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Foreword

 

The desire to classify objects is one of the most fundamental properties of the human being. The
manifestation of this is reflected in everyday life in the form of the energy devoted to the classification
and labelling of the population for taxation purposes, military conscription, political aspirations and
marketing. A less aggressive aspect occurs in the field of hobbies – stamp collecting is perhaps the
most widely spread of these, but there are many who, arising from a biological interest, make
collections of various groups of insects, birds and the like. There is also a sinister side to the trait
– for example, the clandestine collection of pillaged archaeological objects. This antisocial type of
behaviour is much in evidence today – for example, the organized looting from the shattered
museums of Iraq and, less dramatically but nonetheless equally destructive to the cultural heritage
of all mankind, the seemingly uncontrollable theft of invaluable artefacts from China.

Leaving such dismal thoughts behind, let us consider the scale and scope of the topics in the
present volume. Firstly, be it noted that the timing is perfect. The year 2007 is being devoted to
the 300 year-jubilee of the father of classical taxonomy, the genius of Carl von Linné. Notwith-
standing that the wish to stabilize the description, identification and classification was afoot in
many quarters in Europe, it is to the credit of Linné that an organized, logical system for the
description and recognition of plants and animals was developed and, moreover, quickly caught
on. For more than a century and a half, taxonomists were largely satisfied with the Linnaean
doctrine. The frequently rather boring anatomical exercise attaching to the correct identification
and location of new categories seemed, for most, a small price to pay for maintaining order in the
scheme of plants and animals.

An alternative (unwittingly so?) was proposed by a contemporary of von Linné, Michel Adan-
son, a French botanist. Adanson's ideas were more a 

 

modus operandi

 

, so phrased as to incite the
taxonomist to assemble as much data as reasonably possible on the organism of interest. This
admirable approach was not always observed by the binomial nomenclaturists – least of all within
the sphere of palaeontology. Notwithstanding von Linné's achievements with respect to the naming
of species, he became, even during his lifetime, outmoded. The French biologist Count Georges
Louis Leclerc de Buffon, a contemporary of von Linné, was critical of the scientific basis of what
was in essence a man-made attempt at putting life forms into slots and did not reflect the results
of divine creation. In the 

 

Official Jubilee Book of the Linnean Year,

 

 Professor Nils Uddenberg has
pointed out that it was the work of Buffon that opened the way for Darwin's evolutionary theories
and not the work of von Linné.

Dissatisfaction with the descriptive techniques of 'Linnaean taxonomy' led to the formation of
a mechanically oriented discipline, Numerical taxonomy (NT), with Adanson as patron saint, as it
were. This eventually computer-oriented approach was strongly promoted by Robert Sokal and
Peter Sneath during the 1960s and 1970s. Numerical taxonomy quickly acquired a dedicated
following and a jargon of its own – for example, OTU (operational taxonomic unit). This 'new
taxonomy' brought to the fore the need for a way of defining species that was as unbiased as
possible. It is still stimulating to consult many of the treatises that were spawned by the period of
ascendancy of NT for the closely reasoned and admirably logical presentation of theses. It had,
however, a negative aspect: to wit, a tendency towards degrading the skills necessary for actually
studying the functional biological properties of organisms. More than a few numerical taxonomists
felt this tiresome pursuit could be best left to computerized treatment. Classical taxonomy ceased
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to be regarded as a useful activity in many circles, with the result that many young biology doctoral
candidates of today have little more than a sketchy knowledge of the panoply of plant and animal
species, apart from just that particular group concerning them in their thesis work. You can test
this. Just ask where brachiopods fit into the scheme of things.

Over the span of just a few years, a major upheaval has entered the field of taxonomy: notably,
molecular biology and taxonomy. Well-founded species that, to all intents and purposes, were
considered to be closely related have been shown not to be so. Where this will lead in the long run
remains yet somewhat hazy, but rest assured, things will never be the same as they were.

Has automated taxonomy become outmoded? The results presented in the present volume gainsay
this question. The subject of automated identification in systematics is presented in several respects.
The old numerical taxonomy is not moribund, just modified. The collection of papers does not,
however, represent a homogeneous approach to automated systematics. In fact one author explicitly
states that his results are not intended to be construed as a contribution to automatized systematics
in a taxonomical sense. An aspect that could well be united with this work concerns the problem of
the expression of shapes in morphometrics, which, of course, in itself is not a candidate for auto-
matically performed identification of taxa. Several of the contributions lie within the sphere of
computer-based technology and will not be as readily accessible to the average taxonomist. The
results presented on digital automated identification systems impress in that they seem to have been,
in a few cases, well tried and tested on real, largely entomological problems. Work on the automated
taxonomy of bee species has produced problems of interest to the taxonomic specialist. 

The important question of biodiversity is considered in an inspiring chapter. The main factor
underlying the extinction of plants and animals – overpopulation and its attendant effects – seems
to have been skirted. This is, however, a subject that is difficult to address in print without the
author appearing to be socially reprehensible. 

Of recent years, the term 'neural networks' has been appearing in an increasingly large number
of publications. For most of us, the field remains something of a mystery. It is therefore gladdening
that the theme is presented in several chapters. We learn that the method is based on algorithms
that are supposed to mimic the function of the (human?) brain. One of the chapters contains a very
informative account of the methodology, including the 'pros and contras'. Finally, we know what
neural networks are and what they can usefully do. Several contributions treat actual examples,
including the identification of plants.

The chapter on geometric morphometrics is refreshing and brings to light new results and
methods (noting, however, that current morphometrics does not fit in with the reigning concepts
of automated taxonomy, but could, I think, well be made to do so). New, biologically more relevant
aspects are introduced and possible fields for future development sketched out. Careful reading of
this chapter will disclose links to the natural categorization of objects, a bond I found very
interesting. The fact that French mining engineer Dr Georges Matheron's result for an optimal
prediction problem, proposed some 30 years ago, is in effect the same as one of the main standard
techniques of geometric morphometrics is also interesting.

 

 

 

Automated taxon identification is, in my opinion, a good servant, but should not be allowed to
become a bad master. Statistical procedures, mainly multivariate analyses, are a feature of some
of the techniques. This is as it should be, but it is necessary that these techniques are properly
understood and not misused. Computer programs can do no more than they are told to do and this
is where problems can, and do, arise and where manual assessments cannot be done away with.
Let us briefly look at some of these where unskilled practitioners can be at fault.

In many publications and summarized in his brilliant PhD thesis of 1979, Norman A. Campbell
pointed out the need for evaluating stability in vector components in canonical variate analysis and
the unreliability of attempting to reify such components in mistaken geometrical analogy with
principal component analysis. I know of no computer programs (except my own and Norm Camp-
bell's) that take account of this. The factor of multivariate stability in coefficients seems to have
been consistently ignored in geometric morphometrics, despite its obvious practical importance for
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correctly assessing the shape diagrams. (By the way, the origin of canonical variate analysis goes
back to a publication by the Australian anthropologist M.M. Barnard dating from 1935. Ronald A.
Fisher helped Barnard with the analysis of her Egyptian skull material by means of an ingenious
time-oriented multiple discriminant analysis. True to his generous nature, he did not put his name
on the paper. The 'Egyptian skulls' have been used in many textbooks on multivariate analysis,
including the classical text by T.W. Anderson, 2003.)

Another problem concerns what to do about the automated recognition of inherent polymor-
phism. In many cases, the automated acquisition of morphological characteristics will no doubt
work in a satisfactory manner, but not in all cases. Not all polymorphisms declare themselves by
presenting differing ornamental details, although they could, at great expense, no doubt be recorded
by elaborate bar-coding. As an example of which I have personal experience, work just concluded
with my friend and colleague, Professor Kazuyoshi Endo, and his research team at Tsukuba
University, Japan, indicates that the normally panmictic brachiopod species 

 

Lingula anatina

 

 dis-
plays in the northwest Pacific convincing evidence of molecular polymorphism. Morphological
features are, nevertheless, untouched by this polymorphism.

Professor John Aitchison, Glasgow, took up the subject of estimation of statistical parameters
when the data are compositional. Aitchison's work was only understood and seized upon by the
geological fraternity, notwithstanding that constant-sum data are almost as common in biology,
medicine, sociology, marketing, etc. A recent publication, the work of Buccianti et al. (2006), is
recommended along with this volume as essential background reading for the practitioners of
automated approaches to taxonomic identification.

 

Richard A. Reyment

 

Professor (emeritus), Uppsala Universitet, Uppsala, Sweden; Palaeontology Department,
Naturhistoriska riksmuseet, Stockholm, Sweden
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Introduction

 

Norman MacLeod
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The automated identification of biological objects (individuals) and/or groups (e.g. species, guilds,
characters) has been a dream among systematists for centuries. The goal of some of the first
multivariate biometric methods was to address the perennial problem of group discrimination and
intergroup characterization (e.g. Fisher, 1936). However, despite much optimism and preliminary
work in the 1950s and 1960s, progress in designing and implementing practical systems for fully
automated taxon identification proved frustratingly slow. Indeed, most practicing taxonomists still
believe such systems are the stuff of science fiction. As recently as 2004, Dan Janzen updated this
dream for a new audience:

 

The spaceship lands. He steps out. He points it around. It says 'friendly–unfriendly—edible–poison-
ous—safe–dangerous—living–inanimate'. On the next sweep it says '

 

Quercus oleoides

 

—

 

Homo sapi-
ens

 

—

 

Spondias mombin

 

—

 

Solanum nigrum

 

—

 

Crotalus durissus

 

—

 

Morpho peleides

 

—serpentine'. This
has been in my head since reading science fiction in ninth grade half a century ago.

 

(p. 731)

 

Regardless, the dream has never died. 
Janzen's preferred solution to this classic problem involves building machines to identify species

from their DNA – the so-called DNA 'barcoding' initiative. His predicted budget and proposed
research team were 'US $1 million and five bright people'. However, recent developments in
computer architectures, as well as innovations in software design, have placed the tools needed to
realize systematists like Janzen's vision in the hands of the systematics community, not several
years hence, but now; and not just for DNA barcodes, but for digital images of organisms, digital
sounds, digitalized chemical data – essentially, any set of observations that can document the
characteristics of organisms and be presented in digital form. 

The parallels between DNA barcoding and morphological image recognition are interesting
and deserve comment in order to place both in perspective. The proponents of DNA barcoding
(e.g. Hebert et al., 2003; Tautz et al., 2003; Hebert et al., 2005) argue that the impressive increase
in sequencing capacity and decrease in sequencing cost resulting from the Human Genome Project
make both the high-throughput, automated identification of taxonomic groups and discovery of
new species possible via comparatively simple analyses of one or a few standardized segments of
the DNA molecule. Such segments, of course, do not embody all the genetic differences that exist
between any two species, but (they argue) are sufficient to 'type' various subspecific, specific and
superspecific groups on the basis of phylogenetic similarity. Moreover, adoption of a DNA-based
approach for taxonomy and identification should be regarded as a community-wide priority for
systematists because (they claim) such a research programme will not only support quicker and
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better identifications, but also capture the public imagination and so make new conceptual and
financial resources available. 

Over the past few years, each of these claims has been challenged in principle as well as in
practice (e.g. Wheeler, 2005

 

,

 

 and references therein; Cameron et al., 2006, and references therein;
Hickerson et al., 2006, and references therein). These challenges do not deny either the power or
utility of molecular methods. Rather, they argue molecular approaches should be viewed as parts
of a multidisciplinary toolkit, all tools of which can and should be made available for understanding
the plethora of complex structures present within systematic data. In order to be of optimal use,
this toolkit needs to include traditional, qualitative morphological approaches to systematic data
analysis, molecular analyses (see preceding), modern or 'geometric' morphometric approaches (see
Bookstein, 1991; Zelditch et al., 2004), phylogenetic approaches (see Kitching et al., 1998) and
geographic approaches (see Avis, 2000; Ebach and Tangney, 2006) – in short, all approaches
currently available as well as any that can be developed to address this issue reliably in the future.
The scope of the problem – that is, winning as much of the race to understand present and past
biodiversity as we can before some, as yet unknown, proportion of the former turns into the latter
– demands no less.

Wheeler (2005) also makes the important point that the history of systematics itself provides
one of the best arguments against adopting a 'single system' approach to taxonomy and identifi-
cation. Aside from the simple facts that (1) the overwhelming majority of all species known to
science have been recognized on the basis of the morphological, not molecular, characteristics;
and (2) fossils, for which little or no molecular data will ever be available, will inevitably play an
important role in reconstructing the history of life (e.g. Donoghue, 1989

 

)

 

, the lesson of the phenetics
experiment was that systematic hypothesis tests 

 

require

 

 access to multiple lines of evidence (see
Prendini, 2005). 

Over the last several decades, systematic research programmes have embraced a multitude of
different data types. The advantages and disadvantages of these data sources have been revealed
by comparisons between results derived from different datasets – not decided 

 

a priori

 

. No one type
of data can claim priority over any other in terms of revealing 'true' relations. Given the robust
state of systematics research programmes, there seems little point in repeating the mistakes of the
past by arbitrarily deciding to focus on a single type of data for resolving all taxonomic problems.
This is especially true when the ability of any single approach to 'deliver the goods' in terms of
routine, large-scale, cost-efficient and automated taxonomic identifications (and discovery of new
species), even for modern groups, remains to be demonstrated.

Whereas the claims of the superior capabilities of molecular barcoding are great and, for the
most part, unsupported by empirical results, the opportunities afforded by the application of
quantitative approaches to the problem of class recognition (the topic of this book) are more modest
and, because of this, more likely to be realized. Class recognition is a truly generalized problem
that can be used in conjunction with any types of data (e.g. morphological, auditory, chemical,
molecular). The source of the information and its type are important, of course, but so is the problem
of what one does with those data once they have been collected. 

Traditionally, systematists have not relied on any quantitative data 

 

per se

 

 to identify taxa,
preferring instead to rely on the visual inspection of morphology, the (mostly) qualitative assess-
ment of characters whose patterns of variation are often complex and the comparison of these to
reference specimens and/or images. While this process works, it is not quick, efficient or reliable.
Anecdotes regarding disagreements between experienced specialists over the identification of
even common taxa are legion within the community of systematists. These disagreements are
rarely tested objectively – much less, resolved – and cause uncertainty in the application of
systematic concepts within every organismal group. More seriously, there is presently no tradition
of independent verification of identifications based on any objective criteria. Indeed, very few
studies of consistency in the application of species concepts and identifications referenced to
standardized faunas or floras have ever been published by systematists. In one recent 'blind test'
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of palaeontological species identification, consistencies between faunal lists generated by inde-
pendent experts ranged between 0.7 and 0.2 (see MacLeod, 1998; see Culverhouse, this volume,
for additional examples and discussion).

Ask most systematists why this situation exists and what can be done to improve it and you
are likely to be told: (1) The problem is very complex, (2) this is the best we can do at present
and/or (3) we could possibly do better if we (i.e. the systematics community) had more funding.
While this is all true, such responses do not really get anyone any closer to improving the current
situation. Fortunately, data-processing methods, artificial intelligence algorithms, morphometric
approaches and a host of allied technologies have all made substantial progress since their inception
in the 1950s and 1960s. Quietly, with surprisingly little fanfare (and even less funding), small teams
of taxonomists, mathematicians, artificial intelligence experts and computer programmers

 

 

 

have
been coming together over the last decade to create the first and second generations of genuine
automated identification systems.

Performance levels of these first- and second-generation systems are already impressive: typ-
ically 

 

 ≥

 

85 per cent correct identifications for small- to medium-sized species assemblages. More
importantly, these systems are already more consistent and more rapid than human experts in
producing identifications of some groups. As these system designs mature and continue to improve
(e.g. incorporating dynamic neural net structures), they promise to deliver even better performance
for a larger number of taxon groups in the future. The fact that most systematists remain unaware
of these developments and their implications for the practice of systematics is the primary reason
this book has been assembled.

Such advances could not have come at a better time. As many scientists – and all systematists
– already know, the world is running out of specialists who can identify the very biodiversity whose
preservation has become such a global concern. In commenting on this problem in palaeontology,
as long ago as 1993 the palaeontologist Roger Kaesler recognized:

 

We are running out of [systematists] who have anything approaching synoptic knowledge of a major
group of organisms.… Paleontologists of the next century are unlikely to have the luxury of dealing at
length with taxonomic problems … [Paleontology] will have to sustain its level of excitement without
the aid of systematists, who have contributed so much to its success.

 

(pp. 329–330)

 

This expertise deficiency, which has come to be called the 'taxonomic impediment', is with
us now and will only become more serious as time goes by unless some means is found to address
its effects. The taxonomic impediment cuts as deeply into those commercial industries that rely
on accurate identifications (e.g. agriculture, biostratigraphy) as it does into a wide range of pure
and applied research programmes (e.g. conservation, biological oceanography, climatology, ecol-
ogy). This expertise impediment is also not a recent development. The contemporary taxonomic
literature of all organismal groups is littered with examples of inconsistent and incorrect identi-
fications. This is due to a variety of factors, including taxonomists being insufficiently trained
and skilled in making identifications (e.g. using different rules of thumb in recognizing the
boundaries between similar groups), insufficiently detailed original group descriptions and/or
illustrations, inadequate access to current monographs and well-curated collections and, of course,
taxonomists having different opinions regarding group concepts. Peer review has little effect on
non-academic studies and even then only weeds out the most obvious errors of commission or
omission when an author provides adequate representations (e.g. illustrations, recordings, gene
sequences) of the specimens in question. If systematics is to improve the quality as well as the
quantity of the data that its practitioners provide to their colleagues, students and clients, and
that they themselves use to document changes occurring in the natural world, a different approach
is needed.
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Many systematists appear to see research into automated identification systems as a threat to
their field and their livelihood. Ironically, however, systematics has much to gain both practically
and theoretically from the further development and use of such systems. It is now widely recognized
that the days of systematics as a field populated by mildly eccentric – and often independently
wealthy – individuals pursuing knowledge in splendid isolation from funding priorities and eco-
nomic imperatives are well past. In order to attract both personnel and resources, systematics must
transform itself into a 'large, coordinated, international scientific enterprise' (Wheeler, 2003, p. 4).

Many have identified use of the Internet – especially via the World Wide Web – as the medium
through which this transformation can be made. While establishment, for example, of a virtual,
GenBank-like system for accessing morphological data, audio clips, video files and so forth would
be a significant step in the right direction, improved access to observational information and/or
text-based descriptions alone will not address either the taxonomic impediment or low identification
reproducibility issues successfully. Instead, the inevitable subjectivity associated with making
critical decisions on the basis of qualitative criteria must be reduced or, at the very least, embedded
within a more formally analytic context. 

Properly designed, flexible, and robust automated identification systems organized around
distributed computing architectures and referenced to authoritatively identified collections of train-
ing-set data (e.g. images, gene sequences) can, in principle, provide all systematists with access to
the electronic data archives and necessary analytic tools to handle routine identifications of common
taxa. Such systems not only deliver consistent identifications, but also provide accurate estimates
of each identification's confidence level and can recognize when their algorithms cannot make a
reliable identification (and so refer that image or specimen to a human specialist for further study).
The most advanced identification systems currently available also include elements of artificial
intelligence and can improve their performance the more they are used. Most tantalizingly, such
systems can become true partners in systematic research, delivering high-volume, accurate and
consistent identifications in literally seconds and allowing the systematist to experiment with
alternative species concepts and/or models of intraspecific and interspecific variation. Automated
identification systems can even be used to determine which aspects of the observed patterns of
variation are being used to achieve the identification, thus opening the way for the discovery of
new and (potentially) more reliable taxonomic characters.

In order to summarize the current state of the art in automated taxon-recognition systems and
assess their potential to make practical contributions to systematics and taxonomy both now and
into the future, the Systematics Association and The Natural History Museum (London) jointly
sponsored a free, one-day symposium entitled 

 

Algorithmic Approaches to the Identification Problem
in Systematics 

 

at The Natural History Museum, London, on 19 August 2005. The purpose of that
symposium (which was part of The Systematics Association's biennial meeting) was to provide
leaders of research groups, researchers and students working in or studying any area of systematics
with an opportunity to (1) learn about current trends in quantitative approaches to the group-
recognition problem, (2) become familiar with the capabilities of various software systems currently
available for identifying systematic objects/groups and (3) evaluate various applications of this
technology to present and future systematic problems. Special attention was paid to showing how
different approaches to automated identification can be applied to various organismal groups and
in various applied research contexts (e.g. biodiversity studies, biostratigraphy, conservation, agri-
culture, curation). This book represents the edited proceedings of that symposium.

The collected articles are divided into four informal sections. Background information is
provided by Chapters 1 and 2. In Chapter 1, Quentin Wheeler sets the stage by reviewing the
current state of systematics and placing automated taxon identification in the context of contem-
porary trends, needs and opportunities. Phillip Culverhouse (Chapter 2) then focuses on how humans
perceive the world, with special reference to those attributes such automated systems will need to
process to match human performance, which is impressive but not without its limitations.
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The second section of the book addresses two technical developments at the forefront of
mathematical approaches to the implementation of automated identification systems. Robert Lang
(Chapter 3) reviews the concepts embodied in neural net designs to provide readers with a basis
for understanding the discussions of various neural net systems and applications in the chapters
that follow. In Chapter 4, Fred Bookstein reviews the issues of homology and character recognition
from a morphometric point of view through presentation of a new technique (relative intrinsic
warps), which can be used to locate and characterizes, within a sample-based warp system, particular
regions that are undergoing localized changes, possibly reflecting character-state transitions. Book-
stein suggests the intrinsic covariance structure of a set of morphologies provides a practical means
for focusing automated identification systems on those aspects of shape transformation patterns
that correspond to biological characters.

The third section represents five chapters that present and/or evaluate different aspects of current
automated system designs. David Chesmore's chapter (Chapter 6) opens this section with a com-
prehensive review of neural net applications to the group- or taxon-recognition problem. This is
followed by a trio of chapters devoted to describing and illustrating the use of three of the most
highly developed automated identification systems currently available by key members of their
system-development teams: Mark O'Neill presents and discusses the development of his PSOM-
based digital image analysis system (DAISY, Chapter 7), Volker Steinhag and colleagues present
their morphometrics-based automated bee identification system (ABIS, Chapter 8) and Kimberly
Russell and colleagues discuss their wavelet-MLP-based species identification automated system
(SPIDA, Chapter 9). My own chapter (Chapter 10, with Mark O'Neill and Stig Walsh) closes this
section with a comparison of standard morphometric and PSOM-based neural net approaches that
seeks to identify reasonable analytic domains for these alternative approaches and lines along which
they may converge with future development.

The book's final section presents a series of eight case studies in which different practical aspects
of the overall group identification problem are identified, analyzed and discussed. Eric Mortensen
and colleagues (Chapter 11) review their work with automated stonefly identification as a means
to assess water quality. Jonathan Clark (Chapter 12) reviews use of MLP neural nets and traditional
metric characters to automate plant species identification from leaf morphology. Stig Walsh and
colleagues (Chapter 13) compare and contrast both landmark and outline-based morphometric
approaches with DAISY to tackle a perennial palaeontology problem: the identification of taxa (in
this case, penguins) from isolated skeletal elements. David Jones and Mark Purnell (Chapter 14)
use a novel outline-based morphometric approach to identify conodonts. Manuel Mendoza (Chapter
15) employs decision-trees to interpret ecological adaptations in a fossil mammal lineage based on
modern ecological counterparts. Robert Vincent (Chapter 16) discusses and illustrates use of the
BioloMICS system for automated identification from generalized matrices of continuous and dis-
continuous characters. Adam Tolfilski (Chapter 17) describes his automated honeybee wing mea-
surement software 

 

DrawWing

 

. Finally, Monja Knoll and colleagues (Chapter 18) contrast eigenshape
and DAISY approaches to the analysis of human vocalization patterns. 

The scope and diversity of the approaches and applications discussed herein are inspiring and
fully indicative of their potential to have a real and lasting impact, not only on all areas of systematics
but also on all the fields systematics serves. In the final analysis though, we are left with the realization
that the technology available to collect organisms in the environment far outstrips the systematics
community's ability to identify those organisms reliably irrespective of the data extracted (e.g.
morphological, chemical, molecular) and it will continue to do so. This limitation on the taxonomic
side of the equation represents a classic case of supply limiting demand. Throughout human history,
whenever there has been a need to perform routine and well-defined tasks rapidly, accurately and
consistently, the most productive solution has been to automate the procedure via application of
appropriate technology. Doing this well, reliably, and for as wide a diversity of organisms as possible
is, we believe, one of the fundamental challenges for systematics in the 21st century.
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This is, in effect, what automated taxon identification systems do. Systematists who employ
such systems and who lend a hand in their improvement are not diminishing their field or the future
employment prospects of their students. Rather, they are helping ensure a future for systematics
while, at the same time, helping to free systematists from the drudgery of routine identification so
that their hard-won talents can be put to better use. More than this they are ensuring that systematics
will be even more important to the research programmes of the future than it has been to those of
the past.

Based on the evidence accumulated over the last decade and presented in this volume, the
question of whether such automated taxon identification systems can be constructed using available
technology has been answered. That answer is 'yes'! In reviewing the progress of over a decade
spent developing such systems, the authors of these chapters ask the implicit questions, 'What will
be the role of research into automated approaches to taxon identification'? 'Who will fund it'? and
'Where does improving the ability to deliver better taxonomic identifications stand in systematics'
overall research agenda'? It is our hope that this volume will contribute to helping the systematics
community, its client communities and those who set research-funding priorities for governments
and private foundations to formulate answers to these questions, both in principle and in practice. 
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Taxonomists face the greatest challenges and opportunities of the very long history of their science.
The already daunting challenge of discovering and describing the many millions of species on
Earth has a sudden urgency imposed by runaway rates of species extinction and worldwide distur-
bance and degradation of ecosystems (e.g. Millennium Ecosystem Assessment, 2005). Getting on
with the business of describing, naming and classifying species has multiple significances. Taxo-
nomic information is necessary for conservation biology planning and assessment; the more com-
prehensive our taxonomic knowledge is, the better are the phylogenetic foundation and context for
comparative biology; the intellectual manifest destiny of our own curious species to understand its
place in the living world rests heavily on taxonomists preserving sufficient evidence of the biological
diversity – particularly that which seems now certain to be lost. Fortunately, it seems equally clear
that the information revolution offers unparalleled opportunities to vastly accelerate taxonomic
exploration and research (Wheeler et al., 2004). While existing information technology and digital
tools are enough to convince us of their enormous potential, we must recall that we live in early
days of this information revolution (e.g. Atkins et al., 2003). Peter Raven (2004) sums up the
unrivalled significance of information technologies to taxonomy as follows:

 

In the accumulation of knowledge about organisms and its deployment for many purposes, the efficient
use of the products of the information revolution is even more important than the development of
moveable type 550 years ago. The registration of all properties of organisms in efficiently constructed
databases, automated identification, Web pages for different kinds of organism[s] – these and many
other techniques are absolutely indispensable and need funding as amply as can be provided. There is
simply no other way to achieve the aims of taxonomy broadly, as many of us have been pointing out
for decades. Many more efficient ways can and are being developed to deal with the description of
organisms. Fully harnessing the power of the Web clearly will and must expedite taxonomic progress
in the future, building soundly on the systems of the past but expediting the accumulation and dissem-
ination of information.

 

 

 

Raven (2004) also captures the human resource dimension of the challenge at a time when few
taxonomists are being educated or employed who know their organisms well and are prepared to
lead the arduous inventory tasks that lie ahead:
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Finally, nothing will substitute for the activities of the field naturalist. No matter how much we may
speak about instant identification through DNA analysis, hand-held keys or other modern approaches,
unless there are very many people who can recognize organisms, find them, go into the field and find
them again, whether they be in the tropical moist forests of Congo or the chalk grasslands on the South
Downs of England, nothing will work.

 

We neglect taxonomic and related organismal biology research and expertise at our own peril.
Much of what we know or will ever learn of biological diversity, ecosystem complexity and
evolutionary history came or will come as a direct result of taxonomic research. Although such
taxonomic information, including Linnaean names and classifications, forms the foundation and
general reference system for biology, taxonomy has received surprisingly little support in recent
decades (e.g. House of Lords, 2002). This neglect, in conjunction with projected extinctions of
species, has been described as a 'taxonomic crisis' (Page et al., 2005). The same (phylogenetic)
theoretical advances that enable taxonomists to create biology's general reference system (Hennig,
1966) are supported today, but divorced from improvements in the formal classifications and names
that are the backbone of the system. An efficient and organized approach to 'descriptive' taxonomy
is, in fact, the largest missing piece of an effective response to the biodiversity crisis (Wheeler, 2004). 

Taxonomy was weakened in the early twentieth century (Wheeler, 1995)

 

 

 

because it could not
yet reconstruct the relative recency of common ancestry among species in a rigorously testable
way – an essential step if classifications were to reflect evolutionary-historical patterns reliably.
Ironically, phylogenetic analyses are now being done more rapidly than the discovery and descrip-
tion of the species that would justify further reconstruction of such branching diagrams. Given the
biodiversity crisis, our top priorities should be to complete an inventory of species, develop
comprehensive collections and assure that taxonomic information is both reliable and openly
accessible through sustainable revisionary taxonomic programs and enhanced infrastructure and
tools for taxonomists. Description (circumscription) of species is a methodological prerequisite to
phylogenetic analysis (Hennig, 1966); in a biodiversity crisis, it is also a priority.

The best taxonomy has long been and will remain integrative, including all relevant and available
comparative evidence. Take the following, for example:

 

Taxonomy is at the same time the most elementary and the most inclusive part of zoology, most
elementary because animals cannot be discussed or treated in a scientific way until some taxonomy
has been achieved, and most inclusive because taxonomy in its various guises and branches eventually
gathers together, utilizes, summarizes, and implements everything that is known about animals, whether
morphological, physiological, psychological, or ecological.

 

(Simpson, 1945)

 

Also consider:

 

Nevertheless, the data of molecular biology, when comparative at any level (either within or between
populations), most decidedly enter into systematics – the distribution of the various hemoglobins is
only one of innumerable strikingly pertinent examples. Systematics, in turn, does apply to whole field
of molecular biology and supplies one of the several ways in which the results of that subject may be
explained or meaningfully ordered.

 

(Simpson, 1961)

 

These integrative aspects of taxonomy were also reflected by Hennig's concept of 'holomorphy'
that included the totality of characters, regardless of source, but held to the same standards as
morphology:
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But it is an old demand that systematic work should consider "all characters" as far as possible, and
not be limited to only one sector of the fabric of characters. Consequently other characters not
narrowly morphological have recently been recommended to an increasing degree. Insofar as these
are intended to supplement and test the results based on morphological characters, phylogenetic
systematics will profit from them. A prerequisite for this is that nonmorphological characters be used
according to the same strict, theoretically incontestably based methodological principles as morpho-
logical characters are.

 

(Hennig, 1966, p. 101)

 

While taxonomy as a science needs data from as many sources as possible (whether comparative
morphology, developmental biology, palaeontology, molecular genetics, comparative ethology or
other), it should not be expected that all such data be included in every study or that every taxonomist
engage in the full range of possible data gathering. While phylogenetic analysis profits from a total
evidence approach with its diverse data and associated benefits, studies generating new characters
or critically testing existing characters need not be concerned with multiple data sources. The only
criterion on which to judge the value of such studies ought to be excellence. With millions of
species to discover, describe and test and many more tests of homology, synapomorphy and
monophyly to complete, there is ample room for specialization. Integrating a number of excellent
studies drawing upon diverse kinds of comparative data is far preferable to the superficiality
sometimes seen in studies that attempt to combine treatments of, for example, molecular and
morphological data. Some excellent studies are produced using these and other combinations of
data, of course. In general, however, a goal of true excellence may be more directly realized through
the encouragement of specialization and collaboration rather than the premium often placed on
putatively interdisciplinary studies.

The current insistence that a good molecular study include (often only token) morphological
data usually encourages superficial treatments, often little more than a literature review. By the
same token, requiring a good morphological study to include molecular data is equally unnecessary.
We should celebrate and encourage a variety of approaches and insist on uniformity only with
respect to excellence, recognizing that each study, regardless of how narrow or broad, contributes
ultimately to the diversity and quality of data available to taxonomy as a whole. As taxonomic
information inevitably moves toward a Web-based system (Scoble, 2004) the integration of data
derived from many studies and sources shall become increasingly seamless. Why not take advantage
of the aptitudes, talents, motivations and interests of researchers rather than forcing compliance
with a predetermined 'approved' checklist of data sources? We seem to be confusing the wants and
needs of the field as a whole with those of individual researchers and students.

Recent proposals for DNA-based taxonomy (e.g. Tautz et al., 2003; Blaxter, 2004) seem to
overlook the obvious benefits of the current integrative taxonomy (Will et al., 2005), as well as
those of alternative data sources, including morphology. Even if a completely DNA-based taxon-
omy were achievable

 

,

 

 it would not be advisable or desirable. Some obvious reasons to encourage
comparative morphology include: (a) as an 'independent' test of cladistic patterns suggested by
molecular (or other) data; (b) as a link between neontological and palaeontological studies; (c)
as a useful, user-friendly data source for field biologists and amateur naturalists; (d) as a source
of complex characters not recoverable from DNA data alone, even if whole genomes were
sequenced; (e) as an entrée to complex attributes that are the objects of interest to natural selection;
(f) as a necessary source of evidence to join up genetic and epigenetic effects on the phenotype;
(g) as an intellectual and scientific goal in its own right, to understand the origin and history of
transformations of complex characters; and (h) because it is intellectually challenging and aes-
thetically stimulating to study. The latter was expressed well by the nineteenth century coleopterist
David Sharp: 
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The aesthetic satisfaction to be derived from contemplating the mere variety of animal forms, and from
tracing the order that runs through all its diversity, appeals to a very deep instinct in human nature

 

.

(Calman, 1930, p. 10)

 

At the founding of the 'new systematics', Timofeeff-Ressovsky claimed that morphology was spent.

 

Since Darwin much very extensive and ingenious work has been done in the field of evolutionary
studies, using palaeontological, morphological, embryological, and biogeographical data; these studies
have allowed us to picture the main historical steps and events of the evolutionary process. The efficacy
of these classical methods, which gave a picture of what we may call 'macro-evolution', seems now to
be more or less exhausted.

 

(Timofeeff-Ressovsky, 1940, p. 73)

 

Timofeeff-Ressovsky and fellow new systematists were interested in genetic mechanisms of
mutation and inheritance rather than the historical story of evolution. They succeeded in shifting
the emphasis and funding toward 'micro-evolution' instead of 'macro-evolution' (the latter including
phylogenetic systematics). A scant quarter century later, the translation of Hennig's (1966) ideas
into English would spur the greatest advance in macro-evolutionary theory since Darwin and renew
interest in historical patterns and comparative morphology (Eldredge and Cracraft, 1980

 

;

 

 Nelson
and Platnick, 1981; Schock, 1986

 

)

 

. Subsequent waves of technology have been accompanied by
similar false predictions of the demise, or at least diminished importance, of morphology, including
advocates of electrophoresis in the 1970s and of DNA sequencing today. 

Morphology has the opportunity for a major revival based on a wide range of new tools and
technologies. Computer-assisted tomography (CT) is making three-dimensional visualization of
complex structures possible as well as opening non-destructive access to specimens and structures
that were not accessible before. Applications of this technology for teaching include the potential
for an instructor to 'print' a three-dimensional model of a specimen at any scale that can be handled
and studied in the classroom, regardless of where in the world the actual specimen resides.
Algorithms discussed by authors in this volume point to extraordinary new approaches to assess
and characterize morphological characters, critically question homology assertions and further
refine emerging image-based systems for automated species identifications (see also Gaston and
O'Neill, 2004). A network of remotely operable high-resolution digital microscopes is being devel-
oped by entomologists at The Natural History Museum, London, the US Department of Agriculture
Systematic Entomology Laboratory, Beltsville, and the Museum National d'Histoire Naturelle,
Paris, in partnership with Microptics-USA, Inc. that will permit scientists and students to manipulate
and photograph type and rare specimens from any broadband-connected computer in the world.
Efforts are under way to merge MorphBank and MorphoBank, two recent efforts to create a
repository where digitized morphological images and information may be deposited and archived
in an openly accessible form. A number of groups and institutions are developing novel approaches
to electronic publication of morphology-based descriptions that will eliminate traditional limitations
imposed by costs of illustrations and hopefully successfully revive and transform taxonomic revi-
sions and monographs into Web-based, continuously updated community resources. These few
examples are among many fledgling steps toward the future of comparative morphology and
morphology-based taxonomic applications.

Many users of taxonomic information simply want to be able to identify specimens accurately
as belonging to recognizable species. While having a name associated with each species is crucial
for communication and information storage and retrieval, names are ultimately only as useful and
informative as the hypotheses associated with them are tested and corroborated. Through the neglect
of descriptive taxonomy, such hypotheses remain infrequently tested or untested and the scientific
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names associated with them cease to reflect our current and full knowledge of patterns in nature
accurately. This symptom of taxonomic neglect is contributing to a silent and growing crisis of
reliability of information associated with specimens in collections (e.g. Meier and Dikow, 2004

 

)

 

and must be addressed alongside inventory efforts to discover new species.
Users sometimes fail to recognize the important distinction between classification and identi-

fication (Mayr, 1969

 

)

 

; both are necessary but the latter is possible only to the extent that the former
has been completed. Applied taxonomy can only exist in the presence of an accumulated body of
fundamental taxonomic research (Figure 2.1). Current efforts to avoid the serious work of taxonomy
can only succeed by lowering the quality of taxonomy itself (Will et al., 2005). Meanwhile, the
information revolution is speeding virtually every step of taxonomic work, making such compromise
of quality unnecessary.

Digital tools are revolutionizing species identification as rapidly as they are reshaping most
aspects of taxonomic research. In addition to automated species identifications (e.g. Gaston and
O'Neill, 2004; Mortensen et al., this volume; O'Neill, this volume; Russell, this volume, Steinhag
et al., this volume) a wide range of possibilities are being opened by the information revolution.
User-friendly interactive electronic keys, digitally illustrated, that require no prior morphological
vocabulary are improving all the time and are downloadable to laptop or handheld devices. Experts
are potentially accessed via the Web anywhere in the world to make crucial identifications, consult
or teach. The US Department of Agriculture's interest in the remote microscope system mentioned
before is to provide a link between taxonomic specialists and suspicious interceptions made at ports
of entry among other innovative applications. Evidence provided by DNA is being effectively used
to associate highly dissimilar semaphoronts (e.g. Miller et al., 2005

 

)

 

 and to identify mere fragments
of specimens, important in the enforcement of regulations governing the trade in endangered species. 

Such molecular diagnostics, however, increase rather than obviate the need for taxonomic
research, including continuing tests of known species and descriptions of new ones. The same

 

FIGURE 2.1

 

Cyberinfrastructure will complement and seamlessly network museum infrastructure (i.e. spec-
imens and specimen-associated data) with digital instruments, tools, software, and people to expedite and
facilitate every aspect of fundamental and applied taxonomy. This will diminish existing constraints on access
(to specimens, data, literature, morphology images, analytical software, experts, etc.). It will be particularly
revolutionary with respect to the documentation, analysis and communication of morphological information;
the frequency and comprehensiveness of taxonomic revisions and monographs; the ways we identify species;
and the ways in which we do, think about, access and use taxonomic information. (For additional insights,
see Atkins at al., 2003; Wheeler, 2004; Wheeler et al., 2004; Page et al., 2005.)
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unpredictable levels and patterns of variety that make comparative morphology so intellectually
engaging occur at the molecular level, too. Ranges of infra- and interspecific variation can and do
overlap on occasion (e.g. Meyer and Paulay, 2005

 

)

 

, exposing the folly of assumptions made in
proposals to use a 'uniform short-segment' from one gene to identify species of all or any serious
percentage of animal species (Prendini, 2005; Wheeler, 2005). Armed with accurate species iden-
tifications, the taxonomy user of the future will locate a rapidly increasing wealth of biological,
geographical and other information about species as Wilson's (2003) encyclopaedia becomes reality.

Considering the fragmented, uncoordinated and inadequately resourced history of taxonomy
since 1758, it has been remarkably productive, documenting more than one and a half million
species. This rate was acceptable, until recently. But in the context of the biodiversity crisis, this
is no longer so. Existing approaches to taxonomy are, for the most part, excellent and merely need
to be accelerated to keep pace with the biodiversity crisis. One of the greatest threats of the
biodiversity crisis is that so much data could be lost that systematics' grand questions (Cracraft,
2002; Page et al., 2005) will never be addressed adequately. This would dramatically limit our
knowledge of evolutionary history with a cascade of constraints and negative impacts on other
subdisciplines of biology.

Given improved taxonomic infrastructure and research tools, taxonomists can immediately
accelerate the processes of species exploration, description and classification and meet society's
growing need for informed access to the world's flora and fauna. With such rapid advances in
information technologies, excuses for not mapping the biological diversity of Earth are disappearing.
We need now to adapt these technologies to the special needs of taxonomic research, invest in the
growth of collections, and educate and support a new generation of taxonomists to realize taxon-
omy's research agenda (Systematics Agenda 2000, 1994; Cracraft, 2002; Page et al., 2005).

Exploring and documenting species diversity is of paramount importance. This is nowhere more
urgent than in regard to hyperdiverse taxa such as insects, fungi and worms, where only a small
fraction of living diversity is known. To put the magnitude of this undertaking into perspective,
consider that the approximately 925,000 described insect species represent at most 25 per cent of
living species (Grimaldi and Engel, 2005). Discovering new species, however, assumes that the
tests and corroborations of existing species are being done. As specimens accumulate in collections
and new characters are discovered, existing hypotheses of species, monophyletic groups and
character distributions become outdated and the information associated with them untrustworthy
in the absence of testing. Only by repeated tests can taxonomic names, concepts and classifications
remain fully accurate reflections of what we know of patterns in nature.

In the past, species tests were efficiently incorporated into periodic taxonomic revisions or
monographs, but such descriptive studies are less frequently completed today and few students are
being educated with a firm foundation in such broadly comparative and comprehensive taxonomic
knowledge. In large taxa, such revisions may appear only once or twice a century. As a result, the
reliability of information associated with the estimated three billion specimens in the world's natural
history collections is slowly but steadily eroding. In extreme cases, as many as 70 per cent of
specimens are already wrongly identified (Meier and Dikow, 2004).

How much worse must information become before we accept the responsibility to support
descriptive taxonomy? This worsening state of information credibility threatens our ability to verify
identifications, store and retrieve new observations, precisely communicate findings among biolo-
gists, or confidently describe new species as they are found. Further, it increases the likelihood of
economic losses resulting directly from taxonomic mistakes (e.g. Miller and Rossman, 1995). Must
we wait until spectacularly costly mistakes are made before we take action to assure the quality
and growth of taxonomic information? 

It is a question of 'when' rather than 'if' such avoidable mistakes will happen; they are a logical
consequence of the neglect of descriptive taxonomy. Museums in particular will have some explain-
ing to do. Why were non-collections-based, university-style research programmes pursued at the
expense of taxonomy when the world needed improved understanding of taxonomic diversity? We
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can avoid such taxonomic train wrecks – or at least the worst of them – by reinvigorating revisions
and monographs in a Web-based format with immediate attention to those groups known to include
species of potential economic impact.

Such electronic monographs will have many advantages. They will be continuously updatable
in order to reflect the most recent and full knowledge of taxa (Scoble, 2004; Wheeler, 2004) by
networks of specialists working variously alone and in collaboration. Across this vast range of
possibilities one thing seems certain:

 

The Internet [is] 

 

the

 

 fast evolving medium for providing access to information currently distributed
across the published paper-based literature, in unpublished archives, in curated collections, and, increas-
ingly, in personal or institutional databases.

 

(Scoble, 2004, p. 699)

 

In spite of the realities of the situation, the existing body of taxonomic knowledge may appear
sufficient to some. Because a disproportionate number of biologists have worked in northern
latitudes, the species they most commonly encountered could be reliably identified. As biologists
extended their interests into the tropics, southern hemisphere and increasingly diverse ecosystems
of all descriptions, it became obvious that many species were identifiable only with great difficulty,
many others not at all. As biologists now seek to better understand the full diversity and complexity
of evolutionary history and ecosystems, it becomes increasingly clear that we know rather little
about the tree of life and its millions of unique branches and leaves.

As the impacts of human activities spread across the Earth, new agents of human and animal
diseases emerge; new agricultural pests appear and invasive species are spread greater distances
with increased frequency. As biological curiosity expands, new and better model organisms are
needed; in the absence of fundamental taxonomic knowledge, it is impossible to know where to
begin the search for them. As we confront new and increasingly severe environmental, agricultural
and medical challenges, we turn, as we always have, to nature for solutions; in the absence of good
taxonomy, we increasingly find answers beyond our grasp. It is no longer possible to be content
with relatively good but incomplete knowledge of the flora and fauna of Europe and North America.
We need knowledge of the world's species in their full diversity; it is time that taxonomy is
approached on a global scale to assure the necessary foundation of understanding for the biological
sciences of the future. It is critical to recognize that descriptive taxonomy is not a one-time or
provincial activity as sometimes portrayed, but rather a part of a planetary scale research programme
(Cracraft, 2002).

The 'sell-by date' is rapidly expiring for our hypotheses of many species and putatively mono-
phyletic taxa. Unless taxonomists are supported to test these species with new characters and newly
collected specimens, the reliability of existing knowledge will become increasingly suspect and
the detection of new species problematic. Unless taxonomists are supported to undertake such tests
and to aggressively complete an inventory of Earth's species and clades, biological knowledge and
environmental problem-solving options will be unnecessarily limited. The recent observation that
some basal groups of dinosaurs had a reptilian-like variability in attained adult size (Gramling,
2005) refuted the common assumption that dinosaur adult size was relatively constant and illustrated
the need for a broad knowledge of species and clades. Gramling quotes Thomas Holtz of the
University of Maryland, College Park, who observed that 'this emphasizes the importance of tree-
based thinking. We have to look at as many branches of the evolutionary tree [as possible] to get
as big a picture as possible'.

The progress of taxonomy and development of collections are an investment to assure that
students of all taxa have in the future as many pieces of that big picture of phylogeny as possible.
This, in turn, can only be done comprehensively and efficiently in proportion to our growth in
taxonomic knowledge generally. Without sound taxonomy, we have no idea how to prioritize
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inventory efforts or collection growth and development or any means of assessing our success in
exploring biological diversity.

Taxonomy is misunderstood and maligned by some experimental biologists specifically because
it is non-experimental, comparative and historical in nature. The epistemology of taxonomy – how
we know what we know about species, clades, homologues and character transformations – differs
dramatically from that of experimental biology. The inherent duality of descriptive and hypothesis-
driven science embodied in taxonomy adds to the confusion. Scoble (2005) makes a compelling
defence of the descriptive aspects of taxonomy on the grounds of its role as a necessary information
infrastructure for biology. This alone is more than sufficient reason to make taxonomic research
and collection improvements a high priority. Nelson and Platnick (1981) explained in detail the
complex, layered hypotheses embedded in taxonomy and the appropriate and necessary distinction
between taxonomy and general biology. It is ironic that taxonomy is singled out for neglect based
on the descriptive aspects of its work when other descriptive sciences (e.g. many branches of
physics, chemistry, astronomy and geology, as well as the Human Genome Project) are appropriately
well supported.

Much of the denial of funding in the UK, for example, is justified explicitly on the basis that
funding agencies like the National Environmental Research Council are concerned with support
for hypothesis-driven science only (see House of Lords, 2002). Like it or not, as E.O. Wilson (2003)
has noted:

 

Biology is primarily a descriptive science…for it is defined uniquely by the particularity of its elements.
Each species is a small universe in itself, from its genetic code to its anatomy, behaviour, life cycle
and environmental role, a self-perpetuating system created during an almost unimaginably complicated
evolutionary history.

 

Our failure to seek out and describe Earth's species incalculably diminishes our understanding
of life, for every species yields a substantial and unique insight.

 

In a purely technical sense, each species of higher organism – beetle, moss, and so forth – is richer in
information than a Caravaggio painting, a Mozart symphony, or any other great work of art. Consider
the house mouse, 

 

Mus musculus.

 

 Each of its cells contains four strings of DNA, each of which comprises
about a billion nucleotide pairs organized into 100,000 structural genes. If stretched out fully, the DNA
would be roughly 1 meter long. But this molecular is invisible to the naked eye because it is only 20
angstrom units in diameter. If we magnified it until its width equalled that of wrapping string, the fully
extended molecular would be 600 miles long. As we travelled along its length, we would encounter
some 20 nucleotide pairs of 'letters' of genetic code per inch. The full information contained therein,
if translated into ordinary-sized letters of printed text, would just about fill all fifteen editions of the

 

Encyclopaedia Britannica

 

 published since 1768.

 

(Wilson, 1985, p. 22)

 

Having recognized that we must address our overwhelming ignorance about most of the unique
components of evolutionary and ecosystem complexity, we sense that we are in danger of accom-
plishing too little, too late. Rather than learning obvious lessons from 250 years of successful
taxonomy and seeking tools to further accelerate and build upon good practice, we now seriously
entertain expedient substitutes for good taxonomy (e.g. Tautz et al., 2003). Second-rate alternatives
are justified, by non-taxonomists, on the basis of being fast, easy, new or just obviating the need
to learn about the species we seek to discover and their morphology. Where else in science would
we entertain the proposition that the avoidance of learning is a virtue?

We are asked to believe that our current ignorance of Earth's species is due to inherent
shortcomings or weaknesses in taxonomy rather than the continuing wholesale neglect of taxonomy
and our inaction in adapting new technologies to support taxonomic work. We are asked to sacrifice
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willingly the remarkable theoretical advances in taxonomy (from Hennig, 1966, to the present) and
related fields of evolutionary biology (since the 'new synthesis' in the 1930s) in the name of
expediency; to abandon comparative morphology, the most intellectually rich and rewarding aspect
of taxonomy; to indulge arrogant molecular workers for whom there is no distinction between
science and mere technology and for whom the costly lessons of phenetics have been forgotten
(Lipscomb et al., 2003; Prendini, 2005; Wheeler, 2005).

For what other scientific challenge do we shy away from hard work, choosing to sacrifice
excellence and depth of understanding for mere ease? We are asked to avoid the heavy lifting of
good taxonomy and the hard work of educating a new generation of taxon experts and to settle for
an inferior approach that replaces testable species concepts with non-scientific conveniences simply
because it is cheaper and faster to do so. There are times when excellence is worth paying for.
With one chance to get the exploration of Earth's species right, this is clearly such a time. The
reality is that with a little ingenuity and courage, we can have both speed and excellence, both
molecular and morphological, both good taxonomy and experimental biology. It is possible to retain
taxonomic theory and practice at the highest levels of excellence 

 

and

 

 to accelerate the speed of
doing taxonomy by orders of magnitude. Those who would deny this simple reality seemingly do
so from some motive other than advancing knowledge.

I emphasize descriptive taxonomy because of its comparative neglect and the fact that its
theoretical strengths are often overlooked. Completion of an inventory of species is of the utmost
importance, but this cannot be done at the expense of phylogenetics. Bertalanffy (1932) emphasized
that taxonomy stands at the beginning of biological understanding because 'its goal is to produce
as complete and accurate a catalog as possible of plant and animal species'. To this Hennig (1966)
responded, 'Such a systematics would not be a science' (p. 7). Taxonomy aims to produce a complete
catalogue, but also much more. A catalogue plus a phylogenetic context (in the form of a classifi-
cation and names) for species goes far beyond a mere inventory, much as the periodic table in
chemistry serves as more than a mere list of the elements.

While all comparative data should be considered, all data are not equal. Some data sources provide
unique or additional information. For example, fossils provide us with minimum dates of origin for
particular characters, species and clades; developmental biology helps us to understand gene interac-
tions, epigenetic factors and the pathways between genotype and phenotype; and morphology provides
us with the polygenic complex characters that are the objects of natural selection and ultimately a
primary source of our fascination with biological diversity and motivation to study evolution.

Face it: If all species looked more or less the same, we would soon understandably tire of
naming them and trying to figure out their phylogeny. Phylogenies are fascinating precisely because
they help us interpret and understand complex character transformations and geographical distri-
butions. That character analysis has been neglected for two decades, while disproportionate empha-
sis placed on tree construction and choices among equal-length trees has skewed our view. In this
narrow context, characters are faceless data points in matrices and the historical information content
in complex characters is underestimated. Framed in a phylogenetic context, however, complex
characters beg to be explained by evolutionary processes; this was, after all, the sequence of events
that led to evolutionary theory in the first place (Nelson and Platnick, 1981). 

The current dominance of molecular techniques over comparative morphology, palaeontology
and ontogeny results more from a preference for new technology and trends in funding than any
defensible theoretical or practical preference. To paraphrase a comment made by E.O. Wilson
(AAAS Meeting, Washington, 2005), molecular studies do not receive more funding because the
data they produce are better; rather, the data are perceived by some to be better because they receive
greater funding. We sell taxonomy short when we neglect potential data sources. No responsible
systematic biologist would advocate the neglect of comparative studies from any credible source
of data that could contribute to integrated taxonomy (Will et al., 2005).

There is no historical information contained in an amino acid. Instances of guanine are identical
anywhere and any time in the universe. An amino acid, therefore, contributes to phylogenetic
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information only in respect to its position relative to other amino acids in a sequence. Some suppose
molecular data to be more objective because amino acids may simply be read. In other words, we
can supposedly simply observe the sequence of amino acids directly and thereby avoid what is
perceived to be an imprecise and subjective business of hypothesizing homologies among complex
characters such as morphology. This argument is enticing but false. Such claims of unfettered
empiricism are also not new.

 

If our knowledge is limited to those things we can (supposedly) observe directly, the task of studying
the history of life is indeed fraught with insurmountable difficulties, since we can hardly observe directly
the past history of present-day organisms. But such a philosophical view characterizes (if anything)
technology, not science; it denies to science precisely those processes that are most characteristic of it:
the proposal and testing of hypotheses.

 

(Nelson and Platnick, 1981, p. 7)

 

The interpretation of molecular or any other comparative data as indicative of phylogeny – that
is, of history – is necessarily hypothetical and only as reliable as it is testable and tested and
corroborated. There is every scientific reason to want additional sources of data as (relatively
independent) tests of phylogenetic patterns. There is special value in interpreting complex characters
that carry with them the potential for greater historical information and which can be teased apart
and critically re-examined at successive levels of complexity. In the case of morphology, when
reciprocal illumination questions the validity of a homology statement following upon a cladistic
analysis, we have many recourses: finer level anatomical observations, assessment of developmental
(ontogenetic) patterns, study of roles of genes coding for expression of the character and, ultimately,
DNA sequencing of those genes. Why abandon such rich indicia of history for an 'objectivity' that
is largely sterile?

 

A GUTENBERG MOMENT FOR MORPHOLOGY

 

For centuries, morphologists have attempted to describe and communicate complex three-dimen-
sional structural details through cumbersome jargon and costly and sometimes ineffective drawings
and photographs. Digital tools offer a widening array of innovative tools that can revolutionize how
morphological data are gathered, analyzed and communicated. These digital capabilities will
change, too, the relationship between taxonomists and users of taxonomic information, who will
be increasingly empowered to make identifications and openly access information about detailed
attributes shared by species and higher taxa (Wilson, 2003; Raven, 2004). The digital medium has
begun a revolution in comparative morphology, storing and communicating complex visual knowl-
edge more effectively and widely than moveable type spread the written word. 

Several recent authors draw attention to the need to reinvest effort in the analysis of individual
morphological characters. For example, Williams, Wägele and Rieppel (all in Williams and Forey,
2004) each made such a recommendation, from quite different points of view. The failure to pay
attention to individual characters diminishes our understanding of evolutionary history and adds to
the perception that a technological quick-fix may be a viable substitute for morphological knowledge. 

As impressive as recent leaps in digital instrumentation, bioinformatics, digital communications
and cyberinfrastructure have been, the most impressive advances are yet to come (Atkins et al.,
2003). The taxonomic community has begun to position itself to take advantage of the next
generation of cyberinfrastructure through efforts such as LINNE (Page et al., 2005) and EDIT
(Scoble, 2004) and envision ways forward (e.g. Wheeler and Valdecasas, 2005). Improved cladistic
analysis algorithms and computers, in addition to new sources of data such as DNA sequences,
have enabled cladistic analyses to progress much faster than just a few years ago. Digital innovations
now make it possible to envision a similar acceleration of morphology-based taxonomic work.
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Most of the technical requirements for this futuristic world of descriptive taxonomy exist already
but have not been made available or specially modified to meet the needs of taxonomy.

This digital divide between the present and the future of taxonomic research must be closed
as rapidly as possible. In so doing, we will also address the other, better known digital divide. By
making specimens, data, information, tools and knowledge openly accessible in digital form, no
one benefits more immediately or profoundly than those historically denied access to the great
museums and libraries of the world. Children in isolated rural or inner-city schools will have
newfound access to what we know; scientists working in biodiversity-rich developing nations will
have the specimens and knowledge extracted from their nations over several centuries at their
fingertips; access for all researchers will open from data-bases to digital libraries and even to
specimens themselves.

Large comprehensive collections will always be the most important and useful research tools
for taxonomy. They facilitate broadly comparative studies and enable verification of species iden-
tifications. That said, we are fortunate that we can now begin to envision 'virtual' collections brought
together in cyberspace rather than physical space. Thus, our efforts to expand and enrich physical
collections should continue unabated. At the same time, we must take full advantage of digital
tools that make it possible to synthesize collections from dozens of locations around the world and
to virtually repatriate species and information.

The Global Biodiversity Information Facility (GBIF) in Copenhagen has made strides in
building a portal through which the information contained in collections can be made easily
accessible. Studies are emerging that positively demonstrate how it is possible to collate information
from a large number of distributed collections to complete analyses that would have been practically
impossible before (e.g. Soberon and Peterson, 2004).

Digital tools are key to reversing the decline of taxonomy (e.g. House of Lords, 2002; Page et
al., 2005). As these tools reform taxonomy into an efficient and productive modern enterprise and
as taxonomic knowledge empowers scientists and society to understand the natural world, new
sources of support will be found. Taxonomy has declined so long that even its strongest supporters
are dispirited; the tipping point seems to be impossibly distant to many. But with the digital
revolution, this is not so; it is closer than most think. Taxonomy can literally transform overnight.
After teaching taxonomy for 24 years at Cornell University, I know for a fact that every generation
produces a significant number of bright young scientists who fall in love with groups of animals
just as countless generations have before. A capable, willing, enthusiastic workforce can be assem-
bled rapidly if the fundamental needs of taxonomy are met.

Most people shy from the notion of completing an inventory of Earth's species, thinking it an
impossible task, but this is not so. There are two phases to such a planetary taxonomic agenda.
First is a concerted push to fill the greatest voids in our ignorance of species; this is the initial
mapping of the biosphere and the composition of the first edition of the encyclopaedia of life
advocated by Wilson (2003). The returns on such an investment would be of incalculable immediate
and enduring value to human and environmental welfare. The second phase is maintaining an
ongoing steady state of taxonomic research proportionate to the need to test and improve our species
and classifications

 

.

 

 Discovering and describing species is not a one-time activity as some ecologists
have naively suggested. Approaching taxonomic revisions as teams of researchers and institutions
can speed the work as demonstrated by the US National Science Foundation's Planetary Biodiversity
Inventory (PBI) projects. Equipping such teams with state-of-the-art digital tools can further
increase productivity by orders of magnitude.

 

DIGITAL TOOLS AND TAXONOMIC EMPOWERMENT

 

Taxonomy's digital revolution will directly benefit far more people and communities than taxono-
mists themselves. While the core of this revolution should address the infrastructure needs of a
transformed descriptive taxonomy, it is equally important that the fruits of a highly productive
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taxonomic community are openly available to all who can benefit from them. This includes
especially applied taxonomy; making accurate identifications is the necessary first step for anyone
seeking to study biological diversity. For hyperdiverse taxa such as fungi and insects, such identi-
fications have often required access to synoptic collections or the time of a specialist. If we are
able to survive the absurd current proposal for DNA barcoding (Wheeler, 2005; Will et al., 2005)
and accept that DNA evidence is merely an (admittedly very useful) additional tool for good
taxonomy but not a surrogate for it, progress will be rapid.

On the digital front, several classes of new identification tools can empower anyone to make
identifications. Several well-illustrated interactive online keys have appeared already for a range of
taxa and the software for such utilities is being rapidly improved. It is easy to forecast handheld
devices linked via satellite to powerful libraries of taxonomic information and images. A single such
device would enable the nature enthusiast to identify whatever plant or animal she encountered in
the woods, a farmer to determine whether an unfamiliar insect is a pest and an ecologist to determine
what species he has unexpectedly encountered. Image-recognition systems are also being perfected
that will permit a digital photo of an unknown species to be submitted to a data-base of images and
intelligent software to return an identification along with a probability of its accuracy; see chapters
in this volume by MacLeod et al. and Russell et al., for example. As these and the other chapters
in this volume attest, transformative digital tools are no longer science fiction but reality.

It should be obvious that the more such tools we have for applied taxonomy, the better. Different
users, for a variety of reasons, may need or prefer one or another tool for making identifications.
Empowering anyone interested in exploring the world around them to make accurate identifications
will have profound impacts on taxonomy. Charting the species of the biosphere is an enormous
challenge that is well suited to the contributions of able and energetic amateurs as well as those of
professionals. Serious amateurs deserve the resources they need to educate themselves and to sustain
their interest by not becoming frustrated over an inability to recognize what they have collected.

Enabling people to use taxonomic information and knowledge will result in a wider appreciation
and support for taxonomy and in benefits to science and society that we cannot yet imagine.
Releasing taxonomists from providing all but the most demanding identification services will
liberate precious expertise to inventory, describe and classify Earth's species; to test known species;
and to improve and expand digital resources. This is the optimal division of labour: taxonomists
generating knowledge and validating information, organizations and software like GBIF providing
ready access and one-stop shopping, and clever users having access to just the information and
identification tools they need to pursue their interests. Realizing the potential of this digital revo-
lution will change the reputation of taxonomy overnight from an impediment to an empowerment. 

Armed with a new research infrastructure, it is not too ambitious to aim to discover and describe
most, say 80 per cent, of Earth's species within an intense period of planetary exploration, say 50
years. Such a 50-year inventory would not be an end, but a beginning – an effort to triage evidence
of as many species, clades and components of ecosystems as possible for the benefit of scientists,
including taxonomists, of tomorrow. Even if all species could be documented, an unrealistic but
laudable goal, the need to sample and collect; reanalyze; apply new theories, methods and tools; and
test and refine taxonomic concepts and Linnaean names and classifications would continue indefinitely. 

Like any science, taxonomy is more a process than a product. Every answer raises new
questions. Every new specimen or character presents a new opportunity to learn. Continuing the
intellectual journey set upon by Linnaeus will have countless scientific, aesthetic and practical
benefits. Beyond what improved taxonomic knowledge will do to prepare us to face the challenges
of rapidly changing ecosystems, the specimens and information preserved will be an endless source
of amazement, inspiration and instruction to future generations. Considering the endless debates
over dinosaurs and human ancestors, just imagine what science will do with documented evidence
for millions of species! Further, we have only begun to explore the interfaces between taxonomy
and ecosystem science, genomics, developmental biology and comparative ethology; an inventory
of Earth's species only lays the foundations for such interdisciplinary studies.
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I imagine that the current arguments to redirect funding into taxonomy would not be necessary
had the Mars 'rover' found complex life forms during its recent romp over the surface of that planet,
along with evidence that 25 per cent of them would soon become extinct. It is fair to guess that
we as a society would have enthusiastically appropriated billions to do a rapid and thorough
inventory. And that would have been the right decision. The fact that millions of life forms new to
our solar system happen to live on the third planet instead of the fourth should not dissuade us
from pressing ahead with our exploration and documentation of them. What they can teach us about
evolution and ecosystems is no less interesting; the solutions they might provide to countless
environmental and practical problems are no less valuable. 

 

CONCLUSION: TAXONOMY'S FINEST HOUR?

 

Reasserting taxonomy in time to bequeath a legacy of specimens and information about Earth's
species, clades and ecosystems to posterity is a tall order. Although no generation would choose
to face such a challenge, we have the means, opportunity and methods to succeed. We have
opportunity, as the last generation with access to many of Earth's species and clades (Wheeler,
2004); the means through emerging digital tools and cyberinfrastructure (Page et al., 2005); and
the motive – in the face of the biodiversity crisis – to reconceive taxonomy as a digitally enabled
'big' science and to assure that its theoretical advances and excellent practices are not sacrificed on
the altars of popularity and expediency. We do not need to compromise our standards or abandon
the rigorous taxonomic practices we have worked so hard to gain in the past 250 years in order to
realize an acceleration of taxonomy. To the contrary, we can utilize existing strengths of taxonomy
and its collections to make remarkably fast progress.

If taxonomists come together and reinvent their science to take full advantage of the information
revolution, digital tools and instruments and cyberinfrastructure, it is possible for taxonomy to
enjoy its finest hour and to create a legacy of knowledge and of specimens that will forever expand
the horizons of science and of the human experience. Imagine how intellectually impoverished our
lives would be had there been no fossilization of life forms from earlier geological times. The
comparatively few species preserved in the fossil record have educated and inspired and continue
to educate and inspire us in too many ways to list. Specimens that we collect, describe, classify,
and preserve today will be nothing short of perfectly preserved fossils for future generations to
study. Given appropriate associated data, these specimens will permit future generations to continue
to probe the complexities of ecosystems, the changes of biodiversity through time and space, the
transformation of characters that is the wonder of evolution, and the details of the unparalleled
three-billion year history of life on Earth. 

What would it be worth to discover a well-preserved collection of a large proportion of the
species of the Jurassic including dinosaurs and early ancestors of birds and mammals? We have
the capacity to bequeath such comprehensive collections of Neocene animal and plant groups to
future taxonomists, evolutionary biologists and environmental scientists at a remarkably small
expenditure. Imagine how such collections will be valued and studied. It will cost us little to do
this great and selfless thing that will never be repeated in the future at any price. If we succeed,
future generations will look back at the twenty-first century as not merely a time of great environ-
mental upheaval and species decimation but also as the time of taxonomy's finest hour. In our age
of cynical self-interest, it will not be easy to bypass easily funded pop science in order to pursue
the hard work of exploring a changing planet's species. The clarity of purpose and courage of
conviction needed to succeed are rarely seen in today's scientific institutions.

We should take courage from the impressive progress that has been and continues to be made.
As a community, taxonomists and institutions engaged in taxonomy should resolve over the period
of a decade to transform the infrastructure of taxonomy, including access to existing resources
(literature, data in collections, etc.) – and especially development of cyberinfrastructure (hardware
and software) for taxonomic research and in support of the full range of taxonomic activities from
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field work to e-publication – and including basic descriptive taxonomy, phylogenetics and applied
taxonomy. Users will appreciate taxonomy more when they are empowered to make species
identifications and effortlessly access information about all species on demand. Taxonomists will,
in turn, generate more new knowledge, test more existing hypotheses, and finally get on with the
grand challenges of taxonomy (Table 2.1) that have been sidelined by fashionable alternatives.

The chapters in this book reveal innovative, promising directions in the imaginative development
and use of digital tools and algorithms to aid in identification work and in the documentation and
analysis of variation. This is an essential ingredient in a vibrant, successful future for taxonomy
and should give heart to those who recognize the great test facing us. It is an important part of an
increasingly repeated call for a new infrastructure for descriptive taxonomy (e.g. Wheeler et al.,
2004). Will taxonomy rise to meet its greatest challenge? Can the appropriate priorities for science
funding be adopted before it is too late to document biological diversity at its various levels of
complexity? Can taxonomists manage to set their differences aside, establish priorities and speak
with one effective political voice in time? Do we have the vision and courage to harness the
incredible power in emerging digital tools to revitalize taxonomy? Are there museums, botanical
gardens and universities with the confidence in taxonomy to be leaders in this digital infrastructure
revolution? I hope so.
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TABLE 2.1
A Comparison of 'Grand Challenge' Questions of Taxonomy

 

Cracraft (2002) Page et al. (2005)

 

1. What is a species? 1. What are Earth's species, and how do they vary?
2. How many species are there? 2. How are species distributed in geographical and 

ecological space?
3. What is the tree of life? 3. What is the history of life on Earth, and how are species 

interrelated?
4. What has been the history of character transformation? 4. How has biological diversity changed through space and 

time?
5. Where are Earth's species distributed? 5. What is the history of character transformations?
6. How have species distributions changed over time? 6. What factors lead to speciation, dispersal and extinction?
7. How is phylogenetic history predictive?

 

Sources:

 

 Cracraft, J., 2002, 

 

Annals of the Missouri Botanical Garden,

 

 89: 127–144; Page, L.M., 2005, LINNE: Legacy
infrastructure network for natural environments. Champaign, Illinois, Natural History Survey.

 

8205_book.fm  Page 22  Tuesday, June 12, 2007  2:25 PM



 

Digital Innovation and Taxonomy's Finest Hour

 

23

 

REFERENCES

 

Atkins, D.E., Droegemeier, K.K., Feldman, S.I., Garcia-Molina, H., Klein, M.L., Messerschmitt, D.G., Mes-
sina, P., Ostriker, J.P. and Wright, M.H. (2003) Revolutionizing science and engineering through
cyberinfrastructure. Report of the National Science Foundation Blue-Ribbon Advisory Panel on
Cyberinfrastructure. US National Science Foundation, Arlington, VA. 

Blaxter, M.L. (2004) The promise of a DNA taxonomy. 

 

Philosophical Transactions of the Royal Society of
London, Series B,

 

 359: 669–679.
Calman, W.T. (1930) 

 

The Taxonomic Outlook in Zoology,

 

 British Association for the Advancement of Science
(Section D: Zoology), Bristol, England, pp. 1–10.

Cracraft, J. (2002) The seven great questions of systematic biology: An essential foundation for conservation
and the sustainable use of biodiversity. 

 

Annals of the Missouri Botanical Garden,

 

 89: 127–144.
Edwards, J. (2003) Research and societal benefits of the Global Biodiversity Information Facility. 

 

BioScience,

 

54: 485–486.
Gaston, K.J. and O'Neill, M.A. (2004) Automated species identification: Why not? 

 

Philosophical Transactions
of the Royal Society of London, Series B,

 

 359: 655–667.
Gramling, C. (2005) How fast does your dinosaur grow? 

 

Science,

 

 310: 1751.
Hennig, W. (1966) 

 

Phylogenetic Systematics.

 

 Urbana, University of Illinois Press.
House of Lords. (2002) 

 

What on Earth? The Threat to the Science Underpinning Conservation,

 

 Select
Committee on Science and Technology, Third Report. HL Paper 118(i). HMSO, London.

Millennium Ecosystem Assessment. (2005) 

 

Ecosystems and Human Well-being: Biodiversity Synthesis,

 

 World
Resources Institute, Washington, DC. 

Miller, D.R. and Rossman, A.Y. (1995) Systematics, biodiversity, and agriculture. 

 

BioScience,

 

 45: 680–686.
Nelson, G. and Platnick. N. (1981) 

 

Systematics and Biogeography: Cladistics and Vicariance,

 

 New York,
Columbia University Press.

Page, L.M., Bart, H.L., Jr., Beaman, R., Bohs, L., Deck, L.T., Funk, V.A., Lipscomb, D., Mares, M.A., Prather,
L.A., Stevenson, J., Wheeler, Q.D., Woolley, J.B. and Stevenson, D.W. (2005) LINNE: Legacy
infrastructure network for natural environments. Champaign, Illinois, Natural History Survey.

Prendini, L. (2005) Comment on 'Identifying spiders through DNA barcodes'. 

 

Canadian Journal of Zoology,

 

83: 498–504.
Raven, P.H. (2004) Taxonomy: Where are we now? 

 

Philosophical Transactions of the Royal Society of London,
Series B,

 

 359: 729–730.
Scoble, M. (2004) Unitary or unified taxonomy? 

 

Philosophical Transactions of the Royal Society of London,
Series B,

 

 359: 699–710.
Simpson, G.G. (1945) The principles of classification and a classification of mammals. 

 

Bulletin of the American
Museum of Natural History,

 

 85: 1–350. 
Simpson, G.G. (1961) 

 

Principles of Animal Taxonomy,

 

 New York, Columbia University Press.
Soberon, J. and Peterson, A.T. (2004) Biodiversity informatics: Managing and applying primary biodiversity

data. 

 

Philosophical Transactions of the Royal Society of London, Series B,

 

 359: 689–698.
Tautz, D., Arctander, P., Minelli, A., Thomas, R.H. and Vogler, A.P. (2003) A plea for DNA taxonomy. 

 

Trends
in Ecology and Evolution,

 

 18: 70–74.
Timofeeff-Ressovsky, N.W. (1940) Mutations and geographical variation. In (ed J. Huxley), 

 

The New System-
atics,

 

 Oxford University Press, London, pp. 73–136.
Wheeler, Q.D. (2004) Taxonomic triage and the poverty of phylogeny. 

 

Philosophical Transactions of the Royal
Society of London, Series B,

 

 359: 571–583.
Wheeler, Q.D. (2005) Losing the plot: 'DNA barcoding' and taxonomy. 

 

Cladistics,

 

 21: 405–407.
Wheeler, Q.D., Raven, P.H. and Wilson, E.O. (2004) Taxonomy: impediment or expedient? 

 

Science,

 

 303: 285.
Wheeler, Q.D. and Valdecasas, A.G. (2005) Ten challenges to transform taxonomy. 

 

Graellsia,

 

 61: 151–160.
Will, K.P., Mishler, B.D. and Wheeler, Q.D. (2005) The perils of DNA bar-coding and the need for integrative

taxonomy. 

 

Systematic Biology

 

. 
Wilson, E.O. (1985) The biological diversity crisis: A challenge to science. 

 

Issues in Science and Technology,

 

Fall, 1985: 29–29.
Wilson, E.O. (1992) 

 

The Diversity of Life,

 

 New York, Norton.
Wilson, E.O. (2003) The encyclopedia of life. 

 

Trends in Ecology and Evolution,

 

 18: 77–80.

 

8205_book.fm  Page 23  Tuesday, June 12, 2007  2:25 PM



 

8205_book.fm  Page 24  Tuesday, June 12, 2007  2:25 PM



 

25

 

3

 

Natural Object Categorization: 
Man versus Machine

 

Philip F. Culverhouse

 

CONTENTS

 

Introduction ......................................................................................................................................25
Visual Recognition of Objects..................................................................................................26
Psychophysical Issues...............................................................................................................27

How Good Are People at Sorting? ..................................................................................................28
The Process of Recognition: Context, Categorization, Biases ................................................31

Context ............................................................................................................................32
Categorization..................................................................................................................32
Biases...............................................................................................................................33

Human Performance ........................................................................................................................34
Machine Performance ......................................................................................................................36

An Example: HAB Buoy..........................................................................................................37
Machine-Vision Issues ..............................................................................................................38
Expert-Opinion Issues...............................................................................................................38
A Consensus Experiment..........................................................................................................39
Speed of Recognition................................................................................................................41

Conclusions ......................................................................................................................................41
The Need...................................................................................................................................42

Acknowledgements ..........................................................................................................................43
References ........................................................................................................................................43

 

INTRODUCTION

 

This chapter is concerned with natural object categorization. Whether done by man or machine,
the outcome is a labelled object. The object will have been presented to the categorizer as a drawing
or as a natural specimen or an image of a specimen. The categorizer will have been asked to apply
prior knowledge to the analysis of visible features that are in some way characteristic of the object
class. Systematics 

 

per se

 

 is outside the scope of this discussion, but much scientific work in many
fields is concerned with labelling specimens. Much remains to be done using manual methods, but
recently, advanced pattern-recognition methods have been successful in automating some catego-
rization tasks. 

In this chapter two questions are posed: 'How good are experts at categorization?' and 'How
do experts compare with current machine methods?' To answer these questions, factors that affect
human performance must be understood. These may then be compared to machine performance to
give a reasonably balanced view of the potential of people and machines at natural object catego-
rization. Surprisingly, people can be less than perfect at giving class labels to objects if there are
lots of objects to label.
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V

 

ISUAL

 

 R

 

ECOGNITION

 

 

 

OF

 

 O

 

BJECTS

 

Visual scene analysis and object recognition are abilities shared by many animal vision systems.
It is clearly an important survival characteristic to be able to differentiate between food and foe,
obstacle and path, etc. What neural processes are involved remains unclear, although progress has
been made through investigations of insect, fish, amphibian, bird and mammalian (including human)
vision systems (e.g. Cerella, 1979, 1980; Ewert, 1984; Proffitt

 

,

 

 1993; Srinivasan, 1998; Hubel and
Wiesel, 2004). Motion provides strong cues for scene segmentation and object recognition
(Bertenthal, 1992). Object colour and shape are also important (Gibson, 1969; Jacobs, 1981).

There are two closely related, but different, psychophysical models of object recognition
currently being debated: recognition by components (RBC) (Biederman, 1987) and a chorus of
prototypes (Edelman, 1999

 

)

 

. Both models have supporting and conflicting evidence. However, there
are strong limitations on the scope of objects that RBC can represent and recognize because
mechanisms for dividing objects into parts and representing parts are not general purpose and the
RBC model has difficulty in representing closely related objects that we find no difficulty in
discriminating – for example, different makes of car or two different golden retrievers (Tarr and
Bültoff, 1995).

Current computational models used by the machine vision community offer a wide variety of
possible solutions to the object recognition problem, depending on the number of constraints applied
to limit the possible scene interpretations. For example, highly constrained, production-line inspec-
tion, where a known set of objects is imaged and analysed for features, allows prior two- and three-
dimensional models to be compared with features derived from live-image cameras. Under these
constraints, recognition is reduced to matching a sufficient set of features to reveal object defects.
Fine detail can then be compared to confirm the object category: a good part, malformed, and so
on (Lowe, 1987). As the recognition problem becomes more open ended, it also becomes increas-
ingly ill posed (Bertero et al., 1998). At some point, any number of scene interpretations is possible,
leading to a combinatorial explosion of possibilities. 

An emerging view of perception as statistical decision making, originated by Gibson (1957)
as the ecological theory of perception, has led to much interest in the statistics of natural scenes
(Hancock et al., 1992; Ruderman, 1994) as well as the supposition that a Bayesian approach can
constrain the search for scene interpretations (Duda and Hart, 1973). In most cases, contextual
knowledge is crucial for successful visual object recognition.

The outcome is that, for most people, scene segmentation into objects of interest and back-
ground clutter (also known as figure–ground separation) happens quickly and mostly within 1 or
2 seconds of scene presentation. Sometimes the segmentation and object recognition task is easy
even in static images where colour and high-contrast objects simplify figure–ground separation
and are aided by contextual knowledge. Figure 3.1 highlights this with an image of marine fish
and coral, where a sense of up and down suggests sky and ground (correlating with water and
coral ground) and a prior knowledge of fish will provide most readers with a sense of understanding
of this scene. However, even contextual knowledge can be insufficient, especially if the image is
information limited. This can make the figure–ground separation and subsequent recognition
difficult. Figure 3.2 illustrates this with a low-contrast, high-clutter tree scene. The photograph
was taken with the sun low in the sky. Yet even this scene yields information to the observer, with
a suggestion that the central tree has ivy growing up its trunk. But, how many trees and species
are in the scene?

Humans normally interpret their visual world as if the sun is in the sky and the ground is
beneath their feet. Unusual occlusion or unusual view angles delay scene interpretation and under-
standing (Johnson and Olshausen, 2005; see Figure 3.3). Monochromatic images are harder to
interpret than colour images, presumably as there is less information in them to assist segmentation.
Figure 3.4 shows this for the same image as in Figure 3.3.
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P

 

SYCHOPHYSICAL

 

 I

 

SSUES

 

There is a wealth of experimental evidence gained from psychophysical studies on humans (e.g.
Duchowski, 2002) describing the way in which we scan a visual scene. Our eyes are controlled by
series of short, fast movements known as saccades. These can be reflex actions derived from a
stimulus in the field of view (bottom up) or guided by a conscious (or unconscious) desire to search
a particular part of the field of view (top down). Part of the reason for saccadic eye motion is that
mammalian eyes do not have even visual acuity across the whole field of view. In fact, the central
part of the light-sensitive retina (the fovea) has the highest resolution. So, an entire microscope
field of view, for example, can be seen by a series of search-based saccades that direct the eyes
towards attractors in the scene. Reflex eye movements tend toward colour and high-contrast areas
of the visual field.

Human vision also has a property called selective attention (Broadbent, 1958

 

)

 

. This allows us
to tend to objects in particular parts of the visual field to the exclusion of others. It has been likened
to a spotlight moving in a darkened room, partially illuminating different areas as it is moved, and
is known as the 'spotlight of attention' (Treisman

 

,

 

 1982; Crick, 1984). Shifts of attention can be
overt or covert (Pashler, 1996).

 

FIGURE 3.1

 

(Color Figure 3.1 follows page 110.)

 

 Sometimes, scene segmentation and object recognition
are easy.

 

FIGURE 3.2

 

(Color Figure 3.2 follows page 110.)

 

 Sometimes, low contrast and high clutter make object
recognition hard.
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Related to attention is pop-out. Pop-out occurs against a background of distracters (Treisman,
1985, 1986). The item that pops out, and to which subsequent attention is directed, is variant in
some manner from distracters. For example, in a field of horizontal lines a vertical line will pop
out. Figure 3.5 demonstrates pop-out for a more complex array of distracters and attractor: oriented
seagulls. Pop-out can be context driven (i.e. directed by a prior conscious feature selection)
(Reimann et al., 2003), with colour appearing to be the strongest cue.

Unusual occurrence can be ignored if it constitutes a distracter of attention or can be the focus
of attention if other features in the scene are judged as background. This is probably the case in
Figure 3.6, where the eye tends towards the coffee cup as it is the only recognizable object in the
scene. Alternate interpretation is possible, where the background is the focus of attention and only
after a few seconds does the viewer sense the coffee cup. Yet, inverting the scene in Figures 3.4,
3.5 and 3.6 reveals, in Figure 3.7, a range of objects and cues such as shadows, allowing depth
perception and correctly assigning ground at the bottom of the photograph (Verera et al., 2002).

Prior knowledge is essential for specialist search and identification tasks. Figure 3.8 highlights
this. For those who have not seen phytoplankton before, the image can plausibly hold one object,
whose contortions appear strange. Those with more experience will see three specimens overlapping.

 

HOW GOOD ARE PEOPLE AT SORTING?

 

Experience plays an important part in sorting objects. Try a test yourself. Look at the central image
in Figure 3.9 and measure the time it takes you to count the objects listed on the right-hand side.
The more familiar you are with a type of scene, the quicker sorting can be. However, trying to be
too fast can increase errors as the eye skips whole sections of the field of view. This is probably
due to the properties of saccadic eye movement and the spotlight of attention mentioned earlier.

 

FIGURE 3.3

 

(Color Figure 3.3 follows page 110.)

 

 Unusual scenes delay recognition.
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FIGURE 3.4

 

Monochrome images present reduced information to the viewer.

 

FIGURE 3.5

 

Pop-out can occur, highlighting a unique or a repetitive feature according to circumstances.
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FIGURE 3.6

 

(Color Figure 3.6 follows page 

 

110

 

.)

 

 An unusual item can be ignored: the cup is the focus of
attention and the background is ignored.

 

FIGURE 3.7

 

(Color Figure 3.7 follows page 110.)

 

 Correct orientation facilitates scene analysis and recog-
nition.
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Pop-out cannot be used reliably in these situations, since it cannot be guaranteed that the specimen
features causing it are consistently 'popped out'. A careful serial search of the scene is required,
which is both slow and tiring. If there is any pop-out or attentional effect in Figure 3.9, it is the
larger objects, which correspond to zooplankton: copepods and decapod larvae. 

 

T

 

HE

 

 P

 

ROCESS

 

 

 

OF

 

 R

 

ECOGNITION

 

: C

 

ONTEXT

 

, C

 

ATEGORIZATION

 

, B

 

IASES

 

In general, object recognition can be viewed as the application of constraints to a visual scene. The
constraints are context and category. Context can prime search categories and define expectations.
Category relies on salient features characteristic of an object class; a sufficient set of features should
provide recognition. Biases affect the quality of the judgements made during recognition.

 

FIGURE 3.8

 

Is this one object or many?

 

FIGURE 3.9

 

Sorting a scene can take a long time.
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Context

 

Context and other prior cues to category speed recognition significantly (Oliva et al., 2003). For
example, because a marine scientist will know from prior experience of manually sorting plankton
that samples taken from specific areas are likely to include particular species, Atlantic Ocean
samples will be expected to have Atlantic Ocean species present. Figure 3.10 indicates the diversity
of species that can be found in one sample. Other species may occur in low abundance, but this
contextual knowledge allows the expert to predict what specimens are likely to be found. This
knowledge primes their visual search of a scene, perhaps by expected species frequency, and hence
primes the use of discriminant features known to be associated with those species. This, unfortu-
nately, also constitutes bias (see following).

 

Categorization

 

Over the years since Linnaeus developed his key classification methodology, the systematics
community has arrived at a stable consensus relating species labels to characteristic features that
have been described in the scientific literature for recognized flora and fauna. Recent advances in

 

FIGURE 3.10

 

HAB Buoy. An example image set of natural objects that currently requires expert recognition
for labelling. Note: All images were acquired 

 

in flow

 

.

Copepoda: Calanus finmarchious V

Euphausiid: Calyptopis

Dinoflagellate:
Ceratium trichoceros

Copepoda: Neuplius

Copepoda: Oithona sp. V1
Tintinnid:
Cymatocylis SD. Cladocera: Penilia avirostris

Dinoflagellate:
Ceratium fusus

Dinoflagellate:
Dinophysis
caudata

Dinoflagellate: Protoperidinium
sp.

Copepoda: Oithona
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DNA analysis have also led to the use of DNA to support or reclassify species (e.g. Bucklin and
Kann, 1991; Bucklin et al., 1996; Hill et al., 2001

 

)

 

. New taxa are identified and organized according
to this established framework. Expert knowledge is learnt through rules and examples.

Over time taxonomic experts will add to their personal knowledge base through evidence-based
reasoning. This allows an expert to economize on the effort required to identify a particular specimen
when engaged in routine identification tasks. It is generally acknowledged that taxonomists are
either 'groupers' or 'splitters' and will preferentially either add an unknown specimen to an existing
group found in the sample or create a new group in which to place that specimen. In a series of
particularly revealing studies, Sokal (see 1966, 1974 and 1983

 

)

 

 explored how experts gather
specimens into groups. He used synthetic creatures he called 

 

Caminalcules

 

 (after Joseph H. Camin,
the taxonomist) that possessed both simple and complex features.

Figure 3.11 depicts some examples of these 

 

Caminalcules

 

. Sokal discovered that experts make
up their own rules for grouping. They even do not agree totally on the feature conjunctions that
are best employed in the categorization. However, even after we accept that experts differ in the
way they group things, they still return similar groupings. This is a remarkable result, yet not error
free, since the various groupings did not agree totally. This idiosyncratic rule creation of human
expert judgement suggests a potential for long-term bias errors, when groups of experts who use
idiosyncratic rules to identify objects do not form a consensus. 

 

Biases

 

Human performance in identifying and sorting organisms is affected by several psychological
factors: (a) the human short-term memory limit of five to nine items, (b) fatigue and boredom, (c)
recency effects where a new classification is biased toward those in the set of most recently used

 

FIGURE 3.11

 

Example of 

 

Caminacules

 

. (Reprinted with permission.)
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labels and (d) positivity bias, where specimen identification is biased by one's expectations of the
species likely to be present in the sample (Evans, 1987). 

Short-term memories are very volatile. Studies have shown that most people have difficulty
remembering even three items after 18 seconds (Peterson and Peterson, 1959). Even more surpris-
ing, Marsh et al. (1997) suggest that short-term memory can decay within 2 seconds. The nature
of working memory also appears biased to favour gain in certain risk-averse decision-making
situations (Toth and Lewis, 2002). It is possible that this bias might affect routine sampling in time-
pressured situations. When ambiguous objects are labelled, the bias may reveal itself by favouring
a predicted outcome rather than the actual outcome of the sample analysis.

Colquhoun (1972) suggests that fatigue sets in quickly on highly repetitive tasks. In an earlier
study (Colquhoun, 1959

 

)

 

, he established that ambient noise, high ambient temperature, difficulty
of signal detection and loss of sleep decrease performance. In some circumstances, very high levels
of mistakes can arise in short periods of time (e.g. less than 30 minutes). He also noted that rest
periods can help. Fox (1971) observed that within 30 minutes radar operators could show a 70 per
cent drop in efficiency. It seems this is an issue of boredom, rather than fatigue. Visual inspection
is particularly problematic, with Megaw (1979) showing that many factors affect accuracy and
Welford (1968) describing fatigue as resulting from overloading the operator. Welford also noted
that under-loading an operative can be just as damaging through monotony.

Monotony can occur when tasks require little cognitive processing or attention, are highly
repetitious, are not complex or have been over-learned. Under these conditions, Welford states that
performance may be generally poor, as with overloading, but that the nature of performance
degradation is fundamentally different. When the operator is overloaded, actions are confused and
judgements tend to be unclear. In contrast, when the operator is under-loaded, attention can drift,
signals are missed and performance becomes poor. This is why histopathology laboratories limit
an expert's serial inspection of cytology slide material to a maximum of 4 hours per day, with
frequent breaks to minimize the effects of fatigue and monotony.

Finally, it is generally acknowledged that expertise takes time to acquire and is domain specific.
However, studies into expert performance suggest that the mere number of years of experience is
only weakly related to performance, but that deliberate practice (i.e. reinforcement learning) is
crucial (Ericsson and Lehmann, 1996). The suggestion that experts may become less effective as
they get older is, therefore, theoretically possible. Consider the case of an expert's deliberate practice
that includes the idiosyncratic creation of rules (c.f. Sokal's experiments discussed earlier) having
a neutral or even a negative effect on discrimination. This will not improve the expert's skill. Experts
working alone are probably more susceptible to this condition, where new rules are developed and
tested without external reference. This is often the norm in biological science. So, how do experts
continue to improve when they often are the only local expert in a particular domain? A solution
may be regular intercalibration within a peer group, aiming to achieve group consensus. 

 

HUMAN PERFORMANCE

 

It is a tacit assumption that a trained, expert taxonomist is an error-free identifier when engaged
in identifications of taxa that he or she is expert in. However, the biases and beliefs described
previously, together with operational problems (e.g. speed of labelling, length of time performing
the task), contribute to errors. A study that compared experts for self- and mutual consistency
(Simpson et al., 1991) revealed inconsistencies.

The task was discriminating between field-collected specimens of 

 

Ceratium longipes

 

 and

 

Ceratium arcticum

 

, two closely related species of dinoflagellate phytoplankton (see Table 3.1 and
Figure 3.12). Taxonomic experts demonstrated 94–99 per cent self-consistency, whereas experi-
enced marine ecologists given 'book' descriptions of the two species and a small training set to
hone their skills (this group are referred as 'book experts' later) demonstrated wider variance with
67–83 per cent self-consistency. The experiment required experts to identify, but not tally, the
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specimens in the sample. Combining the labelling results of these two sets of skilled scientists, a
panel consistency measure of 43–95 per cent was obtained for all the specimens in the trial. This
suggests that consensus can be difficult to obtain in practice. Yet, consensus is the basis of scientific
progress. A computer-based analysis of the same data attained a consistency of 99 per cent. 

The same team carried out further consistency experiments (Culverhouse et al., 1992,

 

 

 

1994, 1996;
Simpson et al., 1992). Results are summarized in Table 3.1. It can be seen that expert consistency
within a panel is never 100 per cent, but varies between 83 and 95 per cent, depending on the task.
Difficulty is essentially defined by the number of categories the panel was required to consider and
keep in mind; it is possible that the short-term memory limit of five to nine items impacted directly

 

TABLE 3.1
Expert and Mutual Consensus Performance

 

Categorization task
Self-consistency

within panel
Panel consistency
across individuals

Machine
performance

 

Ceratium longipies

 

 and 

 

C. arcticum

 

N/a 43–95% 99%
Tintinidae (5 spp.) N/a 91% (six experts) 87%
Fish larvae (3 spp.) N/a N/a 70%

 

FIGURE 3.12

 

Plankton used for self- and mutual consensus performance. A. 

 

Ceratium longipes

 

 (upper) and

 

C. arcticum

 

 (lower). (From R. Williams, PML, UK) B. Tintinidae. (From J. Turner, U. Mass, USA) C. Fish
larvae. (From A. Lindley, PML, UK)

A.

C.

B.
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on their performance when asked to label 23 phytoplankton species. Machine performance attains
similar performances to humans, but uses non-human metrics to carry out the identifications.

In quality-control studies, Kelly (2001) used benthic diatom specimens to compare performance
of a trained 'counter' and an 'auditor'. The Trophic Diatom Index counts for 58 UK river samples
varied by as much as 30 per cent between counters, with 13 of the 58 counts having more than 10
per cent discrepancy. It seems in these circumstances that the errors are non-linear, with the most
error-prone counts obtained from those samples with low degrees of species Bray–Curtis similarity
(defined in Gauch, 1982; i.e. most variety within the sample).

 

MACHINE PERFORMANCE

 

All current machine-vision categorization methods employ a form of template, or feature, matching
during the recognition process. Computer-based three-dimensional models can generate two-dimen-
sional templates at different object poses to match through correlation or convolution with an object
in a two-dimensional visual scene (Goad, 1986; Lowe, 1987). However, these techniques suffer
from reduced performance when the object is occluded or noisy. Also, models and profiles have
to be created for each object or object pose, and this is a significant drawback for natural object
recognition where objects have natural morphological variation arising from genetic or environ-
mental factors, or from structural damage due to predation or accident.

More recently, it has become common to use a plethora of machine-extracted features to
correlate with object class. A training set of objects is used to establish the pool of features and
their prior distributions. Statistical and other pattern-classification methods are then used to cluster
the feature occurrences in test specimens and hence derive an identification. Thus, in the Automatic
Diatom Identification and Classification (ADIAC) system (Du Buf and Bayer, 2002), a large set
of morphological measurements (e.g. specimen length, width, aspect ratio) is made of each
specimen placed under the microscope. Some of these measurements are similar to those made
by taxonomic experts and similar to ZooSCAN (Grosjean et al., 2004), used for zooplankton
recognition and counting where a forest of classifiers is used. DiCANN (Dinoflagellate Identifi-
cation by Artificial Neural Network) (Culverhouse et al., 1996; Toth and Culverhouse, 1998;
Culverhouse et al., 2004)

 

,

 

 a tool for dinoflagellate phytoplankton species recognition, analyses
low-resolution shape, texture and size characteristics, but uses the machine to discover how these
features correlate with object classes through support vector machine (SVM) clustering.

Shadow Image Particle Profiling Evaluation Recorder (SIPPER) (Samson et al., 2001; Remsen
et al., 2004) has employed SVM categorizers fed from shape moments (Hu, 1962), granulometric
and domain-specific features to recognize five classes of plankton. The Video Plankton Recorder
(VPR), developed at Woods Hole Oceanographic Institute, has been used as a test bed for a number
of analysis protocols (Tang et al., 1998; Hu and David, 2005). The most recent VPR system
demonstrated recognition through texture analysis and categorization. Table 3.2 summarizes recent
performance results of these systems.

A distinct advantage of automation is the speed of operation. Published data show that Zooscan,
SIPPER and VPR can process many thousands of objects per hour (and, being automata, without
fatigue too). This is clearly an order of magnitude improvement in identification rate compared to
taxonomic experts, though these machines can only perform generic-level discriminations at present.

All these machines have been tested with field-collected data, either 

 

in situ

 

 or in the laboratory.
However, they all suffer from the basic problem that they do not work like expert taxonomists or
ecologists. This means that they can only operate with data that fit their training set. Extrapolations
from the training set are undefined, although having a training bin labelled 'reject' can help reduce
false positive identifications of detritus and so on. New categories cannot always be added auto-
matically. It is important to recognize that a correspondence between machine and manual results
has to be established to ensure that the machines operate with the desired clustering characteristics.
This may be because the machines are not using the normal taxonomic features described in the
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taxonomic literature. Often the exact combination of features is obscure or hidden within data
arrays in the machine. Future machines will need to operate with features more consistent with
established taxonomic knowledge.

The arbitrary nature of category is highlighted by the example shown in Table 3.3 and Figure
3.13 using the Harmful Algal Bloom (HAB) Buoy imaging system together with the DiCANN
clustering and labelling software. The categories chosen are not derived from biological taxonomy,
yet the machine can operate with them. The patterns derived from the DiCANN feature extraction
stage can be linked to any categorical collections, which in this case are 'gliders', 'blobs', 'triangles'
and 'cups'. It has been shown previously that performance is related to training set size and feature
variance with the classes and limited by information extracted from features (Simpson et al., 1991).
The 'confusion matrix' is the normal way of summarizing performance. It can be seen from Figure
3.13 that the class 'cups' had 12 examples. In a 'leave-one-out' training protocol (used for small
data-sets), eight of these were miscategorized as 'gliders', three as 'blobs' and only one identified
correctly. The task was, however, difficult, since the data-set was small, with less than 40–100
items in each category. View angle was unconstrained, giving rise to large variances in feature view
angle (or pose) in the data-set.

 

A

 

N

 

 E

 

XAMPLE

 

: HAB B

 

UOY

 

As an example of current machines for object recognition, HAB Buoy represents a new class of
automatic 

 

in situ

 

 instruments that possess embedded artificial intelligence to carry out the identi-
fication of specimen images. Its camera resolution is 1 

 

μ

 

m, with a dynamic range of 20–4000 

 

μ

 

m.
The buoy is designed for 

 

in situ

 

 static sampling and analysis of micro- and mesoplankton. Identi-
fication is accomplished through automatic feature extraction and multichannel SVM. As shown
earlier (Table 3.3), group clustering and identification are flexible, allowing plankton specimens to
be grouped by ecological function or taxonomy.

 

TABLE 3.2
Performance Summary for Marine 
Plankton Recognition Systems

 

Systems Group size
Correct

identifications

 

ADIAC 37 taxa 75–90%
Zooscan 29 groups 75–85%
SIPPER 5 groups 75–90%
DICANN 3–23 species 70–87%
VPR 7 groups 72%

 

TABLE 3.3
Summary of Arbitrary Categorization of 
Marine Plankton Data

 

Gliders Blobs Triangles Cups

 

Gliders 25 1 3 8
Blobs 3 21 5 3
Triangles 0 0 1 0
Cups 0 0 0 1
Totals 28 (89%) 22 (95%) 9 (11%) 12 (51%)
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Accuracy is proportional to training data variance and HAB Buoy identifies at a speed of
approximately 250–500 msec per object. HAB Buoy can image more than 10,000 specimens in 40
minutes, taking another few hours to process them. Once fully commissioned, this type of instrument
will be used to analyse the common easily distinguished species in water samples, freeing experts
up for more complex analyses and reducing their burden of routine, perhaps tedious sample analysis,
and thus removing human bias from routine sample analysis.

 

M

 

ACHINE

 

-V

 

ISION

 

 I

 

SSUES

 

It is clear that automatic, natural-object categorization is feasible and useful, yet still in its early
years. However, already a number of issues have become apparent. These must be considered in
the future design and wider use of such machines. The most important of these is the quality of
the training-set data. If, as is absolutely necessary at present, experts select the training specimens,
then the quality of their decision making must be questioned. It is normal practice to establish a
'gold standard' data-set that constitutes an authoritatively identified reference specimen set. As we
have seen before, however, human errors can arise and be high (as much as 27% disagreement).
Unfortunately, it is common practice to train machine-vision systems with 'trial data-sets' con-
structed by an individual that have not been subject to any quality assurance process. This is not
good practice.

Quantity of training data is also an issue, especially if you need to ask an expert to label 1000
or more specimens accurately. The nature of statistical and other pattern classifiers is that they
require enough examples of a class to demonstrate the natural variations expected in future test
data. Experiments have shown that 40–100 examples are normally sufficient. Yet the norm in most
areas of taxonomy is to select and describe a small number of type specimens for reference. This
is not enough for current machine-recognition methods.

 

E

 

XPERT

 

-O

 

PINION

 

 I

 

SSUES

 

Humans are biased, fatigue easily and are thus are imperfect tools for creating machine-recognition
training data. To minimize errors in machine recognition, it is clear that expert consensus is required
for training data. The accepted methodology is the Delphi protocol (Linstone and Turoff, 1975),
where experts agree on a label through a mediated consensus. Obviously, this might be impractical

 

FIGURE 3.13

 

Morphologies used for categorization of marine plankton test. A: gliders; B: blobs; C: triangles;
D: cups.

A

B

C
D
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for many species where the lack of taxonomic expertise has created an impediment to scientific
research (see Darwin Declaration, 1998). The question of consensus is difficult and can be con-
frontational for experts, many of whom are used to working alone.

 

A C

 

ONSENSUS

 

 E

 

XPERIMENT

 

A six-phytoplankton species experiment was constructed to test expert opinion with a difficult
taxonomic group from the microplankton: the 

 

Dinophysis

 

 dinoflagellate species group. The data,
310 images of closely related dinoflagellates, were shown to 16 marine ecologists and phytoplankton
taxonomists across Europe via the World Wide Web. Each expert identified each image and assigned
a probability of confidence to each identification. Figure 3.14 shows an example of each species.

Specimens were presented as high-quality photomicrograph images displayed on computer
screens, shown to each expert through active Web pages via the Internet. The task was rated as
difficult, since several of the species exhibit polymorphism and morphological variance. Example
images are shown in Figure 3.15. Complexity was added to the task because experts normally
view plankton through a microscope where they can focus up and down through the image to
gain more information.

Figure 3.16 shows the difficulty for machine and human classifiers, where four species display
adjacent clustering in a linear discriminant analysis plot of morphometric data for specimens. This
highlights potential confusions between certain species. Results are presented in Figure 3.17.

 

FIGURE 3.14

 

Example images of six species used in the six-species consensus study. A. 

 

Dinophysis fortii

 

; B.

 

D. rotundata

 

; C. 

 

D. acuminata

 

; D. 

 

D. caudata

 

; E. 

 

D. tripos

 

; F. 

 

D. sacculus

 

. A total of 310 images were given
to 16 marine taxonomists and ecologists. (Sources: B. Reguera, IEO, ES: A, D, E; S. Fonda, LBM, IT: B, C, F.)

A.
D.

E.B.

C. F.
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Agreement between the HAB taxonomists was 88 per cent (range of 83–94%) compared to 72 per
cent between marine ecologists. As before, there was less agreement among ecologists. Also, only
245 of the 310 images (79%) attained better than 90 per cent consensus across all experts, with
only 177 of 310 image (57%) achieving the important 'gold standard' criteria of 100 per cent
agreement between experts. Some 11 per cent of the specimens had only 66 per cent agreement
across the entire expert panel.

It would be folly to attempt a ranking of expert judgements and hence assign weights to
individual expert performance since expert errors can be both systematic and random. The con-
struction of a noise model may therefore be difficult and the desire to pool opinion unfeasible
(Pennock and Wellman, 1999). Nevertheless, these results highlight a serious issue, since if only
gold standard data are to be used for training machines, only 57 per cent of the preceding data-set
could be used. But, to use the remaining data introduces uncertainty to the training data-set. It is
unclear at present how this impacts or degrades machine-vision performance.

 

FIGURE 3.15

 

A. polymorphism in 

 

Dinophysis caudata

 

. B. Morphological variation in 

 

D. acuminata

 

. (Source:
B. Reguera, IEO, ES.)

 

FIGURE 3.16 Linear discriminant analysis plot of morphometric features. (From Culverhouse, 2003. With
permission.)
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SPEED OF RECOGNITION

It is rather satisfying to know that experts are quite fast at recognizing plankton, even in difficult
circumstances. Figure 3.18 shows that range of recognition times across the image set and all
subjects at the mode is 7 seconds, with the range varying between 3 and nearly 60 seconds. However,
this performance is below that of existing machine vision systems; ADIAC, HAB Buoy, SIPPER,
VPR and Zooscan can all identify specimens at a rate of from 1 per second to 500 per second. It
is certain that future machine identification systems will be very much faster than humans. 

CONCLUSIONS

There are a number of conclusions that can be drawn from the information and results presented
in this chapter; perhaps most surprisingly is the fact that human factors are important. Experts are
as error prone as anyone. They suffer from the same psychological biases of positivity and recency
effects. They fatigue and find some tasks monotonous. Over time, they hone their skills by making
up their own rules to improve their perceived effectiveness, perhaps to make the task less arduous.
Unless individual competence is benchmarked, there is no easy way of knowing if an individual's
improvement is real or illusory. Although evidence is scant (one experiment), it is plausible to state
that taxonomic experts are more self-consistent than book experts when categorizing objects. In

FIGURE 3.17 Agreement between HAB experts.

FIGURE 3.18 Speed of expert labelling (per specimen).
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addition, book experts are not consistent with other experts. So, what is the value of using individuals
who are not trained in a specialist categorization task? How accurate are graduate students? How
accurate are people who might find the task very tedious? 

Specialists who have honed their taxonomic decision-making skills through repeated practice
can be up to 95 per cent self-consistent and are also able to form a high-level consensus of opinion
with other experts (83% in the consensus study when they regularly inter-calibrated), even on
repeated tasks. But both types of expert still suffer from cognitive biases that can degrade their
performance. The task of identifying biological specimens is error prone and this should be
acknowledged – especially as this type of activity is the basis of much science, yet often based on
reference to small numbers of exemplar 'type' specimens.

The experiments described here have used difficult species to explore expert performance to
highlight human problems with taxonomic identification tasks. Nevertheless, these human failings
are prevalent in all sample-analysis situations. Of particular importance is the common 'one expert
is the identifier' scenario, which can introduce significant systematic errors to sample analysis
through individual differences in performance. Indeed, anecdotal evidence from the Cymatocylis
categorization experiment was uncovered in which one specialist taxonomist admitted to mislabel-
ling, for many years, several of the species used in the study. It was only when the subject discussed
his labels with the experimenters that the problem came to light. Additional performance degrada-
tions can occur through tiredness or a lack of vigilance – sometimes within 30 minutes of starting
a task, which can cause very high levels of degradation.

Thankfully, there are solutions to these problems. Where experts collude (i.e. discuss their
findings and reach agreement), the error rate drops significantly. In the Plymouth experiment
discussed previously, one major difference between the taxonomy and ecology groups was that the
taxonomists (who worked for health monitoring laboratories) routinely 'intercalibrated' both within
and between laboratories. That is, they discussed the difficult specimens and also cross-checked
an individual's performance in a supportive environment.

For field-based work, interlaboratory calibration is probably the only reasonable approach to
achieving high accuracies among human teams. This is probably rather rare at present, but perhaps
the ease of sharing data over the Internet might encourage such cooperation in the future.

THE NEED

Irrespective of current human practice, in the future it is impossible not to envisage high-throughput
machines analysing routine samples of biological specimens. Widespread use of automation will
not be immune from the introduction of human biases into the results. Errors will be due in part
to the inadequacies of the machines and software themselves, which, after all, are both human
constructs, but a proportion will be due to incorrect expert-labelled training data. To improve the
entire process, these errors must be minimized and also quantified. It is possible that error rates as
high as 25 per cent will be the norm for large-scale analysis. These error rates may well be similar
to current and historical human errors in field sample analysis. Some of these errors will be due
to human factors, short-term memory, fatigue, monotony and biases. Some errors will be due to a
lack of consensus on the label given to difficult taxonomic specimens and species.

Accordingly, there is now, and will be in the future, a need to place error bars on all
taxonomic results, human as well as machine generated. It is possible that within a sample, the
errors will vary by species or taxon. This is quite acceptable, since the recording of error will
allow explicit discussion of the sources of variance, and allow a focus of effort to reduce those
errors. Uncertainty is pervasive in the natural world. Having a record of uncertainty in species
recognition and categorization analyses is just good scientific practice. There will also be a
need to develop machine recognition methods that adopt the taxonomic approaches employed
by systematics experts.
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This chapter serves as a short introduction to the field of artificial neural networks, or simply neural
networks. Its aim is to provide readers with a basic understanding of these systems. Two main
types of neural networks are dealt with: traditional neural networks and dynamic neural networks.

 

INTRODUCTION

 

An artificial neural network is a computer algorithm that mimics the manner in which the brain
processes and stores information. Artificial neural networks are said to have properties similar to
those of the brain, such as the ability to learn, adapt and automatically group similar 'things'
together. Furthermore, neural networks can perform these functions on massive and complex data-
sets. Haykin

 

 

 

(1999) is a comprehensive source, while the work of Beale and Jackson (1990) is a
lighter read.

As daunting as it may seem, the reality of applying neural networks is no Herculean task. When
dissected, the different algorithms follow similar ideas and can be applied using simple principles
without a deep knowledge of the underlying mathematics. So much of the power of neural networks
is stored within the complexity of the network as a whole that, for non-trivial tasks, it is practically
impossible to divine 

 

why

 

 the network has produced the output. Despite some individuals' innate
desire to know how the answer to a particular problem was determined, for most tasks there is no
need to understand this in order to make use of the neural network's power.

Neural networks are best described using examples. The following trivial problem is designed
to highlight the properties of different types of neural networks. Other chapters in this volume
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contain more realistic systematic problems. Our simple example will also be used to guide readers
through some of the terminology that can be found in standard neural network literature.

 

T

 

HE

 

 E

 

XAMPLE

 

This simple problem concerns processing images of three different dinosaurs: 

 

Tyrannosaurus rex,
Diplodocus

 

 and 

 

Stegosaurus.

 

 For each of these dinosaurs, we have a number of pictures (Figure
4.1) and a large amount of (mostly fabricated) data. Each dinosaur is called a 

 

class

 

 and each picture
of the dinosaur is called an 

 

input

 

 or 

 

pattern.

 

 The quantitative data include statistics common to all
three, such as weight, height and number of legs. Initially, we want the neural network to do two
things: (1) recognize the dinosaur and (2) compare the different dinosaurs. Recognizing a particular
dinosaur from data is called 

 

classification,

 

 whereas comparing different dinosaurs (and thus group-
ing similar ones) is called 

 

clustering.

 

 Classification is the ability to recognize a previously unseen
input (new dinosaur pictures), having been trained to 'see' that input. Clustering is the ability to
draw comparisons between different classes (dinosaurs) automatically. The broad field of neural
networks encompasses many other abilities, but classification and clustering are the most common.

 

Types of Neural Network

 

s

 

Neural networks may be divided into static (or traditional) and dynamic types. Although both types
solve the same sorts of problems, they do so in different ways. Static neural networks do not change
their structure once they have been created and operate on a fixed number of classes (e.g. types of
dinosaurs). Dynamic neural networks can change their structure and can operate in an environment
where the number of classes is not fixed. Which type to use will depend on the problem that is to
be solved.

 

Benefits of Neural Networks

 

1.

 

Nonlinearity.

 

 Most classification and clustering problems are nonlinear; there is rarely
a straight line that can be drawn among inputs to split up the classes. Different classes
might share some inputs (e.g. both the 

 

Diplodocus

 

 and 

 

Stegosaurus

 

 have four legs), but
this poses no problem for non-linear data analysis methods like neural networks.

2.

 

Robust data acceptance.

 

 Input data are rarely perfect, but with enough examples of a
class, a neural network will automatically focus on the parts of the data it needs to
perform the classification and clustering operations.

3.

 

Input–output mapping.

 

 This is the core function of classification. A neural network can
be used to map an input (dinosaur picture) to an output (the name of the dinosaur).

4.

 

Adaptivity.

 

 A neural network can automatically adapt to new inputs, so you can use the
same network architecture (and computer program) on different problems.

5.

 

Generalization.

 

 This is the ability of the neural network to classify a previously unseen
example of a class. For example, if you are given a new picture of a 

 

T. rex

 

 (this time,
baring teeth), a properly trained neural network then will recognize it as a 

 

T. rex.

 

FIGURE 4.1

 

Example dinosaur images 

 

Diplodocus

 

 (left), 

 

Tyrannosaurus rex

 

 (centre) and 

 

Stegosaurus

 

 (right).
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6.

 

Confidence.

 

 A neural network can provide a confidence estimate of its classification. For
example, the neural network can say it is 20 per cent sure the input is a 

 

T. rex.

 

7.

 

Fault tolerance.

 

 If the architecture of the network is damaged, the network will retain
some functionality. This is more important if the neural network is implemented in custom
hardware rather than on a desktop computer.

 

Drawbacks of Neural Networks

 

1.

 

Large amounts of data required.

 

 For non-trivial systems, neural networks only function
well when they are trained on many examples of each class. The more examples of a
class you have, the better the network will learn. Unfortunately, automatic systems are
rarely required to recognize the common inputs, but instead tend to be asked to recognize
the rare patterns for which examples are scarce. There are ways to mitigate these problems
(detailed later). The more dimensions your data have (the more different aspects about
your dinosaur you want the network to learn), the more data you need. This is sometimes
referred to as the 'curse of dimensionality'.

2.

 

Few analytical aids.

 

 Deciding on network architecture – what types of data to train the
network on and which network to use – can be difficult. There are no set rules that match
particular problems with network settings. As shown later, the use of a typical neural
network is something of a trial-and-error process. Furthermore, it can be difficult to
decide before the network has trained whether a neural network can make sense of the
problem at all. This is a particularly important downside if it takes a long time to train
the network.

3.

 

Over-fitting.

 

 This occurs when a neural network learns the precise patterns it is provided
with too well and thus loses the ability to generalize. Over-fitting is a side effect of too
much learning and can be mitigated by stopping the learning process early. However,
when to stop training is a difficult question to answer beforehand.

4.

 

Non-trivial tasks can be computationally expensive.

 

 On non-trivial problems, a well
coded neural network can take many hours to learn the patterns. Typically, large systems
have a lot of classes. Having lots of classes requires many patterns. Further, the more
you want the network to learn, the bigger the structure is likely to be and the longer it
will take to process each pattern. It is normally wise to test a network on a subset of a
large number of classes before scaling it up to its full size.

 

A T

 

YPICAL

 

 A

 

RTIFICIAL

 

 I

 

NTELLIGENCE

 

 S

 

YSTEM

 

Neural networks cannot be used on their own in a system. Data are transformed before being
submitted into the network and the network output is normally transformed into a user-friendly
format. A simple system is shown in Figure 4.2. In this system, photographic data are collected
using a camera and digitization process. This input is then transformed into something that the
neural network will understand (e.g. brightness detection values). Only then are the data fed into
the network. After processing by the network, the output is back-transformed using a lookup table.

 

FIGURE 4.2

 

A typical neural network system.

UserLookup
table

Neural
network

DigitizationCamera
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Data Capture

 

Neural networks often require a prohibitive amount of data for non-trivial tasks. This is because
many different patterns are required for each class: lots of 

 

T. rex

 

 pictures, for example. If your
problem includes some rare classes (represented by only a few patterns), it is not uncommon to
take these patterns and duplicate them many times while adding noise to each duplicate. This will
make each input slightly different. As long as each input still represents your class (still looks like
a 

 

T. rex

 

), the neural network will learn the pattern. The noise is important because it will help the
network generalize.

 

Encoding

 

Data often need to be transformed into a format that will help the neural network learn. This
transformation is called 

 

encoding

 

 and is a very important step. If the neural network is given data
in a poorly encoded state, it may not be able to learn the features of each class. For example, you
could take each dinosaur picture and encode it as a series of black-and-white pictures. You could
then submit the individual black-and-white pixel values into the neural network and let it decide
what features and shapes to choose from. For some problems, this is fine. However, better results
would be obtained if the network were given all the lines and shapes of the dinosaur from the
picture and then trained on these shapes. This shape-based encoding might yield better results than
a pixel-based encoding.

All data need to be converted into a numeric scale before they are submitted to the network.
The manner of this scale will affect the way the network learns and might give preference to some
patterns over others. For example, the dinosaur data might include qualitative information such as
'skin type' with values such as soft tissue, scales, feathers, etc. These should be encoded into
numbers: soft tissue = 10, scales = 20, feathers = 30.

 

The Neural Network and Lookup Table

 

This is where the real work is done. Once the neural network is set up (see later discussion), a
pattern (dinosaur picture) is fed into the network and a number produced. This number is then
translated by the lookup table into user-friendly equivalent output.

 

Setting Up a Neural Network

 

Typically, neural networks are used in the following manner:

1.

 

Problem identified.

 

 The problem the network is to solve must first be identified. 
2.

 

Network selection.

 

 Based on the problem, appropriate neural network size and design
are chosen. 

3.

 

Data collection.

 

 Neural networks perform best with a large amount of data. The more
data, the better the network's performance is likely to be.

4.

 

Data segregation.

 

 The data must be split into two sets. First, a 'training set' must be
assembled. This is the set of data that the network will use to build up its base of
knowledge. The second set is the validation set. This is used to make sure that the network
has learnt correctly.

5.

 

Decide on network topology.

 

 The topology of the network is the number and arrangement
of neurons and weights (see later details). With traditional neural networks, this is decided
by the data analyst.

6.

 

Perform training.

 

 This is where the learning algorithm is applied to the network using
the training data-set. The learning algorithm changes a set of numbers called the 'weights'
of the network so that future presentations of the same input yield the same result.
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7.

 

Perform validation.

 

 The validation set is now used to measure how well the network has
learnt. If the network performs within the desired tolerances it can be used from this
point on and the development process can terminate here.

8.

 

Iteration.

 

 If the output error of the network has not met the desired tolerance, then a
number of options are available:
a.

 

Change training set.

 

 It is possible that the training set did not contain adequate
exemplar patterns for all the classes. Return to step 4 and hand-pick a number of good
examples of each class for the training set.

b.

 

Choose new topology.

 

 This is the usual way of solving network problems. Increasing
the network size might allow more classes to be learnt but the training set might need
to be increased. Return to step 5 and continue.

c.

 

Tune network parameters.

 

 Each type of neural network has a number of parameters
that can be changed to modify its overall performance. In this case, only training and
validation are needed.

 

T

 

RADITIONAL

 

 N

 

EURAL

 

 N

 

ETWORKS

 

Traditional neural networks can be divided into two distinct groups by how they learn. 

 

Supervised
learning

 

 networks primarily perform the task of classification. As the name suggests, the neural
network is supervised and told what each input is. Unsupervised learning networks tend to perform
clustering. They are not told what each input is; the neural network must decide how to process
the data. A classic example of a supervised learning network is the multilayered perceptron (MLP).
A classic example of an unsupervised learning network is the self-organizing map (SOM). In both
cases, the knowledge of the network is stored in a series of numbers (either in a vector or just
single values) and they are usually called the 

 

weights.

 

 Learning is implemented as a process for
modifying these weights.

 

The Multilayered Perceptron (MLP)

 

The MLP (Rosenblatt, 1958) is a network structure consisting of a number of input and output
network nodes called 

 

neurons

 

 connected together with weights (Figure 4.3). Each neuron contains
a simple processing unit that performs a simple mathematical function and each weight is a simple
number. The knowledge of the network is stored within these weights and organized according to
the arrangement of neurons.

The MLP is divided into layers of neurons, input, hidden and output (left to right in Figure
4.3). The input layer does not perform any processing as such; these neurons simply hold the data

 

FIGURE 4.3

 

A typical multilayered perceptron (MLP) design.
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that will be submitted to the network. The hidden layer provides the network's processing power.
The output layer contains the result. Typically, any neuron is connected to all the neurons in the
next layer by a weight. This design is called a 

 

fully connected

 

 network. The MLP has two algorithms,
one for practical use and one for training. The training algorithm is an extension of the practical
use algorithm.

 

Setting Up the MLP Network

 

The best method of demonstrating the way the MLP functions is by example. The steps taken here
mimic the numbered steps described before in 'Setting Up a Neural Network' (numbers included
in parentheses).

For this example, we will assume the problem (1) is to identify a dinosaur from a picture. This
is a classification task, so the MLP is best suited (2). Let us say data collection (3) included only
the 

 

Diplodocus

 

 and the 

 

T. rex

 

 images. We will leave 

 

Stegosaurus

 

 aside for simplicity. Our data-set
would contain many different pictures of these two dinosaurs – for example, 100 of each. These
pictures are put through an arbitrary transform that turns each one into three numbers. Each of
these numbers is a 

 

dimension

 

 of the input. We will also number the classes to help the network
learn. Class 0 will be the 

 

T. rex

 

 and class 1 the 

 

Diplodocus.

 

Once these data have been collected they need to be segregated (4) into a training set and a
validation set. The training set is what the network will learn from and the validation set will be
used to test what the network has learned. A good rule of thumb is to select two thirds of the whole
data-set as training, leaving one third for the validation. Therefore, in this example the training set
will be constructed of 66 

 

T. rex

 

 pictures and 66 

 

Diplodocus

 

 pictures. Once it has been selected,
you should check that the training set does indeed include good examples of the class you are
asking it to learn. Finally, randomize the order of the training patterns.

Deciding on network topology (5) is a difficult step for the MLP. For this example, the network
will be set up arbitrarily small to facilitate explanation. It will consist of three input nodes (one
for each dimension of our dinosaur), two nodes in the hidden layer, and one output (Figure 4.4).
The weights of the network are initially set to random numbers between 0 and 1.

 

Training Algorithm

 

Now the network is ready to be trained (6). Take the first input dimensions from the training set
and submit them to the network (Figure 4.5). In our hypothetical case, the randomly selected
dinosaur is a 

 

T. rex.

 

 The 

 

activation

 

 of each neuron is then calculated. Figure 4.6 shows a simple
activation of a neuron. 

On the left of the diagram are two input neurons (A and B) with two of the values from the
input pattern (the dinosaur statistics), 2 and 1. These two neurons are connected to neuron C by
two weights (0.3 and 0.6). Neuron C is set to use a threshold of 1 as its activation function. This

 

FIGURE 4.4

 

The example MLP network setup.
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means that, provided the sum product of its inputs is larger than 1, it will activate, giving a 1 as
its output.

The input to the neuron is calculated by summing the product of input and weight feeding into
it. In this case, there are two inputs, so the sum product is simply calculated: (2 * 0.3) + (1 * 0.6)
= 1.2. As 1.2 is larger than the global threshold of 1, the neuron is said to 

 

fire.

 

 The output of this
neuron then becomes the input to another neuron located deeper in the MLP structure.

There are lots of different activation functions. In the preceding example, the activation function
was a linear function, but the most popular function for this purpose is the sigmoid function. A
sigmoid function is a smooth S-shaped curve around a value of 0.5. It is not necessary to change
this value as the changing weights of network provide a tuning process. Above this value a positive
output is given and below it a negative value is given. Between the two extremes of 

 

±

 

1 is a smooth
change. All the neurons in the network fire this way, each neuron taking its value from either the
input pattern (the dinosaur) or from the firing of other nodes. Using the sigmoid improves the
network's ability to distinguish between dinosaurs. Intuitively, this can be explained as the difference
between asking 'Does this look like a 

 

T. rex,

 

 yes or no?' and 'How much do you think this looks
like a 

 

T. rex,

 

 as a per cent?' Clearly, the second question gives a more detailed answer, which is
better for understanding the nuances in a complex data-set.

Once all the neurons have fired, a final value will be located on the output neuron. At the start
of training, this value is set to a random number. Therefore, with our example, at the start of
training, the network will look like Figure 4.7. The activation values of the different neurons in
the network are hidden for simplicity. 

In Figure 4.7, the network produced an output of 0.4. However, to classify properly we need
an output of 0 as the number 0 is tied to the class '

 

T. rex

 

'

 

.

 

 So that future presentations of 

 

T. rex

 

images will yield a 0, the weights need to be changed. This task is performed by taking the error
between the result obtained by the first pass through the network (0.4) and the result we wanted

 

FIGURE 4.5

 

The first training pattern (a 

 

T. rex

 

) is shown to the network.

 

FIGURE 4.6

 

An example of a neuron firing (see text for details).
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(0) by propagating calculations back through the network, changing the weights starting at the
output and moving from right to left to the input. This aspect of the training procedure is called
back-propagation.

How do we change the weights and by how much? This depends on where we are located
within the network. If we are on the output layer (right-most set of weights) or earlier on in the
network (left-hand set of weights), we will need to calculate the error first and then change the
weights depending on this error. The amount we change the weights is called the 

 

learning rate

 

.
The larger the learning rate is, the more effect the error will have.

 

Output layer calculations.

 

 We start by calculating the error for the output layer:

 

e

 

 = 

 

z

 

 * (1 – 

 

z

 

) * (

 

y

 

 – 

 

z

 

) (4.1)

where 

 

e

 

 is the error, 

 

z

 

 is the value on the node and 

 

y

 

 is the value we wanted.
In our example:

 

e

 

 = 0.4 * (1 – 0.4) * (0 – 0.4)

 

e

 

 = 0.4 * (0.6) * (–0.4)

 

e = –0.096

This is the raw error that we are going to apply to each of the weights. Now, we need to reduce
this a little by using a learning rate. Learning rates tend to be around 0.1 for a starting point. A
higher learning rate means the network learns more quickly and uses fewer example pictures to
learn a dinosaur pattern. However, the network is more sensitive to patterns corrupted with noise
(bad pictures of dinosaurs) and if your classes (types of dinosaurs) are subtly different, the network
will not distinguish between them. The opposite is also true. It is best to choose more example
patterns and a lower learning rate than fewer patterns and a high learning rate.

θ = λ * e (4.2)

where λ is the learning rate (we have decided 0.1) and θ is the change we are going to make in
each weight.

In our example:

θ = 0.1 * –0.096

FIGURE 4.7 The weights for the output neuron during training (before update).
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θ = –0.0096

Now we can update the weights in each of the nodes of the output layer. This is done by
multiplying the weight by this change. Figure 4.7 shows our example with some values on the
weights (for the purpose of this example). Each of those weights will need to be updated using
the following equation:

w(new) = w + (w * θ) (4.3)

where w is one of the weights on the output layer.
Using just the top weight in Figure 4.7 (0.05), the example would be as follows.

w(new) = 0.05 + (0.05 * –0.0096)

w(new) = 0.05 + (–0.00048)

w(new) = 0.04952

Now we would do the same for each of the weights coming into the output node. In this case,
only one other weight (0.01) needs to be adjusted. Using the previous equation, this weight would
be reset to 0.0096 (0.01 + (0.01 * –0.0096)). Once all the weights connecting to the output layer
are complete, we step back to the hidden layer.

Hidden layer calculations. To update the left-hand layer of weights (between input and hidden
layers), we need the information we have just calculated. Figure 4.8 shows the results of the last
calculation on the network. For the sake of simplicity, the dashed nodes and weights in the network
will be ignored. In practice, you would perform the following process on those neurons as well.
The hidden node shown gave an output of 0.5 on the first pass through the network. 

To update the left-hand layer of weights, we first need the error coming out of the node. We
only have one weight coming out of this node (labelled 0.04952). The total error is calculated
as follows:

g = Σ m * e (4.4)

where g is the total error output of the neuron, m represents each of the output weights of the
neuron and e is the error on the output of the next layer.

FIGURE 4.8 Updating the hidden layer: results from the update of the output layer (see text for discussion).
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In our example:

g = 0.04952 * –0.096

g = –0.00475

Now we can work out the error at this hidden neuron:

ehidden = z * (1 – z) * g (4.5)

where ehidden is the error on the hidden neuron we are looking at now and z is the value on this neuron.
For our example, the calculations are:

ehidden = 0.5 * (1 – 0.5) * –0.00475

ehidden = 0.5 * (–0.5) * –0.00475

ehidden = –0.0011875

Now that we have the error, we are on familiar ground for updating all the weights coming
into the neuron. We work out the change on each input weight using Equation 4.2. For this hidden
neuron, our calculations would be as follows:

θ = 0.1 * –0.0011875

θ = –0.00011875

The nearer we get to the input, the smaller are the changes to the weights. Now that we have
the change to each input neuron, we calculate the new value to weight with Equation 4.3. Using
just the top input weight in Figure 4.8 (0.1), the example calculations would be as follows:

w(new) = 0.1 + (0.1 * –0.00011875)

w(new) = 0.1 + (–0.000011875)

w(new) = 0.0999

We then update all the other input weights to this layer and the training cycle is complete. This
procedure is then repeated for the next training pattern until the entire training set has been
submitted.

Stopping Training
You have to stop training at some point or the network will not be able to generalize for inputs it
has not previously seen. The best way to judge when to end is to track the square of the error on
the output node. When this value becomes sufficiently small, it is best to stop showing the network
new patterns and begin validation. How small these stopping criteria should be depends on your
problem, so an iterative approach is the best method of determining it; there is no typical stopping
value. One way to determine the best stopping value is to train the network over a small number
of patterns for each class, validate the network (see the next step) and record this error. Then
continue the training process for a few more steps and validate once more. Initially, this validation

8205_book.fm  Page 56  Tuesday, June 12, 2007  2:25 PM



Neural Networks in Brief 57

error will drop, but after time, it will begin to increase once more. The point at which you achieve
the smallest error in the validation set is your stopping point.

Validation
This is checking of the operation of the network (7). Before training began, part of the data-set
was set aside to form the validation data-set. Once training has finished, this validation data-set is
submitted to the network. These patterns have not been seen by the network during training, so
they can be used to assess the network's performance.

Validating an MLP is relatively simple. Submit the previously unseen pattern to the network
through the input node, propagate the values through the network and produce a value on the output
node (this is the forward pass in the learning algorithm). You know what the value should be, so
the difference is the error. If the error is great, then the network has not learned properly. By adding
the errors for all of the validation patterns, you can get a measure of how well the network has
learnt. Once the network has been validated (i.e. acceptable validation error statistics have been
obtained), the network may be used to process unknown inputs by presenting a pattern and then
converting the number on the output node to something more useful, such as a dinosaur name.

Self-Organizing Map (SOM)

The self-organizing map (SOM) (Kohonen, 1982) is a clustering network that works differently
from the MLP. The SOM is made up of a grid of neurons. Each neuron contains a reference vector,
which is a set of numbers the same size as the input. 

In our example, there are three dimensions to the input (e.g. height, weight, number of legs),
so the reference vector will contain three numbers. The numbers in reference vectors are often called
the weights. As before, the knowledge of the network is stored in these reference vector weights. 

Some confusion may be caused between use of the term 'weights' in an MLP and in a SOM.
In an MLP, the weights hold information by connecting neurons together. Training is performed
by changing these weights. In a SOM, the weights still hold information and are still changed
during training, but the difference is that a reference vector of weights represents a pattern in the
input space – a dinosaur in our example.

The SOM grid is two dimensional (see Figure 4.9) and can contain any number of neurons.
The more classes you have, the bigger the network will need to be. The neurons are not directly
connected together. Rather, neurons are associated given their place in the network: nearby neurons
will be affected by any activity and far away neurons will not.

Setting Up the Network
Once again, the best way of demonstrating the manner in which the SOM functions is by example.
The steps taken here mimic the numbered steps given earlier in the Introduction (numbers included
in brackets).

FIGURE 4.9 A self-organizing map (SOM) structure with a single neuron and a reference vector highlighted.

Reference
vector

Neuron

1
2
0

8205_book.fm  Page 57  Tuesday, June 12, 2007  2:25 PM



58 Automated Taxon Identification in Systematics

For this example, we will assume that the problem (1) is to cluster the dinosaurs, given a
picture. This is a clustering task, so a SOM is well suited to solving the problem (2). Data collection
(3) includes all three dinosaurs: Diplodocus, T. rex and Stegosaurus. Our data-set would again
contain many different pictures of these three dinosaurs – for example, 100 of each. Much like the
MLP, the pictures are put through an arbitrary transform that turns each into three numbers, the
dimensions of the input. Class 0 will be the T. rex, class 1 the Diplodocus class and class 2 the
Stegosaurus class.

Deciding on network topography (5) is difficult for the SOM. It is normally best to start large
and reduce the size of the network until its ability to cluster is reduced. This iterative process can
be time consuming if you are trying to solve for a large number of classes. The weights in the
reference vectors are initially set to random values – normally between 0 and 1. For simplicity,
this example will use a grid of nine neurons, arranged in a 3 × 3 grid (Figure 4.9). The weights of
the network are initialized to random values (Figure 4.10). In this example, we have used integers
between 0 and 9. There are also two additional parameters that need to be established at the outset:
the learning rate and the neighbourhood size. 

Like the MLP, the SOM learning rate represents a measure of the how much the weights will
change for each input. For our example, we will use the same learning rate of 0.1.The neighbourhood
size is a measure of how many neurons will be affected by each pattern. Initially, the neighbourhood
size is set to more than half the longest dimension of the network. In this case, our square network
has dimensions of 3 × 3, so the neighbourhood size will begin at more than half this value, 2. 

The Training Algorithm
Now the network is ready to be trained (6). Take the first input from the training set and apply it
to the network. In our case, the randomly selected dinosaur image is a T. rex. 

Finding the focus. The network is scanned to find the neuron that holds a reference vector
closest to that of the T. rex. This 'winning neuron' is called the focus. Figure 4.11 shows the focus
for the first presentation of a T. rex input pattern. In this example, a quick inspection of the nine
nodes can provide the reader with the focus. For more complex examples, the focus is found by
calculating the Euclidean distance between the input vector, u, and each neuron, z. The neuron
with the smallest Euclidean distance is the focus.

Calculating Euclidean distance. This is a standard 'straight-line' distance between two sets of
values (i.e. weights) calculated as follows:

(4.6)

where u is the input pattern reference vector (1, 2, 1), z is any given neuron, l is the size of the
input vector (3 in our example), and e is the Euclidean distance, an error between input and neuron.

For example, the Euclidean distance between the focus and the T. rex input pattern is as follows:

FIGURE 4.10 The SOM example with nine randomly initialized reference vectors.
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e = (1 – 1)2 + (2 – 2)2 + (0 – 1)2

e = (0)2 + (0)2 + (–1)2

e = 1

To find the focus, you would need to make this calculation for all the neurons in the network
and find the smallest distance e.

Updating the neighbourhood. The next step is to update all the neurons in the neighbourhood
so that they are more similar to the input pattern (and therefore the focus). The initial neighbourhood
size that was decided at the start was 2 (more than half the width). Figure 4.12 shows the neurons
that will be affected by the initial neighbourhood size. Those nearer the focus are updated more
than those far away. There are lots of ways of updating these neurons. For simplicity, we will use
a linear neighbourhood function as follows:

z = z + λ * (h/r) * (f – z) (4.7)

where h is the neighbourhood size, f is the focus reference vector, z is the reference vector of the
neuron that is going to be updated, λ is the learning rate, and r is the distance between the focus
and neuron to update.

To demonstrate this update, we shall update the neuron A (in Figure 4.12). Starting with the
top number in the vectors,

zupdated = 9 + 0.1 * (2/1) * (1 – 9)

FIGURE 4.11 The focus is found for the T. rex input pattern. The focus is the node that has a reference vector
most similar to the input pattern.

FIGURE 4.12 Updating the neighbourhood around the focus. The initial neighbourhood is the neurons with
dashed outlines. Node A is used for the numerical example.
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= 9 + (0.1 * 2 * –8)

= 9 + (–1.6)

= 7.4

Running through this for the rest of the vector will give a new neuron A of (7.4, 2, 0). The
other values of the reference vector did not need to change. All of the neurons in the neighbour-
hood are updated this way. Once the neighbourhood is updated, we move on to the next input
pattern.

Reducing the neighbourhood function. After showing the network many patterns, the neigh-
bourhood size should be reduced. This allows the network to cluster similar classes tightly together
and push apart dissimilar patterns. The speed at which the neighbourhood function is reduced
depends entirely on the domain and will need to be tuned to get the network's best performance.

Stopping Training
The training process should be stopped when the error between the focus and the input patterns
becomes small. This is a delicate value to set because, if the training continues too long, the network
will over-fit to the data and will lose its ability to generalize. If the network has over-fit to the
training data, then it might not correctly classify the validation patterns.

Validation
Validation is performed by applying the validation patterns one by one to the network and then
recording the location of the focus for that pattern. For each dinosaur picture, you should expect
that the focus locations will be in the same area on the grid of neurons.

Result of the SOM. The result of the training of the SOM can be seen in Figure 4.13. Three
neurons are labelled B, C and D. Each of these neurons represents the centre of the cluster for each
animal: T. rex, Diplodocus and Stegosaurus, respectively. Among these three neurons is a gentle
gradient. The network does not indicate which neurons are associated with which dinosaur. To find
out which cluster is associated with which dinosaur, example patterns from each class can be shown
to the network to see which neuron becomes the focus. That node can then be labelled.

In this example, each dinosaur was different enough for none to be classified as similar to each
other. However, in more complex problems with more dinosaurs added to the training set, similar
dinosaurs would be grouped together in the network automatically. This is a powerful clustering
technique that can be used to find groupings within your data-set that may not be immediately
obvious. The SOM does require some inspection after training to extract this information.

FIGURE 4.13 The result from training. Neurons B, C and D represent the T. rex, Diplodocus and Stegosaurus,
respectively.
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DYNAMIC NEURAL NETWORKS

A dynamic neural network is a neural network that can alter its structure so that it can always learn
new classes and forget old classes. With traditional neural networks you must decide the structure
before training. This can be very difficult as the network structure is often needed to determine the
statistical properties needed to set the structure in the first place! A dynamic neural network's
structure will grow or shrink in size and complexity to meet the needs of the problem.

The second benefit of dynamic neural networks is that the training set is not fixed. In our
example, if you wanted to add a pterosaur to the classes held by the network, then you would have
to reset the topology and begin training again. For small problems (such as our example), this is
a valid process. But for large problems with many classes and patterns in each class, retraining
may take months. Dynamic neural networks can modify their own structure to accept the new class
without the need of retraining from the start.

Good examples of dynamic neural networks are the cascade correlation (Fahlman and Lebiere,
1990), which extends the MLP to add structure to its network; the growing neural gas with utility
(GNG-U) (Fritzke, 1997), which uses a SOM-like structure to learn the shape of the data; and the
plastic self-organizing map (PSOM) (Lang and Warwick, 2002), which is very similar to the SOM
except that the neurons are not fixed in a grid and new neurons may be added and removed. The
PSOM will be described here.

The Plastic Self-Organizing Map (PSOM)

The plastic self-organizing map (PSOM) is a SOM-like structure consisting of neurons and links.
Like the SOM, a neuron contains a reference vector, but unlike the SOM each neuron is not bound
in a grid. Instead, each neuron is connected to other neurons using a dynamic link (Figure 4.14). 

Like the SOM, a neuron represents one pattern in the input space (a particular picture of a
dinosaur). The link represents the similarity between the two neurons it connects. A smaller value
link means that the two neurons represent patterns that are similar (e.g. two different pictures of a
T. rex) and large link values mean that the neurons represent dissimilar patterns (e.g. one picture
of a T. rex and one of a Stegosaurus). The lengths of the links can be altered by the network and,
if any links grow very long, they may be broken. This has the result of breaking dissimilar groups
of neurons apart, giving very distinct clusters.

When a new class (dinosaur) is presented to the network for the first time, a new group of
neurons is added to the network to represent this new class. The network does not know that the
new class is called a T. rex, of course, so it labels the cluster numerically. Later, an observer (either
human or another computer algorithm) can inspect the neurons by showing a pattern of a class
they know and then label the neuron from 1 to T. rex.

FIGURE 4.14 The structure of the plastic self-organizing map (PSOM) showing four neurons, four links and
their reference vectors. Class numbers are shown in boxes next to the neuron.
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Setting Up the Network
The steps given here mimic the numbered steps given in the Introduction (numbers included in
brackets). For this example, we will assume that the problem (1) is to cluster the dinosaurs, given
a picture, and to work out their own classes. This is both a clustering and classification task (2).
Data collection (3) includes two dinosaurs initially, T. rex and Diplodocus. The data-set would
include many different examples of these dinosaurs. The classes do not need to be numbered as
the PSOM will give each class its own number. Also, the data-set needs to be scaled between 0
and 1, as the data are scaled between 0 and 10 (i.e. divide each value by 10).

The PSOM topology (5) is easy to set up as it is the same for any problem domain. Figure
4.15 shows the initial PSOM setup of three neurons and two links. For the typical PSOM, each
link is randomly set between 20 and 90 and, for our example, the reference vectors are randomized
between 0 and 9. The class label on these neurons starts off as 0.

PSOM networks need five parameters to operate. The node-building parameter, an, controls the
ease at which neurons are added to the network. There are some heuristics for setting this parameter,
but a discussion of these is beyond the scope of this chapter (see Lang, 2007). However, a good
way of finding a node-building parameter is to (1) choose a value in the middle of the range 0–1,
(2) train the network on a number of representative classes and (3) determine whether the network
forms itself into a sufficient number of distinct groups (one for each class). If the required number
of groups is not formed, reduce the parameter value by 10 per cent and train again. For our example,
the node-building parameter will be 0.3.

The next parameter to set is the cluster threshold, acl. This controls what specifies the size of
a class. Initially, this value can be set to 90 per cent of the node-building parameter. In our example,
this is 0.27 (90% of 0.3). The cluster threshold affects the maximum link length, ar, which is the
length at which links will be cut. This parameter can be set to any value except 90, but it is not
very important because link tuning can be performed using other parameters. Finally, the link-
ageing parameter, ba, controls the rate at which the links grow with each training iteration. If in
doubt, set this value to be less than 1 and then increase it through experimentation. For the sake
of this example, the link-ageing parameter for our example will be set to 3.

Training Algorithm
Now the network is ready to begin training (6). Take the first input from the training set and apply
it to the network. In this case, the randomly selected dinosaur is the T. rex. The training algorithm
is as follows:

1. Find the focus.
2. Check for node building and either:

a. Update the focus and its neighbourhood
b. Add more neurons

3. Age all the links.
4. Remove long links.
5. Remove unlinked neurons.

FIGURE 4.15 The initial structure of the PSOM, the reference vectors inside the neurons and the link lengths
are all set to random values. The class numbers are all set to 0, signifying neurons that existed at the start.
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Finding the focus. This step is exactly the same as with the SOM. The Euclidean distance, e,
between the input and each neuron is calculated and the neuron with the smallest distance is called
the focus (shown in Figure 4.16). The Euclidean distance between the focus and the first T. rex
input vector is approximately 0.25.

Checking for node building. The Euclidean distance between the input and the focus is now
compared to the node-building parameter, an. If the Euclidean distance is larger than an, a new
group of neurons is created. If the Euclidean distance is smaller than an, no neuron is added to
the neighbourhood. For clarity, adding new neurons is dealt with later. In our example, the
Euclidean distance is 0.25 and the node-building parameter is 0.3. Therefore, no neurons are added
at this time.

Updating the focus. The focus is now updated to be made more similar to the input (Figure
4.17). For this, a learning rate is used. The learning rate operates in a similar way to the PSOM's
static counterparts. If in doubt, use a small learning rate.

Δz = λ(u – z) (4.8)

where Δz is the change in the focus, u is the input, z is the focus and λ is the learning rate.
An example calculation follows:

FIGURE 4.16 The first T. rex pattern is shown in the network. The focus is found as the neuron most similar
to the T. rex and is outlined in black.

FIGURE 4.17 The network before the neighbourhood update, showing an updated focus. The focus only has
one neuron in its neighbourhood (the central one), so it is the only one to be updated.
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This is the change to the focus; now we can update the focus as follows:

znew = zcurrent + Δz (4.9)

The example calculation continues as follows:

Updating the neighbourhood. As the neurons are not held in a grid, the neighbourhood for the
PSOM comprises those neurons connected to it via links. In this example (Figure 4.18), the focus
has only one neighbour, shown by the dotted outline. The neighbourhood update is performed in
two steps. First, all the links between the focus and its neighbours are updated. Then, the reference
vectors in each of the neighbourhood neurons are updated. The new link length is a proportion of
the maximum link length and Euclidean distance between the focus and the neighbourhood neuron.

c = ar * ezx (4.10)

where c is the new link length, ar is the maximum link length and ezx is the Euclidean distance
between the focus and the neighbourhood neuron.

The example calculation continues as follows:

c = 90 * 0.22

c = 20

If there were any more neighbours of the focus, the links would be updated in the same way.
The second step is to update the reference vector of the neuron. This is where the cluster

threshold is used. If the Euclidean distance between the focus and the neighbourhood neuron is

FIGURE 4.18 The network after the neighbourhood update.
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above the cluster threshold, then we push the neuron away; otherwise, we move the neighbourhood
neuron towards the input.

For our example, the cluster threshold is 0.27 and the Euclidean distance between the focus
and its neighbour is 0.22. Therefore, the neighbourhood neuron will be pulled together. First, let
us look at this 'pull-together' equation:

(4.11)

where x is the neighbourhood neuron to be updated, Δx is the change in the neighbourhood neuron
to be updated, z is the focus, and c is the value of the link between the focus and x.

Continuing the example calculation,

This is the change in the neighbourhood neuron; the new value of the neighbourhood neuron
is given by an equation analogous to Equation 4.9:

xnew = xcurrent + Δx (4.12)

Accordingly, the example calculation is given as
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is larger than the cluster threshold, the neuron to be updated is pushed away by changing the node
update, using the inverse of Equation 4.12:

xnew = xcurrent – Δx (4.13)

Adding neurons. After finding the focus, if the Euclidean distance between the focus and the
input is larger than the node-building parameter, then a neuron group is added to the network. If
the Diplodocus was the next class shown to the network, a new neuron group would be added, as
shown in Figure 4.19. A group of three neurons and five links has been added to the network. The
new neurons are created with reference vectors similar to that of the input. The new links are
created and their lengths set as if they were being updated in the neighbourhood update. Each new
neuron is labelled automatically with the next class number. In this case, it is the class number 1
as it is the first new class to be added to the network.

Link ageing. Link ageing is the next step of the training process. All the links in the network
are increased by ba. Then, all of the links longer than the maximum link length, ar (90 in our
example), are removed. Any neurons that are then unconnected are removed.

Removing neurons. Neurons are removed when there are no links attached to them. This serves
to remove those neurons that are associated with noise.

Validation
Validation is performed by manual inspection of the network after the training has been completed.
A selection of known patterns is shown to the network to help the user understand how the network
is formed.

Using the PSOM for Classification Alone
For data-sets that do not have much noise (i.e. you know that every pattern you show to the network
is valid), it might be desirable to set the link ageing parameter to 0. This will reduce the network's
capability to reject noise but will allow the network to retain classes that only have a few example
patterns in the input space.

Result of the PSOM
The PSOM does not have a finished state like a static network does. Instead, training of the network
is paused to analyse the structure. If further patterns were to be shown to the network, it would

FIGURE 4.19 A new node group is added to the network, connected to the focus and a neighbour of the
focus. The new group is given the class '1'.
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continue learning the new patterns. Figure 4.20 shows the result of our example after 150 pattern
presentations. The two classes are represented as distinct groups in the network as the links joining
these patterns have been broken through neurons being pushed apart and link ageing. If, in the
future, we wish the network to learn the Stegosaurus class as well, we would not need to retrain
with the T. rex and the Diplodocus classes. In this case, we would set the link ageing parameter to
0 (otherwise, we might lose the existing knowledge in the data-set) and show the Stegosaurus
patterns to the network.

In more complex problems, where the classes are more similar, the groups might not be distinct
and similar patterns would be joined together. The links in this case would be of medium length.
This is a desirable result because it is often interesting to find classes that are similar within the
data-set. If dissimilar classes are expected, adjustment of the node-building parameter and the
cluster threshold would be the first priority.

For data-sets that do not have much noise (you know that every pattern you show to the network
is valid), it might be desirable to set the link ageing parameter to 0. This will reduce the network's
capability to reject noise but will allow the network to retain classes that only have a few example
patterns in the input space.

DISCUSSION AND SUMMARY

In this chapter, we have examined three examples of neural networks both analytically and numer-
ically. Before data can be used by these networks, they will need to be transformed to facilitate
the learning process. Neural networks can be used to classify and cluster large data-sets. A feed-
forward network (such as an MLP) can be used for classifying input classes so that an unknown
pattern shown to the network can be classified as one of the learned classes. A clustering neural
network, such as the SOM, groups similar classes together. Static neural networks are useful for
problems where the data-set is finite and fixed before training. However, a dynamic neural network,
such as the PSOM, does not stop learning and can be used for open data-sets where not all the
data are found at time of training.

To be useful for most real-world problems, the neural network must be embedded as part of a
larger system and, quite often, the algorithm is modified to better fit the problem. Not every problem
can be solved with neural networks, but they have been shown to provide interesting results where
other analytical techniques have failed.
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INTRODUCTION

 

Arising in numerical taxonomy in the 1960s, the modern toolkit of geometric morphometrics
migrated (by random walk, it seems, in retrospect) into crainiofacial biology, then statistical science.
It is now centred mostly in computational anatomy and physical anthropology. During these

 

Wanderjahre, 

 

a solid consensus developed about the handling of simplicial data such as landmark
points, curves and surfaces for a variety of classic biometric purposes. Yet, taxonomy has not
noticeably benefited. It is time to bring the diaspora back home to systematics, by reformulating
morphometrics' statistical foundations to align with the demands of computer-assisted intelligence
for taxonomy. This chapter, which reports work in progress, is intended as a sharp initial provocation
to that end. 

Specifically, we now have quite good graphics for shape variation and shape change for two-
and three-dimensional data, but our models of what is uninformative – of noise – lag

 

 

 

badly. The
Procrustes distance metric, in particular, embodies profound geometric symmetries that engender
well-known pathologies and paradoxes when applied to the typical problems of biometric system-
atics. Evidently, their symmetry is not a particularly biological one. This chapter will introduce a
strikingly different sort of symmetry, a 

 

self-similarity of noise

 

 – symmetry

 

 

 

of scale rather than of
digitizing error that seems quite a bit more suited to systematics' domain. Its statistical implemen-
tation, based on a profound original insight by John Kent and Kanti Mardia (University of Leeds),
aligns very closely with the thin-plate splines on which morphometricians have become accustomed
to rely for some of their core interpretive graphics.
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The term used in the stochastic literature for these models is 

 

intrinsic random fields 

 

(IRFs);
they appear under that name in textbooks of geostatistics (e.g. Cressie, 1991; Chilés and Delfiner,
1999). This chapter also introduces the 

 

intrinsic warps

 

 (IWs) intended to replace my principal and
partial warps of 1989 for data analysis of landmark-like configurations under symmetries of scale.
These IWs could well implement the movable 'potentially homologous characters' that may someday
underlie computer-assisted algorithms for stable ordinations or ecophenotypy surveillance much
better than existing techniques could likely do. 

 

HOW WE GOT HERE: A WHIG HISTORY OF MORPHOMETRICS 

 

Presented by the stratagem of Whig history (the present as culmination of the past), the technical
path to the morphometrics of 2005 appears to have begun about 40 years ago, in a fusion of R.E.
Blackith's 1965 book chapter, 'Morphometrics', with P.H.A. Sneath's (1967) suggestion 2 years
later of a formal trend-surface analysis for transformation grids. The 1971 book by Blackith with
Richard Reyment crystallized the early adaptive radiation of this approach using the existing
multivariate toolkit. 

This was too early, but not by much. Independent developments over the 1970s and 1980s

 

 

 

in
stochastic processes and in interpolation theory – David Kendall's 1977 Riemannian shape space
(which most of us learned about from Kendall, 1984) along with the underlying process of shape
diffusion on which it was based, and Duchon and Meiriguet's thin-plate spline of 1975 for globally
optimal point-driven interpolation in higher dimensions, which most of the field learned about from
me (Bookstein, 1989) – combined with biometrics in the 

 

morphometric synthesis

 

 emerging in the
mid-1990s that unified a huge range of applications seemingly in every field 

 

except

 

 systematics
(e.g. craniofacial biology, computational neuroanatomy, physical anthropology and paleoanthro-
pology; for reviews, see Bookstein,1998, or the chapters of Marcus et al., 1996, and, for anthro-
pology in particular, Slice, 2004). 

Here in 2007, we can now handle data in the form of discrete named landmark points, curves
and surfaces from a wide variety of geometric data sources (photographs, solid medical images,
surface scans) in two or three dimensions. We can accommodate the special cases, quite common
in practice, for which landmark points arise from curves, or landmark curves from surfaces. Indeed,
this approach, the 

 

simplicial

 

 decomposition of a single form, has become the most common way
of building a coherent geometric representation (see Bookstein, 2004) that compromises between
the enormous over-representation by surface meshes and the equally severe under-representation
by conventional discrete point schemes.

This issue was central to the main German-speaking tradition of anthropometrics (c.f. Martin,
1928), but then lay fallow until the last few years, when computing caught up with the anthropol-
ogist's nuanced eye. The key was using the bending energy of the thin-plate spline to generate a
computed homology on curves between landmarks or surfaces between curves (Bookstein, 1997a;
Gunz et al., 2004). By this maneuver, the Blackith–Reyment multivariate toolkit that translated
from length and angle measures to shape coordinates continues to apply to the much richer domain
of arbitrarily complete simplicial decompositions without any substantial modification. 

Techniques of innovative graphics and biologically informed creative play arise very conve-
niently by exploring this simplicial synthesis with algebraic or geometrical ingenuity. One can
exploit a new thin-plate spline that treats growth gradients as part of the trend rather than the
warping term, or animate shape change by grids in three-dimensional navigating along homologous
trajectories. I review many of my current favorites from this newly adaptive toolkit in Bookstein
(2004): for instance, a powerful new approach to description of asymmetry, or the spectacular
animation sequences that, freeze-framed, serve very nicely as cover images for peer-reviewed
journals (Bookstein et al., 2002) and as workbenches for 'virtual dissection' and other physically
impossible approaches to gross and fine biological structure more generally.
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BUT WE HAVE NO 'NULL MODEL' 

 

Yet, there is a paradox underlying all these successes: the metric we use for assessing signal
strength of the 

 

Procrustes distance

 

 whose least-squares decomposition is at the core of all our
linear models and singular-value decompositions does not meaningfully represent the complemen-
tary space, the space of shape noise. Figure 5.1 is a sketch of the underlying dilemma. The
Procrustes metric per se corresponds to a model for variation (absence of signal) in the form of
an isotropic (circular) noise distribution at each landmark point independently. Here that model is
drawn out in the immersive Cartesian space (the 'original digitizing plane') for a textbook example,
the 13 midsagittal brain landmarks of the deQuardo–Bookstein schizophrenia study. These points
are 13 landmark locations from magnetic resonance images of a thick slice up the middle of the
adult human brain (see DeQuardo et al., 1996, and other references). At the upper left, a graphic
lays out the independent circular Gaussian variation postulated at each of the 13 mean landmark
locations, independently. 

This is a distribution of shapes. If we draw the corresponding distribution of wholly unpatterned
(uninformative) shape differences, we get a somewhat disturbing pattern of 'focal' deformations,
as in the four independent realizations of the middle row. Our systematist's eye is drawn too often
to the region near the centre, where the original landmarks were densest. This is an aspect of the
cognitive psychology of the scientist that should not be permitted to bias the equivalent sort of
descriptions whether pursued by man or by machine (see other chapters of this book). Under less

 

FIGURE 5.1

 

Diagram for the critique of the isotropic Mardia–Dryden distribution as a basis for biomathe-
matical interpretation. Upper left: the distribution: independent isotropic (circular) Gaussians at each landmark
separately. The radius of the circles, standard deviation of the variance of each shape coordinate, is taken as
0.02 (on a scale for which the centroid size of the mean form is 1.0). Second row: deformations between four
randomly selected pairs of forms from the distribution above, drawing too much attention to the region in the
middle of the form. Lower row: the same for twice the standard deviation. The behavior of the grids is now
clearly unacceptable for biological interpretations.
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favorable noise models, the situation is even worse: in the lower row are the same simulations
for twice the digitizing error sketched at left. Now there is a substantial chance that the induced
splines are not even diffeomorphisms. The resulting writhing is unlikely to be of any particular
systematic value. 

Evidently there is a problem here. Whereas the organism, in managing its developmental,
evolutionary or ecophenotypic shape changes, necessarily pays considerable attention to issues of
landmark spacing, our null model pays them no attention at all. To represent truly uninformative
variability in a biologically informed way, we need to constrain variances at landmarks to the
spacing of other landmarks in their vicinity. Such a step-down model, because it would induce
correlations among neighboring landmarks arising strictly from their adjacency in the mean form,
could be transcribed into the class of general 

 

Mardia–Dryden

 

 models by breaking the symmetries
of the Procrustes metric. It is still a content-free interpretation, a null model but a more promising
one. Figure 5.2 shows, in the top row, a sequence of stages in the construction of such a simulation,
based on successive centred squares (quincunxes). A sample of the corresponding simulations,
following, is much more biologically realistic, with differences at many different scales, and without
as much of that horrid crushing or folding. 

Pursuing this notion naïvely, one might imagine a sort of hierarchical scheme, analogous to
wavelets, such that digitizing noise was simulated in descending order of spatial neighborhood
size. These figures hint at the explicit possibility of signals emerging at large and small scales at
the same time. There thus begins to emerge the kernel of a feasible approach to the modeling of
noise in a non-Kendallian, but biologically more realistic way. In my view, this is precisely what
is needed for the computer-aided systematics applications: a mathematical formalism that corre-
sponds to the actual cognitive psychology of the working systematist, who naturally looks for
characters at whatever scale they can be seen to emerge – from tiny details of function or ornament
all the way up to gross aspects of shape. We had not created such a noise model before mainly
because nobody working in this domain had asked for one. 

 

EQUATION-FREE SKETCH OF A MIRACULOUS 
MATHEMATICAL RESCUE

 

When we got to this mathematical-yearning stage in the construction of transformation grids, fresh
insight came from an unexpected mathematical source. One day in 1985, after a colloquium

 

FIGURE 5.2

 

A possible remedy: decline of the scale of variations in keeping with the spacing of landmarks.
The diagram shows this in a hierarchical fashion, even though the resulting shape distribution can be written
out quite simply as a non-isotropic Mardia–Dryden. Upper row: sketch of four steps for a systematically refined
square grid. Lower row: five deformations from the template to five forms sampled from this distribution. The
variability 'feels' much more biological, showing features of comparable import at a variety of scales.
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presentation of mine, a kindly Seattle mathematician, David Ragozin, noted helpfully that the
interpolant we were using at that time (a piecewise finite-element scheme) really should be replaced
by a principled new approach from interpolation theory, the thin-plate spline, that had far greater
mathematical elegances and symmetries. This was itself new mathematics, not previously applied
in systematics (or indeed anywhere in biology). 

For geometric morphometrics, and indeed this chapter, to become possible, an analogous
transfer had to be made from a different subfield. In an obscure proceedings contribution of 1994,
Professors John Kent and Kanti Mardia of the University of Leeds noted that the thin-plate spline,
which was already proving so mysteriously helpful for our morphometric visualizations, was
actually the solution of an optimal 

 

prediction

 

 problem, and was furthermore the unique solution
to that problem that was 

 

self-similar,

 

 with the same noise spectrum at every spatial scale. The
mathematics in this case originated (again in France) with Georges Matheron, around 1970; again,
it had not previously been applied anywhere in biomathematics, let alone in systematics. 

About 5 years ago Mardia repeated this statement to me – this time a little more pointedly –
noting, in particular, that the algebra we had been using under the spline for a full 20 years actually
includes the covariance structure of this noise model in the explicit kernel of the spline bending
energy. With the usual choice 

 

U

 

(

 

r

 

) = 

 

r

 

2

 

 log 

 

r,

 

 the matrix

(5.1)

right in the centre of the spline is (in one of those classic mathematical puns that lies at the root
of all major inventions – the Gaussian distribution, for example) at 

 

the same time

 

 the covariance
kernel of an optimal kriging predictor for an 

 

intrinsic random field

 

 (IRF) in-between the landmarks,
a prediction field independent of the overall affine drift term (in morphometrics, the uniform term).
This prediction is self-similar, with the same covariance structure at every spatial scale.

The word 'intrinsic' in this context, means 'independent of large-scale drift'. Just as a random
walk is examined without keeping track of where zero actually was, these deformations should be
examined without any attention being paid to what the linear drift (the uniform term) actually was.
They are 

 

purely 

 

local and hence 'intrinsic'. In other words, there is a price to be paid for adopting
this noise model. The information about the uniform term must be sequestered to be dealt with
separately. This price seems fair as we are well used to thinking in this way from many earlier
applications (e.g. Rohlf and Bookstein, 2003).

 

1

 

I will skip all the algebra, which is written out in full in a manuscript (Mardia et al., 2006)
currently under review. What I 

 

can 

 

show is a collection of useful and suggestive graphics: simu-
lations of pure noise, and then an analogue for the spline's 'partial warps', which I would like to
call 'intrinsic warps', that may help serve as a bridge from conceptualizing entities behaving like
theorems to entities behaving like parts of organisms – in short, to possible characters underlying
a mostly automated taxonomy and systematics. 

One can draw out the intuitive consequences of self-similarity on simple and regular grids.
Figure 5.3 is a sample of twelve deformations of a starting square 10 

 

×

 

 10 grid. What 'self-similar'
means here is, roughly, that the distribution of the non-uniform part of shape of 

 

every

 

 square of
the original square grid, whether on side 1, , 2, 4 or whatever, is the same. You may wish to
examine this figure carefully. It is the equivalent of the 'bell curve' for a pure shape noise process
that begins with a starting form that is exactly square. To permit the drawing, one must specify the
uniform part of the shape deformation. Here that was done by fixing the isosceles right triangle at
lower left, upper right and lower right corners of the square. The intuition that these stand for
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taxonomic variability is almost overwhelming; yet, I assure you, these simulations are pure noise
– the same shape variation in every small square regardless of scale. But how reminiscent they are
of real image data-sets (see other chapters of this volume)! Features are 

 

suggested

 

 at so many
different geometric scales that if we did not know

 

 a priori

 

 that this variation is all the result of
induced noise, we would likely be ready to begin preparing taxonomic keys. 

Even more compelling, because its size encompasses possibilities of greater complexity, is the
20 

 

×

 

 20 grid example in Figure 5.4. Here your eye cannot help but see the overall shape change
from square to elongated trapezoid, the pinching at upper centre and a couple of foci of almost
isotropic expansion at upper right and at lower centre. 

 

Nevertheless, none of these are real; none
of the parameters of the visible local features are encoded in the programming in any way.

 

 By
explicit construction of the transformation (which includes no local information whatever), all are
pure noise. It is this model that I commend to the systematist reader as the proper equivalent of
the Gaussian noise model for image-driven deformation data. 

With this many grid points, we can explicitly verify the self-similarity by actual computation.
In Figure 5.5 are the shape distributions of the non-uniform part of the little squares of size 1, 2
and 4 from the grid preceding. The distribution is of four corners at the same time, with each form
being a deviation from the evident average parallelogram shown. Do not worry about their orien-
tation; the theorems underlying this process are completely rotatable, so the distribution applies to
diamonds, to squares of knight's-moves, and to anything else that can be put down in the Minkowski
geometry. Clearly, these distributions are the same, regardless of scale. In other words, the 'overall'
trapezoid was as likely to apply at any lower spatial scale instead, and likewise the growth centre,
etc. that our systematist's eyes could not help seeing. 

 

FIGURE 5.3

 

Twelve realizations of the same intrinsic random field on a 10 

 

×

 

 10 grid. Registration is to the
lower left, upper left and upper right corners. At this level of complexity, every grid appears to have reportable
features, but all are meaningless by explicit construction.
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A BIOMETRIC SPECULATION: INTRINSIC WARPS 

 

So we have a noise model. What kinds of scientific descriptions can we pursue with its aid? By
analogy with the bending energy of the thin-plate spline, which led to useful formalisms such as
time partial warps, the gauge metric of these self-similar processes likewise has an eigenstructure,
which I have tentatively named the 

 

intrinsic warps

 

 (IWs) of the mean point configuration. Keep
in mind that these exist only in the non-uniform subspace of the overall shape space, though they
apply at all scales. 

The morphometric synthesis of the 1990s exploits the principal warps – eigenfunctions (which
are not scale free) of the bending energy matrix – as a basis in which to verify sphericity of the
non-uniform part of a landmark-borne deformation and also to describe deviations from that
sphericity that connote systematic factors of change at different spatial scales. That analysis was
not multiscale. It was, in fact, conditioned on the actual landmark mean locations, but we often
forgot to say that in our applications papers. The more appropriate statistic, which I hope will be
found suited for routine applications to systematic data-sets, compares the observed variation instead
to the noise model described earlier. If my guess is correct, both the search for characters and the

 

FIGURE 5.4

 

An example with even more realistic complexity: one 20 

 

×

 

 20 realization of the same process. It
is very difficult to convince oneself that a structure this strongly patterned can nevertheless represent pure noise.

 

8205_C005.fm  Page 75  Monday, June 18, 2007  11:49 AM



 

76

 

Automated Taxon Identification in Systematics

 

modeling of prior knowledge in bench applications of automated taxon recognition systems ought
to be conditioned on neither the bending energy of the spline nor the Procrustes geometry of the
same mean locations, but instead on 

 

this

 

 covariance structure. 
Figure 5.6 shows all 10 of these eigenvectors for the configuration of mean landmark locations

in Figure 5.1. As the 'drift' (affine) term needs to be registered (c.f. Figure 5.3), it is registered to
a large triangle with fixed vertices at top, left margin and right margin of the mean form. In other
words, the shape and orientation of this specific triangle are unchanging over the panels of the
figure. Each deformation has been drawn as if applying to the 

 

x

 

-coordinate of the landmark
configuration, but as there was room in the figure matrix for two additional panels, I have added
the representation of the first pair as applied to the 

 

y

 

-coordinate as well. Panel labels set out the
eigenvalue for the underlying IRF model, dimension by dimension, as scaled to a value of unity
for the first. These warps are vaguely similar to the more familiar 

 

partial warps

 

 for the same
configuration (see Bookstein, 1997b), but they are not in fact the same. 

The interpretation of the IWs likewise differs from that of the partial warps. Whereas the largest
scale partial warp, for instance, represents a pattern of singularly low bending energy for displace-
ments in a gradient across the width of this configuration (Bookstein, 1991), the IW of largest

 

FIGURE 5.5

 

Demonstration of the self-similarity of the model underlying the preceding figure: identity of
the shape distributions of squares of side 1, 2, amid 4 from the grid.
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expected variance (Figure 5.6, first row, first two panels) represents the pattern of greatest variance
on the self-scaling IRF model. This is, after registration, the relative displacement of the middle
of the mean configuration with respect to the ends, but the feature is a pattern of covariance, not
a bending. Indeed it represents the long-sought linear statistic for the Pinocchio effect! 

Similar language applies to any other panel in Figure 5.6. For instance, the third IW (second
row, left panel) conveys a pattern of relative enlargement at left and right, together with relative
compression centrally, because this is something that self-scaling patterns will do at the amplitude
indicated by the label under the panel: namely, about one third of the amplitude of the end-to-end
gradient. The fifth IW offers, at roughly half the amplitude (0.164 as against 0.314), the pattern at
smaller scale (hence the smaller amplitude) involving expansion of the left end against the middle,
and so forth, down to the patterns of smallest variance of all, which, like the last partial warps, deals
with the highly damped rearrangements of the landmarks at closest mean spacing, just as in Figure 5.2. 

Gratifyingly enough, these warps may have a clear systematic meaning. 

 

They may actually look
like morphometric characters

 

. Even though multiscale, they are 'character-istic'. As a rough gen-
eralization, where the conventional partial warps are analogues of growth gradients trying to
integrate changes smoothly over larger and larger regions of the form, these intrinsic warps are
rather the opposite, trying to concentrate covariation spatially in just a few domains of the form's
pattern space. The intrinsic warps of Figure 5.6, in fact, emerge in an order of increasing complexity
corresponding to the number of different landmark-like features (points, edge elements [Bookstein
and Green, 1993; Bookstein, 1999] and curves) that could emerge as features of the corresponding
deformations. Each is a description of a 

 

potential form of systematic organization

 

 of the system of
identified points as a whole, but that is, more or less, exactly what systematists have always hoped
a morphometric character could be. The neural-net procedures reviewed elsewhere in this volume
would have such features emerge out of the self-organization of a net; here they emerge, at least
as a description space, from the corresponding self-organization of self-similarity over multiple
spatial scales. 

 

FIGURE 5.6

 

All 10 intrinsic warps (IWs) for the mean form driving the simulations in Figure 5.1. Each is
drawn in the horizontal direction except for the first and second, which are drawn both horizontally and vertically.

IW 1, X, s.d. 1

IW 3, X, s.d. 0.316 IW 4, X, s.d. 0.233 IW 5, X, s.d. 0.164 IW 6, X, s.d. 0.145

IW 7, X, s.d. 0.124 IW 8, X, s.d. 0.115 IW 9, X, s.d. 0.075 IW 10, X, s.d. 0.060

IW 1, Y, s.d. 1 IW 2, X, s.d. 0.472 IW 2, X, s.d. 0.472
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IMPLICATIONS FOR THE NOTION OF A 
COMPUTED HOMOLOGY 

 

The title of this chapter refers to a topic that has dogged morphometrics ever since the early days
of computational image analysis. A deformation grid is a mapping between extended regions of a
Cartesian space, but the data available to the biologist do not often take the form of such a map.
There are some exceptions, as reviewed in Bookstein (1978); for instance, sheets of dividing cells
such as plant meristems can sometimes be followed in full detail in an effectively continuous
geometry. Regardless, the biotheoretical notion of homology is fundamentally centred on the
discretization of an organism into finite parts

 

. 

 

Re-use of this word to apply to a mapping function
is a semantic subterfuge, a tacit extension of language, which my Michigan Morphometrics Group
in 1985, following a suggestion of Sneath's (1967), called a 

 

computed homology. 

 

There is then a very tight connection between the IRF models of the present discussion and
the idea of a limit to the precision that can be claimed for any computed homology between the
landmarks, at points where there is no actual landmarked information. Inside the smallest cells of
a landmark configuration, the IRF models imply irreducible uncertainty of how points correspond
between specimens. Maps cannot be interpolated to any claimed precision better than what the
residual stochastic models supply. In effect, everywhere except precisely at the landmark locations,
the grid hues of a thin-plate spline are 'thick' hues – not mathematical curves, but fuzzy ribbons.
This corresponds to the current epistemology of applied geometry in many of its other applications,
where the corresponding lower bound is set by the aperture of the imaging device (e.g. Koenderink,
1990). The literature of morphometrics has long needed a vocabulary for attending to the empirical
absurdity that every point landmark is actually claiming to represent. 

It is one implication of this approach that more care needs to be taken with the selection of
landmark points than is presently the case. The allocation of a landmark halfway between two others,
or in the middle of a surface path bounded by some curves, adds information to a data-set 

 

even if
the landmark is located exactly where a spline driven 

 

by 

 

the remaining information would place it.

 

It adds, precisely, the information that 

 

that 

 

location was observed with only digitizing error, so points
nearby have a prediction error that is lower simply by virtue of the additional data. Where landmarks
are widely spaced, the deformations predicted by, say, a thin-plate spline are far less reliable than
where landmarks are precise 

 

regardless of the statistics of the landmark locations themselves. 

 

The IRF models here might be considered the first feasible quantitative representations for the
uncertainty of a deformation grid, a computed homology, as a whole. Models of the uncertainty
of imputed parameters (uniform terms, growth gradients, etc.) are not equivalent, as they fail to
accord with the self-scaling property that gives this particular model its power and coverage. For
decades, the attention of mathematical biologists has been distracted from fundamental issues of
descriptive anatomy, such as the nature of claimed correspondences across multiple instances of
the 'same' developmental program or its evolutionary changes. One purpose of this chapter is to
encourage other theoretical biologists to attend likewise to this foundational issue, with an eye
toward patching it up for the evo–devo advances of the twenty-first century, through all the
corresponding mathematics. 

 

AN EXAMPLE

 

Attend again to the increment space in Figure 5.6. These were components of variance on the
null (IRF) model, but there is an actual data-set here, combining two groups of human subjects
(14 schizophrenic patients and 14 normal employees of the University of Michigan Hospitals
at the time). An appropriate empirical eigenanalysis would summarize the shape dimensions
that show variance most in excess of what is predicted for their scale. The equations (omitted
here) match those of Bookstein (1991) in combining both 

 

x

 

- and 

 

y

 

-components of the shape
coordinates. Computation is by a classic relative eigenanalysis, empirical covariance structure
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against modeled covariance structure, in the resulting 20-dimensional space of non-affine shape
for these 13 landmarks. (For a note on relative eigenanalysis in morphometrics, see also Book-
stein et al., 2002.) 

The first three relative eigenvalues (for observed covariance structure of the increments as a
ratio to IRF1-modeled) are in the proportions 65:33:28, indicating that we should pay most attention
to the very first. Figure 5.7 shows, at left, the plot of this particular relative eigenvector, the first
relative intrinsic warp (RIW), and, at right, the mean difference of average shape between the two
groups. The similarity of these two panels is indeed remarkable. The first RIW precisely centres
on the region that is responsible for the group difference, and gets almost the right increment (the
extra variance in the shape of that particular little triangle). In other words, if we choose to abuse
the term 'taxonomic character' by applying it to an ordination like this one, the IRF method has
found the correct character at high signal amplitude (ratio of 2:1 of those first two relative
eigenvalues) and with great spatial accuracy. One can ask nothing more of an empirical ordination
(see Blackith and Reyment, 1971). 

No earlier multivariate analysis of this data-set has ever located this crucially important region
by such a simple linear method. See DeQuardo et al. (1996), Bookstein (1997b, 1997c) and even
Dryden and Mardia (1998), in all of which this signal is produced not by algebra, but by visual
inspection of spline diagrams. Only the method of creases (Bookstein, 2000) has teased it out
before, but crease analysis is a complex computation involving the location of a hierarchy of
extremal derivatives all over the coordinate mesh in which the landmarks are embedded. The
technique also resembles the approach to relative warps with 

 

a

 

 = –1, the exponential parameter for
weighting by bending energy introduced in Bookstein (1996). When 

 

α

 

 is negative, there is no
problem with the uniform term, as it is multiplied by 0

 

–

 

α

 

 and hence vanishes. 

 

CONCLUDING OPTIMISTIC POSTSCRIPT

 

So here is my working hypothesis: if there is landmark-like covariance structure in your warped
image data-set, these new relative intrinsic warps (relative now with respect to the IWs instead of
the old PWs), may have a fair chance of finding it. In other words, 

 

ordinary biometric principal
components with respect to the new 'featureless' covariance structure – relative intrinsic warps

 

might be the nearest thing yet that morphometrics can offer as a formalism based in image
deformation that nevertheless refers to the sorts of features systematists have typically found useful
in thinking about their taxonomic task. 

If biometricians other than I can likewise unearth examples where this highly modified relative
warp analysis leads to valuable ordinations, the further areas of extension would become obvious:
to (a)symmetry, to growth and development, to ecophenotypy, to evolutionary selection gradients,
… to all the kinds of explanatory factors we nowadays apply to shape space covariance structures
'by hand'. This characterization of landmark covariations, then, may represent a core of the next

 

FIGURE 5.7

 

The first relative intrinsic warp (RIW) for the real data of DeQuardo et al. (1996) for two groups
of brain images compared to the actual group mean difference between schizophrenics and their psychiatric
ward staff as found there. The RIW emphasizes the last few IWs from Figure 5.6.

RIW 1 Group mean difference

arbitrary magnitude exaggerated three times
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morphometrics toolkit, the fusion of computerized image processing with morphometrics in the
new computer-assisted systematics. 

Of course, Darwin 'is in the details'. Still, if my guess is right, this is a potentially major new
technical research programme. Volunteers are sought, and readers should feel free to speculate on
any or all of this as they peruse the rest of this volume's text and 

 

its 

 

applications to pressing
taxonomic problems. By insisting on the priority of systematics thought styles – in particular, on
the relative irrelevance of scale to characters – we may end up reshaping morphometrics as radically
as systematics did once before, in the 1960s, with the initial thrusts of Blackith, Reyment and Sneath. 

I commend the self-similar model to your attention as a potentially central new tool in the
toolkit corresponding to your purpose as collated in the meeting of which these are the proceedings.
Not without irony, I also put it forward as yet another area in which Europe must take the lead
over its ex-colonies toward the salvaging of our systematic and biometric heritage. 
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NOTES

 

1. In passing, we may have also solved a puzzle famously called to our attention by Cohn
Goodall, at the Princeton Shape Theory Workshop of 1989, when he noted that the thin-
plate spline is obviously quite useful for a variety of biometrical applications, but that
nobody had the slightest idea 

 

why.

 

 This might be the underlying reason why: it is capable
of tracking meaningful changes at any or all spatial scales at the same time.
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INTRODUCTION

 

The automated identification of objects is not a new concept, only a concept that is new to many
systematists. The overwhelming majority of research in automated object identification is being
carried out in engineering, computing and robotics (e.g. Pasquariello et al., 1998; Yakcun and
Bozma, 1998; Koha et al., 2002; Nilubol et al., 2002). There is a large body of research in these
fields spanning the past four decades (Moganti et al., 1996; Desouza and Kak, 2002; Egmont-
Peterson et al., 2002), but only relatively recently have truly automated approaches to identification
been applied to non-human biological problems.

Early work on automated identification concentrated on image processing applications such as
recognition of Hymenoptera (Daly et al., 1982) and pollen using scanning electron microscope
(SEM) images (Langford et al., 1986, 1990). More recently, there has been an increased research
effort in this area, partially due to advances in technology and also because of the 'taxonomic
impediment'. It is becoming increasingly evident that the shortfall in professional taxonomists is
not being addressed with sufficient vigour (Gaston and O'Neill, 2004). Automated identification
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systems have the potential to aid taxonomists and parataxonomists in sorting tasks, and for other
routine applications such as rapid biodiversity assessment, long-term conservation/ecological mon-
itoring and enhanced ecological studies (Riede, 1993). Acceptance of automated taxon identification
(ATI) within the systematics community has been slow and generally thought too difficult to achieve
or a threat to employment (Gaston and O'Neill, 2004). 

The development of ATI is an inherently multidisciplinary task, requiring knowledge of appli-
cation areas, taxonomic groups, computing and electronics technology. ATI is part of 'computer-
aided taxonomy', a definition for which was proposed at the inaugural meeting of the Bio-
NET–INTERNATIONAL Group for Computer-aided Taxonomy as 'the application of any computer
or computer technique for taxonomic purposes' (Chesmore, Yorke, Bridge and Gallagher, 1997,
p. 3) and is divided into three branches as follows.

1. Automated taxon identification (ATI) (originally designated automated species
identification).

2. Computer-aided identification keys, including Internet-based keys.
3. Numerical techniques for systematics such as cladistics, genome searching and numerical

taxonomy.

This chapter deals exclusively with ATI, which has many potential applications that may be
divided, in broad terms, into the following categories:

1. Rapid sorting of samples from traps or vacuum samplers (ATI can provide identification
to order, family or genus to aid parataxonomists in sorting).

2. Rapid biodiversity assessment.
3. Long-term unattended monitoring (low-power field deployable ATI systems can provide

new data at a much higher sampling frequency than is possible with human surveys;
systems capable of operation continuously for months are feasible with identifications
occurring in near real time).

 

STRUCTURE OF AN AUTOMATED TAXON 
IDENTIFICATION SYSTEM

 

An ATI system can take two forms: fully automated and semi-automated (Chesmore, 2000). Fully
automated ATI does not require any user interaction and is suitable for long-term unattended
operation – for example, in forest biodiversity studies. Semi-automated ATI is simpler to achieve
and produces a partial identification or an identification that is verified by the user. The latter is
likely to be more acceptable in the short term as it keeps the user 'in the loop'. Semi-automated
systems also allow for a degree of user interaction – for example, to select objects within an
image field of view for identification. In terms of schematic design, an ATI system is basically
a standard pattern recognition system, as shown in Figure 6.1, and is divided into four distinct
functional blocks: sensor, preprocessor, feature extractor and classifier. Each stage is described
next in more detail.

 

FIGURE 6.1

 

Block diagram of and automatic taxon identification system based on classical pattern-recog-
nition system design.

Species
identificationClassifierFeature

extractorPreprocessorSensorTAXON
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S

 

ENSOR

 

A sensor uses real-world signals as input and converts these into electrical energy. The range of
sensors available for measurement of real-word signals is very wide and includes temperature,
light, acoustic, vibration, chemical, humidity, acceleration, radar, sonar, cameras, flow, etc. However,
when considering ATI, the range of sensors is more restricted. For example, a humidity measurement
is not likely to provide any useful signal capable of distinguishing between taxa. The following
sections describe the most common sensors currently employed for ATI. This list is not exhaustive
and new developments – for example, in chemical sensors in the form of electronic noses (Hines
et al., 1999) – may lead to new applications such as distinctive odour and pheromone detection.

 

Acoustic Sensors

 

Many animals produce acoustic signals as a means of communications or as a by-product of activity
such as flying, eating and locomotion. The majority of acoustic signals occur within the human
auditory frequency range (20 Hz–20 kHz), but some occur at lower frequencies known as infrasound
(e.g. African elephants, 

 

Loxondonta africana, 

 

and various species of whale) (McComb et al., 2003)
and higher frequencies termed ultrasound (20–200 kHz or higher; e.g. bats, bush-crickets, some
cetaceans). Many sounds are substrate borne (e.g. Hemiptera; see Cokl and Virant-Doberlet, 2003)
and wood-boring beetle larvae (Farr and Chesmore, 2005); these require a vibration sensor, or
accelerometer, to detect signals. 

Selection of an appropriate acoustic sensor is dependent on the application, the taxonomic group
to be identified and the type of signal generated, whether infrasound, ultrasound, human hearing
range or vibration. There is a wide variety of commercially available sensors for airborne signals
in the human hearing range (microphones); sensors for other frequency ranges are more specialized. 

The most important factors to be considered when choosing a microphone are its frequency
response and directionality. Selection of appropriate sensors will always be application dependent.
Highly directional microphones are useful for maximizing signal level, but need to be oriented
toward the sound source, which usually requires human operation. Parabolic dishes are also used
for increasing directional sensitivity, but affect the frequency response, which may be disadvanta-
geous in some applications. Ultrasonic sensors, particularly piezoelectric transducers, tend to be
highly resonant, but have poor sensitivity at frequencies away from the resonant frequency. These
may be detuned to remove resonance, as is often employed in low-cost bat detectors. But sensitivity
is greatly reduced and the signal often must be amplified to a level where noise is significant. Wide-
band ultrasonic microphones are available, but tend to be very expensive. 

Substrate-based signals can be considered as acoustic signals since these are also pressure
waves travelling through the medium. Detection of substrate-based signals depends on the signal
intensity and characteristics of the medium through which the signal travels; the most common
media are wood, plant stems (either woody or soft) and the ground. Sensors can be simple
piezoelectric devices that generate a voltage when flexed or accelerometers such as micro-electrical
mechanical system (MEMS) integrated circuits, which have micromachined strain gauges to mea-
sure acceleration or velocity. While very sensitive, accelerometers are expensive. A third type of
vibration sensor is the laser vibrometer, which detects changes in reflection of a laser beam. It is
the most sensitive technique and is capable of detecting vibrational signals in leaf miners

 

 

 

up to
26 kHz, well beyond the capabilities of the other sensors (Bacher et al., 1996).

A major consideration in acoustic sensing is the rate at which the signal is to be digitized,
which should be greater than two times the maximum frequency in the signal; this is known as the
Nyquist sampling criterion (Cohen, 1995). Digitization at rates below the Nyquist frequency will
result in aliasing (folding of frequencies above the Nyquist frequency onto lower frequencies) and
the signal cannot be reproduced. In practical systems, an anti-aliasing filter is included to remove
signal energy above half the Nyquist rate. However, practical filters are not perfect and there is
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always some signal leakage above the cutoff frequency. It is therefore usual practice to sample a
signal at a rate higher than the Nyquist rate in order to reduce the likelihood of aliasing.

It is also necessary to consider the accuracy to which the signal's amplitude is to be reproduced
(quantization). Quantization is carried out by an analogue to digital (A–D) converter, which
produces a digital output as a number of binary bits, 

 

n.

 

 The number of levels is given by 2

 

n

 

,

 

 so a
16-bit A–D converter will divide its input range into 65,536 amplitude levels. The higher the number
of bits is, the greater is the accuracy; however, the overall memory requirements for storage (or,
equivalently, transmission) is a function of both sample rate (

 

R

 

) and number of bits as 

 

R

 

 

 

×

 

 

 

n.

 

 
A 16-bit signal sampled at 44.1 kHz (standard audio sample rate for CD-quality sound) will

require 352,800 bytes of memory per second (twice this for stereo). A bat sound with maximum
frequency of 140 kHz will require a sample rate typically of 350 kHz, which is sufficiently greater
than the Nyquist rate to overcome leakage due to non-ideal filtering, requiring 2.8 Mbytes per
second of memory for 16-bit samples. It is possible to compress acoustic signals using Windows
Media Audio (WMA), MPEG3 or minidisc (MD) algorithms, but it is important to note that
compression algorithms rely on the mechanics of human hearing to remove parts of the signal and
thus may not be suitable if the waveform has to be preserved accurately for the purposes of
characterization and/or analysis. It has, however, been shown that use of such compression algo-
rithms does not necessarily have a deleterious effect on identification accuracy for some systems
(Chesmore and Ohya, 2004).

Acoustic sensing can be affected significantly by interference, mainly from other animal sounds.
In many parts of the world, anthropogenic sound is also becoming more prevalent and poses a
significant problem. Some acoustic ATI systems overcome this problem to an extent by recognizing
anthropogenic sounds as well as those of the target taxa (Chesmore and Ohya, 2004). It is also
possible to filter the signal in situations where the interfering sound has a much higher intensity if
its spectrum differs significantly from the target taxa, but significant frequency overlap cannot be
overcome easily. Separation of multiple simultaneous sources can be achieved to a certain extent,
using more than one sensor, if they are spatially separated and independent component analysis or
blind source separation (Choy et al., 2005). 

 

Visual Sensors

 

Visual sensing requires a monochrome or colour camera to obtain images of individuals. Of
importance here is the image resolution in pixels since a higher resolution for a given magnification
will enable smaller features to be observed. The same sampling and quantization issues exist as
those for acoustic signals, but now in two dimensions. Other factors to consider are the sharpness
of focus, depth of field and contrast. Colour is often preferable to monochrome images, especially
when taxa are highly or inconsistently coloured and exhibit a high contrast with the background.
Colour images are generally considered as three independent images: red, green and blue (RGB),
with processing being carried out separately. With special equipment, it is possible to extend the
colour range beyond that of human vision (400–700 nm) and record images in near infra-red (IR,
>750 nm) and ultraviolet (UV, 200–400 nm) parts of the spectrum. The insensitivity of normal
silicon photosensors to UV means they cannot be used to image UV, so UV-enhanced sensors must
be employed. Silicon sensors are, however, very sensitive to near-IR (around 1000 nm). Some
photosensors are multispectral in that they are able to sense a wide range of spectral bands; these
are useful, for example, in the detection of vegetation and vegetation type from the ratio of red to
near-IR reflectance characteristic of green plants. Such sensors are used most widely in remote
sensing satellites, but are increasingly used in aircraft to obtain higher resolution. 

There are many visual sensors to select from, ranging from low-resolution monochrome sensors
to high-resolution colour and multispectral sensors. Webcams, digital cameras and scanners are all
suitable. The first consideration is the number of spectral bands required – for example, whether
it sufficient to use greyscale or colour required. A colour image needs three times the storage
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requirements of a greyscale image. The second consideration is resolution in pixels (i.e. the number
of pixels in the image for a given optical configuration). High-resolution (e.g. 6 or 12 Mpixel)
colour images are very memory intensive and so are expensive computationally. Compression
algorithms such as JPEG can reduce the size of an image, but care must be taken since information
will usually be lost during compression.

 

Active Sensors

 

Acoustic and visual sensors are known as passive sensors in that they do not interact with the object
being sensed. An active sensor transmits electromagnetic or acoustic energy and observes reflections
from the object. Radar uses electromagnetic energy at radio frequencies and has been employed for
identification of birds and insects, although it has proven difficult to correlate reflected energy with
species (Weber et al., 2005). This is due to the inter-relationship among returned echo size, distance,
effective radar cross-section (size of object as seen by the radar), and operating wavelength. It is,
however, possible to obtain wingbeat frequency and mass using a nutating beam (Chapman et al., 2003).

It is not practical to use electromagnetic energy in water since penetration is only significant below
a few hundred hertz and at visible wavelengths (400–700 nm). However, sound propagates well in
water and sonar has been successfully used to discriminate between fish species. Another active sensor
employed in flow cytometry uses lasers of different wavelengths and scattered energy from cells is
picked up. The amount of energy scattered is a function of the wavelength of incident radiation and
the physical structure of the cell (i.e. a cell with many projections will have different scattering
characteristics from those of a smooth, spherical cell). Other sensors include scanning electron micro-
scope (SEM) and computer tomography (CT) scans, though the outputs of these devices are usually
processed as standard digital images. Specific applications are discussed later in this chapter.

 

P

 

REPROCESSOR

 

Once the signal has been converted into electrical form, a number of preprocessing operations are
often required. These may include amplification to improve the signal-to-noise ratio (SNR), filtering
to remove noise and unwanted signals, filtering to enhance signals (e.g. edge detection) and other,
more complex functions such as comb filtering (multiple bandpass filters). The type of preprocessing
necessary is entirely dependent on the type of sensor employed. For example, an acoustic sensor
may require amplification and often filtering to remove unwanted frequencies, whereas an image
might need contrast enhancement or histogram equalization to improve signal levels. Many pre-
processing functions are carried out while the signal is still in its analogue form, but there is an
increasing emphasis on performing these operations after digitization for two main reasons: it is
possible to create very complex filters, which would require many analogue components to realize
practically (Mulgrew et al., 1999), and the cost of high-speed computing is continually being
reduced. One disadvantage of digital filtering is that the processing functions are subject to math-
ematical rounding errors that may be large enough to distort signals; they may also be computa-
tionally expensive.

 

F

 

EATURE

 

 E

 

XTRACTOR

 

Feature extraction is the most important aspect of any ATI system. In simple terms, a good feature
set is one in which each taxon has a 1:1 correspondence with a set of features, which is another
way of saying 'no feature overlap'. If feature overlap occurs among taxa, then an erroneous
identification may occur.

The concept of recognizable taxonomic unit (RTU) is frequently used to place taxa into
morphologically similar groups (Riede, 1993). In some cases – particularly in visual sensing – such
groups will map well to the morphological characteristics of the taxonomic group. However, in
generalized ATI, a feature set is not likely to bear a direct resemblance to any morphological
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characters. For example, flow cytometry has features based on scattering parameters of different
wavelengths of light (Balfoort et al., 1992; McCall et al., 1996). Here, the amount of light scattered
is a function of wavelength and the structure of the organism (number, size of spines, surface
texture, etc.); these features are different from features obtained by visual observation. 

Figure 6.2 is a diagrammatic representation of a taxonomic space where taxa (grey circles) are
grouped according to morphological similarity (RTU) as indicated by dashed lines. In this scenario,
there are four taxa in RTU1, two in RTU2, two in RTU3 and three in RTU4. However, for a given
feature set, taxa may be grouped differently according to the similarity between taxa in terms of
the feature space. Such groupings might be termed 'recognizable feature space units' (RFSU). In
this example, RFSU1 contains three taxa, two of which belong to RTU1 and one to RTU4 (similarly
for RFSU2 to RFSU5). Note that RFSU3 is the same as RTU2. Selection of a more appropriate
feature set (if possible) should reduce the number of taxa in each RFSU, with a perfect ATI system
having one taxon per RFSU.

Feature selection is the most important aspect of an ATI system. Choice of features is also
dependent on the sensor employed, as indicated in Table 6.1, which is a list of some of the most
commonly used features. In acoustics, frequency components are most widely used and can be
generated by fast Fourier transform (FFT) (see Walker, 1996) or wavelet transform (Chan, 1995;
Addison, 2002). These are computationally intensive and the FFT exhibits a trade-off between the
time and frequency domains (Duhamel and Vetterli, 1990); high accuracy in the frequency domain
(large FFT) will result in a poor time resolution and vice versa. There are many features available
for images (see Parker, 1997; Gonzalez and Woods, 2002; Javidi, 2002). A change of sensor and/or
feature set may dramatically improve or degrade the reliability and accuracy of identifications (see
O'Neill, this volume), so it is important to consider all options before deciding how best to approach
the design of an ATI system fitted for any particular identification problem. 

 

C

 

LASSIFIER

 

The term 'classification' as used in computing and engineering is defined as the assignment of a
signal or pattern to one of a number of prespecified classes based on features extracted from the

 

FIGURE 6.2

 

Representation of recognizable feature space unit. Each taxon occupies a location in taxonomic
space with morphologically similar species grouped in RTUs. Here there are four taxa in RTU1, two in RTU2,
two in RTU3 and three in RTU4. RFSUs form different groupings, depending on similarity in the feature
space. Here, RFSU1 contains three taxa, two of which belong to RTU1 and one to RTU4; similarly for RFSU2
to RFSU5. An ideal ATR system will have a 1:1 mapping between taxon and RFSU. 
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TABLE 6.1
Examples of Features for Different Sensors

 

Sensor type Features Comments/advantages/drawbacks

 

Passive acoustic Frequency components Calculated by fast Fourier transform (FFT). Computationally intensive. 
A trade-off between temporal and spectral resolution (fine time 
resolution means poor frequency resolution and vice versa) (Duhamel 
and Vetterli, 1990).

S- and A-matrices Time domain signal coding (TDSC) based on zero-crossings and wave 
shape. S-matrix is a one-dimensional matrix of the frequency of 
occurrence of waveshapes. A-matrix is a two-dimensional matrix of 
the frequency of occurrence of pairs of waveshapes (Chesmore, 2001; 
Chesmore and Ohya, 2004). Computationally simple to implement 
and can be implemented in real-time at well over 1 MHz.

Autocorrelation, cross-
correlation

Gives information on self-similarity (periodic structure) and similarity 
between two waveforms, respectively. Computationally intensive if 
long samples are used. Also memory intensive (Kondoz, 2004).

Linear predictive 
coefficients

All pole model of sound production mechanism (common method for 
speech analysis and synthesis). Good if signal has strong resonant 
structure (e.g. humans, birds); can also be used for spectral smoothing 
(Kondoz, 2004).

Wavelets Has variable spectral resolution which is an advantage for many 
biological signals. Computationally intensive (similar to FFT) (Chan, 
1995; Addison, 2002).

Amplitude probability 
density functions

Only provides statistical information on amplitude. Useful for 
determining optimum detection threshold.

Active acoustic 
(sonar) and active 
electromagnetic 
(radar)

Echo size Provides information about object size in conjunction with time of 
flight of transmitted pulse.

Echo shape Shape of echo is a function of the object's size and texture in relation 
to the wavelength of the acoustic signal (scattering parameters).

Time delay of pulse Measures distance to object.
Visual Edges (monochrome or 

RGB)
There are a large number of different edge detectors. Obtain 
information about sudden changes in colour or brightness values 
across the image (Gonzalez and Woods, 2002).

First- and higher order 
moments

Standard statistical measures of mean, variance, etc. Higher order 
moments give information relating to orientation (Gonzalez and 
Woods, 2002).

Texture There are a large number of different texture measures that give 
information on image structure (e.g. Langford et al., 1986).

Image histogram mean, 
SD, median 

Information relating to image composition (Gonzalez and Woods, 
2002).

Shape indices Eccentricity, Hough transform, snakes. Give information on general 
shape or whether a particular shape is present (Gonzalez and Woods, 
2002).

Flow cytometry Scattering parameters Objects (e.g. cells) have wavelength dependent scattering functions 
that are related to the surface texture (e.g. Balfoort et al., 1992; 
McCall et al., 1996).

Fluorescence Cells containing chlorophyll fluoresce red with short wavelength light, 
thus providing an indication of the presence of chlorophyll.

Chemical (e.g. 
electronic nose)

Response of multiple 
chemical sensors

Electronic noses use arrays of sensors to detect different chemicals 
(Hines et al., 1999). Has little application in ATI at present.
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signal; recognition is defined as the ability to classify (Schalkoff, 1992). Schalkoff divided pattern
recognition systems into three types: statistical (or decision theoretic) pattern recognition, syntactic
pattern recognition, and neural pattern recognition. The first and last are widely used in ATI, whereas
syntactic pattern recognition has not been a popular choice, though it has been successful in human
speech recognition (Allerhand, 1987) and may be suitable for complex bioacoustical signals such
as bird song. Syntactic pattern recognition can also be applied to non-temporal signals and is being
used to generate wing-venation descriptions automatically for identification of dipteran and
hymenopteran species (Dai and Chesmore, 2005).

Statistical pattern recognition is based on the statistical nature of signals and extracted features
are represented as probability density functions (Schalkoff, 1992). It therefore requires knowledge
of 

 

a priori

 

 probabilities of measurements and features. Statistical approaches include linear dis-
criminant functions, Bayesian functions and cluster analysis and may be unsupervised or supervised.
Supervised classifiers require a set of exemplars for each class to be recognized; they are used to
train the system. Unsupervised learning, on the other hand, does not require an exemplar set.

Artificial neural networks (ANNs) are good at classifying non-linearly separable data. There
are at least 30 different types of ANNs, including multilayer perceptron, radial basis functions,
self-organizing maps, adaptive resonance theory networks and time-delay neural networks. Indeed,
the majority of ATI applications discussed later employ ANNs – most commonly, MLP (multilayer
perceptron), RBF (radial basis function) or SOM (self-organizing map). A detailed treatise of neural
networks for ATI is beyond the scope of this chapter and the reader is referred to the excellent
introduction to ANNs in Haykin (1994) and neural networks applied to pattern recognition in
Looney (1997) and Bishop (2000). Classifiers for practical ATI systems are also described in other
chapters of this volume.

 

PRACTICAL ATI SYSTEMS

 

An ideal ATI system should be capable of recognizing all taxa with 100 per cent accuracy, be
immune to all interfering signals, have a resolution down to the lowest taxonomic level required
by the problem under consideration (even to the individual in terms of small populations), and be
scalable so that new taxa can be added without reduction in identification accuracy. Accuracy and
resolution are dependent on the taxa being recognized and the system's characteristics. For example,
some taxa may be easily separable and therefore will have a high degree of identification. An ideal
ATI system should be able to provide data continuously over a spatial scale defined by the user or
the application and on a real-time basis.

In practice, spatial resolution will be determined primarily by cost (i.e. the number of devices
that can realistically be deployed). The rate at which identification takes place may be a critical
factor for systems designed to provide continuous data, where rapid changes in local situations
must be tracked. The limiting factor is a function of the total processing time between sensing and
identification; this is given by the sum of preprocessing time, feature extraction time and classifier
time. In many applications, the heaviest processing requirement is in feature extraction, which may
place an upper limit on the rate of identifications. Taylor et al. (1996) developed a system for real-
time identification of frogs in Australia. The system could sample for only 75 per cent of the time;
the remaining 25 per cent was missed due to memory restrictions and the time required for
calculation of features based on a FFT.

All sensors have inherent limitations in dynamic range, resolution (if digital) and bandwidth.
A sensor with a wide dynamic range can cope with large variations in the SNR (i.e. loud/quiet
sounds or bright/faint images). In some applications – particularly acoustic – it is possible to
improve the SNR using multiple sensors. Multiple sensors can also overcome interference to a
degree by subtracting signals, thereby eliminating common components. Interference is likely to
be a significant problem in all ATI systems. Problems with acoustic systems have already been
mentioned; interference in image-based systems can take a number of forms, including multiple,
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possibly overlapping organisms in the same visual field; a background of similar characteristics
(e.g. similar colours or textures) to the object being recognized; inconsistencies in lighting, pose;
etc. It is important to be able to quantify many of the preceding parameters in order to achieve a
robust system with repeatable data in which the user can have confidence.

 

APPLICATIONS OF ATI SYSTEMS

A

 

COUSTIC

 

 A

 

PPLICATIONS

 

Acoustic methods have been used for many years to identify insects, birds and mammals, and are
still employed for manual species surveys (Baillie, 1995; Fischer et al., 1997; Gardiner et al.,
2005). Simple detection of the presence of insects for phytosanitary and quarantine purposes has
been the focus of most research, including beetle larvae in rice grains (Shuman et al., 1993, 1997),

 

Rhizopertha dominica

 

 in wheat kernels (Hagstrum et al., 1990), subterranean insect pests and stem-
borers (Mankin and Weaver, 2000; Mankin et al., 2000), termites (Matsuoka et al., 1996), larvae
feeding inside cotton bolls (Hickling et al., 2000) and detection of the Asian longhorn beetle
(

 

Anoplophora glabripennis

 

) in live trees and solid wood packing materials (Haack et al., 1997;
MacLeod et al., 2002).

Recent research into automated identification has concentrated on quarantine wood-boring
Coleoptera such as 

 

A. glabripennis, A. chinensis

 

 and 

 

Hylotrupes bajulus

 

 (Farr and Chesmore, 2005)
and the development of non-invasive tools for locating stag beetle (

 

Lucanus cervus

 

) larvae 

 

in situ

 

(Farr et al., 2005). These systems make use of low-cost vibration sensors to detect bites and
stridulation from larvae, with identification achieved using time domain signal processing for feature
extraction. Other acoustic applications for insect identification include Orthoptera (Chesmore,
Swarbrick and Femminella, 1997; Chesmore and Nellenbach, 2001; Dietrich et al., 2003; Ohya
and Chesmore, 2003; Schwenker et al., 2003; Chesmore, 2004; Chesmore and Ohya, 2004; Dietrich
et al., 2004), cicadas (Ohya, 2004) and mosquitoes (Campbell et al., 1996).

Relatively little work has been carried out on amphibian acoustic identification. One notable
project developed a field-deployable system to identify the presence of cane toads (

 

Bufo marinus

 

)
in Australia (Taylor et al., 1996). Birds are an obvious choice for acoustic ATI, but there has been
relatively little progress on comprehensive systems due to the complex nature of bird song. Systems
exist for identification of migrating birds (Mills, 1995) and birds in general (McIlraith and Card,
1995; Chesmore, 2001), and locating individual elements of birdsong (Anderson et al., 1996; Kogan
and Margoliash, 1998; Terry and McGregor, 2002). One interesting application employed a hand-
held computer capable of automatically recognizing a small number of bird species to teach
Japanese children about soundscapes (Oba, 2004).

Identification of mammals leads to the possibility of intraspecific identification in addition to
interspecific identification. Research in this area includes individual fallow (

 

Dama dama

 

) and roe
deer (

 

Capreolus capreolus

 

) (Reby et al., 1997, 1998a, 1998b), domesticated cows (

 

Bos taurus

 

)
(Jahns et al., 1997), Gunnerson's prairie dogs (

 

Cynomys gunnisoni

 

) (Placer and Slobodchikoff,
2000) and false killer whale (

 

Pseudorca crassidens

 

) (Murray et al., 1998a, 1998b). Bats are another
target for ATI; ultrasonic echolocation calls are generally species specific. Several semimanual bat
identification systems have been tested with good success (Vaughan et al., 1996; Parsons and Jones,
2000; Parsons, 2001). At the other end of the acoustic spectrum, infrasound has recently been used
for identification of elephant calls (Clemins and Johnson, 2002).

 

I

 

MAGE

 

/V

 

ISUAL

 

 A

 

PPLICATIONS

 

There are potentially many more applications of visual ATI than acoustic ATI, ranging from bacteria
to insects and birds. In the plant kingdom, applications have tended to focus on problem species
such as weeds (Shulin and Runtz, 1996; Critten, 1996; Hemming and Rath, 2001; Manh et al.,
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2001), pests on cotton (Zhigang et al., 2003), quarantine fungal pathogens (Lane et al., 1998) and
pollen (Langford et al., 1986, 1990; France et al., 2000). Other applications include mushrooms
(van de Vooren et al., 1992), fungal pathogens (Chesmore et al., 2003), plant variety (Felföldi et
al., 2001), trees based on leaf identification (White and Prentice, 1988; Clark and Warwick, 1998;
Clark 2000, 2003), and blue-green algae (Thiel, 1994).

Identification of marine zooplankton using image processing was one of the earliest ATI
applications (Katsinis et al., 1984). Bacteria have also been the object of ATI research (Blackburn
et al., 1998; Dörge et al., 2000; Walker and Kumagai, 2000; Foreroa et al., 2004).

Lepidoptera are an obvious choice for image-based identification; however, relatively little
work in this area has been carried out (Chesmore and Monkman, 1994; Watson et al., 2003;
White and Winokur, 2003; Kipling and Chesmore, 2005). More work has been carried out on
Hymenoptera such as braconid wasps (Weeks et al., 1997a, 1997b; Gauld et al., 2000), honeybees
(Daly et al., 1982; Schröder et al., 1995; Steinhage et al., 1997; see also Steinhage et al., this
volume), solitary bees (Roth et al., 1999), ichnumonid wasps (Yu et al., 1992), parasitic wasps
(Angel, 1999) and leafhoppers (Dietrich and Pooley, 1994). Other invertebrate research involves
the location and description of wing venation – for example, in Diptera (Dai and Chesmore,
2005) – and identification of spiders via genitalia images (Do et al., 1999; see also Russell et
al., this volume).

 

A

 

PPLICATIONS

 

 I

 

NVOLVING

 

 O

 

THER

 

 S

 

ENSORS

 

Extant, active-sensor ATI systems include those based on sonar, radar, flow cytometry and optical
detection. Sonar has been shown to be effective in identifying single species fish shoals via
backscatter parameters (Haralabous and Georgakarakos, 1996; Scalabrin et al., 1996; Simmonds
et al., 1996) and radar can identify certain large flying insects (Chapman et al., 2003). Acoustic
backscatter has been used for classification of zooplankton (Martin et al., 1996). Flow cytometry
has been used extensively for identification of microbial populations (Jonker et al., 2000), algae
(Balfoort et al., 1992; Wilkins et al., 2003), phytoplankton (Boddy et al., 1994; McCall et al., 1996;
Pech-Pacheco and Alvarez-Borrego, 1998; Wilkins et al., 1999; Morris, Autret, et al., 2001; Morris,
Boddy, et al., 2001; Wilkins et al., 2001; Luo et al., 2002; Wilkins et al., 2003), zooplankton (Jeffries
et al., 1984), diatoms (Du Buf and Bayer, 2002) and dinoflagellates (Culverhouse, Williams,
Reguera, Herry, et al., 2003; Culverhouse, Williams, Reguera and Herry, 2003). An interesting
active optical system has been developed that detects reflections of a light source from flying insects
and has successfully been tested on aphids (Moore and Miller, 2002).

 

THE FUTURE OF ATI 

 

ATI is becoming more practical as processing power increases and cost decreases, and more
acceptable to taxonomy as the taxonomic impediment worsens. Major improvements are contingent
on development of accurate, scalable classifiers capable of operating with many taxa. Recent work
on plastic self-organizing map-based neural networks (Lang and Warwick, 2002; Watson et al.,
2003) may lead to systems that are not only efficient but also scalable due to their ability to accept
new taxa without requiring complete retraining.

Additional information relating to a taxon's autecology, geographical distribution, host plants
and other parametric data may be used to further improve reliability of the classification step. For
example, a classifier may give two possible identifications, only one of which is likely at a given
geographical location. There are a number of approaches to providing such metadata. Perhaps the
most effective is through an associated expert system where the metadata are stored in the form
of rules (Jackson, 1990; Luger and Stubblefield, 1993). Figure 6.3 shows how an expert system
might be combined with an ATI system. An expert system has an additional advantage in that it is
capable of providing an explanation of the reasoning behind the answer, whereas an ANN, for
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example, does not have an explanation facility and must be treated as a black box. This approach
has been used by Walker and Kumagai (2000) for image-based identification of cyanobacteria. It
must be stressed, however, that this is only one of a range of possible alternatives.

There are many other approaches to knowledge-based pattern recognition that should be explored.
An alternative expert system architecture that has potential for ATI is the blackboard system, which
is suited to complex data analysis (Hallam, 1990; Craig, 1995) and has been used for speech
recognition in the well-known Hearsay II system (Erman et al., 1980). A simplified blackboard system
has been tested on British Orthoptera using time-domain signal coding and demonstrated the potential
of this approach for acoustic signals (Chesmore, Swarbrick and Femminella, 1997). 

It is now possible to implement ATI on handheld computers and, more significantly, mobile
phones, which now have high-quality cameras, large memory and significant processing power.
This has many significant advantages for in-field use, including automatic location fixing using
GPS, provision of additional data such as images and ecological information, and the ability to
transmit images (or sounds) via radio. There is also much potential for integrating ATI systems
with the Internet. A combination of both approaches means that it will be possible for a field
researcher to identify a taxon immediately or, if a specimen cannot be recognized, an image
transmitted via mobile radio or satellite link to a server where more powerful identification engines
are available. An answer could then be relayed back to the user. All the technology required for
implementation of such a system is already available with the radio infrastructure present in many
countries and expanding in others. 

 

SUMMARY

 

Automated taxon identification is a rapidly emerging science requiring a multidisciplinary approach
that is becoming more achievable due to increases in processing power and significant reductions
in memory and processing costs. An ATI system, like any pattern-recognition system, comprises
four functional units: sensor, preprocessor, feature extractor and classifier. While there are a wide
range of sensors available for signal measurement, only a relatively small subset is useful for ATI;
these can be grouped into three primary categories: acoustic, visual and active sensors.

To date, the majority of ATI systems use acoustic or visual sensors, although it is anticipated
that others, such as chemical sensors, may play an increasing role in the future. The sensor's output
is then modified by the preprocessor to be suitable for the feature extractor which is the most

 

FIGURE 6.3

 

Design for improving an ATI system by adding an expert system.
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important part of any pattern recognition system. Selection of features is a function of the sensor
and taxonomic group; good feature set is one in which each taxon has a 1:1 correspondence with
a set of features (i.e. there is no feature overlap). If an overlap does take place, then an erroneous
identification may occur. The classifier is the final stage and is designed to place the input signal
into one of a number of categories, namely, taxa. There is a large range of classifiers available;
the majority employed to date are statistical or neural and the latter have the advantage of non-
linear reparability.

An ATI system should ideally have an identification accuracy of 100 per cent and be scaleable
(i.e. the same accuracy for small or large taxonomic groups). In reality, this is difficult to achieve,
especially when dealing with 'real' signals, which may have poor SNR or high levels of interference.
It is important that these potential limitations are appreciated at the design stage so that a robust
system with repeatable data in which the user can have confidence can be achieved.

The number and range of applications is increasing, particularly for image-based approaches.
It is expected that the number of practical field-deployable systems, rather than research systems,
will increase rapidly in the near future for three reasons: (1) availability of new, powerful mobile
technology such as mobile camera phones, (2) the worsening taxonomic impediment and (3) an
increasing acceptance of ATI as a viable tool.
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INTRODUCTION

 

DAISY (digital automated identification system) is based on an idea for a versatile, general-purpose
identification system for biological species first mooted by the ecologist Kevin Gaston and the
taxonomist Ian Gauld and me in 1993. While stranded at Juan Santa Maria Airport in San Jose,
Costa Rica, they started thinking about how a technologically advanced nation (e.g. Japan) would
approach the problem of biological species identification – and therefore the taxonomic impediment
– from first principles. Gaston and Gauld realized that computer power was approaching the level
where it might be possible to build a fully automated tool that could initially augment and perhaps
eventually replace human experts for routine identifications.

Such tools would have a profound impact on both taxonomy and those areas of the biological
sciences (e.g. ecology, biogeography) that are dependent on taxonomic services. Firstly, they would
effectively take the knowledge of the taxonomic expert out of the museums and the universities
located in the first world and place it where it is most sorely needed: in the hands of those third-
world institutions struggling to catalogue tropical biodiversity before it disappears. Secondly, they
would permit government officials and others to rapidly identify those species that threaten agri-
culture (e.g. 

 

Anastrepha

 

 fruitflies in the tropics) or health (e.g. 

 

Aedes aegypti,

 

 the vector of yellow

 

8205_book.fm  Page 101  Tuesday, June 12, 2007  2:25 PM



 

102

 

Automated Taxon Identification in Systematics

 

fever) in an accurate and time-effective manner. Overworked human experts can take days to weeks
to identify an unknown specimen, by which time it may be difficult to limit damage. 

Although Gaston and Gauld were among the first to think seriously about utilizing computer
technology to overcome the taxonomic impediment, the idea has caught on over the past decade.
Today many eminent biologists – for example, the tropical ecologist Daniel Janzen (see Janzen,
2004) – have added their voices to the growing chorus for computer-aided taxonomy (CAT), as
have a number of organizations at both national and international levels tasked with cataloguing
biodiversity (e.g. 

 

BioNET

 

 and 

 

INBIO

 

). Now, after more than a decade of development, the biological
community is on the threshold of being able to use tools like DAISY, SPIDA (Do et al., 1999,
Russell et al., 2005

 

)

 

, ABIS (Schröder et al., 1995) and the many other systems discussed in this
volume as 

 

production identification systems

 

 for species identification in the field, at ports of entry
and in schools. Free access to such systems will indeed contribute to 'taxonomy's finest hour'
(Wheeler, this volume). The ability to identify species, and gain consequent access to the informa-
tion that goes with such identifications will be available to all – to the schoolboy in Newcastle who
has found an interesting beetle, to the hotel keeper in Zikanthos whose ornamental 

 

Nerium oleander

 

bushes are being devoured by a strange caterpillar with startling eyespots, to the customs official
who has found a maggot in a shipment of oranges at Felixstowe – species identification will be
made available to those who need it, where they need it and when they need it.

 

IMPLEMENTATIONS OF THE DAISY SYSTEM

DAISY U

 

SING

 

 

 

A

 

 PCA-B

 

ASED

 

 A

 

PPROACH

 

In its original form, DAISY was implemented in 1995 under the aegis of UK government's
Agriculture and Food Research Council funding. In order to reduce the problem to one of tractable
size, given the limitation in available computer power, a decision was made to concentrate on
identifying insects using optical imagery of their wings. There were several reasons for this decision:

• Wings are two dimensional. This means that perspective does not have to be taken into
account; thus, preprocessing is simplified.

• Wings are easily detached from both museum training material and specimens caught
in the field and may be robustly mounted on slides for analysis.

• Much of the computer-based identification work reported at that time had used wings
(for the preceding reasons). If the DAISY project used wings, it would allow like to be
compared with like when assessing the system performance.

• Arthropods, especially insects, are good indicators of both changes and the health of the
ecosystems they inhabit. From the scientific perspective, insects are, therefore, a good
exemplar group on which to base prototype organismal identification systems.

A survey of techniques then being used in allied fields showed that, for fully automated species
identification (where the user simply supplies the system with an image of the unknown, presses
a button and gets an answer), approaches being developed for the machine identification of human
faces provided an ideal initial starting point.

The initial DAISY implementation was particularly influenced by the work of Matthew Turk and
Alex (Sandy) Pentland at MIT (Turk and Pentland, 1991). With training sets of 8–10 (wing) specimens
per species, a principal component analysis (PCA)-based DAISY exemplar implementing Turk and
Pentland's algorithm was able to recognize five species of parasitic wasp (Weeks et al., 1997) and
some 30+ species of biting midge (Weeks et al., 1999a, 1999b) with a high level of accuracy (>95%
of the material presented to the system was correctly identified to species) using slide-mounted wings.
While the level of (identification) performance delivered by this system was similar to that of (then)
extant systems using manual measurement of character sets derived from wing venation geometry
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(Lane, 1981; Yu et al., 1992

 

)

 

, it possessed the potential for greater ease of use, as the holistic

 

 

 

PCA-
based approach obviated the time-consuming step of manually measuring wing characters.

The 'push-button' nature of this first-generation system – albeit tested on very few taxa – suggested
that it might be possible to achieve the dream of Gaston, Gauld, Janzen and many others to implement
a fully automated biological species recognition system. As a consequence, further funding was
sought and obtained from the UK government's Darwin Initiative to build a fully functional DAISY
exemplar. This work, done in collaboration with the University of Costa Rica and INBIO, was
designed to test the feasibility of a computer-based system that would allow non-specialists to identify
a difficult, but ecologically important, group of Costa Rican insects: parasitic wasps in the genus

 

Enicospilus.

 

 This genus was chosen as an exemplar because of the following considerations:

• It is moderately specious with a Costa Rican fauna of some 50 species.
•

 

Enicospilus

 

 species are all very similar in appearance. Therefore, it is difficult for non-
specialists to differentiate between them. 

 

Enicospilus 

 

thus represents a 

 

difficult

 

 test case
for an automated species identification system.

•

 

Enicospilus

 

 wing venation is relatively complex. Thus, there are many potential wing-
based characters that may have the potential to diagnose species. 

• The ability to identify members of this genus rapidly and accurately would be of
significant utility to ecologists.

Although the PCA-based DAISY system was capable of differentiating a substantial proportion
of the members of this difficult group, the exercise of extending the exemplar to a practically useful
number of species highlighted a number of serious shortcomings in the PCA approach. One such
problem was linearity. For simple PCA approaches, the morphospace containing the pattern classes
must be linear. Although a non-linear morphospace is problematic for the PCA approach, it is
soluble: it is possible to extend PCA to non-linear morph spaces by partitioning space into a set
of linear regions, each with its own principal components.

 

1

 

A much more serious problem inherent in the PCA approach is the need to recompute the
transform from the high-dimensional pattern space to a low-dimensionality component space each
time material is added or removed from the system. This is clearly a very expensive option if the
system is non-closed and in situations where training data are liable to be added and/or removed
at regular intervals. Worse still, the speed at which the system computes principal components (e.g.
trains) is 

 

O

 

(

 

n

 

2

 

) where 

 

n

 

 is the number of taxa in the system.

 

2

 

 Thus, the time taken to train the system
increases at a rate proportionate to the square of the number of species it contains. This is clearly
not ideal if we want to build a general-purpose system capable of scaling to tens of thousands of taxa.

 

DAISY U

 

SING
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-N
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/K
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/PSOM A

 

PPROACH

 

In order to tackle the issues of non-linearity and scaling, a second version of DAISY was recoded
from scratch and implemented (Figure 7.1). This new version (NNC/NVD DAISY) was based on
nearest-neighbour classification (NNC), a simple, yet very powerful classification scheme first

 

FIGURE 7.1

 

Identification of 

 

Psuedosphinx tetrio

 

 using DAISY.
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advocated by Igor Aleksander

 

 

 

and Graham Stonham (1979). Nearest-neighbour classification is easily
understood and trivial to implement, but classification algorithms derived from it deliver at least 95
per cent of the accuracy of 

 

much

 

 more complex pattern-matching algorithms (see Lucas, 1997). 
In its simplest form, NNC reduces to comparing an unknown (U) with a set of pattern vectors

{P}. If U is correlated with each member P

 

i

 

 of {P}, U is assumed to belong to the same class as
pattern vector P

 

m

 

 for which it has the highest correlation affinity 

 

a

 

u,m

 

. This is equivalent to a so-
called 'first-past-the-post' (FPTP) classification. Despite its simplicity, NNC has 

 

massive 

 

advantages
over more computationally intensive approaches such as PCA, for example:

• When new material is added to training sets there is no need to recompute a high-
dimensionality to low-dimensionality transform. In fact, like Kohonen self-organizing
maps (Kohonen, 2001) and the closely related plastic self-organizing map (PSOM) (Lang,
this volume

 

)

 

, NNC effectively trains 

 

in real time

 

.
• The methodology is readily extended to incorporate dynamic learning; for example, the

techniques used by Lang in the PSOM algorithm can be adapted (Lang, 2005).
• NNC is relatively easy to implement in hardware should the need arise. This was, in

fact, done by Stonham in the Wisard facial recognition machine. The hardware imple-
mentation of NNC and similar algorithms is provided by Austin (1998). 

• The simple and robust nature of NNC and the linear nature of its pattern-correlation
algorithms mean that it is well suited to geometric parallelization.

 

3

 

 This is exploited
within NNC/NVD DAISY to permit the system to scale seamlessly to tens of thousands
of taxa, making optimal use of available computing resources. An appropriate micro-
cluster hardware architecture for efficient geometric parallelization of DAISY and similar
systems is discussed by O'Neill et al. (2003

 

)

 

.
• NNC copes well with non-linear morphospaces. In addition, the training data for NNC

need not be ordered into putative species classes. In the case of non-linear PCA, for
example, training data need to be ordered as a consequence of dividing the morphospace
into a number of approximately linear regions. PCA and back propagation ANN-based
individual species classifiers (e.g. SPIDA; see Do et al., 1999) also require training data
to be ordered. Servicing this requirement adds significantly to algorithm complexity.

In order to optimize the performance of the NNC algorithm, DAISY II does not use standard
cross-correlation

 

 

 

to compute the pattern–pattern correlation affinity. Experiments revealed this
measure to be far too blunt a comparator when dealing with classes whose interclass pattern
differences are very small. Although the Kendall-

 

t

 

 non-parametric correlation statistic (see Press
et al., 1992) used initially to compute this gave significantly better results than cross-correlation,
the approach is also constrained by the 

 

O

 

(

 

n

 

2

 

) scaling relation (in the number of elements in the
pattern vectors compared) and therefore too slow to be of practical use in a production system.
Consequently, a novel form of pattern–pattern correlation was developed: the normalized vector
difference (NVD) metric, which proved to be a statistically optimal method of comparing patterns.
For patterns that are very similar to each other, NVD gives a far superior result to traditional cross-
correlation, yet it is faster to compute. Furthermore, the accuracy of NVD results either equals or
exceeds those obtained using the Kendall-

 

t

 

 method.
The NVD algorithm has the following form:

(7.1)

In this equation, 

 

a

 

x,y

 

 

 

is the NVD correlation coefficient for patterns X and Y, 

 

x

 

i

 

 is the 

 

i

 

th
component of pattern X, and 

 

y

 

i

 

 is the 

 

i

 

th component of pattern Y. A schema of the NNC imple-
mentation for DAISY II is shown in Figure 7.2.

a x yx y i i, = −∑ 2 2
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APPLICATION OF NNC/NVD DAISY (DAISY II) TO 
PATTERN-RECOGNITION TASKS

 

NNC/NVD DAISY or DAISY II has been applied to a wide range of pattern-recognition tasks with
significant success. These include the following (see also Figure 7.3):

• insect identification using wing pattern and shape (butterflies and moths, bees, parasitic
wasps; see Gauld et al., 2000; Watson et al., 2003) and parasitic wasp faces (MacLeod
et al., this volume);

• plant identification via leaf pattern and shape (and also from pollen grains);
• planktonic microfossil identification (MacLeod et al., 2003);
• vertebrate bone systematic (Walsh et al., 2004, this volume) and functional morphological

(MacLeod et al., 2004) categorization;
• human faces (e.g. The Cambridge University/Olivetti Research facial data-base); and
• speech patterns (Knoll et al., this volume).

In all cases, a high level of identification accuracy has been achieved (see also Gaston and
O'Neill, 2004); typically, greater than 85 per cent of material presented to the system is correctly
identified to class (>95% for easy data-sets such as butterflies and moths) and, in most cases, greater
than 50 per cent of specimens are identified to

 

 

 

a high level of confidence (e.g. when prior statistics
derived from the training set are used to assess confidence of identification). In order to achieve
these high-confidence identifications, DAISY II extends the basic NNC approach by incorporating
a highly conservative, empirically tested certainty measure based on the demography of local
neighbourhoods in pattern space. If the coordination C is 

 

≥

 

3 (i.e. 

 

≥

 

3 nearest neighbours in pattern
space of some unknown pattern U are in class Y, see Figure 7.4), then it is highly likely that U is
also a member of class Y.

 

4

 

FIGURE 7.2

 

Operation of the NNC pattern correlation algorithm. The unknown U is compared with each
training set image in turn. The identity of the unknown is the same as the training set image T

 

j

 

 for which the
affinity a

 

u,j

 

 is maximized.

 

FIGURE 7.3

 

Examples of the various biological of patterns that have been identified successfully using the
DAISY system.

PollenSoundForam.FaceLeafInsect
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LIMITATIONS OF NNC/NVD DAISY AS A 
PATTERN-RECOGNITION ENGINE

E

 

FFECTS

 

 

 

OF

 

 P

 

OSE

 

 S

 

CALE

 

 

 

AND

 

 B

 

ACKGROUND

 

 N

 

OISE

 

Based on these results, DAISY II seems to be relatively successful as a generalized pattern-
classification engine. Does DAISY II have any generic limitations? Of course. If images are supplied
to the system in arbitrary poses and at an arbitrary scale, 'landmarking' is required (Figure 7.5).
For example, insect wings need to be outlined in a specific manner in order to achieve identifications
that are both accurate and repeatable. This is especially true when dealing with very similar taxa
and/or gross differences in pose and/or scale. The purpose of landmarking is twofold: (1) to permit
object rotation and scale to be automatically compensated for and (2) to remove the object from
any background that may otherwise confuse the system. Examples of the sort of background clutter
seen in typical images processed by the DAISY II system are shown in Figure 7.6. This background
clutter must be digitally removed in order for DAISY II to make accurate identifications.

 

E
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There is also a limit to the amount of overlap that can be tolerated between two or more classes
if substantial amounts of material in those classes are to be identified with high level of confidence.

 

FIGURE 7.4

 

Operation of the DAISY coordination certainty measure.

 

FIGURE 7.5

 

Use of PolyROI landmarking to outline the wing of a Belizian specimen of 

 

Xylophanes chiron

 

.

y
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Xylophanes
neoptolemus

Xylophanes
neoptolemus
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Classes that form distinct convex hulls in the morphospace and have no overlap (Figure 7.7) are,
of course, easy to characterize. The DAISY II approach

 

 

 

can even deal with cases where the classes
overlap to a modest extent (Figure 7.8); fortunately, many species identification problems conform
to this model. In this case, an unknown U will be identified unambiguously as A or B with a high
level of confidence if it lies in one of the 

 

non-intersecting regions 

 

of morphospace for classes 

 

A

 

or 

 

B

 

, respectively. But quite a few biological pattern-identification problems are more complex and
exhibit almost complete overlap between the two classes in question (Figure 7.9).

 

5

 

 

 

Unfortunately,
if this situation arises, it is intractable. The best any system can do in this case is to return an
answer that the unknown, U, is A

 

⏐

 

B; that is, the unknown belongs to either class A or class B.
Disambiguation of A

 

⏐

 

B to classes A or B in this situation requires human intervention. The
best that the system can accomplish here is to provide a screening function. A screening set of
possible but non-resolved species is produced that then have to be keyed out to precise identities
using a (limited) key. Note that there is another possibility here. If the set of unresolved possibilities
{R} for unknowns of a given species {U} is small and approximately constant, a back propagation
ANN (e.g. a multilayer perceptron) could be used as a post-processing stage. This will effectively
resolve U

 

i

 

 down to some member R

 

j

 

 by using character information. For example, the character
formed by the distinct white spots on the upper forewing of 

 

Aricia artaxerxe

 

s can be used to resolve
it from 

 

Aricia agestis

 

.
Use of multilayer perceptrons has been championed by Chesmore (2004) to distinguish closed

sets of closely related British orthoptera using audio patterns. His methodology could be extended
to encompass the closed intractable species complexes generated by DAISY II on the fly.
Alternatively, it may be possible disambiguate intractable species sets by acquiring the corre-
sponding patterns using a different sensor technology or, in the case of images, by acquiring
different views using the same sensor

 

.

 

 In all of these cases, the idea is to obtain pattern sets for

 

FIGURE 7.6

 

Images of live Belizian sphingids in a collecting net (left) and in the wild (right) showing typical
background clutter.

 

FIGURE 7.7

 

(Color Figure 7.7 follows page 110.)

 

 Hypothetical diagram of a populated morphological space
with distinct convex hulls.

Xylophanes titania Adhemarius gannascus

A

B

Polygonia c-album

Pieris napi
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the non-resolved classes that (ideally) possess the convex clustering characteristics illustrated in
Figure 7.7. The effect of sensor type on classification accuracy is given in Table 7.1, which
compares the identification accuracy attained using images of planktonic foraminifera acquired
using a conventional optical microscope with that attained using depth images acquired using a
confocal microscope system.

In this particular instance, it is clear that the level of accuracy obtained can be much higher
in terms of both FPTP correctly classified percentage and for the corresponding certainty in the
case of the depth images where artefacts due to lighting, patterning from staining and defocus
have been removed (Figure 7.10; see also MacLeod et al., this volume). An equally dramatic
example is afforded by the

 

 Aricia artaxerxes

 

/

 

Aricia agestis 

 

pair (Figure 7.11). The undersides of
the wings of these two species are sufficiently different to reduce the interclass morphospace
overlap from nearly total to partial: this means that at least some specimens of 

 

Aricia artaxerxes

 

and

 

 Aricia agestis

 

 will be identified with a high level of accuracy and certainty if the ventral as
opposed to the dorsal surfaces of the wings are used to train the system. For many species
identification tasks, this is all that is required.

In practice, of course, there can be many more than two classes within the pattern cloud. A
striking example of this is afforded by the British bumblebee fauna as illustrated in Figure 7.12.

 

6

With appropriate training set composition, DAISY is able to deal effectively with situations where
the pattern clusters are non-convex or even situations where a single class maps to multiple clusters
in morphospace (Figure 7.13).

TABLE 7.1
Effect of Sensor on FPTP Accuracy for Images of Planktonic Foraminifera Acquired Using 
Conventional Optical Microscopy and Using Confocal Microscopy

FPTP accuracy (optical microscopy) FPTP accuracy (depth maps)

Species Fptp 24 Fptp 32 Fptp 48 Species Fptp 24 Fptp 32 Fptp 48

all: 75 75 75 all: 95 95 95
Gl. conglobatus 80 80 60 Gl. conglobatus 100 100 100
Gl. quadrilobatus 100 100 100 Gl. quadrilobatus 100 100 100
Gl. ruber 100 100 100 Gl. ruber 100 100 100
Gn. aequilateris 60 40 40 Gr. aequilateris 100 100 100
Gr. truncatulinoides 60 60 60 Gr. truncatulinoides 60 60 60
Gr. tumida 40 60 80 Gr. tumida 100 100 100
O. universa 100 100 100 O. universa 100 100 100
S. dehiscens 60 60 60 S. dehiscens 100 100 100

Note: In each case, results are given for polar thumbnails8 of 24 × 24, 32 × 32 and 48 × 48 pixels, respectively.

FIGURE 7.8 (Color Figure 7.8 follows page 110.) Hypothetical diagram of a populated morphological space
with overlapping convex hulls.

A

B

Argynnis paphia

Argynnis aglaja
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FIGURE 7.9 (Color Figure 7.9 follows page 110.) Hypothetical diagram of a populated morphological space
with almost totally overlapping convex hulls.

FIGURE 7.10 The effect of sensor type. Here, the same specimen of planktonic foraminifera (Sphaeroidinella
dehiscens) is shown imaged (A) via conventional optical microscopy and (B) as a depth map using confocal
microscopy. In (B), diagenetic staining is removed, and lighting is standardized between all images in the
training set (see also MacLeod, 2006).

FIGURE 7.11 The undersides of the wings of Aricia artaxerxes and Aricia agestis (see also Figure 7.9).
These species are readily distinguished if the ventral, as opposed to dorsal, wing surfaces are used to train
DAISY.

FIGURE 7.12 An example of a species cloud: (wing venation of) British Bombus sp.

Aricia artaxerxes

Aricia agestis
A

B

A B

Aricia agestisAricia artaxerxes

B. terrestris B. lucorum B. magnus B. lapidarius
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USE OF DAISY TO INFER CLASS
MEMBERSHIP STATISTICALLY

Given the potential barriers to successful species identification, some of which have been raised
in the previous section, it is clear work remains to be done if DAISY and similar systems are to
realize their full potential. For example, work is currently in progress to determine whether
clustering statistics derived from jacknife testing of training material can be used to (better)
identify the classes to which this training material belongs. This will be especially useful in those
situations where high-confidence identification of individual object patterns to class is impossible
or where we wish to test the hypothesis that a group of patterns are in fact clustered into a set
of distinct classes.

This case is well illustrated by the problems encountered when identifying pollen grains in ill-
constrained pose imaged using conventional optical transmission microscopy. Although FPTP
classification of individual pollen grains is relatively poor, clustering the identification statistics of
the pollen grains show inter- and intraspecies regularities of a level of significance far greater than
may be expected by chance alone. Unfortunately, unless the variation in the population from which
the pollen grains are drawn matches that of the training sets, the method is of limited utility.7 But
if the variation of the training sets does approximate to that of the real populations, it may be
possible to perform impressive 'generalized matching' analyses (e.g. taking a pollinator such as a
bee and unambiguously identifying the plant species represented within its pollen load). This would
be of significant utility, as a DAISY-based system could be used to identify both pollinators and
the pollen loads they carry, facilitating the investigation of pollination networks. These may be
subsequently analysed to identify key providers of pollination services within a given target
ecosystem (see Watson, 2005).

A preliminary example of the end point of this type of DAISY-based network is shown in
Figure 7.14. Here DAISY was used to establish the identities of the sphingid moths using wing
shape and pattern and the host plants on which they feed using leaf shape and pattern, thus
establishing the connectivity of the network.

Another hypothetical example of the power of the statistical approach is illustrated by the
example of putative speciation in the sphingid Xylophanes libya. Analysis of both molecular
data and field studies by tropical ecologist Dan Janzen supports the idea that Xylophanes libya
is, in fact, two species: a lowland form (X. libya) and a montane form (X. cryptolibya). In this
situation, DAISY can be used to examine training sets containing the putative species, {TLibya}
and {TCryptolibya}. If Janzen's hypothesis is correct, jacknife testing these putative species training
sets should show intratraining set affinities aLibya,Libya; aCryptolibya,Cryptolibya are higher than the
intertraining set affinities aLibya,Cryptolbya by a magnitude significantly greater than the null hypoth-
esis of random grouping.

FIGURE 7.13 An illustration of difficult morphological space configurations that DAISY is able to resolve.

Precis octavia
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Xylophanes loelia
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THE FUTURE: CAN WE IMPROVE THE FUNCTION OF THE 
DAISY SYSTEM?

Despite the many successes achieved by DAISY and similar systems, there remains a significant
wish list that must be realized if a robust, scaleable identification system is to be realized. The
major items outstanding include the following:

• Speeding up the basic DAISY algorithms. In the case of DAISY, this can be achieved
in a number of ways – for example, by caching training set data or by extending and
improving the distribution facilities provided by the P3 middleware under which DAISY
operates (O'Neill et al., 2001; O'Neill et al., 2003).

• Investigation of methods to optimally extract characters to disambiguate classes that are
members of pattern clouds. One possible approach would be to incorporate back-prop-
agation algorithms into the DAISY architecture. For example, a multilayer perceptron
could be added as a post-processing stage to DAISY.

• Looking at optimal conditions (and sensor technologies) for pattern acquisition. In the
case of optical imagery, for example, the effects of lighting, pose scale, etc. also merit
thorough investigation.

• Achieving platform independence. To be acceptable to a wide range of potential users,
CAT systems must be able to run on industry-standard hardware and software systems
such as Apple Macintosh systems running Mac OS X or PCs running Microsoft Windows
XP. A start has already been made here. DAISY can now run seamlessly on the XP
desktop within a CoLinux parasite (Aloni, 2004) which runs cooperatively as a user
process within the XP host and communicates with it via an embedded X-server. DAISY
is also being ported to PDAs (e.g. the Pocket PC). In this case, DAISY runs in a pocket
Tux-Linux parasite (see http://www.dsitri.de/wiki.php?page=PocketTux), communicat-
ing with the host PocketWindows OS via an embedded X server and/or a VNC client
(Richardson et al., 1998). Screen shots of these parasitic implementations are shown in
Figures 7.15 and 7.16.

FIGURE 7.14 Hyles host plant interaction network constructed using material identified in part using DAISY.
The moth nodes are labelled in this network for clarity only.
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The building of generic systems that can identify a wide variety of biological objects remains
very difficult. It will be taxing, but not impossible, to produce a fast, scaleable, fully automated
generic solution to the biological species recognition problem in the next decade. Several very
promising starts have already been made.
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FIGURE 7.15 DAISY running on the PocketWindows desktop under pocket Tux-Linux parasite on an Xda
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FIGURE 7.16 DAISY running on the Windows XP desktop from within a CoLinux parasite.
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NOTES

1. In fact, this was done for the PCA version of DAISY. Each species had its own PCA-
based classifier; the unknown was deemed to belong to that species to which it had the
highest affinity. A full description of this version of DAISY is given in Weeks et al. (1997).

2. This inherent non-scalability is also a feature of back-propagation artificial neural net-
works (ANNs) – for example, multilayer perceptrons.

3. This is not a contradiction. NNC is a linear (i.e. first-order) algorithm capable of handling
pattern spaces that are themselves non-linear.

4. Typically, C ≥ 3 implies a certainty of correct identification ≥ 95 per cent for data-sets
processed to date.

5. There is some evidence that adding more training material may resolve the situation by
creating small regions of convexity within overlapped regions (e.g. MacLeod et al., this
volume).

6. Actually, DAISY was able to classify ~60 per cent of British bumblebees presented to
a high level of certainty (for local neighbourhood coordination ≥ 3, the system was at
least 95 per cent certain that its classification of unknowns was correct).

7. This situation also pertains in many morphometric approaches.
8. Both training set and unknown images are subsampled to a standard size in a rectangular

polar coordinate system. The resulting image is known as a polar thumbnail.
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INTRODUCTION

 

Computer-aided systems based on image analysis have become popular for automated species
identification. This contribution emphasizes that robust approaches to image-based automated
species identification 'should know what they do'. This means these approaches should extract
meaningful image features that depict corresponding object features (i.e. morphologic and mor-
phometric features like veins, eye distances, lengths of antennas), instead of relying solely on pure
image information (i.e. pixels, wavelets). To demonstrate the efficiency and reliability of a
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feature-based approach to image-based automated species identification, we first present a feature-
based system for the automated identification of bee species that employs knowledge-based image
analysis. The system has been successfully deployed in Germany, Brazil, and the USA. Second,
we present a generalization of the feature-based approach to a multiview image analysis of different
perspectives of specimens, which will be applicable also to different groups of insects. 

 

FEATURE-BASED IMAGE ANALYSIS 

 

The classical approach to species identification is that of qualitative morphological and quantitative
morphometric analysis. Thus, taxonomists perform the identification task by visual observation and
measurement of morphological and morphometric features (i.e. the colour of feathers, the shape
of wings, the distance between the eyes, the angle between two veins). A natural way to automate
the traditional taxonomic ways of species identification by visual observation and measurement is
to employ methods of image analysis. Furthermore, since taxonomic descriptions rely on morpho-
logical and morphometric features, a feature-based approach seems appropriate. 

This feature-based approach to image analysis considers any image as a collection of discrete
image features rather than an array of pixels. While each pixel of an image encodes one intensity
value in the case of a monochrome image, or several intensity values in the case of a colour image,
an image feature represents the image of an object feature. An object feature, in turn, is a meaningful
and characteristic part of the model of the object class, which the image-analysis system is aiming
to recognize. Thus, the feature-based approach to image analysis is the key to knowledge-based
image analysis, which employs explicit object models and allows explicit reasoning about the
objects and their relations in the application domain (i.e. reasoning about the content of the images).
This way of image analysis, which couples feature recognition and reasoning, is called image
understanding and is part of the field of artificial intelligence (Shapiro and Eckroth, 1987). 

The feature-based approach also represents the technical link to content-based image retrieval
in large multimedia data-bases where content-based descriptions of the images, on the one hand,
and the ontologies that describe relations between object and feature classes, on the other, help to
retrieve images that show some specific content. Last, but not least, the feature-based approach
supports explanation of the results of object identification or image retrieval. Comparing charac-
teristic features allows the interpretation of results in terms of the application domain instead of
raw statistics of pixel comparisons. In this way a feature-based approach helps to ensure better
quality control. To summarize, the feature-based approach to image analysis enables users to:

• identify objects in terms of understanding the content of images;
• index images in large data-bases efficiently by content-based retrieval; and
• ensure quality control in terms of domain-specific criteria. 

Obviously, the feature-based approach must rely on the presence of sufficient meaningful image
features of the domain, where 'meaningful' is defined by the recognition purpose. This means that
the image features must correspond to characteristic object features, which are sufficient to classify
image content into the modelled object classes (i.e. identify the species). In the case where
characteristic image features are not available for a desired classification result, a combination of
feature-based and pixel-based image analysis is necessary. In the following sections we illustrate
these principles of the feature-based approach to image analysis for species identification.

 

AUTOMATED BEE IDENTIFICATION SYSTEM (ABIS)

 

The automatic bee identification system (ABIS) was designed to identify species of bees. Bees
play a key global role in the ecosystem and in agriculture because they are the most important
pollinating insects. The annual value of the worldwide service of pollination is estimated to be
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around US $65 billion (Pimentel et al., 1997). But many of the bee species are currently threatened
with extinction. 

Efforts to preserve and protect bee species are severely hampered by their difficult taxonomy
and the lack of entomological specialists who can identify bee specimens. The key idea behind
ABIS is to identify bee species from images of their forewings. Using diffuse background
illumination, bee wings show a clear venation within a transparent skin. The structure of this
venation is genetically fixed and therefore suited to the identification of species (Schröder et
al., 1999). Analysing each wing image gives rise to a set of well-defined, characteristic mor-
phometric features. These features are used in a new knowledge-based classification approach
to taxonomic identification.
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The first step in the recognition of a bee specimen is to acquire an image of its forewing. For this,
ABIS requires only a microscope interfaced with a digital camera and a notebook computer. Live
bees or collection specimens are mounted so as to permit images of their forewings to be made with
the microscope (Figure 8.1). The equipment can also be used in the field (Figure 8.2). The wing
images are stored as high-resolution, high-quality JPEG files for subsequent processing (Figure 8.3). 
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The ABIS system implements a fully automatic extraction algorithm for the image processing
component of the identification system. The system automatically detects edges in the pattern of
wing venation and, with the help of genera-specific wing templates, formulates hypotheses regarding
the location of key cells within this pattern. Once these cells have been detected, numerical
morphometric features can be generated that describe the cells and their topological relationships.
These features are then input to a statistical classification process. 
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The first image processing step aims to extract edges of the wing venation by convolving the image
with the derivates of the Gaussian kernel. Due to distortions (e.g. polls and hairs on the wings),

 

FIGURE 8.1

 

The setup of ABIS for work in a scientific collection. White LEDs illuminate the wing from
below. The digital camera is mounted on the microscope. The ABIS software is running on a notebook computer. 
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the result of the convolution shows generally much positive false hypotheses of edge elements, the
so-called edgels (Figure 8.4). To select and group the edgels into closed cell boundaries, ABIS uses

 

a priori

 

 knowledge about the general shape of the cells. All cells are star shaped and every point
of the cell boundary is visible from the centre of gravity of the cell. A boundary point is visible
from the centre of gravity if the straight line segment between them lies completely within the cell
area. Figure 8.5 depicts the result of the grouping process of edgels into closed cell boundaries. 
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While the boundaries of the brachial cell B and the two discoidal cells D

 

1

 

 and D

 

2

 

 (c.f. Figure 8.3)
can be detected easily and robustly, the boundaries of the other cells are generally difficult to
detect. Therefore, ABIS allows users to employ for each bee genus a genus template. A genus
template is derived in an automated way from a set of about 30 wing images of a genus by averaging
the results of successful extractions of the cell boundaries. Thus, successful extractions of cell

 

FIGURE 8.2

 

Employing ABIS in the field. By cooling live bees in a cooling box the wings of the sluggish
bees can be clipped under the microscope slide to obtain wing images. Once released, the bees can fly off
unharmed. 

 

FIGURE 8.3

 

ABIS. The image of the forewing shows due to illumination from below nearly transparent cells
enclosed by the venation. R, C

 

1

 

, C

 

2

 

, C

 

3

 

, B, D

 

1

 

 and D

 

2

 

 depict the radial cell, up to three cubital cells, brachial
cell and two discoidal cells, respectively. 
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boundaries in the wing images of each genus allows the software to support the extraction of cell
boundaries for all other incoming wing images. This set of about 30 wing images of a genus to
derive the genus template is called the training set of the genus. 
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But how can the appropriate genus template be assigned to a new incoming wing image of unknown
species? The answer is that ABIS must first identify the genus of the specimen under inspection.
Identification of the genus can be done by detecting and analyzing only three cells of the wing
image: the brachial cell, B, and two discoidal cells, D

 

1

 

 and D

 

2

 

 (c.f. Figure 8.3), which are – in
contrast to the other cells – quite easily and robustly detected. A sufficient number of morphometric
features (e.g. angles between axes of gravity (c.f. Figure 8.6) ratios of cell areas and perimeters)
can be derived from these three cells to identify the genus by classical linear discriminant analysis
(LDA). Furthermore, ABIS extracts the well-defined centres of gravity of the brachial cell and the
two discoidal cells to compute the mapping of the genus template into the wing image under
investigation (Figure 8.7). 

 

FIGURE 8.4

 

ABIS. Pure extraction of edge elements (i.e. pixels with high gradients of intensity) yields
correct feature hypotheses, but also many positive false feature hypotheses due to hairs, polls, etc. 

 

FIGURE 8.5

 

Because all cells are star shaped, we can select and group the edge elements to constitute cell
boundaries of appropriate shape, closure and area.
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The genus template superimposed on the wing image under investigation now guides the selection
and grouping of edgels that constitute the boundaries of the cubital cells. Only those edgels within
the variances of the predicted cell boundaries (dark grey in Figure 8.7

 

)

 

 will be selected for estimating
the cell boundaries. Once the boundaries of the cubital cells C

 

1

 

, C

 

2

 

 and C

 

3

 

 have been extracted
successfully (Figure 8.8), the mapping of the genus template is adjusted again, now using not only
the centres of gravity of the cells B, D

 

1

 

 and D

 

2

 

, but also those of the newly derived cubital cells
(Figure 8.9). Next, the genus template helps select and group the edgels that constitute the bound-
aries of the radial cell. Having detected the boundaries of all cells in this way, ABIS infers the
venation enclosing all these cells and the venation junctions (Figure 8.10). From these morpholog-
ical features – cells, veins and junctions – ABIS calculates a set of approximately 75 morphometric
features of the wing. After a principal component analysis (PCA) for de-noising and dimensionality
reduction, ABIS obtains a morphometric feature vector of 50 elements by choosing the first 50
principal components in the order of descending eigenvalues. 

 

FIGURE 8.6

 

The successfully extracted cells B, D

 

1

 

 and D

 

2

 

 and their axes of gravity. The angles between
these axes, the ratios of cell perimeters, cell areas, etc. are employed as morphometric features within classical
LDA to derive the genus of the bee specimen. 

 

FIGURE 8.7

 

From successfully extracted cells B, D

 

1

 

 and D

 

2

 

 (light grey boundaries), the genus can be derived
by LDA and the mapping of the appropriate genus template can be computed. The superimposed template
predicts the expected locations of the boundaries (light medium or medium grey) of three cubital cells or C

 

1

 

,
C

 

2

 

, C

 

3

 

 (cf. Figure 8.3) to be extracted next, as well as the variances of these predictions (medium dark grey).
The most expected locations and the variances are derived from the training set of each genus. 
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FIGURE 8.8

 

The successfully extracted cubital cells C

 

1

 

, C

 

2

 

 and C

 

3

 

 derived with the help of the superimposed
genus template. 

 

FIGURE 8.9

 

ABIS: the newly adjusted genus template now using the six centres of gravity of the cells B, D

 

1

 

,
D

 

2

 

, C

 

1

 

, C

 

2

 

 and C

 

3

 

. The prediction of the boundaries of the radial cell is now far better than it would have been
in the first superposition based only on the centres of gravity of cells B, D

 

1

 

 and D

 

2

 

 (compare with Figure 8.7). 

 

FIGURE 8.10

 

All successfully extracted morphological features: the cells (grey), the venation (dark) and the
venation junctions (points).
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Using only morphometric wing features may neglect iconic information of the wings (i.e. the
distribution of light and dark areas within the cells). The centres of the three initially extracted
cells, B, D

 

1

 

 and D

 

2

 

, permit ABIS first to normalize the wing image by rotation and scaling.
This is accomplished simply by deriving the parameters of the two-dimensional affine trans-
formation given the coordinates of the centres of the extracted cells B, D

 

1

 

 and D

 

2

 

 on the one
hand and their expected position in the normalized image on the other hand. Second, ABIS
aligns a sampling window over the normalized wing image. The content of the sampling
window is down-sampled by applying a second-order Gaussian filter three times. The resulting
intensity matrix is of size 12 

 

×

 

 20 intensity values and thus forms an iconic feature vector of
240 elements. 
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The resulting 290 dimensional feature vectors contain both the extracted 50 morphometric
features and the 240 iconic features obtained by down-sampling. Performing classical LDA in
such situations, where the input dimensionality is very high and only small training sets are
available, will not be promising. To overcome this shortcoming, we have developed a non-linear
generalization of LDA, the non-linear kernel discriminant analysis (NKDA) (see Roth and
Steinhage, 1999). An NKDA classifier constructs non-linear decision functions that can be
implemented efficiently using kernel functions. Compared with the support vector machine
(SVM), the NKDA classifier has two advantages: (1) it allows data visualization (Figure 8.11)
and (2) it is significantly faster due to simpler optimization and due to the possibility of handling
multiclass problems directly. 

 

FIGURE 8.11

 

(Color Figure 8.11 follows page 110.)

 

 Visualization of species complexes as clusters in the
feature space. Note: This is a two-dimensional projection of a high-dimensional feature space.
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ENCODED KNOWLEDGE 

ABIS encodes different types of knowledge for identifying bee species from images of their
forewings. General knowledge about the topology (structure) and geometry of the venation and
cells enclosed by the venation of all bees is encoded within the basic wing template, which is fixed
within the ABIS approach. The basic wing template encodes the star-shaped attitude of the cells,
certain cell neighbourhoods, typical upper and lower bounds of cell areas, etc. This knowledge is
valid for all those bee genera that ABIS 'knows' as a result of accessing the corresponding training
sets.

Application of ABIS to identify species of wasps from images of their forewings, for example,
requires users to change the basic wing template. The knowledge of the special topology and
geometry of the venation and cells enclosed by the venation for all bees of one genus or a group
of species is encoded within the genus templates (Figure 8.7). Each genus template predicts the
number of cells (due to two or three cubital cells) and the genus-specific structure cell neighbour-
hoods, as well as the expected locations of the cell boundaries, including the variances of these
predictions derived from the training set of each genus. Identification knowledge for genus diagnosis
is derived by LDA during the training of the LDA step based on the training sets of all genera
under consideration. The result of this training step is a set of linear decision functions that support
the assignment of new specimens to the correct genus. Also, the NKDA learns and memorizes
genus-specific non-linear decision functions that allow assigning new specimens of the trained
species of each genus to the correct species. 

In summary, the domain-specific knowledge for identifying bee species from images of their
forewings consists of: 

• the basic wing template: the common topology and geometry of the venation and cells
enclosed by the venation for all bees;

• the genus templates: topology and geometry of the venation and cells enclosed by the
venation for all bees of one genus or a group of species within one genus; and

• the linear decision functions of LDA and the non-linear decision functions of NKDA for
genus and species identification in feature spaces, respectively. Each packet of knowledge
is represented in specific data structures in the ABIS program and in specific relation
tables in the associated data-base of ABIS. 

RESULTS 

In order to demonstrate the performance of the ABIS system, it has been tested with species even
specialists find hard to identify. In such an example, we sought to separate the bees from a species
complex comprising Bombus lucorum, Bombus terrestris, Bombus cryptarum and Bombus magnus.
The ABIS system was trained with wing images of 70 individuals per species and successfully
achieved an identification rate of far over 95 per cent by combining both types of features: the
morphometric and the iconic (Table 8.1). Proving of the classification functions was done using
'leave-one-out' cross-validation. In further applications on the German Colletes and Andrena as
well as with American Osmia species, ABIS again achieved identification rates of over 95 per cent. 

CURRENT WORK 

So far we have described ABIS as a feature-based approach for bee species identification by
morphometric image analysis that works with great success on various bee genera. Our current
work focuses on two topics. On the one hand, we aim to enhance the ABIS identification system
into an ABIS identification framework, which includes database support, web interfaces and tools
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for data visualization and project management. On the other, we aim to generalize our approach
on image-based morphometric analysis in two ways. First, we want to combine the analysis of
several images on different body parts (head, thorax, wings, abdomen, etc.) to obtain a multiview
analysis. Second, new projects demand image-based species identification not only of bees but also
for other insects. This section presents first results, which we obtained by a prototype implemen-
tation, which we called MorphoBox. 

MULTIVIEW ANALYSIS 

Multiview analysis means (1) recognition of morphological features from different views of a single
specimen, (2) derivation of several characteristic morphometric measurements (e.g. lengths, widths,
surface areas) from these morphologic features and (3) combination of the morphometric measure-
ments for identification using statistical approaches like LDA, NKDA or SVM. In contrast to ABIS
(which works only on top views of bee forewings), multiview analysis allows information to be
gained from different view angles of different morphological features. Therefore, multiview analysis
requires the extraction of morphological features, or at least parts of features, that are invariant to
image scale and rotation and provide robust identification and correspondence matching between
different perspectives on the same feature across a substantial range of perspective distortion, change
in viewpoint, addition of noise and change in illumination.

The last years show encouraging results for the extraction of those features, which are commonly
referred to as salient points, key points or points of interest. The algorithms designed to extract
these points of interest are commonly referred to as interest operators. Mikolajczyk and Schmid
(2004) evaluated a variety of interest operators and identified the scale-invariant feature transform
(SIFT) algorithm as being the most resistant to common image deformations. SIFT transforms
image data into scale-invariant coordinates relative to local features. 

EXTRACTING POINTS OF INTEREST 

The best known SIFT operator was introduced by Lowe (2004) and involves the following major
stages of computation used to generate the set of points of interest (PoIs):

1. Extraction of extrema of image intensity over all scales and image locations is imple-
mented by using a difference-of-Gaussian function to identify potential candidates of PoIs.

2. At each candidate location, a three-dimensional quadratic function is fit to determine the
interpolated location and scale of the extremum.

3. Orientation assignment is made to all PoIs based on local image gradient directions. All
future operations are performed on image data that have been transformed relative to the
assigned orientation, scale and location for each PoI, thereby providing invariance for
these transformations.

4. Local image gradients are measured at the selected scale in the region around each PoI.
These are transformed into a PoI descriptor of 128 elements that allows PoIs to be highly

TABLE 8.1
Recognition Rates with SVM and NKDA 
Classifiers and Different Sets of Features

Morphometric
features

Iconic
features

Morphometric +
iconic features

SVM 89.5% 95.8% 99.3%
NKDA 88.8% 95.1% 99.3%
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distinctive, in the sense that a single PoI can be correctly matched with high probability
against a large set of PoIs in other views. 

SELECTION OF POINTS OF TAXONOMIC INTEREST 

PoIs derived by SIFT operators are of interest due to their pure image appearance (i.e. local extrema
of image intensity), but may not necessarily correspond to points of taxonomic interest (i.e.
characteristic points of morphological features). Generally, the SIFT operator extracts a number of
similar PoIs, where we expect only one point of taxonomic interest. Figure 8.12 shows the derived
PoIs of a frontal view on a bee specimen. Thus, we have to select out of a set of PoIs the most
appropriate PoI according to feature invariance or transformation constraints for matching across
multiple views. Our current prototype system allows users to select PoIs and sets of PoIs interac-
tively by simple 'point and window' queries. 

A point query defines an image location (x,y) and selects the nearest neighboured PoI to (x,y)
or the next n nearest neighboured PoIs within a user-defined radius around (x,y). The user asks a
window query by defining interactively a rectangular window area in the image and selects thereby
all PoIs within this window area. From a set of PoIs defined by a point or window query, it is
possible to select that PoI by analysis of the PoI descriptors that shows a maximum of robustness
in scale space and orientation invariance. 

Figure 8.13 shows the selection of PoIs out of sets of PoIs defined by window queries. For
selection of the PoIs, we use the Harris operator (Harris and Stephens, 1988). The Harris operator
measures the likelihood of a PoI to be part of an edge or a distinct point (i.e. a corner or a centre

FIGURE 8.12 Automatically derived PoIs (points) and interactively defined window queries (rectangles).

FIGURE 8.13 Automatically selected PoIs (points) within the image areas defined by the interactive window
queries (rectangles).
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of a circular feature). We select that PoI with the highest likelihood to be a distinct point. A more
flexible and user-friendly kind of region query can be implemented by active contour approaches,
which were introduced by Kass et al. (1987). Active contours – or snakes – are computer-generated
curves that move within images to find object boundaries. Thus, active contours easily can be
initially placed interactively by users near their region of interest and will automatically adapt their
contour shape according to shape of the region. 

SELECTION OF CORRESPONDENCES IN MULTIVIEW IMAGE ANALYSIS 

Having selected points of taxonomic interest in different perspectives of the same specimen, the
aim of correspondence analysis is to match those points of taxonomic interest in two or more
images that depict the same spatial morphological point of the specimen. Why is correspondence
matching between different perspectives within the multiview analysis important? First, given an
extracted and selected point p1 of taxonomic interest in one image (e.g. p1 depicting the top of the
antenna), the established corresponding points p2,…,pn in the other n – 1 images, also depicting
the top of the antenna, can be interpreted as support of the evidence of the correct identification of p1.

Second, established correspondences allow reasoning across images. For example, one spatial
feature point, p1, might be involved in a trilateral relation with two other spatial feature points, p2

and p3, like the ratio of distances ⏐p1 p2⏐/⏐p1 p3⏐, where p1 and p2 are only visible in image1 and
p1 and p3 are only visible in image2, respectively. By establishing the correspondence between the
images of p1 in image1 and image2, this morphometric measurement is derivable by reasoning across
image1 and image2.

Third, the correspondences established within the multiview image analysis are obviously the
key for stereo analysis. This means that the spatial shape can be at least partially reconstructed to
obtain spatial models and measurements of the observed specimen. The three-dimensional recon-
struction can be enhanced by using parameterized shape models of insects and adjusting the shape
parameters according to the spatial measurements derived by stereo analysis. A necessary require-
ment for stereo analysis is that the images are calibrated (i.e. the relative corresponding camera
positions and the camera parameters like focal length are known). Such an approach is presented
by Mortensen et al. (this volume) for the taxonomic identification of stonefly larvae. 

To reduce positive false identification and matching between different perspectives, we employ
geometric constraints that enforce consistent transformations for all matches between two images.
This validation by correspondence, in turn, can be used to validate the PoI itself, because PoIs
without support of a corresponding PoI in another image may be positive false hypotheses. Cor-
respondence analysis can be enriched by employing relational matching (Vosselmann, 1992). Graph
structures with PoIs as nodes will define topological relations of PoIs like neighbourhood or
connectivity and will allow derivation of morphometric measurements like distances, angles, etc.
Figure 8.14 shows a test on relational matching of the graph structure in a wing image with its
rotated version. The graph is defined by the neighbourhoods of PoIs due to connecting veins.
Employing these constraints in multiview analysis establishes successful correspondence matching
between different perspectives on the same feature across a substantial range of change in viewpoint
even up to 90° (c.f. Figure 8.15). 

CONCLUSIONS 

Acquisition and analysis of morphology is one of the fundamental issues in systematics, evolution-
ary biology and biodiversity. Of particular interest for all morphometric methods is the robust
identification and extraction of characteristic morphological features. A successful example of a
reliable feature-based approach to image-based species identification is given by ABIS. ABIS was
designed to identify species of bees from images of their forewings by robust extraction of
characteristic morphological features like veins, vein junctions and cells. Analysing all veins, vein
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junctions and cells of each wing image gives rise to a set of about 300 well-defined characteristic
features. These features are used in a knowledge-based classification approach to identify the bee
species. This knowledge is encoded by domain-specific wing templates, genus templates and
decision functions for genus identification and species identification. ABIS exhibits high correct
identification rates (over 95%) for several bee genera and species groups in Germany, the USA
and Brazil – among these, for example, the difficult to separate species complex comprising Bombus
lucorum, Bombus terrestris, Bombus cryptarum and Bombus magnus. 

Our current and future work aims to generalize the feature-based approach to image-based
species identification demonstrated by ABIS by a multiview analysis that allows a combined
morphological analysis of multiple images of a specimen taken from different perspectives and
depicting different body parts. A necessary step in multiview analysis is the derivation of corre-
spondences between the occurrences of the same morphological features of a specimen in different
images. To achieve this correspondence matching, we detect so-called interest points that are
invariant to image scale and rotation, and provide robust identification and correspondence matching
across a substantial range of change in viewpoint. Furthermore, we employ geometric and topo-
logical constraints on the affine transformation associated with the correspondence matching. First
results were derived on different animal groups and establish correspondences on images showing

FIGURE 8.14 Test on relational matching of the graph structure in a wing image with its rotated version.
The graph is defined by the neighbourhoods of PoIs due to connecting veins.
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different perspectives up to 90°. Obviously, multiview analysis is also the key for three-dimensional
reconstruction of spatial models of observed specimens by using calibrated images. 
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FIGURE 8.15 The matching of corresponding PoIs between different views of the same grasshopper specimen.
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INTRODUCTION

 

Attempts to understand how biodiversity originates and is maintained, and how it contributes to
ecosystem functioning and human services, are hindered by lack of complete information. To
understand the complexity of ecosystem function, and the likely impacts of human activities on
these functions, ecologists and conservation scientists need to understand species interactions across
multiple scales. Most studies to date have attempted to gain this understanding by looking at a very
small subset of species, focusing primarily on vertebrates and other well-known or 'charismatic'
groups. Unfortunately, recent syntheses (e.g. Goldwasser and Roughgarden, 1997; Platnick, 1999)
suggest that such studies are not adequate in terms of predicting biodiversity patterns or signatures
of disturbance. Additional information on lesser known groups is required to complete the picture.
Yet, most studies avoid collecting data on diverse groups such as insects and arachnids precisely
because they are less well known! 

The inclusion of these groups in biodiversity studies has traditionally required both trained
personnel who are able to identify known species correctly, and a systematist who can recognize
and describe specimens new to science. Even when knowledgeable personnel can be found, the
process of identification and description of new species takes time and money – assets in short
supply for most ecologists, conservation biologists and wildlife managers. Non-specialists do not
have the training or access to the materials necessary to produce accurate and consistent identifi-
cations on their own. The combined effect of this has heretofore led to the use and interpretation
of questionable data or, more commonly, the complete abandonment of data from those taxonomic
groups that comprise the bulk of biodiversity. We cannot hope to understand the complexity of
ecosystem function and the relationship of human activities with ecosystem function without
knowing how many, and what kinds of organisms are present. 

Faced with these problems, and the increasing demand internationally for biodiversity research,
some partial solutions have been pursued that attempt to delay or circumvent altogether the need
for identifications. The use of technicians, or parataxonomists, to collect, sort and catalogue
specimens prior to the input of a specialist has met with some success in Costa Rica (Instituto
Nacional de Biodiversidad [INBio], 2001). The designation of RTUs (recognizable taxonomic
units), or morphospecies, by non-specialists in order to obtain rapid richness estimates without
requiring species-level identifications has proved reasonably accurate and useful in some cases
(Oliver and Beattie, 1993, 1996). Certainly, the creation of biodiversity data-bases that catalogue
collected specimens – particularly those that incorporate digital images of whole specimens and
search procedures (similar to interactive keys) to help with identification (e.g. VirBas in Australia;
Oliver et al., 2000) – will facilitate rapid, albeit cursory, biodiversity assessments. Although these
methods provide a way to obtain quick species counts for initial richness comparisons, they do not
provide enough information for in-depth biological or ecological studies. For serious analyses,
identity is important. Therefore, tools must be developed to make routine identifications of speci-
mens by non-experts both accurate and efficient. 

An ideal identification system is one that encapsulates the knowledge of a systematist, requires
little user input, and yields quick and accurate identifications. Some computer-aided identification
systems such as interactive keys, multi-access keys, hypertext keys and expert systems are a significant
improvement over the traditional, printed dichotomous key, but still require significant input from
the user (and therefore require basic knowledge of the morphology and terminology of the target
group; see Edwards and Morse, 1995; Dodd and Rosendahl, 1996; Rambold and Agerer, 1997).
Methods that exhibit some level of automation are likely to be more accessible to non-specialists. 

Many partly automated identification systems for multicellular organisms make use of digital
imaging (e.g. Gerhards et al., 1993; Dietrich and Pooley, 1994; Chtioui et al., 1996; Weeks et al.,
1997; Kwon and Cho, 1998; Do et al., 1999; Mancuso and Nicese, 1999; Weeks et al., 1999;
Theodoropoulos et al., 2000). In very general terms, information is extracted from images in the
form of specific measurements (taken manually or with the help of image tool programs), or the
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image itself is processed into a form that can be expressed numerically. The extracted observations
are then subjected to statistical analysis (e.g. PCA, discriminant analysis), or submitted to some
form of artificial neural network (ANN) in order to characterize and subsequently classify the
species. Artificial neural networks are programming algorithms that simulate the structure of the
brain and its processing of information (see Boddy et al., 1990, for an introduction). Species
identification using ANNs, although similar in principle to statistical classification, relies on the
ANN itself to create the group 'classifiers' by selectively weighting the input characters and adjusting
its own internal configuration to maximize identification accuracy. 

In the development of our identification system, we chose to focus on the ANN approach. This
decision was based on a number of factors, including previous studies showing that in situations
where both statistical and ANN-based approaches were tried using the same data as inputs, the
ANNs almost always achieved equivalent or superior levels of accuracy (Chtioui et al., 1996;
Goodacre et al., 1996; Wilkins et al., 1996; Parsons and Jones, 2000). The advantage of using
ANNs is greatest when traditional identification procedures rely on somewhat subjective, qualitative
characters that cannot be simply quantified (or even necessarily described). Qualitative features are
subject to inter-and intra-observer variability arising from the user's level of knowledge, experience
and frequency of use (Theodoropoulos et al., 2000). 

There have already been many promising studies evaluating the potential of neural networks
for the identification of cell types and organisms. ANNs have been used successfully in medical
research to identify and classify cancer cells (Maollemi, 1991; Jiang et al., 1996; Hurst et al., 1997);
to identify microorganisms of various kinds, including bacteria, yeasts and phytoplankton (Rataj
and Schindler, 1991; Kennedy and Thakur, 1993; Goodacre et al., 1996; Wilkins et al., 1996;
Goodacre et al., 1998; Wit and Busscher, 1998); and to identify macro-organisms, including plants
of agricultural interest (Chtioui et al., 1996; Kwon and Cho, 1998; Mancuso and Nicese, 1999),
parasitic larvae (Theodoropoulos et al., 2000), spiders (Do et al., 1999) and bats (from their
echolocation signals – Parsons and Jones, 2000). 

Of course, there are many different kinds of neural networks, ways of structuring an identifi-
cation system and approaches to making such a system available to the public and there are many
challenges to be faced when working with real data. Our system, SPIDA (

 

sp

 

ecies 

 

id

 

entification,

 

a

 

utomated), or the web-accessible version, SPIDA-web, was created as a generalized identification
system that can be tailored for virtually any group of organisms that can be distinguished visually
(i.e. prior testing had demonstrated early versions' ability to distinguish five species of Ichneumonid
wasp [unpublished data], six species of Lycosid spiders [Do et al., 1999] and twelve species of
North American bees [Russell et al., in prep]). That said, by choosing to develop and refine our
system using real data with which we have succeeded in creating a working prototype, we have of
necessity had to face a number of challenges that will be common to most if not all automated
identification systems.

Our test case, the Australasian ground spiders of the family Trochanteriidae, provided good
examples of these challenges, including, among others, intraspecific variability (which itself varies
in degree across species), variability in sample quality (due to debris or imaging techniques) and
small sample sizes. In addition, we decided to tackle the problem of identifying all the closely
related species included in a major taxon instead of the much simpler problem of distinguishing
the species that happen to co-occur in a single area, most of which are only distantly related to
each other and hence relatively easy to separate. Finally, spiders are considered by some to be one
of the more difficult groups in terms of assigning species-level identifications, even compared with
other arthropods. In the USA, only a tiny fraction of the roughly 3500 species are identifiable
without the use of a microscope and the appropriate technical keys. Traditionally, one needs first
to determine family membership with one key, genus membership with a different key (focusing
on entirely different structures) and then, finally, species membership focusing on the complex
structures of the genitalia, described in dizzying technical detail in published monographs. In sum,
we have given ourselves a difficult task. But by doing so, we can more realistically assess the
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challenges of developing automated identification systems and the utility of our unique approach
in meeting these challenges. 

 

METHODS 

T

 

HE

 

 D

 

ATA

 

 

 

We selected the recently revised (Platnick, 2002) Australasian ground spiders of the family Tro-
chanteriidae as our prototype group. This decision was made primarily because of familiarity with
the taxonomy of the group, and because specimens of all species were readily available and the
size of the family – 121 species in 14 genera – seemed a reasonable and practical starting point
for a practical identification system. Although some species in this family are relatively common,
almost 80 per cent were represented by less than 10 individuals (of either sex); more than 50 per
cent had fewer than 5. Thirteen species had 20 or more individuals (see Table 9.1A).

Species-level discrimination in spiders is based primarily on shape of the male and female
genitalia. Anyone attempting identification to species, or a systematist describing new species,
would need to examine these structures. Therefore, these are the structures we use for submission
to SPIDA-web. This chapter will focus exclusively on the discrimination of the female specimens,
as this work is entirely completed.

Female spider reproductive structures, known as epigyna, can be very complex or quite simple
and so present a range of detail that will be useful in assessing the applicability of our system to
other groups of organisms. The epigynum is found on the ventral side of an adult female and is

 

TABLE 9.1A
Total Images Available for Training

 

Pro 

 

Anti 

Species Unique Total Unique Total 

 

Desognaphosa kuranda 

 

34 272 1171 13,393

 

Desognaphosa massey 

 

20 160 1185 13,505

 

Desognaphosa millaa 

 

26 208 1179 13,457

 

Desognaphosa yabbra 

 

58 463 1147 13,202

 

Hemicloena julatten 

 

20 80 1185 13,585

 

Longrita insidiosa 

 

28 244 1177 13,441

 

Morebilus diversus 

 

26 208 1179 13,457

 

Morebilus fumosus 

 

25 100 1180 13,565

 

Morebilus plagusius 

 

50 392 1155 13,273

 

Rebilus bulburin 

 

24 192 1181 13,473

 

Trachytrema garnet 

 

27 107 1178 13,558

 

Trachycosmus allyn 

 

32 194 1173 13,471

 

Trachycosmus sculptilis 

 

136 1055 1069 12,610

 

Notes:

 

 Statistics for the 13 species with 20 or more unique specimens. Total
number of images available for training the species ANNs. 'Pro' images are
from the species the ANN is being trained to recognize. 'Anti' images refer
to all the images from the other species in the group (i.e. all the images
that are not in the 'pro' set). Unique images are those taken from unique
specimens, so this number reflects the number of individuals we had avail-
able for each species. Multiple images were taken of each specimen, so the
'total' number includes every image we have for a given species (pro) or all
the remaining species (anti). 

 

8205_book.fm  Page 134  Tuesday, June 12, 2007  2:25 PM



 

Introducing SPIDA-Web

 

135

 

noticeable without dissection (see Figure 9.1). Although specialists often use structures of the
internal epigynum (dorsal view) for species description and in constructing species-level keys, we
chose to focus exclusively on the external features for the sake of simplicity and ease of use. 

Once all the images were in place, it became apparent just how difficult a task we were about
to put to a computer algorithm. Figure 9.2 provides illustrative examples of problems an automated
ID system will need to overcome.

• Species similarity. Although the distinction between some species is easy to recognize,
even between congeners (see Figure 9.2A), other groups appear to lack clear diagnostic
structures in the ventral view (Figure 9.2B). Figure 9.2C illustrates the minor differences
separating five species in the genus 

 

Desognaphosa,

 

 though in this case there is plenty
of visible detail. 

• Limited data. The third image in Figure 9.2C is from the single representative of the
species 

 

Desognaphosa karnak

 

. First, the structure is damaged. The human eye is able
to compensate adequately, but getting the ANN to ignore this flaw is not so easy without
any replicate specimens. But it is likely that even a human worker would have trouble
separating this image from the previous image (of 

 

Desognaphosa finnigan

 

) without
additional specimens. 

• Intraspecific variation. The relative degree of inter-and intraspecific variation in this group
is not always predictable, as illustrated in Figures 9.2D, E and F. Figure 9.2D shows five

 

FIGURE 9.1

 

Adult female of 

 

Desognaphosa bartle

 

 Platnick. The female reproductive structure, the epigynum,
is considered species diagnostic for most spiders. We used a single ventral view of the external structure
visible here for input into SPIDA-web. 

Epigynum

Ventral view
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images taken from individuals of the same species, 

 

Rebilus bulburin.

 

 This species exhibits
one of the highest levels of intraspecific variation in this group. Other species in this
genus, however, show much less intraspecific variation and the interspecific differences
among some of these congeners (Figure 9.2E) is arguably similar in degree to the
variation seen in 

 

R. bulburin.

 

 Finally, Figure 9.2F shows first epigynal pictures from the
two individuals known of the species 

 

Platorish nebo 

 

and individual pictures of two other
species in the genus, 

 

P. churchillae 

 

and 

 

P. flavitarsus.

 

 At first glance, it is difficult to see

 

FIGURE 9.2

 

Illustrative examples of inter-and intraspecific variation in epigynal images among species in
the spider family Trochanteriidae. Images enclosed in the same box are from the same species. (A) Two images
each of two easy to distinguish congeners, 

 

Trachyrema castaneum

 

 and 

 

T. garnet.

 

 (B) Two images each of two
congeners, 

 

Longrita millewa

 

 and 

 

L. yuinmery,

 

 with little information present in the epigynal images. (C) Five
similar congeners in the genus 

 

Desognaphosa

 

: 

 

D. halcyon,

 

 

 

D. finnigan,

 

 

 

D. karnak,

 

 

 

D. bartle

 

 and 

 

D. windsor.

 

(D) Five disparate individuals of the species 

 

Rebilus bulburin.

 

 (E) Representative images from four species
in the same genus as (D), 

 

R. lugubris,

 

 

 

R. credition,

 

 

 

R. brooklana

 

 and 

 

R. bilpin.

 

 (F) The only two specimens
from the species 

 

Platorish nebo

 

 and two related species, 

 

P. churchillae

 

 and 

 

P. flavitarsus.

 

 

A.

B.

C.

D.

E.

F.
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what the first two images have in common relative to the group. Without more unique
specimens (or more information from other structures), it would be difficult to form a
useful species image that would enable consistent species determinations for this group. 

The point of this discussion is to emphasize the reality of the data used for our prototype in
terms of the kinds of features available for species classification in spiders and to bring attention
to the kinds of issues that are certainly 

 

not 

 

unique to spiders, such as intraspecific variation and
specimen damage, with which any automated identification system will have to contend. 

 

IMAGING PROTOCOL 

 

All specimens were imaged using a Leica MZ 12.5 microscope fitted with a Q-imaging MicroPub-
lisher CCD camera. Illumination was provided by an EIS fiber optic light source with a dual chrome
gooseneck. The camera was connected to either a Dell Dimension 8200 Series or an Apple Titanium
Powerbook G4 laptop. Images were converted to greyscale, cropped square, enhanced and resized
as necessary in Adobe Photoshop. 

Much like human students, ANNs distinguish objects by learning to focus their attention on
particular aspects of an image, giving more weight to features that vary reliably between groups.
If trained on only one image from each species, it is quite probable that a feature could be found
to distinguish the two images that has nothing to do with the two species, but in reality is an
artefact of the images themselves (e.g. presence of glare spots or background debris). Without
multiple examples, the ANN can also form a much too specific 'vision' of a species, which could
result in high numbers of false negatives when intraspecific variation is high. This is why the
construction of an adequate training set is so important: the goal is to force the ANN to focus on
the structures that are critical for distinguishing species, but also to encapsulate the likely variation
both in the structures themselves and in the imaging of these structures (e.g. rotation, lighting,
background, etc.).

Ideally, one would use many unique examples from every species to train the ANN, thereby
encapsulating both types of likely variation. As previously stated, we did not have an adequate
number of replicate specimens for most species. Hoping to compensate partially for this lack of
unique samples, we collected either 4 or 12 images of every specimen, depending on how many
specimens were available (greater than or less than 15, respectively). An attempt was made to
introduce variation in the process by altering the lighting, repositioning the specimen and/or
changing the rotation slightly between each picture. These replicate images were kept distinct from
images taken of unique individuals. In a further attempt to generate more data for training, we
created 'flipped' versions of each image using Adobe Photoshop. The female genitalia for this group
are known to be bilaterally symmetrical. Flipping the images horizontally introduces some variation
useful in training, particularly for species represented by fewer than three individuals. 

 

IMAGE ENCODING 

 

All automated identification systems face the task of reducing the feature space of the input data
(i.e. reducing the total amount of information presented to the system), in order to minimize noise
and facilitate more efficient classification criteria. Our approach to this is to use an encoding
technique called wavelet transformation (Graps, 1995). Wavelet transforms are similar to the more
commonly encountered Fourier transform. These are based on an iterative procedure in which an
image is successively reduced to a coarser version of itself, through the removal of high-frequency
information contained in wavelet coefficients (sometimes referred to as detail coefficients). These
coefficients are parameters that modify the shape of a predetermined function, called a wavelet.
Once the information in an image is parsed out into low- and high-frequency elements, the user
can selectively eliminate the high-frequency information (usually noise, e.g. spines, hair, debris),
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keeping the more important shape information. Our previous work made use of the Daubechies 4
wavelet function, described in detail in Do et al. (1999). 

The Daubechies 4 wavelet function requires that the input image be a square with a dimension
of 2

 

j

 

 

 

×

 

 2

 

j

 

, where 

 

j

 

 is an integer. We determined that an ANN with 4096 neurons in the input layer
is the largest ANN that can be trained in a reasonable amount of time on a Sun Blade 100 or a
Pentium 4 computer, which were the computers used in this part of the project. This means that
wavelet coefficients in vector spaces V

 

0

 

, V

 

1

 

, V

 

2

 

, V

 

3

 

, V

 

4

 

 and V

 

5

 

 were used, producing an input matrix
with a dimension of 2

 

6

 

 

 

×

 

 2

 

6

 

. This size input matrix can only be generated from an image scaled
to 256 

 

×

 

 256 pixels (2

 

8

 

 

 

×

 

 2

 

8

 

) prior to Daubechies 4 encoding. 
For work with the Trochanteriidae, it was decided to investigate the Gabor wavelet function as

well, as this type of filter had recently been applied to the problem of face recognition (e.g. Howell
and Buxton, 1995; Krüger et al., 2000; Zhu et al., 2004; Bazanov et al., 2005) and had certain
advantages, including being more robust to minor differences in lighting, orientation and scale. 

The Gabor filter decomposes the image into data of varying resolutions by using banks of Gabor
masks of different sizes to sample the image. The process is actually modeled after the receptive
fields of the simple cells in the primary visual cortex of the mammalian eye (Pollen and Ronner,
1981). A set of image masks for different resolutions is available for this filter. At the first (coarsest)
resolution, six masks are used. Each mask covers the entire image and represents real and imaginary
components of the image with the orientations of 0, 120 and 240

 

°

 

. At the next level of resolution,
24 masks are used (four sets of six masks) each set of six masks covering one quadrant of the image
and representing real and imaginary components of the image with the orientations of 0, 120 and
240

 

°

 

. The next level of resolution includes 16 sets of six masks, the next 64 sets of six masks, and
the last (finest) level of resolution employs 256 sets of six masks (see Figure 9.3). Each mask yields
a Gabor coefficient that was used as an input into the ANN, resulting in a total of 2046 inputs.
Experiments indicated it was most efficient to use images scaled to the dimension of 51 

 

×

 

 51 pixels,
as this limited computing time while providing acceptable accuracy (see following). 

 

CONSTRUCTION OF THE IDENTIFICATION ENGINE 

 

Although our proof-of-principle study (Do et al., 1999) indicated that back-propagation ANNs were
an appropriate computing algorithm to use as an identification engine, we decided to investigate
three other commonly used techniques: radial basis function ANNs (RBF), support vector machine
(SVM) and the continuous 

 

n

 

-tuple classifier (with log polar encoding). We wanted to be certain
that we had chosen the identification engine that was most likely to succeed considering the
organisms and data we had to work with. Do wrote the necessary software to test these other
algorithms on a subset of the spider data. None of them performed as well as the back-propagation
(specifically, cascade correlation) ANNs in our preliminary tests. 

 

ARTIFICIAL NEURAL NETWORK ARCHITECTURE 

 

Despite the decision to continue working with cascade correlation ANNs, there was a recognized
need to change the way our ANNs were structured in order to address two separate issues: one a
common criticism of automated identification systems in general and the other specific to back-
propagation approaches: 

• Classification of unknowns. One problem many automated identification systems face is
the proper classification of unknowns (i.e. images from species the system was not trained
to recognize; see Edwards and Morse, 1995; Morris and Boddy, 1995). Often these
objects are forced into an erroneous classification. This was the case with our pilot study.
The system was structured such that there was one ANN for the set of six species in the
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trial, with an output node corresponding to each species. In this situation, an image
submitted to the system would be forced through to one of the output nodes. 

• Scalability. The issue of scalability is a common criticism of back-propagation ANNs.
The traditional way of using such networks to classify species is to structure the ANN
with an output node for each group the system attempts to distinguish. In this case, adding
another species to the identification system would require the retraining of the entire
ANN after adding another output node to represent the new group. This could be a very
lengthy process, depending on the size of the group and the number of training images. 

The solution to these problems eventually adopted for SPIDA was to create an ANN for each
species in the group (Figure 9.4). Each of these ANNs has two output nodes, one positive and one
negative, and is trained on images from the target species (the 'pro' training set) and a selection of
images from other species in the group (the 'anti' training set). An image submitted for identification
is presented to each ANN in the group. In this system, a true unknown can cycle through the group
of ANNs without eliciting a positive response in any. If it is determined the unknown truly belongs
in no group, adding the new species is as simple as training another relatively small ANN for the
new species alone. One potential disadvantage to this approach is that, at some point, if the number
of secondarily added ANNs exceeds some threshold, it is possible that accuracy may decrease, as

 

FIGURE 9.3

 

Sampling positions for the Gabor sampling scheme (modified from Howell and Buxton, 1995).
Gabor filters decompose the image into data of varying resolutions by using banks of Gabor masks of different
sizes to sample the image. Each circle on this figure represents a set of six Gabor masks representing real
and imaginary components of the images with orientations of 0, 120 and 240

 

°

 

. Each mask yields a Gabor
coefficient for use as an input into the ANN, resulting in a total of 2046 inputs. 
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the newly added species will not be in the 'anti' training sets of the original set. In this case, more
extensive retraining may be required, though it should be limited to closely related species only.

In order to test SPIDA's ability to classify previously unseen species correctly as unknowns, we
randomly selected 20 images from species in related families and submitted them for identification.

 

SYSTEM STRUCTURE 

 

As mentioned previously, SPIDA is structured as a collection of individually trained species-level
ANNs. Images submitted to the system are cycled through all the ANNs in a predetermined grouping
(e.g. family or genus). The positive output values for each ANN are saved to a file and ranked. The
top three are selected and information on these species is retrieved from a data-base for presentation
to the user. If the highest output value is above 0.59, then it is considered a positive ID and presented
to the user as such. Although it is theoretically possible to have more than one ANN in the group
return a value above 0.59, we did not experience this in the course of our study and in subsequent
testing efforts. In fact, the difference between the first and second highest output values was usually
very pronounced. However, we chose always to include information on the top three species in the
event that a near tie were to occur, thus alerting the user to the fact that further scrutiny is required
before a definitive ID can be assigned.

 

TRAINING 

G

 

ENERALIZED

 

 T

 

RAINING

 

Back-propagation ANNs consist of multiple layers of simple computing elements with many
interconnections among the layers. The initial architecture of the ANN is established according to

 

FIGURE 9.4

 

Simplified diagram of a back-propagation ANN, illustrating the basic structure of a typical species
ANN in SPIDA-web. The output layer has only two nodes: species A and not species A (i.e. 'yes' or 'no'). Each
species ANN is trained on information from members of that species ('pro' images) and from other species
('anti' images). Wavelet coefficients generated from the images of spider epigyna comprise the input data. 
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the amount of data making up each image (which determines the number of input neurons) and
the number of groups that the system is designed to distinguish. The initial ANN consists of a layer
of input neurons and a layer of output neurons fully interconnected between layers by random
initial weights. Through a process of supervised learning, the network essentially enhances some
features highly while diminishing the influence of others, using a complex method of averaging
input parameters. The training process establishes additional neurons in a hidden layer between
the input and output layers. In some cases, the number of hidden layers is fixed prior to training.

Other training algorithms, such as cascade correlation, allow neurons to be added one at a time
as necessary, thereby minimizing the size of the ANN. These hidden neurons act as feature detectors
that respond to specific patterns (e.g. a pattern unique to a given genus or species). The idea is to
'teach' the ANN to set the output neuron assigned to a given genus or species to its maximum value
of 1.0 whenever a pattern indicative of that genus or species is presented, and set all other output
neurons to their minimum value of 0.0. In practice, the ANN sets the output neurons to an
intermediate value depending on the certainty of its identification (e.g. an output of 0.9999 indicates
virtual certainty, whereas 0.6000 indicates lower confidence). The resulting output vector is then
evaluated against the target function to compute an error. This error is then used to modify the
weights in the connections. Training continues until the desired level of accuracy is attained. Once
trained, the network is tested with previously unseen individuals to assess its ability to classify them
into the correct groups (i.e. the network's ability to generalize from the training set to unknowns). 

 

SPIDA T

 

RAINING

 

We used cascade correlation in conjunction with quick propagation (Fahlman, 1988; Fahlman and
Lebiere, 1991) to train SPIDA ANNs using the Stuttgart Neural Network Simulator version 4.2
(SNNSv4.2). The training procedure was optimized for development of the final prototype system,
which made use of all available data. In order to maximize the accuracy and future ability of the
system to generalize, training of each ANN was a highly iterative and closely supervised procedure.
For each species, a random set of images was selected for the training set, usually from a single
individual. All other images were used for testing the network after it had been trained on this
limited data-set. Then, the image that gave the most incorrect identification was added into the
training set and the ANN was retrained and tested. This continued until all images were identified
correctly. Finally, to ensure the system would likely be able to generalize appropriately (i.e. give
accurate identifications to newly submitted images), images were sequentially removed from the
training set to determine whether the ANN could still accurately identify all other images in the
testing set. This process continued until the smallest possible training set that could accurately
identify all the remaining images in the testing set had been defined.

In addition, for species that seemed to require the largest training sets, it was important to
review the log files of this process to pick out any potentially contaminating images and remove
them from the training sets. Contaminating images were defined as those with large amounts of
debris, damage or occasionally questionable species designation (i.e. due to human error). These
were noticed only when the identification logs indicated a persistent misclassification. Sometimes,
when such an image was then added to the training set, the accuracy of subsequent identifications
actually decreased after retraining. In other situations, it was merely a matter of examining the
images in the 'pro' training set and picking out the oddball image if the ANN appeared to have
trouble generalizing appropriately. 

 

ACCESSIBILITY AND SPIDA-WEB 

 

As important as creating a system with the ability to discriminate species using minimal data and
computing power is making such a system adequately accessible to those most able to benefit from
the technology. The overall goal was to create a user-friendly system, requiring a minimum of
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taxonomic knowledge and specialized equipment, that could be accessed from anywhere in the
world. SPIDA-web is essentially SPIDA with an Internet interface, allowing users to have access
to previously trained ANNs housed on a server, designed to distinguish specific organism groups. 

The website consists partly of static html pages designed to give users some basic information
about the project, such as how the system works and what its limitations are, as well as information
on how to prepare and submit images. The remainder of the website is constructed with Java server
pages, which essentially allow the software to display dynamic data in response to the user's input.
These Java server pages are supported by a number of Java servlets served up by the open source
Tomcat server software. Servlets are essentially computer codes written in the Java computer
language designed to respond to a specific query submitted by the users via the Web. The servlets
are capable of obtaining data from a data-base in order to process the user's request and send the
results back to the Java server pages. 

SPIDA-web supports a number of functions. First, all users are required to log in before
accessing the site. This allows SPIDA-web managers to communicate with users to obtain more
inputs for the data-base as well as more data to improve its ANNs. Once logged in, users can then
access the Java server page that will allow them to select images for submission by browsing a
local hard drive. Once selected, the images are submitted to a servlet that uses Sun's Java Advance
Imaging (JAI) library to convert them to a usable format and scale them to a proper size. These
images then undergo wavelet transformation and the resulting information is submitted to the trained
ANNs obtained from the data-base via another servlet. The system then forwards the resulting
identification to a Java server page that displays the identification (along with a second and third
choice based on the ANN confidence values) and information from the data-base to the user (Figure
9.5

 

)

 

. This information includes distribution maps, line drawings of genitalia, whole-body images,
technical species descriptions and training images.

The entire process requires only a few seconds to complete on a local machine, but the ultimate
speed of SPIDA-web will be dependent on the server and connection speed. SPIDA-web also has
a number of administrative functions, such as adding and deleting user information; adding, deleting
and editing genus and species information; and viewing user activity on the site. At this point,
SPIDA-web is not set up to make automatic use of new data, such as images from new or under-
represented species. These data will, however, be saved to a data-base, and reviewed and integrated
by the SPIDA-web managers as needed.

 

RESULTS 

 

SPIDA-web ANNs were trained successfully (i.e. convergence was attained) for each of the 121
species in the Australasian ground spider family Trochanteriidae, including those represented by
only one or two individuals. Because so many species were data poor, the training method was
optimized (as described previously) to produce the best result possible with the available informa-
tion. In many cases, this meant that SPIDA-web had to use at least one of all the unique images
available for a species in the training process. Also, the iterative training method, though leading
to the best use of the data available, left any calculations of accuracy suspect as each ANN was
trained intentionally until it was able to identify accurately all the images in the testing set. Until
new users begin submitting images to SPIDA-web, there will be no truly new data from the
Trochanteriidae on which to test the system. 

One way to evaluate performance, however, is to look at the number of images required to
train each ANN. Table 9.1B gives this information for the 13 species that had at least 20 unique
individuals for the Gabor and Daubechies 4 wavelet encoding scheme. Networks trained with the
Gabor-encoded images required a smaller percentage of images to achieve 100 per cent accuracy
than the networks trained with the Daubechies 4 encoded images, though the difference was not
great (49 vs. 53% unique for the 'pro' set and 3 vs. 6% for the 'anti' set, respectively). This result
indicates that Gabor encoding may lead to ANNs better able to generalize, so all of the ANNs
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FIGURE 9.5

 

Screen shot of SPIDA-web. This is an example of a positive identification output after a user
has logged in and submitted an image from his or her hard drive. In addition to the top ID, SPIDA-web is
designed to show the second and third highest matches along with accompanying data-base information, which
appears directly below the positive match, requiring the user only to scroll down.
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currently in place for SPIDA-web were produced using this technique. However, these same data
also hinted that Daubechies 4 may be useful for some groups. Therefore, both algorithms are still
being tested. On average, the number of unique images required to train an ANN to distinguish a
given Trochanteriidae species adequately from all the rest was 16.

The SPIDA-web site is located at http://research.amnh.org/invertzoo/spida. Users have success-
fully logged on and submitted images (though disappointingly few from the Trochanteriidae). 

Though extensive testing of SPIDA-web with new data from the Trochanteriidae was not
possible at present, its ability to correctly classify species from other, related families as unknowns
could be examined. Of the 20 randomly selected outgroup images, SPIDA-web correctly classified
19, or 95 per cent, as unknowns. The one image it missed was matched with a species that had
limited data available for training. The lack of data may have created an ANN focused on inap-
propriate features that happened to be shared with the image from the outgroup species.

In lieu of new unique data, a handful of quick tests were performed to determine how SPIDA-
web would react to reprocessed images. The system should be able to handle variation in user
preprocessing techniques such as cropping and rotation. In the website documentation, users were
instructed (with illustrations) how to crop and orient images, but minor variation is inevitable. A
sample of 15 images that SPIDA-web had previously identified correctly was selected. Ten of these
images we recropped, either zooming in or zooming out prior to resizing. Five images were
deliberately cropped poorly, with the epigyna clearly not centred. Results are shown in Table 9.2A.
All of the zoomed images and three of the five off-centre images were identified correctly. The
two errors, though producing a 'no match found' output, had the correct species as the closest match
found. A different selection of 10 images was also used to test the effect of rotation. Images were
first rotated 2

 

°

 

, then 4

 

°

 

 clockwise before being resized and submitted to SPIDA-web. The 2

 

°

 

 rotation

 

TABLE 9.1B
Percent of Images Used for Training

 

Species 

 

Gabor training 

 

Daubechies training 

 

Pro 

 

Anti 

 

Pro 

 

Anti 

% of
unique 

% of 
total 

% of
unique 

% of
total 

% of
unique 

% of
total 

% of
unique 

% of
total 

 

Desognaphosa kuranda 

 

62 14 5 0.53 41 7 3 0.36

 

Desognaphosa massey 

 

75 21 4 0.39 75 14 4 0.44

 

Desognaphosa millaa 

 

62 13 4 0.46 65 15 6 0.66

 

Desognaphosa yabbra 

 

31 6 3 0.33 24 5 5 0.48

 

Hemicloena julatten 

 

55 16 3 0.26 N/A N/A N/A N/A

 

Longrita insidiosa 

 

54 9 3 0.30 64 20 6 0.70

 

Morebilus diversus 65 15 6 0.56 69 30 14 1.54
Morebilus fumosus 52 22 4 0.34 68 37 6 0.67
Morebilus plagusius 20 3 1 0.12 30 7 5 0.47
Rebilus bulburin 63 10 4 0.32 71 20 7 0.83
Trachytrema garnet 44 15 2 0.22 N/A N/A N/A N/A
Trachycosmus allyn 50 12 3 0.31 53 12 5 0.59
Trachycosmus sculptilis 10 2 3 0.21 18 4 6 0.67
Average 49 12 3 0.33 53 16 6 0.67

Notes: Statistics for the 13 species with 20 or more unique specimens. Percentage of unique and total images
used in training each species ANN. Images were added to the training set iteratively until all the remaining
images in the testing set were accurately identified. Gabor and Daubechies are the two different wavelet encoding
techniques used in this project.
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produced no changes in the outcome of the identifications (Table 9.2B). A 4° rotation, however,
reduced identification accuracy to 40 per cent.

DISCUSSION

Taking steps toward practical implementation is absolutely critical to the advancement of the field
of automated object recognition, as it must be proven to be more than just a 'pie-in-the-sky' idea
that works only in the abstract. This investigation was given the task of putting the reasonably
established reality of automated species identification into practice in the form of a usable,
accessible system. The goal, therefore, was not necessarily to create the most accurate or most
flexible or most easily used system, but rather to design and implement an ID system from
beginning ('John Smith', a collector who finds himself with a spider needing an ID) to end
(technician recording the scientific name and confidence on a data-sheet). That goal was met. A
prototype was successfully developed to identify the 121 Australasian species in the spider family
Trochanteriidae.

The base system, SPIDA-web, receives digital images of unidentified specimens via the Internet,
encodes the information in these images using wavelet transformation, circulates this information
through a set of ANNs trained on sets of identified images, and returns identifications to the user
– all in a matter of seconds. Output is structured to give users basic information on each species,
including distribution maps, drawings, pictures and technical descriptions as well as an indication
of confidence and alternative choices. 

TABLE 9.2A
Effects of Cropping

Confidence

Image Original Recropped Type

mbpf2 0.8919 0.885 Zoom out
mbpf8 0.6554 0.7756 Zoom out
dgyff8a 0.9903 0.9934 Zoom out
dgyff11c 0.976 0.9743 Zoom out
dgyff55a 0.7972 0.741 Zoom out
dgyff6b 0.9812 0.9378 Zoom in
mbpff9 0.9561 0.9733 Zoom in
mbpf6 0.7807 0.8157 Zoom in
falf1 0.8793 0.8076 Zoom in
pdw1a 0.8183 0.9312 Zoom in
pdw1a 0.8183 0.3887 Off centre
mbpf8 0.6554 0.5439 Off centre
dgyff13a 0.9925 0.9876 Off centre
dgyff57c 0.8193 0.4503 Off centre
mbpff2 0.9239 0.9137 Off centre

TABLE 9.2B
Effects of Rotation

Confidence

Image Original Rotate 2°°°° Rotate 4°°°°

mbpf1 0.7526 0.8648 0.3746
mbpf2 0.8919 0.8679 0.6472
mbpf3 0.427 0.3813 nmf
mbpf4 0.6887 0.6071 nmf
mbpf5 0.7355 0.8136 0.6159
mbpf6 0.7598 0.7845 Wrong ID
mbpf7 0.9694 0.9662 0.9113
mbpf8 0.7473 0.6019 nmf
mbpf9 0.874 0.8917 0.5371
mbpf10 0.6712 0.7065 0.2905

Notes: Effects of user variability in image cropping and rotation. The identification confidence from the species ANNs is
reported before and after recropping and rotation. 'Off centre' was a deliberate attempt to badly crop an image. Numbers
greater than 0.5 indicated a correct identification. Numbers less than 0.5 are reported when the system returned 'no match
found', but the first choice was the correct species. 'nmf' refers to situations when there was no positive identification and
the first choice was not the correct species.
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But how do we evaluate the true success of an automated object recognition system like this?
Four criteria to determine the utility of such a system might be: (1) accuracy, (2) accessibility, (3)
scalability and (4) flexibility. How does our prototype of SPIDA-web stack up? 

ACCURACY

Many potential users would rank this at the top of the list in terms of importance. That said, results
of informal surveys of arachnologists suggest that acceptable cutoffs for accuracy vary widely and
often depend on the background of the respondents. Systematists or taxonomic specialists demand
the highest accuracy levels – 95 per cent minimum for such a system to be useful for them.
Ecologists and conservationists would be happy with 85–90 per cent if it meant they could have a
species list to work with. Certainly, automated ID systems should do the same or better than
untrained or quickly trained novices (e.g. technicians, students). Ideally, they would do the same
or better than those workers with moderate amounts of training (e.g. entomologists or PhD students
after taking one or more courses in spider taxonomy). 

As stated previously, we did not structure our training protocol in such a way that would allow
us to measure accuracy in the true sense. We trained the ANNs to be able to identify all the images
in the testing set accurately, but only after first expanding and then reducing the size of the training
set. We can only offer that the accuracy of identification for well represented species (15–20 unique
samples available for training) was consistently high – in the range of 90–96 per cent – in the
present study when tested on subsets of data prior to final training. We suspect that accuracy levels
for under-represented groups (<10 unique specimens) are much lower, perhaps below 75 per cent
based on a very small test set. Unfortunately, we do not currently have access to more data on
which to further test the prototype, as all known specimens from the Trochanteriidae are already
in our possession. 

Use of replicate, processed and flipped images certainly helps the system be more robust against
variability due to lighting, image preprocessing and minor damage or debris. However, for species
with very few individuals, these do not adequately replicate the information necessary to force
ANNs to converge on the most useful and appropriate features in the images. This is absolutely
necessary if an ANN system is going to be able to generalize and recognize what constitutes
intraspecific variation versus interspecific variation. 

The problem of small training set size will certainly not be limited to spiders. Most invertebrate
communities consist of a few common species and many rare ones. One reason these organisms
are often so difficult to identify is the fact that so many were described based on just a handful of
individuals. Lack of data is likely going to be a common problem for all automated identification
systems. One way to ameliorate this problem partially is to design ID systems to be evolving such
that, as they are used, they improve. We have designed SPIDA-web to store all submitted images
so that new images can be incorporated into the appropriate training sets as needed to improve
accuracy. We would suggest that all systems be designed to have this capability.

Of course, we can measure the prototype's accuracy in terms of its ability to identify unknown,
or 'new' species by testing it with out-group images. Having a system that is perhaps overly sensitive
to the detection of unknowns is more useful than a system that errs on the side of misclassification.
A non-identification forces the user to re-evaluate the specimen, perhaps setting it aside for a
specialist to review. An incorrect, but positive identification is much more likely to be overlooked,
as a technician will be less likely to question it. Though not perfect (only 95% accuracy from our
small test set), SPIDA-web is much better at detecting unknowns than our previous system, which
employed a more traditional ANN architecture (Do, 1996). For the data-set described earlier, most
misclassifications (of true unknowns) were limited to species that were trained on inadequate data.

In most respects ANNs are unpredictable, as there is no way of knowing what information
from the training images they weight highly as features. For example, if an ANN is trained on
images from a single individual, and that individual had a tear or large piece of debris attached, it
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is possible that the ANN would consider those anomalies to be features. If an unknown happened
to have a similar 'feature', real or not, it could result in a false positive identification. That is why,
once again, it is always better to have a multitude (>15) of training specimens.

ACCESSIBILITY

Accessibility refers to both the ease with which non-specialists can navigate through the identifi-
cation process as well as the ability of users to gain access to the ID system. SPIDA-web ranks
high in both categories. Because the input to SPIDA-web is the whole image of a structure (in the
case of the prototype, a picture of the external genitalia of spiders), there is no need for users to
measure or dissect or even know the name of what they are taking a picture of. It is as simple as
finding the structure, centering it and snapping an image. Instructions on how to find the structure
are included in the introductory pages of the website. Aside from rudimentary image processing,
such as converting the image to greyscale and cropping it square, users can submit an image without
having any technical software or technical knowledge.

What do they need? They need to have a digital camera (or access to a scanner) and any computer
with Internet access. In the case of our prototype, they need to know they have a spider and what
family that spider is in. One could imagine an auto-ID system that does not even require the user to
know they have a spider (vs. a mite vs. a harvestman), but it seems unlikely that a single image could
be used to identify everything from order to species (as unlikely, perhaps as a single portion of DNA
that could be use to distinguish all species in the animal kingdom). Therefore, it is likely that all
practical auto-ID systems will need to be hierarchical to some degree (see following discussion).

SCALABILITY

Scalability is certainly an important issue, as any relevant auto-ID system will need to distinguish
large numbers of species. As the taxonomy of most difficult to recognize groups (e.g. insects,
arachnids, etc.) is relatively fluid, auto-ID systems must have the capacity to expand and/or be
modified without requiring an excessive amount of computing time. As stated previously, tradition-
ally structured back-propagation ANNs require full retraining each time a new species is either
added or removed. Some forms of ANNs (e.g. plastic self-organizing maps, or PSOMs) can accept
new species almost indefinitely without major adjustments.

SPIDA, with its collection of individually trained species-level ANNs, falls somewhere in
between. Species can be added without affecting the rest of the species' ANNs in the group. The
relatively small number of 'anti' images (images not belonging to the species an ANN is being
trained on) required in the training process (Table 9.1B) supports the ease with which new species
could be added to established systems. That said, it might be necessary to retrain some of the
other ANNs if the addition of the new species caused a decrease in accuracy. There is a limit
beyond which it would be advisable to retrain the whole set, if too many species are added.
However, we do not see this as major limitation since any sensible identification system must be
structured hierarchically. 

It is unrealistic to think that any one morphological structure would be universally applicable
to all groups of organisms. Even among spiders, certain families will likely require either different
or supplemental information, not just genitalic structures, for accurate species designations. In fact,
SPIDA was originally set up hierarchically, with a set of genus ANNs trained first to classify an
image to genus, then to circulate the same image through only the set of species ANNs within that
genus (instead of all 121). Though initial results gave very high accuracy for genus-level identifi-
cations (99%), for some genera, the genus ANNs failed to converge (i.e. during training, a consistent
solution was never found), making them essentially useless as a discriminatory tool.

This happened with very large, very diverse genera. This was not surprising since, in order for
a hierarchical system to work, the same characters used for species determination must also be used
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at higher levels of classification. For spiders, we know this is only sometimes the case. Typically,
specialists do not use genitalic characters for genus classification. Despite this, for most genera,
variation of epigynal structures within the genus was significantly less than variation between genera.
In some cases, particularly in the larger genera (e.g. Desognaphosa with 26 species), the variation
within a genus was extreme (Figure 9.6). Time was spent investigating potential solutions to this
problem, but results proved inconclusive. Therefore, the final system was structured non-hierarchi-
cally, with each submitted image being circulated through all 121 species ANNs. 

This simply illustrates the point that different information will be needed to distinguish different
groups of organisms, so it makes more sense to design ID systems that operate within information
type. Otherwise, one runs the risk of accidental similarities between processed images of very
different structures. Perhaps the most efficient approach is to create systems tailored to manageable
groups, adding a semi- or fully automated top-level system designed to shuttle the user to the
appropriate subgroup. This could be accomplished with multiple-access keys or a separate ANN
system based on different data. For example, family classification in spiders might be possible
using images of eye-pattern or carapace shape (Roberts et al., in review). Finally, perhaps the most
immediately useful application of this technology will be the identification of collections of species
from a particular region or habitat, of which there will be a limited number of species in the pool.
In either case, SPIDA is adequately scalable for most reasonable applications. 

FLEXIBILITY

Flexibility is a measure of how easily an ID system can be applied to different groups of organisms.
Some systems are amazingly accurate at distinguishing certain sets of organisms based on characters
specific to that group – for example, ABIS (see Steinhag et al., this volume) using wing cell shape
characters to identify bee species. Others have been shown to be amazingly flexible when tested
on many different types of organisms and objects – for example, DAISY (see O'Neill, this volume).
SPIDA, as defined by the combination of a wavelet encoding scheme and sets of individually
trained ANNs, is not tied to any specific organism group, as its input is simply an image. This is
a mild constraint, as at the moment, SPIDA can only be trained to identify organisms where the
relevant characters can be imaged rather easily. Still, it has been tested with single images of wasp
wings and bee wings and multiple images of male spider genitalia, all with successful results.

In summary, SPIDA-web is accurate (with adequate training data), highly accessible, reasonably
scalable and quite flexible. There is plenty of room for improvement; as previously stated, our goal
was to go from theory to practice, beginning to end. As that is now accomplished, the focus will
shift to finding ways to improve (and better measure) accuracy, streamline the training process,
explore the limits of SPIDA's scalability and further test its flexibility with new organism groups. 

FIGURE 9.6 Epigyna of three species in the genus Desognaphosa: D. massey, D. kroombit and D. bulburin.
These structures appear to share very few discernable features, if any. This illustrates the intrageneric diversity
in many of the larger genera in this group, prohibiting the convergence of genus-level ANNs. 
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CONCLUSIONS 

Automating the identification of specimens to species is a difficult task. There is no reason to
believe that teaching a computer to identify species will be any easier than teaching a person to
do so. In fact, it is likely a trickier process altogether, considering the amazing ability of the human
mind to compensate for missing information and recognize the similarity in objects. The advantage,
however, is that computers are fast, consistent and, once taught, do not forget. We chose to test our
system on the most difficult of tasks: distinguishing individuals from closely related species. We
also chose a challenging group, with species diagnostic characters that are difficult to quantify or
even describe, making the use of traditional taxonomic keys problematic for the (relative) novice.
Though sometimes strikingly similar within genera, these structures often vary widely in shape,
size and dimensionality across genera, making even the basic description of differences complicated
(if not impossible) for anyone but specialists in the group. Despite this, our results have been
promising – even more so when you consider the growing evidence that specialists may not be as
accurate or consistent as they think they are when assigning species names (e.g. Culverhouse, this
volume). More to the point, we suspect that higher accuracy (~95–100%) will be attainable for
ecological samples, as species will be more disparate. 

As mentioned previously, we envision the most useful application of this technology to be in
ecological and/or conservation studies. The majority of studies to date looking for ecological
patterns in diversity, distribution, response to disturbance, etc. have relied on only a handful of
surveys, often only one (Spellerberg, 1991; Green et al., 2005). This 'snapshot' approach limits our
understanding of the processes governing the dynamic nature of species and communities and can
often yield misleading data. There has been much discussion in the literature of promoting more
multisurvey, long-term studies of biological communities to ameliorate this problem; there is
widespread agreement about the need for repeated surveys to help expand our understanding of
ecological phenomena, especially in the face of increasing human impacts (landscape alteration,
global climate change, etc.; see Balmford et al., 2005; Green et al., 2005). 

That said, most funding agencies require results in 2–3 years and often conservation efforts
face even more pressing deadlines in terms of averting ecological disasters. When working with
arthropods in particular, though they are relatively easy to sample, the identification process can
often take years. This time delay is often used as an argument to not include arthropods in
conservation studies and/or biological monitoring efforts. Our development of SPIDA-web targeted
this type of need. We foresee identification modules being developed on data from the first set of
surveys conducted at a site. Once trained, these modules could then be used to identify all subsequent
surveys, leading to quick analysis of community dynamics. Technicians could be easily taught to
image the specimens and submit them for identification via SPIDA-web; then, only the few
individuals not recognized by SPIDA-web need be examined by a specialist, thus saving vast
amounts of time.

In addition, there is no need to wait until newly collected species are given a proper scientific
name – they could be added to the module based on a morphospecies designation in the short term.
This has the added advantage of guaranteeing consistency in morphospecies classification through-
out the monitoring period. This is relevant, as we anticipate SPIDA-web being most useful when
trained on collections of species from a particular region, thereby being applied to pressing problems
of biodiversity and conservation.

But what of the future beyond SPIDA-web? At a minimum, there needs to be cooperation and
data sharing between groups working in the field of automated object recognition. We are at the
stage where alternate approaches can be tested and evaluated based on the criteria outlined previ-
ously using real data. There will certainly be no single solution and no single approach that can
be labeled as 'the best' for all tasks and/or organism groups. Yet seeing where each succeeds (or
fails) will yield practical data and can only propel the field forward. To make automated object
identification practically useful, enough infrastructure must be built up to make the creation and
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maintenance of identification modules suitably efficient and relatively independent of the whims
of short-term funding agencies. Perhaps the creation of a research centre for automated identification
or, on a smaller scale, the establishment of permanent research positions in this field at major
research museums would provide adequate stability and resources. Of course, this will only happen
if the powers that be are convinced that automated object recognition is an integral part of the
future of taxonomy. 
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INTRODUCTION

 

Morphological data are so ubiquitous in systematics they are often taken for granted. At a time
when many students of modern organisms have turned their attention to molecular methods in order
to solve problems of phylogenetic inference (Felsenstein, 2003; Salemi and Vandamme, 2003) and
acknowledging that many see a bright future for DNA barcoding (e.g. Hebert et al., 2005; Tautz
et al., 2003; Hebert et al., 2005), it is important to recall the multiple roles of morphological data
in systematic contexts. These include a realization that the production of cladograms and biodiver-
sity assays does not exhaust the scope of contemporary systematics (e.g. Bello et al., 1995; Cracraft,
2002) and an understanding that an analysis of morphological data will be crucial to evaluating
the success of non-morphological data for reconstructing systematic relations among taxa (Wheeler,
2003; Ebach and Holdrege, 2005; Wheeler, 2005 and references therein). Moreover, it needs to be
acknowledged that over 99 per cent of all life forms that have existed on Earth have left no
discernable molecular record, yet all are crucially important for understanding relations between
both ancient and 

 

modern

 

 taxa (Gauthier et al., 1988; Donoghue et al., 1989). For these reasons,
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the study of morphological data will continue and, where possible, should proceed in tandem with
the study of other data types useful in systematics. Molecular and morphological sources of
information should play their own unique roles in contributing to the discovery of systematic
relations among taxa, with each used to evaluate, probe and test inferences derived from the other. 

There is, however, a practical problem in converting this sentiment into a coherent and pro-
ductive research programme – a problem that, we believe, lies at the heart of much of the criticisms
traditionally made of morphological data. That problem, put badly, is that while some newer data
types (e.g. codon sequences) can be delivered for systematic analysis rapidly, reproducibly and in
easily analyzed quantitative form, morphological data are delivered slowly and are based on
qualitative assessments of complex variation patterns made by an ever dwindling number of
taxonomic specialists. Moreover, these specialists often disagree among themselves as to taxon
identifications and use criteria for making those identifications that often seem difficult to commu-
nicate (see Zachariasse et al., 1978; MacLeod, 1998 and references therein; Culverhouse et al.,
2003, this volume and references therein). In order for morphological data to play the roles they
should in systematic investigations, strategies for their rapid collection and automated analysis must
be developed.

Granted, morphological data are complex. The seemingly inexhaustible variety of organic forms
is a constant source of delight and, if truth be told, accounts for much of the attraction most people
feel for living things (e.g. Wilson, 1986). This complexity is much richer than the simple molecular
codes of proteins or DNA, and rapidly exhausts the ability of spoken or written language to capture
in any but the most superficial detail. But is such complexity really inexpressible? Surely over 2000
years of successful results from qualitative morphological analyses are sufficient to answer this
question in the negative.

Given patience, adequate samples and cooperative working relationships, systematists can come
to agreements on general questions of morphological diagnoses (e.g. Culverhouse, 2007). What is
presently lacking is not a common language for expressing the boundaries of morphological
variation with adequate scope to represent organic complexity. That language – geometry – has
been available for, literally, millennia. Rather, what has been lacking is the technological toolkit
necessary to collect geometric data, segment these data into characteristic patterns, perform the
computations required to make comparisons across specimens and summarize these comparisons
into representations of similarity relations meaningful in various systematic contexts (e.g. taxo-
nomic, phylogenetic, biogeographical, palaeontological, ecological).

Fortunately, owing to ongoing developments in multivariate analysis, artificial intelligence,
computer vision and allied fields, sophisticated tools continue to be developed that provide system-
atists with an ever increasing ability to extract systematic information from morphological data.
Over the next decade, integration of these technological innovations is set to revolutionize the
manner in which morphological data are collected, analyzed and interpreted. These coming improve-
ments will likely reinvigorate the study of comparative morphology by placing it on a firm math-
ematical–geometric footing. The purpose of this chapter is to sketch out the basic approaches now
being used to forge a re-engagement between systematics and 'numerical morphology', especially
as these relate to the questions of automated identification. This will be done through the discussion
of concepts and via application of exemplar methods to a single data-set. The intention is to provide
readers with a basic, qualitative understanding of some of the newer numerical approaches to these
perennial systematic problems that have proven successful, illustrate the advantages and disadvan-
tages of these approaches, and suggest areas where future development is needed.

 

METHODS REVIEW

 

All methods employed in morphological approaches to automated taxonomic identification can be
classified generically as 'pattern recognition' techniques, though this classification places emphasis
on ends rather than means. Traditionally, group-characterization and specimen-identification
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problems in systematics have been viewed as being analogous to either ordination or discrimination
problems in multivariate data analysis (e.g. Blackith and Reyment, 1971; Mardia et al., 1979;
Pimentel, 1979; Reyment et al., 1984; Reyment, 1991). With important changes in our understanding
of shape theory, these approaches have, for the most part, carried through the reformulation of
morphometrics during the late 1980s and early 1990s that produced 'geometric morphometrics' –
also known as the 'morphometric synthesis' (see Bookstein, 1993) – though the assignment of
unknown specimens to classes or groups has only recently been taken up as an explicit topic by
this school (e.g. Polly and Head, 2004; Zelditch et al., 2004; Klingenberg and Monteiro, 2005).

Accordingly, geometric morphometric applications exist that make use of discriminant
approaches. These explicitly recognize and take advantage of differences in the within-groups and
between-groups covariance structure of measurements across a sample of objects, as well as simple
distance and likelihood approaches to the characterization of group boundaries. Use of neural nets
of various sorts as generalized tools for characterizing taxonomic groups and assigning unknown
specimens to groups so characterized is also becoming increasingly popular and successful (e.g.
Gaston and O'Neill, 2004; MacLeod et al., 2007 and references therein). 

Before moving on to a discussion of particular approaches, though, it is necessary to review
briefly the practical differences between group-characterization and identification tasks and how
these affect the choice of analytic approach. Both tasks assume that the existence of groups is a
feature of nature and that these groups can be objectively recognized via reference to the data at
hand. Demonstrating the ontological status of such groups constitutes a separate – though related
– issue that is beyond the scope of this discussion. Here we will only be concerned with charac-
terizing and identifying groups whose existence has been established by some means 

 

a priori

 

.
The group-characterization problem involves an assessment of what subsets of information are

involved in distinguishing one group from another. This is analogous to the phylogenetic data-
analysis task of recognizing a group's autapomorphies. In order to accomplish this task, information
is needed about the degree to which variables are distributed continuously or discontinuously across
an optimized taxonomic space and an assessment of where any distributional discontinuities fall
(see MacLeod, 2002a, for examples). This task is most closely aligned with that of the systematist
whose primary tasks are to discern the broad distribution of groups (e.g. species, genera, families)
in nature based on commonalities in the patterning of their characteristics, recognize new groups
and infer the processes responsible for creating/maintaining those patterns.

The group-identification problem is more limited. It involves only the assignment of unknown
specimens to previously recognized groups (e.g. species, genera, families). This is analogous to a
major aspect of the taxonomist's task. Here, complete information about all the ways a group might
be characterized is often unnecessary. The only information required is a rule-based system capable
of assigning unknown specimens to the correct group. In a sense, the differences between group
characterization and group identification are analogous to the differences between the systematic
description of a group (which should include a discussion of all characterizing attributes) and its
diagnosis (which usually consists of rules of thumb applied to a readily accessible subset of the former).

The fact that these two tasks are interlinked should come as no surprise. Together, they form
the corpus of systematic biology (see Simpson, 1961; Mayr, 1969, 1982) and, indeed, they have
traditionally have been carried out more or less simultaneously by the same person. Nevertheless,
there is an important practical distinction between them. In many systematic biodiversity and
ecological applications, the primary focus resides in placing specimens into established groupings
or taxonomies – in identifying them as belonging to this or that 

 

a priori

 

 group. The rules used to
place the specimens into these groupings are not as important as the correctness of the placement
(i.e. identification) itself and are rarely the subject of much description in technical reports that
deal with biodiversity, ecological and/or conservation topics. The important thing is that these rules
be (1) appropriate (i.e. capable of assigning specimens to their correct groups), (2) able to be
applied objectively and (3) consistently applied in practice. Both morphometric and neural-net
approaches can be used to automate the group-identification task. How they accomplish this, the
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degree of success that can be expected from their application and the means by which their
performance in systematic contexts can be improved are the subjects of this chapter. 

 

M

 

ULTIVARIATE

 

 M

 

ETHODS

 

Discriminant Analysis (DA) and Canonical Variates Analysis (CVA)

 

The standard multivariate solution to the group-identification problem is through discriminant
analysis (e.g. Sneath and Sokal, 1973). Classical linear DA was developed by Fisher (1936).
Typically, it begins with a set of specimens, features of whose morphologies have been quantified
by measurements. These have traditionally consisted of distances between topologically corre-
sponding landmark points, but more recently have been based on the coordinate positions of the
landmarks themselves. Once such data have been secured for a collection of specimens from
different, authoritatively identified groups or taxa, classical DA amounts to a multivariable regres-
sion of the differences between the mean vectors of two groups and the pooled covariance matrix
(see Reyment et al., 1984; Davis, 2002). When more than two groups are present, the related method
of canonical variates analysis (CVA) is usually preferred (see Blackith and Reyment, 1971; Rey-
ment, 1971; Sneath and Sokal, 1973; Mardia et al., 1979; Campbell and Atchley, 1981; Reyment
et al., 1984; Davis, 2002).

Canonical variates analysis – in the sense used here – was first described by Rao (1952) and is
based on the principle that the total covariance matrix of a data-set consisting of 

 

k

 

 groups can be
partitioned into within-groups (i.e. 

 

W

 

, the sum of products of deviations of each specimen from its
group mean over all variables) and between-groups (i.e. 

 

B

 

, the sum of products of each group mean
from the grand mean over all variables) components. A representation of the geometry of a canonical
variates analysis is presented in Figure 10.1. Note the directionality differences between the orien-
tation of the within-groups and between-groups trends (Figure 10.1A), which in this example are
almost at right angles to one another. Canonical variates analysis, in effect, solves the problem of

 

FIGURE 10.1

 

Fundamental geometry of canonical variates analysis (CVA). A. Scatterplot of two variables
for a data-set subdivided 

 

a priori

 

 into three groups. Group axes indicate major directions of within-groups
covariation. Note that the triangle joining the group centroids is isosceles and that the covariance matrix of
the black group differs slightly from those of the other two groups. B. Canonical variates transform of the
data represented in A. This transform adjusts scaling relations within the canonical variates space such that
within-groups variation is rendered isotropic and between-groups variation maximized to reflect separation
between group centroids and the similarities in the group-specific covariance patterns. In this case the black
and grey groups are represented as being more similar to each other than either is to the white group (reflecting
patterns of separation of group centroids, primarily) and the grey group represented as being slightly more
similar to the white group (reflecting similarities in the structure of these groups' covariance matrices).
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finding a set of multivariate axes that maximize the 

 

B/W

 

 ratio. High values of this ratio denote a
system in which groups are well separated from one another, with each clustered tightly about its
group mean; low ratios denote geometries in which group means and group variances are subequal.

An important aspect of CVA (also present in classical discriminant analysis) is the desire to
scale the discriminant space to reflect not only differences between the group means (

 

B

 

), but also
differences in the within-groups covariance structure (

 

W

 

). In most applications, this is accom-
plished by premultiplying 

 

B

 

 by the inverse of 

 

W

 

 (= 

 

W

 

–1

 

B

 

). Such a transformation deforms the
scale of the discriminant space so that all groups have isotropic variance. Once this operation is
performed, the distances within this transformed space reflect differences in the group-specific
covariance structure. Thus, in Figure 10.1B, group 3 (white symbols) occupies a position further
from group 1 (black symbols) in the canonical variates space because its covariance structure is
more similar to that of group 2 (grey symbols) (see also Campbell and Atchley, 1981; Klingenberg
and Montiero, 2005). 

Canonical variates analysis has a long history of use in group-identification contexts. More
recently, MacLeod et al. (2007) used CVA to achieve excellent group-identification results for
Procrustes-registered landmark data from modern planktonic foraminiferan tests. Nevertheless,
unlike the space formed by principal components (see later discussion), the canonical variates space
is complexly deformed relative to the original variables. Like principal components spaces, though,
CVA axes form a highly group-dependent space. This is because the inclusion of new groups will
invalidate the optimization of the entire discriminant space for all groups. The only way to re-
establish this optimization is to recompute the discriminant system for all the old groups and the
new groups together. Of course, only when the morphology of the new group is sufficiently similar
to those of the original groups can all variables employed in a previous analysis be used and be
appropriate to use (see MacLeod et al., 2007, for additional discussion). As a result, CVA-based
discriminant systems are limited in their morphological–taxonomic scope as well as in their
computational stability. Also, owing to the space-deformation issues described above, CVA does
not support direct theoretical modelling of shape geometries (see MacLeod, 1999, 2002b, 2005a).

 

1

 

Principal Components Analysis (PCA)

 

Principal components analysis (PCA) is based on methods first described by Pearson (1901) in
terms of the overall theory, and Hotelling (1933) in terms of computational approaches. As with
DA and CVA, PCA regards individual specimens as being characterized by a series of measurements
(usually linear distances between topologically corresponding landmarks) and attempts to re-express
the variance of these as linear series of composite variables that summarize the covariance structure
and are themselves uncorrelated with one another (Manley, 1994; MacLeod, 2005b). Principal
components analysis is a fundamental tool in multivariate data analysis, where it is used to (1)
reduce the dimensionality of multivariate data-sets by transforming the original variable set to a
smaller number of composite variables, the first few of which usually represent most of the sample
variance; (2) examine the structure of covariances or correlations among the original variables; and
(3) achieve a low-dimensional representation of overall or phenetic similarity relations among the
specimens comprising the sample (Figure 10.2). In terms of automating the specimen-identification
procedure, it is this last attribute on which we will focus.

Although PCA is a sample-dependent method in the sense that its results are strictly a function
of the sample being analyzed – and can be expected to change if the composition of the sample
changes – this is not necessarily as problematic for the purpose of group identification as might
first appear. Indeed, most descriptive statistics used routinely throughout data analysis are similarly
sample dependent (e.g. mean, variance, standard deviation, coefficient of variation; see Simpson
et al., 2003). The feature that makes these statistics useful for characterizing underlying features
of biological reality is the manner in which the sample is obtained. 
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In order to make descriptive statistics useful for estimating features of the populations from
which they were collected, it is of the utmost importance that the sample be drawn randomly from
the population and be sufficiently large to estimate the structure and range of variation exhibited
by that population accurately. Otherwise, the sample will characterize only a subset the population,
which, depending on the hypotheses under consideration, may or may not be useful. Many data
analysts fall into the trap of mistaking an inappropriately constructed sample for a valid population
proxy or, even worse, for an entire complexly structured population. By the same token, results
obtained through the analysis of a sample pertain only to the variables actually measured and cannot
be used to infer the character, variation structure or relations of other variables.

Provided a sample is statistically representative of a population of interest, there is no reason
to suppose results of a PCA (or DA, or CVA) are inherently non-representative of a population.
Indeed, the degree of confidence one can place in the values of any descriptive statistic is an issue
that can be evaluated empirically for populations that can be resampled or, for samples, via
bootstrap, jacknife or other Monte Carlo simulations (see Manley, 1997). This observation, of
course, does not mean one is free from concern regarding the degree to which the sample is
representative of the underlying population or from the obligation of testing this where possible.
Rather, it is mentioned as an antidote for statements alluding to the instability of PCA results –
and morphometric variables generally – that litter the systematics literature (e.g. Pimentel and
Riggins, 1987, Cranston and Humphries, 1988; Chapill, 1989; Crowe, 1994; see MacLeod 2002a
for additional discussion and examples). Any and every correctly calculated PCA result is a valid
description of the sample used in its determination and may be valid beyond the limits of that
sample depending on the sample's statistical representativeness in the same way that sample means,
standard deviations, etc. are used routinely to make population-level inferences.

The other commonly alluded to theoretical concern with using PCA for specimen identification
is the fact that PCA is predicated on a characterization of the covariance structure among variables
across the entire sample taken as a whole. This differs from the typical discriminant analysis
situation where the purpose is to determine the character of structural relations between different

 

FIGURE 10.2

 

Fundamental geometry of principal components analysis (PCA). A. Scatterplot of two variables
from a single data-set. Enclosing confidence ellipse indicates major directions of group-specific covariation
with axes representing the major and minor directions of within-groups covariance. Angle figure in the lower
left corner of the variable space represents the variable axes. B. Principal components transform of the data
represented in A. This transform rigidly rotates the variable space to a position that corresponds to the major
directions of covariation within the data. Note that, unlike canonical variates analysis (see Figure 10.1), there
is no internal deformation of the space. This aids interpretation of the space in that the geometric relations
between the original variables – represented in B by the angular figure – and the principal components bear
a simple and consistent relation to one another.
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samples (see earlier discussion). In this sense a distinction is usually made between data-sets that
exhibit no subordinate internal structure (Figure 10.2) and those that do (Figure 10.3).

For example, if the major dimensions of variation within a sample arise as a result of within-
sample groupings (Figure 10.3), orientation of the principal component axes will reflect this
distinction. In such cases very little information about the nature of variation within the subsidiary
groups can be predicted 

 

a priori.

 

 This obtains because there is no obvious way to predict the
position of the group discrimination axis (thin axes in Figure 10.3) relative to the major axis of
pooled-group variance (thick axis in Figure 10.3) at the outset of an analysis. If these axes are
approximately aligned with one another (Figure 10.3A), the PCA result (Figure 10.3B) will reflect
this fact by causing the groups to separate more or less cleanly along PC-1. If these axes exhibit
a high angular relation to one another (Figure 10.3C), the PCA result (Figure 10.3D) will not
specify an axis on which group distinctions are well represented.

Other geometries are also possible (e.g. axis of group discrimination lies at right angles to the
axis of pooled-groups variance, in which case the higher PCA axes may capture between-groups
distinctions). Regardless, whenever subsidiary groupings are present in the sample, placement of

 

FIGURE 10.3

 

Behavior of PCA when data are partitioned into groups. A and B represent two different group
geometries plotted in the space of the original variables. C and D represent PCA transforms of the data shown
in A and B, respectively. A and C represent the case in which the best, linear, group-discrimination axis (light)
and major axis of the pooled-sample covariation (bold) are well aligned. B and D represent the case in which
these axes lie at a high angle to one another. Note the difference in the ability of the resulting first principal
component axes to approximate a group-discrimination axis. Since, for complex, multivariate data-sets, these
geometries can rarely be assessed prior to analysis, standard PCA is of limited use in addressing the group
identification problem.
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PC-1 (and, by extension, all subsequent PCA axes) will represent an unpredictable amalgam of all
variation sources.

 

2

 

Because PCA (also DA/CVA) represents a rigid rotation that preserves the inherent linear
geometry of the data, within-sample group boundaries may be rotated, compressed or rarefied
(depending on scaling conventions), but they will not be mixed. As a result, clouds of data that
interdigitate prior to PCA will do so when re-expressed as PCA ordinations and data representing
distinct and mutually exclusive domains within the space of the original variables will continue to
do so within these ordination spaces. Nevertheless, trying to encompass all types of variation in a
single PCA analysis is impractical and violates the 'single sample' heuristic upon which the
technique was first formulated. The basic PCA model does suggest a simple alternative, however,
through which the single-sample limitations of PCA can be turned into strengths for the purpose
of generalized group identification.

Consider the situation in which a data-set contains individuals drawn from different taxa. Rather
than utilizing an exploratory PCA approach and then partitioning the resultant space using 

 

ad hoc

 

methods, one could confirm the characteristics of the groups (i.e. test to determine whether the
taxon-specific samples exhibited subsidiary groupings) and then utilize separate PCA analyses to
create different quantitative models of variation for each taxon (Figure 10.4). In this context, PCA
is perhaps best regarded as a regression-based, generalized modelling method capable of summa-
rizing the linear variation of any data-set, no matter how complex. Moreover, once a PCA-based
model has been determined for a statistically representative sample, it can be compared to similar
models constructed from other samples. Such models can be cross-validated against each other,
subjected to permutation tests to assess their distinctiveness and, if these tests are passed, used to
allocate unknown specimens to appropriate groups or recognize individuals that do not fit any
established model (e.g. possibly a new group).

This approach was originally developed by Wold (1976) under the name 'disjoint principal
components models', later termed 'simple modelling of class analogy' (SIMCA) (see also Wold and
Sjöström, 1977; Wold et al., 1983). While biological applications of SIMCA have been limited
(e.g. Wold, 1976; Dahl et al., 1984), the technique exhibits some of the attributes of much more
advanced neural-net architectures (see following discussion). Moreover, because of its basis in

 

FIGURE 10.4

 

The method of disjoint PCA models to address the group-identification problem. Here, rather
than attempting to represent the problem in the space of the pooled-sample principal components, PCA models
are calculated separately for each 

 

a priori

 

 group. In this sense, PCA is used to perform a major axis, multivariate
linear regression of individual data-sets with model boundaries being defined by the amount of scatter about
the regressions exhibited by a training set of authoritatively identified individuals. Unknown specimens can
then be fit to each regression-based model and appropriate identification decisions made on the basis of which
model exhibits the best fit. Note also that this approach does not require that an unknown specimen be assigned
to any known model if its fit does not meet objectively and empirically defined criteria.
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eigenanalysis, SIMCA can readily be adapted to take advantage of geometric morphometric data
and concepts – both landmarks and outlines, or combinations of the two (e.g. Bookstein, 1991;
Bookstein and Green, 1993; MacLeod, 1999), thus further extending its applicability.

 

Neural Nets

 

Despite being a relative newcomer on the biological object-identification scene, the concept behind
neural nets actually dates back to the early days of electronic computing. The computers most
people are familiar with today are based on symbolic logic. Such systems were developed originally
by Turing, von Neumann and others as machines that accept data in the form of symbol strings
(usually ones and zeros), operate on those strings using a formalized set of rules (a program usually
coded as sets of simple rules or algorithms stored in the system's memory) and output another
string of symbols deterministically related to the input string. The rules specified by the computer
programmes for CVA and PCA are examples of this approach to computer design. Using this
generalized approach, complex shapes can be reduced to simple symbols (the data matrix of
measurements), submitted to the DA/CVA or PCA algorithms, and the results – consisting of another
symbol string (the eigenvalue, eigenvector and score matrices) – output.

Neural nets originally represented an alternative approach to computer design. Here, a single
processor addressing a linear memory is replaced (at least in a logical sense) by an interconnected
assembly of simple processors that store numerical weights configured into networks by interpro-
cessor pathways, one weight per interprocessor pathway (see Lang, this volume, for a more technical
discussion). Instead of submitting a programme to this network-based computer architecture, one
'trains' the network to perform a task such as characterizing a group by submitting a set of generalized
input data to the network's input nodes and comparing its output to an expected or 'correct' answer.
The match between the observed and expected output is then assessed, areas of agreement and
disagreement summarized, and this information fed back into the network. This feedback causes
the interprocessor, or internode weights, to be adjusted, and a new output, hopefully closer to the
expected result, produced. This process is then repeated until the correct answer is obtained. 

Once the network computer has 'learned' its groups using a training data-set to 'tune' the network
recursively, it is ready to accept new data and perform the identification operation. The advantages
of this approach to computing include: (1) lack of any need to devise specific algorithms and write
computer programs for complex operations (neural nets train themselves), (2) the same net architecture
can be used on very different data types (neural nets can also cope with substantial proportions of
missing data – unlike morphometric approaches – and will work successful on many holistic features
that are difficult to characterize using simple morphometric descriptors), (3) neural nets are robust to
degradation (indeed, they can reprogramme themselves if necessary) and (4) incorporation of an
ability to get better at tasks the more such networks are used; to take advantage of 'on-the-job' training. 

Any similarity of this process to human learning is entirely deliberate. The neural network
concept is based on the architecture of biological neural systems. Whereas 'von Neumann machines'
are particularly good at performing simple, repetitive tasks quickly and accurately on data ade-
quately represented by simple symbols – precisely the sorts of operations humans are very bad at
performing, neural nets often have the edge in performing complex, subtle tasks on generalized data. 

Unfortunately, because of their non-deterministic character, the performance of neural nets in
handling any given task is difficult to predict in advance. Also, neural nets can take long time
periods to train and many neural net architectures are sample dependent in the sense that the addition
of a new class requires the entire weight system to be recomputed from its initial (usually random)
configuration. In addition, the search methodologies neural nets use to adjust the weights during
training may converge on a suboptimal result (e.g. local minima) from which there is no way to
further improve the net without re-initialization.

 

3

 

 Note that these last two aspects of neural network
calculations are also characteristic of many complex algorithm-based systems (e.g. inference of the
structure of maximum-parsimony phylogenetic networks).
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In order to improve the performance of neural networks, a number of variant designs have been
developed. Traditional or classical neural nets (formally called multilayer perceptrons, MLPs)
consist of a fixed, layered structure that remains static during the training process (Figure 10.5).
Traditional MLP nets are trained using supervised learning, with weights adjusted during training
iterations by a process termed backpropagation (see Bishop, 1996; Lang, this volume). 

Once trained, backpropagation nets can be used to identify unknowns (which belong to one of
the classes the net was trained on) with typical identification accuracies in excess of 90 per cent,
though this, of course, is data set dependent. Each time a new image is submitted, a probability
estimate is obtained for the fit between the pattern and the various group models (represented by
the net's weight system) resulting in a decision being made regarding group affiliation. Data that
do not conform to any of the net's group models to a sufficient degree may be rejected as
unidentifiable. Addition of a new group to the net requires complete recalculation of the weight
system. Nevertheless, supervised backpropagation networks have been the sort used most exten-
sively for image identification (Bishop, 1996; Haykin, 1999; Duda et al., 2000).

Neural nets can also be based on unsupervised learning strategies. To date these nets have been
employed primarily to support data visualization, but their flexibility is such that they are becoming
more common in a wide variety of applications. A simple version of an unsupervised neural net is
the Kohonen self-organizing map (SOM) (Kohonen, 1982, 1984; Lang, this volume). These nets
also use a set number of nodes, but operate according to different principles.

The SOM net is better thought of as a lattice, or map in which the dimensions of the grid
correspond to the number of input observations or variables. The idea here is to adjust the structure
of the map dynamically, based on the training-set data, until it forms an accurate representation of

 

FIGURE 10.5

 

Design of a standard, back-propagation neural network (e.g. multilayer perceptron). Artificial
neurons are arranged in layered banks connected by interneuron paths that can be assigned numerical weights.
It is a requirement of such designs that neurons within the same bank are not connected to each other. A.
Interneuron weights are assigned randomly during initialization of the net. B. Presentation of data from a
training-set object (arrows) to the net causes the weight system to change. C. Presentation of data from another
training-set object (arrows) to the net causes the weight system to undergo further changes in an attempt to
express the difference between the objects. This procedure is repeated recursively for all objects in all training
sets. The result is a set of interneuron weights that express the observed between-groups differences. Note
that, because this design requires global optimization across all nodes, introduction of a new group requires
that the entire weight scheme be recalculated.
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similarity relations among the different groups. As before, the net is initialized using random values.
When the first object of the first group is presented to the net, a node whose initialized values are
close to that of the object is selected as the focus of the group (Figure 10.6A) and the values
assigned to the other nodes modified to reflect their similarity (as assessed by a distance calculation)
relative to the focus. Thus, the values for nodes immediately adjacent to the focus are changed
more than the values of nodes located at a distance from the focus. As examples of other groups
are added, they form their own foci within the SOM structure and, as more examples of these
groups are added, the system of values coalesces around these foci (Figure 10.6B–D). With training,
the SOM system comes to resemble a topographic surface that reflects phenetic similarity relations
within the original data.

Interestingly, Kohonen (1984) advocated use of a supervisory computational engine to perform
the training calculations quickly. His method also specified a decrease in the size of the regionalized
neighbourhoods over time (to allow the net to encompass finer differences between groups) and a
gradual lowering of the learning rate over time (to promote overall net stability). While Kohonen
SOMs represent a better data-analysis strategy for understanding the relations between groups, they
are more difficult to construct and are limited by their need to specify the size of a SOM at the

 

FIGURE 10.6

 

Design and development of a self-organizing map (Kohonen) neural network. A. Neurons
assigned random positions in the weight space during net initialization of the net. This is a two-dimensional
map and so represents relations among only two variables (say) circularity (

 

x

 

-axis) and triangularity (

 

y

 

-axis).
B. Presentation of data from a training-set object with high triangularity and low circularity to the net causes
a node to be assigned as the focus and the positions of all other nodes to be recomputed based on proximity
to the focus. C. Presentation of data from a training-set object with high circularity and low triangularity to the
net causes the weight system to undergo further changes in an attempt organize the expression of the difference
between the objects. In a self-organizing map or Kohonen net, changes in the weight system reflect the spatial
location of the group-specific models within the set of possible relations between input data-sets. Also note the
net knows nothing about 'triangularity' or 'circularity' at the outset. It develops a model of these relations as
data are presented. This procedure is repeated recursively for all groups present in all training sets (D). The
result is a set of interneuron weights that reflect the observed relations between input variables. The ability to
draw distinctions between a large number of groups will be dependent on the size of the network (map).
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outset of an analysis. This makes SOMs ideal for dealing with well-constrained problems (e.g.
identification systems for well-known groups whose taxonomy is stable), but limits their overall
applicability in open-ended situations. 

The most advanced neural net designs incorporate elements of dynamic learning strategies in
non-stationary network design environments. An example of this neural net type is the plastic self-
organizing map (PSOM) (Lang and Warwick, 2002; Lang, this volume). A PSOM net begins with
a few nodes and randomly initialized links (Figure 10.7A). When data from an initial group are
presented to the net, more nodes are created and the existing internode weights adjusted so that
they 'move' closer to the established group (Figure 10.7B). As more examples of the initial group
are added, high-value internode weights are further strengthened and low-value weights diminished,
changing the structure of the net (Figure 10.7C). When data from a new group are introduced, a
new set of nodes is created and placed in an appropriate position relative to the established topology
(Figure 10.7C). As more data from the new group are evaluated the weights of high-value internodes
are adjusted, eventually to the point where most or all internodal connections between established
groups are lost (Figure 10.7D). This process is repeated until all groups are located relative to one
another in the dynamic net topology.

 

FIGURE 10.7

 

Design and development of a plastic self-organizing map (PSOM) neural network. This is similar
to a Kohonen net (map, see Figure 10.6). In this case an original (primitive) neuron configuration (A) is specified
and interneuron weights assigned randomly. B. Presentation of data from a training-set object to the net causes
the weight space to change (symbolized by shade of grey, as in Figure 10.6, and by the length of the interneuron
paths) and new neurons to be added to the net. C. As more objects from the same training set are added, the
weight space continues to change, consolidating certain neurons into a tight cluster representing the group and
driving others away (black neuron). D. Presentation of data from another training-set object to the net causes
a cluster of neurons to appear in a region adjacent to a similar existing cluster. As more objects from the second
training set are added, the weight space continues to change, further consolidating group-specific neurons into
tighter clusters and driving the existing clusters away from each other (black neuron), possibly to the point at
which intercluster links are broken. The primary advantage of this design is its speed (once links have been
broken, only weights linked with active regions of the net need be recalculated during calibration), scalability
(the number of clusters that can be managed by the net is limited only by hardware) and incorporation of
dynamic learning into the net's fabric (discreteness of the net will improve with use).
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Important features of dynamic neural nets are their ability to accommodate new groups (and
'forget' disused ones), without having to recompute the entire weight system, and the ability of
some designs (e.g. PSOM) to increase in scope and complexity without bound (at least theoreti-
cally). These attributes will likely be very important for creating practical neural nets for a variety
of routine biological and systematic applications – especially identification. Such nets will need to
be able to accommodate at least hundreds and likely thousands of groups simultaneously. 

In addition, practical neural nets for many (if not most) systematic applications will need to
be able to be updated quickly as new groups are discovered, or discovered to be important in
resolving a particular problem. Preliminary comparisons suggest dynamic nets do not offer great
advantages over traditional designs in terms of accuracy or identification speed (though truly large-
scale nets have yet to be populated and tested with biological data). What is unequivocal, however,
are the advantages of the PSOM and related designs in terms of scalability, overall net maintenance,
and flexibility. One sign of the success of dynamic nets is the fact that hybrid designs are beginning
to appear that combine the advantages of both by embedding a dynamically structured set of nodes
within an overall static framework (see SPIDA and SPIDA-web, Russell et al., this volume)

 

AN EXAMPLE

 

In order to illustrate the advantages and outstanding issues needing further development when these
approaches are applied to the group-identification problem, it is useful to compare and contrast
results obtained from a specific exemplar data-set. Since human face characterization is a classic
problem in the general field of pattern recognition (e.g. Gong et al., 2000), the example selected
for this study represents a systematic view of the 'face recognition' problem. Thus, our example
compares and contrasts the application of morphometric and PSOM neural net approaches to the
design of automated systems to separate two wasp families based solely on female facial charac-
teristics. In addition, we will use these same facial characters to distinguish the parthogenetic and
sexually reproducing forms of the one of the families. Facial features are obvious, contain a wide
variety of characters (see later discussion), and good images of wasp faces could be collected by
relatively untrained personnel. Nevertheless, identification of these groups based on these characters
alone has, so far as we are aware, never been attempted before.

Our subjects all belong to the wasp superfamily Cynipoidea (suborder Apocrita), which repre-
sents over 3000 species and over 200 genera; all are commonly referred to as 'gall wasps', though
only one family (Cynipidae) actually contains species that induce plant galls. Other families within
the superfamily (e.g. Figitidae) are insect parasites, developing initially as koinobiont endoparasi-
toids but spending the last instars feeding on the host. These latter species usually attack endo-
pterygote larvae. Reproductively, cynipid wasps (approx. 1300 species) alternate between sexual
and parthenogenic modes. In some cases these alternative sexual modes are expressed as charac-
teristically different variants in facial morphology (Figure 10.8). Other cynipid taxa do not undergo
this alternation of generations but produce all progeny sexually.

The cynipoid wasp faces used in this example analysis were all female and came from a
collection of scanning electron microscope (SEM) images made available on the 

 

MorphBank

 

website (http://www.morphbank.com/) as part of the 

 

MorphBank Project

 

. Each image in this data-
base is associated with fully searchable text information, and images can be downloaded at different
resolutions and in different formats (jpeg, tiff). As work in numerical morphology progresses, it
is expected that image-data repositories such as 

 

MorphBank

 

 (see also 

 

MorphoBank

 

,
http://www.morphobank.org/) will be set up, contributed to and used on a routine basis. A complete
list of all species and thumbnail representations of the images used in this investigation are
presented in the appendix.

This example will focus on a higher taxonomic-level characterization of facial morphology
among sexually reproduced species of the Cynipidae (cynipid-s), parthenogenically reproduced
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species of the Cynipidae (cynipid-p), and members of the Figitidae (figitid). Generally speaking,
cynipids have wide faces with very large, laterally placed eyes, whereas figitids have long, narrow
faces with relatively smaller eyes placed well up on the face (Figure 10.9). These taxa, however,
vary widely (see Appendix 1) and face morphology 

 

per se

 

 has not been regarded as a group-
diagnostic character (e.g. Ritchie, 1993). 

Original sample sizes for cynipid-s, cynipid-p and figitid data-sets were 32, 32 and 35, respec-
tively. Of the 44 genera and 59 species represented in the combined cynipid data-base, 4 genera
and 5 species are shared between cynipid-s and cynipid-p data-sets (see Appendix 2). This represents
significant taxonomic overlap at the genus level (21%), less so at the species level (7%). Owing
to this discrepancy, there is a good chance that at least some of the differences between cynipid-s
and cynipid-p groups are the result of taxonomic differentiation rather that sexual-morph differ-
ences. However, there is nothing in the 

 

Morphbank

 

 data to indicate that the species comprising
these groups were selected because they represent different modes of morphological variation or
that they are not representative samples of the sexual groups from which they were drawn. Accord-
ingly, they will be treated in this study as quasi-random samples drawn from the cynipid taxonomic
and morphological space. 

 

FIGURE 10.8

 

Head-shields of cynipid wasps from the species 

 

Andricus gallaeurnaeformis

 

 (Cynipidae)
showing facial dimorphism related to reproductive mode: sexually produced female (left) and parthenogeni-
cally produced female (right).

 

FIGURE 10.9

 

Head-shields of cynipid wasps from the species showing facial dimorphism related to taxo-
nomic group: sexually produced 

 

Diplolepis triforma

 

 (Cynpidae) female (left) and sexually produced 

 

Chres-
tosema erythropum

 

 (Figitidae) female (right).

Sexual progeny (f ) Partheogenic progeny (f )

Diplolepis triforma (f )
cynipidae

Chrestosema erythropum (f )
figitidae
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These considerations present no obstacle to the primary goal of this chapter, which is to use a
variety of quantitative methods to assess whether differences can be detected between 

 

a priori

 

defined morphological groups. Nevertheless, if consistent differences between sexual and parthe-
nogenic cynipid taxa are found, they will need to be treated as provisional indications of possible
sex-linked morphological differentiation that should be confirmed (or refuted) with subsequent
analysis of data collected for that purpose.

Morphological characters and the positions of landmarks used to quantify face shape variation
for this study are presented in Figure 10.10. For both the discriminant and Procrustes distance
analysis (see later discussion), landmark locations were hand-digitized (using 

 

ImageJ

 

 software,
http://rsb.info.nih.gov/ij/), assembled into a data matrix and transformed into Procrustes-registered
shape coordinates (Rohlf, 1990), which were then used as input to the aforementioned procedures.
This operation took approximately three hours to complete, but had to be repeated several times
before the untrained operator (NM) became sufficiently familiar with the facial morphology of
these wasps to achieve an acceptable level of landmark-placement consistency. The neural net
analysis used raw tiff images that had been processed only insofar as blanking out the backgrounds
surrounding the face, standardizing the face orientations in the frame and standardizing the image
resolution and size (150 dpi, 600 

 

×

 

 450 pixels). This operation was automated and so required
essentially no additional analysis time. No scaling information was included in any analysis because
the purpose was to compare the objects on the basis of shape alone.

In terms of sample groupings, the analysis was subdivided to produce two different test
situations. The first of these focused on recognizing gross distinctions between the cynipid ('sexual'
+ 'parthenogenic') and figitid groups. This is the more standard form of group-identification test in
which both groups encompass broadly comparable levels of taxonomic distinction. The second test
attempts the more difficult problem of distinguishing between the two cynipid sexual groups as
well as the generally more distinct figitid taxa. The latter problem is especially challenging in that,
owing to the taxonomic level at which these comparisons are being made, within-groups variation
is likely to be quite high relative to between-groups variation, especially for the two cynipid groups.
Nevertheless, this is exactly the sort of problem quantitative identification tools will need to handle
successfully if they are to be useful in systematic applications. Both the two-group and three-group
data-sets were submitted to CVA, a new method (described later) based on an assessment of
Procrustes distance, and an implementation of the PSOM neural net.

The CVA method employed here was a stepwise variant of the classical CVA technique (see
previous discussion) in which the set of variables is evaluated (using an 

 

F

 

-test) to order the variables
in terms of their relative contribution to group discrimination. This is a standard model for yielding
efficient, stable and optimally interpretable discriminant results. In both two-group and three-group
analyses a forward stepwise strategy was employed with the critical 

 

F

 

-value set to 0.10. Raw data
constituted the 22 shape variables specified by the 

 

x

 

 and 

 

y

 

 coordinates of the 11 landmarks shown
in Figure 10.10B after being transformed to their generalized least-squares Procrustes shape coor-
dinates about the pooled-sample consensus shape.

Efficiency of the shape variation models determined by the CVA was assessed by performing
a cross-validation analysis of the specimen set used to create the model. This is, admittedly, not
as useful as knowing how well the models perform using a completely unknown set of specimens,
but adequate numbers of specimens from the same localities as the training set were not available
and the purpose of this analysis is to illustrate use of the methods and compare their results, not
to create a final gall wasp identification engine. During the cross-tabulation, specimens were
assigned to groups by using the linear-discriminant equations to project the measurement set into
the discriminant space, calculating the Mahalanobis distance between the projected specimens and
each group centroid, and assigning the specimen to the closest group.

The Procrustes distance method employed in this study is a variant of the SIMCA disjoint
linear pattern recognition method (Wold, 1976). A generalized least-squares Procrustes consensus
shape was determined for each group and used as the best single representation of overall group
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shape variation after confirming that no significant intragroup clustering was present at each
landmark vertex for the training set. Once these consensus shapes were calculated, simple 2

 

σ

 

 group-
specific tolerance envelopes were estimated from the distribution of Procrustes distances from
consensus shape exhibited by the training set.

 

4

 

 These consensus shapes and distance envelopes then
constitute generalized models of shape variation characteristics of each group.

Using the same cross-validation strategy described earlier, specimens were identified by cal-
culating the Procrustes distance between their landmark configurations and each group-specific
consensus configuration and determining whether overall Procrustes distance lies within the 2

 

σ

 

tolerance envelope of one or more groups. In the case where a specimen lay within the tolerance

 

FIGURE 10.10

 

Morphological features of cynipid wasp faces. A. Labelled scanning electron micrograph of

 

Melanips opacus

 

 (Figitidae). B. Landmarks used to quantify facial shape variation. 1: position of the medial
ocellus; 2: position of the lateral ocellus; 3: position of the antenna base; 4: position of the anterior tentorial
pit; 5: position of the ventral margin of the clypeus along the facial midline; 6: position of the ventral terminus
of the epistomal sulcus; 7: position of the ventral margin of the malar area; 8: position of the ventral margin of
the compound eye; 9: position of the dorsal margin of the compound eye; 10: position of the proximal inflection
point in the compound eye outline; 11: position of the distal inflection point in the compound eye outline.
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envelopes of more than a single group (i.e. group-specific shape models overlap), it was assigned
to the group whose consensus configuration was closest to that of the specimen. 

Overall, this Procrustes-distance method has the advantage of being much more easily calculated
than either standard SIMCA or CVA models; it more faithfully represents the geometric information
encoded in the group-level training set data and uses those data to inform the analysis, yielding a
test statistic that is similarly quick and easy to calculate as well as being free of group dependence
(unlike the CVA approach discussed earlier). Polly and Head (2004) employed a more sophisticated
version of this approach to the analysis of marmot and pipesnake morphology in which specimen
identification was referred to a maximum likelihood model. Interestingly, their approach did not
perform as well for the characterization of these groups as the simpler approach described before
did for the wasp data (see later discussion).

The PSOM neural-net approach to species identification was implemented by the digital auto-
mated identification system (DAISY; see Weeks et al., 1997, 1999a, 1999b). DAISY was chosen
as the best currently available implementation of a PSOM-like neural net that has been programmed
for use in systematic applications. The DAISY system accepts training sets in the form of standard-
format images (e.g. tiff) of authoritatively identified specimens. Each image is processed by (1)
reducing its spatial resolution (via subsampling) to a 32- 

 

×

 

 32-pixel grid, (2) adjusting its pixel-
level spectrum to achieve brightness equalization and (3) transforming each pixel grid from a
Cartesian to a polar format. The first step in this process represents an empirically determined
optimum resolution needed to maximize the signal-to-noise ratio and quantify topological corre-
spondences. The second reduces interimage variations due to lighting/exposure artefacts. The third
allows the analysis to utilize spatially irregular 'regions of interest' as well as the more traditional
rectilinear image boundaries. Results of these transformations for characteristic cynipid and figitid
images are presented in Figure 10.11.

Once DAISY had processed all images in the training set, a non-linear discriminant space was
calculated based on the 

 

n

 

-tuple classifier. The proximate basis for this classification is a pairwise
comparison between RGB brightness values for each of the 32- 

 

×

 

 32-pixel locations. The result
allows each object in each training set to be placed into a multidimensional, distance-based,
ordination space whose character can be varied based on the estimated affinity (via NVD correlation)
between similarly processed images of unknown specimens and the training set array. It is this
ability to modify the character of the base training set ordination that gives the DAISY implemen-
tation of the PSOM concept its adaptive quality. 

 

FIGURE 10.11

 

Examples of the image data used by the DAISY implementation of a PSOM, 

 

n

 

-tuple neural
net for taxonomic identification. Sexually produced 

 

Diplolepis triforma

 

 (Cynpidae) female (left) and sexually
produced 

 

Chrestosema erythropum

 

 (Figitidae) female (right). See Figure 10.9 for original images. Both images
represent 32- 

 

×

 

 32-pixel subsamples of 600- 

 

×

 

 450-pixel processed images that have been adjusted for
equalization of the image histogram and transformed to a polar coordinate pixel sequence.

Diplolepis triforma (f ) 
cynipidae 

Chrestosema erythropum (f ) 
figitidae 
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To achieve specimen identification, DAISY uses the computed affinity vector to project objects
into a non-linear discriminant space. The position of an unknown object in this space can be
compared to the locations of training set objects using simple distance metrics. Cross-validation
identifications were achieved by a multilayer strategy based on this discriminant space. The primary
DAISY discriminator converts metric distances to a more robust rank measure and assesses the
eight nearest training set neighbors to the unknown object. Under this 'coordination' metric, the
strength of group affiliation is measured by the number of neighbors belonging to the same group
(e.g. all eight nearest neighbors in same group represent a coordination value of 1.00; six out of
the eight neighbors represent a value of 0.75). In the current DAISY implementation, a coordination
value of three or more is regarded as sufficient to associate the specimen with a group to a high
confidence level.

If an object cannot be identified by the coordination metric, DAISY concludes the unknown
object is not embedded within a group cluster. In that case a 'SILL' metric is then used to determine
whether an unknown object lies at the edge of a group cluster. Similarly, a 'vote' metric is used to
determine the probable identity of objects in regions of the space containing members of more than
a single group. If these metrics fail to attribute the unknown to a group, an identification is made
based on using a 'first part the post' (FPTP) metric that assigns the unknown object to the group
of its nearest neighbor, equivalent to a coordination of 1.00.
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Stepwise discriminant analysis of the combined cynipid (sexual and parthenogenic progeny) and
figitid data-sets identified 15 of the 24 Procrustes-registered shape-coordinate variables as being
important for group discrimination. Three full landmark locations were eliminated from further
consideration by this process (distal terminus of the epistomal sulcus, distal terminus of the malar
area, distal inflection point of the compound eye) along with 

 

x

 

-coordinate of the lateral ocellus. Of
the remaining variables, the discriminant axis was aligned with a contrast between the proximal
inflection point and ventral terminus of the compound eye (

 

x

 

-coordinates) and the antennae base
and anterior tentorial pit (see Figure 10.10). These results suggest that relative size and placement
of the eye, along with the relative width of the face, are the best means for discriminating between
cynipid and figitid wasps. This axis enabled 97 per cent of the training set to be identified correctly;
only three figitid species (3.0%) were assigned incorrectly to the cynipid group. Visual inspection
confirmed that these three species images (

 

Phaenoglyphis villosa

 

, 

 

Euceroptres montanus

 

 and

 

Melanips 

 

sp.; see Appendix 3) did indeed represent figitid species characterized by atypically large
eyes and broad faces.

Results of the simple Procrustes distance models were comparable to those of the stepwise
CVA analysis. For these data, identification of which landmarks are more important for group
characterization can be gained from comparisons of differences in the group-specific consensus
configuration of landmarks and the standard deviations for each shape coordinate. Consensus-
image comparison indicated that landmarks specifying the antenna base (3), anterior tentorial pit
(4), ventral margin of the clypeus along the facial midline (5), ventral terminus of the epistomal
sulcus (6) and lateral position of the compound eye (10,11) were primarily responsible for inter-
group differences (Figure 10.12). When these locations were combined with an assessment of the
group-specific variability in landmark placement, it was apparent that location of the antenna base,
anterior tentorial pit and ventral terminus of the epistomal sulcus are the primary between-groups
discriminating features. 

As before, these data suggest cynipids have characteristically broader faces than figitids, but
they also suggest that these differences are most reliably assessed in the central portion of the face
than at its margins. Cross-validation results indicate the Procrustes distance method performs virtu-
ally as well as discriminant analysis; only four figitid taxa were incorrectly assigned to the cynipid
group (96% correct). Interestingly, only one of these four taxa (

 

Phaenoglyphis villosa

 

) was also
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misassigned by discriminant analysis. This suggests there is a broader degree of similarity between
the two groups than is indicated by the results of either the CVA or Procrustes distance methods
taken alone. Inspection of the Procrustes distance results confirms this suspicion. An additional three
figitid specimens are within 0.02 units of being attributable to the cynipid group (i.e. subequally
distant from the consensus configuration of both groups) including 

 

Euceroptres montanus.

 

The DAISY two-group results (cross-validation) indicated that 88 of the objects were assigned
to the correct groups. Of these, 74 passed the coordination test with an average confidence value
of 0.97, two passed the SILL test with certainty values of 1.00, six passed the vote test with a value
of 0.75, and six passed the FPTP test. While this overall result (90% correct) is marginally lower
than the morphometric results obtained, it must be remembered that DAISY was required to sort
through much more information extraneous to group identification than the morphometric methods,
did so quickly (less than 3 minutes required to construct all models and perform the cross-validation
analyses), and without any human intervention to guide its comparisons. 

All taxa misidentified by both morphometric methods were also listed among the set of
DAISY's failed identifications suggesting its results represent a more consistently conservative
estimate of identification certainty than either of the morphometric approaches. If the question
being asked was whether these two groups were present in the sample, the quality of DAISY's
answer would be indistinguishable from those of the much more labor-intensive morphometric
methods. Even in terms of estimating relative abundances of these taxa, the DAISY estimates do
not differ markedly from the morphometric results (see Table 10.1). These results are not unusual,
but rather typical of performance levels that can be expected of neural net approaches to the group

 

FIGURE 10.12

 

Generalized least squares (GLS) consensus landmark configurations for cynipid (closed circles,
sexual and parthenogenic progeny) and figitid landmark data-sets (open circles). Landmark numbers as in Figure
10.10B. Use of consensus models mimics the disjoint shape model approach of Wold (1976), described in
Figure 10.4, in which the different group-specific ranges of variation can be thought of as representing a single
landmark location (e.g. compare geometry of Figure 10.4 with that of landmark 10) or the distribution of
Procrustes-registered shapes on the Kendall shape manifold (Kendall, 1984). A complete analogue to the Wold
(1976) method could be realized by computing disjoint relative warp shape models for each landmark data-set.
However, results obtained by this investigation (see text) suggest disjoint models based on the simple Procrustes
metric can facilitate remarkably consistent and subtle discriminations between higher taxonomic groups.
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identification problem using current technology (see Gaston and O'Neill, 2004; MacLeod et al.,
in press and references therein).
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Discrimination between taxa belonging to different families of organisms is a routine and useful
task that empirical results suggest can be handled effectively by either morphometric or neural net
methods. Possibly the most challenging situation for automated group-identification systems arises
from the simultaneous discrimination of taxa at supraspecific and intraspecific levels. The wasp
data-set facilitates examination of this case in that, alongside the figitid data used before, the cynipid
data were now subdivided into sexual (cynipid-s) and parthenogenic (cynipid-p) groups.

A larger suite of discriminant variables was needed to resolve the three-group problem. In this
case the medial ocellus (

 

y

 

-coordinate), ventral margin of the clypeus along the facial midline (y-
coordinate), as well as the lower (x- and y-coordinates) and upper (x-coordinate) boundaries of
the compound eye were judged not to be significant contributors to group discrimination. Among
the remaining variables, those most highly aligned with the major discriminant axis represent a
contrast between the positions of the tentorial pit, antennae base and medial ocellus with the
proximal and distal inflection points of the compound eye (all x-coordinates). This axis accounts
for 83.64 per cent of the between-groups variation and primarily separates the cynipid and figitid
species (Figure 10.13).

TABLE 10.1
Percentage Elative Abundance Estimates Based on 
Two-Group Cross-Validation

Actual CVA
Procrustes
distance

DAISY
(PSOM, n-tuple)

Cynipidae 64.65 67.68 68.69 61.62
Figitidae 35.35 32.32 31.31 38.38
Total 100.00 100.00 100.00 100.00

FIGURE 10.13 Scatterplot of Procrustes-registered training-set data along the two canonical variates axes
for the discrimination between cynipid sexual progeny (black symbols), cynyipid parthenogenic progeny (grey
symbols), and figitid (open symbols) taxa. See text for discussion.
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As was the case in the previous two-group discriminant analyses, these patterns suggest that
width of the face and placement of the eyes are the primary dimensions of difference between
cynipid and figitid wasp faces. The second discriminant axis subsumes the remaining 16.36 per
cent of between-groups variation and represents a contrast between the distal inflection point of
the compound eye (x- and y-coordinates) with the antenna base and ventral terminus of the malar
area (both x-coordinates). This pattern indicates that cynipid wasps in this dataset that were produced
parthenogenically exhibit faces that are characteristically broader and lower, with narrower eyes
than sexually reproduced cynipid progeny. 

Cross-validation tests for the discriminant analysis (Table 10.2) indicate these models placed
91 (91.92%) of the specimens into the correct group; two parthenogenic cynipids were misassigned
to the sexually reproduced cynipid group (Biorhiza pallida, Neuroterus numismalis), three sexually
reproduced cynipid individuals to the parthenogenic group (Gonaspis potentillae, Phanacis cen-
taureae, Synergus crassicornis) and three figitid species to the parthenogenic group (Aspicera
scutellata, Zaeucoila sp., Melanips opacus). Given the high within-groups variability overall and
subtlety of the distinction between the two cynipid groups, this is an unexpectedly encouraging
result, especially for a character complex that has not heretofore been used to distinguish between
these groups taxonomically.

Procrustes distance results were, once again, similar to those for CVA. For this method, the
major directions of difference between cynipid and figitid species were focused on the relative
placement of landmarks specifying positions of the antennae base, and lateral inflection points of
the compound eye (Figure 10.14). As with the three-group CVA results, the primary discriminating
factors specify characteristic differences in the width and length of the face, especially those
centering on the distance between the antenna base and proximal margin of the compound eye. 

Distinctions between the two cynipid groups, however, were captured a bit differently in the
Procrustes distance analysis. Here, the primary landmarks differentiating these groups are the
positions of the lateral ocellus, ventral terminus of the clypeus along the facial midline and the
ventral terminus of the compound eye. These data indicate the dorsal and lateral portions of the
face are characteristically wider in the parthenogenic group and the tentorial pits, clypeus and
distal terminus of the epistomal sulcus shifted slightly to a more central position. This differs from

TABLE 10.2
Cross-Validation Results for Three-Group Analyses

Cynipid-p Cynipid-s Figitid Total

CVA
Cynipid-p 30 2 — 32
Cynipid-s 3 29 — 32
Figitid 3 — 32 35

Procrustes distance
Cynipid-p 27 5 — 32
Cynipid-s 5 27 — 32
Figitid — 5 30 35

DAISY (PSOM, n-tuple)
Cynipid-p 22 9 1 32
Cynipid-s 14 16 2 32
Figitid 2 1 32 35

Note: Numbers refer to specimens.
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the more generalized results provided by the discriminant analysis with respect to intraspecific
variation among the cynipids and offers an intriguing new insight into the comparative morphology
of these wasps. 

In terms of group identification, cross-validation results suggest that the Procrustes distance
approach performed nearly as well as discriminant functions with a total of 15 misassignments out
of the 99 total specimens (84.85% correct assignments). Interestingly, these errors were not confined
to the more difficult distinction between the two cynipid groups, as might be expected, but were
spread evenly among all three groups; five figitid species were incorrectly assigned to the cynipid-
s group, five cynipid-s species incorrectly assigned to the cynipid-p group and five cynipid-p species
incorrectly assigned to the cynipid-s group.

DAISY performance for this most challenging analysis was much more variable than either
CVA or Procrustes distance (Table 10.2). The group-identification models constructed by DAISY
were able to assign only 70 (70.71%) of the specimens to the correct group. This is much lower
than either of the morphometric methods, but still quite respectable given the nature of the problem,
character of the data and complete automation of the system. DAISY's figitid model was the most
successful, allocating 32 of the 35 (91.43%) true figitid specimens correctly, with the vast majority
of those passing the most rigorous coordination test (overall certainty index of 0.96). For the cynipid
models, 22 of the 32 (68.75%) cynipid-p species were correctly assigned, with misassigned species
overwhelmingly placed in the cynipid-s group. However, performance for the cynipid-s identifica-
tions was much poorer, with only 16 of the 32 species (50.00%) correctly assigned. Of these
incorrect assignments, the overwhelming majority were placed in the cynipid-p group.

FIGURE 10.14 Generalized least squares (GLS) consensus landmark configurations for cynipid sexual prog-
eny (black symbols), cynipid parthenogenic progeny (grey symbols) and figitid (open symbols) taxa. Landmark
numbers as in Figure 10.10B. Use of consensus models mimics the disjoint shape-model approach of Wold
(1976), described in Figure 10.4, in which the different group-specific ranges of variation can be thought of
as representing a single landmark location (e.g. compare geometry of Figure 10.4 with that of landmark 10)
or the distribution of Procrustes-registered shapes on the Kendall shape manifold (Kendall, 1986). A complete
analogue to the Wold (1976) method could be realized by computing disjoint relative warp shape models for
each landmark data-set. However, results obtained by this investigation (see text) suggest disjoint models
based on the simple Procrustes metric can facilitate remarkably consistent and subtle and simultaneous
discriminations between intraspecific shape variation and variation between higher taxonomic groups.
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In interpreting these results, it must be remembered that DAISY 'sees' much more variation
than morphometric data analysis methods and has no recourse to human intelligence to guide its
comparisons. Also, while noting the discrepancy between the morphometric and DAISY results it
should also be kept in mind that all quantitative approaches yielded better results than had been
obtained by any human systematist to date using just these data, as well as results that compare
favorably to estimates of reproducibility in data generated by human experts (typically c.70%; see
Zachariasse et al., 1978; MacLeod, 1998; Culverhouse, this volume). DAISY encountered difficul-
ties distinguishing between the two cynipid groups because these are genuinely difficult to separate
on the basis of an unweighted analysis of all morphological data present in the face. Both mor-
phometric methods yielded better results when compared to DAISY, but relied on the a priori
selection of a drastically reduced subset of the available information and were much more labor
intensive to perform. 

IMPROVING NEURAL NET APPROACHES TO AUTOMATED 
TAXON RECOGNITION 

Given the results of the morphometric methods, it seems clear that the subset of possible landmarks
chosen for those analyses did a remarkably good job of capturing primary morphological dis-
tinctions that can be used to separate these groups to a high degree of reliability, at least insofar
as these samples are representative of variation within their parent populations. Such detailed
analyses are undoubtedly appropriate when a complete understanding of the geometries involved
in group distinction is required. An example of the power of this approach is the rather clear
result obtained when consensus configurations of landmarks were compared for the two cynipid
groups (Figure 10.14).

However, the large amount of work required to set up morphometric analysis strategies could
prove a severe limiting factor. Such systems exist (e.g. Steinhage et al., this volume) but have, to
date, been developed for commercially important species (e.g. bees) whose taxonomy is based on
characters that are relatively easy to characterize using morphometric approaches (e.g. wing vena-
tion patterns). Since there are comparatively few species in which morphometric characters are
used routinely to make identifications, if extensive research and technological development need
to go into tuning image segmentation algorithms for use in obtaining data for taxonomic group
discriminations based on morphometric approaches, this will likely prohibit development of auto-
mated taxonomic group identification systems for generalized use. Accordingly, it is important to
explore the methods for improving DAISY's performance on such difficult data-sets. 

There are two obvious hypotheses that need to be tested to better understand the DAISY results.
First, is it the case that variation in these wasp faces is copious and unstructured other than in the
regions identified by the morphometric analysis? If so, generalized neural net-based systems may
need to be equipped with image preprocessors that identify regions of variation across the sample
on which the neural nets can be focused. Such preprocessors would have the advantage of making
identification systems not only more efficient, but also more interpretable insofar as alternative
geometries of data points or regions of interest could be explored for their ability to contribute to
group characterization. Alternatively, it may be the case that the amount of data available to DAISY
– rather than its inherent structure – was the reason for the DAISY's lower level of performance
relative to the morphometric methods. It has long been known that neural nets work best on large
data-sets (see Bishop, 1996; Haykin, 1999; Duda et al., 2000; Lang, this volume), but few recom-
mendations are available regarding how large training sets need to be, and what aspects of the data
are relatively important to include for biological training sets.

To evaluate the first hypothesis it is necessary to devise a method to represent the spatial
information encoded by localized features in an image-based format acceptable to DAISY. This
step is not strictly necessary in terms of rendering data compatible with neural-net processing
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insofar as standard alpha–numeric symbols can be input directly into any net algorithm. Neverthe-
less, these morphometric data need to be analyzed by DAISY in order to test its ability to
characterize these groups from generalized pixel-based data. Since DAISY is, in effect, an artificially
intelligent image-recognition engine, what is needed is a method to represent the morphometric
data as an image in order to render the DAISY results more strictly comparable to those obtained
from the CVA and Procrustes distance analyses.

To accomplish this transformation, we used a simple scaling function that matches spatial
position to an 8-bit greyscale to create a 'landmark image':

(10.1)

where bi = brightness value of the ith shape coordinate, si = value of the ith shape coordinate, smax

= maximum value of the shape coordinate, and smin = minimum value of the shape coordinate.
The 22-pixel brightness values resulting from this calculation for each specimen were then

inserted into a 5- × 5-pixel array (Figure 10.15). Once the morphometric data had been converted
into this 'grid-image' form, the three image sets were submitted to DAISY for processing.

Results of this test (Table 10.3) showed a slight increase in the accuracy of the DAISY
identifications. Using the same data submitted to the morphometric methods, DAISY assigned 79
of the 99 (79.80%) to the correct group in the cross-tabulation test. Moreover, the coordination
statistics indicate that over 60 per cent of these identifications are high quality (>95% certainty).
This places the DAISY results within just a few percentage points of matching the morphometric
results.5 On a group-specific basis, all three groups exhibited subequal numbers of misclassifications.

Thus, the raw information used in the morphometric analyses was sufficient to enable the PSOM
neural net to characterize these groups adequately and recognize group-level distinctions. Based
on these results, it seems clear that – for this data-set at least – focusing the neural net on particular
types of data (landmark coordinates) representing particular subregions of the image represents a
viable strategy for improving its accuracy. Of course, this was an extreme test of the data-focusing
hypotheses. A variety of intermediate image sampling strategies are available (see Figure 10.16 for
an example) that would combine heightened sensitivity to the spatial locations of various subregions
of interest in a manner that would preserve aspects of the overall spatial information content
provided by the image frame.

Regardless, this experiment showed that highly detailed information on the relative locations
of taxonomic characters can cause neural nets to yield increased group-characterization/identifica-
tion power. This increased power, however, comes at a steep price as these operations remove the
inherent advantages of raw image-based neural net systems in terms of their scalability and
generalizability. In effect, this approach turns neural nets into an alternative form of non-linear
multivariate discriminant analysis, with all the limitations associated with such methods (see earlier
discussion).

What about sample size? Sample sizes on the order of 30 individuals are usually considered
adequate for the characterization of most populations whose measurements that exhibit a normal
distribution. Unfortunately, very few morphological features used in systematic research exhibit
such well-behaved distributions at low sample sizes. Figure 10.17 gives an indication of the extent
of this common problem for the figitid Procrustes (GLS)-registered shape coordinate data. 

As indicated before, the traditional method of addressing this issue (collecting more data from
the population in question) is not available because the wasp face data were taken from a static,
historical image collection. However, a simulation of the effect additional individuals would have
on the DAISY results is possible. This can be accomplished by randomly deforming the original
wasp image sets to mimic the effect of obtaining new individuals. Because of the linear character
of the CVA and Procrustes distance methods, such simulated data-sets will not improve their results.
Indeed, those results would be expected to be degraded since the image distortions would inevitably

b s s s si max i max min= − − − ⋅( ( ))1 255
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FIGURE 10.15 Examples of the transformation of Procrustes (GLS) registered landmark data into images
that can be analyzed by a pixel-based neural net. Upper row: example images of typical cynipid-s (Plagiotro-
chus quercusilicis, left) and figitid (Aegeseucoela sp., right) species. Middle row: shape coordinates for the
11 landmarks were used to represent this morphology in the CVA and Procrustes distant analyses. Bottom
row: image-based representations of the 11 Procrustes registered landmarks. Note greyscale values are used
to represent shape coordinate positions along both x and y shape axes. Images like these were used as input
to DAISY to test that system's ability to characterize all three wasp groups. See text for discussion of results.

TABLE 10.3
Cross-Validation Results for DAISY-Grid Analyses

DAISY (PSOM, n-tuple)

Cynipid-p Cynipid-s Figitid Total

Cynipid-p 26 4 2 32
Cynipid-s 4 25 3 32
Figitid 2 5 28 35

Plagiotrochus quercusilicis (f ) 
cynipid-s 

Aegeseucoela sp. (f )
figitidae
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lead to placement of a greater number of simulated individuals into the regions of overlap between
those models. The non-linear characteristics of neural nets (including DAISY), however, allow
additional data to help these systems devise better non-linear rules for group identification. The
more subtle and robust nature of the identification statistics also enables DAISY to take advantage
of a conservative, but nuanced, assessment of group membership.

To simulate increased sample size, each image from the cynipid-p, cynipid-s and figitid image
sets was randomly perturbed or 'morphed' using a distortion factor of ≤10 per cent of the original
image's height and/or width dimensions (see Figure 10.18) to form four or five additional images
each of the same species. This operation was used to simulate a four- to fivefold increase in overall
sample size, with totals of 189, 192 and 216 simulated images for the cynipid-s, cynipid-p and
figitid data-sets, respectively (including the original images). The 10 per cent figure represents a
liberal, but qualitative, estimate of the amount of within-species morphological variation that can
be expected for this group based on comparative inspection of examples of within-species mor-
phological variation. This is, of course, no substitute for the actual acquisition of new specimens
and such will be necessary before a system to recognize these wasp groups from facial morphology
is finalized. However, these randomly morphed images are sufficient to test the effect of including
additional unique images in the training sets. This 'morphed' data-set was then submitted to DAISY
analysis in the manner described previously. 

Results of the DAISY analysis of this expanded data-set are dramatic (Table 10.4). In the total
image set (597 individuals), only one was inappropriately assigned in the cross-tabulation test. This
was a morphed cynipid-s image that was assigned to the cynipid-p group. Thus, under increased
(simulated) sample size conditions, the DAISY system was able to identify all the images with
absolute accuracy. Moreover, 580 (97.15%) of these correctly identified images were assigned a
high coordination value (≥3), indicating high-confidence identifications. This result suggests that
the non-linear point clouds representing group-specific morphological variation all exhibit good
convexity. Accordingly, even in cases where there are very subtle variations in group-specific
morphologies with broad areas of overlap between group boundaries, neural nets can likely meet
or beat the best results produced by linear morphometric approaches, provided a sufficiently large
number of specimens are used to model group-specific patterns of variation.

FIGURE 10.16 Use of image masking to highlight corresponding regions of interest within an image. Use
of this technique can effectively force neural nets programmed for image processing to focus on particular
parts of an image, thus differentially weighting their information content.

Plagiotrochus quercusilicis (f ) 
cynipid-s 

Aegeseucoela sp. (f )
figitidae
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FIGURE 10.17 Distributions of shape coordinate values for various figitid landmarks. A. Medial ocellus (x-
coordinate). B. Lateral ocellus (y-coordinate). C. Distal clypeus terminus along mid-line (y-coordinate). Note
variety of distribution geometries with only B approximating a normal shape.
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The implications of this result are clear. Given alternative strategies to focus neural nets on
specific aspects of morphological variation or increasing the sample size in order to improve
accuracy, the latter will likely be far more effective. This improvement is much simpler to implement
and can be accomplished while preserving the scalability and generalizability attributes that made
neural nets such an attractive approach for solving the automated object identification problem in
the first place. Indeed, given adequate sample sizes, generalized, dynamic neural nets will likely
be more effective at the group discrimination task than any alternative approach currently available,
as well as being far more rapid, consistent and reliable than either human experts or linear
morphometric analysis.

DISCUSSION AND SUMMARY

Because the need for group identification in systematics is so broad, it seems obvious that there
is a place for a diversity of different algorithmic approaches. Each taxonomic group and each

FIGURE 10.18 Original and five randomly morphed images of Callirhytis erythrocephala (female, parthe-
nogenic form).

TABLE 10.4
Cross-Validation Results for DAISY-Simulation Analyses

DAISY (PSOM, n-tuple)

Cynipid-p Cynipid-s Figitid Total

Cynipid-p 192 — — 192
Cynipid-s 1 188 — 189
Figitid — — 216 216

Original

Morph 5Morph 4

Morph 2 Morph 3

Morph 1
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application of taxonomic data to 'real-world' problems will have their own unique aspects. Con-
sequently, no 'one system fits all' approach is either advocated or anticipated here.

In this study, geometric morphometric approaches to group-identification problems were rep-
resented by the linear discriminant analysis of Procrustes-registered shape coordinates and by a
new method that made identifications based on the shortest overall Procrustes distance between an
unknown object and a set of consensus shape coordinate configurations determined previously from
training sets. Both methods performed well in two-group (interspecific) and three-group (interspe-
cific and intraspecific) trials based on an assessment of cynipid and figitid wasp faces; cross-
validation results ranged from 85 to 97 per cent correct identifications.

While these are very encouraging results, they remain, in essence, 'benchtop' studies, valid
certainly for these samples, but of a presently unknown degree of generalizability. Additional
research will be needed to determine whether these methods can be employed on randomly selected
samples of real wasp populations – preferably using reflected-light imaging instead of expensive
and time-consuming scanning electron photomicrography – to characterize group differences and
achieve the same high levels of correct identifications for unknown specimens that are not part of
the training sets. This having been said, our results strongly suggest there is no reason to reject the
null hypothesis that no shape difference exists between cynipid and figitid wasp faces. Moreover,
these results support the tantalizingly strong suspicion that previously unidentified, characteristic
facial differences exist, not only between gall wasp families, but also, possibly, between the sexual
and parthenogenic morphs of cynipid wasp species.

With respect to comparisons between the methods themselves, discriminant analysis exhibited
slightly better overall performance than the new Procrustes distance strategy, though it is debatable
whether the difference is significant. [Note: for the two-group test these methods differed in terms
of correct identifications by a single specimen.] What is significant, though, is the fact that the
classic discriminant strategy carries a substantial computational overhead and cannot be extended
to the inclusion of new groups without recomputing the entire discriminant space. Discriminant
analyses are also heir to the 'curse of dimensionality' (the fact that sample sizes need to increase
exponentially to provide the same level of characterization information to discrimination procedures
as the number of variables increases; see Belman, 1961) and, in standard modes of operation, cannot
recognize specimens that do not fit into any of the predefined groupings. These factors explain the
tendency of many discriminant approaches to deliver false positive identifications, especially as the
number of possible groups increases (e.g. Duda et al., 2000). For these reasons the classical
discriminant approach will likely find its best use in the context of group discriminations of limited
scope and where absolute accuracy in both species richness and overall diversity is critical.

The Procrustes distance method is more generalized, arguably more conservative, and more
flexible than the classical discriminant analysis approach. Based on Wold's (1976) idea of calculating
disjoint models of shape variation for each group, this approach is eminently scalable in terms of
adding groups to the system with the (important) limitation that the same set of landmarks needs
to be able to be recognized in all species included in an analysis (a constraint that also limits
discriminant analysis). In addition, the Procrustes distance method is very easy to apply and provides
direct information about the geometric nature of between-groups differences. This is not the case
for discriminant analysis, where the geometry of the discriminant space is distorted to achieve
maximal distinction with regard to within-groups and between-groups variation. 

As pointed out in Wold's (1976) original discussion of the disjoint model concept, the Procrustes
distance method can be set up to impose limits automatically on the range of shape variation
allowable under each group-specific model, assessed, of course, via reference to statistical samples
of the variation characteristic of each group. Such limits can be used as a guide for the interpretation
of an overall Procrustes distance or on a landmark-by-landmark basis. Use of this empirically
determined 'tolerance envelope' approach would allow the Procrustes distance method to recognize
the presence of specimens that do not adequately conform to any group model (e.g. aberrant

8205_book.fm  Page 181  Tuesday, June 12, 2007  2:25 PM



182 Automated Taxon Identification in Systematics

specimens, members of new species). In terms of the purposes of systematic investigations, this is
a crucial advantage. 

As with the CVA approach, the 'curse of dimensionality' would operate on Procrustes distance
methods as a result of the expected exponential increase in sample sizes needed to specify the
disjoint models required to characterize large numbers of groups, but this would be mitigated
somewhat as a result of there being progressively fewer common measurements that could be
collected in order to characterize morphologically dissimilar groups – especially if strict topological
correspondence were desired. Of course, this latter tendency would place a severe restriction on the
taxonomic scope of problems that can be considered using morphometric approaches. 

Neural nets (at least those based on PSOM strategies) represent a radically different and fully
automated approach to group identification that is similar in many ways to the Procrustes distance
method. Like Procrustes distance, PSOM-based neural nets such as DAISY base their character-
ization metrics on the matchings of within-groups features without trying to achieve any optimi-
zation of the between-groups space. As the PSOM within-groups disjoint models become more
distinct they cause other models within the space to 'drift away', but no attempt is made to enforce
any directional optimization of this drift globally (as is the case with discriminant analysis). These
features account for the scalability of PSOM-neural nets and Procrustes distance approaches. Unlike
both morphometric methods, though, PSOM-based neural nets are able to process generalized
morphological data – indeed, digital data of any type. This is a very substantial advantage overall
because it frees the net to compare morphologies of any type with one another, not just those on
whose surfaces the same subset of landmarks can be located.

For most interspecific studies this latter feature works to the net's – and the systematist's –
advantage. DAISY's performance in the two-group analysis, while less precise than those of the
morphometric methods under the same sample size constraints, was well within the range of
acceptability for routine assessments of both richness and diversity. Given the speed with which
DAISY was able to complete its analyses and its fully automated nature, PSOM neural nets have
clear and practical advantages over both qualitative and morphometric approaches for most routine
group-identification needs. 

DAISY performed as well as could be expected of human experts in terms of making fine
distinctions between all three cynipid groups, though less well than the morphometric methods.
This was undoubtedly due to the fact that the groups being characterized embodied both superspe-
cific and subspecific levels of morphological distinction. Such data-sets will always include more
conflicts among the features used to summarize between-groups distinctions than would be the
case if the between-groups morphological distinctions were more clearly drawn. Presentation of
only the landmark data used by the morphometric methods to recognize between-groups distinctions
improved the PSOM results to the level of those delivered by the morphometric methods. However,
adopting this strategy as a way of improving the performance of neural-net applications in system-
atics forces the latter down the self-limiting pathways trod by the morphometric approaches.

Certainly there is scope for adding image-processing capabilities to group-identification
systems in order to better focus their attention on aspects of the morphology already known to
be important for group identification (see Steinhag et al., this volume, for an advanced example
of the morphometric approach). Such system designs can and will be developed for specialized
needs where optimal accuracy is required (e.g. medical and forensic applications) and where the
characters being assessed lend themselves to study using simple image-segmentation algorithms
(e.g. insect wing venation patterns). Nevertheless, we very much doubt such approaches will be
able to serve as generalized platforms for the routine recognition of thousands of species, few of
which will have any characteristics in common. For these situations, a more general-purpose
solution is needed. 

The DAISY results described earlier suggest that PSOM-like, n-tuple neural nets can provide
the platform needed for construction of generalized group-recognition engines, provided sample
sizes are large enough to permit robust, non-linear models of within-groups morphological variation
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to be developed. Indeed, DAISY's group recognition results for the simulated large-size data-set
were the best of any method applied to these data. This result is all the more remarkable when it
is realized that DAISY required no guidance regarding which aspects of the morphology were
important for drawing group-level distinctions.

PROSPECTUS

Properly designed, flexible and robust automated identification systems organized around distributed
computing architectures and referenced to authoritatively identified collections of training set data
(e.g. images, gene sequences) can provide all systematists with the analytic tools necessary to
handle routine identifications of common taxa. The systems available today, such as DAISY, SPIDA,
ABIS and others, represent excellent starting points that can be used to test concepts and build
even better systems. This study points up some exciting new directions that can be explored to
help resolve long-standing issues with automated taxon recognition systems, especially through
development of a dialogue between neural net and morphometric data-analysis strategies. 

Ironically, the preprocessing of image data-sets based on generalized input (e.g. pixels) for the
purpose of reducing within-groups variation is a classic neural-net problem and can be introduced
without sacrificing the automated nature of the net's core function or its generalizability. The
generalized nature of the neural net's input data makes the space within which its discriminations
are made inherently high dimensional (but whose dimensionality, once optimized, can effectively
remain static irrespective of the number of groups or distinctiveness of the morphologies analysed).
Nevertheless, when data sets that have high dimensionality are submitted to a neural net, most of
the net's resources go into characterizing parts of the space that are irrelevant to the central problem
of intergroup discrimination. If subsets of the generalized information can be identified by prepro-
cessing (see Bookstein, this volume, for a proposed technique whereby this could be accomplished),
the net can focus on those aspects of the variation pertinent to the discrimination problem. However,
even in the absence of advanced processing features such as this, the present generation of gener-
alized neural net-based systems are eminently practical for making richness assessments of biota
containing both obviously and subtly distinct taxa.

Despite decades of research into the general issue of automated species identification, and
the existence of a significant literature on this topic, most systematists continue to believe that
construction of a machine that can identify taxa quickly, consistently, on demand, in large
quantities and with higher accuracy than human experts remains a science-fiction fantasy. We
respectfully disagree. There is already much solid evidence that, for particular species groups,
such systems not only can be constructed, but have been constructed. These systems do not rely
on problematic exotica for their observations (e.g. DNA sequences), but rather the common
observation of morphology that systematists have been using to make taxonomic identifications
for millennia. This remarkable research has been done with scant publicity and little direct funding
from the major governmental and private supporters of biological research even though most
organism-based research projects are absolutely dependent on access to high-quality, consistent
taxon identifications. 

The challenge to the systematics community no longer lies in the need to turn the science-
fiction fantasy into reality (e.g. Janzen, 2004). Rather, it lies in (1) encouraging (and funding) the
further development and testing of systems that already exist and techniques that have been proven
to work, (2) populating available systems with sufficient numbers of groups (as well as a sufficient
number of examples of each group, even in the case of rare species) to make them useful, (3)
encouraging new systematists to participate in the interdisciplinary teams that will be required to
extend this research programme and (4) embedding current and future taxon identification systems
in an electronic infrastructure that will deliver their benefits to those who need them most: practicing
taxonomists and parataxonomists, especially those working in the third world where biodiversity
assessment problems are most acute.

8205_book.fm  Page 183  Tuesday, June 12, 2007  2:25 PM



184 Automated Taxon Identification in Systematics

But even more than this, there is a need to change the mindset of the systematics community,
many of whose members currently see research into such systems as an idiosyncratic diversion from
mainstream systematics or as a threat to the employment prospects of future taxonomists. These are
not credible issues. Systematics has suffered, and continues to suffer, from an image of being out
of step with a postmodern world that expects such systems to be developed, as they have in many
other fields. The ability of systematics and taxonomy to confront and successfully contribute to the
resolution of many of the major biological and ecological questions of the twenty-first century would
not only benefit from the existence of such systems, but also requires that they exist. The alternative
of simply training more systematists to provide the required number of rapid, high-quality and
consistent taxonomic identifications is not a realistic option either in principle or in practice. 
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NOTES

1. See Klingenberg and Montiero (2005) for a CVA variant that circumvents this problem
to some extent; experiments with partial least squares comparisons of CVA scores to
shape data suggest this approach may also be used to obtain heuristic linear models of
the CVA space.

2. Common principle component analysis (cPCA) (see Flury, 1987, 1988) is a multigroup
variant of classical PCA that seeks to estimate the major axes of variation that multiple
groups have in common with one another, but is not an approach to the group charac-
terization and/or specimen-identification problems per se.

3. If neural nets are trained using multimodal methods – for example, simulated annealing
or genetic algorithm – there is a far better chance of finding a global minimum.

4. An alternative, and possibly more conservative, formulation of this test would be to
construct 2σ tolerance envelopes for each landmark.

5. A separate implementation of the DAISY algorithm designed to accept numeric (rather
than image) input was also run and yielded virtually identical results.
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INTRODUCTION

 

Progress in the ecological sciences is limited by the lack of high-resolution sensing of either the
abiotic or the biotic biosphere. While remote sensing from satellites or aircraft provides valuable
information about gross spatial distribution by organism type (e.g. broadleaf vs. needle-leaf trees),
high-resolution measurement of organism population sizes and spatiotemporal distribution is vir-
tually impossible to acquire. Existing methods for obtaining population counts involve the manual
collection and identification of specimens by human experts, which is too costly to provide ongoing
high-resolution data. Among the many technologies being developed to address this problem, pattern
recognition from image data is one of the most promising.

This chapter presents the results to date in an ongoing project by a multidisciplinary team of
computer scientists, entomologists and mechanical engineers to develop high-throughput method-
ologies for the identification and classification of insects. Mechanical devices for automatically
photographing insect specimens have been developed along with general-purpose pattern-recogni-
tion algorithms for classifying these specimens to genus or species levels. These methods and
devices are applied to two important scientific, environmental and agricultural problems: (1) water
quality monitoring in streams (by recognizing and counting stonefly larvae) and (2) measurement
and characterization of soil biodiversity (by recognizing and counting soil mesofauna).

A fundamental scientific challenge for computer science research is to develop general-purpose
pattern-recognition methods that can be applied to many different classification problems without
requiring manual redesign for each new task. Some existing pattern-recognition methods in sys-
tematics require carefully designed feature extraction and/or classification algorithms for each new
application (Roth et al., 1999; Steinhage et al., 2001; Jalba et al., 2005). Consequently, each new
application requires substantial time and expertise to construct. Our work addresses this challenge
by developing a robust pattern-recognition system that can be applied without modification to
various situations.

A second fundamental challenge is to develop pattern-recognition methods that can handle highly
articulated three-dimensional objects. Many existing pattern-recognition methods are largely limited
to either objects or object parts that are roughly two dimensional (e.g. insect wings; see Roth et al.,
1999; Steinhage et al., 2001) or to specific views of semirigid three-dimensional object parts (e.g.
human faces, spider genitalia, etc.; see Turk and Pentland, 1991). The insects studied in this project
are three-dimensional objects with many articulated parts (legs, antennae, abdomen, tails, etc.) that
cannot be reliably placed into consistent poses. To address this challenge, we are applying recently
developed computer vision techniques that detect distinctive image regions and represent them in
ways that capture important invariants that are then combined to classify the specimens.

 

PROJECT OVERVIEW

 

While the environmental monitoring tasks of identifying stonefly larvae and counting soil meso-
fauna populations have quite different characteristics, our goal is to develop a robust pattern-
recognition system that can adapt to new identification tasks simply by relearning each new domain
from a set of training data. Here, we present an overview of the two tasks and our approach to
classification. Note that this overview discusses both completed and in-progress work.

Figure 11.1 illustrates the entire classification system from imaging of specimens to taxonomic
identification. The stonefly larvae and soil mesofauna are prepared and mechanically manipulated
for imaging using different methods and mechanical hardware. Likewise, the software control of
the mechanical apparatus is, by necessity, performed by different modules within the integrated
imaging software. Images captured by the digital camera are first segmented to identify the image
regions belonging to specimens and to separate the specimens from the background. Each fore-
ground region in the segmented images (ideally corresponding to individual specimens) is then
categorized by means of a coarse classification that groups specimens using simple-to-compute
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object properties (e.g. eccentricity, color histograms, compactness). The segmented images and the
specimen's coarse grouping are then employed for fine classification, where the goal is to identify
each specimen to the species level, though in some cases classification to genus or even just to
family is beneficial. As this project is still a work in progress, system components that are under
development have dashed outlines.

The remainder of this section discusses the two application problems: recognizing stonefly
larvae and classifying soil mesofauna. For each application, we describe the motivation for choosing
the taxonomic identification task and the methods for manipulating specimens and capturing images.

 

RECOGNIZING STONEFLY LARVAE

 

Stream water quality measurement could be revolutionized if an economically practical method
were available for monitoring aquatic insect populations. Since species differ in their water quality
requirements, population counts of stonefly (

 

Plecoptera

 

) larvae and other aquatic insects inhabiting
stream substrates are known to be a sensitive and robust indicator of stream health and water quality
(Johnson et al., 1993; Resh and Jackson, 1993). Consequently, changes in water quality can be
tracked by monitoring changes in aquatic insect community composition. Because aquatic insects
integrate stream water quality over time, they provide a more reliable measure of water quality
than single-time-point chemical measurements. 

Aquatic insects are especially useful as biomonitors because (1) they are found in nearly all
running-water habitats, (2) their large species diversity offers a wide range of responses to water
quality change, (3) the taxonomy of most groups is well known and identification keys are available,
(4) responses of many species to different types of pollution have been established and (5) data

 

FIGURE 11.1

 

Diagram of insect classification system. Components with dashed lines are still under development.
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analysis methods for aquatic insect communities are available (Resh et al., 1996). Because of these
advantages, biomonitoring using aquatic insects is routinely employed by federal, state, local, tribal
and private resource managers to track changes in river and stream health and to establish baseline
criteria for water quality standards. Collection of aquatic insect samples for biomonitoring is
inexpensive and requires relatively little technical training. However, the sorting and identification
of insect specimens can be extremely time consuming and requires substantial technical expertise.
As a result, aquatic insect identification is a major technical bottleneck for large-scale implemen-
tation of biomonitoring.

Larval stoneflies are especially important for biomonitoring because they are sensitive to
reductions in water quality caused by thermal pollution, eutrophication, sedimentation and chemical
pollution. On a scale of organic pollution tolerance from 0 to 10, with 10 being the most tolerant,
most stonefly taxa have a value of 0, 1 or 2 (Hilsenhoff, 1988). Because of their low tolerance to
pollution, change in stonefly abundance or taxonomic composition is often the first indication of
water quality degradation. Most biomonitoring programs identify stoneflies to the taxonomic
resolution of family, although when expertise is available, genus-level (and occasionally species-
level) identification is possible. Unfortunately, because of constraints on time, budgets and avail-
ability of expertise, some biomonitoring programs fail to resolve stoneflies (as well as other taxa)
below the level of order. This results in a considerable loss of information and, potentially, in the
failure to detect changes in water quality.

Although automated identification of all types of aquatic insects is a long-term goal of this
research agenda, stoneflies are an ideal model group for the development of these methods for
several reasons. First, they encompass a wide range of identification challenges, from very easy
(highly patterned, distinctive species) to very difficult (species complexes of nearly indistinguishable
taxa). Second, ontological changes in body size, patterning and allometry present an identification
challenge that must be overcome for any automated technique to be viable. Third, local and regional
variability within species provides even further challenges for training identification algorithms.
Finally, automated identification of stoneflies will be immediately useful to biomonitoring programs
even before the technique is available for other aquatic insect orders.

 

M

 

ECHANICAL

 

 M

 

ANIPULATION

 

 

 

AND

 

 I

 

MAGING

 

A fundamental problem in pattern recognition is to exploit variability between categories (e.g. taxa)
while eliminating variability within categories. One important source of variability that can be
eliminated is variation during image capture. To achieve consistent, repeatable image capture, we
have designed and constructed a software-controlled mechanical stonefly larval transport and
imaging apparatus that positions specimens under a microscope, rotates them (to obtain views from
various angles) and photographs them with a digital camera. Using this apparatus, imaging rates
of a few tens of specimens per hour can be achieved. A minimum of eight images (from different
viewing angles) is taken of each specimen. The imaging apparatus has a series of mirrors so that
each image acquires two simultaneous views of a specimen from approximately 90

 

°

 

 apart. Light
diffusers reduce glare and eliminate hard shadows. In summary, the apparatus can quickly acquire
several images of a specimen from various angles with consistent imaging conditions across
specimens and species. Figure 11.2 shows the imaging apparatus, including the mirror setup used
for acquiring two simultaneous images of each specimen. Figure 11.3 shows example images
obtained using the imaging assembly.

 

SOIL MESOFAUNA

 

Agricultural and forest management is hampered by a lack of cost-effective methods for measuring
insect populations and insect biodiversity. Such measurements can help society understand the
impact of various forest and agricultural management practices on ecosystem health. Agricultural
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FIGURE 11.2

 

Transportation and imaging apparatus for stonefly larvae. A. Diagram of mirror system for
obtaining two simultaneous views of a specimen (from approximately 90

 

°

 

 apart) in a single image. B. Image
of prototype mirror and transportation apparatus. C. Image of entire stonefly transportation and imaging setup
(with microscope and attached digital camera, light boxes and computer controlled pumps for transporting
and rotating the specimen.
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soils have been reduced in organic content worldwide, leading to a large portion of the carbon
being lost to the atmosphere as CO

 

2

 

 (Adl, 2003; van der Putten, 2004; Wall, 2004). Numerous
attempts to reverse this process have been tried in different cropping systems (Coleman and Hendrix,
2000). Tests for organic content in the soil are destructive and do not reveal anything about the
biological diversity present. Population counts of soil mesofauna are recognized as one of the most
sensitive, cheapest and least destructive assays of soil biodiversity and nutrient cycling functions
(Wardle, 2002).

Biodiversity can be measured in many ways – in particular by assessing the population size,
variety and geographical distribution of key species. These species range in size from micro-
organisms (bacteria and fungi) to megafauna (mammals and birds). For practical and theoretical
reasons, arthropods (insects and their allies) are generally regarded as the best potential biodiversity
indicators: their high species richness allows for fine taxonomic resolution, their ease of capture
results in low-cost assays and their widespread distribution provides good generalizability and
applicability (Szaro and Johnston, 1996; Brown, 1997; McGeoch, 1998; Niemelä et al., 2002).
Historically, the practical limitations facing arthropod soil ecologists have been high densities
(100–500,000/m

 

2

 

) and high species diversity (a dozen in a 3-inch diameter soil core to hundreds
in a metre squared). As a practical compromise, sample volume is always drastically reduced and
the decreased number of replicate samples is often insufficient with respect to the environmental
heterogeneity inherent in soil samples.

Many of the most significant characteristics of soil mesofaunal samples are changes that take
place in repeated subsequent sampling under changing ecological conditions. The ability to scan
over enough samples (or large enough samples) and to detect changes in the species present or
their relative abundances are challenges that perhaps only automated identification systems are
uniquely capable of solving. Coarse identification (to the family-level resolution) is often sufficient
to assign ecological function and is attainable with a modest image data-base. Species-level

 

FIGURE 11.3

 

Example images of stonefly specimens taken with our imaging apparatus. A: 

 

Calinueria
californica

 

; B: 

 

Doroneuria baumanni

 

; C: 

 

Hesperoperla pacifica

 

; D: 

 

Yoraperla

 

 sp.

A.

B.

C.

D.
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identification within a functional group is not necessarily as important as being able to distinguish
the presence of multiple species; that is, correctly identifying five species of entomobryid springtails,
which necessitates an immense archive of pictures (an ultimate goal), is not as significant as
recognizing that there are five different 'morphospecies' (a practical goal).
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Soil mesofauna specimens are routinely processed by Berlese funnel extraction. Berlese extraction
involves slow drying of a soil sample, which causes the soil arthropods to crawl out of the soil and
into a collecting vessel. The specimens are then separated from the associated debris by addition
of an organic liquid followed by agitation, settling and decanting (Moldenke, 1994). Decanted
samples are then placed in petri plates and diluted sufficiently such that the probability of one
specimen occluding another is low.

The mechanical manipulation of the soil mesofauna specimens is still under development (as
indicated in Figure 11.1); however, our current design is as follows. The petri plate containing soil
mesofauna specimens will be placed on a computer-controlled, motorized 

 

x–y

 

 stage that allows the
computer to scan the plate systematically to find each specimen. The specimens are so small
(ranging from 50 to 2500 

 

μ

 

) that only a portion of each is in focus at any one time. This problem
will be addressed by a montage process in which the focal plane of the microscope scans vertically
through the field of view (via computer-control focus column) while a series of 10–20 images are
taken. The images will then be combined to produce a synthetic image in which all parts of the
specimens are simultaneously in focus. An additional benefit of this process is that it can produce
an approximate three-dimensional map of the height of each specimen, which may be useful for
reconstructing the specimen's three-dimensional shape. After a specimen has been photographed,
it can be removed mechanically from the petri plate and placed in an appropriate receptacle to
ensure that no specimen is counted twice and to provide a means of manual performance auditing.

Many of the soil arthropods are partially transparent or translucent. While specimen translucency
may be an important cue for identification, it poses difficulties for automatically separating the
specimens from the image background. Image matting methods (Chuang et al., 2001; Ruzon and
Tomasi, 2001; Wang and Cohen, 2005; Levin et al., 2006) can be applied to determine the amount
of transparency (on a per-pixel basis) of a specimen if it is photographed with different background
color patterns (Smith and Blinn, 1996). Hence, an LCD display panel will be placed between the
petri plate and the 

 

x–y

 

 stage to provide automatic control over the background color pattern.

 

CLASSIFICATION FRAMEWORK

 

Having motivated the classifications tasks and discussed the image acquisition methodology, we
now address the problem of automatically identifying the family, genus and species of each
specimen. This proceeds in three steps: segmentation, coarse classification and fine classification.

 

S

 

EGMENTATION

 

The first step in classifying a specimen is to segment the image to separate a specimen from the
background and, possibly, from other specimens in the frame. While segmentation is not required
for identification, it does simplify many aspects of both learning and classifying objects. Without
segmentation, the classification algorithm may confuse irrelevant background features (such as
bubbles, dirt, etc.) with desired specimen features.

Automatic segmentation of a general class of images is a very difficult problem that remains
unsolved. However, one advantage of the imaging mechanisms described previously is that we can
control the background, which greatly simplifies segmentation. Part of the image capture protocol
for stoneflies is to acquire a background image (without a specimen) prior to positioning each new
specimen under the microscope. This background image allows for a simple background subtraction
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process to provide a majority of the segmentation. For soil mesofauna, known background images
are provided by the LCD display. In both cases, a Bayesian matting process (Chuang et al., 2001)
can be applied to improve segmentation and provide partial transparency for pixels near the
specimen's boundary or for specimens that are translucent (as are some soil mesofauna species).
Our current automatic segmentation algorithm performs most, but not all, of the work of segmen-
tation. It is often still necessary to post-process the images manually to further refine the segmen-
tation (e.g. remove bubbles).

 

C

 

OARSE

 

 C

 

LASSIFICATION

 

Our work to date has focused primarily on stoneflies. Since they share the same body plan and
many have a similar general shape, there has been little need for performing coarse classification
of stonefly larvae beyond manually identifying them as 

 

Plecoptera

 

 during specimen collection.
However, we anticipate that the identification of soil mesofauna will greatly benefit from a coarse
classification step that automatically groups the specimens with similar body plans, sizes, shapes
and colors. Our plan is to extract, for each specimen, a set of shape cues such as eccentricity,
compactness and Fourier shape coefficients. We will also examine more detailed shape models
that capture local curvatures of the specimen's silhouette, which may allow us to count protu-
berances such as legs, antennae, tails and so on (Wu and Dietterich, 2004). Additionally, a
specimen's color histogram information can also provide an indicator for separating specimens
into groups. Using the shape and color information, each specimen will be classified into a
general morphological group, which will then provide the basis for fine classification within each
such group. 

 

F

 

INE

 

 C

 

LASSIFICATION

 

Identification to finer taxonomic levels will utilize both two-dimensional image information and
three-dimensional reconstructions of the specimens. Two-dimensional methods operate directly on
one or more images of the specimen, typically taken from preferred views. Our two-dimensional
approach is to extract various interest regions and construct invariant descriptors for each region.
The descriptors are then clustered and a training algorithm learns feature-cluster associations.
Details of two-dimensional classification are provided in Classification Methods (below)

 

.

 

Three-dimensional methods apply various techniques to construct a three-dimensional model
of the specimen from two-dimensional images. One technique is to fit a parameterized three-
dimensional model so that, when projected onto the two-dimensional image plane, it produces
an image that matches the image of the specimen. Another technique is to combine multiple
two-dimensional images to construct a three-dimensional model of the specimen, which is then
matched to three-dimensional models. Our current approach is to create a three-dimensional
depth map of the specimens from multiple images with different focal planes, as mentioned
previously in relation to creating images of the soil mesofauna specimens with all their body
parts in focus. We believe that the resulting depth map will then allow us to extract three-
dimensional features that can be classified in a manner similar to the two-dimensional features
as discussed later.

 

RECENT METHODS FOR OBJECT RECOGNITION

 

Recent work in computer vision has led to the development of a new family of methods for object
recognition. In this project, we are refining and extending these techniques so that they can be
applied to recognize insects and soil arthropods. Hence, before describing our specific methods,
we first review this family of modern object recognition methods. These methods are based on the
following general approach.
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Many recent object-recognition methods classify objects by identifying and describing a collection
of small regions or 'patches' in an image. These patch-based approaches work even when objects
are partially occluded or when they are photographed in front of complex background settings.
The first step in object recognition is to apply region detectors to identify and extract a set of
'interesting regions' from the image. A 

 

region detector

 

 identifies a location (i.e. a pixel or region),
a scale (i.e. a circle of specified radius or an ellipse with specified major and minor axes) and an
orientation for each region. A good region detector should be reliable and informative. A detector
is reliable if it is robust to changes in viewpoint, scale, illumination and noise. That is, given two
images of the same object taken with different viewpoints, illumination and noise levels, the region
detector should still detect the same regions. A detector is informative if the detected regions are
useful for discriminating among the different object classes. Some popular region detectors include
the Harris (Harris and Stephens, 1988), Harris-affine (Mikolajczyk and Schmid, 2004), maximal
difference-of-Gaussian (DOG) (see Lowe, 1999), maximally stable extremal regions (MSER) (see
Matas et al., 2002) and entropy (or Kadir) (Kadir and Brady, 1996

 

)

 

 detectors. Region detectors
are also known as interest operators because they find interesting (i.e. locally unique) points or
regions within the image.
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After detection, each interest region is represented by a 

 

descriptor

 

 (i.e. a real-valued vector of
features) that succinctly and discriminatively characterizes the local image properties. By construct-
ing each region's descriptor relative to the local coordinate frame determined by the interest operator
(i.e. the position, orientation and scale), the descriptors are translation-, rotation- and scale invariant.
Additionally, a descriptor should be insensitive to changes in illumination and, especially for object
class recognition (as required in this project), non-rigid transformations. Recent descriptors include
spin images (Lazebnik et al., 2003), shape context (Belongie et al., 2002), SIFT (Lowe, 2004) and
PCA-SIFT (Ke and Sukthankar, 2004).

In this work we employ the SIFT (scale invariant-feature transform) descriptor, which has been
shown to perform better than other local descriptors (Mikolajczyk and Schmid, 2003). The SIFT
descriptor is invariant to scale, rotation, intensity and contrast changes and, to a small degree, affine
transformations. SIFT divides the region into a set of bins. For each bin, it computes a histogram
of the intensity gradient orientation at each pixel. The result is a 128-dimensional real-valued vector.
Once each detected region has been converted to a SIFT vector, the input image is discarded, and
only the 'bag' of SIFT vectors is retained for further analysis.
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Several classifiers have been developed that can analyze the bag of descriptor vectors and predict
the class of the object. The simplest kind of classifier represents each object as a collection of
'parts'.

 

1

 

 Each descriptor is classified according to which part it represents. If a sufficient number
of matching parts is detected, the object is assigned to the corresponding class. More sophisticated
classifiers (see later discussion) compute a weighted sum of the detected parts. The most complex
methods take into consideration the spatial relationships among the detected parts (Agarwal and
Roth, 2002; Fergus et al., 2003), although subsequent work (Opelt et al., 2004; Dorkó and Schmid,
2005) has obtained better results without including this information.

Representing an object by local salient regions has many advantages that have made region-
based recognition very popular in recent years. Region-based representations cope better with
images that have cluttered backgrounds and objects that are partially occluded. This is because
classifiers can be trained to make a decision even if not all parts are detected. In cases where images
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need to be compared to one another, interest operators reduce the matching task from comparing
hundreds of thousands (or millions) of pixels to comparing just a few hundred highly salient regions.
Another major benefit of using local regions for object class recognition is that they provide a
degree of object pose invariance. In particular, affine-invariant detectors and descriptors allow for
small out-of-plane object rotations (up to approximately 30

 

°

 

).

 

CLASSIFICATION METHODS

 

As noted before, we are pursuing two strategies for insect classification: (1) recognition using
features extracted from the two-dimensional image and (2) recognition based on three-dimensional
reconstruction of the specimen from multiple images. As our work on three-dimensional recon-
struction is still preliminary; this chapter reports only on the methods and results to date of our
two-dimensional approach.

Our two-dimensional approach follows the general region-based methodology introduced pre-
viously. This section presents the details of the approach. To date, we have focused only on
discriminating between pairs of taxa (i.e. binary classifiers). Hence, we refer to one as the positive
class and the other as the negative class. If we attain high accuracy on pair-wise discrimination,
there are many machine learning methods for extending this to discriminate among tens or hundreds
of taxa (Allwein et al., 2000). 

 

R

 

EGION

 

 D

 

ETECTORS

 

We have experimented with many of the region detectors discussed previously, and we have chosen
two: Harris-affine (Mikolajczyk and Schmid, 2003) and Kadir (Kadir and Brady, 1996). Our system
constrains these detectors to consider only points that lie within the specimen so that spurious
detections in the background are not a problem. This is possible because the specimens have been
segmented from the background. 

 

R

 

EGION

 

 D

 

ESCRIPTORS

 

For every interest region detected, we construct a 128-element SIFT vector that describes each
region's local neighborhood. The SIFT descriptor computes a 16 

 

×

 

 16 neighborhood centred on the
detected region, normalized to scale, rotation and (for Harris-affine) the affine parameters produced
by the detector. This neighborhood is partitioned into 16 subregions of 4 

 

×

 

 4 pixels each. For each
pixel within a subregion, SIFT adds the pixel's gradient vector to a histogram of gradient directions
by quantizing each orientation to one of eight directions and weighting the contribution of each
vector by its magnitude. Each gradient direction is further weighted by a Gaussian of scale 

 

s

 

 = 

 

n

 

/2,
where 

 

n

 

 is the neighborhood size, and the values are distributed to neighboring bins using trilinear
interpolation to reduce boundary effects that occur when pixels move across bin boundaries.

The final descriptor is a 128-dimensional real vector representing the 4 

 

×

 

 4 grid of eight-bin
orientation histograms. Figure 11.4 shows a graphical representation of the SIFT descriptors created
for three regions detected in two stonefly images. The SIFT vectors in Figures 11.4C and 11.4D
are very similar, and these points are in corresponding positions on the two specimens. In contrast,
the SIFT vector shown in Figure 11.4E is quite distinct, and it does not correspond to the other two
points. This shows the ability of SIFT to capture distinctive characteristics of the detected regions.

The SIFT descriptor is invariant to scale, rotation, contrast and intensity changes and small
out-of-plane rotations. Scale invariance is achieved by describing the local neighborhood around
each feature point at that feature's characteristic scale (as computed by the Harris or Kadir
detectors). To achieve rotation invariance, the descriptor bins and gradient directions are defined
relative to the dominant gradient orientation in the neighborhood. Invariance to intensity and
contrast changes results from normalizing the 128 vector to unit magnitude. The 4 

 

×

 

 4 bin size
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FIGURE 11.4

 

Example SIFT descriptors for three points in two images. The SIFT histograms for (C) the
detected region in image (A), the matching region in image (B) and (E) a random region in image (B).

A

B

C.

D.

E.
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(relative to the detected feature's characteristic scale) provides some invariance to minor affine and
perspective transformations as well as some non-rigid distortion (such as typically occurs from
interclass variability).

 

DEFINING OBJECT PARTS BY CLUSTERING 
DESCRIPTOR VECTORS

 

The first two steps of detecting interesting regions and representing them by SIFT descriptor vectors
are performed both during training of the classifier and during classification of new specimens.
The third step – defining object parts – is only performed during training. 

Parts are defined by performing a cluster analysis on the SIFT descriptor vectors extracted from
the input images of the positive specimens. As do Dorkó and Schmid (2005), we cluster the vectors
by fitting a Gaussian mixture model (GMM). A GMM assumes that each SIFT vector is generated
from one of 

 

K 

 

clusters according to a probability 

 

P

 

(

 

C

 

i

 

), where 

 

i

 

 = 1, …, 

 

K

 

 denotes the cluster
number. The values of the 128-element descriptor vectors are assumed to have a Gaussian distri-
bution within each cluster with mean vector μμμμ

 

i

 

 and diagonal covariance matrix ΣΣΣΣ

 

i

 

. According to
this model, the probability assigned to any particular SIFT vector 

 

x

 

 can be computed as

(11.1)

where 

 

p(x⏐Ci) = gauss(x⏐μμμμi, ΣΣΣΣi) is the multivariate Gaussian probability density function.
The adjustable parameters in the model are μμμμi, ΣΣΣΣi and P(Ci) for i = 1, …, K. These parameters

are fit by maximum likelihood (i.e. to maximize p(x) on the training data vectors x) via the well-
known expectation-maximization (EM) algorithm (McLachlan and Krishnan, 1997). The EM
algorithm is initialized using the very efficient K-means algorithm, and it typically converges in
20–100 iterations.

To apply the GMM, we must choose a value for K. If K is too small, then the clusters found
by EM will be very broad (with large variances in ΣΣΣΣi). This will cause them to fail to be distinctive
or informative. On the other hand, if K is too large, then the clusters will over-fit the training data
and not generalize well. Values within the range 50 ≤ K ≤ 100 give the best results.

CONVERTING SETS OF SIFT VECTORS INTO STANDARD FEATURE VECTORS

Once the 'parts' have been defined, we then convert each set of SIFT vectors (extracted from one
training image) into a single feature vector of length K as follows:

1. Initialize a histogram vector: hist[i] = 0 for 1 ≤ i ≤ K.
2. For each SIFT descriptor vector x extracted from the image:

a. Let i* = arg maxi P(Ci⏐x) = arg maxi p(x⏐Ci) P(Ci)
b. hist[i*] = hist[i*] + 1.

3. Normalize the histogram to unit magnitude.

Step 2a computes the 'part' cluster i* that is most likely to have generated the observed SIFT
vector x according to the GMM. Consequently, the ith entry in the histogram vector is proportional
to the number of SIFT vectors that 'belong' to cluster i.

This conversion gives us training data in a format suitable for analysis by standard supervised
learning algorithms. Let us denote the normalized histogram for the j th input image by hj and denote

p x p x C P Ci

i

K

i( ) ( ) ( )=
=

∑
1
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the corresponding class label (taxon) by yj. Our training data thus consist of pairs (hj, yj) for j = 1,
…, N, where N is the total number of training images.

TRAINING THE CLASSIFIER

After the SIFT vector sets have been converted to standard feature vectors, they are used to train
a classifier. In this chapter, we report results of a 'bagged' decision-tree classifier. A decision-tree
classifier has the form of a nested set of if–then–else statements, where each statement has the form 

If h[i] > θn 

then statement

else statement.

Statement can either be a nested if–then–else or else a predicted class label. A new specimen
is assigned a predicted class by executing this tree of if–then–else statements until a predicted class
label is reached.

Decision tree classifiers are learned top-down by first selecting a feature i and a threshold θi for
the outermost if–then–else and then splitting the training data according to the results of this test.
If all of the examples that reach a statement belong to a single class, then the recursion halts and
that class is predicted. Similarly, if a new if–then–else would result in sending two or fewer examples
down either the then or the else branches, then the recursion halts, and the class belonging to a
majority of the data points is assigned at that statement. We have employed the J48 decision tree
learning algorithm, which is part of the WEKA machine learning system (Witten and Frank, 2005).

A single decision tree is typically not a very good classifier. However, very high performance
can often be obtained by constructing an ensemble of decision trees through a method known as
'bagging' (Breiman, 1996). In bagging, the decision tree learning algorithm is applied to L different
training sets. Each training set is constructed by drawing N examples uniformly, with replacement,
from the original training data-set. Such a training set is known as a bootstrap replicate. Each
bootstrap replicate may contain multiple copies of some of the original training examples, and it
may be missing other components of the original examples. On average, a bootstrap replicate
contains approximately 62 per cent of the original training examples (but with enough copies so
that there are still N total examples). In the results reported next, bagging has been applied to
construct 15 decision trees. To classify a new example, the predictions of these 15 decision trees
are computed and the class (taxon) with the largest number of predictions is chosen as the overall
bagged prediction.

RESULTS AND DISCUSSION

We report the results of three experiments on stonefly classification. In each experiment, we train
our method to discriminate between two species. The three experiments present progressively
increasing levels of difficulty: 

1. The somewhat easy task of discriminating between the very distinctive Calineuria cal-
ifornica and Yoraperla sp.

2. A moderately difficult task of discriminating between the Hesperoperla pacifica and
Doroneuria baumanni. 

3. A hard task of discriminating between the very similar Calineuria californica and
Doroneuria baumanni.
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These experiments are performed as follows: the image data-set is randomly divided into three
completely disjoint sets of equal size. To avoid any kind of influence in the test results, different
images of the same insect instance are placed in the same set. The first set is used as the 'clustering
set' to create the GMM clusters for each object class (as detailed before); the second set is used to
train the 15 decision trees that comprise the final classifier (described earlier), while the third is
used to measure the classification accuracy of the classifier. We use separate clustering and training
sets to reduce over-fitting of the classifier to the training data.

Table 11.1 presents the resulting classification accuracy rates for our three experiments (along
with 95% confidence intervals). For experiment 1 (Calineuria vs. Yoraperla), the method achieved
94 per cent accuracy; for experiment 2 (Hesperoperla vs. Doroneuria), the accuracy was 90 per
cent; and, for the very difficult experiment 3 (Calineuria vs. Doroneuria), the method attained only
73 per cent correct classifications. These results represent the best matching rates achieved thus
far in differentiating between pairs of insect species. However, because some of our design decisions
(number of clusters, choice of species for clustering, number of decision trees to combine) were
made to optimize these numbers, they are probably optimistically high. 

Because these are binary classification experiments, either species' clustering set can be used
to learn the GMM part clusters. In our experiments, the GMM clusters of both species were tried
and the one that rendered the best results is presented. Calineuria's part clusters were employed
in the first experiment, Hesperoperla's in the second experiment, and Doroneuria's in the third.
The choice of clustering set affects the accuracy, and there are two possible reasons for this: (1)
some species have more clustering examples in the data-set than others and (2) some species exhibit
more distinctive visual cues that help with recognition. In the first experiment, the data-set contains
many more images of Calineuria than of Yoroperla; this difference probably accounts for the GMM
clustering algorithm producing better Calineuria part clusters, which in turn helped increase the
classification rate. By contrast, the data-set in experiment three contains similar numbers of
Calineuria and Doroneuria images, and both clustering sets give similar results. In the second
experiment, the high classification accuracy is surprising. It is possible that the Hesperoperla
clustering set has certain visual cues that produce very distinctive GMM clusters.

Tables 11.2, 11.3 and 11.4 present the confusion matrices of experiments 1, 2 and 3, respectively.
Table 11.2 shows that all of the 16 misclassification errors involved misclassifying a Calineuria as
a Yoraperla, which is quite surprising because, normally, misclassification favors the class with the
larger number of training examples (in this case, Calineuria). Table 11.3 shows a similar pattern:
most of the errors misclassify Hesperoperla as Doroneuria. Finally, in Table 11.4, we see a more
balanced ratio of errors. The poor results in experiment 3 accord with our own informal experience:
both Calineuria and Doroneuria are from the Perlidae family and look very similar – so much so
that the non-entomologists on our team cannot generally distinguish them using only the collected
image data. While Hesperoperla is also in the Perlidae family, it is more visually distinct from
Calineuria and Doroneuria.

TABLE 11.1
Classification Results Using Decision Trees 
with Bagging

Experiment
Classification accuracy

(%)

1: Calineuria vs. Yoraperla 94.40 ± 2.66
2: Hesperoperla vs. Doroneuria 90.47 ± 3.36
3: Calineuria vs. Doroneuria 73.33 ± 6.88
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CONCLUDING REMARKS AND FUTURE WORK

This chapter describes our ongoing work on developing robust pattern recognition methods for
automatically classifying insects. Although this project focuses on identifying stonefly larvae for
stream water quality monitoring and soil mesofauna for soil biodiversity assessment, the goal is to
create general-purpose techniques that can be applied to many automated systematics tasks by
simply retraining the system for each application. In addition, we have designed and developed (or
are developing) computer-controlled mechanical systems to facilitate automated imaging of spec-
imens. Our insect classification system uses recent advances in object-class recognition based on
interest operators and bagged local-region descriptors combined with boosted decision trees.

While we are pleased with the classification accuracy achieved thus far on stonefly larvae, there
is still significant room for improvement. First and foremost, we continue to add and refine
components that, as indicated in Figure 11.1, are still under development. These components include
the control and imaging software for the soil mesofauna, fully automated segmentation by incor-
porating Bayesian matting (or a similar method), coarse classification, and the extraction and
inclusion of three-dimensional features from the depth map constructed during the focal-montage
process. In addition to these necessary components, we continue to make improvements to the
existing mechanical specimen manipulation and imaging apparatus with the ultimate goal of
mechanically delivering each identified specimen to a separate bin based on its classification.

We are also developing a new watershed-based region detector (Zhang et al., 2004) that appears
to be better suited for insect classification and we continue to explore additional region and feature
descriptors to supplement the SIFT feature vectors. Furthermore, we are experimenting with several
additional classifiers, including those that work directly on the bags of descriptor vectors instead
of converting them to standard feature vectors. We are also developing a multiclass system that

TABLE 11.2
Confusion Matrix: Calinueria vs. Yoraperla

Taxa Classified as Calineuria Classified as Yoraperla

Calineuria 171 16
Yoraperla 0 99

TABLE 11.3
Confusion Matrix: Hesperoperla vs. Doroneuria

Taxa Classified as Hesperoperla Classified as Doroneuria

Hesperoperla 171 24
Doroneuria 4 95

TABLE 11.4
Confusion Matrix: Calineuria vs. Doroneuria

Taxa Classified as Calineuria Classified as Doroneuria

Calineuria 126 66
Doroneuria 30 138
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will classify a specimen into one of many taxonomic categories rather than our current binary
classifiers that distinguish only between two species at a time.

Our current effort has focused on classifying each specimen to the species level (though in the
experiments presented here, genus-level classification implies species-level identification as well).
However, in cases where the classifier is uncertain about the species, it is often useful (both for
stream monitoring and for soil biodiversity studies) to make a coarser classification at the level of
genus or family. For example, while it is difficult to achieve high confidence in automatically
distinguishing between the very similar Calineuria californica and Doroneuria baumanni species
of stonefly larvae, high-confidence classification to the family level is much more feasible and still
very valuable for stream health assessment. Hence, we plan to explore methods for trading off the
benefit of fine classification against the risk of making an error in order to automatically choose
the best level of the taxonomic hierarchy for classifying each specimen.

We would also like to explore additional systematics applications to test the robustness of our
system in new classification domains, such as recognition of plant species. Our long-term goal is
to develop commercial products to make this emerging technology available to the environmental
monitoring and research communities.
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NOTES

1. We write 'parts' in quotes because these 'parts' do not necessarily correspond to real parts
of the object; rather, they correspond to interest regions in the object, which may or may
not correspond to meaningful physical parts of the object to be classified.
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INTRODUCTION

 

Identification of taxa, usually to species level, is one of the main activities of professional botanists.
It is still mostly performed with the help of paper-based taxonomic keys, although there are now
some computer-based identification guides (e.g. DELTA, INTKEY; see Dallwitz, 1974, 1980;
Watson et al., 1989; Partridge et al., 1993; Dallwitz et al., 1997). The validity and accuracy of such
an identification procedure relies heavily on the underlying classification, the experience of the
botanist who compiled the key and the user's interpretation and experience. Interactive, computer-
based systems are often extremely useful, because characters can usually be chosen in any order.
However, this very feature makes it difficult to compare their performance with some other methods.
As has already been demonstrated (Clark, 2004), the DELTA key generator (Dallwitz, 1974;
Dallwitz et al., 1997) can be used to generate a conventional printable key, whose performance can
then be compared to that achieved by other methods. A good account of computer-based identifi-
cation methods is provided by Pankhurst (1991). 
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Artificial neural networks (ANNs) are computer-based systems that can learn from previously
classified known examples and can perform generalized recognition – that is, identification – of
previously unseen patterns. Multilayer perceptrons (MLPs) are supervised neural networks and, as
such, can be trained to model the mapping of input data (e.g. in this study, morphological character
states of individual specimens) to known, previously defined classes.

A distinct advantage of these kinds of systems is that a human expert is only needed to define
and name the original taxa and to provide the appropriate training samples. Although they might
require some help with choice of characters and definitions of character states, non-experts can
perform actual data collection, and the generation of the identification model is relatively straight-
forward. However, the process involves the setting of a number of system parameters that are not
easy to determine 

 

a priori

 

. Here, a methodology is proposed that can enable this kind of artificial
intelligence system to be used by systematists without requiring specialized knowledge of ANNs.
Although the example shown here is botanical, the principles and methodology can be applied
equally well to zoological identification problems. 

Conceptually, an MLP (Figure 12.1) contains a number of layers, usually three: the input layer
(which serves merely to distribute the input data to the next layer), the hidden layer (which is the
first layer that performs functions on the data) and the output layer (which receives as inputs the
outputs of the hidden layer). The number of input nodes is equal to the number of characters, and
the number of output nodes is equal to the number of classes being identified (in this study, the
number of species). The number of nodes in the hidden layer depends on the complexity of the
identification model and is often (as here) determined by experiment. Training an MLP to produce
an identification system is carried out by presenting a succession of data records to the input nodes
of the network. These data records comprise the training set; each record contains character states
derived from a specimen of known taxonomic identity.

 

FIGURE 12.1

 

Multilayer perceptron architecture.
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At each node in the hidden layer, numerically coded character states from each record are
multiplied by (initially random) weights, summed and then passed through a 'squashing function'
– in this case, the sigmoid logistic function (Haykin, 1994, p. 138). The resultant numeric values
are then used as inputs to the nodes in the output layer, where similar processing occurs. The output
node with the highest final output value is regarded as the 'winner' and corresponds to a particular
target class (in this case, species). During training, the internal weights are adjusted so that the
forward pass produces a better result, using a learning method called backpropagation (Rumelhart
and McClelland, 1986). A better result is one where the target output node (the one corresponding
to the correct species class) gives a higher output and the other nodes (corresponding to other
species classes) give a lower output. 

Periodically, the ability of the network to recognize previously unseen patterns needs to be
tested using a totally independent 

 

validation 

 

data-set, which also contains data whose taxonomic
class is known. By testing the network performance with this validation set, training can be stopped
before over-training occurs. Over-training can result in the model representing the training data
very thoroughly, but having a poor ability to generalize when presented with other data. The goal
of any practical identification system is to enable recognition of data records that have not been
used in the production of the system itself. Therefore, a completely independent 

 

test 

 

data-set
containing data records to be identified is presented to the network in order to test the practical
effectiveness of the model. Information derived from this test set must not be used to optimize
network parameters. The interested reader is referred to Freeman and Skapura (1992), Haykin
(1994) and Looney (1997) for further information about ANNs. 

There is, of course, a wealth of knowledge already available in the form of published descrip-
tions that could be used as the basis for training artificial neural network keys (ANNKEYs). Earlier
studies have been carried out (Clark and Warwick, 1998; Clark, 2000, 2003) in which it was found
that suitable training data could be prepared from published descriptions in the form of virtual data
records by adding low levels of Gaussian noise to data derived from general descriptions of taxa.
For example, descriptions drawn from an existing generic monograph (Cole, 1988) of the genus

 

Lithops 

 

N.E. Brown were used to provide the original character states for infraspecific taxa, and
the MLP-ANN trained to classify these into the 35 species to which they belonged. The trained
system was tested using data derived from living plants in the author's collection. Preserved or
pressed specimens were not used because these plants are succulent xerophytes and most of the
available diagnostic characters are only apparent in living plants. Although it is likely that further
work could result in improved results using descriptions as a starting point, this chapter focuses
on the use of data derived from real specimens because earlier studies suggested better identification
systems would result (Clark, 2000, 2004). 

 

CASE STUDY 

 

The case study presented next relates to cultivated species of the genus 

 

Tilia

 

, a group of about 30
species of deciduous north temperate woody trees. In the UK, 

 

Tilia

 

 are usually referred to as lime
trees, although they are not related to the citrus tree of that name. In other countries, they are often
called lindens or basswoods. Their leaves are mostly heart shaped, with an acuminate tip. This can
provide a number of readily measurable characters such as length and width, together with various
details of hairs. Other morphological characters can be easily extracted from the inflorescence
(cluster of flowers), which is subtended by a distinctive bract, characteristic of the genus. 

This project was restricted to 19 species grown in European gardens (see Table 12.1) and
included in the taxonomy of the genus

 

 

 

reported in the 

 

European Garden Flora

 

 (Pigott, 1997). The
exception to this is that 

 

T. neglecta 

 

is now included in 

 

T. americana 

 

(Pigott, 2002). Cultivated
species were chosen for this study because both living trees and herbarium specimens (see Figure
12.2) were readily available. Furthermore, cultivated 

 

Tilia 

 

trees can present a challenge to identify
because many species hybridize.
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Although printed identification keys have already been used for the identification of cultivated

 

Tilia 

 

species (Schneider, 1912; Pigott, 1997), so far the only computer-based identification systems
are those of Rath (1996) and Clark (2000, 2004) relating to these 19 species. Rath, however, only
separated 13 species of rather different woody trees (in 12 genera) using a neural network trained
on leaf image data; the only lime tree included was 

 

T. cordata.

 

 The work presented here builds on
earlier work (Clark, 2004) and determines whether improvements in performance can be obtained
by using suggestions made by the ANN to make changes in the classification or by the addition
of minimal geographic information. 

 

MATERIALS AND METHODS 

T

 

RAINING

 

 D

 

ATA

 

-S

 

ET

 

 

 

The training data-set potentially contained data derived from three examples of each species – that
is, comprising three different data records for each of 19 cultivated species, each record containing
data derived from a different (mostly field collected) herbarium specimen, including type material
where practical. There were thus 57 potential training records, each containing data from one
specimen, although some of these were used for the creation of a validation data-set (see following
discussion). These data records were derived from specimens in the herbarium of the Royal Botanic
Gardens, Kew (K), and that of the Natural History Museum, London (BM). Each specimen provided
the states of 22 morphological characters and three geographic characters (binary coding for
continent of origin: Europe, W. and C. Asia, E. Asia and N. America). 

The selection of characters deserves some discussion. The identification system described and
developed here is intended for identification of (and derived from) mature flowering specimens
taken from the crown of the tree. Botanical specimens are usually collected from the canopy, and
the leaf morphology can vary considerably on the same tree. Leaves sprouting from the base are
called 'sprout leaves' and are usually not suitable for identification, being somewhat different in
character from the normal crown leaves. Although subjective descriptions of characters have been
widely used in classical botany, it was decided to concentrate here on measurements, since they
can be more objectively evaluated by non-specialists. Furthermore, such continuous characters
provide data that can be directly input to an ANN without further coding. Some character states
(e.g. presence or absence of staminodes) are usually constant within a 

 

Tilia

 

 species, whereas others
(e.g. leaf length) are variable. In such cases, three or four separate measurements were taken and
the mean value recorded. Much of the leaf measurement variability is caused by different ages of
leaves, so measurements from particularly immature leaves were not included.

 

TABLE 12.1
Acronyms and 

 

Tilia 

 

Species

 

Acronym Species Acronym Species

 

AME 

 

americana

 

KIU

 

kiusiana

 

AMU 

 

amurensis

 

MAN

 

mandshurica

 

CAR 

 

caroliniana

 

MAX

 

maximowicziana

 

CHI 

 

chinensis

 

MIQ

 

miqueliana

 

COR 

 

cordata

 

MON

 

mongolica

 

DAS 

 

dasystyla

 

OLI

 

oliveri

 

HEN 

 

henryana

 

PLA

 

platyphyllos

 

HET 

 

heterophylla

 

TOM

 

tomentosa

 

INS 

 

insularis

 

TUA

 

tuan

 

JAP 

 

japonica
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Although fruit characters are often of importance (C.D. Pigott, personal comm., 1999), from
a practical point of view it was decided to concentrate on flowering specimens to avoid damaging
important specimens such as nomenclatural types and because additional characters (e.g. number
of flowers per inflorescence, presence or absence of staminodes)

 

 

 

could then be used. Also, since
fruits often drop off herbarium specimens, the number of flowers in the inflorescence is a more
reliable character – essentially the same as the number of fruits in the infructescence (cluster of
fruits). A full character list is given by Clark (2000). 

 

V

 

ALIDATION

 

 D

 

ATA

 

-S

 

ET

 

 

 

AND

 

 D

 

ATA

 

 P

 

ARTITIONS

 

 

 

During training, it is necessary to test the generalization ability of the network by means of a
validation

 

 

 

data-set to enable early stopping and avoid over-training. This data-set consisted of data

 

FIGURE 12.2

 

Henry 7452

 

: Holotype of 

 

Tilia tuan

 

 Szyszylowicz (herbarium of the Royal Botanic Gardens, Kew).
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from one specimen of each species from the potential training set described before; the other two
remained in the training set itself. In order to reduce the effect of the choice of validation set
records, three different partition pairs

 

 

 

(A, B and C) of training and validation sets were produced,
where the one record of each species to be transferred to the validation set was chosen randomly.
The ANN tests described here were carried out using each partition pair. 

 

T

 

EST

 

 D

 

ATA

 

-S

 

ET

 

The test set data records were extracted from herbarium specimens of cultivated trees of known
taxonomic identity, but where that identity was not known to the ANN during training. Thus, final
testing was performed using an independent

 

 

 

dataset derived from 30 herbarium specimens of trees
cultivated at Kew, the specimens themselves being held in the cultivated folders of the Kew
Herbarium. In a few rare instances, some character states were not readily visible on the specimen
and it was necessary to collect further material from the original tree. This material was pressed,
dried and mounted before examination. The final evaluation with the test set, therefore, represents
an independent test of the effectiveness of the identification system and its ability to generalize –
a test that is only rarely performed with conventional taxonomic keys. 

These data were presented to the MLP-ANN in ASCII tabulated numeric format; each record
for each specimen consisted of a single line, starting with a short acronym representing the specimen
number (including an acronym for the species) followed by space-delimited character states, with
each record terminated by a class number corresponding to the species. Extreme values of numeric
ranges were replaced by their mean value, as when a key is generated using DELTA. A list of
sources of material is available in Tables 12.11 and 12.12, with the species names and acronyms
used there given in Table 12.1. 

 

NEURAL NETWORK

 

A simple three-layer MLP, consisting of one input layer, one hidden layer and one output layer,
was used in this investigation. The number of input nodes corresponds to the number of characters
(22, or 25 with geographic data), each input node accepting the numeric character state of one
character. The number of hidden nodes was variable; their number was determined by experiment.
Each output node corresponded to one class – in this case, one species (theoretically a taxon at
any rank) to be identified. There are no connections between nodes in the same layer, and no
recurrent (backward) connections. This network architecture is shown in Figure 12.1, although the
actual number of nodes differs from that shown in the diagram. 

The input vectors were normalized (scaled) to the range 

 

±

 

 0.9 to reduce the training time
required for inputs to the hidden nodes to reach the domain of the sigmoid activation function.
Normalization was carried out for each character independently

 

 

 

over all training records to prevent
unintended character weighting. The maximum and minimum values for each character deter-
mined during the normalization were retained for use during similar normalization of the vali-
dation and test data-sets to ensure comparable scaling. The initial network weights were set to
small random values in the range of 

 

±

 

0.5 (see Freeman and Skapura, 1992), the exact pseudo-
random sequence of values used being dependent on an arbitrarily chosen random seed. The
presentation order of input vectors (training data records) was randomized between epochs and
a bias input of 1.0 was used. [Note: An epoch is one complete run through the training data-set.]
The interested reader is referred to Clark (2003, 2004) for more details on neural network
parameters and the training.

The error value used in this study to evaluate training, validation and testing was the squared
error percentage (E; see Prechelt, 1994), with corrections (Clark, 2000, 2003), given in Equation 12.1:
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(12.1)

where 

 

o

 

max

 

 and 

 

o

 

min

 

 = maximum and minimum desired

 

 

 

target output values used during training
(here 0.9 and 0.1, respectively), 

 

N

 

 = number of output nodes, 

 

P

 

 = number of patterns, or examples
(records), in the data-set under consideration, 

 

o

 

pi

 

 = actual

 

 

 

output value at output node 

 

i 

 

when input
pattern 

 

p 

 

is presented, and 

 

t

 

pi

 

 = desired target output at output node 

 

i

 

, when pattern 

 

p

 

 is presented.
Training was first carried out with a constant learning rate (gain) set to 0.1 and one fixed random

number seed, changing only the number of nodes in the single hidden layer in order to determine
an optimized size of the hidden layer. Momentum, a technique often used with neural networks to
increase the speed of convergence (see Haykin, 1994, p. 149), was not used here, because an effort
was being made to simplify the use of the methodology by non-experts and thus to minimize the
number of variable parameters. The optimized number of hidden nodes was chosen by determining
the lowest mean 

 

E

 

val

 

 (error on the validation data-set) over all the partition pairs, A, B and C. After
determining a sensible number of hidden nodes in this way, that number was then fixed, and the
learning rate varied to find an optimized value. After the network parameters were set to these
experimentally determined optimized values, the tests were run again 10 times, each time using a
different random number seed. These runs were repeated, using the same set of 10 random number
seeds, for each of the training/validation partition data-set pairs (A, B and C). Thus, a collection
of parameterized networks and their results was achieved. The overall neural network results were
obtained by collating these sets of results. 

 

TESTS PERFORMED 

 

Results of the initial tests performed as part of earlier studies (Clark, 2000, 2004), using 22
morphological characters of the 19 cultivated species, are shown here in Table 12.2 (confusion
matrix) and compared with the overall results from this study in Table 12.10. From Table 12.2, it
can be seen that there are three major anomalies. 

 

T. amurensis

 

 (TAMU) is usually misidentified as

 

T. insularis

 

 (INS), 

 

T. henryana

 

 (THEN) is usually misidentified as 

 

T. mongolica

 

 (MON) and 

 

T.
heterophylla

 

 (THET) is usually misidentified as 

 

T. tomentosa

 

 (TOM). It has already been suggested
that the specimen of 

 

T. heterophylla

 

 (THET) may be wrongly named and could be a hybrid (Clark,
2004). Further investigations will be needed to resolve this matter. Regarding 

 

T. henryana

 

 and 

 

T.
mongolica,

 

 since it does not seem reasonable to consider them conspecific, we should probably
accept that this is a limitation of the choice of characters (and suggest that fruit characters might
need to be included in a future study). However, it is much more reasonable to include 

 

T. insularis

 

in a wider (i.e. amplified) concept of 

 

T. amurensis,

 

 as suggested by Pigott (2000).
The further tests performed in this study were, therefore, carried out in the light of additional

changes to the underlying classification. Clark (2004) suggested that the system would perform
even better after such reclassification. To examine this, similar tests were performed in which all
specimens and data relating to 

 

T. insularis

 

 were renamed as 

 

T. amurensis,

 

 with the number of
species classes and the number of ANN output nodes reduced accordingly. It is also suggested here
that 

 

T. japonica

 

 (Miquel) Simonkai, a very similar taxon, should also be included within an amplified
(expanded) 

 

T. amurensis

 

 concept. Thus, the new tests presented here were conducted using a
hypothetically amplified 

 

T. amurensis,

 

 including both 

 

T. insularis

 

 and 

 

T. japonica.

 

 
To evaluate the effect on performance by adding geographical data, further tests were performed

with the amplified concept of 

 

T. amurensis,

 

 but with the addition of three extra binary (Boolean)
characters referring to the continent of origin. This might seem an artificial concept when applied
to the cultivated test specimens considered here, but it provides an illustration of the effectiveness
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of the system for identification of wild specimens and cultivated specimens grown from wild-
collected seed or cuttings where the continent of origin would be known. 

PERFORMANCE ASSESSMENT 

In these ANNKEY trials, a confusion matrix was produced showing the species identifications.
This lists the percentage of identifications referred to each species by the system and is similar in
concept to the misclassification and misidentification matrices of other authors (Boddy et al., 1998,
2000). All 30 final identification attempts by the system when performing the random seed tests
against the final test data-set were collated and summed to produce the pooled species-based results
in Tables 12.5 and 12.8. 

When a test specimen was available for a species, the bottom row of the matrix shows the
confidence of correct identification (%Conf). This is identical to the confidence of correct classi-
fication index used by Morgan et al. (1998) and shows the probability that a given taxonomic
identification is correct. This is calculated by expressing the proportion of correct identifications
as a percentage of the total number of identifications (including incorrect identifications).

(12.2)

Each row of the confusion matrix refers to a species in the test set (shown as T…). Columns
represent the taxon (in this case, species) to which the test specimens were referred by the ANN.
The percentages shown refer to the proportion of the total specimens of each test (row) species
identified as belonging to the target (column) species class. Ideal correct identifications are shown
in bold. 

RESULTS 

TESTS WITH AMENDED CLASSIFICATION ONLY 

Table 12.3 shows results for different numbers of hidden nodes, ranged between 64 and 104. At
the point of training termination, the errors (Eval) produced by the network on presentation of the
validation set are as shown. A hidden-node number of 104 produced the lowest mean validation
error, so the number of hidden nodes was then fixed to that optimized number. Table 12.4 shows

TABLE 12.3
Tilia with Amended Classificationa: 
Optimization of Number of H Nodes 
Showing Eval at Point of Training Termination

Data-set

Hidden nodes

64 72 80 88 96 104

A 2.94 2.84 2.71 2.99 3.05 2.65
B 3.34 3.24 3.01 3.21 2.93 3.10
C 3.01 2.88 2.99 2.79 3.12 2.88
Mean 3.09 2.99 2.90 3.00 3.03 2.88

a INS and JAP included within AMU.

%Conf
correct

correct incorrect
=

+
×100
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the results produced after fixing the number of hidden nodes to 104, but with the learning rate
(gain) varied in the range 0.05–0.30. The optimized learning rate was determined to be 0.05 (when
Eval is considered to three decimal places), so the learning rate was then fixed to that optimized value.

Table 12.5 presents a summary of the final results from runs with the network parameters fixed
to the preceding optimized values, but now run with 10 different random seeds (the earlier tests
were run with the same random seed). For each training/validation pair (A, B and C), the mean
Eval errors over the 10 runs are shown, together with the lowest value. The recognition accuracy
(Rval) is also shown in a similar manner, and shows the percentage of correct species identification
for data records in the validation set. The recognition accuracy (Rtest) resulting from presentation
of the independent test set to the trained network (saved at the point of minimum validation error)
is also shown. A good result of 66.22 per cent recognition accuracy on the test set was achieved
and, when compared to previous results (Clark, 2004), represented an 8.90 per cent improvement
after changing the classification.

TESTS WITH AMENDED CLASSIFICATION PLUS GEOGRAPHIC INFORMATION

Table 12.6 shows results for different numbers of hidden nodes ranging between 64 and 104. At
the point of training termination, the error (Eval) and recognition accuracy (Rval) produced by the

TABLE 12.4
Tilia 22 with Amended Classificationa: 
Optimization of Learning Rate Showing Eval at 
Point of Training Termination

Data-set

Learning rate

0.05 0.10 0.15 0.20 0.25 0.30

A 2.66 2.65 2.77 3.34 3.21 3.44
B 3.01 3.10 3.00 3.24 3.60 3.55
C 2.89 2.88 2.82 3.33 3.20 3.12
Mean 2.86 2.88 2.86 3.30 3.34 3.37

a INS and JAP included within AMU.

TABLE 12.5
Tilia with Amended Classificationa: 
Overall Results

Data-set Eval Rval Rtest

A Mean of 10 runs 2.73 74.71 64.67
Lowest Eval 2.49 70.59 66.67

B Mean of 10 runs 2.91 81.18 67.67
Lowest Eval 2.68 88.24 70.00

C Mean of 10 runs 2.81 79.41 66.33
Lowest Eval 2.56 82.35 66.67
Overall mean (30 runs) 2.82 78.43 66.22
Mean lowest Eval 2.58 80.39 67.78

a INS and JAP included within AMU.
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network on presentation of the validation set are as shown. A hidden node number of 88 produced
the lowest mean validation error (Eval), so the number of hidden nodes was then fixed to that
optimized number.

Table 12.7 shows the results produced after fixing the number of hidden nodes to 88, but with
the learning rate (gain) varied in the range of 0.05–0.30. In this case, the optimized learning rate
was determined to be 0.1, so the learning rate was then fixed to that optimized value. Table 12.8
presents a summary of the final results from runs with the network parameters fixed to the previous
optimized values, but now run with 10 different random seeds (the earlier tests were run with the
same random number seed). For each training/validation pair (A, B and C), the mean Eval errors
over the 10 runs are shown, together with the lowest value. The recognition accuracy (Rval) is also
shown similarly and shows the percentage of correct species identification for data records in the
validation set. The recognition accuracy (Rtest) resulting from presentation of the independent test
set to the trained network (saved at the point of minimum validation error) is also shown.

An improved result of 82.45 per cent recognition accuracy on the test set was achieved,
representing a 16.23 per cent improvement after including information regarding the continent of
origin, when compared to the results obtained without geographic information. Table 12.9 shows
the new misidentification matrix created from the ANN runs with revised classification and with
addition of geographical data. A comparison between the effective performances of all the tests,
including those from earlier studies (Clark, 2004), is shown in Table 12.10. 

TABLE 12.6
Tilia with Amended Classificationa and 
Continent of Origin: Optimization of 
Number of H Nodes Showing Eval at Point of 
Training Termination

Data-set

Hidden nodes

64 72 80 88 96 104 

A 1.87 1.74 1.86 1.58 1.88 1.86 
B 2.53 2.19 2.36 2.17 2.09 1.96 
C 2.34 1.97 2.20 2.03 2.13 2.05 
Mean 2.25 1.97 2.14 1.93 2.03 1.96 

a INS and JAP included within AMU.

TABLE 12.7
Tilia with Amended Classificationa and Continent 
of Origin: Optimization of Learning Rate Showing 
Eval at Point of Training Termination

Data-set

Learning rate

0.05 0.10 0.15 0.20 0.25 0.30 

A 1.59 1.58 1.57 2.04 1.61 1.64 
B 2.19 2.17 2.22 2.17 2.17 2.19 
C 2.05 2.03 2.22 2.09 2.27 2.21 
Mean 1.94 1.93 2.00 2.10 2.02 2.01 

a INS and JAP included within AMU.
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DISCUSSION 

It is clear from Table 12.10 that the MLP-ANN provides a better identification system than the
DELTA system and that improvements to the underlying classification are helpful. Clearly, however,
the greatest improvement was obtained by the inclusion of minimal geographic information. Any
identification system is of use in suggesting inadequacies with respect to the underlying existing
classification of taxa, and neural networks are no exception. In the original results (Table 12.2),
the T. amurensis test specimen (TAMU) was always identified as its close relation, Tilla insularis
(INS). However, now it is believed that these species should be considered conspecific, as T.
amurensis Rupr. (Pigott, 2000). The case study presented here supports this view. The suggestion
was also made here that T. japonica (Miquel) Simonkai should be included within a wider concept
(i.e. an amplified view) of T. amurensis Rupr. Although this work adds weight to this hypothesis,
further botanical studies regarding character variation in both taxa are needed before a firm
conclusion can be made, because this study was based on relatively few specimens and therefore
the model of the species variation and limits may be incomplete. 

Note also that, in earlier work (Clark, 2004), it was suggested that the tree from which the T.
heterophylla test specimen (THET) was taken was incorrectly named and should perhaps have been
T. × moltkei, a probable hybrid between T. americana and T. tomentosa 'Petiolaris'. This test
specimen closely matches specimens labelled T. × moltkei in the Kew Herbarium, and it is also
identified as this species using Pigott's (1997) key. However, in this study (see Table 12.9), this
specimen is variously referred to other American species, and sometimes to the Chinese T. oliveri.
Certainly this specimen warrants further study – perhaps the indecision of the ANN provides further
suggestions of its possible parents. Other anomalies in the confusion matrix include the various
misidentifications of T. dasystyla, which might be a further indication of the presence of hybrids
in the test set. It would certainly be useful in further studies to deliberately include hybrid specimens
to investigate how a network trained on species would behave. 

Although the anomalous identification of T. henryana as T. mongolica is still present in the
latest results (Table 12.9), the most likely explanation is that they share relative absence of
characters, which is affecting the model. Further studies could usefully explore this area, with
regard to character coding before training. 

It is particularly interesting that the identification performance of the ANN system was greatly
improved (by over 16%) by including a small amount of geographical information, providing only

TABLE 12.8
Tilia with Amended Classificationa and 
Continent of Origin: Overall Results

Tilia25 

Data-set Eval Rval Rtest 

A Mean of 10 runs 1.73 93.53 86.00
Lowest Eval 1.48 94.12 86.67

B Mean of 10 runs 2.18 90.59 79.67
Lowest Eval 1.84 94.12 83.33

C Mean of 10 runs 2.09 89.42 81.67
Lowest Eval 1.92 94.12 83.33
Overall mean (30 runs) 2.00 91.18 82.45
Mean lowest Eval 1.75 94.12 84.44

a INS and JAP included within AMU.
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the continent of origin. This is not surprising given that most herbaria arrange specimens of any
given genus geographically before actually reaching the species folders. This is, of course, in part
because specimens are first collected from a given geographical location, and their first priority is
to be filed according to that since the identity of the specimen may only be determined at a later
date. However, a primary function of herbaria is identification, and even simple geographic infor-
mation reduces the possible taxa considerably.

Indeed, a human expert, unable to identify a specimen immediately, often first asks questions
about geographic origin to reduce the possibilities. It is therefore considered valid in a practical
identification study such as this to include geographical data, as typically might be available with
an unidentified collected specimen. In the case of Tilia, this is particularly relevant because each
species is restricted in the wild to a particular continental area: namely, (1) Europe and western
and central Asia, (2) Eastern Asia or (3) North America (Pigott, 2002). Thus, although species
themselves are not primarily defined by geography, it is possible to provide easier identification,
given that a specimen is from a known continent of origin.

SUMMARY

A simple methodology for the practical application of supervised ANNs for botanical identification
has been presented. Here, the main parameters of the ANN are chosen by systematic trial and error
– a methodology that can be followed when considering any taxonomic group. Clearly, the main
limitations of such a system are those of any identification system: namely, that performance
depends on the quantity, accuracy and validity of the available specimens, and the nature of the
underlying classification system. It has been shown that a multilayer perceptron (MLP) can be used
for an effective identification system based on character and measurement data, provided a sys-
tematic methodology, such as that demonstrated here, is employed to tune the system parameters
effectively. Neural networks require this fine-tuning for effective performance, and such a simple
strategy is needed in order that these kinds of systems can be used in a practical sense by non-experts. 

In conclusion, the results presented here (see Tables 12.9 and 12.10) demonstrate that the MLP
neural network performance can be improved considerably by the addition of geographical infor-
mation and a re-evaluation of the underlying classification system. Although encouraging results
were produced using only 22 morphological characters and amendments to the existing species
concepts, considerable improvements were achieved by including extra information relating merely
to the continent of origin, along with a few minor changes in the taxonomy. 

Artificial neural networks train best and learn to generalize best if they are presented with
good examples of the classes that they are trying to model, especially if based on many examples
showing variations representative of those classes the net is attempting to discriminate. Herbarium
specimens can provide much data of this kind and are also a primary source of information for
taxonomists. The use of neural networks as tools for herbarium systematics is, therefore, to be

TABLE 12.10
Tilia Overall Results and Comparison of Methods 
and Performance

Identification method % Test specimens correct

DELTA TILIA 22 chars 42.5
MLP TILIA 22 chars 57.3
MLP TILIA 22 chars + revised classification 66.2
MLP TILIA 25 chars + revised classification 
including geography 

82.5
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TABLE 12.11 
Sources of Material for Training and Validation Data-Sets

Specimen Collection/herbarium no./data on sheet
Specimen
location

AME1 B.F. Bush No. 61 K
AME2 H.H. ILTIS 22539, Wisconsin, July 4, 1964 BM
AME3 C.C. Deam 16305, Clarke Co, Indiana, June 23, 1915 BM
AMU1 F. Karo 1080 (Komarov, Fl. Man) isotype K
AMU2 Wilson 8871 (Arnold Arboretum Expedition) v. glabrata Nakai K
AMU3 U. Faurie 489, July 1906, Korea BM
CAR1 T.G. Harbison 3 (or sn.), June 14, Lake City, Florida K
CAR2 (TYPE) Miller's Dictionary No. 4, see Aiton Hort. Kewensis (pubescens) (4) BM
CAR3 (ISOTYPE) A.H. Curtiss No. 401* (TYPE) floridana BM
CHI1 (TYPE) Potanin (1885) Herb Hort. Pet. K
CHI2 Forrest 6130 (Yunnan) K
CHI3 Forrest 12765 (Yunnan) K
COR1 Lindberg 1237 K
COR2 Petunnikow 1012 K
COR3 Pigott 94-31 BM (British herb)
DAS1 (TYPE) Steven sn. (flowering sheet of 2) K
DAS2 ex Herb. R.J. Shuttleworth, received 1877; 1 of 2, Kastel Dag (locus typus) BM
DAS3 C.R. Fraser Jenkins 2928, June 29, 1971, Abkhazskaya, ASSR ssp. caucasica BM
HEN1 Wilson 597, W. Hupeh 8/07 and 11/07 BM
HEN2 Wilson 414 6/07 and 10/07 BM
HEN3 (TYPE) Henry 7452A K
HET1 Biltmore Herb. 1030b K
HET2 Palmer 15471 (v. michauxii) K
HET3 Harper 1302 BM
INS1 (TYPE) Wilson 8532 Ulreung-do [Ullung-do], May 31, 1917 BM
INS2 C6926 Cult. Edinburgh. August 1970 B.02 BM
INS3 #10859 Cult. Arnold Arboretum, Clausen et al. BM
JAP1 E.H. Wilson 7305, Arnold Arboretum Expedition, Hokkaido 1914 K
JAP2 Shirasawa sn., received at Kew: April 24, 2002 (as cordata v. japonica) K
JAP3 (ISOTYPE) Herb. Hort. Bot. Petrop. 1 of 2 (HongK3910), Maxim., Japan: Hakodate 

1861 
K

KIU1 HerbHongK3916, Hayakawa sn. K
KIU2 H. Shirasawa sn. (Middle Japan) syntype? (in Type folder) [not proposed lectotype] K
KIU3 S. Matusima, July 5,1952. TSM861 BM
MAN1 V. Komarov1081, Ninguta valley, 1896 (year), ex Herb. Petrop. BM
MAN2 Wilson 10400, Arnold Arboretum Korea, Prov. Kogen: Kongo-san, June 30, 1917 K
MAN3 Ex Herb. Hort. Petro (received at Kew September 4, 1890) K
MAX1 (TYPE) Shiras sn, Middle Japan K
MAX2 Wilson 7129 K
MAX3 Wilson 7387, August 16, 1914, Hokkaido, Japan BM
MIQ1 (ISOTYPE) Maximowicz, sn., Yokohama, Japan (12/85a) K
MIQ2 Homi Shirasawa sn. Middle Japan K
MIQ3 H.E. Fox, sn. July 26, 1912 BM
MON1 (ISOTYPE) Przewalski [3F] K
MON2 A. David No. 1923. (Herb. Mus. Paris), June + August 1866, Mt. Ta-chan-Kou, Mong. K
MON3 Hsia 2700, Herb. Inst. Bot. Peiping, China K
OLI1 Wilson 2274 (705) (flowering sheet of 2) K

Continued.
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encouraged, as through this use more can be made of these still rather underused and extremely
valuable data repositories. 

ACKNOWLEDGEMENTS 

Grateful thanks are due to Donald Pigott for many helpful discussions and advice. Gratitude is also
due to Simon Owens and Martin Cheek for permission to study specimens in the Herbarium of
the Royal Botanic Gardens, Kew, UK. Use of the graphic in Figure 12.1 is given by kind permission
of the Trustees of RBG Kew. Also, thanks are due to Nigel Taylor for permission to collect specimens
from trees growing in the gardens, as well as to Roy Vickery of the Natural History Museum, South
Kensington, London, for access to the herbarium. 

OLI2 Wilson 2332, W. Hupeh, June 1907 BM
OLI3 Wilson 2335 (specimen with damaged bracts) BM
PLA1 Fraser 109 K
PLA2 Schreiber 2480 (as sphaerocarpa) K
PLA3 Pigott 006 (cult) Sheet 2, seedling, Slovenija, 46.20′N, 14.04′E BM
TOM1 J.S. Mill, sn. (Herb. 1862 [as argentea]) K
TOM2 (TYPE of petiolaris) Hort. K 1893, t. BotMag. K
TOM3 Wierzbicki 1600/Herb J. Gay (as argentea) K
TUA1 (HOLOTYPE) Henry 7452 K
TUA2 Wilson 2316 (7/07!) a. K
TUA3 Wilson 2334, July 1907, W. Hupeh BM

TABLE 12.11 (Continued)
Sources of Material for Training and Validation Data-Sets

Specimen Collection/herbarium no./data on sheet
Specimen
location
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INTRODUCTION

 

With a fossil record known to extend as far back as the Early Palaeocene (61 Ma; Slack et al.,
2006), Sphenisciformes (penguins) is among the oldest of extant avian clades. Penguins exhibit a
remarkable range of adaptations to life in the marine environment, including flattened limb bones,
feathers that are unique among birds and solid bones (Davis and Renner, 2003). This latter
characteristic has been a feature of the group from earliest times, and to some extent explains their
abundance in the fossil record compared with some other avian clades (Fordyce and Jones, 1990).
Despite this, the origin, early evolution and systematics of penguins remain poorly understood.

The two most commonly recovered fossil penguin elements are the humerus and tarsometatarsus
(a fusion of the three primitive theropod metatarsals common to all modern birds). Most described
species are based on either one or the other of these distinctive elements (Fordyce and Jones, 1990).
This presents a problem for penguin systematics because neither bone exhibits a wealth of obvious
synapomorphies (Simpson, 1946; Zusi, 1975; Fordyce and Jones, 1990). As a result, until very
recently (e.g. Slack et al., 2006; Walsh and Suárez, 2006), no cladistic analysis of the group
attempted to include fossil taxa.

Examination of skeletons of modern penguin species held in any collection will reveal – even
to a non-expert – a high degree of intraspecific variation in postcranial bones (Simpson, 1946; Zusi,
1975). Character polymorphism is also common (Walsh and Suárez, 2006), making character-based
taxonomic identification of isolated material (e.g. from abandoned rookeries; Emslie and Woehler,
2005) problematic. This observation does not bode well for the reliability of identifications of fossil
material, which on the whole has been (and continues to be) diagnosed on the basis of aspects of
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overall morphology rather than by clear apomorphies. Comparison of new fossil penguin material
with described species is also often problematic because holotype material is held in widely
separated institutions worldwide. Many comparisons of fossil humeri and tarsometatarsi are, by
necessity, made using published monochrome images. Consequently, determination of differences
in overall morphology is generally made solely on patterns of light and shade contained within a
photograph. Considering these factors, can reliable identifications of fossil or even extant penguin
species ever be made?

In an attempt to answer this question we conducted a preliminary investigation of shape
variability in a selection of modern penguin species using the DAISY unsupervised artificial neural
net (uANN) (Walsh et al., in press). In this earlier study we focused on two standard views of the
penguin humerus (cranial and caudal) and tarsometatarsus (dorsal and plantar). Our rationale was
that if an experienced palaeo-ornithologist could recognize species from published images (as is
the common practice), then an automated image-recognition system should also be able to provide
similar results given that they are both using the same tonal pattern data. We have previously found
DAISY image libraries with around 30 images per class to provide optimal results for most object
types (MacLeod et al., 2007).

However, due to a lack of suitable specimens, it was only possible to acquire a handful of
images for most of the species, and it was only possible to include 10 of the 17 or so living penguin
species. Results indicated that, despite image libraries with low numbers of images, DAISY was
able to detect taxonomic groupings within all of the training sets. The plantar view of the tar-
sometatarsus proved to be the more useful of the two elements for identification purposes, although
for some taxa (e.g. species of 

 

Spheniscus

 

) the humerus had more utility. Overall these results
indicated that, given sufficient images, DAISY might be capable of accurately identifying all living
species of penguin solely on the basis of an image of either the tarsometatarsus or humerus.

These encouraging findings were even more surprising given that the current version of DAISY
does not take specimen size into account. This factor is one of the main identification criteria used
by human experts. Furthermore, palaeo-ornithologists are able to integrate multiple specimen views
and written descriptions in their comparisons. By restricting our previous investigation to object
shape, we had effectively denied DAISY access to the most useful information employed by palaeo-
ornithologists to make their identifications.

DAISY was clearly able to make its identifications solely on the basis of specimen shape and/or
internal patterning. However, the relative importance of these factors is difficult to gauge. In theory,
examination of the interneuron weighting scheme constructed when the system builds a new training
set should provide some indication of what features DAISY was actually using to make its
identifications. However, because the original concept of DAISY as an easily used identification
system for biological species did not require this facility, such a tool is not included with the current
system. This information is of considerable interest, however, because it could potentially be used
to locate features that could be coded for phylogenetic analysis.

Here, we use the plantar view of the tarsometatarsus as a morphometric case study to attempt
to discover whether the overall element shape or the patterning within its outline is likely to be of
more importance to DAISY as an identification criterion. The selection of this element and view
was based on its overall performance in our preliminary study. Although Myrcha et al. (2002) used
simple linear distance measurements and ratios of tarsometatarsi to revise fossil Antarctic penguins,
only Livezey (1989) has attempted to use true multivariate morphometric techniques on penguin
postcrania. Unfortunately, that study was not concerned with intraspecific morphological variability,
and this problem has remained uninvestigated. 

 

METHODS AND MATERIALS

 

Landmark and outline coordinates were acquired from the same images used for the original DAISY
training set of Walsh et al. (in press). Although each specimen was originally imaged in two views,
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only the plantar view was used for the present study. Results of the Walsh et al. investigation are
reproduced here. Identification using the DAISY approach is dependent on the accuracy of the
original identifications. Since the majority of spheniscid specimens held at The Natural History
Museum (Tring) are from wild or captive individuals identified 

 

in vivo,

 

 the collection identifications
were regarded as accurate.

For both the DAISY and morphometric analyses, RGB images of the dorsal view of 61
tarsometatarsi images were captured at 72 dpi using a handheld Fujifilm S3000 digital camera. All
images were of extant taxa comprising 10 species in five genera from 59 individual skeletons held
in the collections of the Natural History Museum, Tring, and were captured on site at Tring
(Appendix 4). Number of individuals imaged for each taxon comprised: 

 

Aptenodytes patagonicus

 

(6), 

 

A

 

. 

 

fosteri

 

 (6), 

 

Pygoscelis papua

 

 (6), 

 

P

 

. 

 

antarctica

 

 (2), 

 

P

 

. 

 

adeliae

 

 (9), 

 

Eudyptes crestatus

 

 (9),

 

Eudyptula minor

 

 (4), 

 

Spheniscus demersus

 

 (6), 

 

S

 

. 

 

humboldti

 

 (3) and 

 

S

 

. 

 

magellanicus

 

 (5). Although
56 skeletons were imaged, the extent of adherent connective tissue, mounting materials and damage
meant that only 61 tarsometatarsus images were usable. Due to lack of suitable specimens, 

 

Mega-
dyptes antipodes,

 

 

 

Eudyptes chrysocome, E

 

.

 

 robustus,

 

 

 

E

 

. 

 

pachyrhynchus,

 

 

 

E

 

. 

 

schlegeli,

 

 

 

E

 

. 

 

sclateri

 

and 

 

Spheniscus

 

 

 

mendiculus

 

 were not included in this study, and 

 

Eudyptula minor albosignata

 

 was
included as 

 

Eu

 

. 

 

minor.

 

Each specimen was imaged on a matte black background to maximize contrast and segmentation
of the specimen in the frame. All specimens were illuminated consistently from the top left for
right-hand specimens and from the top right for left-hand specimens in order to minimize variations
in shadowing caused by lighting (necessary for the DAISY analysis). The acquired images were
digitally balanced for brightness and contrast, and corrected for physical artefacts (e.g. accession
numbering, wire connectors, small amounts of adherent soft tissue) using Corel Photo-Paint 11.0.
For consistency, each specimen image was segmented from the original background, inserted onto
a uniform black 72-dpi 500- 

 

×

 

 500-pixel grid and, where necessary, re-orientated as accurately as
possible to a standard north–south pose. Images of left-hand elements were digitally flipped for
right-hand standardization. Each image was then resampled to an 8-bit greyscale to minimize colour
pattern interference from variable post-mortem staining of the bone surface. Each image in the
training set was then named according to taxon at species and genus levels, and assigned a sequential
number for cross-reference to the raw image library.

Once prepared in the manner described earlier, the image library was uploaded and built as a
training set using the DAISY BUILDTOOL algorithm, which performs three transformations on
the images (Figure 13.1). Firstly, the images are histogram normalized to reduce variability between
images caused by lighting and exposure. The images are also subsampled to a 32- 

 

×

 

 32-pixel grid.
This resolution has been found to maximize the signal-to-noise ratio, while reducing processing
requirements. Lastly, the images are transformed from a standard 

 

x,y

 

 format to a polar format,
which serves to emphasize internal patterns of pixel brightness values while retaining information
about the object perimeter in the analysis.

Once built, the consistency of the training set was tested via cross-validation analysis provided
by the system's own JACKTOOL algorithm. Identification results are reported at one of three levels.
A coordination is a high-level pass that classifies the unknown image according to the number of
its nearest neighbours of a given class. The higher the number of nearest neighbours is, the better
the classification is, although the lower limit required for a coordination pass is set at three nearest
neighbours. Sill identifications classify the unknown image based on its position in the ordination
relative to the edge of a class cluster. Although there are a number of classification levels below
the Sill level, these are classed as fails as the identifications lack the degree of confidence we require.

The images of the generic-level plantar view training set were renamed using random numbers
and the training set was rebuilt. A randomized training set should contain no groupings, or very
weak groupings where there is a strong numerical bias towards objects in a given class. This
randomized training set was therefore used to test the validity of the groups recovered in the
original analysis.
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Landmark and outline coordinates were collected using tpsDIG 2.04 (Rohlf, 2005). A total of
10 landmarks were used (Figure 13.2A) that were chosen to specify the position of morphological
features common to all specimens. Landmarks 1–3 represent the lateral medial and distal points
that delimit the triangle of the medial hypotarsal crest; landmarks 4 and 5 delimit the proximal and
distal extent of the lateral hypotarsal crest. Landmarks 6 and 7 mark the proximal and distal extent
of the lateral proximal vascular foramen; the medial vascular foramen is not visible in some taxa
(Zusi, 1975). Finally, landmarks 8–10 indicate the proximal extent of the articular surface of trocleae
IV-II. These landmarks were chosen because they mark important segments of highlight and shadow
that are likely to be important to the DAISY analysis. Captured landmark coordinate pairs were
Procrustes registered in PAST 1.40 (Hammer et al., 2001) and the Procrustes residuals subjected
to simultaneous entry canonical variates analysis in SPSS 13.0 at genus and species levels.

Outline data were analysed using the extended eigenshape approach (MacLeod, 1999) for
closed curves. The outline was captured using 100 nodes beginning at the medial extremity of the
medial cotyla, and registered using seven other landmarks selected at homologous points along
the outline (see Figure 13.2B). Using MacLeod's extended eigenshape software (freely available
at http://www.nhm.ac.uk/hosted_sites/paleonet/), the 100-node outline was interpolated to 89 nodes
at the recommended accuracy level of 99 per cent. Eigenshape scores resulting from the analysis
were subjected to simultaneous entry canonical variates analysis in SPSS 13.0 at generic and
specific levels.

 

RESULTS

 

The DAISY analysis revealed groupings of taxa at both generic and specific levels (Figure 13.3)
with an overall pass rate of 43 per cent at the specific and 70 per cent in the generic level. Although
these rates may appear comparatively low, it must be remembered that the numbers of images for
this test were insufficient to provide dense groupings. The higher results achieved for the generic
training set indicate that this is most likely the case, since images for each of the specific classes
were combined to form the generic classes. Because the randomized training set detected no clear
groups, the recovered partitions were taken to be reliable.

At the specific level (Figure 13.3A) 

 

Aptenodytes forsteri 

 

(62.5%), 

 

Pygoscelis adeliae

 

 (60.0%)
and 

 

Spheniscus demersus

 

 (62.5%) achieved the highest overall pass rates. 

 

Pygoscelis antarctica

 

,

 

FIGURE 13.1

 

A 'before and after' example of the DAISY input, and output after the training set build
transformations. A: a 500 

 

×

 

 500 image of the plantar view of a tarsometatarsus of 

 

Spheniscus demersus.

 

B: same image after transformation; the image has been subsampled to 32 

 

×

 

 32 pixels and has been transformed
from a Cartesian to a polar arrangement of pixels (note that this image is shown 125 per cent larger than the
original for ease of viewing).

A

B
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Spheniscus magellanicus

 

 and 

 

S

 

. 

 

humboldti

 

 achieved no correct identifications, a result probably
explained by the low number of images (between three and five) in these classes. A list of failed
matches is given in Table 13.1. At the generic level (Figure 13.3B) 

 

Aptenodytes

 

 (76.5%), 

 

Pygoscelis

 

(63.0%)

 

 

 

and 

 

Spheniscus

 

 (87.5%) achieved the highest pass rates.

 

 

 

As the only monotypic genera
(in this training set) and with only three and four images, respectively, 

 

Eudyptes

 

 (33.0%) and

 

Eudyptula

 

 (25.0%) achieved the lowest number of correct identifications. A list of failed matches
is given in Table 13.2.

Canonical variates analysis of the landmark data provided reasonable separation for species
and genera (Figure 13.4A), with the first seven functions significant at the species level (function

 

FIGURE 13.2

 

Morphometric data collection. A: ten landmarks that define broad areas of highlight and
shadowing were collected: 1–3, medial, and 4 and 5 lateral hypotarsal crests; 6 and 7, lateral proximal
foramen; 8 and 9, proximal limits of the metatarsal trochleae. Note that the medial proximal foramen is not
visible in 

 

Spheniscus,

 

 

 

Eudyptes

 

 or 

 

Eudyptula

 

 and was therefore not suitable for inclusion in the landmark
constellation. B: 100-node outline with seven landmarks (excluding the start point): 1, intercotylar promi-
nence; 2, medial extent of medial cotyla; 3, 5 and 7, groove of metatarsal trochleae; 4 and 6, proximal extent
of the intertrochlear notches.

 

FIGURE 13.3

 

Results of cross-validation test of the DAISY training set. A: at the genus level all images
pass, but only 

 

Aptenodytes,

 

 

 

Pygoscelis

 

 and 

 

Spheniscus

 

 achieve coordination-level passes. B: the species level
test also achieved coordination-level passes for 

 

Aptenodytes

 

 (

 

A

 

. 

 

forsteri

 

), and two species of 

 

Pygoscelis

 

 (

 

P

 

.

 

adeliae,

 

 

 

P

 

. 

 

papua

 

); only 

 

Spheniscus

 

 

 

demersus

 

 achieved coordination passes for 

 

Spheniscus.

7

6
4

5

3

2
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BA
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1: 

 

χ

 

2

 

 = 497.216, 

 

p

 

 < 0.001, Wilk's 

 

λ

 

 = < 0.001; function 2: 

 

χ

 

2

 

 = 346.461, 

 

p

 

 < 0.001, Wilk's 

 

λ

 

 =
0.001; function 3: 

 

χ

 

2

 

 = 241.223, 

 

p

 

 = < 0.001, Wilk's 

 

λ

 

 = 0.006; function 4: 

 

χ

 

2

 

 = 165.809, 

 

p

 

 < 0.001,
Wilk's 

 

λ

 

 = 0.023; function 5: 

 

χ

 

2

 

 = 117.532, 

 

p

 

 < 0.001, Wilk's 

 

λ

 

 = 0.080; function 6: 

 

χ

 

2

 

 = 77.698,

 

p

 

 = 0.004, Wilk's 

 

λ

 

 = 0.188; function 7: 

 

χ

 

2

 

 = 48.964, 

 

p

 

 = 0.036, Wilk's 

 

λ

 

 = 0.349). Although not
identical to the DAISY statistical output, cross-validation (leave one out) was applied to the
ordination to allow a better degree of comparability between the morphometric approaches and
uANN (Table 13.3). In this test 

 

P

 

. 

 

adeliae

 

 performed very poorly, with 66.7 per cent misidentified
as 

 

P

 

. 

 

papua

 

 and 33.3 per cent as 

 

A

 

. 

 

patagonicus.

 

 

 

S

 

. 

 

demersus

 

 also performed poorly, achieving
only 42.9 per cent correct identifications, with the rest misidentified as 

 

S

 

. 

 

humboldti.

 

At the genus level, the landmark results were much improved, with good separations for

 

Aptenodytes

 

 and 

 

Pygoscelis

 

 in particular. All four canonical functions were highly significant
(function 1: 

 

χ

 

2

 

 = 294.028, 

 

p < 0.001, Wilk's λ = 0.002; function 2: χ2 = 171.568, p < 0.001, Wilk's
λ = 0.030; function 3: χ2 = 87.705, p = < 0.001, Wilk's λ = 0.167; function 4: χ2 = 38.153, p <
0.001, Wilk's λ = 0.459). The two monotypic genera in this data-set, Eudyptes and Eudyptula,
performed poorly in the cross-validation test (Table 13.4), although the direction of failure remained
the same as that for the species level.

Extended eigenshape analysis of the element outline provided poorer separations than the
landmark data. The first eigenshape axis accounted for 98.7 per cent of the shape variation,
confirming the subjective visual impression that these elements are all very similar in outline shape.
Canonical variates analysis (CVA) of the eigenscores for the species level (Figure 13.5) revealed
obvious groupings, although there was a large degree of between-group overlap. Only the first three
canonical functions were significant (function 1: χ2 = 284.862, p < 0.001, Wilk's λ = 0.003; function
2: χ2 = 181.742, p < 0.001, Wilk's λ = 0.026; function 3: χ2 = 95.264, p = 0.001, Wilk's λ = 0.149).

TABLE 13.1
Accurate and Failed Matches for DAISY Analysis of the Specific Level Training Set

forsteri patagonicus crestatus minor adeliae antarctica papua demersus humboldti magellanicus

forsteri 62.5 37.5 0 0 0 0 0 0 0 0

patagonicus 11.1 44.4 22.2 0 0 0 11.1 0 0 0

crestatus 0 0 33.33 0 0 0 0 33.3 0 33.3

minor 0 0 0 25.0 0 0 0 25.0 0 50

adeliae 0 0 10.0 0 60.0 0 20 0 0 10.0

antartica 0 33.3 33.3 0 33.3 0 0 0 0 0

papua 0 50.0 0 0 0 0 50.0 0 0 0

demersus 0 0 0 0 0 0 0 62.5 12.5 25.0

humboldti 0 33.3 0 0 0 0 0 66.67 0 0

magellanicus 0 0 20 0 0 0 0 80 0 0

TABLE 13.2
Accurate and Failed Matches for DAISY Analysis of the Generic 
Level Training Set

Aptenodytes Eudyptes Eudyptula Pygoscelis Spheniscus

Aptenodytes 76.5 11.75 0 11.75 0
Eudyptes 0 33.33 0 0 66.67
Eudyptula 0 0 25.0 0 75.0
Pygoscelis 21.0 10.5 0 63.0 5.5
Spheniscus 6.25 6.25 0 0 87.5
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A cross-validation test (Table 13.5) showed all E. crestatus were misidentified as P. adeliae, and
all of Eu. minor as E. crestatus, P. antarctica, S. demersus or S. humboldti. No species of Spheniscus
achieved more than 40.0 per cent correct identifications. These species were mostly mistaken for
each other, although 37.5 per cent of S. demersus outlines are misidentified as Eu. minor.

At the genus level, eigenshape-based groupings were generally distinct, but Eudyptula clearly
overlapped Spheniscus, and Eudyptes is widely spaced within Pygoscelis. Again, only the first three
canonical functions were significant (function 1: χ2 = 197.303, p < 0.001, Wilk's λ = 0.023; function
2: χ2 = 99.670, p < 0.001, Wilk's λ = 0.150; function 3: χ2 = 32.272, p = 0.009, Wilk's λ = 0.541).

FIGURE 13.4 CVA plots for the superimposed landmark analysis. A: genus-level results; B: species-level
results. See text for discussion.
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Cross-validation results (Table 13.6) were much improved compared with those of the species level
test. With 66.7 per cent of Eudyptes misidentified as Pygoscelis, results of the two cross-validation
tests are consistent.

DISCUSSION

The original study using DAISY (Walsh et al., in press) was intended as an investigation of whether
a human expert could realistically identify a penguin taxon from only a black-and-white image.

FIGURE 13.5 CVA plots for the extended eigenshape analysis. A: genus-level results; B: species-level results.
See text for discussion.
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TABLE 13.3
Cross-Validation Results (Percentages) for CVA of Superimposed Landmark Data at 
Species Level

forsteri patagonicus crestatus minor adeliae antarctica papua demersus humboldti magellanicus

forsteri 88.9 11.1 0 0 0 0 0 0 0 0

patagonicus 0 100 0 0 0 0 0 0 0 0

crestatus 0 0 66.7 0 0 0 0 0 33.3 0

minor 0 0 25 50 0 0 0 25 0 0

adeliae 0 0 0 0 90 0 0 0 0 0

antartica 0 33.3 0 0 0 0 66.7 0 0 0

papua 0 0 0 0 14.3 14.3 71.4 0 0 0

demersus 0 0 0 0 0 0 0 42.9 0 57.1

humboldti 0 0 0 0 0 0 0 33.3 66.7 0

magellanicus 0 0 20 0 0 0 0 16.7 0 83.3

TABLE 13.4
Cross-Validation Results (Percentages) for CVA of Superimposed 
Landmark Data at Genus Level

Aptenodytes Eudyptes Eudyptula Pygoscelis Spheniscus

Aptenodytes 100 0 0 0 0
Eudyptes 0 66.7 0 0 33.3
Eudyptula 0 25 50 0 25
Pygoscelis 10 5 0 80 5
Spheniscus 0 6.3 0 0 93.8

TABLE 13.5
Cross-Validation Results (Percentages) for CVA of Extended Eigenshape Data at Species Level

forsteri patagonicus crestatus minor adeliae antarctica papua demersus humboldti magellanicus

forsteri 88.9 11.1 0 0 0 0 0 0 0 0

patagonicus 33.3 66.7 0 0 0 0 0 0 0 0

crestatus 0 0 0 0 100 0 0 0 0 0

minor 0 0 25 0 0 25 0 25 25 0

adeliae 0 10 10 0 70 20 0 0 0 0

antarctica 0 0 0 0 33.3 66.7 0 0 0 0

papua 0 0 0 0 0 14.3 85.7 0 0 0

demersus 0 0 0 37.50 0 0 0 25 25 12.5

humboldti 0 0 0 0 0 0 0 33.3 33.3 33.3

magellanicus 0 0 0 0 0 0 0 40 20 40
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The results of that study did indeed suggest that this is possible, particularly if the expert also has
available extra information in the form of measurements and written descriptions. Outline shape
and internal patterning in these images are obvious and potentially important sources of information
for the DAISY uANN and human expert alike. The present study attempted to investigate the
relative importance of each by extracting and analysing these data separately. 

Each morphometric approach provided clear taxonomic groupings in both genus and species,
with up to 100 per cent correct identifications achieved. Overall, superimposed landmarks provided
the highest percentages of correct species identifications (mean 66%), with only two species
achieving less than 50 per cent correct identifications. Eigenshape analysis was less effective at
identifying these species, with a mean of 48 per cent correct identifications and five species
achieving less than 50 per cent correct (two of which failed to achieve any correct identifications).
Set against these results, the DAISY species analysis was less effective, with an average of 34 per
cent correct identifications; three species achieved less than 50 per cent and three achieved no
correct identifications. Consequently, for these objects, the information extraction and analysis
strategy using these morphometric techniques is clearly much more effective than the whole image
analysis employed by DAISY. The results achieved using DAISY for other object types (MacLeod
et al., 2007) indicate the system is capable of far better performance, and it seems likely that the
extra information contained within these particular images is impeding its effectiveness. Whether
this problem is a result of the presence of conflicting morphological information or merely large
amounts of uninformative tonal 'noise' is not possible to determine based on these tests. These
possibilities are currently being investigated.

At the genus level it is obvious that Aptenodytes represents a distinct shape, with 100 per cent
correct identifications in the landmark analysis, and only 5.6 per cent failing as Eudyptula in the
outline test. The tarsometatarsus of this genus is perhaps the most easily identified by human
experts, but this is unsurprising as it also happens to be by far the largest. Aptenodytes, Pygoscelis
and Spheniscus returned the highest percentages of correct identifications in the DAISY analysis,
although Spheniscus scored the highest at 87.5 per cent. Spheniscus was also 14 per cent higher
than Pygoscelis in the landmark test, but four percent lower than that genus in the outline analysis.
Spheniscus thus appears to be a slightly more robust genus than Pygoscelis. Eudyptes and Eudyptula
apparently performed poorly in all analyses – particularly in the outline test. However it must be
remembered that these taxa were represented by too few images to form well defined clusters
(Eudyptes = 3, Eudyptula = 4).

The spread and direction of misidentifications for each analysis is informative with respect to
group overlap. The DAISY analysis misidentified some Aptenodytes images as Eudyptes and
Pygoscelis, whereas the outline analysis misidentified a small proportion (5.6%) as Eudyptula.
The latter result seems somewhat surprising considering that the short and robust aspect of the
Aptenodytes tarsometatarsus is almost the opposite of the narrow and gracile Eudyptula element.
Despite being a relatively distinct taxon in each of the analyses, Spheniscus appears to be something

TABLE 13.6
Cross-Validation Results (Percentages) for CVA of Extended 
Eigenshape Data at Genus Level

Aptenodytes Eudyptes Eudyptula Pygoscelis Spheniscus

Aptenodytes 94.4 0 5.6 0 0
Eudyptes 0 33.3 0 66.7 0
Eudyptula 0 0 50 0 50
Pygoscelis 0 10 5 85 0
Spheniscus 0 0 18.8 0 81.3
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of a wastebasket with regard to misidentifications; only Aptenodytes was never misidentified as
Spheniscus across the analyses. However, in the outline analysis, only Eudyptula was misidentified
as Spheniscus. Spheniscus itself was misidentified as Eudyptula in the outline analysis and as
Eudyptes in the landmark test, but as Eudyptes and Aptenodytes in the DAISY analysis. In the
DAISY and landmark analyses, most incorrect Pygoscelis images were misidentified as Apteno-
dytes, a tendency consistent with the close relationship between the genera found in most cladistic
analyses of the Spheniscidae (see Walsh and Suárez, 2006, for a review). Overall, these results
indicate that, apart from Aptenodytes, there is a considerable morphological overlap at the generic
level, particularly with regard to the position of the Eudyptes and Eudyptula point clouds within
Spheniscus and Pygoscelis.

The species-level results provided more insight into partitioning of the generic clusters. In the
landmark analysis, A. patagonicus achieved 100 per cent correct identifications in the cross-
validation test, probably largely accounting for the result at generic level. This finding is, however,
at odds with both the eigenshape (67% correct) and the DAISY (44% correct) analyses. In the
outline and landmark tests, the two Aptenodytes species are only mistaken for each other, further
confirming the distinctiveness of this genus, though not the individual species. However, P. ant-
arctica failed to achieve any correct identifications in the DAISY and landmark analyses, and E.
crestatus and Eu. minor were entirely misidentified in the eigenshape analysis. This is again
probably mostly a result of the low numbers of images (<4) for these species. In the landmark and
outline analyses Pygoscelis papua achieved reasonably high proportions of correct identifications
(86 and 71.5%, respectively), but was misidentified exclusively as other members of the same
genus. A similar situation was observed in P. adeliae (although the misidentifications were spread
between A. patagonicus and E. crestatus), suggesting that, notwithstanding the poor performance
of P. antarctica, species of Pygoscelis are reasonably distinct.

The misidentification of Eudyptula as Spheniscus proved to be due to misidentification as S.
humboldti and S. demersus in the eigenshape analysis, and Eudyptula was also mistaken for S.
demersus in the landmark test. Landmark analysis proved to be the most effective strategy for
separating species of Spheniscus, indicating that differences between those species relate to internal
features rather than overall shape. This finding is interesting, since living species of Spheniscus are
remarkably homogeneous and polymorphic in their postcranial osteology, a situation that may relate
to a comparatively recent origination of the genus within Spheniscidae (Bertelli and Giannini, 2005;
Walsh and Suárez, 2006). Otherwise, in both morphometric analyses the Spheniscus species are
mostly misidentified as each other, with only S. demersus misidentified as Eu. minor in the outline
analysis. By comparison, DAISY misidentified S. humboldti as A. patagonicus and S. demersus
(the highest achiever at 62.5% correct) as E. crestatus. In both morphometric tests, S. demersus
performed poorly, with a highest score of only 43 per cent correct identifications in the landmark
analysis, and only 25 per cent in the eigenshape analysis. These results suggest that S. demersus
occupies a generalized shape space within Spheniscus.

Can these results shed any light on the criteria DAISY uses to make its identifications? The
results of these three analyses are neither strikingly similar to nor different from each other (a
repeated measures ANOVA revealed no significant difference between them). However, there are
some similarities between the DAISY list of failed matches and the CVA cross-validation results
for the morphometric approaches. The DAISY results are similar to the eigenshape analysis in the
direction of misidentifications of Eudyptula at generic level (both are misidentified exclusively as
Spheniscus). However, DAISY more closely matches the landmark results in (1) the ranked order
of correct identifications at generic level (differing only in the position of Aptenodytes and Sphe-
niscus as first and second place), (2) the direction of misidentifications at generic level for Eudyptes
(both exclusively misidentified as Spheniscus), (3) Pygoscelis (first = Pygoscelis, second = Apten-
odytes, third = Eudyptes, fourth = Spheniscus, although Eudyptes and Spheniscus are equal third
in the landmark results), (4) Spheniscus (both misidentified as Eudyptes, although DAISY also
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allocated an equal proportion of misidentifications to Aptenodytes) and (5) the total absence of
correct identifications for P. antarctica at specific level.

These general similarities suggest that, for this training set, DAISY primarily used tonal patterns
within the object outline to construct the ordination. Since the purpose of the polar transform in
training set construction is partly to emphasize internal patterning, these results suggest that the
use of polar thumbnails as training set objects is effective. It also suggests that enhancement of
tonal patterns internal to object outlines will be necessary to boost the signal-to-noise ratio. For
many identification problems, this may be unnecessary providing sufficiently large image libraries
are available. However, pattern enhancement may allow smaller image libraries (such as the one
tested here) to be effective as full training sets, and may also improve the performance of the system
for larger libraries. We are currently investigating these possibilities.

To date only Livezey (1989) has attempted a morphometric analysis of penguin tarsometatarsi.
That study used only a traditional interlandmark distance-based approach. Although we were not
able to include all living species in our investigation, our results provide more information about
the shape variability of this element in penguins than has been present in any systematic study of
this group to date. However, it is also because our data-set is limited with regard to taxa and
specimens that we have chosen not to take our analysis further to include modelling of shape change
across spheniscid species. Our intention is to investigate this aspect when more material is available.
New three-dimensional approaches to morphological analysis (see MacLeod et al., this volume)
also offer powerful tools for this research and might help to characterize shape change with better
resolution than two-dimensional approaches.

CONCLUSIONS

Our study indicates that the interspecific morphological variability of the tarsometatarsus of extant
penguins exceeds the intraspecific morphological variability. This skeletal element is, therefore,
useful for taxonomic identification of isolated remains, and probably also to serve as species-
diagnostic fossil material. A landmark morphometric strategy offers the most effective approach
to identification of the penguin tarsometatarus at both generic and specific levels. This result
suggests that DAISY uses mostly tonal patterning internal to object outlines, indicating that
enhancement of this information may be the key to improving the performance of the system.
Although the morphometric approaches used here were more effective at species recognition, their
application is time- and effort intensive compared with that required for a DAISY analysis. Pro-
viding a straightforward method of increasing the signal-to-noise ratio can be found, DAISY and
similar uANN image recognition systems will be able to offer a fast and effective alternative to
traditional two-dimensional morphometric approaches for the purpose of automated species and
generic identifications.
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INTRODUCTION

 

Conodonts are a large, extinct clade of stem gnathostomes, possessing a skeleton composed of
phosphatic tooth-like elements that formed an oropharyngeal feeding apparatus (Aldridge and
Purnell, 1996, Donoghue et al., 1998). The conodont fossil record consists dominantly of disartic-
ulated elements; the huge abundance of these elements throughout the 300 million year span of
the clade's existence has made them invaluable tools for establishing and constraining relative ages
in the geological record. The exceptionally high quality of the conodont fossil record also offers
an unparalleled opportunity to study evolutionary rates, patterns and processes within a vertebrate
group. Additionally, by virtue of their phylogenetic position, conodonts have a key role to play in
elucidating the sequence of character acquisition near the base of the vertebrate clade.

Exploiting the potential of the conodont fossil record obviously requires a stable taxonomic
foundation. However, conodont taxonomy is frequently problematic. As with many palaeontological
studies, species boundaries must be delineated based solely on partial skeletal material, which often
displays extensive and complex morphological variation.

This would seem an ideal problem for the application of morphometric analysis. Yet no compre-
hensive morphometric work has been conducted on the clade. Conodont morphometric studies have
been published previously, but individually have had rather narrow aims. They range from simple
biometric studies to more sophisticated outline analyses. Significantly, they have had a wide variety
of goals, demonstrating the utility and flexibility of morphometrics. These goals include analysis of
size distributions (e.g. Jeppsson, 1976), examining ontogeny and survivorship (Tolmacheva and
Löfgren, 2000, Tolmacheva and Purnell, 2002), testing hypotheses of feeding mechanisms (Purnell,
1993, 1994), identifying biostratigraphically useful morphologies (Barnett, 1972; Murphy and Cebe-
cioglu, 1984; Murphy and Springer, 1989), uncovering ontogenetic patterns (Murphy and Cebecioglu,
1986), taxonomy and species recognition (Croll et al., 1982; Klapper and Foster, 1986, 1993; Sloan,
2000; Girard et al., 2004b), and investigating evolutionary trends (Barnett, 1971; Murphy and Cebe-
cioglu, 1987; Renaud and Girard, 1999; Girard et al., 2004a; Roopnarine et al., 2004).

Nevertheless, the potential of morphometric analysis of conodonts that is suggested by these
studies has yet to be fully realized. Here we present a brief review of the hitherto unacknowledged
difficulties inherent in morphometric analyses of conodonts, provide a new standardized morpho-
metric protocol with wide cross-taxon applicability and demonstrate its utility by presenting an
example of its application to analysis of morphological variation in a conodont species within a
taxonomic context.

 

THE SPECIES CONCEPT AND 

 

OZARKODINA EXCAVATA

 

Our focus in this chapter is the conodont species 

 

Ozarkodina excavata

 

 (Branson and Mehl, 1933).
This species has a global distribution (Jeppsson, 1974) and a stratigraphic range extending from at
least the mid-Silurian to the Early Devonian (Murphy and Cebecioglu, 1986), perhaps originating
far earlier (Jeppsson, 1974; Cooper 1975, 1976; Aldridge and Mabillard, 1985). Most authorities
currently consider 

 

O. excavata

 

 to be a single species displaying a high degree of continuous mor-
phological variation, which appears not to vary systematically through time. However, the degree of
morphological variation that can be included within 

 

O. excavata

 

 is uncertain (Jeppsson, 1974). This
problem is difficult to address using traditional methods of qualitative observation: the relative
morphological simplicity of the elements within the 

 

O. excavata

 

 skeleton and the complex yet subtle
variation they display has led to considerable subjectivity and inconsistency in determining the
taxonomic boundaries of the species (Jeppsson, 1974). These uncertainties make 

 

O. excavata

 

 an ideal
choice of species for a preliminary application of our morphometric protocols. Our goal is to attempt
to test quantitatively the hypothesis that the 

 

O. excavata

 

 hypodigm represents a single species (Our
use of the term 'hypodigm' follows Mayr et al., 1953: p. 237, "A hypodigm is all the available material
of a species.").
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Testing the morphological boundaries of a species begs the question of what a species is and,
in order to justify our approach to the specific problem of 

 

O. excavata,

 

 some theoretical consider-
ation of species concepts are required. Readers primarily interested in the methodological aspects
of our study, however, may wish to move on to the 'Materials and Method' section.

We frame our hypotheses and interpret our results within the context of a general species
concept chosen 

 

a priori

 

, as recommended by Wiens (2004). Full discussion of the continuing debate
over the various merits of different species concepts is beyond the scope of this chapter, but one
fact seems unequivocal: despite implicit suggestions to the contrary by many authors (e.g. see
contributions to Wheeler and Meier, 2000), no single species concept is universally applicable.
Rather than selecting a particular concept – and, inevitably, its associated conceptual baggage –
we adopt a pragmatic approach, delineating species as follows. 

Extinct and most extant sexually reproducing species are operationally identified through
morphological features, or phenetic clusters in a quantitative sense (Sokal and Crovello, 1970). Yet
such morphospecies are often implicitly, if not explicitly, considered as proxies for biological
species. This is because biological species are composed of reproductively isolated populations
(Mayr, 1942, 1969) and the sharing of morphological characters is taken to indicate a shared,
common gene pool. In this theoretical definition, biological species are deemed significant because
this genetic coherence means that they approach closest to real entities or individuals (Mishler and
Donoghue, 1982; Baum, 1998), in comparison with somewhat arbitrary supraspecific taxa.

Unfortunately, identification of biological species is not simply a question of discerning mor-
phological differences; the use of morphology alone is frequently insufficient because often there is
not an exact correspondence between morphological distinctiveness and reproductive isolation.
Numerous instances of morphologically indistinguishable sibling species are now known in a range
of animal groups (see Knowlton, 1993, for a review of marine examples), and intraspecific differences
can exceed those between species (e.g. Bell et al., 2002). Polymorphisms such as ecophenotypy can
also produce a range of morphologies within one species (e.g. Peijnenburg and Pierrot-Bults, 2004).
Moreover, delineating biological species is problematic because the biological species concept is
ahistorical and emphasizes intrinsic reproductive isolation mechanisms for species maintenance.
Reproductive isolation is obviously impossible to test for in fossil populations, and the inapplicability
of species concepts based around potential interbreeding is clear where populations are separated
in time, perhaps by millions of years. Of course, in the case of fossils, determining where the
boundaries between potential species may lie must be based on recognition of morphological
discontinuities. But evaluating the biological significance of these discontinuities requires them to
be interpreted within their spatial, temporal and ecological contexts. Only then can the likelihood
that distinct morphologies represent reproductively isolated biological species be assessed.

Spatial information can be incorporated by considering the geographic distribution of morpholog-
ically distinct fossil populations; extrinsic spatial separation can prevent gene flow between populations,
creating the potential for phenotypic differentiation. Moreover, such vicariance is easier to demonstrate
in fossil populations than the intrinsic reproductive barriers required by the biological species concept.
Environments will also vary across a species' geographic range, and the contrasting selection pressures
that result will favour genetic and morphological divergence (the former enhancing reproductive
isolation, the latter producing visible change), potentially reflecting the evolution of new species.

Initially, temporal information need only consist of whether a fossil population differs signif-
icantly in its morphology from those stratigraphically above or below, where all are initially
considered to be the same species. Induction of these patterns explicitly as ancestor–descendent
relationships through time is not necessary (but may be undertaken). Nevertheless, these patterns
can be assessed to determine whether they would be most sensibly interpreted as the evolving
sequence of populations forming a single species or, for example, as an anagenetic pathway, where
one species evolves gradually into another. Other factors (e.g. sampling density, stratigraphic
completeness) will heavily influence any decision as to which of these alternative evolutionary-
taxonomic scenarios is determined to be most probable.
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Ecological and biological interpretations, including functional morphology, are also required
to better assess the taxonomic significance of observed differences – aiding, for example, in the
identification of confounding intraspecific variation caused by ontogenetic change or ecophenotypy.
We also emphasize a population-based rather than strictly type-based approach to taxonomy. This
is complementary to the application of quantitative analysis involving a large number of specimens
and provides a clearer picture of the variation within the population by better constraining non-
taxonomic aspects of variation. If the morphological differences between a given population and
the type specimens are statistically significant to a standardized level, we feel this is justification
for assigning those morphotypes to different species.

Based on the foregoing discussion, we have formulated two levels of hypotheses. The initial
null hypothesis is that the morphological variation within the 

 

O. excavata

 

 hypodigm is continuously
distributed, supporting the general consensus that the hypodigm is a single morphospecies. The
alternative hypothesis is that morphological variation within the hypodigm displays discrete or
semidiscrete clustering. If the null hypothesis is falsified and multiple morphological clusters are
detected, then, if the morphological clusters correspond to temporally and/or spatially discrete
populations and characters that define them have biological significance, the most parsimonious
interpretation is that these populations represent separate species.

 

MATERIALS AND METHOD

M

 

ATERIALS

 

In this study of 

 

O. excavata,

 

 we have chosen to focus on elements that are thought to have occupied
the P

 

1

 

 position in the skeleton. This is partly because P

 

1

 

 elements are regarded as taxonomically
useful (Sweet, 1988), but particularly because this element has a comparatively large number of
continuously varying features for measurement and is thus amenable to morphometric analysis.
Consideration of multiple quantitative characters is advantageous in a taxonomic context (c.f.
Murphy and Cebecioglu, 1986), as it avoids the problem of dividing a sample into different phenetic
clusters depending on which particular variable is being considered. This approach also means that
correlations between characters are incorporated into the analysis; omission of such correlations
can produce misleading results (Willig et al., 1986; Knowlton, 1993).

In order to capture as much of the potential variation as possible, the samples analysed included
P

 

1

 

 elements of 

 

O. excavata

 

 from most of its spatiotemporal range (see Table 14.1). Assignment of
these elements to 

 

O. excavata

 

 was based on published opinions and the active input of conodont
workers with experience in this taxon. The full data set is provided in Appendix 5. Original sample
sizes ranged between 9 and 44 elements. Inequality in sample size can mask differences in variance
between samples, so samples were reduced through random subsampling to produce sample sizes
of between 10 and 20 (except for the poorly preserved American topotype material).

Including such a 'global' sample of the hypodigm produces an empirical morphospace for

 

O. excavata

 

 within which individual samples lie. The use of empirical morphospaces has been
criticized because of their potential instability with changing sample number and size; however,
theoretical morphospaces, although more stable, are also problematic. For example, Villier and
Eble (2004) have noted that theoretical morphospaces are dependent on 

 

a priori

 

 models of which
variables (and usually a small number) best describe aspects of form, and this may result in
unsatisfactory descriptions of object form. To test the robustness of the empirical morphospace
with changing sample sizes, we also conducted an analysis of the original, non-subsampled data-
set, following McClain et al. (2004). Between the original (

 

n

 

 = 536) and subsampled (

 

n

 

 = 454)
sets, eigenvalues were within 0.02 variance units of each other, variance partitioning between
components was identical and variable loadings were all similar. This supports the interpretation
that the empirical hyperspace generated by this analysis does approach the stability of a theo-
retical morphospace.
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D

 

ATA

 

 A

 

CQUISITION

 

: T

 

HEORETICAL

 

 C

 

ONSIDERATIONS

 

The effective incorporation of biological homology is generally considered key to the power of
landmark-based morphometrics, as outlined, for example, by Bookstein (1991). Biological homol-
ogy is identified through morphological and topological similarity of structures shared with a
common ancestor, and thus justifies comparability among these structures in different individuals
(see Purnell et al., 2000, for a discussion of homology in the conodont skeleton; Smith, 1988).
Unfortunately, biological homology is difficult to incorporate when analysing features 

 

within

 

conodont elements, owing to their growth pattern (Donoghue, 1998; Donoghue et al., 2007, in
press). Element growth is indeterminate, so the number of potential landmarks varies widely, even
between P

 

1

 

 elements of a similar size and, presumably, ontogenetic stage. Furthermore, element
growth is accretionary, with the element increasing in size through apposition of apatite lamellae,
making empirical identification of homologous landmarks difficult.

Consequently, in the majority of euconodont elements, only two types of homologous land-
marks can be relocated consistently. These define biologically homologous structures preserved
in the basal cavity: its apex and its distal extremities. Both types of landmarks represent devel-
opmentally significant locations. The apex of the basal cavity marks the point of initiation of

 

TABLE 14.1
Sample Information Showing Locality, Age and Sample Size for 
Samples of 

 

O. excavata

 

 P

 

1

 

 Elements Subjected to PCA

 

Locality Age N

 

Lithium, Missouri, USA mid Ludlow 9
Broken River, Queensland, Australia Silurian-Devonian boundary 11
Broken River, Queensland, Australia mid Ludlow 20
East Mount Cellon, Carnic Alps, Austria mid Lower Ludlow 17
Muslovka Quarry, Barrandian region, Bohemia Upper Pídolí 12
Netherton, Worcestershire, England Ludlow, Ludfořdian 13
Ludlow, Shropshire, England Ludlow, Ludfořdian 20
Hepworth, Ontario, Canada Wenlock 20
Pusku, Estonia Llandovery, late Rhuddanian 20
Gerete 2, Gotland, Sweden Ludlow, Gorstian 20
Alsvik 7, Gotland, Sweden Ludlow, Gorstian 19
Alsvik 4, Gotland, Sweden Ludlow, Gorstian 20
Lilla Hallvards 3, Gotland, Sweden Ludlow, Gorstian 20
Lukse 1, Gotland, Sweden Ludlow, Gorstian 20
Smiss 2, Gotland, Sweden Ludlow, Gorstian 17
Snoder 1, Gotland, Sweden Ludlow, Gorstian 20
Smissarvestrand, Gotland, Sweden Ludlow, Gorstian 20
Bodbacke 3, Gotland, Sweden Ludlow, Gorstian 20
Urgude, Gotland, Sweden Ludlow, Gorstian 20
Sigdarve 1, Gotland, Sweden Wenlock, Homerian 20
Sudervik 2, Gotland, Sweden Wenlock, Homerian 16
Svarvare 3, Gotland, Sweden Wenlock, Homerian 20
Svarvare 1, Gotland, Sweden Wenlock, Homerian 20
Östergårde 2, Gotland, Sweden Wenlock, Sheinwoodian 20
Östergårde 1, Gotland, Sweden Wenlock, Sheinwoodian 20
Total 469

 

Note:

 

 Swedish samples are ordered according to relative age at a series of intervals
through the Ludlow and Wenlock Series.
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element growth; the distal extremities of the cavity are the points of incremental addition of crown
and basal body tissue along the axis of growth (i.e. the distal tips of the enamel–dentine interface;
Sansom, 1996). Moreover, these landmarks occur only along the lower surface of the element
crown (the crown being all that is normally preserved in the vast majority of conodonts). Purely
landmark-based approaches are thus unable to capture a comprehensive picture of conodont
element morphology.

Although biological homology cannot easily be incorporated into measurements of conodont
elements, morphological and topological equivalence between measures can be maintained using
other approaches. Several outline techniques, including some that respect biological homology,
have previously been used to analyse conodonts, but detailed discussion is beyond the scope of
this chapter. Traditional multivariate techniques (the application of multivariate analyses to
simple biometric variables such as distances, angles, ratios, etc.; Marcus, 1988) can also be
utilized, but have several drawbacks in comparison with landmark-based approaches. For exam-
ple, they do not incorporate biological homology as effectively as landmark-based methods
(Bookstein, 1991), so measured variables must have sufficient topological equivalence to ensure
biological comparability from element to element. Furthermore, in the absence of a landmark-
based framework (e.g. truss analysis), these traditional approaches tend to sample forms in an
unsystematic, arbitrary way and thus cannot be used to recover the original form (Strauss and
Bookstein, 1982)

 

.

 

However, traditional multivariate techniques do have major strengths. First, they are applicable
to incomplete skeletal elements, thus maximizing sample sizes (an important advantage when
dealing with fossil material). Second, they can be easily applied by non-experts in morphometrics,
which is an obvious benefit. Third, and more specific to this work, because the number of traditional
measurements theoretically obtainable from 

 

O. excavata 

 

is limited by the morphological simplicity
of its elements, we have not engaged in 

 

a

 

 

 

priori

 

 selection of characters to be measured based on
which are deemed to be taxonomically useful (unlike many previous studies); we include every
measurement that it is theoretically valid to make.

 

D

 

ATA

 

 A

 

CQUISITION

 

: E

 

MPIRICAL

 

 P

 

ROTOCOL

 

Conodont elements were extracted from the host rock using standard acid dissolution techniques
(see Stone, 1987, for a review). The elements were placed in 10-well black-field slides, one element
to a well. This ensured that each element could be easily relocated. Elements were photographed
on the slide. The measurements taken were insensitive to orientation within the 

 

x–y

 

 plane of the
slide. Orientation of this plane with respect to the 

 

z

 

-axis did, however, have an effect on the
measurements and so was kept as constant as possible through use of a universal stage, which
allows independent tilting of the 

 

x–y

 

 plane. This stage is more sophisticated than Barnett's (1970)
design and allows finer control of specimen orientation.

Images were acquired using a Qimaging Evolution Micropublisher 3 color digital CCD camera
mounted on a Leica Wild M8 light microscope. Magnification was fixed such that a 2048 

 

×

 

 1536
pixel image captured a field of view approximately 7 

 

×

 

 3 mm in size, the maximum able to
accommodate all elements at constant magnification. This apparatus is faster, cheaper and easier
to use than scanning electron microscopy (SEM) imaging. Although image quality decreases
marginally when photographing smaller elements, this can be overcome in principle by increasing
the magnification for these elements, but time constraints prevented this. Specimens were illumi-
nated with both a ring source, to avoid shadows, and directed fibre optic lighting, to maximize
incident light. Polarizing filters were required to eliminate the obscuring glare of reflected light.
Images were captured as tif files and measurements were acquired using the Media Cybernetics
ImagePro Plus

 

®

 

 (version 4.5) software on a desktop PC.
Despite the clarity of the resulting images, some enhancement (as defined by Bengtson, 2000)

was required before measurements could be made. This was kept to a minimum, to avoid introducing
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visual artefacts into the images. A HiGauss filter was applied within ImagePro Plus, which proved
superior to the unsharp mask generally used for increasing image sharpness (Bengtson, 2000).
Slight adjustment of image brightness and contrast was also occasionally required, particularly on
darker coloured elements (CAI 4-5). Wherever image clarity following enhancement was poor
enough to introduce uncertainty into the measures, the original element was rechecked.

Taking measurements from digital images onscreen ensured greater accuracy and precision
than that obtainable using conventional ocular graticule measures. Captured images of a stage
micrometer were used to calibrate within the ImagePro Plus software. A data collection protocol
that combined manual and semi-automated procedures was adopted. Working speed was under 3
minutes per element, from image capture to data entry into a spreadsheet.

Since there are potentially several methods for the measurement of some element features, we
outline our protocols below to justify our particular approach. Element fragments lacking a cusp
were not considered, to avoid measuring different parts of the same element. Biological anatomical
notation is used throughout (Purnell et al., 2000). Figure 14.1 illustrates this notation together with
terms specific to this work. All measurements were obtained from images acquired for the purpose;
illustrations from publications were not used (c.f. Sloan, 2000) to avoid potential bias resulting
from uncertainty over details of preparation, orientation, etc. All raw measurement data are provided
in Appendix 5.

 

 

 

FIGURE 14.1

 

O. excavata

 

 P

 

1

 

 element in lateral view, showing anatomical notation used in this work. Dashed
lines represent the measures, as discussed and outlined in Table 14.2. Anchored circles are dotted. See Table
14.2 for key to abbreviations.
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Length

 

Length measures were acquired using a technique based on symmetric or median axis analysis.
First used for representing outlines by Blum (1973) and later elaborated on by Straney (1988), this
technique internalizes the outline of a two-dimensional shape using symmetrical points. These are
the centres of circles that contact the margin of a shape tangentially at two or more points. A line
drawn through these points forms the symmetric axis of that shape, representing a description of
the object's outline. It is perhaps a justification from precedence that Bookstein (1991) and Velhagen
and Roth (1997) used the technique in the analysis of jaw shape. We used a variant of the median
axis method in this investigation, with the circumference of the circles defined by two interdenticle
nadirs and the tangent point to the aboral margin, where a nadir is defined as the point of contact
between the free tips of adjacent denticles or between denticle tip and cusp (see Figure 14.1). These
circles provide a consistent means of obtaining an effective and intuitive median of upper and lower
margins from which to garner data.

This modified technique is fast, easy and accurate. It is important to emphasize that these were
not triple point circles 

 

sensu stricto,

 

 since they frequently extended outside the element margin; to
distinguish them, they are referred to here as anchored circles. Each process of an element was
measured separately, and from this three other measures are automatically obtained: total length
as the sum of the process, interprocess angle (see following discussion) and the total element length
from dorsal to ventral tip (available but not used in this work).

The precision of the anchored circle technique in comparison with using linear measures
constrained directly by the landmark points was tested empirically by repeat measurements where
the positions of the anchoring points were varied to mimic the situation in which the placement of
the points is unclear on an image. Even when two of the anchoring points for a circle were uncertain,
using anchored circles still produced more precise measurements than using a simple line. Thus,
the use of anchored circles also reduces measurement error.

 

TABLE 14.2
Summary of Morphometric Variables Measured in 

 

O. excavata 

 

P

 

1

 

 Elements

 

Measurement name Abbreviation Measurement description

 

Ventral process length VPL Linear distance from the cusp anchored point to the distal 
process terminus, measured along a line passing through the 
anchored point of the penultimate denticle

Dorsal process length DPL

Total length of both processes TL Sum of dorsal and ventral processes lengths
Interprocess angle IPA Angle between dorsal and ventral process length lines
Cusp base width CBW Linear distance between interspace nadirs immediately adjacent 

to cusp
Ventral process denticle packing VPDP Calculated using the linear distance from interspace nadir 

proximal but one from cusp, along the base of four denticles 
distally

Dorsal process denticle packing DPDP

Ratio of cusp base width: mean 
denticle base width for ventral 
process

CBW:VPDW Ratio of cusp base width to mean ventral denticle width along 
denticle packing line

Ratio of cusp base width: mean 
denticle base width for dorsal process

CBW:DPDW Ratio of cusp base width to mean dorsal denticle width along 
denticle packing line

Ventral denticle number VDN Enumeration of denticles on the ventral process
Dorsal denticle number DDN Enumeration of denticles on the dorsal process

 

Note:

 

 Variables are illustrated in Figure 14.1.
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Interprocess Angle

 

Because the anchored circles are affected by both the oral and aboral margins of an element, the
difference in height between proximal and distal parts of a process, often observed in carminate
elements (classic 

 

O. excavata

 

 P

 

1

 

 element morphology), will concomitantly drag the circle centre
up or down, resulting in different interprocess angles than would be obtained from direct measure-
ment of the aboral margin. This effect should be borne in mind when interpreting the results, as
they will not always be directly comparable to interprocesses angles measured along the aboral
margin, as used by some previous workers (e.g. Barnett, 1971).

Moreover, in P

 

1

 

 elements where the aboral margin is curved, as is often the case in 

 

O. excavata,

 

our approach avoids the ambiguity of placing straight lines along a curved margin to measure the
arching of the element. Obviously, the anchored circle technique does not capture information
regarding the angular relationship between the oral and aboral margins of a process, but this shape
information can be obtained using outline analysis (Jones, 2006). Within the framework of this
study, however, interprocess angle is being used to analyse the processes

 

,

 

 for which it does provide
an appropriate measurement (see Figure 14.1).

 

Cusp-Base Width

 

Appositional growth of the element crown may lead to incorporation into the cusp of the denticles
adjacent to it. This will vary with ontogeny, and the vertical shifting of the nadirs between the cusp
and adjacent denticles that results is expected to render of the measurement cusp base width
relatively noisy (see Figure 14.1). This should be taken into consideration when interpreting results.

 

Denticle Packing

 

Denticle packing was used as a morphometric variable by Croll et al. (1982), and also for 

 

O.
excavata

 

 by Murphy and Cebecioglu (1986), as a measure of denticle number per unit length along
a process. The measurement protocol was designed to be applicable to all the elements within the

 

O. excavata

 

 skeleton. Four denticles were measured, starting at the second nadir from the cusp
(see Figure 14.1).

 

Denticle Number

 

Enumeration of denticles is occasionally problematic owing to element growth pattern (Donoghue,
1998). Initially, incipient denticles are produced that, with further growth, develop sufficiently to
be counted. Such nascent denticles have previously been coded as one-half (Tolmacheva and
Löfgren, 2000), but this begs the question of what counts as half a denticle. We use only integer
counts here. The problem will only become acute with smaller elements, where a difference of a
single denticle can represent a major proportion of the total number. This is more an interpretive
caveat than a limitation on the usefulness of the measure.

 

A

 

NALYSIS

 

 

 

OF

 

 E

 

RROR

 

The omission of discussions of error has beset many previous morphometric studies of conodonts.
Barnett (1971) made no mention of it, but subsequently (Barnett, 1972) controlled for error to some
extent, stating vaguely that two or three operators measured some specimens several times. Error
in Barnett (1972) was quoted as 

 

±

 

1

 

°

 

 or 2

 

°

 

 for angular measures and 

 

±

 

0.01 mm for linear measures.
Croll et al. (1982) went no further than simply asserting that their technique was operator inde-
pendent. Klapper and Foster (1986) constrained error by redigitizing 15 specimens; however, it
seems this was conducted once only, and not by different operators. Tolmacheva and Purnell (2002)
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quoted error at less than 10 

 

μ

 

m for their linear measures. No consideration of error was given in
any other studies of conodont morphometrics.

Three potential sources of significant operator error were identified in this study: systematic
error in calibration within ImagePro Plus was assessed through repeat calibrations of stage microme-
ter images; errors in linear and angular measures arising from inconsistencies in orientation of the

 

x–y

 

 plane were assessed by multiple re-acquisition of images for an element, with the stage adjusted
afresh each time; pure measurement inconsistencies were assessed by repeat measurements of one
linear and one angular measure on one image. For each of these analyses of potential errors, repeat
measures were obtained by one operator, with measurements taken days apart to minimize bias
from recall. Results are shown in Table 14.3. Analysis of interoperator error (repeat measurement
obtained by multiple workers) is in preparation.

 

ANALYSIS

M

 

ORPHOLOGICAL

 

 V

 

ARIATION

 

 

 

IN

 

 

 

THE

 

 

 

O. 

 

EXCAVATA

 

 H

 

YPODIGM

 

To test the hypothesis that variation within the 

 

O. excavata

 

 hypodigm is continuously distributed,
we subjected our full data-set (all variables, 25 samples considered to belong to the 

 

O. excavata

 

hypodigm; see Table 14.1) to a principal components analysis (PCA). Principal components analysis
is a standard technique for reducing dimensionality in multivariate data and is also useful for
visualization and exploration of data structure. The samples were not subdivided 

 

a priori

 

 by locality
or age, and PCA makes no assumptions that clusters are present within the data. A correlation
matrix was used for the PCA because of the different units and scales of the variables. The total
length variable was excluded owing to the strength of its correlation with several other variables;
this allows it to be used as an independent variable for investigating potential ontogenetic patterns.
Eight per cent of the data were missing; this was handled through within-group mean replacement,
which reduces the variation within each sample.

 

Results

 

The eigenvalues and variance partitioning for the extracted principle components are shown in
Table 14.4. Table 14.5 records the loadings of variables on each component. The first three
components accounted for 77 per cent of the total variation within the hypodigm, so only these

 

TABLE 14.3
Statistics from Repeat Measures Made within ImagePro Plus to Assess Error

 

Calibration
error

Orientation
error (linear)

Orientation
error (angular)

Measurement
error (linear)

Measurement
error (angular)

 

Replications 50 12 12 12 12
mean 0.842 

 

μ

 

m/pixel 0.24 mm 127.5

 

°

 

0.117 mm 147.7

 

°

 

Standard deviation 0.008 

 

μ

 

m/pixel 0.001 0.477 0.005 0.761
error

 

±

 

0.03 

 

μ

 

m/pixel

 

±

 

0.004 mm

 

±

 

1.8

 

° ±0.005 mm ±2.2°

Notes: Error values are based on the difference between mean and the upper/lower value of the range, whichever
produces the larger value. Linear orientation error was assessed using the M element of the O. excavata skeleton,
since this element is the most three-dimensionally curved and so its measurements are most prone to error of this
kind. Angular orientation error was assessed using the S0 element of the O. excavata skeleton. This element also
is three-dimensionally curved but, unlike the M element, possesses an angular measure. Measurement error was
assessed through measurement on an image of an O. excavata P1 element. An image of a small element of lower
resolution was selected so as to maximize the potential error and obtain a "pessimistic" estimate.
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components are considered further. The variance is, however, rather evenly distributed among these
components. This probably reflects the large range of conflicting variation that has been observed
qualitatively within the O. excavata hypodigm, such that this variation cannot be partitioned into
one dominant component by the PCA. The morphological variables that weigh most heavily on
the component axes, as identified by the analysis, are shown in bold in Table 14.5.

The first principal component (PC-1) primarily represents a contrast between dorsal process
length (DPL) and dorsal process denticle packing (DPDP). Elements with high scores on PC-1
have long dorsal processes and wide dorsal process denticle bases; elements with low scores have
short dorsal processes and narrow dorsal process denticle bases. Typically, PC-1 is associated
predominantly with size differences, such as the increase in dorsal process length. 

The second principal component (PC-2) is a contrast between ratio of cusp base width to dorsal
process denticle width (CBW:DPDW) and dorsal process length (DPL). Elements with high scores
on PC-2 have wide cusp bases relative to the average basal width of dorsal denticles and shorter

TABLE 14.4
Eigenvalues and Percentage Variance 
Explained for the First Three Principal 
Components of the PCA Conducted on the 
Global Sample of O. excavata P1 Elements

Component Eigenvalue
Percent of
variance

Cumulative
percentage

1 3.593 35.9 35.9
2 2.179 21.8 57.7
3 1.947 19.5 77.2

TABLE 14.5
Variable Loadings on the First Three 
Principal Component Axes of the PCA 
Conducted on the Global Sample of 
O. excavata P1 Elements

Variable

Variable loadings

PC-1 PC-2 PC-3

VPL 0.786379 0.078479 0.480474
DPL 0.925808 –0.17235 –0.01935
IPA –0.36243 –0.12626 0.575112
CBW 0.615933 0.616282 –0.28534
VPDP –0.60424 0.098606 0.657262
DPDP –0.67723 0.324077 0.206139
CBW:VPDW 0.102695 0.889932 0.224584
CBW:DPDW –0.0875 0.899198 –0.20582
VDN 0.433473 0.109357 0.832007
DDN 0.759578 –0.14293 0.209709

Note: Figures in bold are the values for the variables with
the heaviest loading on that component. See Table 14.1
for key to abbreviations.
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dorsal processes; elements with low scores have narrow cusp bases relative to the average basal
width of dorsal process denticles and have longer dorsal processes.

The third principal component (PC-3) is a contrast between ventral process denticle number
(VPDN) and cusp base width (CBW). Elements with high scores on PC-3 have large numbers of
denticles on their ventral process and narrow cusp bases; elements with low scores have small
numbers of denticles on their ventral process and wide cusp bases.

In order to determine whether there were significant morphological differences between the
samples – indicating discontinuities within the range of variation encompassed by the O. excavata
hypodigm – we conducted a multivariate analysis of variance (MANOVA) on the principal com-
ponent scores. This produced significant results (Wilk's λ = 0.08, F = 22.8, p < 0.001), pointing
towards rejection of the null hypothesis of continuous morphological variation.

Unfortunately, although the large sample number necessitated the use of a MANOVA to test for
discontinuities within the global range of variation, the data-set showed significant deviation from
a multinormal distribution (Mardia multivariate skewness and kurtosis test, p < 0.001) and hetero-
geneous variance (Box's M test, p < 0.001), both of which violate the assumptions of a MANOVA.
Consequently, the results of the analysis of the global data-set must be treated with caution. Never-
theless, if we accept with this caveat that the null hypothesis can be rejected, further testing of the
nature of the discontinuities in the data is worthwhile. Do significant morphological discontinuities
within the hypodigm correspond to populations of O. excavata that are separated in space and time?

In order to address this question, we conducted separate investigations into the spatial and
temporal variation in O. excavata. For each sample, eigenscores from the PCA were plotted to
facilitate visual examination of the data, and canonical variates analysis (CVA) was used to optimize
any clustering. The smaller sample number required for the spatial and temporal analyses allowed
a non-parametric MANOVA (NPMANOVA) to be conducted on the data using a Bray–Curtis
distance measure, following the procedures described by Anderson (2001).

TEMPORAL VARIATION IN THE O. EXCAVATA HYPODIGM

Variation through time was investigated through analysis of a stratigraphic sequence of 12 samples
derived from a small area (approximately 10 × 50 km) in the south-west of the island of Gotland,
Sweden, for which excellent material is available in the collections of Lennart Jeppsson at Lund
University.

Results

Figure 14.2 illustrates how the morphology of the elements from the 12 Swedish samples varies
through time. The specimens are ordinated based on eigenscores on the first two principal compo-
nent axes that bound the morphospace of the hypodigm. As points of reference, the American
topotype elements are also plotted on the same axes; interestingly, they lie at the centre of the
morphospace. Clusters are evident in the Swedish data, varying through time both in position within
the morphospace and in volume of morphospace occupied. The NPMANOVA demonstrates that
morphological differences between the Swedish samples are indeed significant (F = 18.76, p <
0.001). Previous conodont studies have considered such a result sufficient to accept the presence
of multiple species within a sample (e.g. Girard et al., 2004b). In actuality, this result provides
limited information in a taxonomic context, since it does not indicate which samples differ signif-
icantly from which. However, pair-wise comparisons between all samples to establish the pattern
of significant differences are unsatisfactory because each comparison will discriminate sample pairs
based upon different variables, depending on the pattern of variation within those samples.

Furthermore, it is not differences between all pairs of samples that are important; rather, it is
differences between temporally sequential populations. Therefore, to gain an indication of the
significance of the differences in morphology between each sample, a global CVA of the full data
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FIGURE 14.2 Elements from Swedish samples taken at horizons through a stratigraphic succession, ordinated
against the first two principal component axes, based on eigenscores. The axes are standardized, defining the
empirical morphospace of the entire hypodigm. The topotype material (shown as crosses) is plotted for
reference. Elements representing the morphological endmembers of the component axes are illustrated. Grey
and white sections of column represent Primo and Secundo episodes, respectively; black sections represent
events separating these episodes (see text). Approximate age dates are given to indicate sampling density.
(Stratigraphic data from Aldridge et al., 1993 and Jeppsson and Aldridge, 2000.)
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was undertaken. The Swedish elements and topotype material are ordinated in Figure 14.3, based
on the scores from the global CVA, on canonical axes one and two. Ninety-five per cent confidence
ellipses for the samples are shown. Although not strictly equivalent, these confidence ellipses can
provide an approximate surrogate for statistical tests: if the ellipses do not overlap, then the samples
are significantly different at p = 0.05 (Simpson et al., 1960). The line connecting the distribution
centres in Figure 14.3 links the samples in temporal sequence, starting with the oldest sample, 12.
Confidence intervals for the oldest populations (12–6) overlap, forming a single morphological
continuum through time. However, sample 5 differs significantly from samples 4 and 6. Samples
4 and 3 are not significantly different, and the two youngest populations (2–1) differ significantly
from sample 3 and each other. Only samples 1 and 5 are morphologically discontinuous with the
topotype material.

SPATIAL VARIATION IN THE O. EXCAVATA HYPODIGM

Variation through space was investigated through analysis of four spatially separated samples (Aus-
tria, Bohemia, the American topotype material and sample 1 from Sweden). The samples were coeval
to within a million years (see Boucot, 1958; Walliser, 1964; and Walmsley et al., 1974, for age data).

Results

Figure 14.4 shows the elements from the four samples ordinated on the first two principal compo-
nents, scaled as in the previous plots. Some degree of clustering is apparent. The NPMANOVA

FIGURE 14.3 Ordination of O. excavata P1 elements on the first two canonical axes, based on scores from
the global canonical variates analysis. The 12 Swedish samples and topotype material are plotted. Circles
represent 95 per cent confidence intervals; that of the topotype material is dotted. The line links samples in
stratigraphic order, starting with the oldest: sample 12. Inset shows plot with data points removed for clarity.
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demonstrates that the morphological differences among the four samples are indeed significant (F
= 24.66, p < 0.001). Figure 14.5 shows the elements plotted based on the scores from the global
CVA, on the first two canonical axes. Ninety-five per cent confidence ellipses are shown. Confidence
intervals for the Austrian, Bohemian and topotype samples all overlap, indicating these populations
do not differ significantly in morphology. The Swedish elements are significantly different from all
three samples. 

DISCUSSION

TEMPORAL VARIATION IN THE O. EXCAVATA HYPODIGM 

The tests conducted on the Swedish samples demonstrated that statistically significant morpho-
logical differences exist between samples of different ages. Examination of 95 per cent confi-
dence intervals provides an indication of the pattern of these differences. For example, popula-
tions 12 and 6 differ significantly in morphology; however, the confidence intervals of the
stratigraphically intervening populations show overlap, so each population is not significantly
different from the populations temporally above and below it (see Figure 14.3). Thus, there is
a morphological continuity through time amongst the oldest seven samples. The five younger
samples also display significant morphological differences, and there is less morphological
continuity between them. The topotype material overlaps or is morphologically continuous with
all samples, save 1 and 5.

The significant morphological discontinuities are not correlated with the major environmental
changes occurring during the Silurian, which involved switches in oceanic circulation that affected
the degree of nutrient up-welling and planktonic abundance (Primo and Secundo Episodes, Aldridge
et al., 1993; Jeppsson, 1990). For example, three samples from one Primo Episode (samples 4, 5

FIGURE 14.4 Ordination of O. excavata P1 elements from four approximately coeval samples (421–422
million years ago) on the first two principal component axes that bound the entire hypodigm, based on
eigenscores.
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and 6 from the Sproge Primo Episode) differ significantly from one another (NPMANOVA, F =
20.85, p < 0.001; see also Figure 14.3), suggesting that populations do not exhibit consistent
morphological changes in response to such broad-scale changes in environment. More parochial
effects may be overriding the general environmental influences and producing the differences,
raising the possibility of local ecophenotypic responses. This could be tested by examining the
immediate lithological and biotic context of each sample to provide detailed environmental infor-
mation. If a given morphology is consistently associated with particular local environment across
temporal boundaries, ecophenotypy is likely.

One potential difficulty in interpreting the results arises from the nature of the sampling. No
sample locality provided a sequence covering the complete temporal range of O. excavata, so
although the Swedish populations inhabited the same region (an area of approximately 50 × 10 km
of present-day south-west Gotland) through time, each is from a different locality. Consequently,
the apparent changes through time may represent local spatial differences. For example, morphol-
ogy may differ between localities and yet be relatively stable at each, so sampling at different
localities through time will produce a false appearance of temporal changes. This possibility was
evaluated by analysing three coeval samples from different localities on Gotland, each separated
by 5–10 km. An NPMANOVA showed no significant differences among the three samples (F =
1.839, p > 0.1). Of course, sampling of multiple populations from different localities at every time
horizon is necessary to eliminate the confounding effect of spatial variation completely, but this
result suggests that the morphological differences observed through time are not reflecting geo-
graphic variation.

If spatial and ecophenotypic variation is unlikely, then the differences between the samples
probably represent genuine morphological changes through time. Those younger samples whose

FIGURE 14.5 Ordination of O. excavata P1 elements from four approximately coeval samples (421–422
million years old) on the first two canonical axes, based on scores from the global canonical variates analysis.
Circles represent 95 per cent confidence intervals; that of the topotype material is dotted.
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confidence intervals overlap the topotype material probably do belong to O. excavata; conversely,
populations 1 and 5 do not appear to be part of O. excavata. The non-directional and continuous
nature of the morphological change in the sequence of older populations (12–6) would suggest
stasis within a single species, in accordance with our null hypothesis. However, the morphological
continuity is also compatible with anagenetic speciation, perhaps also reflected in the significance
of the morphological differences between sample 12 and sample 6. A higher sampling density is
required to better test these alternatives against a random walk (Bookstein, 1987).

SPATIAL VARIATION IN THE O. EXCAVATA HYPODIGM 

The tests conducted on the four coeval samples demonstrated that statistically significant morpho-
logical differences exist between spatially separated populations. Examination of 95 per cent
confidence intervals indicated that a population from Sweden differed significantly from coeval
samples in Austria and Bohemia, and also from the topotype material. During the Silurian, some
of these populations were separated by major landmasses and wide oceans (Scotese, 2001). These
would probably present significant barriers to reproductive coherence between populations. More-
over, these populations would be exposed to different environments and selection pressures. Such
differences would be expected to promote genetic and morphological divergence; indeed, significant
morphological differences are present between the samples, including that of the topotype material.
Again, more detailed study of local conditions will be required to rule out ecophenotypic expla-
nations for the differing morphologies.

BIOLOGICAL INTERPRETATION OF MORPHOLOGICAL VARIATION IN THE

O. EXCAVATA HYPODIGM

Understanding the biological context of the observed differences is also critical to test for ecophe-
notypic or ontogenetic causes of the morphological variation demonstrated earlier to exist in
spatiotemporally discrete samples of O. excavata. It may also provide additional information
regarding the processes that could potentially produce speciation.

The variables that load most heavily on the first principal component relate to the size and
shape of the dorsal process. In conodont taxa for which function has been investigated rigorously,
this is the food-handling process of the P1 element (Donoghue and Purnell, 1999). Increasing the
length and denticulation of the process has the obvious potential advantage of increasing surface
area for shearing of food particles, along with possible benefits from the shape alteration that change
in denticulation produces. Thus, the morphological variation may reflect differences in diet between
the different populations. Such resource partitioning in extant populations is known to lead to
divergent natural selection and morphological differentiation (see Dayan and Simberloff, 2005, for
a review with examples). Variations in diet can be tested for using other lines of evidence – for
example, examining whether element microwear differs between populations (Purnell, 1995), indi-
cating that different food items are being processed. Also, the different morphologies could be
modelled (Evans and Sanson, 2003) to investigate how observed changes in element structure might
affect function, helping to constrain the efficiency with which elements of different configurations
could process various hypothesized food types. The latter approach may also provide indications
of how other characters of the element contribute to food processing or element articulation,
particularly those that load heavily on the other component axes.

CONCLUSIONS

In this chapter we have reviewed the generally unacknowledged difficulties in morphometric
analysis of conodonts and have presented a new, standardized, semi-automated and widely appli-
cable morphometric protocol that addresses these difficulties. We have provided an example of its
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application by testing the hypothesis that the taxonomically problematic conodont species
O. excavata is monospecific. This has demonstrated the efficiency of the protocol in constraining
the nature of the morphological variation within the O. excavata hypodigm. We have determined
that significant morphological discontinuities are present between O. excavata populations that are
separated in time and space. Moreover, many of these populations have been shown to differ
significantly in their morphology from the topotype material of O. excavata. Analysis of these data
produced by the protocol has also revealed which morphological characters in O. excavata best
characterize these discontinuities. This permits interpretation of the variation in a biological context,
which suggests that these differences are most probably associated with variations in diet.

Biological and spatiotemporal interpretation of the morphological discontinuities suggests that
there may be multiple species present in the O. excavata hypodigm. We have outlined further
independent tests that could more rigorously test these hypotheses, but they are beyond the scope
of the work presented here. If the morphotypes identified here actually represent multiple species,
then the high discriminatory power of our protocols to distinguish between them suggests that these
techniques have potential to provide a generalized tool for conodont species identification that is
methodologically standardized and can produce repeatable and reproducible results. Hopefully, the
methods and results presented in this chapter will also catalyze more comprehensive morphometric
analysis of conodonts using these protocols. We believe such engagement with morphometrics is
a crucial first step if a fully automated protocol is to be developed and used effectively for conodont
taxonomy, a methodological advance that would contribute substantially towards realizing the
potential of the rich fossil record of conodonts for testing evolutionary hypotheses.
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INTRODUCTION

 

Comparative studies of a broad spectrum of living mammal species have provided many morpho-
logical correlates of ecological categories. Thus, certain morphological features enable some degree
of discrimination among various mammalian ecological guilds, making inferences about the adap-
tations of extinct species possible. For example, the crown length of the cheek teeth (hypsodonty)
has been used often to distinguish grass-eating grazers from leaf-eating browsers (Janis, 1988).
Several other morphological features (e.g. skull length, muzzle width) are also correlated with
grazing or browsing feeding strategies (Janis 1990, 1995). However, complete discrimination among
such categories is not achieved by any single measurement or observation. That is, the range of
values for any morphological variable in any individual group, whether using raw variables or
variables that have been size adjusted, may exhibit considerable overlap with that of the other
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feeding groups. As a consequence, inferences about the adaptations of past species often cannot
be precise. 

The main reason for the existence of this overlap in variable ranges is the fact that any
morphological adaptation involves a complex pattern of covariation among many skeletal characters.
Thus, the manner in which any morphological trait is modified for a given adaptation depends on
the nature of modifications occurring in the rest of the skeletal morphology. Indeed, ecological
adaptations may be better characterized by complex morphological patterns that correspond to
different regions of a multidimensional theoretical morphospace than defined by single variables.
Such multidimensional regions cannot be represented directly within a bidimensional surface, but
subspaces optimized for the task of group characterization can be recognized with the help of
multivariate statistical techniques. 

Identification-based problems like this have been commonly dealt with using principal com-
ponents analysis (PCA) or discriminant analysis (DA). Interestingly, machine learning is also a
process concerned with uncovering patterns, associations, and statistically significant structures in
data, though it employs a different approach. Principal components analysis, for example, describes
the diversity of shapes, simplifying descriptions of variation among individuals. Similar to PCA,
Bayesian networks identify hidden regularities in data without using direct information about class
membership (Friedman and Koller, 2003). In essence, the first principal component corresponds to
the longest axis (linear combination of the variables) of the cloud of samples in the morphospace
defined by the variables, and each new component corresponds to the longest axis orthogonal to
the previous ones. Bayesian networks identify minimum sets of variables among which a conditional
dependence exists. The analysis of the conditional distributions allows identifying regions with a
special concentration of samples (Friedman and Koller, 2003).

Similar to the discriminant analysis, decision trees (DTs) are designed to identify patterns
characterizng a specified number of disjoint groups, using direct information about the membership
of the samples (Quinlan, 1985). While DA generates equations consisting of linear combinations
of the variables, decision trees provide branching trees with decisions at each branch point.

In this study DA and DT will be compared in the context of identifying morphological patterns
in the jaws of ungulates characterizing a number of feeding groups. The goal of these analyses is
to develop tools for the automated recognition of the feeding guild (e.g. grazers, browsers) of any
ungulate, extant or extinct. As an example of application, these tools will be used to recognize the
feeding adaptations of

 

 Prosthennops xiphodonticus

 

, a peccary (tayassuid) from the middle Miocene
in North America.

 

METHOD

 

Decision trees represent a type of machine learning whereby computer systems acquire knowledge
inductively from the input of a number of samples. The product of this learning is a piece of
procedural knowledge that can assign a hitherto unidentified object to one of a specified number
of disjoint classes. Knowledge is explicitly represented as a branching tree with decisions at each
branch point, rather than being implicit in algorithms (as in the case with DA). In this study, the
initial input is morphological information from the jaw of extant species of ungulates, plus infor-
mation about their feeding guild membership. All this information is used by the DT technique to
characterize each guild according to the morphology of the jaw of its species.

Supplying taxonomical information instead of ecological, DTs could also be used to characterize
species, subspecies or even populations or higher taxa morphologically (e.g. genera, family). An
interesting advantage of this methodology is that qualitative and quantitative variables can be used
simultaneously.

The trees generated contain a great amount of information (knowledge) about the relationship
between the variables and the categories. In this study, this knowledge is about the relationship
between morphology and adaptation. Thus, the system learns and 'explains', at the same time. This
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is an important difference with regard to other techniques of machine learning, such as the neural
networks, which work as a 'black box'.

Discriminant analysis uses a different approach. It describes the diversity of morphologies
simplifying descriptions of differences between groups, generating equations and linear combina-
tion of the variables. The variables involved in the discriminant functions are those that contribute
to minimize the ratio of between-groups to within-groups variance (Davis, 1986). From a geometric
point of view, stepwise discriminant analysis generates new axes in the space defined by those
variables involved in the pattern that characterize each group, in the direction in which the specified
classes are farthest apart (Figure 15.1a). A DT directly assesses the region occupied by each group
in that morphospace.

Using DA, a good discrimination between the groups compared (e.g. between grazers and
browsers) is often too hastily interpreted as evidence that the discriminant functions captured the
patterns characterizing each group. However, there is a probability of obtaining a good discrimination
merely by chance. The possibility that correlations are not merely obtained by chance is usually
tested with the statistical significance of the result, usually estimated using the Mahalanobis distance
between the group centroids and the value of Wilk's lambda (Davis, 1986). However, as with other
statistical techniques, DA assumes the statistical independence of the samples. Species do not
represent independent samples of a statistical distribution as a consequence of their phylogenetic
inter-relationships (Felsenstein, 1985; Harvey and Pagel, 1991). This is a variant of the classic type-
1 error in statistics, where the apparent relationship is due to the operation of an extraneous variable
(phylogeny in this case) on the observed variables. Thus, simple statistical analysis cannot be
performed in studies of this nature, though this has been the most common approach. 

There are several methodologies whereby continuous variable data can be corrected for the
effects of phylogenetic patterning (e.g. phylogenetic autocorrelation; see Gittleman and Kot, 1990).
However, in removing the effect of the phylogeny, some important information about morphology
and adaptation can be lost. For this reason, instead of removing the effect of the phylogeny, a non-
statistical approach is used in this study, and no descriptive statistics are so presented. By using a
non-statistical approach, the goals of DA can be realized in a way that allows the recognition of
phylogenetic patterning, thus allowing data analysts to compensate for its effect (see Mendoza and
Palmqvist, in press).

The probability of obtaining a good discrimination by chance increases with the number of
variables involved in the discriminant function, so by minimizing the number of variables this
probability is also minimized. This can be achieved by increasing the level of significance required

 

FIGURE 15.1

 

Characterization of two hypothetical taxa using discriminant analysis (A) and decision trees
(B). Although both variables in each group show a considerable overlap, both methodologies allow the
identification of the limits of each group in the morphospace defined by the variables.
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for their incorporation within the discriminant functions. On the other hand, the effects of phylogeny
can be minimized as well, maximizing the taxonomic evenness of the sample. This can be achieved
by weighting the species of those taxonomic groups (e.g. families) under-represented in the sample,
with respect to those that are better represented (this weighting is one of the possibilities that the
program used, SPSS 13.0, provides to perform DA). In statistical analyses, this weighting would
violate the rules of phylogenetic independence, but not using this non-statistical approach. 

Weighting the species of the under-represented taxonomic groups, the analyses can be per-
formed with an equal contribution from all of the groups. In addition, this can be made keeping
constant the total weight of the samples. This allows us to assess more realistically the significance
of the variables in the discrimination. In order to adjust the evenness at the family level, for example,
the species from each family have to be weighted according to the following equation:

 

WF

 

x

 

 = 

 

MNS

 

/

 

NSF

 

x

 

(15.1)

where 

 

WF

 

x

 

 is the weighting factor of the species from family 

 

x, MNS

 

 is the mean number of species
per family (total number of species divided by the number of families), and 

 

NSF

 

x

 

 is the number
of species belonging to family 

 

x.

 

In this way, the final weight of each family in the analysis is the same, and the weight of the
total number of samples does not change. Using a similar set of species and morphological
measurements to infer the body mass of the extinct mammal species, Mendoza et al. (2006) showed
that increasing the taxonomic evenness in this way also increased the predictive capacity of the
resulting algorithms over 20 test species that were not used to obtain the functions.

As mentioned earlier, the DT technique is based in the division of the multidimensional
morphospace into boxes containing (to the extent possible) species of each defined group (Figure
15.1B). In this way, the region of the morphospace occupied by the group of species belonging to
the same ecological guild is outlined. These divisions are represented explicitly as branching trees
with decisions defining each branch point (see Quinlan, 1985, and Michie et al., 1994, for more
detailed information about how the branch points are obtained). These trees allow new individuals
to be assigned to a specified number of groups (e.g. feeding guilds, Figure 15.1B).

Although one of the main goals of this study is to compare the DT technique with the DA
performing recognition of feeding guilds, no discriminant functions or decision trees are directly
compared. Instead, a comparison is made between the patterns identified by both techniques as
characteristic of known feeding guilds. The partial representation of these patterns can be used as
tools for guild recognition (Mendoza and Palmqvist, 2006a, b; in review). This alternative procedure
is less automated than the direct application of trees and functions, but may lead to the understanding
of the relationship between the morphology of the jaw of the ungulates and their feeding adaptations.
In fact, the partial representation of these patterns provides the exact localization of the samples,
and so contains much more information than the trees and functions from which they were inferred.

For identifying the patterns, a simple DA was not performed, but instead was used as a technique
of data mining of knowledge discovery (Cios et al., 1998). Discriminant analysis exploits the
complementary information contained in morphological variables that would otherwise be dismissed
because their contribution is only in combination with others. In addition, it rules out variables for
which discriminant information is already present in the result. Thus, under this protocol some
variables may not be included in the discriminant function, in spite of being involved in the
morphological characterization of a group. Since our focus is not to obtain a function that allows a
good discrimination per se, but to understand as much as possible about the pattern characterizing
the groups analysed, we repeated the analysis, excluding some of the variables important in the
previous analysis. In this way, more than one function involving different combinations of variables
was obtained. These results were then analysed for changes in the significance values of the variables
throughout the stepwise process to identify the patterns (Mendoza and Palmqvist, 2006a; in review).
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Because there are different ways to divide a multidimensional morphospace into boxes con-
taining samples of each defined group, different trees can be generated for each discrimination.
Similar to DA, the probability of obtaining a good discrimination by chance increases with the
number of variables involved in the tree solution. Thus, a number of decision trees are generated
for each discrimination in order to select the ones that have the lowest number of branches and
misclassifies the minimum number of species.

As a final step of the data mining performed with both methodologies, the patterns identified
(partial patterns indeed) are represented graphically. These representations contain much more
information than the trees and functions from which they were inferred.

Adaptive boosting is a different approach in the use of DTs, proposed by Freund and Schapire
(1996). The notion is to generate many DTs, rather than just one. Each tree pays special attention
to those cases misclassified by the other trees. The process continues for a predetermined number
of times, generating the same number of trees, each one misclassifying a number of samples. When
a new sample (e.g. an extinct species) is analysed, each tree predicts a category (e.g. its guild
membership). The number of predictions for each category is counted to determine the final
classification. In this fashion, a result is obtained that takes into account many different features
(e.g. morphological traits) related with the difference between the categories. This approach is not
used here for identifying patterns, but to supply additional information about the feeding charac-
terization of

 

 P. xiphodonticus

 

 based in a wider range of morphological information.
The computer system was trained on 138 extant species of ungulates to perform the morpho-

logical characterization of five feeding guilds characteristic from forested habitats: omnivores (six
species vs. 132 herbivores), selective feeders (13 species vs. 45 non-selective brachydont species),
mixed feeders from forested habitats (21 species vs. 24 browsers), browsers (24 species vs. 21
mixed feeders) and high-level browsers (6 species vs. 37 other brachydont species, including 24
browsers and 13 selective feeders). Jaw morphology was captured using six size-adjusted variables.
Size is an important indicator of adaptation, but using mixed size–shape variables is more difficult
than using only shape information.

In order to obtain these variables, six out of seven measurements depicted in Figure 15.2 (all
of them less the lower molar row length LRML) were divided by LMRL – one of the craniodental
variables best correlated with body mass in extant ungulates (Janis, 1990, 1995) scaled isometrically,
with 

 

r

 

2

 

 values of 0.94. The seventh variable is the hypsodonty index, estimated as crown height of
the third lower molar divided by the width of the same tooth. It was not size transformed using
LMRL because it is already size independent.

The feeding adaptations of 

 

P. xiphodonticus

 

, a tayassuid that lived during the middle Miocene
in North America, were analysed as an example of application of this methodology. The only
specimen available from this species was a jaw fragment from Railway Quarry A (UNSM 70078,
Valentine Formation, middle Miocene of Nebraska, ~11.5 Mya).

 

FIGURE 15.2

 

Measurements used in this investigation, in addition to the hypsodonty index (HI = unworn
third lower molar height/width).
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RESULTS AND DISCUSSION

I

 

DENTIFICATION

 

 

 

OF

 

 

 

THE

 

 M

 

ORPHOLOGICAL
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ATTERNS

 

Morphological Characterization of Extant Omnivorous Ungulates

 

No discriminant functions obtained allowed for a full discrimination between omnivores and
herbivores among the entire range of extant ungulates. However, changes in the significance values
of the variables throughout the stepwise procedure of discriminant analysis (see Mendoza and
Palmqvist, 2007a) revealed a simple pattern that includes only two variables (HI and JLB) provides
an almost perfect discrimination (Figure 15.3A). In the morphospace defined by these two variables,
the six species classified as omnivores occupy the lower left vertex (true omnivores, black symbols).

There are some herbivores near this region of the morphospace. Some of these do not belong
to the Order Artiodactyla (which includes the suines plus most of the herbivorous ungulates) and
include some taxa with a low hypsodonty index that belong to the orders Perissodactyla (i.e. tapirs
and certain rhinos) and Hyracoidea (i.e. tree hyraxes). Most non-equid perissodactyls and hyracoids
have relatively short lower jaws in comparison with most artiodactyls (i.e. a low value of JLB; see
Janis, 1990, 1995). Thus, their placement in this segment of the morphospace likely reflects a
phylogenetic pattern rather than a similarity of functional morphology.

However, there are also a number of artiodactyls traditionally classified as herbivores that,
while they cannot be considered as true omnivores, take a very broad spectrum of food items in
their diet, many of them even including some meat, eggs, carrion or crustaceans. One of them, the
Reeves's muntjac

 

 

 

(

 

Muntiacus reevesi

 

),

 

 

 

is even reported to be able to hunt small mammals. These
taxa were classified as herbivores to perform the analyses, but identified as semi-omnivores

 

 

 

in
Figure 15.3. They include, in addition to the Reeves's muntjac, the water chevrotain (

 

Hyemoschus
aquaticus

 

), the Indian muntjac (

 

Muntiacus muntjak

 

), the blue duiker (

 

Cephalophus monticola

 

), the
mouse-deers (

 

Tragulus napu,

 

 

 

T. javanicus

 

 and 

 

T. memmina

 

), the giant forest hog (

 

Hylochoerus

 

FIGURE 15.3

 

Trees 1.1 and 1.2 and distribution of ungulates in two partial representations of the pattern
characterizing the omnivores, revealed by both trees. Herb: herbivores (open circles); Omn: omnivores (black
circles);

 

 

 

Prxi: 

 

P. xiphodonticus

 

 (cross); semi-omnivores (grey circles); high-level browsers (dotted circles);
rings: tapirs.
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meinertzhageni

 

)

 

 

 

and

 

 

 

the duiker (

 

Cephalophus dorsalis

 

). The four tapir species are also situated
next to the omnivores (Figure 15.3, ring symbols). As mentioned previously, non-equid perisso-
dactyls could occupy this region because of phylogenetic autocorrelation rather than a similarity
of feeding adaptation. However, although tapirs can be considered generalized browsers, the diet
of the whole family includes fruits, leaves, stems, sprouts, small branches, grasses, aquatic plants,
tree bark, aquatic organisms, cane, melon, cocoa, rice and corn from plantations (Jackson et al.,
1977; Dubost 1984; Walther, 1990; d'Huart, 1993; Nowak, 1999; Wenninger and Shipley, 2000;
Huffman, 2005; Myers et al., 2005). 

The DT technique also revealed the pattern HI-JLB (tree 1.1, Figure 15.3A) and another one
involving three that also distinguishes omnivorous ungulates from herbivorous ones (tree 1.2, Figure
15.3B). Only those species in which the HI value is lower than 1.34 are depicted in Figure 15.3B.
This value corresponds to the first division of tree 1.2 (Figure 15.3; see first branch). There are
only 13 species sharing these low HI values with the six true omnivores. Four are tapirs (Figure
15.3B, ring symbols), another four are semi-omnivores (grey symbols) and the other four are species
adapted to browse from high levels of the canopy (identified as high-level browsers, dotted circles).
The four semi-omnivores share HI < 1.34 with the true omnivores, in addition to similarly low
values of JMA (relative posterior jaw length), but higher values of LPRL (relative lower premolar
row length). The four high-level browsers differ from true and semi-omnivores in having higher
values of JMA.

According to these results, truly omnivorous ungulates are characterized as being different from
herbivorous ungulates by a very low hypsodonty index (HI) in combination with a relatively short
anterior and posterior jaw (JLB and JMA, respectively), as well as a relatively short lower premolar
row (LPRL). Thus, four variables, at least, are involved in the morphological patterns characterizing
the omnivores. In the four-dimensional morphospace defined by these variables, all the species
would be contained in a polyhedron with perpendicular edges. Omnivores would occupy a small
region in one of its 16 vertices and other ungulate species with a broader diet (i.e. semi-omnivores)
would be placed around them.

The fact that semi-omnivorous species show a morphological pattern similar to the one captured
by two independent trees as characteristic of the omnivores (1.1 and 1.2) supports these results,
and hence the suitability of the DT technique for identifying morphological patterns.

It is worth mentioning that, through use of this technique, not only was it possible to identify
the more complex pattern captured by tree 1.2, but it was also possible to understand how the
morphology of the omnivores differed from the rest of the ungulate species. There are discriminant
functions involving three or four variables that allow for a full discrimination between two groups,
but the inspection of their coefficients and variables has not led to a direct understanding of the
relationship between morphology and adaptation.

 

Morphological Characterization of the Selective Feeders

 

These species mainly feed on fruits and other non-fibrous soft material. A discriminant analysis
between this group and the other herbivores (browsers and mixed feeders from forested habitats)
identifies a simple pattern that characterizes the selective feeder ungulates – that is, a low hyps-
odonty index (HI) – in combination with a relatively short posterior portion of the jaw (JMA,
Figure 15.4A). The same combination (HI-JMA) appears in most of the decision trees generated.
Using this combination, tree 2.1 misclassifies four species, but in combination with MZW (relative
muzzle width), tree 2.2 misclassifies only two of these four species (Figure 15.4B) and shows that
selective feeders are characterized as different from the rest of the brachydont species not only by
a low hypsodonty combined with a relatively short posterior portion of the jaw (JMA), but also
by a relatively narrow muzzle (MZW). In Figure 15.4B, only species where HI < 1.95 were
depicted. As in the case of tree 1.2, this value corresponds to the first division of tree 2.2 (Figure
15.4, first branch).
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According to these results, HI, JMA and MZW, at least, are involved in the morphological
patterns characterizing the species adapted to feed mainly on fruits and other non-fibrous soft
material. In the three-dimensional, perpendicular-edges polyhedron containing all the species,
selective feeders occupy a small region around one of its eight vertices.

 

Morphological Characterization of Browsers and Mixed Feeders

 

Browsers (Br) feed predominantly on dicotyledonous plants, whereas mixed feeders (MF) feed on
both grass and dicotyledonous plants, depending on the availability. The best function obtained to
discriminate between both groups involves only two variables, JMC (relative maximum width of
the mandibular angle) and MZW (relative muzzle width), but their combined representation does
not support a good discrimination.

In contrast, several trees involving only three variables (four branches), misclassify very few
species. These trees always group the mixed feeders in the same branch, while the browsers are
often distributed in different branches. This shows that there is not a single pattern characterizing
the whole group of browsers with regard to the mixed feeders. In spite of all browser species
sharing a similar diet, this broad group is made up of different, more narrowly defined morphological
groups. The inspection of tree 3.1 (Figure 15.5) reveals that, in addition to the typical browsers
from forested habitats (made up by 13 species in the data-base), there is a small group of five
species that dwell in more open and dry non-forested habitats, and another five species adapted to
feed from high levels of the canopy (the aforementioned high-level browsers).

The results obtained using DTs are presented in Figure 15.5. The detailed analysis of this figure
supplies a great amount of information about the morphological adaptations of mixed feeders and
the three ecological groups of browsers. Figure 15.5 (tree 3.1) shows that mixed feeders (fourth
branch, black circles) mainly differ from those browsers dwelling in non-forested habitats (third
branch, grey circles) in having a wider muzzle (MZW). However, both groups share a short
mandibular angle (JMB, plot a), a short lower premolar row (LPRL, plots b, d), a short anterior

 

FIGURE 15.4

 

Trees 2.1 and 2.2 and distribution of ungulates in two partial representations of the pattern
characterizing the selective feeders, revealed by a discriminant analysis and trees 2.1(A) and tree 2.2(B). SF:
selective feeders (black circles); NS: non-selective feeders (open circles); high-level browsers (dotted circles);
Prxi:

 

 P. xiphodonticus

 

 (cross).
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jaw (JLB, plots a, b) and higher values of hypsodonty (HI, plot c). In fact, both groups are so
similar that trees involving fewer variables often misclassify this group of browsers as mixed feeders.

From high-level browsers (second branch, dotted circles), mixed feeders mainly differ in the
shorter anterior jaw (JLB), although this difference is less marked in those species with a narrower
muzzle (MZW, Figures 15.5A and 15.5B). A broken line outlines the region occupied by high-
level browsers in the subspace defined by these two variables, in combination with JMB. Both
groups share a shorter mandibular angle (JMB, Figure 15.5A). Finally, mixed feeders are very
different from the typical browsers (first branch, empty circles) because these show a deeper

 

FIGURE 15.5

 

Trees 3.1 and 3.2, and distribution of ungulates in four partial representations of the pattern
characterizing mixed feeders from closed habitats with regard to three types of browsers (see text), revealed
by trees 3.1 and 3.2 and another two trees not represented. Br: typical browsers (open circles); MC: mixed
feeders (black circles); HBr: high-level browsers (dotted circles); OH: browsers from non-forested habitats
(grey circles); Prxi: 

 

P. xiphodonticus 

 

(cross).
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mandibular angle (JMB, Figure 15.5A), are less hypsodont (HI, Figure 15.5C) and have longer
lower premolar rows (LPRL, Figures 15.5B and 15.5D).

In short, five variables, at least, are involved in the morphological patterns characterizing mixed
feeders regard to these three ecological types of browsers. In the five-dimensional, perpendicular-
edges polyhedron containing all these species, mixed feeders would occupy a region around one
of its 32 vertices, and each kind of browser would also occupy more or less well-defined regions.

 

Morphological Characterization of High-Level Browsers

 

In the former section, tree 3.1 was generated to characterize morphologically browsers and mixed
feeders with regard to each other. However, it revealed a simple pattern involving three variables
(i.e. JMB, JLB, MZW), allowing for a full discrimination between high-level browsers and both
other types of browsers and mixed feeders from forested habitats (see Figure 15.5A, dotted line).
The new analyses described in this section were performed specifically to characterize the group
of ungulates adapted to feed from high levels of the canopy, with regard to other browsers and
selective feeders.

Both the DA and the DTs revealed three different partial patterns related to the relative length
of the anterior portion of the jaw (JLB) that make a full discrimination between both groups possible
(Figure 15.6). JLB alone does not support a full discrimination, but combined with the width of
the jaw at the level of the muzzle (MZW, Figure 15.6A), the maximum width of the mandibular
angle of the jaw (JMC, Figure 15.6B) or the lower premolar tooth row length (LPRL, Figure 15.6C),
the discrimination is complete. Thus, the anterior jaw is longer in the high-level browsers than in
other types of browser species, but this feature is less pronounced in those species having a narrower
muzzle (MZW, as revealed by tree 3.1), a wider mandibular angle (JMC, with which JLB seems
to be correlated; Figure 15.6B) or a shorter lower premolar row (LPRL). The posterior jaw (JMA)
is also especially longer in high-level browsers, except in the dibitag (

 

Ammodorcas clarkei

 

), and
both JLB and JMA (anterior and posterior portions of the jaw) are correlated (Figure 15.6D).
According to the results obtained with both methodologies, one simple morphological trait char-
acterizes the jaw of the high-level browsers. This is elongation, which seems an obvious adaptation
to browse from trees and bushes above its body height.

 

Simultaneous Characterization of the Feeding Guilds

 

Six disjoint groups were used in these analyses because browsers from non-forested habitats were
specified as a feeding guild different from typical and high-level browsers. Trees 5.1 and 5.2 (Figure
15.7) were selected. Both have nine branches, involve six variables (all less JD, which is not
involved by any pattern) and misclassify only six species. Some complementary information about
the pattern characterizing each feeding guild can also be obtained from these trees. However, they
are mainly proposed here as tools for a completely automated recognition of the feeding guild in
ungulates from the morphology of the jaw. In fact, the program used (See5, vers. 2.01), allows the
automated assignment of any new sample (e.g. fossil species) to one of the groups. Using the
adaptive boosting approach, the program allows the generation of up to 100 trees and determination
of the percentages that classify the unknown sample into each group.

 

ASSESSMENT OF THE METHODOLOGY

 

The patterns proposed here, especially those identified using DT, show a very high capacity of
discrimination. However, the high percentage of species correctly reclassified by these patterns
cannot be considered, at least in principle, as a good estimate of their predictive accuracy for new
species (e.g. extinct ones) because the samples discriminated are the same ones that were used for
identifying the patterns. However, if one or more of the species that are well reclassified by one
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of these patterns are excluded before performing the same analysis, and the same pattern is obtained,
then it can be accepted that the methodology shows a predictive capacity.

In order to assess the ability of this method for generating tools with predictive capacity,
different test analyses were conducted for each discrimination process, excluding one or more
species each time. Although the coefficients of the functions obtained changed slightly and some-
times the values of bifurcation of the trees as well, the variables involved and the patterns revealed
by them are almost always the same as the ones obtained before by excluding the test species.
Only when the test species was one of the few placed in a border zone between the guilds was its
characterization uncertain. This could be considered as a limitation of the methodology or may
reflect a limited capacity of the shape variables for capturing completely relevant aspects of the
morphology of the specimens (in terms of autecological adaptations).

However, it could also be that the morphological adaptation of such species was really inter-
mediate, as in the case of the semi-omnivores (grey circles, Figure 15.4). Regardless, most of the
species are not situated very close to the limits between the guilds. Thus, we can accept that most

 

FIGURE 15.6

 

Distribution of ungulates in four partial representations of the pattern characterizing high-level
browsers. Open circles: non-high-level browsers and selective feeders; dotted circles: high-level browsers;
cross:
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are well characterized. The high percentage of species correctly reclassified by these patterns can
be considered as an estimate of their predictive capacity over new species (e.g. extinct species).
The robustness of the patterns identified here is a consequence of its simplicity and of the fact that
they involve only very few and very significant variables. 

For example, in the case of the discrimination between herbivores and omnivores using DT,
15 randomly selected herbivores were excluded at the same time, and an identical HI-JLB pattern
was obtained. Visual inspection of Figure 15.3 reveals that the weight of a few herbivorous species
is not enough to change the high significance of this morphological pattern. Even when the suiform
species (including the six omnivores and the three herbivores), which were over-weighted, were
excluded (one of them each time), the same HI-JLB pattern was obtained. The only exception was
the Chacoan peccary (

 

Catagonus wagneri

 

). When this species was previously excluded, a different
morphological pattern was obtained, but this pattern also classified the Chacoan peccary correctly,
placing it close to other omnivores.

The rest of the discriminations always resulted in the same patterns when different species (one
each time) were previously excluded. Only in the case of the characterization of the high-level
browsers were the results different. More specifically, when the dibitag (

 

Ammodorcas clarkei

 

, Amcl;
Figure 15.6) was excluded, the patterns identified were different. Since both JLB and JMA alone
allow a complete discrimination when the dibitag was excluded, trees including any of them are
obtained, inducing one to conclude that the relative length of the anterior or posterior portion of
the jaw is enough to determine whether an ungulate species is or was a high-level browser. In fact,
since only one sample is involved, when JLB is combined with any other variable, there is a not
inconsiderable probability that the dibitag becomes correctly reclassified only by chance.

Using discriminant analysis, when the dibitag was excluded, the pattern depicted in Figure
15.6D was obtained. As this figure shows, this pattern also misclassifies the dibitag. However, when
the dibitag is excluded but high-level browsers are characterized regard to the rest of feeding guilds
(all together), the same pattern as tree 3.1 is obtained. This pattern characterizes high-level browsers
completely and classifies the dibitag correctly. This could mean that the wider the taxonomic and
ecological diversity of the sample is with regard to which a group is discriminated, the higher is
the predictive capacity of the pattern identified.

According to these results, we could conclude that the DT technique is superior to the non-
statistical approach of discriminant analysis, especially because it makes an easy interpretation of
the patterns possible. However, other investigations (Mendoza and Palmquist, in review) have
revealed that some important patterns can only be identified with the help of discriminant analysis.

 

FIGURE 15.7

 

Trees 5.1 and 5.2 for the automated recognition of the feeding adaptations of ungulates. Br:
typical browsers; HBr: high-level browsers; Obr: browsers from non-forested habitats; Omn: omnivores; SF:
selective feeders; MC: mixed feeders from forested habitats.

Tree 5.1 Tree 5.2
• JLB > 2.01 • JLB > 2.01:
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Thus, both methodologies are useful for identifying morphological patterns underlying different
ecological guilds (or other biological entities), and should be considered as complementary.

 

CHARACTERIZATION OF THE FEEDING ADAPTATIONS OF

 

 
PROSTHENNOPS XIPHODONTICUS

 

There are three extant species of peccaries in the family Tayassuidae, also known as the pigs of
the New World. All are omnivorous. However, among the more diverse Old World suid family, the
Suidae (true pigs), while most species are omnivorous, some are herbivorous (e.g. the warthog,

 

Phacochoerus aethiopicus

 

). Thus, it is interesting to investigate whether any extinct peccary, such
as 

 

P. xiphodonticus,

 

 was omnivorous, as with the extant peccaries, or whether it had a different
diet, such as a greater degree of herbivory. 

 

P. xiphodonticus 

 

shares with the suiform omnivores a
very low hypsodonty (HI), but both the anterior and posterior jaw, as well as the lower premolar
row, are too long for being omnivorous or even semi-omnivorous (see Figure 15.3). Using the
adaptive boosting algorithm, 7 out of 10 trees generated classify

 

 P. xiphodonticus

 

 as herbivore.

 

Prosthennops xiphodonticus 

 

was extremely brachydont (very low hypsodonty index), so it is
possible to rule out the hypothesis that it was a grazer, or even a mixed feeder in open habitats
(see Janis, 1988). Within the categories of brachydont herbivorous ungulates, it could be, at first,
selective feeder, browser or mixed feeder from closed habitats.

 

Prosthennops xiphodonticus

 

 shares with selective feeders both a low hypsodonty and a narrow
muzzle, but its posterior portion of the jaw is too long to be specialized in feeding on fruits and
other non-fibrous soft material (see Figure 15.4). In addition, using the adaptive boosting algorithm,

 

P. xiphodonticus

 

 is also classified as a non-selective feeder by 9 out of 10 trees generated.

 

Prosthennops xiphodonticus

 

 shares with the mixed feeders a shorter mandibular angle (JMB,
plots a, b), but it differs in the longer anterior jaw (JLB), showing, in addition, a relationship with
the width of the muzzle characteristic of the high-level browsers (Figure 15.5A). In fact, tree 3.1
places it in the second branch, in which most of the species are high-level browsers (Figure 15.5).
Moreover, many of the partial representations of the patterns characterizing different feeding guilds
place to

 

 P. xiphodonticus

 

 very close to the high-level browsers (see Figures 15.3A, 15.3B, 15.4A
and 15.4B), and it shows very clearly the typical elongated jaw characterizing this group of species
adapted to browse from high levels of the canopy (Figure 15.6). 

When the six feeding guilds were characterized simultaneously, trees 5.1 and 5.2 were selected
(Figure 15.7). Both have nine branches, misclassify only six species, and classify to

 

 P. xiphodonticus

 

as a high-level browser (Figure 15.7). Using the boosting algorithm, 90 out of 100 trees generated
classify this extinct peccary as a high-level browser.

As we saw in the characterization of the high-level browsers, the length of the anterior jaw
plays a very important role. Thus, in order to test if this variable alone determines the character-
ization of 

 

P. xiphodonticus

 

 as a high-level browser, new analysis was performed excluding JLB.
Out of 100 trees, 64 classified 

 

P. xiphodonticus

 

 as a high-level browser. Excluding JLB and HI, 77
out of 100 trees also classified it in the same feeding guild and, excluding the width of the muzzle
(MZW) alone, 86 out of 100 trees classified it in the same way.

According to the results of this full set of analyses, 

 

P. xiphodonticus

 

 was most probably a high-
level browser. Taking into account the feeding behaviour and morphology of the present-day species
of tayassuids (Figure 15.8A), the notion of 

 

P. xiphodonticus

 

 being a high-level browser is a very
unexpected result. However, as Figure 15.8 shows, living peccaries are not representative of the
whole group, if extinct species are also taken into account. 

 

P. xiphodonticus

 

 may have looked more
like the younger late Pleistocene 

 

Mylohyus 

 

sp. shown in Figure 15.8B, which does appear to be
longer jawed and longer legged than extant peccaries. Even in that case, 

 

P. xiphodonticus

 

 lacked
the long legs and long neck typical of extant high-level browsers, and also had the type of bunodont
molar crown occlusal pattern typical of an omnivorous diet (Wright, 1998). This might mean that
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it habitually selected foliage from a level above its own body height, not necessarily that it fed
from a high level of the canopy, as do extant high-level browsers. It thus seems that 

 

P. xiphodonticus

 

does not have a precise ecological equivalent among extant ungulates.

 

GEOMETRY OF THE MORPHOSPACE AND PRINCIPLE 
OF ACTUALISM

 

Each individual of a given species can be represented as a point in a multidimensional theoretical
morphospace defined by the shape variables of the jaw. Thus, each species occupies a small
region (like a small cloud) included in a larger region occupied by the species that share the
same feeding adaptations (e.g. grazers). Each species can also be represented as a point, the
result of averaging the variables of the individuals of this species. There are different combina-
tions of these variables best suited for each ecological adaptation, which correspond to different
morphological solutions to deal with the same (or similar) biomechanical problems (e.g. eating
grass with a high silicophytolith content).

Each living species corresponds to one of these combinations, but they are just some examples
of how the jaw of an ungulate can be adapted to its feeding behaviour. The real pattern that
morphologically characterizes each feeding adaptation corresponds to the whole region of the
theoretical morphospace that would occupy, at least in theory, all the imaginable ungulate species
from the same feeding guild. If we knew all the possible morphologies that may represent each
adaptation (the whole region), we could determine with accuracy the paleoecology of any extinct
species. However, we only have some examples of morphological adaptations depicted by the
living species, which occupy only a part of the whole region. Inevitably, we can only identify a
partial pattern.

Subsets of species, such as taxonomic groups, will occupy defined regions inside the zone of
the morphospace inhabited by the species that show the same ecological adaptation. Thus, as the
number of species and the taxonomic range of the sample are wider, the patterns identified will be
closer to the real ones.

From this context arises the problem of the capacity that methodologies based on living species
have for inferring the adaptations of past ones (principle of actualism). The patterns that can be
identified with the living species do not always capture the way in which certain extinct species
were adapted to display a given feeding behaviour. The closer the patterns identified are to the real
ones, the higher the probability is that they will capture the morphological solution of any past
species. In the best of cases, the pattern identified is as close as possible to the real one, according
to the information available, but this depends on the performance of the analytical method used to
identify it. For example, though the pattern identified here for the high-level browsers fits the real
one, analysis performed without the dibitag would result in a partial pattern based only on JLB
and JMA that would not include the way that the dibitag is adapted to browse from high levels of

 

FIGURE 15.8

 

A: extant peccary (Chacoan peccary, 

 

Catagonus wagneri

 

); B: rendering of an extinct late
Pleistocene species (

 

Mylohyus

 

 sp.).

A. B.
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the canopy. This mistake would not be a consequence of a limitation of the methodology, but rather
of the information available. 

Finally, both discriminant functions and trees involving many variables with regard to the number
of samples fit the region of the morphospace to small subgroups of very similar samples, thus
capturing the particular traits of these small groups, instead of identifying wide regions of the
morphospace that correspond to the general traits of the group. These functions and trees often
allow a very good discrimination but, as expected, show very low predictive capacity. This is because
it is not probable that it includes any new combination of the variables or points in the morphospace. 

 

SUMMARY

 

Suiform omnivorous ungulates are characterized as being different from herbivorous ungulates by
an extremely low hypsodonty combined with a short anterior and posterior jaw, as well as a short
lower premolar row. Other non-suiform species with a broader diet, which could even be considered
as semi-omnivores, are morphologically very similar.

 

 P. xiphodonticus 

 

shares with them a very low
hypsodonty (HI), but both the anterior and posterior jaw, as well as the lower premolar row, are
too long for being omnivorous or even semi-omnivorous.

Selective feeders are characterized as different from the rest of the brachydont species by a
very low hypsodonty combined with both a short posterior portion of the jaw and a narrow muzzle.

 

Prosthennops xiphodonticus

 

 shares with them both a low hypsodonty and a narrow muzzle, but its
posterior portion of the jaw is too long to be specialized in feeding on fruits and other non-fibrous
soft material.

There is not a single pattern characterizing the whole group of browsers with regard to the
mixed feeders because browsers are made up by different relatively defined morphological groups:
typical browsers from forested habitats, species dwelling in more open and dry non-forested
habitats and species adapted to browse from high levels of the canopy. Mixed feeders are very
different from the typical browsers because these show a deeper mandibular angle, are less
hypsodont and have longer lower premolar rows. However, with those browsers from more open
habitats, mixed feeders share a mandibular angle, lower premolar row and anterior jaw shorter
than in the other groups, as well as higher values of hypsodonty. Both groups only differ in the
mixed feeders having a wider muzzle. From high-level browsers, mixed feeders mainly differ in
the shorter anterior jaw, although this difference is less marked in those species with a narrower
muzzle. 

 

Prosthennops xiphodonticus

 

 shares with the mixed feeders a shorter mandibular angle,
but it differs in the longer anterior jaw, showing in addition a relationship with the width of the
muzzle characteristic of the high-level browsers.

High-level browsers are mainly different from other types of browsers and selective feeders in
having an elongated jaw. 

 

Prosthennops xiphodonticus

 

 shows this morphological trait very clearly.
All these patterns show a high robustness, so their high capacity of discrimination can be considered
as a good estimate of their predictive accuracy over new species, such as the extinct ones.

Finally, 

 

P. xiphodonticus

 

 shows very clearly all the morphological patterns identified here as
characteristic of the high-level browsers but, like the extant peccaries, it lacked the long legs and
long neck typical of extant high-level browsers, and also had the type of bunodont molar crown
occlusal pattern typical of an omnivorous diet. Thus, it could be that it habitually selected foliage
from a level above its own body height, so it would not have a precise ecological equivalent among
extant ungulates.
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INTRODUCTION

 

Yeasts are microscopic organisms that show very few distinguishable morphological features. Early
taxonomic studies were carried out using a mixture of morphological, sexual and fermentation, or
assimilation features (Hansen, 1888, Beijerinck, 1889; Hansen, 1891, 1898, 1902). Later, more
assimilation and growth abilities were included in standard testing panels used for identification
and classification (Lodder, 1934; Wickerham and Burton, 1948; Wickerham, 1951; Lodder and
Kreger-Van Rij, 1952; Lodder, 1970; Kreger-Van Rij, 1984). Chemical and biochemical properties
also play a role, but nowadays the most prominent characters are molecular. While one-dimensional
electrophoresis has been used extensively and is still an inexpensive and interesting methodology
– especially at the strain and specimen level – sequencing is the tool of choice. 

Kurtzman (1993), Fell (1995) and Fell et al. (2000), as well as many others, were pioneers
and sequenced the D1/D2 region of the 26S ribosomal DNA of all type strains of known and
recognized yeast species. Later, the internal transcribed spacers of rDNA were introduced to
reinforce the quality of the classifications. Recently, Kurtzman and Robnett (2003) published a
partial classification of Ascomycetes based on eight different DNA regions. Rokas et al. (2003)
and Kuramae et al. (2006) have studied how many genes or regions need to be used in order to
obtain reliable phylogenies. For the first, 30 genes would be 'sufficient' while the latter suggest
that the number of genes necessary should be a function of the groups and taxonomic levels studied
(species, genus, families, etc.).

When including 4850 orthologous coding genes (KOGS) of all eukaryote genomes (38) pub-
lished at the time of the study, the optimum number of regions to be used for phylogenetic analyses

 

8205_C016.fm  Page 277  Monday, June 18, 2007  11:17 AM



 

278

 

Automated Taxon Identification in Systematics

 

should be 17 (Figure 16.1). When considering the fungi only, 68 genes is the optimum number
(Figure 16.1). A higher degree of fitting with the overall phylogenetic content will be reached in
more homogeneous groups. Even with two or three regions sequenced, the fitting in small groups
(21 fungi in our example) will be higher than the optimum obtained in heterogeneous, larger and
more divergent groups (38 eukaryotes in our example).

As can be seen, the number and the types of characters that must be used to classify accurately
– and so obtain correct identifications – is changing with time and is a function of the taxonomic
group under study. There is no doubt that new methods (e.g. DNA microarrays and others) will be
introduced in the near future. While the number and the diversity of characters examined is
increasing, the number of strains isolated and deposited in major culture collections is also rising
dramatically. To give an idea of the rate of increase, in 1945 the CBS yeast collection contained
791 strains and at the same moment 134 species of yeasts were described (Figure 16.2). Today,
the collection holds almost 7000 strains, around 1100 species of yeasts have been described and
many more are expected to be published in the near future. 

The CBS collection is the largest and the most complete yeast biodiversity collection in the
world. But as can be seen from Figure 16.3, the geographic origin of available isolates is far from
uniform. This suggests that only a small portion of the potential diversity has been sampled.
Accordingly, what we know today is only a fraction of what exists. This confirms the predictions
of Hawksworth (2001) and of Rosa and Peter (2006) that suggest that we know only a small
percentage (5 and 1%, respectively) of fungal biodiversity.

While working at the species level has several advantages in terms of communication and
makes sense in terms of evolution, the circumscription of yeast species is not always a trivial
endeavour. Many strains do not show any sexual properties and application of the biological species
concept remains, therefore, rather subjective. Many yeast species are known from a single or few
isolates, making it more difficult to understand the whole potential and properties of those species.
Even with well-established species (i.e. with a large number of well-described isolates), discrep-
ancies within groups or subgroups are often recognized. The 

 

Saccharomyces

 

 genus is a very nice
example of such problems (Kurtzman and Robnett, 2003). 

Many researchers are more interested in strains and their particular potential and original
combination of characteristics than in species. Therefore, existing yeast species data-bases are far

 

FIGURE 16.1

 

Evolution of the correlation (Pearson's coef.) or the overall fitting with a complete genome
(ideal) phyologeny when the number of included KOGs is increasing. Two different groups of organisms are
displayed. The first group is composed of fungi only (triangular symbols) and represents a less heterogeneous
group. The second comprises animals, plants and fungi (square symbols).
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from providing a satisfactory solution. To address this concern, it is necessary to record all the data
available at different taxonomic levels, including the strain level. This has serious implications as
the system would not have a fixed or partly fixed numbers of records or characters. Such a convention
disqualifies some interesting identification methods – for example, artificial neural networks (ANN),
which require training of the system on a stable or fixed number of reference operational taxonomic
units

 

 

 

(OTUs). Of course, some ANN variants incorporate some dynamic learning properties, but
the learning process can still take too long to accommodate very large data-bases with data that
are constantly changing. Knowing the types and the amount of data to be used for the classification
of this continuously increasing taxonomic group, it becomes more obvious that flexible data-bases
and adaptable algorithms for comparisons are needed.

 

COMPARISON METHODS

 

In the early stages, but not exclusively, and as in most other taxonomic groups, identification was
based on dichotomous keys. Kreger-van Rij (1984), Kurtzman and Fell (1998) and Barnett et al.
(2000a) presented keys based on physiological tests only or physiological tests together with

 

FIGURE 16.2

 

Evolution of number of species described and of the strains deposited at the CBS yeasts
collection (Utrecht, the Netherlands) since 1945.

 

FIGURE 16.3

 

Geographic distribution of the strains available from the CBS yeasts collection (Utrecht, the
Netherlands). Dots represent the original location of the strains.
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morphological and sexual characters, which lead directly to the species names. Some keys include
only a selected set of species that were considered the most likely to occur in a given situation.
An isolate that does not belong to this set may be misidentified or be unidentifiable with such a
key. On the other hand, a key that includes all yeast species would be very long and require many
tests to be used (see Barnett et al., 2000a, where the key to all 704 species involved more than 100
tests). If not all the results required by a key are available, the identification could be completed
until they are done. Moreover, if an erroneous or an unexpected result has been recorded for one
of the tests, then either an incorrect identification would be made or the organism found to be
unidentifiable. In non-computerized keys, the order of the questions is important since the tests or
the observations have to be done sequentially. 

Computerized keys are usually multiple-entry keys (MEKs) that allow the user to ask any
question in any order. Overall, MEKs are superior to printed or dichotomous keys. Some of the
problems highlighted previously for predefined printed dichotomous keys can be avoided. Using
MEKs, identifications may be quick and easy, but a single mistake or difference in the observed
results may lead to errors. Therefore, identification keys should be used with care. However, MEK
are very useful, for example, to search for a set of properties in a given data-base. 

The wider use of computers has led some systematists to employ other methods of identifying
or classifying species. Probabilistic methods based on the use of Bayes's theorem for the compu-
tation of a probabilistic coefficient have gained a lot of favour since they are easy to implement
and quick when calculated on slow computers (Willcox and Lapage, 1975). Barnett et al. (2000b)
proposed a Bayesian implementation that has been used for a long time by many zymologists.
Identifications obtained with this technique are usually clear-cut and users tend to like it, even if
it can easily be misleading.

However, probabilistic methods can be applied only to discrete ordered monotonous characters.
Continuous or unordered, non-monotonous characters can only be analysed after transformation or
reduction. This can lead to many additional problems that are beyond the scope of the present
chapter (but see Grzymala-Busse, 2002, for an overview on data reduction and discretization
problems). The method used to create probabilistic profiles for species is another major issue since
the number and the diversity of strains taken into account can have a profound impact on the basic
probabilities and, therefore, on the resulting identifications.

The diversity of data to be analyzed, including the requirements of the users of our data-bases,
and the aforementioned considerations suggest that the best solution for comparing two OTUs,
species or strains, should be based on the computation of similarity coefficients. Many such coef-
ficients have been described in the literature (e.g. Sneath and Sokal, 1973; Legendre and Legendre,
1998

 

)

 

 and new ones can easily be implemented in response to the properties and requirements of
any existing data types. It is easy to understand that sizes, colours, discrete characters, electrophoretic
profiles, DNA sequences, time series or latitude–longitude positioning cannot be handled using the
same methods. The properties of the different types of data, the way they are obtained, their reliability
and their importance must all be considered when selecting a given method for the computation of
a similarity coefficient. The context of a comparison is also crucial. Identification is not classification
and a query for a set of properties to select the best candidates for an industrial process is a different
process that requires different algorithmic approaches.

Methods based on similarity do not necessitate data transformations (often a source of infor-
mation loss) and can be adapted to a wide range of problems and objectives. Weighting of characters
can be done in accordance with their relative importance (see Neff, 1986, for a review on character
weighting). However, it remains difficult to attribute the right value using objective criteria. Sim-
ilarity or distance matrices can be summarized by available clustering techniques (Sneath and Sokal,
1971; Jain and Dubes, 1988; Kaufman and Rousseeuw, 1990; Legendre and Legendre, 1998). 

Some disadvantages of similarity methods must also be considered. Identification reports may
be more difficult to analyse. Similarity coefficients based on a given set of data may vary greatly
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as a function of the methods used for the comparisons. The following trivial example – a comparison
of two size ranges using three algorithms that present different properties – illustrates this problem. 

The sizes of the cells of a strain range from 4 to 7 

 

μ

 

m. This strain has to be compared to a
species that has cells ranging from 3 to 9 

 

μ

 

m. A first option could be to consider that sizes of the
strain are within the range (3 < 4 and 7 < 9) of the given species and the similarity coefficient is
then equal to 100.0 per cent. A second solution could be based on overlaps of ranges and the
coefficient would then be equal to (7 – 4)/(9 – 3) = 50.0 per cent. Another method based on
comparison of medians gives a distance coefficient: [(3 + 9)/2] – [(4 + 7)/2] = 6 – 5.5 = 0.5. The
latter value can be standardized by dividing the obtained distance by the largest median (0.5/7 =
0.71). The equivalent similarity is 1 – 0.71 = 92.9 per cent. As can be seen with this simple example,
selection of algorithms is crucial. 

The complexity of some algorithms, like sequence alignments, may lead to heavy computational
loads and the time to obtain results may become an issue when very large numbers of records and
characteristics have to be compared. Missing data and non-equivalent sets of data can be an issue
as well. For example, if 6 criteria out of 18 are identical, then a similarity of 30 per cent is obtained.
The same coefficient will be obtained when 600 criteria out of 1800 are identical. In the latter case,
more data are included and the set of characteristics employed is obviously larger and hence different. 

In identification procedures, pairwise similarity comparisons of an unknown against a series of
OTUs results in the production of ordered lists where the best matching OTUs appear first. Inter-
pretation of such lists is usually rather straightforward. Some problems can be encountered when
several candidates have similar or identical similarity coefficients. This can be alleviated by showing
the characters that differ and letting the users or experts decide the best or most likely option.

In (phenetic) classification procedures, similarity comparisons between the members of a given
group give symmetrical or non-symmetrical similarity or distance matrices that can be difficult to
interpret or to summarize, especially when the number of OTUs is large. In order to group items,
many clustering methods are available. This is not the place to discuss those methods in detail, but
both divisive and agglomerative clustering are used in the BioloMICS software solution (see later
discussion). There are also other ordination methods such as principal coordinate analysis (PCoA).
For small groups of OTUs, one of the numerous agglomerative clustering methods implemented
in BioloMICS would be used (UPGMA, UPGMC, WPGMA, WPGMC, single and complete
linkages, Ward, Lance and Williams flexible method, and neighbour joining).

For large groups of OTUs, it is well known that agglomerative clustering methods fail to provide
phenetic trees that well represent the underlying distance or similarity matrix. The cophenetic
coefficient of correlation between the matrix and the tree decreases as the number of OTUs increases
(Rohlf, 1998; Robert, 2003). Divisive or ordination methods can more adequately define larger
uniform groups, but are slow and computer intensive; all types of characters cannot be used, and
no specific, user-friendly graphical representations can be provided with such methods. One idea
would be to allow for the combination of several methods (MEK, then divisive clustering or
ordination, then agglomerative clustering) in sequences in order to benefit from their advantages
and to minimize their disadvantages. This allows more accurate grouping and greater flexibility.
See Sneath and Sokal (1973) and Legendre and Legendre (1998) for more details on these methods
and their advantages and disadvantages.

 

BIOLOMICS SOFTWARE AS A SOLUTION TO STORE AND 
ANALYSE BIOLOGICAL DATA

 

In 1990, while starting a biodiversity study of the yeast flora in wet and dry forests of central
Africa, it became obvious that identification using conventional methods was barely possible. The
standard physiological tests were tedious, slow and difficult to interpret unambiguously, and the
identification of isolates using the classical dichotomic keys was very difficult. As a consequence,
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it was decided to first develop software to replace the existing keys (Robert et al., 1994). Soon
after, a miniaturized system using 96-well microplates to perform physiological tests was created
(Robert et al., 1997). This was a success, but the number of characteristics that needed to be
introduced into the system was growing continuously with the addition of morphological and
molecular features (among others). To endow the system with improved scalability, it was necessary
to develop new and adapted algorithms, along with tools to first retrieve the data, then to manage
and to analyze them. 

This revised software, now called BioloMICS, was first developed as an MS-Windows cli-
ent/server multi-user application (Robert and Szoke, 2003). It has since been developed further and
can be used for retrieval, management, and analysis (e.g. identification, classification and statistical
summary) of any biological material or research experiments. In 2000, another software package
called BioloMICSWeb (Robert, 2000) was introduced to complement the first version and allow
online Internet publication of data prepared with BioloMICS. This package also permits real
polyphasic identifications of yeasts to be performed online against the species or strain data-bases
(see http://www.cbs.knaw.nl/Yeast.htm; 6800 strains, 901 species, 

 

±

 

350 characters; Robert et al.,
2004), 

 

Penicillium

 

 (see http://www.cbs.knaw.nl/Penicillium.htm; 58 species, 

 

±

 

60 characters; Sam-
son and Frisvad, 2004) or 

 

Phaeoacremonium

 

 (see http://www.cbs.knaw.nl/Phaeoacremonium.htm;
22 species, 

 

±

 

40 characters; Mostert et al., 2005). 

 

CREATING SELF-DESIGNED DATA-BASES

 

Most researchers have no time to spend on the creation of data-bases and the needed data-base-
creation software. BioloMICS was therefore developed as a system that allows any user to create
his or her own custom data-bases without any prior knowledge of data-basing or programming.
Users choose the types of fields they need to store their biological data and define a few parameters
related to them, such as the algorithms that should be used when performing comparisons (i.e.
identifications, classifications), the tolerance (for fuzzy comparisons), the weighting, etc. The
following field types can now be included:

• continuous data, range (min, low percentile, high percentile, max) (e.g. the size of the
cells such as (5) 5.5–7 (8);

• continuous data, single value (e.g. a pH value of 9);
• discrete data, single state (e.g. presence or absence of a property);
• discrete data, multiple states (e.g. colour of the colony [not red, not green, white, cream,

not brown, not black, etc.]);
• 96- or 384-well microplate, continuous data (absorbance values) (e.g. microplate con-

taining user-defined tests, data stored as continuous values);
• 96- or 384-well microplate, discrete data (–, +, weak, etc.) (e.g. self-designed microplate

containing user-defined tests, data; stored as discrete values);
• free array data, continuous data (e.g. array of any size of positive continuous data);
• free array data, discrete data (e.g. array of any size of discrete data);
• molecular weights from electrophoresis analysis (e.g. RAPD, RFLP, PCR, AFLP);
• time series and chromatograms;
• DNA sequences;
• protein sequences;
• text, administrative field;
• date field;
• bibliographic information field (e.g. bibliographic references such as articles, books, etc.);
• link to external files, including URL, pictures and others files; and
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• geographical (lat, long.) coordinates stored at the record level and an unlimited number
of coordinates stored and viewed on maps within the BioloMICS software; a precision
factor can also be included.

Access to the data-base can be restricted (read, write, delete) by user (each user has a specific
login and password allowing differential access to data-bases) and per field within a data-base.
Some users can see all fields, whereas others can only view and use a portion. Data-base access
is defined by the data-base owner/administrator. Any changes to any records and fields are recorded
and a history of all the changes is kept. This allows tracking all the modifications made by any
given user and it permits re-introduction of a previously stored value if needed.

Fields/characters can be added, modified (e.g. add/delete states for a given character, change
the title of a character) or deleted at any time by the owner/administrator of the database. Fields
can be re-ordered, re-organized and grouped by the administrator.

 

M

 

ANAGING

 

 A

 

NY

 

 B

 

IOLOGICAL

 

 D

 

ATA

 

The BioloMICS Software also supports the basic management of the created data-bases, such as
the addition, modification or deletion of records and tables. Data can also be imported from, and
exported to, a variety of formats (text, tab delimited, html, XML, MS-Excel or MS-Word, etc.).

Records can be linked with the taxonomic data-base at levels ranging from kingdom to species,
subspecies, variety or form. All relevant taxonomic information (e.g. synonymy, basionym,
anamorph–teleomorph connections for fungi, type strain, bibliographic information) is available.
When the classification or nomenclature is changed, records are automatically updated. Biblio-
graphic data-bases can be created and managed from within the software. These can be queried
and linked to external data-bases such as PubMed, for example. Pictures can be displayed and
measurements of the sizes of structures (e.g. cells, ascospores, colony diameters) can be performed
on any electronic images, which may be stored in 13 different formats. Basic descriptive statistics
and information (number of observations, mean, minimum, maximum, median, percentiles, standard
deviation and variance) can be obtained and be stored in fields. 

The software allows the automated reading and importation (through the RS-232 interface) of
data from 96-well microplates with five different brands of microplate readers. Pictures of electro-
phoretic gels can be fully analyzed and molecular weights retrieved and properly stored. The virtual
editor allows visual comparison of several profiles and their compilation to obtain consensus and/or
agglomerated profiles. 

The geographic-data viewer allows maps (shape and MrSid files) to be displayed. Records can
be plotted to create distribution maps that can be exported to the clipboard or to Google Earth. A
very large data-base of world locations has also been compiled and is supplied with the software.
This contains the exact coordinates (latitudes–longitudes) of more than 5.5 million locations from
all over the world, as well as altitudes and monthly precipitation and temperature data from more
than 10,000 meteorological stations worldwide. Additional features are also available but will not
be described here. Basic statistics on all type of fields like frequencies, data distribution, mean,
minima, maxima, standard deviation and variance are provided on request. 

 

A

 

NALYZING

 

 A

 

NY

 

 B

 

IOLOGICAL

 

 D

 

ATA

 

As discussed before, the analysis of stored data is of primary importance and should be possible
using a variety of tools in response to a large panel of users having different goals in mind. Therefore,
both basic and advanced MEK searching tools have been developed to allow querying any type of
field using the best possible method. For example, a field containing size data (e.g. from 5 to 10)
could be searched in up to five different ways, while DNA sequences can be aligned using four
different algorithms (e.g. Blastn; see Altschul et al., 1990). This functionality allows users to select
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records with a given set of properties or to identify an unknown organism at the species level, for
example. Advanced and complex queries containing questions separated by AND, OR or NOT and
using brackets for their grouping can be performed.

Polyphasic identification and classification modules are available and permit a wide range of
comparisons (already discussed). Several two- or three-dimensional graphical displays are available
to represent the results of the combination of similarity- or correlation-based comparison methods
and clustering techniques (see Figure 16.4 for an example). Comparison methods can be used singly
or in combination to take the best of the different techniques. For example, one can first perform
a preliminary selection of records based on an MEK query, compare or identify an unknown against
the selected set of records, apply a divisive clustering method on the best matching records and
then finally analyse by agglomerative clustering some of the groups obtained in the previous steps
and draw a dendrogram or a three-dimensional display, as seen in Figure 16.4.

Another type of available comparison is called 'functional analysis'. This is a method allowing
the grouping of objects/records and of their characters/fields at the same time using agglomerative
clustering methods. Objects are compared with one another on the basis of a selection of characters.
The obtained distance matrix is later represented as a phenotypic tree using one of the selected
agglomerative clustering methods. The characters are first normalized and reduced (note that DNA
or protein sequences cannot be used in such a method), then correlated with one another to obtain
a correlation matrix that can be displayed in a tree-like representation using one of the available
agglomerative clustering methods.

The result is displayed as a double tree (Figure 16.5). The first is a vertical tree showing the
relationships between the objects/records. The second tree is horizontal and shows the groups of

 

FIGURE 16.4

 

Results of a similarity-based comparison producing a distance square matrix (lower window)
on which two different clustering methods were applied. The top-left window represents a UPGMA tree where
one additional criterion was printed (bands of one-dimensional electrophoresis profiles). The top-right window
is a three-dimensional representation of the OTUs presented on the distance matrix below that have been
reordered using the principal coordinate analysis ordination method.
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characters/fields that are positively – or negatively, depending on the display method used ('positive'
or 'negative' clustering) – correlated. Between the two trees a coloured 'heat map' shows the states
of the characters/fields for the different objects/records. With this method, it is easier to isolate
characters or groups of characters that are associated with some groups of objects. It is also possible
to infer possible relations between different types of criteria – for example, the pathogenicity and
a given physiological feature or the activity of a gene on a microarray.

 

FIGURE 16.5

 

 

 

(Color Figure 16.5 follows page 110.)

 

 Functional analysis of a series of strains of yeast
(UPGMA left-vertical tree) based on a set of physiological features (UPGMA top-horizontal tree). Normalized
and reduced states of the above characters are displayed in light grey (negative result or absence of activity),
in dark grey (positive result or presence of activity), in medium grey (unknown result) or in an intermediate
shade for intermediate results. [Editor’s note: medium and intermediate greys are not apparent in this image.
Please see color figure for positions of these cells.]
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CONCLUSIONS

 

Modern taxonomists do more than just discover and describe species. They record data related to
their specimens or strains as well and publish them directly on the Internet. It is now possible to
build data-bases of experiments, strains and species and to use a diversity of tools and algorithms
to compare OTU. The reference systems based on biological, phylogenetic and/or phenetic species
concepts can be used together with additional reference systems at other levels, such as the strains,
for example. In addition, many taxonomically uninformative or non-relevant criteria can be intro-
duced in data-bases dedicated to researchers working in industrial or clinical settings. This enables
a wider use of such data-bases and will hopefully attract more attention to the work of the new
taxonomists developing such resource centres.

Such data-rich centres require continuous software improvements in order to incorporate the
best data retrieval, management and analysis tools. Bioinformatics is therefore at the core of the
business of systematics and should be encouraged. Also, it is crucial that scientists and technicians
get some form of training in bioinformatics since the tools that they are or will be using are becoming
more powerful but at the same time more complex. Many biologists are hermetic to mathematical
and computer science and some claim that one does not need to understand the basics behind the
software being used daily. This assertion is not true anymore. The poor understanding of the
algorithms hidden in software can and will lead scientists to draw erroneous conclusions. Software
providers have to compile help files that are explicit enough and understandable by users who have
no acquaintance with mathematics. These users also have to make the needed effort and should be
trained properly. They also have to develop stronger critical thinking towards bioinformatics, not
only to improve their research, but also to help bioinformaticians further develop and correct their
applications. Bioinformatics is not a science of recipes and users should therefore use the methods
that best fit with their needs instead of blindly applying methods used in previously published papers.

Bioinformaticians also have to develop new algorithms and tools to respond to today's bio-
logical questions. I strongly believe that polyphasic or multifactorial or holistic approaches have
to be favored over single-sided studies. The complexity of holistic studies should not be under-
estimated and it will be quite challenging to mix wide arrays of criteria and to analyze them in
sensible ways. The BioloMICS software solution is certainly a good step in this direction, but
much remains to be done, especially with the always increasing flow and diversity of data.
Polyphasic analyses mean different specialists will necessarily need to become involved in soft-
ware developments. It implies that pure programmers will have to collaborate closely with tax-
onomists, phylogeneticists, ecologists, molecular biologists, physiologists, mathematicians, stat-
isticians and many others. In itself, this is a real challenge, but bioinformatics is the catalyst that
could allow this high 'potential chemistry' to produce unprecedented results. Bioinformatics is
one of the most important factors in current biological science and should be accounted as such
by both group leaders and funding agencies. 
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INTRODUCTION

 

Honeybee wings are one of the most frequently measured insect body parts. These measurements
are most often used to distinguish between honeybee subspecies (Ruttner, 1988a). This discrimi-
nation is required in honeybee breeding in order to preserve the morphological characteristics of
selection lines (Ruttner, 1988b), with breeding programs often being related to conserving honeybee
biodiversity (Rortais et al., 2004). Discrimination between subspecies is essential for monitoring
and controlling Africanized honeybees on the American continents (Strauss and Houck, 1994).
There is also a growing number of studies using honeybee wing measurements, not only in
biogeography but also genetics (Brückner, 1976), development (Smith et al., 1997) and ecology
(Higginson and Barnard, 2004). 

The process of measuring of honeybee wings is tedious and time consuming. In subspecies
discrimination studies, the measurement of a single individual is not enough to obtain 100 per cent
accuracy (Daly and Balling, 1978). Usually, more than 10 workers from one colony are used. In
biogeography studies, it is recommended that measurement of 10 workers from five to six colonies
per apiary be taken (Radloff et al., 2003). Also, the number of wing measurements per individual
is large, usually ranging from 15 (Ruttner, 1988a) to 38 (Smith et al., 1997). 
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WING MOUNTING

 

Before a wing can be measured it needs to be mounted. Mounting allows the wing to be flattened
and positioned on a plane perpendicular to the optic axis of the measuring instrument or image
acquisition system. The mounted wing can also be easily labelled and stored. 

Specimens are usually mounted on microscopic slides or glass photographic slide frames. Wings
mounted on microscopic slides are fixed in place by Canada balsam (Adsavakulchai et al., 1999;
Weeks et al., 1999b), Euparal (Batra, 1988; Smith et al., 1997) or transparent tape (Yu et al., 1992;
Kokko et al., 1996). Using mounting substances is tedious and their optical properties deteriorate
with time. Mounting with the use of transparent plastic tape is quick; however, the optical quality
of images obtained from such preparations is markedly reduced. 

The optimal solution seems to be mounting the wings in photographic glass frames. These do
not reduce optical properties because the wing is kept in place by the glass and no mounting
medium is required. Moreover, mounting is quick and easy and remounting is possible if the wing
needs to be cleaned of dust or dirt. Wings mounted this way are ready for scanning, projecting
with a slide projector or photographing under a microscope. If numerous samples of worker front
wings are taken from a single colony, they can be mounted in one slide frame. On the other hand,
if right and left wings are required (e.g. in fluctuating asymmetry studies), all the wings of a single
individual can be mounted in one slide frame. The position of the wings in the frame can provide
information as to whether it is the left or right wing. A slight problem is that the smaller hind
wings, which are thinner than the front wings, tend to slide down because the glass plates are
pushed away by the front wings. This problem can be solved by using a small amount of water-
soluble glue. This should be applied at the wing base, which provides little information for the
automatic identification of species. 

 

IMAGE ACQUISITION

 

In most contemporary studies, a wing image is acquired before measurements are made. In earlier
studies, PAL or NTSC video cameras were mainly used to obtain the images. These required a
frame grabber that converted an analog video signal into a digital image. Resolutions obtained by
PAL or NTSC video cameras can be relatively low (often less than 0.5 Mpixel). This can be
improved by the use of digital still cameras, which produce images of up to 12 Mpixels. The
cameras can be connected to various microscopes or lenses to obtain an image of the appropriate
magnification and quality. They are versatile and can take wing images even in the case of live
insects and museum specimens, when wings cannot be detached from the insect's body (Houle et
al., 2003). Another advantage of these cameras is fast image acquisition, which can be important
in the case of live insects anaesthetized for only a short time. 

When the wing can be detached from an insect's body and mounted in a photographic slide
frame, scanners might be preferred. These are easily accessible and available in a wide range of
prices – from inexpensive flatbed scanners with a slide adapter to more expensive high-resolution
photographic slide scanners. There are attachments to some of the scanners allowing the automatic
scanning of multiple frames, making image acquisition faster and requiring less human intervention.
The resolution of a photographic slide scanner can be up to 4000 dpi (equivalent of about 22 Mpixels
when a whole slide frame is scanned), which is more than most digital cameras produce. When
scanners are used, scaling is not required because the resolution of the image (in dpi) is known.
Images obtained by scanning have a uniform background, which makes wing detection and analysis
easier (Weeks and Gaston, 1997). Producing a uniform background with a microscope is much
more difficult and requires a precisely aligned light source. 
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WING MEASUREMENTS 

 

The first large-scale measurements of honeybee wings were undertaken by Alpatov (1929). At that
time microscopes equipped with ocular micrometers were used. DuPraw (1964) used a microscope-
slide projector to obtain a wing image on a piece of paper, which he pricked with a pin to mark the
vein junctions. He then measured angles and distances in the traditional way with a ruler and protractor. 

Daly et al. (1982) combined the projector with a digitizer tablet. In doing this they were able
to indicate the landmarks that were automatically recorded by the computer. This procedure
increased the speed of measurements, their precision and their repeatability, and eliminated errors
related to data input or calculations. 

A more sophisticated system was described by Batra (1988). In this system wing images were
obtained through the use of a microscope equipped with a camera. This system required substantial
user intervention, but allowed the automatic detection of 16 vein junctions. It was based on specific
and expensive hardware, which reduced its accessibility. 

In most recent studies wing images acquired by a camera or scanner are transferred to the
computer and analysed using data acquisition software. Either specialized honeybee wing measure-
ment software (e.g. Beemorph; see Talbot, 2002) or general-purpose data acquisition software (e.g.
tpsDig; see Rohlf, 2005) can be used. Usually, a computer mouse is used to indicate the vein
junctions on a computer screen and the data acquisition software provides the coordinates, which
can be used to calculate distances and angles. 

 

IMAGE ANALYSIS 

 

Despite several attempts to automate honeybee wing measurements, the methods currently in use
are, to a large extent, manual. This is surprising because image analysis allows the automatic
detection of vein junctions on which the measurements are based (Batra, 1988; Steinhage et al.,
1997). One of the computer programs specialized in the image analysis of insect wings is 

 

DrawWing

 

(Tofilski, 2004). It is particularly suitable for automatically measuring wings because it is able to
recognize and position wings in an image. 

 

DrawWing

 

 software is able to recognize all vein junctions
of the honeybee forewing, which allows for fully automatic measurements. The image analysis of
honeybee wings is performed in two main steps: the first step is the detection of the wing outline
and the second step is the detection of the wing venation. 

 

D

 

ETECTION

 

 

 

OF

 

 

 

THE

 

 W

 

ING

 

 O

 

UTLINE

 

 

 

In a fully automated measurement system, wings need to be detected in an image without user
intervention. The process of wing detection is based on the image histogram, which represents the
number of pixels at each greyscale value within the image. This works very well if the wings are
darker and presented against a relatively uniform light background (Figure 17.1), which is always
the case if the image has been obtained by a scanner.  

 

FIGURE 17.1

 

The front wing of a worker honeybee. 
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If the background is uniform, the image histogram is markedly bimodal. The first mode
corresponds to wing pixels and the second mode corresponds to the background. The colour
corresponding to the minimum between the maxima is used as a threshold for conversion of the
greyscale image to black and white. At this stage wings (and some other dark artefacts) are
represented as black objects. Outlines of all the objects are detected by contour tracing (Rohlf,
1990) and their size and shape are analysed to decide whether or not they are potential wings. Only
the potential wings are subjected to further processing. 

In order to remove artefacts (e.g. hairs or dust particles) from the wing edge, the outline is
smoothed. The smoothing is achieved by contour dilation equal to earlier erosion. The smoothing
algorithm removes only the thin protrusions of the outline and minimally affects the wing shape. 

On the honeybee wing outline there are three characteristic points: anterior, posterior and apex
(Figure 17.2). The anterior and posterior points demarcate the wing width. The tangents to the
wing outline at those two points are parallel to each other and perpendicular to the line crossing
the points. The anterior and posterior points are automatically detected by examining outline points
in pairs until they meet the aforementioned criteria. There are two extrema of the outline on opposite
sides of the wing width. The apex point is the extremum at which the outline curvature is smaller.
Finally, the wing is rotated in software and cropped from the original image. The resulting image
is called a 'standard wing image' (Figure 17.3).

In order to avoid negative coordinates, the origin of the Cartesian coordinate system is defined
by the bottom and left extreme of the wing outline. Traditionally, right wings are depicted in the
drawings and images (Mason, 1986). However, if the right wing is presented in the Cartesian
coordinates system, zero on the 

 

x

 

-axis has to be assigned to the wing base. It is better to avoid this
because the wing base is not very well defined. When the wing is detached from the body, it can
break off in different places. Moreover, the wing base can be invisible when wing images are
acquired from live specimens. Therefore, in a standard wing image, left wings are depicted. Then
the zero on the 

 

x

 

-axis is defined by the wing apex, which is always visible. Right wings are flipped

 

FIGURE 17.2

 

The wing outline with three characteristic points marked: A: anterior point, B: posterior point
and C: apex point. Tangents to the outline at the anterior and posterior points are perpendicular to the line
crossing the points. The anterior and posterior points demarcate the wing width, which can be used for wing
positioning and scaling. There are two extrema of the outline on opposite sides of the wing width. The apex
point is the extremum at which the outline curvature is smaller. 

 

FIGURE 17.3

 

The standard wing image produced by 

 

DrawWing

 

 from the image depicted in Figure 17.2.
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horizontally before they are presented in the standard wing image. Multiple standard wing images
are produced if the input image contains more than one wing. 

 

D

 

ETECTION

 

 

 

OF

 

 J

 

UNCTIONS

 

 

 

The veins are darker than the membranous parts of the wing, but the intensity of their colour varies.
This makes it difficult to choose the optimal threshold for extracting the venation outline. In this
case, the method used to detect the wing outline is not always satisfactory and a more complex
method needs to be used. A gradient for the image (Shen and Castan, 1992) can be calculated and
the gradient's maxima found. The maxima at which the gradient is relatively high correspond to
the veins' edges. The median of the maxima can then be used as the threshold. Pixels darker than
the threshold are considered 'veins' and their outline (Figure 17.4) is found by contour tracing
(Rohlf, 1990). The vein outline is reduced to its skeleton using a thinning algorithm (Rohlf, 1990).
The skeleton pixels with three of four neighbours are vein junctions. The junctions are compared
with the expected junctions from a typical honeybee wing. Junctions that fit those expected are
reported to the user. In order to avoid misidentification, both coordinates of the junctions and
tangents at which veins approach the junction are used in the comparison. Apart from the list of
vein junctions, a wing diagram is produced (Figure 17.5). It depicts the wing in the same position
as the standard wing image but only the wing outline and skeleton of venation are visible. 

 

RELIABILITY AND PRECISION OF THE 
AUTOMATIC MEASUREMENTS 

 

As a rule, differences between wings of individuals belonging to the same species are small. For
example, venation of two honeybee subspecies – 

 

Apis mellifera carnica

 

 and 

 

A. m. ligustica

 

 – differs
mainly by lengths of a cubital vein, which are 0.56 and 0.59 mm, respectively (Nazzi, 1992). This
difference is small in comparison with precision of the venation measurements: 0.023 mm for the
ocular micrometer and 0.007 mm for the tablet (Daly et al., 1982). The measurements of the wing
length and width proved to be even less precise (Dedej and Nazzi, 1994). Therefore, the precision
is one of the most important characteristics of any automated wing-measurement method. Other
important factors are reliability and the speed of measurement. 

 

FIGURE 17.4

 

The honeybee front wing after extraction of venation outline. 

 

FIGURE 17.5

 

The wing diagram depicting only the wing outline and the venation skeleton.
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ATERIAL

 

 

 

AND

 

 M

 

ETHODS

 

 

 

In order to test reliability of the 

 

DrawWing

 

 software, measurements from 300 honeybee workers
were used. Their wings were torn off and mounted in glass photographic frames (Rowi 260). In
every frame all wings of one worker were mounted (two front wings and two hind wings). Images
of the wings were obtained using a Nikon Coolscan 5000 ED scanner equipped with SF-210 slide
feeder. The original resolution of the images was 4000 dpi. However, this was converted to 2400
dpi before analysis. The images were analysed by 

 

DrawWing

 

 software and the number of correctly
recognized front wings was counted. Correctly recognized wings were checked if all vein junctions
were detected. 

In order to compare precision and speed of the automatic and manual wing measurement, 40
front wings of honeybee workers were used. Three images were produced for every wing and the
positions of 18 landmarks determined. All landmarks were vein junctions. These landmarks were
either manually pointed with a computer mouse using tpsDig2 software (Rohlf, 2005), or determined
automatically by 

 

DrawWing

 

. Manual measurements were made by three different inexperienced
persons. Procrustes superimposition was used to align the junctions found on three images of the
same wing. The precision was measured as the mean distance between the three junctions and their
centroid (Arnqvist and Martensson, 1998). The results are reported as mean 

 

±

 

 standard deviation.

 

R

 

ESULTS

 

 

 

Out of 600 front wings in the 300 images, 552 wings (92.0%) were correctly detected and saved
as standard wing images. In the standard wing images, out of 9936 expected vein junctions, 9894
(99.6%) were detected. The automatic measurements proved to be significantly more precise than
the manual measurements (Mann–Whitney test: 

 

Z

 

 = –27.38, 

 

N

 

1

 

 = 720, 

 

N

 

2

 

 = 2160, 

 

p

 

 < 0.001; Table
17.1). The mean precision of the automatic and manual measurements was 5.20 

 

±

 

 4.44 and 9.37

 

±

 

 5.22 

 

μ

 

m, respectively. In the 2400-dpi images, those values correspond to 0.49 

 

±

 

 0.42 and 0.88

 

±

 

 0.49 pixels, respectively. There were significant differences between precision of measurements
performed by three different manual data collectors (Kruskal–Wallis test: 

 

H

 

 = 283, df = 2, 

 

N

 

 =
2160, 

 

p

 

 < 0.001; Table 17.1). The automatic measurements were also much faster than the manual
measurements (Mann–Whitney test: 

 

Z

 

 = –9.47, 

 

N

 

1

 

 = 40, 

 

N

 

2

 

 = 120, 

 

p

 

 < 0.001). The time required
to analyse one wing automatically and manually was 6.4 

 

±

 

 0.83 and 68.8 

 

±

 

 18.40 s, respectively.

 

D

 

ISCUSSION

 

 

 

The detection rate of the front wings of honeybee workers was satisfactory, but it can be improved
further. The main reason for the detection failures was damages of the wing edge, which led to
incorrect detection of wing width. This problem can be solved to some degree by changing the
algorithm of the wing width search; however, if the wing edge is damaged at the anterior or posterior
point (Figure 17.2), correct detection of the wing width is impossible. In a few cases, there were
also problems with artefacts near the wing base arising from tearing the wings off the thorax. This
problem could be avoided by cutting the wings off with scissors. The detection of vein junctions
was much better than the detection of wings – close to 100 per cent. The problems with the vein
junctions' detections were mainly caused by unusual shapes of the venation. 

These results show clearly that the automatic measurements are more precise and much faster
than the manual measurements. This test used only one scanner, but it is probable that differences
between scanners will be much smaller than the differences between persons. This is important
when results from different studies are compared. The precision of automatic measurements is
close to the limits set by resolution of the images. In order to increase the precision further, images
of higher resolution need to be used, but this requires changes to the software, which is optimized
for 2400-dpi images. 
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WING-BASED SPECIES DISCRIMINATION 

 

Wings seem to be the best morphological structure for the automatic identification of insects. They
differ much more between species than within species (Matias et al., 2001; Baylac et al., 2003).
Even within species the variation is large enough to distinguish subspecies (Daly and Balling, 1978;
Ruttner, 1988a). There is no problem with the positioning of wings in three dimensions because
they are flat and can be considered as two dimensional (Weeks and Gaston, 1997). High-quality
wing images can be obtained using relatively inexpensive scanners, which allows the process to
be semi-automated. 

When wings of different species are compared there is a need for scaling and rotating them
to a standard position (Lane, 1981; Albrecht and Kaila, 1997). The wing outline can be used for
the positioning because, unlike venation, its shape is similar in all species of insects. The outline
is always rounded at the apex and narrower at the wing base, which can be used for wing detection
and positioning. The width of such outline can be chosen as a baseline and the two-point registration
(Bookstein, 1991) can be used to produce a standard wing image and wing diagram by a combi-
nation of scaling, translating and rotating. Ideally, the baseline should be positioned along the
longest wing diameter and across the wing centroid (Zelditch et al., 2004). However, this is difficult
to achieve because one side (the wing base) of the longest diameter is not well defined and can
be invisible. 

Both the standard wing image and the wing diagram can be important elements of an automatic
species discrimination system. In comparison with unprocessed images, these are a better form of

 

TABLE 17.1 
Precision

 

a

 

 of Automatic and Manual Measurements of Honeybee Wing Venation

 

Junction
no. Automatic 

 

Manual 

A B C Mean 

 

0 4.31 

 

±

 

 3.68 6.94 

 

±

 

 3.54 8.26 

 

±

 

 4.59 10.57 

 

±

 

 4.57 8.59 

 

±

 

 4.23 
1 4.70 

 

±

 

 4.14 6.30 

 

±

 

 3.57 9.54 

 

±

 

 4.66 10.49 

 

±

 

 5.79 8.78 

 

±

 

 4.68 
2 5.69 

 

±

 

 3.30 7.42 

 

±

 

 3.80 9.06 

 

±

 

 5.25 10.83 

 

±

 

 5.87 9.10 

 

±

 

 4.98 
3 3.70 

 

±

 

 2.69 6.90 

 

±

 

 3.71 8.51 

 

±

 

 4.53 10.56 

 

±

 

 5.54 8.66 

 

±

 

 4.59 
4 5.94 

 

±

 

 3.78 7.67 

 

±

 

 3.59 9.85 

 

±

 

 5.08 12.19 

 

±

 

 5.68 9.91 

 

±

 

 4.78 
5 4.08 

 

±

 

 2.59 6.75 

 

±

 

 3.88 8.87 

 

±

 

 5.05 10.50 

 

±

 

 5.54 8.71 

 

±

 

 4.83 
6 5.77 

 

±

 

 3.58 9.19 

 

±

 

 5.71 15.90 

 

±

 

 9.17 12.32 

 

±

 

 6.37 12.47 

 

±

 

 7.08 
7 3.83 

 

±

 

 2.34 6.92 

 

±

 

 4.16 8.83 

 

±

 

 4.94 9.89 

 

±

 

 5.56 8.55 

 

±

 

 4.89 
8 4.07 

 

±

 

 3.04 6.42 

 

±

 

 4.00 7.64 

 

±

 

 3.57 10.55 

 

±

 

 5.18 8.20 

 

±

 

 4.25 
9 4.01 

 

±

 

 2.34 7.04 

 

±

 

 6.46 8.36 

 

±

 

 7.37 12.10 

 

±

 

 6.54 9.17 

 

±

 

 6.79 
10 4.67 

 

±

 

 3.26 7.14 

 

±

 

 3.84 8.44 

 

±

 

 4.46 11.10 

 

±

 

 5.94 8.89 

 

±

 

 4.75 
11 5.11 

 

±

 

 4.30 7.85 

 

±

 

 4.03 8.46 

 

±

 

 4.91 10.80 

 

±

 

 5.65 9.03 

 

±

 

 4.87 
12 5.94 

 

±

 

 4.33 6.30 

 

±

 

 3.26 8.38 

 

±

 

 5.08 10.60 

 

±

 

 5.22 8.43 

 

±

 

 4.52 
13 11.21 

 

±

 

 13.28 12.26 

 

±

 

 7.08 19.54 

 

±

 

 11.08 14.76 

 

±

 

 8.19 15.52 

 

±

 

 8.78 
14 5.33 

 

±

 

 5.66 8.64 

 

±

 

 5.84 8.28 

 

± 4.41 10.60 ± 5.68 9.17 ± 5.31 
15 5.11 ± 7.38 6.94 ± 3.83 7.83 ± 4.23 10.12 ± 6.17 8.30 ± 4.74 
16 5.81 ± 7.64 6.85 ± 4.24 9.02 ± 5.01 9.76 ± 5.18 8.54 ± 4.81 
17 4.28 ± 2.60 7.57 ± 4.08 8.92 ± 5.38 9.40 ± 5.57 8.63 ± 5.01 

Mean 5.20 ± 4.44 7.50 ± 4.37 9.65 ± 5.49 10.95 ± 5.79 9.37 ± 5.22 

Note: The manual measurements were performed by three persons (A, B and C). The veins' junctions are
numbered according to Figure 17.5. 

a In microns; mean ± SD.
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storage and medium of exchange for information about wings. They contain only relevant infor-
mation, which reduces both storage space and retrieval time. The standard wing image can be used
by pixel-based species identification systems that, instead of extracting characteristic points from
the image, use the intensity of all pixels (Weeks et al., 1997; Roth et al., 1999a; MacLeod et al.,
in press). In those systems, the position of a wing in the image is essential for the correct
discrimination of species. The manual positioning of wings has proven to be time consuming and
imprecise (Weeks et al., 1999a, 1999b). 

FUTURE PROSPECTS 

The system described here has been tested on honeybee wings; however, it should work with other
species of insects as well. The detection of a wing outline is based on properties common to the
wings of all insects; therefore, DrawWing should generate the standard wing image, even for
butterfly wings. If wings are membranous with clearly visible veins, a wing diagram can also be
produced. Extraction of the standard wing image was also tested on three species of wasps and the
results were satisfactory (unpublished data). The earlier version of this software was already able
to produce wing diagram of various species (Tofilski, 2004). Only the detection of junctions in the
wing of a particular species requires a list of expected junction coordinates for this species. 

It has been shown that insects' wings can be used to discriminate between species (Weeks and
Gaston, 1997). Methods based on wing outline (Rohlf and Archie, 1984), vein junctions (Schröder
et al., 2002) and all image pixels (Weeks et al., 1997; Roth et al., 1999a) have proven successful.
Various statistical methods of species discrimination have been described as well (Strauss and
Houck, 1994; Roth et al., 1999b). However, there are relatively few tools for efficient data acqui-
sition and wing visualization. DrawWing proved to be successful in this area. It will be developed
further to become a general-purpose tool for the processing of insect wing images. 
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INTRODUCTION

 

Most readers browsing through the content pages of this volume might well be surprised to find a
chapter that concerns itself with pitch contour analysis and infant-directed speech (IDS). The reader
could be excused for feeling the urge to turn quickly to the next chapter. However, in the following
pages we will attempt to show that techniques used for shape characterization also have a place in
psychological research. In fact, as with research into automated taxonomic identification, pattern
recognition is of considerable interest in a psychological context. In the case of human speech, the
potential to detect and characterize discrete acoustic patterns represents the key to a storehouse of
information that can shed light on the origin, diversity, and mechanics of language. This research
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direction has much in common with the identification of different animal sounds in the natural
environment, but here we are particularly concerned with the diversity within our own species.
Herein we investigate the characterization of sound waveforms that are common to speech from
the same speakers, but vary with changing audiences.

Spoken language is arguably the single most important human ability, yet the apparent ease
with which language is acquired during early development belies its complexity. It is therefore not
surprising that the way language is transferred, and subsequently acquired, has been the subject of
considerable debate and research (e.g. Werker and Tees, 1984; Kuhl, 2000; Burnham et al., 2002).
It should not be taken for granted that all meaning is restricted to semantics; acoustic features of
the voice of the speaker can carry as much meaning as the words themselves. Most research into
these acoustic features has concentrated on prelingual infants, as they constitute the most obvious
group as a focus of investigation into speech production and acquisition. It is well established that
adults tend to talk differently in interactions with infants compared to conversation with other adults
(e.g. Fernald and Kuhl, 1987; Werker et al., 1994; Burnham et al., 2002). This seems to be the
case for speech directed to infants by adults of both genders, and also by infants' older siblings
(Jacobson et al., 1983).

The acoustic and phonetic characteristics of this IDS are well recognized, and seem to be
universal (e.g. Grieser and Kuhl, 1988; Kuhl et al., 1997; Kuhl, 2000). It has been found that IDS
is characteristically higher in pitch than adult-directed speech (ADS), and contains exaggerated
pitch contours, shorter utterances, longer pauses and hyperarticulation of vowels (Stern et al., 1983;
Fernald and Simon 1984; Andruski and Kuhl, 1996; Kuhl et al., 1997; Trainor et al., 2000; Burnham
et al., 2002).

Researchers now believe that acoustic modifications in IDS probably have a role in language
transference, but that they might also have emotional or attention-gaining functions (e.g. Fernald
and Simon, 1984; Karzon, 1985; Grieser and Kuhl, 1988; Kuhl, 1994; Kitamura and Burnham,
2003). Despite detailed investigation of some of these IDS aspects, the importance and function
of several other acoustic attributes (e.g. exaggerated pitch contours and intensity) remain contro-
versial. Previous research has investigated these roles by comparing IDS with non-emotional ADS,
mainly in imaginary interactions with the help of scenarios (Trainor et al., 2000). However, it could
be argued that ADS as a comparator to IDS is not sufficient as ADS lacks both the emotional and
linguistic requirements of IDS. Recent research has attempted to counter these limitations by
comparing IDS with emotional ADS in imaginary scenarios (Trainor et al., 2000), emotional pet-
directed speech (PDS) (Burnham et al., 2002) and foreigner-directed speech (FDS) representing a
linguistic comparison group (Knoll and Uther, 2004).

For the present study, we were interested in determining the linguistic role of IDS, and for this
reason we used a linguistic comparison group (foreigners). Foreigner-directed speech should present
a particularly valid linguistic comparison group to IDS for a variety of reasons. Firstly, foreigners
displaying language and pronunciation problems are likely to be perceived as being in need of
linguistically modified speech input. Yet, they are unlikely to engender a high emotional response
in the speaker, particularly if they are strangers. Secondly, the adult status of this group also makes
them directly comparable with an ADS control group, which should itself evoke neither a linguistic
nor an emotional response. As such, we would expect that acoustic features common to both IDS
and FDS might provide some important information about the linguistic function of IDS.

Earlier studies partially investigated similarities between IDS and FDS in both tonal (Mandarin
Chinese) (Papousek and Hwang, 1991) and non-tonal (English) (Biersack et al., 2005) languages.
The pitch range (an aspect of the pitch contour) was found to increase in FDS but not in tonal
language IDS, whereas the opposite was apparent in the non-tonal variant. Because pitch is used
to convey linguistic meaning in tonal languages, these findings suggest pitch contours might have
a linguistic function. However, these studies investigated only the pitch range. The extent to which
pitch contour

 

 shape

 

 in those conditions varies remains unclear. Consequently, our primary aim was
to investigate the function of pitch contour shape modifications in IDS compared to FDS (as a
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linguistic group) and ADS (as a non-linguistic and non-emotional control group) in natural inter-
actions. If the main role of exaggerated pitch contours is language transference, exaggerated
contours should occur in interactions with infants and with foreigners. Conversely, if the exaggerated
pitch contours have an emotional function, they would be expected to occur only in IDS.

 

A

 

NALYSIS

 

 

 

OF

 

 P

 

ITCH

 

 C

 

ONTOUR

 

 S

 

HAPE

 

A major impediment to pitch contour analysis is that pitch contour shape has traditionally been
analysed qualitatively using human raters (e.g. Fernald and Simon, 1984). There have recently been
several attempts to find reliable quantitative methods, but no single approach has emerged as either
simple in its execution or capable of being applied to a wide variety of speech types. For instance,
Trainor et al. (2000) used measurements of pitch values at prespecified points within a contrived
stock phrase. This approach was unable to provide a sensitive characterization of pitch contours.
By contrast, Moore et al. (1994) successfully applied mathematical modelling to the problem. Their
approach would potentially allow a wide variety of speech types to be addressed, but the complexity
of their approach seems to have prevented its wide acceptance within psychology.

Another approach by Tian and Nurminen (2004), based on principal component analysis (PCA)
of syllable pitch values (eigenpitch), is a far less complex technique. Although this method remains
to be tested in comparative speech conditions, it offers the potential to characterize pitch contours
in a generalized context. However, a preprocessing stage involving careful scaling of contours
would be required to avoid inclusion of other non-shape-related variables (e.g., contour length,
referential pitch) without excessive abstraction of the contour shape. At present, the eigenpitch
approach is not suitable for accurate characterization of pitch contour shape.

Clearly, if the role of pitch contours is to be explored adequately, a method must be found that
can readily be applied to a variety of experimental conditions, while remaining straightforward
enough for general (non-specialist) use. This approach must be as reliable, consistent and free of
subjectivity as possible, while providing an easily usable method of characterizing the shape of
the pitch curves. Two approaches currently exist that might satisfy most, if not all, of these
requirements. The first of these is eigenshape analysis (EA), which uses the 

 

x

 

–

 

y

 

 coordinates of
the curve to build a PCA-like ordination of the actual shape variation of pitch contours in series
of conditions (MacLeod, 1999). The second approach involves unsupervised artificial neural net
(uANN)

 

 

 

analysis of contour curves in the form of images. For this, the digital automated identi-
fication system (DAISY) at The Natural History Museum (London) was used. Our secondary aim
was to evaluate the utility of these approaches for pitch contour analysis by comparing them to
the more traditional approach of using qualitative analysis.

 

METHODS 

 

A pre-existing data-set of infant-, foreigner- and adult-directed speech samples in WAV format
formed the basis of the data-set (Knoll and Uther, 2004). Pitch contours were randomly selected
from these groups and then modified to a standardized format that could be used for the DAISY,
EA and qualitative conditions. The extracted pitch contours comprised the specific target words
'sheep', 'shark' and 'shoe', which were chosen because they had been found to be prosodically
highlighted in IDS and FDS in a previous study (Knoll and Uther, 2004). A total of 167 pitch
contours (IDS = 60, ADS = 53, FDS = 54) were extracted from these words. 

Pitch contour extraction was achieved using the freely available speech analysis program, Praat
4.1.19 (Boersma and Wernicke, 2004). The pitch range for the extraction was set at a floor of
100 Hz and a ceiling of 600 Hz (recommended setting in Praat 4.1.19 for female voices). It should
be noted that although the whole word was used for the extraction process, only visible pitch
contours were extracted (which often do not encompass whole words). The 'smooth' function was
then used to smooth the contours (at 10-Hz bandwidth). This is a standard procedure to obtain
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more homogeneous contours and was also used by Moore et al. (2004). Finally, the contours were
drawn using the Praat 4.1.19 'draw' function (set at pitch range of 100–600 Hz, duration of
0.7 seconds).

Ensuring standardization of sample duration was problematic, as previous research (e.g. Fernald
and Simon, 1984) has shown that words in IDS are generally of a longer duration than words in
ADS. Using the Praat 4.1.19 'drawing' function with a time range of 0.00 to 0.00 [all] was not
viable, as it would have led to a distortion of the smaller contours in comparison with the larger
contours (Figure 18.1). The pitch contours were therefore drawn within a set window of 0.7 seconds
(chosen on the basis of the largest contour), thus representing the true duration of the pitch contours
in relation to each other. However, the durational length of the drawn pitch contours exhibited wide
variation, which would have made comparison difficult. To counter this problem, the pitch contours
were exported into CorelDraw 11.0 and standardized for duration without distorting the shape. The
width of the lines was increased to 8-point thickness and then the images were re-exported as a
standardized 500 

 

×

 

 500 pixel grid TIFF format at 72 dpi in CorelPaint 11.0. Widening of the line
thickness was required to enhance the pixel contrast pattern for the DAISY analysis.

 

Q

 

UALITATIVE

 

 A

 

NALYSIS

 

For the qualitative analysis we recruited five raters who were required to rate the 167 pitch contour
images using a predesigned rating scheme. It would have been problematic to average the ratings
for each shape, as the ratings were based on categories rather than on nominal data, such as that
obtained, for instance, on a Likert-scale. In order to deal with this problem, each rater's rating for
each image was taken into account, resulting in five data points per image (e.g. 60 IDS images 

 

×

 

5 raters = 300 data points). 
The rating scheme consisted of graphic representation of five different shapes with one option

for undecided. The shapes consisted of (1) bell, (2) complex, (3) falling, (4) rising and (5) level
shapes (Figure 18.2). These shapes were chosen on the basis of previous work (Fernald and Simon,
1984). Raters were provided with two trial shapes before the main procedure commenced, and the
shapes were presented in counterbalanced order to avoid anomalies caused by rater fatigue. The
raters were not aware that the shapes constituted three different speech conditions. In order to
determine reliability, intraclass correlation for inter-rater (reliability coefficient 

 

α

 

 = 0.97) and
intrarater (reliability coefficient 

 

α

 

 = 0.96) reliability was carried out.

 

DAISY

 

A detailed discussion of the concept and mechanics of DAISY is given in O'Neill (this volume).
The present study follows the standard procedure used to build DAISY training sets as described

 

FIGURE 18.1

 

Comparison of pitch contours in ADS (left) and IDS (right). Note that the duration is very
different, but that the actual pitch contours are drawn in the same size. Using the set window of 0.700 avoids
this distortion as a durational pitch contour of 0.237 would be drawn relative to the 0.700 seconds window.
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by Walsh et al. (this volume). Once built, the consistency of the training set was tested using the
JACKTOOL cross-validation algorithm included with the DAISY system. Pass results are provided
at two main levels. This pass measure is given as a coordination number between 3 and 10, which
indicates that the cross-validated image is positioned within a cluster of 

 

n

 

 nearest neighbours of
the same class. Images that have less than three neighbours of the same class may still be identified
if they are positioned close to the perimeter of a class cluster, in which case a Sill-level identification
is given. Identifications that fall below these levels are classed as fails for the purposes of this study.

 

E

 

IGENSHAPE

 

 A

 

NALYSIS

 

 (EA)

 

The difficulty in locating consistent geometric landmarks along these pitch contours meant that
standard eigenshape analysis was used rather than the landmark-registered extended eigenshape
approach (MacLeod, 1999). Thirty-seven paired 

 

x

 

–

 

y

 

 coordinates were collected using tpsDIG 2.04
(Rohlf, 2005). For accuracy on the thickened line, nodes were positioned along the upper edge of
the pitch, and started at the extreme left of the curve. Interpolation at the 99 per cent tolerance
level resulted in 18 nodes for the three-class data-set. When the classes were analysed separately,
this same value was calculated for IDS, whereas ADS and FDS required only three. Pitch curves
for each class were also analysed separately to determine the mean shape for each category.
Eigenscores for the complete 167 data-set were analysed using canonical variates analysis (CVA)
implemented through SPSS 13.0 software.

 

RESULTS

Q

 

UALITATIVE

 

 A

 

NALYSIS

 

Of the original six categories, the 'undecided option' was not chosen by any of the raters, indicating
that the raters believed they were able to categorize each of the 167 images into the provided five
pitch contour categories (Table 18.1). Rated pitch contour category and type of speech recipient
group variables were found to be associated, and not independent of each other (

 

λ

 

2

 

 = 544.038, df
= 8, 

 

p 

 

< 0.001). Cramer's V produced a value of 0.571, indicating a strong relationship between
the two variables (

 

p 

 

< 0.001). Goodman and Kruskal's lambda was also calculated for type of
speech recipient group (

 

λ

 

 = 0.338, 

 

p

 

 < 0.001) and rated pitch contour category (

 

λ

 

 = 0.314, 

 

p

 

 <
0.001), the result of which showed that both variables (contour shapes and speech groups) were
equally and significantly predictive of each other. Over 60 per cent of the IDS pitch contours were
characterized as bell contours, followed by 16 per cent level contours (Table 18.1).

In both ADS and FDS this result was reversed. Here, the majority of pitch contours were
characterized as level contours (ADS = 81.1%; FDS = 78.9%), with less than 2 per cent being
characterized as bell contours in both conditions. Interestingly, none of the ADS or FDS pitch
contours were characterized as complex contours, whereas 12 per cent of the IDS pitch contours
fell into this category. With regards to the falling contours, more ADS pitch contours were catego-
rized as falling contours (15.5%) than FDS (13.3%) and IDS (3.3%), although the difference
between ADS and FDS is minimal (2.2%). In the category for rising contours, the highest frequency

 

FIGURE 18.2

 

These are the shapes that were presented to the raters in the rating scheme. See main text for
definition of each shape. Note that numbers were not included in original rating scheme.
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was achieved by the FDS contours (6.3%) followed by IDS contours (4.7%), with ADS contours
achieving the lowest frequency (2.3%). The conclusion that can be drawn from these results is that
IDS pitch contours are clearly distinct from ADS and FDS pitch contours, and were mainly rated
as consisting of 'exaggerated' contours (bell shapes and complex contours). In contrast, both ADS
and FDS seem to consist mainly of level contours with no indication of exaggeration, and it was
not possible to separate these two speech categories reliably with the qualitative analysis.

 

DAISY

 

Each of the classes (IDS, ADS and FDS) was recognized by DAISY as a discrete group, but the
higher number of nearest neighbours in IDS (mean pass = 8) indicates a tighter clustering within
the IDS data-set compared with the adult conditions (mean pass = 4). Note that although ADS and
FDS share the same mean pass coordination rate of 4, this is an indication of clustering consistency
within each class, rather than an indication of a similar clustering between these two classes. ADS
and FDS images are more homogeneously clustered within their class shape space. The individual
results for each class revealed that IDS achieved the highest pass rate of 80 per cent (Table 18.2),
indicating that the IDS images exhibited an inherent similarity to each other.

In contrast, in ADS, 45 per cent of the ADS images were recognized as belonging to the same
(ADS) class, with 55 per cent rejected. This result is, to a certain degree, repeated in FDS, where

 

TABLE 18.1
Distribution of Ratings for Each of the Five Contours 
across IDS, FDS and ADS

 

Speech groups

 

Shape contours

Bell Complex Rising Falling Level

 

IDS 191 36 14 10 49
% within group 63.7 12 4.7 3.3 16.3
% within shape 96.5 100 37.8 11.5 10.3
ADS 3 0 6 41 215
% within group 1.1 0 2.3 15.5 81.1
% within shape 1.5 0 16.2 47.1 45.1
FDS 4 0 17 36 213
% within group 1.5 0 6.3 13.3 78.9
% within shape 2 0 45.9 41.4 44.7

 

Note:

 

 Percentage distribution for each group per shape and each shape
per group are also displayed.

 

TABLE 18.2
Confusion Matrix for Pass/Fail Rates 
for IDS, ADS and FDS

 

Groups classified as IDS ADS FDS

 

IDS 80%

 

a

 

6% 9%
ADS 5% 45%

 

a

 

51%
FDS 15% 49% 40%

 

a

a

 

Correct classification of image into its group.
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40 per cent of the images were recognized as belonging to the FDS class, with 60 per cent rejected.
This association between the type of speech recipient and pass and fail rates was found to be
significant (

 

λ

 

2

 

 = 21.616, df = 2, 

 

p

 

 < 0.001). Pass rates of below 50 per cent suggest the presence
of discrete groupings, but indicate the interdigitation of class clusters; the IDS cluster was clearly
better separated from ADS and FDS than the two adult classes were from each other.

DAISY provides a list of what class each failed image was mistaken for as part of a partition
function measure. The percentage of failed images in each class provides a measure of which
classes interdigitate with which. Fail rates indicate that most of the IDS failed images were mistaken
for FDS (15%), whilst both FDS (51%) and ADS (49%) were mistaken for each other (see Table
18.2). These results indicate that the majority of IDS pitch contours represent a more or less coherent
group despite showing greater variability within the IDS space. In contrast, both ADS and FDS
pitch contours were difficult to separate due to interpenetration of the group clouds for each class,
despite exhibiting less variability within their respective classes. The most important finding is that
all three classes (IDS, ADS and FDS) were recognized by the system as belonging to separate
groups, although with weaker groupings in the adult conditions than in IDS. 

 

E

 

IGENSHAPE

 

 A

 

NALYSIS

 

Almost 70 per cent of the shape variation in all three conditions was attributable to the first
eigenshape axis. As such, all outlines exhibited a fundamental similarity with each other. Separate
analysis of each of the three groups demonstrated that most of the variation on the second eigenshape
axis is indeed due to IDS. ADS and FDS pitch contour variation is due entirely to the first eigenshape
axis, therefore indicating that these two groups are similar in that they possess very little shape
variation. In contrast, IDS variation is due to both the first and the second eigenshape axes and, as
such, indicates wider variation across the IDS shape space. The IDS mean eigenshape is charac-
terized by a more exaggerated curve than either ADS or FDS, and could be characterized as a bell
curve. However, the top of the bell curve is flattened due to shape variation within the IDS pitch
contours. The most interesting finding is that the mean shapes of ADS and FDS are almost identical
(Figure 18.3). 

A standard CVA was performed with speech recipient groups as category variable, and the
scores on the 16 axes derived from EA as the predictor variables. Univariate ANOVAs revealed
that the three groups differed significantly on the eigenscores of axis 1 (

 

F

 

(2, 164)

 

 = 66.397, 

 

p

 

 < 0.001)
and axis 10 (

 

F

 

(2, 164)

 

 = 4.448, 

 

p

 

 < 0.013). Two discriminant functions were calculated. The values
of the first of these functions were significantly different for IDS, ADS and FDS (

 

λ

 

2

 

 = 130.228, df
= 32, 

 

p

 

 < 0.001, Wilk's 

 

λ

 

 = 0.453), whereas the second function was found not to be significantly
different. The correlation between predictor variables and the discriminant functions suggested that
both axis 1 (on discriminant function 1) and axis 10 (on function 2) would be the best predictors
for membership of future pitch contours. Overall, the discriminant functions successfully predicted

 

FIGURE 18.3

 

Comparison of mean shapes for IDS, ADS and FDS plotted on eigenshape 1 versus eigenshape 2.
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outcome for 71 per cent of all cases, with accurate predictions for IDS of 75 per cent, for ADS of
77 per cent and for FDS of 59 per cent. Figure 18.4 shows plotting of each of the pitch contours
for IDS, ADS and FDS on functions 1 and 2. IDS is distinct from both ADS and FDS. FDS and
ADS share more of their variance, but still represent discrete groupings (confirmed by the position
of the group centroids).

From this EA it is clear that IDS is a variable group that is nevertheless distinct from ADS/FDS.
These adult conditions exhibit very little shape variability, but do provide notable characteristics
that separate one from the other. The mean ADS and FDS eigenshapes confirm this similarity,
indicating that the separation relates to a shape 'tendency' rather than to a strong shape character-
ization, as is the case with the mean IDS bell contour.

 

DISCUSSION

F

 

UNCTION

 

 

 

OF

 

 IDS P

 

ITCH

 

 C

 

ONTOURS

 

This study supports the findings of previous research (e.g. Fernald and Simon, 1984, Fernald and
Mazzie, 1991) that pitch contours in IDS are not only very distinctive, but also are noticeably
different from those of speech directed to adults. The pitch contours of FDS were found to be
more similar to ADS, which is also consistent with earlier findings (Biersack et al., 2005). Contrary
to research comparing tonal IDS and FDS (Papousek and Hwang, 1991), we found no evidence
of linguistic exaggeration of pitch contours in non-tonal FDS. The most likely reason for this
difference is that the present study centred on a non-tonal language (English), and was therefore
not directly comparable with Papousek and Hwang's (1991) findings, which focused on Mandarin
Chinese. In such a language, an over-emphasis on the pitch changes would be expected when
talking to foreigners. Conversely, pitch changes in English are not linguistically relevant and do
not require emphasis.

The qualitative analysis found that 76 per cent of IDS contours consisted of bell and complex
shapes. The majority of ADS and FDS contours were characterized as level shapes, with almost
no occurrence of bell or complex contours. Level contours, therefore, seem to be characteristic of
ADS and FDS, whereas bell and complex contours seem to be indicative of IDS, at least within

 

FIGURE 18.4

 

Combined CVA plot for IDS, ADS and FDS. Ellipses provide more effective presentation of
clustering of the groups.
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the words analysed in this study. Although the two algorithmic approaches evaluated here do not
provide named classes for the contour shapes (a fundamental requirement for the raters), the results
of those techniques are in close agreement with the qualitative analysis.

An association between these exaggerated IDS shapes and particular emotional and turn-taking
interactions has already been noted, and it was suggested that they were responsible for the melodic
quality of IDS (Trainor et al., 2000). Our findings are consistent with this viewpoint. They also
naturally lead to the conclusion that, in non-tonal languages, the speaker talking to an infant
primarily uses pitch contour exaggeration to convey emotion or gain attention rather than as a tool
for language transference. However, the results of the qualitative analysis also indicate a tendency
for rising contours to form part of the characteristic shape space of FDS compared with ADS. This
slight but tantalizing finding might provide information as to how the two algorithmic approaches
were able to separate ADS from FDS. Rising contours might be associated with questioning,
possibly in the context of comprehension. The reliability and implications of this observation
obviously require further investigation.

Because we investigated the importance of the linguistic IDS component by comparing it with
a linguistic condition (FDS), our results are not useful for discussion of the relative independence
of the emotional and attentional components. Using an emotional speech recipient group such as
partner- or pet-directed speech (e.g. Burnham et al., 2002) could potentially be more informative
about the interdependence of these two components.

 

E

 

VALUATION

 

 

 

OF

 

 N

 

OVEL

 

 A

 

PPROACHES

 

The major advantages of qualitative analysis are that it provides an intuitive insight into the data
and that it can easily be applied, since in most psychology departments there is normally a readily
available source of potential raters. However, it also relies on preselection of shapes that are assumed
to represent fundamental groups within the data-set. This is unavoidable because, without restricting
the field of presented shapes, the raters would have had difficulty distinguishing contours that grade
between well-defined end member shapes. This difficulty was commented on by most of the raters,
who reported that this was a task that ostensibly seemed straightforward, but in practice proved
quite the opposite. Considering the apparent difficulty of the task, it is surprising that none of the
raters selected the 'undecided' option from the rater sheets. Perhaps a belief in their own discrim-
inatory abilities prevented them from admitting that they could not make a decision with conviction,
although the inter- and intrarater reliability suggests that this is unlikely. It seems more probable
that the raters possessed an ability to recognize these broad shape categories that allowed them to
get close to a core shape characterization, but were unable to detect the subtle shape changes that
might have occurred between these examples.

In theory, any ANN that is capable of assessing digital images should be able to provide a
similar analysis of a given data-set to human raters, but the reduction in subjectivity should result
in a more reliable characterization of shapes within a given category. For instance, DAISY fails
gracefully when presented with marginal images, whereas a human rater may be tempted to make
a potentially inaccurate snap decision. Moreover, DAISY provides consistent, yet objective,
classifications based on reliable, well-defined algorithmic parameters. For instance, a weakly
characterized bell shape among a series of well-defined bell shapes might be characterized by a
human rater as a level shape, while the same shape might also be characterized as a bell shape
among a series of flat lines. Although counterbalancing should reduce this context effect, coun-
terbalancing is nevertheless a random procedure that might not alleviate the problem. By com-
parison, DAISY is not affected by the human need to classify objects on the basis of context.
Neither is DAISY affected by rater fatigue or differences between individuals. One of the major
advantages of DAISY is that it provides the user with ready-made, easily interpreted statistical
output that requires little statistical grounding on the part of the user. As such, DAISY is readily
adaptable across a wide variety of disciplines (including psychology). DAISY is also fast and
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comparatively easy to operate. It does not depend on the recruitment of human raters, and thus
can potentially avoid preselection biases.

However, the preprocessing of image preparation suitable for DAISY input is time consuming
and requires expert knowledge of graphic file manipulation. This is important for this kind of
analysis because DAISY requires files that contain an adequate sample of the signal classes for
processing. In this study, the thickness of the line of the pitch contours had to be magnified in
order to provide the minimum required input needed for signal processing. We suspect that the
thickened pitch contour line may still not include a strong enough signal. An improvement of this
would consist of amplification of the signal by generating a pattern of greyscale pixel brightness
values below the pitch contour, based on the pitch 

 

y

 

-coordinate value at each step along the pitch
curve. The need to standardize the images for comparability between approaches meant that this
was not possible here, although future work might involve such a procedure.

DAISY could also have dealt with the raw spectrogram output from Praat, and normally this
kind of patterned image is the basic input for the system. However, this would have meant that
other prosodic modifications (e.g. mean pitch, duration, intensity and formant) would also have
been represented in the image files. While this may have been desirable in some circumstances,
for this analysis it would have been impossible to conclude that any groupings supported by DAISY
are solely the result of pitch contour shape. As such, DAISY image preprocessing is the basis of
an effective analysis and requires careful consideration. It is worth noting here that the DAISY
algorithm can theoretically be applied to sound samples, and the potential of the system in speech
analysis remains to be fully tested.

The eigenshape approach clearly offers an objective, relatively fast, independent and statistically
viable way of analysing curves and outlines. Although some minor knowledge of geometry is
required to carry out EA, this should generally not present an obstacle within psychological research.
Time-intensive image preparation is unnecessary for EA, and in fact coordinates could be captured
directly from the spectrogram if necessary. The major advantage of EA is the fact that its output
provides scores that can be used for further multivariate analysis (CVA), which supplies the
researcher with a visual representation of the groupings. Furthermore, unlike the two other methods,
the visual presentation of the mean shape of each group provides a quick approximation of the
shapes of the figures. Using EA, the region-specific shape variation noted between ADS and FDS
contours could also be analysed using a partial least squares approach (Rohlf and Corti, 2000).
However, because this study aimed to evaluate these techniques for psychological research by
analysing a simple three-class case study, we have chosen to pursue this when we have new
comparative data from other speech recipient conditions.

 

CONCLUSIONS

 

In summary, our findings suggest that the function of the exaggerated pitch contours in IDS is
emotional–attentional rather than a device to highlight important linguistic features. Because we
investigated the importance of the linguistic component of IDS, our results are not useful for
discussion of the relative dependence of the emotional and attentional components. Using an
emotional speech recipient group such as partner- or pet-directed speech could potentially be
informative about the nature and importance of the emotional component, and future research should
concentrate on these groups. We suggest that the algorithmic approaches evaluated here present
considerable potential for future pitch contour analysis and offer an alternative to the subjectivity
of teams of human raters. However, because the results of each of the evaluated approaches were
consistent with each other, we note that human raters may not be as unreliable as might be imagined.
The potential of uANN technology in speech analysis is of considerable interest, and we suspect
that data obtained from research into acoustic characterization of speech directed to specific groups
will feed back into such areas as synthetic speech production and recognition.
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COMPARATIVE MATERIAL

 

Aptenodytes patagonicus

 

.

 

 1846.4.15.33; 1846.4.15.31; 1846.4.15.32; S/1972.1.24;
S/1952.1.28; S/1952.1.29

 

Aptenodytes forsteri

 

. 

 

1846.4.15.26; 1846.4.15.27; 1846.4.15.28; 1850.9.7.2; 1998.55.2;
S/1972.1.25

 

Pygoscelis papua

 

. 

 

1860.12.19.5; 1884.3.26.1; 1895.7.4.1; 1900.8.17.1; S/1952.3.135;
1846.4.15.29

 

Pygoscelis adeliae

 

. 

 

1849.10.2.2; 1910.11.5.1; 1846.4.15.34; 1850.9.7.1; S/1952.1.31;
S/1952.1.32; S/1952.1.36; S/1965.10.1; 1966.4.2

 

Pygoscelis antarctica.

 

 

 

S/1973.66.6; S/1966.4.1

 

Eudyptes crestatus

 

.

 

 1898.7.1.12; 1898.7.1.13; 1852.1.17.92; 1869.2.24.6; S/1956.14.1;
S/1952.1.39; S/1952.1.136; 1998.12.6; S/1964.14.2

 

Eudyptula minor

 

.

 

 S/2002.2.1; S/1966.51.1; 1896.2.16.38; S/1952.1.41

 

Spheniscus demersus

 

. 

 

S/1998.23.2; 1905.7.23.1; 1898.7.1.8; 1898.7.1.9; S/1952.3.144;
S/1998.48.24

 

Spheniscus humboldti

 

.

 

 S/2000.7.1; S/1961.15.1; S/1952.1.42

 

Spheniscus magellanicus

 

.

 

 1891.7.20.133; S/1952.1.43; S/2001.45.1; S/1972.1.27;
1869.2.27.7.
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A

 

Active sensor(s) [see Sensor(s): active]
Adanson, Michel  ix
Adaptation(s)  262
Adaptive resonance theory [see Neural network(s): adaptive 

resonance theory]
Adaptivity  48
Adult-directed speech (ADS)  300-308
Agriculture and Food Research Council  102
Agricultural management [see Management: agricultural]
Agglomerative clustering [see Clustering: agglomerative]
Aitchison, John  xi
Aleksander, Igor  104
Algorithmic Approaches to the Identification Problem in 

Systematics symposium  4
Amateurs  20
Amino acid  17
Ampliture probability density function(s)  89
Ancestor(s): human  20
Anderson, T.W.  xi
Animals  278
Antenna base  170, 172, 173
Anthropology: physical  69
Anthropometrics  70
Aphid(s)  92
Applied taxonomy [see Taxonomy: applied]
Arachnids  132
Arthropods  102, 194
Artificial 

intelligence  116, 154
neural networks (ANN) [see Neural network(s): 

artificial (ANN)]
Autecology  92
Autocorrelation  89
Automatic 

Bee Identification System (ABIS)  5, 102, 116-128, 
148, 183

Diatom Identification and Classification (ADIAC)  36, 
41

Automated 
systems [see Systems: automated]
taxon identification (ATI)  83,93
taxonomy [see Taxonomy: automated]

 

B

 

Backpropagation  54, 107, 162, 209
cascade correlation  138
Bacteria  133
Bagging  201
Barnard, M.M.  xi

Basswoord(s)  209
Bayes' Theorem [see Theorem: Bayes']
Bayesian 

functions [see Functions: Bayesian]
logic  26
matting [see Matting: Bayesian]

Bee(s)  x, 116-128
bumblebee(s)  108
honeybee(s)  5, 92, 289
solitary  92

Beetle larvae [see Larvae: beetle]
Bending energy  75
Berlese funnel extraction  195
Biodiversity  10, 194

assessment  84, 153
crisis  21
insect  192

Biogeography  289
Bioinformatics  18, 286
Biology

developmental  20
evolutionary  17

BioloMICS  281-286
Biometric(s)

multivariate  1
systems [see Systems: biometric]

Biomonitoring  192
Bio-NET–INTERNATIONAL Group for Computer-aided 

Taxonomy  84
Biosphere  19
Biostratigraphy  240
Birds  21
Blackith, R.E.  70
Biodiversity: soil  190
Bootstrap [see Statistics: bootstrap]
Botanists  207
Brachial cells [see Cell(s): brachial]
Brachiopod(s)  x, xi
Braconid wasps [see Wasp(s): braconid]
Bray-Curtis similarity [see Similarity: Bray-Curtis]
Browser(s) [see Feeding: browser(s)]
Bumblebees [see Bees: bumblebee(s)]

 

C

 

Camera(s)
digital  290
video (NTSC)  290
video (PAL)  290

Caminacules  33
Campbell, Norman A.  x
Cane toad(s)  91
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Canonical variates analysis (CVA)  156-157, 160, 161, 167, 
169, 171, 172, 176, 177, 182, 229, 230, 250, 
303, 305

Carbon dioxide (CO

 

2

 

)  193
Cell(s)

brachial  119
cubital  120,121
discoidal  119
radial  121

Character(s) 212
coding  218
continuous  210
distributions  14
transformation(s)  16

Charismatic groups [see Group(s): charismatic]
Chemical pollution [see Pollution: chemical]
China  ix
Clade(s)  16, 21
Cladistic(s) 84
 analyses  18
Cladogram(s)  153
Classification(s)  10, 13, 48, 51, 62, 195

first-past-the-post (FPTP)  104,108
nearest neighbour  103
normalized vector difference (NVD)  104, 169
phenetic  2, 281
two-dimensional  196

Classifier(s)
continuous 

 

n

 

-tuple  138, 169
scalable  92

Cluster 
analysis  90
threshold  65,66

Clustering  48, 51, 62, 280
agglomerative  284
set  202

Clypeus  170, 173
Coefficient(s)

linear predictive  89
Colour images [see Image(s): colour]
Collections  15, 19
Comb filters [see Filter(s): comb]
Comparative

ethology [see Ethology: comparative]
morphology [see Morphology: comparative]

Compound eye  170, 172, 173
Computational anatomy  69
Computed homology [see Homology/homologies: 

computed]
Computer-aided 

identification systems [see System(s): computer-aided 
identification]

keys [see Key(s): computer-aided]
taxonomy [see Taxonomy: computer-aided]

Computer-assisted tomography (CT)  12, 87, 111
Computer 

scientists  190
vision  154

Confidence  49
Confusion matrix  37

Conodont(s)  5, 240-256
Taxonomy [see Taxonomy: conodont]

Conservation monitoring [see Monitoring: conservation]
Continuous characters [see Character(s): continuous]
Contour tracing  293
Converter

analogue-to-digital  86
Copepod(s)  31
Cornell University  19
Correspondence analysis  126
Cramer's V  303
Cross-correction  89
Cubital cells [see Cell(s): cubital]
Curse of dimensionality  181
Curve(s)  69,70
Cyanobacteria  93
Cyberinfratructure  13, 18, 21

 

D

 

DAISY (see Digital automated identification system 
[DAISY])

BUILDTOOL  227
JACKTOOL  227, 303
nearest neighbour classifier (NNC DAISY, DAISY II)  

104,105-109
Darwin initiative  103
Data mining  264
Daubechies 4 wavelet function [see Function(s): 

Daubechies 4 wavelet]
de Buffon, Georges Louis Leclerc  ix
Decapod larvae [see Larvae: decapod]
Decision 

theory  90
trees (DT)  201, 262, 263, 265, 268-269, 270

boosted  203
Delphi protocol  38
DELTA key generation software  207, 212
Descriptive taxonomy [see Taxonomy: descriptive]
Descriptor(s)

bagged local region  203
vector [see Vector(s): descriptor]

Detector(s)
region  197

Development  289
Developmental Biology [see Biology: developmental]
Diatom(s)  92
Dibitag  270, 274
Dichotomous keys [see Key(s): dichotomous]
Digital 

automated identification system (DAISY)  5, 101-112, 
148, 169, 171, 174-180, 183, 226-236, 301, 
304-305

camera(s) [see Camera(s): digital]
Dinoflagellate Identification by Artificial Neural Network 

(DiCANN)  36
Dinoflagellate(s)  36, 92
Dinosaur(s)  20, 21, 48-67
Discoidal cells [see Cell(s) discoidal]
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Discriminant analysis
linear (LDA)  0, 119, 120, 122, 123, 156-157, 160, 161, 

181, 263, 264
non-linear kernel (NKDA)  122,123,124

Distance(s)
Euclidean  59,63,64,65,66
Mahalanobis  167, 263
matrix [see Matrix: distance]
Procrustes  71, 167, 168, 171, 174, 176, 177

Diversity: taxonomic  14
DNA  1, 13, 33, 154, 277, 278, 280, 283

barcoding  20, 153
sequences  18
taxonomy [see Taxonomy: DNA-based]

Domesticated cow(s)  91

 

DrawWing

 

  291, 294
Duiker  267

blue  266
Dynamic neural network(s) [see Neural network(s): 

dynamic]

 

E

 

E-publication  22
Echo size  89
Ecological 

theory of perception  26
guilds [see Guild(s): ecology]
monitoring [see Monitoring: ecological]

Ecology  289
Ecophenotypy  241, 242, 254, 255
Ecosystem 

complexity  10
science  20

Edge elements (edgels)  118,120
Eigenpitch  301
Eigenshape analysis (EA)  5, 301, 303, 305-306, 308

extended  5, 228
standard  5

Eigenvalues  120
Electronic monographs [see Monographs: electronic]
Emotional pet-directed speech (PDS)  300
Empiricism  18
Encoding  50
Endo, Kazuyoshi  xi
Endoparasitoids: koinobiont  165
Entomologists  190
Epigyum  134, 135, 148
Epistomal sulcus  170, 173
Ethology

comparative  20
Euclidean distance(s) [see Distance(s): Euclidean]
Eutrophication  192
Evolution

macro-12
micro-12

Evolutionary 
biology [see Biology: evolutionary]
history  10
trends 240

Expectation-maximization (EM) algorithm  200
Expert systems [see System(s): expert]
Extended eigenshape analysis [see Eigenshape analysis: 

extended]

 

F

 

Fallow deer  91
False

feature hypotheses  119
killer whale  91

Fast Fourier Transform (FFT) (see Transform: Fast Fourier 
[FFT])

Fault tolerance  49
Feature extraction  190
Feeding

browser(s)  261, 268
grazer(s)  261
high-level browser(s)  265
mixed  265, 268, 269, 275
omnivorous  265
selective  265
strategies  261

Filter(s)
comb  87
Gabor  139
Gaussian  122

First-past-the-post (FPTP) metric [see Metric: first-past-
the-post (FPTP)]

Fisher, Ronald A.  xi
Focus  58-59, 63-64,66
Foraminifera

planktonic  109
Foreigner-directed speech (FDS)  300-308
Forest management [see Management: forest]
Forested habitats [see Habitats: forested]
Fossils  17
Fourier shape coefficients [see Shape coefficients: Fourier]
Function(s)

Bayesian  90
Daubechies 4 wavelet  138, 142, 144
Gabor wavelet  138, 142
radial basis  90
squashing  209

Fungi  14, 20, 278

 

G

 

Gabor 
Filter(s) [see Filter(s): Gabor]
masks [see Mask(s): Gabor]
wavelet function [see Function(s): Gabor wavelet]

Gaston, Kevin  101,102,103
Gauld, Ian  101,102,103
Gaussian

Filters [see Filter(s) Gaussian]
kernel  117
mixture model (GMM)  200, 202
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Geometry
Minikowski  74

GenBank  4
Gene(s) 18

orthologous coding  277
Generalization  48
Genetics  289
Genomics  20
Genotype  17
Genus template [see Template: genus]
Geometry

Minikowski  74
Geometric morphometrics [see Morphometrics: geometric]
Giant forest hog  266
Global Biodiversity Information Facility (GBIF)  19, 20
Google Earth  283
Grazer(s) [see Feeding: grazer(s)]
Groups

charismatic  132
Growing neural gas with utility (GNG-U) 61
Guild(s)

ecological  261
Gunnerson's prairie dogs  91

 

H

 

Habitat(s)
forested  265

Harmful Algal Bloom (HAB) Buoy  37, 38, 41
Hennig, Willi  10, 12
Hidden layer [see Layer(s): hidden]
High-level browser(s) [see Feeding: high-level browser(s)]
Holomorphy  10
Homology/homologies  11, 16, 18, 78, 243, 244

computed  70,78
Honeybee(s) [see Bees: honeybee(s)]
Human Genome Project  1, 16
Humerus  225
Hyperdiverse taxa [see Taxa: hyperdiverse]
Hypertext keys [see Key(s): hypertext]
Hypsodonty Index (see Index: hypsodonty)

 

I

 

Ichnumonid wasps [see Wasp(s): ichnumonid]
Identification  13

multifactorial  286
polyphasic  284
single-sided  286

Image(s)
histogram  89, 291
segmentation  26
colour  26, 116
matting [see Matting: image]
monochomatic  26, 116
spin  197

Integrated taxonomy [see Taxonomy: integrated]
Index

Hypsodonty  265, 267, 269, 275

Indian muntjac  266
Infant-directed speech (IDS)  299, 301-308
Infants

prelingual  300
Information technologies  9
Input 

dimension  52
layer [see Layer(s): input]
vector [see Vector(s): input]

Insect(s)  14, 20, 102, 116, 132, 190, 289
Instituto Nacional de Biodiversidad (INBio)  132
Internet  4, 93
Interpolation theory  73
Intrinsic 

random field (IRF)  70,73,77,78,79
warp(s) [see Warp(s): intrinsic (IW)]

 

J

 

Jackknife [see Statistics: jackknife]
Janzen, Daniel  1, 102, 103
Java servlets [see Servlets: Java]
Jurassic  21

 

K

 

Kaesler, Roger  3
Kendall 

shape manifold  171, 174
David  70

Kendall's tau  104
Kent, John  69,73
Key(s)  279

artificial neural network  209
computer-aided  84
dichotomous  132, 279
hypertext  132
multiple entry (MEK)  280, 281, 283, 284
taxonomic  207

 

L

 

Landmark point(s)  69, 70, 161, 226
Larvae

beetle  85
decapod  31
parasitic  133
stonefly  190-204

Laser vibrometer  85
Lateral ocellus [see Ocellus: lateral]
Layer(s)

hidden  56, 208
input  208
output  54-55, 208

Learning rate  54, 58, 63
Learning machine  262
Learning

supervised  51, 162
unsupervised  51, 90, 162
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Linden(s)  209
Linear distance measurements [see Measurement(s): linear 

distance]
Linearity  103
Link-ageing parameter  62,66,67
Linnaeus  20, 32
Linné, Carl von  ix  (see Linnaeus)

 

M

 

Machine learning [see Learning: machine]
Macro-evolution [see Evolution: macro-]
Mahalanobis distance(s) [see Distance(s): Mahalanobis]
Malar area  170, 173
Mammals  21
Management

agricultural  192
forest  192

MANOVA
non-parametric  250

Mardia, Kanti  69,73
Mardia-Dryden 

distribution  71
models  71

Marine zooplankton [see Zooplankton: marine]
Marmot(s)  169
Mask(s)

Gabor  139
Matheron, Georges  x, 73
Matrix

distance  280
similarity  280

Matting
Bayesian  196
image  195

Maximum likelihood  169
Measurement(s)

linear distance  226
Mechanical engineers  190
Medial ocellus [see Ocellus: medial]
Megafauna  194
Metadata  92
Metric

coordination  170
first-past-the-post (FPTP)  170
Procrustes distance  69, 174
SILL  170

Micro-evolution [see Evolution: micro-]
Micro-organisms  133, 194
Minikowski geometry (see Geometry: Minikowski)
Mixed feeding [see Feeding: mixed]
Molecular diagnostics  13
Moments  89
Momentum  213
Monitoring

conservation  84
ecological  84
water quality  190

Monochromatic image(s) [see Image(s): monochromatic]

Monographs  12, 15
electronic  15

Monophyletic groups  14
Monophyly  11
Montage  195
Monte Carlo simulations  158
MorphBank  12, 165
MorphoBank  12, 165
MorphoBox  124
Morphological divergence  255
Morphologists  18
Morphology

comparative  17
Morphometric synthesis  70, 155
Morphometrics  5

geometric  x, 2, 69, 155
Morphospace(s)

theoretical  242, 262
Moths

sphingid  110
Mouse deer  266
Multifactorial identification [see Identification: 

multifactorial]
Multilayer(ed) perceptron (MLP) [see Neural network(s): 

multilayer(ed) perceptron (MLP)]
Multiple entry keys (MEK) [see Key(s): multiple entry 

(MEK)]
Museums  14

 

N

 

n

 

-tuple classifier [see Classifiers: continuous 

 

n

 

-tuple]
National 

Biodiversity Institute, Costa Rica (INBIO)  103
Environmental Research Council (NERC)  16
Science Foundation (NSF)  19

Nearest neighbour classification [see Classification: nearest 
neighbour]

Neighbourhood  59
Neighbourhood size  58, 59
Network(s)

Bayesian  262
Neural network(s)  x, 5, 160, 182

plastic self-organizing map (PSOM)  5, 61-67, 164
self-organizing map (SOM)  51, 57-60, 67, 90, 92, 104, 

162, 163, 167, 182
adaptive resonance theory  90
artificial (ANN)  47, 90, 133, 134, 137, 138, 147, 208, 

212, 215, 226-236, 279, 307
multilayer(ed) perceptron (MLP)  5, 51-57, 58, 61, 67, 

90, 107, 162, 208-210
time-delay  90
unsupervised, artificial (uANN)  308
dynamic  47, 61-67
fully connected  52
static  48, 51-67
traditional  47, 51-67

Neuron activation  52
Neuron(s)  51-67, 138, 141, 163

output  141
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Node-building parameter  62, 66
Non-parametric MANOVA [see MANOVA: non-

parametric]
Nonlinearity  48
Normalized vector difference (NVD) [see Classification: 

normalized vector difference (NVD)]
Numerical taxonomy [see Taxonomy: numerical]
Nutrient cycling  194
Nyquist frequency  85-86

 

O

 

Object-class recognition [see Recognition: object-class]
Ocellus

lateral  170, 179
medial  172, 179

Omnivore(s) [see Feeding: omnivorous]
Ontogeny  17, 240, 242, 255
Ontology  116
Operational taxonomic unit(s) (OUT)  280, 281
Operator(s): interest  197
Outline(s)  161, 226, 244, 292, 295
Output 

layer [see Layer(s): output]
vector [see Vector(s): output]

Over-fitting  49
Overpopulation  x
Overtraining  209

 

P

 

P

 

1

 

 element(s)  242, 253, 255
Palaeontology  3, 17
Paleocene

Early  225
Parasitic

larvae [see Larvae: parasitic]
wasps [see Wasp(s): parasitic]

Parataxonomist(s)  83, 132
Partial 

least squares (PLS) analysis  308
warp(s) [see Warp(s): partial]

Passive sensor(s) [see Sensor(s): passive]
Pattern recognition  90, 93, 154, 167, 190, 203
Peccary

Chacoan  272, 274
Peer review  3
Penguins  225-236
Pentland, Alex (Sandy)  102
Personal digital assistant (PDA)  111
Phenetics [see Classification: phenetic]
Phenotype  17
Phylogenetic 

analysis  10, 226
inference  153
patterning  263

Phylogenetics  17, 22
Phylogeny/phylogenies  15, 17, 18
Phytoplankton  133

Pipesnake(s)  169
Pitch contour 

analysis  299
shape  [see Shape: pitch contour]

Planetary Biodiversity Inventory (PBI) projects  19
Planktonic foraminifera [see Foraminifera: planktonic]
Plants  278
Plastic self-organizing map (PSOM) [see Neural 

network(s): plastic self-organizing map 
(PSOM)]

Points of interest (PoIs)  124,125,126
Pollen  83, 92, 110
Pollution

chemical  192
thermal  192
tolerance  192

Polymorphism  xi, 241
Polyphasic identification [Identification: polyphasic]
Pop-out  28, 29, 31
Praat  301, 308
Prelingual infants (see Infants: prelingual)
Principal 

component analysis (PCA)  102, 120, 301, 157-161, 
248, 250, 262

coordinate analysis (PCoA)  281
warp(s) [see Warp(s): principal]

Procrustes 
distance(s) [see Distance(s): Procrustes]

metric [see Metric Procrustes distance]
shape coordinates [see Shape Coordinates: Procrustes]

Proteins  154
PubMed  283

 

R

 

Radial basis function(s) [see Functions: radial basis]
Radial cells [see Cell(s): radial]
Ragozin, David  73
Raven, Peter  9
rDNA  277
Recognition accuracy (Rtest)  216-217
Recognition

object-class  203
Recognizable taxonomic unit (RTU)  87,88
Reeves' muntjac  266
Reference vector  57
Region detector(s)

Harris-affine  198
Kadir  198

Riemannian shape space [see Shape space: Riemannian]
Relationships

ancestor-descendant  241
Remote sensing  190
Research

psychological  299
Revisions

taxonomic  14
Reyment, Richard  70
Rieppel, Olivier  18
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Roe deer  91
Royal Botanic Gardens, Kew  210, 212

 

S

 

Saccades  27
Scalability  139
Scale-invariant feature transform (SIFT) 

transform [see Transform(s): scale-invariant feature]
vectors [see Vector(s): Scale-invariant feature transform 

(SIFT) 
Scanner(s)  290
Scanning electron microscope (SEM)  83, 87, 139
Science fiction  1
Sedimentation  192
Segmentation: automated  195
Selective feeding [see Feeding: selective]
self-organizing map (SOM) [see Neural network(s): self-

organizing map (SOM)]
Sensor(s)

active  87
passive  87

Servlets
Java  142

Shape 
coefficients

Fourier  196
Wing [see Wing shape]

coordinates  167
Procrustes  181

indices  89
space

Riemannian  70
pitch contour  300, 301
theory [see Theory: shape]

Sharp, David  11
Signal-to-noise ratio (SNR)  87
Similarity

Bray-Curtis  36
Matrix [see Matrix: similarity]

Simple modelling by class analogy (SIMCA)  160, 161, 
167, 169

Single-sided identification [see Identification: single-sided]
SIPPER  37, 41
Sneath, Peter  ix
Soil mesofauna  190-191, 194, 203
Sokal, Robert  ix
Solitary bees [see Bees: solitary]
Sound waveforms  300
Squashing function(s) [see Function(s): squashing]
Species Identification, Automated (SPIDA)  5, 102, 165, 

183, 133-150
Sphingid moths [see Moths: sphingid]
SPIDA-Web  133-150, 165
Spider(s)  92, 133-150

Australasian ground  133, 134
lycosid  133

Spin images [see Image(s): spin]
Springtails

entomobryid  195

Stag beetle(s)  91
Standard eigenshape analysis [see Eigenshape analysis: 

standard]
Static neural network [see Neural network(s): static]
Statistics

bootstrap  158
jacknife  110, 158

Stoneflies  190-204
Stonefly larvae [see Larvae: stonefly]
Stoneham, Graham  104
Stopping criteria  56
Stuttgart Neural Network Simulator  141
Superposition

Generalized Least Squares (GLS)  171, 174, 176
Supervised learning [see Learning: supervised]
Support vector machine (SVM)  122, 124, 138
Surface(s)  69,70
Survivorship  240
Synapomorphy  11
Systematics  3, 5, 6, 25,153, 154, 155, 190, 220

Association  4
community  84

System(s)
automated  x
biometric  69
computer-aided identification  132
expert  93, 132
vision  25

Systematist(s)  1, 4, 6, 132, 154, 280

 

T

 

Tapir  267
Tarsometatarsus  225
Taxa

hyperdiverse  20
Taxonomic 

impediment  3, 83
keys [see Key(s): taxonomic]
revisions  12

Taxonomist(s)  ix, 9, 11, 15, 22, 83, 116
Taxonomy  ix, 1, 10, 14, 15, 16, 17, 19, 21, 22, 69, 101, 

117, 240
applied  13, 20, 22
automated  x
computer-aided  84
conodont  256
descriptive  12, 14, 17, 19
DNA-based  11
integrated  17
numerical  ix, x, 69, 84
user  14

Template(s)
genus  120, 121
wing  117, 120

Tentorial pit  170, 172, 173
Texture  89
The Natural History Museum

(London)  4, 210, 301
(Tring)  227
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Theorem
Bayes'  280

Theoretical morphospace [see Morphospace: geometric]
Theory

shape  155
Thermal pollution [see Pollution: thermal]
Thin-plate spline(s)  69, 70, 73, 75
Time-delay pulse  89
Timofeeff-Ressovsky, N.W.  12
Traditional neural network(s) [see Neural network(s): 

traditional]
Training set  50
Transform(s): scale-invariant feature (SIFT)  124, 125, 197
Transformation(s)

affine  122
Fourier  137
Fast Fourier (FFT)  88
wavelet  71, 88, 89, 137, 142

Tsukuba University, Japan  xi
Turing, Alan  161
Turk, Matthew  102

 

U

 

Uddenberg, Nils  ix
Ungulate(s)  265

suiform  275
University of Costa Rica  103
Unsurpervised 

learning [see Learning: unsupervised]
artificial neural network(s) (uANN) [see Neural 

network(s): unsupervised, artificial (uANN)]

 

V

 

Validation  60, 66
Validation set  50, 209
Vector(s)

descriptor  197
input  212
output  141
Scale-invariant feature transform SIFT 203

Video 
camera(s) [see Camera[s): video]
Plankton Recorder (VPR)  36, 41

Vision systems [see Systems: vision]
von Neumann

John  161
machines  161

W
Wägele, 18
Warp(s)

intrinsic (IW)  70, 75-77
partial  70, 76, 77
principal  70, 75

Warthog  273
Wasp(s)  123, 165-180

braconid  92
ichnumonid  92
parasitic  92, 103

Water 
chevrotain  266
quality  191

monitoring [see Monitoring: water quality]
WAV format  301
Web: World Wide  4, 11, 12, 13, 15, 39
WEKA machine learning system  201
Williams, D.  18
Wilson, Edward O.  16, 17
Wing 

shape  110
template [see Template: wing]

World Wide Web [see Web: World Wide]
Worms  14

 

X

 

Xerophytes  209

 

Y

 

Yeast(s)  133, 277

 

Z

 

Zooplankton  31
marine  92

ZooSCAN  36, 41
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A

 

Adhemarius gannascus

 

  107

 

Aedes aegypti

 

  101

 

Aegeseucoela

 

  177

 

Ammodorcas clarkei

 

  270, 271, 272

 

Anastrepha

 

  101

 

Andrena

 

  123

 

Andricus gallaeurnaeformis

 

  166

 

Anoplophora glabripennis

 

  91

 

Apis mellifera carnica

 

  293

 

Apis mellifera ligustica

 

  293

 

Apocrita

 

  165

 

Aptenodytes

 

  227-236

 

Aptenodytes fosteri

 

  227-236

 

Aptenodytes patagonicus

 

  227-236
Aricia  

 

agestis

 

  107

 

artaxerxe

 

  107
Artiodactyla  266
Ascomycetes  277

 

Aspicera scutellata

 

  173

 

B

 

Biorhiza pallida

 

  173

 

Bombus

 

  109

 

cryptarum

 

  123,127

 

lapidarius

 

  109

 

lucorum

 

  109

 

lucorum

 

  123,127

 

magnus

 

  109, 123,127

 

terrestris

 

  109, 123,127

 

Bos taurus

 

  91

 

Bufo marinus

 

  91

 

C

 

Calinueria

 

  202, 203

 

californica

 

  194, 201, 204

 

Callirhytis erythrocephala

 

  180

 

Capreolus capreolus

 

  91

 

Catagonus wagneri

 

  272, 274
Cephalophus  

 

dorsalis

 

  267

 

monticola

 

  266
Ceratium  

 

arcticum

 

  34-35

 

longipes

 

  34-35

 

Chrestosema erythropum

 

  166, 169

 

Colletes

 

  123

 

Cymatocylis

 

  42
Cynipidae  165, 166, 169
Cynipoidea  165

 

Cynomys gunnisoni

 

  91

 

D

 

Dama dama

 

  91

 

Desognaphosa

 

  135, 136

 

bartle

 

  135, 136

 

finnigan

 

  135, 136

 

halycon

 

  136

 

karnak

 

  135, 136

 

kuranda

 

  134

 

massey

 

  134

 

millaa

 

  134

 

windsor

 

  136

 

yabbra

 

  134
Dinophysis  

 

acuminata

 

  39, 40

 

caudata

 

  39, 40

 

fortii

 

  39, 38

 

rotundata

 

  39, 39

 

sacculus

 

  39, 41

 

tripos

 

  41

 

Diplodocus

 

  48-67

 

Diplolepis triforma

 

  166, 169
Diptera  92

 

Doroneuria

 

  202, 203

 

baumanni

 

  194, 201, 204

 

E

 

Enicospilus

 

  103

 

Euceroptres montanus

 

  170, 171

 

Eudyptes

 

  227-236

 

chrysocome

 

  227-236

 

pachyrhynchus

 

  227-236

 

robustus

 

  227-236

 

schlegeli

 

  227-236

 

sclateri

 

  227-236

 

Eudyptula

 

  227-236

 

minor

 

  227-236

 

minor albosignata

 

  227-236

 

F

 

Figitidae  165, 166, 168, 169
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G

 

Gonaspis potentillae

 

  173

 

H

 

Hemicloena julatten

 

  134

 

Hesperoperla

 

  202, 203

 

pacifica

 

  194, 201

 

Hyemoschus aquaticus

 

  266

 

Hyles

 

  111

 

Hylochoerus meinertzhageni

 

  267

 

Hylotrupes bajulus

 

  91
Hymenoptera  83, 92
Hyracoidea  266

 

L

 

Lepidoptera  92

 

Lingula anatina

 

  xi

 

Lithops

 

  209
Longrita

 

insidiosa

 

  134

 

millewa

 

  136

 

yuinmery

 

  136

 

Loxondonta africana

 

  85

 

Lucanus cervus

 

  91

 

M

 

Megadyptes antipodes  227-236
Melanips  170

opacus  168, 173
Morebilus  

diversus  134
Morebilus  

fumosus  134
plagusius  134

Muntiacus  
muntjak  266
reevesi  266

Mylohyus sp.  274

N

Nerium oleander  102
Neuroterus numismalis  173

O

Orthoptera  91,93
Osmia  123
Ozarkodina excavata  240-256

P

Perissodactyle  266
Perlidae  202, 203
Phacochoerus aethiopicus  273
Phaenoglyphis villosa  170
Phanacis centaureae  173
Plagiotrochus quercusilicis  177
Platorish  

churchillae  136
flavitarsus  136
nebo  136

Plectopera  191, 196
Precis octavia  109
Prosthennops xiphodonticus  262, 265, 271, 273
Pseudorca crassidens  91
Pygoscelis  227-236

adeliae  227-236
antarctica  227-236
papua  227-236

R

Rebilus  
bilpin  136
brooklana  136
bulburin  134,136
credition  136
lugubris  136

Rhizopertha dominica  91

S

Saccharomyces  278
Sphaeroidinella dehiscens  109
Sphenisciformes  227-236
Spheniscus  227-236

demersus  227-236
humboldti  227-236
magellanicus  227-236
mendiculus  227-236

Stegosaurus  48-67
Synergus crassicornis  173

T

Tilla  209, 210-223
americana  209-223
amurensis  210-223
caroliniana  210-223
chinensis  210-223
cordata  210-223
dasystyla  210-223
henryana  210-223
heterophylla  210-223
insularis  210-223
japonica  210-223
kiusiana  210-223
mandshurica  210-223
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maximowicziana  210-223
miqueliana  210-223
mongolica  210-223
neglecta  209-223
oliveri  210-223
platyphyllos  210-223
tomentosa  210-223
tuan  210-223

Trachyrema  
castaneum  136
allyn  134
garnet  134,136
sculptilis  134

Tragulus  
javanicus  266
memmina  266
napu  266

Trochanteriidae  133, 134, 138, 142, 144
Tyrannosaurus rex  48-67

X

Xylophanes  
cryptolibya  110
libya  109, 110
loelia  109
titania  107

Y

Yoraperla  194, 201

Z

Zaeucoila  173
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FIGURE 3.1

 

Sometimes, scene segmentation and object recognition are easy.

 

FIGURE 3.2

 

Sometimes, low contrast and high clutter make object recognition hard.
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FIGURE 3.3

 

Unusual scenes delay recognition.

 

FIGURE 3.6

 

An unusual item can be ignored: the
cup is the focus of attention and the background is
ignored.

 

FIGURE 3.7

 

Correct orientation facilitates scene analysis and recognition.
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FIGURE 7.7

 

Hypothetical diagram of a populated morphological space with distinct convex hulls.

 

FIGURE 7.8

 

Hypothetical diagram of a populated morphological space with overlapping convex hulls.

 

FIGURE 7.9

 

Hypothetical diagram of a populated morphological space with almost totally overlapping
convex hulls.
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FIGURE 8.11

 

Visualization of species complexes as clusters in the feature space. Note: This is a two-
dimensional projection of a high-dimensional feature space.

 

FIGURE 16.5

 

Functional analysis of a series of strains of yeast (UPGMA left-vertical tree) based on a set
of physiological features (UPGMA top-horizontal tree). Normalized and reduced states of the above characters
are displayed in red (negative result or absence of activity), in green (positive result or presence of activity),
or in an intermediate shade for intermediate results.
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