


Springer Series on

atomic, optical, and plasma physics 64



Springer Series on

atomic, optical, and plasma physics

The Springer Series on Atomic, Optical, and Plasma Physics covers in a compre-
hensive manner theory and experiment in the entire f ield of atoms and molecules
and their interaction with electromagnetic radiation. Books in the series provide
a rich source of new ideas and techniques with wide applications in f ields such as
chemistry, materials science, astrophysics, surface science, plasma technology, ad-
vanced optics, aeronomy, and engineering. Laser physics is a particular connecting
theme that has provided much of the continuing impetus for new developments
in the f ield. The purpose of the series is to cover the gap between standard under-
graduate textbooks and the research literature with emphasis on the fundamental
ideas, methods, techniques, and results in the f ield.

Please view available titles in Springer Series on Atomic, Optical, and Plasma Physics
on series homepage http://www.springer.com/series/411



Karl Blum

Density Matrix
Theory
and Applications
Third Edition

123

With 31 Figures



Professor Dr. Karl Blum
Universität Münster
Institut für Theoretische Physik
Wilhelm-Klemm-Str. 9, 48149 Münster, Germany
E-mail: km-blum@web.de

Springer Series on Atomic, Optical, and Plasma Physics ISSN 1615-5653
ISBN 978-3-642-20560-6 e-ISBN 978-3-642-20561-3
DOI 10.1007/978-3-642-20561-3
Springer Heidelberg Dordrecht London New York

c
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9,
1965, in its current version, and permission for use must always be obtained from Springer. Violations are
liable to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Library of Congress Control Number: 2011942559

© Springer-Verlag Berlin Heidelberg 1981, 1996, 2012



Preface to the Third Edition

The main change in this edition is the addition of the new Sect. 3.6, which explores
one of the most puzzling aspects of quantum mechanics, the non-separability or
entanglement of correlated systems. Because of its inherent difficulties the basic
concepts are explained and reexplained in various ways, and illustrated by examples.
The discussion concentrates on two-particle spin-1=2 systems. The reason for
this is twofold. Firstly, correlated spin-1=2 particles represent an excellent model
system which allows to develop the theory in a transparent way close to possible
experiments. Secondly, the discussion will provide us with additional examples
illuminating the general density matrix theory developed in the preceding chapters.
The discussions are kept on an introductory level. The new Sect. 3.6 can be read
immediately after Sects. 1.1, 3.1, and 3.2.

Furthermore, five additional appendices have been included that clarify some
points raised in the main text, or provide supplementary material.

Finally, I would like to thank Priv.-Doz. Dr. Bernd Lohmann for his expert
technical assistance in preparing the manuscript. I have profited from his many
helpful comments and suggestions, and from his knowledge of quantum information
theory.

Münster Karl Blum
July 2011
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Preface to the Second Edition

Since publication of the first edition, many studies on oriented and aligned systems
have been performed, ranging from atomic collision physics to molecular processes,
and to interactions with surfaces. No attempt has been made in the present volume
to cover all these developments. Rather, a few topics have been selected.

In Chap. 4 a section on the “natural system,” popular in atomic collision
physics, is included. In Sect. 4.6.5 a description of shape and spatial orientation
of atomic charge distributions is given in order to obtain a deeper insight into the
geometrical significance of state multipoles. Two new sections in Chap. 6 deal with
the interactions of atomic charge clouds and external fields. Neither of these sections
attempts to give a complete survey of the many experimental and theoretical results
obtained in this field. Rather, the emphasis is on pointing out the essential features
by studying simple cases.

The main addition is the new Chap. 7, in which the previously developed methods
are extended to cover oriented and aligned molecules. The bulk of this chapter can
be read after Sect. 4.5. The first sections contain a detailed treatment of angular
momenta and axes distributions of linear rotors and symmetric tops. Since the
angular momenta are often sufficiently high, semiclassical approximations apply
and have been used throughout this chapter to illustrate quantum mechanical results.
The techniques developed in these sections are then extended in order to include
electronic orbital orientation and alignment, which are related, for example, to shape
and spatial directions of electronic orbital lobes. A systematic treatment of these
topics is attempted in Sect. 7.7. The basic definitions are introduced and illustrated
with some simple examples, and the theory is then gradually developed. In Sect. 7.8
the formalism is applied to some topics in the rapidly expanding field of “dynamical
stereochemistry.” The main purpose of this chapter is to introduce methods which
allow coverage of a broad range of phenomena in a systematic and coherent way.

Smaller additions have been made throughout the book in order to relate their
material presented here to more recent experimental and theoretical results. As in
the first edition, no attempt has been made to present a complete list of references.
Because this book is meant as an introduction, references are preferentially made to
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viii Preface to the Second Edition

monographs and reviews. As a rule, original papers are only cited if the results are
used in the text or if no review is available.

I have many debts I would like to acknowledge. First I wish to thank Prof.
J. Kessler and Prof. H. Kleinpoppen for continual encouragement and help over
many years. Discussions with Dr. K. Bartschat, Dr. D. Thompson, and many
colleagues from Queen’s University in Belfast, and the University of Münster have
helped to clarify many passages. In particular, I would like to thank my co-workers,
K. Bonhoff, A. Dellen, R. Fandreyer, R. P. Nordbeck, S. Nahrup, B. Lohmann,
J. Lehmann, C. Ostrawsky, A. Raeker, G. Wöste, and U. Kleinmann, each of whom
has added a more or less mosaic piece to this book in the form of a Diploma- or
Ph.D. thesis. I also acknowledge their help in preparing the figures and checking
the equations. In addition, I wish to express my appreciation to Mrs. Volmer and
Mrs. Oenning for carefully and patiently typing and correcting the many versions of
this manuscript.

Karl Blum



Preface to the First Edition

Quantum mechanics has been mostly concerned with those states of systems that
are represented by state vectors. In many cases, however, the system of interest
is incompletely determined; for example, it may have no more than a certain
probability of being in the precisely defined dynamical state characterized by a state
vector. Because of this incomplete knowledge, a need for statistical averaging arises
in the same sense as in classical physics.

The density matrix was introduced by von Neumann (1927) to describe statistical
concepts in quantum mechanics. The main virtue of the density matrix is its
analytical power in the construction of general formulas and in the proof of
general theorems. The evaluation of averages and probabilities of the physical
quantities characterizing a given system is extremely cumbersome without the use
of density matrix techniques. The representation of quantum mechanical states by
density matrices enables the maximum information available on the system to be
expressed in a compact manner and hence avoids the introduction of unnecessary
variables. The use of density matrix methods also has the advantage of providing a
uniform treatment of all quantum mechanical states, whether they are completely or
incompletely known.

Until recently the use of the density matrix method has been mainly restricted to
statistical physics. In recent years, however, the application of the density matrix has
been gaining more and more importance in many other fields of physics. For exam-
ple, in modern atomic physics, density matrix techniques have become an important
tool for describing the various quantum mechanical interference phenomena which
are of importance in scattering theory, quantum beat spectroscopy, optical pumping,
and laser physics. This book proposes to introduce the reader to the methods of
density matrix theory with an emphasis on their application in atomic (and nuclear)
physics. It is aimed at beginners and not experts. All the basic concepts are therefore
discussed in detail and all the steps in the calculations are explained. As background,
a standard one-year course in quantum mechanics is assumed, as is knowledge of
the elements of statistical mechanics. Some background in modern atomic physics
and scattering theory would also be helpful. For Chaps. 4–6 the reader should have a
working knowledge of angular momentum theory. Otherwise the treatment is begun
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x Preface to the First Edition

from the lowest level possible. Some topics of contemporary interest are covered in
sufficient detail to make the book also useful to those readers engaged in research
in the fields of atomic or nuclear physics, laser physics, and physical chemistry.

The book can be divided into three main parts. In the first three chapters the basic
concepts and methods of density matrix theory are introduced. In order to do this,
some of the fundamental ideas of quantum mechanics and statistics are discussed.
In particular, a clear understanding of pure and mixed quantum mechanical states
is important. This is best achieved by considering simple systems. For this reason
Chap. 1 is restricted to a discussion of the polarization states of spin-1/2 particles
and photons, which enables all the basic concepts to be introduced in a simple way.
The density matrix is first introduced as the counterpart of the distribution function
of classical statistical mechanics, that is, by considering how many systems are in
an ensemble with given wave functions. Then, after some of its basic properties
are discussed, another aspect of the density matrix is considered: By introducing a
convenient parametrization it is shown that the density matrix is the most convenient
way of collecting all parameters of interest for a given experimental setup and of
describing their behavior from an operational point of view.

In Chap. 2 these results are generalized to systems with more than two degrees
of freedom and the basic properties of the density matrix derived in a more
systematic way. The concept of coherence, which will be of central importance
for the discussion of quantum mechanical interference phenomena in the following
chapters is introduced. The properties of the time evolution operators are then
reviewed and the basic equations of motion for statistical mixtures derived and
illustrated with some examples.

In Chap. 3 another important aspect of the density matrix is introduced. Often,
one is only interested in a few of many degrees of freedom of a quantum system,
for example, when only one of several interacting systems is observed. In Sects. 3.1
and 3.2 it is shown that, in general, it is impossible to find a wave function which
depends only on the variables of the system of interest and not on those of all other
systems as well. By averaging over all unobserved degrees of freedom a density
matrix is obtained which describes the behavior of the system of interest. It is
then shown that this “reduced” density matrix is the most general description of
an open quantum mechanical system. The consequence of these general results are
illustrated in Sects. 3.3 and 3.4 with particular emphasis on the quantum mechanical
theory of coherence. Finally, in Sect. 3.5 the reduced density matrix of atoms excited
by electron impact is constructed and discussed in detail.

The subjects discussed in this chapter are related to the quantum mechanical
theory of measurement. The questions raised here have attracted a great deal of
interest from physicists in recent years.

The second part of the book (Chaps. 4–6) is devoted to the application of the irre-
ducible tensor method in density matrix theory. Quantum mechanical calculations
for systems having symmetry can be divided into two parts. The first part consists
of deriving as much information as possible from the symmetry requirements.
The second part consists of calculating the dynamical quantities for which no
information can be obtained from symmetry considerations. Often these two parts
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are tangled. The irreducible tensor method is designed to separate dynamical and
geometrical elements and to provide a well-developed and efficient way of making
use of the symmetry.

In Sects. 4.2 and 4.3 the basic properties of tensor operators are discussed
and the irreducible components of the density matrix (state multipoles, statistical
tensors) are introduced. Sects. 4.4–4.6 give various applications of the method,
while Sect. 4.7 is devoted to a discussion of the time evolution of state multipoles in
the presence of external perturbations.

The formalism developed up to this point is then applied in Chaps. 5 and 6 to
various problems of relevance to modern atomic spectroscopy, including the theory
of quantum beats, electron-photon angular correlations, and the depolarization of
the emitted radiation caused by fine and hyperfine interaction and magnetic fields.
Throughout these chapters the discussion of quantum interference phenomena in
atomic physics is based on the concept of “perturbation coefficients” developed
by nuclear physicists in order to describe perturbed angular correlations. This
formalism allows a very economic interpretation of experiments.

The last part of the book (Chap. 7) can be read independently of Chaps. 4–6
(except some parts of Sects. 7.5 and 7.6). In this chapter we discuss the den-
sity matrix approach to irreversible processes relating reversible and irreversible
dynamics via generalized Master equations. Throughout this chapter the Markoff
approximation is used. In Sect. 7.1 the fundamental concepts are introduced and the
basic equations derived by considering the interaction between a “small” dynamic
system and a “large” one (“heat bath”). Irreversibility is introduced by assuming that
the bath remains in thermal equilibrium at constant temperature, irrespective of the
amount of energy and information diffusing into it from the dynamic system. The
special case of rate equations (Pauli’s Master equation) is considered in Sect. 7.2.
The formalism is then applied to some simple examples in radio- and microwave
spectroscopy. In order to illustrate the use of Master equation techniques in quantum
electronics we consider the interaction between electromagnetic fields and two-level
atoms. The corresponding Master equation is discussed in detail and the effects
of relaxation interactions on the emitted line are described. In Sect. 7.4, the Bloch
equations are derived and applied to magnetic resonance phenomena. It is shown
that the density matrix method enables both longitudinal and transverse relaxation
to be treated in a natural way, thereby avoiding the shortcomings of semiclassical
theories. The usefulness of the Bloch equations for a description of the interaction
between atoms or molecules and laser or maser fields is briefly considered.

The discussion of the general formalism is then continued by deriving the general
properties of the relaxation matrix in Sect. 7.5. The discussion of the Liouville
formalism in Sect. 7.6 is restricted to the basic concepts. Finally, in Sect. 7.7, the
response of a quantum system to an external field is considered. Here, an expression
is derived by approximating the exact equation of motion of the density matrix in
retaining only terms linear in the field strength. This method is closely related to the
theory of retarded Green’s functions and is of importance for the investigation of
transport phenomena.
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The theory and application of the density matrix have been well summarized
by various authors. Here, we mention in particular the review papers by Fano
(1957) and ter ter Haar (1961). Some textbooks on quantum mechanics outline the
formalism (Messiah 1965; Roman 1965; Gottfried 1966). These sources (and many
others which are acknowledged in the appropriate places) were used in writing
this book. Because of the introductory nature of this book we refer as a rule to
monographs and reviews of the subject and only to those original papers whose
results are used in the text.

Over the years my understanding of the theory and applications of the density
matrix has benefited from many discussions with my colleagues at the Universities
of Stirling and Münster. I am especially grateful to Prof. H. Kleinpoppen, who
first aroused my interest in atomic physics, for his constant encouragement. I am
indebted to Prof. J. Kessler for reading parts of the manuscript and making helpful
suggestions for revisions in the first and second drafts. Dr. H. Jakubowicz has
read the complete manuscript and made many improvements, and K. Bartschat has
checked most equations. Finally, I wish to thank Mrs. Queen and Mrs. Raffin for
their help in preparing the manuscript.

Karl Blum

NOTE TO THE READER: The Chap. 7 outlined here is Chap. 8 in this volume.
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Chapter 1
Basic Concepts

1.1 Spin States and Density Matrix of Spin-1/2 Particles

1.1.1 Pure Spin States

In order to become familiar with the basic concepts of density matrix theory we
will begin by considering the problem of describing the spin states of spin-1/2
particles. First of all we will review some results of the quantum mechanical theory
of experiments with Stern–Gerlach magnets and then in the following sections we
will reinterpret the results and discuss them in more detail.

Consider a beam of spin-1/2 particles (for example, hydrogen atoms) which
passes through a Stern–Gerlach magnet which has its field gradient aligned along
the z direction with respect to a fixed coordinate system x, y, z (Fig. 1.1). In general
the beam will split vertically into two parts each of which corresponds to one of the
two possible eigenvalues of the component Sz of the spin operator S .m D ˙1=2/.
If one of the beams is eliminated, for example, the lower one as in Fig. 1.1, then
the emerging particles will be in a state which corresponds to only one of the
eigenvalues; in the case of the apparatus in Fig. 1.1 this would be m D C1=2.
Similarly, if the apparatus is rotated in such a way that its field gradient points in
the direction z0, the emerging particles will be in a state which is described by the
quantum number m0 D C1=2, where m0 is the eigenvalue of the operator Sz0 , the
component of S in the z0 direction.

If the incident beam is such that it contains particles which are in a state with
m D C1=2 only, then the beam will pass through the apparatus shown in Fig. 1.1
without any loss of intensity. In all other cases part of the beam will be blocked
off and the emerging beam will be less intense than the incident one. However, by
tilting the apparatus at various angles about z it may be possible to find an orientation
of the magnet which allows the whole beam to be transmitted. For example, if an
incident beam contains only a spin component corresponding to m0 D C1=2 in the
frame z0, it would be attenuated by the Stern–Gerlach apparatus in Fig. 1.1. If the
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and Plasma Physics 64, DOI 10.1007/978-3-642-20561-3 1,
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2 1 Basic Concepts

Fig. 1.1 Stern–Gerlach filter

magnet were rotated so that its field gradient lay along z0, then the beam would
be completely transmitted. In this case all particles are deflected in the same way;
they behave identically in this particular experiment. This enables the following
(preliminary) definition to be made:

• If it is possible to find an orientation of the Stern–Gerlach apparatus for which a
given beam is completely transmitted, then we will say that the beam is in a pure
spin state.

In terms of the semiclassical vector model a beam of particles with definite
quantum number m D C1=2 can be described by considering the spin vector of
each particle to precess around the direction of the z axis such that its projection
on the z axis has the value of C1=2 (Fig. 1.2a). In this case the particles are said to
have “spin up.” A similar interpretation holds for the case of m D �1=2 (Fig. 1.2b)
and the spins of particles in eigenstates of the operator Sz0 will, by analogy, precess
around the z0 direction. In the case of a pure spin state the spin vectors of the particles
precess around a unique direction which is parallel to the direction of alignment of
the Stern–Gerlach apparatus when it allows the beam to pass through unattenuated.

If the state of a given beam is known to be pure then the joint state of all
particles can be represented in terms of one and the same state vector j¦i. This is an
important point and we will illustrate it with some examples. If a beam of particles
passes completely through a Stern–Gerlach apparatus oriented in the z direction then
we will say that all particles in the beam are in identical spin states with quantum
number m D 1=2 with respect to z, or that all particles have spin up with respect
to z. We describe this state by assigning the state vector j¦i D j C 1=2i to the
whole beam. Similarly, a beam of particles withm D �1=2will be characterized by
j¦i D j �1=2i. In the usual Pauli representation the state vectors are represented by
two-dimensional column vectors,
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Fig. 1.2 (a) Spin “in the z direction”; (b) spin “in the �z direction”

ˇ
ˇ
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0
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(1.1a)

and the adjoint states by the row vectors
�

C1

2

ˇ
ˇ
ˇ
ˇ
D .1; 0/I

�

�1
2

ˇ
ˇ
ˇ
ˇ

D .0; 1/ (1.1b)

In general, for a beam that emerges from a Stern–Gerlach apparatus which has its
magnet pointing in the z0 direction, all particles in the beam are in a state with
definite spin quantum number m0 D 1=2 defined with respect to z0 as quantization
axis. The joint state of all particles will be described by the state vector j¦i D
j C 1=2; z0i.

A general spin state j¦i can always be written as a linear superposition of two
basis states, for example, the states j ˙ 1=2i:

j¦i D a1

ˇ
ˇ
ˇ
ˇ
C1

2

�

C a2

ˇ
ˇ
ˇ
ˇ
�1
2

�

(1.2)

In the representation (1.1) this is equivalent to

j¦i D
�
a1
a2

�

(1.3a)

The adjoint state is represented by the row vector

h¦j D �

a�
1 ; a

�
2

�

(1.3b)

where the asterisk denotes the complex conjugate.
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The state j¦i is normalized such that

h¦j¦i D ja1j2 C ja2j2 D 1 (1.4)

A pure spin state can be characterized either by specifying the direction in which the
spins are pointing (for example, by giving the polar angles of this direction in our
fixed coordinate system) or, alternatively, by specifying the coefficients a1 and a2
in the expansion (1.2). In the following section we will discuss the relation between
these two descriptions and derive an explicit representation for the coefficients a1
and a2.

An apparatus of the type shown by Fig. 1.1 acts as a filter, because irrespective
of the state of the beam sent through it, the emerging beam is in a definite spin
state which is defined by the orientation of the magnet. Passing a beam through the
filter can therefore be regarded as a method of preparing a beam of particles in a
pure state.

1.1.2 The Polarization Vector

In order to discuss the description of pure spin states in greater detail we will now
introduce a vector P, called the polarization vector, which has components defined
as expectation values of the corresponding Pauli matrices:

Pi D h¢ii (1.5)

.i D x; y; z/. In the case of a pure state these expectation values are defined by the
relations.

h¢i i D h¦ j¢i j¦i (1.6)

In the representation (1.1) the Pauli matrices have the form

¢x D
�
0 1

1 0

�

; ¢y D
�
0 �i
i 0

�

; ¢z D
�
1 0

0 �1
�

(1.7)

The expectation values (1.6) may then be calculated by applying (1.3a), (1.3b),
and (1.7), treating the row and column vectors as one-dimensional matrices and
applying the rules of matrix multiplication. In order to see the significance of the
polarization vector we will now consider a few examples.

A beam of particles in the pure state j C 1=2i has a polarization vector with
components

Px D .1; 0/

�

0 1

1 0

��

1

0

�

D 0
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Py D .1; 0/

�

0 �i
i 0

��

1

0

�

D 0 (1.8a)

Pz D .1; 0/

�
1 0

0 �1
��

1

0

�

D 1

Similarly we find for an ensemble of particles in the pure state j � 1=2i the
polarization vector has components

Px D 0; Py D 0; Pz D �1 (1.8b)

Thus the states j C 1=2i and j � 1=2i are characterized by polarization vectors of
unit magnitude pointing in the Cz and �z directions, respectively. The states jC1=2i
and j � 1=2i can therefore be said to be states of opposite polarization.

Consider now the general pure state (1.2). It will be convenient to give first of
all a parametrization of the coefficients a1 and a2. These are complex numbers
corresponding to four real parameters specifying the magnitudes and phases. The
overall phase of the state (1.2) has no physical significance and can be chosen
arbitrarily, for example by requiring a1 to be real. From this condition and the
normalization (1.4) it follows that the general pure spin state (1.2) is completely
specified by two real numbers. It will therefore be convenient to introduce two
parameters ™ and • defined by

a1 D cos
™

2
; a2 D ei• sin

™

2
(1.9)

where • is the relative phase of the coefficients. Using (1.9), (1.3a) becomes

j¦i D

0

B
B
@

cos
™

2

ei• sin
™

2

1

C
C
A

(1.10)

In order to see the physical significance of the parameters ™ and • consider the
polarization vector associated with the state (1.10). We obtain

Px D
�

cos
™

2
; e�i• sin

™

2

��
0 1

1 0

�

0

B
B
@

cos
™

2

ei• sin
™

2

1

C
C
A

D sin ™ cos • (1.11a)

Py D sin ™ sin • (1.11b)

Pz D cos ™ (1.11c)
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Fig. 1.3 Direction of P

The polarization vector (1.11) has unit magnitude

jPj D
�

P2
x C P2

y C P2
z

	1=2 D 1 (1.12)

From (1.11) it follows that the parameters ™ and • can be interpreted as the polar
angles of P: ™ is the angle between P and the z axis and the relative phase • specifies
the azimuth angle of P (Fig. 1.3).

A second coordinate system x0; y0; z0 can be chosen in such a way that the z0
axis is parallel to P. Taking z0 as quantization axis we have in the primed system
Px0 D 0, Py0 D 0, Pz0 D 1; that is, all particles have spin up with respect to z0. The
direction of the polarization vector is therefore the direction “in which the spins are
pointing.” If we send the beam through a Stern–Gerlach filter oriented parallel to P
the whole beam will pass through.

Equations 1.10 and 1.11 enable explicit spin functions to be constructed for any
pure state. For example, a given beam of particles may be in a pure state with
spins pointing in the x direction of our fixed coordinate system. In this case the
corresponding polarization vector points in the x direction and, consequently, has
polar angles ™ D 90ı; • D 0. From (1.10) the state vector can be seen to be

ˇ
ˇ
ˇ
ˇ
C1

2
; x

�

D 1

21=2

�
1

1

�

(1.13a)

A beam of particles with “spin down” with respect to the x axis has a polarization
vector pointing in the �x direction and is characterized by the angles ™ D 90ı;
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• D 180ı. The state vector is represented by

ˇ
ˇ
ˇ
ˇ
�1
2
; x

�

D 1

21=2

�
1

�1
�

(1.13b)

Similarly, the state vector of particles with “spin up” (“spin down”) with respect to
the y axis is represented by the column vectors

ˇ
ˇ
ˇ
ˇ
C1

2
; y

�

D 1

21=2

�
1

i

�

(1.13c)

and ˇ
ˇ
ˇ
ˇ
�1
2
; y

�

D 1

21=2

�
1

�i
�

(1.13d)

It should be noted that the four states (1.13) are constructed by superposing the
states j C 1=2i and j � 1=2i with the same magnitude ja1j D ja2j D 1=21=2

but with different relative phases. The corresponding polarization vectors have the
same angle ™ but different azimuth angles depending on the relative phase existing
between the states j ˙ 1=2i.

1.1.3 Mixed Spin States

Pure spin states are not the most general spin states in which an ensemble of
particles can be found. Suppose, for example, that two beams of particles have
been prepared independently, one in the pure state j C 1=2i and the other one in
the pure state j � 1=2i. By “independently” we mean that no definite phase relation
exists between the two beams (this point will be clarified later). The first beam may
consist of N1 particles, the second one of N2 particles. If the polarization state of
the combined beam is investigated by sending it through a Stern–Gerlach filter in
various orientations it will be found that it is not possible to find such an orientation
of the filter which allows the whole beam to be transmitted. It follows that, by
definition, the joint beam is not in a pure spin state.

• States which are not pure are called mixed states or mixtures.

We now have to consider the problem of describing the state of the joint beam.
Clearly, it is not possible to characterize the state of the beam in terms of a single
state vector j¦i since associated with any of these states there is necessarily a
direction in which all spins are pointing: the direction of the polarization vector.
If the Stern–Gerlach filter were placed in this orientation the whole beam would
have to be transmitted. Since no such orientation exists it is not possible to describe
a mixture by a single state vector.
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In particular, the mixture cannot be represented by a linear superposition of the
states j C 1=2i and j � 1=2i representing the two constituent beams. In order to
construct such a linear superposition it is necessary to know the magnitudes and
relative phase • of the relevant coefficients a1 and a2. The absolute squares ja1j2
and ja2j2 are probabilitiesW1 and W2 of finding a particle in the state j C 1=2i and
j�1=2i, respectively. In the case of the mixture under discussion these probabilities
are known (W1 D N1=N and W2 D N2=N with N D N1=N2) and can be used
to determine the magnitudes of the coefficients .W1 D ja1j2; W2 D ja2j2). The
important point is that the constituent beams have been prepared independently. So
there is no definite phase relation between the two beams, and without a definite
phase • it is not possible to construct a well-defined state vector j¦i describing the
joint beam.

A mixture has to be described by specifying the way in which it has been
prepared. For example, the joint beam under discussion is characterized by saying
thatN1 particles have been prepared in the state jC1=2i andN2 in the state j�1=2i
independently of each other. This statement contains all the information we have
obtained about the mixture.

Let us continue discussion of our example by calculating the polarization vector
associated with the total beam. P is obtained by taking the statistical average over
the separate beams:

Pi D W1

�
1

2
j¢i j 1

2

�

CW2

�

�1
2

j¢i j � 1

2

�

which gives

Px D 0; Py D 0; Pz D W1 �W2 D N1 �N2
N

(1.14)

It should be noted that the polarization vector (1.14) has a magnitude which is less
than 1 and is proportional to the difference of the population numbers of the two
states, j C 1=2i and j � 1=2i.

More generally, if a beam is prepared by mixing Na particles in the state j¦ai
andNb in the state j¦bi then the components of the polarization vector are given by
the statistical average over the independently prepared beams:

Pi D Wa h¦a j¢i j¦ai CWb h¦b j¢i j¦bi (1.15)

D WaP
.a/
i CWbP

.b/
i (1.16a)

with Wa D Na=N; Wb D Nb=N , and where P .a/
i and P .b/

i are the polarization
vectors associated with the constituent beams [see, (1.6)]. Equation 1.15 can be
rewritten in vector notation as

P D WaP.a/ CWbP.b/ (1.16b)
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Since jP.a/j D 1; jP.b/j D 1 the magnitude of P is determined by

P2 D .WaP.a/ CWbP.b//2

D W 2
a .P

.a//2 CWb.P
.b//2 C 2WaWbP.a/ � P.b/

� W 2
a CW 2

b C 2WaWb

D .Wa CWb/
2 D 1 (1.17)

since the scalar product P.a/ � P.b/ of two different unit vectors is less than 1.
The equality sign in (1.17) applies if P.a/ �P.b/ D 1, that is, if the two beams have

identical polarization vectors. In this case both constituent beams are in the same
spin state described by (1.10) and (1.11) and the joint beam is in a pure state. Vice
versa, if two beams are mixed in identical spin states the resulting beam consists
of particles in identical spin states and is therefore characterized by a polarization
vector of unit magnitude. The above arguments may be easily generalized to cases
of mixtures which consist of more than two beams.

We therefore have the following result: The magnitude of the polarization vector
is bounded such that

0 � jPj � 1 (1.18)

The maximum possible value jPj D 1 is obtained if (and only if) the beam under
consideration is in a pure state, whereas mixtures necessarily have a polarization
vector of less than unit magnitude.

This result once more illustrates the basic property of a pure spin state: all the
particles are in identical states with all the spins pointing in the same direction, the
direction of P.

Henceforward we will refer to states with jPj > 0 as polarized and to beams with
jPj D 0 as unpolarized. Pure states .jPj D 1/ will be called completely polarized.

1.1.4 Pure Versus Mixed States

Before proceeding further with any analysis it is important to have a clear under-
standing of the concepts of pure and mixed states. We will therefore consider both
types of states again from a different viewpoint. Consider the following problem.
A beam of particles which is completely polarized in the y direction and hence can
be represented by the state vector (1.13c)

ˇ
ˇ
ˇ
ˇ
C1

2
; y

�

D 1

21=2

�ˇ
ˇ
ˇ
ˇ
C1

2

�

C i

ˇ
ˇ
ˇ
ˇ
�1
2

��

(1.19a)

is sent through a Stern–Gerlach filter oriented in the z direction. What will happen?
It is a familiar result of quantum mechanics that, although we know that any particle



10 1 Basic Concepts

in the beam is in the state j C 1=2; yi, it is impossible to predict whether a given
single particle will pass through the filter. This is because a system which is to
be measured is in general disturbed by the act of measurement. In this case the
measuring apparatus (the filter) changes in a completely uncontrollable way the
state of the incident particles; that is, it is only possible to predict the probability
that a particle will be admitted by the filter (and emerge in the state j C 1=2i/ or be
blocked off. From (1.19a) it can be seen that the probability is 1/2 for each case. The
only case in which it is possible to predict with complete certainty whether a given
particle will pass through a filter is that where the filter is oriented in the y direction
all particles will pass unhindered. In general, however, the measuring process can
only be described through the use of statistics.

Because of this a linear superposition state, such as (1.19a), must be interpreted
as follows. Before any measurement all the particles are in identical states repre-
sented by the vector (1.19a), and all particles have the same quantum numberm0 D
1=2 defined with respect to y as the quantization axis. The quantum number m,
defined with respect to the z axis, is completely undefined in the superposition
(1.19a) in the sense that any particle in the beam has an equal probability of passing
through a z-oriented filter or being blocked off. [Roughly speaking, it can be said
that the particles in the superposition state (1.19a) do not “know” their m value.] If
the beam is sent through a filter oriented parallel to the z axis the interaction with
the apparatus changes the state of the beam and forces the particles into one of the
eigenstates.

Consider now a mixture of

N1 D N=2 particles in the state j C 1=2i
N2 D N=2 particles in the state j � 1=2i (1.19b)

with both subbeams prepared independently. From (1.14) it can be seen that the
resulting beam is unpolarized. If this beam is passed through a Stern–Gerlach filter
oriented along the z axis the transmitted beam will have half of the incident intensity.
In this particular experiment the mixture (1.19b) and the pure state (1.19a) give
the same result; however, it is for a different reason. Whereas in the case of the
state j1=2; yi all particles in the beam are in one and the same state, there is less
information about the mixture (1.19b) since it is only known that any particle has
an equal probability of being in the state j C 1=2i or j � 1=2i. In this sense the
state of the mixture is incompletely determined. When passing through the filter the
particles with m D �1=2 will be blocked off and hence only that half of the beam
corresponding to the j C 1=2i-component beam will be transmitted.

The above example illustrates that statistics must be used in order to describe the
initial state of the mixture; the state of the particles is not known with certainty; that
is, we cannot assign a single-state vector to the mixed beam.

In conclusion, it can be seen that in the description of spin-1/2 particles statistics
enters in two ways. First of all, statistical methods must be used because of the
uncontrollable perturbation of states by any measuring apparatus. Secondly, when
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dealing with mixtures, it is only known that the particles can be in any one of
several spin states. A statistical description must be applied because of the lack of
information available on the system. It was primarily for the purpose of describing
this latter case that the density matrix formalism was developed.

A more systematic treatment of the problems discussed above will be presented
in Chap. 2.

1.1.5 The Spin-Density Matrix and Its Basic Properties

1.1.5.1 Basic Definitions

Any question concerning the behavior of pure or mixed states can be answered by
specifying the states, present in the mixture, and their statistical weights Wi . The
actual calculations, however, are often very cumbersome. We will therefore now
introduce an alternative method of characterizing pure and mixed states.

Consider a beam of Na particles prepared in the state j¦ai and a second beam of
Nb particles which have been prepared in the state j¦bi independently of the first
one. In order to describe the joint beam we introduce an operator ¡ by the expression.

¡ D Waj¦aih¦aj CWbj¦bih¦bj (1.20)

with Wa D Na=N; Wb D Nb=N , and N D Na CNb.
The operator ¡ is called density operator or statistical operator. It describes the

preparations which have been performed and, therefore, contains all the information
obtained on the total beam. In this sense a mixture is completely specified by its
density operator. In the special case of a pure state j¦i the density operator is
given by

¡ D j¦ih¦j (1.21a)

It will be seen later that it is usually more convenient to write ¡ in matrix form. To
this end we choose a set of basis states, commonly jC1=2i and j�1=2i and expand
j¦ai and j¦bi in terms of this set according to (1.2):

j¦ai D a
.a/
1

ˇ
ˇ
ˇ
ˇ
C1

2

�

C a
.a/
2

ˇ
ˇ
ˇ
ˇ
�1
2

�

j¦bi D a
.b/
1

ˇ
ˇ
ˇ
ˇ
C1

2

�

C a
.b/
2

ˇ
ˇ
ˇ
ˇ
�1
2

�

(1.22)

In the representation (1.1) we write

j¦ai D
 

a
.a/
1

a
.a/
2

!

; j¦bi D
 

a
.b/
1

a
.b/
2

!

(1.23a)
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and for the adjoint states

h¦aj D
�

a
.a/�
1 ; a

.a/�
2

	

; h¦bj D
�

a
.b/�
1 ; a

.b/�
2

	

(1.23b)

Applying the rules of matrix multiplication we obtain for the “outer product,”
j¦aih¦aj:

j¦aih¦aj D
 

a
.a/
1

a
.a/
2

!
�

a
.a/�
1 ; a

.a/�
2

	

D

0

B
@

ˇ
ˇ
ˇa
.a/
1

ˇ
ˇ
ˇ

2

a
.a/
1 a

.a/�
2

a
.a/�
1 a

.a/
2

ˇ
ˇ
ˇa
.a/
2

ˇ
ˇ
ˇ

2

1

C
A (1.24)

and similarly for the product j¦bih¦bj. Substitution of these expressions into (1.20)
yields the density matrix.

¡ D

0

B
@

Wa

ˇ
ˇ
ˇa
.a/
1

ˇ
ˇ
ˇ

2 CWb

ˇ
ˇ
ˇa
.b/
1

ˇ
ˇ
ˇ

2

Waa
.a/
1 a

.a/�
2 CWba

.b/
1 a

.b/�
2

Waa
.a/�
1 a

.a/
2 CWba

.b/
1 a

.b/�
2 Wa

ˇ
ˇ
ˇa
.a/
1

ˇ
ˇ
ˇ

2 CWb

ˇ
ˇ
ˇa
.b/
2

ˇ
ˇ
ˇ

2

1

C
A (1.25)

Since the basis states j ˙ 1=2i have been used in deriving (1.25) this is said to be
the density matrix in the fj ˙ 1=2ig representation.

In order to make subsequent formulas more compact we define j C 1=2i D j¦1i
and j � 1=2i D j¦2i. In this notation the general element of the density matrix
corresponding to the i th row and j th column is given by the expression

h¦i j¡j¦j i D Waa
.a/
1 a

.a/�
j CWba

.b/
i a

.b/�
j (1.26)

with i; j D 1; 2.
Clearly the density matrix has a different form in different representations,

whereas the operator (1.20) is independent of the choice of the basis states. It will
always be assumed that the basis states are orthonormal, that is

h¦i j¦j i D •ij (1.27)

where •ij denotes the Kronecker symbol and for i D j condition (1.4) is satisfied.
In the normalization (1.4) the trace of the density matrix is given by

tr ¡ D Wa CWb D 1 (1.28)

which is independent of the choice of the representation.
As an example, consider the case of a mixture consisting of N1 particles which

have been prepared in the state j¦1i D j C 1=2i and N2 particles prepared
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independently in the state j¦2i D j � 1=2i. The total beam is then represented
by the density operator

¡ D W1

ˇ
ˇ
ˇ
ˇ
C1

2

� �

C1

2

ˇ
ˇ
ˇ
ˇ
CW2

ˇ
ˇ
ˇ
ˇ
�1
2

� �

�1
2

ˇ
ˇ
ˇ
ˇ

(1.29a)

.Wi D Ni=N/ and the density matrix in the fj ˙ 1=2ig representation is diagonal:

h¦i j¡j¦j i D Wiıij (1.29b)

1.1.5.2 Significance of the Density Matrix

The diagonal elements of the density matrix

h¦i j¡j¦ii D Wa

ˇ
ˇ
ˇa
.a/
i

ˇ
ˇ
ˇ

2 CWb

ˇ
ˇ
ˇa
.b/
i

ˇ
ˇ
ˇ

2

.i D 1; 2/ (1.30)

have a direct physical meaning. Since the probability of finding a particle of the
mixture in the state j¦ai is Wa and since the probability that j¦ai is in the state j¦ii
is
ˇ
ˇ
ˇa
.a/
i

ˇ
ˇ
ˇ

2

, the productWa

ˇ
ˇ
ˇa
.a/
i

ˇ
ˇ
ˇ

2a

is the probability that a particle originally prepared

in the state j¦ai will be found in the state j¦ii after a measurement has been made.
The diagonal element (1.30) therefore gives the total probability of finding a particle
in the corresponding basis state j¦i i.

Thus, if a beam described by a density operator ¡ is sent through a Stern–
Gerlach filter oriented parallel (antiparallel) to the z axis then the diagonal element
h¦1j¡j¦1i D ˝C 1

2
j¡j C 1

2

˛ �˝� 1
2
j¡j � 1

2

˛�

of ¡ in the
˚ˇ
ˇ˙ 1

2

˛


representation gives the
probability that a particle will pass through the filter.

This result may be generalized to arbitrary states j¦i. Consider the matrix
element h¦j¡j¦i obtained by “sandwiching” the operator (1.20) between the state
j¦i and its adjoint h¦j:

h¦j¡j¦i D Wah¦j¦aih¦aj¦i CWbh¦j¦bih¦bj¦i
D Waja.a/j2 CWbja.b/j2 (1.31)

where a.a/ D h¦aj¦i and a.b/ D h¦bj¦i. Comparing (1.30) and (1.31) it can be
seen that the matrix element h¦j¡j¦i is the total probability of finding a particle
in the pure state j¦i within a mixture which is represented by ¡. That is, if a beam
represented by ¡ passes through a filter which only fully admits a beam in the state
j¦i then (1.31) gives the probability that any given particle of the beam will pass
through the filter.

For example, suppose that a beam represented by the density matrix (1.29) is
sent through a filter oriented in the y direction. The probability that a particle of the
beam will pass through is then given by the matrix element hC1=2; yj¡j C 1=2; yi.



14 1 Basic Concepts

Expressing j C 1=2; yi in the fj ˙ 1=2ig representation [(1.13c)] and using
(1.29) give

�

C1

2
; yj¡j C 1

2
; y

�

D 1

2
.1; �i/

�
W1 0

0 W2

��
1

i

�

D 1

2
.W1 CW2/

The important point is that all the information on the spin state of any given beam
can be obtained (in principle at least) by sending the beam through various Stern–
Gerlach filters with different orientations. Consequently, once ¡ is known, we can
calculate the result of any such experiment by means of (1.31). In this sense,
¡ contains all significant information on the spin state of a given beam.

1.1.5.3 The Number of Independent Parameters

We will now consider how many parameters are required in order to completely
represent a given density matrix. A complex 2 � 2 matrix such as (1.25) has four
complex elements h¦i j¡j¦j corresponding to eight real parameters. The density
matrix is Hermitian; that is, ¡ satisfies

h¦i j¡j¦j i D h¦j j¡j¦ii� (1.32)

This can be seen immediately from (1.25) or (1.26). Consequently, the diagonal
elements are real, and the real and imaginary parts of the off-diagonal elements are
related by the expressions

Re

�

C1

2
j¡j � 1

2

�

D Re

�

�1
2

j¡j C 1

2

�

Im

�

C1

2
j¡j � 1

2

�

D �Im

�

�1
2

j¡j C 1

2

�

These relations reduce the number of independent real parameters to four. The
normalization condition (1.28) fixes one further parameter so that the density matrix
is completely characterized in terms of three real parameters. It follows from this
that three independent measurements must be performed in order to completely
specify the density matrix for any given beam of spin-1/2 particles.

It will be instructive to consider this result from another point of view. In (1.20)
a density operator is defined from a knowledge of how a given beam has been pre-
pared. This definition can be generalized for the case of any number of constituent
beams. In order to write down the density operator or the corresponding density
matrix from (1.20) and (1.25), it follows that all the pure states j¦ai; j¦bi; : : : :
present in the mixture must be specified together with their statistical weights
Wa; Wb; : : : : Only three real parameters, however, are required to completely
characterize the density matrix of a beam of any complexity, as has been shown.
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This is not as surprising as it may seem at first, since one and the same density
matrix can represent many different mixtures prepared in entirely different ways.
For example, consider a mixture represented by the density operator

¡ D 1

2

ˇ
ˇ
ˇ
ˇ
C1

2

� �

C1

2

ˇ
ˇ
ˇ
ˇ
C1

2

ˇ
ˇ
ˇ
ˇ
� 1

2

� �

�1
2

ˇ
ˇ
ˇ
ˇ

and a mixture specified by the operator

¡ D 1

6

ˇ
ˇ
ˇ
ˇ
C1

2

� �

C1

2

ˇ
ˇ
ˇ
ˇ
C1

6

ˇ
ˇ
ˇ
ˇ
� 1

2

� �

�1
2

ˇ
ˇ
ˇ
ˇ
C1

3

ˇ
ˇ
ˇ
ˇ
C 1

2
; x

� �

C1

2
; x

ˇ
ˇ
ˇ
ˇ
C1

3

ˇ
ˇ
ˇ
ˇ
� 1

2
; x

� �

�1
2
; x

ˇ
ˇ
ˇ
ˇ

By constructing the corresponding density matrices in the fh˙1=2jg representation
and applying (1.13a), (1.13b) it can be shown that both beams are represented by
the same density matrix:

¡ D 1

2

�

1 0

0 1

�

It follows from (1.31) that the two beams will behave identically in all experiments
with respect to their polarization properties. Conversely, a knowledge of the density
matrix elements alone is insufficient to determine the method by which the beams
have been prepared. In fact such information is insignificant. The only significant
information is contained in the three independent parameters specifying the density
matrix since these are sufficient to calculate the behavior of the corresponding beam
in any polarization experiment. For this reason we will henceforth consider two
beams to be identical if they are described by the same density matrix.

The definition (1.20) is usually of little importance, and instead of defining the
density operator by specifying the constituent subbeams and their statistical weights
we will apply a more operational point of view and define the density matrix by the
results of three independent measurements. In the following section we will show
how this can be achieved in a simple way by using the polarization vector.

1.1.5.4 Parametrization of the Density Matrix

If (1.20) is multiplied by the Pauli matrix ¢i the trace can be calculated as

tr ¡¢i D Watr .j¦aih¦aj¢i /CWbtr .j¦bih¦bj¢i /
D Wah¦aj¢i j¦ai CWbh¦bj¢i j¦bi (1.33)

This result can be obtained by using the explicit matrix representations (1.7) and
(1.24) or, more directly, by applying the relation

tr.j¦ih¦j¢i/ D h¦j¢i j¦i (1.34)
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Substituting (1.16a) into (1.33) gives the important result

• tr ¡¢i D Pi (1.35)

where Pi is the i th component of the polarization vector of the total beam.
Using this result the elements of ¡ can be expressed in terms of the components

Pi . By direct matrix manipulations it may be shown that in the fj ˙ 1=2ig
representation ¡ is given by

• ¡ D 1

2

�
1C Pz Px � iPy

Px C iPy 1 � Pz

�

(1.36)

A more elegant method of deriving this result will be given in Sect. 1.1.6.
The three components Px; Py; Pz represent a minimum set of data which are

required to specify the density matrix of any given beam and we will henceforth
regard the density matrix as defined by (1.36).

As an illustration of the use of (1.36) suppose a beam of particles, characterized
by the matrix (1.36), passes a filter oriented in the z direction. The probability that a
particle is admitted by the filter is given, according to (1.31), by the expression

�

C1

2
j¡j C 1

2

�

D 1

2
.1C Pz/

Similarly, applying (1.13a), (1.13c) and (1.36) the probabilities that a particle will
pass through a filter oriented in the x and y directions are found to be

�

C1

2
; x j¡j C 1

2
; x

�

D 1

2
.1C Px/

�

C1

2
; y j¡j C 1

2
; y

�

D 1

2
.1C Py/

Finally, we will give another useful representation of ¡ obtained by transforming to
a coordinate system x0; y0; z0, where z0 is parallel to P and x0 and y0 are chosen arbi-
trarily but orthogonal to each other and to z0. In this case, Px0 DPy0 D 0; Pz0 D jP j.
As a result, in the representation with z0 as the quantization axis, ¡ is given by

¡ D 1

2

�
1C jPj 0

0 1 � jP j
�

(1.37a)

or by

¡ D 1

2
.1 � jP j/

�

1 0

0 1

�

C jP j
�

1 0

0 0

�

(1.37b)

If the beam under consideration is completely polarized, jPj D 1, and
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¡ D
�
1 0

0 0

�

(1.38)

and the beam is in the pure state j C 1=2; z0i. If the beam is unpolarized jPj D 0,
and the corresponding density matrix is given by

¡ D 1

2

�
1 0

0 1

�

(1.39)

1.1.5.5 Identification of Pure States

In Sect. 1.1.2 it has been shown that a given beam is in a pure state if and only if
its polarization vector has the maximum possible value of jPj D 1. This result will
now be put into a different form which is more useful for treating more complex
systems.

Using (1.36) it can be shown that the trace of ¡2 is given by

tr.¡/2 D .1=2/.1C P2
x C P2

y C P2
z /

D .1=2/.1C jPj2/

It follows from this that
tr .¡/2 D 1 (1.40)

is a necessary and sufficient condition that the beam under consideration is in a pure
state. [Note, the fact that the trace is equal to unity in (1.40) is a consequence of the
normalization (1.28).]

In the case of a pure state the condition (1.40) gives an additional restriction on
the density matrix elements. Thus a pure state is characterized by two independent
parameters only in accordance with (1.10).

1.1.6 The Algebra of the Pauli Matrices

The discussion in Sect. 1.1.5 have shown that the result of any experiment performed
with a given beam can be calculated from a knowledge of the corresponding density
matrix. So far the required mathematical operations have to be carried out using a
particular representation and applying the rules of matrix algebra. In general, this is
a laborious and time-consuming procedure. In this section a more elegant method
of performing the relevant calculations will be described.

The discussion will be based on the following fundamental relation between the
Pauli matrices .i; j D x; y; z/:
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¢i¢j D •ij1 C i
X

k

–ijk¢k (1.41)

where •ij is the Kronecker symbol, 1 denotes the two-dimensional unit matrix, and

–ijk D

8

ˆ̂
<

ˆ̂
:

1 if i; j; k is an even permutation of XYZ

�1 if i; j; k is an odd permutation of XYZ

0 if two of the indices are the same

(1.42)

For example, for i D j (1.41) becomes

¢2i D 1 (1.43a)

and for i D x; j D y:

¢x¢y D i¢z; ¢y¢x D �i¢z (1.43b)

From (1.40) and (1.43) it follows that for i ¤ j

¢i¢j C ¢j ¢i D 0 (1.43c)

Equation 1.41 specifies completely the algebra of the Pauli matrices. Proofs of (1.41)
can be found in any textbook on quantum mechanics.

The important property of (1.41) is that it reduces quadratic combinations of
Pauli matrices to linear ones. This allows the calculation of traces of products of
matrices ¢i by a stepwise reduction of the number of matrices occurring in the given
trace. We give some examples. First, from (1.7) it can be seen that

tr ¢i D 0 (1.44)

By taking the trace of (1.41) and using (1.44) it follows that

tr ¢i¢j D 2•ij (1.45a)

A product of three Pauli matrices may first be reduced to a quadratic combination
by means of (1.41):

¢i¢j ¢m D •ij¢m C i
X

k

–ijk¢k¢m

Taking the trace of this expression and applying (1.44) and (1.45a) give

tr ¢i¢j ¢m D 2i
X

k

–ijk•km D 2i–ijm (1.45b)
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A further important property of the Pauli matrices is that any two-dimensional
Hermitian matrix can be expressed as a linear combination of the unit matrix 1 and
the matrices ¢i . For example, consider the density matrix. We make the “ansatz”

¡ D a1 C
X

i

bi ¢i (1.46)

In (1.46) the four coefficients a; bx; by; bz are unknowns which must be
determined. Such an ansatz is possible because the hermiticity condition reduces
the number of independent parameters determining ¡ to four and there are four
parameters in (1.46). One of the parameters can immediately be determined from
the normalization condition (1.28), which gives, with the help of (1.44),

a D 1=2 (1.47a)

Multiplying (1.46) by ¢j , taking the trace of the obtained expression, and using
(1.44) and (1.45) give

tr ¡¢j D 2
X

i

bi •ij D 2bj

The trace of ¡ and ¢j gives the corresponding component of the polarization vector
and from this it follows that

bj D .1=2/Pj (1.47b)

Inserting the results (1.47) into the ansatz (1.46) results in the expression

• ¡ D 1

2

 

1 C
X

i

Pi¢i

!

(1.48)

If the Pauli matrices are expressed in the form (1.7) then P can be obtained in the
form (1.36). In the case of a pure state j¦i characterized by

¡.x/ D j¦ih¦j

and denoting the polarization vector of the state j¦i by P .x/, we write

j¦ih¦j D 1

2

 

1C
X

i

P
.x/
i ¢i

!

(1.49)

This expression allows a simple determination of the probability j¦j¡j¦i.
Equation 1.34 implies

h¦j¡j¦i D trj¦ih¦j¡

Hence, using this result on the right-hand side of (1.49) gives
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h¦j¡j¦i D 1

4
tr

2
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.x/
i Pj ¢i ¢j

1

A

D 1

2
.1C P.x/ � P/ (1.50)

This result can be interpreted in the following way. A beam of particles may be
characterized by a density matrix ¡. This beam may be passed through a Stern–
Gerlach filter in a fixed orientation which only completely transmits a beam in the
pure state j¦i (that is, the filter is oriented parallel to P(x)).

The probability that a particle of the given beam will pass through the filter is
then determined by the scalar product P(x) � P of the two polarization vectors. The
probability of transmission is a maximum if P points in the direction of the magnetic
field and is a minimum if P is antiparallel to the filter direction. In particular, if the
beam is unpolarized, then for any filter

h¦j¡j¦i D 1=2 (1.51)

The derivation of (1.50) may serve as a first example of how calculations can be
simplified by using (1.48) and the algebraic properties of the Pauli matrices.

1.1.7 Summary

The results obtained in the previous two sections allow a redefinition of the basic
concepts used so far. We consider as the initial information on a given beam the
values of the three components Px; Py; Pz of the polarization vector. P can be
determined, for example, by suitably chosen scattering experiments (for a detailed
discussion of such experiments we refer particularly to Kessler 1976). When the
polarization vector is known the density matrix can be obtained by means of (1.36)
or (1.48). These expressions contain all information on the beam in condensed form.
Their usefulness, particularly (1.48), in actual calculations will become evident in
Sect. 2.5.

If jPj D 1 the beam is said to be in a pure spin state, or, alternatively, all particles
are in identical states. This joint state of all particles in the given beam is represented
by assigning a single state vector to the whole beam. In this case two parameters are
sufficient for a complete description of the spin state, for example, the polar angles
™ and • of P, from which the corresponding state vector can be constructed by means
of (1.10).
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If jPj < 1 the beam is said to be in a mixed state. Such states are characterized
by three parameters, for example, the magnitude and the polar angles of P.

1.2 Polarization States and Density Matrix of Photons

1.2.1 The Classical Concept of Wave Polarization

In this section, a description of photon polarization will be given. We will follow the
arguments of Sect. 1.1 in order to become more familiar with the abstract concepts
introduced there. We will begin with a brief account of the description of light
polarization in classical optics.

A monochromatic electromagnetic wave is characterized by three quantities: its
angular frequency ¨, its wave vector k D .2 =ƒ/n (where n is a unit vector in the
direction of motion and ƒ is the wavelength), and its state of polarization, which
is defined by the vibrations of the electric field vector E. The field vector E of a
monochromatic wave can be written in the form

E D Aeei.k�r�¨t/ (1.52)

where A is the amplitude and e is the polarization vector. Because of the transverse
nature of electromagnetic waves, e is perpendicular to n. In this section we will
use a coordinate system x; y; z with the z axis parallel to n, and restrict ourselves
to a discussion of the polarization properties of light only. If E vibrates along the
x axis then the light is said to be linearly polarized along the x axis. The polarization
vector is parallel to x and denoted by ex . If the electric vector oscillates along the
y axis then the polarization is characterized by assigning a polarization vector ey to
the beam pointing in the y0 direction. A general polarization vector e can always be
expanded in terms of two orthogonal vectors, for example, ex and ey :

e D a1ex C a2e
i•ey (1.53)

where a1 and a2 are real coefficients. We will normalize (1.53) such that e is always
a unit vector in the sense that the scalar product of e and its complex conjugate, e�,
is equal to 1: e � e� D 1. The normalization condition is therefore

a21 C a22 D 1 (1.54)

Equation 1.53 corresponds to a linear superposition of two waves of equal frequency
and the same wave vector with amplitudes A1 and A2, polarized along the x and y
directions, respectively, with a definite phase difference •:
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E D A1exei.k�r�¨t/ C A2eyei.k�r�¨tC•/

D A.a1ex C a2e
i•ey/ei.k�r�¨t/

where a1 and a2 are the relative amplitudes of the waves normalized to unity: a1 D
Ai=A .i D 1; 2/ with A D .A1 C A2/

1=2.
We can define a parameter “ such that

a1 D cos “; a2 D sin “ (1.55a)

[(1.54) is then automatically satisfied] and write the general polarization vector
(1.53) in the form

• e D cos “ ex C ei• sin “ ey (1.55b)

In order to become familiar with the use of this expression we will consider some
specific cases.

1. Consider a superposition of two waves oscillating in phase, with relative
amplitudes a1 and a2 and polarized along the x and y axes, respectively. From
the relative amplitudes the parameter “ can be determined, and inserting • D 0

into (1.55) the polarization vector of the resulting wave is found to be

e D cos “ ex C sin “ ey (1.56)

In this case it is possible to give a simple interpretation of “: e is a real vector
in the x � y plane and (1.56) represents its decomposition in terms of the two
orthogonal basis vectors ex and ey ; hence, “ is the angle between e and the x axis
(Fig. 1.4).

2. A superposition of two waves with equal amplitudes a1 D a2 and a phase
difference • D ˙90ı gives a wave with polarization vector

e � ex ˙ i ey

corresponding to left- and right-handed circular polarization. (For a further
discussion of circular polarization see Sect. 1.2.3.)

3. If a1 ¤ a2 and • ¤ 0 we have the general case of elliptical polarization. In the
following we will refer to a light wave as completely polarized if its polarization
properties can be specified in terms of a single polarization vector e [as in the
case of the plane wave (1.1), for example]. It will be useful to reinterpret this
definition in terms of some idealized experiments.

Following a treatment similar to that given in Sect. 1.1 the polarization properties
of light can be discussed with the help of experiments with various optical
polarization filters. We will assume that the filters used are always ideal in the
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Fig. 1.4 Polarization vector
of linearly polarized light

sense that the filter is completely transparent to light of a particular polarization and
completely absorbs light of the opposite polarization. Hence light passing through
the filter will emerge in a definite state of polarization. For example, a beam of
light may pass a Nicol prism with its axis of transmission parallel to the x axis.
The transmitted light is then linearly polarized along the x direction. Similarly,
a beam of light passing a Nicol prism oriented parallel to an axis n will emerge
linearly polarized along this direction. If “ is the angle between n and the x axis
the corresponding polarization vector is given by (1.56). Conversely, if linearly
polarized light with polarization vector e is passed through a Nicol prism it is always
possible to find such an orientation of the prism which allows the whole beam to be
transmitted. This occurs when the axis of transmission is parallel to e. A circularly
polarized wave will only be completely accepted by a circular polarization filter (for
example, a suitably oriented series combination of a quarter wave plate and a Nicol
prism).

By applying the converse of these arguments it can be seen that a light beam
is completely polarized if such a filter can be found which completely admits the
beam.

As is well known from optics light is usually not completely polarized. An
ordinary light source consists of a large number of excited atoms each of which
emits a pulse of light in a time of order �10�8 s independently of all other
atoms. Because constantly new pulses will be contributing to the beam the overall
polarization will change very rapidly and there will be no definite polarization vector
which is characteristic of the total beam. In the following sections we will consider
the problem of describing beams of this kind.
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1.2.2 Pure and Mixed Polarization States of Photons

When the theory of relativistic quantum mechanics is applied to the electromagnetic
field it follows that in interaction with matter the wave behaves as if it were
composed of photons. We will start our discussion with the following definition:

• A beam of photons is said to be in a pure polarization state if the beam is
completely polarized in the sense explained in Sect. 1.2.1.

In terms of our idealized experiments this definition may be reinterpreted as follows:
if it is possible to find such a filter which completely admits a beam of photons then
the beam is said to be in a pure polarization state. Alternatively we may say that all
photons of the beam can be considered to be in one and the same polarization state.
This joint state of all the photons can be described in terms of a single state vector
which we will denote by jei, by which is meant the polarization state of any photon
in the beam which classically has polarization vector e. For example, the state
vectors jexi and jeyi denote the polarization state of photons which are completely
transmitted by a Nicol prism oriented in the x and y directions, respectively.

The states jexi and jeyi can be taken as basis states and any state jei can be
written as a linear superposition:

jei D a1jexi C a2jeyi (1.57)

or
jei D cos “jexi C ei• sin “jeyi (1.58)

These equations are exactly analogous to (1.53) and (1.55), respectively.
These considerations are similar to the discussions in Sect. 1.1. All the exper-

iments and results for spin-1/2 particles and Stern–Gerlach filters which have
been described previously can be repeated with photons and polarization filters. In
particular, it should be noted that a21 and a22 are the probabilities that a photon in the
polarization state (1.57) will pass through a Nicol prism oriented parallel to the x or
y axis, respectively.

As shown by (1.57) and (1.58) any superposition of two (or more) states which
have a definite phase • necessarily results in a pure state. Thus, in order to describe
light which is not completely polarized, it is necessary to consider superposition
states which do not have a definite phase relation, that is, we have to introduce the
concept of a mixture. In general, a beam of photons is said to be in a mixed state or
mixture if it is not possible to describe the beam in terms of a single state vector.

It is useful to visualize the concept of a mixture in terms of some idealized
experiments. Consider two light sources emitting independently of each other, where
by “independently” is meant that there is no definite phase relationship between
the two sources (that is, the relative phase changes much more rapidly than the
observation time in an unpredictable manner). Both sources are provided with a
polarization filter so that the first source emits a beam of intensity I1 of definite
polarization je1i and the second one a beam of intensity I2 and polarization je2i.
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If the two beams are combined and the polarization properties of the total beam
investigated by sending it through various filters, it will be found that, irrespective
of the nature of the filter, the transmitted intensity is always less than the incident
one. Thus, by definition, the total beam is in a mixed polarization state.

It is not possible to completely characterize a mixture by a single-state vector jei.
In particular, the mixture cannot be represented as a linear superposition of the states
je1i and je2i. The reason for this is that, as has been discussed in Sects. 1.1.1–1.1.4,
there is no definite phase • between the constituent beams with which a definite state
vector jei can be constructed.

1.2.3 The Quantum Mechanical Concept of Photon Spin

In classical optics the polarization of light is explained in terms of the vibrations
of the electric field vector. We will now investigate how polarization states can be
interpreted in terms of the characteristic properties of photons.

To this end we will consider the possible spin states of photons. There are certain
limitations to the concept of the photon spin. The total angular momentum J of
any particle is the resultant of its spin S and its orbital angular momentum L.
Since the rest mass of a photon is zero, the usual definition of spin as the total
angular momentum of a particle at rest is inapplicable for a photon. Strictly, only
the total angular momentum J of the photon has any physical meaning. However, it
is convenient to define a spin and an orbital angular momentum in a formal sense.
The photon spin is given the value 1 corresponding to the fact that the wave function
is a vector [as shown, for example, by (1.52)]. The value of the orbital angular
momentum is related to he multipoles which occur in the wave function (see, for
example, Landau and Lifschitz 1965).

In general, if a spin-1 particle has a well-defined momentum p the components
of its spin along its direction of motion can take three values: C1; �1; 0. However,
because of the transverse nature of electromagnetic waves the value 0 must be
excluded for photons. The component of the photon spin along the direction of
propagation n, which we will denote by the symbol œ, can therefore only have the
values œ D C1 (“spin up”) and œ D �1 (“spin down”).

It is important to note that the two photon states with spin up and spin down with
respect to n as quantization axis have direct physical meaning. Since the component
of the orbital angular momentum vanishes in the direction of propagation n we have
J � n D .L C S/ � n D S � n D œ; consequently,

• œ is the component of the total angular momentum of the photon in the direction
of propagation n.

The component of the spin in the direction of motion is generally called the
helicity and we will refer to photon states with definite values œ D ˙1 as helicity
states.
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Classically, when a circularly polarized light beam is directed at a target the
electrons in the target are set into circular motion in response to the rotating electric
field of the wave. This suggests that there is a relationship between circularly
polarized light and photons in definite states of angular momentum.

In fact it has been shown in quantum electrodynamics that photons with definite
helicity are related to left-handed and right-handed circular polarization states.
Unfortunately, this notation is not unambiguous and we will adopt the following
convention. We will denote the polarization vector and state of photons with helicity
œ D 1 by eC1 and j C 1i, respectively, and refer to light of positive helicity as right-
handed circularly polarized.

Similarly, if œ D �1 we will denote the polarization vector and state of such
light by e�1 and j � 1i, respectively, and refer to the light as left-handed circularly
polarized.

Note that in the terminology of classical optics the opposite convention is usually
adopted: Light of positive (negative) helicity is called left-handed (right-handed)
circularly polarized. We will always use the helicity state notation in order to avoid
this ambiguity. With this convention the vectors eC1 and e�1 and the states j ˙ 1i
are then determined apart from a phase factor which has little significance and we
write

e˙1 D � 1

21=2
.ex ˙ i ey/ (1.59)

for the polarization vector and for the corresponding states:

j ˙ 1i D � 1

21=2
.jexi ˙ i jeyi/ (1.60)

(see, for example, Messiah 1965).
In particular for problems where questions of angular momentum must be taken

explicitly into account, it is convenient to use the helicity states as basis states
instead of jexi and jeyi. We will therefore write the general polarization state jei
in the form

jei D a1j C 1i C a2j � 1i (1.61)

There is a close formal analogy between photons and spin-1/2 particles. Because
there are only two possible values of the helicity œ D ˙1 (corresponding to states
with spin up and spin down with respect to n as the quantization axis) these states
can be represented by two-dimensional column vectors as long as n is used as the
axis of quantization (z axis). The basis states can then be written in a similar way to
(1.1)):

j C 1i D
�
1

0

�

; j � 1i D
�
0

1

�

(1.62)

In this representation the general pure state (1.61) is described by the row vector

jei D
�
a1

a2

�

(1.63a)
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and its adjoint by the column vector

jei D �

a�
1 ; a

�
2

�

(1.63b)

For example, the state of light beams which are completely linearly polarized along
the x and y axes, respectively, is obtained by inverting (1.60):

jexi D � 1

21=2
.j C 1i � j � 1i/ (1.64a)

jeyi D � i

21=2
.j C 1i C j � 1i/ (1.64b)

The interpretation of these linear superposition states is analogous to that given in
Sect. 1.1.4.

As another example, consider a beam of photons prepared in the pure state jexi.
It can be seen from (1.64a) that these photons have no definite helicity. However, in
any experiment performed on the beam, in which the angular momentum is actually
measured, any photon in the beam will be forced into one of the angular momentum
eigenstates, j C 1i or j � 1i, with equal probability. In any such experiment any
photon of the beam will therefore transfer a definite amount of angular momentum,
either œ D C1 or œ D �1. Since the corresponding probabilities are equal, the net
angular momentum, transferred by the total beam, is zero.

1.2.4 The Polarization Density Matrix

A compact expression of the polarization properties of photons is contained in the
corresponding density matrix. In Sect. 1.2.5 we will give an operational definition
of the photon density matrix. But in this section we will follow the arguments of
Sect. 1.1.5.

Consider a beam of photons which is a mixture of two beams which have
been prepared independently in the states jeai and jebi, with intensities Ia and Ib ,
respectively. The density operator characterizing the total beam is defined by the
expression

¡0 D Wajeaiheaj CWbjebihebj (1.65)

with Wa D Ia=I and Wb D Ib=I and I D Ia C Ib . In order to obtain the density
matrix it is necessary to choose a particular representation. We will use the helicity
states as basis and expand the two states jeai and jebi according to (1.61) as

jeai D a
.a/
1

ˇ
ˇ
ˇC 1

E

C a
.a/
2

ˇ
ˇ
ˇ� 1

E

jebi D a
.b/
1

ˇ
ˇ
ˇC 1

E

C a
.b/
2

ˇ
ˇ
ˇ� 1

E
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Using the explicit representation (1.62) and applying the rule (1.24) the density
matrix in the helicity representation is found to be

¡0 D

0

B
@

Wa

ˇ
ˇ
ˇa
.a/
1

ˇ
ˇ
ˇ

2 CWb

ˇ
ˇ
ˇa
.b/
1

ˇ
ˇ
ˇ

2

Waa
.a/
1 a

.a/�
2 CWba

.b/
1 a

.b/�
2

Waa
.a/�
1 a

.a/
2 CWbja.b/�1 a

.b/
2 Wa

ˇ
ˇ
ˇa
.a/
2

ˇ
ˇ
ˇ

2 CWb

ˇ
ˇ
ˇa
.b/
2

ˇ
ˇ
ˇ

2

1

C
A (1.66)

From the explicit representation (1.66) it follows that ¡0 is normalized according to

tr ¡0 D Wa CWb D 1 (1.67)

It is often more convenient to normalize ¡ in such a way that its trace is equal
to the total intensity of the corresponding photon beam. This can be achieved by
substituting the intensities Ia and Ib for Wa and Wb in the definition (1.65) and
(1.66). The density operator in this normalization is then given by

¡ D Iajeaiheaj C Ibjebihebj (1.68)

The trace of the density matrix is then

tr ¡ D Ia C Ib D I (1.69)

The density matrix ¡ (and ¡0) has the following properties (the proofs are like those
in Sect. 1.1.5):

1. The diagonal elements hC1j¡0jC1i and h�1j¡0j�1i of the matrix (1.66) give the
probability of finding a photon in the beam in the corresponding helicity state. In
the normalization (1.69) the diagonal elements hC1j¡j C 1i and h�1j¡j � 1i give
the corresponding intensities.

2. If the beam under consideration is sent through a filter which fully admits only
photons in the pure state jei then the element

hej¡0jei D Waja.a/j2 C wbja.b/j2 (1.70)

gives the probability that a photon of the beam will be transmitted through the
filter where we used the notation

a.a/ D hejeai
a.b/ D hejebi

The element hej¡jei obtained from the operator (1.68) gives the transmitted
intensity:

hej¡jei D Iaja.a/j2 C Ibja.b/j2 (1.71)
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Since any information on the polarization properties of a given beam can be
obtained in principle by allowing the beam to pass through various polarization
filters, the result of any such experiment can be calculated by using formulas
(1.70) or (1.71). From this it can be concluded that all information on the
polarization state of a given beam is contained in its density matrix.

3. The hermiticity condition (1.32) reduces the number of independent parameters
to four. One of these is usually the total beam intensity I . If I is not of interest
it can be dropped by normalizing as in (1.67) where ¡0 then is specified by three
real parameters similar to the density matrix of spin-1/2 particles.

It follows that four independent measurements are required in order to specify
the matrix ¡ completely for any given beam (one of these is the determination of
the intensity I ). If I is dropped the matrix (1.66), which requires a set of three
independent measurements, is obtained. The result of any further experiment can
then be calculated by applying (1.70) or (1.71).

4. In Chap. 2 we will prove that, in general, a necessary and sufficient condition that
a given photon density matrix describes a pure state is given by

tr .¡2/ D .tr ¡/2 D I 2 (1.72)

In the normalization (1.67) this reduces to (1.40):

tr .¡2/ D 1

In general, the photon density matrix satisfies

tr .¡2/ � I 2 (1.73a)

1.2.5 Stokes Parameter Description

1.2.5.1 Parametrization of ¡ in Terms of the Stokes Parameters

We will henceforth adopt the normalization (1.69). In the preceding section it
has been seen that four independent measurements must be performed in order to
completely determine the polarization state of any given beam. The most convenient
set of measurements is that one which gives the following information:

1. The total intensity I of the beam;
2. The degree of linear polarization with respect to the x and y axes, defined as

˜3 D I.0/� I.90ı/
I

(1.74a)

where I.“/ denotes the intensity transmitted by a Nicol prism oriented at an angle
“ with respect to the x axis;
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3. The degree of linear polarization with respect to two orthogonal axes oriented at
45ı to the x axes

˜1 D I.45ı/� I.135ı/
I

(1.74b)

4. The degree of circular polarization defined as

˜2 D IC1 � I�1
I

(1.74c)

where IC1 (and I�1) are the intensities of light transmitted by polarization filters
which fully transmit only photons with positive (negative) helicity.

The parameters 1–4 are called Stokes parameters. A detailed description of these
can be found in Born and Wolf (1970). (See also McMaster 1954; Farago 1971.)

We will now relate the Stokes parameters to the elements of the density matrix.
Denoting the elements of ¡ by ¡œ0� � hœ0j¡jœi we write

¡ D
�
¡C1;C1 ¡C1;�1
¡�1;C1 ¡�1;�1

�

(1.75)

where ¡C1; �1 D ¡��1;C1 because of the hermicity condition (1.32). Applying (1.69)
the total intensity is given by

I D ¡11 C ¡�1;�1 (1.76a)

In order to obtain ˜3 we have to calculate the intensities I.0/ and I.90ı/. From
relation (1.71) these are given by

I.0/ D hexj¡jexi
I.90ı/ D heyj¡jeyi

In the helicity representation the state vectors jexi and jeyi are expressed by
(1.64); hence

I.0/ D .1=2/.�1; C1/
�
¡11 ¡1;�1
¡�1; 1 ¡�1;�1

���1
C1
�

D .1=2/.¡11 � ¡1;�1 � ¡�1; 1 C ¡�1;�1/

Similarly, we obtain

I.90ı/ D .1=2/.�i; �i/
�
¡11 ¡1;�1
¡�1; 1 ¡�1;�1

��
i

i

�

D .1=2/.¡11 C ¡1;�1 C ¡�1; 1 C ¡�1;�1/
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It therefore follows that
I˜3 D �.¡1;�1 C ¡�1; 1/ (1.76b)

In the same way we calculate the parameter I˜1, defined by (1.74c). In this case
the axes of transmission of the Nicols are set at angles 45ı and 135ı to the x axes,
respectively. The intensities transmitted by these prisms are then given by

I.45ı/ D he1j¡je1i
I.135ı/ D he2j¡je2i

where je1i denotes a photon state which is fully transmitted by the first prism; that is,

je1i D .1=21=2/.jexi C jeyi/

where (1.56) has been used with “ D 45ı. Similarly, je2i is a photon state which is
fully transmitted by the second prism and can be expressed in terms of jexi and jeyi
by inserting “ D 135ı in (1.56):

je2i D .1=21=2/.�jexi C j C eyi/

Transforming jexi and jeyi to the helicity basis gives

I˜1 D �i.¡1;�1 � ¡�1;1/ (1.76c)

Similarly,
I˜2 D ¡11 � ¡�1;1 (1.76d)

By inverting these equations the elements ¡œ0œ can be expressed in terms of the
Stokes parameters:

• ¡ D I

2

�
1C ˜2 �˜3 C i˜1

�˜3 � i˜1 1 � ˜2

�

(1.77)

We will use this form of the density matrix throughout this book.

1.2.5.2 Examples

It follows from (1.58) that any pure polarization state can be parametrized in
the form

jei D cos “jexi C ei• sin “jeyi (1.78)

The corresponding density operator is given by ¡ D Ijeihej. We will calculate the
Stokes parameters characterizing a beam in the state (1.78). We have
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I.0/ D hexj¡jexi D I jhexjeij2 D I cos2 “

I.90/ı D heyj¡jeyi D I jheyjeij2 D I sin2 “

from which follows

˜3 D cos 2“ (1.79a)

Similarly we find

˜1 D sin 2“ cos • (1.79b)

˜2 D sin 2“ sin • (1.79c)

For example, the pure state jexi, characterizing a beam of light with polarization
vector pointing in the x direction, is obtained by inserting • D 0; “ D 0 in (1.78).
From (1.79) we obtain the Stokes parameters ˜3 D 1; ˜1 D ˜2 D 0. Inserting these
values into the density matrix (1.77) gives

¡ D I

2

�
1 �1

�1 1

�

(1.80a)

A beam which is linearly polarized in the y direction can be specified by the
parameters “ D 90ı; • D 0 so that

˜3 D �1; ˜1 D ˜2 D 0

and

¡ D I

2

�
1 1

1 1

�

(1.80b)

Similarly, as shown in Sect. 1.2.1 a beam linearly polarized in a direction with angle
“ with respect to the x axis is described by inserting • D 0 in (1.78) and (1.79). The
Stokes parameters are therefore given by ˜3 D cos 2“; ˜1 D sin 2“; ˜2 D 0, and
the corresponding density matrix is

¡ D I

2

�
1 � cos 2“C i sin 2“

� cos 2“� i sin 2“ 1

�

(1.80c)

Left- and right-handed polarized light are represented by the density matrices

¡ D I

�
1 0

0 0

�

(1.81a)
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and

¡ D I

�

0 0

0 1

�

(1.81b)

respectively.
Once, the Stokes parameters, and hence the density matrix, have been deter-

mined, it is straightforward to derive a useful expression for the intensity, Ie, of
light transmitted by a filter which only admits photons in the state jei: The required
element is hej¡jei, which is

• Ie D .I=2/.1C ˜3 cos 2“C ˜1 sin 2“ cos •C ˜2 sin 2“ sin •/ (1.82)

Note that the parameters “ and • describe the transmitted beam, whereas the incident
beam is specified in terms of the Stokes parameters in (1.82).

1.2.5.3 Degree of Polarization

We will now introduce a further notation which will be useful in later discussions.
From condition (1.73a) and (1.77) it follows that the Stokes parameters are restricted
by the condition

˜21 C ˜22 C ˜23 � 1 (1.83)

The equality sign holds only if the photons in the beam under discussion are in a
pure polarization state. Alternatively, the beam is completely polarized (in the sense
explained in Sect. 1.2.1) if and only if the relation

˜21 C ˜22 C ˜23 D 1 (1.84a)

holds. These conditions may be conveniently expressed by introducing the quantity

P D �

˜21 C ˜22 C ˜23
�1=2

(1.85)

It follows from (1.83) that P is restricted by

P � 1 (1.86a)

Equations 1.83 and 1.85 can then be summarized as follows:

• A given beam of photons is in a pure polarization state if and only if P D 1. If
P < 1 the beam is in a mixed state.

If a beam is such that P > 0 we will refer to the beam as polarized (completely
polarized if P D 1); if P D 0 we will refer to the beam as unpolarized. In the latter
case all Stokes parameters vanish and the corresponding density matrix is given by
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¡ D I

2

�
1 0

0 1

�

(1.87)

Since the Stokes parameters vanish in any representation when P D 0, (1.87) is
independent of the choice of the basis states. Any mixture of independently prepared
states je1i and je2i of opposite polarization (for example, j C 1i and j � 1i or jexi
and jeyi) and equal intensities I1 D I2 D I=2 is represented by the density matrix
(1.87). All these mixtures behave identically in their polarization properties and can
be used as models for unpolarized light.

1.2.5.4 “Operational” Definition of ¡

At this point we will invert some of the results given above, as follows. In order
to determine the polarization properties of a given light beam it is necessary
to perform four independent measurements by, for convenience, determining the
Stokes parameters. These four parameters then serve as data which enable the
density matrix to be defined by (1.77). The result of any further experiment
performed on the beam can then be calculated with the help of (1.71) or (1.82).

A beam of photons is in a pure polarization state if and only if P D 1

(completely polarized beam). In this case the polarization state of the beam can
be represented by a single state vector jei. In this case the Stokes parameters
are not independent; because of condition (1.84a) three of the parameters suffice
for a complete characterization of the beam [two parameters in the case of the
normalization (1.67)].

Finally, a beam of photons is in a mixed state if P < 1. In the special case P D 0

the beam is unpolarized and represented by the density matrix (1.87).



Chapter 2
General Density Matrix Theory

2.1 Pure and Mixed Quantum Mechanical States

In this chapter the concepts introduced in Chap. 1 will be generalized to systems
with more than two degrees of freedom. The examples discussed in the preceding
sections will provide the physical background for the general treatment in this
chapter. We will begin with a further discussion of pure and mixed states.

In classical mechanics the dynamical state of a system, for example, of struc-
tureless particles, is completely determined once the values of all positions and
momenta of the particles are known. The state of the system at any subsequent
time can then be predicted with certainty. But often only averages of the positions
and momenta of the particles are given. Because of this incomplete information
the methods of statistical mechanics must be applied. We are concerned here
with quantum mechanical systems for which the maximum possible information
is not available. However, the phrase “maximum possible information” has in
quantum mechanics a more restricted meaning than in classical physics since not
all physical observables can be measured simultaneously with precision. Our first
task, therefore, is to discuss the meaning of the phrase “maximum information” in
quantum mechanics.

As is well known, a precise simultaneous measurement of two physical variables
is only possible if the two operators corresponding to the two variables commute.
Thus, if two operatorsQ1; Q2 commute it is possible to find states in whichQ1 and
Q2 have definite eigenvalues q1; q2. Similarly, if a third operator commutes with
bothQ1 andQ2 then states can be found in whichQ1; Q2; Q3 have simultaneously
definite eigenvalues q1; q2; q3, and so on. The eigenvalues q1; q2; q3; : : : can thus
be used to give an increasingly precise classification of the system. The largest set
of mutually commuting independent observables Q1; Q2; : : : that can be found
will give the most complete characterization possible. (An important example is
the classification of states in terms of constants of the motion.) The measurement
of another variable, corresponding to an operator which does not commute with the
set Q1; Q2; : : : necessarily introduces uncertainty into at least one of those already
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measured. It is therefore not possible to give a more complete specification of the
system.

Thus, in general, the maximum information which can be obtained on a
system (in the quantum mechanical sense) consists of the eigenvalues q1; q2; : : :
of a complete commuting set of observables which have been measured
(“complete experiment”). Once a complete experiment has been performed
one can be sure that the state of the system is precisely the corresponding
eigenstate of the set Q1; Q2; : : : associated with the measured eigenvalues
q1; q2; : : :. The system is then completely specified by assigning the state vector
jq1; q2; : : :i to it. If the measurement of the observables Q1; Q2; : : : on the state
jq1; q2; : : :i is immediately repeated, one can be sure to find the same values
q1; q2; : : : again.

• The existence of such a set of experiments (for which the results can be predicted
with certainty) gives a necessary and sufficient characterization for a state of
“maximum knowledge” (Fano 1957). States of maximum knowledge are called
pure states.

Pure states represent the ultimate limit of precise observation as permitted by the
uncertainty principle and are the quantum mechanical analog of such classical states
where all positions and momenta of all particles are known.

As shown in quantum mechanics, the question when a system of commuting
operators is complete can only be answered by experiment.

A complete experiment can be designed to act as a filter which can be used to
“prepare” a system in a pure state. For example, for a beam of free electrons a
complete set of commuting operators is provided by the momentum operator and
the z component Sz of the spin operator. By sending a beam of electrons through a
series combination of two (ideal) filters the first one selecting particles with sharp
momentum P, the second one selecting particles with sharp eigenvalue m of Sz,
a beam can be prepared in the state jP; mi. That is, the particles in the beam
transmitted by both filters will have the same values of P and m. This can be tested
by sending the emerging beam through a second set of filters identical to the first
pair, and it will be found that the beam will be transmitted completely. We can repeat
this experiment again and again; we will always find the same values P and m and
we can predict this result with certainty.

If only the spin properties of the beam are of interest the dependence of the
state on all other variables than spin can be suppressed (for example, by considering
beams where all particles have the same momentum) and the state vector can simply
be denoted by jmi as we did in Chap. 1.

The choice of a complete, commuting set of operators is not unique. For example,
instead of expanding a pure spin state in terms of the eigenstates jp; mi of the
momentum operator and OSz the eigenstates jp; m0i of the momentum operator
and OSz, can be used where z and z0 are not the same. Let us consider two sets of
observablesQ1; Q2; : : : with eigenstates j§i D jq1; q2; : : :i, andQ0

1; Q
0
2; : : : with

eigenstates j¥i D jq0
1; q

0
2; : : :i, where at least one of the operators Q0

i does not
commute with the first set. If a given system is represented by the state vector j§i
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it can always be written as a linear superposition of all eigenstates of the operators
Q0
1; Q

0
2; : : ::

j§i D
X

n

anj¥ni (2.1)

where the index n distinguishes the different eigenstates. Equation 2.1 is the
mathematical expression for the principle of superposition.

The particular states j¥ni that have been used in the expansion (2.1) are termed
“basis states” and the state j§i is said to be written in the fj¥nig representation.
We will always assume that the basis states are orthonormal:

h¥nj¥mi D •nm (2.2a)

and complete:

X

n

j¥nih¥nj D 1 (2.2b)

A direct consequence of the property (2.2a) is that the expansion coefficients an are
given by

an D h¥nj§i (2.3)

We will normalize according to

h§j§i D
X

n

janj2 D 1 (2.4)

where (2.2a) has been used together with the expansion

h§j D
X

n

a�
n h¥nj (2.5)

for the adjoint state h§j.
We recall that the absolute squares janj2 give the probabilities that a measurement

will find the system in the nth eigenstate.
From (2.1) it follows that a pure state can be characterized in two ways. Either it

can be specified by giving all eigenvalues q1; q2; : : : of a complete operator set, or
it can be specified by the amplitudes an which give j§i in terms of the eigenstates
j§ni of another set of observables. The second set is usually more convenient.

In practice, a complete preparation of a system is seldom achieved, and in
most cases the dynamical variables measured during the preparation do not con-
stitute a complete set. As a result the state of the system is not pure and it
cannot be represented by a single-state vector. It can be described by stating
that the system has certain probabilities W1; W2; : : : of being in the pure states
j¥1i; j¥2i; : : :, respectively. In the case of incomplete preparations, it is therefore
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necessary to use a statistical description in the same sense as in classical statistical
mechanics.

• Systems which cannot be characterized by a single-state vector are called
statistical mixtures.

Examples have already been given in Chap. 1.
Consider an ensemble of particles in the pure state j§i. If this state is not one of

the eigenstates of an observableQ then measurements of the corresponding physical
quantity will produce a variety of results, each of which is an eigenvalue of Q.
If similar measurements were made on a very large number of particles, all of which
were in the same state j§i, then, in general, all the possible eigenvalues ofQ would
be obtained. The average of the obtained results is given by the expectation value
hQi of the observableQ, which is defined by the matrix element:

hQi D h§jQj§i (2.6)

in the normalization (2.4).
In order to obtain hQi for a mixture of states j§1i; j§2i; : : : the expectation

values hQni D h§njQj§ni of each of the pure state components must be calculated
and then averaged by summing over all pure states multiplied by its corresponding
statistical weightWn:

• hQi D
X

n

Wnh§njQj§ni (2.7)

It should be noted that statistics enter into (2.7) in two ways: (1) in the quantum
mechanical expectation value hQni and (2) in the ensemble average over these
values with the weights Wn. While the first type of averaging is connected with
the perturbation of the system during a measurement and is therefore inherent
in the nature of quantization, the second averaging is introduced because of the
lack of information as to which of several pure states the system may be in. This
latter averaging closely resembles that of classical statistical mechanics and it can
be conveniently performed by using the density matrix techniques which will be
discussed in the following section.

2.2 The Density Matrix and Its Basic Properties

Consider a mixture of independently prepared states j§ni.nD 1; 2; : : :/ with
statistical weights Wn. These states need not necessarily be orthonormal to each
other. The density operator describing the mixture is then defined as

¡ D
X

n

Wnj§nih§nj (2.8)

where the sum extends over all states present in the mixture, ¡ is also referred to as
statistical operator.
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In order to express the operator (2.8) in matrix form a convenient set of basis
states must first be chosen, say, j¥1i; j¥2i; : : :, which fulfill the condition (2.2).
Using the superposition principle

j§ni D
X

m0

a
.n/

m0 j¥m0i (2.9a)

and

j§ni D
X

m

a.n/�m h¥mj (2.9b)

then (2.8) becomes
¡ D

X

mm0m

Wna
.n/

m0 a
.n/�
m j¥m0ih¥mj (2.10)

Taking matrix elements of (2.10) between states j¥j i and h¥i j and applying the
orthonormality conditions (2.2a) we obtain

h¥i j¡j¥j i D
X

n

Wna
.n/
i a

.n/�
j (2.11)

The set of all elements (2.11), where i and j run over all basis states over which the
sum in (2.9) extends, gives an explicit matrix representation of the operator (2.8),
the density matrix. Since the basis states j¥ni have been used we will say that the
set of (2.11) gives the elements of the density matrix in the fj¥nig representation.

We will now derive and generalize some important properties of the density
matrix which were first encountered in Chap. 1. First of all, from (2.11) it is evident
that ¡ is Hermitian; that is, the matrix (2.11) satisfies the condition

• h¥i j¡j¥j i D h¥j j¡j¥ii� (2.12)

Secondly, since the probability of finding the system in the state j§ni isWn and since

the probability that j§ni can be found in the state j¥mi is
ˇ
ˇ
ˇa
.n/
m

ˇ
ˇ
ˇ

2

, the probability of

finding the system in the state j¥mi is given by the diagonal element

¡mm D
X

n

Wn

ˇ
ˇa.n/m

ˇ
ˇ
2

(2.13)

This relation gives a physical interpretation of the diagonal elements of ¡. The
physical importance of the off-diagonal elements will be considered in Sect. 2.3.
Because probabilities are positive numbers it follows from (2.13) that

• ¡mm = 0 (2.14a)
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Using the same arguments as in Chap. 1 it can be shown that the probability W.§/
of finding the system in the state j§i after a measurement is given by the matrix
element:

• W.§/ D h§j¡j§i (2.15)

in the normalization (2.4). This becomes evident if (2.8) is substituted for ¡ in (2.15):

W.§/ D
X

n

Wnj h§nj§ij2

and the coefficients jh§nj§ij2 are interpreted according to (2.3).
The trace of ¡ is a constant independent of the representation. From the

normalization (2.4) and the condition

X

n

Wn D 1 (2.16a)

it follows that

tr ¡ D
X

i

¡ii D
X

a

Wa

X

n

ˇ
ˇ
ˇa
.n/
i

ˇ
ˇ
ˇ

2 D 1 (2.17)

The expectation value of any operator Q is given by the trace of the product of ¡
andQ:

• hQi D
X

mm0

X

n

Wna
n
m0a

.n/�
m h¥mjQj¥m0i

D
X

mm0

h¥m0j¡j¥mih¥mjQj¥m0i

D tr .¡Q/ (2.18)

where we first inserted (2.9) into (2.7) and then applied (2.11).
More generally, if we drop the normalization (2.16a) (as we did in Sect. 1.2.4),

then hQi is given by

hQi D tr .¡Q/

tr ¡
(2.19a)

The relation (2.18) is an important result. We recall from quantum mechanics
that all information on the behavior of a given system can be expressed in terms
of expectation values of suitably chosen operators. Thus the basic problem is to
calculate the expectation values. Since the expectation value of any operator can
be obtained by use of (2.18) the density matrix contains all physically significant
information on the system.
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So far the density matrix has been defined by (2.11). In general, however, it is
more convenient to consider ¡ to be defined by the expression (2.18) in the following
way. As many operators Q1; Q2; : : : as there are independent parameters in ¡ are
chosen and their expectation values hQ1i; hQ2i; : : : are given as initial information
on the system. The corresponding density matrix can then be determined by solving
the set of equations

tr .¡Qi/ D hQii

Once ¡ is determined in this way any further expectation value can be obtained by
applying (2.18). For example, as discussed in Sect. 1.1, the density matrix of spin-
1/2 particles can be obtained from a knowledge of the three expectation values h¢ii,
that is, the components of the polarization vector.

This method has two advantages. First of all the definition of a mixture given
by (2.8) is not unique for the reasons described in Sect. 1.1.5. Secondly, the initial
information on a system is often expressed in terms of expectation values of a set
of operators rather than by specifying the pure states present in the mixture. This
approach has been particularly advocated by Fano (1957) and we will return to it in
Chap. 4.

We will now consider the number of independent parameters which are needed to
specify a given density matrix. This will depend on the number of orthogonal states
over which the sum in (2.9) extends. In general, this number is infinite, but it is
often finite when only one particular property of the system (the spin, for instance)
is of interest and the dependence on all other variables can be suppressed. In the
following discussion we will consider the case in which the number of basis states in
the expansion (2.9) is equal toN: ¡ is then anN -dimensional square matrix withN2

complex elements corresponding to 2N 2 real parameters. The hermiticity condition
(2.12) restricts the number of independent real parameters toN2, and since the trace
of ¡ is fixed by the normalization condition it follows that an N-dimensional density
matrix is completely specified in terms of N2 � 1 real parameters [N2 parameters
if we drop the normalization (2.17) as, for example, in (1.69)]. This number may
be reduced by symmetry requirements and further reduced if the system under
consideration is known to be in a pure state. We will give an explicit example of
this in Sect. 3.5.

If a given system is in a pure state, represented by the state vector j§i, the
corresponding density operator is given by

¡ D j§ih§j (2.20)

The density matrix can be constructed in a representation in which j§i is one of the
basis states. For example, a set of orthonormal states j§1i D j§i; j§2i; : : : could be
chosen and then, clearly, all the elements of ¡ would be zero in this representation
except for the element in the first row and column. It is evident from this that

tr .¡2/ D .tr ¡/2 (2.21)



42 2 General Density Matrix Theory

Consider now the inverse problem of determining whether a given density matrix
describes a pure state or not. In principle the problem can always be solved by
transforming the given matrix to diagonal form. If this is done and it is found that
all elements of ¡ vanish except one, say, the i th diagonal element, then the system
is in a pure state represented by the i th basis vector. However, the diagonalization
is often tedious and it will therefore be useful to derive a condition which is easier
to apply.

First of all, we will prove that the relation

tr .¡2/ 5 .tr ¡/2 (2.22)

is valid in general. Consider an arbitrary density matrix which has been transformed
into diagonal form with diagonal elementsWn. Then

tr .¡2/ D
X

n

W 2
n (2.23a)

and

.tr ¡/2 D
 
X

n

Wn

!2

(2.23b)

Because the probabilitiesWn are positive numbers it immediately follows that (2.22)
is valid for the diagonal representation. Because the numerical values of traces
remain unchanged under a transformation of the basis states it follows that (2.22) is
valid in any representation, and not only in a diagonal one.

Suppose now that the equality sign holds in (2.22). In the diagonal representation
this yields the condition

X

n

W 2
n D

 
X

n

Wn

!2

from (2.23). This condition can only be satisfied if allWn vanish except one, say,Wi .
Consequently, ¡ contains only one nonvanishing diagonal element in the diagonal
representation and the system is in a pure state represented by the i th basis vector.

In conclusion, we have proved that (2.21) is a sufficient and necessary condition
that a given density matrix describes a pure state. Some consequences to this result
have been discussed in Chap. 1 and further examples will be given in Chap. 3.

Finally, let us consider the case of a random distribution of a complete set of
states j¥ni. As an example, consider an ensemble of atoms with spin S and third
component M characterized by state vectors jn; S; M; i, where n collectively
denotes all other variables necessary to specify the states completely. Consider the
case where all atoms have the same values of n and S but where the ensemble is a
mixture with respect to M such that all different spin states can be found with the
same probabilityWm D 1=.2S C 1/, represented by the density operator
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¡ D 1

2S C 1

X

M

jnSMihnSMj

D 1

2S C 1
1 (2.24)

where 1 is the .2SC1/-dimensional unit matrix in spin space. Here, we have applied
the completeness relation (2.2b) to the spin states. Evidently, the corresponding
density matrix is diagonal with equal elements 1=.2S C 1/ in any representation.
Generalizing the definition given in Sect. 1.2.5 [see (1.87)] we will call an atomic
system unpolarized if it can be represented by the operator (2.24).

2.3 Coherence Versus Incoherence

2.3.1 Elementary Theory of Quantum Beats

We will begin this section with a discussion of quantum beats. The treatment given
here is oversimplified in several respects. In particular the polarization of the initial
photons will be completely neglected. A general theory will be presented in Chap. 5.
The discussion given in this section is intended partly as an introduction to the
important concept of “coherent superposition” and partly as an introduction to the
topics in Chaps. 3 and 5.

Consider an ensemble of atoms all of which are in their ground state j0i of well-
defined energy E0 (which we will put equal to zero). The atoms may be excited to
higher-lying states by photon absorption. If the excitation is caused by very short
pulses of light such that the duration of the pulse�t is much smaller than the mean
lifetime of the excited atoms then the excitation can be considered to have occured
“instantaneously,” say, at time t D 0. A light pulse of duration�t has a bandwidth
�¨ � 1=�t and the photons have no well-defined energy. We will assume that the
energy spread ¯�¨ is greater than the energy difference E1 � E2 of two atomic
levels j¥1i and j¥2i (see Fig. 2.1). The energy of the excited atoms will then be
undefined and we represent the state of the excited atoms by a linear superposition
of both states

j§.0/i D a1j¥.0/1i C a2j¥.0/2i (2.25)

immediately after the absorption (for a more detailed discussion of the underlying
principles see Chap. 3).

Any state j¥.0/ii of definite energy evolves in time according to the law

j¥.t/i i D expŒ�.i=¯/EI t�j¥.0/i i
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D w

E2

E1

E0 = 0

Fig. 2.1 Illustration of two levels decaying to the same ground state

If the decay of the excited atoms is described phenomenologically by the factor
exp Œ�.1=2”i t � then the time development of the state (2.25) is given by

j§.t/i D a1 expŒ�.i=„/E1t � ”1=2/t�j¥.0/1i
C a2 expŒ�.i=„/E2t � .”2=2/t�j¥.0/2i (2.26)

where ”1 and ”2 are the decay constants of the states j¥1i and j¥2i, respectively.
An expression for the intensity of the light emitted at time t can be derived from
elementary radiation theory and is given by the expression

I.t/ � jh0jerj§.t/ij2

D ja1h0jerj¥.t/1i C a2h0jerj¥.t/2ij2 (2.27)

where e is the polarization vector of the emitted photons and r the dipole
operator. Denoting h0jerj¥i.0/i by Ai and .1=2/.”1 C ”2/ by ” and using (2.26)
gives

I.t/ � ja1A1j2 exp.�� t/C ja2A2j2 exp.�� t/
C a1a

�
2 A1A

�
2 expŒ�.i=„/.E1 � E2/t � � t� (2.28)

C a�
1 a2A

�
1A2 expŒC.i=„/.E1 � E2/t � � t�

Equation 2.28 shows that I.t/ varies periodically with a frequency .1=¯/.E1 �E2/
(Fig. 2.2). This phenomenon is known as quantum beats and can be understood as an
interference effect in the sense of (2.27): In order to obtain I.t/ the amplitudes must
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I ( t )

time

Fig. 2.2 Illustration of “quantum beats”

be added before the modulus is taken. Equation 2.28 illustrates that it is possible to
measure small energy differences by determining the beat frequency. This method
is now widely used in atomic spectroscopy (see, for example, the articles in Hanle
and Kleinpoppen 1978, 1979).

2.3.2 The Concept of Coherent Superposition

It is instructive to generalize (2.28) as follows. The density operator of the excited
atoms immediately after the excitation is given by j§.0/ih§.0/j. Using the states
j¥1i and j¥2i of definite energy as basis the elements of the excited state density
matrix in the energy representation are found to be h¥i j¡.0/j¥j i D ¡ij D
aia

�
j .i; j D 1; 2/. It is therefore plausible to make the following generalization

of (2.28) (a formal proof will be given in Chap. 5). Suppose that at time t D 0

an excited atomic state is not pure but represented by a 2 � 2 density matrix ¡.0/
with basis vectors j¥1i and j¥2i. In this case (2.28) still holds if the elements ¡ij of
this density matrix are substituted for the corresponding quantities aia�

j . It follows
that the quantum beats are associated with the time evolution of the off-diagonal
elements of the excited state density matrix ¡.0/. No interference terms will occur
in (2.28) if the density matrix ¡.0/ is diagonal in the energy representation.

This connection between interference and off-diagonal elements of the relevant
density matrix is a general one, as will be shown by our subsequent discussions.
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We will therefore give the following definition. If a given system may be character-
ized by a density matrix written in a representation with basis vectors j¥ni, then

• The system is a coherent superposition of basis states j¥ni it its density matrix is
not diagonal in the fj¥nig representation. If, in addition, the system is in a pure
state it is said to be completely coherent. If ¡ is diagonal the system is said to be
an incoherent superposition of the basis states (provided there is more than one
nonvanishing element) (Cohen-Tannouidji 1962).

In this sense the time modulation of I.t/ is a manifestation of the coherent
excitation of states with different energy as expressed by (2.25).

The distinction between “complete coherence” and “coherence” is often of little
significance, and in the literature the term “coherence” is usually applied to both
situations. We will follow this custom in cases where we are not interested in
whether the system under consideration is in a pure state or not. The concept
of coherent superposition depends on the choice of representation for the density
matrix. For example, the mixture of independently prepared states (2.8) is an inco-
herent superposition of states j§ni, but in general it is also a coherent superposition
of basis states as shown by (2.10) and (2.11).

The above definition can also be considered from the following point of
view. A pure state state can always be written as a linear (completely coherent)
superposition of basis states. The magnitudes and phases of the coefficients in this
expansion are well defined (apart from the overall phase); that is, there exists a
definite phase relationship between the basis states. The other extreme is a mixture
of independently prepared basis states j¥ni represented by the density operator

¡ D
X

n

Wn j¥nih¥nj

without any definite phase relation. ¡ is diagonal in the fj¥nig representation and, by
definition, the states j¥ni overlap incoherently. A mixture of states j§1i; j§2i; : : :
represented by a density matrix which is not diagonal in the fj¥nig representation
[see, for example, (2.10) and (2.11)] lies between the two extreme cases of
“complete coherence” and “incoherence” with respect to j¥ni.

Let us now give the following, more general, definition:

• A system is said to be an incoherent superposition of states j§1i; j§2i; : : : if it
can be represented by the density operator

¡ D
X

n

Wn j§nih§nj

When the set j§ni is orthonormal these states can be used as basis states and this
definition is then equivalent to the one given previously.

As an example consider an atomic system being in a coherent superposition
of its ground state (angular momentum J D 0) and an excited state with J D 1.
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The elements of the density matrix describing the system will be denoted by

hJ 0M 0j¡jJMi D ¡.J 0J /M 0M (2.29)

In an explicit matrix form ¡ is given by

¡ D

0

B
B
B
@

¡.0; 0/00 ¡.01/01 ¡.01/00 ¡.01/0�1
¡.10/10 ¡.11/11 ¡.11/10 ¡.11/1�1
¡.10/00 ¡.11/01 ¡.11/00 ¡.11/0�1
¡.10/�10 ¡.11/�11 ¡.11/�10 ¡.11/�1�1

1

C
C
C
A

(2.30)

The matrix (2.30) is divided into four submatrices. The upper one consists of
one element, the probability ¡.00/00 of finding the system in its ground state.
The elements of the square submatrix characterize the excited state. Its diagonal
elements are the probabilities of finding an atom in the corresponding substate
with quantum numberM . Its off-diagonal elements describe the coherence between
different substates. The remaining elements in the first row and first column of
the matrix (2.30) characterize the interference between the ground and the excited
states. Density matrices of the form (2.30) occur, for example, in optical pumping
theory corresponding to transitions J D 0 $ J D 1.

2.4 Time Evolution of Statistical Mixtures

2.4.1 The Time Evolution Operator

The time development of quantum mechanical states is described by the Schrödinger
equation:

i¯@j§.t/i
@t

D H j§.t/i (2.31)

and the equation for the adjoint state is

�i¯@h§.t/j
@t

D h§.t/jH (2.32a)

The Hamiltonian may depend explicitly on the time, for example, if H contains an
interaction term V.t/ caused by an external time-varying field. However, we will
assume at present that H is time independent.

In this section we will consider how the information contained in (2.31) can
be expressed in another useful way. We will denote an eigenstate of H with energy
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En by j�ni:

H j�ni D Enj�ni (2.33)

If a system is represented at time t D 0 by an eigenstate j�ni then at a time t the
system will be found in the state

j�n.t/i D e�.i=¯/Ent j�ni (2.34)

which is clearly a solution of (2.31). Thus the time development of eigenstates of the
total Hamiltonian is simply obtained by multiplying j�ni by the exponential factor
e�.i=¯/Ent .

Equation 2.34 can be generalized in the following way. Any solution of (2.31)
can be expanded in terms of the set of eigenstates j�ni:

j§.t/i D
X

n

Cnj�n.t/i D
X

n

Cne
�.i=¯/Ent j�ni (2.35)

where the coefficients Cn are time independent. This can be shown by inserting
(2.35) into the Schrödinger equation and applying (2.33). In particular, at time t D 0

j§.0/i D
X

n

Cnj�ni (2.36a)

In this case (that is, where the eigenstates of a time-independent total Hamiltonian
have been used as basis set) the coefficients Cn can be determined by specifying the
initial conditions. Equation 2.35 illustrates how any state j§.t/i evolves in time. If
the eigenstates and eigenvalues of H are known, then the dynamical evolution of
any state vector can be predicted. Equation 2.35 can be written in a more abstract
form. First of all, since

e�.i=¯/Ent j�ni D e�.i=¯/Htj�ni (2.37)

where the exponential operator function is defined by

e�.i=¯/Ht D 1 � i

¯Ht � 1

2¯2H
2t2 � � � � (2.38)

them by operating on j�ni with the operator given by (2.38) and applying (2.33) to
any term, (2.37) is obtained. Substitution of the expression (2.37) into (2.35) yields

j§.t/i D e�.i=¯/Ht
X

n

Cnj�ni D e�.i=¯/Htj§.0/i (2.39)

j§.t/i in the form (2.39) may also be obtained in a more direct manner by formally
integrating (2.31).

The operator e�.i=¯/Ht contains all the information on the time evolution of any
state j§.t/i and hence also on the dynamics of the system. If the state j§.0/i of a
system at time t D 0 is known then the state representing the system at a later time
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t is obtained by operating on j§.0/i with e�.i=¯/Ht. If j§.0/i is an eigenstate j�ni of
the total Hamiltonian then (2.39) reduces to (2.34). In general, however, (2.39) only
represents a formal solution of the Schrödinger equation. Since, in order to use this
equation to obtain the time development of a state, it is necessary to know the effect
of the exponential operator on j§.0/i, which requires, for example, a knowledge of
all eigenstates and eigenvalues of H . Nevertheless, the form (2.39) will prove to be
very useful.

We will now consider the case where the Hamiltonian depends explicitly on the
time. In this case the Schrödinger equation

i¯@j§.t/i
@t

D H .t/j§.t/i (2.40)

does not have the simple solutions (2.35) and (2.39). However, (2.39) may be
generalized by introducing an operator U (t), the time evolution operator, which
transforms a state j§.0/i into a state j§.t/i:

• j§.t/i D U .t/j§.0/i (2.41)

and for the adjoint states

• h§.t/j D h§.0/jU .t/� (2.42a)

Substitution of (2.41) into the Schrödinger (2.40) gives

i¯@jU .t/

@t
j§.0/i D H .t/U .t/j§.0/i (2.43a)

Since (2.43a) holds for any state j§.0/i this condition can be written as an operator
equation:

i¯@U .t/

@t
D H .t/U .t/ (2.44)

In order to ensure that the system is in the state j§.0/i at time t D 0 it is necessary
to impose the initial condition

U .0/ D 1 (2.45)

For the adjoint operator we have

� i¯@U .t/�

@t
D U .t/�H .t/ (2.46)

Operating on (2.43a) on the left by U � and on (2.46) on the right by U and then
subtracting both equations gives
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i¯
�

U � @U

@t
C @U �

@t
U

�

D ih
@.U �U /

@t
D 0

It follows that U �U must be a constant operator and since it satisfies the initial
condition (2.45):

U .0/�U .0/ D 1 (2.47)

it must also be a unitary operator. From these conditions follows that U �U must be
the identity operator.

Equation 2.41 can be interpreted by noting that

jh¥j§.t/ij2 D jhˆjU.t/j§.0/ij2

is the probability of finding a system at time t in the state j¥i if it was represented
at t D 0 by j§.0/i.

We can summarize the contents of this section as follows. The time evolution
of a state j§.t/ can be determined either by solving the Schrödinger (2.40) or,
equivalently, by determining U .t/ by solving (2.43a). If H is time independent
we obtain by formally integrating (2.43a):

U.t/ D e�.i=¯/Ht (2.48)

where the initial condition is given by (2.45). In this case (2.41) reduces to (2.39).
For the adjoint operator we have

U.t/� D eC.i=¯/Ht (2.49a)

In general, however, H will have an explicit time dependence and the solution of
(2.43a) will be more complicated than (2.44). We will consider this problem in
Sect. 2.4.3.

2.4.2 The Liouville Equation

Suppose that at time t D 0 a certain mixture is represented by the density
operator

¡.0/ D
X

n

Wnj§.0/nih§.0/nj

The states j§.0/ni vary in time according to (2.41) and, consequently, the density
operator becomes a function of time:
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¡.t/ D
X

n

Wnj§.t/nih§.t/nj

D
X

n

WnU.t/j§.0/nih§.0/njU.t/�

which gives

• ¡.t/ D U .t/¡.0/U .t/� (2.50)

If H is time independent then

• ¡.t/ D e�.i=¯/Ht¡.0/e.i=¯/Ht (2.51a)

Differentiating (2.50) with respect to t and applying (2.43a) and (2.46) yields

i¯@¡.t/
@t

D i¯@U .t/

@t
¡.0/U .t/� C i¯U .t/¡.0/

@U �

@t

D H.t/U .t/¡.0/U .t/� � U .t/¡.0/U .t/�H.t/

Inserting (2.50) we obtain

• i¯@¡ .t/
@t

D ŒH .t/; ¡.t/� (2.52)

with the commutator

ŒH .t/; ¡.t/� D H .t/¡.t/ � ¡.t/H .t/

Thus the time development of a density operator can be determined either from
(2.50) or, equivalently, from (2.52). The differential (2.52) is often called the
Liouville equation because it assumes the same form as the equation of motion for
the phase space probability distribution in classical mechanics (see, for example,
Tolman 1954).

Equations 2.18 and 2.52 are basic equations of the theory. It is the simultaneous
solution of these equations which leads to equations of motion for the observables.
We will give an explicit example in Sect. 2.5.

Let us now assume that we can write

H .t/ D H0 C V .t/ (2.53)

where H0 is assumed to be time independent and V .t/ describes a time-varying

external field which induces transitions between the eigenstates
ˇ
ˇ
ˇ�

.0/
n

E

of H0.

Using these eigenstates as a basis we write
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j§.t/ni D
X

n

C.t/n
ˇ
ˇ�.t/.0/n

˛ D
X

n

C.t/ne
�.i=¯/E.0/n t

ˇ
ˇ�.0/n

˛

(2.54)

since the time evolution of the eigenstates of H0 is given by (2.34) where the
eigenvalues E.0/

n of H0 have been substituted for the corresponding En. The time
dependence treated by the external force V .t/ is entirely contained in the coeffi-
cients C.t/n which are time independent if V .t/ D 0, as discussed in the preceding
section.

We will now derive an expression for the time evolution of the density matrix

elements in the
nˇ
ˇ
ˇ�

.0/
n

Eo

representation. The matrix elements of H D H0 C V .t/

are given by the expression

D

�
.0/

m0 jH .t/j�.0/m
E

D E.0/
m •m0m C

D

�
.0/

m0 jV .t/j�.0/m
E

(2.55)

If the Liouville equation is multiplied by
D

�
.0/

m0

ˇ
ˇ
ˇ on the left hand and by

ˇ
ˇ
ˇ�

.0/
m

E

on the

right then writing ¡ .t/m0m D
D

�
.0/

m0 j¡.t/j�.0/m
E

we find

i¯@¡.t/m0m

@t
D
X

n

h

E
.0/

m0 ım0m¡.t/nm C
D

�
.0/

m0 jV .t/j�.0/n
E�
¡.t/nm

� ¡.t/m0nEmınm � ¡.t/m0n

˝

�.0/n jV .t/j�.0/m
˛ i

D
�

E
.0/

m0 � E.0/
m

	

¡.t/m0m

C
X

n

hD

�
.0/

m0 jV .t/j�.0/n
E

¡.t/nm � ¡.t/m0m

˝

�.0/n jV .t/j�.0/n
˛i

(2.56)

This can be written in the equivalent form

i¯@¡.t/m0m

@t
D
�

E
.0/

m0 � E.0/
m

	

¡.t/m0m C
D

�
.0/

m0 jŒV .t/; ¡.t/�j�.0/m
E

(2.57)

which is the required result.

2.4.3 The Interaction Picture

The main topic of this section will be the (approximate) determination of the time
evolution operator. With the help of the obtained expressions we will also discuss
the solution of the Liouville equation.
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In general, an exact solution of (2.43a) is not possible. Often however, the
interaction V.t/ in (2.53) is a small perturbation and (2.44) can be solved by
applying the methods of time-dependent perturbation theory.

To begin with some preliminary remarks, we first of all note that a large
part of the time dependence of the state vectors j§.t/i is created by H0. This
is actually quite evident from (2.54), which contains the rapidly varying factors

e�.i=¯/E.0/n t . This dependence can be explicitly removed by writing (2.54) in
the form

j§.t/i D e�.i=¯/H0tX

n

C.t/n
ˇ
ˇ�.0/n

˛ D e�.i=¯/H0t j§.t/I i (2.58)

where e�.i=¯/H0t is defined as in (2.38) and where

j§.t/I i D
X

n

Cn.t/
ˇ
ˇ�.0/n

˛

(2.59)

Substituting (2.58) into the Schrödinger (2.40) and assuming that (2.53) holds gives

i¯@j§.t/i
@t

D i¯
�

� i¯
�

H0e
.�i=¯/H0t j§.t/I i C i¯.e�.i=¯/H0t /

@j§.t/I
@t

D ŒH0 C V .t/�e�.i=¯/H0t j§.t/I i

The terms containing H0 cancel each other and we obtain the equation of motion
for the state vector j§.t/I i:

i¯@j§.t/I i
@I

D V .t/I j§.t/I i (2.60)

where we defined

V .t/I D e.i=¯/H0tV .t/e�.i=¯/H0t (2.61)

Equation 2.60 shows that @j§.t/I i=@t D 0 if V.t/ D 0, that is, the time dependence
of j§.t/I i is created entirely by the external potential term V .t/. If V.t/ is a small
perturbation j§.t/I i will vary slowly with time. For this reason (2.60) can be solved
approximately within the framework of time-dependent perturbation theory and is
more amenable to practical calculation than (2.40).

The discussions in Sects 2.4.1 and 2.4.2 relied on the fact that the state vectors
j§.t/i contained all the time dependence caused by H0 and V.t/, and all the
information on the time development of the system. This particular description
of time evolution is called the Schrödinger picture. As discussed above it is
often convenient to remove the rapidly varying factors due to H0 from the states.
As shown by (2.58) this can be achieved by applying the operator
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U .t/
�
0 D eC.i=¯/H0t (2.62)

to all Schrödinger picture states j§.t/i to give

• j§.t/I i D e.i=¯/H0t j§.t/i (2.63)

Simultaneously, all operators Q.t/ can be transformed as in (2.61) and new
operatorsQ.t/I can be defined as

• Q.t/I D e.i=¯/H0tQ.t/e�.i=¯/H0t (2.64a)

The inverse of these transformations are given by

• j§.t/i D e�.i=¯/H0t j§.t/I i (2.65a)

• Q.t/ D e�.i=¯/H0tQ.t/I e.i=¯/H0t (2.65b)

Clearly, U .t/0 is unitary. The time dependence of the states j§.t/I i is now
generated by the term V .t/ and the time dependence of the operator Q .t/I is
now due to their inherent time dependence and, in addition, to the H0 terms. The
description of time evolution in terms of the states j§.t/I i and operators Q .t/I is
called the interaction picture.

Since U .0/0 D 1, the Schrödinger and interaction pictures are the same for
t D 0:

j§.0/i D j§.0/I i (2.66a)

After these introductory remarks we return to the problem of determining the
time evolution operator. This will be done using the interaction picture. The time
evolution of a Schrödinger picture state j§.t/i is described by (2.41). An analogous
expression can be established for their interaction picture counterparts j§.t/I i.
Substituting (2.41) into (2.63) gives

j§.t/I i D e.i=¯/H0tU .t/j§.0/i
Applying relation (2.66a)

j§.t/I D U .t/I j§.0/I i (2.67)

where

• U .t/ D .e�.i=¯/H0t /U .t/ (2.68)
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and the inverse relation is

U .t/ D .e�.i=¯/H0t /U .t/I (2.69)

The operatorU .t/I determines the time development of the states in the interaction
picture.

In order to determine U .t/I (2.69) is inserted into (2.43a). The terms involving
H0 cancel and we obtain

i¯@U .t/I

@t
D V .t/IU .t/I (2.70)

Where V .t/I is the solution of this equation subject to the initial condition:

U .0/I D 1 (2.71)

Equation 2.70 shows that the time dependence of U .t/I is entirely due to V .t/.
For this reason time-dependent perturbation theory can be more conveniently
applied to (2.70) than to its counterpart (2.43a) in the Schrödinger picture.

In order to solve (2.70) we first formally integrate the equation to obtain

U .t/I D 1 � i

¯
Z t

0

V .£/IU .£/I d£ (2.72)

where the initial condition (2.71) has been used. Equation 2.72 is not yet a solution
of (2.70) but is merely a transformation of (2.70) into an integral equation which
contains the unknown U .£/I within the integral. Equation 2.72 can be solved by
interaction. If V .t/ D 0 then U .t/I D 1, and if V .t/ is sufficiently small U .t/I
will only differ slightly from 1. The operator U .£/I can therefore be replaced by
the identity operator in the integral which gives the time evolution operator in the
first-order perturbation theory:

• U .t/I D 1 � i

¯
Z t

0

V .£/I d£ (2.73)

Inserting this relation into (2.72) gives the evolution operator in second-order
perturbation theory and higher-order terms can be determined by further iteration.

From (2.72) and (2.73) the corresponding expressions for the Schrödinger picture
operator U .t/ can be derived with the help of (2.69).

We now proceed to the equation of motion for the density operator. Applying
the unitary transformation (2.62) to the density operator (2.50) in the Schrödinger
picture gives

¡ .t/I D
X

n

Wnj§.t/n;I ih§.t/n;I j (2.74)
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where the density operator in the interaction picture is defined as

¡ .t/I D .e.i=¯/H0t /¡.t/.e�.i=¯/H0t / (2.75)

Substitution of (2.50) into (2.75) then yields the equation of motion:

• ¡ .t/I D U .t/I ¡.0/IU .t/
�
I (2.76)

with

¡ .0/ D ¡.0/I (2.77)

Similarly, substituting

¡ .t/ D .e�.i=¯/H0t /¡.t/I eC.i=¯/H0t (2.78)

into (2.52) gives the Liouville equation in the interaction picture:

• i¯@¡.t/I
@t

D ŒV .t/I ; ¡ .t/I � (2.79)

In order to obtain an approximate solution of (2.79) we first transform it into an
integral equation. Formal integration gives

• ¡ .t/I D ¡ .0/I � i

¯
Z t

0

ŒV .£/I ; ¡ .£/I �d£ (2.80)

This integral equation can be solved iteratively in a similar way to (2.72). Suppose,
for example, that V .t/ D 0 for all times t � 0. The given mixture is then
represented in the interaction picture by the time-independent density operator
¡.t/I D ¡.0/I . If at all times t > 0 a perturbation V.t/ is applied, then if
V.t/ is small for times t > 0; ¡.t/I will not change substantially from its initial
value ¡.0/I .

Thus ¡.£/I can be replaced in the integral by its initial value ¡.0/I and the
solution of (2.80) in first-order perturbation theory is obtained as

¡ .t/I D ¡ .0/I � i

¯
Z t

0

ŒV .£/I ; ¡ .0/I �d£ (2.81)

¡.£/I can be iterated in this equation as before to give higher-order terms.
The relations derived in this section will be illustrated by our discussions

in the following chapters. A more detailed discussion of the various “pictures”
used to describe time evolution may be found in any textbook on quantum
mechanics.
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2.5 Spin Precession in a Magnetic Field

As an example of the use of the formalism presented in the preceding sections we
will now consider the precession of spin-1/2 particles in a static magnetic field. The
components of the magnetic moment of a spin-1/2 particle are given by

�i D 1

2
”¯¢i (2.82)

.i D x; y; z/, where ” is the gyromagnetic ratio and ¢i denote the Pauli matrices.
The interaction between particles possessing the magnetic moment �i and an
external magnetic field H is described by the Hamiltonian:

H D �� � H D �1
2
”¯
X

j

¢jHj .j D x; y; z/ (2.83)

The polarization vector will change with the time and the density matrix ¡ of the
particles will become time dependent. The rate of change of the polarization vector
P is determined by (2.18), (2.52), and (2.83):

i¯@h¢ii
@t

D i¯ @
@t
.tr ¡ � ¢i /

D i¯ tr

�
@¡

@t
¢i

�

D tr fŒH; ¡ .t/�¢i g
D tr fŒ¢i ; H �¡.t/g

D �1
2
”¯
X

j

Hj tr fŒ¢i ; ¢j �¡ .t/g (2.84a)

where we used that the trace is invariant under cyclic permutations of the operators.
Substitution of expression (1.48) for ¡ into (2.84a) yields

i¯@h¢i i
@t

D �1
4
”¯
X

j

Hj

 

tr Œ¢i ; ¢j �C
X

k

Pk tr .Œ¢i ; ¢j �¢k/

!

(2.85)

Application of (1.45a) gives
tr Œ¢i ; ¢j � D 0

and of (1.45b)

tr .Œ¢i ; ¢j �¢k/ D 4i–ijk
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because of the antisymmetry of the tensor 2ijk [see (1.42)]. Inserting these results
into (2.85) gives

d h¢ii
dt

D �”
X

jk

HjPk–ijk (2.86)

For example, for the component Px from (1.42) and (2.86),

dPx
dt

D �”.HyPz �HzPy D C”.P � H/x (2.87a)

where the subscript denotes the x component of the vector product of P and the field
H. In vector notation (2.86) can be written as

dP
dt

D ”.P C H/ (2.88)

Note that (2.88) is just the classical equation for the precession of the vector P
around the direction of the field.

The derivation of (2.88) is a good example of the use of the basic (2.18) and
(2.52) in deriving the equations of motion. It also illustrates the considerable ease
with which this calculation can be performed through the use of the compact
expression (1.48) for the density matrix and the subsequent use of the algebraic
properties of the Pauli matrices expressed by (1.41). Equation 2.88 can also
be derived without using density matrix techniques but the calculation is then
considerably more tedious.

2.6 Systems in Thermal Equilibrium

A very important application of the density matrix is the one to a dynamical system
which is in thermal equilibrium with the surrounding medium. It is shown in
quantum statistical mechanics that the state of a system at temperature T can be
represented by the density operator

¡ D exp.�“H/=Z (2.89)

where “ D 1=kT and k is the Boltzmann constant. The partition function

Z D tr exp.�“H/ (2.90)

ensures that the normalization condition

tr ¡ D 1 (2.91)



2.6 Systems in Thermal Equilibrium 59

is satisfied. Equation 2.89 holds for a canonical ensemble, that is, a system with a
constant volume, a constant number of particles, and a given mean value hH i of the
Hamiltonian.

The density operator (2.89) plays the same role in quantum statistics as the
canonical distribution function in classical statistical mechanics. This equivalence
can be shown by considering the energy representation, H jni D Enjni in which
the density matrix elements are given by

hn0j¡jni D Œexp.�“En/=Z�•n0n (2.92)

The diagonal elements hnj¡jni give the probability of finding the system in the state
with energy En, respectively. Hence a system in thermal equilibrium is represented
by an incoherent sum of energy eigenstates n with statistical weights proportional
to the Boltzmann factor exp.�“En/.

The expectation values hQi of an operatorQ acting on the system is given by

Q D .1=Z/ tr ŒQ exp.�“H/� (2.93)

which follows from (2.18).
Equations 2.89 and 2.92 will be applied in Chap. 8. Here we will illustrate

these equations with a simple example. Consider a system of spin-1/2 particles
subjected to a static magnetic fieldHz in the z direction. The Hamiltonian is given by
(2.83):

H D �� � H D �”¯Hz¢z=2

The macroscopic magnetization M of the system is defined as

Mi D N”¯h¢i i=2 (2.94)

where N is the number of particles per unit volume. Under thermal equilibrium the
density matrix is diagonal and the magnetic substates will be populated according
to the Boltzmann distribution (2.92). HenceMx D My D 0 and

Mz D N”¯ tr Œexp.�“H/¢z�=2Z (2.95)

Suppose that the temperature is sufficiently high to justify setting exp.�“H/ 	
1 � “H D 1C “”¯Hz¢z=2 and using tr ¢z D 0 and tr ¢2z D 2 we obtain

Mz D N“”2¯2Hz=2Z

From (2.90)

Z D
X

m

hmj exp.�“H/jmi 	 2 (2.96)
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in the high-temperature limit, and finally

Mz D N“”2¯2Hz=4 (2.97)

which is the Curie law for the magnetization of spin-1/2 particles.



Chapter 3
Coupled Systems

3.1 The Nonseparability of Quantum Systems
after an Interaction

In Chap. 2 the basic equations of motion, (2.50) and the Liouville equation (2.52),
were derived and applied to the description of interactions between a quantum
system and an external classical field. In this chapter we will consider the problem
of describing the state of a quantum system which is interacting with other (detected
or undetected) quantum systems. This is an important topic and is of central
importance to the following discussions in this book. The quantum mechanical
theorems which will be introduced provide the basis for the understanding of
phenomena such as quantum beats, angular correlations, and spin-depolarization
effects. In Sects. 3.1 and 3.2 we will describe the general theory which is required
and in Sects. 3.3, and 3.4, and 3.5 we will give specific examples which illustrate
the meaning and application of the theorems.

To begin with consider the following situation. Two separated, noninteracting
systems of particles are brought together and allowed to interact with each other.
We will consider the problem of analyzing the final state of the system when the
constituent systems are again separated and have ceased to interact. An example
of the kind of process for which this would be relevant would be the scattering
of two particle beams, for example, electrons and atoms. We will denote the two
subsystems by the symbols ˆ and ®, respectively. A complete set of orthogonal
state vectors j¥ii can be chosen to describe the ˆ system, so that any state of the
system can be written as a linear superposition of the basis states jˆi i. Similarly, a
set of basis states j®j i can be chosen to describe the ® system. The indices i and
j refer to the set of quantum numbers which are necessary to completely specify
each system. If before the interaction the two separated systems were in pure states
represented by the vectors jˆ’i and j®“i, respectively (these need not necessarily
be members of the chosen basis sets), then the state of the combined systems prior
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to the interaction is represented by a well-defined state vector j§ini D jˆ’ij®“i in
the composite space (see Appendix A.1).

During the interaction the time development of the state vector j§ini is deter-
mined by the relevant time evolution operator which is a linear operator in the
composite space. Since linear operators transform a single state vector into another
single state vector, the initial pure state j§ini must evolve such that the final state of
the combined system can also be represented by a single state vector which will be
denoted by j§.’“/outi:

j§ini D jˆ’ij®ˇi ! j§.’“/outi (3.1a)

where the arrow symbolizes the effect of the time evolution operator. The state
j§.’“/outi depends on the variables of both subsystems. This can be seen explicitly
by expanding j§.’“/outi in terms of basis states jˆi ij®j i D j¥i®j i of the
uncoupled systems:

j§.’“/outi D
X

ij

’.ij; ’“/jˆi ij®j i (3.1b)

where the sum may include integrals over continuous variables.
The coefficient a.ij; ’“/ is the probability amplitude for a transition jˆ’ij®“i !

jˆiij®j i so that the absolute square ja.ij; ’“/j2 gives the probability of finding a
particle of the ˆ system in the state jˆi i and simultaneously a particle of the ®
system in the state j®j i after the interaction. Only those combinations jˆi ij®j i
which are allowed by the conservation laws will contribute to the expansion (3.1b).
In other words, a particular final state jˆi i is correlated to one (or several) final
states j®j i in such a way that all the relevant conservation laws are fulfilled.

In general, the sum in (3.1b) contains more than one term. The essential point
is that the amplitudes depend on the variables of both subsystems. Consequently,
it is not possible to write (3.1b) in the form j§outi D jˆij®i, where jˆi is a state
vector depending solely on the variables of the ˆ system and j®i is a state vector
depending solely on the variables of the ® system. In fact, such a separation of
this kind would destroy the correlations which necessarily exist between the two
component systems.

In order to clarify this point consider the case in which the two systems have not
interacted at all. In this case the probability of finding the ˆ system in a state j¥ii
and the ® system in a state j®j i are independent of each other and the amplitudes
can be factorized as a.ij; ’“/ D a.i; ’/a.j; “/ (see Appendix A.1). Substituting
this into (3.1b) then yields

j§.’“/outi D
 
X

i

a.i; ’/j¥ii
!0

@
X

j

a.j; “/j®j i
1

A (3.2a)

D jˆi®i (3.2b)
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where jˆi and j®i are defined by the first and second factors in (3.2a), respectively.
In this case jˆi depends only on the variables of the ˆ system, and j®i depends
only on the variables of the ® system. In general, however, once the two systems
have interacted in the past, the probability amplitudes are correlated and cannot be
factorized. These results can be summarized as follows:

• If two systems have interacted in the past it is, in general, not possible to assign
a single state vector to either of the two subsystems.

This is the essence of what is sometimes called the principle of nonseparability
(d’Espagnat 1976). We have shown that this principle is a direct consequence of
the general rules of quantum mechanics. It should be noted that this principle has
important conceptional implications and is the source of many discussions on the
interpretation of quantum mechanics culminating, perhaps, in the famous Einstein–
Rosen–Podolsky argument (see, for example, d’Espagnat 1976; Jammer 1974). An
important consequence of this principle is the following. Suppose that only one of
the systems, the ® system, is observed after the interaction. Although both systems
were initially in pure states the interaction produces correlations between the two
systems and, hence, at a later time ® will be found in a mixed state. Thus the
nonobservation of the ˆ system results in a loss of coherence in the ® system. This
important result of the principle of nonseparability will be illustrated by various
examples in Sects. 3.3 and 3.4, where coherence only between degenerate states
will be discussed. The more general case of coherently excited states with different
energies, which have been excited coherently, requires a more detailed discussion
of the time evolution of the system and will be considered in Chap. 5.

3.2 Interaction with an Unobserved System. The Reduced
Density Matrix

Consider two (or more) interacting quantal systems. In many cases only one of the
component systems is of interest and the others are left undetected. We will denote
the states of the system of interest by j®j i, the states of the undetected systems
collectively by jˆi i, and the elements of the density matrix ¡.t/ describing the total
system at time t , by jˆi 0®j 0 j¡.t/jˆi®j i. It was shown in the preceding section that,
because of the interaction, the ® system is in a mixed state. It is therefore necessary
to consider how the relevant density matrix ¡.®; t/ which characterizes the system
of interest alone, can be constructed.

Consider an operatorQ.®/ which acts only on the variables of the ® system, that
is, its matrix elements are given by

hˆi 0®j 0 jQ.®/jˆi®j i D h®j 0jQ.®/j®j i•i 0i (3.3)
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where orthogonality of the states j¥ii has been assumed. The expectation value
hQ.®/i is found using (2.18) and (3.3):

hQ.®; t/i D tr ¡.t/Q.®/

D
X

i 0ij0j

hˆi 0®j 0 j¡.t/jˆi®j i hˆi®j jQ.®/jˆi 0®j 0i

D
X

j 0j

"
X

i

hˆi®j 0 j¡.t/jˆi®j i
#

h®j jQ.®/j®j 0i (3.4)

Defining the elements of a matrix ¡.®; t/ by

• h®j 0j¡.®; t/j®j i D
X

i

hˆi®j 0 j¡.t/jˆi®j i (3.5)

Equation 3.4 can be written in the form

• hQ.®; t/i D
X

j 0j

h®j 0 j¡.®; t/j®j i h®j jQ.®/j®j 0i

D tr ¡.®; t/Q.®/ (3.6)

which is of the form of (2.18).
All information on the ® system can be expressed in terms of expectation values

hQ.®; t/i of as many operators as necessary. It follows from (3.6) that any of these
expectation values can be calculated once ¡.®; t/ is known. In this sense ¡.®; t/
contains all information on the ® system.
¡.®; t/ is usually called the reduced density matrix. As is shown by (3.5) it is

obtained by taking those matrix elements of the total density matrix ¡.t/ which are
diagonal in the unobserved variable i , and summing these elements over all i . In this
way all nonessential indices can be eliminated. In essence, the total density matrix
¡.t/ is calculated and then projected onto the subspace of interest. This is a most
useful property of the density matrix and considerable use of it will be made in the
rest of this book.

For convenience we will introduce the shorthand notation

trˆ¡.t/ D
X

i

hˆi j¡.t/jˆi i

where trˆ is the trace over all unobserved variables. Equation 3.5 can then be written
in the form

h®j 0j¡.¡; t/j®j i D
*

®j 0

ˇ
ˇ
ˇ
ˇ
ˇ

"
X

i

h¥i j¡.t/jˆi i
#ˇ
ˇ
ˇ
ˇ
ˇ
®j

+

D h®j 0 jtrˆ ¡.t/j®j i
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or in operator notation

• ¡.®; t/ D trˆ ¡.t/ (3.7)

A quantum mechanical system which is closed, or isolated from the rest of
the world, has a “Hamiltonian” evolution, that is, there exists a time-independent
HamiltonianH and a unitary operator U.t/ D exp.�iHt=¯/ such that the temporal
evolution of the system is given by the unitary transform (2.51a) or, alternatively,
by the Liouville equation (2.52). Under such an evolution a pure state is always
transformed into another pure state so that mixtures can neither be created nor
destroyed.

Consider now the interaction between a quantum system and external “classical”
forces. The term classical means that the reaction of the system back on the
source of the fields can be neglected. Examples are semiclassical radiation theories
or the theory of potential scattering where the influence of the target on the
projectile particles is approximated by a potential function. The time evolution of
the quantum system is described by a unitary operator U.t/ and the system obeys
the Liouville equation (or the Schrödinger equation in the case of a pure state). For
time-dependent external forces the observables, in particular the Hamiltonian, will
depend explicitly upon the time discussed in Sect. 2.4.

When the reaction of a quantum system .®/ back to the external world .ˆ/ cannot
be neglected one can enlarge the ® system by ˆ so that the combined system is
closed and has a Hamiltonian evolution. Often ˆ is undetected. In this case we will
refer to ® as an open quantum mechanical system. The dynamical evolution of such
an open system is fundamentally different from that of a closed one. In particular, as
discussed in Sect. 3.1, the ® system will be found in a mixed state after an interaction
with an unobserved quantum system even if before the interaction the component
systems were in pure states. Hence

• The time evolution of an open quantum mechanical system cannot be described
by the Liouville equation (or the Schrödinger equation).

In other words, the relevant reduced density matrix ¡.®; t/ is not expressible
as the unitary transform of a density matrix ¡.®; 0/ at an earlier instant of
time t D 0. This is an important difference between open systems and systems
which are closed, or which can be described semiclassically. (This difference has
played an important role, for example, in recent discussions on the validity of
“neoclassical” radiation theories. For details we refer particularly to the paper by
Chow et al. (1975).)

The starting point for the discussion of the time variations of open systems is
the Liouville equation for the corresponding “enlarged” system which includes all
interacting systems. Suppose, for example, that a closed system can be divided into
two interacting quantum systems ® and ˆ. The combined system is described by a
HamiltonianH which consists of three parts:

H D H.®/0 CH.ˆ/0 C V.®;ˆ/
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referring to the free motion of the systems and the interaction between ® and ˆ,
respectively. We assume that only ® is experimentally relevant and ˆ undetected.
Because of the interaction term V , which couples ® and ˆ, no Hamiltonian exists
describing the dynamics of the ® system alone. The time evolution of the reduced
density matrix ¡.®; t/ is obtained by taking the partial trace trˆ on both sides of
(2.50) and using (3.7):

• ¡.®; t/ D trˆ U.t/¡.0/U.t/� (3.8a)

or, from (2.52),

P¡.®1t/ D � i¯ trˆŒH; ¡.t/� (3.8b)

where ¡.t/ and U.t/ are operators of the closed systems andH is time independent.
It should be noted that the variation in time of the combined system is reversible

inasmuch as the initial state ¡.0/ can be obtained mathematically from ¡.t/ by the
inverse transformation exp.iHt=¯/ � ¡.t/ exp.�iHt=¯/. Open systems, however, will
frequently show an irreversible behavior. This is a consequence of the interaction
with unobserved systems (for example, a “heat bath”), which is expressed formally
by the sum over all unobserved variables in (3.8). The process of taking the
trace provides a fundamental quantum mechanical source of irreversibility. We will
discuss this in detail in Chap. 8.

The abstract results obtained in this and the preceding section deserve consider-
able illustration and interpretation. The remainder of this chapter will be devoted to
this task where we will concentrate on some simple examples. Equations 3.8 will
then be developed and further applied in the following chapters.

In conclusion, in this and the preceding section we have considered situations
where we are confronted with coupled quantum mechanical systems only one of
which .®/ is of experimental relevance. It is then economic to look for a description
of ® alone. We have shown that, in general, no state vector exists which describes
the dynamical behavior of a subsystem coupled with other quantum systems. Hence
an open system must be characterized in terms of its reduced density matrix.
In principle, all physical systems are interrelated since it is never possible to
completely isolate a system. The conventional framework of quantum mechanics
in terms of state vectors is therefore always an idealization.

We have then considered the time evolution of an open quantum mechanical
system under the influence of its surroundings. The theory has to be based upon
the Liouville equation which gives a complete microscopic description of closed
systems. By constructing the relevant reduced density matrix, that is, by eliminating
all unobserved variables, an equation describing the dynamical behavior of an open
system can be obtained.

The results obtained in Sects. 3.1 and 3.2 are of fundamental importance in
the quantum theory of measurement. We will not discuss here this interesting but
highly controversial field of modern physics. The reader is referred, for example,
to d’Espagnat (1976) and the references cited therein. As an introduction we
recommend Jauch (1973).
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3.3 Analysis of Light Emitted by Atoms (Nuclei)

3.3.1 The Coherence Properties of the Polarization States

In order to illustrate the theory which has been developed in the preceding sections
we will consider the decay of an ensemble of excited atoms (or nuclei) by photon
emission. In particular, we will study the coherence which exists between states of
different polarization.

To begin with consider an ensemble of excited atoms in identical states repre-
sented by the state vector j’0J0M0i, where J0 and M0 denote the atomic angular
momentum and its z component and ’0 collectively describes all other variables
which are necessary for a complete specification of the states. In order to analyze
the final combined state of atoms and photons we will use the procedure outlined
in Sect. 3.1. The initial state is pure and hence it is possible to assign a single state
vector j§outi to the combined atom-photon system:

j§ini D j˛0J0M0i ! j§outi

where j§outi can be expanded in terms of a set of basis states j’1J1M1i and j¨1n1œ1i
characterizing the final atoms and photons, respectively.

The number of possible combinations j’1J1M1ij¨1n1œ1i of final states is
restricted by the relevant conservation laws (conservation of energy and angular
momentum). j§outi is then obtained by multiplying all the allowed combinations
j’1J1M1ij¨1n1œ1i with the corresponding transition amplitudes and summing
(integrating) over all discrete (continuous) variables.

The conditions which prevail in a given experiment will select a particular set
of states from all the states which contribute to the expansion of j§outi. For the
sake of simplicity we will assume that the photon detector can be tuned to accept
only photons with a single frequency, say, ¨1 D ¨0

1. In addition, the position of
the photon detector determines the direction, n1 D n0

1. The observation is therefore
restricted to photons with sharp frequency ¨0

1 detected in the direction n0
1.

Since the observed photons have a fixed energy, the atoms which have emitted
these photons have sharp values of ’1 and J1 (say, ’0

1 and J 0
1 so that energy is

conserved: E
�

’0
1J

0
1

� D E.’0J0/ � h¨0
1. Consequently, the final state vector of

interest is given by the expansion

j§out D
X

M1œ1

a.M1œ1;M0/j’0
1J

0
1M1ij¨0

1n
0
1�1i (3.9)

If no polarization measurements are performed on the photons the quantum numbers
M1 and œ1 remain undefined and (3.9) shows that the sum over these undetected
variables must be taken. The coefficients a.M1œ1;M0/ are the probability
amplitudes for the corresponding transition j’0J0M0i ! ˇ

ˇ’0
1J

0
1M1ij¨0

1n
0
1œ1
˛

,
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and the absolute square ja.M1œ1;M0/j2 gives the probability of finding an
atom in the final state

ˇ
ˇ’0
1J

0
1M1

˛

when a photon in the state
ˇ
ˇ¨0

1n
0
1œ1
˛

has been
detected. Henceforth the dependence of the states on all fixed variables will be
suppressed.

It should be noted that the state vector (3.9) describes only a subensemble of
atoms and photons, namely, only those photons registered by the detector with sharp
¨0
1 and n0

1 and only those atoms which have emitted the detected photons.
Let us consider the polarization state of the photons. Equation 3.9 can be

written as

j§outi D
X

M1

ˇ
ˇM 0

1

˛X

œ1

a.M1œ1;M0/jœ1i

D
X

M1

jM1i je.M1;M0/i (3.10)

where the state vector

je .M1;M0/i D
X

œ1

a.M1œ1;M0/jœ1i (3.11)

describes the polarization state of the subensemble of photons emitted in a transition
between states jM0i ! jM1i (see Fig. 3.1 for a case of dipole radiation). Equa-
tion 3.11 states that these photons are in identical polarization states characterized
by the state vector je.M1M0/i. Thus if the photon detector registers only those
photons which have been emitted by atoms in a transition to a single state jM1i
then the detected photons are in the pure state je.M1M0/i. In principle, this can be
achieved by filtering the final atoms through a Stern–Gerlach filter which accepts

e(M0 + 1, M0)

e(M0 , M0)

M1 = M0

M0

M1 = M0 +1 M1 = M0– 1

e(M0– 1, M0)

Fig. 3.1 See text for explanations
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only atoms with definite magnetic quantum numberM1. The filtered atoms can then
be detected by a counter and the coincidence between this counter and the photon
detector observed. The subensemble of photons which are observed in this way is
necessarily completely polarized in the sense discussed in Sect. 1.2: The degree of
polarizationP has its maximum possible value P D 1. The actual polarization state
is specified by magnitude and relative phase of the two coefficients a.M1œ1; M0/

with œ1 D C1 and œ1 D �1 respectively [for example, if a.M1; œ1 D C1; M0/ D
�a.M1œ D �1; M0/ the photons are linearly polarized in the x direction as in
(1.64a)].

It is important to note that, in general, the detection of completely polarized
photons requires that the observation is restricted to a subensemble of photons only.
One exception to this is the case where the final atoms have angular momentum
J1 D 0. Denoting the corresponding state by j0i, (3.9) can be written in the
form

j§outi D j0i
2

4
X

œ1

a.œ1;M0/jœ1i
3

5 (3.12)

Since all atoms are in the same final state the corresponding state vector can be
separated out to the front of the sum in (3.12). The photon state is then a pure state
represented by the bracket in (3.12), and hence in this case all photons emitted in
the direction n0

1 are necessarily completely polarized.

3.3.2 Description of the Emitted Photon

Let us consider the case where emitted photons are detected in direction n0
1

(frequency¨0
1) with the final atoms unobserved.

The principle of nonseparability requires then that, in general, the state of the
detected photons cannot be characterized by a single state vector. Thus the detected
radiation is not in a pure polarization state and is necessarily incompletely polarized
in the sense that P is less than 1 (see Sect. 1.2.5). This can be demonstrated by
constructing the reduced density matrix ¡.”/ describing the photon-only system.
Since the final state of the total system is represented by the state vector j§outi the
corresponding density matrix is simply

¡out D j§outi h§outj

D
X

M 0

1M1

œ0

1�1

a
�

M 0
1œ

0
1;M0

�

a .M1; œ1;M0/
� jM 0

1œ
0
1ihM1i1j
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where (3.10) has been used. The elements of the reduced density matrix are then
obtained by applying (3.5):

˝

œ0
1j¡.”/jœ1

˛ D
X

M1

˝

M1œ
0
1j¡outjM1œ1

˛

D
X

M1

a
�

M1œ
0
1;M0

�

a.M1œ1;M0/
� (3.13)

This matrix corresponds to a density operator given by

¡.”/ D
X

M1�
0

1�1

a
�

M1œ
0
1;M0

�

a.M1œ1;M0/
�jœ0

1i hœ1j

X

M1

2

4
X

œ0

1

a
�

M1�
0
1;M0

� j�0
1i
3

5

2

4
X

�1

a.M1�1;M0/
�hœ1j

3

5

X

M1

je.M1M0/ihe.M1M0/j (3.14)

Equation 3.14 suggests the following interpretation of the operator ¡.”/: Photons
in different polarization states je.M1M0/i can be thought of as being emitted
independently, so that no definite phase relation exists between photons emitted
in transitions to different atomic states. Thus in accordance with the definition given
in Sect. 2.3.2, the photon-only system can be thought of as being an incoherent
superposition of states je.M1M0/i corresponding to the various transitions.

Since no definite phase relation exists between photons in the different polar-
ization states these photons can in principle be distinguished (for example, by
observing the final atoms in coincidence with the emitted radiation or by using
suitably chosen polarization filters). The various polarization states correspond to
the different “paths” by which radiation is emitted, as shown diagrammatically by
the arrows in Fig. 3.1. The above result is therefore often expressed in the following
form: If it is possible in principle to distinguish between photons taking the different
“paths” then the total ensemble of photons can be considered as an incoherent
superposition of the corresponding photon states.

These results can be summarized in the following alternative form, due to Fano
(1957):

• Incomplete polarization of light is necessarily associated with an incomplete
determination of the final (or initial) atomic state.

It should be noted that this is a direct consequence of the principle of non-
separability. The basic result that the photon state is not pure can also be shown
by proving that the matrix (3.13) does not satisfy condition (2.21).

The discussion given here is incomplete, since only the decay of excited states
with a single quantum number M0 has been considered. The important case of the
excitation of atoms in superposition states with different M0 and the decay from
such superposition states will be considered via a particular example in Sect. 3.4.2.
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3.4 Some Further Consequences of the Principle
of Nonseparability

3.4.1 Collisional Spin Depolarization

As a further illustration of the theory presented in Sect. 3.1 we will consider elastic
scattering of electrons by spin-1/2 atoms (or of protons or neutrons on nuclei). It
will be assumed that initially both the atoms and electrons are completely polarized,
for example, in states with definite values of their respective spin components,
M0 and m0. All atoms will be assumed to be in their ground state with orbital
angular momentum 0, and assumed to be sufficiently heavy to allow their recoil
to be neglected. The collision will be described in the rest frame of the atoms.
The electrons will be assumed to have been prepared in states with the same
momentum p0. The atomic and electronic states can then be denoted by jM0i
and jm0i, respectively. The combined system is represented by the vector j§ini D
jM0ijm0i and, since the initial states are pure, the final state of the combined system
can be represented by a single-state vector j§outi. We expand j§outi in terms of
state vectors jM1i and hp1m1i describing the final atomic and electronic states,
respectively. For simplicity it will be assumed that the electron detector is tuned to
accept only electrons with fixed momentum p1.jp1j D jp0j/. The state vector of
interest is then given by

j§outi D
X

M1M1

a.M1m1; M0m0/jM1ijm1i

D
X

M1

jM1ij	.M1/i (3.15)

where jm1i implicitly describes the momentum state of the electrons as well as their
spins. The two state vectors j¦.M1/i.M1 D ˙1=2/ in (3.15) are given by

j¦.M1/i D
X

m1

a.M1m1; M0m0/jm1i (3.16)

and describe the state of electrons with fixed momentum p1 scattered by atoms
which have simultaneously made the transition jM0i ! jM1i. In order to select a
subensemble of the electrons in one of the states j¦.M1/i (say, with M1 D C1=2/
it must be ensured that the electron detector registers a scattered electron only when
it has interacted with an atom which has undergone the transition jM0i ! jM1i.
(See the discussion in Sect. 3.3.1.) Since these electrons are in a pure state they
are necessarily completely polarized as demonstrated in Sect. 1.1. The direction
of the new polarization vector with respect to the initial direction depends on the
magnitudes and relative phase of the amplitudes a.M1m1; M0; m0/, which in turn
depends on the dynamics of the scattering process.
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The situation is particularly simple in the case of scattering by a spinless target.
If the corresponding atomic state is denoted by j0i then this state will remain
unchanged during the collision and it can be placed in front of the sum in (3.15):

j§outi D j0i Œ˙m1a.m1;m0/jm1i� D j0i	i (3.17)

where j¦i is defined by the bracket in (3.17). Evidently, as shown by (3.17),
the electrons are in a pure polarization state. Consequently, in elastic scattering
processes on a spinless target the electrons observed in a fixed direction with fixed
energy will be completely polarized if the initial state was pure. No depolarization
is possible and only the direction of the polarization vector will change.

In the general case (3.15) the spin state of the detected electrons is not pure but a
mixture of the two states j¦.M1/i if the final atoms are not observed. Consequently,
the observed electrons are necessarily depolarized: jP j < 1. This can be shown
by using the method described in Sect. 3.3. The reduced density matrix ¡.e/ of the
detected electrons is given by

˝

m0
1j¡.e/jm1

˛ D
X

M1

a
�

M1m
0
1;M0m0

�

a.M1m1;M0m0/
� (3.18)

With this we may associate the density operator

¡.e/ D
X

M1m
0

1m1

a
�

M1m
0
1;M0m0

�

a.M1m1;M0m0/
�jm0

1i hm1j

D
X

M1

j¦.M1/i h¦.M1/j (3.19)

It follows that the electronic state can be thought of as being an incoherent
superposition of the states j¦.C1=2/i and j¦.�1=2/i. The depolarization of the
electrons (which were originally in a pure state) is therefore necessarily associated
with an incomplete determination of the atomic state after (or before) the collision.
(For a more complete treatment see Sect. 3.5.1.)

3.4.2 “Complete Coherence” in Atomic Excitation

As a second example we will consider the excitation of helium atoms from their
ground state j0i to the 1P state by electron impact. Spin-orbit interaction can
be neglected in this case, and because the initial and final atoms are spinless the
transition amplitudes are spin independent (this will be shown for the general case
in Sect. 3.5). It follows that the electronic spin has no influence on the excitation
process and can be neglected. Assuming that the initial electrons have definite
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momentum p0 we separate orbital and spin part of the initial state vector and write
jp0m0i D jp0ijm0i and, if the spin state is not pure, the initial density matrix ¡:

¡ D jp0i hp0j¡spin (3.20)

and neglect the spin components.
The relevant initial state vector is then given by j§ini D j0ijp0i. Detecting

scattered electrons with momentum P1 the final state vector of interest is given by

j§i D
"
X

M

a.MP1;P0/jM i
#

jP1i D j§.P1/jP1i (3.21)

where M denotes the final atomic state of magnetic quantum number M . Equa-
tion 3.21 shows that it is possible to select an ensemble of atoms which are
in identical states j§.P1/i defined by the brackets in (3.21), by restricting the
observation to electrons with fixed momentum P1.

Let us now consider the decay of the excited atoms to the ground state by
photon emission with the assumption that excitation and decay can be treated as
independent processes. The emitted photons may be observed in a fixed direction n.
If electrons (with momentum p1) and photons are detected in coincidence then the
observation is restricted to radiation emitted by those atoms only which are in one
and the same state j§.p1/i. The detected photons have therefore been emitted in a
transition between the same pure states j§p1/i ! j0i. As a result, the photons which
are detected in the coincidence experiment are necessarily completely polarized.

Unlike the case discussed in Sect. 3.3 the excited atomic state considered here
has no well-defined magnetic quantum number. This, however, is not important for
our conclusions. The essential point is that the atoms before and after the excitation
are in identical states. This guarantees that the detected photons are completely
polarized. This can also be shown formally for the state given by (3.21) as follows.
The radiative decay from a substate jM i to the ground state j0i is described in a
way similar to (3.12):

jM i ! j0i
X

œ

a.œ;M/jœi (3.22)

suppressing the dependence of the photon state on the direction n. In order to obtain
the state of the photons emitted in the transition j§.p1/i ! j0i (3.22) must be
multiplied by the amplitude a.M;p1; p0/ and summed over all M as in (3.21):

j§outi D j0i
X

Mœ

a.Mp1;p0/a.œ;M/j�i

D j0i
X

M

je.M/i (3.23)
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Fig. 3.2 See text for explanations

where

je.M/i D
X

œ

a.Mp1;p0/a.œ;M/jœi (3.24)

and M D ˙1; 0. In (3.24) the state vectors je.M/i denote the polarization state
of photons emitted in a transition jM i ! j0i (see Fig. 3.2) and the coefficients
a.M; p1; p0/ are the probability amplitudes of finding an atom in the state jM i
when the atomic system is in the state characterized by j§.p1/i. Equation 3.23
explicitly shows that the total beam of photons detected in a given direction is in
a pure polarization state represented by the state vector

jei D
X

M

je.M/i

The main result of this section can be summarized as follows: The complete
coherence between the initial states jM i implies that the photon state is pure and can
therefore be represented by a completely coherent superposition of the states je.M/i
corresponding to the different transitions shown in Fig. 3.2. The particular case
which we have considered is an example of what is called a transfer of coherence.
We will consider the problem from a more general point of view in Chaps. 5 and 6.

3.5 Excitation of Atoms by Electron Impact I

3.5.1 The Reduced Density Matrix of the Atomic System

In this section we will consider the excitation of atoms by electron impact in more
detail. The main assumption which will be implicit throughout this section is that
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all spin-dependent forces can be neglected during the collision. In particular all
explicitly spin-dependent interactions between the projectile and the atoms will
be neglected so that changes in the spin variables are entirely caused by electron
exchange processes. In addition, we neglect the fine (and hyperfine) coupling inside
the atom during the collision. This spin uncoupling may be understood physically
as follows: In the excited atomic states the orbital angular momentum L and spin
S couple under the influence of the fine-structure interaction, and precess around
the total angular momentum J of the atom. This precession takes place in a time
tLS � 1=�ELS, where�ELS denotes the fine-structure splitting of the relevant level.
If the collision time tc is much shorter than the spin–orbit precession time then
the spin vector will not have time to precess appreciably during the collision and
L and S can be considered to be uncoupled during the collision. The state of the
excited atoms immediately after the collision can then be adequately described in
the LS-coupling scheme. The assumption that tc 
 tLS means that the atoms can be
considered as instantaneously excited (say, at a time t D 0) with respect to the much
longer spin–orbit precession time (see also Chap. 5 for a more detailed discussion
of this point).

Our main interest here is the description of experiments where the scattered
electrons (detected in a direction n1/ and the photons, emitted in the subsequent
decay of the excited atomic states, are observed in coincidence. As discussed in
Sect. 3.4.1, the observation is then restricted to radiation emitted by atoms which
have been excited by the detected electrons. Thus a subensemble of atoms is
“selected” in the experiment, so to speak, and this selection is the essence of
the coincidence method. It is the state of this subensemble only which will be
considered throughout this section.

Using the assumptions detailed above, the description of the coincidence exper-
iment can be divided into three parts: First of all the characterization of the
atomic subensemble of interest immediately after the excitation, secondly, the time
evolution of the excited states under the influence of fine (and hyperfine) coupling,
and finally the description of the photons observed at a time t . In this section we
will commence a full treatment of the coincidence experiment with a discussion of
the first part of the above program.

The atoms are assumed to be initially in their ground state with orbital angular
momentum 0 and quantum numbers ”0 D ’0S0Ms0 , where S0 and Ms0 denote
the atomic spin and its third component, respectively, and ’0 describes all other
quantum numbers which are necessary for a complete characterization of the state.
The initial state of the electrons may be characterized in terms of momentum p0 and
spin componentm0. It will be assumed that all atoms have the same sharp values of
’0 and S0 and the electrons the same momentum. We will use a coordinate system
where the z axis is parallel to p0 and the x�z plane is the scattering plane (“collision
system”) where the scattering plane is spanned by p0 and p1.

Usually both the atoms and electrons are unpolarized in their initial states. The
atomic density operator is then given by (2.24):
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¡A D 1

2S0 C 1

X

Ms0

j’0S0Ms0i h’0S0Ms0 j (3.25a)

and the initial electrons are characterized in terms of the density operator:

¡e D 1

2

X

jp0m0i hp0m0j (3.25b)

Electrons and atoms are uncorrelated before the interaction begins, and hence the
density matrix ¡in of the combined system factorizes and can be represented by the
direct product

¡in D ¡ � ¡e

D 1

2.2S0 C 1/

X

MS0

j’0S0Ms0p0m0i h’0S0Ms0p0m0j (3.25c)

Suppressing the dependence on the fixed variables ’0S0p0 we represent the elements
of ¡in by

˝

M 0
S0
m0
0j¡injMs0m0

˛ D 1

2.2S0 C 1/
•Ms0M

0

s0
•m0

0m0
(3.26)

The matrix (3.26) is a 2.2S0 C 1/-dimensional diagonal matrix in the composite
spin space spanned by the 2.2S0 C 1/ basis states jMs0i � j’0S0Ms0i and jm0i �
jp0m0i.

Using the assumption that tc 
 tLS the excited atomic states immediately after
the collision can be described in the LS-coupling scheme with quantum numbers
”1 D ’1LMS1Ms1 , where M is the z component of the orbital angular momentum
L. It will be assumed that only atoms in states with sharp values of ’1LS1 are
“selected” (experimentally, this can be achieved by resolving the emitted photons
spectroscopically). The removal of this restriction will be considered in Chap. 4.
In the coincidence experiments performed so far no spin analysis of the final
particles has been carried out, and we will therefore restrict the discussion to the
reduced density matrix characterizing the orbital states of the atomic subensemble
of interest.

For the discussion of scattering experiments it is convenient to change the
normalization of the density matrix. For this purpose we will characterize a
transition between states


0 D ”0p0m0 ! 
1 D ”1p1m1 (3.27)

in terms of the corresponding scattering amplitude f .
1; 
0/, which is defined as
the matrix element of the transition operator T (see Appendix E.1 for details):

f .
1; 
0/ D h
1jT j
0i (3.28)
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f .
1
0/ will be normalized according to the condition

jf .
1; 
0/j2 D ¢.
1; 
0/ (3.29)

where ¢.
1; 
0/ is the differential cross section for the indicated transition. The
equations derived in Sects. 3.1 and 3.2 can be transformed to the new normalization
by substituting f .
1; 
0/ for the corresponding transition amplitudes a.
1; 
0/ (the
absolute square of which gives the probability for the corresponding transition).

Let us denote the final atomic states by j’1LMS1Ms1i � jMMs1i and the state of
the final electrons by jp1m1i � jm1i. The density matrix ¡out is given by (E.5):

• ¡out D T ¡inT
�

Taking matrix elements between final states and applying twice the completeness
relation for the initial states

X

MS0m0

jMs0m0j D 1

we obtain
˝

M 0M 0
s1
m0
1 j¡outjMMs1m1i

D
X

M 0

s0
m0

0

M 0

s0
m0

˝

M 0M 0
s1
m0
1jT j �M 0

s0
m0
0

˛ ˝

M 0
s0
m0
0j¡injMs0m0

˛ hMs0m0jT �jMMs1m1i

D 1

2.2S0 C 1/

X

Ms0m0

f
�

M 0M 0
s1
m0
1; Ms0m0

�

f .MMs1m1; Ms0m
�
0 (3.30)

where (3.26) has been used.
When no spins are observed the density matrix of interest is the reduced density

¡.L/ describing the orbital states of the atoms only. Using (3.5) the elements of this
matrix can be obtained by taking the elements of ¡out which are diagonal in all the
unobserved variables (that is, Ms1 and M1) and summing over these variables:

hM 0j¡.L/jM i D
X

Ms1m1

˝

M 0M 0
s1
m1j¡outjMMs1m1

˛

D 1

2.2S0 C 1/

X

Ms1m1Ms0m0

f
�

M 0Ms1m1; Ms0m0

�

f .MMs1m1; Ms0m0/
�

D hf .M 0/f .M/�i (3.31)

where the notation h� � � i indicates that the averages over the spins have been
performed.
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The matrix (3.31) is a .2L C 1/-dimensional matrix containing all information
on the orbital system of the excited atomic subensemble of interest. In the
normalization (3.29) the diagonal elements of ¡ are given by

hM j¡.L/jM i D 1

2.2S0 C 1/

X

Ms1
m1

Ms0
m0

jf .MMs1m1; Ms0m0/j2

D ¢.M/ (3.32a)

where ¢.M/ denotes the differential cross section for excitation of the magnetic
substate M averaged over all spins. The trace of ¡.L/ gives the differential cross
section ¢ summed over all M :

tr ¡.L/ D
X

M

¢.M/ D ¢ (3.33)

For example, the explicit expression of ¡.L/ for the case L D 1 is

¡.L/ D
0

@

¢.1/ hf .C1/f .0/�i hf .C1/f .�1/�i
hf .C1/f .0/�i� ¢.0/ hf .0/f .�1/�i

hf .C1/f .�1/�i� hf .0/f .�1/�i� ¢.�1/

1

A (3.34)

where the hermiticity condition (2.12) has been used:

hM 0j¡.L/jM i D hM j¡.L/jM 0i� (3.35)

Equations 3.31 and 3.34 show that, in general, ¡ has nonvanishing off-diagonal
elements and hence that the excited atomic subensemble of interest is a coherent
superposition state of magnetic substates.

By determining the angular distribution and polarization of the emitted pho-
tons in coincidence with the scattered electrons the density matrix (3.34) can
be completely determined (see Sect. 6.1). This allows more information on the
scattering processes to be extracted than from traditional experiments where only
the differential cross section ¢ is measured. In particular the off-diagonal elements
of ¡ contain information on the phases of the various scattering amplitudes with
different M and these phases cannot be determined without the use of coincident
techniques. In order to see how many measurements must be performed for
complete determination of ¡ the number of independent parameters specifying ¡
must be determined, which will be done in the following section.

3.5.2 Restrictions due to Symmetry Requirements

In addition to the hermiticity condition (3.35) the number of independent parameters
describing ¡ is further restricted by certain symmetry conditions. The scattering
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plane .x � z plane of the collision system) is defined by p0 and p1 but no direction
is defined perpendicular to the scattering plane by geometry of the experiment; that
is, the atomic subensemble under discussion cannot distinguish between “up” and
“down” with respect to this plane. As a result, the density matrix (3.31) must be
invariant under reflection in the scattering plane.

This symmetry condition is expressed by the relation

f .MMs1m1; Ms0m0/ D .�1/MCS1�S0f .�M �Ms1 �m1;�Ms0 �m0/ (3.36a)

for the scattering amplitudes and

hM 0j¡jM i D .�1/M 0CM h�M 0j¡j �M i (3.36b)

for density matrix. [For a proof see the textbooks on scattering theory, for example,
Rodberg and Thaler (1967) (3.36b) gives in particular

¢.M/ D ¢.�M/ (3.37a)

In case L D 1 combining (3.36b) with the hermiticity condition (3.35) gives

hf .0/f .�1/�i D �hf .0/f .�1/�i D �hf .1/f .0/�i� (3.37b)

Furthermore, the element hf .C1/f .�1/�i is real:

hf .C1/f .�1/�i D hf .�1/f .C1/�i D hf .�1/f .C1/�i� (3.37c)

Thus for L D 1 the density matrix becomes

¡.L/ D
0

@

¢.1/ hf .C1/f .0/�i hf .C1/f .�1/�i
hf .C1/f .0/�i� ¢.0/ �hf .C1/f .0/�i�

hf .C1/f .�1/�i� �hf .C1/f .0/�i ¢.1/

1

A (3.38)

which is completely specified in terms of five real parameters, for example,
¢.1/; ¢.0/; hf .C1/f .�1/�i, and the real and imaginary parts of hf .C1/f .0/�i.

A convenient parametrization of the matrix (3.38) has been given by Hertel and
Stoll (1978). In this parametrization the four parameters

œ D ¢.0/

¢
; cos ¦ D Rehf .1/f .0/�i

Œ¢.0/¢.1/�1=2

sin ˆ D Imhf.1/f.0/�i
Œ¢.0/¢.1/�1=2

; cos ’ D hf .1/f .�1/�i
¢.1/

(3.39)

together with the differential cross section (3.33) constitute a set of five independent
real parameters.
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The number of independent parameters can be further reduced if spin conserva-
tion is taken explicitly into account. Since all explicit spin-dependent terms have
been neglected in the Hamiltonian describing the collision, total spin S and its z
componentMs are conserved during the collision; hence

S D S0 ˙ 1

2
D S1 ˙ 1

2
; Ms D Ms1 Cm1 D Ms0 Cm0 (3.40)

It is shown in textbooks on scattering theory that the dependence of the scattering
amplitudes on the spin components can be factored out as

f .MMs1m1;Ms0m0/
X

SMs

�

S1Ms1;
1

2
m1

ˇ
ˇ
ˇ
ˇ
SMs

��

S0Ms0;
1

2
m0

ˇ
ˇ
ˇ
ˇ
SMs

�

f .M/.S/

(3.41)
where, F.M/.s/ denotes the scattering amplitude for excitation of the magnetic
substate M in the channel with total spin S . Note that the amplitudes f .M/.s/

are independent of all spin components. The brackets in (3.41) denote the standard
Clebsch–Gordan coefficients.

Substituting (3.41) into (3.31) and applying the orthonormality properties of the
Clebsch–Gordan coefficients gives

hM 0j¡.L/jM i D hf .M 0/f .M/�i (3.42)

D 1

2.2S0 C 1/

X

s

.2S C 1/f .M 0/.S/f .M/.S/� (3.43)

The symmetry condition (3.36a) reduces to

f .M/.S/ D .�1/Mf .�M/.S/ (3.44a)

as can be shown using (3.41) and the symmetry properties of the Clebsch–Gordan
coefficients after some algebraic manipulations. From this and (3.42) the following
additional symmetry condition is obtained:

hM 0j¡.L/j �M i D 1

2.2S0 C 1/

X

S

.2S C 1/f .M 0/.S/f .�M/.S/�

D .�1/M
2.2S0 C 1/

X

S

.2S C 1/f .M 0/.S/f .�M/.S/�

D .�1/M hM 0j¡jM i (3.44b)

In the case of L D 1 this gives
cos’ D �1
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so that the density matrix (3.38) is completely specified by four parameters,
¢; œ; ¦; ¥.

A smaller number of independent parameters is required if initial and final atoms
are spinless .S0 D S1 D 0/. In this case only one spin channel with total spin
S D 1=2 is allowed and (3.42) reduces to

jM 0j¡.L/jM i D f .M 0/f .M/� (3.45)

No spin average is necessary in this case and the total spin S can be suppressed in
this notation.

The factorization (3.45) of the density matrix elements into two factors, one
depending only on M 0, the other one only on M , is typical of cases where ¡
describes a pure state. In fact, it has been shown in Sect. 3.4.2 that, if S0 D S0 D 0,
then the state of the atomic subensemble under discussion is pure and represented
by the state vector

j§.P1/i D
X

M

f .M/jM i (3.46)

written as a completely coherent superposition of magnetic substates. In this case
the atoms in the subensemble have been identically excited.

Since the amplitudes f .M/ satisfy the symmetry condition (3.44a) (with
S D 1=2) and since the overall phase of j§.P1/i is arbitrary the state (3.46) is
completely specified in terms of .2LC 1/ parameters.

For pure states the density matrix (3.38) must satisfy condition (2.21). When this
is applied to the parameters (3.39) this gives for the case L D 1

cos2 ¦C sin2 ¥ D 1 (3.47)

and the atomic subensemble under discussion can be completely characterized in
terms of the three parameters ¢; ”; ¦, where ¦ is now the relative phase between
the amplitudes f .D 1/ and f .0/.

In conclusion, we have considered experiments where the scattered electrons are
detected in a fixed direction with momentum p1 and where no spin analysis of initial
and final particles is performed. We have constructed the reduced density matrix
hM 0j¡jM i characterizing the orbital states of the atomic subensemble excited by the
detected electrons. We have in particular considered the case L D 1 as an example
and have shown that in this case ¡ is specified in terms of five independent param-
eters because of the hermiticity condition and reflection invariance in the scattering
plane. Using conservation of total spin this number is reduced to four. If (and only
if) the atoms have been excited into identical states three parameters are sufficient.
In this case the distinction between “coherence” (in the sense that ¡ is nondiagonal)
and “complete coherence” is important: In the latter case less parameters and, thus,
less experiments are necessary for a complete specification of ¡.
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3.6 Nonseparability, Entanglement, and Correlations
in Two-Particle Spin-1/2 Systems

3.6.1 Introduction and Basic Definitions

In the previous chapters of this book we have introduced three fundamental concepts
of quantum mechanics:

1. The superposition principle and its interpretation (Sects. 1.1 and in particular
1.1.4).

2. The principle of nonseparability (Sect. 3.1) which is the fundamental basis for
most derivations in this book.

3. The concept of the reduced density matrix (Sect. 3.2) which allows to describe
parts of interacting systems.

In the present section (which can be read immediately after Sects. 1.1, 3.1, and
3.2) we will examine the quantum states of two spin-1/2 particles. We will explore
the extraordinary consequences of the principle of nonseparability. Its interpretation
is deeply connected with the foundation and even the philosophy of quantum
mechanics, and the study of these relationships has lead to many far-reaching
conceptual and experimental developments in recent years.

Spin-1/2 systems provide an excellent model system which will allow us to
derive the basic properties of entangled pure or mixed states in a transparent way. In
addition, the examples to be discussed will give additional insight into the abstract
concepts of the previous chapters. The treatment will be kept on an introductory
level.

In order to introduce some of the basic notations it will be useful to start with
a special example. Consider low energy elastic collisions between polarized elec-
trons and polarized hydrogen atoms, or light alkali atoms. It will be assumed that
energies and scattering angle are kept fixed and we will suppress the dependence
of state vectors and amplitudes on these variables, concentrating only on the spin
components. States with spin up and spin down with respect to a given quantization
axis will be denoted by

ˇ
ˇC˛ and

ˇ
ˇ�˛, respectively.

For simplicity it will be assumed that initially both particle beams are completely
polarized with opposite spin directions. Under the premise that both beams have
been prepared independently the joint initial spin state is given by

ˇ
ˇ in

˛ D ˇ
ˇC˛ˇˇ�˛ D ˇ

ˇC�˛: (3.48)

Here and in the following the spin component in first position will refer to the
first beam (say, the free electrons) and the spin in second position will refer to
the second beam (atoms). In low energy electron-hydrogen scattering all explicit
spin-dependent forces can be neglected in good approximation, so that the total z-
component of the spins is conserved during the collision.
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The collision partners will be observed after the scattering, when they have
separated and ceased to interact. Because the initial combined state is described
by the single state vector

ˇ
ˇ in

˛

, the linearity of quantum mechanics guaranties that
the total final state is also characterized in terms of a single state vector

ˇ
ˇ in

˛ �! ˇ
ˇ 
˛

;

which can be expressed in terms of a conveniently chosen set of basis states (see
Sect. 3.1), for example

ˇ
ˇ 
˛ D f

ˇ
ˇC�˛C g

ˇ
ˇ�C˛; (3.49)

where the amplitudes depend on the scattering dynamics. A change in spin is only
possible when the initially free electron (with spin up) and the initial valence elec-
tron (spin down) change their places during the collision. Conservation of the total
spin component is taken into account so that only two terms appear in (3.49). We
will normalize according to the condition

ˇ
ˇf
ˇ
ˇ
2 C ˇ

ˇg
ˇ
ˇ
2 D 1: (3.49a)

Spin states of the general form (3.49) will be our standard example throughout this
section. Our discussion has shown one way of how such states can be prepared
experimentally. Besides this special example the theory to be developed will be
concerned with two interacting spin-1/2 systems in general, for example two beams
of spin-1/2 atoms, or of protons and hydrogen atoms as in the experiment by
Lamehi-Rachti and Mittig (1976) to be discussed below.

As discussed in Sect. 3.1 it is in general not possible to write
ˇ
ˇ 
˛

in product form

ˇ
ˇ 
˛ D ˇ

ˇ 1
˛ˇ
ˇ 2

˛

; (3.50)

where
ˇ
ˇ 1

˛

describes completely the spin properties of the first beam, and
ˇ
ˇ 2

˛

those
of the second one. (See also the formal proof in the following subsection.) This
result is fundamental and leads to the following

Definition. States, which cannot be factorized similar to (3.50) are called nonsepa-
rable or entangled (verschränkt in German) (Schrödinger 1935).

As the following examples will show it is necessary that both systems have
interacted in order to obtain an entangled state.

Examples of entangled states have already been given in Sects. 3.3 and 3.4.
Equation 3.9 represents an entangled state where the various eigenstates of the
atom are correlated with those of the photon. Equation 3.15 refers to a more general
entanglement between the spin states of atoms and electrons.

The history of entangled states goes back to the year 1935 when Schrödinger
introduced the concept of Verschränkung, and when Einstein et al. (1935) pointed
out some of its surprising consequences. The term entangled has come into general
use in recent years.
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Experimentally, spin states like (3.49) can be investigated by measuring the spin
polarizations, individually for one beam only, or in coincidence. In principal, pola-
rization measurements can be performed on both beams of scattered particles, with
spin analyzers I and II, respectively. The analyzer I, oriented along the direction of
unit vector a, splits the beam into two sub-beams, with spin up or spin down, respec-
tively, with respect to a as quantization axis (see for example the Stern–Gerlach
magnet in Fig. 1.1, although more effective analyzers are today available which
work also with free electrons). One of the two beams may be blocked as in Fig. 1.1.

Similarly, for the second beam, analyzer II might be set along the direction of
unit vector b. Each analyzer is followed by a detector, counting and registering
the number of particles in the transmitted beams, N.a/C and N.a/�, and N.b/C
and N.b/�, respectively. Finally, a coincidence counter records the number of
coincidences for various settings of the analyzer–detector assemblies as will be
discussed below. More details on the experimental arrangements, and also on many
results, can be found in Kessler (1985).

We will assume that the intensity of the two beams is arranged to be sufficiently
low, and the detectors operate fast enough for the collision pairs to be individually
detected (that is, a particle in the first beam is detected in coincidence with that
particle in the second beam with which it has interacted).

It will be convenient to introduce a standard notation for vectors and polar angles
for use in this section. A right-handed coordinate system might be chosen arbitrarily
(For example, in case of initial state (3.48), we will choose the quantization axis of
the initial spin states as z-axis. The x- and y-axes are not defined by the initial
conditions, and might be chosen conveniently).

The two unit vectors a and b, introduced above, can be written in the form

a D ex sinˇ cos˛ C ey sinˇ sin˛ C ez cosˇ; (3.51a)

b D ex sinˇ0 cos˛0 C ey sinˇ0 sin ˛0 C ez cosˇ0; (3.51b)

where ˇ and ˇ0, and ˛ and ˛0 denote polar and azimuthal angles, respectively. The
vectors ei denote unit vectors along the corresponding axes .i D x; y; z/.

3.6.2 Two-Particle Density Matrices and Reduced Density
Matrices. Criterion for Entanglement

An explicit matrix representation of the two-particle spin density matrix is obtained
by taking the states

ˇ
ˇMm

˛

as basis (M D ˙1=2,m D ˙1=2 with respect to a given
quantization axis):

� D

0

B
B
B
@

˝C C j�j C C˛ ˝C C j�j C �˛ ˝C C j�j � C˛ ˝C C j�j � �˛
˝C � j�j C C˛ ˝C � j�j C �˛ ˝C � j�j � C˛ ˝C � j�j � �˛
˝� C j�j C C˛ ˝� C j�j C �˛ ˝� C j�j � C˛ ˝� C j�j � �˛
˝� � j�j C C˛ ˝� � j�j C �˛ ˝� � j�j � C˛ ˝� � j�j � �˛

1

C
C
C
A
: (3.52)
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The Hermiticity condition (1.1.29) reads

˝

M 0m0j�jMm
˛ D ˝

Mmj�jM 0m0˛�: (3.52a)

Consider the state (3.49) as a simple example. Its corresponding density operator is
given by the expression

� D ˇ
ˇ 
˛˝

 
ˇ
ˇ

D ˇ
ˇf
ˇ
ˇ
2ˇ
ˇC�˛˝C�ˇˇC fg�ˇˇC�˛˝�Cˇˇ

C f �g
ˇ
ˇ�C˛˝C�ˇˇC ˇ

ˇg
ˇ
ˇ
2ˇ
ˇ�C˛˝�Cˇˇ:

(3.53)

In the explicit matrix representation (3.52) we obtain

� D

0

B
B
B
@

0 0 0 0

0
ˇ
ˇf
ˇ
ˇ
2
fg� 0

0 f �g
ˇ
ˇg
ˇ
ˇ
2
0

0 0 0 0

1

C
C
C
A
: (3.54)

The diagonal element
˝C � j�j C �˛ D ˇ

ˇf
ˇ
ˇ
2

gives the probability that a particle in the first beam is found with spin up (with
respect to the given quantization axis), and simultaneously a particle in the second
beam with spin down. A similar interpretation holds for

˝� C j�j � C˛ D ˇ
ˇg
ˇ
ˇ
2
:

The off-diagonal elements characterize the coherence or correlation properties as
will be discussed below. Equation (3.49), or alternatively (3.53) and (3.54), contain
the full information on the spin properties of the combined two-particle system.

Assume now that the spin polarization of one subsystem only is measured
(say, that of the first beam), and that the spins of the second subsystem remain
unobserved. What is the spin state of the first beam after the measurement?

As discussed in Sect. 3.2 it is in general not possible to ascribe a single state
vector to one observed system which has interacted with a second one. Both systems
remain entangled. One is forced to generalize the concept of the state vector or
wave function to that of the reduced density matrix. Its elements are obtained by
applying (3.5).

Denoting the spin components of the observed and unobserved subsystem byM
andm, respectively, we obtain the elements of the reduced density matrix �1:

˝

M 0j�1jM
˛ D

X

m

˝

M 0mj�jMm
˛

: (3.55)
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That is, one takes those elements of the full density matrix �, which are diagonal in
the unobserved variable m and sums over all unobserved variables. For our present
case of interest we obtain from (3.54) and (3.55):

˝Cj�1jC
˛ D ˝C C j�j C C˛C ˝C � j�j C �˛

D ˇ
ˇf
ˇ
ˇ
2
;

since the first element is zero, and

˝�j�1j�
˛ D ˝� C j�j � C˛C ˝� � j�j � �˛

D ˇ
ˇg
ˇ
ˇ
2
:

The off-diagonal elements of �1 vanish. In explicit matrix notation this yields:

�1 D
 ˇ
ˇf
ˇ
ˇ
2

0

0
ˇ
ˇg
ˇ
ˇ
2

!

: (3.56a)

Similarly, we obtain the reduced spin density matrix �2 of the second beam, when
the spins of the first beam are not observed:

�2 D
 ˇ
ˇg
ˇ
ˇ
2

0

0
ˇ
ˇf
ˇ
ˇ
2

!

: (3.56b)

The two density matrices are not independent as will be discussed in Sect. 3.6.4.
The components of the corresponding polarization vectors follows from (1.36)

and (3.56):

P .1/
z D ˇ

ˇf
ˇ
ˇ
2 � ˇ

ˇg
ˇ
ˇ
2 D �P .2/

z : (3.57)

The x- and y-components are zero.
The reduced density matrices (3.56) contain the maximal information that can be

obtained on the individual subsystems. Nevertheless, it is impossible to reconstruct
the original state

ˇ
ˇ 
˛

of the composite system from a knowledge of the reduced
density matrices. In the special case of (3.56) this is evident since �1 and �2 contain
no information on the coherence which originally existed between both subsystems.
�1 and �2 describe statistical mixtures, whereas the combined system is in the pure
state (3.49).

The question whether a given state vector factorizes as in (3.50) is often not
easy to decide since

ˇ
ˇ 1

˛

and
ˇ
ˇ 2

˛

could both be complicated superpositions of
certain basis states. An exception are pure bipartite states like (3.49) where den-
sity matrix theory provides us with a simple criterion. The necessary information
is contained in the reduced density matrices of the two subsystems. The relevant
criterion is provided by (1.40) (or more generally by (2.21)). If �1 or �2 satisfy this
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condition then the corresponding subsystem is necessarily in a pure state,
ˇ
ˇ 1

˛

or
ˇ
ˇ 2

˛

, respectively. The total state vector factorizes and the system is not entangled.
Note, that the traces are independent of the chosen basis.

For spin-1/2 systems one can also apply (1.18): The two subsystems are only
then both in a pure state if the corresponding polarization vectors P.1/ and P.2/ have
both magnitude one.

This condition is violated for the two individually measured polarization vectors
(3.57). The two subsystems can consequently not be represented in terms of single
state vectors, and the combined state (3.49) is not separable but entangled.

Further conditions have been derived in Appendix J.1. We refer in particular to
the condition (J.14) which provides a simple test for separability.

For example, consider the state

ˇ
ˇ 
˛ D 1

2

�ˇ
ˇCC˛C ˇ

ˇC�˛C ˇ
ˇ�C˛C ˇ

ˇ��˛
	

:

Comparing with (J.9) we obtain for the coefficients

a D b D c D d D 1

2
;

from which follows that condition (J.14) is satisfied. Hence,
ˇ
ˇ 
˛

must be factoriz-
able. It is easy to see that

ˇ
ˇ 
˛

can be written in the form

ˇ
ˇ 
˛ D ˇ

ˇx.C/˛ˇˇx.C/˛;

where
ˇ
ˇx.C/˛ is given by (1.13a) (where we have changed the notation

ˇ
ˇC 1

2
; x
˛

to
ˇ
ˇx.C/˛).

On the other hand, for the state (3.49) we obtain a D d D 0 and b D c D 1=
p
2

so that condition (J.14) is violated.

3.6.3 Correlation Parameters and Their Interpretation.
Joint Probabilities

In Sect. 1.1 it has been shown that the one-particle density matrix is completely
characterized by the three components of the polarization vector. In order to achieve
a similar complete description of the two-particle spin density matrix knowledge of
the two individual polarization vectors P.1/ and P.2/ does clearly not suffice.

The most general 4� 4 density matrix (3.52) has 16 real independent parameters
if the Hermiticity condition (3.52a) is taken into account. One parameter is provided
by the normalization condition, and six parameters by the components of the
individual polarization vectors P.1/ and P.2/. Hence, nine further real parameters
are required.
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In order to obtain these we have to generalize the concept of polarization vector.
We define a set of nine parameters by the expression

P
.1/
i � P .2/

j D tr � .�i � �j / D ˝

�i � �j
˛

; (3.58)

where �i and �j denote Pauli matrices .i; j D x; y; z/, and the cross denotes the
direct product (see Appendix A.1). The parameters (3.58) are the components of a
second-rank tensor, the polarization or correlation tensor.

The general 4 � 4 density matrix (3.52) can be expanded in terms of the com-
ponents of the polarization vectors and tensor (see Appendix F.1). This expression
proves that any two-particle spin-1/2 system can be uniquely defined in terms of
this set of observables. An experimental determination of these parameters gives all
information on the system.

Let us discuss the physical significance of the correlation parameters (3.58)
and their measurement. Let us first consider two completely uncorrelated density
matrices �1 and �2. The combined density matrix � is then given by (A.11) as direct
product

� D �1 � �2: (3.59a)

By applying (A.2a), (A.2b), and (1.35) we obtain

P
.1/
i � P .2/

j D tr .�1 � �2/ .�i � �j /
D tr .�1 �i / tr .�2 �j /

D P
.1/
i � P .2/

j ; (3.59b)

and the direct product reduces in this case to the normal product for all i and j .
Let us now consider two beams of spin-1/2 particles, which have interacted in

the past, and are characterized by a joint density matrix �. We will derive an explicit
expression for the z-z-component of the tensor (3.58). The spin states of the particles
in the first and second beam will be described by

ˇ
ˇM

˛

and
ˇ
ˇm
˛

, respectively. Using
(A.8) and the fact that �z is diagonal in the representation (1.7), we obtain

P .1/
z � P .2/

z D tr � .�z � �z/

D
X

Mm

˝

Mmj�jMm
˛̋

M j�zjM
˛˝

mj�zjm
˛

: (3.60a)

The expression can be interpreted in a simple way. The product of the two �z-
elements can have only two values, C1 or �1. The result C1 implies that both
particles have the same spin component, both spin up or both spin down. The result
�1 means that both spins are opposite to each other. P .1/

z �P .2/
z is the sum of these

values, each one multiplied by the corresponding probability for joint detection, for
which we introduce the notation

˝

Mmj�jMm
˛D W.zz/Mm; (3.60b)

indicating that both measuring instruments are aligned in z-direction.
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Substitution of the matrix elements of �z into (3.60a) and using the notation
(3.60b) yields

P .1/
z � P .2/

z D W.zz/CC CW.zz/�� �W.zz/C� �W.zz/�C: (3.60)

Alternatively, we can write

P .1/
z � P .2/

z D 1

N
.N.zz/CC CN.zz/�� �N.zz/C� �N.zz/�C/ : (3.61)

Here, N.zz/CC is the number of coincidence events where a particle in the first
beam has been registered with spin up by the first detector, and simultaneously its
collision partner in the second beam has been found in the same spin state, and
similar for the other terms. N is the total number of measurements, which is always
assumed to be large.

Hence, the parameter P .1/
z � P .2/

z refers to a coincidence experiment where both
spin analyzers are oriented parallel to the z-axis.

Let us now consider the general case where the first and second beams (after they
had interacted with each other) are sent through analyzers aligned along arbitrary
directions a and b, respectively. Let �a D � � a denote the component of the Pauli
matrix in direction of the unit vector a, and �b D � � b the component along unit
vector b (where �x; �y; �z are the components of � ). The corresponding correlation
parameter is defined by the expression

P .1/
a � P .2/

b D tr � .�a � �b/ D ˝

�a � �b
˛

; (3.62)

In order to find a physical interpretation we use the fact that the trace is independent
of the chosen basis set for the spins. It is therefore convenient to choose the basis
ˇ
ˇM D ˙ 1

2

˛

and
ˇ
ˇm D ˙ 1

2

˛

for the first and second beam, respectively, which
diagonalize �a and �b , respectively. Then, M denotes the spin component of the
first particle with respect to a as quantization axis, and m the spin of the particles
in the second beam with respect to b as quantization axis. The matrices �a and �b
assume then both the form of �z.

Repeating the steps leading to (3.60) we obtain:

P .1/
a � P .2/

b D W.a;b/CC CW.a;b/�� �W.a;b/C� �W.a;b/�C: (3.63)

Here, W.a;b/Mm denotes the joint probability that a particle in the first beam is
found with spin M with respect to a, and simultaneously its collision partner in the
second beam with spin componentm with respect to b as quantization axis. Explicit
calculations of these probabilities are given in Sect. 3.6.6 for a specific case.

The general correlation parameter P .1/
a � P .2/

b refers therefore to a coincidence
experiment with spin analyzers aligned along a and b, respectively. Special cases
are the components of the correlation tensor (3.58). For example, P .1/

x � P
.2/
y

corresponds to a coincidence experiment with analyzers oriented parallel to the
x- and y-directions, respectively, and so on.
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From the normalization condition of probabilities

X

Mm

W.a;b/Mm D 1; (3.63a)

follows the constraint
ˇ
ˇP .1/

a � P .2/

b

ˇ
ˇ � 1: (3.64)

The upper limit of the correlation parameter can only be obtained if the joint
probabilitiesW.a;b/C� andW.a;b/�C are zero in (3.63) which gives together with
the normalization condition of probabilities

P .1/
a � P .2/

b D W.a;b/CC CW.a;b/��
D 1: (3.65a)

Hence, any time a particle in the first beam is found with spin up or down with
respect to a, its collision partner in the second beam will be detected in the identical
spin state with respect to b, and vice versa. We say that results of the measurements
are perfectly correlated.

Similarly, the lower limit can only hold if the probabilities W.a;b/CC and
W.a;b/�� vanish both, which yields

P .1/
a � P .2/

b D � .W.a;b/C� CW.a;b/�C/

D �1: (3.65b)

This result implies that the two correlated particles will always be found in opposite
spin states with respect to a and b, respectively, and we have perfect anticorrelation
between the measuring results.

Finally, we will say that the two measurements are uncorrelated if the condition

P .1/
a � P .2/

b � P .1/
a � P .2/

b D 0 (3.65c)

is satisfied (similarly to (3.59b)).
As an exercise let us calculate the correlation tensor (3.58) for the system

characterized by (3.49), or alternatively by the density matrix (3.53). Mathematical
details are exposed in Appendix G.1, here we present only the results. For the zz-
component we obtain:

P .1/
z � P .2/

z D �
�ˇ
ˇf
ˇ
ˇ
2 C ˇ

ˇg
ˇ
ˇ
2
	

D �1: (3.66a)

This expression shows that there is strict anticorrelation as expected from the
structure of (3.49). We will analyze this result in detail in the following subsection.
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In a similar way we calculate the other components of the tensor (3.58) and obtain
after some algebra (see Appendix G.1):

P .1/
x � P .2/

x D P .1/
y � P .2/

y D 2
ˇ
ˇf
ˇ
ˇ
ˇ
ˇg
ˇ
ˇ cos ı; (3.66b)

P .1/
x � P .2/

y D �P .1/
y � P .2/

x D �2ˇˇf ˇˇˇˇgˇˇ sin ı; (3.66c)

where ı is the relative phase between the amplitudes

f D ˇ
ˇf
ˇ
ˇ; g D ˇ

ˇg
ˇ
ˇ eiı:

The other components of the correlation tensor vanish.
The parameters (3.57) together with (3.66) characterize uniquely the state (3.49),

and give an operational definition of this state.
Finally, we will show that any correlation parameterP .1/

a �P .2/

b can be expanded
in terms of the nine tensor components (3.58). Since the Pauli matrices transform as
vector components we can write

�a D � � a D
X

i

�i ai ; (3.67a)

and

�b D � � b D
X

j

�j bj ; (3.67b)

with i; j D x; y; z in an arbitrarily chosen coordinate system. Substitution of (3.67a)
and (3.67b) into the definition (3.62) yields

P .1/
a � P .2/

b D
X

ij

ai bj tr � .�i � �j /

D
X

ij

ai bj

�

P
.1/
i � P .2/

j

	

: (3.67c)

This expression shows explicitly that all information on the correlation properties
of two spin-1/2 particles are contained in the nine components of the correlation
tensor.

As a simple exercise we consider the state (3.49). Using (3.51), and the
components (3.66) of the correlation tensor, we obtain from (3.67c) after some
algebra:

P .1/
a � P .2/

b D .axbx C ayby/
�

P .1/
x � P .2/

x

�

C .axby � aybx/
�

P .1/
x � P .2/

y

	

C azbz
�

P .1/
z � P .2/

z

�

D 2
ˇ
ˇf
ˇ
ˇ
ˇ
ˇg
ˇ
ˇ sinˇ sinˇ0 cos.˛0 � ˛ C ı/ � cosˇ cosˇ0: (3.68)
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Only the difference ˛0 � ˛ occurs in (3.68) which expresses the axial symmetry of
the state (3.49) around the z-axis.

In conclusion, P .1/
a � P

.2/

b refers to a coincidence experiment where the first
analyzer is oriented parallel to the unit vector a with polar angle ˇ and azimuth
˛ (see for example Fig. 1.3), and the second analyzer is set along the unit vector
b with polar angle ˇ0 and azimuth angle ˛0. Equation 3.63 relates the parameters
P
.1/
a � P .2/

b to the directly measurable coincidence rates.
The results derived in the present subsection will provide the basis for the

subsequent discussions.

3.6.4 Entanglement Versus Classical Correlations.
LOCC-Procedures. Entanglement in Mixtures

The state (3.49) is in general entangled as shown in Sect. 3.6.2. The state vector
predicts a strict anticorrelation between the two spin systems, if both spin analyzers
are oriented along the z-axis. Thus, if the first observer finds a particle with spin up
at time t1, then the second observer will necessarily find a particle with spin down
in his beam, even if the second measurement is performed at a later time. If the
intensity of the beams is sufficiently low one can be practically sure that the two
measurements are performed on the same collision pair.

Let us discuss these measurements in more detail. Assume that each detector
has been provided with a printer, and that the results (spin up or spin down) have
been printed out. If we consider the outputs of both printers separately we see
a probability distribution for finding particles in states

ˇ
ˇC˛ or

ˇ
ˇ�˛. However, if

the two outputs are compared, we detect a strict correlation: the two printers will
always register particles with opposite spins. If we have seen the printed list of
the first detector we can predict with absolute certainty the measurement result for
the second beam, and vice versa. The probability of finding a particle of the first
beam in state

ˇ
ˇC˛ is

ˇ
ˇf
ˇ
ˇ
2

according to (3.56a). With the same probability
ˇ
ˇf
ˇ
ˇ
2

its collision partner in the second beam will be found in state
ˇ
ˇ�˛, according to

(3.56b). Similarly, the opposite results will be found with probability
ˇ
ˇg
ˇ
ˇ
2
. This

strong correlation of the probabilities is expressed in the structure of the reduced
density matrices (3.56). A separate study of the two matrices gives the individual
probabilities, if we compare both matrices we detect the correlations.

At first one might think that there is nothing particularly remarkable in these
observations. The results seem to appear just as an obvious consequence of
spin conservation. Such correlations between distant measurements, caused by
conservation laws, are common in classical physics.

However, in quantum mechanics, the situation is not so simple, and much more
interestingly. Because the state

ˇ
ˇ 
˛

in (3.49) cannot be factorized into a product
of two state vectors associated to each beam, we cannot ascribe any well defined
spin state to each particle before a measurement has been performed. The states
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are indeterminate rather than unknown. That is, prior to a measurement, it is highly
unlikely that a particle of the combined system (3.49) is exactly in state

ˇ
ˇC˛, or

ˇ
ˇ�˛,

or in any other definite spin state.1 Only the joint system is described by a well
defined state vector

ˇ
ˇ 
˛

.
For a single particle, being in a superposition of states

ˇ
ˇC˛ and

ˇ
ˇ�˛ for example,

the situation has been analyzed in Sect. 1.1.4. But there is a new feature in two-
particle systems, and this concerns the respective correlations. By passing an
analyzer oriented along z, a particle of, say, the first beam is projected with a certain
probability into an eigenstate of the analyzer,

ˇ
ˇC˛ or

ˇ
ˇ�˛. This is not surprising.

However, after the measurement on particle one has been performed, its former
collision partner in the second beam, which had not a well-defined spin component
before this measurement, is projected with 100% certainty into the opposite spin
state of particle one, even before it passes its analyzer. The striking feature of these
results is that this change in the state of particle two happens instantaneously at
the moment of the first measurement, independently of how far the particles are
separated. A measurement on one particle determines immediately the state of the
other one, and vice versa. This is a remarkable property of entangled states which
requires further discussion, which will be provided in Sects. 3.6.5 and 3.6.6.

It should be noted that the perfect anticorrelation holds only if both analyzers are
set parallel to the z-axis. For all other directions the degree of correlation is reduced.
The state (3.49) is entangled, but not maximally entangled, as will be discussed in
the following subsection.

It is instructive to compare the pure state (3.49) with a mixture, prepared in a
special way. Suppose that two spatially separated observers (commonly called Alice
and Bob) have both a source of spin-1=2 particles and spin filters at their disposal.
For example, Alice prepares electrons and Bob hydrogen atoms. Any time Alice
releases a particle in a definite spin state,

ˇ
ˇC˛ or

ˇ
ˇ�˛, she communicates this to Bob

via a classical channel (say, a phone), and Bob prepares and releases a particle of his
system in the opposite spin state. Both beams remain separated without interaction.

Eventually,N pairs of particles with opposite spins have been produced,N1 pairs
ˇ
ˇC˛ˇˇ�˛ D ˇ

ˇC�˛ and N2 pairs
ˇ
ˇ�˛ˇˇC˛ D ˇ

ˇ�C˛ with

N1

N
D ˇ
ˇf
ˇ
ˇ
2
;

N2

N
D ˇ
ˇg
ˇ
ˇ
2
:

The total system is then represented by the density operator

� D ˇ
ˇf
ˇ
ˇ
2ˇ
ˇC�˛˝C�ˇˇC ˇ

ˇg
ˇ
ˇ
2ˇ
ˇ�C˛˝�Cˇˇ (3.69)

(see Sects. 1.1.3–1.1.5, and in particular (1.20). In fact, we remember from
Sect. 1.1.5 that the notation of a density operator describes a preparation procedure
and the operator (3.69) contains the full available information on the total system.

1Compare for example (3.84a) and (3.87) below.
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In the explicit matrix representation (3.52) we obtain a diagonal matrix with only
two non-vanishing elements

˝C � j�j C �˛ D ˇ
ˇf
ˇ
ˇ
2
;

and
˝� C j�j � C˛ D ˇ

ˇg
ˇ
ˇ
2
:

In particular, all coherence terms like
˝C � j�j � C˛ are zero.

It follows from the method of preparation that any particle in the mixture (3.69)
is in a well-defined spin state, either

ˇ
ˇC˛ or

ˇ
ˇ�˛. One is inclined to say that each

particle knows its spin component. The state of each particle is fixed, but unknown
to an external observer prior to a measurement. This case corresponds exactly to
classical statistics, but is in sharp contrast to the system described by the state vector
(3.49) (or alternatively by the density matrix (3.54)). Here, the state of the individual
particles is not only unknown but indeterminate (that is, not even the particles know
their spin component prior to a measurement).

Both systems, described by (3.49) and (3.69) respectively, can be distinguished
experimentally. Let us therefore calculate the polarization properties of the mixture.

If only the first beam (say, Alice’s beam) is observed we obtain for its reduced
density matrix (3.56a). Similarly, the second beam (Bob’s) is characterized by the
reduced density matrix (3.56b). Consequently, the components of the individual po-
larization vectors P .1/

z and P .2/
z are given by (3.57), and the x- and y-components

vanish.
In the next step we calculate the components of the correlation tensor, assuming a

sufficiently low intensity so that individual pairs are detected. For the zz-component
we obtain (3.66a):

P .1/
z � P .2/

z D �1: (3.70a)

It should be noted that this result differs considerably from the uncorrelated product
P
.1/
z �P .2/

z . So far the results for the pure and the mixed state are the same. However,
all other components of the correlation tensor vanish for the system (3.69):

P
.1/
i � P .2/

j D 0; (3.70b)

(i; j D x or y). These results for the mixture correspond to classical expectations,
but are in sharp contrast to (3.66b) and (3.66c) for the pure state (3.49). While the
system (3.69) can explain the perfect anticorrelation if the two analyzers are both
oriented parallel to z, it cannot reproduce the results along other directions.

The particles in Alice’s and Bob’s beams are correlated because of (3.70a), but
this correlation is due to the special method of preparation, namely by a com-
bination of local operations and classical communication (LOCC). The classical
communication is necessary to allow for (classically) correlated systems. Such
LOCC–procedures play an important role in quantum teleportation and quantum
information theory (see for example Plenio and Virmany 2007).
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We have discussed the difference between LOCC–prepared mixtures and pure
states at some length. However, it is important to have a clear perception of the
fundamental difference between classical correlations and quantum mechanical en-
tanglement. In order to distinguish between both cases it is necessary to measure
all components of the individual polarization vectors and the correlation tensor. In
particular, we stress again that systems of particles in different, but definite, states
must be described as mixtures and cannot be represented as linear superpositions.

In the last two decades the definition of entanglement has been extended beyond
Schrödingers original conception, in particular, to include mixed states. In order to
introduce these new concepts let us first reformulate (3.69). The direct product of
the operators

ˇ
ˇC˛˝Cˇˇ and

ˇ
ˇ�˛˝�ˇˇ is defined by the expression

ˇ
ˇC˛˝Cˇˇ � ˇˇ�˛˝�ˇˇ D ˇ

ˇC�˛˝C�ˇˇ:

Equation 3.69 can then be written in the form

� D ˇ
ˇf
ˇ
ˇ
2 �ˇ
ˇC˛˝Cˇˇ � ˇˇ�˛˝�ˇˇ�C ˇ

ˇg
ˇ
ˇ
2 �ˇ
ˇ�˛˝�ˇˇ � ˇˇC˛˝Cˇˇ� ; (3.71)

where the first and second factors in the direct product refer to the first and second
beam, respectively. Note, that no coherence terms like

ˇ
ˇC˛˝�ˇˇ occur in expression

(3.71). Equation 3.71 is a special form of a more general density operator, describing
bipartite mixed states

� D
X

i

pi �
.i/
1 � �.i/2 ; (3.71a)

where pi denote the respective probabilities, and �.i/1 and �.i/2 refer to subsystems
one and two, respectively. For example, comparing with (3.71) we have the
relations:

�
.1/
1 D ˇ

ˇC˛˝Cˇˇ; �
.1/
2 D ˇ

ˇ�˛˝�ˇˇ;

and

�
.2/
1 D ˇ

ˇ�˛˝�ˇˇ; �
.2/
2 D ˇ

ˇC˛˝Cˇˇ:

The formulation (3.71a) leads to the following

Definition. Any mixed bipartite state � of the general form (3.71a) is said to be
separable. Otherwise it is said to be entangled. (see, for example Selleri 1990; Sen
et al. 2007; Plenio and Virmany 2007).

Note, that the operator (3.71) cannot be completely factorized as in (3.59a) since
both subsystems are classically correlated.

It has been shown that mixtures of the general form (3.71a) are the most general
states which can be produced by LOCC methods. These states are all separable
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in the sense defined above. Thus, entangled mixtures cannot be obtained by these
techniques. In order to produce an entangled state the particles of both beams must
be brought closely together and allowed to interact which will then produce the
necessary quantum correlations. The state (3.69) is classically correlated but not
entangled.

In general, Popescu and Rohrlich (1997) explored analogies between entan-
glement theory and thermodynamics and stated, what is sometimes called the
fundamental postulate of entanglement:

Postulate: The laws of physics are such that it is impossible to create (or increase)
entanglement between remote quantum systems by applying solely local operations
and classical communication.

As an example let us reformulate the experiment leading from the initial state
(3.48) to the final state (3.49), by considering more general initial conditions.
Usually, the initial particles are not completely polarized as in (3.48), but only
partially polarized. Suppose that the first beam has been prepared in the mixed state

�1 D
X

M

p.M/
ˇ
ˇM

˛˝

M
ˇ
ˇ;

where
ˇ
ˇM

˛

denotes
ˇ
ˇC˛ or

ˇ
ˇ�˛, and p.M/ is the respective probability (see (1.20).

Similarly, the second beam is described by the density operator

�2 D
X

m

p.m/
ˇ
ˇm
˛˝

m
ˇ
ˇ:

Under the premise that both systems have been prepared independently, the joint
initial system is described by the direct product

�in D �1 � �2;

D
X

Mm

p.M/p.m/
ˇ
ˇMm

˛˝

Mm
ˇ
ˇ: (3.72)

Both beams are then allowed to interact and the total system is analyzed after the
collision. Any component

ˇ
ˇMm

˛

of the operator (3.72) is transformed into a state
ˇ
ˇ .Mm/

˛

(similar to the transition from (3.48) to (3.49)), and the initial density
operator develops into the final operator �out :

�out D
X

Mm

p.M/p.m/
ˇ
ˇ .Mm/

˛˝

 .Mm/
ˇ
ˇ: (3.73)

In general, the states
ˇ
ˇ .Mm/

˛

are entangled like the state (3.49) and �out can
therefore not be factorized similar to the operator (3.71). Equation (3.73) represents
an example of an entangled mixture.
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The question whether a given mixture is separable or entangled is hard to answer
in general and we refer to the relevant papers in Bruss and Leuchs (2007) or
Bouwmeester et al. (2001).

3.6.5 States with Maximal Entanglement. Entropy
of Entanglement. Bell States

At the beginning of the preceding subsection we have discussed some consequences
of entanglement for the state (3.49). We have shown the following. Assume that the
first analyzer has been set along the z-axis, and that a particle has been found and
registered in a definite spin state with respect to z, either with spin up or spin down.
Then, we can predict with certainty that its collision partner in the second beam
has been projected into the opposite spin state with respect to z, immediately at the
end of the first measurement, and before passing its own measuring apparatus. This
prediction can be tested experimentally by orienting the second analyzer parallel to
z, and measuring the spin components of the particles in the second beam in coinci-
dence with those in the first beam. The results will always show strict anticorrelation

P .1/
z � P .2/

z D �1:

This strong correlation is reduced for all other directions a and b of the two
analyzers, respectively, as follows from (3.68). However, it might be possible to
generalize the results if certain restrictions are imposed on the combined state, that
is on the amplitudes f and g.

Therefore, the following question arises. Assume that the first analyzer has been
oriented along an arbitrarily chosen direction a (with angles ˇ and ˛ as specified
by (3.51a)). Any particle in the first beam will be found in a definite spin state with
respect to a after a measurement. Under which conditions will it be possible to find
a direction b0 for the second analyzer so that there will be either perfect correlation
or anticorrelation between both measurements, that is, so that the condition

ˇ
ˇP .1/

a � P .2/

b0

ˇ
ˇ D 1 (3.74)

will be satisfied? If this condition holds then we can be sure that both particles of the
collision pair will always be found in the same or in opposite spin states with respect
to a and b0, respectively. The result of one measurement can always be predicted
with certainty if the result of the other one is known.

If such a direction of b0 exists for any choice of a then we will speak of maximal
entanglement.

We will first study this problem for the special state (3.49). We have to find:

1. The general conditions under which condition (3.74) holds,
2. The direction b0, that is, the angles ˇ0

0 and ˛0
0 if the angles ˇ and ˛ of a are given

(or vice versa).
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These problems are discussed in Appendix H.1 and there it is shown that maximal
entanglement can only be achieved if the condition

2
ˇ
ˇf
ˇ
ˇ
ˇ
ˇg
ˇ
ˇ D 1; (3.75)

is satisfied. In addition, we have to require that either the relation

cos.˛0
0 � ˛ C ı/ D 1; (3.76a)

or

cos.˛0
0 � ˛ C ı/ D �1: (3.76b)

is valid, where ı is the relative phase between the amplitudes f and g. Equa-
tions (3.76) represent requirements for the azimuth angle ˛0

0 of b0. Equation (3.75)
is the essential condition and is of key relevance.

Substitution of (3.75) into the general correlation parameter (3.68) yields

P .1/
a � P .2/

b D sinˇ sinˇ0 cos.˛0 � ˛ C ı/ � cosˇ cosˇ0: (3.77)

Let us choose an azimuth angle

˛0 D ˛0
0 D 
 C ˛ � ı; (3.78a)

in accordance with condition (3.76b). Setting

ˇ0 D ˇ0
0 D ˇ; (3.78b)

we obtain from (3.77)

P .1/
a � P .2/

b0
D �1;

where the unit vector b0 is defined by (3.78).
If the second analyzer is rotated into direction �b0, corresponding to angles

˛0
0 D ˛ � ı; (3.79a)

which satisfies condition (3.76a), and

ˇ0
0 D 
 � ˇ; (3.79b)

we obtain perfect correlation between the two measurements

P .1/
a � P .2/

�b0 D 1;
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where b0 is defined by the angles (3.78). All other orientations b of then second
analyzer give reduced correlations.

We can summarize and interpret our results as follows. We have chosen an
arbitrary direction a of the first analyzer, defined by angles ˇ and ˛. Give that the
essential condition (3.75) holds, then, there exists for any choice of a a well defined
direction b0 for the second analyzer, related to a by (3.78), so that condition (3.74) is
satisfied. That is, if a particle in the first beam has been recorded with spin up (spin
down) with respect to a, then its partner in the second beam will automatically orient
its spin antiparallel (parallel) to b0, immediately at the end of the first measurement.
The behaviour of one system is conditioned by the behaviour of the other one. The
outcome of a measurement on one system can be predicted with certainty given the
results of the appropriate measurement on the other subsystem. The discussion of
entanglement, given at the beginning of the preceding subsection, can be repeated
here, with a and b0 instead of z.

If the direction a is changed during a measuring series then the direction b0
will adapt itself so that (3.78) hold again. This strong connection between a and
b0 is determined by the intrinsic correlations between the two beams, that is, by
the components of the correlation tensor. This will be shown more explicitly below
when discussing the Bell states.

We add that the very same conditions (3.78) and (3.79) can be obtained in
a different way which gives also additional insight into the general quantum
mechanical background, as is shown in Appendix I.1 (see in particular (I.8)).

A special case will be studied in detail in the following subsection and some
essential results will be summarized in Table 3.2 later on.

If condition (3.75) is satisfied, or equivalently the relation

ˇ
ˇf
ˇ
ˇ D ˇ

ˇg
ˇ
ˇ D 1p

2
;

then (3.49) reduces to the expression

ˇ
ˇ 
˛ D 1p

2

�ˇ
ˇC�˛C eiı

ˇ
ˇ�C˛

	

; (3.80)

where the physical significance of the relative phase ı follows from (3.81d) below,
and also from (3.78a) and (3.79a). States of the general form (3.80) are called
maximally entangled (Le Bellac 2006). From (3.56) follows that the corresponding
reduced density matrices �1 and �2 are multiples of the identity matrix 1:

�1 D �2 D 1

2
1; (3.81a)

and the individually measured polarization vectors vanish:

P.1/ D P.2/ D 0: (3.81b)
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Let us consider the state (3.49). By squaring (3.57) and the normalization condition
(3.49a), and by combining both results we obtain

�

P.1/
�2 D �

P.2/
�2 D 1 � �

2
ˇ
ˇf
ˇ
ˇ
ˇ
ˇg
ˇ
ˇ
�2
: (3.81c)

This relation shows explicitly that the degree of entanglement is restricted by the
magnitude of the polarization vector, and vice versa. A more general derivation is
given in Appendix J.1 (relations (J.12b) and (J.16) to (J.19)).

Finally, substitution of condition (3.75) into (3.66) yields

P .1/
x � P .2/

x D P .1/
y � P .2/

y D cos ı;

P .1/
x � P .2/

y D �P .1/
y � P .2/

x D � sin ı;

P .1/
z � P .2/

z D �1: (3.81d)

These relations give the non-vanishing components of the correlation tensor for
maximally entangled states of the form (3.80).

Different states can have stronger or weaker correlations, depending on the values
of
ˇ
ˇf
ˇ
ˇ and

ˇ
ˇg
ˇ
ˇ. For states of the general form (3.49) the parameter

E D 2
ˇ
ˇf
ˇ
ˇ
ˇ
ˇg
ˇ
ˇ (3.82)

provides in some sense a measure of the strength of the entanglement. If the
normalization (3.49a) is taken into account, we obtain the constraint

E � 1: (3.82a)

E vanishes if f or g are zero. The state (3.49) separates then, and there is no en-
tanglement. The maximal possible value of E is obtained for states with maximal
entanglement.

An operational measure is introduced by (3.81c). The squares of the individual
polarization vectors (which can be measured as functions of scattering energy and
angle) are related to the strength of the entanglement, produced during the collision.

So far our discussion of maximal entanglement refers only to the special example
(3.49). Let us now consider more general attempts to quantify entanglement. For
example, it has been shown that the entanglement of any pure bipartite state is
uniquely characterized by the von–Neumann entropy S.�i /, defined as

S.�i/ D � tr �i .log2 �i /

D �
X

n

�n log2 �n; (3.83)
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(see e.g., Popescu and Rohrlich 1997). Here, �i denotes the reduced density matrix
of either of the two subsystems. �n are the eigenvalues of �i (see Appendix J.1),

�i D
�
�1 0

0 �2

�

:

log2 denotes the logarithm with basis 2, which is the standard logarithmic basis for
information theory. The logarithm of �i is defined as

log2 �i D
�

log2 �1 0

0 log2 �2

�

;

from which follows the second line in (3.83). S.�i / is usually called the entropy of
entanglement.

The interpretation of the entropy of entanglement is not obvious, and can be
provided by an information–theoretical approach (see e.g., Nielsen and Chuang
2000). Here, we will restrict ourselves to the following considerations.

The choice of S.�i/ as a measure of entanglement can be motivated by again
considering the special example (3.49). If the state

ˇ
ˇ 
˛

is maximally entangled, then
condition (3.75) holds, and the individually observed subsystems have necessarily
vanishing polarization according to (3.81c), and the reduced density matrices �1
and �2 assume both the form (3.81a). If a spin measurement is performed on either
subsystem one finds a random distribution of particles with spin up and spin down,
respectively, along any direction we choose for the measurement. In the language
of information theory we may express this result by saying that the uncertainty on
the outcome of the measurement is largest, or that each subsystem is maximally
mixed. The von–Neumann entropy achieves its maximum value if the uncertainty is
maximal. We obtain by inserting (3.81a) into (3.83) .i D 1 or 2/:

S.�i / D � log2

�
1

2

�

D 1: (3.83a)

Hence, maximal entanglement in the combined system is characterized by the
maximal value of S.�i/.

On the other hand, if the two subsystems are completely polarized,
ˇ
ˇP.1/

ˇ
ˇ D

ˇ
ˇP.2/

ˇ
ˇ D 1, then both subsystems are necessarily in pure states, say

�1 D
�
1 0

0 0

�

; and �2 D
�
0 0

0 1

�

: (3.83b)

The joint state vector is then necessarily separable

ˇ
ˇ 
˛ D ˇ

ˇC˛ˇˇ�˛:
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Pure states contain the maximal possible information on a system and the entropy
vanishes in this case:

S.�i / D � log2 1 D 0:

Hence, a vanishing entropy corresponds to zero entanglement in the joint state.
As an example, consider the state (3.49). The corresponding reduced density

matrices are given by (3.56) with eigenvalues
ˇ
ˇf
ˇ
ˇ
2

and
ˇ
ˇg
ˇ
ˇ
2
, and the corresponding

entropy assumes the form

S.�1/ D S.�2/ D �ˇˇf ˇˇ2 log2
ˇ
ˇf
ˇ
ˇ
2 � ˇ

ˇg
ˇ
ˇ
2

log2
ˇ
ˇg
ˇ
ˇ
2
:

It is of key importance that �1 and �2 have the same set of eigenvalues so that their
von–Neumann entropies coincide. It can be shown that, for pure bipartite states, this
is always the case so that S.�1/ D S.�2/ is ensured (see Appendix J.1).

Finally, we note that the eigenvalues are closely related to the magnitude
ˇ
ˇP
ˇ
ˇ

of the corresponding polarization vector by (J.8). Upon substituting this expression
into the definition (3.83) we can express the entropy in terms of

ˇ
ˇP
ˇ
ˇ. Both quantities

specify the disorder, or the information content, of spin-1=2 systems.
This short discussion may serve as an illustration of the use of the von–Neumann

entropy as a measure of entanglement. In the general case of density matrices �i
with dimension d , the von–Neumann entropy is constrained by the condition

0 � S.�i/ � log2 d:

It has been shown in general, that the upper limit corresponds to the maximally
mixed state (maximal entanglement), and the lower limit is reached in case of a
pure state (zero entanglement).

The problem of defining entanglement measures has been discussed in much
greater generality, and we refer for example to the relevant review papers in Bruss
and Leuchs (2007) or Bouwmeester et al. (2001).

Finally, we will consider some examples of conceptual importance, Special cases
of (3.80) are the singlet state

ˇ
ˇ��

˛ D 1p
2

�ˇ
ˇC�˛ � ˇ

ˇ�C˛� ; (3.84a)

with ı D 
 , and the triplet state

ˇ
ˇ�C

˛ D 1p
2

�ˇ
ˇC�˛C ˇ

ˇ�C˛� ; (3.84b)

with ı D 0. Together with the two states

ˇ
ˇ˚˙

˛ D 1p
2

�ˇ
ˇCC˛˙ ˇ

ˇ��˛� ; (3.84c)
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Table 3.1 The
non-vanishing components of
the correlation tensor for the
four Bell states

ˇ
ˇ�

˙

˛

and
ˇ
ˇ˚

˙

˛

, respectively

P
.1/
x � P

.2/
x P

.1/
y � P

.2/
y P

.1/
z � P

.2/
z

ˇ
ˇ�C

˛

1 1 �1
ˇ
ˇ��

˛ �1 �1 �1
ˇ
ˇ˚C

˛

1 �1 1
ˇ
ˇ˚�

˛ �1 1 1

they form a mutually orthogonal basis system for any two-particle spin-1=2 system.
All four states are maximally entangled (see below) and are called Bell states (Bohm
1951).

As discussed in Sect. 3.6.3, the spin polarization properties of spin-1=2 systems
are uniquely characterized by determining the individual polarization vectors P.1/

and P.2/, and the components of the correlation tensor. It is a simple exercise
to calculate these parameters for the four states (3.84). The vectors P.1/ and P.2/

vanish, and we give the results for the non-vanishing components of the correlation
tensor in Table 3.1. The results show that the four Bell states are characterized
by particularly simple properties with vanishing individual polarizations, and with
tensor components of maximal magnitudes

ˇ
ˇP

.1/
i � P

.2/
i

ˇ
ˇ D 1I .i D x; y; z/. In

other words, the states (3.84) are eigenstates of the three correlation operators �i��i
with eigenvalues C1 and �1, respectively. Table 3.1 illustrates that the states can be
identified by the correlations they exhibit.

The reduced density matrices of all four Bell states are given (3.81a). Hence,
the von-Neumann entropy (3.83) achieves its maximum value which proves that the
Bell states are maximally entangled.

Alternatively, by inserting the numbers of Table 3.1 into the general equation
(3.67c) it can directly be shown that condition (3.74) can be satisfied for any
direction of a. For example, for the singlet state

ˇ
ˇ��

˛

we obtain

P .1/
a � P .2/

b D �a � b:

The special vector b0, which satisfies (3.74) for given a, is obtained by setting b D
b0 D a, which yields

P .1/
a � P .2/

b0
D �1:

This example shows directly that b0 is determined:

1. By the direction of a (that is, by the first measurement), and
2. By the components of the correlation tensor.

We add that the direction of b0 follows also from (3.78) by setting the relative phase
ı D 
 , corresponding to the singlet state.

From Table 3.1 we can read off that the following simple relationship holds for
any Bell state:

X

i

�

P
.1/
i � P .2/

i

	2 D 3; (3.85)
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.i D x; y; z/. It is remarkable that (3.85) follows from general density matrix theory
without detailed knowledge of Table 3.1. We refer to Appendix F.1 where also more
general relations for the various polarization parameters are given.

It may be appropriate to remark that non-linear relationships like (3.85) do
not reduce the number of independent parameters, specifying the system under
consideration. For example, in the present case, one obtains no information on the
sign of the tensor components.

Finally, we note that (3.84) can be applied to any two-particle system where each
particle can be in either of two states (for example polarized photons). The general
Bell states play a prominent role in quantum information theory and teleportation
schemes where the basis states

ˇ
ˇC˛ and

ˇ
ˇ�˛ are usually replaced by

ˇ
ˇ0
˛

and
ˇ
ˇ1
˛

(see
for example Bouwmeester et al. 2001; Bruss and Leuchs 2007).

3.6.6 Correlations in the Singlet States. Conditional Probabilities

In this subsection we continue our discussion of entanglement by considering the
singlet state (3.84a) as an important specific case. Experimentally, a pure singlet
state has been prepared by Cirac and Zoller (1994). Another method is in principle
the observation of the decay of a spinless particle into a pair of two spin-1/2 parti-
cles. Lamehi-Rachti and Mittig (1976) performed an experiment in nuclear physics
involving low-energy scattering between protons and hydrogen atoms. In the
resulting proton – proton collision the two particles interact predominantly through
the singlet channel, and the polarization and correlation parameters were measured.

An important property of the singlet state is its invariance under rotations in spin
space (since the total spin is zero). This implies that

ˇ
ˇ��

˛

has the same form in any
set of basis states. For example, let us take the general vector a (3.51a) as quanti-
zation axis. States with spin up and spin down with respect to a will be denoted by
ˇ
ˇa.C/˛ and

ˇ
ˇa.�/˛, respectively. They can be expressed in terms of the basis states

ˇ
ˇC˛ and

ˇ
ˇ�˛ similar to (1.10). We will assume throughout this subsection that a lies

within the x–z-plane .˛ D 0/. We obtain:

ˇ
ˇa.C/˛ D ˇ

ˇC˛ cos
ˇ

2
C ˇ
ˇ�˛ sin

ˇ

2
: (3.86a)

The opposite spin state
ˇ
ˇa.�/˛ follows from the orthogonality condition which gives

ˇ
ˇa.�/˛ D ˇ

ˇC˛ sin
ˇ

2
� ˇ
ˇ�˛ cos

ˇ

2
: (3.86b)

The rotational invariance of
ˇ
ˇ��

˛

in spin space allows to write down immediately
the expansion

ˇ
ˇ��

˛ D 1p
2

�ˇ
ˇa.C/˛ˇˇa.�/˛ � ˇ

ˇa.�/˛ˇˇa.C/˛� ; (3.87)
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which has the same structure as (3.84a) although involving different states. (By sub-
stituting (3.86) into (3.87) the expansion (3.84a) can be directly rederived).

Both expressions, (3.84a) and (3.87), contain of course the same information on
the combined system. That makes it again evident that, prior to a measurement, it is
not possible to assign a definite spin state to one subsystem.

As shown by (3.81a) the reduced density matrices of both individually measured
beams are proportional to the identity matrix. Hence, if the spins of only one beam
are observed, each measurement series will give a random sequence of results,
either spin up or spin down. If both beams are observed in coincidence one detects
the correlation. In order to find out the amount of correlation between the two
measurements we calculate the parameters P .1/

a � P
.2/

b which follow from the
general equation (3.67c) and Table 3.1 as follows:

P .1/
a � P .2/

b D �a � b: (3.88a)

Throughout this and the following subsection it will always be assumed that a
and b are coplanar and are both contained within the x–z-plane. We have then the
alternative form

P .1/
a � P .2/

b D � cos.ˇ � ˇ0/: (3.88b)

This equation gives the extent of the correlation between the two measurements as
a function of the relative orientation ˇ � ˇ0 of the two measuring devices.

For example, if the orientations a and b of the two spin analyzers are parallel we
obtain

P .1/
a � P .2/

b D �1: (3.89a)

Both particles of a collision pair are always found in opposite spin states along
whichever direction a we choose to measure.

If both analyzers are set along opposite directions (ˇ � ˇ0 D 
) we have strict
correlation

P .1/
a � P .2/

b D 1: (3.89b)

Halfway between, for ˇ � ˇ0 D 
=2, the correlation parameter vanishes

P .1/
a � P .2/

b D 0: (3.89c)

It is instructive to rederive (3.88) and (3.89) in a more direct way by calculating
the probabilities W.a;b/Mm. As explained in Sect. 3.6.3, W.a;b/Mm denotes
the joint probability that the first particle of a collision pair is found with spin
component M with respect to a, and the second particle of the pair with spin
component m with respect to b. For example, the probability W.a;b/CC that a
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particle in the first beam is found in state
ˇ
ˇa.C/˛, and its partner in the second beam

in state
ˇ
ˇb.C/˛ follows from general quantum mechanical rules:

W.a;b/CC D ˇ
ˇ
˝

a.C/b.C/j��
˛ˇ
ˇ
2

D 1

2

ˇ
ˇ
˝

a.C/jC˛˝b.C/j�˛ � ˝

a.C/j�˛˝b.C/jC˛ˇˇ2; (3.90)

where we substituted (3.84a) for the singlet state and applied (A.7). The two factors
containing

ˇ
ˇa.C/˛ can be obtained immediately from (3.86a), and the results for

ˇ
ˇb.C/˛ are obtained by replacing the polar angle ˇ of a by the polar angle ˇ0 of b in
(3.86). This yields

W.a;b/CC D ˇ
ˇcos

ˇ

2
sin

ˇ0

2
� sin

ˇ

2
cos

ˇ0

2

ˇ
ˇ
2

D 1

2
sin2

�
ˇ � ˇ0

2

�

: (3.91a)

We can apply similar arguments to the other cases and we summarize the results
as follows:

W.a;b/C� D 1

2
cos2

�
ˇ � ˇ0

2

�

; (3.91b)

W.a;b/�C D 1

2
cos2

�
ˇ � ˇ0

2

�

; (3.91c)

W.a;b/�� D 1

2
sin2

�
ˇ � ˇ0

2

�

: (3.91d)

Using (3.63) we rediscover the solutions (3.88) and (3.89). For example, for ˇ D ˇ0
we obtain

W.a;b/CC D W.a;b/�� D 0; (3.92a)

and

W.a;b/C� D W.a;b/�C D 1

2
; (3.92b)

which gives perfectly anticorrelated measuring results. If the second analyzer is
rotated into a direction ˇ0 D ˇ˙
=2 we obtain that all four probabilities (3.91) are
equal to 1=4. All combinations of particle pairs are then equally likely and we have
no correlation between the measurements.
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Let us further analyze the results (3.91) in order to make the connection with
entanglement more explicit. Suppose the first observer chooses an arbitrary direction
a as orientation for his analyzer, and keeps a fixed. This detection direction can be
decided after the interaction of the two beams, when the particles have separated
again (delayed choice mechanism). The coincident measurement can be split into
two parts, such that the measurement on the first beam takes place first. Each particle
in the first beam is then projected into one of the two eigenstates of the analyzer,
ˇ
ˇa.C/˛ and

ˇ
ˇa.�/˛, respectively.

For example, assume that a particle has been found in state
ˇ
ˇa.C/˛. Quantum

mechanics predicts by means of (3.87) that its distinct collision partner in the
second beam, which has not yet interacted with any analyzer, is projected into the
definite spin state

ˇ
ˇa.�/˛ at the moment of the first measurement. Subsequently this

particle enters then the second analyzer, oriented along direction b, and is projected
into one of the two eigenstates of the analyzer,

ˇ
ˇb.C/˛ or

ˇ
ˇb.�/˛, with probability

ˇ
ˇ
˝

b.C/ja.�/˛ˇˇ2 or
ˇ
ˇ
˝

b.�/ja.�/˛ˇˇ2, respectively.
These probabilities will be evaluated by rederiving the joint probabilities (3.91)

in a slightly different way, for example

W.a;b/CC D ˇ
ˇ
˝

a.C/b.C/j��
˛ˇ
ˇ
2

D 1

2

ˇ
ˇ
˝

b.C/ja.�/˛ˇˇ2; (3.93a)

where we have substituted (3.87) for
ˇ
ˇ��

˛

and used the orthonormality of the states
ˇ
ˇa.C/˛ and

ˇ
ˇa.�/˛. Equation 3.93a suggests an interesting interpretation of the joint

probabilities. For example, the first factor in (3.93a) (and (3.91a)) represents the
probability W.a/C D 1=2 of detecting a particle in the first beam in state

ˇ
ˇa.C/˛

(before the second particle has been detected). The second factor in (3.93a) (and
(3.91a)) is the probability that the other member of the collision pair, which with cer-
tainty has been projected into state

ˇ
ˇa.�/˛ at the end of the measurement of the first

particle, is detected in state
ˇ
ˇb.C/˛ in the subsequent measurement by the second

analyzer.
The other joint probabilities can be interpreted accordingly:

W.a;b/C� D 1

2

ˇ
ˇ
˝

b.�/ja.�/˛ˇˇ2; (3.93b)

W.a;b/�C D 1

2

ˇ
ˇ
˝

b.C/ja.C/˛ˇˇ2; (3.93c)

W.a;b/�� D 1

2

ˇ
ˇ
˝

b.�/ja.C/˛ˇˇ2: (3.93d)

This reinterpretation of the probabilities has the advantage that the expressions
can be directly related to the main conceptions of entanglement, and gives perhaps
a more intuitive feeling for the contents of the preceding results.
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By comparing (3.91) and (3.93), or by direct calculation, we obtain the explicit
expressions:

ˇ
ˇ
˝

b.C/ja.�/˛ˇˇ2 D sin2
�
ˇ � ˇ0

2

�

; (3.94a)

ˇ
ˇ
˝

b.�/ja.�/˛ˇˇ2 D cos2
�
ˇ � ˇ0

2

�

; (3.94b)

ˇ
ˇ
˝

b.C/ja.C/˛ˇˇ2 D cos2
�
ˇ � ˇ0

2

�

; (3.94c)

ˇ
ˇ
˝

b.�/ja.C/˛ˇˇ2 D sin2
�
ˇ � ˇ0

2

�

: (3.94d)

The probabilities on the left-hand side of (3.94) are called conditional probabili-
ties in statistics. They are probabilities for one measurement conditional on the result
of another measurement. For example,

ˇ
ˇ
˝

b.C/ja.�/˛ˇˇ2 is the probability of finding
a particle in the second beam in the state

ˇ
ˇb.C/˛ after the second measurement,

under the condition, that its collision partner in the first beam has before been found
and registered in state

ˇ
ˇa.C/˛ (projecting the second particle in state

ˇ
ˇa.�/˛). The

relations (3.93) represent special cases of a more general relationship between joint
and conditional probabilities.

General probability theory requires that the conditional probabilities are normal-
ized, for example

ˇ
ˇ
˝

b.C/ja.�/˛ˇˇ2 C ˇ
ˇ
˝

b.�/ja.�/˛ˇˇ2 D 1; (3.95a)
ˇ
ˇ
˝

b.C/ja.C/˛ˇˇ2 C ˇ
ˇ
˝

b.�/ja.C/˛ˇˇ2 D 1: (3.95b)

Similarly, we must have

ˇ
ˇ
˝

b.C/ja.�/˛ˇˇ2 C ˇ
ˇ
˝

b.C/ja.C/˛ˇˇ2 D 1; (3.95c)
ˇ
ˇ
˝

b.�/ja.�/˛ˇˇ2 C ˇ
ˇ
˝

b.�/ja.C/˛ˇˇ2 D 1: (3.95d)

These conditions are satisfied by (3.94), so that there remains only one independent
probability.

It is perhaps appropriate to summarize the various possibilities for the singlet
state in Table 3.2. For example, the first two lines read that particle one has been
found and registered with spin up with respect to the orientation a of the first
analyzer – detector set, with probabilityW.a/C. Immediately afterwards its former
collision partner in the second beam is projected with certainty into state

ˇ
ˇa.�/˛; that

is with conditional probability unity. (This is the essential point of entanglement the-
ory which is responsible for the correlation of the first and the second measurement.)
Subsequently, this particle passes the second analyzer – detector assembly, oriented
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Table 3.2 The various possibilities for the singlet state

Result of first Second particle Result of second Joint
measurement projected into state measurement probability

State vector
ˇ
ˇa.C/˛ ˇ

ˇa.�/˛ ˇ
ˇb.C/˛

Probability W.a/C D 1=2 1
ˇ
ˇ
˝

b.C/ja.�/˛ˇˇ2 W.a; b/CC

State vector
ˇ
ˇb.�/˛

Probability
ˇ
ˇ
˝

b.�/ja.�/˛ˇˇ2 W.a; b/C�

State vector
ˇ
ˇa.�/˛ ˇ

ˇa.C/˛ ˇ
ˇb.C/˛

Probability W.a/� D 1=2 1
ˇ
ˇ
˝

b.C/ja.C/˛ˇˇ2 W.a; b/�C

State vector
ˇ
ˇb.�/˛

Probability
ˇ
ˇ
˝

b.�/ja.C/˛ˇˇ2 W.a; b/��

parallel to b, and is projected into one of the two eigenstates of the analyzer, either
ˇ
ˇb.C/˛ or

ˇ
ˇb.�/˛, with the corresponding probabilities. The last column relates to

the joint probabilities for the combined measurements.
Other cases than the singlet state can be treated similarly, for example following

the procedures in Appendix I.1 and using equations like (I.8). Care must be taken if
states with less than maximal entanglement are considered.

It is interesting that between the two measurements the second particle is in a
definite quantum mechanical state, whether it is observed or not. This represents an
element of reality in the sense of the EPR–paper to be discussed in the following
subsection.

3.6.7 Entanglement and Non-Locality. Bell Inequalities

The discussion in the preceding subsection has shown the characteristic trait of
entangled states. By performing an experiment on only one of the particles, not
only can this particle’s state vector be established by the measurement, but also
that of its partner can be inferred without interfering with it. Quantum mechanics
tells us that the result, obtained for a particle in one of the beams, depends on the
choice made for the setting of the analyzer – detector assembly for the other beam,
independent of how large their spatial separation is. This extraordinary feature of
quantum mechanics is usually referred to as non-locality.

These quantum mechanical predictions for entangled states are in sharp contrast
to classical expectations and have led to many controversial discussions, starting
with the famous EPR–paper (Einstein et al. 1935). The authors argued that physics
should combine

1. Locality: that is, the result of a measurement on one system should be unaffected
by operations on a distant system, which it has interacted with in the past.

2. Realism: that is, particles should possess definite properties whether or not they
are observed.
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This led eventually to so-called hidden-variable theories. The hope was that by
introducing hidden variables it might be possible to reproduce the quantum mecha-
nical results within a local–realistic theory. Einstein found entanglement between
spatially well-separated systems unbelievable.

However, in 1965 Bell derived a remarkable theorem which might be stated as
follows:

Theorem. There exists no local–realistic theory which reproduces all quantum me-
chanical results (Bell 1964).

This is a crucial result. It shows that quantum theory and the common-sense
assumption of local–realistic theories cannot both be right.

Bell derived a set of inequalities for measurable quantities for which quantum
mechanical predictions differ from those of any local–realistic theory. The important
point is that a more philosophical question (quantum mechanics versus EPR) can
thus be settled by experiment in a very direct way. And if quantum mechanics is
correct then non-locality is an important feature of our world.

A detailed discussion of these topics is outside the scope of this book and we
refer to the literature cited below. We will only give two examples.

Consider the following combination of correlation parameters

� D ˇ
ˇP .1/

a � P .2/

b � P .1/
a � P .2/

b0

ˇ
ˇC ˇ

ˇP
.1/

a0 � P .2/

b C P
.1/

a0 � P .2/

b0

ˇ
ˇ; (3.96)

where a; a0;b; and b0 are four unit vectors. It has been shown that in any local–
realistic theory, which uses hidden variables, the following inequality must hold for
any arrangement of the four vectors:

� � 2: (3.97)

This is one of a family of inequalities collectively called Bell inequalities. The result
(3.97) has been derived by Clauser et al. (1969). The inequality shows that in any
local–realistic theory there is an upper limit to the strength of correlation of distant
events.

Consider now the quantum mechanical predictions for�. Consider two particles
in a singlet state, far away from each other. Substitution of (3.88a) into (3.96)
yields

� D ˇ
ˇa � b � a � b0ˇˇC ˇ

ˇa0 � b C a0 � b0ˇˇ: (3.98)

Assume that the four vectors are coplanar and that the angles between a and b,
b and a0, and a0 and b0 are equal to 
=4 (with cosine 1=

p
2). The angle between

b0 and a is then 3
=4 (with cosine �1=p2).
We obtain from (3.98)

� D 2
p
2: (3.99)
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This result violates the inequality (3.97) by about 40%. This is an example of a
special situation where the quantum mechanical predictions cannot be reproduced
by local–realistic theories. There are of course many other arrangements of the four
vectors for which the quantum theoretical results are in accordance with (3.97).
Nevertheless, the result (3.99) is of great importance. It shows that it is impossible
to understand all results of quantum theory within a local framework. The quan-
tum mechanical correlations can be stronger than could ever exist between classical
systems.

Next we will discuss the mixed state, described by the density operator (3.69).
The only non-vanishing component of its correlation tensor is P .1/

z �P .2/
z according

to (3.70). Substitution of this result into (3.67c), and use of (3.51) yields

P .1/
a � P .2/

b D azbz
�

P .1/
z � P .2/

z

�

D � cosˇ cosˇ0; (3.100)

which is independent of f and g.
Employing this result we check the validity of the inequality (3.97). Let us denote

the polar angles of a and b by ˇ and ˇ0 as before, and the polar angles of b0 and a0 by
ˇ.b0/ and ˇ.a0/, respectively. Calculating the parameter (3.96) by adapting a more
general derivation by Selleri (1990), we obtain

� D ˇ
ˇ� cosˇ cosˇ0 C cosˇ cosˇ.b0/

ˇ
ˇ

C ˇ
ˇ� cosˇ.a0/ cosˇ0 C cosˇ.a0/ cosˇ.b0/

ˇ
ˇ

D ˇ
ˇ cosˇ

ˇ
ˇ
ˇ
ˇ� cosˇ0 C cosˇ.b0/

ˇ
ˇC ˇ

ˇ cosˇ.a0/
ˇ
ˇ
ˇ
ˇ cosˇ0 C cosˇ.b0/

ˇ
ˇ

� ˇ
ˇ� cosˇ0 C cosˇ.b0/

ˇ
ˇC ˇ

ˇ cosˇ0 C cosˇ.b0/
ˇ
ˇ

� 2: (3.101)

The last step follows from the general result, that x; y with
ˇ
ˇx
ˇ
ˇ � 1,

ˇ
ˇy
ˇ
ˇ � 1 satisfy

always the inequality
ˇ
ˇx � y

ˇ
ˇC ˇ

ˇx C y
ˇ
ˇ � 2:

Hence, the mixed state (3.69) does not violate the inequality (3.97). This is not
surprising if one remembers the classical nature of the mixture. Any particle is in
a definite quantum state,

ˇ
ˇC˛ or

ˇ
ˇ�˛, (because of the method of preparation), inde-

pendently of whether the particles are observed or not. This property corresponds
to an element of reality in the sense defined in the EPR–paper. Furthermore, the
two constituent beams of the mixture are correlated, but only because of classical
communication during the preparation process. Hence, the mixture should behave
similar to a classical system and the result (3.101) was to be expected.

More generally, it has been shown that any mixture of factorizable states satisfies
Bells inequalities (Selleri 1990).
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The ultimate proof of entanglement in a system is to show that Bell’s inequalities
are violated. In addition, any entangled state detected in this way violates local
realism.

3.6.8 Experimental Tests. Conclusions

In the preceding subsections we have discussed the phenomenon of entanglement,
or non-separability, and derived some of its surprising consequences. The apparent
non-locality of the quantum mechanical conclusions is in sharp contrast to the
common sense view of the classical local–realistic theories that whatever happens
in some place cannot instantaneously affect what happens at distant locations. This
point of view was particularly advocated in the EPR–paper mentioned above.

The discussion of these discrepancies was for many years considered as merely
of philosophical interest. This changed when Bell derived in 1965 his famous
theorem and pointed out the remarkable fact that the use of entanglement systems
allow decisive experimental tests between the quantum mechanical and the local–
realistic world-views by measuring certain combinations of correlation parameters,
and checking the validity limits of Bells inequalities as discussed in the preceding
subsection.

So far there has been only one experiment in which entanglement between
spin-1/2 particles has been tested and to which we have referred in Sect. 3.6.6
(Lamehi-Rachti and Mittig 1976). In this experiment correlated pairs of protons
in the singlet state were observed and their spin correlations measured. Overcoming
large difficulties the authors could show that the results were in agreement with
quantum mechanical predictions.

Most experiments have been performed with pairs of polarized photons, pio-
neered by Freedman and Clauser (1972), and followed by a large number of
experimental studies with increasing precision and efficiency. For example Aspect
et al. (1982) designed polarizers whose direction in space could be changed at such
high speed that the change could be made while the two correlated photons were still
in flight. Furthermore, Tittel et al. (1998) reported about experiments where it had
been possible to preserve entanglement over distances of about 10 km, in spite of the
ever present danger of decoherences because of interactions with the environment
(see for example Chap. 8 for a discussion of such decoherence processes). More
recently, several groups have succeeded to prepare atoms in entangled states (Hagley
et al. 1997).

In all experiments clear violation of Bells inequalities have been found. For
example, (Kwiat et al. 1995) reported a violation by 100 standard deviations in a
few minutes. In spite of some loopholes all experiments strongly suggest that nature
behaves quantum mechanically and non-locally. All experiments have confirmed
that entanglement is real and does not dissipate with increasing separation. It is not
appropriate to think of an entangled pair as two particles with their own individual
properties. Rather, an entangled system must be considered as a single entity even
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when they are widely separated from each other. In this entanglement Schrödinger
(1935) saw the characteristic trait of quantum mechanics, the one that enforces its
entire departure from classical line of thought.

Furthermore, entanglement of three and more particles has been studied the-
oretically and experimentally and it has been shown that such systems offer a
powerful and conceptually simpler approach to prove Bells theorem without using
inequalities (Greenberger et al. 1990). Such correlated states show a strikingly non-
classical behaviour.

There have been more discoveries with surprising and important consequences.
It was realized that these fundamentally non-classical states can be used to perform
tasks that cannot be achieved with classical systems. The basic concepts of super-
position and entanglement (in particular multi-particle entanglement) play a crucial
role in developments which offer new ways to technological advances. One can
mention here the developments in quantum information, quantum cryptography, and
quantum teleportation.

For detailed discussions and more references we must refer to the literature. We
list here a few books and review papers, starting with introductory texts: Selleri
(1990), Le Bellac (2006), Aspect (2001), Duncan et al. (2001), Auletta (2000),
Nielsen and Chuang (2000), Bouwmeester et al. (2001), Bruss and Leuchs (2007).
A very readable historical account has been given by Aczel (2003).



Chapter 4
Irreducible Components of the Density Matrix

4.1 Introduction

As discussed in Chaps. 1 and 2 it is often useful to expand ¡ in terms of a
conveniently chosen operator set Qi . This method has two main advantages. First
of all, it gives a more satisfactory definition of ¡ (see, for example, Sect. 1.1.7),
and secondly by using explicitly the algebraic properties of the basis operators the
caculations are often greatly simplified (see Sect. 2.5). The usefulness of this method
depends on the choice of the basis operator set. When the angular symmetries of
the ensemble of interest are important it is convenient to expand ¡ in terms of
irreducible tensor operators. This method provides a well-developed and efficient
way of using the inherent symmetry of the system. It also enables the consequences
of angular momentum conservation to be simply allowed for and enables dynamical
and geometrical factors in the equation of interest to be separated from each other.

The systematic use of tensor operators was first suggested by Fano (1953).
Since then they have been applied extensively, for example in angular correlation
theory in nuclear physics (Steffen and Alder 1975) and atomic physics (Blum
and Kleinpoppen 1979), in optical pumping work (Happer 1972; Omont 1977),
descriptions of quantum beat experiments (Fano and Macek 1973; Macek and Burns
1976; Andrä 1979) and experiments with laser-excited atoms (Hertel and Stoll
1978). The material presented in this and the following chapters is directly derived
from these papers.

In this chapter the theory which is central to the subsequent discussions in
this book will be presented and illustrated. In Sects. 4.2 and 4.3 spherical tensor
operators and state multipoles will be introduced and their main properties derived.
Extensive use will be made of angular momentum theory, but for the convenience
of the reader some of the basic concepts are derived in the text and all the formulas
which are used are listed in Appendix C.1. Readers who are not too familiar with
the relevant mathematical techniques may omit the details of the calculations in a
first reading.

K. Blum, Density Matrix Theory and Applications, Springer Series on Atomic, Optical,
and Plasma Physics 64, DOI 10.1007/978-3-642-20561-3 4,
© Springer-Verlag Berlin Heidelberg 2012
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The abstract theory will be illustrated by various examples. In Sect. 4.4 it will
be shown that the state multipole description of spin systems is but a generalization
of the approach of Sect. 1.1 which used the polarization vector. The discussion of
spin-1 particles will illustrate the necessity of introducing tensors of higher rank
than vectors.

In the following two sections it will be shown that the symmetry properties of
a system can often be exploited more directly by using the multipole components
than in terms of the density matrix elements. In Sect. 4.5 axially and spherically
symmetric ensembles will be considered. In Sect. 4.6 the consequences of reflection
invariance with respect to a given plane will be investigated.

In Sect. 4.6 we will continue with the discussion of the excited state density
matrix introduced in Sect. 3.5 and consider another important aspect of the multipole
expansion of ¡. The elements of ¡ contain the full information on the scattering
process; however, it is difficult to interpret these elements in terms of a physical
picture and it is in this connection that the multipole components of ¡ play an
important role. It is often possible to anticipate the properties of the multipole
components by considering the physics of the collision and we will illustrate this
using the orientation vector as an example.

Finally, in Sect. 4.7, the time evolution of state multipoles in the presence of an
internal or external perturbation will be considered.

The results obtained in this chapter will then be applied in Chaps. 5 and 6 where
the full power of the irreducible tensor method will become evident.

4.2 The Definition of Tensor Operators

4.2.1 The General Construction Rule

Consider two ensembles of particles, the first with angular momenta J 0 and the
second with angular momenta J . If the two ensembles interact it is convenient
to classify the possible states in terms of the total angular momentum and its z
component, which we will denote here by K and Q. Applying the usual angular
momentum coupling rules gives

.jJ 0J /KQi D
X

M 0M

.J 0M 0; JM jKQ/jJ 0M 0ijJM i (4.1)

The states jJMi are orthonormal since

hJ 0M 0jJM i D •M 0M•J 0J (4.2)

Let us now consider the set of operators jJ 0M 0ihJMj defined as outer products of
the angular momentum states as in (1.24). The state jJMi can be represented by
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a .2J C 1/-dimensional column vector with a unit element in the M th row and
zeros elsewhere, and the corresponding adjoint state hJMj is then represented by a
row vector with a unit element in the M th column and zeros elsewhere. The outer
product can then be represented by matrices using the rule (1.24).

It is convenient to combine the operators jJ 0M 0ihJMj in a way similar to (4.1).
A set of operators T .J 0J /KQ is defined by the relation1

• T .J 0J /KQ D
X

M 0M

.�1/J�M .J 0M 0; J �M jKQ/jJ 0M 0ihJM j (4.3)

The Clebsch-Gordan coefficient vanishes unless the usual angular momentum
coupling rules are satisfied:

• jJ 0 � J j � K � J 0 C J; �K � Q � K (4.4)

As a consequence, for any given pair of angular momenta J 0 and J the number of
operators (4.3) is limited; thus, for example, if J 0 D J D 1 the possible operators
are one withK D 1 (andQ D 0; ˙1), and five withK D 2 (andQ D ˙2; ˙1; 0).

An explicit matrix representation of the operators (4.3) can be obtained by
“sandwiching” (4.3) between states hJ 0N 0j and jJNi .N 0 D J 0; : : : ;�J 0; N D
J; : : : ;�J / and applying condition (4.2):

hJ 0N 0jT .J 0J /KQjJNi
D
X

M 0M

.�1/J�M.J 0M 0; J �M jKQihJ 0N 0jJ 0M 0ihJM jJN i

D .�1/J�N .J 0N 0; J �N jKQ/ (4.5)

The set of all elements of a given operator T .J 0J /KQ defines a matrix with
.2J 0 C 1/ rows and .2J C 1/ columns:

T .J 0J /KQ D
0

B
@

hJ 0J 0jT .J 0J /KQjJJi hJ 0J 0jT .J 0J /KQjJ; J � 1i : : : hJ 0J 0jT .J 0J /KQjJ;�J i
hJ 0; J 0 � 1jT .J 0J /KQjJJi hJ 0; J 0 � 1jT .J 0J /KQjJ; J � 1i : : : hJ 0; J 0 � 1jT .J 0J /KQjJ;�J i

hJ 0;�J 0jT .J 0J /jJJi hJ 0;�J 0jT .J 0J /KQjJ; J � 1i : : : hJ 0; J 0jT .J 0J /KQjJ;�J i

1

C
A

(4.6)

If J 0 D J this gives a .2J C 1/-dimensional square matrix.
The inverse form of (4.3) is obtained by multiplying both sides with a Clebsch-

Gordan coefficient .J 0N 0; J � N jKQ/, summing over all values of K and Q,
and using the orthogonality properties of the Clebsch-Gordan coefficients (see
Appendix C.1):

1We will only consider operators with integer K .
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X

KQ

.J 0N 0; J �N jKQ/T .J 0J /KQ

D
X

M 0M

.�1/J�M
2

4
X

KQ

.J 0N 0; J �N jKQ/.J 0M 0; J �M jKQ/

3

5 jJ 0M 0ihJMj

D .�1/J�N jJ 0N 0ihJNj

or
jJ 0N 0ihJNj D

X

KQ

.�1/J�N .J 0N 0; J �N jKQiT .J 0J /KQ (4.7)

Finally, if the 3j -symbol notation is used for the coupling coefficient the defini-
tion (4.3) can be rewritten as

• T .J 0J /KQ D
X

M 0M

.�1/J 0�M 0

.2K C 1/1=2
�
J 0 J K

M 0 �M �Q
�

jJ 0M 0ihJMj (4.8)

which gives

• hJ 0M 0jT .J 0J /KQjJMi D .�1/J 0�M 0

.2K C 1/1=2
�

J 0 J K

M 0 �M �Q
�

(4.9)

This particular form is of great utility since the special symmetry properties of
the 3j symbol (C.5) allow the corresponding symmetry properties of the tensor
operators to be treated in the most direct way.

4.2.2 Transformation Properties Under Rotations.
The Rotation Matrix

In order to clarify the meaning of (4.3) we will now consider the transformation
properties of the tensor operators under rotations. The angular momentum states
(4.1) and the operators (4.3) are defined with respect to a fixed coordinate system,
for example, with axesX; Y; Z. Suppose that a second system with axes x; y; z is
obtained by the following two consecutive rotations: (1) a rotation of angle ® about
theZ axis (the new axes are then x0; y; Z), and (2) a rotation of angle ™ about the y
direction (which transforms x0 andZ into x and z, respectively). These rotations are
counterclockwise when looking down the rotation axis toward the origin. The Euler
angles as defined by Edmonds (1957) are then given by ’ D ®; “ D ™; ” D 0: ™

and ® are the polar angles of the z axis with respect to the XYZ system (see Fig. 4.1).
The x axis has polar angles
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Fig. 4.1 Illustration of the rotation defined by the angles ‚ and ®

.™ C 90ı; ®/ and the y axis is specified by .90ı; ®C 90ı/

The angular momentum operator J has a component Jz with respect to the Z axis
and a component Jz with respect to the z axis. We will denote the eigenvalues of Jz

by M and the eigenvalues of Jz by m. An eigenstate jJMi of Jz is not an eigenstate
for Jz for Z ¤ z because in general the two operators do not commute. Using the
superposition principle (2.1) the state jJMi can be written as a linear superposition
of the eigenstates jJmi of Jz with expansion coefficients which will depend on the
angular momentum quantum numbers and the Euler angles ¨ D .”; “; ’/. It is
customary to denote the expansion coefficients byD.¨/.J /mM :

jJMi D
X

m

jJmiD.¨/JmM (4.10)

We can interpret the coefficients as the probability amplitudes of finding a state
jJmi in a given state jJMi if the latter system is related to the former by the Euler
angles ¨. For fixed J the set of all coefficients can be written in the form of a
matrix, call the rotation matrix the elements of which are the amplitudes D.¨/.J /mM .
Explicit expressions for various J are given, for example, in Edmonds (1957) (see
also Appendix C.1).

The transformation law for the adjoint state hJMj is [see (2.5)]

hJMj D
X

m

D.¨/
.J /�

mM hJMj (4.11)
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Let us now relate the operators T .J 0J /KQ, defined in the XYZ system, to operators
T .J 0J /Kq which are defined in the xyz system. In order to do this (4.10) and (4.11)
are inserted into (4.3) and the symmetry property

D
.J/�

mM D .�1/m�MD.J/
�m�M

of the rotation matrix. Since m � M is an integer .�1/m�M D .�1/M�m and we
obtain

T .J 0J /KQ D
X

M 0M

.�1/J 0�M .J 0M 0; J �M jKQ/

D
X

m0m

jJ 0m0ihJMj
X

M 0M

.J 0M 0; J �M jKQ/

� .�1/J�mD.¨/.J
0/

m0M 0D.¨/
.J /
�m�M

D
X

m0m

.�1/J�mjJ 0m0ihJmj
X

kqq0

.J 0m0; J �mjkq/

�
"
X

M 0M

.J 0M 0; J �M jKQ/.J 0M 0; J �M jkq0/D.k/

qq0

#

D
X

q

"
X

m0m

.�1/J�m.J 0m0; J �mjKq/jJ 0m0ihJmj
#

D.¨/
.K/
qQ (4.12)

which finally gives

• T .J 0J /KQ D
X

q

T .J 0J /KqD.¨/
.K/
qQ (4.13)

In obtaining (4.13) the product D.¨/.J
0/

m0M 0D.¨/
.J /
�m�M has been written as a linear

combination of matrices D.¨/.k/qq0 [see (C.17)], performed the sum over M 0 and
M using the orthonormality relations of the Clebsch-Gordan coefficients, and
finally the definition (4.3) applied. Equation 4.13 expresses the operators T .J 0J /KQ

defined in the XYZ system, in terms of the operators T .J 0J /Kq, defined in the xyz
system.

Operators which transform under rotations according to (4.13) are called irre-
ducible tensor operators of rank K and component Q. Equation 4.13 shows that the
rank of a tensor operator remains invariant under a rotation. We will discuss some
examples of the use of this equation in the following section.
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4.2.3 Examples

In this section we will consider the case of sharp angular momentum .J 0 D J / and
denote the corresponding tensor operators by T .J /KQ. First of all we will show that
the operator with rank K D 0 is a scalar operator, that is, it remains invariant under
all rotations. This can be demonstrated by showing that T .J /00 is proportional to
the .2J C1/-dimensional unit matrix 1. From the definition (4.8) and (C.6) we have

T .J /00 D
X

M 0M

.�1/J 0�M 0

�
J 0 J 0

M 0 �M 0

�

jJM0ihJMj

D 1

.2J C 1/1=2

X

M

jJMihJMj

D 1

.2J C 1/1=2
1 (4.14)

where the completeness relation˙M jJMihJMj D 1 has been used.
Tensor operators of rank K D 1 are called vector operators. The three vector

components T .J /1Q can be related to the components of the angular momentum
vectors J with respect to the fixed XYZ system, JX; JY ; JZ , as follows. We
introduce the spherical vector components defined as

J˙ D � 1

21=2
.JX ˙ iJY /; J0 D JZ (4.15)

Thus
J0jJMi D M jJMi

and, for sharp J; J0 can be represented by a .2J C 1/-dimensional diagonal matrix
with elements

hJM0jJ0jJMi D M•M 0M (4.16a)

T .J /10 is represented by the matrix

hJM0jT .J /10jJMi D .�1/J�M.3/1=2
�

J J 1

M 0 �M 0

�

D
�

3

.2J C 1/.J C 1/J

�1=2

M•M 0M (4.16b)

which satisfies (4.8). Similarly, using the standard results of angular momentum
theory:

J˙1jJMi D � 1

21=2
Œ.J �M/.J ˙M C 1/�1=2jJM ˙ 1i

the matrix representations of the other components are

hJM0jJ˙1jJMi D � 1

21=2
ŒJ �M/.J ˙M C 1/�1=2•M 0 ;M˙1 (4.17a)
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On the other hand, using (4.9)

hJM0jT .J /1;˙1;jJMi D .�1/J�M 0

31=2
�
J J 1

M 0 �M �1
�

D �31=2

21=2

�
.J �M/.J ˙M C 1/

.2J C 1/.J C 1/J

�1=2

•M 0;M˙1 (4.17b)

By composing (4.16a) and (4.17a) with (4.16b) and (4.17b), respectively, we obtain
the operator relation:

T .J /1Q D
�

3

.2J C 1/.J C 1/J

�1=2

JQ (4.18)

Thus the vector operators T .J /1Q are proportional to the spherical components of
the angular momentum operator.

Similarly, the second-rank tensor T .J /2Q can be related to quadratic combi-
nations of the angular momentum vector components. The spherical components
T .J /2Q of the second-rank tensor are related to the Cartesian components by the
following equations (which are given without proof):

T .J /20 D N2

61=2

�

3J 2Z � J2
�

T .J /2˙1 D �N2

2
Œ.JXJZ C JZJX/˙ i.JY JZ C JZJY /� (4.19)

T .J /2˙2 D N2

2




J 2X � J 2Y ˙ i.JXJY C JY JX/
�

with

N2 D
�

30

.2J C 3/.2J C 1/J.2J � 1/.J C 1/

�1=2

(4.20)

It should be noted that relations (4.18) and (4.19) hold only in the case of sharp
angular momentum. The matrix elements of JQ vanish between states hJ 0M 0j and
jJMi with J 0 ¤ J , whereas the elements of T .J 0J /KQ are in general nonzero for
J 0 ¤ J . We will return to this point in the following section.

4.2.4 Some Important Properties of the Tensor Operators

The adjoint T .J 0J /�KQ of an operator T .J 0J /KQ is defined by expressing its matrix
elements in terms of the elements (4.9):

D

JM
ˇ
ˇ
ˇT .J 0J /�KQ

ˇ
ˇ
ˇ J 0M 0

E

D hJ 0M 0jT .J 0J /KQjJMi� (4.21)
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In this case the star denoting the complex conjugate is superfluous because the
elements (4.9) are real. Equation 4.21 defines a matrix representation of T .J 0J /�KQ.
This is a matrix with .2J C 1/ rows and .2J 0 C 1/ columns which is obtained by
interchanging the rows and columns of the matrix (4.9). In order to obtain a relation
between the operators the right-hand side of (4.21) is transformed into a matrix wiht
.2J C 1/ rows and .2J 0 C 1/ columns. Substituting (4.9) into (4.21) and using the
symmetry property (C.5a) of the 3j symbol yields

D

JM
ˇ
ˇ
ˇT .J 0J /�KQ

ˇ
ˇ
ˇ J 0M 0

E

D .�1/J 0�M 0

�
J 0 J K

M 0 �M �Q
�

.2K C 1/1=2

D .�1/J 0�M 0

.2K C 1/1=2
�
J J 0 K

M �M 0 Q

�

D .�1/J 0�JCQhJMjT .JJ0/K�QjJ 0M 0i (4.22)

where the 3j symbol in the second line has been expressed in terms of the elements
(4.9). From (4.22) it follows that

• T .J 0J /�KQ D .�1/J 0�JCQT .JJ0/K�Q (4.23)

where now both operators are represented by matrices with .2J C 1/ rows and
.2J 0 C 1/ columns.

Equation 4.23 can be used to derive an important result. With the help of (4.9)
and (4.21) and the orthonormality condition of the 3j symbols we obtain

• tr T .J 0J /KQT .J
0J /K0Q0 D

X

M 0M

hJ 0M 0jT .J 0J /KQjJMi
D

JM
ˇ
ˇ
ˇT .J 0J /�

K0Q0

ˇ
ˇ
ˇJ 0M 0E

D •K0K•Q0Q (4.24)

It should be noted that the product T .J 0J /KQT .J
0J /�

K0Q0 , corresponds to a square
matrix with .2J 0 C 1/ rows and columns and hence the trace of the product is well
defined. It follows from (4.24) that

tr T .J /KQ D tr T .J /KQ � 1 D .2J C 1/1=2•K0•Q0 (4.25)

where we used the relation (4.14). All tensors T .J /KQ therefore have zero trace
except the monopole.

Finally, we recall from angular momentum theory that all irreducible tensor
operators VKQ satisfy the Wigner-Eckart theorem:

• hJ 0M 0jVKQjJMi D .�1/J 0�M 0

�
J 0 K J

�M 0 Q CM
�

hJ 0kVKkJ i (4.26)
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It is important to note that the “reduced” matrix element hJ 0kVKkJ i is a scalar and
independent ofM 0; M , andQ. The 3j symbol, on the other hand, is a well-defined
number which reflects the geometry of the interaction. The Wigner-Eckart theorem
therefore separates out those quantities which depend explicitly on the dynamics of
the interaction from those which are purely geometrical.

Applying (4.26) to the tensor operators T .J 0J /KQ gives

hJ 0M 0jT .J 0J /KQjJMi D .�1/J 0�M 0

�
J 0 K J

�M 0 Q M

�

hJ 0kTKkJ i (4.27)

where hJ 0kTKkJ i is the corresponding reduced matrix element. Comparing (4.27)
with (4.9) and using the symmetry property of the 3j symbol (C5) it can be seen that

hJ 0kTKkJ i D .2K C 1/1=2 (4.28)

Inserting (4.28) back into (4.27) shows that the tensor operators T .J 0J /KQ are
purely geometrical quantities.

4.3 State Multipoles (Statistical Tensors)

4.3.1 Definition of State Multipoles

Consider an ensemble of particles in various angular momentum states jJMi
characterized by a density matrix ¡ with elements hJ 0M 0j¡jJMi [see, for example,
(2.30)]. The density operator in the fjJMig representation can then be written in
the form

¡ D
X

J 0JM0M

hJ 0M 0j¡jJMijJ 0M 0ihJMj (4.29)

according to (2.10) and (2.11). Substitution of (4.7) into (4.29) yields

¡ D
X

J 0JKQ

"
X

M 0M

hJ 0M 0j¡jJMi.�1/J 0�M 0

�
J 0 J K

M 0 �M �Q
�

� .2K C 1/1=2
�

T .J 0J /KQ (4.30)

The state multipoles or statistical tensors are defined as

•

D

T .J 0J /�KQ

E

D
X

M 0M

.�1/J 0�M 0

.2K C 1/1=2
�
J 0 J K

M 0 �M �Q
�

hJ 0M 0j¡jJMi (4.31)
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Using (4.31) in (4.30) gives the expansion of the density operator in terms of
irreducible tensor operators:

• ¡ D
X

J 0JKQ

D

T .J 0J /�KQ

E

T .J 0J /KQ (4.32)

Multiplying both sides of (4.32) by T .J 0J /�
K0Q0 , taking the trace, and using the

relation (4.24) gives

• D

T .J 0J /�KQ

E

D tr ¡T .J 0J /�KQ (4.33)

which is equivalent to (4.31). The expression (4.31) can be inverted by multiplying
both sides by

.2K C 1/1=2
�
J 0 J K

N 0 �N �Q
�

and summing over all values of K andQ. This gives

• hJ 0N 0j¡jJNi D
X

KQ

.�1/J 0�N 0

.2K C 1/1=2
�
J 0 J K

N 0 �N �Q
�

�
D

T .J 0J /�KQ

E

(4.34)

The two descriptions of a system, in terms of density matrix elements and in terms
of state multipoles, are therefore equivalent. They can be transformed into each
other by applying (4.31) and (4.34). Equations 4.31–4.34 are of great importance
in all problems where angular momentum properties play a role, for example in
angular correlation theory, optical pumping work, and spin-polarization phenomena.
The utility of the state multipoles will become evident through the examples and
discussions in the following chapters of this book.

If the ensemble of interest is an incoherent mixture of J states the density matrix
is diagonal in J according to Sect. 2.3:

hJ0M 0j¡jJMi D hJM0j¡jJMi•J 0J

and from (4.31) follows

D

T .J 0J /�KQ

E

D
D

T .J /
�
KQ

E

•J 0J

Equation 4.32 then reduces to

¡ D
X

JKQ

D

T .J /
�
KQ

E

T .J /KQ (4.35)
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This result shows that multipoles T .J 0J /KQ with J 0 ¤ J describe the coherence
between states of different angular momentum J.

If the ensemble of interest is an incoherent superposition of states with different
quantum numbers M , then the density matrix is diagonal in M and (4.31) shows
that all multipoles with Q ¤ 0 vanish. The corresponding density operator is then
given by

¡ D
X

J 0JK

hT .J 0J /�K0T .J
0J /K0 (4.36)

Hence the coherence between states with different quantum number M is character-
ized by the nonvanishing multipoles with Q ¤ 0.

4.3.2 Basic Properties of State Multipoles

The hermiticity condition (2.12) becomes

hJ 0M 0j¡jJMi D †JMj¡jJ 0M 0i� (4.37)

for the case under discussion here. By taking the complex conjugate of (4.31), using
(4.37) we obtain

•
hT .J 0J /�KQi� D .�1/J 0�JCQhT .JJ0/�K�Q (4.38)

For sharp angular momentum J 0 D J (4.38) implies

•
hT .J /�KQi� D .�1/QhT .J /�K�Q (4.39)

which relates the multipoles of components Q and �Q to each other. In particular

(4.39) ensures that the multipoles
D

T .J /
�
KQ

E

are real numbers.

In many cases an alternative set of parameters is used:

hT .J 0J /KQi D tr ¡T .J 0J /KQ (4.40a)

[employing the operator T .J 0J /KQ instead of its adjoint]. Substitution of (4.23) into
(4.40a) and use of the definition (4.33) yields

hT .J 0J /�KQi D .�1/J 0�JCQhT .JJ0/K�Qi (4.40b)

Applying (4.38) the two parametrizations can be seen to be related to each other by

hT .J 0J /�KQi� D hT .J 0J /KQ (4.40c)
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In order to see the significance of (4.31) we will consider the transformation

properties of the state multipoles under rotations. A set of multipoles
D

T .J 0J /�KQ

E

can be defined with respect to a coordinate system with axes X, Y, Z with
corresponding quantum numbers M 0; M; Q in (4.31). A second set of multipoles
D

T .J 0J /�Kq

E

can be defined with respect to the coordinate system x, y, z shown in

Fig. 4.1. Using (4.40c) and (4.13),

hT .J 0J /�KQi D hT .J 0J /KQi� D Œtr ¡T .J 0J /KQ�
�

D
"
X

q

D.¨/
.K/
qQ tr ¡T .J 0J /Kq

#�

Using (4.40a, c) then gives

• hT .J 0J /�KQi D
X

q

hT .J 0J /�KqiD.¨/.K/�qQ (4.41)

This result shows that the state multipoles transform as irreducible tensors of rank
K and component Q.

4.3.3 Physical Interpretation of State Multipoles. The Orientation
Vector and Alignment Tensor

The irreducible components
D

T
�

KQ

E

of the density matrix in general have a deeper

physical significance than the elements of ¡. In this section we will discuss the
physical interpretation of the lower-rank tensors in the case of sharp angular
momentum.

The tensor with rankK D 0 is merely a normalization constant. Taking the trace
of (4.32) and using (4.25) gives

hT .J /�00i D tr ¡

.2J C 1/1=2
(4.42)

The three components with K D 1 and Q D ˙1; 0 transform as the components
of a vector. From (4.18) and the definition (4.33) it is readily found that

hT .J /�1Qi D
�

3

.2J C 1/.J C 1/J

�1=2

tr ¡J �Q

D
�

3

.2J C 1/.J C 1/J

�1=2

hJ �Qitr ¡ (4.43)
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where the expectation value
D

J
�
Q

E

of the operator J �Q is defined by (2.19a). Taking

the complex conjugate of (4.43) and using the relation (4.40c) we obtain the
alternative form:

hT .J /1Qi D
�

3

.2J C 1/.J C 1/J

�1=2

hJQi tr ¡ (4.44a)

The three parameters
D

T .J /
�
1Q

E

with Q D ˙1; 0 are often called the components

of the “orientation vector.” As shown by (4.43) the orientation vector is proportional
to the net angular momentum hJi of the ensemble under discussion. Since

h�i D �g�BhJi (4.45)

where h�i denotes the magnetic dipole vector averaged over the ensemble under
consideration, it can be seen that the orientation vector is proportional to the net
magnetic dipole vector of the given system (g is the Landé factor, �B the Bohr
magneton).

In a similar way the components
D

T .J /
�
2Q

E

of the second-rank tensor can be

expressed in terms of quadratic combinations of the angular momentum components
using (4.19) and (4.33). For example,

hT .J /�20i D N2

61=2
h3J 2Z � J2i tr ¡ (4.46)

The tensor
D

T .J /
�
2Q

E

is called the alignment tensor. Its physical significance follows

from the fact that the components
D

T .J /
�
2Q

E

are proportional to the spherical

components hQ2Qi of the electric quadrupole tensor. This can be seen in the
following way. The expectation value hQ2Qi is defined by (2.19a). Applying the
Wigner-Eckart theorem to the matrix elements of Q2Q gives

hQ2Qi tr ¡ D tr ¡Q2Q

D
X

M 0M

hJM0j¡jJMihQ2QjJM0i

D hJ kQ2kJ i
X

M 0M

hJM0j¡jJMi.�1/J�M
�
J 2 J

�M Q M 0
�

Using the symmetry properties of the 3j symbols and substitution of (4.31)
then gives

hQ2Qi tr ¡ D hJ k Q2 k J i
51=2

hT .J /2Qi (4.47)
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where the reduced matrix element is proportional to the quadrupole moment of the
system (see, for example, Edmonds 1957).

Equation 4.47 illustrates how the expansion of ¡ in terms of irreducible com-
ponents, combined with the Wigner-Eckart theorem, enables the geometrical and
dynamical properties of the system to be separated. The reduced matrix element
contains all information on the dynamics while the tensor hT .J /2Qi describes the
geometrical properties of the relevant ensemble. This aspect of the theory will be of
increasing importance to our subsequent discussions.

The components of the alignment tensor can be expressed in terms of Cartesian
components. From (4.19) we obtain, for example,

hT20 D N2

.6/1=2
h3J 2Z � J 2i (4.48)

assuming that tr¡ D 1.
Relations like (4.43) and (4.48) provide a physical interpretation of state multi-

poles that may be useful in depicting the ensemble. In the classical limit they become
moments of spatial angular momentum distributions. We will study the classical
interpretation in Sects. 4.5 and, in particular, 7.2. Furthermore, in Sect. 4.6.5 we will
show that there is a close relation between the alignment components and shape and
spatial orientation of atomic charge clouds.

• Finally, we give the following definition. A system is oriented if at least one
multipole withK odd is nonvanishing. The system is said to be aligned if at least
one tensor component with K even is different from zero.

The results given in this subsection hold only for sharp J . Multipoles
D

T .J 0J /�KQ

E

describe the coherence between states of different momenta within

a system, or the joint multipoles of two systems with angular momenta J 0 and J
respectively (for example, orbital angular momentum and spin). Applications will
be given in subsequent chapters (for example in Sect. 4.6).

4.4 Examples: Spin Tensors

4.4.1 Spin Tensors for Spin-1/2 Particles

We start by reexamining the description of spin-1/2 particles characterized by
a density matrix ¡ with elements hm0j¡jmi. We define a set of stat multipoles
D

T .S/
�
KQ

E

, the spin tensors, by means of (4.31). Thus, for S D 1=2, we write

hT .1=2/�KQi D
X

m0m

.�1/.1=2/�m0

.2K C 1/1=2
�
1=2 1=2 K

m0 �m �Q
�

hm0j¡jmi (4.49)
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Because of condition (4.4) only terms withK D 0 andK D 1 are allowed in (4.49).
The monopole with K D 0 is a normalization constant. If the spin-1/2 density
matrix is normalized so that tr ¡ D 1 as in Sect. 1.1, then using (4.42) the monopole
term is given by

hT .1=2/00i D 1=21=2 (4.50)

The three vector components
D

T .1=2/
�
1Q

E

are related to the corresponding compo-

nents of the spin vector by (4.44a):

hT .1=2/�1Qi D 21=2hSQi� (4.51a)

where SQ denotes the Qth spherical component of the spin operator S as defined
by (4.15). Using the definition of the Pauli matrices .1=2/¢i D Si.i D x; y; z/ and
of the polarization vector P we obtain

hT .1=2/�1Qi D P �
Q=2

1=2 (4.51b)

Thus the state multipoles (spin tensors)
D

T .1=2/
�
1Q

E

are proportional to the spheri-

cal components of the polarization vector defined by (4.15):

P˙1 D �.1=21=2/.Px ˙ iPy/; P0 D Pz (4.52)

The expansion of the spin-1/2 density matrix in terms of spin tensors can be obtained
by applying (4.32):

¡ D
X

KQ

hT .1=2/�KQiT .1=2/KQ

D .1=2/1 C
X

Q

hT .1=2/�1QiT .1=2/1Q (4.53)

which is simply a reformulation of (1.48).

4.4.2 Description of Spin-1 Particles

Spin-1 particles are described by three basic states corresponding to the three
possible eigenvalues of the operator Sz. These states can be represented in form
of the three-dimensional column vectors

0

@

1

0

0

1

A ;

0

@

0

1

0

1

A ;

0

@

0

0

1

1

A (4.54a)
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In the standard representation (4.54a) the operators Sx; Sy; Sz are given by the
matrices

Sx D 1

21=2

0

@

0 1 0

1 0 1

0 1 0

1

A ; Sy D i

21=2

0

@

0 �1 0

1 0 �1
0 1 0

1

A ; Sz D
0

@

1 0 0

0 0 0

0 0 �1

1

A ; (4.54b)

The components of the polarization vector of spin-S particles are defined by the
relation

Pi D hSii
S

(4.55)

.i D x; y; z/. For S D 1=2 (4.55) reduces to (1.5). For S D 1 we have

Pi D hSii (4.56a)

It is instructive to calculate P for the three basis states j C 1i; j0i; j � 1i. Using
the explicit representations (4.54a) and (4.54) and performing the calculations in
the same way as in Sect. 1.1.2 it is found that Px D Py D 0 in all three cases and
Pz D 1; Pz D 0; Pz D �1 for the states j C 1i; j0i; j � 1i, respectively.

It is important to note that the state j0i has a polarization vector of zero
magnitude. This shows a fundamental difference between spin-1/2 and spin-1
particles: For S D 1 it is impossible to have a pure spin state which does not have
a preferred direction (that is, there need not be a direction in which the spins are
“pointing”). This is easily understood in terms of the semiclassical vector model.
The state M D 0 is represented by a spin vector perpendicular to the z axis and
precessing around it. Clearly, in this case there can be a preferred axis (z axis) but it
is not possible to specify a direction along this axis. It is this property in particular
which makes it necessary to consider quantities of higher rank than the polarization
vector. The quantities which are required must not depend on the direction of the z
axis, and hence quadratic combinations like

˝

S2z
˛

or, more generally, components of
second-rank tensors can be used.

Furthermore, if a beam of particles in the pure state j0i is compared with a
mixture of NC D N=2 particles in the state j C 1i and N� D N=2 particles in
the state j �1i, then in both cases P D 0. Thus knowledge of the polarization vector
alone is insufficient for a complete specification of spin-1 particles and additional
parameters must be introduced.

The most systematic way to obtain all the necessary parameters is to construct

the relevant spin tensors
D

T .S/
�
KQ

E

for S D 1. If the elements of the spin-1 density

matrix are denoted by hM 0j¡jM i, then from (4.31)

D

T .1/
�
KQ

E

D
X

M 0M

.�1/1�M 0

.2K C 1/1=2
�
1 1 K

M 0 �M �Q
�

hM 0j¡jM i (4.57)
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Because of condition (4.4) it is necessary to construct a monopole, a vector, and a
second-rank tensor. The monopole is specified by the normalization:

D

T .1/
�
00

E

D 1=31=2 (4.58)

The corresponding density matrix can then be written in the form

¡ D .1=3/1 C
X

Q

D

T .1/
�
1Q

E

T .1/1Q C
X

Q

D

T .1/
�
2Q

E

T .1/2Q (4.59)

Consequently, if the hermiticity condition (4.39) is taken into account, the most gen-
eral spin-1 density matrix is completely specified in terms of eight real parameters
(nine if the normalization tr ¡ D 1 is dropped and tr ¡ considered as a parameter to
be determined experimentally).

As an example consider an incoherent mixture of NC particles in the state
j C 1i; N� particles in the state j � 1i, and N0 particles in the state j0i. In this case
the density matrix is diagonal in the representation (4.53):

hM 0j¡jM i D WM•M 0M (4.60)

where WM D NM=N and N is the total number of particles. Substitution of (4.60)
into (4.57) yields

D

T .1/
�
20

E

D .1=61=2/.WC1 CW�1 � 2W0/ D NC1 CN�1 � 2N0

N.6/1=2
(4.61)

for the tensor polarization and

hT .1/�10i D WC1 �W�1
21=2

D NC �N�
21=2N

(4.62)

for the vector polarization. (All components with Q ¤ 0 are zero).

The components
D

T .S/
�
1Q

E

are proportional to the spherical components of the

polarization vector. Substituting S for J into (4.44a) and taking definition (4.56a)
into account gives

D

T .1/
�
1Q

E

D .1=21=2/P �
Q (4.63)

where the spherical components of P are defined by (4.52). The five components of

the second-rank tensor
D

T .S/
�
2Q

E

can be constructed from quadratic combinations

of the spin operators S as in (4.19) with Ji D Si and N2 D 1.
The use of Cartesian tensors in actual calculations can have some advantages

but the spherical tensors
D

T .S/
�
KQ

E

have a simpler algebra, which in general

considerably simplifies the calculations.
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Finally, let us consider the consequences of condition (2.22). Substitution of
(4.59) for ¡ and use of (4.25) yields tr ¡ D 1 and

tr.¡/2 D
X

KQ

K 0Q0

D

T .1/
�

K0Q0

E D

T .1/
�
KQ

E

tr ŒT .1/K0Q0T .1/KQ�

D
X

KQ

.�1/Q
D

T .1/
�
KQ

E D

T .1/
�
K�Q

E

D
X

KQ

ˇ
ˇ
ˇ

D

T .1/
�
KQ

Eˇ
ˇ
ˇ

2

where (4.23), (4.24), and (4.39) have been used. Thus the spin tensors are restricted
such that

X

KQ

ˇ
ˇ
ˇ

D

T .1/
�
KQ

Eˇ
ˇ
ˇ

2 � 1 (4.64)

If (and only if) ¡ characterizes a pure state then

X

KQ

ˇ
ˇ
ˇ

D

T .1/
�
KQ

Eˇ
ˇ
ˇ

2 D 1 (4.65)

In the literature a beam of spin-1 particles is usually referred to as completely
polarized if the beam is in a pure state, that is, if (and only if) condition (4.65) is
satisfied. In this case the state of the beam can be represented by a single state vector
j¦i which can be expanded in terms of the basic states (4.54a):

j	i D aC1j C 1i C a0j0i C a � 1j � 1i (4.66)

Equation 4.66 shows that in general a completely polarized beam of spin-1 particles
is specified by five real parameters, for example the magnitudes of the coefficients,
aM , and their relative phases.

The formalism which has been developed here is of considerable interest in the
description of scattering processes involving polarized particles. This topic will not
be discussed in this book except for a few relevant formulas which are given in
Appendixes A and B. Detailed accounts can be found in textbooks on scattering
theory, for example in the books by Rodberg and Thaler (1967). Discussion of
scattering experiments using polarized electrons, including many experimental
details, can be found in Kessler (1976). The more formal aspects of the theory have
been discussed by Robson (1974) (see also Blum and Kleinpoppen 1981).
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4.5 Symmetry Properties. Relation Between Symmetry
and Coherence

4.5.1 Axially Symmetric Systems

The excitation of an ensemble of particles (atoms or nuclei) can be achieved in
several ways: by the interaction of external fields, by absorption of radiation, by
impact by other particles, and so on. Let us assume that the excitation process is
axially symmetric with respect to some axis. This axis can be, for example, the
direction of an external field. In excitation by electron impact, in which the scattered
electrons are not detected, the symmetry axis would be defined by the direction of
the initial electron beam.

Throughout this section we will always take the symmetry axis as the Z axis
of our coordinate system (quantization axis). The choice of the X and Y axes
perpendicular to Z is arbitrary and the physical properties of the ensemble must
therefore be independent of this choice (the particles cannot “know” how the X
and Y axes are defined). In particular, the real and imaginary parts of the state
multipoles are directly measureable quantities (see Chap. 5) and hence must have
the same numerical values in the XYZ system and in any xyZ system which can be
obtained by a rotation about the Z axis through an arbitrary angle ”. This gives the
following symmetry condition:

D

T .J 0J /�KQ

E

D
D

T .J 0J /�KQ

E

rot
(4.67)

where
D

T .J 0J /�KQ

E

and
D

T .J 0J /�KQ

E

rot
are defined in the fixed XYZ and the rotated

xyZ systems, respectively. Equation 4.67 relates two complex quantities and hence
real and imaginary parts are equal.

On the other hand, from the transformation law (4.41), the multipoles are
related by

D

T .J 0J /�KQ

E

D
X

q

D

T .J 0J /�Kq

E

rot
�D.00”/.K/�qQ (4.68)

where ” denotes the angle between the X and the x axes. The elements of the
rotation matrix specifying the rotation around Z are given by

D.00”/
.K/�
qQ D exp.�iQ”/•qQ (4.69)

[see (C.12)]. Substitution of (4.69) into (4.68) yields

hT .J 0J /�KQi D hT .J 0J /�KQirot exp.�iQ”/ (4.70)

Equation 4.70 is the general transformation law which holds for any angle ”. In
addition, because of the axial symmetry, the condition (4.67) must also be satisfied
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for any angle ”. This is only possible ifQ D 0. Thus axially symmetric systems are
characterized by multipole components hT .J 0J /�K0i, all components with Q ¤ 0

are necessarily zero because they violate the symmetry condition (4.67). The density
operator characterizing systems with axial symmetry is therefore given by

¡ D
X

J 0JK

hT .J 0J /�K0iT .J 0J /k0 (4.71)

It follows from (4.36) that ¡ is diagonal in M . We therefore have the following
general result. If an ensemble of particles has been excited by a process, which
is axially symmetric with respect to a preferred axis, then states with different
components of angular momentum are necessarily incoherently excited (provided
the quantization axis coincides with the symmetry axis). The production of a
coherent superposition of states with different angular momentum components
requires an excitation process which is not axially symmetric.

4.5.2 Classification of Axially Symmetric Systems

In this and the following section we will consider states with sharp angular
momentum J 0 D J .

Axially symmetric systems can be classified by their transformation properties
under a reversal of the symmetry axis: Z ! .�Z/. This corresponds to a rotation
around the Y axis by an angle  . The corresponding rotation matrix elements are
given by (C.12) and (C.15):

D.0 0/
.K/
qQ D .�1/KCQ•

q�Q (4.72)

Inserting (4.72) into the general relation (4.41) and accounting for the axial
symmetry we obtain

hT .J /�K0i D
X

q

hT .J /�Kqirot.�1/K�1•q0

D .�1/KhT .J /�K0irot (4.73)

where hT .J /�K0i and hT .J /�K0irot are defined with respect to the Z and �Z axes.
If a given ensemble is invariant with respect to the transformationZ ! �Z, that

is, the values of all measurable quantities remain unchanged under this operation,
then this requires that

hT .J /�K0i D hT .J /�K0irot (4.74)

The expressions (4.73) and (4.74) can only be simultaneously satisfied by multipoles
of even rankK . As a result an axially symmetric system which is invariant under the
reversal of the symmetry axis is characterized by multipoles of even rank K and all
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tensors withK odd are necessarily zero. In particular the orientation vector vanishes.
It follows that the system under consideration is a special case of an aligned system
as defined in Sect. 4.3.3.

Let us consider the effect of the symmetry condition (4.74) on the density matrix
elements. Applying (4.34) and the symmetry properties of the 3j symbols we have

hJ �M j¡jJ �M i D
X

K

hT .J /�K0i.2K C 1/1=2.�1/JCM
�
J J K

�M M 0

�

D hJMj¡jJMi (4.75)

since only multipoles with even K contribute. The diagonal elements of ¡ are
proportional to the populations of the state jJMi and the proportionality constant is
specified by the normalization. Equation 4.75 shows that the states jJMi and jJ�M i
are equally populated.

It will be useful to discuss these results from a more physical viewpoint.
Semiclassically, with a state jJMi is associated a vector of length ŒJ.J C 1/�1=2

with its Z component M precessing around Z. The length of the vectors can be
changed without altering their directions in space, in such a way that the length is
made proportional to the number of particles in the corresponding state jJMi. In
terms of this model a system satisfying (4.75) can be represented diagrammatically
by Fig. 4.2 where the arrows represent the angular momentum vectors, pointing

Fig. 4.2 Aligned axially
symmetric system
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Fig. 4.3 Oriented axially
symmetric system

into those directions of space which are allowed. The figure is axially symmetric
and invariant under the operation Z ! �Z, that is, vectors pointing in opposite
directions have the same length. In particular, the figure shows that the net angular
momentum hJi of an aligned system is zero.

The condition (4.75) is trivially fulfilled for an atomic ensemble where all the
particles are in the same state jJ; M D 0i. A system of this kind is a particularly
simple example of an aligned system without orientation.

An axially symmetric system being not invariant against a reversal of the
symmetry .Z/ axis is illustrated in Fig. 4.3. In this case, the length of vectors
pointing in opposite directions is different. The figure shows that the system
possesses a nonvanishing net angular momentum component. The excess of angular
momentum vectors pointing in one direction can be described either by hJZi or
hT .J /10i. This is an example of an oriented system.

Let us normalize according to tr ¡ D 1 and hJMj¡jJMi D W.M/ where W.M/

is the probability of finding a particle in the state jJMi. Using (4.31) and inserting
explicit values of the 3j symbols we obtain for the orientation vector

hT .J /�10i D
�

3

.2J C 1/.J C 1/J

�1=2X

M

MW.M/ (4.76a)

and for the nonvanishing component of the alignment tensor

hT .J /�20i D
�

5

.2J C 3/.J C 1/2J C 1/J.J � 1/

�1=2X

M

Œ3M2�J.J C1/�W.M/

(4.76b)
In the special case that allW.M/ are equal we obtain from (4.31) that all multipoles
with K ¤ 0 vanish and (4.32) reduces to
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Fig. 4.4 Isotropic angular
distribution

¡ D hT00iT00 D
�

1

2J C 1

�1=2

1 (4.77)

where we have used (4.14) and (4.42). The corresponding system is isotropic as
illustrated by Fig. 4.4.

It is often useful to apply slightly different criteria for the classification of
axially symmetric systems. Let us first assume that the symmetry axis is defined
by a polar vector. This is the case for focusing molecules in electric fields E, or
by exciting atoms or molecules with linearly polarized light where the symmetry
axis is defined by the E vector. Another case is provided by excitation of atoms
or molecules by particle impact. If the scattered projectiles are not observed then
the process is axially symmetric with respect to the incoming beam direction. Any
polar vector remains unchanged under reflection through any plane which contains
the vector. Hence, starting with an initially isotropic target system, the total system
must remain invariant under these reflections. Since states jJMi are transformed into
states jJ � M i it follows from the invariance condition that states with different
signs of M (but the same jM j) are necessarily equally populated. The system is
aligned but no orientation can be produced. This result has important consequences
for attempts to orient molecules in electric fields (see Chap. 7).

Secondly, let us assume that the symmetry axis is defined by an axial vector.
This is the case, for example, in excitation processes by circularly polarized light
where the direction of light propagation represents the symmetry axis. Axial vectors
change their sign under reflections in planes containing the vector. Hence, the
invariance condition derived for polar vectors does not apply. States with opposite
signs ofM will be unequally populated and both, orientation and alignment, can be
produced.
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In conclusion, axially symmetric systems will be aligned (but not oriented) if the
symmetry axis is defined by a polar vector; they can also be oriented if the symmetry
axis transforms as an axial vector. Equivalently, applying (4.75), we can state that the
system is aligned if at least some states with different jM j are unequally populated,
and oriented if at least some states with opposite signs of M (but the same jM j)
have been differently populated. The two situations are illustrated by Figs. 4.2 and
4.3 respectively. A more detailed semiclassical interpretation of the corresponding
state multipoles can be found in Sect. 7.2.

Finally we note that the symmetry properties are not always correctly discussed
in the literature. Sometimes the following statement is given: “A distribution of
vectors is aligned or oriented if the distribution is symmetric or nonsymmetric under
reflections in a plane perpendicular to the symmetry axis.” This statement is correct
for polar vectors (e.g., the axes distribution of diatomic molecules) but incorrect for
a distribution of axial vectors like J. For example, Figs. 4.2 and 4.3 both remain
invariant if every J-vector is reflected in the X � Y plane.

4.5.3 Examples: Photoabsorption by Atoms (Nuclei)

We will now illustrate the theory described in the preceding sections with some
examples. Consider an ensemble of atoms or nuclei which is initially in a state
with angular momentum J0 D 0, and is then excited by photon absorption to a
state with J D 1. We will first discuss the case in which the incident light is
unpolarized. The total system is axially symmetric with respect to the direction
of propagation n of the light, and it is therefore convenient to choose this as
the quantization axis. Consequently, the excited state density matrix is diagonal:
hM 0j¡jM i DhM j¡jM i•M 0M with respect to n. The incident light beam can be
considered as an incoherent mixture of the two helicity states each with equal inten-
sity, and hence only atomic states with M D ˙1 can be excited and h0j¡j0i D0.
Furthermore, as a consequence of angular momentum conservation and the fact that
the light beam has equal components of the two helicity states, the atomic states
j C 1i and j � 1i are equally populated, i.e., h C 1j¡j C 1i D h�1j¡j �1i, and the net
angular momentum component of the atomic states is zero. Thus no net angular
momentum is transferred to the atoms and the state is aligned but not oriented.
In terms of state multipoles, the atomic state can be completely specified by two

parameters only, the monopole hT00i and the alignment parameter
D

T
�
20

E

.

Consider now the case that the incident radiation is linearly polarized. TheZ axis
can be chosen in such a way that Z is parallel to the electric vector E. Absorption
of this light will occur through   transitions .�M D 0/ which will produce an
alignment but no orientation in the excited atoms. Thus with the quantization axis
parallel to E the excited ensemble is again characterized in terms of two parameters,

hT00i and
D

T
�
20

E

.
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Finally, if the incident light is circularly polarized and the direction of motion is
chosen as the quantization axis, then the states j C 1i and j � 1i will not be equally
populated. The light will produce an orientation and the atomic density matrix is

specified by three parameters, hT00i;
D

T
�
10

E

;
D

T
�
20

E

where
D

T
�
10

E

gives the net amount

of angular momentum which is transferred to the atoms.

4.6 Excitation of Atoms by Electron Impact II: State Multipoles

4.6.1 Collisonal Production of Atomic Orientation

In Sect. 3.5 an expression was derived for the density matrix ¡ describing an atomic
ensemble excited by electrons which were “scattered” in a fixed direction (with
momentum p1). We will now give a description of the excited atoms in terms of state
multipoles. This will be a convenient starting point for the discussions in Chap. 6.

The elements of the density matrix, averaged over all spins, are given by (3.42).

Using (4.31) we can define multipole components
D

T .L/
�
KQ

E

which describe the

orbital states alone:

hT .L/�KQi D
X

M 0M

.�1/L�M 0

.2K C 1/1=2
�
L L K

M 0 �M �Q
�

hLM0j¡jLMi

D
X

M 0M

.�1/L�M 0

.2K C 1/1=2
�
L L K

M 0 �M �Q
�

hfM 0f �
M i (4.78)

In accordance with condition (4.4), for a given orbital angular momentum L all
tensors of rank K D 0; 1; : : : ; 2L and components jQj � K must be constructed
in order to obtain a complete description of the atomic ensemble.

As discussed in Sect. 3.5.2 the atomic system under consideration must be
invariant under reflections in e scattering X � Z plane. In order to see the
consequences of this symmetry requirement on the state multipoles we will first
consider the orientation vector which is proportional to the net angular momentum
hLi of the atomic subensemble. Since initially the atoms were assumed to be
unoriented hLi is the net angular momentum transferred to the atoms during the
scattering. We will now discuss the transformation properties of L.

Suppose the orientation vector has a nonvanishing component �hLXi in the
X direction as shown in Fig. 4.5a. A reflection in the X � Z plane can be
generated by rotating the system around the Y axes by an angle   followed by an
inversion through the origin. Angular momentum vectors transform as axial vectors.
Polar vectors, such as momentum, and axial vectors have the same transformation
properties under rotating but behave differently under inversion: polar vectors
change their sign, whereas axial vectors do not. Under reflection in the scattering
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X X

ZZ

p1 p1

p0 p0

<Lx> –<Lx>

a b

Fig. 4.5 Reflection of hLi in the scattering plane

plane Fig. 4.5a is therefore transformed into Fig. 4.5b. Since the atomic ensemble
must be invariant under reflection in the scattering plane the situations depicted
in Fig. 4.5a, b must occur with equal probability. The net component hLX i must
therefore vanish. The same argument holds for the component hLZi. In this case
only hLY i, which is perpendicular to the scattering plane, can be nonzero.

In general the excited atomic system can therefore be expected to be oriented.
A suggestive classical model of the mechanism responsible for the atomic orienta-
tion is that of a grazing impact illustrated in Fig. 4.6. The diagrams suggest that the
atoms obtain an angular momentum perpendicular to the scattering plane which is
opposite for a repulsive force (Fig. 4.6a) and for an attractive one (Fig. 4.6b).

This relation between the sign of the orientation, the deflection of the scattered
particles, and the effective interactions was further studied by Fano and Komoto
(1977) and Herman and Hertel (1979). They succeeded in showing that the
orientation is reversed by a sign reversal of the interaction.

These results enable some conclusions to be made on the behavior of the
orientation vector with respect to the scattering angle ™ at fixed energy. Consider, for
example, the excitation of 1P states of helium. Electrons scattered in the forward
or backward direction cannot transfer a net angular momentum to the atoms and
hLi D 0 for ™ı D 0ı D 180ı. Scattering into small angles is dominated by the long-
range attractive force due to the atomic polarizability, while large-angle scattering
is dominated by the short-range repulsive force caused by the atomic electrons. hLi
can therefore be expected to have opposite signs at small and large angles and to
vanish at an intermediate angle where the contributions from the attractive and
repulsive forces are equal in magnitude. These conclusions are confirmed by the
recent measurements of Holywood et al. (1979) and Steph and Golden (1980).
A summary of further experimental and theoretical results has been given by
Andersen and Bartschat (1996).
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p0 p0

p1 p1q q

a b

Fig. 4.6 Model for orientation by collisions

4.6.2 General Consequences of Reflection Invariance

We will now discuss the transformation properties of the state multipoles (4.78)
under reflection in the X � Z plane. Reflection invariance of the atomic system
under consideration implies that the elements of ¡ must satisfy condition (3.36b):

hLM0j¡.L/jLMi D .�1/M 0CM hL�M 0j¡.L/jL�M i (4.79)

In particular, for the diagonal elements we have

¢.M/ D ¢.�M/ (4.80a)

Substituting condition (4.79) into (4.78) gives

hT .L/�KQi D
X

M 0M

.�1/L�M 0

.2K C 1/1=2
�
L L K

M 0 �M �Q
�

� .�1/M 0CM hL�M 0j¡jL �M i
(4.81a)

Since all the values ofM 0 andM are summed over in (4.81a) we can replace .CM 0/
and .CM/ by .�M 0/ and .�M/, respectively. Applying the symmetry property
(C.5c) (from Appendix C.1), then gives
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hT .L/�KQi� D .�1/KCQ X

M 0M

.�1/L�M 0

.2K C 1/1=2
�
L L K

M 0 �M �Q
�

� hLM0j¡.L/jLMi
D .�1/KCQhT .L/�K�Qi (4.82)

From this relation and the hermiticity condition (4.39) it follows that

hT .L/�KQi D .�1/KhT .L/�KQi� (4.83)

In this case of the atomic system under consideration reflection in the X � Z

plane has the following consequences on the state multipoles: for even K the

tensors
D

T .L/
�
KQ

E

are real and for K odd the tensors
D

T .L/
�
KQ

E

are imaginary. The

components with Q D 0 vanish if K is odd.
The components of orientation vector and alignment tensor are related to the

corresponding angular momentum tensors by (4.43) and (4.19). Because of the
symmetry condition (4.83) the real or imaginary part of these expressions is zero
depending on whetherK is odd or even. Applying the normalization (3.33)

tr ¡ D ¢

we have for the components of the orientation vector

�ihT .L/�1˙1i D 31=2

Œ2.2LC 1/.LC 1/L�1=2
¢hLY i (4.84a)

hT .L/�10i D 0 (4.84b)

and for the components of the alignment tensor

hT .L/�20i D N2

61=2
¢h3L2Z � L2i

hT .L/�2˙1i D �N2

2
¢hLXLZ CLZLX i (4.85)

hT .L/�2˙2i D N2

2
¢hL2X � L2Y i

It should be noted that the hermiticity condition (4.39) restricts the number of
independent multipoles. The orientation is specified in terms of one parameter

[for example,
D

T .L/
�
1;C1

E

� and the alignment is completely characterized in terms

of three independent parameters [for example, the components
D

T .L/
�
2Q

E

with

Q D 0;C1;C2�.
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The parameters (4.84) and (4.85) are closely related to a set of quantities
introduced by Fano and Macek (1973):

01� D hLY i
L.LC 1/

; A1C D hLXLZ C LZLX

L.LC 1/
(4.86)

A0 D h3L2Z � L2i
L.LC 1/

; A2C D hL2X � L2Y
L.LC 1/

where 01� characterizes the orientation and the three other ones the alignment. Note,
however, that the use of the relations (4.71), (4.85), and (4.86) is only meaningful if
atomic states with sharp angular momentum L have been excited.

If atomic states with differentL have been coherently excited then it is necessary

to construct state multipoles
D

T .L0L/�KQ

E

in order to describe completely the atomic

ensemble. The transformation properties of the tensors
D

T .L0L/�KQ

E

under reflection

and inversion depend on whether L0 C L is even or odd. For example, if L0 C L

is odd the vector
D

T .L0L/�1Q

E

transforms as a polar vector and must therefore lie

in the scattering plane in order to be invariant under reflection in this plane. By
applying the Wigner-Eckart theorem it can be shown that this vector is related to the
components hrQi of the net electric dipole vector induced in the atomic ensemble.
We will not go further into the details of this analysis here but a more complete
treatment can be found in Sect. 4.4 of the review by Blum and Kleinpoppen (1979).

4.6.3 Axially Symmetric Atomic Systems

We will now specialize the results of the preceding sections to the case in which the
scattered electrons are not observed. In this case a single axis (the direction of p0)
is defined by the geometry of the experiment. Consequently, the excited atomic
ensemble must be invariant with respect to rotations around this axis and the results
of Sect. 4.5.2 apply: All multipoles withQ ¤ 0 vanish. Denoting the corresponding
density matrix by ¡ then

hLMj¡jLMi D Q.M/ (4.87)

where Q.M/ is the total cross section for excitation of the substate with magnetic
quantum numberM . From relation (4.80a) it follows that

Q.M/ D Q.�M/ (4.88)

The monopole is given by

hT .L/00i D Q

.2LC 1/1=2
(4.89)
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whereQ D P

M Q.M/ is the total cross section. Substituting (4.87) into (4.78) and
using (4.88) gives

hT .L/�10i D 0 (4.90a)

which is a consequence of (4.88) and

hT .L/�20i D 51=2
X

M

.�1/L�M

�
L L 2

M �M 0

�

Q.M/

D 51=2

Œ.2LC 3/.LC 1/.2L C 1/.2L � 1/L�1=2

X

M

Œ3M2 �L.LC 1/�Q.M/

(4.91)

where explicit values for the 3j symbols have been used. In particular, if L D 1, the
atomic system under consideration is completely specified by two parameters, the

monopole or the total cross section and the alignment parameter
D

T .1/
�
20

E

. No net

angular momentum hLi is transferred to the system.

4.6.4 Symmetry Relations in the “Natural System”

Let us further consider an atomic ensemble described by a density matrix ¡, which
possesses a plane of symmetry. In Sect. 4.6.2 we have chosen this plane as theX�Z
plane of our coordinate system. There are many advantages to a coordinate frame
with axes XN ; YN ; ZN , where the XN � YN plane coincides with the symmetry
plane and whereZN is perpendicular to it. This frame is the “natural system” which
has become very popular in atomic collison physics (see, for example, the reviews
by Andersen et al. (1988), and Andersen and Bartschat (1996)).

In this subsection we will choose ZN as quantization axis and it will be

understood that the state multipoles
D

T .2/
�
KQ

E

refer to the natural system. Let us first

consider the transformation properties of (orbital) angular momentum states under
reflections in the XN � YN plane. This operation can be performed as a consecutive
application of two symmetry operations, an inversion (operator S ) followed by
a rotation R. /z around the ZN axis by an angle  . The reflection operator R
therefore has the form

R D S0R. /z (4.92)

The states jLMi transform according to

S0jLMi D .�1/LjLMi

and
R. /ZjLMi D ciM
 jLMi D .�1/M jLMi
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which results in the expression

RjLMi D .�1/LCMjLMi (4.93)

We will now assume that the ensemble under consideration possesses a symmetry
plane (XN � YN plane). Mathematically, this is expressed by the condition that the
corresponding density matrix ¡ is invariant under reflection in this plane; that is,

•
RC¡R D � (4.94)

Taking matrix elements we obtain

• hLM0j¡jLMi D hLM0jRC¡RjLMi
D .�1/M0�MhLM0j¡jLMi (4.95)

where we have applied R� and R to the bra and Ket vectors of the matrix element,
and have used (4.93).

From the general definition (4.31) of state multipoles, and (4.95) we obtain

• D

T .L/
�
KQ

E

D .�1/Q
D

T .L/
�
KQ

E

(4.96)

Equation 4.96 is the condition which must be satisified by the multipoles if theXN �
YN plane is a symmetry plane of the system. In particular, we have the requirement

• D

T .L/
�
KQ

E

D 0 (4.97a)

for Q odd. Combining (4.96) with the general hermiticity condition (4.39) we obtain

• D

T .L/
�
KQ

E

D
D

T .L/
�
K�Q

E�
(4.97b)

The results show that the symmetry relations of the multipoles can be expressed in
a simple way if the natural system is used. Consider, for example, 1P -excitation.
If (4.96) apply then the excited atomic ensemble is characterized by the parameters
D

T
�
00

E

;
D

T
�
10

E

;
D

T
�
20

E

(which are all real), and
D

T
�
22

E

(which is complex).
D

T
�
11

E

and
D

T
�
21

E

vanish because of condition (4.97a).

Finally, let us consider systems which possess two symmetry planes orthogonal
to each other, say, the XN � YN and XN � ZN planes. In this case the symmetry
conditions (4.82) and (4.83) hold in addition to the requirements (4.96).



4.6 Excitation of Atoms by Electron Impact II: State Multipoles 147

4.6.5 Coordinate Representation of the Density Matrix. Shape
and Spatial Orientation of Atomic Charge Clouds

4.6.5.1 General Equations

In the present section, and also in Sect. 4.3.2, we have discussed some applications
of the concept of orientation and alignment. In order to obtain a more physical
picture we will consider in this subsection the geometric properties of the charge
clouds of excited atoms. It will be shown that shape and spatial orientation of the
charge distributions are described by the components of the alignment tensor (for
l � 1) and by multipole components of even rank in general cases .l > 1/.

The spatial properties of atomic charge distributions have been discussed in
the reviews by Andersen et al. (1988) and Hertel and Stoll (1978), where many
examples can be found. Here, we will derive some general equations with the main
aim of further illustrating the importance particularly of the alignment tensor. We
will consider a general case where the charge cloud of an ensemble of excited atoms
has an arbitrary orientation relative to a given laboratory system (XYZ system). In
particular, it will not be assumed that the excitation process possesses a plane of
symmetry. In order to concentrate on the essentials we will, however, consider atoms
in singlet states. More general cases have been discussed by Sohn and Hanne (1992)
and by Raeker et al. (1993).
¡ may be the density matrix describing the excited atomic ensemble of interest.

Assuming that the atoms are in states with arbitrary but definite orbital angular
momentum L we can write ¡ in the form (4.29):

¡ D
X

M 0M

hLM0j¡jLMijLM0ihLMj

Expressing the density matrix elements in terms of state multipoles similarly to
(4.34), it follows that

¡ D
X

KQ
M 0M

.�1/L�M 0

.2K C 1/1=2
�
L L K

M 0 �M �Q
� D

T .L/
�
KQ

E

jLM0ihLMj (4.98)

We transform to the coordinate representation by remembering the relation

hrjLMi D §.r/LM D R.r/LY.‚®/LM (4.99)

where Y .‚®/LM denotes a spherical harmonic and where the radial partR.r/L may
depend on further quantum numbers. ‚ and ® are polar and azimuth angles of the
radius vector r respectively. The charge density of atoms in the state jLMi is then
given by ej§.r/LMj2 where e is the electron charge. Since the corresponding density
matrix is ¡ D jLMihLMj, we have ehrj¡jri D ej§.r/LMj2. Hence, the element e
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hrj¡jri can be interpreted as charge density of an atomic ensemble described by the
density matrix ¡.

More generally, “we sandwich” (4.98) between states hrj and hri, and inserting
(4.99) we obtain

ehrj¡jri D
X

KQ
M 0M

.�1/L�M 0

.2K C 1/1=2
�
L L K

M 0 �M �Q
�

�
D

T .L/
�
KQ

E

e§.r/LM0§.r/�LM

D ejR.r/Lj2W.‚®/

where

W.‚®/ D
X

KQ
M 0M

.�1/L�M 0

.2K C 1/1=2
�
L L K

M 0 �M �Q
�

D

T .L/
�
KQ

E

Y.‚®/LM0Y.‚®/�LM (4.100)

This expression can be simplified by applying the addition theorem of the spherical
harmonics. Substituting (C.22) into (4.100), and performing the sum over M 0 and
M by using relation (C4b) we obtain finally

• W.‚®/ D
�
1

4 

�1=2X

KQ

.�1/L.2LC 1/

�
L L K

0 0 0

�

D

T .L/
�
KQ

E

Y.‚®/KQ (4.101)

Equation 4.101 describes the angular dependence of the charge cloud. The angles
‚; ®, define a certain direction in the XYZ system, andW.‚®/ is the “length” of the
charge cloud in this particular direction. The total set of all values of this function
then defines the surface” of the charge distribution.

Equation 4.96 shows that every nonvanishing state multipole gives rise to a
particular angular dependence described by the corresponding spherical harmonic
with the same rankK and componentQ. Furthermore, since the 3j symbol vanishes
for odd K [(C.5c)], it follows that only tensors with even rank contribute to the
expansion (4.101). This result was to be expected since the tensors with odd rank are
proportional to the corresponding magnetic multipoles (as discussed in Sect. 4.3.3)
and describe the distribution of electric currents within the atoms.

Specializing (4.101) to states with LD 1 we obtain that only terms with K D 0

and K D 2 contribute. Applying the hermiticity property (4.39) it follows that one

can choose the real parameters hT20i; Re
D

T
�
21

E

; Re
D

T
�
22

E

and the imaginary parts
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Im
D

T
�
21

E

; Im
D

T
�
22

E

as independent parameters. Inserting the explicit expressions

for the spherical harmonics and applying the normalization (4.42) with tr ¡ D 1, we
obtain

• W.‚®/ D 1

4 

h

1 � 3
h

Re
D

T
�
22 sin2 ‚ cos 2®� Re

D

T
�
21

E

sin 2‚ cos ®

C
�
1

6

�1=2 D

T
�
20

E

.3 cos2 ‚ � 1/� Im
D

T
�
22

E

sin2 ‚ sin 2®

C Im
D

T
�
21

E

sin 2‚ cos ®
ii

(4.102)

According to (4.102) the charge distribution can be thought of as being composed of
two incoherent parts, an isotropic contribution and an anisotropic one (correspond-

ing to the second-rank tensor
D

T
�
2Q

E

.

If the X � Z plane is a symmetry plane of the system then the alignment
components are real according to (4.83). Two of the principal axes of the charge
cloud must lie within this plane, and the third is perpendicular to it. The imaginary

parts of
D

T
�
21

E

and
D

T
�
22

E

in (4.102) characterize therefore the amount by which the

charge cloud is tilted out of the X �Z plane in more general situations.

A geometric interpretation can also be given to
D

T
�
21

E

if the X � Z plane is

a symmetry plane.
D

T
�
21

E

is related to the “alignment angle” ”, that is, the angle

between the main principal axes of the charge distribution and the Z axis:

•
tan 2” D

2
D

T
�
21

E

D

T
�
22

E

� .f rac32/1=2
D

T
�
20

E (4.103a)

(Hertel and Stoll 1978; Raeker et al. 1993).
D

T
�
21

E

is zero for ” D 0 and ” D  =2.

The charge cloud is tilted with respect to both the Z and the X axes if
D

T
�
21

E

is

different from zero. The alignment angle is shown in Fig. 4.7, whereXN �YN plane
of the “natural system” has been chosen as symmetry plane. ZN is perpendicular to
the plane, XN corresponds to Z, and YN to the X axis.

4.6.5.2 Geometric Interpretation of State Multipoles

So far we have not fixed the coordinate system. Equations 4.101 and 4.102
hold therefore in any frame. We will now assume that the atomic ensemble
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Fig. 4.7 Schematic
representation of a charge
cloud in the XNYN plans

under consideration possesses a symmetry plane, and at this point we have to
choose explicitly a coordinate system. It is convenient to choose the “natural
frame” XNYNZN , introduced in Sect. 4.6.4, where ZN is perpendicular to the
symmetry plane.

We will now assume that the parameters
˝

TC
KQ

˛

are defined with respect to
ZN as quantization axis, and that (4.101) and (4.102) refer to the natural frame.
The symmetry properties of the state multipoles under reflection in the XN � YN
plane have been derived in Sect. 4.6.4. In particular, from (4.97a) it follows that
the multipoles with Q odd vanish so that only tensors with Q even contribute to
W.‚; ®/. We write

˝

TC
KQ

˛ D ˇ
ˇ
˝

TC
KQ

˛ˇ
ˇ ei”.KQ/ (4.104)

where ”.KQ/ is the phase of the multipole with rank K and component Q. From
condition (4.97b) follows ”.K �Q/ D �”.KQ/.

Using (4.104) and the relation (C.16b) and (C.12)

Y.‚®/KQ D
�
2K C 1

4 

�1=2

d.‚/
.K/
0Q e

iQ® (4.105)

we combine the terms with ˙Q in (4.101) in the following way:

˝

TC
KQ

˛

YKQ C
D

TC
K�Q

E

YK�Q D 2

�
2K C 1

4 

�1=2

˝

TC
KQ

˛

d.‚/
.K/
0Q cosŒ”.KQ/CQ®� (4.106)

Substitution of (4.106) into (4.101) yields



4.6 Excitation of Atoms by Electron Impact II: State Multipoles 151

•

W.‚®/ D � 1

2 

X

KQ

.�1/L.2LC 1/.2K C 1/1=2
�
L L K

0 0 0

�

ˇ
ˇ
˝

TC
KQ

˛ˇ
ˇ d.‚/

.K/
0Q cosŒ”.KQ/CQ®� (4.107)

where the sum contains only terms with Q even, and Q � 0.
Let us consider in particular a cut through the charge cloud along the XN � YN

plane, obtained from (4.107) by setting ‚ D  =2. The ®-dependence then has the
general form

W
�

‚ D  

2
; ®
	

D AC B cosŒ”.22/ C2®�C C cosŒ”.42/C 2®�

CD cosŒ”.44/C 4®�C : : : (4.108a)

and higher terms up to K D 2L and Q D 2L. The parameters A; B; : : : contain
all ”-independent factors of (4.107). In particular, for L D 1, we obtain

W
�

‚ D  

2
; ®
	

D AC B cosŒ2® � 2”� (4.108b)

where ” D � 1
2
” (22) is the “alignment angle”, that is, the angle between XN and

the principalX 0 axis of the charge cloud as shown in Fig. 4.7. ® is the angle between
radius vector and XN .

The phase of the multipole
˝

TC
22

˛

therefore has a simple geometric importance. In
order to discuss the magnitudes of the multipoles let us consider the case L D 1 in
more detail. We define the “eigenframe”X 0Y 0Z0 of the charge cloud in such a way
that Z0 coincides with ZN , and X 0 and Y 0 are parallel to the other two principal
axes as shown in Fig. 4.7. With XN � YN as symmetry plane one principal axis is
always parallel to ZN .

The eigenframe is obtained by rotating the natural system around ZN by the
alignment angle ”.

Consequently, the state multipoles
˝

T C
KQ

˛0
, defined with respect to the eigenframe,

are related to the multipoles
˝

TC
KQ

˛

in the natural frame by relation (4.70):

˝

TC
KQ

˛ D ˝

TC
KQ

˛0
eiQ�

Furthermore, the X 0 � Y 0; X 0 � Z0, and Y 0 � Z0 planes are symmetry planes of
the charge cloud. It follows that the state multipoles have to satisfy the symmetry
conditions (4.83) and (4.96). Hence, the charge cloud is characterized by three real
parameters: hT00i;

˝

TC
20

˛0
, and

˝

TC
22

˛0
. By adapting the general (4.102) we obtain
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•
W 0.‚®0/ D 1

2 

X

KQ

.�1/L3.2K C 1/1=2
�
1 1 K

0 0 0

�

˝

TC
KQ

˛0
d.‚/

.K/
0Q cos Q®0 (4.109)

where now ‚ and ®0 are the polar and azimuth angles of the radius vector with
respect to the eigenframe. In particular, for ‚ D  =2, the radius vector lies in the
X 0 � Y 0 plane, and ®0 is the angle between the radius vector and X 0. ‚ remains
unchanged under the transformation from the natural frame to the eigenframe.
Substitution of the explicit forms of the d -functions yields

•

W.‚' 0/0 D 1

4 
� 3

4 

"

˝

TC
22

˛0
sin2 ‚ cos 2®0 C

�
1

26

� 1
2 ˝

TC
20

˛0
.3 cos2 ‚ � 1/

#

(4.110)

The lengths of the principal axes are then given by 2W .‚ D 0; ®0arbitrary/0; 2W
.‚ D 90ı; ®0 D 0/0, and 2W .‚ D 90ı; ®0 D 90ı/0, respectively, and can
be expressed in terms of the multipoles hT00i;

˝

TC
22

˛0
, and

˝

TC
20

˛0
. From (4.110) we

obtain

W.0/0 D 1

4 
Œ1 � 61=2hT20i0� (4.111a)

W.90ı; 0ı/0 D 1

 

"

1 � 3
˝

TC
22

˛0 C
�
3

2

�1=2
˝

T 0
20

˛

#

(4.111b)

W.90ı; 90ı/0 D 1

 

"

1C 3
˝

TC
22

˛0 C
�
3

2

�1=2
˝

T 0
20

˛

#

(4.111c)

From the last two equations follows

˝

TC
22

˛0 D 2 

3
ŒW.90ı; 90ı/�W.90ı; 0/0� (4.112a)

The alignment component
˝

TC
22

˛0
is therefore proportional to the difference between

height and width of the charge cloud. If
˝

T C
22

˛0
vanishes then the charge distribution

is axially symmetric around z0 and the angular distributions become independent of
®0. In this case we obtain, from (4.111),

W.0/0 �W.90ı; 0/0 D �
�
1

2

�1=2
˝

TC
20

˛0
(4.112b)
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The distribution is disclike if
˝

TC
20

˛0
is positive and cigar-shaped if

˝

TC
20

˛0
is negative.

Our results show that the parameters
˝

T C
20

˛0
and

˝

TC
22

˛0
, defined in the eigenframe,

are directly related to the geometric properties of the charge cloud. The relations
(4.111) give a simple geometric interpretation to these multipoles.

A more detailed discussion of the description of charge distribution has been
given by Andersen et al. (1988), where another convenient set of parameters
has been introduced which are closely related to experimental observables (see
Sect. 6.1.1).

The formalism developed here will further be applied in Sect. 6.3 where the
rotation of the charge cloud in magnetic fields will be discussed. The influence of
electric fields is the topic of Sect. 6.4. In Sect. 7.7 we will consider shape and spatial
orientation of molecular charge distributions.

4.7 Time Evolution of State Multipoles in the Presence
of an External Perturbation

4.7.1 The Perturbation Coefficients

The time evolution of state multipoles can be obtained from (2.50) or (2.52) and
(4.33). Of particular interest for our subsequent discussion is the following situation.
Consider an ensemble of atoms (nuclei) which has been excited to states which can
be described by a Hamiltonian H D H0 C H 0, where H 0 denotes a perturbation
which is assumed to be weak and unimportant during the excitation process. The
term H 0 can then be neglected during the excitation. Assuming that the eigenstates
of H0 can be identified in terms of angular momentum numbers we will denote
the relevant states by jJMi. After the excitation, however, the time evolution of the
states is governed by the total HamiltonianH and the corresponding time evolution
operator U.t/.

Suppose that an atomic ensemble has been excited instantaneously at time t D 0

where by “instantaneously” is meant that the excitation time is much shorer than
all characteristic transition times caused by the perturbation H 0 (see Sect. 3.5.1).
Immediately after the excitation the ensemble can then be represented by a density
matrix ¡.0/. Tensor operators can be constructed using the eigenstates jJMi of H0

in (4.8). Expanding ¡.0/ in terms of these tensors gives

¡.0/ D
X

J 0J
KQ

D

T .J 0J /�KQ

E

T .J 0J /KQ (4.113)

where the state multipoles are given by
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D

T .J 0J /�KQ

E

D tr ¡.0/T .J 0J /�KQ (4.114)

[see (4.33)]. We will henceforth denote the multipoles describing the atomic states

at time t D 0 by
D

T .J 0J /�KQ

E

. The sum in Eq. (4.113) includes all angular momenta

J 0; J which are present at time t D 0.
The density matrix ¡.0/ evolves under the influence of the total Hamiltonian H

into the density matrix

¡.t/ D U .t/¡.0/U .t/� (4.115)

During the time interval 0 � � � t the states which were initially excited are disturbed
and mixed by the perturbation H 0. Any state jJMi will evolve into a state
j®.t/i D U .t/jJMi which can be expanded in terms of a full set of eigenstates
jjmi of the Hamiltonian H0. Tensor operators can be constructed from these states
jjmi and used to expand ¡.t/:

¡.t/ D
X

j 0j

kq

D

T .j 0j /�kq

E

T .j 0j /kq (4.116)

where the sum includes all angular momenta j 0 and j in which the atoms can be
found at time t . From (4.113), (4.115), and (4.116)

D

T .j 0j /�kq

E

D tr ¡.t/T .j 0j /�kq

D tr U .t/¡.0/U .t/�T .j 0j /�kq

D
X

J 0J

KQ

D

T .J 0J /�KQ

E

tr
h

U .t/T .J 0J /KQU .t/�T .j 0j /�kq

i

D
X

J 0J

KQ

D

T .J 0J /�KQ

E

G.J 0J; j 0j I t/Qq
Kk (4.117)

where we introduced the perturbation coefficients

•
G.J 0J; j 0j I t/Qq

Kk D tr
h

U .t/T .J 0J /KQU .t/�T .j 0j /�kq

i

(4.118)

In (4.117) the multipoles
D

T .j 0j; t/�kq

E

characterizing the atomic states at time t , are

expressed in terms of their counterparts at time t D 0. The perturbation coefficients
are simply the coefficients in this expansion.
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4.7.2 Perturbation Coefficients for the Fine and Hyperfine
Interactions

In order to clarify the concepts introduced in the preceding section we will now
consider the time evolution of atomic states, excited at t D 0, under the influence
of the fine-structure interaction. We will not specify the excitation mechanism. The
basic assumptions which will be made are that during the excitation the orbital and
spin angular momentum of the atoms are uncoupled and that the atomic spins are
unpolarized immediately after the excitation. With these assumptions the atomic
states immediately after the excitation can then be represented in the uncoupled
representation jLMS1Ms1i where the spin states are equally populated. We will
assume sharp values of L and S1.

These assumptions apply, for example, in the case of excitation of light atoms
by electron impact as discussed in Sect. 3.5. They are also assumed to be valid for
atoms which have been excited by beam-foil excitation.

Immediately after the excitation the atomic ensemble can be represented by a
density matrix ¡.0/ with elements hLM0S1M 0S1j¡.0/jLMS1Ms1i. In the following
we will be interested only in the properties of the orbital states and hence we will
define a reduced density matrix ¡.L/ with elements

hLM0j¡.L/jLMi D
X

Ms1

hLM0S1Ms1 j¡.0/LMS1Ms1i (4.119)

For example, in the case of excitation by electron impact, the elements (4.119) are
given by (3.31) in terms of the scattering amplitudes.

The reduced density matrix can be expanded in terms of state multipoles as in
(4.113):

¡.L/ D
X

KQ

D

T .L/
�
KQ

E

T .L/KQ (4.120)

where the tensors hT .L/KQi characterize the orbital states at time t D 0, that is,
immediately after the excitation.

The states jLMS1Ms1i can be considered as eigenstates of a Hamiltonian H0.
After the excitation the atoms are assumed to relax into the JM-coupling scheme
under the influence of the fine-structure interaction H 0 � LS which perturbs
the initially excited states. In terms of the vector model this distortion can be
interpreted as a precession of the angular momentum vectors L and S1 around
the total angular momentum J (this precession is neglected during the excitation).
The fine-structure interaction is assumed to be weak, and hence transitions between
states with different L and S1 can be neglected and L and S1 can be considered to
be conserved.

The time development of the atomic state is governed by the operator

U .t/ D exp.�iHt=¯/
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where the total HamiltonianH D H0 CH 0 includes the interaction termH 0 which
couples the spin and orbital systems. Thus U .t/ acts on both systems and it is
therefore necessary to consider the total density matrix ¡.0/ instead of the matrix
(4.120), which only describes the orbital states. A convenient form of ¡.0/ can be
obtained as follows: Since orbital and spin systems are uncorrelated at time t D 0

and the spins unpolarized, ¡.0/ is given by

¡.0/ D ¡.L/ � 1

2S1 C 1
1 (4.121a)

where (2.24) and (A.11) have been used and where 1 is the unit operator in spin
space. Substituting (4.120) into (4.121a) gives

¡.0/ D 1

2S1 C 1

X

KQ

D

T .L/
�
KQ

E

ŒT .L/KQ � 1� (4.121b)

At time t the system is represented by a density matrix which has evolved from the
matrix ¡.0/ and satisfies (2.50):

¡.t/ D U.t/¡.0/U.t/�

D 1

2S1 C 1

X

KQ

D

T .L/
�
KQ

E

U.t/.T .L/KQ � 1/U.t/� (4.122)

We define state multipoles
D

T .Lt/�kq

E

describing the orbital states at time t as the

irreducible components of the corresponding reduced density matrix ¡.L; t/:

D

T .L; t/
�
kq

E

D tr ¡.L; t/T .L/�kq (4.123a)

where the elements of ¡.L; t/ are given by

hLM0j¡.L; t/jLMi D
X

Ms1

hLM0S1Ms1 j¡.t/jLMS1Ms1i

Alternatively, and more conveniently for the present discussion, the multipole
components can be represented by

D

T .L; t/
�
kq

E

D tr ¡.t/
h

T .L/
�
kq � 1

i

(4.123b)

where 1 is the unit operator in spin space. The equivalence of (4.123a) and (4.123b)
can be shown by calculating the trace (4.123) using the uncoupled states jLMS1MS1i
(see Appendix A.1).
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Substituting (4.122) into (4.123) gives

D

T .L; t/
�
kq

E

D 1

2S1 C 1

X

KQ

D

T .L/
�
KQ

E

tr
n

U .t/ŒT .L/KQ � 1�U .t/�
h

T .L/
�
kq � 1

io

D
X

KQ

D

T .L/
�
KQ

E

G.LI t/Qq
Kk (4.124)

where the perturbation coefficientsG.Lt/Qq
Kk are the coefficients in this new multipole

expansion:

G.LI t/Qq
Kk D 1

2S1 C 1
tr
n

U .t/ŒT .L/KQ � 1�U .t/�
h

T .L/
�
kq � 1

io

(4.125)

We will now derive an explicit expression for the quantities (4.125). Because the
elements of U.t/ are diagonal in the eigenstate representation j.LS1/JMi of the total
HamiltonianH the matrix representation of U.t/ in this representation has elements

h.LS1/J
0M 0jU .t/j.LS1/JMi D exp.�iEJ t=h/•JJ0•MM0 (4.126)

(whereEJ is the energy of the level LS1J ). using (4.126) the trace in (4.125) can be
calculated in the coupled representation:

G.LI t/QqKk D 1

2S1 C 1

X

J 0M 0

JM

exp

�Ci.EJ � EJ 0/t

¯
�

� h.LS1/J
0M 0jT .L/KQ � 1j.LS1/JMi

D

.LS1/JM
ˇ
ˇ
ˇT .L/

�
kq

�1j .LS1/J
0M 0˛ (4.127a)

The remaining elements can be obtained by using the fact that T .L/KQ�1 is a tensor
operator of rankK and componentsQ. Applying the Wigner–Eckart theorem

h.LS1/J
0M 0jT .L/KQ � 1j.LS1/JMi

D .�1/J 0�M 0

�
J 0 K J

�M 0 Q M

�

h.LS1/J
0kTK � 1k.LS1/J i

(4.127b)
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and a standard formula of angular momentum theory [(C.20)] gives

h.LS1/J
0kTK � 1k.LS1/J i

D .�1/LCS1CJCKŒ.2J 0 C 1/.2J C 1/.2K C 1/�1=2
�
L J 0 S1
J L K

�

(4.127c)

where (4.28) has been used to give the explicit value of the reduced matrix element
hLkT .L/KkLi. A similar formula holds for the matrix element of the operator
T .L/

�
kq � 1. Inseting the resultant expressons into (4.127a) and summing over M 0

andM with the help of the orthogonality relations of the 3j symbols give

G.LI t/Qq
Kk D 1

2S1 C 1

X

J 0J

.2J 0 C 1/.2J C 1/

�
�
L J 0 S1
J L K

� 2

exp

��i.EJ 0 �EJ /t
¯

�

•Kk•Qq (4.128)

The Kronecker symbols indicate that multipoles with different ranks and compo-
nents cannot be mixed by the interaction. Furthermore, the perturbation coefficients
are independent ofQ and can hence be written in the form

G.LI t/Qq
Kk D G.LI t/K•Kk•Qq (4.129)

The coefficients (4.128) are real numbers. This can be shown by taking the complex
conjugate of the bracket in (4.128), interchanging J and J 0, and using the symmetry
property (C.8) of the 6j symbols. The imaginary part of the complex exponential
function in (4.128) therefore vanishes as a result of summing over all J and J 0 and
only the real part survives:

• G.LI t/ D 1

2S1 C 1

X

J 0J

.2J 0 C 1/.2J C 1/

�
L J 0 S1
J L K

� 2

cos

�
EJ 0 � EJ /t

¯
�

(4.130)

From (4.124) and (4.129) we obtain finally

•
D

T .LI t/�KQ

E

D G.LI t/K
D

T .L/
�
KQ

E

(4.131)

which describes the time evolution of the state multipoles under the influence of the
fine-structure interaction.

It is sometimes convenient to represent the coefficientsG.LI t/K in the form

G.LI t/K D G.L/K

C 1

2S1 C 1

X

J 0¤J
.2J 0 C 1/.2J C 1/

�
L J 0 S1
J L K

� 2

cos

�
.EJ 0 �EJ /t

¯
�

(4.132)
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where terms with J D J 0 and terms with J ¤ J 0 have been separated and where
the time-independent part is defined by

G.L/K D 1

2S1 C 1

X

J

.2J C 1/2
�
L J S1
J L K

� 2

(4.133)

The hyperfine interaction can be treated by using the same method as has been used
for the fine-structure interaction. Suppose that at time t D 0 atomic states with
electronic angular momentum J are excited with the nuclear spin I unaffected.

Constructing state multipoles
D

T .J /
�
KQ

E

and
D

T .J I t/�KQ

E

from the states jJMi at

times t D 0 and t , respectively, it can be shown that these tensors are related by an
expression similar to (4.131):

D

T .J I t/�KQ

E

D G.J I t/K
D

T .J /
�
KQ

E

where the perturbation coefficients G.J I t/ are given by (4.130) with L replaced
by J; S1 replaced by I , and J.J 0/ replaced by F.F 0/, where F denotes the total
angular momentum:

G.J I t/K D 1

2I C 1

X

F 0F

.2F 0 C 1/.2F C 1/

�
J F 0 I
F J K

� 2

cos

�
.EF 0 � EF /t

¯
�

(4.134)

Finally, we will consider the case in which both fine and hyperfine interaction must
be taken into account. When the hyperfine interaction is much weaker than the fine-
structure interaction the angular momentum of the electronic state, J , remains a
good quantum number and the relevant perturbation coefficients can be calculated
by a similar method to that used above and are given by

G.t/HK D 1

.2S1 C 1/.2I C 1/

X

J 0J
F 0F

.2J C 1/.2J 0 C 1/.2F 0 C 1/

� .2F C 1/

�
J 0 F 0 I
F J K

� 2 �
L J 0 S1
J L K

� 2

� exp

�
i.E10 � E1/t

¯ � .”1 C ”10/t

2

�

(4.135)

In deriving (4.135) it is again assumed that S1 and I are unaffected by the excitation
and decay process. The energies E1 and decay constants ”1 refer to states with
angular momenta J and F .
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If the fine and hyperfine splittings are comparable a more elaborate calculation is
necessary since J is no longer a good quantum number. This is discussed in more
detail, for example, by Fano and Macek (1973).

4.7.3 An Explicit Example

We will now discuss the physical significance of the perturbation coefficients
(4.130), following Fano and Macek (1973), using an explicit example. Let us take
the case with L D 1; S1 D 1=2, and J D 1=2; 3=2, and discuss the time evolution
of the orientation vector:

D

T .LI t/�1Q
E

D G.LI t/1
D

T .L/
�
1Q

E

(4.136)

The numerical values of the relevant 6j symbols are given by
8

<̂

:̂

1
1

2

1

2
1

2
1 1

9

>=

>;

D �1
3
;

8

<̂

:̂

1
3

2

1

2
3

2
1 1

9

>=

>;

D 51=2

6.21=2/
;

8

<̂

:̂

1
1

2

1

2
3

2
1 1

9

>=

>;

D �1
6

Substituting these values into (4.130) gives

G.LI t/1 D 7

9
C 2

9
cosŒ.E1=2 � E3=2/t=¯� (4.137)

Equation 4.137 shows that in this case G.LI t/1 oscillates around the mean value
G.L/1 D 7=9 with a frequency ¨ D .E1=2 � E3=2/=¯, which in the semiclassical
model is just the precession period of the vectors S1 and L around J. From (4.136)

and (4.137) it can be seen that the orientation vector
D

T .L/
�
1Q

E

varies periodically

with t . This behavior is a consequence of angular momentum coupling. During the
excitation the orbital system aquires a certain orientation while the spins remain
unpolarized. Because of the spin–orbit coupling, which is assumed to be “switched
on” immediately after the excitation, there is a transfer of orientation between
orbital and spin systems. The spins become oriented and there is a resultant loss

of orientation in the orbital states. In each period
D

T .L/
�
1Q

E

decreases, reaches

a minimum (when the spins have obtained the maximum possible orientation),
and then rises again to its initial value when the spins are again unoriented. This
exchange of orientation is periodic and reversible, reflecting the fact that the spin–
orbit coupling H 0 � LS is symmetric in L and S . These results can be generalized
to any multipole component.
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In conclusion, the state multipoles
D

T .Lt/�KQ

E

oscillate about a mean value

G.L/K

D

T .L/
�
KQ

E

. This behavior is a consequence of the fine-structure interaction

between orbital and spin angular momentum which results in a periodic and
reversible exchange of polarization between the two systems. The observable
consequences of these time variations will be considered in detail in Chaps. 5 and 6.

4.7.4 Influence of an External Magnetic Field

We will now consider a situation in which an ensemble of atoms (or nuclei) has been
excited at time t D 0 in the presence of a magnetic field, Hm. The total Hamiltonian
is given by H D H0 CH 0, where H 0 D �g�BJHm describes the interaction with
the field. The eigenstates of H0 are chosen to be jJMi. The magnetic field induces
splittings between levels with the same J and differentM . Transitions between the
split levels are characterized by a transition time T � 1=�E , where �E is the
largest energy splitting of a level with angular momentum J . It will be assumed
that T is large compared to the excitation time. In this case the influence of the
magnetic field can be neglected during the excitation and the atoms can be assumed
to be excited into states jJMi. The field will disturb the states immediately after
the excitation and we will consider the time development of the initial multipoles
D

T .J /
�
KQ

E

under the influence of the time evolution operator

U .t/ D exp.�iHt/=¯ (4.138)

The relevant perturbation coefficients are given by

G.J I t/QqKk D tr ŒU .t/T .J /KQU .t/
�T .J /

�
kq� (4.139)

The initial multipoles are defined with respect to a coordinate system XYZ and the
field Hm is taken to be parallel to a direction z. With z as the quantization axis

H 0 D �g�BJzHm (4.140)

and relating the eigenstates ofH0 to z the elements of H are given by

hJm0jH jJMi D .EJ � g�BBm/•m0m (4.141)

Transforming the tensor operators to the xyz system using (4.13), calculating the
trace (4.139) in terms of the states jJmi, and using (4.138) and (4.141) gives, after
some manipulations,
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G.J I t/Qq
Kk D

X

Q0q0

.�1/q
h

D.0“’/
.K/

Q0Q

i h

D.0“’/
.k/

q0�q
i

� tr ŒU .t/T .J /KQ0U .t/�T .J /kq0 �

D
X

Q0q0

.�1/q
h

D.0“’/
.K/

Q0Q

i h

D.0“’/
.k/

q0q

i

�
X

m0m

hJm0jT .J /KQ0 jJmi

� hJmjT .J /kq0 jJm0i exp.�i¨LQ0t/ (4.142)

where “ is the angle between Z and z and ’ is the azimuthal angle of z in the XYZ
system, ¨L denotes the Larmor frequency.

Using (4.9) in the xyz system, performing the sum over m0 and m by using the
orthogonality relations of the 3j symbols, we obtain

G.J I t/Qq
Kk D •Kk

X

Q0

exp.�i¨LQ0t/D.0“’/.K/Q0QD.0“’/
.K/�
Qq (4.143)

Using (C.12), exp.�i¨LQt/ can be interpreted as a rotation of �¨Lt about z.
In the simple case where the field direction z coincides withZ we have “D ’D 0

and (4.143) reduces to

G.J; t/
Qq
Kk D •Kk•Qq exp.�i¨LQt/ (4.144)

In this case the field cannot alter the multipoles but merely causes their phases to
change in time:

D

T .J I t/�KQ

E

D exp.�i¨LQt/
D

T .J /
�
KQ

E

(4.145)

Equations 4.143 and 4.144 will be used in Sect. 6.3.

4.8 Notations Used by Other Authors

Unfortunately many notations are used for the tensor operators and state multipoles.
We list here a few of the notations used in the literature.

Our tensor operator T .J 0J /KQ is written as

T
.K/
Q .’J 0; “J / by Omont (1977),

T
.K/
Q .J 0; J / by Happer (1972), and

TKQ by Brink and Satchler (1962) and Lamb and ter Haar (1971).
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Dynakov et al. (1965) use a different normalization so that the operator T .K/Q of
these authors is equal to

Œ.2K C 1/=.2J C 1/�1=2.�1/QT .J /KQ

in our notation.
Our state multipole

D

T .J 0J /�KQ

E

is written as

¡
.K/
Q .’J 0; “J / by Omont (1977),
¡KQ.J

0J / by Happer (1972),
¡.JJ0/�KQ by Brink and Satchler (1962) and Lamb and ter

Haar (1971),
.�1/J 0CJCQ¡W.K/

Q .J 0J / by Steffen and Alder (1975).

The convention for the D matrices adopted here is that of Landau and Lifschitz
(1965). Edmonds’ (1957) notation is obtained by interchanging ’ and ” in all
equations. For the functions d.“/.J /

n0n
the convention of Edmonds is the same as that

employed here. The relation between our notation and that of Zare (1988) is

D.”“’/
.J /

M 0M D
�

D.’“”/
.J /�
MM0

	

Zare

That is, we can use Zare’s equations by interchanging M and M 0; ’ and ”, and
taking the complex conjugate. Note the relation for the d matrices:

�

d.‚/
.J /

MM0

	

Zare
D
�

d.�‚/.J /MM0

	

Edmonds
D
�

d.‚/
.J /

M 0M

	

Edmonds

Further conventions have been listed by Edmonds.



Chapter 5
Radiation from Polarized Atoms.
Quantum Beats

5.1 General Theory I: Density Matrix Description
of Radiative Decay Processes

In this chapter we will consider the decay of an ensemble of excited atoms by photon
emission. We will discuss the following case. We assume that an ensemble of atoms
has been excited “instantaneously” at time t D 0. As usual, “instantaneous” implies
that the excitation time is short compared to the mean lifetime of the excited states
and any characteristic precession frequency (see Sects. 3.5 and 4.7.1).

The excitation mechanism can be of any kind and the atoms may have been
excited, for example, by electron impact, photon absorption, or by beam–foil
techniques. Our main objective will be the derivation of (5.18) and (5.19), which
will then be used in the subsequent sections. Readers who are not so much interested
in mathematical details of the proofs may proceed directly to formulas (5.18)
and (5.19).

The excited atoms may be considered as a (coherent or incoherent) superposition
of states j’1J1M1i, where ’1 denotes collectively the set of quantum numbers which
are needed to describe the states in addition to the angular momentum quantum
numbers J1 andM1.

The atoms are assumed to decay to lower levels j’2J2M2i. In the following we
will assume ’1 and ’2 to be fixed and suppress the dependence of the state vectors
on these quantum numbers. The treatment will be further simplified by neglecting
the finite lifetime of the final state.

The emitted photons will be described in terms of state vectors jn¨œi in the
helicity representation, where n is fixed by the direction of observation. We will
now derive an expression for the polarization density matrix of the emitted photons.
In the first part of the calculation we will use n as the quantization axis and relate
all angular momentum quantum numbers to this axis. This choice will considerably
simplify the second part of the calculations in the following section. At the end of

K. Blum, Density Matrix Theory and Applications, Springer Series on Atomic, Optical,
and Plasma Physics 64, DOI 10.1007/978-3-642-20561-3 5,
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166 5 Radiation from Polarized Atoms. Quantum Beats

the calculations we will transform to a coordinate system defined with respect to the
excitation process.

Immediately after the excitation the ensemble of excited atoms may be charac-
terized by a density matrix ¡.0/ which evolves according to (2.50) into a density
matrix:

¡.t/out D U .t/¡.0/U .t/� (5.1)

where the operator U .t/ describes the time evolution under the influence of the
interaction with the virtual radiation field. (In this section it is assumed that the
atomic states are not perturbed by internal or external fields between excitation and
decay.) The matrix ¡out describes the entire ensemble of atoms and photon at time
t , that is, the atoms which are still in the excited state, the atoms in the lower levels,
and the photons emitted in the time interval 0 � � � t .

The decay process can be described in first-order perturbation theory. In this
approximation the operator U .t/ is given by (2.73) and (2.69):

U .t/ D U .t/0

�

1 � i

¯
Z t

0

V .£/I d£

�

D U .t/0

�

1 � i

¯
Z t

0

U.£/
�
0VU.£/0d£

�

(5.2)

where we inserted (2.61). The elements of the operator V , describing the interaction
between atoms and virtual radiation field, will be specified later. U .t/0 is the free
time evolution operator; hence

U .t/0jJ2M2¨nœi D expŒ�.i=¯/E2t � i¨t�jJ2M2¨nœi (5.3a)

U .t/0jJ1M1i D expŒ�.i=¯/E1t � ”1t=2�jJ1M1i (5.3b)

where the finite level width of the initial state has been included. E1 and E2 denote
the energy of the states with angular momentum J1 and J2, respectively, and ”1 is
the decay constant.

We are interested in the elements h¨nœ0j¡.t/j¨nœi of the reduced density
matrix ¡.t/ which describe the polarization state of the emitted photons only. The
normalization is as in (1.69) so that the diagonal elements h¨nœj¡.t/j¨nœi give the
intensity of those photons detected in the direction n with frequency ¨ and helicity
œ. Using (3.5) the matrix elements are given by

h¨nœ0j¡.t/j¨nœi D
X

J2M2

hJ2M2¨nœ0j¡.t/outjJ2M2¨nœi (5.4)

Substituting (5.1) for ¡.t/out and (5.2) for U .t/ gives1

1We have to multiply by ¯¨ in accordance with the normalization (1.69).
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h¨nœ0j¡.t/j¨nœi D ¯¨
¯2

X

J2M2

J 0

1M
0

1J1M1

�

J2M2¨nœ0
ˇ
ˇ
ˇ
ˇ

Z t

0

U.£/
�
0VU0.£/ d£

ˇ
ˇ
ˇ
ˇ
J 0
1M

0
1

�

� ˝J 0
1M

0
1j¡.0/jJ1M1

˛
�

J1M1j
Z t

0

U.£/
�
0VU £.0/d£jJ2M2¨nœ

�

The terms proportional to the identity matrix cannot contribute to the transitions
J1 ! J2 ¤ J1. By applying (5.3) we obtain

h¨nœ0j¡.t/j¨nœi D ¨

¯
X

J2M2

J 0

1M
0

1J1M1

˝

J2M2¨nœ0jV jJ 0
1M

0
1

˛ ˝

J 0
1M

0
1j¡.0/jJ1M1

˛

�hJ1M1jV jJ2M2¨nœi
�Z t

0

d£ exp

�

i

�

¨C ¨210 C i

2
”0
1

�

£

��

�
�Z t

0

d£ exp

�

i

�

�¨ � ¨21 C i”1

2

�

£

��

(5.5)

with ¨210 D .1=¯/.E2 �E10/; ¨21 D .E2 �E1/=¯, and where E10 ; ”10 andE1; ”1
denote energy and decay constants of the states

ˇ
ˇJ 0
1M

0
1

˛

and jJ1M1i, respectively.
Taking the nonrelativistic limit the elements of V are given in the dipole

approximation by

hJ2M2¨nœjV jJ1M1i D �i¨21Œ.2 ¯=¨/�1=2e hJ2M2je�
œrjJ1M1i (5.6)

(for details, see, for example, Landau and Lifschitz 1965), where eœ denotes the
polarization vector (1.59) .œ D ˙1/ and r is the dipole operator. The time
integrations in (5.5) can easily be carried out:

h¨nœ0j¡.t/j¨nœi D 2 e2¨221
¨¯2

X

J2M2

J 0

1M
0

1J1M1

˝

J2M2

ˇ
ˇe�
œ0 r
ˇ
ˇ J 0

1M
0
1

˛ ˝

J 0
1M

0
1j¡.0/jJ1M1

˛

�
D

J1M1

ˇ
ˇ
ˇ

�

e�
œr
��
ˇ
ˇ
ˇ J2M2

E �expŒi.¨C ¨210 C i”10=2/t�� 1

i.¨C ¨210 C i”10=2/

�

�
�

expŒi.¨� ¨21 C i”1=2/t�� 1

i.�¨ � ¨21 C i”1=2/

�

(5.7)

In obtaining the numerical factor multiplying the right-hand side we have set
¨21 	 ¨21, since the splitting of the upper levels is much smaller than the energy
difference between upper and lower states. Finally, we multiply with the density
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of final states ¨2 d ˝ d¨=.2 c/3¯ and integrate both sides of (5.7) over the line
profile. Because the main contributions come from the region ¨ 	 ¨21 the integral
over ¨ can be extended to �1 with negligible error and the ¨ integration can
then be carried out in the complex ¨ plane by using Cauchy’s integral formula.
This gives

¡.n; t/œ0œ D C.¨/
X

J2M2

J 0

1M
0

1J1M1

˝

J2M2

ˇ
ˇe�
œ0r
ˇ
ˇ J 0

1M
0
1

˛ ˝

J 0
1M

0
1 j¡.0/jJ1M1

˛

� ˝J1M1

ˇ
ˇ.e�

œr/�
ˇ
ˇ J2M2

˛ 1 � expŒ�i.E10 � E1/t=¯ � .”1 C ”10/t=2�

i.E10 �E1/t=¯ � .”1 C ”10/=2
(5.8)

where

C.¨/ D e2¨4 d ˝

2 c3¯ (5.9)

and where d˝ is the element of solid angle into which the photons are emitted. In
(5.8) the notation ¡.n; t/œ0œ is introduced for the elements of the obtained density
matrix. The polarization vectors eœ0 , and eœ in (5.9) can be eliminated by noting that
in the helicity system the coordinate system is “spanned” by the three unit vectors
eC1; e�1;n, and that the dipole vector r can be expanded in terms of this basis:

r D r�C1eC1 C r��1e�1 C r�
0 n

where r˙1 and r0 are the components of r along the directions of e˙1 and n,
respectively. That is, r˙1 and r0 are therefore the spherical components of the
vector r. In this system the scalar product of r and eœ is given by

e�
œ � r D r�

œ D �r�œ (5.10)

This then finally gives the elements of the polarization density matrix of photons
observed in the direction n:

¡.n; t/œ0œ D C.¨/
X

J2M2

J 0

1M
0

1J1M1

˝

J2M2 jr�œ0 jJ 0
1M

0
1

˛ ˝

J 0
1M

0
1 j¡.0/j J1M1

˛

�
D

J1M1

ˇ
ˇ
ˇr
�

�œ
ˇ
ˇ
ˇ J2M2

E 1 � expŒ�i.E10 � E1/t=¯ � .”10 C ”1/t=2�

i.E10 � E1/=¯ C .”1 C ”10/=2
(5.11)
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5.2 General Theory II: Separation of Dynamical
and Geometrical Factors

In order to disentangle the dynamical and geometrical factors in (5.11) and to
take angular momentum conservation explicitly into account we can apply the
irreducible tensor operator method. First of all ¡.0/ is expanded in terms of state
multipoles, characterizing the excited atoms immediately after the excitation defined
in the system with n as the quantization axis:

¡.0/ D
X

KqJ0

1J1

D

T
�

J 0
1J1
��

Kq

E

T
�

J 0
1J1
�

Kq
(5.12)

Substitution of (5.12) into (5.11) yields

¡.n; t/œ0œ DC.¨/
X

KqJ0

1J1

tr
h

r�œ0T
�

J 0
1J1
�

Kq
r
�

�œ
i D

T
�

J 0
1J1
��

Kq

E

� 1 � expŒ�i.E10 � E1/t=¯ � .”1 C ”10/t=2�

i.E10 � E1/=¯ C .”10 C ”1/=2
(5.13)

where the trace is given by the sum

tr
h

r�œ0T
�

J 0
1J1
�

Kq
r
�

�œ
i

D
X

J2M2M
0

1M1

˝

J2M2 jr�œ0 j J 0
1M

0
1

˛

�
D

J 0
1M

0
1

ˇ
ˇ
ˇT
�

J 0
1J1
�

Kq

ˇ
ˇ
ˇ J1M1

E D

J1M1

ˇ
ˇ
ˇr
�

�œ
ˇ
ˇ
ˇ J2M2

E

(5.14)

In order to perform the sum in (5.14) we first apply the Wigner–Eckart theo-
rem (4.27), which allows the dynamical factors (reduced matrix elements) and
the geometrical elements (3j symbols) to be separated, and then we use (C.9)
(Appendix C.1) in order to express the sum overM 0

1M1M2 in terms of a 6j symbol.
Inserting the elements of the tensor operators (4.9) we obtain

tr
h

r�œ0T
�

J 0
1J1
�

Kq
r
�

�œ
i

D
X

J2

˝

J2 krkJ 0
1

˛ hJ2 krkJ1i� .�1/J1CJ2Cœ.2K C 1/1=2

�
�
1 1 K

�œ0 œ q

��
1 1 K

J1 J
0
1 J2

�

(5.15)

While the multipoles
D

T
�

J 0
1J1
��

Kq

E

are defined with respect to n as the quantization

axis, the information on the excited states is usually given in terms of tensors
D

T
�

J 0
1J1
��

KQ

E

which are defined in a coordinate system XYZ which is more
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appropriate to a description of the excitation process (for example, the “collision
system” introduced in Sect. 3.5). As the last step in our calculations, we therefore
transform the tensors from the helicity to the XYZ system. If ™ and ® are the polar
angles of n in the XYZ system (see, for example, Fig. 4.1, where the axis z may now
denote the direction of n), then (4.41) gives

D

T
�

J 0
1J1
��

KQ

E

D
X

q

D

T
�

J 0
1J1
��

Kq

E

D.0™®/
.K/�
qQ (5.16a)

with the inverse relation
D

T
�

J 0
1J1
��

Kq

E

D
X

Q

D

T
�

J 0
1J1
��

KQ

E

D.0™®/
.K/
qQ (5.17)

Substitution of (5.15) and (5.17) into (5.13) then finally yields

• ¡.n; t/œ0œ D C.¨/
X

J2J
0

1J1KQq

˝

J2 krkJ 0
1

˛ hJ2 krkJ1i� .�1/J1CJ2Cœ.2K C 1/1=2

�
�

1 1 K

�œ0 œ q

��

1 1 K

J1 J
0
1 J2

�

D.0™®/
.K/
qQ

D

T
�

J 0
1J1
��

KQ

E

� 1 � expŒ�i.E10 � E1/t=¯ � .”10 C ”1/t=2�

i.E10 � E1/=¯ C .”10 C ”1/=2
(5.18)

with q D œ0 � œ. Note that the helicity is invariant with respect to rotation so that
œ0 and œ have the same values in both coordinate systems.

Equation 5.18 gives the polarization density matrix of photons observed in the
direction n and emitted in the time interval 0 � � � t . One may also determine the state
of those photons which are only emitted at time t (that is, in a short time interval
t � � � t C dt). The relevant density matrix is obtained by differentiating (6.13) with
respect to the time. Denoting the time derivative of the density matrix by P¡.n; t/œ0œ

we obtain

• P¡.n; t/œ0œ D C.¨/
X

J 0

1J1J2KQq

˝

J2 krkJ 0
1

˛ hJ2 krkJ1i� .�1/J1CJ2Cœ.2K C 1/1=2

�
�
1 1 K

�œ0 œ q

��
1 1 K

J1 J
0
1 J2

�

D.0™®/
.K/
qQ

� exp

��i.E10 � E1/t

¯ � .”10 C ”1/t

2

� D

T
�

J 0
1J1
��

KQ

E

(5.19)
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The density matrix elements can then be further expressed in terms of the Stokes
parameters by means of (1.77). From this expression and from (1.82) all information
on the behavior of the radiation in polarization experiments can be obtained.

5.3 Discussion of the General Formulas

5.3.1 General Structure of the Equations

Equations 5.18 and 5.19 will form the basis of our discussions in the remainder of
this and the following chapter. It is therefore useful to discuss their meaning in more
detail. We will concentrate here on (5.19) and postpone a discussion of (5.18) until
Sect. 5.5, although many of the following remarks apply in both cases.

Equation 5.19 is the polarization density matrix of those photons emitted at
time t . The time evolution of the initially excited atomic states between the
excitation and decay is assumed to be undisturbed except by the decay process and
is characterized by the time evolution operator

U .t/0 D expŒ�iH0t=¯ � � t=2� (5.20)

where the states jJ1M1i are eigenfunctions of H0 and where � denotes the decay
matrix:

exp.�� t=2/jJ1M1i D exp.�”1t=2/jJ1M1i
By inserting (5.20) into (4.118) it may be shown that the corresponding perturbation
coefficient is

G
�

J 0
1J1j

0
1j1 t

�Qq

Kk
D expŒ�i¨101t � .”10 C ”1/t=2�•J 0

1j
0

1•J1j1
•Kk•Qq (5.21)

for all K and Q. The state multipoles describing the excited states at time t are
given by

hT �J 0
1J1; t

��

KQ
D expŒ�i¨101t � .”10 C ”1/t=2�

D

T
�

J 0
1J1
��

KQ

E

(5.22)

Reading (5.19) from the right to the left and taking (5.21) into account we have the
following scheme:

P¡.n; t/œ0œ D Œ� � � �hT .J 0
1J1 t/

�
KQ (5.23a)

D Œ� � � � expŒ�i¨101t � .”10 C ”1/t=2�
D

T
�

J 0
1J1
��

KQ

E

(5.23b)

That is, the state multipoles T
�

J 0
1J1
��

KQ
i characterize the atomic states immediately

after the excitation and contain all information on the excitation process. The
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exponential factor describes the time evolution of the excited states between
excitation and decay. The remaining factors in (5.19), indicated by the brackets in
(5.23b), are related to the decay process at time t .

Let us now consider the factors in brackets in (5.23b) in more detail. Here the
reduced matrix elements contain all information on the dynamics of the decay
process, and the 3j and 6j symbols are geometrical factors depending on the
angular momentum quantum numbers. The angular dependence of the emitted
radiation is given explicitly by the elements of the rotation matrix. Any element
D
.K/
qQ is related to the corresponding multipoles with the same K and Q. Thus any

state multipole with rank K and component Q present gives rise to a characteristic
angular dependence of the emitted light. As a consequence, by determining the
elements P¡œ0œ as a function of ™ and ® information can be obtained on the state

multipoles
D

T
�

J 0
1J1
��

KQ

E

. We will discuss this topic in more detail in Chap. 6.

Multipoles with the same K and Q but different J 0
1 and J1 are related to the

same element D.K/
qQ and thus cannot be determined separately by measuring the

angular distribution and polarization of the radiation. However, these multipoles
are combined with different exponential factors and can therefore be determined
separately by analyzing the time modulation of P¡œ0œ. Experiments which use this
technique have been performed, for example, in the case of beam–foil-excited
hydrogen atoms (see, for example, Burns and Hancock 1971).

Of particular importance are the consequences of angular momentum conserva-
tion in the radiative decay expressed explicitly by the 3j and 6j symbols in (5.18)
and (5.19). We note that these symbols vanish for K > 2. This is a consequence of
observation of dipole radiation where the total angular momentum carried away by
the photons is j D 1. In general, if radiation with multipolarity j is detected then
state multipoles with rank K � 2j will contribute to ¡œ0œ.

Thus, although all state multipoles satisfying
ˇ
ˇJ 0
1 � J1

ˇ
ˇ �K� J 0

1CJ1 are required
for a complete description of the excited state density matrix,

• the elements ¡œ0œ depend only on the tensors with K D 0; K D 1; K D 2, and
only these can be determined from an observation of dipole radiation.

The determination of the higher tensors with K > 2 requires, for example,
observation of the emitted dipole radiation in the presence of external fields mixing
tensors of rank K � 2 with tensors of rank K > 2 (see, for example, Sect. 6.3).
Information on the higher multipoles can also be obtained by scattering electrons
from laser-excited atoms (further details on this technique are given in the review
by Hertel and Stoll 1978).

In the special case of J1 D 0 all atoms land in the same final state, and using
(C.11)

�
1 1 K

J1 J
0
1 0

�

D 1

3
•J 0

11
•J11

In general the 6j symbol is smaller than 1/3 if J2 ¤ 0. If J1 is sharp then all
elements ¡œ0œ and hence the values of the Stokes parameters and the degree of
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polarization P are reduced by a factor

3

�
1 1 K

J1 J1 J2

�

compared to J0 D 0. In fact, if J2 ¤ 0 the atoms land in states with different
M2 which are not detected in the experiment under discussion. As discussed in
Sect. 3.3, the detected light is necessarily depolarized in the sense that P < 1. We
can therefore interpret the 6j symbol as a depolarization factor which describes
the depolarization of the radiation caused by the nonobservation of the final atomic
states.

5.3.2 Manifestations of Coherence. Quantum Beats

Equation 5.19 shows that the angular distribution and polarization of the emitted
photons are time modulated because of the presence of time-dependent factors with

J 0
1 ¤ J1. These factors give the time evolution of the state multipoles

D

T
�

J 0
1J1
��

KQ

E

as expressed by (5.31). If the states with different J1 have been incoherently excited
then the density matrix ¡.0/ is diagonal in J1 and, according to the discussion in
Sect. 4.3.1, only state multipoles with J 0

1 D J1 can contribute to (5.19), all terms
with J 0

1 ¤ J1 vanish and no quantum beats occur. Thus the observation of quantum
beats can be regarded as a manifestation of the coherent excitation of states with
different J1 (different energy).

Coherent excitation of states with different energies is only possible if the
excitation process satisfies certain conditions. In the case of an isotropic excitation
process (Sect. 4.5.2) all multipoles with K ¤ 0 vanish. From (5.18) and (5.19)
and from the properties of the rotation matrix D.K/

qQ it follows that the photons are
emitted isotropically and are unpolarized. The 6j symbols vanish unless J 0

1 D J1,
in which case no quantum beats occur. Thus anisotropic excitation is an essential
requirement for the observation of any beat signal. Furthermore, consider for
example excitation of states from a ground state with sharp energy by photon
absorption. Because of energy conservation coherent excitation requires that the
exciting light contain a range of frequencies�¨ which is sufficiently broad to cover
the difference .1=¯/.E10 � E1/ D ¨101 of levels with different energy (Sect. 3.1).
Light pulses with a finite width �¨ can be represented by a coherent superposition
of plane waves with different frequency, and this coherence is transferred to
the atoms and is responsible for the quantum beats (see Sect. 2.3). Alternatively,
coherent excitation can be considered a result of the requirement that the excitation
time �t is much shorter than any “characteristic” time of the excited states.
Excitation times and energy spread of the exciting particles (electrons, photons) are
related by the time–energy uncertainty relation �t � 1=�¨. The “characteristic”
time is the time interval�tc � 1=¨101 with ¨101 D .1=¯/.E10 �E1/ determining the
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largest energy difference of the excited states. From the condition that �t 
 �tc
it follows once more that the condition for coherent excitation is that the energy
uncertainty of the exciting particles must cover the energy difference of several
excited states.

Let us now consider the observational effects of coherence between states with
the same J1 but differentM1. If these states can be considered to be degenerate the
coherence does not produce quantum beat effects. If the magnetic substates have
been incoherently excited ¡.0/ is diagonal in M1. As discussed in Sect. 4.5, the
source is then axially symmetric with respect to the Z axis of the collision system
and all tensors with Q ¤ 0 vanish. The angular dependence of the elements ¡œ0œ

is then determined by the elements of the rotation matrix with Q D 0 which are
represented by the “small” d functions:

D.0™®/
.K/
q0 D d.™/

.K/
q0

(with q D œ0 � œ). Consequently, the elements ¡œ0œ depend only on the polar angle
™ of n but not on the azimuthal angle ®: hence the emitted light is axial symmetric
about the Z axis of the collision system.

If different magnetic substrates have been excited coherently then multipoles
with Q¤ 0 will be different from zero and the elements ¡œ0œ will depend on
the azimuthal angle ®. Thus coherence between states with the same J1 but
different M1 manifests itself in a change of the angular dependence of the emitted
radiation.

Consider now the case of an axially symmetric atomic source which is aligned
but not oriented. [This can be obtained, for example, by exciting the atoms
by electron impact and not observing the scattered electrons (Sect. 4.6.3) or by
absorption of unpolarized or linearly polarized photons (Sect. 4.5.3).] Because of
the relation

�
1 1 K

�œ0 œ q

�

D .�1/K
�
1 1 K

œ0 �œ �q
�

it follows that ¡11 D ¡�1�1 and thus ˜2 D 0. Hence, in this case, the emitted
light contains photons in both helicity states with equal intensity, and the degree of
circular polarization vanishes.

Finally, let us assume that the geometry of the excitation process contains a
plane of symmetry. This applies for the case discussed in Sect. 4.6. For sharp J1 the
elements ¡œ0œ depend on four parameters (besides the monopole), one component of
the orientation vector and three components of the alignment tensor. This situation
occurs also in the case of beam–foil-excited atoms when the foil axis is tilted with
respect to the incoming beam axis.
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5.4 Perturbed Angular Distribution and Polarization

5.4.1 General Theory

In this section we will consider the case in which the excited atoms are perturbed
by an external or internal field. The theory of perturbed angular distributions has
been developed in nuclear physics (see, for example, Steffen and Alder 1975). Here,
we will begin by discussing the basic principles of the theory and in the following
section and in Chap. 6 we will give some examples of its use.

In what follows it will always be assumed that the perturbation is weak and of
little relevance to excitation and decay processes but is sufficiently strong to change
the state of the atoms between excitation and decay (assuming sharply defined
excitation and decay times). In this case the theory developed in Sect. 4.7 applies.

If the perturbation can be neglected during the excitation process the excited
atomic states at time t D 0 can be characterized in terms of state multipoles
D

T
�

J 0
1J1
��

KQ

E

. The subsequent time evolution of the multipoles is now governed by

a HamiltonianH D H0CH 0 (whereH 0 is the perturbation term), and the evolution
operator is U D expŒ�.i=¯/Ht � � t=2�. Consequently, U.t/ replaces U.t/0 in the
equations of Sect. 5.3. The excited atoms at time t are characterized by the state
multipoles:
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1J1t

��

KQ

E

D
X

K 0Q0
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1j1
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�

j 0
1j1
��

K0Q0

E
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�

j 0
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0
1J1; t

�Q0Q

K0K
(5.24)

as in the general equation (4.117) where the radiative decay term has now been

included. Substitution of (5.24) for
D

T
�

J 0
1J1
��

KQ

E

into (5.23a)) yields

P¡.n; t/œ0œ D C.¨/
X

J 0

1J1j
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KK0Q0Q

tr
h

r�œ0T
�

J 0
1J1
�

Kq
r
�

�œ
i

�D.0™®/.K/qQ G
�

j 0
1j1J

0
1J1; t

�Q0Q

K0K

D

T
�

j 0
1j1
��

K0Q0

E

(5.25)

By comparing with (5.23b) it can be seen that the time-dependent exponential factor
in (5.23b) is replaced by the general perturbation coefficient describing the time
evolution.

Various external and internal perturbations may influence the time evolution, and
by observing experimentally the way in which these perturbations affect the angular
distribution and polarization of the emitted light it is possible to extract information
on various properties of the excited states. We will now illustrate this with some
examples.
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5.4.2 Quantum Beats Produced by “Symmetry Breaking”

In Sects. 5.1–5.3 it was assumed that atomic states with different angular momenta
J1 had been coherently excited at time t D 0. This coherency leads to a time
modulation of the exponential decay of the excited states. No quantum beats will
occur if the excitation is incoherent.

This conclusion may not be correct if the atomic lifetime is sufficiently long
and if the excited states are perturbed by external or internal fields during the
time between excitation and decay. These perturbations will disturb the excited
states and lead to time modulation of the orientation and alignment parameters and,
hence, of the angular distribution and polarization of the emitted light, even if there
is no coherence between the initially excited states. In this case the perturbation
subsequent to the excitation forms the basis for the quantum beats.

A clear discussion of the underlying principles has been given, for example, by
Series and Dodd (1978) and Andrä (1979). The essence of the method is a sudden
change in the Hamiltonian describing the excited atoms. If at times t < 0 the atoms
are in eigenstates j®0i of H0 and a sudden change in the Hamiltonian from H0 to
H is introduced at time t D 0, then for t > 0 the time evolution is governed by H .
Any eigenstate j®0i will evolve into a coherent superposition of eigenstates of H
and this coherence gives rise to quantum beats.

This general principle applies, for example, to situations where a beam of
free atoms enters an external field with a sudden onset for the passing beam.
Another example is provided by the case described in Sects. 3.5 and 4.6. An atomic
ensemble is “instantaneously” excited at t D 0 into eigenstates jLMS1Ms1i of a
Hamiltonian H0 with all explicit spin couplings neglected. The subsequent time
evolution for t > 0 is then governed by the full Hamiltonian H of the free
atoms including fine-structure (and possibly hyperfine-structure) effects. A similar
situation is encountered in beam–foil excitation. Here the atoms are assumed to be
excited into uncoupled states jLMS1MS1i during the short time interval in which the
atoms pass through the foil. After emerging from the foil the atoms evolve under the
influence of the full Hamiltonian and explicit spin-dependent coupling terms must
be taken into account.

As an illustration of this let us consider the situation in which an atomic ensemble
is assumed to be excited “instantaneously” at time t D 0 with the spins unaffected
and evolves for t > 0 under the influence of the fine-structure interaction.

We obtain the elements P¡.n; t/œ0œ of the density matrix of the photons, emitted at
time t , by inserting the relevant perturbation coefficient in (5.25). The perturbation
coefficient for fine-structure interaction is given by (4.130). Taking into account the
radiative decay we substitute

U.t/ D exp.�iHt=„ � � t=2/

and obtain a perturbation coefficient G.L; t/K exp.�”t/, where G.L; t/K is given
by (4.130). In doing this it is assumed that all fine-structure states belonging to the
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same level .LS1/ have the same decay constant ”. We then obtain from (5.25)

P¡.n; t/œ0œ D C.¨/
X

KQq

tr



rœ0T .L/Kqr
�
œ

�

D.0™®/
.K/
qQ G.L; t/K

� exp.�”t/
D

T .L
�
KQ

E

(5.26a)

In particular, for the intensity I.n; t/ of the light emitted at time t in the direction n
is given by

I.n; t/ D P¡.n; t/1 1 C P¡.n; t/�1�1

D C.¨/
X
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(5.26b)

where C.K/ denotes the numerical factors:

C.0/ D �2.4 =3/1=2; C.1/ D 0; C.2/ D �.8 =15/1=2 (5.27)

Equation 5.26 shows that direct measurements of fine-structure splittings are
possible merely by observing the emitted light as a function of time (see Sect. 2.3).

ForK D 0 the 6j symbols within the brackets in (5.26) reduce to the expression

�
L J 0

1 S1
J1 L 0

�

D .�1/S1CLCJ1
Œ.2LC 1/.2J1 C 1/�1=2

•J 0

1J1
(5.28)

and all interference terms with J 0
1 ¤ J1 vanish. Thus orientation and/or alignment

of the atomic source is essential for the observation of fine-structure quantum beats.
Since the fine-structure interaction is isotropic it does not relate multipoles with

different K and Q as shown by (4.131). Thus the initial symmetry is maintained
for all times t > 0. If, for example, the initially excited states are axially symmetric
with respect to some axis the light emission will be axially symmetric with respect
to the same axis irrespective of the perturbation.

Similar results hold for the hyperfine interaction. The joint effect of fine
and hyperfine interactions can be taken into account by substituting the relevant
perturbation coefficient (4.135) for G.L1t/K in (5.26a)).
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In the treatment given here we have considered separately the effects due to
the coherent excitation of nondegenerate states (Sects. 5.1–5.3) and the effects
caused by the fine-structure interaction. In general, both effects will overlap and
the corresponding quantum beats will be superposed on each other. Such situations
have been analyzed experimentally, for example, by Burns and Hancock (1971) (see
also the review of Macek and Burns 1976, and the references therein).

In conclusion, it has been seen that the observation of quantum beats requires
(1) a well-defined excitation time (pulsed excitation with pulses shorter than any
characteristic atomic time), and (2) time-resolved detection of the emitted light
together with an observation time resolution tR

�< 1=¨101. The lack of appropriate
equipment with sufficient time resolution initially limited quantum beat experiments
to Zeeman effect studies where the level splittings can be adjusted by the magnetic
field to a few megahertz. A wider use of quantum beats has only become possible
after the advent of lasers with pulse lengths of nanoseconds and in particular of
beam–foil excitation, which allows excitation times of the order of 10�14 s.

Experimental details, results, and further discussions of the method may be found
in recently published reviews and books. We particularly refer to Corney (1977) and
to the various chapters in Hanle and Kleinpoppen (1978, 1979).

5.5 Time Integration Over Quantum Beats

5.5.1 Steady-State Excitation

Let us now return to (5.18). This expression describes, for example, the following
situation. An atomic ensemble has been excited at time t D 0 and the radiation,
emitted in the subsequent decay, is observed in the direction n. The photon detector
may have a resolution time tR so that all photons emitted in the time intervalx 0 � � � tR
are taken into account. The corresponding density matrix elements are then given
by (5.18) with the substitution t ! tR.

The periods¨101 and the mean lifetime £D ”�1 are much shorter than commonly
employed resolution times so that the factor exp.�”tR/ is effectively zero. Substi-
tuting this into (5.18) gives

¡.n/œ0œ D C.¨/
X

J 0

1J1J2

˝

J2krkJ 0
1

˛ hJ2krkJ1i�.�1/J1�J2Cœ

�
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KQq

.2K C 1/1=2
�
1 1 K

�œ0 œ q

��
1 1 K

J 0
1 J1 J2

�

�D.n/.K/qQ

1

i¨101

C ”
D

T
�

J 0
1J1
��

KQ

E

(5.29)

where we have put ”i D ” for all i and where ¡.n/œ0œ denotes the time-integrated
density matrix elements for tR � £.
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Equation 5.29 applies in particular to steady-state excitation (starting at time
t D 0), for example, by wave packets of light emitted by a resonance lamp, or
by a current of electrons. In this and the following chapter we will use the
pulse approximation. That is, we will always approximate the incoming flux by
a succession of random pulses at random times. This causes the fluctuations to be
smoothed out. For a discussion of this point we refer to the article by Series and
Dodd (1978) (see also Chap. 8).

Since in the case of steady-state excitation the time at which the emitted photons
are observed is no longer well defined with respect to the time at which excitation
took place, it is necessary to integrate over all observation times and (5.29) applies.
The interaction between the atoms and a sequence of randomly phased pulses is
an incoherent process. Each pulse gives rise to a radiation described by (5.29). The
total density matrix is then given byN¡.n/œ0œ0 , whereN is the number of pulses per
second.

It is important to realize that the terms �
D

T
�

J 0
1J1
��

KQ

E

, characterizing the

coherence between the initial states with different J1, vanish if the levels do
not overlap, that is, if ¨101 is much larger than the linewidth: ¨101 � ”. In
this case

ˇ
ˇ
ˇ
ˇ

1

i¨101 C ”

ˇ
ˇ
ˇ
ˇ


 1

”
(5.30)

and the dominant contributions to ¡œ0œ come from the incoherent terms with
J 0
1 D J1. Alternatively, if the mean lifetime £ is much larger than the times
¨�1
101 many oscillations will take place during the lifetime of the atoms, and

will practically cancel each other in all time-dependent expressions. In this case
the initial coherence between the atomic states with different energies has no
observational effect.

We may summarize our results as follows. If a number of states jJ1M1i with
different J1 and energy are coherently excited (which requires a sufficiently short
excitation time as discussed in Sect. 5.4) then this coherence leads to quantum beats.
(Compare, for example, Fig. 2.1 with Fig. 3.1 and see the discussion in Sect. 3.4.2.)
The corresponding interference terms can be directly observed in experiments with
sufficiently high time resolution and well-defined excitation time. If, however, time-
integrated quantities are observed (as is always the case in steady-state excitation)
the coherence between states with different energy is retained when the energy
separation of the excited states is small compared to their width, the coherence
being destroyed when the levels are well separated.

5.5.2 Depolarization Effects Caused by Fine and Hyperfine
Interactions

Let us now consider the case in which the assumptions of Sect. 5.4.2 apply but where
the resolution time is not high enough to observe quantum beats. Equation 5.26a
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must then be integrated over a time interval 0 � � � tR. Assuming that tR is much
larger than the mean lifetime of the excited states, we can extend the upper limit
to infinity with negligible error. The integral over the perturbation coefficients
G.Lt/K exp.�”t/ gives

G.L/K �
Z 1

0

dtG .L; t/K exp.�”t/

D 1

2S1 C 1

X

J 0

1J1

�

2J 0
1 C 1

�

.2J1 C 1/

�

L J 0
1 S1

J1 L K

� 2
”

”2 C ¨2101

(5.31)

The time-integrated density matrix elements are then given by

¡.n/œ0œ D C.¨/
X

KQq

tr
h

r�œ0

<‹‹>
T .L/Kqr

�

�œ
i

D.n/.K/qQ G.L/K

D

T .L/
�
KQ

E

(5.32)

For singlet–singlet transitions we have G.L/K D 1=”. For S1 ¤ 0 it can be shown,
using the properties of the 6j symbols, that G.L/K < 1=” for K ¤ 0. Because

of this relation the quantities G.L/K
D

T .L/
�
KQ

E

are smaller than the corresponding

parameters .1=”/
D

T .L/
�
KQ

E

in the singlet case: the coupling of the orbital system to

the unpolarized spins results in a loss of orientation and alignment. In addition
to this there is a second depolarization effect if L2 ¤ 0 (see the discussion in
Sect. 5.3.1).

In a similar way the influence of hyperfine interaction on the emitted radiation
may be discussed simply by substituting the relevant perturbation coefficient (4.134)
or (4.135) for G.L; t/K in (5.26a).

It is instructive to consider the extreme cases in which the linewidth is either
much larger or much smaller than the fine-structure splitting ¨101. In the first case
we have

”

”2 C ¨2
101

	 1

”
(5.33)

for all terms in the equations for the Stokes parameters. From (5.31) and the
orthogonality conditions of the 6j symbols [(C.10)] we obtain for all K
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which gives

• G.L/K D 1=” (5.34)

which are the same values as in the spinless case.
The result is readily understood since in the case under discussion the mean

lifetime of the excited states £ � ”�1 is small compared to the precession times
¨�1
101 associated with the spin-orbit coupling. That is, the atoms emit the photons

before the precessional motion can be set up. Fine-structure interaction can then be
neglected and the expressions for the Stokes parameters are the same as in the case
of spinless atoms.

Consider now the case ” 
 ¨101 or, alternatively, £ � ¨�1
101. Here,

”
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<
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D 1
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for J0
1 D J1

	 1
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 1
”

for J0
1 ¤ J1

(5.35)

Thus, as discussed in Sect. 5.5.1, the main contributions to the Stokes parameters
stem from the terms with J 0

1 D J1, and the interference terms with J 0
1 ¤ J1 can be

neglected. In this case it follows from (5.31) and (5.35) that

• G.L/K D 1

”

1

2S1 C 1

X

J1

.2J1 C 1/2
�
L J1 S1
J1 L K

� 2

(5.36)

Since G.L/K < 1=” for K ¤ 0 anisotropy and polarization of the emitted
radiation are reduced.

This result can be understood by realizing that in the case under consideration
many precessions take place during the atomic lifetime. Since we are interested in
quantities averaged over a time interval 0 � � � tR with tR � £ all interference terms
practically cancel each other and only the time-independent terms with J 0

1 D J1
will survive (compare this with the discussion in Sect. 4.7.3).

In conclusion, if the fine-structure separation is comparable with the linewidths
expression (5.31) has to be used. If the linewidth is much larger than the energy
separation¨101 fine-structure effects can be neglected. IfE10 �E1 � ¯” � EJ1F 0

1
�

EJ1F1 fine-structure effects must be taken into account but hyperfine interaction can
be neglected. The relevant factorsG.L/K are given by (5.36). If ” is small compared
to the hyperfine splitting .EJ1F 0

1
� EJ1F1/ then hyperfine interaction must be taken

into account. The corresponding expressions for the Stokes parameters are obtained
simply by substituting the relevant perturbation coefficient (4.135) for G.Lt/K into
all the above formulas.



Chapter 6
Some Applications

6.1 Theory of Electron–Photon Angular Correlations
in Atomic Physics

6.1.1 Singlet–Singlet Transitions

The fundamental (5.18), (5.19), and (5.25) can be applied to a variety of experi-
mental situations and in this chapter we will give some instructive examples of their
utility. As the first example, we will show how information on the excitation process
can be obtained from a determination of the Stokes parameters. In particular, we will
consider the case of excitation of atoms by electron impact under the conditions
described in Sects. 3.5 and 4.6.

All information on the collision process is contained in the relevant reduced
density matrix ¡.0/ describing the excited atomic states immediately after the
excitation. Its complete determination requires the measurement of all independent
state multipoles of rank K � 2L and component Q satisfying �K � Q � K .
If the scattered electrons are not observed only tensors with Q D 0 can be
nonzero. It is possible to obtain more information on the excitation process if
scattered electrons and emitted photons are detected in coincidence. In this case the
observation is restricted to light emitted by an atomic subensemble only, namely,
those atoms excited by the detected electrons. It was shown in Sect. 4.6 that the
atomic subensemble of interest is characterized by a monopole, one component of
the orientation vector, three components of the alignment tensor, and all independent
tensors with higher rank 2 < K � 2L. However, the multipoles with K > 2 cannot
be obtained from an observation of dipole radiation unless perturbations are present
mixing tensors with different rank (see Sect. 5.3). The electron-photon coincidence
experiments to be discussed here allow the determination of four parameters in
addition to the differential cross section ¢ . An experimental determination of these
parameters and comparison with theoretical results provides more sensitive tests
for theoretical predictions than the more traditional experiments in which only ¢ is

K. Blum, Density Matrix Theory and Applications, Springer Series on Atomic, Optical,
and Plasma Physics 64, DOI 10.1007/978-3-642-20561-3 6,
© Springer-Verlag Berlin Heidelberg 2012
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determined. In this section we will consider the excitation of singlet states from an
atomic ground state for which S0 D 0 and L0 D 0. Suppose that light emitted in a
transitionL ! L2 is observed .S2 D 0/ and that the resolution time tR of the photon
detector is much larger than the mean lifetime of the excited atoms. Assuming that
no perturbations are present the polarization density matrix of the photons emitted
in the time interval 0 � � � tR is given by (5.29) with L replacing J1 and J 0

1.
Explicit expressions for the Stokes parameters can be derived from the polar-

ization density matrix. The emitted photons are observed in the direction of the unit
vector n with polar angles ™ and ® in the collision system. The Stokes parameters are
most conveniently discussed in a coordinate system where n is the quantization axis.
The polarization vector of the emitted light is restricted to the plane perpendicular
to the direction of propagation n. Two orthogonal unit vectors e1 and e2 can be
chosen to span this plane (see Sect. 1.2). e1 is chosen to lie in the plane formed by
n and the Z axis and to point in the direction of increasing ™: e2 is then chosen
to be perpendicular to both e1 and n and to point in the direction of increasing ®.
The vector e1 then has polar angles .™ C 90ı; ®/ in the collision system and the
vector e2 has the polar angles .90ı; ® C 90ı/. e1 therefore has the same azimuth
angle as n and e2 lies in the X-Y plane at an angle ® to the Y axis (see Fig. 6.1). In
this “detector” system the Stokes parameter ˜3 is the degree of linear polarization
in the direction e1 and ˜1 the degree of linear polarization at angles ˙45ı to e1. The
Stokes parameters can be calculated from (5.19) (with J 0

1 D J1 D L), (1.76), and
substituting explicit expressions for the rotation matrix elements. This gives

Fig. 6.1 Coordinate systems used in the description of coincidence experiments
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Note that the tensors
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T .L/
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2Q

E

and i
D

T .L/
�
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E

are real quantities (see Sect. 4.6). We

have used the approximation 5.5.
The monopole hT .L/00i can be obtained from a measurement of the differential

cross section. Equation 6.1 afford then several possibilities for determining the state
multipoles with K > 0. For example, I can be measured for three different pairs of
angles ™; ® (this gives three equations which allow the extraction of the three inde-
pendent components of the alignment tensor) and I˜2 obtained at one set of angles
™; ® (which gives the orientation vector). Alternatively, all four Stokes parameters
can be measured in the same direction ™; ®, and by inserting the obtained values
into (6.1) four equations are obtained from which the orientation and alignment
parameters can be extracted. Using these methods these excitation parameters have
been experimentally determined for several atoms and compared with theoretical
predictions (for further details see the review by Blum and Kleinpoppen 1979).

In general, all five multipoles contributing to (6.1) are independent. The four
Stokes parameters and the differential cross section ¢ are therefore also indepen-
dent quantities. In particular, the angular distribution I contains information on
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the atomic source which cannot be obtained from a determination of the other
parameters.

The first experiment of this kind was carried out by Eminyan et al. (1974) for
1P excitation of helium. In this case .L D 1/ the excited atoms are completely
characterized in terms of three parameters only (see Sect. 3.5.2). Let us discuss
this case in more detail. The Stokes parameters are not independent and only three
independent measurements are required for a complete determination of the atomic
density matrix, for example ¢; I , and I˜2. Expressing the multipole parameters in
terms of the parameters ¢; œ; ¦ introduced in Sect. 3.5.2 we obtain from (6.1), with
L D 1; L2 D 0,

I DC.¨/

”
jh0 k r k 1ij2 ¢

3

�
1 � œ
2

.1 � sin2 ™ cos 2®C cos2 ™/C œ sin2 ™

C Œ œ.1 � œ/�1=2 cos ¦ sin 2™ cos ®
�

(6.2a)

I˜2 D �C.¨/
”

jh0 k r k 1ij2 2¢
3
Œœ.1 � œ/�1=2 sin ¦ sin ™ sin ® (6.2b)

where we inserted explicit values for the 6j symbols. It follows that in this case, a
complete determination of the scattering amplitudes is possible. For this reason the
case L D 1 and S1 D 0 is of particular interest.

From (6.2b) it follows that the degree of circular polarization is determined by
the phase ¦ and, correspondingly, a measurement of I˜2 directly determines ¦. If
the photons are detected in the Y direction .™ D ® D 90ı/ the degree of circular
polarization is given by dividing (6.2a), (6.2b)

˜2 D �2Œœ.1 � œ/�1=2 sin ¦ (6.3)

By expressing the scattering amplitudes in (4.78) in terms of ¢; œ; ¦ according to
Sect. 3.5.2 it can be shown with the help of (4.84a) that

˜2 D hLyi (6.4)

Thus ˜2 is a direct measure of the degree of orientation, or, of the net amount of the
angular momentum transferred to the atoms during the excitation process.

When the photons are detected in the scattering plane ® is zero and

˜3 D C1 (6.5)

This can be shown by first specializing (6.1b) to the case L D 1; L2 D 0:
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(6.6)

Inserting ® D 0 and dividing by (6.2a) we obtain the relation (6.5). Thus the photons
observed in the scattering plane are completely linearly polarized. The electric
vector oscillates along the direction of e1.

As discussed in Sect. 3.5.2 the excited 1P state is a completely coherent
superposition of the magnetic substate. From this and the fact thatL2 D 0 it follows
that the detected light is emitted in a transition between two pure atomic states. As
a result, the light is necessarily completely polarized in the sense that P D 1. In
practice, a measurement of the four standard light polarizations
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is sufficient to determine the state multipoles (Andersen et al. 1988). The angles
in parentheses refer to � and ® respectively defined with respect to the collision
system.

Experimental results of these four polarizations can be used to characterize the
charge cloud of the excited atoms. The alignment angle ” and the height h are
given by

” D 1

2
arctan

P2

P1

h D .1C P1/.1 � P4/

4 � .1 � P1/.1 � P4/
and for the orientation parameterL? D hLyi one obtains

L> D �P3
For details and for a review of experimental and theoretical studies we refer to
Andersen et al. (1988) and Andersen and Bartschat (1996).

The experimental determination of multipoles with rank K > 2 can be achieved
by observing cascade processes. For theoretical derivations and for experimental
results we refer to Wang et al. (1994) and references cited therein.
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6.1.2 Influence of Fine and Hyperfine Interactions
on the Emitted Radiation

We will now discuss the excitation of atomic levels with orbital angular momentum
L and spin S1 ¤ 0 by electron impact and the coincident detection of scattered
electrons and emitted photons. We will assume that the assumptions discussed in
Sects. 3.5 and 4.7.2 apply.

Immediately after the excitation the state of the atomic subensemble of interest
is characterized by the state multipoles (4.78). These are perturbed by the fine (and
possibly hyperfine) interaction which in turn influences the emitted light.

Assuming that only time-integrated quantities are observed (with an upper limit
tR � £/ the density matrix elements of the emitted radiation are given by (5.32)
where now the state multipoles are given by (4.78). Recalling thatG.L/K D 1=” in
the case of spinless atoms the Stokes parameters in the present case of interest can

be obtained by substituting G.L/K
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E

for 1=”
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in (6.1). Thus, for

example, the angular distribution becomes, with G.L/0 D 1=”,
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In order to obtain the parameters I˜3 and I˜1 (6.1b), c must be multiplied by a
common factor ”G.L/2, and I˜2 is obtained by multiplying (6.1d) by ”G.L/1.

In these expressions the loss of orientation and alignment, caused by the coupling
to the unobserved spin system, is described by the factors G.L/1 and G.L/2. Since
G.L/K < 1=” for K ¤ 0 (6.7) shows that the angular distribution becomes more
isotropic compared to the spinless case (the angular distribution is “smeared out”
as a result of spin-orbit coupling). The values of the other Stokes parameters are
reduced from their values for spinless atoms by a factor ”G.L/1 and ”G.L/2,
respectively, which results in a depolarization of the emitted radiation.

The perturbation factors G.L/K are given by (5.31) if the fine-structure separa-
tion ¨101 and linewidth are comparable, by (5.36) if the fine-structure levels do not
overlap .” 
 ¨101/, or by (5.34) if ” � ¨101. In the latter case the fine-structure
interaction does not affect the emitted light.

The effect of hyperfine interaction can be treated by the method outlined in
Sect. 5.5.2.
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6.2 Steady-State Excitation

6.2.1 Polarization of Impact Radiation

The formulas presented in Sect. 6.1 describe the polarization properties of light
detected in coincidence with the scattered electrons, that is, those photons which
are only emitted by a particular subensemble of atoms. We will now consider the
case where the scattered electrons are not observed. It will be assumed that the
resolution of the photon detector is sufficient to restrict the observation to photons
emitted in a transition between levels with fixed quantum numbers LS1 ! L2S2.
Since the electrons are not observed, however, all photons emitted in this transition
must now be taken into account irrespective of the direction in which the electrons
are scattered.

If we now consider excitation by a steady flux of incoming electrons the time
at which the photons are emitted is no longer uniquely defined with respect to the
excitation time. Thus the time-integrated form of the polarization density matrix
must be used.

When the scattered electrons are unobserved the atomic system of interest is
aligned but not oriented according to the discussions in Sect. 4.6.3. Consequently,
the detected radiation depends on only two parameters, the monopole hT .L/00i,
which is proportional to the total cross section Q, and the alignment parameter
D

T .L/
�
20

E

given by (4.91). Thus the relevant Stokes parameters are readily obtained

by putting all multipoles equal to zero in (6.7) and the equations for the other Stokes

parameters except hT .L/00i and
D

T .L/
�
20

E

. The degree of circular polarization and

the parameter ˜1 vanish and the nonzero Stokes parameters are found to be

I.n/ D C.¨/jhL2 k r k Lij2 2

3.2LC 1/1=2
hT .L/00i 1

”

� C.¨/jhL2 k r k Lij2.�1/LCL2
�
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L L L2

�

G.L/21=6
1=2
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T .L/
�
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E

� .3 cos2 ™ � 1/ (6.8a)

I˜3.n/ D C.¨/jhL2 k r k Lij2.�1/LCL2
�
1 1 2

L L L2

�

G.L/2

�
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2

�3=2

�
D

T .L/
�
20

E

sin2 ™ (6.8b)

The monopole can be obtained from a measurement of the total cross section. In

order to determine
D

T .L/
�
20

E

experimentally either the angular distribution I or

the parameter I˜3 can be measured. Usually, a combination of both parameters
is determined. The emitted radiation is detected at right angles to the incident beam
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Fig. 6.2 See text for
explanations

axis. We will take the incoming beam direction as the Z axis of our coordinate
system and the direction of observation n as the X axis. The unit vectors e1 and
e2, specifying the detector system introduced in Sect. 6.1, are then parallel to �Z
and Y , respectively.

The radiation detected in the X direction passes a Nicol prism which has its axis
of transmission at an angle “ to the incident beam direction (this corresponds to an
angle 180ı �“with respect to the axis e1). The transmitted light is linearly polarized
with polarization vector e given by (1.56) with 180ı � “ replacing “ (see Fig. 6.2,
which should be compared with Fig. 1.4):

e D �e1 cos “ � e2 sin “ (6.9)

The transmitted intensity is obtained from (1.82) with ˜1 D ˜2 D 0:

Ie D .1=2/ŒI.X/C I˜3.X/ cos 2“� (6.10)

where I.X/ and I˜3.X/ are given by (6.8a), b, respectively, with ™ D 90ı;
® D 0ı.

Usually one determines experimentally the polarization P, which is defined as

P D Ik � I?
Ik C I?

(6.11)

Here, Ik and I? denote the intensities of the emitted light which has passed through
the Nicol prism with its axis of transmission respectively parallel .“ D 0ı/ and
perpendicular .“ D 90ı/ to the Z axis. Using (6.10) we obtain

P D I˜3.X/

I.X/
D ˜.X/3 (6.12)
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Since ˜1 D ˜2 D 0 the magnitude of the parameter (6.11) is equal to the degree of

coherence P D �

˜21 C ˜22 C ˜23
�1=2

introduced in Sect. 1.2. Specializing (6.8) to n
parallel to X , that is, by inserting ™ D 90ı; ® D 0, we obtain

P D
.�1/LCL2

�
1 1 2

L L L2

�

G.L/2

�
3

2

�1=2 D

T .L/
�
20

E

1

”

2

3.2LC 1/1=2
hT .L/00i C .�1/LCL2

�
1 1 2

L L L2

�

G.L/2
1

61=2

D

T .L/
�
20

E

(6.13)
Thus combining a measurement of P with a determination of the total cross section
Q enables the alignment parameter to be extracted from the experimental results.

For singlet-singlet transitionsG.L/K D 1=” and (6.13) reduces to the expression
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E
(6.14)

As an illustration consider the case of radiation emitted in a 1D !1 P transition.
The alignment parameter may be expressed in terms of the total cross sections
Q.M/ using (4.91):

D

T .2/
�
20

E

D 51=2
X

M

.�1/M
�
2 2 2

M �M 0

�

Q.M/

D �.2=7/1=2Œ2Q.2/�Q.1/�Q.0/� (6.15a)

where the relation (4.88) has been used. Similarly, from (4.89)

hT .2/00i D .1=5/1=2Œ2Q.2/C 2Q.1/CQ.0/� (6.15b)

Using (6.15) together with the numerical value of the 6j symbols in (6.14) yields

P D 3Œ�2Q.2/CQ.1/CQ.0/�

6Q.2/C 9Q.1/C 5Q.0/
(6.16)

6.2.2 Threshold and Pseudothreshold Excitations

As was first discussed by Percival and Seaton (1957) the formulas given above
simplify considerably for threshold excitation. Since all spin couplings have been
neglected during the collision orbital and spin angular momenta are separately
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conserved, which gives in particular

M0 Cm0 D M Cm1

where M0 and m0 (M and m1) are the magnetic quantum numbers of the initial
(final) atoms and electrons, respectively. The incident electron has no component of
its orbital angular momentum along its direction of propagation .m0 D 0/. After the
excitation at threshold the projectile electron has zero energy and hence zero orbital
angular momentum .m1 D 0/. It follows that the magnetic quantum number of the
atoms cannot change during the collision and, since excitation from the ground state
with L0 D 0 is assumed, only the substate with M D 0 can be excited at threshold.

As a consequence only the cross section Q.0/ is nonzero at threshold and from
(4.91):

D

T .L/
�
20

E

D 51=2.�1/L
�

L L 2

0 0 0

�

Q.0/ (6.17a)

Similarly,
hT .L/00 D Q.0/=.2LC 1/1=2 (6.17b)

By inserting (6.17) into (6.13) it can be seen that Q.0/ cancels in the resulting
expression. The Threshold polarization Pthr is therefore a quantity which depends
only on the geometry of the excitation process independent of any (calculated or
measured) cross section value:

Pthr D

�
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�1=2

.�1/L2G.L/2
�
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.�1/L2G.L/2
�
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L L L2

� �
L L 2

0 0 0

� (6.18)

Specializing (6.18) to the case of L D 1; L2 D 0; S1 D 0 gives Pthr D 1.
This is readily understood by noting that the excited atoms are in a pure state
jL;M D 0i immediately after the excitation. The detected photons are thus emitted
in a transition between two pure states jL;M D 0i ! j0i and hence are necessarily
completely polarized. If L2 ¤ 0 the emitted radiation is depolarized since the
final atomic states (with M2 D ˙1; 0) are not detected. The corresponding
depolarization effect is described explicitly by the 6j symbol in (6.18). If, in
addition, S1 ¤ 0 a further depolarization is observed, caused by the coupling to
the undetected spin system, which is described by the factor G.L/2 in (6.18). In
general G.L/2 is given by (5.31). If the fine-structure levels do not overlap (5.36)
applies and the initial coherence between different fine-structure states is destroyed.
If hyperfine-structure interaction must also be taken into account then the relevant
perturbation factor can be obtained from (4.135). This discussion shows once more
the importance of fine (and hyperfine) interaction and the effect of a finite level
width, both of which can considerably affect polarization. An interpretation of these
results in terms of the vector model is given in the review by Kleinpoppen (1969).
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There is considerable interest in the polarization of impact radiation at threshold.
Attempts at direct measurement of threshold polarization have been limited because
of intensity problems and also because of the effects of cascades and resonances
in the energy range just above threshold. It has been pointed out by King et al.
(1972) that polarization measurements made for the subensemble of atoms which
have been excited by forward-scattered electrons reproduces threshold conditions
as far as polarization is concerned and that errors due to cascade and resonance
effects are eliminated. In fact, forward-scattered electrons have a zero angular
momentum component both before and after the scattering .m0 D m1 D 0/ with
respect to the direction of motion as the quantization axis. In this case exciting
the atoms from the ground state (with L D 0) and neglecting spin–orbit effects
during the collision enables only magnetic substates with M D 0 to be excited.

The relevant multipoles hT00i and
D

T
�
20

E

are given by (6.17) with Q.0/ replaced by

the differential cross section ¢.0/ describing excitation of the M D 0 substates by
forward-scattered electrons. Forward-scattered electrons and emitted photons are
then detected in coincidence and P measured. ¢.0/ cancels in the expression for P
and P is therefore given by (6.18).

This technique has been recently applied in atomic and molecular physics (see,
for example, the report by McConkey (1980), and references therein).

As stated above, many results given in the present section can be traced back to
the paper by Percival and Seaton (1957). For further developments and a modern
formulation of the Percival–Seaton theory we refer to the reviews by Bartschat
(1996) and Bartschat and Csanak (1996).

6.3 Effect of a Weak Magnetic Field

6.3.1 Perturbation Coefficients for Various Geometries
Coherence Phenomena

In this section we will consider the effect of a magnetic field on light emission. The
field is assumed to be weak, that is, the mean value of the magnetic interaction is
assumed to be much smaller than the separation of the relevant zero field levels.
With this assumption the theory developed in Sect. 4.7.4 can be used and the effect
of the field on the excitation process can be neglected but must be allowed for in
the description of the time evolution of the excited states between excitation and
decay. In terms of the vector model, disturbance due to the field is described by the
precessional motion of the angular momentum vectors around the direction of the
field H at the Larmor frequency ¨L of the excited states.

Assuming that states jJMi have been excited at t D 0 the polarization density
matrix of the emitted photons is obtained by specializing (5.25) to the case under
discussion:
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P¡.n; t/œ0œ D C.¨/
X

KQqq0

tr
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Qq0
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D
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(6.19)

with q D œ0 � œ and where the trace is given by (5.15). The relevant perturbation
coefficient is given by (4.143):

G.t/
Qq0

KK D
X

Q0

D.0“0’0/.K/Q0q0 exp.�i¨LQ0t/D.0“0’0/.K/Q0Q (6.20)

where “0 and ’0 denote the polar angles of the field direction H in the coordinate sys-
tem XYZ defined by the excitation process. We will now derive explicit expressions
for the perturbation coefficients for some geometries of interest.

6.3.1.1 Field Parallel to Z

In this case (4.144) applies:

G.t/
Qq0

KK D exp.�i¨LtQ/•Qq0 (6.21)

and (6.19) reduces to the expression
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(6.22)

This equation shows that the angular distribution and polarization of the emitted
radiation oscillate as a function of the magnetic field strength. The quantum beats
appear when Q ¤ 0, that is, when different sublevels have been coherently excited.
The magnetic field will have no effect if the excitation process is axially symmetric
with respect to Z (see, for example, the case discussed in Sect. 4.5.3).

6.3.1.2 n Parallel to X , H Parallel to Y

Next we consider the situation in which the emitted light is observed in the X
direction of the collision system and the field is directed along the Y axis. In this
case ™ D 90ı; ® D 0, and “0 D ’0 D 90ı in (6.19) and (6.20).

After some algebraic manipulations we obtain

X

q0

D.0;  =2; 0/
.K/

œ0�œ;q0G.t/
Qq0

KK D exp.i Q=2/.�1/Kd.¨Lt/.K/�œ0Cœ;Q (6.23)
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Substitution of (6.23) into (6.19) yields

P¡.X; t/œ0œ DC .¨/
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(6.24)

The time modulation of P¡œ0œ is given by the factor d.¨Lt/
.K/

�œ0Cœ;Q.
As an example of the application of (6.23) consider an atomic ensemble excited

in a process axially symmetric with respect to the Z axis (for example, excitation
by a beam of unpolarized light or in beam-foil excitation with the foil axis parallel
to the incident beam axis). The excited ensemble is then characterized in terms of a
monopole and an alignment parameter with K D 2; Q D 0. The intensity I.x; t/
observed at time t in the X direction is given by

I.X; t/ D P¡.X; t/11 C P¡.X1t/�1�1
D 2C.¨/ tr
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where explicit expressions for the d functions together with
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have been used. Equation 6.25 shows that the intensity I.X; t/ exhibits oscillations
with twice the Larmor frequency. It is instructive to consider the coherence effect

responsible for these quantum beats. Only hT00i and
D

T
�
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E

contribute to (6.25) as a

result of the incoherent excitation of the substates jJ1M1i with differentM1, where
M1 is defined with respect to Z as the quantization axis. The interference effects
between the eigenstates

ˇ
ˇJ1M

0
1

˛

of the Hamiltonian

H D H0 � g�BJH

which governs the time evolution between excitation and decay are responsible for
the quantum beats (see the discussion in Sect. 5.4.2). DefiningM 0

1 with respect to H
as the quantization axis we have
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Any state jJ1M1i can be written as a linear superposition of states
ˇ
ˇJ1M

0
1

˛

:
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jJ1M1i D
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M 0
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a
�

M 0
1M1

� ˇ
ˇJ1M

0
1

˛

(where not all possible values of M 0
1 may exist in the new frame). The density

matrix ¡ describing the excited atoms is diagonal in M but in general nondiagonal
in M 0

1 provided hT20i is different from zero (otherwise ¡ is proportional to the
identity matrix which is diagonal in any representation). This coherence between
the substates gives rise to interference effects expressed by the d function in (6.25).
This example illustrates once again that an excitation process which is incoherent
for one quantization axis may be coherent for a different axis.

In general, if the magnetic field is not parallel toZ, interference terms will occur,
even if different substates jJ1M1i are incoherently excited. In order to observe
quantum beats it is sufficient to produce a different population of the states jJ1M1i,
that is, a nonvanishing alignment parameter as shown by (6.25).

Equation 6.25 can be applied to a determination of the alignment parameter as
well as the gyromagnetic ratio (further details on this can be found in the review by
Macek and Burns 1976).

6.3.1.3 n Parallel to X , H Parallel to X

Finally we will consider a geometry in which the direction of observation n and the
field are parallel and directed along the X axis. In this case it can be shown that
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Substitution of this expression into (6.19) yields
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(6.27)

It should be noted that in this geometry the interference effects are independent
of Q (and therefore independent of whether substates with different M1 have
been coherently excited or not). The quantum beats depend only on œ0 � œ and
only the off-diagonal elements of the polarization density matrix will exhibit time
modulations. We will consider (6.27) and its consequences in detail in the following
section.
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6.3.2 Magnetic Depolarization. Theory of the Hanle Effect

In the 1920s the depolarization of resonance fluorescence from atoms subjected to
external magnetic fields was discovered by Hanle (1924). During the last 30 years
the techniques of magnetic depolarization have been further developed and widely
applied to study Zeeman and hyperfine structure of excited and ground states and
to determine radiative lifetimes and interatomic relaxation rates. In this section we
will derive the basic formulas necessary for the description of such experiments.

Consider an atomic system excited by linearly polarized light. It is convenient
to define the “collision” system in the following way. The Z axis is chosen to be
parallel to the polarization vector e of the incident light, the Y axis parallel to the
incident beam axis. We will consider a geometry in which the emitted resonance
light is observed in the X direction with the magnetic field parallel to X .

As discussed in Sect. 4.5.3 absorption of plane-polarized light with e parallel to
Z will produce alignment but no orientation in the excited atoms. The atomic system
can therefore be completely characterized by the two parameters hT .J1/00i and
D

T .J1/
�
20

E

. The polarization density matrix of the emitted radiation is given by (6.27)

for the geometry under discussion. The Stokes parameters can be calculated from
(6.27) and (1.76) using the detector system defined in Sect. 6.2.1 (with n parallel
to X; e1 parallel to �Z, and e2 parallel to Y ). Assuming that the excitation time
.t D 0/ is sharply defined we obtain
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I˜1.x; t/ D � C.¨/ tr
h

r�1T .J1/2�2r�C1
i�3

2

�1=2

.sin 2¨Lt/

� exp.�”t/
D

T .J1/
�
20

E

(6.28c)

I˜2.x; t/ D 0 (6.28d)

The last equation is a consequence of the fact that the initially excited atoms were
unoriented and that the magnetic field does not mix multipoles with different rank
[see (6.27)]. Note that I.X; t/ does not depend on the field.

The time-integrated Stokes parameters are of particular interest. Integrating
(6.28) over a time interval 0 � � � tR where tR is much larger than the mean lifetime
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(so that the upper integration limit can be extended to infinity with negligible error)
we obtain

I.X/ D 2C.¨/

”.2J1 C 1/1=2
tr
�

r�1r�1
	

hT .J1/00i

� C.¨/

”
tr
h

r�1T .J1/20r��1
i D

T .J1/
�
20

E

(6.29a)

I˜3.X/ D � ”

”2 C 4¨2L

�
3

2

�1=2

C.¨/tr
h

r�1T .J1/2�2r�C1
i D

T .J1/
�
20

E

(6.29b)
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If the fluorescence light observed in theX direction passes through a linear polarizer
with the axis of transmission at an angle “ to the Z axis then the polarization vector
e of the transmitted light is given by (6.9), which is a special case of the general
(1.55) with •D 0. The transmitted intensity can be obtained by substituting (6.29)
into (1.82) with • D 0:
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(6.30)

It is instructive to discuss an example of the use of (6.30). Consider the case in
which the incident linearly polarized light excites atoms in a 1S ground state to
a 1P state. Because of the dipole selection rules only the substate with magnetic
quantum number M D 0 can be excited and hM D 0j¡jM D 0i � ¡00 is the
only nonvanishing element of the excited state density matrix. Application of (4.31)
gives

hT00i D 1

31=2
¡00; hT20i D �

�
2

3

�1=2

¡00 (6.31)

Calculating the traces in (6.29a) and (6.30) and describing the subsequent decay to
the atomic ground state by means of (5.15) we obtain

tr
�

r�1r��1
	

D .1=3/jh0krk1ij2

tr
h

r�1T .1/20r��1
i

D Œ1=3.6/1=2�jh0krk1ij2

tr
h

r�1T .1/2�2r�1
	

D .1=3/jh0krk1ij2 (6.32)



6.3 Effect of a Weak Magnetic Field 199

Substitution of (6.31) and (6.32) into the expressions (6.29a) and (6.30) gives

I.X/ D C.¨/jh0krk1ij2¡00=3 (6.33a)

and
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”2 C 4¨2L
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(6.33b)

It should be noted that the shape of the observed signal I .X/e described by (6.33)
depends on the orientation of the polarizer in the detection beam. The shape is called
a Lorentzian shape for “ D 0 and a dispersion shape for “ D 45ı. Fig. 6.3a, b show
the curves obtained in the special case when (6.33) applies.

Finally we will consider the polarization P defined by (6.11) as

P D Ik � I?
Ik C I?

(6.34)

where Ik.I?/ is the intensity transmitted by the polarizer if its axis of transmission
is parallel (perpendicular) to Z. Ik and I? can be obtained by inserting “ D 0ı and
“ D 90ı in (1.82), which gives

P D ˜3 (6.35)

Substitution of (6.29a), (6.29b) into (6.35) yields

P D P0
”2

”2 C 4¨2L

where P0 denotes the polarization detected in the field-free case .¨L D 0/. The
factor

”2

”2 C 4¨2L
< 1

describes the depolarization of the emitted fluorescence light caused by the
magnetic field. If H is slowly varied the polarization P of the radiation changes
from its maximum possible value at the zero field to steadily decreasing values with
increasing field strength (Fig. 6.4). This constitutes the Hanle effect or the magnetic
depolarization of resonance radiation.

The emphasis of our discussions here has been to illustrate how (6.30) and (6.33)
are direct consequences of the general theory presented in Chaps. 4 and 5. For an
interpretation of the Hanle effect in terms of a semiclassical model, experimental
results and applications we refer, for example, to the review by Cohen-Tannoudji
and Kastler (1966) and the book by Corney (1977).



200 6 Some Applications

Fig. 6.3 Shape of Hanle curves

6.3.3 Physical Interpretation of Zeeman Quantum Beats.
Rotation of the Atomic Charge Cloud

In this subsection we give a physical and geometrical interpretation of the results
obtained in the previous subsection. We do this by discussing an explicit example.
Assume that atoms have been excited at time t D 0 by a short pulse of linearly
polarized light in the presence of a magnetic field H, which is perpendicular to the
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Fig. 6.4 Depolarization of resonance fluorescence

electric vector E of the exciting light. We will choose a coordinate systemXNYNZN
in such a way that XN is parallel to E, and ZN is parallel to H. The magnetic field
will be assumed to be sufficiently weak so that its influence on the excitation process
can be neglected. Let us therefore first consider the geometry of the atomic charge
cloud at t D 0, that is, immediately after the excitation. Since only the electric field
E is defined by the geometry of the process it follows that the charge cloud at t D 0

possesses three planes of symmetry: the XN � YN ; XN �ZN , and YN �ZN planes
(the latter one is a symmetry plane because, due to the rapid oscillation of E, the
atoms “see” only the axis along E but not its direction). This situation would be
schematically illustrated by Fig. 4.7 if the alignment angle ” is set to zero.

The symmetry relations (4.83) and (4.96) apply. In particular, for L D 1, the

atomic charge cloud is described by three independent real parameters: hT00i;
D

T
�
20

E

,

and
D

T
�
22

E

D
D

T
�
2–2

E

. We will concentrate on this case in the following.

The time evolution of the system is determined by its interaction with the
magnetic field. Since H is directed parallel to ZN , (4.145) applies. This equation
[also the more general expression (4.143)] shows that the rankK of state multipoles
remains invariant. It is not possible, for example, to transform alignment into
orientation with the help of a magnetic field. (This statement holds as long as the
magnetic field is sufficiently weak so that only a linear Zeeman effect is taking place.
However, alignment–orientation conversion becomes possible if quadratic effects
have to be taken into account. Details may be found in the review by Auzinsh and
Ferber 1995.) Furthermore, in the case under discussion,Q remains also unchanged

under the influence of H. Consequently, hT00i and
D

T
�
20

E

are not affected by the field.

The time development of the remaining parameters is given by
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D

T .t/
�
22

E

D e�2i¨Lt
D

T
�
22

E

(6.36a)
D

T .t/
�
2�2
E

D eC2i¨Lt
D

T
�
22

E

(6.36b)

where
D

T
�
2Q

E

denotes the multipoles at t D 0 and where we have used the symmetry

condition
D

T
�
22

E

D
D

T
�
2–2

E

. Comparison with (4.104) shows that 2¨Lt D �”.22/;
that is, ¨Lt can be interpreted as alignment angle at time t . We can therefore repeat
the steps leading from (4.101) to (4.106) and obtain for the projection of the charge
cloud in the XN � YN plane .� D  =2/ at time t the expression

W
� 

2
; ®; t

	

D AC B cos.2®� 2¨Lt/ (6.37)

This result shows that the charge distribution retains its shape under the influence
of H, but rotates in the XN � YN plane around H with the Larmor frequency ¨L.
However, since the atoms are aligned but not oriented there is no distinction between
“head” and “tail” of the charge cloud. Consequently, the positions at time t D 0

and at time t D  =¨, are physically indistinguishable. Any physical observable
quantity will therefore vary in time with twice the Larmor frequency. In particular,
if one observes the light emitted by the excited atoms in their subsequent decay, the
rotation of the charge cloud results in a modulated response of the detector at twice
the Larmor frequency in accordance with (6.22). The quantum beats, described in
Sect. 6.3, are a direct manifestation of the precession of the charge cloud around H.

Classically, the excitation process can be considered by assuming that an atomic
electron receives an impulse at t D 0 which starts it oscillating in the direction
of E. This corresponds to an oscillating electric dipole which experiences a torque
under the magnetic field and precesses around it. As these dipoles rotate and decay,
the intensity of the emitted light oscillates with frequency 2¨L (see, for example,
Series and Dodd 1978).

Finally, we point out that a prerequisite for any rotation of the charge cloud
is that a “sense of rotation” is defined by the geometry of the experiment. If an
experiment is designed which does not fulfill this condition, no rotation of any kind
can be produced. In our present case of interest this essential geometrical condition
is satisfied by the transformation properties of the magnetic field. H transforms as an
axial vector. An axial vector is primarily defined by defining a “sense of rotation.”
The rotation sense fixes a plane and an axis normal to the plane. The direction of
the vector is chosen by convention only (by applying the usual right-hand rule).
In our present case of discussion the essential geometrical element is therefore not
the direction of H but the corresponding rotation sense in the XN � YN plane. By
interacting with the field the atoms can “see” this sense of rotation and can react to it.



6.4 Influence of Electric Fields. Orientation – Alignment Conversion 203

6.4 Influence of Electric Fields. Orientation – Alignment
Conversion

6.4.1 Time Evolution of State Multipoles

In the preceding section we have considered the influence of external magnetic fields
on atoms. It has been shown that a weak magnetic field leaves the rankK of the state
multipoles invariant, and the basic symmetrie of the ensemble does therefore not
change. It has been of significant interest for a long time to examine perturbations
able to break the symmetry of a given atomic ensemble and to transform, for
example, alignment into orientation. Such a method is of particular interest for
producing orientation out of alignment in beams of diatomic molecules.

One possibility to achieve this is by application of external electric fields via
second-order Stark effect. The basis for this approach was formulated by Lombardi
(1969) and has been developed over the years by several research groups. We refer
to the reviews by Andrä (1979) and Auzinsh and Ferber (1993, 1995) for the history
of the subject and for a discussion of experimental and theoretical work.

In the present section we describe the method of symmetry breaking by external
electric fields. In order to point out the essential features of the method as clearly as
possible we concentrate on simple cases. Consider an ensemble of excited atoms
in singlet states with orbital angular momentum L D 1, characterized by state

multipoles
D

T
�

KQ

E

. At time t D 0 an external electric field is switched on and

perturbs the excited atoms so that the ensemble at times t > 0 is described by

multipoles
D

T .t/
�
KQ

E

. We will first investigate the time evolution of the multipoles

via the second-order Stark effect. Let us assume that the X–Z plane is a symmetry
plane of the unperturbed atoms (so that the results of Sect. 4.6.2 apply) and that the
electric field E is directed parallel to the Z axis.

It has been shown that the second-order Stark effect can be described by an
“effective” Hamiltonian

H D H0 � 1

2
E2A� E2B

�

L2Z � 1

3
L2
�

(6.38)

where A and B are essentially reduced matrix elements and L2Z and L2 denote
angular momentum operators (Sobelmann 1979). We rewrite (6.38),

H D a C bL2Z (6.39)

with

a D H0 � 1

2
AE2 C 1

3
E2BL2

and
b D E2B
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and write the corresponding time evolution operator as

U.t/ D e�.i=¯/.aCbL2Z/t (6.40)

The time evolution of angular momentum eigenstates is then given by

jLM; ti D U.t/jLMi D e�.1=¯/.aCbM2/jLMi (6.41)

where jLMi denotes the state immediately before switching on the electric field.
The time evolution of the tensor operators can then easily be obtained. We use the
definition (4.3) and set J D J 0 D L D 1. Substitution of explicit values of the
Clebsch–Gordan coefficients yields in particular

T11 D �
�
1

2

�1=2

Œj11ih10j C j10ih1� 1j� (6.42a)

T21 D �
�
1

2

�1=2

Œ�j11ih10j C j10ih1� 1j� (6.42b)

for the unperturbed atoms. At time t we obtain, by using (6.40) and (6.41),

U.t/T11U.t/
� D �

�
1

2

�1=2

Œe�.i=¯/btj11ih10j C j10ih1� 1je.i=¯/bt�

D �
�
1

2

�1=2 �

.j11ih10j C j10ih1� 1j/ cos
bt

¯

Ci.�j11ih10j C j10ih1� 1j/ sin
bt

¯
�

D T11 cos
bt

¯ � iT21 sin
bt

¯ (6.43a)

Taking expectation values and remembering
D

T
�

KQ

E

D hTKQi�, we obtain

D

T .t/
�
11

E

D
D

T
�
11

E

cos
bt

¯ C i
D

T
�
21

E

sin
bt

¯ (6.43b)

In a completely similar way we obtain

D

T .t/
�
21

E

D
D

T
�
21

E

cos
bt

¯ C i
D

T
�
11

E

sin
bt

¯ (6.43c)

and that
D

T
�
20

E

and
D

T
�
22

E

are unaffected by the field.
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With E parallel to Z the X–Z plane is still a symmetry plane of the system.
According to (4.83) the alignment components are real and the orientation imagi-
nary:

D

T
�
11

E

D i

2
hLyi (6.44)

where we have applied (4.84a). hLyi is the mean value of the angular momentum of
the atomic ensemble. Combining (6.43) and (6.44) we obtain

•

hL.t/yi D hLyi cos
bt

¯ C 2
D

T
�
21

E

sin
bt

¯ (6.45a)

•
D

T .t/
�
21

E

D
D

T
�
21

E

cos
bt

¯ � 1

2
hLyi sin

bt

¯ (6.45b)

D

T
�
21

E

can be expressed in Cartesian components by using (4.85).

Equations 6.45 show that the alignment component
D

T
�
21

E

is reversibly trans-

formed into orientation hLyi by the influence of the electric field, whereas
D

T
�
20

E

and
D

T
�
22

E

remain unaffected.
D

T
�
21

E

characterizes the spatial direction of the atomic

charge cloud within the X–Z plane according to (4.103a). In order to obtain more
insight into the relationship between hJyi and the orientation of the charge cloud we
will consider some examples.

6.4.2 Variation of Shape and Spatial Direction of Atomic Charge
Clouds

Assume that atoms have been excited from the ground state .L D 0/ to states with
L D C1 by a short pulse of circularly polarized light at time t D 0 in the presence
of a static electric field E.

The field is assumed to be sufficiently weak so that it can be neglected during
the excitation. The Y axis of our coordinate system will be chosen parallel to the
incident light beam, and theZ axis parallel to E. We will consider atomic excitation
from the ground state .L D 0/ to states with L D 1.

If the light has positive helicity then only one atomic state j1; 1iy can be excited,
where the subscript “y” indicates that the Y axis has been chosen as quantization
axis. We obtain from (4.31) that, with respect to Y as quantization axis, the
following two multipoles are different from zero:

hLyi D 1 (6.46a)

D

T
�
20

E

y
D
�
1

6

�1=2

(6.46b)
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We obtain the alignment components
D

T
�
2Q

E

with respect to Z as quantization axis

by using (4.41). The Y axis has polar angle � D  =2 and azimuth angle ® D  =2,
and the third Euler angle can be set to zero.

We obtain, by applying relation (C12) and by inserting explicit values for the d
functions,

D

T
�
20

E

D
D

T
�
20

E

y
D
�

0
 

2
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	.2/�

00
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�
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(6.47a)
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D
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D 0 (6.47b)
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D
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	.2/�

02
D �1

4
(6.47c)

Since under the assumed conditions the X � Z plane is a symmetry plane, these
components are real parameters according to (4.82).

After the excitation the atomic states will be perturbed by the field E, and the
corresponding time evolution of the multipoles is given by (6.45):

•

hL.T /yi D hLyi cos
bt

¯ D cos
bt

¯ (6.48a)

•
D

T .t/
�
21

E

D �1
2

sin
bt

¯ (6.48b)

where the initial conditions (6.47b) and (6.46a) have been taken into account. It
follows that an orientation component perpendicular to E is transformed into the

alignment component
D

T
�
21

E

. The time evolution of the charge cloud follows by

inserting the results (6.47a), (6.47c), and (6.48b) into (4.102). Considering again
the cut through the X �Z plane (corresponding to ® D 0) we obtain

•

W.�; 0; t/ D 3

8 

h

1C 2
D

T .t/
�
21

E

sin 2�
i

D 3

8 

�

1 � sin
bt

¯ sin 2�

�

(6.49)

where � is the angle between the radius vector and Z, and W.�; 0/ is the length
of the corresponding radius vector.

Equation 6.49 allows us to follow the time variation of the shape of the charge
distribution. At time t D 0 the shape in the X � Z plane is a circle with radius
W D 3=8 . Under the influence of the electric field the charge cloud is gradually
deformed. Its shape at four different times is depicted by Fig. 6.5. The orientation
has its maximum value hLyi D C1 at t D 0 and hLyi D �1 at t D  ¯=b. The sign
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X X

X X

EIIZ EIIZ

EIIZ EIIZ

Fig. 6.5 Variation of the shape and direction of a charge cloud with time (a) t D 0, (b) t D
 ¯=2b, (c) t D  ¯=b, (d) t D 3 ¯=b. The arrow in figs, (a) and (c) indicate the sign of hLyi.
The electric field is parallel to Z

is indicated by the arrows in Fig. 6.5a, c. The orientation vanishes if the alignment
D

T
�
21

E

is maximal, that is, at times t D  ¯=2b and t D 3 ¯=2b.

Several features are apparent from Fig. 6.5. The alignment angle ” is either 45ı

or 135ı [this follows also from (4.103a) if the values (6.47) for
D

T
�
22

E

and
D

T
�
20

E

are

inserted], and these are the only directions along which the charge cloud can be
deformed by the electric field. A rapid change of ” occurs near the maximum and
the minimum values of hLyi.

It is interesting that the same type of behavior of the alignment angle has been
observed in electron–atom collisions: A rapid change of ” is always connected with
a maximum value of jhLyij (Andersen et al. 1988). Our discussion suggests that
the observed correlation between ” and hLyi is caused by a long-range effect: The
excited atoms “see” the electric field of the outgoing projectile, and in this field
orientation and alignment are transformed into each other.
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6.4.3 Creation of Orientation Out of Alignment

Let us now consider the conversion of alignment into orientation. Assume that the
orientation hLi vanishes at t D 0 and that the alignment is different from zero.
Let us suppose that the X � Z plane is a mirror plane of the corresponding charge
cloud and that E is parallel toZ. The alignment angle ” may have an arbitrary value
(Fig. 4.7). Under the influence of the field an orientation is produced perpendicular
to E and perpendicular to the alignment axis of the charge cloud (that is, the longest
principal axis in the X �Z plane). We find from (6.45):

•

hLy.t/i D 2
D

T
�
21

E

sin
bt

¯ (6.50a)

•
D

T .t/
�
21

E

D 2
D

T
�
21

E

cos
bt

¯ (6.50b)

where
D

T
�
21

E

is the value of t D 0. However, a prerequisite for the transformation of

alignment into orientation is that
D

T
�
21

E

be different from zero. This requires that the

charge cloud be neither parallel to E.” D  =2/ nor parallel to the X axis .” D 0/,
as follows from an inspection of (4.103a)). The most effective geometry would be
to apply an electric field at � D 45ı to the alignment axis.

6.4.4 Comparison Between Electric and Magnetic Field
Influences

Comparing the results of the present subsection with those of Sect. 6.3, we see that
there is a striking difference between the influence of weak electric and magnetic
fields on excited atoms. The former converts alignment into orientation and vice
versa; under the influence of the latter atomic charge clouds are set into rotation.
This difference can be traced to the fact that the effective Hamiltonian (6.38)
depends on L2Z , whereas the Hamiltonian (4.140) depends on LZ . If we repeat
the calculations leading to (6.45), with the Hamiltonian (4.140) we obtain that
the rank K of the multipoles remains invariant, and we rediscover the results
of Sect. 6.3.3. The different behavior of excited atoms in electric and magnetic
fields follows therefore from the fact that a magnetic field completely removes
the degeneracy between different Zeeman levels, whereas states with M and �M
remain degenerate in electric fields. This result can further be traced to the different
transformation properties of E and H: the former transforms as a polar vector, and
the latter as an axial vector (see, for example, Chapter XV in Messiah 1965).



Chapter 7
The Role of Orientation and Alignment
in Molecular Processes

7.1 Introduction

In typical spectroscopic or collision experiments molecules rotate freely and
isotropic averaging of the process considerably reduces the amount of information
on the interactions. In recent years several methods have therefore been developed
to produce anisotropic distributions of molecular angular momenta: for example,
focusing by external electric fields, optical pumping by polarized laser excitation,
or rotational cooling in supersonic expansions (see, for example, the reviews by
Herschbach 1992; Friedrich et al. 1991; Scoles 1988).

A considerable amount of molecular orientation and alignment can also be
created in collisions of molecules with surfaces or by scattering electrons or atoms
from molecules. Here, a well-defined plane (surface or scattering plane respectively)
exists against which all angular momentum directions can be measured. These
processes are therefore anisotropic by their very nature, which manifests itself in
an anisotropic distribution of angular momentum vectors.

These developments allow us to carry out experiments with a nonuniform
distribution of angular momenta and molecular axes in the probed species, either
in the initial or the final states. By studying the dependence of molecular processes
on the initial orientation and alignment, or by determining rotational polarization
in the final states, a wealth of information can be obtained about the symmetry
of the excited states as well as on the dynamics of the reactions. The use of
these techniques has become a central feature of much contemporary work in laser
studies, photofragmentation, chemical reactions, and in general in the “dynamical
stereochemistry” field.

It is the purpose of the present chapter to develop the techniques necessary to
characterize angular momentum and axes distributions, and illustrate the results
with examples of experimental interest. We will first discuss linear rotors, and then
generalize the results to symmetric top molecules. Knowledge of the essential parts
of Chaps. 2 and 3 and in particular of Sects. 4.3 and 4.5 will be assumed.

K. Blum, Density Matrix Theory and Applications, Springer Series on Atomic, Optical,
and Plasma Physics 64, DOI 10.1007/978-3-642-20561-3 7,
© Springer-Verlag Berlin Heidelberg 2012
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7.2 Rotational Polarization. Semiclassical Interpretation
of State Multipoles: Distribution Functions of Angular
Momentum Vectors

In this section we will derive the semiclassical limits of some of the quantum
mechanical formulas of Sect. 4.3. This will in particular lead to a visual inter-
pretation of state multipoles. We will concentrate on axially symmetric systems
throughout this section.

We will consider linear rotors (e.g., diatomic molecules in their electronic ground
state) because their rotational states depend on two quantum numbers J and M
only. We will consider an ensemble of rotating molecules with sharp value J of the
magnitude of the angular momentum but it will be assumed that different molecules
may be in states with differentM . Semiclassically, this corresponds to a distribution
of J vectors as shown for example in Figs. 4.2 and 4.3, and the corresponding

state multipoles
D

T.J/�KQ

E

are a measure of the spatial anisotropy of the J vectors.

Quantum mechanically, the state multipoles are a measure of the unequal population
of the available M states and their coherence properties [see (4.76)].

In this section we will consider the semiclassical treatment in more detail in
order to visualize the concept of state multipoles. In molecular physics one deals
frequently with states with large angular momenta (with J values of the order
10–100) so that the semiclassical approach should often be applicable.

We will start with the quantum mechanical formulations of Sects. 4.1 and 4.2 and
derive their semiclassical limits in the high J approximation. Throughout this and
the following sections we will normalize the density matrix ¡ according to

tr ¡ D 1 (7.1a)

which corresponds to

hT .J /00i D 1

.2J C 1/1=2
(7.1b)

Let us consider axially symmetric ensembles. We recall that ¡ is diagonal in M and
that the diagonal element hM j¡jM i is equal to the probability W.M/ of finding a
molecule in the state jJMi. Equation 4.34 gives

W.M/ D
X

K

.�1/J�M.JM; J �M jK0/
D

T .J /
�
K0

E

(7.2)

where the state multipoles are real parameters according to Sect. 4.3.2.
In the semiclassical vector model J has length

p

J.J C 1/ and a constant
projection M on Z (see Fig. 7.1). The angle ™J between J and Z is given by the
relation

cos ™J D M
p

J.J C 1/
	 M

J
(7.3a)
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Fig. 7.1 Semiclassical vector
model

in the high-J limit. W.M/ can therefore be interpreted as probability W.™J / of
finding a molecule with J at an angle ™J with respect to Z.

In order to make the relation between state multipoles and semiclassical pictures
more explicit we approximate the Clebsch–Gordan coefficient in (7.2) by a Legen-
dre polynomial. The relevant expression is valid for high J and is given in Edmonds
(1957):

• .JM; J �M jK0/ 	
�
2K C 1

2J C 1

�1=2

.�1/JCMPK.cos ™J / (7.3b)

where cos ™J is given by (7.3a). In particular, we obtain from (7.3a), (7.3b)

• .J 0; J 0jK0/ 	
�
2K C 1

2J C 1

�1=2

.�1/JPK.0/ (7.3c)

Substitution of (7.3b) into (7.2) yields

W.M/ D
�

1

2J C 1

�1=2X

K

.2K C 1/1=2
D

T .J /
�
K0

E

PK.cos ™J / (7.4)

In the high-J limit the distribution of J vectors can be considered to be a continuum.
In this limit we putW.M/ D W.™J / and recall that the normalization factor 2J C1

should be replaced by 4 . (This is because, in passing from quantum mechanics to
the classical limit, the number of possible spatial orientations of J, equaling 2J C1,
must be replaced by the full solid angle 4 .)
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Hence, hT .J /00i D .2J C 1/�1=2 will be replaced by hT .J /00i D .4 /�1=2, and
˙MW.M/ D 1 corresponds to

Z 2 

0

d®j

Z  

0

d™J sin ™JW.™J / D 1 (7.5)

Here, W.™J / sin ™J d™J d®J is the probability of finding the angular momentum
J of a molecule within the range ™J � � � ™J C d™J ; ®J � � �®J C d®J . We therefore
obtain from (7.4)

• W.™J / D
X

K

�
2K C 1

4 

�1=2 D

T .J /
�
K0

E

PK.cos ™J / (7.6)

which satisfies condition (7.5). We define the mean value hPK.cos ™J /i of the
Legendre polynomial PK , taken over the distribution of J vectors, by the relation

hPK.cos ™J /i D
Z 2 

0

d®j

Z  

0

d™J sin ™JW.™J /PK.cos ™J / (7.7)

Inserting (7.6) into (7.7) and using

Z 2 

0

d®j

Z  

0

d™J sin ™JPK.cos ™J /PK0.cos ™J / D 4 

2K C 1
•KK 0 (7.8a)

we obtain

hPK.cos ™J /i D
�

4 

2K C 1

�1=2 D

T .J /
�
K0

E

and in particular hP0.cos ™J /i D 1.
Hence, we have

•
D

T .J /
�
K0

E

D
�
2K C 1

4 

�1=2

hPK.cos ™J /i (7.9)

and

• W.™J / D 1

4 

X

K

.2K C 1/hPK.cos ™J /iPK.cos ™J / (7.10)

Equation 7.10 shows that the state multipoles hTK0i are proportional to the corre-
sponding Lengendre polynomials, averaged over the given distribution of J vectors.
In particular, we obtain for the orientation vector

D

T .J /
�
10

E

D
�
3

4 

�1=2

hcos ™J i (7.11)
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which is zero if the average of cos ™J vanishes. This is the case if either an equal
number of J vectors are pointing in the Cz and �z directions as in Fig. 4.2, or if all
angular momenta are perpendicular to z. We have hcos ™J i D 1 if all J vectors are
parallel to z (corresponding to M D J ), and hcos ™J i D �1 if all angular momenta
are pointing in the negative z direction.

Similarly, the alignment parameter is proportional to the average of the second
Legendre polynomial

D

T .J /
�
20

E

D .5=4 /1=2
�
1

2
.3 cos2 ™J � 1/

�

(7.12)

The mean value of P2.cos ™J / is � 1
2

if all J vectors are perpendicular to z, and C1
if all angular momenta are parallel to z (corresponding to ™J D  =2 and ™J D 0

respectively).
These expressions give explicit relations between state multipoles and distribu-

tions of angular momentum vectors. The equations show how spatial correlations
between J and a single reference vector (z direction) can be expressed in terms of
multipole parameters. The azimuthal angle ®J of J is uniformly distributed, and
the polar angle ™J measures the directional correlation. The system is oriented if
at least one state multipole with K odd is nonvanishing. The mean value of the
corresponding Legendre polynomial contains then factors � .cos ™J /K , and the
distribution shows a “head-versus-tail” distinction (Fig. 4.3).

If all multipoles with K odd vanish then the system cannot distinguish between
the Cz and �z directions. In this case there exists a preferred axis but no preferred
direction. The system is then aligned but not oriented (Fig. 4.2).

Equation 7.10 expresses the probability density function of an axially symmetric
J distribution in terms of expectation values of the PK , or alternatively in terms of
state multipoles. Let us consider an explicit example of an aligned system where

only
D

T .J /
�
20

E

is nonvanishing. Equation 7.10 reduces then to the expression

W.™J / D 1

4 

�

1C b

2
.3 cos2 ™J � 1/

�

(7.13a)

where the “alignment parameter” b has been defined by

b D p
20 

D

T .J /
�
20

E

D 5hP2.cos ™J /i (7.14)

The limiting values of b follow from the condition that the probability density
W.™J / must be nonnegative for all values of ™J . This gives the condition

� 1 � b � 2 (7.15)

b D 2 corresponds to a pure cos2 ™J distribution of angular momentum vectors, and
b D �1 gives rise to a pure sin2 ™J distribution.

In this section we have considered the semiclassical limit of some quantum
mechanical formulas for axially symmetric systems only. Classical probability



214 7 The Role of Orientation and Alignment in Molecular Processes

functions for J distributions in more general cases will not be considered here. For
a detailed discussion with various applications we refer to the book by Auzinsh and
Ferber (1995).

7.3 Axis Distributions of Linear Rotors

7.3.1 Basic Relations. States with Sharp J and M

In the preceding section we have discussed molecular ensembles with an aniso-
tropic distribution of angular momenta characterized in terms of states multipoles
D

T .J /
�
KQ

E

. Often, however, the distribution of the axes of rotating molecules is

of primary interest. Consider, for example, inelastic or reactive scattering events.
The collision time is often much shorter than the rotation time of the molecules.
The incoming projectiles “see” therefore the instantaneous axis distribution of the
molecules, and the “elementary” scattering event is a collision between a projectile
and a molecule with fixed axis n. In theoretical problems one has therefore first
to calculate the cross section for the elementary collision, and then one has to
take the average over the axes distribution. If the molecular target system has been
prepared in states with an anisotropic J distribution one has therefore to determine
the corresponding axis distribution.

There is of course a close kinship imposed on the J and n distributions.
Classically, the angular momentum of a rotating diatomic molecule is perpendicular
to its internuclear axis n (assuming that the molecule is in its electronic ground
state). In quantum mechanics the relation between J and N is more complex
particularly for small J . In this and the following subsection we will discuss this
relation in some detail, concentrating on ensembles with sharp magnitudes J of the
angular momentum. In Sect. 7.4 we will then consider ensembles without definite
J . There exist important differences between those two cases and for this reason we
will treat them separately.

We will start by considering rigid rotor states jJMi with sharp J and sharp
M . The corresponding eigenfunction in coordinate representation are given by the
corresponding spherical harmonicY.“’/JM , where “ and ’ denote polar and azimuth
angle of the molecular axis n respectively with regard to a given coordinate system.
From the usual probability interpretation of quantum mechanical wave functions
it follows that the probability of finding a molecular axis pointing in the solid
angle d˝ D sin “ d“ d’, when the molecule is in the state jJMi, is given by
W.“’/ sin d“ d’ with

W.“’/ D jY.“’/JMj2 (7.16)

We normalize according to

Z 2 

0

d’

Z  

0

d“ sin “W.“’/ D 1 (7.17)
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Fig. 7.2 Probability density
for the axes distribution of
linear rotors in states with
J D 1; M D 0

z

n

β

Hence, the axis distributions of linear rotors in states with sharp J and sharp M
is given by (7.16), which is independent of the azimuth angle ’. For example, for
J D 1 andM D 0, we have

jY.“’/10j2 D 3

4 
cos2 “ (7.18)

This distribution is illustrated by the polar diagram in Fig. 7.2 where the arrow
represents one possible direction of n, and where the length of the arrow is
proportional to the probability density jY10j2 of finding an axis under an angle “
to z.

If J is increased then the axis distribution resembles more and more the classical
case where any axis is confined to a plane perpendicular to J. This can be shown by
taking the semiclassical approximation of the spherical harmonies (see Zare 1988,
Chap. 1).
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7.3.2 General Equations. Examples and Experimental Studies

We will now generalize our results and consider an ensemble of linear rotors with
sharp J but different molecules may have different values of M . The ensemble

will be characterized by the set of state multipoles
D

T .J /
�
KQ

E

with K � 2J .

We will derive an expression for the probability density W.“’/, describing the
corresponding instantaneous axis distribution, and express it in terms of the state
multipoles. The final result will then relate any anisotropy in the J distribution to
the corresponding anisotropy in the spatial distribution of axes.

Let ¡ be the density operator describing the ensemble. ¡ can be written in the
form (4.29):

¡ D
X

M 0M

hJM0j¡jJMijJM0ihJMj (7.19)

We recall that, in abstract notation, the spherical harmonics are given by the scalar
product

h“’jJMi D Y.“’/JM (7.20)

where j“; ’i represents a state with fixed axis n pointing in the direction with polar
angle “ and azimuth ’with respect to a space-fixed coordinate system. Furthermore,
we recall from Sect. 2.2 that the diagonal elements of ¡ are probabilities [assuming
the normalization (7.1)]; that is, the diagonal element h“’j¡j“’i is equal to the
probability density of finding a molecule with internuclear axis n pointing in the
“; ’ direction. Hence,

h“’j¡j“’i D W.“’/ (7.21)

By “sandwiching” (7.19) between states j“’i and h“’j we obtain

W.“’/ D
X

M 0M

hJM0j¡jJMih“’jJM0ihJMj“’i

D
X

M 0M

hJM0j¡jJMiY.“’/JM0Y.“’/�JM (7.22)

where we used (7.20) and the corresponding equation for the complex conjugate
expression. Application of the addition theorem of the spherical harmonics (C.22)
yields

W.“’/ D .�1/J
.4 /1=2

X

kq

"
X

M 0M

hJM0j¡jJMi.�1/J�M 0

.2k C 1/1=2
�
J J k

M 0 �M �q
�#

� .2J C 1/

�
J J k

0 0 0

�

Y.“’/kq
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Finally we insert (4.34) and express the density matrix elements in terms of the state

multipoles
D

T .J /
�
KQ

E

which specify the angular momentum distribution

hJM0j¡jJMi D
X

KQ

.�1/J�M 0

.2K C 1/1=2
�
J J K

M 0 �M �Q
� D

T .J /
�
KQ

E

and perform the sum over M; M 0 by applying (C.4b) and obtain finally (Dellen
et al. 1994)

• W.“’/ D .�1/J
.4 /1=2

X

KQ

D

T .J /
�
KQ

E

.2J C 1/

�
J J K

0 0 0

�

Y.“’/KQ (7.23)

Equation 7.23 gives the relation between a given distribution of J vectors (charac-

terized by the set
D

T .J /
�
KQ

E

) and the corresponding instantaneous axis distribution

W.“’/. It should be noted that the 3j symbol in (7.23) vanishes for K odd because
of the symmetry condition (C5c). Hence, only multipoles with K even contribute to
the probability density W.“’/. We will discuss this result in detail in Sect. 7.4.2.

Let us consider some examples. An isotropic J distribution .K D 0/ corresponds
to an isotropic axis distribution W.“’/ D constant. The next simple case is an

aligned distribution where, besides the monopole, only
D

T .J /
�
20

E

contributes. The

corresponding axes distribution is obtained from (7.23) by inserting the explicit
expressions for the 3j symbols and the addition theorem (C.22) of the spherical
harmonics. We obtain

W.“/ D 1

4 

h

1C a

2
.3 cos2 “� 1/

i

(7.24)

where the “alignment parameter” a has been defined by

a D �
�
5J.J C 1/.2J C 1/

.2J C 3/.2J � 1/

�1=2 D

T .J /
�
20

E

(7.25)

Let us consider the high-J limit where the distribution of J vectors can be
considered to be continuous. Remembering that 2J C 1 must be replaced by the
full solid angle 4  we obtain

a D �1
2

p
20 

D

T .J /
�
20

E

D �b
2

(7.26)

where b is the alignment parameter for the corresponding J distribution given by
(7.14).

The relation (7.26) allows us to compare the instantaneous axis distribution
(7.24) with the corresponding distribution (7.13a) of the J vectors. Both equations

depend on the same multipole
D

T .J /
�
20

E

. Any alignment in the J distribution is
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attenuated in the axes distribution, any alignment in the axes distribution produces
an amplified alignment for the J vectors.

Requiring 0 � W.“/ � 1 for all “ we obtain from (7.24) that the parameter a can
in principle vary between the limits a D �1 and a D 2. However, we have to take
into account that the molecules are rotating, and that conditions (7.25) and (7.15)
impose further restrictions on a. In the high-J limit we obtain from relation (7.26)
that a D �1 for b D 2 and a D 0:5 for b D �1, hence

� 1 � a � 0:5 (7.27)

(It can be shown that the limit a D 2 is only possible for J D 1.)
The negative sign in (7.26) reflects the fact that for high J the angular

momentum J is perpendicular to the axis n. Compare, for example, (7.24) with
the corresponding probability density W.™J / specified by (7.13a). For b D 2 we
have a cos2 ™J distribution of angular momenta and a sin2 “ distribution of axes

Fig. 7.3 Schematic representation for the alignment of linear rotors in the high-J limit: (a) J
distribution for b D 2; (b) the corresponding axes distribution .a D �1/; (c) J distribution for
b D �1; (d) corresponding axes distributions .a D 0:5/. All distributions are axially symmetric
around Z
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(corresponding to a D �1). The value b D �1 gives W.™J / � sin2 ™J and
W.“/ � 1C cos2 “. These two cases are shown in Fig. 7.3.

Let us apply these results to molecular beams propagating along the z direction,
and let us assume that the probability W.™J / and W.“/ are specified by (7.13a)
and (7.24) respectively with b D 2; a D �1. The axes are then rotating predom-
inantly in the plane perpendicular to the flight direction (“propeller type”). For
b D �1 we have a D 0:5 and the axes are aligned mainly in the direction of propa-
gation. The rotation of the axes resembles that of a cartwheel (Aquilanti et al. 1991).

Considerable alignment has been found after scattering molecules off surfaces
(both of the “propeller” and the “cartwheel” types). For example, in collisions
between N2 and Ag(111) surfaces Sitz et al. (1987) found the N2 alignment to
be more pronounced with increasing rotational excitation, approaching the limiting
value of b D �1 which corresponds to J vectors perpendicular to z (with z being the
normal to the surface). In the same experiments substantial values of the orientation
parameter hT .J /10i and of the multipole hT .J /40i have also been found.

In supersonic expansions of alkali dimers values of b 	 �0:2 to �0:4 have
been measured, indicating that J is predominantly aligned perpendicular to z (beam
direction). The rotation of the axes should then be predominantly of the “cartwheel”
type. These results can qualitatively be explained in terms of a simple picture for the
collisional mechanism in bulk media. Molecules rotating in a plane perpendicular
to the flight direction present a target of larger cross section for collisions with other
particles than molecules rotating in planes that contain the beam axis. Due to the
differing cross sections molecules of the first category are therefore reoriented with
higher probability than molecules with J perpendicular to the beam axis. This results
in a b < 0.a > 0/ alignment in the transmitted beam. For a detailed review we refer
to Friedrich et al. (1991).

7.4 Order Parameters: General Description of Axis
Orientation and Alignment

7.4.1 General Theory for Linear Molecules and Examples

In the preceding section we have discussed the axes distribution of rotating linear
molecules with sharp J . However, there are different physical situations. Often one
deals with molecular beams where different molecules may have different angular
momenta J . There are other cases where the molecules are in coherent superposition
states with respect to J . Furthermore, molecules might have been prepared in states
with “axes fixed in space,” as is the case for molecules adsorbed at surfaces, or in
stretched polymers. In these cases the anisotropic environment establishes a unique
direction or directions in space, and the molecular axes distribution will exhibit
orientation, or alignment, or both.
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The formalism developed in the preceding subsection does not apply to these
cases. We will therefore derive a more general description which will contain
our previous results as a special case. Our results will also further illuminate the
relation between J and n vectors. We will concentrate on diatomic molecules in
their electronic ground state and discuss polyatomic molecules in Sect. 7.6.4.

In order to cover all the different situations mentioned above we will proceed
as follows. The ensemble of diatomic molecules will be characterized in terms
of a function W.“’/. As before, W.“’/ will be the probability density of finding
a molecule with an axis n oriented within a range between ’ and ’ C d’ and
“ C d“ with respect to a space-fixed coordinate system. “ is the polar angle and
’ the azimuth of n. We will normalize according to condition (7.17). W.“’/ may
characterize a fixed-axes distribution (for example, molecules at surfaces) or it may
describe the instantaneous n distribution of rotating molecules.

Since the spherical harmonics form a complete set any function of “ and ’ can
be expanded in terms of these functions. Hence, we can always write

• W.“’/ D
X

KQ

˝

Y �
KQ

˛

Y.“’/KQ (7.28)

with �K � Q � K . In general no upper limit of K can be given.
The expansion coefficients hY �

KQ � ˝

Y.“’/�KQ

˛

are often called “order parame-
ters” and have been used extensively for studying various anisotropic systems, e.g.,
in polymers (Michl and Thulstrup 1986, and refs. therein). They are obtained from
the distribution function by the relation

•
˝

Y �
KQ

˛ D
Z 2 

0

d’

 Z

0

d“ sin “W.“’/Y.“’/�KQ (7.29)

which is obtained by multiplying (7.28) by Y.“’/�
K0Q0 , integrating both sides over

all angles, and using the orthogonality property (C23) of the spherical harmonics.
We normalize according to (7.17), which gives

hY00i D 1p
4 

(7.30)

for the monopole.
From (7.29) we can read off the basic properties of the order parameters by using

the symmetry properties (C21) of the spherical harmonics:

1. Order parameters with Q D 0 are real.
2.
˝

Y �
KQ

˛ D hYKQi� [where hYKQi is defined by (7.29) with YKQ substituted for Y �
KQ].

3.
D

Y �
K�Q

E

D .�1/QhYKQi.

Equation 7.29 shows explicitly that the order parameters
˝

Y �
KQ

˛

are the mean
values of the corresponding functions Y.“’/KQ. For example, forK D 1, we obtain
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hY10i D
�
3

4 

�1=2

hcos“i (7.31a)

where the mean value hcos“i provides us with an effective average orientation angle
“ between the molecular axes and z.

As a simple example consider the distribution

W.“’/ D hY00iY00 C hY10iY.“/10

D 1

4 

h

1C p
12 hY10i cos“

i

(7.31b)

which is independent of ’ and where hY10i can vary within limits determined by the
condition 0 � W.“/ � 1. If hY10i > 0 is positive then more molecules have axes
pointing in the z direction than pointing in the opposite direction, and vice versa for
negative hY10i. Hence, the distribution shows a “head-versus-tail” distinction.

Another simple case is described by the expression

W.“’/ D hY00iY00 C hY20iY.“/20

D 1

4 

�

1C .20 /1=2hY20i1
2
.3 cos2 “ � 1/

�

(7.32)

The distribution (7.32) is axially symmetric without head-versus-tail distinction;
that is, an equal number of molecules is pointing in the z and �z directions. If hY20i
is positive then more molecular axes are aligned parallel to z than perpendicular
to z, and the opposite result holds for negative hY20i (“end-on” and “broadside”
alignment respectively).

In general, we will call an axis distribution aligned if at least one order parameter
with K even (and K ¤ 0) contributes to the expansion (7.28), and oriented if at
least one order parameter with K odd is nonvanishing. The system will be called
polarized, or simply anisotropic, if at least one order parameter with K ¤ 0

contributes to (7.28). Simple examples of an oriented and an aligned distribution
are given by (7.31b) and (7.32) respectively.

The parameters
˝

Y �
KQ

˛

play the same role in characterizing axes distributions as

the state multipole
D

T .J /
�
KQ

E

in characterizing J distributions. In fact, from the

tensor properties of the spherical harmonics (Zare 1988) it follows that the order
parameter hYKQi transforms as tensors of rank K and component Q; that is, (4.41)
applies.

The use of the order parameters is particularly convenient for characterizing the
symmetry properties of an axes distribution. We list the main results:

1. If the axes are randomly distributed in space then all order parameters with
K ¤ 0 vanish.
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2. Assume that the distribution is axially symmetric with respect to the z axis. This
means thatW.“’/must be independent of ’. The directional correlation between
n and z is then specified by the polar angle “. Consequently, only those spherical
harmonics can contribute to (7.28) which are independent of ’; that is, only terms
with Q D 0. In this case the probability density can be expressed in terms of
Legendre polynomials PK.cos“/. We write

W.“’/ D 1

2 
W.“/

normalizing according to

Z  

0

d“ sin “W .“/ D 1 (7.33a)

and obtain

• W.“/ D 2 
X

K

hYK0i Y.“/K0

D 1

2

X

K

.2K C 1/hPK.cos“/i PK.cos “/ (7.33b)

Here PK.cos“/ are Legendre polynomials with the mean values

hPK.cos“/i D
�

4 

2K C 1/

�1=2

hYK0i (7.33c)

In particular, hP0i D 1; hP1i D hcos“i (which is the average orientation
angle between z and the molecular axes), and hP2i D ˝

1
2
.3 cos2 “ � 1/

˛

. If only
K values with K � 2 contribute to (7.33b) then maximal end-on alignment
yields hP2.cos“/i D 1, and maximal broad side alignment corresponds to
hP2.cos“/i D � 1

2
. For the case of perfect orientation along zhPK.cos“/i D 1

for all K in general.
3. Finally, consider an axially symmetric system which is invariant against reversal

of the z axes: z ! �z. The corresponding distribution function must then satisfy
the symmetry conditionW.“/ D W.  � “/. Since Y.  � “/K0 D .�1/KY.“/K0
it follows that all parameters hYK0i with K odd must vanish in (7.33b).

Such a situation occurs, for example, after absorption of linearly polarized light
where the electric vector defines an axis but no direction (because of its rapid
oszillation), or if the molecules themselves have a nonpolar shape. Examples are
given in Sect. 7.5.
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7.4.2 Relation Between Angular Momenta and Axis Distributions
for Linear Rotors. “Pendulum States”

Equations 7.28–7.33a apply to a variety of cases. They describe an instantaneous
axes distribution of rotating linear molecules, and they can be used to analyze
molecular ensembles with axes fixed in space. In particular, the results of Sect. 7.3.2
are contained in our present equations as special cases. We will show this in some
detail in order to further illuminate the relation between n and J distributions for
rotating molecules. Assuming that all molecules have the same J value then (7.23)
applies. Comparison of (7.23) and (7.28) yields the relation

• ˝

Y �
KQ

˛ D .�1/J
.4 /1=2

.2J C 1/

�
J J K

0 0 0

� D

T .J /
�
KQ

E

(7.34)

Relation (7.34) shows that the order parameters characterizing the n distribution
are proportional to the corresponding state multipoles which describe the J distri-
bution. Hence, the K summation in (7.28) runs from K D 0 to K D 2J if the
molecules have sharp J .

Equation 7.34 takes on a very simple form in the semiclassical limit particularly
for axially symmetric systems. Substituting (7.3c), (7.9), and (7.33c) into (7.34) and
remembering that in the continuum limit we have to replace 2JC1 by 4 , we obtain

• hPK.cos “/i D PK.0/ hPK.cos ™J /i (7.35a)

This equation relates the directional correlation between J and z [expressed by
hPK.cos ªJ /i] to the correlation between n and z [expressed by hPK.cos“/i]. In
particular, for K D 2, we obtain hP2.cos “/i D � 1

2
hP2.cos ™J /i, which should be

compared with (7.26).
It should be noted that the 3j symbol in (7.34) [and P.0/K in (7.35a)] vanishes

for K odd. It follows that the axes distribution of linear rotors cannot be oriented,
even if the corresponding J distribution exhibits orientation. This can be explained
in terms of a classical picture. Since n is perpendicular to J, and because of the
rotation of n around J, any orientation of the axes averages out. In particular, the
mean value of the electric dipole moment of rotating polar linear molecules is zero.

The situation is different for symmetric-top molecules, as will be discussed in
Sect. 7.6.2. However even for linear rotors there are exceptions. Experiments have
demonstrated the feasibility of orienting the axes of rotationally cooled molecules,
for example in electric fields, if the molecules are trapped in “pendular states,”
confined to librate over a limited angular range about the field direction (see Loesch
and Remscheid 1990; Friedrich et al. 1991 for a review). These pendulum-like states
are “directed states” corresponding to linear superpositions of rotor states jJMi with
different J (Kais and Levine 1987).
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In order to discuss directed states in our formalism we generalize (7.34).

Coherent superposition states are described by state multipoles
D

T .J 0J /�KQ

E

defined

in (4.31). Repeating the steps leading to (7.34) we obtain relations of the follow-
ing form:

•
˝

Y �
KQ

˛ D
X

J 0J

.�1/J 0

.4 /1=2
Œ.2J C 1/.2J 0 C 1/�1=2

�
J 0 J K
0 0 0

� D

T .J 0J /�KQ

E

(7.35b)

Inspection of the symmetry condition (C5c) yields the result that the 3j symbol
is different from zero even for K odd if J 0 C J is odd. Hence, axes orientation

of molecules in “pendulum states” is possible if at least one multipole
D

T .J 0J /�KQ

E

with K odd and J0 C J odd is nonvanishing.
This result has important consequences for attempts to orient molecules in

electric fields E. For linear rotors the symmetry arguments of Sect. 4.68 apply and

no orientation of J can be achieved. In particular,
D

T .J /
�
10

E

� hJzi D 0. This result

can also be understood in the following way. Assume that the initial molecular
ensemble is isotropic. The electric field E transforms as a polar vector. The total
system must therefore remain invariant under reflections in any plane containing
E. Since the axial vector component, such as hJzi, would change sign under this
operation, it mush vanish.

However, the electric field mixes states with different J (see, for example,
Loesch and Remscheid 1990; Friedrich and Herschbach 1991) and the molecular
states in the field can be written as linear superpositions of states with different J .
The corresponding set of state multipoles is given by all relevant parameters
D

T .J 0J /�KQ

E

, where now multipoles with J 0 ¤ J occur in addition to those with

sharp J . The parameters
D

T .J 0J /�KQ

E

, with J 0 C J odd transform as polar vectors.

[This follows because rotor states jJMi have parity .�1/J , which implies parity

.�1/J 0CJ for the tensor operators (4.3).] Production of polar vectors like
D

T .J 0J /�10
E

by electric fields is not forbidden. Hence, because of (7.35b), the axes distribution
of the molecules can exhibit orientation.

7.5 Angular Momenta and Axis Distributions of Rotors
after Photoabsorption. Quantum Mechanical
and Classical Theory

7.5.1 Absorption of Linearly Polarized Light

In order to illustrate the general results given in the preceding sections we will
consider an explicit example. An isotropic ensemble of diatomic molecules will be
excited by optical pumping with linearly polarized laser light. The direction of the
electric vector E of the light will be chosen as the z axis of the laboratory system.
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Let us assume that the laser is tuned to a particular transition, for example from
the vibrational ground state �0 D 0 and rotational state J0 to a state with �0 D 1

and angular momentum J . We will calculate the state multipoles and the axes
distribution of the excited molecules.

The density matrix of the initial isotropic molecular ensemble is given by an
expression similar to (2.24):

¡in D 1

2J0 C 1

X

M0

jJ0M0ihJ0M0j (7.36)

where we have suppressed the dependence on the vibrational quantum numbers
for brevity. The final density matrix ¡out follows then from the general equation
(E.5). The transition operator for interacting with the z direction polarized light is
(in dipole approximation) given by T � dz where dz is the dipole operator, and it
follows that

¡out D A.¨/dz¡indz (7.37)

where A.¨/ is a numerical factor. By inserting (7.36) into (7.37) and taking matrix
elements we obtain

hJ M 0j¡outJMji D A.¨/

2J0 C 1

X

M0

hJ M 0jdzjJ0M0ihJ M jdzjJ0M0i� (7.38)

dz transforms as tensor of rank 1 and component zero. Applying the Wigner-Eckhard
theorem (C.19) we obtain

hJ M 0j¡outJMji D •M 0M

A.¨/

2J0 C 1
hJ kdkJ0ij2

X

M0

�
J 1 J0

�M 0 M0

�2

(7.39)

The trace is given by

tr ¡out D A.¨/

3.2J0 C 1/
hJ kdkJ0ij2 (7.40)

where we have applied (C.4b).
We will now calculate the relevant state multipoles which (semiclassically)

describe the distribution of the angular momentum vectors. In order to ensure the
normalization (7.1) we define a normalized matrix

¡ D ¡out

tr ¡out
(7.41)

and obtain normalized multipoles from the definition (4.31)

D

T .J /
�
KQ D

X

M

.�1/J�M .2K C 1/1=2
�
J J K

M �M 0

�

hJ M j¡jJ M i (7.42a)
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The tensors with Q ¤ 0 vanish since ¡in and ¡out are diagonal. Substitution of
(7.39), 7.40, and (7.41) yields

D

T .J /
�
KQ

E

D 3.2K C 1/1=2
X

M M0

.�1/J�M
�
J J K

M �M 0

��
J 1 J0

�M 0 M0

�2

and application of relation (C9) yields finally

•
D

T .J /
�
KQ

E

D 3.2K C 1/1=2.�1/J�J0
�

1 1 K

0 0 0

��

1 1 K

J J J0

�

(7.43)

From the symmetry properties (C5) of the 3j symbol it follows that only
multipoles with K D 0 and K D 2 contribute. Hence, only alignment can be
produced by absorption of linearly polarized light, and the alignment parameter is
given by the expression

• hT .J /20i D .6/1=2.�1/J�J0
�
1 1 2

J J J0

�

(7.44)

Inserting the numerical value of the 6j symbol into (7.44) we obtain for P -and
R-type transitions for J0 � 1, corresponding to J D J0 � 1 and J D J0 C 1

respectively,

hT20i D �
�
1

20 

�1=2

(7.45a)

where the continuum limit has been taken. Application of (7.9) yields

hP2.cos ™J /i D �1
5

and (7.10) reduces then to the expression

W.™J / D 3

8 
sin2 ™J (7.45b)

This result shows that, in the classical limit, molecules with J0 perpendicular to the
electric vector E will be preferentially excited.

The corresponding order parameters, describing the angular distribution of the
axes of the excited molecules, follow from the general (7.34). The only nontrivial
nonvanishing parameter is the alignment parameter

• hY20i D
�
6

4 

�1=2

.�1/J0.2J C 1/

�
J J 2

0 0 0

��
1 1 2

J J J0

�

(7.46)
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and the corresponding axis distribution is axially symmetric with respect to z:

• W.“’/ D hY00iY00 C hY20iY.“/20

D 1

4 

h

1C a

2
.3 cos2 “ � 1/

i

(7.47)

with

a D p
20 hY20i (7.48a)

Equation 7.47 characterizes the angular distribution of axes when a rigid rotor (e.g.,
a diatomic molecule in a ˙ state) absorbs plane polarized light. By substituting
explicit expressions for 3j and 6j symbols in (7.46) the values of the alignment
parameter can be obtained for the P and R branches (Zare 1982).

Equation 7.47 can be recast in the form

W.“’/ D 1

4 
Œa0 cos2 “C b0 sin2 “� (7.49)

with
a0 D 1C a; b0 D 1 � a

2

If the initial molecules are not rotating .J0 D 0; J D 1/ we obtain, with the help
of (7.46), a D 2 and W.“’/ D .3=4 / cos2 “. The axes distribution peaks along
the E vector of the light; that is, molecules with axes parallel to E are preferentially
excited. If the molecules are rotating .J0 ¤ 0/, then the sin2 “ term contributes to
W.“/. In the classical limit J0 � 1 we find from (7.46) that a D 1

2
and

W.“’/ D 3

16 
Œ1C cos2 “� (7.50)

7.5.2 Absorption of Circularly Polarized and Unpolarized Light

We will now consider absorption of circularly polarized light, or of radiation with
definite helicity œ D C1 or œ D �1. As discussed in Sect. 1.54, œ D C1 .œ D �1/
refers to photons with spin parallel (antiparallel) to the direction of propagation. In
the optical convention states with positive (negative) helicity correspond to left-
handed (right-handed) circularly polarized light. The corresponding polarization
vector e is given by (1.59), and the transition operator for absorption is T �
eœ � d� D dœ [see (5.10) for the corresponding expression T � e�

œ � d for emission
processes]. In this subsection we will choose the propagation direction of the light
as the z axis.
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We again assume an isotropic initial ensemble specified by (7.36). The density
matrix ¡out describing the excited molecules is given by

¡out D A.¨/dœ¡ind
�
œ

for absorption of light with sharp helicity œ.
Repeating essentially the same steps as in Sect. 7.5.1 we obtain for the nonvan-

ishing normalized state multipoles characterizing the excited ensemble:

•
D

T .J /
�
KQ

E

c
D 3.2K C 1/1=2.�1/JCJ0C1

�
1 1 K

�œ œ 0

��
1 1 K

J J J0

�

(7.51)

where the index c refers to excitation by circularly polarized light. From the proper-
ties of the 3j and 6j symbols it follows that only multipoles with K D 0; K D 1,
andK D 2 contribute. Note that orientation can be achieved in contrast to excitation
by linearly polarized light. This is in accordance with the general symmetry
considerations exploited in Sect. 4.68.

Comparing the values of the 3j symbols, accuring in (7.43) and (7.51), we obtain
for the alignment parameter

D

T .J /
�
20

E

c
D �1

2

D

T .J /
�
20

E

(7.52)

where
D

T .J /
�
20

E

is given by (7.44). Note that the quantization axes are different in

both cases.
Substitution of the value of the 3j symbol into (7.51) yields for the orientation

parameter for œ D C1:

D

T .J /
�
10

E

c
D 3

21=2
.�1/J�J0

�
1 1 1

J J J0

�

(7.53)

and for œ D �1 we obtain (7.53) with the opposite sign.
For J0 � 1, and taking the limit of a continuous distribution of angular

momentum vectors, we obtain from (7.53):

D

T .J /
�
10

E

c
D �1

2

�
3
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�1=2

(7.54a)

for a P transition .J D J0 � 1/ and

D

T .J /
�
10

E

c
D C1

2

�
3

4 

�1=2

(7.54b)

for an R transition .J D J0 C 1/. The signs are inversed for excitation by light with
negative helicity.
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The results (7.54) show that, in the classical limit, molecules with angular
momentum parallel to the propagation direction of the light will be preferentially
excited in an R transition. In a P transition the orientation is negative; that is,
molecules with J antiparallel to the propagation direction will be predominantly
excited. In order to interpret these results consider an R transition. With œ D C1
and J0 parallel to z, the sense of rotation of the electric vector and that of the
molecule coincide. The angular momentum œ is transferred to the molecule, and
its angular momentum must increase. For J0 antiparallel to z, the field vector and
molecule rotate in opposite directions, and absorption of light of positive helicity
would decrease the molecular angular momentum. Classically, an R transition of
molecules with angular momentum antiparallel to Z therefore cannot take place if
œ D C1. Hence, molecules with J parallel to z will be predominantly excited and
hT .J /10/i is positive as shown by (7.54b). Similarly, the result for a P transition
can be interpreted as can the results for œ D �1.

Let us further pursue the classical discussion and calculate the J distribution.
Equations 7.9, (7.54), (7.52), and (7.45a) yield

hP1.cos ™J /ic D ˙1

2

where the upper (lower) sign holds for R.P / transition, and

hP2.cos ™J /ic D 1

10

for both transitions. Substitution into (7.10) yields the distribution function of the
angular momentum vectors of the excited molecules:

W.™J / D 3

6 
.1˙ cos ™J /

2 (7.55)

Hence, W.™J / vanishes for ™J D   for an R transition which is in accordance with
the semiclassical interpretation given above. The signs are inversed for œ D �1.
Let us now consider the axis distribution of the excited molecules. From (7.34) we
obtain hY10ic D 0, and from (7.52)

hY20ic D �1
2

hY20i

where hY20i is given by (7.46). Hence, although the J distribution exhibits ori-
entation, the axis distribution is only aligned as discussed in Sect. 7.4.2. The
corresponding probability density is given by the relation

W.“’/ D 1

4 

h

1 � a

4
.3 cos2 “ � 1/

i

(7.56)

where a is defined in (7.48a).
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The results for unpolarized light are obtained by averaging the results for œ D C1
and œ D �1. The orientation vector cancels and only the alignment survives. The
relevant parameters can be calculated from the general expression (7.51) for P and
R transitions and from (7.46).

For a more detailed development of the classical theory we refer to the book by
Auzinsh and Ferber (1995).

7.6 Distribution Functions for Nonlinear Molecules
and for Diatomics with Electronic Angular Momentum

7.6.1 Molecular Orientation Euler Angles

We will now generalize the results of the preceding sections to nonlinear molecules.
At first we will concentrate on symmetric tops, that is, on molecules having at least
a threefold rotation axis. Two of the moments of inertia are equal and different from
the third. Examples include NH3 and CH3Cl.

As before we will denote the space-fixed coordinate system (laboratory system)
by xyz, and we choose a right-handed rectangular coordinate system x0y0z0 to be
connected rigidly with the molecular framework. Z0 will always be assumed to
coincide with the principal symmetry axis of the molecule.

The mutual orientation of the x0y0z0 axes with respect to the laboratory system
will be specified by the three Euler angles ’; “; ” introduced in Sect. 4.2. Here, “
and ’ fix the spatial orientation of z0 W “ is the angle between z and z0, and ’ the
azimuth angle of z0 with respect to the space-fixed system (see Fig. 7.4). The third
Euler angle ” specifies a rotation of the x0 � y0 plane around z0.

In order to bring a molecule into an orientation described by ’“”, one first
aligns it so that the x0y0z0 axes coincide pairwise with xyz. One then performs three

Fig. 7.4 Orientation of a
diatomic molecule in the
space-fixed system x,y,z. The
x0 axis of the molecular
system is perpendicular to z0

and lies within the z � z0

plane corresponding to
” D 0)
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successive rotations of the molecule. The first rotation is by angle ’ around z0 (which
at this point still coincides with z). The second rotation is by angle “ around y0.
These two operations bring z0 into a position with polar angle “ and azimuth ’, the
position of x0 is specified by “ C  =2 and azimuth ¥ (x0 lies in the z � z0 plane),
and y0 has polar angle  =2 and azimuth ¥ C  =2. The x0 � y0 plane is finally
rotated by angle ” around z0. ” is therefore the angle by which x0 is rotated out of
the z � z0 plane. In the special case of diatomic molecules the angle ” can be chosen
arbitrarily because of the axial symmetry of the molecule. Commonly, ” is chosen
to be zero, and we will adopt this convention but this must be made consistent for
both the electronic and rotational parts of the wave function. It should be noted that
” D 0 implies that the molecular x0 axis always lies in the z � z0 plane as described
above. For example, for “ D  =2 the x0 axis lies along the negative z axis of the
space-fixed system. The spatial orientation of electronic orbitals must be defined in
accordance with this choice (see Sect. 7.7).

7.6.2 Angular Momentum and Axis Distributions
of Symmetric Tops

In the present section we will study symmetric-top molecules with sharp angular
momentum J: M is the projection of J on the space-fixed z axis, and the projection
of J on the principal molecular symmetry axis z0 will be denoted by ˝ . The
corresponding state vectors will be denoted by j˝JMi. In coordinate representation
the rotational wave function is proportional to the corresponding rotation matrix
element:

§˝JM D
�
2J C 1

8 2

�1=2

D.”“’/
.J /
˝M (7.57)

The physical interpretation of this wave function follows from its quantum mechan-
ical probability interpretation and is similar to (7.16): The probability of finding a
molecule with x0y0z0 axes fixed by the angles ’“”, when the molecule is in a state
j˝JMi, is given by

W.”“’/ D 2J C 1

8 2

ˇ
ˇ
ˇD.”“’/

.J /
˝M

ˇ
ˇ
ˇ

2

d” sin “ d“ d’ (7.58a)

The probability (7.58a) is in this case independent of ’ and ” as follows from the
explicit representation (C.12). The wave function (7.57) reduces to the correspond-
ing spherical harmonic if ˝ D 0 as follows from (C.16b).

We will now generalize to molecular ensembles with sharp J and sharp ˝ but
different molecules may have differentM values or be in arbitrary coherence states.
We define state multipoles similar to (4.31), assuming the normalization (7.1):

D

T .J /
�
KQ

E

D
X

M 0M

.�1/J�M 0

.2K C 1/1=2
�
J J K

M 0 �M �Q
�
˝

˝JM0j¡j˝JM
˛

(7.59)
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where ¡ is the corresponding density matrix, and where we have suppressed the
dependence of the state multipoles on the fixed value of ˝ .

We will denote by W.”“’/ d” sin “ d“ d’ the probability of finding a molecule
with x0y0z0 axes in the region of orientations ’ � � �’Cd’; “ � � � “Cd“; ” � � �”Cd”
with respect to the xyz system as explained in the preceding subsection. An integral
over all possible values of ’; “; ” must be equal to 1; that is,

Z 2 

0

d”

Z  

0

d“ sin “
Z 2 

0

d’W.”“’/ D 1 (7.60)

The distribution function W.”“’/ can be related to the state multipoles (7.59),
characterizing the angular momentum distribution, by applying essentially the same
procedure as in Sect. 7.3. We start with the expression for the density operator

¡ D
X

M 0M

h˝JM0j¡j˝JMij˝JM0ih˝JMj (7.61)

and write the D matrices as scalar products:

h”“’j˝JMi D
�
2J C 1

8 2

�1=2

D.”“’/
.J /
˝M (7.62a)

Here, j”“’i is a “directed state” with fixed molecular axes specified by the three
Euler angles. “Sandwiching” (7.61) between states h”“’j and j”“’i and substituting
(7.62a) we obtain

W.”“’/ D h”“’j¡j”“’i

D 2J C 1

8 2

X

MM0

h˝JM0j¡j˝JMi D.”“’/.J /
˝M 0 D.”“’/

.J /�

˝M (7.62b)

where we used that the diagonal element h”“’j¡j”“’i is equal to the corresponding
probability density W.”“’/ for the specified value of ˝ .

For the special case of an incoherent superposition of rotational states .M 0 D M/

we abbreviate h˝JMj¡j˝JMi by W.M/ and obtain

W.”“’/ D
X

M

W.m/

�
2J C 1

8 

ˇ
ˇ
ˇD

.J/
˝M

ˇ
ˇ
ˇ

2
�

This relation has a simple interpretation. The expression within parentheses repre-
sents the axes probability density for molecules with sharp values of J; M; ˝ .
Multiplying this function by the probability W.M/ of finding a molecule with
quantum numberM in the ensemble and summing over all M , we obtainW.”“’/.
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We return now to the general (7.62b) and apply essentially the same steps as in
deriving (7.23). Using (C.14), substituting (C.17) into (7.62b), and applying (C.16)
and the definition (7.59), we obtain for the axes distribution

• W.“’/ D 2J C 1

.4 /1=2

X

KQ

.�1/J�˝
�
J J K

˝ �˝ 0

� D

T .J /
�
KQ

E

Y.“’/KQ (7.63)

Since W.“’/ turned out to be independent of ”, an integral over ” is already
included in (7.63).W.“’/ is then normalized according to condition (7.17).

As an example consider an ensemble of molecules in a single state j˝JMi. The
density matrix elements in (7.61) are then equal to one for the given state, and to
zero for all other cases. Equation 7.59 reduces to the expression

D

T .J /
�
K0

E

D .�1/J�M.2K C 1/1=2
�

J J K

M �M 0

�

Substitution of this equation into (7.63) gives the corresponding axes distribution:

• W.“’/D 2J C 1

4 

X

K

.�1/M�˝.2K C 1/

�
J J K

M �M 0

��
J J K

˝ �˝ 0

�

P.cos “/K

(7.64a)

which is independent of ’. Alternatively, (7.64a) can be derived by using the fact
that the axes distribution for a single state is given by the absolute square of .2J C
1=8 2/1=2D.”“’/

.J /
˝M , and by expanding this expression into Legendre polynomials

P.cos “/K one obtains (7.64a) (Zare 1988).

7.6.3 Theory of Oriented Symmetric-Top Molecules.
Semiclassical Interpretation

Equation 7.63 relates the probability density function W.“’/, describing the axes

distribution, to the state multipoles
D

T .J /
�
KQ

E

, characterizing the corresponding

angular momentum distribution. Alternatively, order parameters may be introduced.
Since the axis distribution is independent of ” according to (7.63) we can apply the
expansion (7.28) and the following results. Comparing (7.28) and (7.63) we obtain
the relation

•
˝

Y �
KQ

˛ D .�1/J�˝.4 /�1=2.2J C 1/

�

J J K

˝ �˝ 0

� D

T .J /
�
KQ

E

(7.64b)
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which should be compared with (7.34) for linear rotors .˝ D 0/. The essential
difference between (7.64b) and (7.34) is that the 3j symbol in relation (7.64b) does
not vanish forK odd. Hence, for symmetric tops, order parameters withK odd will
be different from zero if the corresponding state multipole is nonvanishing. The axes
distribution will therefore be oriented if the angular momentum distribution exhibits
orientation.

It is instructive to consider the semiclassical approximation of (7.64b) for axially
symmetric systems in order to clarify the different behavior of linear rotors and
symmetric tops. We substitute (7.9) for the state multipoles and use the semiclassical
approximation for the 3j symbols which follows from (7.3b). Expressing finally
hYK0i by the mean values of the corresponding Legendre polynomials [(7.33c)] we
obtain

• hPK.cos“/i D PK.cos‚˝/hPK.cos‚J /i (7.64c)

with cos‚˝ D ˝=J in the high-J limit.‚˝ can be interpreted as angle between J
and the axis n, whereas ‚J represents the angle between J and z, and “ between n
and z. In particular, forK D 1 we obtain

hcos“i D cos‚˝hcos‚J i (7.64d)

If the J vectors show a head-versus-tail distinction so that hcos‚J i is different from
zero, then the axes distribution will exhibit orientation, too. This orientation is not
averaged out by the rotation of n around J since ‚˝ ¤ 90ı. In particular, for
polar symmetric-top molecules, ensembles with a nonvanishing mean electric dipole
moment can be produced.

These results are in sharp contrast to those obtained in Sect. 7.4.2 for linear rotors.
In the latter case n and J are mutually perpendicular, corresponding to cos‚˝ D 0,
and (7.64b) reduces to (7.35b). Any orientation of n is then averaged out by the
rotation of n around J, even if J is oriented.

Of particular practical importance is the mean value hcos“i of cos“ for an
oriented system. Since hY10i D .3=4 /1=2hcos“i we obtain from (7.64b)

hcos“i D
�
1

3

�1=2

/.�1/J�˝
�
J J 1

˝ �˝ 0

� D

T .J /
�
10

E

.2J C 1/

and substitution of the explicit value of the 3j symbol yields

• hcos“i D
�

2J C 1

3J.J C 1/

�1=2

˝
D

T .J /
�
10

E

(7.65)

Equation 7.65 shows explicitly that two conditions are required in order to
produce a nonvanishing mean value of cos “: (i) ˝ ¤ 0; (ii) the orientation
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parameter
D

T .J /
�
10

E

, characterizing the angular momentum distribution, must be

different from zero. (These conditions relax for pendulum states as discussed in
Sect. 7.4.2.)

In the special case that all molecules are in states with the same M value
M D M0 we putW.M/ D •MM0 and obtain from (4.31)

D

T .J /
�
10

E

D
�

3

.2J C 1/.J C 1/J

�1=2

M0

Inserting this result into (7.65) we obtain

• hcosˇi D �M0

J.J C 1/
(7.66)

This factor plays an essential role in the rotational state selection of polar
symmetric tops as achieved by the electric focusing technique. In the high-J limit
(7.66) is approximated by (7.64c).

7.6.4 Order Parameters for Nonlinear Molecules

The results of the preceding subsections apply to rotating molecules in states with
sharp J . We will now generalize our treatment to molecular ensembles without
sharp J . Particular examples are molecules adsorbed at surfaces, or anisotropic
ensembles produced in stretched polymers, nematic liquid crystals, and lipid
bilayers. Other cases include beams with molecules in states with different J .

The anisotropy of the axes distribution of the sample will be characterized
in terms of the probability density W.”“’/ (which for rotating molecules would
represent the instantaneous distribution). This function can always be expanded in
terms of the complete set of rotation matrix elements (see, for example, Michl and
Thulstrup 1986),

• W.”“’/ D �
X

KQQ0

2K C 1

8 2

D

D
.K/�

Q0Q

E

D.”“’/
.K/

Q0Q (7.67)

normalized according to (7.60). The expansion coefficients (“order parameters”) are
defined by the relation

•
D

D
.K/�

Q0Q

E

D
2 Z

0

d”

 Z

0

d“ sin “

2 Z

0

d’ W.”“’/D.”“’/
.K/�

Q0Q
(7.68)

Similar to Sect. 7.4 we call a distribution oriented if at least one term with K
odd contributes to (7.67), and aligned if at least one order parameter withK even is
nonvanishing.



236 7 The Role of Orientation and Alignment in Molecular Processes

The normalization condition (7.60) yields

D

D
.0/
00

E

D 1

It follows from the definition (7.68) that any order parameter represents the mean
value of the correspondingD function. For example, if only terms with K � 2 and
Q D 0 contribute,

D

D
.1/
00

E

D hcos “i (7.69a)

provides us with an average degree of orientation and

D

D
.2/
00

E

D
�
1

2
.3 cos2 “� 1/

�

(7.69b)

characterizes the alignment.
By applying the symmetry properties (C14) of the rotation matrices we can read

off the corresponding relations for the order parameters from the definition (7.68):

1.
D

D
.K/�

Q0Q

E

D
D

D
.K/

Q0Q

E�
.

2. Order parameters with Q D Q0 D 0 are real.

3.
D

D
.K/�

�Q0�Q
E

D .�1/Q0�Q
D

D
.K/

Q0Q

E

.

Equation 7.67 expresses the continuous function W.”“’/ in terms of an infinite
set of discrete order parameters. Such an expansion has advantages if only a limited
number of parameters contribute. In addition, symmetry properties of the sample are
often conveniently characterized in terms of order parameters. We list some general
results.

1. If the molecular axes are randomly oriented then all order parameters vanish
except forK D 0.

2. If the sample is axially symmetric with respect to the space-fixed z axis then
all values of ’ are equally probable. Hence,W.”“’/ is independent of ’. This is
possible only if terms withQ D 0 contribute to (7.67) that is, all order parameters
with Q ¤ 0 must vanish. We obtain

W.”“’/ D
X

KQ0

2K C 1

8 2

D

D
.K/�

Q00

E

D.”“’/
.K/

Q00 (7.70a)

Application of relation (C16a) yields

W.“”/ D
X

KQ0

D

Y �
KQ0

E

Y.“”/KQ0 (7.70b)

after an integration over ’ has been performed.
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3. The dependence of W.”“’/ on ” reflects either the internal symmetries of the
molecules or the symmetry of the total sample with respect to rotations around
z0 or to reflections through planes containing z0. Let us consider some examples.
It may happen that all angles of rotation around the molecular z0 axis are equally
probable. This is of course always the case if the shape of each molecule is
axially symmetric with respect to z0. More generally, for arbitrary shapes, the
molecular x0 and y0 axes may be equally distributed around z0. In all these cases
the probability density must be independent of ”; that is, only terms withQ0 D 0

can contribute to (7.67), and all order parameters with Q0 ¤ 0 must vanish.
Applying (C.16b) and integrating over ” we obtain, similar to (7.70),

W.“’/ D
X

KQ

˝

Y �
KQ

˛

Y.“’/KQ (7.71)

and all results of Sect. 7.3 apply.
If, in addition, the sample is axially symmetric with respect to the space-fixed

z axis, then (7.71) reduces to (7.33b).
4. Consider now molecules where the y0 � z0 plane is a symmetry plane of

each molecule. This requires W.”“’/ D W.”;   � “; ’/. Of great practical
importance is the case where the molecule has two mutually perpendicular
symmetry planes, for example the y0 � z0 and x0 � z0 planes. It then follows
that W.”“’/ D W. C ”; “; ’/, which requires that only order parameters with
Q0 even can contribute to (7.67). Order parameters with Q0 odd would vanish.

7.7 Electronic Orbital Orientation and Alignment

7.7.1 Basic Concepts. Space-Fixed Molecules: Excited
State Coherence

So far we have considered ensembles where all molecules have the same value of J
and the same value of ˝ . Our results can be immediately generalized to ensembles
in incoherent superposition states with regard to ˝ , for example. In that case we
multiply (7.63) by the relevant statistical weights and sum over all relevant values
of ˝ .

However, there are more general situations where the molecules have been
prepared in coherent superposition states with regard to ˝ . All processes between
the molecular ensemble and some reagents depend then on possible anisotropies
in the angular momentum and axes distributions and additionally on shape and
spatial orientation of the electronic orbitals. We therefore have to consider how to
characterize possible anisotropies of the electronic orbitals. In order to explain the
basic ideas in a simple way we will consider nonrotating diatomic molecules with
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axes n fixed in space (for example, molecules adsorbed at surfaces). It will further
be assumed that all axes of the sample are pointing in the same direction n and that
the molecules are spinless.

The molecular states will be characterized by state vectors j��ni where � and
v denote the electronic and the vibrational quantum numbers, respectively. In the
following we will suppress the dependence on v, and since all molecular axes are
assumed to be fixed and pointing in the same direction we will denote the molecular
state simply by jƒi.

Reflections in the molecular x0 � z0 and y0 � z0 planes are symmetry operations.
Denoting the corresponding reflection operators by ¢x0z0 and ¢y0z0 , respectively, and
choosing the phase relations of Zare (1988), we have the relations

¢x0z0 j�i D .�1/�Csj ��i (7.72a)

¢y0z0 j�i D .�1/sj ��i (7.72b)

with s D 1 for a ˙�-state, and s D 0 for all other cases.
It is important to remember that the two states j�i and j � �i are degenerate to

first order.
The different signs indicate opposite directions for the rotation of the electronic

charge cloud around n. The shape of the charge cloud is axially symmetric around
the internuclear axis if the molecules are in states with sharp �.

Because of their near degeneracy the two states j�i and j � �i will in general
be coherently excited in collisions with electrons or atoms or other molecules. The
coherent superposition state will in general not be axially symmetric, and we are
faced with the problem of describing shape and spatial orientation of the electronic
orbitals. We will develop the necessary description following Wöste et al. (1994).

Assume that the molecules are initially in a j˙Ci-state and that they will be
excited in collisions with structureless projectiles. The excited molecules will in
general be found in coherent superpositions of the basis states j�i and j ��i:

j®i D f .�/j�i C f .��/j ��i (7.73)

where we assume that the axis direction does not change during the collision.
f .�/ D f .�n/ denotes the relevant scattering amplitude normalized according
to the condition

¢ D jf .�/j2 C jf .��/j2 (7.74a)

where ¢ is the differential cross section.
In order to characterize the state (7.73) one has to determine three independent

parameters, for example the magnitudes jf .�/j and jf .��/j and the relative
phase ¦. Alternatively one might use the differential cross section ¢ , the expectation
value of the electronic angular momentum operator Lz0 , which is given by

• ¢hLz0i D j�jŒjf .�/j2 � jf .��/j2� (7.74b)
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(where we used Lz0 j�i D �j�i with ¯ D 1), and the expectation value of the
reflection operator ¢x0z0 . Using (7.72a) with s D 0 this expectation value is given by
the relation

• ¢h¢x0z0i D .�1/�Œf .�/�f .��/C f .��/�f .�/�
D 2.�1/�jf .�/jjf .��/j cos¦ (7.74c)

with f .�/ D jf .�/j and f .��/ D jf .��/jei¦ and where the asterisk denotes the
complex conjugate amplitude.

The three parameters (7.74a)–(7.74c) fix the magnitudes of the amplitudes and
cos¦. It is convenient to have another parameter which depends on sin ¦ (which
fixes the sign of the phase). We choose the expectation value of ¢x0z0 Lz0 :

• ¢h¢x0z0Lz0i D i j�j.�1/�2jf .�/jjf .��/j sin¦ (7.74d)

Only the imaginary part Imh¢x0z0 ; Lz0i, which is real, is of direct physical interest.
The expectation value hLz0i characterizes the difference in the population

numbers of the two states j�i and j � �i with opposite rotations around the
internuclear axis and will be called the electronic orientation para-0 meter similar
to atomic physics (see Chap. 4). No net rotation occurs if hLz0i D 0.

Furthermore it can be shown that the absolute square of the wave function (7.73)
can be written in the form (Wöste et al. 1994)

• j®j2 D ¢ j®j�jj2
�

1C h¢x0z0i cos 2j�j¥ � 1

j�j Imh¢x0z0Lz0i sin 2j�j¥
�

(7.75)

where ¥ is the azimuth angle measured from the molecular x0 axis and where j®j�jj2
is independent of ¥. Equation 7.75 shows how the shapes of the electronic orbitals
change as we rotate around the internuclear axis. This change is determined by
h¢x0z0i and h¢x0z0 Lz0i. If both parameters vanish then the shape is axially symmetric
with respect to n. Similar to atomic physics, where the shape and spatial orientation
of the charge cloud are determined by the alignment parameters (see Chap. 4) we
will call h¢x0z0i and h¢x0z0 Lz0i electronic alignment parameters.

Let us consider some examples. In order to depict the directional properties of the
electronic charge density it is often convenient to use linear combinations j�˙j��i
as basis states instead of using j�i and j ��i. In particular, for II states .j�j D 1/

we have the two �-doublet states

jIIx0i D � 1p
2
Œj� D 1i D j� D �1i� (7.76a)

jIIy0i D � ip
2
Œj� D 1i C j� D �1i� (7.76b)
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This construction is similar to the atomic case. For angular momentum l D 1 and
ml D ˙1 the familiar states jpx0i and jpy0i can be formed which correspond to
jIIx0i and jIIy0i respectively. The two orbitals (7.76) have a fixed spatial orientation.
jIIx0i is directed along the x0 axis, and jIIy0i along the y0 axis.

If the molecules are in a pure jIIx0i state we obtain from (7.74) and (7.76) that
h¢x0z0i D 1; h¢x0z0Lz0i D hLz0i D 0, and from (7.75) that

j®.IIx0/j2 � cos2¥

Similarly, for a pure IIy0 state we have h¢x0z0i D �1; h¢x0z0Lz0i D hLz0i D 0, and

j®.IIy0/j2 � sin2¥

A II orbital, obtained by rotating jIIx0i around n about an angle – without changing
its shape, is expressed by

jIIi D jIIx0i cos –C jIIy0i sin – (7.77a)

using the two states (7.76) as basis. We obtain hLz0i D 0; h¢x0z0i D cos 2–, and
Imh¢x0z0Lz0i D sin 2–. This example shows again that the two alignment parameters
characterize the spatial orientation of the orbitals. The most general (normalized)
state with j�j D 1 can be written in the form

jIIi D jIIx0i cos –C jIIy0i sin –ei•

In this case we obtain

hLz0i D sin 2– sin •

h¢x0z0i D cos 2–

Imh¢x0z0 ; Lz0i D sin 2– cos •

Furthermore, (7.74c) can be rewritten in the form

• h¢x0z0i D jf .IIx0/j2 � jf .II”0/j2
¢

(7.78)

where f .IIx0/ and f .IIy0 / are the scattering amplitudes for excitation of a IIx0

and IIy0 state respectively. h¢x0z0i determines therefore the preferential �-doublet
population with respect to the two states (7.76). Its importance for the interpretation
of chemical reactions has been shown by several authors (see, e.g., Andresen and
Rothe 1985, and references therein). We note, however, that also knowledge of hLz0i
and h¢x0z0Lz0i is required for a more complete description of molecular reactions.

Angular distribution and polarization of the radiation, emitted by the excited
molecules in their subsequent decay, depend on the parameters (7.74). It can be
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shown by direct computation that the degree of circular polarization of the emitted
light is proportional to the orientation hLz0i, and angular distribution and the
degree of linear polarization (Stokes parameters ˜1; ˜3) depend on the alignment
parameters h¢x0;z0i and h¢x0;z0Lz0i.

The results of the present section provide an entry into the stereodynamics of
collisions, that is, the dependence of scattering processes on the direction of the
molecular axis n and on the shape and orientation of the electronic orbitals. The
relevant information is contained in the parameters (7.74). The interpretation of
these parameters is similar to the discussion of atomic collision processes. Consider,
for example, electronic excitation of molecules (singlet states) by electrons and
assume that the molecular axis is perpendicular to the scattering plane. Semiclas-
sically, hLz0i characterizes the net rotation of the electronic charge cloud around
the molecular axis after the excitation from a ˙ state. Following our discussion in
Sect. 4.6.1 we can interpret hLz0i as the mean angular momentum which has been
transferred during the collision from the projectile to the electronic charge cloud.

From numerical or experimental results of h¢x0z0i and h¢x0;z0Lz0i one can calculate
j¥j2 according to (7.75). The plots of j¥j2 can then be compared to the atomic charge
clouds discussed in Sect. 4.6.5. In particular, the concept of “alignment angle” can
be taken over and related to the relative phase ¦ [or, equivalently, to the angle – if
the basis (7.76) is used].

It can be shown that hLz0i vanishes in first-order Born approximation (due to ¦ D
0). For II excitation the excited orbital is then represented by (7.77a). The scattering
amplitudes depend only on the momentum transfer vector q, and not separately
on initial and final momenta of the projectiles. Consequently, the n � q plane is a
symmetry plane of the total system, and the electronic orbital must lie parallel to q.
The angle – is then the angle between q and the molecular x0 axis. If the scattering
angle is varied, q varies, and the electronic orbital follows the direction of q without
changing its shape.

We note that the discussion becomes more complex for other orientations of
n relative to the collision plane. Our brief discussion is meant to indicate the
interrelation between the parameters (7.74) and the collision dynamics, and may
serve as a basis for more detailed subsequent discussions. Numerical results of the
observables (7.74) have been obtained by Wöste et al. (1994) for O2 excitation by
electron impact, and we refer to that paper for special examples. Other aspects of
the problem will be discussed in several of the following sections.

7.7.2 Rotating Molecules. States with Definite Parity: Spatial
Orientation and Selective Population

We will now consider electronic orientation and alignment for freely rotating
molecules, focusing again on diatomics in singlet states. A clear measure of the
anisotropy of the electronic orbital distribution will be given by the relevant mean
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values of operators like ¢x0z0; Lz0 , and ¢x0z0 ; Lz0 , introduced in the previous
subsection. Before we consider the general case we will start with a special example.
Consider the linear combinations

• j�JM–i D
�
1

2

�1=2

.j�ij�JMi C –j ��ij ��JMi/ (7.79)

Here, the “parity index” – D ˙1; � D j�j, and j�i and j�JMi denote the
electronic and rotational parts of the wave function respectively. (For brevity we
will suppress the dependence on the vibrational quantum number, assuming that all
molecules are in the same vibrational state.)

The states (7.79) have total parity .�1/J for – D C1, and .�1/JC1 for – D �1
(Zare 1988).

The two �-doublet states (7.79) with – D ˙1 are degenerate to first order.
However, preferential population of one member of the �-doublet pair has been
observed in chemical reactions, inelastic collisions, and photofragmentation (see,
e.g., the reviews by Zewail and Bernstein 1992; Delgado-Barrio 1993; Simons
1987). In order to obtain an explanation for the observed propensity rules we
must examine what distinguishes one �-doublet state from the other. The relevant
theoretical basis has been developed by Green and Zare (1975), Alexander and
Dagdigian (1984), and Andresen and Rothe (1985). We will follow here a slightly
different procedure concentrating on 1II states.

We start by substituting the explicit coordinate representation .2J C 1=4 /1=2

D.0“’/
.J /
�M for the rotational state j�JMi in (7.79) [see (7.57)], remembering that

we always put ” D 0 for diatomic molecules (Fig. 7.4). We obtain for states with
M D 0

j�J0–i D
�
2J C 1

8 

�1=2

Œj�i C –.�1/�j ��i�d.“/.J /�0 (7.80)

where we have applied relations (C12) and (C13), and where j�j D 1. The essential
point is that the electronic superposition state in the bracket represents a directed
orbital, namely either IIx0 for – D C1, or i IIy0 for – D �1, as follows from an
inspection of (7.76).

For rotating molecules the orientation of the electronic orbitals relative to the
plane of rotation is of particular interest. Let us take the high-J limit .J � �/ of
(7.80) where J can be considered to be perpendicular to the internuclear axis n. J lies
in the space-fixed x � y plane (since M D 0) and in the molecular x0 � y0 plane;
that is, J is parallel to the molecular y0 axis (since ” D 0). Hence, the molecular
x0 � z0 plane coincides with the rotation plane of the molecule. It follows that the
IIx0 orbital lies in the rotation plane (Fig. 7.5a), whereas the IIy0 orbital is oriented
perpendicular to this plane (Fig. 7.5b). Both orbitals are rotating around J without
changing their shape. Note that the IIx0 orbital has the larger moment of inertia.

The charge density, illustrated in Fig. 7.5, is proportional to the absolute square of
the wave functions of the IIx0 and IIy0 orbitals. The wave functions themselves have
opposite signs in the two half-lobes, indicated by the positive and negative signs in
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Fig. 7.5 Spatial orientation of electronic orbital lobes relative to J for the two �-doublet states:
(a) – D C1, (b) – D �1

Fig. 7.5. One reads off from the figures that the wave function with – D C1.– D �1/
is symmetric (antisymmetric) with respect to reflection in the plane of rotation.

Similarly for states with M D J , the angular momentum is parallel to the z axis
for high J and n rotates therefore in the x � y plane. We obtain from (7.79) that

j�JJ–i D
�
2J C 1

8 

�1=2 �

j�id
� 

2

	.J /

�J
C –j ��id

� 

2

	.J /

��J

�

eiJ’ (7.81a)

The small d functions have the symmetry property

d
� 

2

	.J /

�M
D .�1/J�Md

� 

2

	.J /

��M

for the special case “ D  =2. This allows us to identify in (7.81a) the electronic
orbital:

j�JJ–i D
�
2J C 1

8 

�1=2

Œj�i C –j ��i�d
� 

2

	.J /

�J
eiJ’ (7.82)

Comparison with (7.76) yields that the electronic orbital in the bracket is directed
along the molecular x0 axis if – D �1, and along the y0 axis if – D C1. Since z0 is
perpendicular to z, and ” D 0 the internuclear x0 axis is antiparallel to z (Fig. 7.4).
The ˘x0 orbital is therefore oriented perpendicular to the rotation plane and is
antisymmetric with respect to reflection in this plane (see Fig. 7.5b), whereas the
˘y0 , orbital lies in the rotation plane and is symmetric under reflection (Fig. 7.5a).

Our discussion shows that the spatial orientation of the two �-doublet compo-
nents (7.79) is strikingly different. The relevant distinction between the two states is
neither their very small energy splitting nor their total parity; it is this difference of
the direction of the orbitals relative to the molecular rotation plane. The various
observed propensity rules have often been traced to these different geometrical
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properties, and the results have been used to clarify the stereodynamics of chemical
reactions (Andresen and Rothe 1985).

So far we have discussed the states (7.79) with definite values of –; J; M . Let
us now consider more general cases and assume that a given molecular ensemble is
in an arbitrary superposition of molecular states, described by its density matrix ¡.
Using j�ij�JMi as basis states ¡ can always be written in the form

¡ D
X

�0�
M 0M

h�0JM0j¡j�JMij�0ij�0JM0ih�JMjh�j (7.83)

where we have abbreviated j�ij�JMi by j�JMi in the density matrix elements,
and where we have assumed a sharp J value for simplicity. In order to characterize
the electronic orientation and alignment we have to average the parameters (7.74)
over the rotational states. We will briefly indicate the procedure.

Taking h¢x0z0i as an example we obtain from (2.18) and (7.83):

h¢x0z0i D tr ¡¢x0z0

D
X

�0�
M 0M

h�0JM0j¡j�JMih�j¢x0z0 j�0ih�JMj�0JM0i (7.84)

taking into account that ¢x0z0 acts on the electronic states j�i only and not on the
rotational states j�JMi. Application of (7.72a) yields h�j¢x0z0 j�0i D .�1/�•���0 .
The overlap integral between the rotational states is given by the expression

h�JMj�0JM0i D 2J C 1

4 

Z 2 

0

d’

Z  

0

d“ sin “D.0“’/.J /�0M 0D.0“’/
.J /�

�M

D S.JM/�0�•MM0

with the definition

S.JM/�0� D 2J C 1

4 

Z 2 

0

d’

Z  

0

d“ sin “D.0“’/.J /�0MD.0“’/
.J /�

�M

(Green and Zare 1975; Alexander and Dagdigian 1984).
Substitution of these results into (7.84) yields

• h¢x0z0i D
X

�M

h��JMj¡j�JMi.�1/�S.JM/��� (7.85)

Similar expressions follow for hLz0i and h¢x0z0 ; Lz0i. In general, the results can
be used as a measure of the anisotropy of the electron distribution.

Let us specialize to the case where all molecules are in one of the �-doublet
states (7.79) with fixed – and fixed M . The density matrix is then given by ¡ D
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j�JM–ih�JM–j. After recognizing S��� D S��� we obtain from (7.85) that

h¢x0z0i D .�1/�–S.JM/��� (7.86)

The two parameters hLz0i and h¢x0z0Lz0i vanish in this case.
In the high-J limit S��� approaches unity for M D J , and S��� D �1 for

M D 0. For j�j D 1 and M D 0 it follows that the corresponding level is
symmetric (antisymmetric) under reflection in the plane of rotation if – D C1.– D
�1/ as discussed above (Alexander and Dagdigian 1984).

As another example consider homonuclear molecules obeying Hunds-case-b
coupling, which have been excited by electron impact. From an inspection of the
relevant selection rules it follows that only one member of the�-doublet pair (7.79)
can be excited depending on the quantum numbers of the initial and final states
(Nordbeck et al. 1993). All molecules are therefore in states with the same definite
parity, and hLz0i and h¢x0z0Lz0i vanish. This result implies in particular that no net
rotation of the electronic charge cloud around the internuclear axis can be produced
in such collisions. The situation is, however, different for heteronuclear molecules.

The correlation between the direction of J and the orientation of the electronic
charge density has interesting consequences for dissociative photochemistry and
has been extensively studied for several molecules (e.g., ClCN, H2O). For details
we refer to the reviews by Delgado-Barrio (1993) and Schinke (1993).

A possible method of measuring stereochemical effects (such as the different
population of �-doublet states) is to analyze the light emitted in the decay of the
excited molecules. Consider for example a ˘ ! ˙ transition in the high-rotation
limit. The transition dipole d lies along the axis of the respective electron lobes.
d is therefore parallel to J for levels with – D �1 and does not rotate, and d is
perpendicular to J for the – D C1 component and rotates with the molecule (see
Fig. 7.5). One can therefore expect increasing polarization of the emitted light with
increasing population of the – D �1 level. We will return to this point in greater
detail at the end of the following subsection.

7.7.3 Combined Description of Rotational Polarization
and Orbital Anisotropies

7.7.3.1 States with Definite � as Basis Set Distribution Functions

In the preceding subsection we have studied the correlation between the spatial
distribution of electronic orbitals and the direction of the angular momentum
vectors. We will now develop a formalism in order to characterize rotational
polarization for diatomics with electronic angular momentum. For simplicity we
will concentrate on singlet states .˝ D �/. For sharp values of � several results
have been obtained in Sect. 7.6. However, because of their near degeneracy, the
electronic states with � and �� will generally be coherently excited in collisions.
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(Although the degeneracy of these states might be lifted by some small interactions,
their energy difference will usually be much smaller than the spread of the projectile
energy, resulting in a coherent excitation). In this section we will first develop
the necessary formalism and then discuss how the various parameters can be
determined experimentally. The molecules under consideration might have been
excited in collisions with some reagent, or they may be fragments produced in
photodissociation processes.

We will first take the states j�ij�JMi as basis set. The full information on the
excited molecular ensemble is contained in the set of all relevant density matrix
elements h�0JM0j¡j�JMi where we have abbreviated j�ij�JMi by j�JMi in
the density matrix elements, and where we have assumed sharp J for simplicity.
(This assumption can easily be relaxed and rotational coherence can be taken into
account as described in Sect. 4.3.) The elements of ¡ are bilinear combinations of the
relevant scattering amplitudes if the molecules have been excited by collisions with
electrons, atoms, or molecules. The relevant expressions can be derived by applying
the methods of Sects. 3.2 and 3.5 (see also the explicit derivations in Sect. 7.8.3).

The total density matrix can be written in the general form

¡ D
X

�0�
M 0M

h�0JM0j¡j�JMij�0ij�0JM0ih�j�JMj (7.87)

For example, the sum over �0; � would run over the values j�j and �j�j if the
molecules are in one of the states (7.79) with fixed –.

It is convenient for the following to take partial matrix elements of ¡ between the
electronic states and define for any pair�0; �which contributes to the sum in (7.87)

¡.�0�/ D h�0j¡j�i
D
X

M 0M

h�0JM0j¡j�JMij�0JM0ih�JMj (7.88)

Note that the elements h�0JM0j¡j�JMi contain the full information on the elec-
tronic and the rotational states.

For any pair �0; � we define state multipoles similar to (4.31):

• hT .�0�J/�KQi

D
X

M 0M

.�1/J�M 0

.2K C 1/1=2
�
J J K

M 0 �M �Q
�

h�0JM0j¡j�JMi (7.89)

For �0 D � the corresponding tensors
D

T .�J /
�
KQ

E

characterize the angular

momentum distribution similar to Sects. 7.6.2 and 7.6.3. In addition, the multipoles
with �0 ¤ � are required if the corresponding electronic states have been
coherently excited. Physical interpretations of these multipoles will be given below.
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Conversely, we obtain the expansion

h�0JM0j¡j�JMi

D
X

KQ

.�1/J�M 0

.2K C 1/1=2
�
J J K

M 0 �M �Q
�

hT .�0�J/�KQi (7.90)

with K � 2J . The set of all relevant parameters hT .�0�J/�KQ contains the full
information on the rotational polarization and on the electronic orbital orientation
and alignment.

The density matrix elements h�0JM0j¡j�JMi and the state multipoles (7.89)
are the essential ingredients for any further theoretical developments. We will give
examples below and in Sect. 7.8.

We will first derive some useful formulas. We start from (7.88), sandwich this
equation between the “directed states” h”“’j and j”“’i, and use (7.62a). We obtain

h0“’j¡.�0�/j0“’i

D 2J C 1

4 

X

M 0M

h�0JM 0j¡j�JM iD.0“’/.J /
�0M 0D.0“’/

.J /�

�M (7.91a)

with the choice ”D 0. The diagonal elements with �0 D� are equal to the
probability density of finding a molecule in the state � and with an axis pointing in
the “ � ’ direction. Repeating essentially the same steps as in Sect. 7.6.2 and using
Eqs. C17 and (7.90) we obtain

• h0“’j¡.�0�/j0“’i

D 2J C 1

4 
D
X

KQQ0

.�1/J��0

.2K C 1/1=2
�
J J K

�0 �� �Q0
�

(7.92)

� hT .�0�J/�KQiD.0“’/.K/�0��;Q
whereQ0 is fixed by Q0 D �0 �� andK must satisfy the conditionsK � �0 ��

andK � 2J . The hermiticity condition (2.12) and (4.37) yields

h0“’j¡.��0/j0“’i D h0“’j¡.�0�/j0“’i�

The probability density W.”“’/ for the total sample (that is, independent of �) is
given by the relation

W.”“’/ D
X

�

h0“’j¡.�/j0“’i

which gives
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W.“’/ D 2J C 1

.4 /1=2

X

KQ�

.�1/J��
�
J J K

� �� 0

� D

T .�J /
�
KQ

E

Y.“’/KQ (7.93)

For sharp� (7.93) reduces to (7.63).

7.7.3.2 States with Definite Parity as Basis Set

It is sometimes more convenient to use the states (7.79) with definite parity as
basis instead of using the set j�ij�JMi with definite �. Allowing for coherent
excitation of the nearly degenerate states with – D ˙1, we use the set of all relevant
density matrix elements h�JM0–0j¡j�JM–i (with � D j�j) to characterize the
molecular ensemble. These elements can be transformed back into the elements
h�0JM0j¡j�JMi by using (7.79).

To keep the following discussion simple we will assume that the value of j�j is
fixed. We normalize the density matrix according to the condition

tr ¡ D
X

M–

h�JM–j¡j�JM–i D 1 (7.94)

It follows that˙M h�JM–j¡j�JM–i is equal to the probability of finding a molecule
in a state with parity index –. For any pair –0; – D ˙1 we define state multipoles by
the expression

• hT .–0–J �/iKQ

D
X

M 0M

h�JM0–0j¡j�JM–i.�1/J�M 0

.2K C 1/1=2
�
J J K

M 0 �M �Q
�

(7.95)

(See for example Dellen et al. (1995). Multipoles with –0 D – have been discussed by

Alexander and Davis (1983).) These tensors
D

T .–J /
�
KQ

E

characterize the anisotropy

of the angular momentum distribution for molecules in states with the corresponding
parity index –. In particular, we have

D

T .–J /
�
00

E

D
�

1

2J C 1

�

1=2
X

M

h�JM–j¡j�JM–i (7.96a)

which shows that the multipoles with K D 0 and sharp – are proportional to the
probability of finding a molecule in the corresponding state.

We will now discuss the physical importance of the multipoles with –0 D �–.
Let us take the tensors with K D 1 as an example and compare the transfor-

mation properties of the multipoles
D

T .–J /
�
1Q

E

with sharp – with the interference
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parameters
D

T .–0–J /�1Q
E

with –0 D �–. The three components
D

T .–J /
�
1Q

E

transform

as components of an axial vector under reflections and are proportional to the
expectation value hJQi of the angular momentum vectors as discussed in Sect. 4.3.3.

The multipoles
D

T .–0–J /�1Q
E

with –0 D �– transform as components of a polar

vector [as follows, for example, from (7.98)]. These parameters are related to the
coherence between states with opposite parity and are proportional to the mean
value hDQi of the electric dipole moment D induced during the excitation:

hDQi � ReŒ
D

T .–0–J /�1Q
E

hJ –jjDjjJ –0i� (7.97)

with –0 D C1; – D �1, and where the last term is the reduced matrix element of
DQ, and Re denotes the real part (Dellen et al. 1995). This relation is completely
similar to the corresponding sp-coherence terms for atomic hydrogen.

In conclusion, during the excitation process a certain anisotropy will be created
for J, d, and for the distribution of the electronic orbitals. The full set of state multi-
poles (7.95) characterizes these anisotropies and is a measure of the corresponding
stereodynamical effects produced during the excitation. As an example let us briefly
consider excitation by electron impact, assuming an initial isotropic ensemble of
molecules. Here, a well-defined plane (scattering plane) is defined by the incoming
and scattered electrons relative to which all vectors relevant for the process can be
measured. Invariance with respect to reflection in the scattering plane requires the
condition

•
D

T .–0–J /�KQ

E

D –0–.�1/KCQ DT .–0–J /�K�Q
E

(7.98)

NumericalRmatrix calculations have been performed for the state multipoles for
CO excitation. The results show that a considerable degree of anisotropy is created
during the collision (Dellen et al. 1995).

7.7.4 Vector Correlations. Analysis of Emitted Light

A method of measuring the orientation and alignment tensors (and obtaining
information on the stereodynamics of the excitation process) is to analyze the light
emitted by the excited molecules (or molecular fragments) in the subsequent decay.
The rotational polarization of the excited molecules is related to the correlations
between the vectors k0; k1, and J, where k0 and k1 are the initial and final relative
momenta of molecules and projectiles in the excitation process respectively, and J
denotes the angular momentum vector of the final product of interest.

If only k0 and k1 are measured then the final vector k1 is azimuthally symmetric
about the initial vector k0 (if the initial molecules have an isotropic distribution of
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angular momenta). Likewise, the distribution of the final J vectors of the observed
molecules (or fragments) is axially symmetric about k0 if k1 is not measured, that
is, if only the emitted light is observed without detecting the scattered projectiles.
Because of the azimuthal symmetry only multipoles with Q D 0 contribute (as
discussed in Sect. 4.5.2).

In order to determine the triple vector correlation among k0; k1, and J one
has to measure the product vectors k1 and J simultaneously. This can be achieved
by coincidence experiments where the final molecules of interest and the emitted
photons are detected in coincidence. In these experiments only a subset of excited
molecules is observed (corresponding to the selected k1 vector). The J vectors
of this subset will not have azimuthal symmetry about k0, and state multipoles
with Q ¤ 0 will contribute to the characterization of the subset of interest. An
increasing number of studies have addressed this aspect of inelastic collisions in
atomic physics (see, for example, Blum and Kleinpoppen 1979; Andersen et al.
1988) and in molecular physics (see, for example, Simons 1987). In this subsection
we will outline the general theory.

Immediately after the excitation the excited molecular subensemble of interest
may be characterized by the state multipoles (7.95). Using these multipoles we can
obtain expressions for the angular distribution I.‚¥/ and polarization of the emitted
light completely similar to the procedure explained in Chaps. 5 and 6.

Instead of using the Wigner–Eckart theorem (4.26) we apply the extended version
(see, e.g., Landau and Lifschitz 1965):

h�1V1J1M1jd�Qj�VJMi D Œ.2J1 C 1/.2JC/�1=2
�
J1 1 J

��1 �q �
�

�
�
J1 1 J

�M1 �Q M

�

h�1V1jd�qj�V i

Here, dQ and dq are the components of the dipole moment d in the laboratory
and molecular system respectively (with q D � � �1 for emission processes),
and V and V1 denote the vibrational quantum numbers for the initial and final
states, respectively. The reduced matrix element of d�q is independent of J and
J1. Furthermore, we use the relation

j�1V1jd�1j�V i D .�1/�1C�C1h��1V1jdqj ��V i

[which can be derived similar to (7.103)a in Sect. 7.7.5]. Following the same
procedure as in Chap. 5 we obtain, after some algebra, for the angular distribution
of the emitted light for a 1II ! ˙C transition:
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• I.‚¥/

D C.w/

”
jh˙�V1jd�1j� D 1; V ij2.�1/J1CJC1.2J C 1/.2J1 C 1/

�
�
J1 1 J

0 �1 1
�

.1C .�1/K/:
X

KQ

.4 /1=2
�
1 1 K

1 �1 0
��

1 1 K

J J J1

�

� .1 � –.�1/JCJ1/
D

T .–J /
�
KQ

E

YKQ.‚¥/ (7.99)

where C.w/ is given by (5.9), and ” is the lifetime of the excited state. In deriving
(7.99) we have assumed that condition (7.98) is satisfied.

Only terms with K D 0 and K D 2 contribute to (7.99). Of particular interest
is the fact 1 � –.�1/JCJ1 which follows from parity conservation in the decay. As
discussed in Sect. 7.7.2 the parity in the initial state is –.�1/J . The parity of the
final ˙C-state is .�1/J1 . Since the dipole moment has negative parity we obtain
the condition –.�1/J D .�1/J1C1. The factor 1 � –.�1/JCJ1 vanishes therefore
for parity forbidden transitions. In particular, for J1 D J , only multipoles with
– D �1 contribute to (7.99). The angular distribution depends only on the tensor
components with – D C1 if J1 D J ˙ 1. This result that the spectroscopic P,Q,R-
branches probe uniquely one or the other �-doublet component is well known in
molecular physics. Similar results hold for the Stokes parameters. Due to parity

conservation the coherence terms
D

T .–0–J /�KQ

E

do not contribute to the angular

distribution (7.99). These parameters, describing the coherence between states with
opposite parity, can be measured by observing the emitted light in the presence of
an external electric field. This is similar to the determination of the sp-coherence
terms in atomic physics.

Let us specialize to an axially symmetric excitation process, taking the initial
wave vector k0 as quantization axis. Consequently, only cylindrically symmetric
multipoles with Q D 0 are nonvanishing. The linear polarization of the emitted
light is then determined by the Stokes parameters ˜3 [˜1 vanishes as follows from
an inspection of (6.1c)]. Similar to the derivation of (7.99) we obtain

I˜3 D W.J1J /

�
3

2

�1=2

.�1/JCJ1
�
1 1 2

J J J1

� D

T .–J /
�
20

E

sin2 ‚ (7.100a)

with – D C1 for the P,R branches, and – D �1 for the Q branch. I is the intensity
(7.99). The factorW.J1J / is defined by the expression

W.J1J / D C.¨/

”
jh˙�V1jd�1j� D 1; V ij2.2J C 1/.2J1 C 1/

�
J1 1 J

0 �1 1
�2
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Equations 7.99 and 7.100a can be utilized to design an experiment that measures
the alignment parameter. The most common method is to detect light emitted at an
angle ‚ D  =2 with respect to the z axis. The azimuthal angle ® is then irrelevant
and we obtain from (7.99)) that

I D W.J1J /

2

4

2
D

T .–J /
�
00

E

3.2J C 1/1=2
C .�1/JCJ1

61=2

�
1 1 2

J J J 1

� D

T .–J /
�
20

E

3

5 (7.100b)

with ‚ D  =2.
The light intensities at two settings of a linear polarizer are then measured in

order to determine
D

T .–J /
�
KQ

E

, for example, Ik and I?, where Ik.I?/ denotes the

emitted intensities of the light which has passed through a linear polarizer with
transmission axis parallel (perpendicular) to z. The polarization ratio P is defined
by (6.11) and (6.12):

P D Ik � I?
Ik C I?

D I˜3

I
(7.100c)

Combining (7.100a)–(7.100c) we obtain

P D
.�1/JCJ1

�
1 1 2

J J J1

� �
3

2

�1=2 D

T .–J /
�
20

E

2

3.2J C 1/1=2
hT .–J /00i C .�1/JCJ1

61=2

�
1 1 2

J J J1

� D

T .–J /
�
20

E
(7.100d)

which should be compared with (6.14).
It is convenient to normalize according to tr ¡.–/ D 1, which gives hT .–J /00i D

1=.2J C 1/1=2. Introducing the Fano–Macek parameter A0 by applying (4.85)
and (4.86), substituting the numerical value of the 6j symbol, and taking the high-J
limit, we obtain

P D 3A0

4C A0

for the Q branch .– D �1/, and

P D 3A0

8 � A0

for the P,R branches .– D C1/. Measurements of P allows therefore the determina-
tion of the alignment parameter.

Another interesting polarization ratio is the expression

R D Ik � I?
Ik C 2I?
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where the denominator is given by

Ik C 2I? D W.J1J /hT .–J /00i
.2J C 1/1=2

which follows from (6.10), (7.100a), and (7.100b). In the high-J limit we substitute
the semiclassical expression (7.9) for hT .–J /20i and obtain

R D hP2.cos‚J /i–D�1

for the Q branch and

R D �1
2

hP2.cos‚J /i–DC1

for the P,R branches. The mean values of the legendre polynomial express the
correlation between k0 and J. The result for the – D �1 level would be twice as
much as for the – D C1 state if the rotational alignment would be the same. This is
in accordance with the qualitative arguments given at the end of Sect. 7.7.2.

We note that the determination of multipoles of rank K > 2 can be achieved by
analyzing laser-induced fluorescence light (up to K D 4). For a detailed discussion
we refer to the papers by Case et al. (1978) and by Green and Zare (1983), where
many examples can be found.

Finally, we refer briefly to the electron impact excitation of molecules. Here,
orientation and alignment parameters have been measured for variousH2 transitions
by McConkey and his group (see, for example, Khakoo and McConkey 1987,
and references therein), and calculated numerically by Meneses et al. (1995 and

references therein). Numerical results for the multipoles
D

T .–J /
�
KQ

E

and for the

coherence terms
D

T .–0–J /�KQ

E

have been reported by Dellen et al. (1995) for CO

excitations. The results show that a considerable degree of anisotropy is created

during the collision. In particular, the tensors
D

T .–J /
�
KQ

E

differ considerably for the

two �-doublet states.

7.7.5 Photoabsorption and Photofragmentation

We will first consider absorption of linearly polarized light by diatomic molecules
initially in a ˙C state. The molecules may be in the gas phase with an initially
isotropic axes distribution. We will assume that the rotational structure is not
resolved and denote the state of a molecule with electronic quantum number� and
instantaneous axis distribution n (z0 direction) by j�ni, suppressing the dependence
on the vibrational quantum number. Dipole selection rules restrict the excited
electronic states to either ˙ states .� D 0/ or II states .j�j D 1/. We remember
that the third Euler angle ” has been set to zero so that molecular x0 axis lies in the
z � z0 plane (Fig. 7.4).
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Instead of using eigenstates j ˙ �i of the electronic orbital angular momentum
operator Lz0 we will choose as basis states the linear combinations (7.76) (for
j�j D 1):

jIIx0i D � 1p
2
Œj� D C1i � j� D �1i� (7.101a)

jIIy0i D C ip
2
Œj� D C1i C j� D �1i� (7.101b)

jIIx0i is directed along x0 and remains invariant under reflections in the molecular
x0 � z0 plane, whereas jIIy0 i is directed along the y0 axis and changes its sign:

¢x0z0 jIIx0i D jIIx0i; ¢x0z0 jIIy0i D �jIIy0i (7.102)

where ¢x0z0 denotes the corresponding reflection operator.
Absorption of linearly polarized light (with E parallel to z) by a molecule with

instantaneous axis direction n and which undergoes a transition j˙0ni ! jf ni is
described by matrix elements � hf njdzj˙0ni, where jf i denotes the final and j˙0i
the initial electronic state, and dz denotes the relevant dipole operator. For simplicity
we will assume a˙C state as initial state which remains invariant under reflections.

The ensemble of excited molecules is axially symmetric around the E direction
and invariant with respect to reflections in any plane though z. In particular, the z�z0
plane is a symmetry plane for any orientation of z0. Since dz remains invariant and
since the z � z0 plane coincides with the molecular x0 � z0 plane we have

¢x0z0dz¢x0z0 D dz

Using (7.102) we obtain in particular

hIIy0 njdzj˙0ni D hIIy0 nj¢x0z0dz¢x0z0 j˙0ni
D �hIIy0 njdzj˙0ni (7.103)

for any orientation of n. Hence, the jIIy0i orbital cannot be excited.
Taking these results into account, we obtain for the (unnormalized) probability

densityW.“’/0 that a molecule with instantaneous axis in the “�’ direction absorbs
a photon:

W.“’/0 D C.w/Œjh˙njdzj˙0nij2 C jhIIx0njdzj˙0nij2�
where C.w/ is given by (5.9).

Transformation to the molecular system (see Fig. 7.4) yields

dz D dz0 cos “ � dx0 sin “ (7.104)

Considering reflections in the molecular z0 � y0 plane we obtain the relations
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¢z0y0dz0¢z0y0 D dz0 ; ¢z0y0dx0¢z0y0 D �dx0

¢z0y0 jIIx0i D �jIIx0i; ¢z0y0 jIIy0i D jIIy0i

Substitution of these relations into the relevant matrix elements yields

hIIx0 jdz0 j˙0i D h˙ jdx0j˙0i D 0 (7.105)

Taking (7.104) and (7.105) into account we obtain from (7.103):

W.“’/0 D C.w/ŒjM.˙/j2 cos2 “C jM.II/j2 sin2 “� (7.106)

which is independent of the azimuth angle ’ of n. We have used the abbreviations

jM.˙/j2 D jh˙ jdz0 j˙0ij2; jM.II/j2 D jhIIx0 jdx0 j˙0ij2

for the absorption strengths.
Equation 7.106 expresses the relevant geometrical correlations between the

transition dipole moment d, the molecular axis n, and the electric vector E. The
first term in (7.106) describes a ˙ �˙ transition where d is directed parallel to the
molecular axis (parallel transition). The second term in (7.106) refers to a ˙ � II
transition with d perpendicular to n (perpendicular transition). Photoabsorption to
the -excited states preferentially creates excited molecules with axes perpendicular
to E, whereas for a ˙ � ˙ transition light will be predominantly absorbed by
molecules with axes parallel to the electric vector. The independence on the azimuth
angle ’ reflects the axial symmetry with regard to E.

Expressing the trigonometric functions in (7.106) in terms of the Legendre
polynomial P2.cos “/,

cos2 “ D 1

3
.1C 2P2/; sin2 “ D 2

3
.1 � P2/

we obtain finally for the (unnormalized) probability that a molecule with axes along
the “ � ’ direction absorbs a photon

• W.“’/0 D C.w/

3
ŒjM.˙/j2 C 2jM.II/j2�Œ1C “mP2.cos “/� (7.107a)

where the asymmetry parameter “m is defined by the expressions (Dill et al. 1980)

•
“m D 2.jM.˙/j2 � jM.II/j2/

jM.˙/j2 C 2jM.II/j2 (7.107b)

The asymmetry parameter measures the difference between the photoabsorption
strengths. “m is equal to C2 for a parallel transition and to �1 for a perpendicular
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transition. The axis distribution W.“’/0 is aligned but not oriented in accordance
with the general symmetry requirements of Sect. 4.5.2.

Equation 7.107 apply also to photofragmentation of molecules under axial-recoil
conditions, that is, if the dissociation occurs sufficiently promptly that the fragments
have the same direction as the molecular axis at the time of photoabsorption. The
probability of observing the fragment of interest in a direction specified by “ and ’
is then given by (7.107a).

The discussion of this simple case exhibits the nature of the correlation between
the transition dipole moment d and the direction v of the observed fragment. The
essential point is that, according to (7.103), only the z component of d contributes.
If the transition is parallel then molecules with axis along E will preferentially
dissociate, and the fragments will be found preferentially in the E direction. For
a perpendicular transition the fragmentation peaks at right angles to E. In the first
case we have “m D 2 and W.“/ � cos2 “, and in the second case “m D �1 and
W.“/ � sin2 “. Hence, because d is aligned by the dissociating light, v will also be
aligned. This correlation between d and v results therefore in an anisotropic angular
distribution of the fragments, even for an initially isotropic molecular ensemble, as
was first pointed out by Zare and Herschbach (1963).

An important consequence is that the fragment angular distribution provides
information about the electronic symmetry � of the dissociating state if that of
the initial molecular state is known. If a fragment distribution W.“/ � cos2 “ is
found experimentally then the parent molecules dissociate from a ˙ state, and in
case of W.“/ � sin2 “ the molecules dissociate from a II state. Thus, molecular
photofragmentation provide us with a useful spectroscopic tool.

Our discussion of photofragmentation covers only the most elementary aspects
of the theory. For more information we refer to the review articles by Green and Zare
(1982), Houston (1987), Beswick (1993), and in particular to the book by Schinke
(1993) and references therein.

7.8 Dynamical Stereochemistry

7.8.1 General Expressions and Definition of Steric Factors

The dependence of chemical reactivity on the orientation and alignment of the
reactants is a key issue in stereodynamics. Extensive investigations of the steric
effects, that is, the difference between the reaction cross sections for favorable
and unfavorable oriented or aligned molecules, relative to the cross section for
isotropic ensembles, have been performed. A typical steric information is the “head-
versus-tail” asymmetry of reactivity. For example, it was found that in the processes
K C CH3I ! KI C CH3 products are more likely to form if the atoms approach the
iodine end of the molecule (“head”) than if they encounter the CH3 end (“tail”). In
general, the information gained from observing the products’ angular distribution



7.8 Dynamical Stereochemistry 257

and also their polarization has led to new insights into the details of chemical
reactions. For the history of the subject and a review of recent developments, we
refer to the articles by Bernstein et al. (1987), Simons (1987), Levine and Bernstein
(1987), and Loesch (1995).

In the present subsection we will derive some basic formulas useful for the
description of steric effects and for an exploitation of the spatial aspects of molecular
processes. Our discussion will apply to elastic and inelastic collisions between
polarized freely rotating molecules and electrons or atoms, and to reactive scattering
processes like Li C HF ! LiF C H. We will first concentrate on the angular
distribution of the final reagents (like the H atom in the Li–HF reaction). The
polarization of the final particles will be considered in Sect. 7.8.3. In order to have
a well-defined picture in mind we will consider processes with diatomic molecules,
initially in their electronic ground state, although our results will also apply to
symmetric tops.

Our key approximation is the following. The collision time between projectiles
and molecules is assumed to be much shorter than the average rotation time of
the free molecule. The incoming projectile “sees” therefore the instantaneous axis
distribution of the molecular beam and is scattered by a molecule with fixed
axis direction. The differential cross section of this “elementary” process is then
calculated first and then averaged over the given instantaneous axis distribution.
Trajectory calculations show that, for all but the lowest energy regime, this approx-
imation is quite reasonable (see, for example, Blais et al. 1985). A more general
approach without using this approximation is outlined in Sects. 7.8.3 and 7.8.4.

The prerequisite for measuring steric effects is the preparation of an anisotropic
angular momentum or, equivalently, axes distribution of the molecular ensemble
prior to the collision. We will describe this process in a coordinate system with axes
x,y,z (director system). If the process by which the molecules have been prepared
possesses an axis of symmetry, we will choose this as z axis. Examples are the
direction of a static electric field if the electric focusing technique is applied. In laser
pumping experiments with linearly polarized light the molecular angular momenta
and axes will be symmetrically distributed around the electric field vector of the
light. In free jet expansions the beam direction will be an axis of symmetry.

The probability density of finding a molecule with an instantaneous axis n
pointing in “ � ’ direction is given by the corresponding function W.“’/ where
“ is the polar angle of n and ’ is the azimuth in the director frame (Fig. 7.4). The
distribution functionW.“’/ can be characterized in terms of state multipoles [(7.23)
for diatomics or (7.63) for symmetric tops] or in terms of the corresponding order
parameters [(7.28)]. Let us start with the latter choice and write

W.“’/ D
X

KQ

˝

Y �
KQ

˛

Y.“’/KQ (7.108)

Next we will describe the reaction between molecules and projectiles. The basic
theoretical quantity is the differential cross section in the center-of-mass frame. We
introduce therefore a coordinate frame with x0y0z0 axes where z0 is parallel to the
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initial relative velocity v0 (assuming very narrow velocity and angular spreads of the
beams). x0 and y0 are chosen perpendicular to z0 and to each other (collision system).
The scattering angle (that is, the angle between initial and final relative velocities v0
and v1) will be denoted by ‚, and the azimuth angle of v1 in the collision system
will be denoted by ¥: ¥ would be zero if the scattering plane (v0 � v1 plane) were
chosen as x0 � z0 plane (see Fig. 7.6). Polar and azimuth angle of the molecular axes
in the collision system will be denoted by “0 and ’0 respectively (Fig. 7.6). “0 is then
the angle of attack. The relation between director and collision system is fixed by
the three Euler angles –; •; ¦.

Here, • and – are polar and azimuth angles of z in the x0y0z0 system respectively
(Fig. 7.7). The third Euler angle ¦ can always be set to zero if z is a symmetry axis
of the molecular sample. In particular, • is the angle between z and v0, for example,
between a focusing electric field and the relative initial velocity. If the molecular
axes are symmetrically distributed around z with a positive alignment then • can be

Fig. 7.6 Polar angle .“0/ and
azimuth angle .’0/ of a
molecular axis, and angles ‚
and ¥ of V1 in the collision
system

y′x′

z′

j

u1

u0

b ′

a ′

q
n

Fig. 7.7 Relation between
director system (xyz) and
collision system .x0y0z0/
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y′

z

d
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considered as a mean angle of attack (see Fig. 7.9 below). – is the angle between z
and the x0 � z0 plane and, considering the –-dependence of observables, will allow
us to describe the “azimuthal steric effects.” If ¦ D 0 then the x axis lies within the
z � z0 plane.

As stated above, the elementary process is a reaction between the incoming
projectile and a molecule whose instantaneous axis direction is specified by
angles “ and ’ in the director frame, and “0 and ’0 in the collision system. The
relevant differential cross section is most conveniently calculated in the collision

Fig. 7.8 Geometry of
experiment (i) (“end-side”
collision: mean angle of
attack • D 0)

z = z′

x = x′

v0

Fig. 7.9 Geometry of
experiment (ii) (“broadside”
collision: mean angle of
attack • D  =2)
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system (center-of-mass system) and will be denoted by ¢.“0’0‚¥/, suppressing the
dependence on other variables for brevity.

The experimental accessible differential cross section is ¢.‚¥/, which is
obtained by multiplying ¢.“0’0‚¥/ with the probability density W.“0’0/ of finding
a molecule with axis pointing in the “0 � ’0 direction in the x0y0z0 system and
integrating over the axes distribution; that is,

¢.‚¥/ D
Z 2 

0

dd
0
Z  

0

d“0 sin “0W.“0’0/¢.“0’0‚¥/ (7.109)

For inelastic collisions a sum over (unobserved) degenerate states must be included.
Equation 7.109 is our basic “ansatz.” We emphasize, however, that this “ansatz”

cannot be applied if the initial molecules are in electronically excited and degenerate
states. In such cases the coherence between the states must be taken into account
and the corresponding density matrix elements would occur in (7.109) instead of
the cross section.

In order to relateW.“0’0/ toW.“’/we writeW.“0’0/ in a form similar to (7.108):

W.“0’0/ D
X

kq

˝

Y �
kq

˛

Y.“0’0/kq (7.110)

where the order parameters
D

Y �
kq

E

are defined in the x0y0z0 systems

˝

Y �
kq

˛ D
Z 2 

0

d’0
Z  

0

d“0 sin “0W.“0’0/Y.“0’0/�kq

This set is related to the parameters
˝

Y �
KQ

˛

, defined by (7.108), by the relation (4.41):

˝

Y �
kq

˛ D •Kk

X

Q

˝

Y �
KQ

˛

D.¦•–/
.K/�

Qq (7.111)

which redefines the axes distribution in the collision system as

W.“0’0/ D
X

KQq

˝

Y �
KQ

˛

D.¦•–/
.K/�

Qq .“0’0/Kq (7.112)

Combining (7.109) and (7.112) we obtain the expression for the differential cross
section in the form

¢.‚¥/ D
X

KQq

˝

Y �
KQ

˛

D.¦•–/
.K/�

Qq

Z 2 

0

d’0
Z  

0

d“0 sin “0Y.“0’0/Kq¢.“
0˛0‚¥/

(7.113)
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We note that the dependence of the cross section on the azimuth angle ¥ can be
given explicitly (see, for example, Ostrawsky et al. 1995) and we obtain finally

¢.‚¥/ D
X

KQq

˝

Y �
KQ

˛

D.¦•–/
.K/�

Qq ei¥q

Z 2 

0

d’0
Z  

0

d“0 sin “0Y.“0’0/Kq¢.“
0˛0‚¥ D 0/

(7.114)

In these and the following formulas we will suppress the dependence of ¢.‚¥/ on
the Euler angles ¦; •; –. The information on the stereodynamics of the reaction is
given by the integral in (7.114) and we rewrite this equation in the form

• ¢.‚¥/ D
X

KQq

˝

Y �
KQ

˛

D.¦•–/
.K/�

Qq ei¥qI.‚/Kq (7.115)

where the “steric factor” I.‚/Kq is defined by the integral in (7.114).
The advantage of (7.114) and (7.115) is that geometrical and dynamical factors

are separated. The instantaneous axis distribution of the initial molecular ensemble
is characterized by the order parameters

˝

Y �
KQ

˛

in the director system, which allows
us to take full advantage of the symmetries of the preparation process.

The differential cross sections ¢.“0’0‚¥/ and the steric factors refer to the
collision system (v0 as quantization axis), which is convenient for numerical
calculations. The elements D.¦•–/.K/Qq describe the geometry of the experiment,
that is, the orientation of the molecular sample relative to the incoming relative
velocity v0.z0/ and the x0 � y0 axes. • is the angle between z and v0 (Fig. 7.7). If the
initial molecular axes are symmetrically distributed around z, and if the alignment
is positive, • can be considered as an average angle of attack. – is the angle between
z and the x0 � z0 plane. By varying – the azimuth steric dependence of observables
can be studied (Stolte 1982). The angle ¦ is superfluous if z is a symmetry axis
of the molecular axes distribution (see Sect. 7.6.1). ‚ and ¥ are scattering angle
and azimuth angle of the detected particle respectively. The ¥ dependence is given
explicitly by the exponential factor in (7.115). ¥ would be zero if the velocity of the
detected particle were within the x0 � z0 plane.

The sums in (7.115) run over all Q and q values satisfying �K � Q � K and
�K � q � K . If all molecules in the sample of interest have the same sharp value
J of angular momentum then K is restricted by the conditionK � 2J . Often K is
further limited by symmetry requirements.

Thus far we have expressed ¢.‚¥/ in terms of the order parameters specifying
the instantaneous initial axis distribution. One can also consider the dependence of
¢.‚¥/ on the corresponding rotational polarization. This is of particular interest for
ensembles with sharp J (for example, prepared by state-selective laser excitation).
¢.‚¥/ can immediately be expressed in terms of the relevant state multipoles
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D

T .J /
�
KQ

E

by substituting (7.34) into (7.115) for linear rotors, or of (7.64b) for

symmetric tops. The obtained expressions allow us to study the correlation between
initial and final momenta and J, which involves both the scattering angle ‚ and
(semiclassically) the rotational alignment angle ‚J . We will return to this point in
Sect. 7.8.3 in more detail.

It should be noted, however, that (7.115) applies not only to ensembles with sharp
J but also to ensembles of molecules with different J values [as is often the case in
free jet expansion, or after applying the electric focusing method (see, for example,
Volkmer et al. 1992)]. It is the instantaneous axis distribution of the total ensemble
which is of importance for the collision, and a parametrization in terms of order
parameters is then most convenient.

As stated above, our results must be modified if the rotation of the molecules
during the approach motion of the projectiles cannot be neglected.

In the present subsection we have developed the theory up to (7.115). The next
step would be to obtain more explicit analytical expressions for the steric factors.
This can be done by applying standard techniques of scattering theory, in particular
partial wave expansions, and will not be discussed here.

Finally, we give some symmetry properties of the steric factors which are useful
for calculations. From the symmetry properties of the spherical harmonics follows

I.‚/K�q D .�1/qI.‚/�kq (7.116a)

Furthermore, we note that the differential cross sections ¢.“0’0‚¥ D 0/ refer to pro-
cesses where V1 lies within the x0 � z0 plane, and describe an “elementary collision”
between projectile and, for example, a diatomic molecule with axis n in the “0 � ’0
direction in the collision system. A reaction with a molecule oriented at angles “0 and
�’0 has the same probability; hence, ¢.“0; ’0; ‚; ¥D 0/D ¢.“0;�’0; ‚; ¥ D 0/.
Since Y.“0’0/�kq D Y.“0 � ’0/kq, it follows by substituting ’ ! �’ in the integral in
(7.114) that the steric factors are real

I.‚/Kq D I.‚/�kq (7.116b)

By combining (7.116a) and (7.116b) we obtain therefore

• I.‚/�Kq D .�1/qI.‚/K�q (7.116c)

Further relations hold for center-of-mass forward and backward scattering. In these
cases the cross sections ¢.“0’0‚¥ D 0/ must be independent of ’0. The integration
over ’0 can then explicitly be performed and the integrals in (7.114) vanish unless
q D 0. Hence,

• I.0/Kq D I. /Kq D 0 (7.116d)

if q ¤ 0.
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7.8.2 Discussion and Examples

7.8.2.1 Differential Cross Sections Steric Effects in Collisions

In order to make our result (7.115) more tangible we will discuss some examples
of experimental interest. Let us first assume that a molecular ensemble has been
prepared with an axially symmetric axis distribution. Only order parameters with
Q D 0 contribute then to (7.115).

Using (7.33c) and realizing that because of the axial symmetry around z the third
Euler angle ¦ becomes redundant and can be set to zero, we rewrite (7.115) as

•
¢.‚¥/ D

X

Kq

�
2K C 1

4 

�1=2

hPK.cos“/id.•/.K/0q e
i.¥�–/qI.‚/Kq (7.117a)

• D
X

Kq

hPK.cos“/iY.•–/�Kqe
i¥qI.‚/Kq (7.117b)

where we have applied (C.12) in deriving (7.117a).
By applying condition (7.116c) and (C.16c) we can rewrite (7.117a):

¢.‚¥/ D
X

K

�
2K C 1

4 

�1=2

hPK.cos “/iPK.cos •/I.‚/K0

C 2
X

K;q>0

�
2K C 1

4 

�1=2

hPK.cos“/id.•/.K/0q cos..¥ � –/q/I.‚/Kq

(7.117c)

For forward and backward scattering (7.116d) apply. Consider, for example,
backscattering in the center-of-mass system, say for rebound reactions. We obtain
from (7.117c):

•
¢. / D

X

K

�
2K C 1

4 

�1=2

hPK.cos “/iPK.cos •/I. /K0 (7.118)

which is independent of ¥ and –. This expression has a particularly simple structure.
The differential cross section ¢. / is expanded in terms of Legendre polynomials
of the angle •. For example, • would be zero if the z axis of the director system (for
example, the direction of an orientating field) is parallel to the relative initial velocity
v0 (“head orientation”), and • D   if z is antiparallel to v0 (“tail orientation”). The
steric factors I. /K0 can in principle be obtained by measuring the differential cross
section and fitting its • dependence (see, for example, the review of Stolte 1982).

Expansions like (7.115) or (7.117) are particularly useful in situations where only
a limited number of expansion coefficients contribute. In this case the description of
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the angular dependence of the reaction products simplifies considerably. Consider,
for example, a beam of molecules prepared in definite rotational states by optical
pumping with linearly polarized laser light. In this case only order parameters with
KD 0 and KD 2 and QD 0 contribute (see Sect. 7.5). We will further choose the
scattering plane (v0 � v1 plane) as the x0 � z0 plane of the collision system. The
azimuth angle ¥ of v1 is then zero and the azimuth angle – is the angle between the
z axis of the director system and the scattering plane. We will follow Loesch and
Stienkemeier (1993) and consider the following three experimental geometries:

1. v0 is parallel to the z direction of the director system (for example, parallel to
the direction of an orientating electric field) and director and collision system
coincide. This geometry is illustrated in Fig. 7.9a. In the figure a special axis
distribution W.“’/ D 3

4
cos2 “ has been assumed corresponding to hP2i D 2

5

(see Fig. 7.2). The molecules are preferentially “end-side” aligned with respect
to v0, and the molecules will preferentially encounter the attacking projectiles
head-on. The polar angle • and azimuth angle – of z in the x0y0z0 system are both
zero, d.0/.K/0q vanishes except for q D 0, and (7.117) reduces to

¢1.‚; ¥ D 0/ D ¢0 C
�
5

4 

�1=2

hP2.cos“/iI.‚/20 (7.119a)

where ¢0 D .1=4 /1=2 I.‚/00 is the differential cross section for collisions with
randomly oriented molecules.

2. We assume that the symmetry axis of the molecular axis distribution is perpendic-
ular to v0 and parallel to the x0 axis (Fig. 7.9b); that is, z lies within the scattering
plane. In this case we have • D  =2; – D 0, and the molecules show “broadside”
alignment relative to v0. Equation 7.117c yields

¢2.‚; ¥ D 0/ D ¢0 � 1

2

�
5

4 

�1=2

hP2.cos “/I.‚/20

C
�
15

8 

�1=2

hP2.cos“/iI.‚/22
(7.119b)

where we have inserted the explicit values

d
� 

2

	.2/

00
D �1

2
; d

� 

2

	.2/

0˙1
D 0; d

� 

2

	.2/

0˙2
D
�
3

8

�1=2

Figure 7.9 illustrate the meaning of • as an average angle of attack.
3. In order to study the azimuthal steric effect, that is, the dependence on –, one

has to consider geometries where the z axis lies outside the scattering plane. We
consider the case where z is pointing along the y0 axis corresponding to – D  =2

and • D  =2.
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Equation 7.117c yields

¢3.‚; ¥ D 0/ D ¢0 � 1

2

�
5

4 

�1=2

hP2.cos“/iI.‚/20

�
�
15

8 

�1=2

hP2.cos “/i I.‚/22
(7.119c)

Under the experimental conditions assumed here the steric effects manifest
themselves as differences between ¢0; ¢1; ¢2, and ¢3.

By combining (7.119) we obtain the relations (Loesch and Stienkemeier 1993)

¢1 C ¢2 C ¢3 D 3¢0 (7.120a)

¢2 � ¢3 D 2

�
15

8 

�1=2

hP2.cos “/i I.‚/22 (7.120b)

2¢1 � .¢2 C ¢3/ D 3

�
15

4 

�1=2

hP2.cos “/i I.‚/22 (7.120c)

These expressions show that by combining the values of differential cross sections
the steric factors I20 and I22 can be extracted from the measurements if the
alignment is known. (A determination of I21 would require an experiment with
• ¤ 0 and • ¤  =2.) In particular, (7.120c) gives the difference between the cross
sections for “head-on” and “side-on” collisions.

By determining the difference between ¢2 and ¢3 the influence of the azimuthal
steric dependence can be probed. Equation 7.120b shows that this azimuthal effect
is proportional to I22. In the geometry (ii) the molecular axes are lying preferentially
within the scattering plane (assuming positive axis alignment as in Fig. 7.9b), and
in case of geometry (iii) the axes are mainly aligned perpendicular to the collision
plane. A positive value of I22 would then indicate that geometry (ii) is favored.

If the molecules would be oriented and not merely aligned one could also
distinguish between the two “ends” of the molecule. Orientation is characterized by
the order parameters withK odd. Orientation and alignment terms in (7.117) can be
separated by reversing the direction of the symmetry axis .z/ of the molecular axis
distribution (for example, by reversing the direction of an orientating electric field).
The polar and azimuth angles • and – of z in the x0y0z0 system are then transformed
into   � • and – C   respectively. Using the symmetry properties of the spherical
harmonics we obtain from (7.117b) that the terms with K odd change their sign.
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7.8.2.2 Integrated Cross Sections

Besides the differential cross section ¢.‚¥/ the total cross section ¢t is also of
fundamental importance for collision studies. In order to obtain ¢t we have to
integrate (7.115) over ‚ and ¥. Noting that only terms with q D 0 survive the
¥ integration and defining

IK0 D
Z

d‚ sin‚I.‚/K0

we obtain
¢t D

X

KQ

˝

Y �
KQ

˛

D.¦•–/
.K/�

Q0 IK0 (7.121)

If only terms with Q D 0 contribute we obtain from (7.117):

¢t D
X

K

�
2K C 1

4 

�1=2

hPK.cos “/iP.cos •/KIK0 (7.122)

The total cross section for preferred head-on collisions .•D 0/ in case of (7.122) is

¢t1 D
X

K

�
2K C 1

4 

�1=2

hPK.cos“/iIK0

For preferred side-on collision .• D  =2/ (7.122) yields

¢t2 D
X

K even

�
2K C 1

4 

�

hPK.cos“/iP.0/KIK0

where the sum includes only terms with K even. If only terms with K D 0 and
K D 2 contribute to the molecular axis distribution we obtain

¢t1 � ¢t2 D 3

2

�
5

4 

�1=2

hP2.cos “/iI20

for the difference of the cross sections for end-on and side-on collisions.
If the molecular initial ensemble is also oriented, and terms with KD 1 con-

tribute also to (7.122) we obtain for preferred head-on collisions .•D 0/

¢t4 D ¢t0 C
�
3

4 

�1=2

hP1.cos“/iI10 C
�
5

4 

�1=2

hP2.cos “/iI20 (7.123)

where ¢t0 corresponds to K D 0.
The corresponding total cross section ¢t5 for preferred tail-on collisions .• D

 / follows from (7.123) by changing the sign of the second term. The difference
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is given by

¢t4 � ¢t5 D 2

�
3

4 

�1=2

hcos“/iI10
Considerable steric effects have been found experimentally for many reactions,
starting with the pioneering experiments by Beuler and Bernstein (1969) and Brooks
and Jones (1966), and we refer to the literature cited above for further information.

7.8.3 Product Rotational Polarization. Quantum Mechanical
Theory and Semiclassical Approximation

7.8.3.1 Derivation of General Equations

So far we have discussed the angular distribution of the reaction products.
Another accessible stereodynamic property is the spatial distribution of rotational
angular momenta of the final products. We have already discussed in Sect. 7.7.4
the corresponding vector correlations. Here we will consider inelastic collisions
between atoms A and diatomic molecules BC or reactions like A C BC ! AB C C.
We will derive some general equations for the rotational polarization of the molecule
AB in the exit channel and point out the relations to the results obtained in the
previous sections. We will also allow for rotational polarization in the entrance
channel, either for the atom or for the initial molecule. In order to have a definite
case in mind let us assume that the initial molecular ensemble is polarized and that
the atoms are initially in their ground state. (The case of initially aligned atoms will
be considered below.)

In order to derive the relevant formulas we will follow the developments of
Sect. 3.5 and apply the reduced density matrix formalism, which is most convenient
for keeping track of the various coherencies. Our main results will be (7.132)
and (7.134). Readers not so much interested in the mathematical formalism may
proceed to these equations and the following more physical discussions.

The initially polarized molecular ensemble will be described in terms of the

relevant state multipoles
D

T .J /
�
KQ

E

, defined in the director system introduced in

Sect. 7.8.1. The components with respect to the collision system (with the initial

relative wave vector k0 as quantization axis) will be denoted by
D

T .J /
�
Kq

E

. If initial

electronic orbital orientation and/or alignment must be taken into account, then

the state multipoles T .�0�J/�KQ

E

, defined in Sect. 7.7.3, must be used instead of
D

T .J /
�
KQ

E

.

We will denote the density matrix of the initial molecular ensemble by ¡.
Assuming that the incident atoms are spinless and in their ground state, the density
matrix ¡in of the total system is given by the direct product

¡in D ¡ � jk0ihk0j (7.124a)
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Taking matrix elements we obtain by applying (A.7) and (A.8) of Appendix A.1

hJM0k0j¡injJMk0i D hJM0j¡jJMi (7.124b)

where J and M denote angular momentum and its z component of the initial
molecules respectively. The final molecular states will be characterized by the
quantum numbers J1M1: k1 is the relative final wave vector and n1 will collectively
denote the states of the final atoms which will be in excited states in general.

The density matrix ¡out, describing the total final system, is related to ¡in by (E.5):

¡out D T¡inT � (7.125)

where T denotes the transition operator. Taking matrix elements of (7.125) and
applying the completeness relation for the initial states, we obtain

˝

J 0
1M

0
1n

0
1k1j¡outjJ1M1n1k1

˛

D
X

M 0M

˝

J 0
1M

0
1n

0
1k1jT jJM0k

˛ hJM0j¡jJMihJMk0jT �jJ1M1n1k1i

(7.126)

where the T -matrix elements are the usual scattering amplitudes in the normaliza-
tion (3.33). All quantum numbers are defined with respect to the collision system.

We will now consider a definite experimental situation. It will first be assumed
that one of the final particles will be detected (so that k1 is fixed) and that the excited
states jni of the atom C will not be observed. We are interested in the rotational
polarization of the final molecules. The information which can be obtained from the
measurements under these conditions is contained in the relevant reduced density
matrix ¡1. As described in Sect. 3.2, ¡1 is obtained by considering those elements of
¡out which are diagonal in all unobserved quantum numbers and by summing over
the unobserved variables. In our present case of interest this procedure yields the
elements

˝

J 0
1M

0
1j¡jJ1M1

˛ D
X

n1

˝

J 0
1M

0
1n1k1j¡outjJ1M1n1k1

˛

(7.127)

suppressing the dependence of ¡1 on k1 and k0 for brevity.
The rotational polarization of the observed molecules will be characterized in

terms of the relevant multipole components. Assuming high spectral resolution in
the detection of the fluorescence light, so that quantum beats are not detected, it is
sufficient to consider density matrix elements with J 0

1 D J1 only. The corresponding

multipoles will be denoted by
D

T .J1/
�
kq

E

and will conveniently be defined in the

collision system (so that q refers to k0 as quantization axis):
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D

T .J1/
�

kq

E

D
X

M 0

1M1

.�1/J1�M 0
1 .2k C 1/1=2

�
J1 J1 k

M 0
1 �M1 �q

�
˝

J1M
0
1j¡1jJ1M1

˛

(7.128)

The initial molecular density matrix ¡ is expanded in terms of multipoles
D

T .J /
�

KQ0

E

whereQ0 refers also to the collision frame:

hJM0j¡jJMi D
X

KQ0

.�1/J�M 0

.2K C 1/1=2
�
J J K

M 0 �M �Q0
� D

T .J /
�

KQ0

E

(7.129)

In order to take full advantage of the symmetry properties of the initial angular
momentum distribution we transform to the director system by using (4.41),

D

T .J /
�

KQ0

E

D
X

Q

D

T .J /
�
KQ

E

D.¦•–/
.K/�

QQ0 (7.130)

similar to (7.111). The angles ¦; •, and – and their geometrical importance have
been discussed in Sect. 7.8.1. Combining (7.126)–7.130 we obtain finally

T .J1/
�

kqi D
X

KQQ0

D

T .J /
�
KQ

E

D.¦•–/
.K/�

QQ0

X

M 0M

M 0

1M1n1

.�1/J1�M 0

1CJ�M 0

..2k C 1/

� .2k C 1//1=2
�
J1 J1 k

M 0
1 �M1 �q

��
J J K

M 0 �M �Q0
�

f
�

M 0
1M

0�f .M1M/�

(7.131)

• D
X

KQQ0

D

T .J /
�
KQ

E

D.¦•–/
.K/�

QQ0 A.‚¥/
.kq/
KQ0 (7.132)

Here we have abbreviated the scattering amplitudes hJ1M1n1k1jT jJMk0i by
f .M1M/, and the “anisotropy coefficient” A.‚¥/.kq/

KQ0 is defined by the second
sum in (7.131).

The advantage of an expansion like (7.132) is that geometrical and dynamical

elements are separated. The state multipoles
D

T .J /
�
kq

E

characterize the rotational

polarization of the observed final product in the collision system (that is, q refers

to k0 as quantization axis). The parameters
D

T .J /
�
KQ

E

characterize the initial

rotational polarization in the director system. The anisotropy coefficients contain
the information on the dynamics of the collision and have to be calculated in
the collision system which is convenient for numerical calculation. The rotation
matrix elements describe the relation between director and collision system and
specify the geometry of the experiment. Assume, for example, an aligned symmetric
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distribution of J vectors around the z axis of the director system. If the alignment
of J is positive then the J vectors will point preferentially in the z direction. • is the
angle between this preferred direction and the direction of the initial relative wave
vector. If the x0 � z0 plane is chosen as scattering plane .¥ D 0/, then – is the angle
between z and the collision plane.

If electronic orbital orientation and alignment must be taken into account we

have to calculate the state multipoles
D

T
�

�0
1�1J1

��

kq

E

or
D

T
�

–01–1J1
��

kq

E

introduced

in Sect. 7.7.3. The relevant general equations can be obtained completely similar to
the derivation of (7.132).

The lower state multipoles .K � 2/ can be measured by observing the fluores-
cence light and determining its angular distribution and polarization. We refer to the
discussion in Sect. 7.7.4 and to Chaps. 5 and 6 for more details.

The next step in the theoretical development would be to perform a partial
wave expansion of the scattering amplitudes as a basis for numerical calculations
of the anisotropy parameters. Lack of space forbids a discussion of the relevant
calculations.

7.8.3.2 Discussion and Semiclassical Interpretations

In order to get a feeling for the physical importance of the multipoles (7.132)
we will follow Levine and Bernstein (1987) and derive a simple physical picture
for the production of rotational polarization in cases where the initial particles
are unpolarized .KD 0/. The initial angular momenta J of the molecules are
then statistically distributed. The initial relative orbital angular momentum L is
preferentially directed perpendicular to the scattering plane (k0 � k1 plane). Let
us assume that many partial waves contribute to the reaction so that J 
 L. This
is the case in reactions of the type K C H Br ! K Br C H. Angular momentum
conservation requires JCL D J1CL1. Since the reduced mass of the final products
is much smaller than that of the initial particles for the reaction considered we
have L1 
 L, which results in the angular momentum correlation J1 	 L. That
is, the reactant orbital angular momentum appears as product rotational angular
momentum, and J1 will preferentially be aligned perpendicular to the scattering
plane. The rotational state distribution of K Br is a reflection of the range of impact
parameters that contribute to the reactive collision.

In this case a strong rotational polarization is required by essentially kinemati-
cally constraints. In fact, a significant fraction of the energy released in the reaction
is in the form of rotational excitation of K Br. The produced anisotropy in the J1
distribution will then result in a strong polarization of the emitted fluorescence light.

The KCH Br and similar reactions therefore produce quite high angular momenta
for the alkali halides, typically �100 h, so that the semiclassical approximation
applies. If the final reagents are not observed (but only the fluorescence light
emitted by the total ensemble of final molecules), then the initial relative wave
vector k0 would be a symmetry axis for the J1 distribution, and the angular
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momentum distribution would be invariant under reflections in any plane through
k0. Consequently, as discussed in Sect. 4.5, only multipoles with k even and q D 0

contribute. The semiclassical approximation (7.9) yields

hT .J1/k0i D
�
2k C 1

4 

�1=2

hPk.cos‚J1/i

for the parameters (7.132) where ‚J1 is the angle between J1 and k0. The spatial
distribution of J1 vectors is then represented by the distribution function (7.10),
which in our present case of interest reduces to the expression

W.‚J / D 1

4 
Œ1C 5hP2.cos‚J /iP2.cos‚J /C 9hP4.cos‚J /iP4.cos‚J C � � � �

In several experiments hP2i has been determined (for example, by analyzing the
fluorescence light), and in some cases also hP4i. In most cases investigated, hP2i is
negative and hP4i positive, indicating that J1 is preferentially aligned perpendicular
to k0. (Bernstein et al. 1987).

If the state multipoles have been experimentally and theoretically determined,
the corresponding parameters for the axes distribution follow (7.34) for linear rotors
and (7.64b) for symmetric tops. The corresponding semiclassical relations are given
by (7.35a) and (7.64c) respectively.

If scattered particles and emitted light are observed in coincidence, then the
azimuthal symmetry around k0 is disturbed and state multipoles with q ¤ 0 will
contribute. This corresponds to a simultaneous measurement of k1 and J1 which
allows us to determine the triple vector correlation among k0; k1, and J1. In
particular, information on the dihedral angle (that is, the angle between J1 and the
k0 � k1 plane) can be extracted from the measurements.

7.8.4 Alignment-Induced Chemical Reactions

So far we have not specified the normalization of the final density matrix ¡1 of
interest. In collision processes it is convenient to normalize according to (3.33),
namely

tr ¡1 D
X

M1

hJ1M1j¡1jJ1M1i D ¢.‚¥/ (7.133a)

where ¢.‚¥/ is the differential cross section. The monopole is then proportional
to ¢ :

hT .J1//00 D ¢.‚¥/

.2J1 C 1/1=2
(7.133b)

The differential cross section then follows from (7.132) and (7.133):
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• ¢.‚¥/ D
X

KQQ0

.2J1 C 1/1=2
D

T .J /
�
KQ

E

D.¦•–/
.K/�
QQ0 A.‚¥/KQ0 (7.134)

where the corresponding anisotropy coefficient is obtained by setting kD 0 in
(7.131).

Equation 7.134 is practically equivalent to (7.115), and the coefficients AKQ0 are
equivalent to the steric factors defined by (7.115). In fact, (7.115) can be derived
from (7.134) by transforming to the axis representation, applying the adiabatic
approximation, and using (7.34). Expression (7.134) is, however, more general than
(7.115) because the approximations, discussed in Sect. 7.8.1, are not contained in
(7.134).

Equation 7.134 describes the influence of initial rotational polarization of the
molecule BC on reactions like A C BC ! AB C C. It has been measured, for
example, by optical pumping of theM substates of the HF molecule by IR polarized
light for the reaction K C HF ! KF C H. The reaction cross section was then
measured for two different HF polarizations (Hoffmeister et al. 1987). The type of
information which can be obtained from the measurements is the orientational angle
dependence of the reaction barrier.

Other experiments have been performed with initially aligned atoms. The

corresponding expressions are given by (7.132) and (7.134), where then
D

T .J /
�
KQ

E

refer to rotational polarization of the atoms. In most experiments the initial atoms
have been prepared in p states by optical pumping. Taking the direction of the
electric vector of the pump laser as z axis of the director frame the atomic state
is represented by a pz orbital. The corresponding charge distribution is parallel to z
(similar to Fig. 7.2). Since only one element of the density matrix ¡ is nonvanishing
(the one with J D 1; M D 0) we obtain from (4.31) that, besides the monopole,

only the alignment parameter
D

T .J /
�
20

E

is nonvanishing with value

D

T .J /
�
20

E

D �
�
2

3

�1=2

The third Euler angle ¦ can be put to zero and (7.134) can be rewritten in the form

¢.‚®/ D ¢0 �
�
2

3

�1=2X

Q0

d.•/
.2/

0Q0e
i.®�–/Q0

A.‚/2Q0 (7.135)

where we have usedA.‚®/KQ0 D ei®Q
0

A.‚/KQ0 , which follows from the symmetry
conditions of the scattering amplitudes.

Let us choose the collision plane as x0 � z0 plane (corresponding to ® D 0). From
the invariance of the T operator under reflections in this plane and the corresponding
symmetry properties of the scattering amplitudes, it follows that the anisotropy
coefficients satisfy the conditions
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•
A.‚/KQ0 D .�1/KCQ0

A.‚/K�Q0 (7.136a)

•
A.‚/�KQ0 D .�1/KA.‚/KQ0 (7.136b)

Hence, the experiment under discussion is completely determined by three real
independent parameters corresponding to Q0 D 0; 1; 2 for any scattering angle ‚.
These coefficients can be determined experimentally by measuring the cross section
as a function of • and –. Assume, for example, that the electric vector of the laser is
lying within the scattering plane and rotated within this plane. The azimuth angle –
of the field vector is then zero, and • is the angle between the field direction and k0.

Using the conditions (7.136) and inserting the explicit analytical forms for the d
matrices, we obtain from (7.135):

¢.‚/ D ¢0 �
�
2

3

�1=2 �
1

2
.3 cos2 • � 1/A.‚/20

�2
�
3

2

�1=2

A.‚/21 sin • cos •C 2

�
3

8

�1=2

A.‚/22 sin2 •

#

(7.137)

For • D 0 the pz orbital is parallel to k0, and for • D  =2 the orbital is perpendicular
to k0. From both measurements the coefficients A20 and A22 can be extracted if
¢0 has been determined before. (A determination of A21 requires • ¤ 0 and • ¤
 =2.) It was found, for example, that the reaction between Ca.1P / and HCl shows
a marked preference for the perpendicular alignment of the charge cloud relative to
k0 (Retner and Zare 1982). Reactions like these represent interesting examples of
alignment-induced chemical reactions.

Summarizing the contents of this section, our discussion has indicated how
the theory of steric effects can be developed in a systematic way. The use of
state multipoles allows us to describe the influence of rotational polarization and
electronic orientation and alignment on molecular processes. The use of order
parameters allows us to describe molecular axis distributions in a convenient way
for a variety of cases. In general, the systematic application of multipoles and order
parameters enables the results from many types of experiments to be treated in the
same way.



Chapter 8
Quantum Theory of Relaxation

8.1 Density Matrix Equations for Dissipative
Quantum Systems

8.1.1 Conditions of Irreversibility. Markoff Processes

Consider a system which is not closed but in continuous contact with its sur-
roundings, exchanging energy, polarization and so forth. If initially the system is
in a nonequilibrium state then—under certain conditions which will be specified
below—it will at some later time go over into an equilibrium state determined by
external conditions such as temperature. This gradual evolution into an equilibrium
state is called a relaxation process. In the present chapter we will consider some
methods for studying processes of this kind.

Relaxation phenomena are irreversible processes. The fundamental quantum
mechanical equations of motion, the Schrödinger and Liouville equations, describe
a reversible evolution in the course of time, and hence a major problem is that of the
solution of the question how irreversibility can arise if the behavior of microscopic
particles is strictly reversible. In recent years there has been success in answering
this question. A detailed treatment of the modern theory is outside the scope of this
book and the reader is referred to modern textbooks on statistical physics for a more
detailed account.

We will start with the concepts introduced in Sect. 3.2. Consider a system
S interacting with an unobserved system R. We will denote the density matrix
characterizing the total system by ¡.t/ and the total Hamiltonian by H D Hs C
HR C V , where HS and HR are the Hamiltonians for the uncoupled systems
S and R, respectively, and V describes the interactions between S and R. In the
interaction picture the time evolution of ¡.t/ is given by (2.79) or, alternatively, by
(2.80). Inserting (2.80) back into (2.79) gives

K. Blum, Density Matrix Theory and Applications, Springer Series on Atomic, Optical,
and Plasma Physics 64, DOI 10.1007/978-3-642-20561-3 8,
© Springer-Verlag Berlin Heidelberg 2012
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P¡.t/I D �.i=¯/ŒV .t/I ; ¡.0/� � .i=¯/2
Z t

0

dt0ŒV .t/I ; ŒV .t 0/I ; ¡.t 0/I �� (8.1)

where P¡.t/I is the time derivation of ¡.t/I , and ¡.t/I and V.t/I are operators in
the interaction picture which are related to their Schrödinger picture counterparts
by (2.75) and (2.61), respectively, with H0 replaced by HS CHR.

The reduced density matrix ¡.t/S , describing the system of interest S , is obtained
from ¡.t/ by taking the trace over all variables of the unobserved system R

according to (3.7). Hence, in the interaction picture,

¡.t/SI D trR ¡.t/I (8.2)

and from (8.1)

P¡.t/SI D �.i=¯/trRŒV .t/I ; ¡.0/I � .1=¯/2
Z t

0

dt0trRŒV .t/I ; ŒV .t 0/I ; ¡.t 0/I �� (8.3)

In writing (8.1) and (8.3) it has been assumed that the interaction is switched on at
time t D 0. Prior to this S and R are uncorrelated and the total density matrix is
given by the direct product

¡.0/ D ¡.0/S¡.0/R D ¡.0/I (8.4)

(see Appendix A.1).
The coupling between the two systems may result in a reversible exchange of

energy, polarization, etc. An example has been discussed in Sect. 5.4, the coupling of
orbital angular momentum to an undetected spin system. In order for an irreversible
process to occur further conditions must be imposed on the unobserved system
in order to prevent the energy initially in the system S from returning from the
unobserved system R to S in any finite time.

At this point we follow Fano (1957) and make the first of two key assumptions. It
is assumed that R has so many degrees of freedom that the effects of the interaction
with S dissipate away quickly and will not react back onto S to any significant
extent so that R remains described by a thermal equilibrium distribution at constant
temperature, irrespective of the amount of energy and polarization diffusing into
it from the system S. In other words, it is assumed that the reaction of S on R
is neglected [so that the R system is represented by ¡.O/R at all times] and the
correlations between S andR, induced by the interaction, are neglected. In this case
¡.t/I can be replaced by the simpler density matrix

• ¡.t/I ! ¡.t/I D ¡.t/SI¡.0/R (8.5)

at any time t without introducing any significant error in the calculation of ¡.t/SI �
¡.0/R is represented by the density matrix (2.89):
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¡.0/R D exp.�“HR/=Z (8.6)

Equations 8.5 represents our basic condition of irreversibility.
In the following we will consider the behavior of a “small” system S , the

dynamical system, coupled to a “large” system R with many degrees of freedom.
Throughout this chapter we will refer to the large system as the “heat bath” or
“reservoir.” For example, atoms in a gas will collide with other atoms and these can
act as a heat reservoir for the atoms considered. Light in a cavity is in interaction
with the walls which then play the role of a heat bath for the light. In magnetic
resonance experiments the spin variables interest with other degrees of freedom
(the “lattice”) and these other variables form the heat reservoir.

Replacing ¡.t/I in (8.3) by the approximate density matrix (8.5) gives

P¡.t/SI D �.i=¯/trRŒV .t/I ; ¡.0/S¡.0/R�

� .1=¯/2
Z t

0

dt0 trRŒV .t/I ; ŒV .t
0/I ; ¡.t 0/SI¡.0/R�� (8.7)

It should be noted that the corrections neglected in (8.5) and (8.7) can be treated
systematically by successive approximations. If the interaction term V is zero then
system and reservoir are uncorrelated and ¡.t/I D ¡.t/I . If V is small (that is,
jV j 
 jHS j; jV j 
 jHRj) then we can write

¡.t/ D ¡.t/SI ¡.0/R C�¡ (8.8)

such that �¡ is small of order V . If (8.8) is inserted in the integral in (8.3) and only
terms of order V 2 are retained then (8.7) is obtained. Equation 8.7 is therefore the
equation of motion for the dynamic system up to second order in the interaction.

Equation 8.7 contains ¡.t 0/SI in the integral, and hence the behavior of the system
depends on its past history from t 0 D 0 to t 0 D t . The motion of the system S

is, however, damped by the coupling to the reservoir and damping destroys the
knowledge of the past behavior of the system. We therefore make our second key
assumption: P¡.t/SI depends only on ¡.t/SI , its present value. In other words, it is
assumed that the system loses all memory of its past. Hence, in (8.7) we can make
the substitution

•
¡.t 0/SI ! ¡.t/SI (8.9)

This substitution is the Markoff approximation and gives

•
P¡.t/SI D �.i=¯/trRŒV .t/I ; ¡.0/S¡.0/R�

� .1=¯/2
Z t

0

dt0 trRŒV .t/I ; ŒV .t 0/I ; ¡.t 0/SI¡.0/R�� (8.10)
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We will consider the Markoff approximation in more detail in the following
section.

8.1.2 Time Correlation Functions. Discussion of the Markoff
Approximation

The next step in the analysis of (8.9) is to consider the coefficients of ¡.t/SI in this
equation. The development here follows that of Loisell (1973) to whom reference
should be made for more detailed treatment of specific points (see also Sargent et al.
1974; Haken 1970).

Let us assume that the interaction operator can be written in the form

V D
X

i

QiFi (8.11)

where the Fi are reservoir operators and the Qi are operators acting only on the
variables of the dynamic system. In the interaction picture

V.t/I D expŒi.HS CHR/t=¯�V expŒ�i.HS CHR/t=¯�
D
X

i

F .t/iQ.t/i (8.12)

where
F.t/i D exp.iHRt=¯/Fi exp.�iHT t=¯/ (8.13a)

and
Q.t/i D exp.iHS t=¯/Qi exp.�iHS t=¯/ (8.13b)

Inserting the expression (8.12) into (8.10) using the fact that the operators Fi and
Qi commute and using the cyclic property of the trace gives

P¡.t/SI D �.i=¯/
X

i

fQ.t/i¡.0/SI trR .F.t/i ¡.0/R/

� ¡.0/SIQ.t/i trR .F.t/i ¡.0/R/g

� .1=¯/2
X

ij

Z t

0

dt0f.Q.t/iQ.t 0/j ¡.t/SI �Q.t 0/j ¡.t/SIQ.t/i / trR

� .F.t/iF .t
0/j ¡.0/R/� .Q.t/i¡.t/SIQ.t

0/j /

� ¡.t/SIQ.t
0/jQ.t/i / trR .F.t 0/j F.t/i ¡.0/R/g (8.14)
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Consider first the expectation values

hF.t/i i D trR .F.t/i ¡.0/R/

D
X

N

hN jF.t/i jihN j¡.0/RjN i (8.15)

where the trace has been conveniently expressed in terms of eigenstates jN i of
HR so that the equilibrium density matrix (8.6) is diagonal in this representation.
Assuming that the interaction operators Fi have no diagonal elements in this
representation (since otherwise the free Hamiltonian could be redefined to include
those parts) we then have

hF.t/i i D 0 (8.16)

This is equivalent to the assumption that the interaction does not produce an average
frequency shift. It then follows that the first term in (8.14) vanishes.

Next consider the functions

hF.t/iF .t 0/j i D trR .F.t/iF .t 0/j ¡.0/R/ (8.17)

These are time correlation functions, that is, expectation values of products of
physical quantities taken at different times, which characterize the correlation which
exists on average between interactions occurring at times t and t 0. Since the reservoir
is assumed to be large and such that it quickly dissipates the effects of the interaction
it is expected that the reservoir will quickly “forget” its interactions with the system
S. Thus it is expected that hF.t/iF .t 0/j i will be nonzero for some time interval

t � t 0
�
<£, where £ is typical of the reservoir and is called the correlation time of

the reservoir. Interactions at times t and t 0 become progressively less correlated for
t � t 0 > £ and become uncorrelated for t � t 0 � £ in which case, using (8.16),

hF.t/iF .t 0/j i 	 hF.t/i hF.t 0/j i 	 0 (8.18)

The correlation function hF.t/iF .t 0/j /i is therefore a maximum at t � t 0 and
decreases with increasing t � t 0.

The correlation time £ is a measure of the time during which, on average, some
memory of the interaction is retained. The nature of £ depends on the nature of
the reservoir. In the case of gases, for example, £ may be given by the mean time
between two collisions. Similarly, in magnetic resonance experiments any nuclei
will interact with the magnetic moment of the neighboring nuclei, and, in the case
of liquids, £ is given by the mean time for which a given pair of nuclei is near to
each other before diffusing away.

Finally, we note that the correlation functions (8.17) are stationary, that is, they
depend only on the time difference t � t 0. This can be shown from (8.13a) by using
the cyclic property of the trace and the fact that the equilibrium density matrix (8.6)
commutes with HR:
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hF.t/iF .t 0/j i D trRŒexp.iHRt=¯/Fi exp.�iHRt=¯/ exp.�iHRt
0=¯/Fj

� exp.�iHRt
0=¯/ 2�.0/R�

D trRfexpŒiHR.t � t 0/=¯�Fi expŒ�iHR.t � t 0/=¯�Fj ¡.0/Rg
D hF.t � t 0/jFj i (8.19)

We will now use these results and reconsider the Markoff approximation. Because
of the property (8.18) the integral in (8.7) is effectively only nonzero for a time

interval t � t 0
�
<£, that is, between times t 0 	 t � £ and t 0 D t . It follows that

values of ¡.t 0/SI at times t 0 outside this interval have little or no influence on P¡.t/SI

at time t . The system is therefore capable of memorizing its state for time intervals
only which are not much larger than the correlation time. Usually one is interested
in the macroscopic behavior of the system rather than in its detailed changes. If £
is much smaller than a characteristic time 1=” (the damping time or decay time),
required for ¡.t/SI to change appreciably on a macroscopic scale,

£ 
 1=” (8.20)

then ¡.t 0/SI 	 ¡.t/SI in the integrand of (8.7) and the Markoff approximation holds.
Substitution of ¡.t/SI for ¡.t 0/SI in (8.7) therefore implies that we do not try

to describe details of the system motion for time intervals comparable to £. The
quantity of interest is

�¡.t/SI

�t
D ¡.t C�t/SI � ¡.t/SI

�t
(8.21)

where two values of the system density matrix are compared at times t and t C�t ,
where�t is much larger than £ but still sufficiently small that the change in ¡.t/SI is
linear in�t . If it is possible to find an interval�t which satisfies this condition then
�¡=�t can be replaced by the time derivative (8.10) provided that it is understood
that we never use this equation to describe the changes of ¡.t/SI over time intervals
less than £. In this sense one often refers to the Markoff approximation as a “coarse-
grained” average and the time derivative (8.10) is often called a “coarse-grained”
derivative.

8.1.3 The Relaxation Equation. The Secular Approximation

We now return to the further development of (8.14). Applying the relation (8.19) and
introducing the variable t 00 D t�t 0; dt00 D �dt0, the integral

R t

0
dt0 � � � is transformed

into the integral
R t

0
dt00 � � � . The correlation function hF.t 00/iFj i is effectively zero

for t 00 � £ and, hence, the upper integration limit can be extended to infinity with
negligible error under the Markoff approximation. Using (8.16) we obtain
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P¡.t/SI D � .1=¯/2
X

ij

Z 1

0

dt00fŒQ.t/i ;Q.t � t 00/j ¡.t/SI �hF.t 00/iFj i

� ŒQ.t/i ; ¡.t/SIQ.t � t 00/j �hFjF.t 00/j ig (8.22)

It should be noted that all information on the reservoir is contained in the correlation
functions. Taking matrix elements between eigenstates jmi of HS and applying
(8.13b) gives

hmjQ.t/i jni D exp.i¨mnt/hmjQi jni (8.23)

where
¨mn D .Em �En/=¯

Introducing the notation

� C
mkln D .1=¯/2

X

ij

hmjQi jkihl jQj jni
Z 1

0

dt00 exp.�i!lnt
00/hF.t 00/iFj i (8.24a)

� �
mkln D .1=¯/2

X

ij

hmjQj jkihl jQi jni
Z 1

0

dt00 exp.�i!mkt
00/hFjF.t 00/i i (8.24b)

we obtain after some algebra

hm0jP¡.t/SI jmi D
X

n0n

hn0j¡.t/SI jni

�
(

�
X

k

•mn�
C
m0kkn0 C � C

nmm0n0 C � �
nmm0n0 �

X

k

•n0m0 ; � �
nkkm

)

expŒi.¨m0n0 C ¨mn/t � (8.25a)

which can be written in the form

hm0jP¡.t/SI jmi D
X

n0n

hn0j¡.t/SI jniRm0mn0n expŒi.Em0 �Em�En0 CEn/t=¯� (8.25b)

where the t-independent parametersRm0mn0n are defined by the braces in (8.25a).
In this equation the time-dependent exponential vanishes if

Em0 � Em � En0 C En D 0 (8.26)
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Equation 8.25 is often approximated by the equation

hm0jP¡.t/SI jmi D
X

n0n

hn0j¡.t/SI jniRm0mn0n (8.27)

where the prime on the summation sign indicates that only the secular terms are
kept, that is, those terms satisfying (8.26). This approximation means that the
“coarse-grained” derivative is taken over time intervals�t which are long compared
to a period of the free motion of the system

�t � 1

¨mn

so that the system goes through many cycles during �t .
We will now consider the secular terms in more detail. Following Loisell (1973)

we will consider the case in which there are no regularities in the level spacing
of the system. Equation 8.26 is then satisfied in any of the following cases: (1)
m0 D n0; m D n; m0 ¤ m; (2) m0 D m; n0 D n; m0 ¤ n0; (3) m0 D m D n0 D n.
In these cases

hm0j¡.t/SI jmi D Œhm0j¡.t/SI jmiRm0mm0m�
0 C •m0m

X

n

0hnj¡.t/SI jniRmmnn

C •m0mhm0j¡.t/SI jm0iRm0m0m0m0 (8.28a)

where the prime on the bracket indicates that this term contributes only if m0 ¤ m

and the prime on the summation sign indicates that the termm D nmust be omitted.
If the prime on the bracket is dropped the third term of (8.28a) is automatically
included, which gives

•

hm0jP¡.t/SI jmi D •m0m

X

n¤m
hnj¡.t/SI jni �Wmn � ”m0mhm0j¡.t/SIjmi (8.28b)

where (for m D n)
Wmn D � C

nmmn C � �
nmmn (8.29a)

and
”m0m D

X

k

�

� C
m0kkm0 C � �

mkkm

� � � C
mmm0m0 � � �

mmm0m0 (8.29b)

It is left as an exercise for the reader to show that

�

� �
mnkl

�� D � C
lknm (8.30)

from which it follows that the parameters Wmn are real.
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In the approximation (8.28) the off-diagonal elements of the density matrix obey
the equation

hm0jP¡.t/SIjmi D �”m0mhm0j¡.t/SIjmi (8.31)

The hermiticity condition (2.12) implies

”m0m D ”�
mm0 (8.32)

The physical importance of parameters Wmn and ”mn will be considered in the
following sections. Equation 8.28 is transformed into the Schrödinger picture by
substituting

¡.t/SI D exp .iHst=¯/¡.t/s exp.�iHs t=¯/
which gives

•

hm0jP¡.t/S jmi D � .i=¯/hm0jHS; ¡.t/S �jmi
C •m0m

X

n

hnj¡.t/S jniWmn � ”m0mhm0j¡.t/S jmi (8.33)

where the first term describes the motion of the unperturbed system.
The equations of motion of reduced density matrices are often called the

generalized Master equations. Master equations were first introduced into quantum
statistical physics by Pauli (1928). In their original form as used by Pauli they are
rate equations for the diagonal elements of ¡.t/s (see Sect. 8.2). For a survey and
rigorous proofs we refer to the review by Haake (1973).

Equations 8.25, 8.28, and (8.33) play a very important role in physical kinetics.
They describe the irreversible behavior of a system and are therefore quite unlike
the detailed equations of motion, the Schrödinger and Liouville equations. It will
be useful to recall briefly the essential steps in deriving the “kinetic” equations
starting with the general (8.3). The basic assumption is that the effects of the
interaction between system and reservoir dissipate away quickly so that the reservoir
effectively remains in thermal equilibrium and is represented by the density matrix
(8.6). This assumption leads to (8.7), which is an integrodifferential equation for
the elements of ¡.t/SI . The time interval for which the integral in this relation
is essentially nonzero corresponds to a correlation time £ for V.t/I . If £ is small
compared to a characteristic time 1=” required for the system to change appreciably
then the Markoff approximation ¡.t 0/SI 	 ¡.t/SI can be applied and the upper
integration limit can be extended to infinity. The Markoff approximation enables
the integrodifferential (8.7) to be reduced to a set of linear differential equations for
the elements of ¡.t/SI with time-independent coefficientsRm0mn0n. On retaining only
the secular terms (8.28) is obtained.

We have presented the derivation of (8.25) and (8.33) in some detail in order to
show the assumptions made and the limits of applicability of these equations.
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8.2 Rate (Master) Equations

In order to obtain an interpretation of some of the parameters occurring in (8.25)
and (8.28) we will consider the rate of change of the diagonal elements of a
density matrix ¡.t/S describing a system of atoms (or nuclei) interacting with
some “reservoir.” Retaining only the secular terms and noting that for the diagonal
elements the Schrödinger picture is equivalent to the interaction picture and using
the notation

hm0j¡.t/S jmi D ¡.t/m0m

it is found from (8.28) and (8.29b) that

P¡.t/mm D
X

n¤m
¡.t/nnWmn � ¡.t/mm

X

k¤m

�

� C
mkkm C � �

mkkm

�

Using (8.29a) and changing the summation index from k to n in the second
term gives

•
P¡.t/mm D

X

n¤m
¡.t/nnWmn � ¡.t/mm

X

n¤m
Wnm (8.34)

Equation 8.34 can be interpreted as follows. The diagonal element ¡.t/mm gives
the probability of finding the atomic level jmi occupied at time t . This probability
increases in time owing to transitions from all other levels jni to jmi. It decreases
as a result of transitions from jmi to all other states jni. Thus the rate of change of
the diagonal elements must be given in general by a relation of the form

P¡.t/mm D gain in jmi � loss from jmi

The “gain” factor is obtained by multiplying ¡.t/nn by the corresponding transition
rate W.n ! m/ for the transition jni ! jmi summed over all states jni. The
“loss” factor is obtained by multiplying ¡.t/mm by the transition rate W.m ! n/

and summing over all n. Thus the parameters Wmn in (8.34) can be interpreted as
the probability per unit time that a transition between atomic levels jni ! jmi is
induced by the interaction with the reservoir.

Equation 8.34 is often called the Pauli Master equation. The conditions under
which this equation hold have been specified in the preceding section. In particular,
in order to be able to apply the Markoff approximation it is necessary that the
probability of a transition occurring at a given time t depend only on the state of the
system at that time and not on its previous history. Equation 8.34 plays a prominent
role in modern statistics and has been applied to many problems in physics, chemical
kinetics, and biology (see, for example, Haken 1978).

It is instructive to consider the transition rates Wmn D � C
nmmn C � �

nmmn in
more detail by inspecting (8.24). Using (8.13a) and expressing trR in terms of the
eigenstates jN i of the reservoir HamiltonianHR it is found that
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Z 1

0

dt00 exp.�i¨mnt
00/trR ŒF.t 00/iFj ¡.0/R�

D
X

N 0N

hN 0jFi jN ihN jFj jN 0ihN 0j¡.0/RjN 0i

�
Z 1

0

dt00 expŒi.EN 0 � EN � ¯!mn/t
00�=¯ (8.35a)

and the integral occurring in the quantity � �
nmmn is given by

Z 1

0

dt00 exp.i¨mnt
00/trRŒFj F.t 00/i ¡.0/R�

D
X

N 0N

hN 0jFj jN ihN jFi jN 0ihN 0j¡.0/RjN 0i

�
Z 1

0

dt00 expŒi.EN 0 � EN � ¯¨mn/t
00�=¯ (8.35b)

where t 00 has been replaced by �t 00 in the integral. Using (8.11)

X

i

hmjQi jnihN 0jFi jN i D hmN0jV jnNi (8.35c)

and inserting (8.35) into (8.24) gives

Wmn D � C
nmmn C � �

nmmn

D .1=¯2/
X

ijNN0

hnjQi jmihmjQinjihN 0jFi jN ihN jFj jN 0ihN 0j¡RjN 0i

�
Z 1

0

dt00 expŒi.EN 0 �EN � ¯¨mn/t
00=¯�

C .1=¯2/
X

ijNN0

hnjQj jmihmjQijnihN 0jFj jN ihN jFi jN 0ihN 0j¡.0/RjN 0i

�
Z 1

0

dt00 expŒi.EN 0 �EN � ¯¨mn/t
00=¯�

D .1=¯2/
X

NN0

hnN0jV jMnihmNjV jnN0i

� hN 0j¡.0/RjN 0i
Z C1

�1
dt00 expŒi.EN 0 � EN � ¯¨mn/t

00�=¯

D .2 =¯/
X

NN0

jhmNjV jnN0ij2hN 0j¡.0/RjN 0i•.EN 0 � EN � ¯¨mn/ (8.36)



286 8 Quantum Theory of Relaxation

Fig. 8.1 See text for explanations

In (8.36) the element jhmNjV jnN0ij2 is the probability of an atom making
a transition from level jni to the level jmi while the reservoir simultaneously
undergoes a transition from a state jN 0i with energy EN 0 , to a state jN i with
energy EN where, in order to ensure energy conservation, EN � EN 0 D En � Em
(see Fig. 8.1). These probabilities are then averaged over the thermal distribution of
the reservoir in order to obtain the net transition rates Wmn for the atomic system.
Equation 8.36 is known as the “golden rule” for the transition rates.

Since V is Hermitian the transition probabilities jhnN0jV jmN0ij2 satisfy the
condition

jhnN0jV jmNij2 D jhmNjV jnN0ij2 (8.37)

that is, a transition jnijN 0i ! jmijN i has the same probability of occurring as
the reverse transition. The condition (8.37) in general does not, however, apply to
the probabilities Wmn, describing the net transition jni ! jmi averaged over the
reservoir states. Since the reservoir remains in thermal equilibrium (as discussed in
Sect. 8.1.1) the reservoir is more likely to be in the lower state jN 0i of Fig. 8.1 than
in the upper state jN i. Hence if En > Em, a transition from an atomic level jni to a
level jmi is more probable than the inverse transition and, in general,

Wmn ¤ Wnm (8.38)

Let us discuss these results in more detail. From (2.92)

hN 0j¡.0/RjN 0i D exp.�“EN 0/=Z (8.39)

which gives

Wmn D .2 =¯Z/
X

NN0

jhmNjV jnN0ij2 exp.�“EN 0/•.EN 0 � EN � ¯¨mn/ (8.40a)
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and for the reverse transition

Wmn D .2 =¯Z/
X

NN0

jhnN0jV jmNij2 exp.�“EN /•.EN �EN 0 � ¯¨mn/ (8.40b)

Using the symmetry property (8.37) and energy conservationEN D EN 0 CEn�Em,
(8.40b) can be written in the form

Wnm D expŒ�“.En �Em/�.2 =¯Z/
�
X

N 0N

jhmNjV jnN0ij2 exp.�“EN 0/•.EN 0 � EN � ¯¨mn/

and from (8.40a) it follows then that

Wmn

Wnm
D exp.�“Em/

exp.�“En/ (8.41)

Hence if En > Em a transition from an atomic level jni to a level jmi is more
probable than the inverse transition.

For example, consider a two-level system, an atomic ground state j1i with energy
E1 and an excited state j2i with energy E2. From (8.34) and (8.41) we obtain

P¡.t/11 D W12¡.t/22 �W21¡.t/11

D W21fexpŒ�“.E1 �E2/�¡.t/22 � ¡.t/11g
D �P¡.t/22 (8.42)

Equilibrium is established when the net population of the two levels is constant,
that is, when P¡11 D P¡22 D 0. In this case it follows from (8.42) that the population
probabilities are given by a Boltzmann distribution

¡11

¡22
D exp.�“E1/

exp.�“E2/ (8.43)

That is, when the initial distribution differs from (8.43) the transitions caused by
relaxation processes tend to produce the thermal equilibrium distribution (8.43) in
which the system is more likely in the lower state j1i than in the upper state j2i.

Finally, we note that the result (8.38) follows formally from the fact that the
reservoir operators Fi and Fj in (8.24)) do not in general commute. [Otherwise,
by interchanging Fi and Fj and m and n in (8.24)) it follows that �ṅmmn D �ṁnnm
and Wmn D Wnm.] On the other hand, in theories in which the reservoir is treated
classically and its effect on the system described in terms of random functions of the
time rather than in terms of noncommuting operators, it follows that Wmn D Wnm.
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This is a serious shortcoming of all semiclassical theories of relaxation. A further
discussion of this point can be found, for example, in Abragam (1961).

8.3 Kinetics of Stimulated Emission and Absorption

In this section and Sect. 8.4 we will discuss the physical importance and the
application of the basic (8.28), (8.33), and (8.34). We will consider the interactions
between atoms or molecules with external electromagnetic fields in the presence of
relaxation processes. This kind of problem is particularly important in the analysis
of quantum electronic devices.

We will confine ourselves to cases in which the energy differences between the
atomic or molecular states are sufficiently small for the frequency �, associated with

the transition, to lie in the Hertzian range (that is, �
�
<109 � 1012 Hz, corresponding

to wavelengths œ
�
>1mm). This range includes in particular radiofrequencies .104�

109 Hz/ and microwaves .109 D 1012 Hz/. The principal spectral transitions in
this range are rotational lines of molecules in the millimeter and centimeter range,
electronic paramagnetic resonance, and nuclear magnetic resonance. The atomic
transitions studied correspond to Zeeman levels produced by external magnetic
fields or to natural fine- and hyperfine-structure states. In the following we will
use the abbreviation rf to denote frequencies in this range.

One of the special features of transitions in the microwave and radiofrequency
region is the predominance of stimulated emission. It follows from Einstein’s
theory of radiation that the ratio between induced and spontaneous transitions is
proportional to ¡.�/œ3 where ¡.�/ is the spectral radiation density. In the optical
region ¡.�/ and œ are small and—with the exception of the special case of lasers—
spontaneous emission dominates. In the rf range œ is large and waves can be
produced with large ¡.�/, so that stimulated emission dominates and spontaneous
emission can often be neglected. A further difference between optical and rf lines is
that the width of optical lines from conventional light sources is determined by the
Doppler effect. For rf transitions the Doppler effect is small and compared to other
broadening effects can often be neglected as will be discussed below.

We will now illustrate the application of the basic equations, derived in Sect. 8.1
and 8.2, with some simple examples using two-level systems, an atomic or
molecular ground state j1i of energy E1, and an excited state j2i of energy E2. In
magnetic resonance experiments the energy difference between the two spin states is
produced by a homogeneous static field H0. The atomic system is axially symmetric
with respect to the quantization axis, which is defined by the direction of H0 and
hence there is no coherence between the two levels. The corresponding density
matrix is therefore diagonal in the representation in which the basis states are j1i
and j2i. In thermal equilibrium the population of the two states is determined by a
Boltzmann distribution.
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If a rf field is applied it will produce transitions between the states. We will
assume that the field is perpendicular to the quantization axis so that there is a
privileged transverse direction. In this case a coherent superposition of the states
j1i and j2i will be produced as discussed in Chaps. 4 and 6 and, hence, the reduced
density matrix ¡.t/S of the atomic system of interest will no longer be diagonal.

In addition to the interaction with the external field relaxation processes must
be taken into account. The various random interactions between neighboring
atoms tend to establish or maintain thermal equilibrium in the medium, that is, a
distribution of atoms among the two levels conforming to Boltzmann’s law. In vapor
these interactions occur in collisions between the atoms of the vapor and the walls
of the container. In magnetic resonance problems fluctuating fields are produced
by the magnetic dipoles of the atoms. In solids there are always interactions
between neighboring atoms which are vibrating about their equilibrium positions
constituting a reserve of energy. In the following it will always be assumed that
the basic approximations of Sect. 8.1 apply. In particular it will be assumed that the
“surroundings” of the atoms under consideration can always be considered as a heat
reservoir at thermal equilibrium.

It is therefore necessary to consider two competing processes. The relaxation
tends to reestablish thermal distribution of atoms between the two levels. Since the
transition probabilities for stimulated emission and absorption are equal the external
field tries to equalize the populations (in the absence of spontaneous emission).
Eventually, a dynamic equilibrium is established resulting from the competition
between these processes in which the population of level j2i is higher than in thermal
equilibrium. The relaxation causes more transitions j2i ! j1i than in the reverse
direction and the rf field continually produces more transitions from the lower to the
higher level than in the opposite direction. There are therefore more transitions in
which photons are absorbed than transitions involving stimulated emission. Energy
is therefore continually transferred from the field to the atomic system, while the
latter continually restores it to the “reservoir” in form of heat. This absorption of
radiation can then be measured using rf spectroscopy.

When an atomic system is under the influence of an external electromagnetic
field then, if relaxation is neglected, its Hamiltonian can be written as

H.t/ D H0 C V.t/ (8.44)

where H0 is the Hamiltonian in the absence of the alternating field (in magnetic
resonance problems the static field H0 will be included in H0). The interaction
between the atoms or molecules with the applied field will be represented by

V.t/ D V cos¨t D .1=2/V Œexp.i¨t/C exp.�i¨t/� (8.45)

In the case of electric dipole transitions, for example, the interaction operator is
given by

V.t/ D �erE.t/ D erE cos ¨t (8.46a)
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where er is the atomic dipole operator and E.t/ the electric field strength. In the
case of the interaction between paramagnetic atoms or ions with an alternating
electromagnetic field having a magnetic field vector H.t/ is

V.t/ D ��H.t/ D ��H cos ¨t (8.46b)

where � is the magnetic dipole moment of the atoms (see Sect. 2.5). It should be
noted that the time dependence assumed in Eq. (8.45) ensures the hermiticity of
the operators (8.46). For transverse fields the matrix elements hm0jV jmi are only
nonzero if m0 ¤ m.m0; m D 1; 2/.

In the absence of any relaxation process the equation of motion for the reduced
density matrix of interest is given by the Liouville (2.56), which we now write in
the form

ŒP¡.t/m0m� D �i¨m0m¡.t/m0m � .i=¯/hm0jŒV .t/; ¡.t/S �jM i (8.47a)

where ¨m0m D �

Em
0 D Em

�

=¯. The interaction between the atoms and their
surroundings is usually taken into account by adding the relevant relaxation term

¡.t/m0m D
X

nn0

Rm0mn0n¡.t/n0n¡.t/ (8.47b)

to the expression (8.47a) to give the total equation of motion:

•

P¡.t/m0m D � i¨m0m¡.t/m0m � .i=¯/hm0jŒV .t/; ¡.t/S �jmi
C
X

nn0

Rm0mn0n¡.t/n0n (8.48)

which is the relevant Master equation. It should be noted that this relation assumes
that the coupling between the various terms in the time evolution of ¡.t/S can be
ignored.

In the optical region an additional term .P¡m0m/sp must be added to (8.48) to
represent the effect of spontaneous decay. Since this is essentially a random process,
which is caused by the fluctuations of the vacuum field, spontaneous emission can
be represented by

P¡m0m D ��m0m¡m0m

where �m0m is the spontaneous decay rate of the excited level.
Using (8.42) the equations for the diagonal elements can be written in the form

P¡.t/11 D �.i¯/h1jŒV .t/; ¡.t/S �j1i CW12¡.t/22 �W21¡.t/11 (8.49a)

P¡.t/22 D �.i¯/h2jŒV .t/; ¡.t/S �j2i CW21¡.t/11 �W12¡.t/22 (8.49b)
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In these equations the first term

.P¡mm/rad � �.i=¯/hmjV.t/; ¡.t/S �jmi (8.50)

is the rate of change of the population probability of the level jmi induced by the rf
field and the other terms describe the influence of the relaxation processes.

If follows from (8.33) that the off-diagonal terms are described by

P¡.t/21 D P¡.t/�12
D �i.¨21 � i”21/¡.t/21 � .i=¯/h2jŒV .t/; ¡.t/S �j1i
D �i.¨21 � i”21/¡.t/21
� .i=2¯/h2jV j1iŒexp.i¨t/C exp.�i¨t/�.¡11 � ¡22/ (8.51)

where (8.45) has been applied together with the fact that the diagonal elements of
V vanish.

Equations 8.49 and (8.51) give the rate of change of the density matrix
elements under the combined influence of the external field and relaxation. Dynamic
equilibrium is established when P¡11 D P¡22 D 0, that is, when the effects of the
stimulated emission and absorption are balanced by the relaxation processes. We
will now study this “stationary” solution in some detail.

Let us first consider (8.51). In the interaction representation the elements
¡I .t/m0m are related to ¡.t/m0m by

¡.t/21 D exp.i¨21t/¡I .t/21 (8.52)

where (2.75) has been used. Inserting this relation into (8.51) and multiplying both
sides with exp.i¨21t/ we obtain

P¡I .t/21 D �”21¡I .t/21
� .i=2¯/h2jV j1ifexpŒi¨21 C ¨/t�C expŒi¨21 C ¨/t�gŒ¡.t/11 � ¡.t/22�

(8.53a)

In the resonance region ¨21 	 ¨ the dominant contribution will come from the
low-frequency term expŒi.¨21 � ¨/t� and, in first-order approximation, the rapidly
varying terms expŒi.¨21 C ¨/t� 	 exp.2i¨t/ can be neglected (this is referred to
as the “rotating wave approximation”). Equation 8.53a then simplifies to

P¡.t/21 D �”21¡I .t/21 � .i=2¯/h2jV j1i expŒi.¨21 � ¨/t�
C expŒi.¨21 C ¨/t�Œ¡.t/11 � ¡.t/22� (8.54)

In order for the system to be in a steady state the density matrix elements must be
independent of the time at which they are calculated. Since the “driving” term in
(8.54) varies as expŒi.¨21 � ¨/t� we seek a solution of the form
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¡I .t/21 D expŒi.¨21 � ¨/t�¡.¨/21 (8.55a)

corresponding to
¡.t/21 D exp.�i¨t/¡.¨/21 (8.55b)

in the Schrödinger picture. When inserting (8.55a) into the expression (8.54) the
time-dependent exponential factors cancel and

¡.¨/21 D � i

2¯2 h2jV j1i ¡21 � ¡22

i.¨21 � ¨/C ”21

D 1

2¯h2jV j1i ¡11 � ¡22
¨ � ¨21 C i”21

(8.56a)

The elements ¡.t/12 can be determined in a similar way. It should be noted that in
this case the term � exp.i¨t/ gives the dominant contribution in the rotated wave
approximation. Hence

¡.t/21 D exp.i¨t/¡.¨/12 (8.56b)

and

¡.¨/12 D � 1

2¯h2jV j1i� ¡11 � ¡22

¨ � ¨21 � i”�
21

(8.56c)

where the relation (8.32) has been applied.
It follows from the above discussion that the rotating wave approximation is

obtained by setting

h2jV.t/j1i D .1=2/h2jV j1i exp.�i¨t/
h1jV.t/j2i D .1=2/h1jV j2i exp.i¨t/ (8.57)

for the interaction (8.45) and using (8.55b) and (8.56b) for the density matrix
elements. The higher-order terms � exp.2i¨t/ neglected here are the basic source
of nonlinear effects in quantum electronics.

Consider now (8.49) which describe the diagonal density matrix elements.
Equation 8.50 can be rewritten as follows: Applying again the rotating wave
approximation, using (8.55b), (8.56b), and (8.57), and substituting (8.56) for the
off-diagonal elements we obtain

ŒP¡.t/22�rad D � i¯h2jV.t/j1i¡.t/12 C i

¯h1jV.t/j2i¡.t/21

D � i

2¯2 jh2jV.t/j1i2.¡11 � ¡22/

�
1

¨�¨21�i”�
21

� 1

¨�¨21Ci”21
�

D 1

¯2 jh2jV j1ij2 ”0
21

�

¨ � ¨21 � ”00
21

�2 C ”02
21

.¡11 � ¡22/ (8.58a)

where ”0
21

�

”00
21

�

denotes the real (imaginary) part of the relaxation parameter ”21.
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Similarly,

ŒP¡.t/11�rad D � 1

¯2 jh2jV j1ij2 ”0
21

�

¨ � ¨21 � ”00
21

�2 C ”02
21

.¡22 � ¡11/ (8.58b)

Equations 8.59 describe the change of the population probability of the two levels
induced by the rf field. Comparing both expressions it can be seen that

ŒP¡.t/11�rad D �ŒP¡.t/22�rad (8.59)

This result can be readily understood by noting that the field can increase the number
of atoms in level j1i only by inducing transitions j2i ! j1i and, vice versa, a “gain”
in the population of level j2i is due to induced transitions j1i ! j2i.

Defining

W.¨/21 D 1

¯2 jh2jV j1ij2 ”0
21

�

¨ � ¨21 � ”00
21

�2 C ”02
21

D W.¨/12 (8.60)

then, in the steady-state case, (8.49) can be written in the form

P¡.t/11 D ŒW12 CW.¨/12�¡22 � ŒW21 CW.¨/21�¡11 D 0

P¡.t/22 D ŒW12 CW.¨/12�¡11 � ŒW12 CW.¨/21�¡22 D 0 (8.61)

In Sect. 8.2 it was shown that the parameters W12 and W21 are the probabilities for
the transitions j2i ! j1i and j1i ! j2i, respectively, caused by the relaxation
mechanism. Similarly, the parametersW.¨/12 andW.¨/21 are the probabilities for a
transition j2i ! j1i and j1i ! j2i induced by an alternating field with frequency¨.
We can therefore consider ¡.t/22 ŒW12CW.¨/12� and ¡.t/11 ŒW21CW.¨/21� in (8.61)
as the rates at which the population probability of level j1i increases and decreases
under the combined influence of the external field and the relaxation processes.

If the intensity of the rf field is sufficiently high then the population probabilities
¡.t/11 and ¡.t/22 can be considerably different from their values ¡.0/11 and ¡.0/22 at
thermal equilibrium. In this case the atoms are said to be pumped by the field. If the
intensity of the field is weak then the diagonal elements remain close to their values
at thermal equilibrium and on the right-hand sides of (8.56a), c

¡mm 	 ¡
.0/

imm (8.62)

The power absorbed per unit time from the field by the atoms is
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dE

dt
D E1ŒP¡.t/11�rad C E2ŒP¡.t/22�rad

D .E1 �E2/ŒP¡.t/11�rad (8.63)

where the relaxation (8.59) has been applied. If ŒP¡.t/11�rad < 0 the induced
transitions j1i ! j2i exceed the number of downward transitions j2i ! j1i and
the corresponding energy is absorbed from the rf field. Since E2 > E1 then in this
case dE=dt > 0. Conversely, if ŒP¡.t/11�rad < 0 more energy is given out by the
stimulated emission process than is absorbed and dE=dt < 0.

Substitution of (8.58a) into (8.63) yields

dE

dt
D 1

¯2 .E2 �E1/jh2jV j1ij2 ”0
21

�

¨ � ¨21 � ”00
21

�2 C ”02
21

.¡11 � ¡22/ (8.64a)

and for weak fields

dE

dt
D 1

¯2 .E2 � E1/hj2jV j1ij2 ”0
21

�

¨ � ¨21 � ”00
21

�2 C ”02
21

�

¡
.0/
11 � ¡.0/22

	

(8.64b)

Since ¡.0/11 > ¡
.0/
22 at thermal equilibrium it follows from (8.64b) that dE=dt > 0

and energy is absorbed from the field. In this case (8.64b) shows that the presence
of relaxation has two effects on the absorption line: (1) a line shift caused by
the imaginary part ”00

21 and (2) a line broadening due to the real part ”0
21 of the

parameter ”21.
If, in any circumstances, ¡.t/11 < ¡.t/22, which in the case of lasers and masers

is called population inversion, then dE=dt < 0. This means that on passing through
the medium radiation is not attenuated by absorption but amplified by the stimulated
emission. The operation of lasers and masers is based on this effect.

8.4 The Bloch Equations

8.4.1 Magnetic Resonance

In this section we will apply (8.48) to magnetic resonance problems. The simplest
possible system in which a magnetic resonance can be observed is a two-level
system, for example, atoms or molecules with orbital angular momentum zero and
spin-1/2, or atoms with no electronic angular momentum and nuclear spin-1/2.

If a static external magnetic field H0 is applied in the z direction then the energies
of the two spin states j1i and j2i, corresponding to “spin up” and “spin down,” are
given by

E1 D �jH0j; E2 D �jH0j (8.65)
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Fig. 8.2 Energy level
splitting in a static magnetic
field

(see Fig. 8.2, where it has been assumed that the magnetic moment � is positive).
The energy splitting is

�E D E2 �E1 D 2�jH0j (8.66)

It follows that if a transverse electromagnetic field with magnetic field strength
H1.t/ oscillating at an angular frequency¨L and satisfying the resonance condition

¯¨L D �E (8.67)

(Larmor frequency) is applied to the system absorption of this energy will occur as
electrons (or nuclei) are excited from the lower to the upper level. The required
frequencies are well into the microwave region in the case of paramagnetic or
electron spin resonance. Radiofrequencies are required in the case of nuclear
magnetic resonance.

The number of atoms in the upper state is increased by the incoming radiation
but this increase is reduced through relaxation effects which transfer energy from
the excited state to the “surroundings” and attempt to reestablish the conditions of
thermal equilibrium. The effect of these competing factors on the spin density matrix
¡.t/S is described by (8.48) where now H0 includes the static field H0:

H0 D H 0
0 � � � H0 (8.68)

The Hamiltonian H 0
0 of the unperturbed spin states does not appear in the

equation of motion because of the degeneracy of these states. Using (8.46b)
the interaction between the spin and the external fields is represented by the
Hamiltonian

H.t/ D �� � H0 C V.t/ D �� � .H0 C H.t/1/ (8.69)

First of all we will consider (8.49) in the absence of the rf field. In this case

P¡.t/11 D W12¡.t/22 �W21¡.t/11 D �P¡.t/22 (8.70)

It will be assumed that each spin under consideration reacts to the external fields
independently of all other spins and that the “surroundings” can be considered as
a heat reservoir at thermal equilibrium. Adding and subtracting the term W12¡11 to
(8.70) then, since ¡11 C ¡22 D 1, it follows that
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P¡.t/11 D W12 � .W12 CW21/¡.t/11 (8.71a)

and
P¡.t/22 D W21 � .W12 CW21/¡.t/22 (8.71b)

which gives

P¡.t/11 � P¡.t/22 D .W12 �W21/ � .W12 �W21/Œ¡.t/11 � ¡.t/22� (8.72)

In thermal equilibrium P¡11 D P¡22 D 0 and it follows from (8.72) that

¡
.0/
11 � ¡.0/22 D W12 �W21

W12 CW21

(8.73)

where ¡
.0/
11 and ¡

.0/
22 denote the population probability of levels j1i and j2i,

respectively, at thermal equilibrium (in the presence of the static field). Defining
the parameter T1 by

•
T1 D 1=.W12 CW21/ (8.74)

Equation 8.72 can be written as

P¡.t/11 � P¡.t/22 D
�

¡
.0/
11 � ¡

.0/
22

	

� Œ¡.t/11 � ¡.t/22�
T1

(8.75)

Note that T1 is real [because of (8.30)].
The rf field can be taken into account by adding the relevant terms to (8.75):

P¡.t/11 � P¡.t/22 D � i

¯ Œh1jŒV .t/; ¡.t/S �j1i � h2jŒV .t/; ¡.t/S �j2i�

C
�

¡
.0/
11 � ¡.0/22

	

� Œ¡.t/11 � ¡.t/22�

T1
(8.76)

We will discuss the off-diagonal elements in an approximation where the
imaginary part of ”12 (that is, the line shift) is neglected. In this case, defining

•

T2 D 1

” 12
(8.77)

the off-diagonal elements obey the equation

P¡.t/21 D .�i¨12 C 1=T2/¡.t/21 � .i=¯/h2jŒV .t/; ¡.t/S �j1i
D P¡.t/�12 (8.78)
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which can be rewritten as

P¡.t/21 D � i¯h2jŒH.t/; ¡.t/S �j1i C ¡.t/21

T2
(8.79)

whereH.t/ is the Hamiltonian (8.69).
The macroscopic magnetization M is given by (2.94),

Mi D N”¯.¢ii=2 (8.80a)

.i D x; y; z/, where ¢i is the corresponding Pauli matrix, N the total number of
atoms per unit volume, and ” the gyromagnetic ratio. Using the expressions for the
Pauli matrices [(1.7) M is given explicitly by

Mx D 1

2
N”¯.¡12 C ¡21/; My D 1

2
N”¯i.¡12 � ¡21/;

Mz D N”¯
2
.¡11 � ¡22/ (8.80b)

In the absence of relaxation effects the equation of motion for the magnetization M
is given by (2.88) with P replaced by M and H replaced by H0 D H1.t/. Adding
the relaxation terms and using (8.75), (8.79), and (8.80b) we obtain

•

dMx

dt
D ”ŒM � .H0 C H.t/1/�x � Mx

T2
(8.81a)

dMy

dt
D ”ŒM � .H0 C H.t/1/�y � My

T2
(8.81b)

dMz

dt
D ”ŒM � H.t/1�z C M

.0/
z �Mz

T1
(8.81c)

where

M.0/
z D W12 �W21

W12 CW21

(8.82)

As shown by (8.81c) M.0/
z is the value of Mz at thermal equilibrium .dMz=dt D 0/

in the absence of the rf field.
The set of (8.81) are the Bloch equations and were first derived by Bloch (1946)

for N -level atoms. The main feature of the general Bloch equation is that the effect
of the relaxation processes is described in terms of two real parameters, T1 and T2.

The principal aim of the discussion given above is to elucidate the various
approximations which are incorporated in the Bloch equations. These approxima-
tions are not always valid and relaxation is not in general as simple as expressed by
(8.81). Nevertheless, these equations describe the observed phenomena to a good
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approximation in a large number of cases. It should be noted that the macroscopic
magnetization M obeys the same equation as in classical phenomenological theories
and it can be shown that the values of M are equal to the values calculated in
classical models. This is a consequence of the fact that spontaneous emission is
neglected in (8.48). A detailed discussion of this point can be found in Abragam
(1961). Finally, we note that W12 D W21 in semiclassical theories (as discussed in
Sect. 8.2f), from which follows M.0/

z D 0, which does not agree with experiment.

8.4.2 Longitudinal and Transverse Relaxation. Spin Echoes

A detailed discussion of the Bloch equations can be found in many treatments of
magnetic resonance phenomena and we will confine ourselves to a discussion of the
physical nature of the parameters T1 and T2.

Let us assume that at a certain time (say, at t D 0) the field H.t/1 is removed. In
the absence of H1 the Bloch equations reduce to

dMx

dt
D ¨LMy � My

T2

dMy

dt
D ¨LMx � My

T2
(8.83)

dMz

dt
D M

.0/
z �Mz

T1

with ¨L D ”jH0j. In the absence of any relaxation process M would precess freely
around the static field H0 with a frequency of¨L.Mz would remain constant andMx

and My rotate with constant magnitude in the x � y plane. Because of the various
interactions between the spins and their surroundings the spin system will relax to
thermal equilibrium. It can be shown that a solution of (8.83) is given by

M.t/x D A sin.¨Lt C ®/ exp.�t=T2/
M.t/y D A cos.¨Lt C ®/ exp.�t=T2/ (8.84)

M.t/z D �

B �M.0/
z

�

exp.�t=T1/CM.0/
z

where A; B , and ® are integration constants. Equation 8.84 show that, as a
consequence of relaxation, Mx and My will vanish with a time constant T2 and
Mz will reach its equilibrium value with a time constant T1. T2 therefore accounts
for the decay of Mx and My , which are perpendicular to H0, and for this reason T2
is called the transverse relaxation time. T1 accounts for the decay of the longitudinal
componentMz of M and is termed the longitudinal relaxation time.
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That Mx and My vanish at thermal equilibrium is due to the fact that there
is no preferred transverse direction. The directions of the individual transverse
components therefore vary in a random way from one atom to another and the
net resultant is zero. The fact that Mz is different from zero is related to the axial
symmetry of the system due to the static field H0 which produces the difference in
energy between the two levels.

The physical nature of T1 and T2 can be understood by noting that relaxation is
caused by different mechanisms. First of all, the spin–lattice interaction includes
all processes in which energy is exchanged between the spin system and its
surroundings, for example the lattices in a crystal. In general, all degrees of freedom
except the spins are called a lattice. A transfer of energy from the spin system to the
lattice is associated with transitions from the upper to the lower spin state and causes
the population number of the two spin states, and henceMz, to change. Longitudinal
relaxation is therefore associated with an energy transfer from the spin system to the
lattice. T1 is thus a measure of the time required for the system to reach an energy
equilibrium with its environment.

A second type of interaction, known as spin-spin interaction, includes all
mechanisms whereby the spins can exchange energy among themselves rather than
transferring it to the lattice as a whole. For example, in an elastic collision in
which one atom undergoes a transition j1i ! j2i and the other one a transition
j2i ! j1i the energy of the spin system and the value of Mz do not change.
Such collisions therefore do not contribute to longitudinal relaxation but destroy
the coherence between the spin states (see Chap. 3); the off-diagonal elements of
the spin density matrix and the transverse components of M are therefore reduced.
Transverse relaxation is therefore associated with a loss of coherence of the spin
system. Note that any process contributing to T1 will in general also destroy the
coherence so that T1 � T2. Magnetic resonance techniques allow the determination
of the relaxation times and enable information on the various relaxation processes
to be obtained (see, for example, Abragam 1961; Corney 1977).

The physical meaning of T2 can be understood in terms of the following simple
model (which does not, however, include all the aspects of transverse relaxation).
Immediately after the removal of the rf field the individual spins start processing
around H0. Without relaxation processes all component spins would rotate with the
same frequency ¨L and the initial values of the magnitudes Mx and My would be
constant in time. The various random interactions of the magnetic dipoles produce
a magnetic field at each atom giving rise to a fluctuating component in addition
to the external field H0, either aiding or opposing H0 and causing the individual
precession rates to be either faster or slower. As a result the spins get out of step
and in the course of time their distribution spreads over a wider and wider range
in the x � y plane and the net transverse component eventually vanishes. T2 is a
measure of the time required for the spins to become completely random to each
other. A direct measurement of T2 is the most unambiguous method of investigating
the mechanisms by which coherence is lost.

This simple model of transverse relaxation readily explains a phenomenon
known as the spin echo. Suppose that a set of nuclear magnetic dipoles is such
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Fig. 8.3 Illustration of spin echoes

that the magnetiziation M of the dipoles points in the direction of the static field
(z axis). A resonant radiofrequency field is applied as a pulse of such a duration that
it rotates M from the z to the x direction (“ =2 pulse”; Fig. 8.3a). When the pulse
is switched off the individual spins precess about the direction of the static field.
It is convenient to discuss the motion of the spins in a coordinate system which
rotates with the Larmor frequency about the z axis. In the absence of any relaxation
process the spins would rotate freely around H0 with the Larmor frequency, that
is, they would appear to be at rest when viewed from the rotating system. Since
the precession frequency is slightly different for each of the component moments
because of relaxation processes the spins get out of phase and become distributed
in the x � y plane (Fig. 8.3b). After a time t < T2 a second pulse is applied with
such a duration that the direction of all spins are reversed (“  pulse”). That is, the
component spins are just turned over as shown by Fig. 8.3c. Because the spins keep
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rotating with their initial speed the spins converge back to one vector (Fig. 8.3d),
producing a “pulse” of magnetization in this direction, which appears as an “echo”
of the first high-frequency pulse.

Abragam (1961) has given the following analog of this phenomenon. Suppose a
group of ants is crawling around the edge of a pancake. They all start together in a
small area but, because of their different speeds, they will progressively spread out
around the circumference (“T2 process”). If the pancake is turned over (“  pulse”),
the ants are turned around but continue to crawl in the same direction. Eventually,
all the ants will again end up bunched together with the exception of those which
have fallen off the pancake (“T1 process”).

8.4.3 The “Optical” Bloch Equations

As we discussed briefly at the beginning of this section there is a close analogy
between a two-level atom and a spin-1/2 system (in a static magnetic field in
the z direction). The “spin-down” state corresponds to the atomic ground level
and the “spin-up” state to the excited level. The formalism developed above
for magnetic resonance phenomena can be generalized to any two-level system
driven by a resonant transverse field. This approach can be used to describe
experiments in the microwave or optical region when coherent fields (maser, laser)
are employed.

The relevance of the Bloch equations to the description of the maser was first
recognized by Feynmann et al. (1957). Following these authors we define a fictitious
quantity, the “pseudospin vector” v, with components ¤i , analogously to (8.80b):

¤1 D trŒ¡.t/S ¢x� D ¡.t/12 C ¡.t/21; ¤2 D trŒ¡.t/S ¢y� D i Œ¡.t/12 C ¡.t/21�

¤3 D trŒ¡.t/S ¢z� D ¡.t/11 � ¡.t/22 (8.85)

In these equations ¡.t/S denotes the density matrix of the atomic two-level system.
As shown by (8.85) ¤3 depends on the difference of the population numbers and ¤1
and ¤2 characterize the coherence between the two states.

Starting with (8.49) and (8.51) it can then be shown, in an analogous way to the
derivation of (8.81), that the components ¤i obey the following set of equations,
which are termed the “generalized” or “optical” Bloch equations:

d¤1

dt
D Œ¨ � V�1 � ¤1

T2

d¤2

dt
D Œ¨ � v�2 � ¤2

T2
(8.86)

d¤3

dt
D Œ¨ � v�3 � ¤3

T1
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where the “vector” ¨ was components

¨1 D .V12 C V21/=¯; ¨2 D .V12 � V21/=¯; ¨3 D .�E1 � E2/=¯ (8.87)

and Vij D hi jV jj i are the matrix elements of the operator V introduced in Sect. 8.3
which describes the interaction between the atoms and the electromagnetic field.
The relaxation times are defined as in (8.74) and (8.77).

The use of (8.86) enables a geometrical interpretation of electric dipole transi-
tions in a two-level system to be made in a similar way to the description of magnetic
resonance phenomena. Without the relaxation terms (8.86) can be interpreted as a
precession of the “vector” v about the “vector” ¨. The relaxation terms have similar
meanings to those in the previous section. The relaxation of ¤3 (time constant T1)
is associated with the various ways in which energy can be exchanged between
the atoms and their environment. The relaxation of ¤1 and ¤2 (time constant T2)
corresponds to a loss of coherence caused by the various dephasing processes. This
geometrical interpretation can be used to explain photon echoes by considering the
precession of the vector v between two applied pulses. Furthermore, (8.87) can
be used to treat electromagnetic transitions in very strong radiation fields where
perturbation methods cannot be applied. It should be noted, however, that, as in
the case of the Bloch (8.81), the (8.86) do not describe all phenomena associated
with transitions in a two-level system. For a detailed discussion of (8.86) and their
applications the reader is referred, for example, to the book by Walther (1976).

8.5 Some Properties of the Relaxation Matrix

8.5.1 General Constraints

In Sect. 8.1 it was shown that, under the Markoff approximation, the rate of change
of the density matrix with respect to time can be represented by a set of coupled
linear differential equations, which is in the interaction picture

P¡I .t/m0m D
X

nn0

Rm0mn0n¡I .t/n0n (8.88)

Œhm0j¡.t/SI jmi � ¡I .t/
m0m�

In the secular approximation (8.28b) we have

Rm0mn0n D Wmn•n0n � ”m0m•n0n0•mn

where the first term contributes only if m ¤ n.
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The set of the (time-independent) coefficients Rm0mn0n is called the relaxation
matrix. It follows from the discussions in the preceding sections that, for example,
Rmmnn determines the rate of transfer of atoms from the level jni to the level jmi.
Following Happer (1972) we will now show that physical considerations place some
important constraints on the elements of the relaxation matrix.

In doing this some of the general results obtained in the previous sections will be
rederived and generalized.

1. If the relaxation mechanism does not alter the number of atoms present then it
follows from the probability interpretation of the diagonal elements that

X

m

P¡.t/mm D
X

nn0

 
X

m

Rmmn0n

!

¡I .t/n0n D 0

Since in general ¡I .t/n0n ¤ 0 then

X

m

Rmmn0n D 0 (8.89)

for any n0 and n.
2. Consider the equation corresponding to (8.88) for the complex conjugate:

P¡I .t/�m0m D
X

nn0

R�
m0mn0n¡I .t/

�
n0n (8.90a)

Applying the hermiticity condition it follows that

P¡I .t/mm0 D
X

nn0

R�
m0mn0n¡I .t/nn0 (8.90b)

Equations 8.88 and 8.90b imply that

X

n0n

¡I .t/nn0

�

R�
m0mn0n �Rmm0nn0

� D 0

which gives
R�
m0mn0n D Rmm0nn0 (8.91)

3. The diagonal elements of the density matrix are nonnegative and cannot exceed
unity (see Sect. 2.2). In order to ensure that these conditions are met the following
conditions must be satisfied:

Rmmmm � 0 (8.92a)

Rnnmm � 0 (8.92b)
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for any orthogonal set of atomic states jmi and jni. The validity of these conditions
can be seen as follows: Suppose that at a certain time t only a single level jmi is
populated as described by (8.92a). For any state n ¤ m it is then

P¡nn D Rnnmm¡.t/mm

Since ¡.t/nn has its minimum value at time t , then it can only increase or remain
zero as described by (8.92b).

8.5.2 Relaxation of State Multipoles

If the system under consideration possesses certain symmetry properties under
rotations it is convenient to express the relaxation (8.88) in terms of state multipoles.
For simplicity we will confine ourselves to the case of an atomic system which is in
the ground state with sharp angular momentum J , and relaxation processes which
cause transitions within this single multiplet.

In a similar way to (4.31) state multipoles can be defined as

D

T .J; t/
�
KQ

E

D
X

MM0

.�1/J�M 0

.2K C 1/

�
J J K

M 0 �M �Q
�

¡I .t/M 0M

and using the inverse relaxation (4.34) the relaxation equation (8.88) can be
written as

@
D

T .J; t/
�
KQ

E

@t
D
X

K0Q0

RKQK0Q0

D

T .J; t/
�

K0Q0

E

(8.93)

where

RKQK0Q0 D
X

M 0M
m0m

RM 0Mm0m.�1/2J�M 0�m0

Œ.2K C 1/.2K 0 C 1/�1=2

�
�
J J K

M 0 �M �Q
��

J J K 0
m0 �m �Q0

�

(8.94)

From the hermiticity condition (8.91) it follows that

RKQK0Q0 D .�1/QCQ0

RK�QK0�Q0 (8.95)

Equation 8.93 describes the time evolution of state multipoles in the presence
of interactions which causes relaxation. An example of this which is of particular
interest is that in which the atomic system under consideration is in an environment
which is, on the average, isotropic. Isotropic conditions often prevail when a
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polarized ensemble relaxes toward a random ensemble. It was shown in Chap. 4
that a rotationally invariant interaction cannot alter the rankK and componentQ of
the tensors. Because the relaxation processes are independent of the choice of the
quantization axis the relaxation rates must then be independent onQ. This gives the
symmetry condition:

RKQK0Q0 D �”K•K0K•Q0Q (8.96)

where ”K is the relaxation rate for all components of the tensor of rank K .
Equation 8.95 implies that ”K is real,

”�
K D ”K (8.97a)

and it can be shown that
”K � 0 (8.97b)

Using the symmetry condition (8.96), (8.93) can be simplified and all .2K C 1/

components of a tensor of rank K decay at the same rate:

@
D

T .J; t/
�
KQ

E

@t
D �”K

D

T .J; t/
�
KQ

E

(8.98a)

or D

T .J; t/
�
KQ

E

D
D

T .J; 0/
�
KQ

E

exp.�”Kt/ (8.98b)

Since the monopole hT .J; t/00i is proportional to the trace of the density matrix
(which is constant if no atoms are removed from the multiplet J ) it follows that

”0 D 0 (8.99)

and hence all multipoles with K > 0 will vanish in the course of time, and at
thermal equilibrium all substates will be equally populated. If the multiplet under
consideration is not the ground state then radiative decay must also be taken into
account.

In conclusion we have seen that under isotropic conditions, each multipole is
decoupled from all other multipoles and relaxes with a characteristic relaxation
rate ”K . The number of independent rates is therefore reduced to .2J C 1/. This
number is still large if J is high but often not all of the parameters are of interest.
A considerable simplification occurs, for example, when the atoms have been
excited by dipole radiation. In this case only atomic orientation and alignment can
be produced (see Chap. 5) and, irrespective of the value of J , it is only necessary
to consider the corresponding relaxation rates ”1 and ”2. This is the case in most
optical pumping experiments.

In some cases the relaxation process is not isotropic but axially symmetric with
respect to a preferred axis, for example, if the relaxation process is itself anisotropic
or an external field is present as in the case of magnetic resonance experiments.
When the high-frequency field is switched off the atoms then relax in the presence
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of the static magnetic field which is producing the energy difference between the
substates.

It has been shown in Chap. 4 that the component Q of the state multipoles is
conserved in an interaction with axial symmetry. In this case (8.93) becomes

@
D

T .J; t/
�
KQ

E

@t
D
X

K0

RKQK0Q

D

T .J; t/
�

K0Q

E

(8.100)

This expression shows that tensors with different rank and the same component
are mixed by the relaxation processes. In particular, orientation and alignment
parameters with the same Q will combine with each other.

The state multipole formalism is of considerable interest for the description
of relaxation in atomic and nuclear physics. For a more detailed discussion and
applications to particular cases we refer, for example, to the reviews by Omont
(1977) and Baylis (1979), and to the references cited in these papers.

8.6 The Liouville Formalism

The purpose of this section is to describe some mathematical techniques that
are particularly useful in nonequilibrium quantum statistics. These techniques are
connected with the Liouville representation of Density matrices.

The elements of the Hilbert space are the state vectors j§i. Consider now the set
of all linear operators A; B; : : : acting on the states j§i. Any linear combination
of linear operators is also a linear operator. Thus the set of all linear operators span
another linear space, called the Liouville space, if an inner product is defined by the
relation

• .AjB/ D tr A�B (8.101)

We will use the notation jA/; jB/; : : : to emphasize that these operators are to be
considered elements in the Liouville space.

Consider a set of basis vectors jm0i; jmi; : : : in Hilbert space. A basis in the
Liouville space is then represented by the set of all operators jm0ihmj which can
be obtained by combining all elements of the set jmi. Following Gabriel (1969)
and using the “Dirac” notation jm0m) for jm0ihmj and .m0mj for jmihm0j and using
(8.101) we find the orthogonality relation

.m0mjn0n/ D trfjmihm0jn0ihnjg D •m0n0•mn (8.102)
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and the completeness relation

X

m0m

jm0m/.m0mj D 1 (8.103)

where 1 is the unit operator in Liouville space. It follows then that

.m0mjA/ D trŒjmihm0jAi� D hm0jAjmi (8.104)

that is, the inner product of any Liouville vector A with the basis vectors jm0m) is
given by the usual matrix element hm0jAjmi D Am0m in Hilbert space.

When the angular symmetries of the system under consideration are important
it is convenient to use the elements jT .J 0J /KQ) as basis vectors. This set is
orthonormal,

.T .J 0J /K0Q0 jT .J 0J /KQ/ D tr
n

T .J 0J /�
K0Q0T .J

0J /KQ

o

D •J 0J •K0K•Q0Q (8.105)

in accordance with (4.24) and complete

X

J 0JKQ

jhT .J 0J /KQ/.T .J
0J /KQj D 1 (8.106)

Applying the operator (8.106) to the density matrix, considered as a vector j¡) in the
Liouville space, gives immediately the expansion:

j¡/ D
X

J 0JKQ

jT .J 0J /KQ/.T .J
0J /KQj¡/ (8.107)

The state multipoles are then interpreted as the inner products

D

T .J 0J /�KQ

E

D .T .J 0J /KQj¡/ (8.108)

which can be transformed into the usual form (4.33) by using (8.101). Equa-
tions 8.107 and 8.108 correspond to the expansion (4.32).

To make calculations in the Liouville space it is necessary to introduce operators
OQ which transform a vector jA) into another vector

OQjA/ D j OQA/ (8.109)

The operators OQ are often referred to as “superoperators.” In an arbitrary basis
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.m0mj OQjA/ D
X

n0n

.m0mj OQjn0n/.n0njA/

D
X

n0n

Qm0mn0nAn0n (8.110)

where the completeness relation (8.103) and (8.104) has been used. The elements
of any superoperator are thus characterized by four indices.

As an example consider the general relaxation (8.88):

P¡m0m D
X

n0n

Rm0mn0n¡n0n

Interpretating the matrix elements as inner products between Liouville vectors
according to (8.104) we write

.m0mjP¡/ D
X

n0n

.m0mj ORjn0n/.n0nj¡/

Substitution of the identity operator (8.103) yields then

.m0mjP¡/ D .m0mj ORj¡/

or
jP¡/ D ORj¡/ (8.111)

where OR is the relaxation superoperator.
Of particular importance in nonequilibrium quantum statistics is the Liouville

operator OL, defined for a given HamiltonianH by

•
OLjA/ D .1=¯/jŒH; A�/ (8.112)

for any operator A where ŒH; A� denotes the usual commutator in Hilbert space. A
convenient basis ji; j ) for OL can be constructed from the eigenstates jii, jj i; : : : of
the Hamiltonian. In this basis

OLjij/ D OLjiihj j
D .1=¯/jŒH; jiihj j�/
D ¨ijjij/ (8.113)

which shows that the eigenvalues of the Liouville operator are identical to the
possible frequencies¨ij of the system.

The equation of motion (2.52) of the density matrix can be rewritten in the
Liouville notation:

jP¡/ D �.i=¯/jŒH; ¡�/
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or

•
jP¡/ D �i OLj¡/ (8.114)

The formal solution of (8.114) is

j¡.t// D j¡.0// exp.�i OLt/ (8.115)

with the time evolution superoperator

OU .t/ D exp.�i OLt/ (8.116)

Equation 8.115 should be compared with the traditional form (2.52).
Equations 8.107 and 8.115 allow a compact representation of the perturbation

coefficients defined by (4.118). Assuming that the system of interest is described by
a density matrix

j¡.0// D
X

KQ

D

T .J /
�
KQ

E

jT .J /KQ/

at time t D 0 and by

j¡.t// D
X

kq

D

T .J; t/
�
kq

E

jT .J /kq/

at time t we obtain from (8.108) and 8.115

D

T .J; t/
�
kq

E

D .T .J /kqj¡.t//

D .T .J /kqj OU .t/j¡.0//
D
X

KQ

D

T .J /
�
KQ

E

G.t/
Qq
Kk

	

(8.117)

where the perturbation coefficient in Liouville notation is represented by

G.t/
Qq
Kk D .T .J /kqj OU .t/jT .J /KQ/ (8.118)

The formalism presented here has been applied by various authors to the theory of
angular correlations perturbed by relaxation effects (see, for example, the papers by
Gabriel (1969), and Bosse and Gabriel (1974).

The real advantage of the Liouville operator appears in the resolvent form. The
resolvent method, which adopts the concepts and techniques of scattering theory to
the Liouville representation of density matrices, allows to represent the formalism
in a compact form. For an introduction into this method we refer to the original
paper by Zwanzig (1960).
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8.7 Linear Response of a Quantum System to an External
Perturbation

Physical problems are concerned with the determination of the unknown properties
of a system. In order to do this one lets an external agent act on the system
and observes the reaction of the system. That is, the observer puts a question
to the system and the system responses. Starting with such general consideration
the response formalism has been developed. This formalism was first applied by
Kubo to the theory of irreversible processes in order to study transport phenomena,
for example, the effect of external forces on equilibrium systems disturbing the
equilibrium state and causing the system to conduct heat or electricity, or otherwise
respond to the stimulus. In the present section a brief introduction into this
formalism will be given.

Let a quantum system described by a density matrix ¡.t/ be subjected to the
action of an external perturbation V.t/. In the theory of irreversible processes it is
usually assumed that the system was in statistical equilibrium with a heat bath in the
remote past .t ! �1/, which is expressed by the initial condition

¡.t/ ! ¡0 (8.119)

for t ! �1, where ¡0 is the equilibrium density matrix of the system. The time
evolution of the density matrix is given by the Liouville equation (2.52). Assuming
that V.t/ is sufficiently small then in first-order perturbation theory the solution of
the Liouville equation can be written in the form

¡.t/ D ¡0�.i=¯/
Z t

�1
dt0 expŒiH0.t

0�t/=¯�ŒV .t 0/; ¡0� expŒ�iH0.t
0�t/=¯� (8.120)

which is obtained by transforming (2.81) back into the Schrödinger picture by using
(2.61) and (2.75). In this approximation the change is the expectation value hAi of
an operator A is given by

�hA.t/i D trf¡.t/Ag � tr ¡0A

D � i¯ tr

�Z t

�1
exp

�
iH0.t

0 � t/
¯

�

ŒV .t 0/; ¡0� exp

�

� iH0.t
0 � t/

¯
�

A dt0
�

(8.121)

The quantity �hA.t/i can be regarded as the first-order response of the system to
an external perturbation. It should be noted that the Hamiltonian H0 D V.t/ refers
only to the system itself and the influence of the heat bath is not taken into account.

Supose that V.t/ can be represented in the form

V.t/ D f .t/B (8.122)
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where f .t/ is an external driving force (for example, an electric field) and B an
operator on the system (for example, the dipole operator). Inserting (8.122) into
(8.121) gives

�hA.t/i D .i=¯/
Z t

�1
dt0 trfŒB; ¡0�A.t 0 � t/gf .t 0/

D .i=¯/
Z t

�1
trf¡0ŒA.t 0 � t/; B�gf .t 0/dt0 (8.123)

where the cyclic property of the trace has been used and where

A.t 0 � t/ D expfŒ�iH0.t
0 � t/=¯gA expŒiH0.t

0 � t/=¯� (8.124)

The upper limit of integration in (8.123) can be extended to infinity by introducing
the Green’s function

•
hhA.t/B.t 0/ii D �.i=¯/™.t � t 0/trf¡0ŒA.t/B.t 0/�g (8.125)

where ™.t � t 0/ is the step function.�hA.t/i can then be written in the form

•

�hA.t/i D
Z 1

�1
hhA.t 0 � t/Biif .t 0/dt0 (8.126)

Equation 8.126 shows that the effect of an external perturbation on the mean values
of observables can be described by Green’s functioning coupling the observed
quantity with the perturbation.

An interpretation of the Green’s function can be obtained by considering a unit
pulse at time t1, that is, by letting f .t 0/ become •.t 0 � t1/ [where •.t 0 � t1/ denotes
Dirac’s delta function]. In this case it follows from (8.126) that

�hA.t/i D hhA.t1 � t/Bii (8.127)

The Green’s function hhA.t 0 � t/Bii is therefore the change �hA.t/i by the time t
due to a unit pulse at time t 0. Equation 8.126 can then be interpreted as the linear
superposition of responses produced by pulses at times t 0 with amplitudesf .t 0/. The
range of values of t 0 in (8.126) is t 0 < t (otherwise the step function vanishes). The
response has therefore a causal character since only the effects of the perturbation at
past moments of the time are taken into account. For this reason the quantity (8.125)
is called the retarded Green’s function.

Equation 8.126 is called the Kubo formula for the linear response of a system.
The important point to note is that this equation expresses nonequilibrium properties
in terms of averages over equilibrium states. One could also define the nonlinear
response of a system to an external agent. In this case, however, the Green’s
functions are no longer properties of the unperturbed system.



312 8 Quantum Theory of Relaxation

As a special case consider a periodic perturbation

V.t/ D �V0 exp.�i¨t C "t/B (8.128)

where V0 is the amplitude and © an infinitesimally small quantity which ensures
V.t/ ! 0 for t ! �1. In the case of the period perturbation (8.128), (8.126) takes
the form

�hA.t/i D V0 exp.�i¨t C "t/

Z 1

�1
dt0hhA.t 0 � t/Bii

� expŒ�i¨.t 0 � t/C ".t 0 � t/�

D V0 exp.�i¨t C "t/

Z 1

�1
hhA.£/Bii exp.�i¨£C "£/d£ (8.129a)

D V0 exp.�i¨t C "t/hhABii¨ (8.129b)

where £ D t 0 � t and hhABii¨ is defined by the integral in (8.129a). The generalized
susceptibility ¦.¨/ which describes the influence of the periodic perturbation
(8.128), is defined by

�hA.t/i D ¦.¨/V0 exp.�i¨t C "t/ (8.130)

Comparing (8.129b) and (8.130) we obtain

¦.¨/ D hhABii¨ (8.131)

This is Kubo’s formula for the generalized susceptibility.
The equations derived here can be used as a starting point for the investigation

of transport phenomena. Under appropriate conditions it is possible to connect the
response formalism with the Onsager theory of irreversible processes. Assuming
that the external perturbation is so weak that the discussion can be restricted
to first-order perturbation theory it has been shown that transport coefficients
can be evaluated using an equilibrium density matrix. For example, the electric
conductivity is directly related to the response of a system to an external field
and this response in turn is related to time correlation functions. A discussion of
these topics falls outside the scope of this book. For a detailed account with many
applications the reader is referred particularly to the treatment given by Zubarev
(1974).
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A.1 Appendix A: The Direct Product

An important quantity in matrix algebra is the direct product C D A � B of two
matrices A and B , where each element of C is formed by replacing each element
aij of A by the matrix aijB . Thus if A is N dimensional and B n dimensional then
C is an .N � n/-dimensional matrix. For example, if

A D
�
a12 a12

a21 a22

�

; B D
�
b11 b12

b21 b22

�

then the direct product A � B is given by the four-dimensional matrix

A � B D
�
a11B a12B

a21B a22B

�

(A.1a)

where each “element” aijB stands for the two-dimensional matrix

aijB D
�
aijb11 aijb12

aijb21 aijb22

�

(A.1b)

It can be shown that, if A and C are m �m matrices and B and D n � n matrices,
then the usual matrix product of A � B and C �D is given by

.A �B/ � .C �D/ D .AC/ � .BD/ (A.2a)

An important trace relation is

tr.A � B/ D trA tr B (A.2b)

Application of the relations (A.2) enables the use of explicit matrix representations
to be avoided in most calculations.

K. Blum, Density Matrix Theory and Applications, Springer Series on Atomic, Optical,
and Plasma Physics 64, DOI 10.1007/978-3-642-20561-3,
© Springer-Verlag Berlin Heidelberg 2012
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The definition (A.1) can also be applied to row vectors which can be considered
as matrices with one row only. For example, when the spin states are written in the
standard representation, the direct product of the spin-1 state j C 1i and the spin-1/2
state j � 1=2i is given by

0

@

1

0

0

1

A �
�
0

1

�

D

0

1

0

0

0

0

(A.3)

which we will write in the form j � 1ij � 1=2i D j1; �1=2i: (A.4)

More generally, consider two linear spaces R and r , spanned by basis vectors
jN i and jni, respectively [that is, any state vector in the space R.r/ can be written
as a linear combination of the states jN i.jni/]. The combined space can be spanned
by the set of all direct product states

jN; ni D jN ijni (A.5)

that is, by all, possible pairs formed from all basis vectors jN i and jni.
For example, an ensemble of spin-1 particles may be in the state j C 1i and

an ensembel of spin-1/2 particles in the state j � 1i. When both systems are well
separated and not interacting the state of the combined system is represented by the
direct product jC1; �1=2i. This simple representation does not apply when the two
systems interact (see Sect. 3.1). However, any state vector j§i representing the state
of the coupled system, can always be written as a sum of direct products

j§i D
X

Mm

a.M; m/jM ijmi (A.6)

with M D ˙1; 0 and m D ˙1=2.
The direct product states have the following important properties. A scalar

product is defined by

hN 0; n0jN; ni D hN 0jN ihn0jni

The matrix elements of an operatorQ.R/, acting only on the space R, are given by

hN 0; n0jQ.R/jN; ni D hN 0; jQ.R/jN ihn0jni (A.7)

and for a direct product

hN 0; n0jQ.R/�Q.r/jN; ni D hN 0jQ.R/jN ihn0jQ.r/jni (A.8)
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Consider now a mixture of states jN; ni represented by a density matrix

¡ D
X

Nn

WNnjN; nihN; nj (A.9)

where WNn is the probability of finding the system in the state jN; ni D jN ijni.
The two systems are uncorrelated if

WNn D WNWn (A.10)

that is, when the probability of finding one system in a state jN i is independent of
the probability of finding the other system in a state jni. When (A.10) holds then,
from (A.5) and (A.9),

¡ D
 
X

N

WN jN ihN j
! 

X

n

Wnjnihnj
!

D ¡.N / � ¡.n/ (A.11)

That is, in the special case of uncorrelated systems the total density matrix is
represented by the direct product of the individual matrices.

As an example, consider two ensembles of particles with spins S1 and S2, respec-
tively. Before any interaction the two systems are uncorrelated and represented
by density matrices ¡.S1/ and ¡.S2/, respectively. The combined system then is
characterized by the density matrix

¡ih D ¡.S1/ � ¡.S2/
Expanding the density matrices ¡.S1/ and ¡.S2/ in terms of spin tensors as discussed
in Sect. 4.4 we obtain

¡in D
2

4
X

KQ

D

T .S1/
�
KQ

E

T .S1/KQ

3

5

2

4
X

kq

D

T .S2/
�
KQ

E

T .S2/kq

3

5

D
X

KQ
kq

D

T .S1/
�
KQ

E D

T .S2/
�

kq

E

ŒT .S1/KQ � T .S2/kq� (A.12)

Using (A.2b), (4.24), and (4.25) we obtain for the trace

trŒ¡in � T .S1/K0Q0 � 1� D
X

KQ
kq

D

T .S1/
�
KQ

E D

T .S2/
�
kq

E

� trŒT .S1/KQ � T .S2/kq�
h

T .S1/
�

K0Q0 � 1
i

D Œ1=.2S2 C 1/1=2�
D

T .S1/
�

K0Q0

E

� hT .S2/00i
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Application of (4.42) then finally gives

T .S1/
�

K0Q0

E

D tr ¡in

h

T .S1/
�

K0Q0 � 1
i

(A.13)

Similarly, the spin tensors characterizing the second system only are given by

D

T .S2/
�
kq

E

D tr ¡in

h

1 � T .S2/�kq

i

(A.14)

Equations A.12, A.13, and (A.14) are used, for example, in scattering theory to
describe the initial state of polarized particles.

B.1 Appendix B: State Multipoles for Coupled Systems

Consider two interacting systems with angular momenta J and I , respectively.
The two systems may consist of, for example, two different ensembles of particles
such as electrons with spin I D 1=2 and atoms with spin J or of two different
characteristics of the same state (for example, an atomic state with electronic angular
momentum J and nuclear spin I ).

State multipoles describing the coupled system can be constructed by first
coupling the states jJMi and jImi to eigenstates of the total angular momentum
operatorF and then using these eigenstates to construct tensor operators T .F 0F /KQ

using (4.3) with state multipoles corresponding to (4.31).
It is often more convenient to represent the total density matrix ¡ in a different

way. We take the set of all tensor operators T .J /KQ and T .I /kq which describe
the separate systems (with K � 2J and k � 2I ) and construct the set of all
direct products T .J /KQ � T .I /kq as in Appendix A.1. Any operator acting on the
composite space, spanned by the direct products jJMjImi, can then be expanded in
terms of this set. Hence

¡ D
X

KQ
kq

D

T .J /
�
KQ � T .I /�kq

E

ŒT .J /KQ � T .I /kq� (B.1)

The state multipoles are obtained from (B.1) calculating the trace
D

T .J /
�
KQ � T .I /�kq

E

D tr ¡
h

T .J /
�
KQ � T .I /�kq

i

(B.2)

according to Appendix A.1.
When the two systems are uncorrelated

D

T .J /
�
KQ � T .I /�kq

E

D
D

T .J /
�
KQ

E D

T .I /
�
kq

i

(B.3)

as follows from Appendix A.1.
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In many cases the parameters

D

T .J /
�
KQ � 1

E

D .2I C 1/1=2
D

T .J /
�
KQ � T .I /00

E

(B.4)

are of particular interest. In (B.4) and (4.14) has been used, and 1 is the .2I C 1/-
dimensional unit matrix. Using (A.8)b it can readily be shown that

D

T .J /
�
KQ � 1

E

D tr ¡ � ŒT .J /KQ � 1�

D tr
h

¡.J /T .J /
�
KQ

i

(B.5)

where ¡.J / is the reduced density matrix describing the J system alone

hJM0j¡.J /jJMi D
X

m

hJM0; Imj¡jJM; Imi

Hence, when only the J system is of interest and the I system undetected, only the

set of multipoles
D

T .J /
�
KQ � 1

E

D
D

T .J /
�
KQ

E

need be considered. Similarly, when

only the I system is observed then the parameters of interest are the multipoles
D

1 � T .I /�kq

E

D
D

T .I /
�
kq

E

. Examples of this are given in Sect. 4.7. As another

example, consider scattering experiments with polarized particles of spin J and I,

respectively. The set of all spin tensors
D

T .J /
�
KQ � 1

E

and
D

1 � T .I /�kq

E

can be used

to characterize the polarization states of the J and I systems, respectively, when the
other one is either undetected or unpolarized. When polarization measurements are
performed on both systems in coincidence then some or all of the parameters with
both K and k nonzero must also be considered. Using (E.5) and expressing ¡out

according to (B.2) and ¡in according to (A.12) the spin tensors of the final particles
can then be related to those of the initial ones.

Finally, we give the relation describing the transformation between the “coupled”
tensors T .F 0F /K0Q0 and the “uncoupled” operators T .J /KQ � T .I /kq:

T .F 0F /K0Q0 D
X

KQ
kq

Œ.2K C 1/.2k C 1/.2F 0 C 1/.2F C 1/�1=2.KQ; kqjK 0Q0/

�
8

<

:

K k K 0
J I F 0
J I F

9

=

;
T .J /KQ � T .I /kq (B.6)

where f� � � g denotes a 9j symbol. The inverse relation can be obtained by using the
orthogonality properties of the 9j symbol:
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T .J /KQ � T .I /kq D
X

FF0

K0Q0

Œ.2K C 1/.2k C 1/.2F 0 C 1/.2F C 1/�1=2.KQ; kqjK 0Q0/

�
8

<

:

K k K 0
J I F 0
J I F

9

=

;
T .F 0F /K0Q0 (B.7)

As a special case, for k D 0 (B.7) gives

T .J /KQ � 1 D .2I C 1/1=2ŒT .J /KQ � T .I /00�

D
X

F 0F

Œ.2F 0 C 1/.2F C 1/�1=2.�1/FCJCKCI
�
F 0 F K

J J I

�

(B.8)

A similar relation holds for the tensor operators 1 � T .I /kq describing only the I
system with the J system undetected.

C.1 Appendix C: Formulas from Angular Momentum Theory

Clebsch–Gordon Coefficients

X

JM

�

J1M
0
1; J2M

0
2jJM

�

.J1M1; J2M2jJM/ D •M 0

1M1
•M 0

2M2
(C.1a)

X

M1M2

.J1M1; J2M2jJ 0M 0/.J1M1; J2M2jJM/ D •J 0J •MM0 (C.1b)

Symmetry properties:

.J1M1; J2M2jJM/ D .�1/J1CJ2�J .J1 �M1; J2 �M2jJ �M/ (C.2a)

D .�1/J1CJ2�J .J2M2; J1M1jJM/ (C.2b)

D Œ.2J C 1/=.2J2 C 1/�1=2.�1/J1�M1.J1M1; J �M jJ2 �M2/ (C.2c)

D Œ.2J C 1/=.2J1 C 1/�1=2.�1/J2�M2.J �M; J2M2jJ1 �M1/ (C.2d)

3j Symbols
Definition:

�
J1 J2 J

M1 M2 M

�

D Œ1=.2J C 1/1=2�.�1/J1�J2�M.J1M1; J2M2jJ �M/ (C.3)
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Orthogonality relations:

X

JM

.2J C 1/

�
J1 J2 J

M1 M2 M

��
J1 J2 J

M 0
1 M

0
2 M

�

D •M 0

1M1
•M2M

0

2
(C.4a)

X

M1M2

�
J1 J2 J 0
M1 M2 M

0
��

J1 J2 J

M1 M2 M

�

D Œ1=.2J C 1/�•JJ0•MM0 (C.4b)

Symmetry properties: The 3j symbol is invariant under cyclic permutations of its
columns and multiplied by .�1/J1CJ2CJ by noncyclic ones. In particular,

�
J1 J2 J

M1 M2 M

�

D
�
J2 J J1

M1 M M1

�

D
�
J J1 J2

M M1 M2

�

(C.5a)

�
J1 J2 J

M1 M2 M

�

D .�1/J1CJ2CJ
�
J2 J1 J

M2 M1 M

�

(C.5b)

D .�1/J1CJ2CJ
�
J1 J2 J

�M1 �M2 �M
�

(C.5c)

Special case:
�

J1 J2 0

M1 �M2 0

�

D .�1/J1�M1

.2J1 C 1/1=2
•J1J2•M1M2 (C.6)

6j Symbols
Definition:

�
J1 J2 J3
j1 j2 j3

�

D
X

allMi ;mi

.�1/˙J1C˙jiC˙mi
�
J1 J2 J3

�M1 �M2 �M3

��
J1 j2 j3
M1 m2 �m3

�

�
�
j1 J2 j3

�m1 M2 m3

��
j1 j2 J3
m1 �m2 M3

�

(C.7)

Symmetries: The 6j symbol is invariant for interchange of any two columns, and
for interchange of the upper and lower arguments in each of any two columns; for
example,

�
J1 J2 J3
j1 j2 j3

�

D
�
J1 J3 J2
j1 j3 j2

�

D
�
j1 j2 J3
J1 J2 j3

�

(C.8)

Contraction:

X

M1M2M3

.�1/J1CJ2CJ3CM1CM2CM3

�

J1 J2 j3
M1 �M2 m3

��

J2 J3 j1
M2 �M3 m1

�

�
�
J3 J1 j2

M3 �M1 m2

�

D
�
j1 j2 j3

m1 m2 m3

��
j1 j2 j3

J1 J2 J3

�

(C.9)
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Orthogonality:

X

J

.2J C 1/.2J 00 C 1/

�
J1 J2 J

0
J3 J4 J

� �
J3 J2 J

J1 J2 J
00
�

D •J 0J 00 (C.10)

Special value:
�
J1 J2 J3

0 J3 J2

�

D .�1/J1CJ2CJ3
Œ.2J2 C 1/.2J3 C 1/�1=2

(C.11)

C.1.1 Rotation Matrix Elements

Definition:
D.”“’/

.J /

M 0M
D exp.iM0”/d.“/.J /

M 0M
exp.iM’/ (C.12)

Symmetries:

d.“/
.J /

M 0M D d.�“/.J /MM0

D .�1/M 0�Md.“/.J /MM0 D .�1/M 0�Md.“/.J /�M 0�M (C.13)

D.”“’/
.J /�
M 0M D .�1/M 0�MD.”“’/.J /�M 0�M (C.14)

Special values:

d. /
.J /

M 0M D .�1/JCM•M 0M ; d.0/
.J /

M 0M D •M 0M (C.15)

Relation to the spherical harmonics YJM and Legendre polynomials PJ :

D.”“’/
.J /
MO D .�1/M Œ4 =.2J C 1/�1=2Y.“”/JM (C.16a)

D.”“’/
.J /
0M D Œ4 =.2J C 1/�1=2Y.“’/JM (C.16b)

D.”“’/
.J /
00 D P.cos“/J (C.16c)

Contraction .¨ D ”“’/:

D.¨/
.J1/

M 0

1M1
D.¨/

.J2/

M 0

2M2
D
X

JMM0

.2J C 1/

�
J1 J2 J

M 0
1 M

0
2 M

0
��

J1 J2 J

M1 M2 M

�

D.¨/
.J /�
M 0M

(C.17)

Orthogonality:

Z

D.”“’/
.j /�
mm0 D.”“’/

.J /

MM0 sin “ d“ dad” D .8 2=.2J C1//•Jj•mM•m0M 0 (C.18)
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C.1.2 Matrix Elements of Irreducible Tensor Operators

Wigner–Eckart theorem:

hJ 0M 0jTKQjJMi D .�1/J 0�M 0

�

J 0 K J

�M 0 Q M

�

hJ 0jjTK jjJ i (C.19)

Reduction for composite systems .LCS D J; L0 CS 0 D J 0/: If the tensor operator
TKQ acts only on the system with angular momenta L; L0 then

h.L0S 0/J 0jjTK jj.LS/J i D .�1/L0CSCJCKŒ.2J 0 C 1/.2J C 1/�1=2

�
�
L0 J 0 S
J L K

�

hL0jjTKjjLi•SS0 (C.20)

C.1.3 Spherical Harmonics

Symmetry properties:
Y.“’/�KQ D .�1/QY.“’/K�Q (C.21)

Addition theorem:

Y.“’/K1Q1Y.“’/K2Q2 D
X

KQ

�
.2K1 C 1/.2K2 C 1/.2K C 1/

4 

�1=2

�
�
K1 K2 K

0 0 0

��
K1 K2 K

Q1 Q2 Q

�

Y.“’/�KQ (C.22)

Orthogonality:

Z 2 

0

d’

Z  

0

d“ sin “Y.“’/�K0Q0Y.“’/KQ D •K0K•Q0Q (C.23)

D.1 Appendix D: The Efficiency of a Measuring Device

The diagonal elements hnj¡jni of the density matrix are the probabilities that the
pure state jni will be observed in an experimental observation. However, most
experimental situations which can be devised will not respond to only one particular
pure state and, in general, the detector responds to several states jni with the
relative probabilities (“efficiencies”) –n. The total probability of the response of the
apparatus will then be given by
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W D
X

n

–nhnj¡jni (D.1)

in the representation with basis vectors jni. We introduce the operator

– D
X

n

–njnihnj (D.2)

which is analogous to the density operator (2.8), and (D.1) can then be written in
the form

W D tr ¡– (D.3)

– is called the “efficiency matrix” of the measuring device which completely
describes the response of the apparatus. If the apparatus responds only to a single
state jni with certainty (that is, it is a perfect filter), then – D jnihnj. In this case we
can project out of the mixture the definite pure state jni and (D.1) reduces to

W D Wn D hnj¡jni (D.4)

As an example we will consider the measurement of polarization of spin-1/2
particles. The efficiency matrix – of the polarization filter is a 2�2matrix which can
be expanded in terms of the two-dimensional unit matrix 1 and the Pauli matrices in
a similar way as the density matrix in Sect. 1.1.5:

– D .1=2/

 

1 C
X

i

Qi¢i

!

D .1=2/.1 C Q¢/ (D.5)

Transforming to a representation with basis states j ˙ 1=2; z0i where – is diagonal
we find

– D 1

2

�
1CQ 0

0 1 �Q

�

(D.6)

whereQ D jQj. Hence, in this system, – can be written in the form

– D .1=2/.1CQ/j1=2; z0ih1=2; z0j C .1=2/.1�Q/j � 1=2; z0ih�1=2; z0j (D.7)

which relates the parametersQ to the efficiencies with which the filter responds to
the states j ˙ 1=2; z0i.

Furthermore, it follows from (1.49) and (D.5) that

W D tr ¡– D .1=2/.1C PQ/ (D.8)

and hence W has its maximum value W"" if P and Q are parallel and its minimum
value W## if P and Q are antiparallel. It follows that the direction of Q is that
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direction in which the polarization filter must be oriented in order to get maximum
response.

Thus, in order to determine P for a given beam with a polarization filter with a
known Q, the orientation of the filter must first be altered until W is a maximum.
This direction is then the direction of P . The magnitude jPj of the polarization
vector is then found from a measurement of the values W"" and W## at maximum
and minimum response and the known value of Q:

P D W"" �W##
Q.W"" CW##/

(D.9)

E.1 Appendix E: The Scattering and Transition Operators

In scattering theory it is convenient to consider the incoming state of the particles
as the state vector j§ini at an infinitely remote past when the interaction between
the particles can be neglected, and the outgoing state as the state vector j§outi at
an infinitely late future instant corresponding to such a large distance between the
particles for the interaction between them to be neglected again. The S matrix can
then be defined by the relation

j§outi D S j§ini (E.1)

that is, the collision is thought of as a “black box,” mathematically represented by
S, which transforms the “in” states into the “out” states. When the initial state is
represented by the density matrix

¡in D
X

i

Wi

ˇ
ˇ
ˇ§

.i/

in

E D

§
.i/

in

ˇ
ˇ
ˇ

the density matrix ¡0
out describing the final particles, is obtained by operating on ¡in

by S and S�:

S¡inS
� D

X

i

WiS
ˇ
ˇ
ˇ§

.i/

in

E D

§
.i/

in

ˇ
ˇ
ˇS

�

D
X

i

Wi

ˇ
ˇ
ˇ§

.i/
out

E D

§
.i/
out

ˇ
ˇ
ˇ

� ¡0
out (E.2)

Since one is usually only interested in transitions between different states it is
convenient to extract from S the unit operator 1 and to define the transition operator
T by

T D S � 1 (E.3)
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From (E.1) and (E.2) it follows

T j§ini D j§outi � j§ini (E.4)

All possible transitions (scattering, reactions) in the system will be connected with
the dissimilarity between initial and final state, that is, T transforms the “in” state
into the scattered state. The interesting part of the density matrix (E.2) is then that
one which contains the information on the scattered states alone, which is given by

¡out D T ¡inT
� (E.5)

The central problem of scattering theory is then the determination of T , that is, the
determination of all elements of T (see Sect. 3.5).

F.1 Appendix F: Some Consequences of Density Matrix Theory
for Polarization Vectors and Tensors

In Sect. 3.6.3 we have considered the 4�4 density matrix describing systems of two
spin-1/2 particles. We have seen that the most general density matrix is characterized
by 16 real parameters (15 if the normalization is taken into account). On the other
hand, we have another set of 15 independent elements, namely the six components
of the two individual polarization vectors P.1/ and P.2/, and the nine components
P
.1/
i �P .2/

j of the correlation tensor. It is convenient to expand the density matrix �
in terms of this set.1

In order to achieve this we generalize the procedure leading to (1.48), where the
2 � 2-density matrix has been expanded in terms of the three Pauli matrices and
the identity matrices. Similarly, we expand the 4 � 4 density matrix � in terms of
the unit matrix, the operators �i � 1 and 1 � �j , and the nine direct products �i � �j
(i; j D x; y; z).

The components of the polarization vectors are defined by the relations

P
.1/
i D tr �

�

�i � 1
� D tr �.1/�i ; (F.1a)

and

P
.2/
j D tr �

�

1 � �j
� D tr �.2/�j ; (F.1b)

where 1 denotes the 2� 2 identity matrix, and where � is now the full 4 � 4 matrix.
�.1/ and �.2/ denote the reduced density matrices of the first and second system,

1The derivations are a bit lengthy, and readers not interested in the mathematical details may
directly proceed to (F.6).
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respectively. The components of the correlation tensor are given by (3.58):

P
.1/
i � P .2/

j D tr �
�

�i � �j
�

: (F.1c)

We make the ansatz

� D 1

4

�

1 � 1 C
X

i

ai
�

�i � 1
�C

X

j

bj
�

1 � �j
�C

X

ij

cij
�

�i � �j
�
�

: (F.2)

Here, 1 denotes the 2 � 2 identity matrix and the direct product 1 � 1 gives the
4 � 4 unit matrix (see (A.1), Appendix A.1). In order to determine the coefficients
ai ; bj ; cij we have to calculate certain traces by using (1.44), (1.44), and (A.2) of
Appendix A.1. Applying the relations we obtain

tr
��

�i � �j
��

�k � �`
�	 D tr

�

�i�k � �j �`
�

D tr
�

�i�k
�

tr
�

�j �`
�

D 4 ıik ıj` ;

(F.3a)

and the special cases

tr
�

�i � �j
� D tr �i tr �j D 0 ; (F.3b)

and

tr
��

�i � �j
��

�k � 1
�	 D tr

�

�i�k
�

tr �j D 0 : (F.3c)

Taking the trace of (F.2), and using (F.3), we can verify the normalization

tr � D 1 : (F.4)

In order to determine the coefficients ai we multiply (F.2) by the operator �k � 1

and take the trace by applying (F.3). Only the second term in (F.2) survives and we
obtain

tr �
�

�k � 1
� D 1

4

X

i

ai tr
��

�i � 1
��

�k � 1
�	

D ak ;

and with the definition (F.1a) we have

ak D P
.1/

k : (F.5a)
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Similarly, we obtain

bj D P
.2/
j ; (F.5b)

and

cij D P
.1/
i � P .2/

j : (F.5c)

Substitution of (F.5) into (F.2) yields

� D 1

4

�

1 � 1 C
X

i

P
.1/
i

�

�i � 1
�C

X

j

P
.2/
j

�

1 � �j
�

C
X

ij

�

P
.1/
i � P .2/

j

	�

�i � �j
�
�

I
(F.6)

see also Burke and Schey (1962). This relation generalizes (1.48) for the one-
particle case, and shows that the density matrix � is completely determined in
terms of the observables (F.1). These 15 parameters must be measured in order to
determine completely the polarization properties of an unknown two-particle spin-
1/2 system. Of course, in special cases several of these parameters may be zero, as
discussed in Sect. 3.6.3.

The great potential of tensor expansions like (F.6) will become apparent in
chapters four to seven, where also more powerful methods will be employed. Here
we will only use (F.6) to derive some relations between the polarization vector and
the tensor components.

Throughout the rest of this appendix we will assume that � describes a pure state.
According to (1.40) (or more generally (2.21)) this requires that the condition

tr
�

�2
� D 1 (F.7)

is satisfied (taking the normalization (F.2) into account).
Calculating �2, taking the trace with the help of relations (F.3), and requiring that

condition (F.7) is satisfied, we obtain after some algebra the expression

tr
�

�2
� D 1 D 1

4

"

1C
X

i

�

P
.1/
i

	2 C
X

j

�

P
.2/
j

	2 C
X

ij

�

P
.1/
i � P .2/

j

	2

#

: (F.8)

Let us specialize to the pure state (3.49), or alternatively (3.54). The non-vanishing
components of polarization vector and correlation tensor are given by (3.57) and
(3.66). Equation F.8 reduces then to the expression
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1

4

"

1C
�

P .1/
z

	2 C
�

P .2/
z

	2 C
�

P .1/
x � P .2/

x

	2 C
�

P .1/
y � P .2/

y

	2

C
�

P .1/
z � P .2/

z

	2 C
�

P .1/
x � P .2/

y

	2 C
�

P .1/
y � P .2/

x

	2

#

D 1 :

(F.9)

By using (3.81c) it can readily be seen that the values (3.57) and (3.66) satisfy
condition (F.9).

Assume now that the individual polarization vectors vanish (as is the case for the
maximally entangled state (3.80), resulting in the expression

X

ij

�

P
.1/
i � P .2/

j

	2 D 3 ; (F.10)

as follows from (F.8). Comparing with (F.9) one can conclude that the vanishing of
P
.1/
z and P .2/

z must be compensated by larger absolute values of at least some of the
correlation tensor components.

Finally, for the Bell states (3.84), also the correlation parameters with i ¤ j

vanish, and we are left with the expression

X

i

�

P
.1/
i � P .2/

i

	2 D 3 : (F.11)

Hence, the remaining components are each required to assume their maximal
possible value

�

P
.1/
i � P .2/

i

	2 D 1 :

Let us consider (F.8) for the other extreme case where the individually observed
polarization vectors take on their maximal possible values. This is the case
when both systems are completely polarized, say, along the z- and x-directions,
respectively

P .1/
z D P .2/

x D 1 : (F.12a)

In this case both systems are necessarily in pure states, represented by the state
vectors

ˇ
ˇz.C/˛ and

ˇ
ˇx.C/˛, respectively, and the combined state is separable:

ˇ
ˇ 
˛ D ˇ

ˇz.C/˛ˇˇx.C/˛ :

The only non-vanishing component of the correlation tensor is the trivial one:

P .1/
z � P .2/

x D P .1/
z � P .2/

x D 1 ; (F.12b)

which means that the two systems are completely uncorrelated according to (3.59b).
The values (F.12a) and (F.12b) exhaust condition (F.8).
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Combining the results (F.10) and (F.12) we obtain that the tensor components are
constrained by the condition

1 �
X

ij

�

P
.1/
i � P .2/

j

	2 � 3 : (F.13)

Equations F.8–F.12 hold only for pure states. For mixtures we have only the
inequality

tr
�

�2
�

< 1

at our disposal, so that only inequalities can be derived.

G.1 Appendix G: Derivation of Equation (3.66b)

The tensor components are defined by (3.58):

P
.1/
i � P .2/

j D tr �
�

�i � �j
�

: (G.1)

The system under consideration is defined by the state vector (3.49), or equivalently
by the density operator (3.53)

� D ˇ
ˇ 
˛˝

 
ˇ
ˇ : (G.2)

Applying the trace relation

tr
ˇ
ˇ 
˛˝

 
ˇ
ˇ
�

�i � �j
� D ˝

 j�i � �j j ˛ ; (G.3)

we insert (3.49) for
ˇ
ˇ 
˛

and use (A.8) with the operatorsQ.R/�Q.r/ replaced by
�i � �j . We obtain for example for i D j D x:

P .1/
x � P .2/

x D ˇ
ˇf
ˇ
ˇ
2˝C � j�x � �x j C �˛C f �g

˝C � j�x � �x j � C˛

C fg�˝� C j�x � �x j C �˛C ˇ
ˇg
ˇ
ˇ
2˝� C j�x � �x j � C˛

D ˇ
ˇf
ˇ
ˇ
2˝Cj�x jC

˛˝�j�x j�˛C f �g
˝Cj�x j�˛˝�j�x jC

˛

C fg�˝�j�x jC
˛˝Cj�x j�

˛C ˇ
ˇg2
ˇ
ˇ
˝�j�x j�

˛˝Cj�x jC˛ :

(G.4)

The explicit matrix representations (1.1) and (1.7) may be condensed to:

�x
ˇ
ˇC˛ D ˇ

ˇ�˛ ; �x
ˇ
ˇ�˛ D ˇ

ˇC˛ ;
�y
ˇ
ˇC˛ D i

ˇ
ˇ�˛ ; �y

ˇ
ˇ�˛ D �i

ˇ
ˇC˛ ;

�z

ˇ
ˇC˛ D ˇ

ˇC˛ ; �z

ˇ
ˇ�˛ D �ˇˇ�˛ :

(G.5)
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Using these relations and the orthogonality of the basis states we obtain that the first
and the last term in (G.4) vanish, and that the remaining matrix elements are equal
to one. Hence,

P .1/
x � P .2/

x D f �g C fg� :

The other correlation parameters can be obtained similarly.

H.1 Appendix H: Conditions for Maximal Entanglement

In this appendix we will derive (3.75) and (3.76) of the main text. There are
several possibilities how these relations can be proved. We will choose the following
standard mathematical method.

Equation 3.64 shows that the maximal and minimal values of P .1/
a � P

.2/

b are
C1 and �1, respectively. In order to find out under which conditions the correlation
parameters can assume these extrema, we consider P .1/

a � P .2/

b as a function of the
four variables ˇ; ˇ0; ˛ and ˛0. A necessary criterion for a maximum or minimum
to occur is that the corresponding four partial derivatives of P .1/

a � P
.2/

b vanish
simultaneously at these points.

We start with (3.68):

P .1/
a � P .2/

b D 2
ˇ
ˇf
ˇ
ˇ
ˇ
ˇg
ˇ
ˇ sinˇ sinˇ0 cos.˛0 � ˛ C ı/ � cosˇ cosˇ0 : (H.1)

We will assume that both angles, ˇ and ˇ0, are different from zero and different
from 
 since this case would bring us back to Sect. 3.6.4.

Taking the partial derivative of the function (H.1) with respect to ˛0 we obtain

@
�

P
.1/
a � P .2/

b

�

@ ˛0 D �2ˇˇf ˇˇˇˇgˇˇ sinˇ sinˇ0 sin.˛0 � ˛ C ı/ :

This equation vanishes if condition

sin.˛0 � ˛ C ı/ D 0

is satisfied, or alternatively conditions (H.2a) or (H.2b):

cos.˛0 � ˛ C ı/ D 1 ; (H.2a)

cos.˛0 � ˛ C ı/ D �1 ; (H.2b)

so that we have arrived at (3.76). The partial derivative with respect to ˛ gives the
same result.

In order to proceed assume that (H.2a) is valid. Substitution of this expression
into (H.1) yields
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P .1/
a � P .2/

b D 2
ˇ
ˇf
ˇ
ˇ
ˇ
ˇg
ˇ
ˇ sinˇ sinˇ0 � cosˇ cosˇ0 : (H.3)

We calculate the partial derivations with respect to ˇ and ˇ0, respectively, set the
obtained equations equal to zero, and derive the conditions under which a simulta-
neous solution is possible.

We obtain

@
�

P
.1/
a � P .2/

b

�

@ˇ
D 2

ˇ
ˇf
ˇ
ˇ
ˇ
ˇg
ˇ
ˇ cosˇ sinˇ0 C sinˇ cosˇ0 D 0 ; (H.4a)

and

@
�

P
.1/
a � P .2/

b

�

@ˇ0 D 2
ˇ
ˇf
ˇ
ˇ
ˇ
ˇg
ˇ
ˇ sinˇ cosˇ0 C cosˇ sinˇ0 D 0 : (H.4b)

Dividing these equations by cosˇ cosˇ0 (excluding the value 
=2 which can easily
be treated separately) we obtain

2
ˇ
ˇf
ˇ
ˇ
ˇ
ˇg
ˇ
ˇ tanˇ0 D � tanˇ ; (H.5a)

from (H.4a), and
2
ˇ
ˇf
ˇ
ˇ
ˇ
ˇg
ˇ
ˇ tanˇ D � tanˇ0 (H.5b)

from (H.4b). Both equations must hold simultaneously which is only possible if

2
ˇ
ˇf
ˇ
ˇ
ˇ
ˇg
ˇ
ˇ D 1 (H.6)

is satisfied. Starting with (H.2b) instead of (H.2a) gives the same requirement.
Equation H.6 is the basic condition (3.75). The further discussion of the obtained
equations will be given in Sect. 3.6.5.

I.1 Appendix I: Properties of Maximally Entangled States

In this appendix we will rederive some of the results of Sect. 3.6.5, following a
different path, which will also allow to illustrate our former discussions. We will
consider maximally entangled states of the form (3.80):

ˇ
ˇ 
˛ D 1p

2

�ˇ
ˇC�˛C eiı

ˇ
ˇ�C˛

	

: (I.1)

Although this state is not easily accessible by experiment, we will consider it
because of its theoretical simplicity. We will discuss measurements where the
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detector – analyzer assembly of the first beam is oriented along an arbitrary but
fixed direction a (3.51a). We will however restrict a to lie within the x � z-plane
(˛ D 0). States with spin up and spin down with respect to a will be denoted by
ˇ
ˇa.C/˛ and

ˇ
ˇa.�/˛, respectively. An expression in terms of the basis states

ˇ
ˇC˛ and

ˇ
ˇ�˛ is given by (3.86) or (1.10):

ˇ
ˇa.C/˛ D ˇ

ˇC˛ cos
ˇ

2
C ˇ
ˇ�˛ sin

ˇ

2
; (I.2a)

ˇ
ˇa.�/˛ D ˇ

ˇC˛ sin
ˇ

2
� ˇ
ˇ�˛ cos

ˇ

2
; (I.2b)

where ˇ is the angle between a and the z-axis.
Assume now that the first beam is sent through an analyzer aligned along the unit

vector a. Any particle will then be projected into one of the two eigenstates of the
analyzer, either

ˇ
ˇa.C/˛ or

ˇ
ˇa.�/˛. The combined system will then undergo a change

of state which is described by applying the respective projectors
ˇ
ˇa.C/˛˝a.C/ˇˇ or

ˇ
ˇa.�/˛˝a.�/ˇˇ to

ˇ
ˇ 
˛

. As a result both systems will acquire a definite state vector
after the measurement on the first beam, either

ˇ
ˇ 
˛ �! ˇ

ˇa.�/˛ ˝a.�/j ˛ ; (I.3a)

or
ˇ
ˇ 
˛ �! ˇ

ˇa.C/˛ ˝a.C/j ˛ : (I.3b)

That is, any time a particle has been recorded in state
ˇ
ˇa.�/˛ (

ˇ
ˇa.C/˛), its collision

partner in the second beam is automatically projected into the (unnormalized) state
˝

a.�/j ˛ (
˝

a.C/j ˛). Here,
˝

a.�/j ˛ and
˝

a.C/j ˛ denote partial scalar products
where

˝

a.�/ˇˇ and
˝

a.C/ˇˇ act only on the state of the first particle in the combined
state

ˇ
ˇ 
˛

. Explicitly, we obtain by substituting (I.1) and (I.2b) into the scalar product
˝

a.�/j ˛

˝

a.�/j ˛ D 1p
2

�˝

a.�/jC˛ˇˇ�˛C eiı˝a.�/j�˛ˇˇC˛
	

D 1p
2

�
ˇ
ˇ�˛ sin

ˇ

2
� eiı

ˇ
ˇC˛ cos

ˇ

2

�

D � 1p
2

eiı

�
ˇ
ˇC˛ cos

ˇ

2
C ei .
�ı/ˇˇ�˛ sin

ˇ

2

�

:

(I.4)

Renormalizing and neglecting the overall phase factor in (I.4), we represent the
state of the second system by the expression in the bracket. Introducing the notation
ˇ
ˇb0.C/

˛

for the bracket, we write
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ˇ
ˇb0.C/

˛ D ˇ
ˇC˛ cos

ˇ0
0

2
C ei˛0

0

ˇ
ˇ�˛ sin

ˇ0
0

2
; (I.5)

where we have introduced the angles

ˇ0
0 D ˇ ; ˛0

0 D 
 � ı ; (I.6)

which corresponds to (3.78). In (I.5) we have written the state in the standard form
(1.1.9) from which we can read off that

ˇ
ˇb0.C/

˛

describes a state with spin up with
respect to a special direction b0 defined by the angles (I.6).

Similarly, for the scalar product in (I.3b) we obtain

˝

a.C/j ˛ D 1p
2

eiı

�
ˇ
ˇC˛ sin

ˇ

2
C e�iı

ˇ
ˇ�˛ cos

ˇ

2

�

:

Renormalizing and ignoring the overall phase factor and denoting the bracket by
ˇ
ˇb0.�/

˛

, we write

ˇ
ˇb0.�/

˛ D ˇ
ˇC˛ sin

ˇ0
0

2
� ei˛0

0

ˇ
ˇ�˛ cos

ˇ0
0

2
; (I.7)

where the angles (I.6) have been inserted. This state vector describes a state of the
second beam with spin down with respect to the direction b0 defined above.

We note that
ˇ
ˇb0.C/

˛

and
ˇ
ˇb0.�/

˛

are mutually orthogonal. It can be shown that
this is an essential requirement for maximal entanglement, which however does in
general not hold if condition (3.75) is violated.

It can readily be verified that (I.1) can be written in the equivalent form

ˇ
ˇ 
˛ D 1p

2

�ˇ
ˇa.C/˛ˇˇb0.�/

˛ � ˇ
ˇa.�/˛ˇˇb0.C/

˛	

; (I.8)

where
ˇ
ˇb0.C/

˛

and
ˇ
ˇb0.�/

˛

are the special states defined by (I.5) and (I.7),
respectively. Equation (I.8) is our main result.

In conclusion, we have arrived at these results by a straightforward application
of quantum mechanics. Equation I.8 makes the correlation between the two beams
evident. Given that the total system is represented by the state vector

ˇ
ˇ 
˛

, and that a
particle in the first beam has been found in state

ˇ
ˇa.C/˛, then there is a unique state

ˇ
ˇb0.�/

˛

associated with the second member of the collision pair in the second beam
(up to normalization and overall phase factors) and vice versa. Similarly, if a particle
in the first beam has been found and recorded in state

ˇ
ˇa.�/˛, its collision partner

in the second beam is projected in the well-defined state
ˇ
ˇb0.C/

˛

. This happens
immediately at the end of the first measurement, before the second beam has been
in contact with a measuring device. If the second beam passes subsequently through
an analyzer – detector assembly oriented along direction b0, then the state vector
(I.8) predicts a strict anticorrelation between the measurement results for the spin
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components with respect to a and b0. If the second analyzer direction is reversed into
direction �b0 (corresponding to (3.79)), then one obtains perfect correlation with
respect to a and �b0. For all other directions of the second analyzer the degree of
correlation is reduced. We refer to Sect. 3.6.6 where a specific example is analyzed
in detail.

J.1 Appendix J: Eigenvalues of Density Matrices Condition
for Separability Schmidt–Decomposition

In this appendix we will derive a set of related formulas useful for the discussions
in Sect. 3.6. Consider a 2 � 2 density matrix with elements �ij , satisfying the
Hermiticity condition �ij D ��

j i , and normalized according to

�11 C �22 D 1 : (J.1)

The eigenvalues �1 and �2 of � are the solutions of the equation

det

�
�11 � � �12
��
12 �22 � �

�

D 0 ; (J.2)

where “det” denotes the determinant of the matrix. The resulting quadratic equation
has the standard solutions

�1;2 D 1

2
˙ 1

2

q

1 � 4��11�22 � ˇ
ˇ�12

ˇ
ˇ
2�

D 1

2
˙ 1

2

p

1 � 4 det� ;

(J.3)

where the normalization (J.1) has been taken into account, and where �1.�2/
corresponds to the plus-sign (minus-sign) in (J.3).

Let us specialize to spin-1=2 particles. Polarization vector P and density matrix
elements are related by (1.36) which yields

Pz D �11 � �22 ; Px D �12 C ��
12 ; Py D i

�

�12 � ��
12

�

:

Calculating the square we obtain

P2 D �

�11 � �22
�2 C 4

ˇ
ˇ�12

ˇ
ˇ
2

D �211 C �222 � 2�11�22 C 4
ˇ
ˇ�12

ˇ
ˇ
2
:

(J.4)

The normalization condition (J.1) yields
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1 D �

�11 C �22
�2 D �211 C �222 C 2�11�22 ;

or
�211 C �222 D 1 � 2�11�22 : (J.5)

By combining (J.4) and (J.5) we arrive at the expression

P2 D 1 � 4�11�22 C 4
ˇ
ˇ�12

ˇ
ˇ
2

D 1 � 4 det� ;
(J.6)

from which follows 0 � det� � 1=4. Equations (J.3) and (J.6) expresses the
eigenvalues and the magnitude of P in terms of the determinant and the trace of
� which are those properties of the density matrix which remain invariant under
unitary transformations.

In Sect. 1.1.5 it has been shown that ensembles in pure states are characterized by
ˇ
ˇP
ˇ
ˇ D 1. This condition can now be reformulated: A given spin-1=2 density matrix

describes a pure state if and only if the condition

det� D 0 (J.7)

is satisfied. If this is the case the eigenvalues assume the values �1 D 1 and �2 D 0.
Furthermore, by combining (J.3) and (J.6) we can express the eigenvalues in

terms of the magnitude
ˇ
ˇP
ˇ
ˇ of the polarization vector

�1;2 D 1

2
˙ 1

2

ˇ
ˇP
ˇ
ˇ ; (J.8a)

or
ˇ
ˇP
ˇ
ˇ D �1 � �2 : (J.8b)

After these preliminaries we will derive some consequences of entanglement for
pure bipartite states. The most general pure state describing two spin-1=2 particles
can be expressed in the form

ˇ
ˇ 
˛ D a

ˇ
ˇCC˛C b

ˇ
ˇC�˛C c

ˇ
ˇ�C˛C d

ˇ
ˇ��˛ ; (J.9)

where the only restriction on the complex numbers a; b; c; d is that their absolute
squares add up to unity. The corresponding density operator is given by � D ˇ

ˇ 
˛˝

 
ˇ
ˇ

and the reduced density matrices of the two subsystems are obtained similar to
(3.56):

�1 D
 ˇ
ˇa
ˇ
ˇ
2 C ˇ

ˇb
ˇ
ˇ
2
ac� C bd�

a�c C b�d
ˇ
ˇc
ˇ
ˇ
2 C ˇ

ˇd
ˇ
ˇ
2

!

(J.10)
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and a similar expression for �2 which is obtained by interchanging the coefficients
b and c in �1. The determinant is given by the expression

det�1 D �ˇ
ˇa
ˇ
ˇ
2 C ˇ

ˇb
ˇ
ˇ
2��ˇ
ˇc
ˇ
ˇ
2 C ˇ

ˇd
ˇ
ˇ
2��ˇˇac� C bd�ˇˇ2

D ˇ
ˇa
ˇ
ˇ
2ˇ
ˇd
ˇ
ˇ
2 C ˇ

ˇb
ˇ
ˇ
2ˇ
ˇc
ˇ
ˇ
2 � ab�c�d � a�bcd�

D ˇ
ˇad � bc

ˇ
ˇ
2
:

(J.11)

The same result follows for �2. Hence, the two reduced density matrices have always
the same value of their determinants:

det �1 D det�2 : (J.12a)

From (J.6) follows that both subsystems have polarization vectors with the same
magnitude

ˇ
ˇP1
ˇ
ˇ D ˇ

ˇP2
ˇ
ˇ ; (J.12b)

(see for example (3.56)). The relations (J.12) express remarkable consequences of
the quantum correlations, that exist between two beams of spin-1=2 particles which
have been interacted in the past.

Equation J.12a combined with (J.3) yields the result that �1 and �2 have
necessarily the same set of eigenvalues. This result is of key relevance for the
discussion of the entropy of entanglement, outlined in Subsect. 3.6.5.

Assume now, that the state (J.9) is separable and can be written in product form

ˇ
ˇ 
˛ D ˇ

ˇ 1
˛ˇ
ˇ 2

˛

: (J.13)

The two subsystems are then in pure states,
ˇ
ˇ 1

˛

and
ˇ
ˇ 2

˛

, respectively, which
requires that the corresponding reduced density matrices �1 and �2 have vanishing
determinants according to condition (J.7). By combining this result with the explicit
form (J.11), we arrive at the following simple criterion for separability: A given
pure bipartite state

ˇ
ˇ 
˛

, written in the basis (J.9), is factorizable if and only if the
condition

ad D bc (J.14)

is satisfied. Otherwise the state is entangled. An example has been given at the end
of Subsect. 3.6.2.

Finally, we note that the general state (J.9) can always be written in the form

ˇ
ˇ 
˛ D f

ˇ
ˇ'1
˛ˇ
ˇ	1
˛C g

ˇ
ˇ'2
˛ˇ
ˇ	2
˛

; (J.15)

where
ˇ
ˇ'1
˛

and
ˇ
ˇ'2
˛

are mutually orthogonal, as well as
ˇ
ˇ	1
˛

and
ˇ
ˇ	2
˛

. The '-states
(	-states) describe the first (second) subsystem and are linear superpositions of the
basis

ˇ
ˇC˛ and

ˇ
ˇ�˛. For a proof of this so-called Schmidt–decomposition, (J.15), we

refer for example to Nielsen and Chuang (2000).
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The corresponding reduced density matrices of the two subsystems are easily
obtained:

�1 D �2 D
 ˇ
ˇf
ˇ
ˇ
2
0

0
ˇ
ˇg
ˇ
ˇ
2

!

; (J.16)

where �1 (�2) is written using the states
ˇ
ˇ'1
˛

and
ˇ
ˇ'2
˛

(
ˇ
ˇ	1
˛

and
ˇ
ˇ	2
˛

) as basis. Since
the magnitude of the polarization vector is an invariant independent of the choice of
the basis, we obtain

ˇ
ˇP1
ˇ
ˇ D ˇ

ˇP2
ˇ
ˇ D ˇ

ˇf
ˇ
ˇ
2 � ˇ

ˇg
ˇ
ˇ
2
: (J.17)

Taking the normalization
1 D ˇ

ˇf
ˇ
ˇ
2 C ˇ

ˇg
ˇ
ˇ
2
; (J.18)

into account and combining (J.17) and (J.18) we get the expression

P21 D P22 D 1 �
�

2
ˇ
ˇf
ˇ
ˇ
ˇ
ˇg
ˇ
ˇ

	2

; (J.19)

which generalizes (3.81c).
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Adjoint state vector, 3, 37, 47
Adjoint tensor operator, 122
Alignment, 129

angle, 149
of electronic orbitals, 237
of linear rotors, 218
of molecular axes distributions, 214
parameter for molecular

distributions, 213, 217
tensor, 127

Angular correlations, 125, 183–187
Anisotropy coefficient for product

rotational polarization, 269
Axial vector, 138
Azimuthal steric effects, 259, 264

Basis states, 37
Beam foil excitation, 155
Bell

inequalities, 110, 111
states, 103
theorem, 110

Bloch equations
magnetic resonance, 294–297
optical, 301, 302

Boltzmann distribution, 59, 287

Charge cloud
atomic, 147–153
molecular, 238, 241
rotation in magnetic fields, 200, 202
variation in electric fields, 205, 207

Clebsch-Gordan coefficients, 318
Closed quantum mechanical system, 65
Coarse graining, 280

Coherence effects
in collisions, 71, 72
by magnetic fields, 193–197, 199–202
and quantum beats, 45, 173, 174, 200–202
and relaxation effects, 298, 299, 301

Coherent superposition, 46, 81, 135, 165
of electronic molecular orbitals, 237–241

Coincidences, electron-photon, 183–188
Collision system, 75
Complete polarization

photons, 22, 74
spin-1 particles, 131
spin-1/2 particles, 9

Completeness relation, 37
in Liouville space, 307

Coordinate representation of density matrix,
147

Correlation
classical, 94
parameter, 89, 91, 105
tensor, 88, 91, 100, 103

Correlation function, 279
Correlation time, 279
Curie law, 60

Degree of polarization
electrons, 9
photons, 33

Density matrix, see Reduced density matrix
definition, 11, 38
direct product, 315
geometric interpretation, 149
hermiticity, 39
in Liouville space, 306–309
multipole expansion, 125
normalization, 41, 87
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Density operator, 11
Detector system, 184
Dipole radiation, selection rules for

state multipoles, 172, 253
Direct product, 88, 313
Director system, 257
Dispersion shape, 199

Efficiency matrix, 322
Einstein, Rosen, Podolsky argument, 109
Entanglement

criterion, 87, 335
definition, 83
experimental tests, 112
fundamental postulate of, 96
maximal, 97, 329, 330
measure of, 100
of mixtures, 95

Entropy of entanglement, 101
Euler angles, 118, 230
Excitation by light, 138
Expectation values, 40, 64

Fano-Macek-parameters, 144

Golden rule, 286
Green’s function, 311

Hanle effect, 197–199
geometric interpretation, 200–202

Helicity of photons, 26, 27
Helicity representation, 28
Hermiticity condition

density matrix, 39
state multipoles, 126

Incoherent superposition, 46
Interaction picture, 52–56
Invariance under reflections, 79, 142

in “natural system”, 145, 146
under rotations, 134

Irreversible processes, 66, 275–278

j-symbols
3j-symbol, 318
6j-symbol, 319
9j-symbol, 317

Kubo formula, 311

Larmor frequency, 162, 202
Legendre polynomial, 211, 320
Line broadening, 294
Line shift, 294
Liouville equation, 50, 52, 309
Liouville operator, 308
Liouville space, 306
LOCC, 94
Lorentzian shape, 199

Magnetic depolarization, 197
Magnetic resonance, 294–298
Markoff approximation, 278
Master equation, 284–288
Mixed states, 9, 38
Multipoles, see State multipoles

Natural system, 145
Non-locality, 110

Open quantum mechanical systems, 65
Optical pumping, 293

and relaxation, 305
Order parameters for linear molecules, 219,

220
for non-linear molecules, 235

Orientation of atoms, 129, 137, 142
of “pendulum states”, 224
of linear rotors, 214, 223
of symmetric tops, 233, 234

Orientation vector, 127
Orientation-alignment coupling, 203

Parity of molecular states, 241
Pauli matrices, 4, 17
Pendulum states, 223
Perturbation coefficients, 153

fine structure interaction, 155
hyperfine interactions, 155
magnetic field, 161

Perturbed angular distribution, 175–178
Photoabsorption, molecular processes,

224–230, 253–256
Photofragmentation of molecules, 253–256
Polar vector, 138
Polarization vector

photons, 24
spin-1 particles, 131
spin-1/2 particles, 4

Principle of non-separability, 63, 83
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Probability
conditional, 108
joint, 89

Pseudospin, 301
Pure state, 4, 9, 32, 36, 41

of excited atoms, 72–74

Quadrupole moment, 128, 129
Quantum beats, 43–45, 173, 174, 176, 178

Rank of tensor operator, 120
Rate equations, 284–288
Reduced density matrix, 64, 74–78, 86
Reduced matrix element, 124
Relaxation, 275

isotropic, 304, 305
longitudinal, 298–301
time, 298
transverse, 298

Relaxation matrix, 303
in Liouville space, 306

Rotating wave approximation, 291
Rotation matrix, 119, 320

Scattering operator, 323
Separability, 87, 335
Spatial directions of orbitals

atomic, 147–153, 205–207
molecular, 241–245

Spherical harmonics, 321
Spin echo, 298, 299
Spin precession, 57, 58
Spin tensor, 129–133
Spin-lattice interaction, 299
Spontaneous emission, 288
State multipoles

complex conjugates, 126
coupled systems, 316–318
definition, 124

for electronic orbitals, 245–249
geometric interpretation, 149–153
hermiticity condition, 126
in Liouville space, 306–309
relaxation, 304–306
semiclassical interpretation, 210–214
symmetry relations, 134, 135, 145, 146
time evolution, 153–162
transformation under rotations, 118
uncorrelated systems, 315

Statistical operator, see Density operator
Statistical tensor, see State multipoles
Steric factors, 256

experimental determination, 259–262
symmetries, 262

Stimulated emission, 288–294
Stokes parameters, 29, 31–34
Symmetric top, 231

Tensor operator, 116, 117
irreducible, 120

Tensor polarization, 132
Thermal equilibrium, 58–60, 289
Threshold excitation, 191–193
Time evolution operator, 47–50, 161
Transition operator, 323, 324

Uncorrelated systems, 88, 315, 316

Vector correlations in molecular processes,
249–252

Vector operator, 121

Wigner-Eckart theorem, 123, 321

Zeeman quantum beats, 200–202
geometrical interpretation, 200
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