routinely model
turbulence at aircraft scales are available, GTG’s fuzzy
logic combinations of turbulence diagnostics supplied
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from available NWP model output will provide a
viable and successful alternative.

17.5 Conclusion

This chapter has built on the introduction provided
in Chapter 6 by describing in detail three fuzzy
logic algorithms developed at the National Center for
Atmospheric Research. All were designed to mimic
a human expert’s approach to a complex problem in
meteorology. The NCAR Improved Moments Algo-
rithm (NIMA) analyzes Doppler spectra to remove
artifacts and provide better estimates of the spectral
moments (reflectivity, velocity, and spectrum width),
along with “confidence” values that represents their
quality. It utilizes image processing techniques in a
multi-stage, iterative approach. The Radar Echo Clas-
sifier (REC) provides an automated method for qual-
ity controlling operational Doppler radar data through
the detection of anomalous propagation (AP) ground
clutter, precipitation return and sea clutter contami-
nation. It works by relating local features within the
radar moment data to those features that characterize
radar return from particular types of scatterers and then
combining the results in a weighted consensus. The
development of the algorithm is informed by an analy-
sis of empirical data. Finally, the Graphical Turbulence
Guidance (GTG) algorithm generates clear-air tur-
bulence forecasts from numerical weather prediction
model data. It utilizes a number of model-derived diag-
nostics that relate large-scale atmospheric features to
the smaller-scale air motions that can shake an aircraft,
dynamically weighting them in a consensus combina-
tion based on their recent performance as measured
against pilot reports of turbulence. While these three
applications only begin to illustrate the many ways in
which fuzzy logic can be used in the environmental
sciences, it is hoped that they have served as concrete
examples that will stimulate the reader’s imagination.
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18Environmental Optimization: Applications
of Genetic Algorithms

Sue Ellen Haupt

18.1 The Nature of Optimization

The genetic algorithm (GA) has found wide accep-
tance in many fields, ranging from economics through
engineering. In the environmental sciences, some dis-
ciplines are using GAs regularly as a tool to solve typ-
ical problems; while in other areas, they have hardly
been assessed for use in research projects. The key
to using GAs in environmental sciences is to pose
the problem as one in optimization. Many problems
are quite naturally optimization problems, such as
the many uses of inverse models in the environmen-
tal sciences. Other problems can be manipulated into
optimization form by careful definition of the cost
function, so that even nonlinear differential equations
can be approached using GAs (Karr et al. 2001;
Haupt 2006). Although optimization is usually accom-
plished with more traditional techniques, using a
genetic algorithm allows cost functions that are not
necessarily differentiable or continuous (Marzban and
Haupt 2005).

Chapter 5 of this volume provides an introduction
to genetic algorithms and some basic examples that
demonstrate their use. Chapter 14 describes a specific
problem in optimization in which a GA proved useful –
using field monitored contaminant concentration data
coupled with a transport and dispersion model to back-
calculate source and meteorological information. The
purpose of this current chapter is to review some of
the broad range of applications of genetic algorithms
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to environmental science problems, to present a few
examples of how a GA might be applied to some prob-
lems, and to suggest how they may be useful in future
research directions.

Section 18.2 reviews some of the applications
of genetic programming, concentrating on applying
genetic algorithms to problems in the environmental
sciences. Then Sections 18.3 through 18.6 give spe-
cific examples and describe how GAs can help solve
problems in different ways than more traditional tech-
niques. Section 18.3 describes a method for building
empirical models with a GA using the Lorenz attractor
as an example. Section 18.4 provides an example of a
GA used for assimilating time varying meteorological
data into a dispersion model. A classification problem
is discussed in Section 18.5 in the context of using a
GA to train a neural network (NN). Section 18.6 shows
how a GA can be used to find equilibrium solutions of
a high order partial differential equation – finding soli-
tary wave solutions that are difficult to identify with
more standard techniques. A summary is provided in
Section 18.7. The overall goal of this chapter is to
give the reader some ideas on how a GA might be
configured to address her/his own problems.

18.2 GA Applications – Natural
Optimization

Better methods of optimization and search would be
quite beneficial in the environmental sciences. As an
example, many different problems involve fitting an
inverse model to observed or model-produced data.
Those data could be time series or observed envi-
ronmental states. Sometimes general functional forms
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are known or surmised from the data. Frequently, the
goal is to fit model parameters to optimize the match
between the constructed model and the data. Modelers
often go the next step and use that newly constructed
inverse model to make predictions. Hart et al. (1998)
discuss the need for new tools involving artifi-
cial intelligence (AI) techniques, including genetic
algorithms.

One example of fitting a model to observed data
using a GA is reported by Mulligan and Brown (1998).
They used a GA to estimate parameters to calibrate
a water quality model. They used nonlinear regres-
sion to search for parameters that minimize the least
square error between the best fit model and the data.
They found that the GA works better than more tra-
ditional techniques plus noted the added advantage
that the GA can provide information about the search
space, enabling them to develop confidence regions
and parameter correlations. Some other work related
to water quality includes using GAs to determine flow
routing parameters (Mohan and Loucks 1995), solving
ground water management problems (McKinney and
Lin 1993; Rogers and Dowla 1994; Ritzel et al. 1994),
sizing distribution networks (Simpson et al. 1994), and
calibrating parameters for an activated sludge system
(Kim et al. 2002). In fact the use of GAs and more gen-
eral evolutionary algorithms have become quite preva-
lent in the hydrological area and there are a plethora
of applications in the literature. Recently, it has pro-
gressed into development of very efficient methods
for finding Pareto fronts of optimal multiobjective
criteria to best estimate parameters of hydrological
models (Vrugt et al. 2003). A Pareto front represents
multiple solutions that balance the competing cost
functions.

Applications in managing groundwater supplies
have been using AI and GAs. Peralta and collaborators
combined GAs with neural networks and simulated
annealing techniques. Aly and Peralta (1999a) used
GAs to fit parameters of a model to optimize pump-
ing locations and schedules for groundwater treat-
ment. They then combined the GA with a neural
network (NN) to model the complex response func-
tions within the GA (Aly and Peralta 1999b). Shieh
and Peralta (1997) combined Simulated Annealing
(SA) and GAs to maximize efficiency. Fayad (2001)
together with Peralta used a Pareto GA to sort optimal
solutions for managing surface and groundwater sup-
plies, including a fuzzy-penalty function while using

an Artificial Neural Network (ANN) to model the
complex aquifer systems in the groundwater system
responses. Chan Hilton and Culver (2000) also used
GAs to optimize groundwater remediation design.

An example of the successful application of a GA
to classification and prediction was done by Sen and
Oztopal (2001) who classified rainy day versus non-
rainy day occurrences. They used the GA to estimate
the parameters in a third order Markov model. McCul-
lagh et al. (1999) combined GAs with neural networks
for rainfall estimation. Garcia-Orellana et al. (2002)
investigated various methods of using a neural net to
classify clouds visible on Meteosat images. The GA
method proved best given its ability to interact directly
with the NN. A model to forecast summer rainfall
over the Indian landmass was successfully developed
by Kishtawal et al. (2003) using a GA and historical
data.

GAs have also proven useful for interpreting remote
sensing data. Babb et al. (1999) developed algorithms
that included a GA to retrieve cloud microphysi-
cal parameters from Doppler radar spectra. Laksh-
manan (2000) used hybrid GAs to tune fuzzy sets
in order to identify bounded weak echo regions,
which are radar return features associated with super-
cell thunderstorms. Gonzalez et al. (2002) were
able to determine cloud optical thickness, effective
droplet radius, and temperature of night-time large-
scale stratiform clouds over the ocean by inverting
an atmospheric radiative transfer model. Since the
inversion displays multiple local minima, a GA was
needed to produce a global minimum that agreed well
with local in situ measurements. Finally, models of
lightning current return strokes were built using a GA
(Popov et al. 2000). That work optimized the parame-
ters of analytic return stroke models.

One example from geophysics is determining the
type of underground rock layers. Since it is not prac-
tical to take core samples of sufficient resolution to
create good maps of the underground layers, modern
techniques use seismic information or apply a current
and measure the potential difference that gives a resis-
tance. These various methods produce an underdeter-
mined multimodal model of the Earth. Fitting model
parameters to match the data is regarded as a highly
nonlinear process. Genetic algorithms have been suc-
cessful in finding realistic solutions for this inverse
problem (Jervis and Stoffa 1993; Jervis et al. 1996;
Sen and Stoffa 1992a, b, 1996; Chunduru et al. 1995,
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1997; Boschetti et al. 1995, 1996, 1997; Porsani
et al. 2000), among others. Minister et al. (1995) found
that evolutionary programming is useful for locating
the hypocenter of an earthquake, especially when com-
bined with simulated annealing.

Another inverse problem is determining the source
of air pollutants given what is known about moni-
tored pollutants. Additional information includes the
usual combination (percentages) of certain pollutants
from different source regions and predominant wind
patterns. The goal of the receptor inverse models is
to target what regions, and even which sources con-
tribute the most pollution to a given receptor region.
This process involves an optimization. Cartwright and
Harris (1993) suggest that a genetic algorithm may be
a significant advance over other types of optimization
models for this problem when there are many sources
and many receptors. Loughlin et al. (2000) combined
GAs with ozone chemistry air quality models to allo-
cate control strategies to avoid exceeding air qual-
ity standards. A demonstration of this type of model
appears in Chapter 14 of this volume.

Evolutionary methods have also found their way
into oceanographic experimental design. Barth (1992)
showed that a genetic algorithm is faster than simu-
lated annealing and more accurate than a problem spe-
cific method for optimizing the design of an oceano-
graphic experiment. Porto et al. (1995) found that an
evolutionary programming strategy was more robust
than traditional methods for locating an array of sen-
sors in the ocean after they have drifted from their
initial deployment location.

Charbonneau (1995) constructed three models
using GAs in astrophysics: modeling the rotation
curves of galaxies, extracting pulsation periods of
Doppler velocities in spectral lines, and optimizing
a model of hydrodynamic wind. Hassan and Cross-
ley (2003) used GAs to configure constellations of
satellites.

Finally, GAs have also been applied in the context
of ecological modeling. Recknagel (2001) lists some
general examples; Yin et al. (2002) describe using
a GA-based multivariate linear regression model to
construct quantitative structure-property relationships;
and Fang et al. (2003) used a GA to retrieve leaf area
index from Landsat images and a canopy radiative
transfer model.

The studies cited here are merely some examples
of how GAs have been useful in the environmental

sciences. The literature on GA applications has been
increasing rapidly in the past 10 years and it is impos-
sible to give an exhaustive review. Instead we describe
a few applications in more detail to give the reader
some specific examples from a range of different
problems.

18.3 Example 1 – Least Squares
Empirical Models

18.3.1 Empirical Modeling

Numerical modeling of time dependent problems such
as those found in geophysical fluid dynamics has
traditionally involved using some type of time step-
ping scheme, either explicit or implicit, combined
with known dynamics discretized from a partial dif-
ferential equation. Sometimes, however, the details of
the dynamics are not sufficiently known or we wish
to develop a model that reproduces dynamic behav-
ior without involving the details of the full physical
equations. In these cases, it is common to construe
the form of an empirical, or inverse, model and use
either observed or model-produced data – together
with statistical techniques – to fit the parameters of the
model.

Inverse models are becoming increasingly com-
mon in science and engineering. Sometimes we have
collected large amounts of data but have not devel-
oped adequate theories to explain the data. Other
times, the theoretical models are so complex that
it is extremely computer intensive to use them. In
either case, it is often useful to begin with avail-
able data and fit a stochastic model that minimizes
some mathematical normed quantity, that is, a cost.
Our motivation here lies in trying to predict envi-
ronmental variables. In recent years, many scientists
have been using the theory of Markov processes com-
bined with a least squares minimization technique to
build stochastic models of environmental variables in
atmospheric and oceanic science (Hasselmann 1988;
Penland 1989; Penland and Ghil 1993). One example
is predicting the time evolution of sea surface tem-
peratures in the western Pacific Ocean as a model of
the rises and falls of the El Niño/Southern Oscilla-
tion (ENSO) cycle. This problem proved challenging.
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However, stochastic models have performed as well
as the dynamical ones in predicting future ENSO
cycles (Penland and Magorian 1993; Penland and
Matrosova 1994). Kondrashov et al. (2005) extended
the technique to a nonlinear form using multiple poly-
nomial regression enabling capture of higher order
moments of ENSO. Another application involves pre-
dicting climate. We now build very complex climate
models that require huge amounts of computer time to
run. There are occasions when it would be useful to
predict the stochastic behavior of just a few of the key
variables in a large atmospheric model without con-
cern for the details of day-to-day weather. Branstator
and Haupt (1998) fit linear empirical models of climate
that reproduced a response to forcing better than a
standard linearized quasi-geostrophic model. Would a
different method of minimizing the function produce
a better match to the environmental time series? This is
an interesting question without a clear answer. Before
answering it using large climate models, it is conve-
nient to begin with simple low-dimensional models of
analytical curves. We choose to use a genetic algorithm
as the technique to find nonlinear solutions.

18.3.2 Linear Empirical Models

Linear empirical models are reasonably straightfor-
ward to produce from data using standard least squares
inversion techniques. The simplest time-varying model
is linear and can be written in the form:

ds
dt

= Bs + ξ (18.1)

where: s is the N-dimensional state and can represent
states such as velocities at various locations or the
spectral coefficients of the velocity,

ds
dt

is the time rate of change of the state,

B is a linear N × N tensor that relates the above
two,

ξ is a vector of white noise.

The deterministic dynamics are contained in the
matrix, B. Nonlinearities are parameterized through
corrections to B as well as within the noise, ξ . This
simple linear form is easily fit using standard ana-
lytical techniques, that is, minimizing the square of
the error between the model and the time averaged

data tendencies. Specifically, we wish to minimize the
normed error, requiring that:

E =
〈{(

ds
dt

− Bs
)p}〉

is minimized (18.2)

The curly braces represent a spatial averaging while
the angle brackets represent an ensemble time average.
The traditional solution to this problem involves find-
ing where the derivative of E vanishes. p is any appro-
priate power norm that we choose. The least squares
methods use p = 2, or, an L2 norm. Upon solving the
least squares problem (p = 2), we find:

B = ln

(
�τ

�

)
/τ (18.3)

� = 〈s(t)s(t)〉 is the covariance tensor, averaged
over time.

�τ = 〈s(t + τ)s(t)〉 is the lagged covariance
tensor.

τ is the chosen lag time.

Note that the model depends on the value of the lag, τ ,
the amount of data used to build it, and the resolution
of the data. For a more detailed discussion of the basis
of this model and suggestions for how to formulate it,
see the work of Penland (1989).

Here, we instead pose the optimization problems
as finding the matrix B that minimizes the cost func-
tion defined by the error equation (18.2) and solve
using a GA.

As an example, a time series is generated using
(X, Y, Z) = (sin(t), cos(t), t), with t = [0, 10π ] in
increments of π/50 to form a spiral curve. The time
evolution of this curve appears in Fig. 18.1a. Note that
computation of the cost function requires a summation
over 500 time increments. A continuous GA is applied
to this curve with a population size of Npop = 100, a
mutation rate of μ = 0.2, and run for 70 generations.
Since any value of p can be used, we experimented a
bit and found the best results for moderate p. The GA
solution appears in Fig. 18.1b for p = 4. The general
shape of the spiral curve is captured rather well. The
bounds in X and Y are approximately correct, but the
evolution in Z = t is too slow. This aspect of the spiral
is rather difficult to capture. In terms of dynamical
systems, we were able to find the attractor, but not able
to exactly model the evolution along it. For compari-
son, a standard least squares technique is used to solve
the same problem and appears as Fig. 18.1c. We can
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Fig. 18.1 The spiral curve. (a) Initial data created from
(X, Y, Z) = (sin(t), cos(t), t), with t = [0, 10π ] in incre-
ments of π/50 with Runge Kutta integration, (b) model fit with
a GA, and p = 4, and (c) linear least squares model fit

see that the least squares method could not even come
close to capturing the shape of the attractor. Of course,
we can fine tune the least squares method by adding a
noise term in the cost function. We can do that for the
GA as well. The advantage of the GA is that it is easy
to add complexity to the cost function. For this simple

model, adding more variables or changing the power,
p, adds nothing to the solution of the problem since it
can be completely specified with the nine degrees of
freedom in the matrix.

18.3.3 Nonlinear Empirical Models

When the dynamics are highly nonlinear, stochastic
linear dynamics cannot be expected to reproduce all
of the system’s behavior (Penland 1989). It is thus
convenient to formulate stochastic empirical models
using nonlinear dynamics. Chapter 5 introduced the
concept of a nonlinear empirical model in the context
of reproducing the limit cycle of the predator-prey
(Lotka Volterra) equations. As done there, we choose
to concentrate on quadratic nonlinearity since: (1) It
is the most reasonable to calculate. The higher the
order of the problem, the more data is necessary to
obtain a good fit. (2) A quadratic deterministic form
is sufficient to produce the entire range of coupled
dynamical behavior, such as limit cycles and chaotic
motion. (3) The forward dynamical models used in
geophysical fluid dynamics use a quadratic term to
specify the nonlinear advection. Thus, it is consistent
with the dynamical equations to expect quadratic non-
linearity.

Here, we formulate the quadratic empirical model
as:

ds
dt

= sCsT + Bs + ξ (18.4)

The nonlinear interactions now occur explicitly
through the nonlinear term involving the third order
operator C. B is again an N x N tensor that serves as the
linear propagator, C is an N x N x N third order tensor
that gives the coefficients of the quadratic interactions.
We wish to compute the tensors B and C so that the
least square error of (18.4),

E =
〈(

ds
dt

− Bs − sCsT

)2
〉

is minimized

(18.5)

The angle brackets denote a time average. Since (18.4)
is a quadratic generalization of (18.1), standard meth-
ods can be used for determining B and C (for instance
see Menke 1984). Details are given in Haupt (2006).
The problem is that the closed form solution requires
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inverting a fourth order tensor, which is not trivial.
Therefore, we choose to instead compute C by doing
a best fit with a genetic algorithm. Symmetries can be
invoked to reduce the dimensionality of the problem.
The GA is initialized with each chromosome being a
“guess” at the correct solution to C. The elements of C
become the genes that are concatenated into chromo-
somes. The cost function for this problem is (18.5).

18.3.4 Lorenz Equations

As an example, we examine whether it is possible
to capture the chaotic behavior of the three equation
Lorenz system (Lorenz 1963), which can be written:

dx

dt
= −σ x + σ y

dy

dt
= ρx − y − xz (18.6)

dz

dt
= −bz + xy

where x, y, z are the lowest order coefficients of a trun-
cated series of atmospheric flow and we use parame-
ters: σ = 10, b = 8/3, ρ = 28. These parameters pro-
duce a chaotic regime that results in a strange attractor,
often referred to as the “butterfly” attractor. The equa-
tions (18.4) are integrated using a fourth order Runge-
Kutta method to produce the data trajectory shown in
Fig. 18.2a, in three dimensional phase space.

A nonlinear empirical model of these data is created
using the techniques presented above. The parameters
of the GA are an initial population of 500, working
population of 100, crossover rate of 0.5, and muta-
tion rate of 0.3 for a total of 200 generations. Taking
into account symmetries for this problem results in
18 unique parameters in C. For this highly nonlinear
regime, it is difficult to find a solution. Not every
attempt converged to a small residual of the cost func-
tion. It required multiple attempts to produce the time
trajectory shown in Fig. 18.2b. Although the match is
not perfect, the general shape of the strange attractor is
replicated.

For comparison, the solution due to a linear empir-
ical model fit of (18.1) is shown in Fig. 18.2c, similar
to that shown previously by Penland (1989). The linear
model did not capture the shape of the attractor, but
instead shows a decaying spiral behavior. Although the

(a)

(b)

(c)

Fig. 18.2 The Lorenz butterfly attractor. (a) Initial data created
from ( ) with Runge Kutta integration, (b) nonlinear model fit
with a GA, and (c) linear model fit

parameters were chosen to model the chaotic regime,
the linear model can only capture a homoclinic orbit
toward a stable fixed point.

This example has shown that nonlinear empiri-
cal models show promise for capturing the essen-
tial dynamics of nonlinear systems. Such a nonlinear
empirical model, however, is not easily fit using ana-
lytical or traditional techniques. Instead, this model
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relied on a GA to optimize the match with the model-
produced data.

18.4 Example 2 – Least Squares
Assimilation

18.4.1 Motivation

In this section, we wish to assimilate chemical, biolog-
ical, radiological, or nuclear (CBRN) concentrations
into a simple wind model that then forces a transport
and dispersion model to forecast contaminant concen-
tration. There is a long history of assimilating mon-
itored data into meteorological models (Daley 1991;
Kalnay 2003). In most cases, the goal is to assimilate
data observations into the model fields so that the ana-
lyzed field is consistent with the model physics. Most
methods work with observed quantities that are either
the same fields as those being predicted or ones that
can be readily transformed into the predicted quanti-
ties. For the CBRN problem, however, the observed
quantity is concentration, but the wind field must
be modeled to predict a concentration closer to that
observed. Therefore, it requires inverting a full trans-
port and dispersion model to relate wind field to con-
centration. Thus, using concentration data to assimi-
late the wind field is a complex problem. Chapter 14
showed how a GA could be used to back-calculate
better constant wind direction and source parameters

if field monitored concentrations are available. The
goal here is to use concentration data to infer a time
varying wind field and to use that field to predict the
subsequent transport and dispersion.

Specifically, we seek to optimize the wind direc-
tion to produce a predicted concentration field clos-
est to that monitored. This method is most akin to
the variational approaches to assimilation, but rather
than using the variational formalism, “leaps” directly
to computing the best match. Again, we choose the
continuous GA as our optimization tool. In this case,
we assume that the source characteristics are known
and seek to compute the time evolving wind direction.
We set up an identical twin experiment in which a
meandering plume is forced by a sinusoidally vary-
ing wind field. The domain is 5 × 5 km with sensors
sited every 125 m. The synthetic data is produced with
an integration time interval of 20 s. The surface level
meandering plume is plotted on the fully resolved
40 × 40 grid in Fig. 18.3a. We will use these data to
assess two approaches to assimilating the wind field:
(1) static and (2) dynamic assimilation.

18.4.2 Genetic Algorithm Assimilation –
Static Approach

The static approach uses the spatially varying wind
field to produce a meandering concentration field, as
would be the case where local terrain affects the flow.

(a) (b)

Fig. 18.3 Static assimilation of a meandering plume. (a) Truth and (b) GA computed plume
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Fig. 18.4 GA match to the
actual wind direction

In this case a fit to the Lagrangian evolution of the
plume concentration field is accomplished in a single
GA solution. We presume that the entire field is avail-
able a priori and seek to find the wind direction at each
time. In this case, the wind speed is held constant. The
first experiment used all of the sensor data and sampled
the plume every four time steps (80 s). Figure 18.3b
indicates the resulting plume. The plots are nearly
indistinguishable from the sampled data in Fig. 18.3a.
The GA match to the actual wind direction is indicated
in Fig. 18.4. Except for the two initial times, the two
are nearly identical. The lack of agreement at the initial
time reflects the fact that the plume at that time had
not yet produced any concentrations – i.e., the prob-
lem at that time is ill-posed. The second calculation
overshoots to push the computed direction toward the
exact solution. Figure 18.5 shows the GA convergence.
The cost function continues to decrease, indicating that
we could continue to iterate the GA to get increasingly
more accurate solutions.

What if we do not have such a dense sensor net-
work? Figure 18.6a shows the results of sampling
one in four of the sensors, every 500 m. Although the
plume is coarse, it accurately reproduces the location
of the plume when compared to Fig. 18.3a. The very
coarse network in Fig. 18.6b shows the limitations of

the model when sampling every eight points (1,000 m).
Even in this data starved situation, however, the basic
shape of the plume was captured.

18.4.3 Genetic Algorithm Assimilation –
Dynamic Approach

The second approach to assimilation is dynamic in
nature. We assume that we have already modeled the
past plume history and seek to assimilate the most
recent concentration observations into the transport
and dispersion model with the GA approach to opti-
mizing the wind direction. This is a two step process:
(1) we use the current concentration measurements to
compute the optimal wind direction and (2) we use that
wind direction to forecast the location of the plume
at the next observation time. This dynamic process is
closer to how such a process would progress in real
time. The results at full resolution appear in Fig. 18.7,
which should be compared Fig. 18.3a. Here we assume
full spatial resolution but a temporal observation spac-
ing of every four time periods (80 s). Although the
shape of the plume is not bad, we note a phase shift
in the plume meander by the distance corresponding
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Fig. 18.5 Convergence of
GA solution

to the sampling time interval. This phase shift is
expected since the next time concentration can only
reflect the most recent wind calculation. As the plume
grows in time, the region that is impacted varies more.
That problem could be addressed through drifting the
observations with the wind; that is, presupposing the
transport of the contaminant at the current wind speed.
Figure 18.8 shows the degree of match between the
dynamically computed wind direction and the true
wind direction. Note the discrepancy in two aspects.

At the beginning of the calculation, the match is poor.
That discrepancy is explained by inadequate sampling
of the plume before it is large enough to span multiple
sensors. As the plume grows, the correspondence with
the true wind direction improves. At the final sampling
times, however, the difference between computed wind
direction and truth degrades. This degradation occurs
because of the inherent phase shift in the assimilation
of spatially fixed observations. In a real situation, such
rapid wind shifts may be less likely.
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Fig. 18.6 GA computed plume when the spatial sampling is (a) 1:4 and (b) 1:8
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Fig. 18.7 Dynamic
assimilation of the
meandering plume

This assimilation example is indicative of the ways
in which AI could help solve problems that are difficult
for standard techniques. In this case, using concentra-
tion data to assimilate wind field involves a transport
and dispersion model that is too complex for some

standard methods such as variational approaches. The
GA is successful at simplifying the problem by “leap-
ing” over the formalism and finding an operationally
useful solution.

Fig. 18.8 Comparison of
dynamically computed wind
direction with the actual wind
direction
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18.5 Example 3 – Using GAs and NNs
for Classification

18.5.1 Introduction

It is common in environmental prediction to sepa-
rate events into discrete classes, such as whether it
will hail or not or whether precipitation will be rain
or snow. Generally, many such classification mod-
els are based on the minimization of cross-entropy
(Bishop 1996), which is continuous and differentiable
in model parameters. Most common measures of clas-
sification performance, however, are based on the con-
tingency table (see Chapter 3). The critical success
index is one example that is common in meteorology;
numerous others are discussed in Chapter 3 and by
Marzban (1998). Because, they are based on a dis-
crete table – the contingency table – they are neither
continuous nor differentiable in the model parameters.
This is why they are referred to as discrete measures.
Given that the final model is to be assessed in terms of
such discrete measures, it is natural to optimize them
directly.

In this section, we compare a number of such mea-
sures that are optimized directly using GAs: the results
are compared to the more traditional approach of first
minimizing cross entropy, followed by the optimiza-
tion of a discrete performance measure. One may inter-
pret this task as equivalent to the comparison of two
parameter estimation (or training) algorithms – one
capable of optimizing discrete measures, the other not.
It should be noted that, strictly speaking, the latter is
not an optimization algorithm because it is a two-stage
procedure with different measures optimized at each
stage.

18.5.2 Methodology

The data set used for our comparison consists of over
21,000 cases with every case including three predictors
and one predictand; the binary number labeling the
occurrence or nonoccurrence of hail. The predictors
are related to both Doppler radar-derived parameters
and parameters representing the near-storm environ-
ment. This data set has been used in the development
of neural networks to aid the National Severe Storms’
Hail Detection Algorithm in detecting hail and esti-

mating hail size (Marzban and Witt 2000, 2001). The
neural network for predicting the occurrence of hail
was trained by minimizing cross-entropy, and that for
predicting the size of hail was based on the minimiza-
tion of Mean Squared Error (MSE). Both of these
measures are continuous and differentiable. Given that
the latter network is a classifier, its performance was
assessed in terms of discrete measures – specifically,
the Critical Success Index (CSI) and the Heidke Skill
Statistic (HSS). As such, its development was a two-
stage process involving the maximization of cross-
entropy followed by the maximization of the discrete
measures. The discrete measures were computed from
the contingency table, which in turn was formed by
placing a threshold on the probability (of hail) pro-
duced by the network. As such, the maximization of
the discrete measure (at the second stage) is tanta-
mount to identifying the threshold which yields that
highest performance. In addition to CSI and HSS,
one other measure will be employed here – the frac-
tion correct (FRC). This study is inherently empir-
ical in that the findings are specific to the data set
examined.

The parametric form of the model examined here
is motivated by the neural network (see Chapter 2).
Specifically, it is

y = g

⎛

⎝
H∑

i=1

ωi f

⎛

⎝
Nin∑

j=1

ωi j x j − θ j

⎞

⎠ − ω

⎞

⎠ + ε

(18.7)

where the ω’s and θ ’s are all parameters to be
estimated from data. For clarity, the index i = 1,

2, . . . , N , referring to the data case is not shown.
Nin refers to the number of predictors, and H is a
parameter that gauges the nonlinearity of the function.
Note that H is analogous to the order of a polyno-
mial. Although there are techniques for estimating it
from data, the optimal value for H is not important
in the current study. It will be fixed at H = 2, and 4.
Recall that the goal of the study is to examine different
training algorithms, rather than to develop the “best”
model for hail detection.

A neural network is trained by two different training
algorithms – conjugate gradient and genetic algorithm.

(a) Minimize cross-entropy using a conjugate gradient
method (Press et al. 1999) to build a model pro-
ducing a continuous predictand (i.e. probability).
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Place a threshold on the predictand in order to
construct a contingency table, and compute per-
formance measures. Vary the threshold across the
full range of the predictand in order to iden-
tify the threshold at which the maximum perfor-
mance measure occurs. This maximum value is
taken to represent optimal performance in this
approach. This method minimizes cross-entropy,
which means that the network produces a continu-
ous quantity between 0 and 1. This output is then
dichotomized by the introduction of a threshold,
and the discrete measure is optimized as a function
of this threshold.

(b) Maximize the discrete measure, directly, by using
a genetic algorithm. Chapter 5 introduces genetic
algorithms and their advantages. The primary
advantage of importance to the current application
is its ability to directly optimize non-continuous,
non-differentiable measures. The GA used for this
study is a continuous parameter GA. This training
algorithm maximizes the discrete measure directly.
It also directly optimizes the threshold as part of
the calculation.

One common feature of both conjugate gradient and
genetic algorithm is that they are iterative. One typi-
cally begins with a random set of values for the para-
meters, and applies the training algorithm until the per-
formance measure converges to some optimal value.
To assure that the training algorithms are not trapped
in shallow local minima, both CG and GAs are applied
to five different initial parameter values.

The performance measures are detailed in
Chapter 3 of this volume: FRC, CSI, and HSS.

18.5.3 Results

Figure 18.9a through 18.9f display the results. The
horizontal lines correspond to the performance mea-
sures reached by the GA for five different initializa-
tions. They are not a function of threshold since the
threshold is optimized directly by this approach. The
remaining five curves correspond to the performance
measures based on the minimization of cross-entropy
by CG. It can be seen that the curves for all three
measures display similar behavior, although the CG
curves reach their peaks at somewhat different values

Table 18.1 The average performance values and confidence
intervals, for the different measures, and for H = 2 and
H = 4

Measure GA CG

H = 2
FRC 0.92163 ± 0.00019 0.92130 ± 0.00006
CSI 0.50370 ± 0.00105 0.49970 ± 0.00037
HSS 0.62076 ± 0.00266 0.61768 ± 0.00038

H = 4
FRC 0.92157 ± 0.00022 0.92109 ± 0.00018
CSI 0.50360 ± 0.00147 0.50208 ± 0.00146
HSS 0.62192 ± 0.00158 0.61958 ± 0.00106

of the threshold. The behavior of these curves is in
complete agreement with their theoretical behavior in
Gaussian models (Marzban 1998).

The important point of these figures is that the tra-
ditional two-stage optimization of the measures does
not yield performance values as high as those obtained
by their direct optimization via the GA. This is true of
all five curves. Thus, the GA has an advantage over the
alternatives that require continuous and differentiable
performance measures.

The difference between the two approaches, how-
ever, is rather small in that the curves approach and
even cross some of the horizontal lines. The ques-
tion arises as to whether the difference is statistically
significant. To that end, a t-test is performed and 2σ

confidence intervals are computed. Note that 2σ cor-
responds to a 97% confidence interval, displayed in
Table 18.1. The t-values (not shown in table) for the
H = 2 case are in the 2.8 range, and those of the
H = 4 case are in the 2.4 range. It can be seen
that the differences between the two approaches are
statistically significant. The slightly lower t-value of
the H = 4 case is anticipated from the larger varia-
tions between the five curves in the right figures in
Fig. 18.9.

This study has shown that when a neural network
is trained directly using the performance measure that
will be used to judge its success, it is somewhat
more skillful than if trained using the traditional mean
square error approach. To train the network using the
discrete performance measures, however, requires use
of an artificial intelligence technique that can work
with discrete numbers. The GA produced better per-
formance measures than the traditional conjugate gra-
dient approach of optimizing cross-entropy because
it directly optimizes those measures on which it is
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Fig. 18.9 The fraction correct (top), CSI (middle), and HSS
(bottom) as obtained from five different initializations of con-
jugate gradient with H = 2 (left) and H = 4 (right). The

horizontal lines are the corresponding scores from GA that
includes optimizing the threshold
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being judged. We should note that the genetic algo-
rithm does take considerably more CPU time to com-
plete the optimization of the neural network weights
than the competing methodology. It can, however,
optimize the cutoff threshold at the same time, elim-
inating the need for testing on various thresholds.

The results reported here used a single data set;
therefore, they should be considered preliminary until
they can be confirmed with other data sets of differing
types and sizes. We do expect that with more exper-
iments we will be able to generalize these results to
other cases.

18.6 Example 4 – Solving PDEs

As a final example, we show how a GA can be used to
solve a high order nonlinear partial differential equa-
tion that is formally nonintegrable. Normally, we don’t
think of ordinary and partial differential equations
(ODEs and PDEs) as minimization problems. Thus,
this is an example of how common difficult problems
can be posed as one in optimization. Koza (1992)
demonstrated that a GA could solve a simple differ-
ential equation by minimizing the value of the solu-
tion at 200 points. To do this, he numerically differ-
entiated at each point and fit the appropriate solution
using a GA. Karr et al. (2001) used GAs to solve
inverse initial boundary value problems and found a
large improvement in matching measured values. That
technique was demonstrated on elliptic, parabolic, and
hyperbolic PDEs.

We examine the Super Korteweg-de Vries equa-
tion (SKDV), a fifth-order nonlinear partial differential
equation. It has been used as a model for shallow water
waves near a critical value of surface tension, among
other phenomena (Yoshimura and Watanabe 1982).
This equation admits solitary waves and their periodic
generalizations, cnoidal waves. Solitary waves, or soli-
tons, are permanent-form waves for which the nonlin-
earity balances the dispersion to produce a coherent
structure. The SKDV can be written as:

ut + αuux + μuxxx − νuxxxxx = 0 (18.8)

The functional form of the wave is denoted by u; time
derivative by the t subscript; spatial derivative by the x
subscript; and α, μ, and ν are parameters of the prob-
lem taken as ν = 1, μ = 0, α = 1. We wish to solve
for waves that are steadily translating, so we write the t

variation using a Galilean transformation, X = x − ct ,
where c is the phase speed of the wave. The phase
speed and amplitude of solitary-type waves are inter-
dependent. Here, we use a phase speed of c = 14.683
to match with a well known approximate nonlinear
solution (Boyd 1986). Thus, our SKDV becomes a
fifth-order, nonlinear ODE:

(αu − c)u X + μuXXX − νuXXXXX = 0 (18.9)

Boyd (1986) extensively studied methods of solving
this equation. He expanded the solution in terms of
Fourier series to find periodic cnoidal wave solu-
tions (solitons that are repeated periodically). Among
the methods used are the analytical Stokes’ expan-
sion, which intrinsically assumes small amplitude
waves, and the numerical Newton-Kantorovich itera-
tive method, which can go beyond the small amplitude
regime if care is taken to provide a very good first
guess. Haupt and Boyd (1988) extended these meth-
ods to deal with resonance conditions. These methods,
however, require careful analytics and programming
that is very problem specific. Here, we instead cast
the problem as one in optimization and solve with a
genetic algorithm.

To find the solution of equation (18.9), we expand
the function u in terms of a Fourier cosine series to K
terms to obtain the approximation, uK :

u(X) � uK (X) =
K∑

k=1

ak cos(kX) (18.10)

The cosine series assumes that the function is sym-
metric about the X -axis (without loss of generality). In
addition, we use the “cnoidal convention” by assuming
that the constant term, a0 is 0. Now, we can easily take
derivatives as powers of the wave numbers to write the
cost function that we wish to minimize as:

cost(uK ) =
K∑

k=1

[−k(αu − c) + k3μ + k5ν
]

ak sin(kx)

(18.11)
We wish to find the coefficients of the series, ak . Note
that we must compute u to insert into the cost function
(18.11).

We computed the coefficients, ak , to find the best
cnoidal wave solution for K = 6. We used Npop =
100, μ = 0.2, and 70 iterations. We evaluated the cost
function at grid points and summed their absolute
value. The results appear in Fig. 18.10. The solid
line is the “exact” solution reported by Boyd (1986)
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Fig. 18.10 Double cnoidal wave of the SKDV equation. Solid:
perturbation solution, dashed: GA solution

and the dashed line is the GA’s approximation to it.
They are barely distinguishable. In addition, we show
a GA solution that converged to a double cnoidal wave
as Fig. 18.11. Such double cnoidal waves are very
difficult to compute using other methods (Haupt and
Boyd 1988).

So we see that GAs show promise for finding solu-
tions of differential and partial differential equations,
even when these equations are highly nonlinear and
have high-order derivatives, thus being difficult to
solve with more traditional techniques.

Fig. 18.11 Double cnoidal wave of the SKDV equation as
found by the GA

18.7 Summary and Conclusions

Genetic algorithms have begun to find their way into
applications in the many disciplines of environmen-
tal science, but their strengths have only begun to
be tapped. We have shown here how versatile these
algorithms are at finding solutions, even where other
methods often fail.

Several specific applications have been described,
including building empirical models of data, using
a genetic algorithm to train a Neural Network for a
classification problem, data assimilation with a genetic
algorithm, and even using a genetic algorithm to find
steadily translating solutions of a highly nonlinear fifth
order PDE. Some of the references of Section 18.2
have used other types of GAs in highly imaginative
ways and combined them with other techniques. The
author and her colleagues are involved in other new
application areas as well. One such application uses a
genetic algorithm to partition clusters of weather fore-
casts to optimize which linear combination of ensem-
ble members is likely to make the best prediction for a
particular regime.

The use of GAs is growing. In some fields, such as
groundwater work, they are becoming a common tool.
For other areas, they have not yet been considered.
For instance, the simple example of Section 18.3.3
might be a precursor of fitting parameters of full cli-
mate models. Linear fits give a good first fit to climate
model data. Branstator and Haupt (1998) demonstrated
that a simple linear stochastic model can reproduce
responses to forcing better than a traditional linearized
quasigeostrophic model that includes specific dynam-
ics. But the linear techniques fall apart on highly non-
linear problems. That is where the genetic algorithm
can be useful. If we can formulate a nonlinear form for
a climate model in ways parallel to the Section 18.3
problem, we can use the GA to estimate the coeffi-
cients. Even the highly nonlinear Lorenz equations in
the strange attractor regime can be fit to a quadratically
nonlinear model using this technique (Haupt 2006).
One can imagine that as we attempt to model
larger nonlinear systems, techniques from artificial
intelligence, such as genetic algorithms, could become
useful to determining stochastic fits where the dynam-
ical theory becomes intractable.

The environmental sciences have advanced through
observing data and formulating models. Many of those
models have used first physics principals. But many
such models have reached a level of complexity that is
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overwhelming. Now is when we return to finding other
methods to interpret data. AI can aid in this quest. GAs
are one such AI technique that can help develop new
models of physical processes gleaned from observed
data.
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19Machine Learning Applications in
Habitat Suitability Modeling

Sašo Džeroski

19.1 Introduction

Environmental sciences comprise the scientific disci-
plines, or parts of them, that consider the physical,
chemical and biological aspects of the environment
(Allaby 1996). Environmental sciences are possibly
the largest grouping of sciences, drawing heavily on
life sciences and earth sciences, both of which are
relatively large groupings themselves. Life sciences
deal with living organisms and include (among oth-
ers) agriculture, biology, biophysics, biochemistry, cell
biology, genetics, medicine, taxonomy and zoology.
Earth sciences deal with the physical and chemical
aspects of the solid Earth, its waters and the air that
envelops it. Included are the geologic, hydrologic, and
atmospheric sciences. The latter are concerned with
the structure and dynamics of Earth’s atmosphere and
include meteorology and climatology.

The field of environmental science is very inter-
disciplinary. It exists most obviously as a body of
knowledge on its own right when a team of special-
ists assembles to address a particular issue (Allaby
1996). For instance, a comprehensive study of a par-
ticular stretch of a river would involve determining
the geological composition of the riverbed (geology),
determining the chemical and physical properties of
the water (chemistry, physics), as well as sampling and
recording the species living in and near the water (biol-
ogy). Environmental sciences are highly relevant to
environmental management, which is concerned with
directing human activities that affect the environment.

Sašo Džeroski (*)
Jozef Stefan Institute, Department of Knowledge Technologies,
Jamova 39, 1000 Ljubljana, Slovenia
email: Saso.Dzeroski@ijs.si

The most typical representative of environmental
sciences is ecology, which studies the relationships
among members of living communities and between
those communities and their abiotic (non-living) envi-
ronment. Ecology is frequently defined as the study of
the distribution and abundance of plants and animals
(e.g., Krebs 1972). The distribution can be consid-
ered along the spatial dimension(s) and/or the temporal
dimension.

Within ecology, the topic of ecological modeling
(Joergensen and Bendoricchio 2001) is rapidly gain-
ing importance and attention. Ecological modeling is
concerned with the development of models of the rela-
tionships among members of living communities and
between those communities and their abiotic environ-
ment. These models can then be used to better under-
stand the domain at hand or to predict the behavior
of the studied communities and thus support deci-
sion making for environmental management. Typical
modeling topics are population dynamics of several
interacting species and habitat suitability for a given
species (or higher taxonomic unit).

Machine learning is one of the essential and most
active research areas in the field of artificial intelli-
gence. In short, it studies computer programs that auto-
matically improve with experience (Mitchell 1997).
The most researched type of machine learning is
inductive machine learning, where the experience is
given in the form of learning examples. Supervised
inductive machine learning, sometimes also called pre-
dictive modeling, assumes that each learning example
includes some target property, and the goal is to learn
a model that accurately predicts this property.

Machine learning (and in particular predictive mod-
eling) is increasingly often used to automate the con-
struction of ecological models (Džeroski 2001). Most

S. E. Haupt et al. (eds.), Artificial Intelligence Methods in the Environmental Sciences 397
© Springer-Verlag Berlin Heidelberg 2009



000–0–00–000000–0 19-Haupt-c19 SHB0024-Haupt (Typeset by SPi, Delhi) page 398 of 412 September 19, 2008 14:43

398 S. Džeroski

frequently, models of habitat suitability and popula-
tion dynamics are constructed from measured data by
using machine learning techniques. The most popular
machine learning techniques used for modeling habitat
suitability include decision tree induction (Breiman
et al. 1984, see also Chapter 4 of this volume by
Dattatreya), rule induction (Clark and Boswell 1991),
and neural networks (Lek and Guegan 1999, see also
Chapter 2 of this volume by Marzban).

In this chapter, we will focus on applications of
machine learning in ecological modeling, more specif-
ically, applications in habitat suitability modeling.
Habitat-suitability modeling studies the effect of the
abiotic characteristics of the habitat on the presence,
abundance or diversity of a given taxonomic group of
organisms. For example, one might study the influ-
ence of soil characteristics, such as soil temperature,
water content, and proportion of mineral soil on the
abundance and species richness of springtails, the most
abundant insects in soil. To build habitat-suitability
models, machine learning techniques can be applied
to measured data on the characteristics of the envi-
ronment and the abundance of the taxonomic group(s)
studied.

In the remainder of this chapter, we first discuss in
more detail the task of habitat suitability modeling. We
next briefly describe two approaches to machine learn-
ing that are often used in habitat suitability modeling:
decision tree induction and rule induction. We then
give examples of using machine learning to construct
models of habitat suitability for several kinds of organ-
isms. These include habitat models for bioindicator
organisms in a river environment, springtails and other
soil organisms in an agricultural setting, brown bears
in a forest environment, and finally habitat suitabil-
ity models for sea cucumbers in a sustainable fishing
setting.

19.2 Habitat Suitability Modeling

If ecology is defined as the study of the distribution and
abundance of plants and animals, habitat suitability
modeling is concerned with the spatial aspects of the
distribution and abundance. Habitat suitability models
relate the spatially varying characteristics of the envi-
ronment to the presence, abundance or diversity of a

given (taxonomic) group of organisms. For example,
one might study the influence of soil characteristics,
such as soil temperature, water content, and proportion
of mineral soil on the abundance and species richness
of springtails, the most abundant insects in soil.

The input to a habitat model is thus a set of envi-
ronmental characteristics for a given spatial unit of
analysis. The output is a target property of the given
(taxonomic) group of organisms. Note that the size of
the spatial unit, as well as the type of environmen-
tal variables, can vary considerably, depending on the
context, and so can the target property of the popula-
tion (even though to a lesser extent).

The spatial unit considered may be of different size
for different habitat models. For example, in the study
of Collembola habitat, the soil samples taken were of
size 7.8 cm diameter and 5 cm depth (Kampichler et al.
2000), in the study of sea cucumber habitat transects
of 2 by 50 m of the sea bed were considered (Džeroski
and Drumm 2003), and in ongoing studies of potential
habitats for different tree species under varying climate
change scenarios, 1 by 1 km squares are considered
(Ogris and Jurc 2007). Habitat models can thus operate
at very different spatial scales.

The input to a habitat model is a set of envi-
ronmental variables, which may be of three different
kinds. The first kind concerns abiotic properties of the
environment, e.g., physical and chemical characteristic
thereof. The second kind concerns some biological
aspects of the environment, which may be consid-
ered as en external impact on the group of organisms
under study. Finally, the third kind of variables are
related to human activities and their impacts on the
environment.

The environmental variables that describe the abi-
otic part of the environment can be of different nature,
depending for example on whether we study a terres-
trial or an aquatic group of organisms. Typical groups
of variables concern properties of the terrain (calcu-
lated from a digital elevation model), such as elevation,
slope and exposition; geological composition of the
terrain or the riverbed/seabed; physical and chemical
properties of the soil/water/air, such as moisture, pH,
quantities of pollutants, and so on. An important group
of variables concerns climate and encompasses tem-
perature, precipitation, etc.

Biological aspects of the environment that are con-
sidered in habitat models are typically more specific
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and more directly related to the target group of organ-
isms as compared to the abiotic variables. They may be
rather coarse and refer to the community, e.g., when
modeling brown bear habitat one of the inputs may
be the type of forest at a particular location. They
may also refer to more specific types of organisms
that are related to the target group, e.g., when mod-
eling the habitat of wolves, information on important
prey species such as hare and deer may be taken into
account.

Some environmental variables may involve both
abiotic and biotic aspects. Land cover is a typical
example: possible values for this variable may be for-
est, grassland, water, etc. Finally, some environmental
variables are related to human activity: examples are
proximity to settlements, population density, and prox-
imity to roads/railways.

The output of a habitat model is some property of
the population of the target group of organisms at the
spatial unit of analysis. There are two degrees of free-
dom here: one stems from the target property, the other
from the group of organisms studied. In the simplest
case, the output is just the presence/absence of a single
species (or group). In this case, we simply talk about
habitat models.

An example habitat model for brown bears in
Slovenia (taken from Jerina et al. 2003) is given
in Table 19.1. It has the form of an IF-THEN
rule, which specifies the conditions that define suit-
able habitat for brown bears. The rule uses three
environmental variables PREDOMINANT-LAND-
COVER, FOREST-ABUNDANCE and PROXIMITY-
TO-SETTLEMENTS: it was actually learned by
applying machine learning techniques to observational
data.

We can also be interested in the abundance or den-
sity of the population. If we take these as indicators
of the suitability of the environment for the group of
organisms studied, we talk about habitat suitability
models: the output of these models can be interpreted

Table 19.1 A habitat model for the brown bear (Ursus arctos)
in Slovenia

IF PREDOMINANT-LAND-COVER = Forest
AND FOREST-ABUNDANCE > 60%
AND PROXIMITY-TO-SETTLEMENTS > 1.5 km
THEN BrownBearHabitat = Suitable
ELSE BrownBearHabitat = Unsuitable

as a degree of suitability. The abundance of the pop-
ulation can be measured in terms of the number of
individuals or their total size (e.g., the dry biomass of
a certain species of algae). If the (taxonomic) group is
large enough, we can also consider the diversity of the
group (Shannon index, species richness or such like,
see Krebs 1989).

In the most general case of habitat modeling, we are
interested in the relation between the environmental
variables and the structure of the population at the spa-
tial unit of analysis (absolute and relative abundances
of the organisms in the group studied). One approach
to this is to build habitat models for each of the organ-
isms (or lower taxonomic units) in the group, then
aggregate the outputs of these models to determine
the structure of the population (or the desired target
property). An alternative approach is to build a model
that simultaneously predicts the presence/abundance
of all organisms in the group or directly the desired
target property of the entire group. A comparison
of the two approaches in the context of machine
learning of habitat models is given by Demšar et al.
(2006a).

We should note here that observing the presence or
absence of a species/group (or its abundance/density)
within a given spatial unit can be a nontrivial task.
While most plants and certain animals (such as sea
cucumbers) are relatively immobile, many animals
(including brown bears) can move fast and cover wide
spatial areas. In the latter cases, one might consider
areals of activity (home ranges) and sample from these
to obtain data for learning habitat suitability models:
this is what was done in the study by Jerina et al.
(2003).

Another issue that commonly occurs in habitat
modeling, especially in the context of machine learn-
ing, is the fact that only presence data are often col-
lected (i.e., no absence data are usually available). In
such cases, additional care is necessary when prepar-
ing the data for the modeling task. Examples (spa-
tial units) where the target group can be reasonably
expected not to occur (based on domain knowledge)
may be considered as absence data.

Finally, let us reiterate that habitat modeling
focuses on the spatial aspects of the distribution and
abundance of plants and animals. It studies the rela-
tionships between some environmental variables and
the presence/abundance of plants and animals, under
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the implicit assumption that both are observed at
a single point in time for a given spatial unit. It
mostly ignores the temporal aspects of the distribu-
tion/abundance, the latter being the focus of popula-
tion dynamics modeling. Still, some temporal aspects
may be taken into account, for example, averages of
environmental variables over a period of time preced-
ing the observation are sometimes included in habitat
models (e.g., average winter air temperature).

19.3 Machine Learning for
Habitat Modeling

19.3.1 The Machine Learning Task of
Predictive Modeling

The input to a machine learning algorithm is most
commonly a single flat table comprising a number of
fields (columns) and records (rows). In general, each
row represents an object and each column represents a
property (of the object). In machine learning terminol-
ogy, rows are called examples and columns are called
attributes (or sometimes features). Attributes that have
numeric (real) values are called continuous attributes.
Attributes that have nominal values (are called discrete
attributes.

The tasks of classification and regression are the
two most commonly addressed tasks in machine learn-
ing. They are concerned with predicting the value of
one field from the values of other fields. The target
field is called the class (dependent variable in statisti-
cal terminology). The other fields are called attributes
(independent variables in statistical terminology).

If the class is continuous, the task at hand is called
regression. If the class is discrete (it has a finite set of
nominal values), the task at hand is called classifica-
tion. In both cases, a set of data (dataset) is taken as
input, and a predictive model is generated. This model
can then be used to predict values of the class for new
data. The common term predictive modeling refers to
both classification and regression.

Given a set of data (a table), only a part of it is
typically used to generate (induce, learn) a predictive
model. This part is referred to as the training set.
The remaining part is reserved for evaluating the pre-
dictive performance of the learned model and is called

the testing set. The testing set is used to estimate the
performance of the model on unseen data (and some-
times also called validation set, see Chapter 2 of this
volume by Marzbahn).

More reliable estimates of performance on unseen
data are obtained by using cross-validation, which par-
titions the entire data available into N (with N typically
set to 10) subsets of roughly equal size. Each of these
subsets is in turn used as a testing set, with all of
the remaining data used as a training set. The perfor-
mance figures for each of the testing sets are averaged
to obtain an overall estimate of the performance on
unseen data.

19.3.2 A Machine Learning Formulation
of Habitat Modeling

In the case of habitat modeling, examples correspond
to spatial units of analysis. The attributes correspond
to environmental variables describing the spatial units,
as these are the inputs to a habitat model. The class
is a target property of the given (taxonomic) group of
organisms, such as presence, abundance or diversity.

The habitat model from Table 19.1 has been learned
from a dataset which includes the discrete attribute
PREDOMINANT-LAND-COVER (which can have
the value forest, among others) and the continuous
attributes FOREST-ABUNDANCE and PROXIMITY-
TO-SETTLEMENTS. The class BrownBear-Habitat
is discrete, with Suitable and Unsuitable as possi-
ble values. Hence, we are dealing with a classifica-
tion task. An excerpt from the dataset is given in
Table 19.2.

The machine learning task of habitat modeling
is thus defined as follows. Given is a set of data
with rows corresponding to spatial locations (units
of analysis), attributes corresponding to environmen-
tal variables, and the class corresponding to a target
property of the population studied. The goal is to
learn a predictive model that predicts the target prop-
erty from the environmental variables (from the given
dataset). If we are only looking at presence/absence
or suitable/unsuitable as values of the class (as is
the case above), we have a classification problem. If
we are looking at the degree of suitability (density/
abundance), we have a regression problem.
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Table 19.2 An excerpt from the dataset for modeling brown bear habitat in Slovenia. PLC stands for PREDOMINANT-LAND-
COVER, PTS for PROXIMITY-TO-SETTLEMENTS, and BBH for BrownBearHabitat

Location PLC FOREST-ABUNDANCE PTS OtherEnvVariables BBH

l1 Forest 80 21.4 – Yes
l2 Forest 66 13.9 – Yes
l3 Forest 55 50.0 – No
l4 Forest 72 1.2 – No
l5 Grassland 6 19.1 – No
l6 Grassland 0 11.4 – No
l7 Wetland 3 5.8 – No
l8 Water 0 3.9 – No

19.3.3 Decision Tree Induction

19.3.3.1 What Are Decision Trees?

Decision trees (Breiman et al. 1984, see also Chapter
4 of this volume by Dattatreya) are hierarchical
structures, where each internal node contains a test on
an attribute, each branch corresponds to an outcome
of the test, and each leaf node gives a prediction for
the value of the class variable. Depending on whether
we are dealing with a classification or a regression
problem, the decision tree is called a classification or a
regression tree, respectively. An example classification
tree modeling the habitat of sea cucumbers is given
in Fig. 19.1. The tree has been derived from actual
data by using machine learning (Džeroski and Drumm
2003).

Regression tree leaves contain constant values as
predictions for the class value. They thus represent
piece-wise constant functions. Model trees, where
leaf nodes can contain linear models predicting the
class value, represent piece-wise linear functions. An

example model tree that predicts the total abundance of
hemi- and eu-edaphic Collembola is given in Fig. 19.2
(Kampichler et al. 2000).

Note that decision trees represent total partitions
of the data space, where each test corresponds to an
axis-parallel split. Most algorithms for decision tree
induction consider axis-parallel splits. However, there
are a few algorithms that consider splits along lines
that need not be axis-parallel or even consider splits
along non-linear curves.

19.3.3.2 Top-Down Induction of Decision Trees

Finding the smallest decision tree that would fit a
given data set is known to be computationally expen-
sive (NP-hard). Heuristic search, typically greedy, is
thus employed to build decision trees. The common
way to induce decision trees is the so-called Top-
Down Induction of Decision Trees (TDIDT, Quinlan
1986). Tree construction proceeds recursively start-
ing with the entire set of training examples (entire
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Fig. 19.1 A classification
tree that predicts the
suitability of habitat for the
sea cucumber species
Holothuria Leucospilota on
Rarotonga, Cook Islands
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Fig. 19.2 A model tree that predicts the total abundance (TA)
of hemi- and eu-edaphic Collembola on the FAM experimental
farm at Scheyern (near Munich), Germany

table). At each step, an attribute is selected as the root
of the (sub)tree and the current training set is split
into subsets according to the values of the selected
attribute.

For discrete attributes, a branch of the tree is typ-
ically created for each possible value of the attribute.
For continuous attributes, a threshold is selected and
two branches are created based on that threshold. For
the subsets of training examples in each branch, the
tree construction algorithm is called recursively. Tree
construction stops when the examples in a node are
sufficiently pure (i.e., all are of the same class) or if
some other stopping criterion is satisfied (e.g., there is
no good attribute to add at that point). Such nodes are
called leaves and are labeled with the corresponding
values of the class.

Different measures can be used to select an attribute
in the attribute selection step. These also depend
on whether we are inducing classification or regres-
sion trees (Breiman et al. 1984). For classification,
Quinlan (1986) uses information gain, which is the
expected reduction in entropy of the class value caused
by knowing the value of the given attribute. Other
attribute selection measures, however, such as the Gini
index (Breiman et al. 1984) or the accuracy of the
majority class, can and have been used in classifica-
tion tree induction. In regression tree induction, the
expected reduction in variance of the class value can
be used.

An important mechanism used to prevent trees
from over-fitting data is tree pruning. Pruning can
be employed during tree construction (pre-pruning)
or after the tree has been constructed (post-pruning).
Typically, a minimum number of examples in branches
can be prescribed for pre-pruning and a confidence

level in accuracy estimates for leaves for post-
pruning.

19.3.4 Rule Induction

19.3.4.1 What Are Predictive Rules?

We will use the word rule here to denote pat-
terns of the form “IF Conjunction of conditions
THEN Conclusion.” The individual conditions in
the conjunction will be tests concerning the values
of individual attributes, such as “PROXIMITY-TO-
SETTLEMENTS > 1.5 km” or “PREDOMINANT-
LAND-COVER=Forest”. For predictive rules, the con-
clusion gives a prediction for the value of the target
(class) variable.

If we are dealing with a classification problem, the
conclusion assigns one of the possible discrete values
to the class, e.g., “BrownBearHabitat=Unsuitable”. A
rule applies to an example if the conjunction of con-
ditions on the attributes is satisfied by the particular
values of the attributes in the given example. Each rule
corresponds to a hyper-rectangle in the data space.

Predictive rules can be ordered or unordered.
Unordered rules are considered independently and sev-
eral of them may apply to a new example that we
need to classify. A conflict resolution mechanism is
needed if two rules which recommend different classes
apply to the same example. A default rule typically
exists, whose recommendation is taken if no other rule
applies.

Ordered rules form a so-called decision list. Rules
in the list are considered from the top to the bottom of
the list. The first rule that applies to a given example
is used to predict its class value. Again, a default rule
with an empty precondition is typically found as the
last rule in the decision list and is applied to an exam-
ple when no other rule applies.

An ordered list of rules describing brown bear habi-
tat is given in Table 19.1: the second rule in this list is
the default rule which always applies. An unordered
list of rules that predicts the suitability of habitat for
sea cucumbers is given in Table 19.3. Note that clas-
sification trees can be transcribed into sets of classifi-
cation rules, since each of the leaves of a classification
tree corresponds to a classification rule. Although less
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Table 19.3 A set of unordered rules that predicts the suitability
of habitat for the sea cucumber species Holothuria Leucospilota
on Rarotonga, Cook Islands. The default rule, which predicts the
class Absent is not listed

IF Sand < 7.5
AND Rubble > 62.0
AND Rock_Pave < 15.0
AND Dead_Coral < 13.5

THEN Presence = Present [3 absent, 15 present]

IF Rubble < 54.0
AND 7.5 < Consol_Rubble < 77.5
AND Bould < 25.0
AND Rock_Pave < 30.0
AND Dead_Coral < 45.0

THEN Presence = Present [1 absent, 6 present]

IF Rubble < 9.5 AND Live_Coral < 27.5
THEN Presence = Absent [65 absent]

IF Sand > 8.5 AND Consol_Rubble < 5.0
THEN Presence = Absent [64 absent]

IF Bould > 2.5 AND Rock_Pave > 30.0
THEN Presence = Absent [10 absent]

common in practice, regression rules also exist, and
can be derived, e.g., by transcribing regression trees
into rules.

19.3.4.2 The Covering Algorithm
for Rule Induction

In the simplest case of binary classification, one of
the classes is referred to as positive and the other
as negative. For a classification problem with several
class values, a set of rules is constructed for each class.
When rules for class ci are constructed, examples of
this class are referred to as positive, and examples from
all the other classes as negative.

The covering algorithm works as follows. We first
construct a rule that correctly classifies some exam-
ples. We then remove the examples covered by the rule
from the training set and repeat the process until no
more examples remain. When learning ordered rules
we remove all examples covered and when learning
unordered rules only the positive examples covered by
the rule.

Within this outer loop, different approaches can
be taken to find individual rules. One approach is
to heuristically search the space of possible rules
top-down, i.e., from general to specific (in terms of

examples covered this means from rules covering
many to rules covering fewer examples) (Clark and
Boswell 1991). To construct a single rule that classifies
examples into class ci , we start with a rule with an
empty antecedent (IF part) and the selected class ci as
a consequent (THEN part). The antecedent of this rule
is satisfied by all examples in the training set, and not
only those of the selected class. We then progressively
refine the antecedent by adding conditions to it, until
only examples of class ci satisfy the antecedent. To
allow for handling imperfect data, we may construct
a set of rules which is imprecise, i.e., does not classify
all examples in the training set correctly.

19.4 Case Studies of Habitat Modeling
with Machine Learning

In this section, we exemplify the machine learning
approach to habitat modeling through four case stud-
ies. For each case study, we briefly describe the data
available, the machine learning approach used, and
the results obtained. We also give examples of habitat
models learned in the process.

19.4.1 Bioindicator Organisms in
Slovenian Rivers

In this study (Džeroski et al. 1997), we learned habi-
tat models for 17 organisms that can be found in
Slovenian rivers and are used as indicator organ-
isms when determining the biological quality of river
waters. The habitat models explicate the influence
of physical and chemical parameters of river water
on 10 plant taxa and seven animal taxa. On the
plant side, eight kinds of diatoms (BACILLARIO-
PHYTA) and two kinds of green algae (CHLORO-
PHYTA) were studied. The animal taxa chosen for
study include worms (OLIGOCHAETA), crustaceans
(AMPHIPODA) and five kinds of insects.

The plant taxa studied were: Coconeis placentula,
Cymbella sp., Cymbella ventricosa, Diatoma vulgare,
Navicula cryptocephala, Navicula gracilis, Nitzschia
palea, Synedra ulna, Cladophora sp., and Oedogo-
nium sp. The animal taxa studied were Tubifex sp.,
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Table 19.4 Example rules
from the habitat models for
bioindicator organisms in
Slovenian rivers (Nitzschia
palea, Elmis sp., and
Plecoptera leuctra sp.)

IF Hardness > 11.85 IF NO2 < 0.005
AND NO2 > 0.095 AND NO3 < 7.1
AND NH4 > 0.09 AND PO4 < 0.125
THEN Nitzschia = Present AND Detergents < 0.055

AND BOD < 2
THEN Nitzschia = Absent

IF Temperature > 12.75 IF PH > 7.05
AND BOD < 0.65 AND BOD > 12.15
THEN Elmis = Present THEN Elmis = Absent

IF Temperature < 23 IF Temperature < 22.25
AND 120 < Saturation < 150 AND Total Hardness < 18.55
AND COD > 10.9 AND BOD > 6.9
AND BOD < 3.75 THEN Leuctra = Absent
THEN Leuctra = Present

Gammarus fossarum, Baetis sp., Leuctra sp., Chirono-
midae (green), Simulium sp., Elmis sp.

The data used in the study came from the Hydrom-
eteorological Institute of Slovenia (now Environment
Agency of Slovenia) that performs regular water qual-
ity monitoring for most Slovenian rivers and main-
tains a database of water quality samples. The data
used cover a 4 year period, from 1990 to 1993. In
total, 698 water samples were available on which both
physical/chemical and biological analyses were per-
formed: the former provided the environmental vari-
ables for the habitat models, while the latter provided
information on the presence/absence of the studied
organisms.

Plants are more or less influenced by the follow-
ing physical and chemical parameters (water proper-
ties): total hardness, nitrogen compounds (NO2 , NO3,
NH4), phosphorus compounds (PO4), silica (SiO2),
iron (Fe), surfactants (detergents), chemical oxygen
demand (COD), and biochemical oxygen demand
(BOD). The last two parameters indicate the degree
of organic pollution: the first reflects the total amount
of degradable organic matter, while the second reflects
the amount of biologically degradable matter. Animals
are mostly influenced by a different set of parame-
ters: water temperature, acidity or alkalinity (pH), dis-
solved oxygen (O2, saturation of O2), total hardness,
chemical (COD), and biochemical oxygen demand
(BOD).

The habitat models for the plant/animal taxa
used the following environmental variables: Hard-
ness, NO2, NO3, NH4, PO4, SiO2, Fe, Detergents,
COD, BOD for plants and Temperature, PH, O2,

Saturation, COD, BOD for animals. The class is the
presence of the selected taxon (with values Present and
Absent). Seventeen machine learning problems were
thus defined, one for each taxon. Each of the datasets
contained 698 examples.

Rule induction, and in particular the CN2 system
(Clark and Boswell 1991), was used to construct the
habitat models. The rules induced on the complete
data were given to a domain expert (river ecologist)
for inspection. Their accuracy on unseen data was also
estimated by dividing the data into a training set (70%)
and a testing set (30%), repeating this 10 times and
averaging the results (accuracy on the test set).

The accuracy of the 17 models on the whole (train-
ing) dataset ranges between 66% and 85%, while the
default accuracy, i.e., the majority class frequency
ranges from 50% to 70%. The estimated accuracy on
unseen cases ranges from 53% to 71%. In nine of the
17 cases, the models substantially improve upon the
default accuracy and provide interesting knowledge
about the taxa studied.

In several cases, the induced rules are consistent
with and confirm the expert knowledge about the
organism studied. The diatom Nitzschia palea, the
most common species in Slovenian rivers, is very toler-
ant to pollution. The rules confirm that a larger degree
of pollution is beneficial to this species: they indicate
that Nitzschia palea needs nitrogen compounds, phos-
phates, silica, and larger amounts of degradable matter
(COD and BOD). Elmis sp. is known to inhabit clean
waters: the rules demand a low quantity of biodegrad-
able matter (pollution) in order for the taxon to be
present, and predict that the taxon will be absent if the
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water is overly polluted (has high values of BOD, COD
and pH).

Not all of the induced rules agree with existing
expert knowledge. For example, the rules that predict
the presence of the taxon Plecoptera leuctra sp., which
is used as an indicator of clean waters, confirm that
it is indeed found mainly in clean waters. However,
they also state that it can be found in quite polluted
water, provided there is enough oxygen. Thus, they
enhance current knowledge on the bioindicator role of
this taxon.

19.4.2 Soil Insects on an Experimental
Farm in Germany

Kampichler et al. (2000) used machine learning tech-
niques to build habitat models for Collembola (spring-
tails), the most abundant insects in soil, in an agricul-
tural soil environment. They study both the taxonomic
group of Collembola, as well as the dominant species
in the study area, (Folsomia quadrioculata). The habi-
tat models constructed relate the total abundance and
species number of Collembola, as well as the abun-
dance of the dominant species, to habitat characteris-
tics, i.e., properties of the soil.

The data used in the study come from an experi-
mental farm at Scheyern (near Munich), Germany, run
by the FAM Research Network on Agroecosystems.
The farm was of size approximately 153 ha, located at
an elevation of 450–490 m above sea level, with mean
annual temperature and mean annual precipitation of
7.58◦C and 833 mm, respectively. In April 1991, one
soil core was taken at each intersection of a 50 ×
50 m mesh-size grid (7.8 cm diameter, 5 cm depth)
and yielded a total of 396 cores. The majority of these
points were situated in arable fields, the remainder in
pastures, meadows and arable fields on former hop
fields. Microarthropods were counted and Collembola
identified by species. Only data of euedaphic (soil-
dwelling) Collembola and hemiedaphic Collembola
(which live near the soil surface) were included in the
analysis.

To measure environmental factors, cores were taken
from the same sampling points, at a distance of
approximately 25 cm from the first cores. The follow-
ing environmental variables were measured: microbial

Microbial Respiration

> 2.83 ≤ 2.83

Log Median Particle Size

> 2 ≤ 2

NS = 4.8

NS = 4.3 NS = 2.7

Microbial Respiration

> 2.7 ≤ 2.7

NI = 38.7 − 6.0 · pH NI = −0.4 + 0.7 · Log Median Particle Size

Fig. 19.3 A regression (top) and a model tree (bottom) that
predict the number of species (NS) of hemi- and eu-edaphic
Collembola and the number of individuals (NI) of the collem-
bolan species Folsomia quadrioculata, respectively, on the FAM
experimental farm at Scheyern (near Munich), Germany

biomass, microbial respiration, soil moisture, soil acid-
ity, carbon content (Ct) and nitrogen content (Nt). Soil
texture at the sampling points was also determined and
expressed by the (base 10) logarithm of the median
particle size (diameter). From the 396 cores, only those
that had no missing values for any of these variables
were included in the model development, leaving a
dataset of n = 195 samples.

To build habitat models, we used regression trees.
More specifically, the system M5 (Quinlan 1992) for
model tree induction was used. Trees were built sep-
arately for each of the three target variables: the
abundance and diversity (species number) of Collem-
bola, and the abundance of the dominant species
Folsomia quadrioculata. Example trees for the last
two are given in Fig. 19.3, while an example tree
for the first is given in Fig. 19.2. Linear regression
models, as well as neural networks with one hidden
layer, were also constructed for each of the target
variables.

In terms of predictive power, model trees fared bet-
ter than linear regression and worse than neural net-
works. All of them, however, had quite low predictive
power (for unseen cases, the correlation coefficients
were estimated by 10-fold cross-validation at approx.
0.3 for linear regression, 0.4 for model trees and 0.5
for neural networks). The most probable reason for
the low performance is that the aggregated spatial



000–0–00–000000–0 19-Haupt-c19 SHB0024-Haupt (Typeset by SPi, Delhi) page 406 of 412 September 19, 2008 14:43

406 S. Džeroski

distribution of collembolans sets limit to the possibility
of predicting the actual number of collembolans. In
this context, the quality of trees of being transparent
and providing explicit information about the quanti-
tative relationships between the variables proved very
appealing to the domain experts.

The trees clearly identify microbial respiration as
the most important factor influencing the collembolan
community, followed by soil texture and soil acidity.
The same environmental variables seem to be impor-
tant for all three target variables and the structure of
the individual trees is very similar. In this case, simul-
taneous prediction of all target variables seems reason-
able: this can be done by applying predictive clustering
trees (Blockeel et al. 1998), a generalized version of
decision trees. This methodology, also called multi-
objective classification/prediction, has been applied to
habitat modeling for river communities (Džeroski et al.
2001) and for soil insects, including mites and spring-
tails (Demšar et al. 2006b).

19.4.3 Brown Bears in Slovenia

The brown bear (Ursus arctos) occurs today in only a
small part of its historical range: Slovenia is among
the few European countries with a preserved viable
indigenous brown bear population, as well as popula-
tions of other large predator species, such as wolf and
lynx. The Slovenian bear population is a part of the
continuous Alps-Dinaric-Pindos population: its core
habitat (the forests of Kočevska and Snežnik in South-
Western Slovenia) is connected with Gorski Kotar in
Croatia in a unified block of bear habitat. This bear
population is important also because it represents the
source for natural re-colonization or reintroduction of
the bear into Slovenia’s neighboring countries Austria
and Italy.

In their study, Jerina et al. (2003) address three
aspects of the brown bear population in Slovenia: its
size (and its evolution over time), its spatial expan-
sion out of the core area, and its potential habitat
based on natural habitat suitability. The results of the
study include estimates of population size, a picture
of the spatial expansion of the population and maps
of its optimal and maximal potential habitat (based
on natural suitability). All of these are relevant to the
management of the Slovenian brown bear population.

In this section, we summarize the habitat modeling
aspect of the study.

The habitat models built were based on bear sight-
ings data acquired in the last decade of the 20th century
by the Hunters association of Slovenia, as well as data
from a previous radio-tracking project. Since we were
interested in the optimal habitat, best represented by
females with cubs, we selected only such sightings.
Instead of using a cloud of sighting location points as
the basis for the models, we used an estimation of the
inhabited area (IA) constructed by a kernel method:
this method gives as output the frequency/probability
with which individual points in space are occupied by
brown bears.

The spatial unit of analysis was a pixel of size
500 × 500 m. Positive examples were sampled from
the inhabited area. Examples for the “optimal” habi-
tat model were sampled from areas that exceeded
a high threshold of the probability of bear occu-
pancy: This threshold was lower when sampling pos-
itive examples for the “maximal” potential habitat
model. Negative examples were randomly sampled
from the rest of the study area (i.e., not the IA), which
presumably is less (or not at all) suitable for bear
habitat.

The explanatory environmental variables were
derived from several GIS (Geographical Information
Systems) layers. These included land cover data, for-
est inventory data, settlements map, road map, and
a digital elevation model. Example variables include
forest abundance and proximity to settlements. A value
of each of these variables was associated with each
500 × 500 m pixel. The method of decision tree induc-
tion, and in particular the See5 commercial product,
based on the C4.5 (Quinlan 1993) algorithm, was
used to build the “optimal” and “maximal” habitat
models.

The decision tree for optimal habitat (Fig. 19.4a)
takes into account the surrounding forest matrix size,
forest abundance in each pixel, predominant land
cover type, sub-regional density of human popula-
tion, and the predominant forest association within
each forest pixel. The decision tree for maximal habi-
tat (Fig. 19.4b) is much simpler and only takes into
account the predominant land cover type, forest abun-
dance, and proximity to settlement. Note that the clas-
sification rule for predicting “maximal bear habitat”,
given in Table 19.1, is obtained by rewriting the tree in
Fig. 19.4b.
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Forest Matrix Area

≤ 175 km2 > 175 km2

Forest Abundance

≤ 60% > 60%

Region

Other Alpine

Forest Association

FA1 FA2

Forest Association

FA3 FA4

Human Pop Density 1991

≤ 39 > 39inhab
km2

inhab
km2

Forest Abundance

≤ 80% > 80%

Unsuitable Suitable Unsuitable Suitable

Suitable

Unsuitable Suitable

Unsuitable

(a)

Predominant Land Cover

Other Forest

Forest Abundance

> 60% ≤ 60%

Proximity To Settlements

> 1.5 km ≤ 1.5 km

Unsuitable

Unsuitable

Suitable Unsuitable

(b)

Fig. 19.4 Two decision trees predicting the (a) optimal and (b) maximal habitat of the brown bear (Ursus arctos) in Slovenia. FA1,
FA2, FA3, and FA4 denote four different groups of forest associations, where FA1 and FA3 contain oak and FA2 and FA4 contain
beech

The learned trees were used to produce the respec-
tive habitat maps. The thematic accuracy for the first
map was estimated by 10-fold cross-validation as 89%,
and 84% for the latter. The optimal habitat covers
12.3% of Slovenias territory, mostly in the south-
ern part, bordering to Croatia. The possible maximal
habitat extent includes additional 26.4% of the terri-
tory, mostly in the alpine region in the northern and
western part of Slovenia, thus totaling 38.7% of the
country.

It can be gleaned both from the decision trees as
well as from the final habitat maps, that the bear habitat
suitability in Slovenia largely depends on the presence
of a dense forest cover, while it depends less upon
food availability. Considering the increasing trend of
forest cover in Slovenia, and assuming a continuation
of high reproduction rates, we could even expect a
further expansion of bear-inhabited areas in the future.
It is furthermore obvious that the six-lane Ljubljana
Trieste highway cuts through the optimal habitat at
two vulnerable bottlenecks, disrupting the dispersion
corridors towards the Alps: This can be seen from

a large number of bear related traffic accidents on
the highway. The habitat maps we constructed were
used to recommend suitable locations for eco-ducts
(wildlife bridges) across this highway to the Highway
authority of Slovenia.

19.4.4 Sea Cucumbers on Rarotonga,
Cook Islands

In the Pacific Islands, invertebrates including sea
cucumbers are among the most valuable and vul-
nerable inshore fisheries resources. The sea cucum-
ber (Holothuria leucospilota) forms an important
part of the traditional subsistence fishery on Raro-
tonga, Cook Islands, yet little is known of this
species present spatial distribution and abundance
around the island. To contribute to the knowledge
about this species, Džeroski and Drumm (2003) apply
machine learning to measured data and build a habi-
tat model that predicts the number of sea cucumber
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Rubble

> 9.5 ≤ 9.5

Sand

> 8.5 ≤ 8.5

Rock_Pave

> 15 ≤ 15

NI = 5.33 + 1.51 · Rubble + 1.71 · Cons_Rubble

NI = 74.1 + 1.06 · Rubble + 1.21 · Cons_Rubble NI = 148 − 17.2 · Sand + 1.06 · Rubble + 1.21 · Cons_Rubble

NI = 6.54 + 0.42 · Rubble + 2.24 · Cons_Rubble + 0.41 · Live_Coral

Fig. 19.5 A model tree predicting the number of individuals (NI) of the sea cucumber species H. Leucospilota in a 2 × 50 m
transect of the sea bed near Rarotonga, Cook Islands

individuals from environmental characteristics of
a location.

The spatial unit of analysis was a 2 × 50 m (100 m2)
strip transect: This size was selected to account for
the patchy distribution of the animals. A total of 128
sites were sampled for environmental and biological
variables. The number of H. leucospilota individu-
als encountered along each transect was recorded. In
addition to the species abundance, 10 environmen-
tal variables that were expected to have an influ-
ence on the habitat preference of the sea cucum-
ber were recorded. These included the exposure of
the site (windward or leeward side of the island),
and the following microhabitat variables, estimated
as a percentage (with possible values from 0% to
100%) of the total 100 m2 area sampled: Sand, Rub-
ble, Cons_Rubble (consolidated rubble), Boulder, reef
rock/pavement (Rock_Pave), live coral (Live_Coral),
dead coral (Dead_Coral), mud/silt (Mud_Silt), and
Gravel.

The number of H. leucospilota individuals was the
class variable, while the 10 environmental variables
were the attributes. Model tree induction was used
to build the habitat model. More specifically, M5’, a
re-implementation of the system M5 (Quinlan 1992)
within the software package WEKA (Witten and Frank
1999) was used. The model tree constructed is given in
Fig. 19.5. The correlation coefficient for predictions on
unseen cases was estimated to be 0.5 (by using 10-fold
cross-validation).

The tree identifies the most important influences
of the site characteristics on habitat suitability (rubble
and sand, followed by rock pavement, consolidated
rubble, and live coral). It identifies four types of
sites (one leaf for each) and constructs different lin-

ear models to predict the number of sea cucumbers
at each.

Two of the site types are essentially not very suit-
able as sea cucumber habitat: the first (LM1) does
not have enough rubble, while the second (LM4) does
have enough rubble, but also has too much sand. The
average numbers of individuals recorded at the two
types of sites are 15 and 35, respectively. One site type
(LM2) is very suitable as sea cucumber habitat, as evi-
denced by the average of 236 animals found per site.
This type of site is characterized by enough rubble,
little sand and little rock pavement. The last type of
site (LM3) represents a moderately suitable habitat for
sea cucumbers: it has the same characteristics as the
most suitable habitat, except for too much rock pave-
ment. The sea cucumbers prefer larger percentages of
rubble and consolidated rubble in all four types of sites
(positive coefficients for rubble/consolidated rubble in
each of the four linear models).

19.5 Summary and Discussion

In this chapter, we have introduced the task of habitat
suitability modeling and formulated it as a machine
learning problem. Habitat-suitability modeling studies
the effect of the abiotic characteristics of the habitat
on the presence, abundance or diversity of a given tax-
onomic group of organisms. We have briefly described
two approaches to machine learning that are often used
in habitat suitability modeling: decision tree induction
and rule induction.

Applications of machine learning to habitat suit-
ability modeling can be grouped along two dimen-
sions. One dimension is the type of environment where
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the studied group of organisms lives, e.g., aquatic
(river or sea) or terrestrial (forest or agricultural fields).
Another dimension is the type of machine learning
approach used, e.g., symbolic (decision trees or clas-
sification rules) or statistical (logistic regression or
neural networks).

In this chapter, we have given examples of using
symbolic machine learning approaches to construct
models of habitat suitability for several kinds of
organisms in the abovementioned environments. These
include habitat models for springtails and other soil
organisms in an agricultural setting, brown bears in
a forest environment, bioindicator organisms in a
river environment, and finally sea cucumbers in a
sustainable fishing setting. Many more examples of
using machine learning for habitat modeling exist,
some of which we point to below. A collection of
papers, devoted specifically to the topic of habitat
modeling, has been edited by Raven et al. (2002)
and describes several applications of machine learning
methods.

The author has been involved in quite a few
other habitat modeling applications of machine learn-
ing, besides those summarized above. These include
another, more realistic application in modeling the
effects of agricultural actions on soil insects, including
mites and collembolans (Demšar et al. 2006). This has
been also studied in the context of farming with genet-
ically modified crops and their effects on soil fauna,
including earthworms (Debeljak et al. 2005). We have
also studied habitat suitability for red deer in Slovenian
forests using GIS data, such as elevation, slope, and
forest composition (Debeljak et al. 2001).

Neural networks are often used for habitat mod-
eling: several applications are described in (Lek and
Guegan 1999). For example, (Lek-Ang et al. 1999)
use them to study the influence of soil characteristics,
such as soil temperature, water content, and proportion
of mineral soil on the abundance and species richness
of Collembola (springtails). Another study of habitat
suitability modeling by neural networks is given by
Ozesmi and Ozesmi (1999).

Several habitat-suitability modeling applications of
other data mining methods are surveyed by Field-
ing (1999b). Fielding (1999a) applies a number
of methods, including discriminant analysis, logistic
regression, neural networks and genetic algorithms, to
predict nesting sites for golden eagles. Bell (1999) uses

decision trees to describe the winter habitat of prong-
horn antelope. Jeffers (1999) uses a genetic algorithm
to discover rules that describe habitat preferences for
aquatic species in British rivers.

As compared to traditional statistical methods, such
as linear and logistic regression, the use of machine
learning offers several advantages. On one hand,
machine learning methods are capable of approximat-
ing nonlinear relationships (typical for the interactions
between living organisms and the environment) better
than traditional linear approaches. On the other hand,
symbolic learning approaches, such as decision trees
and classification rules, provide understandable mod-
els that can be inspected to give insight into the domain
studied.

Let us conclude by mentioning several recent
research topics related to the use of machine learn-
ing for habitat suitability modeling. These include
machine learning methods for simultaneous prediction
of several target variables, machine learning methods
that are spatially aware and finally the use of habitat
suitability modeling in the context of predicting the
effects of climate change. We discuss each of these
briefly below.

When modeling the habitat of a group of organ-
isms, we are interested in the relation between the
environmental variables and the structure of the pop-
ulation at the spatial unit of analysis (absolute and
relative abundances of the organisms in the group
studied). While one approach to this is to build habi-
tat models for each of the organisms, the alterna-
tive approach of building a model that simultaneously
predicts the presence/abundance of all organisms in
the group is more natural. For this purpose, we can
use a neural network with several output nodes that
share a common hidden layer. Recently, however, sym-
bolic machine learning approaches have been devel-
oped that address this problem, namely predictive
clustering trees (Blockeel et al. 1998) and predictive
clustering rules (Ženko et al. 2006) for multi-target
prediction.

When using machine learning to build habitat mod-
els, individual spatial points are treated as training
examples. These are assumed to be completely inde-
pendent and their relative spatial position (proximity)
is ignored. This can result in unrealistic predictions of
very small patches of habitat: this was, e.g., the case
in the brown bear habitat modeling study described
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earlier in the chapter. This problem is usually dealt in
a post-processing phase, where the prediction of the
habitat model for each spatial unit are corrected by
taking into account (the predictions for) the neighbor-
hood of that unit. However, spatially aware machine
learning methods have recently started to emerge (Lee
et al. 2005, Andrienko et al. 2005), although appli-
cations of such methods in habitat modeling are still
rare.

Finally, let us mention climate change, which is
already causing significant changes in the distribution
of animals and vegetation across the globe. Predicting
future effects along these lines is an emerging area
where the use of machine learning for habitat mod-
eling is likely to increase drastically. The idea in this
context is to build habitat models for the target groups
of organisms, which include climate-related variables,
such as mean annual temperature and precipitation.
By applying the habitat models to the predictions pro-
duced by climate models, one can predict the changes
of the distribution of the target group of organisms.
For example, Ogris and Jurc (2007) study the change
of potential habitats for different tree species under
varying climate change scenarios.

Harrison et al. (2006) conduct a more global study
where the changes of habitat are investigated for a
much larger and more diverse group of organisms. In
their study, the availability of suitable climate space
across Europe for the distributions of 47 species was
modelled. These were chosen to encompass a range
of taxa (including plants, insects, birds and mammals)
and to reflect dominant and threatened species from
10 habitats. Habitat availability was modelled for the
current climate and three climate change scenarios
using a neural network model, showing that the distri-
bution of many species in Europe may be affected by
climate change, but that the effects are likely to differ
between species.

In sum, machine learning methods have been suc-
cessfully used and are increasingly more often used for
habitat modeling, establishing the relations between
abiotic characteristics of the environment and the prop-
erties of a target population of organisms (such as pres-
ence, abundance or diversity). The learned models can
be used as tools for the management of the population
studied. Perhaps even more importantly, the learned
model can enhance our knowledge of the studied
population.
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All-Frame Procedure: see leave-one-out procedure.

Artificial Intelligence: The science and engineering of designing models of systems
based directly on data.

Apparent Error: The value of a performance measure when a model trained on
some data set is evaluated on that same data set. Also called training error.

Artificial Neural Networks: A branch of computational intelligence that is closely
related to machine learning. It is loosely related to modeling cortical structures of
the brain. An interconnected network of processing nodes, each of which contains
a linear regression model, in many cases with its output modified by a nonlinear
mapping function.

Auto-associative Neural Network: A neural network model where the output tar-
gets are the same as the inputs.

Bellman Optimality Equation: An equation that characterizes the optimal value
function, and, indirectly, the optimal policies for an MDP.

Binary Genetic Algorithm: A genetic algorithm in which the variables to be opti-
mized are encoded in binary form.

Binary Tree: A tree which has exactly two child nodes for every non-leaf node.

Blending: A method of crossover in a continuous genetic algorithm in which all
variables become a linear combination of the mother value and the father value.

Bootstrap: A parameter estimation and model selection method wherein multiple
bootstrap samples are drawn from a single data set. It is also used for estimating the
prediction error. See resampling methods, and cross-validation.

Bootstrap Sample: A sample drawn, with replacement, from a data set, and with
the same size as the data set.

Cardinal Variable: A variable that takes values over an uncountable ordered set.

Child-Node: For a decision tree, a node following another node in a path from root
node to a leaf node.

Chromosome: For a genetic algorithm, a concatenation of the genes representing
the variables to be optimized into a potential solution.
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Classification: The process or model relating a set of variables to a set of discrete
variables, with the values of the discrete variable denoting distinct classes of objects.
Also called Discrimination. Compare with regression.

Clear-Air Turbulence: Turbulence in the free atmosphere that is not caused by
thunderstorms or wind flow over terrain.

Confidence: In fuzzy logic algorithms, a value that represents the quality and/or
relevance of a quantity (e.g., a measurement) as a membership value between 0 and
1.

Continuous Variable Genetic Algorithm: A genetic algorithm in which the vari-
ables to be optimized are encoded as real values.

Computational Intelligence: The branch of artificial intelligence based on heuristic
algorithms.

Cost Function: The function to be minimized in an optimization problem. Also
known as objective function, or error function, and the negative of the fitness func-
tion.

Crossover: The process of chromosomes exchanging information during the mating
stages of a genetic algorithm.

Crossover Point: The point in a genetic algorithm chromosome where the crossover
occurs. Also called a kinetochore.

Crossover Rate: The percentage of the population of chromosomes that will mate
at each generation in a genetic algorithm.

Cross-Validation: A model selection technique wherein a single sample data set
is partitioned into multiple segments; some segments are used for training a model,
and the resulting model is tested on the unused segments. It can also be used for
estimating the prediction error. Compare with bootstrapping. See training set and
validation set.

Cycle: A path in a graph with the same beginning and ending vertex.

Decision Boundary: The line, surface, or hypersurface between observation sets for
different decisions in a graph.

Decision Region: The set of all possible observation points assigned to a particular
decision.

Decision Tree: A tree with a rule for deciding the child node to traverse to, at every
non-leaf node.

Degree of a Node: The number of edges that the node touches in a graph.

Developmental Data: The dataset explored by the AI algorithm in search of
exploitable relationships. Like training set. Compare to validation set.

Directed Acyclic Graph (DAG): A directed graph with no cycles.

Directed Graph: A graph with only ordered pairs of nodes for edges.

Discounted Problem (DCP): An MDP in which the discount factor, α, is less
than 1.
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Dynamic Programming: A field in engineering and mathematics that addresses
how to find optimal controls in dynamical systems subject to a degree of randomness.

Edge or Link: A pair of vertices in a graph.

Elitism: In a genetic algorithm, the process of maintaining the lowest cost solution
in the population unchanged until it is supplanted.

Expert System: An algorithm built to emulate the reasoning of a human expert in
solving a specific problem.

Feature Space: The set of all possible observations of all available measurement
variables. Also known as a solution space.

Feed-Forward Neural Network: A neural network model where the nodes (or
neurons) are connected only between layers of otherwise unconnected nodes. The
flow of information is generally in one direction – from input nodes toward output
nodes.

Fitness: The level of “goodness” of a genetic algorithm chromosome as judged by
the fitness function.

Fitness Function: The function to be maximized in an optimization problem. The
negative of the cost function and related to the objective function.

Forward Model: A model whose calculations, from input to output, move in the
same direction as physical causality.

Fuzzy Consensus Method: An “ensemble of experts” in which multiple predictions
of a variable of interest are averaged using weights based on relevance and confidence
values.

Fuzzy Logic: A generalization of classical logic that provides a framework for
reasoning with fuzzy sets.

Fuzzy Set: In contrast to classical or “crisp” sets, fuzzy sets represent ambiguous
or natural language concepts by assigning each element a degree of set membership
between 0 and 1.

Gene: The smallest unit of information in a genetic algorithm. Depending on the
encoding used, each variable to be optimized may be represented by one or more
genes. Genes are concatenated into chromosomes.

Generalization Error: Same as prediction error.

Generation: A full iteration of the genetic algorithm, including evaluation of the
cost function, natural selection, mate selection, mating, and mutation.

Genetic Algorithm (GA): A technique in search and optimization that is based on
the principals of genetic combination and evolution of populations. The GA is very
robust and useful for finding global minima.

Global Minimum: The lowest value of the cost function in the entire solution space.

Global Optimization: The process of finding the most optimal (minimum or maxi-
mum) value of an objective function in the entire solution space.

Graph: A set of vertices and a set of pairs of vertices chosen from the vertex set.
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Graph Traversal: Systematically visiting nodes in a graph.

Graphical Turbulence Guidance (GTG): An operational fuzzy-logic algorithm
that produces forecasts of atmospheric turbulence for aviation users.

Height of a Rooted Tree: For a decision tree, the length of the longest path of all
the paths from the root node to all leaf nodes.

Hidden Node: An artificial (unobserved) variable in a neural network.

Hybrid Genetic Algorithm: A combination of a genetic algorithm, which finds the
basin of the global minimum, with a more traditional optimization method (often a
gradient descent method) to rapidly find the lowest cost function value in that region
of the solution space.

Information Criterion: A criterion used to select the best model among a number
of models with different complexities.

Inverse Model: A model whose calculations, from input to output, move in the
opposite direction as physical causality.

Inverse Problem: Solving for the input of a forward model given known values of
the output.

Kinetochore: The point in a genetic algorithm chromosome where the crossover
occurs. Also called crossover point.

Labeled Training Sample: A data vector with a known decision.

Leaf Node: In a decision tree, a non-root node with a degree of one in a tree. Also
known as a terminal node.

Leave-One-Out Procedure: A cross-validation method. Given a training set of N
input-target patterns, by leave-one-out procedure one can train the network N times,
each time leaving out one pattern from training, and just using it to compute an error
criterion. Also called all-frame procedure.

Length of a Path: The number of edges in the path of a graph.

Linear Discriminant Function: A linear function of predictors, separating different
classes of objects according to some criterion.

Linear Model: A parametric model, linear in the parameters, but not necessarily
linear in the relationship between variables.

Local Minimum: In optimization, a minimum point in the cost function in a region
of the solution space that is not the global minimum.

Machine Learning: A broad subfield of artificial intelligence that is concerned
with the development of algorithms and techniques that allow computer programs
to “learn”.

Mating: The process of combining the variables from parent chromosomes to form
offspring chromosomes in a genetic algorithm.

Mate Selection: In a genetic algorithm, the process of determining which chromo-
somes will mate.
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Mamdami-Style Fuzzy Inference: A fuzzy logic method for reasoning to a “crisp”
conclusion based on several fuzzy rules.

Markov Decision Process (MDP): In reinforcement learning, a problem in which a
learning agent interacts with an environment and at each timestep experiences state
transitions and feedback (costs or rewards) that are a (possibly random) function only
of the state and the action taken, and not the previous history.

Membership Function: The fuzzy analog of a characteristic function, representing
the degree to which elements belong to a fuzzy set as real numbers between 0 and 1.

Model Selection: The task of selecting “the best” model from a set of models, based
on some criterion. Compare with model averaging.

Model Averaging: The task of averaging over the outputs of a set of models, for the
purpose of arriving at a single output. Compare with model selection.

Multilayered Perceptron: A feed-forward neural network with multiple layers of
nodes.

Mutation: The process of randomly changing some of the genes in a genetic algo-
rithm chromosome.

Mutation Rate: The percentage of genes that are mutated in a genetic algorithm.

Natural Selection: In a genetic algorithm, the process of eliminating chromosomes
from the population that are less fit, that is, the value of their cost function is not as
optimal as that of other members of the population.

NCAR Improved Moments Algorithm (NIMA): A fuzzy logic algorithm for
analyzing Doppler spectra (e.g., from radar) and producing moment estimates and
associated confidences.

Neural Networks: See artificial neural networks.

Nonparametric Model: A model capable of representing any function, even when
it is written in a parametric form.

Nominal Variable: A variable that takes values over a finite unordered set.

Objective Function: The function to be optimized in an optimization problem.
Related to cost function and fitness function.

Offspring: A chromosome that results from a mating operation in a genetic algo-
rithm.

Optimization: The process of finding the best set of variable values to meet the
objective of the problem.

Ordinal Variable: A variable that takes values over a countable ordered set.

Out-Degree: The number of edges originating from a node of a graph.

Output: The predicted value for a target. See also training.

Overfitting: The phenomenon of fitting a relatively small data set with a model
that has an abundance of parameters. Unless the model is expected to be a “look-up
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table” representing the data in all its details, overfitting generally leads to a reduction
in predictive strength.

Parent: A genetic algorithm chromosome chosen for the mating operation.

Partially Observable MDP (POMDP): In reinforcement learning, a problem in
which the learning agent does not know the environmental state of an underlying
MDP exactly.

Partition: A set of mutually exclusive and collectively exhaustive subsets.

Path: A sequence of vertices with each overlapping pair of successive vertices being
a valid edge in a graph.

Pattern Classification: The assignment of a data vector to one of a known set of
classes.

Parametric Model: A model incapable of representing all functions. Usually writ-
ten in a parametric form, but not always. Also see nonparametric model.

Perceptron: A feed-forward neural network with no hidden layer of nodes (i.e.,
with one hidden layer of weights).

Policy: In reinforcement learning, a deterministic or stochastic (probabilistic) set of
rules that specify what action to choose given knowledge of the environmental state.

Population (in Genetic Algorithms): A set of chromosomes in a genetic algorithm,
each of which represents a potential solution to the optimization problem.

Population (in Statistics): A set of objects not all of which are available for obser-
vation or measurement.

Population Size (in Genetic Algorithms): The number of chromosomes in the
population of a genetic algorithm.

Prediction Error: The expected value of a performance measure if a model were to
be applied to a population. Given the nature of a population (in statistics), this error
is estimated from a sample, often via some resampling technique.

Principal Component Analysis: A data analysis method that extracts from a high
dimensional dataset (i.e., with many variables) a smaller number of principal vari-
ables (called principal components), which capture the main variance in the dataset.

Q-Learning: A reinforcement learning algorithm that learns the optimal Q-value
for an MDP, and hence an optimal policy, based on interaction with an environment.

Q-Value: In reinforcement learning, a function that for each environmental state and
each possible action gives the discounted sum of future costs expected when starting
in that state with that action and then following a specified policy.

Radar Echo Classifier (REC): Three related fuzzy logic algorithms for classifying
Doppler weather radar returns: the Anomalous-Propagation ground clutter Detection
Algorithm (REC-APDA), the Precipitation Detection Algorithm (REC-PDA) and the
Sea Clutter Detection Algorithm (REC-SCDA).

Regression: The process or model relating a set of variables to a set of continuous
variables. Compare with classification.
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Regularization: A method of preventing an AI algorithm from overfitting the devel-
opmental data as it tunes modeled relationship. Regularization becomes important
when solving ill-conditioned inverse problems.

Reinforcement Learning: A field of study that addresses how a learning agent’s
experience of feedback from an environment can be used to develop an optimal
policy, or control. Also known as stochastic dynamic programming.

Resampling Methods: A set of methods (including cross-validation and boot-
strap) wherein a single sample data set is partitioned into multiple sets. These
methods are used for model selection, and for arriving at unbiased estimates of some
quantity.

Retrieval: See inverse problem.

Rooted Directed Acyclic Graph (RDAG): DAG with a root node from which paths
exist to all other nodes.

Rooted Tree: A tree structure with one vertex identified as the root node.

Roulette Wheel Selection: In a genetic algorithm, a form of mate selection in
which the pairing of parent chromosomes is achieved via random selection. Can be
accomplished either with or without rank or cost weighting.

Sample: A subset of a population (in statistics).

Self-Organizing Map (SOM): A method for clustering data onto a flexible
mesh. This can be regarded as a discrete form of nonlinear principal component
analysis.

Single Point Crossover: In a genetic algorithm, combining the information from
two parents by exchanging the portion of the chromosome to the right of the kineto-
chore in parent one with that of parent two.

Selection: The process of choosing the parents to be mated in a genetic algorithm.

Solution Space: The space spanned by all possible solutions to an optimization
problem.

Stochastic Shortest Path Problem (SSPP): An MDP in which the discount factor,
α, is equal to 1 and there is a “final” state (usually denoted as state 0) in which the
process terminates.

Takagi-Sugeno Fuzzy Inference: A fuzzy logic method for estimating a variable of
interest based on two or more fuzzy rules.

Target: A measured quantity which is to be predicted. Also called the response, or
the predictand. Compare with output.

Temporal Difference Algorithm: In reinforcement learning, a method for updating
an estimate for an MDP’s value function based on successive estimates of the value
of a state as new experience is obtained.

Test Set: A data set not used in training, nor in assessing model complexity. It is
usually used for arriving at an unbiased estimate of prediction error without any
resampling.
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Training: The process of estimating the parameters of a model, usually designed to
maximally align output(s) of the model with target values. Also called parameter
estimation in statistics.

Training Error: Same as apparent error.

Training Set: A data set employed for estimating parameters of a model.

Tree: An undirected graph with no cycles.

Tournament Selection: In a genetic algorithm, pairing parent chromosomes for
mating by randomly choosing a number of random chromosomes, then selecting for
mating those chromosomes of the selected sub-population with the best cost function
value.

Undirected Graph: A graph with only unordered pairs of nodes for edges.

Uniform Crossover: In a genetic algorithm, combining the information from two
parents by generating a random mask of 1’s and 0’s that determine whether each
gene comes from parent 1 or parent 2. For a continuous variable GA, the combination
could include blending the genes in random complementary fractions.

Unsupervised Classification: Grouping a set of data vectors with no prior informa-
tion about the distinguishing nature of different groups, i.e., without a target. Also
called cluster analysis in statistics.

Validation Set: A data set employed for either selecting a model or assessing its
performance, when the set is sufficiently large. The validation data set should be
independent of the training data set from which the relationship was derived.

Value Function: In reinforcement learning, a function that for each environmental
state gives the discounted sum of future costs expected when starting in that state and
following a specified policy.

Vertex or Node: In a graph, any physical or abstract entity with possible relations
to other such entities.

Weights: Parameters representing the strength of the relationship between two vari-
ables. The variables may be either observed or not (e.g., hidden nodes).
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