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Preface

This book is devoted to the comprehensive bifurcation theory of chaos in nonlin-
ear dynamical systems with applications to mechanics and vibrations. Precise and
complete proofs of derived mathematical results are presented with many stimulat-
ing and illustrative examples. I study bifurcations of chaotic solutions for perturbed
problems from either homoclinic or heteroclinic orbits of unperturbed ones. This
method is also known as the Melnikov-type approach. Certainly there are many
interesting books in this direction, but all results of this book have not yet been
published in any book, since I have collected some results of mine together with
my coauthors appeared only in articles and manuscripts. So I hope that this book
is a useful contribution to a rapidly developing theory of chaos and it is a good
continuation of my recently published book in Springer with similar topics.

The book is intended to be used by scientists interested in the theory of chaos
and its applications, like mathematicians, physicists, or engineers. It can also serve
as a textbook for a class of nonlinear oscillations and dynamical systems.

Here is a brief outline of each chapter.

Chapter 1 is an introduction to the topic of the book by presenting two well-
known chaotic models: damped and driven Duffing and pendulum equations.

To make this book as self-contained as possible, some basic preliminary results
are included in Chapter 2.

Chapter 3 studies chaotic bifurcations of discrete dynamical systems including:
nonautonomous difference equations; diffeomorphisms; perturbed singular and sin-
gularly perturbed impulsive ordinary differential equations (ODEs); and inflated dy-
namical systems arising in computer assisted proofs and in other numerical meth-
ods in dynamical systems, so an extension of Smale horseshoe to inflated dynamical
systems is presented.

Chapter 4 deals with proving chaos for parameterized ODEs in arbitrary dimen-
sions. It is shown that if the Melnikov function is identically zero the second order
Melnikov function must be derived. I consider a broad variety of ODEs: coupled
nonresonant ODEs, resonant systems of ODEs investigated with the help of aver-
aging theory; singularly perturbed ODEs; and inflated ODEs. I also show that the
structure of chaotic parameters is related to the Morin singularity of smooth map-
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pings. I end this chapter with infinite dimensional ODEs on lattices by considering a
model of two one-dimensional interacting sublattices of harmonically coupled pro-
tons and heavy ions.

Chapter 5 shows chaotic vibrations of partial differential equations (PDEs):
slowly periodically perturbed and weakly nonlinear beams on elastic bearings; pe-
riodically forced and nonresonant buckled elastic beams; and periodically forced
compressed beams at resonance.

Chapter 6 is devoted to the study of chaotic oscillations of discontinuous (non-
smooth) differential equations (DDEs). First I consider the case when the homo-
clinic orbit of the unperturbed DDE transversally crosses discontinuity surfaces.
Then I study a chaos for time-perturbed DDEs. I apply our general results to
quasiperiodic piecewise linear systems in R3, and to piecewise smooth forced pla-
nar DDEs. Then I extend those result to sliding homoclinic bifurcations, when a part
of the homoclinic orbit of the unperturbed DDE lies on a discontinuity surface. A
rigorous proof of the existence of chaos for stick-slip systems is presented. I utilize
general theoretical results to planar and 3-dimensional sliding homoclinic cases.

In Chapter 7, first I investigate the Melnikov function in general by computing
its Fourier coefficients. These computations allow me to find examples when the
Melnikov function is ether identically zero or not. I also derive the second order
Melnikov function when the (first order) Melnikov function is identically zero. For
construction of concrete examples, I solve an inverse problem when the homoclinic
orbit is given and a second order ODE is found so that it possesses that homoclinic
orbit. The second part of this chapter is devoted to showing chaos near transversal
heteroclinic orbits. The third part deals with the blue sky catastrophe for periodic
orbits.

In all chapters, derived bifurcation conditions for the existence of chaos are ex-
pressed as simple zeroes of corresponding Melnikov functions. Functional analytic
approaches are used which are roughly based on a concept of exponential dichotomy
together with Lyapunov-Schmidt method. Numerical computations described by
figures are given with the help of a computational software program Mathematica.

The author is indebted to the coauthors for some results mentioned in this book:
Jan Awrejcewicz, Flaviano Battelli, Giovanni Colombo, Matteo Franca, Barnabas
M. Garay, Joseph Gruendler, Pawet Olejnik, Weiyao Zeng. Partial support of Grants
VEGA-SAV 2/0124/10, VEGA-MS 1/0098/08, an award from Literarny fond and
by the Slovak Research and Development Agency under the contract No. APVV-
0414-07 are also appreciated.

Michal Feckan
Bratislava, Slovakia
June 2010
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Chapter 1
Introduction

Many problems in the natural and engineering sciences can be modeled as evolution
processes. Mathematically this leads to either discrete or continuous dynamical sys-
tems, i.e. to either difference or differential equations. Usually such dynamical sys-
tems are nonlinear or even discontinuous and depend on parameters. Consequently
the study of qualitative behaviour of their solutions is very difficult. Rather effective
method for handling dynamical systems is the bifurcation theory, when the original
problem is a perturbation of a solvable problem, and we are interested in qualita-
tive changes of properties of solutions for small parameter variations. Nowadays the
bifurcation and perturbation theories are well developed and methods applied by
these theories are rather broad including functional-analytical tools and numerical
simulations as well [1-13].

Next, one of the fascinating behaviour of nonlinear dynamical systems which
may occur is their sensitive dependence on the initial value conditions, which results
in a chaotic time behaviour. Chaos is by no means exceptional but a typical property
of many dynamical systems in periodically stimulated cardiac cells, in electronic
circuits, in chemical reactions, in lasers, in mechanical devices, and in many other
models of biology, meteorology, economics and physics. In spite of the fact that it is
very difficult to show chaos for general evolution equations, the bifurcation theory
based on perturbation methods is a powerful tool for concluding chaos in a rather
wide class of parameterized nonlinear dynamical systems. Especially functional-
analytical methods are very convenient to show rigorously the existence of chaos in
concrete dynamical systems [14-20].

Now we show two well-known simple chaotic mechanical models. First, we con-
sider a periodically forced and damped Duffing equation

X=y, Y—x+2x+ 1y = lpcost (1.0.1)
with up, U being small. Note

)'c'—i—,ulx—x—i—2x3 = Upcost
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describes dynamics of a buckled beam, when only one mode of vibration is con-
sidered (cf Section 5.2 and [21]). Particularly, an experimental apparatus in [4, pp.
83-84] is a slender steel beam clamped to a rigid framework which supports two
magnets, when x is the beam tip displacement. The apparatus is periodically forced
using electromagnetic vibration generator (Figure 1.1).

o cost

~— (I

magnets
N . N — S
= =
S s | rigid frame
Fig. 1.1 The magneto-elastic beam.
Next, the phase portrait of
=y, y—x4+22=0 (1.0.2)

is simply found analytically by analyzing the level sets * —x> +x* = c € R [1,4,13].
Here R denotes the set of real numbers. There are three equilibria: (0,0) is hyper-
bolic and (41/2/2,0) = (£0.707107,0) are centers. There is also a symmetric ho-
moclinic cycle £y, (t) with %;(t) = (v;(t),7:(t)) and y,(r) = secht. The rest are all
periodic solutions. These results are consistent with the above experimental model
without damping and external forcing as follows: When attractive forces of the mag-
nets overcome the elastic force of the beam, the beam settles with its tip close to one
or more of the magnets: these are centers of (1.0.2). There is also an unstable central
equilibrium position of the beam at which the magnetic forces are canceled: this is
the unstable equilibrium of (1.0.2) (Figure 1.2).

When (i, are small and not identically zero, in spite of the fact that (1.0.1)
is a simply looking equation, its dynamics is very difficult. This is demonstrated in
Figure 1.3. We see that there are random oscillations of the beam tip between the two
magnets. These chaotic vibrations are also observed in the experimental apparatus
of Figure 1.1 as shown in [4, p. 84]. Theoretically it is justified by Lemma 7.2.4.
Note that almost all trajectories of the damped case y; > 0, yp = 0 tend to one of
the stable equilibria (£+/2/2,0) (cf case A of Figure 1.3).
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-1.5 1.5
Fig. 1.2 The phase portrait of the Duffing equation (1.0.2).
B X
1.0
0.5
t
0 200 400
-0.5
t
300 400 -1.0
C x D x
1.0 1.0
0.5 0.5
t
200{ 30 0
-0.5
-1.0

Fig. 1.3 The solution x(z),
B: u; =0, up =0.01, x()
1 =0.001, u, =0.01, x(0) =

0 <t <400 of (1.0.1) for A: u; =0.001, pr =0, x(0) =0.99, %(0) = 0;
0.9, x(

0) =0; C: ; = 0.001, t = 0.01, x(0) = 0.99, £(0) = 0; D:

<
99,
1.01, £(0) = 0.
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The aim of this book is to show chaos in (1.0.1) analytically. This is presented in
Section 4.1 and Subsection 5.2.6: now the Melnikov function is given by

~ . T 2
M(a) = / Ya(t) (Hacos (o +1) — w74 (¢)) dt = uzﬂsecha Sin ot — .
When py, up satisfy
3
| < |u2|7nsechg = 1.87806]12) , (1.0.3)

clearly there is a simple zero o of M, i.e. M(0g) = 0 and M'(ay) # 0. Hence by
Remark 4.1.6, (1.0.1) is chaotic for up, i, sufficiently small fulfilling (1.0.3). Note
(1.0.3) holds for cases B, C, D of Figure 1.3.

The second popular example of chaotic physical model is a damped and forced
pendulum consisting of a mass attached to a vertically oscillating pivot point by
means of mass-less and inextensible wire described by ODE ([1, p. 278] and [22, p.
216))

¢+ +sing = uycostsing, (1.0.4)

where 1, Uy are parameters (Figure 1.4).

periodic forcing

¢
A v
Fig. 1.4 The damped and forced pendulum (1.0.4).
The unperturbed ODE is given by
(ﬁ+sin¢ =0 (1.0.5)

with the phase portrait in Figure 1.5.

Note that (2k7,0) are centers and ((2k + 1)7,0) are hyperbolic equilibria of
(1.0.5) for k € Z. Here Z denotes the set of integer numbers. Moreover, (—7,0)
and (7,0) are joined by the upper separatrix or heteroclinic orbit ¥,(t) with
Yp(t) = (p(2),7»(¢)) and y,(t) = 2arctan (sinhr). The lower separatrix is —7,(t).
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Fig. 1.5 The phase portrait of the pendulum equation (1.0.5).

When (11> are small and not identically zero, (1.0.4) has very difficult dynamics.
This is demonstrated in Figure 1.6.

100 200 300 400

C ¢ D ¢
60 r 60
40
20 | ‘ ‘ ‘ -t
-20 100 200\ 300 400
160 2(;0 360 460 T4
—20 F —60
-80
Fig. 1.6 The solution ¢ (), 0 < < 400 of (1.0.4) for A: y; = 0.01, u, =0, $(0) =0, $(0) = 2;
B: tt; = 0.001, iy = 0.1, ¢(0 ):0 $(0) = 1.998; C: iy = 0.001, i = 0.1, $(0) =0, $(0) =2
D: g, = 0.001, , = 0.1, $(0) = 0, ¢(0) = 2.002.

Now the Melnikov function is given by [1, p. 467]

M(a) = /m (1) (205 (@ -+ 1)sin (1) = 3,(1) di = —27ppcsch 2 siner— 8.
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When puy, 1, satisfy
b2 T .
| < |,uz|zcsch§ = 0.341285|uy], (1.0.6)

clearly there is a simple zero o of M, i.e. M(0p) = 0 and M'(0y) # 0. Hence by
Remark 4.1.6, (1.0.4) is chaotic for up, i, sufficiently small fulfilling (1.0.6). Note
that (1.0.6) holds for cases B, C, D of Figure 1.6. Note that almost all trajectories
of the damped case t; > 0, u, = 0 tend to the one of the stable equilibria (2k7,0),
k € Z (cf case A of Figure 1.6).

In summary, examples (1.0.1) and (1.0.4) have the following common features:
they are simply looking equations with unpredictable dynamics. But deriving their
Melnikov functions, it is easy to show their chaotic behaviour. Consequently, the
aim of this book is to present many different discrete and continuous dynamical
systems defined on spaces with arbitrarily high dimensions including infinite ones
when this Melnikov type analysis is shown to be useful, and then we demonstrate
abstract results on concrete examples.
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Chapter 2
Preliminary Results

In this chapter, we recall some known mathematical notations, notions and results
which will be used later to help readers to understand this book better. For more
details, we refer readers to quoted textbooks of nonlinear functional analysis, dif-
ferential topology, singularities of smooth maps, complex analysis and dynamical
systems.

2.1 Linear Functional Analysis

Let X be a Banach space with anorm | -|. By N we denote the set of natural numbers.
A sequence {x, },en C X converges to xg € X if |x, —xo| — 0 as n — oo, for short
Xn — xo. We denote by By(r) the closed ball in X centered at x € X and with the
radius r > 0, i.e. By(r) :={z€ X | |z—x| <r}. Let S be a subset of X, i.e. S C X.
Then S is convex if As;+ (1 —A)sy € Sforall 51,52 € Sand A € [0, 1]. By conv S we
denote the convex hull of S, i.e. the intersection of all convex subsets of X containing
S. Diameter of S, diam S, is defined as diamS := {sup|x—y| | x,y € S}. S is open if
any point of S has a closed ball belonging to S. S is closed if X \ S is open. The
closure and interior of S are denoted by S and intS, respectively. Recall that § is the
smallest closed subset of X containing S, and intS is the largest open subset of S.
Clearly intB(r) ={z € X | |z—x| < r} — an open ball in X.

Let X and Y be Banach spaces. The set of all linear bounded/continuous map-
pings A : X — Y is denoted by L(X,Y), while we put L(X) := L(X,X). The norm
of A is defined by [|A[| := sup|,_; |Ax|. More generally, if ¥, Xi,..., X, are Banach
spaces, L(X X --- X X,,,Y) is the Banach space of bounded/continuous multilinear
maps from X1 X --- x X, into Y.

In using the Lyapunov-Schmidt method, we first need the following Banach in-
verse mapping theorem.

Theorem 2.1.1. If A € L(X,Y) is surjective and injective then its inverse A~' €
L(Y,X).
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We also recall the following well-known result.

Lemma 2.1.2. Let Z C X be a linear subspace with either dimZ < o or Z to be
closed with codimZ < co. Then there is a bounded projection P : X — Z. Note that
codimZ = dimX/Z and X /Z is the factor space of X with respect to Z.

Basic Banach spaces are functional ones like C" ([0,1],M*) and L” (.#,M*),

where .# C R is an interval and M € {R,C}, with the usual norms:
| f]l = max,c(o,1],i=0,... m [P f(x)| (cf Section 2.2.2) on C™ ([0, 1],Mk),
1fllp= /[, 1 fx)[PdxonLF (£, MF) for 1 < p < oo,
|| flleo = €88 SUP,c #|f(x)] =min{A > 0| |f(x)| <A for almostall x € &}
on L (ﬂ,Mk).

Here C denotes the set of complex numbers. Recall the Halder inequality
178l < I f1l,llglly for any f € LP (7, M), g € L4(#,M¥) and | + ; = 1. For
p =q =2, we get the Cauchy-Schwarz-Bunyakovsky inequality. Discrete analo-
gies of these spaces are as follows: Let I € {N,Z}. Then we set ¢P (Mk) =
{x={xm}tmer CMF | L s [xm|P < o0} with the norm ||x||, = /T, [xm|? for o >
p>1,and £ (M*) := {x = {xn}mer C M* | sup,,,¢; x| < o=} with the norm ||x[|.. =
SUp,,c; |Xm|- Note that L? (.7, M*) and ¢* (M*) are Hilbert spaces with scalar prod-

ucts (£.8) = [ f(¥)g0x) dx and (x,y) = Lyper % respectively.
Now we state the well-known Arzela-Ascoli theorem:

Theorem 2.1.3. Let {x,(t)}nen C C ([0,1],R¥) be a sequence of continuous map-

pings x, : [0,1] — RK 50 that

(i) Sequence {x,(t)}nen is uniformly bounded, i.e. there is a constant M > 0 so that
|%,(t)| <M foranyt €[0,1] and n € N.

(ii) Sequence {x,(t)}nen is equicontinuous, i.e. for any € > 0 there is a 8 > 0 so
that for any n € Nand t,s € [0,1], |t —s| < & it holds |x,(t) — xu(s)| < €.

Then there is a subsequence {x,,(t) }ien of {x(t) }nen therefore x,,(t) = xo(t) uni-
formly to some xo € C([0,1],R¥) as i — oo.

For any f € L?>([—n, nt],C), we define Fourier coefficients of f by the formula:

A 1 /=
fn):=— [ fx)e"™dx

:27: -

and n € Z. The Parseval theorem asserts that

2 ¥ f)d0) = [ roetids

meZ

and this implies a Hilbert space isomorphism between L?([—x, 7],C) and ¢3(C).
Note f = 0 if and only if f (n) = 0 for all n € Z. More sophisticated Hilbert spaces
are Sobolev spaces H? (C), (HP(R)) p € N which are all 27-periodic complex (real)
functions ¢(r) so that ¢\?) € L? ([—, zt],C). Next for any f € L' (R, C) we define its
Fourier transform by the formula:
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fr) = %27[ | rweax.

The Plancherel theorem states that the Fourier transform can be extended to L? (R, C)
with ||f]2 = ||f]l> and so f — f is a Hilbert space isomorphism from L?(R,C) to
L*(R,C).

More details and proofs of the above results can be found in [1-3].

2.2 Nonlinear Functional Analysis

2.2.1 Banach Fixed Point Theorem

Let X and Y be Banach spaces. Norms are denoted by |- |. Let U C ¥ be open. Con-

sider a mapping F : By, (r) x U — X for some xo € X and r > 0 under the following

assumptions

(a) Thereis an & € (0,1) so |F (x1,y) — F(x2,y)| < a|x; — x| for all x;,x» € By, (r)
andyeU.

(b) Thereis a0 < & < r(1 — ) so that |F(xg,y) —xo| < 6 forally € U.

Set Z := NU{0}. Now we can state the Banach fixed point theorem or uniform
contraction mapping principle [1,4,5].

Theorem 2.2.1. Suppose there exist conditions (a) and (b). Then F has a unique

fixed point ¢(y) € intBy,(r) for any y € U, i.e. §(y) = F(¢(y),y) for all y € U.

Moreover it holds

(i) If there is a constant A > 0 so that |F(x,y;) — F(x,y2)| < A|y1 — y2| for all
X € By (r) and y,y2 €U. Then [§(y1) — ¢ (y2)| < 125 [v1 —y2l forall y1,y2 € U.

(i) If F € C* (Byy(r) x U,X) for a k € Z then ¢ € C*(U,X).

—

I~

2.2.2 Implicit Function Theorem

Let X and Y be Banach spaces. Norms are denoted by |- |. Let 2 C X be open. A
map F : Q — Y is said to be (Fréchet) differentiable at xy € Q if there is a DF (xg) €
L(X,Y) so

lim |F()C0 —‘rh) - F(xo) — DF()C())h|
h—0 |h|

If F is differentiable at each x € Q and DF : Q — L(X,Y) is continuous then F
is said to be continuously differentiable on  and we write F € C'(Q,Y). Higher
derivatives D'F are defined in the usual way by induction. Similarly, the partial
derivatives are defined standardly [1, p. 46]. Now we state the implicit function
theorem [5, p. 26].

=0.
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Theorem 2.2.2. Let X, Y, Z be Banach spaces, U C X, V C Y are open subsets and
(x0,y0) € U x V. Consider F € C' (U x V,Z) so that F(xo,y) = 0 and D.F (x0,y) :
X — Z has a bounded inverse. Then there is a neighborhood Uy x Vi C U XV of
(x0,y0) and a function f € C'(Vy,X) so that f(yo) = xo and F(x,y) = 0 for U; x V,
if and only if x = f(y). Moreover, if F € CK(U x V,Z), k > 1 then f € C*(V},X).

We refer the readers to [4, 6] for more applications and generalizations of the
implicit function theorem.

2.2.3 Lyapunov-Schmidt Method

Now we recall the well-known Lyapunov-Schmidt method for solving locally non-
linear equations when the implicit function theorem fails. So let X, Y, Z be Ba-
nach spaces, U C X, V C Y are open subsets and (xo,y9) € U x V. Consider
F € C' (U xV,Z)sothat F(xo,yo) = 0. If D,F(x0,y0) : X — Z has a bounded inverse
then the implicit function theorem can be applied to solving

near (xo,yo). So we suppose that Dy F(xo,y0) : X — Z has no a bounded inverse.
In general, this situation is difficult. The simplest case is that when D,F (xo,yo) :
X — Z is Fredholm, i.e. dim A D.F(xp,y0) < o0, ZD.F(x0,y0) is closed in Z
and codimZD,F (xp,yy) < oo. Here A4 'A and #A are the kernel and range of
a linear mapping A. The index of D F (xp,yo) is defined by index D.F (xq,yo) :=
dim A D.F (xg,y0) —codimZD.F (xg,yo). Then by Lemma 2.1.2, there are bounded
projections P : X — A" D,F (x0,y0) and Q : Z — ZDyF (x¢,y0). Hence we split any
xeXasx=xo+u+tvwithuec Z{—P),veZP, and decompose (2.2.1) as follows:

H(u,v,y) = QOF (xo+u+v,y) =0, (2.2.2)

(I—Q)F(xo+u+v,y)=0. (2.2.3)

Observe that D, H (0,0, y0) = DF (x0,y0)|%(1— P) — ZD\F (x0,y0). So D,H (0,0, y0)
is injective and surjective. So by Banach inverse mapping theorem 2.1.1, D,,H(0,0,yo)
has a bounded inverse. Since H(0,0,yo) = 0, the implicit function theorem can be
applied to solving (2.2.2) in u = u(v,y) with u(0,yo) = 0. Inserting this solution into
(2.2.3) we get the bifurcation equation:

B(v,y) :== (I—Q)F (xo +u(v,y) +v,y) =0.
Since B(0,y0) = (I— Q)F (x9,y0) = 0 and

DVB(anO) = (]If Q)DXF()C(),y()) (Dvu(ovy()) +H) = 07
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the function B(v,y) has a higher singularity at (0,yy), so the implicit function theo-
rem is not applicable, and the bifurcation theory must be used [5].

2.2.4 Brouwer Degree

Let Q C R" be open bounded subset. A triple (F,Q,y) is admissible if F € C(Q,R")
andy € R" withy ¢ F(d), where dL2 is the border of 2. Now on these admissible
triples (F,,y), there is a Z-defined function deg [1, p. 56].

Theorem 2.2.3. There is a unique mapping deg defined on the set of all admissible
triples (F,Q,y) determined by the following properties:

(i) Ifdeg(F,Q,y) # 0 then there is an x € Q consequently F(x) =y.

(ii) deg(I,Q,y) =1 foranyy € Q.

(iil) deg(F,Q,y) = deg(F,£2:,y) + deg(F,£2,,y) whenever Q, , are disjoint open
subsets of Q so thaty ¢ F (2\ (2,UQ,)).

(iv) deg(F(A,-),8,y) is constant for F € C ([0,1] x ©,X) and y ¢ F (0,1] x 9£2).

The number deg(F, Q,y) is called the Brouwer degree of the map F. If xj is an
isolated zero of F in Q C R” then I(xg) := deg(F,£2y,0) is called the Brouwer index
of F at xo, where xo € Qy C £ is an open subset so xj is the only zero point of F on
Qo [5, p. 69]. I(xp) is independent of such €. Note that if y € R” is a regular value
of F,i.e. det DF (x) # 0 for any x € Q with F(x) =y, and y ¢ F(dQ), then F~!(y)
is finite and deg(F,Q,y) = Yicr-1(y)Sgn detDF (x). Particularly if xo is as simple
zero of F(x), i.e. F(xo) = 0 and detDF (xo) # 0, then I(xo) = sgndet DF (xp) = £1.

2.2.5 Local Invertibility

It is well known that the linear invertibility implies local nonlinear invertibility.
More precisely, let us consider amap F : X — Y, F(0) = 0, where F is C!'—smooth
and X, Y are Banach spaces. If DF(0) is invertible, then any C'-small perturbation
of F has a unique zero point near 0. This follows from the implicit function theorem
2.2.2. Now we shall study a reverse problem [7].

Theorem 2.2.4. Consider a C*>~smooth map F : X — Y satisfying F(0) = 0 and
assume that DF (0) is Fredholm with index 0.

If there exist a neighbourhood U C X of 0 and numbers K > 0, 0 > 0 so that for
any linear bounded mapping B:X — Y, ||B|| < K the perturbation €éB+F,0<g < $§
has the only zero point 0 in U, then DF (0) is invertible.

Note that if there is a number K satisfying the assumption of the above theorem,
then this assumption holds with any K > 0 and the same neighbourhood U. Of
course, we must take another 0 > 0. If we are interested in the invertibility of DF (xo)
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for a general fixed xq satisfying F(xp) = 0, then Theorem 2.2.4 is applied with
perturbations of the form s(B — on) + F, where B has the properties of Theorem
2.2.4. Indeed, we apply Theorem 2.2.4 to the map x — F (x +x0). The perturbation
term € (B — on) is affinely small.

2.2.6 Global Invertibility

Let X, Y be Banach spaces and f € C(X,Y). Then f is proper if the inverse image
£71(C) of any compact subset C C Y is compact [4, p. 102].

Theorem 2.2.5. If X and Y are finitely dimensional, then f is proper if f is coercive,
i.e. | f(x)| — oo whenever |x| — oo.

Now we state the following Banach-Mazur theorem of global invertibility of
mappings.

Theorem 2.2.6. (i) f is a homeomorphism of X onto Y if and only if f is a local
homeomorphism and proper.

(i) If f € CY(X,Y) then f is a diffeomorphism if and only if f is proper and
Df(x) is a linear homeomorphism for each x € X.

2.3 Multivalued Mappings

Let X, Y be Banach spaces and let Q C X. By 2¥ we denote the family of all subsets
of Y. Any mapping F : Q — 2¥ \ {0} is called multivalued or set-valued mappings.
A multivalued mapping F : Q — 2¥\ {0} is convex (compact)-valued if F(x) is
convex (compact) for any x € .

By B(X) we denote the family of all nonempty closed bounded subsets of X. Let
A, B € B(X), then their Hausdorff distance dy (A, B) is defined as follows

dy(A,B) := max {sup [inf |x—a] ,sup [inf |x—b|} } .
acA |¥€B beB |¥€A

It is well known that dy is a metric on B(X) and B(X) is a complete metric space
with respect to dy [8,9]. A multivalued mapping F : X — B(Y) is Lipschitz contin-
uous with a constant A > 0, if

du(F (x1),F(x2)) < Alxi —x2

for any x1,x2 € X. Now we state the Lojasiewicz-Ornelas parametrization theorem

[10]:
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Theorem 2.3.1. If G : R" — R" is a compact convex-valued map which is Lipschitz,
then there exists a Lipschitz map g : R" X %rn — R" so that G(x) = g(x, Brn) for
all x e R", where Prn is a closed unit ball in R". Moreover, the Lipschitz constant of
g(= g(x, p)) with respect to the variable x is proportional to the Lipschitz constant
of G, while the Lipschitz constant of g with respect to the second variable p is
proportional to the maximal norm of the elements of G.

2.4 Differential Topology

2.4.1 Differentiable Manifolds

Let M be a subset of | R¥. We use the induced topology on M, that is, A C M is open if
there is an open set A C R¥ so that A = ANM. We say that M C ]Rk is a C"-manifold
(r € N) of dimension m if for each p € M there is a neighborhood U C M of p and a
homeomorphism x : U — Uy, where Uy is an open subset in R", so that the inverse
x~ 1 € C"(Up,R¥) and Dx~'(u) : R™ — R is injective for any u € Up. Then we say
that (x,U) is a local C"-chart around p and U is a coordinate neighborhood of p.
It is clear that if x : U — R™ and y : V — R™ are two local C"-charts in M with
UNV #0then yox ! : x(UNV) — y(UNV) is a C"diffeomorphism. This family
of local charts is called a C"-atlas for M [11-13].

If there is a C"-atlas for M so that detD(yox~!)(z) > 0 for any z € x(U NV) and
any two local C"-charts x : U — R™ and y : V — R of this atlas with UNV # 0
then M is oriented.

Let o € C'((—¢,€),R¥) be a differentiable curve on M, i.e. o : (—¢,€) — M with
0(0) = p. Then o/'(0) is a tangent vector to M at p. The set of all tangent vectors to
M at p is the tangent space to M at p and it is denoted by T,M. The tangent bundle
is

™ := {(p,v) ERFxRN [ peM,ve TpM}

with the natural projection ©: TM — M given as t(p,v) = p. If M is a C"-manifold
with 7 > 1 then TM is a C"~!-manifold.

Let M and N be two C"-manifolds. We say that f: M — N is a C"-mapping if for
each p € M the mapping yo fox ! : x(U) — y(V) is C"-smooth, where x : U — R™ is
alocal C"-chartin M around p andy : V — R® is alocal C"-chart in N with f(U) C V.
This definition is independent of the choice of charts. The set of C"-mappings is
denoted by C"(M,N). Take f € C"(M,N). Let a : (—€,€) — M be a differentiable
curve on M with &¢(0) = pand o’ (0) =v. Then foa : (—¢,&) — N is a differentiable
curve on N with (foa)(0) = f(p), so we can define Df(p)v := D(fo)(0) €
Ty(p)N. This is independent of curve . The map Df(p) : T,M — Ty(,)N is linear,
andif r > 1,Df : TM — TN defined as Df (p,v) := (f(p),Df (p)v) is C"~'-smooth.

Aset S C M C R*is a C"-submanifold of M of dimension s if for each p € S there
are open sets U C M containing p, V C R’ containing 0 and W C R™™* containing



16 2 Preliminary Results

0 and a C"-diffeomorphism ¢ : U — V x W so that ¢(SNU) =V x {0}. We put
codim$ = dimM —dim S.

A C"-mapping f: M — N is an immersion (submersion) if Df(p) is injective
(surjective) forall p € M. If f : M — N is an injective immersion we say that f(M) is
an immersed submanifold. If, in addition, f : M — f(M) C N is a homeomorphism,
where f(M) has the induced topology, then f is an embedding. In this case, f(M) is
a submanifold of N.

2.4.2 Vector Bundles

A C"-vector bundle of dimension n is a triple (E, p, B) where E, B are C"-manifolds
and p € C"(E,B) with the following properties: for each g € B there is its open
neighborhood U C B and a C"-diffeomorphism ¢ : p~!(U) — U x R" so that p =
mo¢ on p~ ! (U) where 7 : U x R" — U is defined as 7 (x,y) := x. Moreover,
each p~!(x) is n-dimensional vector spaces and each ¢, : p~!(x) — R”" given by
O (y) = (x,¢:(y)) for any y € p~!(x) is linear isomorphisms. E is called the total
space, B is the base space, p the projection of the bundle, the vector space p~!(x)
the fibre and ¢ a local trivialization. So the vector bundle is locally trivial. If U = B
then the bundle is trivial. The family </ := {(¢,U)} of these local trivializations is
a C"-vector atlas. The bundle is oriented if there is a C"-vector atlas o/ := {(¢,U)}
so that for any two local trivializations (¢,U) and (y,V) with U NV # 0 the linear
mapping W, 0 ¢! : R” — R” is orientation preserving for each x € UNV. A C’-
smooth mapping s : B — E satisfying pos = I[p is called a section of the bundle.

Typical examples of vector bundles are the tangent bundle (TM,7,M) and the
normal bundle (TM~*, T, M) defined as

™, = {(q,v) cRExRK[geM,ve TqML}

with the projection 7 : TM~* — M given as 7(q,v) = ¢, where T,M~ is the orthogo-
nal complement of T,M in R, A section of TM is called a vector field on M. When
M is oriented, both TM and TM* are oriented. Here M is a C"-manifold with r > 1.

2.4.3 Tubular Neighbourhoods

Let M be a submanifold of a smooth manifold N. A tubular neigbourhood of M in
N is an open subset & of N together with a submersion p : & — M so that [14, pp.
69-71]:

() the triple (&, p,M) is a vector bundle, and
(b) M C 0 is the zero section of this vector bundle.
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Theorem 2.4.1. Let M be a submanifold of N, then there exists a tubular neighbour-
hood of M in N.

If N = R”" then we can realize a tubular neighbourhood of a submanifold M by
using its normal vector bundle TM*.

2.5 Dynamical Systems

2.5.1 Homogenous Linear Equations

Set Z_ = —~Z,. LetJ € {Z.,Z_,7}. Let A, € L(R¥), n € J be a sequence of
invertible matrices. Consider a homogeneous linear difference equation

Xnt1 = ApXp - (2.5.1)

Its fundamental solution is defined as U (n) := A,_;---Ag forn € N, U(0) =1 and
Un):=A,"- -Aj for —n € N. (2.5.1) has an exponential dichotomy on J if there

is a projection P : RF — R¥ and constants L > 0, § € (0,1) so that

|U(n)PU(m)~ || < L8" ™ forany m < n,n,m € J
|U(n)(T—P)U (m)~ || < L™ " forany n <m,n,m e J.

If A, = A and its spectrum o(A) has no intersection with the unit circle, i.e. A is
hyperbolic, then P is the projection onto the generalized eigenspace of eigenvectors
inside the unit circle and .4 P is the generalized eigenspace of eigenvectors outside
the unit circle. Next we have the following roughness of exponential dichotomies.

Lemma 2.5.1. Let J € {Z,Z_}. Let A be hyperbolic with the dichotomy projection
P. Assume that {A,(&)},c; € L(R) are invertible matrices and A,(§) — A in L(RF)
uniformly with respect to a parameter &. Then x,11 = A, (& )xp, with the fundamental
solution Ug (n), has an exponential dichotomy on J with projection Pg and uniform
constants L > 0, § € (0,1). Moreover, Ug (n) Pz U (n)~! — P as n — oo uniformly
with respect to &.

Analogical results hold for a homogeneous linear differential equation x = A(t)x
when 1 € J € {(—,0),(0,0),R} and A(t) € C(J,L(R¥)) is a continuous matrix
function. Its fundamental solution is a matrix function U(t) satisfying U(t) =
A(r)U(t) on J. Sometimes we require that U(0) = I [15]. Now, we recall the Li-
ouville theorem that ,

detU (1) = detU (1) e "W

where trA(t) denotes the trace which is the sum of diagonal entries of A(¢). Finally
we mention the Gronwall inequality that if

00) <)+ [ V)00 ds
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for all 7 € [a,b] then
¢ (t) < (X(t) efé y(s)ds

for all 7 € [a,b], where a < b, o, ¢ and y are nonnegative continuous functions on
[a,b], and moreover, o is C'-smooth satisfying ' (t) > 0 for any t € [a, b].

2.5.2 Chaos in Diffeomorphisms

Consider a C"-diffeomorphism f on R™ with r € N, i.e. a mapping f € C"(R™ R™)
which is invertible and f~! € C"(R™ R™). For any z € R we define its k-iteration
as f*(z) .= f(f*'(2)). The set {f"(z)}>_.. is an orbit of f. If xo = f(xo) then
Xo is a fixed point of f. It is hyperbolic if the linearization Df(xo) of f at xo has
no eigenvalues on the unit circle. The global stable (unstable) manifold W;O(”)
hyperbolic fixed point x is defined by [16]

of a

W;g“) ={zeR"| f"(z) > xp as n—oo(—oo)},

respectively. Recall that Wy and Wy are immersed C”-submanifolds in R™. Further-
more, let yo be another hyperbolic fixed point of f. If x € W NWyi \ {x0,y0} then it
is a heteroclinic point of f and then the orbit { f"*(x)};_,, is called heteroclinic orbit.
Clearly f"(z) — x0 asn — ooand f"(z) — yo as n — —oo. If LWy NT,Wji = {0} then
x is a transversal heteroclinic point of f. Note the following useful results [15, 17].
Lemma 2.5.2. x € Wy "Wyt \ {xo, Y0} is a transversal heteroclinic point if and only
if the linear difference equation x,+1 = Df(f"(x))x, has an exponential dichotomy
onZ, i.e. if and only if the only bounded solution of x,+1 = Df (f"(x))x, on Z is the

zZero one.

When xp = yg, the word “heteroclinic” is replaced with homoclinic. We refer the
readers to [15] for more details and proofs of the above subject.

Let & = {0, 1}” be a compact metric space of the set of doubly infinite sequences
of 0 and 1 endowed with the metric [18]

len — ey

ds({en},{en}) := Z ln|

nez

On & it is defined as the so-called Bernoulli shift map ¢ : & — & by 6({e,}jez) =
{ej+1} jez with extremely rich dynamics [19].

Theorem 2.5.3. ¢ is a homeomorphism having

(1) a countable infinity of periodic orbits of all possible periods,
(ii) an uncountable infinity of nonperiodic orbits, and
(iii) a dense orbit.
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Now we can state the following result of the existence of the deterministic chaos
for diffeomorphisms, the Smale-Birkhoff homoclinic theorem.

Theorem 2.5.4. Suppose f : R" — R™ r € N are a C"-diffeomorphism having a
transversal homoclinic point to a hyperbolic fixed point. Then there is a k € N so that
f* has an invariant set A, i.e. f*(A) = A, so f*o @ = ¢ o & for a homeomorphism
¢:& — A (Figure 2.1).

& &

¢ ¢

fk
A A

Fig. 2.1 Commutative diagram of deterministic chaos.

The set A is the Smale horseshoe and we say that f has horseshoe dynamics
on A. By Theorem 2.5.4, f* on A has the same dynamical properties as ¢ on &,
i.e. Theorem 2.5.3 gives chaos for f. Moreover, it is possible to show a sensitive
dependence on initial conditions of f on A in the sense that there is an & > 0 so
that for any x € A and any neighborhood U of x, there exists z € U N A and an
integer g > 1, consequently | f9(x) — f9(z)| > &.

2.5.3 Periodic ODEs

It is well known [20] that the Cauchy problem
x=g(x,1), x(0)=zeR" (2.5.2)

for g € C"(R™ x R,R™), r € N has a unique solution x(¢) = ¢(z,) defined in a
maximal interval 0 € I, C R. We suppose for simplicity that I, = R. This is true, for
instance, when g is globally Lipschitz continuous in x, i.e. there is a constant L > 0
so that |g(x,t) — g(y,)| < L|x—y| for any x,y € R™, t € R. Moreover, we assume
that g is T-periodic in ¢, i.e. g(x,z +7T) = g(x,¢) for any x € R™, ¢ € R. Then the
dynamics of (2.5.2) is determined by the dynamics of the diffeomorphism f(z) =
¢(z,T) which is called the time or Poincareé map of (2.5.2). Now we can transform
the results of Section 2.5.2 to (2.5.2). So T-periodic solutions (periodics for short)
of (2.5.2) are fixed points of f. A T-periodic solution of (2.5.2) is hyperbolic if
the corresponding fixed point of f is hyperbolic. Periodics of f are subharmonic
solutions (subharmonics for short) of (2.5.2). Similarly we mean a chaos of (2.5.2)
as a chaos for f. Finally, let % (¢) = ¢ (xo0,) be a T-periodic solution of

x=g(x,1). (2.5.3)
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Consider its variational equation along Y given by v = g, (y(¢),7) v with the funda-
mental matrix solution V(¢). Then Df(x9) =V (T') [21]. Now we have the following
result from the proof of Theorem 2.1 on p. 288 of [22].

Lemma 2.5.5. Let X be a Banach space. Let Cy,(R, X) be the space of all continuous
and bounded functions from R to X endowed with the supremum norm. Consider

i=A(t)u (2.5.4)

with the fundamental solution U (t), where A(t) € C(R,L(X)) is T-periodic. Then
the following statements are equivalent

(i) The nonhomogeneous equation
u=At)u+nh

has a unique solution u € Cyp(R,X) for any h € Cp(R,X).

(ii) The zero solution of (2.5.4) is hyperbolic, i.e. c(U(T)) has no eigenvalues on
the unit circle.

(iii) Equation (2.5.4) has an exponential dichotomy on R.

Lemma 2.5.5 is useful for verifying the hyperbolicity of 7y of (2.5.3).

2.5.4 Vector Fields

When (2.5.2) is autonomous, i.e. g is independent of ¢, (2.5.2) has the form
x=g(x), x(0)=zeR". (2.5.5)

g is called a C"-vector field on R™ for g € C"(R™ ,R™), r € N. We suppose for
simplicity that the unique solution x(¢) = ¢(z,¢) of (2.5.5) is defined on R. ¢(z,¢) is
called the orbit based at z. Then instead of the time map of (2.5.5), we consider the
flow ¢ : R™ — R™ defined as ¢ (z) := ¢(z,t) with the property ¢ (¢s(z)) = ¢44(2).

A point p is an @-limit point of x is there are points {¢y, (x)},.; on the orbit of x
so that ¢, (x) — p and #; — co. A point g is an a-limit point if such a sequence exists
with ¢, (x) — g and t; — —co. The o~ (resp. ®-) limit sets &¢(x), @(x) are the sets of
a- and -limit points of x.

A point xp with g(xp) = 0 is an equilibrium of (2.5.5). It is hyperbolic if the
linearization Dg(xg) of (2.5.5) at xo has no eigenvalues on imaginary axis.

The global stable (unstable) manifold WXSO(M) of a hyperbolic equilibrium xp is
defined by

Wa = {2 €R"[9(z,1) =30 as 1 —oo(—w)},

respectively. These sets are immersed submanifolds of R™. For any x € W;;)("), we

know that
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TxWxSO(u) = {v(O) € R™ | v(t) is a bounded solution

of v =Dg(¢(x,2))v on (0,0), ((—eo,0)), respectively} .

Moreover, the set
(T, + TWy)

is the linear space of initial values w(0) of all bounded solutions w(t) of the adjoint
equation w = —Dg(¢(x,1))*w on R [23].

A local dynamics near a hyperbolic equilibrium xg of (2.5.5) is explained by the
Hartman-Grobman theorem for flows [24].

Theorem 2.5.6. If xo = 0 is a hyperbolic equilibrium of (2.5.5) then there is a home-
omorphism h defined on a neighborhood U of 0 in R™ so that

h((z,1)) =P8V h(z)
forallze U andt € J, with §(z,t) € U, where 0 € J, is an interval.

For nonhyperbolic equilibria we have the following center manifold theorem for
flows [24].

Theorem 2.5.7. Let xo = 0 be an equilibrium of a C"-vector field (2.5.5) on R™.
Divide the spectrum of Dg(0) into three parts 05, 0y, O, so that RA < 0;> 0;=0if
A € oy, 0y, O, respectively. Let the generalized eigenspaces of oy, 0, ©. be E*, EY,
E¢, respectively. Then there are C"-smooth manifolds: the stable W, the unstable
Wy, the center Wy tangent at 0 to E°, E“, E€, respectively. These manifolds are
invariants for the flow of (2.5.5), i.e. ¢ (W) C W' for any t € R. The stable
and unstable ones are unique, but the center one need not be. In addition, when g
is embedded into a C"-smooth family of vector fields ge with go = g, these invariant
manifolds are C"-smooth also with respect to €.

Under the assumptions of Theorem 2.5.7 near xo = 0 we can write (2.5.5) in the
form
Xy = Agxg + gs(xmxuvxw 8) ,
Xy = AuXy + gu(Xsy X, X, €) (2.5.6)
Xe = Acxs +gc(XS7xuaxm£) s

where Ag... := Dg(0)/E** and Xy, € Uy, for open neighborhoods Us... of 0
in ES*%¢, respectively. Here we suppose that (2.5.5) is embedded into a C"-smooth
family. So g; are C"-smooth satisfying g;(0,0,0,0) = 0 and Dy,g(0,0,0,0) =0
for j,k = s,u,c. According to Theorem 2.5.7, the local center manifold sz)c,g near
(0,0,0) of (2.5.6) is a graph

Wige.e = {(hs(xc, €), hu(xe, €),xc) | xe € Uck

for hyy, € C"(U. x V,ES") and V is an open neighborhood of € = 0. Moreover, it
holds k., (0,0) = 0 and Dy, Ay, (0,0) = 0. The reduced equation is



22 2 Preliminary Results
xc:Acxs+gc(hs(x6a8)7hu(x678)>x678)u (2.5.7)

which locally determines the dynamics of (2.5.6), i.e. W, ce contains all solutions
of (2.5.6) staying in Uy x U, x U, for all t € R. In particular periodics, homoclinics
and heteroclinics of (2.5.6) near (0,0,0) solve (2.5.7).

Finally we say that (2.5.5) has a first integral H : R" — R if H o ¢; = H for any
teR.

2.5.5 Global Center Manifolds

Let C’g(Rm,R") be the Banach space of C* functions from R™ to R" which are
bounded together with their derivatives, endowed with the usual sup-norm. We con-
sider the following system of ODEs:

x=A(y)x+F(xy),

2.5.
¥=Glx,y), 258

where x € R",y € R™ and assume that the following conditions hold:

(i) FeCyR"xR"R"),G e Cp(R"xR™ R™),A € C;,(R",L(R")) with r > 1.

(i) There exists § > 0 so that for any y € R™ and for any A(y) € o(A(y)), one has
|RA(y)| > 8. Moreover, the derivatives of order r of A(y), F(x,y), G(x,y) are
continuous in x, uniformly with respect to y € R™.

(i) sup  {IF(0,y)[,[F(0,9)],|G(x,y)],|Gx(x,¥)],|Gy(x,y)]} < o
(x,y) R xR™

Now we can state the following result.

Theorem 2.5.8. There exists a oy > 0 so that, if the above conditions hold with
o < 0y, there exists a C"-function H(y), defined for y € R™ so that the manifold

¢ ={(x,y) eR"xR" |[x=H(y),y € R"}

is invariant for the system (2.5.8) and has the following property:

(P) There exists p > 0 so that if (x(t),y(t)) is a solution of (2.5.8) satisfying
[xllee < p, then x(t) = H(y(z)).

% is called the global center manifold of (2.5.8). We refer the readers to [25] for
more details.

2.5.6 Two-Dimensional Flows

In this section we consider a planar ODE
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= fx), (2.5.9)

where x = (x1,x2) € R? and f = (fi,f>) is smooth. First we have the following
useful result of Poincare and Bendixson [20,21].

Theorem 2.5.9. A nonempty compact ®- or o-limit set of a planar flow, which con-
tains no equilibria, is a closed orbit.

The next Bendixson criterion rules out the occurrence of closed orbits in some
cases [20,21].

Theorem 2.5.10. If in a simply connected region D C R? the divergence div f =

gf : + af 2 of (2.5.9) is not identically zero and does not change sign, then (2.5.9)

has no ciosed orbits lying entirely in D.

2.5.7 Averaging Method

In this section, we consider systems of the form [21, 24, 26]
x=¢ef(x,t,€), (2.5.10)
where f € C" (R""2,R"), r > 2.

Definition 2.5.11. f € C" (]R””,R"), r > 2 is said to be KBM-vector field, (KBM
stands for Krylov, Bogolyubov and Mitropolsky) if the average

= lim — / f(x,5,0)d

t—oo

exists for any x € R". The associated autonomous averaged system is defined as

y=¢efoly). (2.5.11)
We have the following results.

Theorem 2.5.12. Suppose for (2.5.10) that f is T-periodic in t. Then f is a KBM-
vector field. Moreover; for any € > 0 sufficiently small, we get

(i) Ifx(t) and y(t) are solutions of (2.5.10) and (2.5.11) with |x(0) —y(0)| = O(¢),
then |x(t) — y(t)| = O(€) on a time scale t ~ 1/&.

(i) If po is a hyperbolic equilibrium of (2.5.11) then (2.5.10) possesses a unique
hyperbolic periodic orbit Y (t) = po + O(€) of the same stability type as po.

(iii) If x5(t) € W*(¥e) is a solution of (2.5.10) lying on the stable manifold of %,
ys(t) € Wi(po) is a solution of (2.5.11) lying on the stable manifold of po and
|x(0) —y(0)| = O(€), then |x(t) — y(t)| = O(¢€) for any t > 0. Similar results
apply to solutions lying in the unstable manifolds in the time interval t < 0.
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The above theorem can be generalized to more complicated hyperbolic sets [21,
26]. For instance, the following holds:

Theorem 2.5.13. Suppose f, fo are C'-smooth and fy(yo) = 0 with Ro (D fo(yo)) <
0. If xo is in a domain of attraction of yo, then for any € > 0 sufficiently small,
|xe(2) — y(2)| = o(1) for any t > 0, where x.(t) and y(t) are solutions of (2.5.10)
and (2.5.11) with x(0) = y(0) = xo, respectively.

2.5.8 Carathéodory Type ODEs

In this section we recall some results on ODEs only measurable depending on ¢.

Definition 2.5.14. Let .# be an interval in R. A mapping f : . x R" — R" is said
to have the Carathéodory property if the following assumptions hold [27,28]:

(i) Foreveryt € .# the mapping f(z,-) : R" — R”" is continuous.
(ii) For every x € R" the mapping f(-,x) : .# — R" is measurable with respect to
the Borel o-algebras on .# and R”.

We note that if f has a Carathéodory property and x : .# — R”" is measurable then
f(#,x(r)) is measurable as well.

Definition 2.5.15. A function x : .# — R" is absolutely continuous [2] if for any
€>0thereisad >0sothatforanyoy < i< <P < <oy <P, &,Bi €5
sothat Y (B — o) < 8, itholds YX_, [x(B) —x()| < €.

It is well known that an absolutely continuous function on .# has almost ev-
erywhere a derivative. By a solution of an ODE % = f(¢,x) with a Carathéodory
mapping f, we mean an absolutely continuous function x(¢) satisfying this ODE
almost everywhere.

2.6 Singularities of Smooth Maps

Here we recall some results from the theory of smooth maps [14].

2.6.1 Jet Bundles

Definition 2.6.1. Let M, N be smooth manifolds with dimensions m and n, respec-
tively. Let f,g € C*(M,N) with f(p) = g(p) = q. f has kth order contact with g at
p if in local coordinates

ololy, dlolg;

Jx® T ox¢




2.6 Singularities of Smooth Maps 25

for every multi-index @ = (@, ..., 0,) with |a| =a;+- -+ o, <kand 1 <i<n,
where f;, g; are the coordinate functions of f, g, respectively, and x = (x1,...,%).
This is written as f ~y g at p.

LetJ*(M,N) ».q denote the set of equivalence classes under “~y at p” in C* (M, N).
Let J¥(M,N) := U(p7q>€MxNJk (M,N),, - disjoint union. An element of JX(M,N)
is called a k-jet and J* (M, N) is the jet bundle. Note that given f € C*(M,N) there is
amapping j*f : M — J*(M,N) called the k-jet of f defined by j*f(p) := the equiv-
alence class of f in J¥ (M,N),, s(» for every p € M. Note that JO(M,N)=M xN.
For any k-jet & € JK (M,N), there is its source p € M and the rarget g € M.
Let f be the representative of & € J' (M,N). Then we define the rank of & as
rank & := rank Df (p) and corank as corank & := min{m,n} —rank &.

Theorem 2.6.2. Let L’ (R™,R") := {A € L(R"™,R") | corankA = r}. Then L' (R", R")
is a submanifold of L(R™ ,R") with codimL"(R™ R") = (m — min{n,m} 4+ r)(n —
min{n,m} +r).

Theorem 2.6.3. Let S, := {& € J' (M,N) | corank & = r}. Then S, is a submanifold
of J'(M,N) with codimS, = (m — min{n,m} +r)(n — min{n,m} +r).

2.6.2 Whitney C™ Topology

Let M,N be smooth manifolds. Let k € Z. Let U be an open subset of J*(M,N).
Then the family of sets

feC™(M,N)| j* f(M)cU
{ }

forms a basis for a Whitney C* topology on C**(M,N). The union of all open subsets
of C*(M,N) in some Whitney C¥ topology forms a basis of a Whitney C* topology
on C*(M,N). We note that a subset of topological space is residual if it is the count-
able intersection of open dense subsets. A topological space is a Baire space if its
every residual set is dense.

Theorem 2.6.4. C*(M,N) is a Baire space in the Whitney C* topology.

2.6.3 Transversality

Definition 2.6.5. Let M,N be smooth manifolds and f : M — N be a smooth map.
Let S be a submanifold of N and x € M. Then f transversally intersects S at x € M
denoted by fMS at x, if either

1) f(x) ¢S, or
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(i) f(x) € Sand Ty(y)N = Tf(x>S+Df(x)TXM.
If £ S for any x € M, then f transversally intersects S denoted by fhS.

Theorem 2.6.6. If fS then f~'(S) is a smooth submanifold with codimension
codim S.

Now we state the Thom transversality theorem.

Theorem 2.6.7. Let W be a submanifold of J*(M,N). Then
Ty = {f € C*(M,N) | jkfﬁw}

is a residual subset of C*(M,N) in the Whitney C* topology. If, in addition, W is
closed, then Ty is open.

2.6.4 Malgrange Preparation Theorem

Theorem 2.6.8. Let F' be a smooth real-valued function defined on a neighbourhood
of 0 in R x R" so that F(t,0) = g(t)t, where g(0) # 0 and g is smooth on some
neighbourhood of 0 in R. Then there is a smooth G with G(0) # 0 and smooth
A{), o ,Ak,l so that

k=1
(GF)(t,x) =1*+ Z Ai(x)t.
i=0
As a consequence of the generalized Malgrange theorem, we have the Whitney the-
orem [14, p. 108].

Theorem 2.6.9. Let f : R — R be a smooth even function, then there is a smooth
function g : R — R satisfying f(x) = g(x?).

2.6.5 Complex Analysis

Here we recall some basic results from the theory of complex functions [2]. Let
Q C Cbe a region, i.e. Q is open and connected. A complex function f: Q — Cis
holomorphic if for any zo € Q there is a derivative f'(z9) € C of f at zy defined by

i £ f(z0)

=0 Z—20

= f'(z0)-

The class of all holomorphic functions on € is denoted by H(£2). Any f € H(Q)
is analytic, i.e. f(z) = Y7y ci(z—z0)" for any zp € © and z near zo. Next, for any
nonzero f € H(L2) the set Z(f) := {z € 2 | f(z) = 0} consists at most of isolated
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points. Moreover, if zo € Z(f) then f(z) = (z—z0)"g(z) for g € H(Q), g(z0) # 0,
and m is the order of the zero which has f at zy.
A function f: Q — C has a pole of order m in zp € Q if

flz)= i ci(z—z)

i=—m

with c_,, # 0, for any z # 7o near zo. We denote by Res(f,z0) := c_; the complex
residue of f(z) at the pole zp.
A function f : Q — C is meromorphic if there is a subset A C  so that:

1. A consists of isolated points;
2. fEH(Q\A),
3. f has poles in A.

Note that each rational function, i.e. a quotient of two polynomials, is meromorphic
on C.

Next zg is an essential singularity of f if f(z) = ¥ . ci(z—zo)' for any z # zo
near 7o and with infinitely many nonzero c¢,,, m < 0.

A path vy is a piecewise continuously differentiable curve in the plane, i.e. y €
C ([a,b],C) and there are finite a = 59 < 51 < -+ < s, = b so that y € C'([s;, s;+1],C)
foreach i =0,...,n— 1. A path is closed if y(a) = y(b). The integral of a holomor-
phic function f over the path 7 is defined as

n-l pes;ig
Jr@de=1 [ sy @,

If a path y counterclockwise encloses all poles of a meromorphic function f(z), then
the Cauchy residue theorem states that

/yf(z)dzzZm Z Res(f,z0) -

Z0€A

Particularly, if a path 7y counterclockwise encloses only a pole zp of a meromorphic
function f(z), then

Res(f,z0) = ;m/yf(z)dz. (2.6.1)

Finally we states the Schwarz reflection principle.

Theorem 2.6.10. Suppose L is a segment on the real axis, Q7 is a region in [1" :=
{z € C|3z> 0}, and every 7 € L is the center of an open disc D, so that ITT N D,
liesin Q. Let Q= :={z| 7€ Q"}. Suppose f € H(Q™") and lim, . 3 f(z,) =0
for every sequence {z,} in Q% which converges to a point in L. Then there is a
function F € H(QTULUQ™), sothat F(z) = f(z) in Q" and F (Z) = F(z) for any
7€ QTULUQ.
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Chapter 3
Chaos in Discrete Dynamical Systems

This chapter is devoted to functional analytical methods for showing chaos in dis-
crete dynamical systems involving difference equations, diffeomorphisms, regular
and singular ODEs with impulses, and inflated mappings as well.

3.1 Transversal Bounded Solutions

3.1.1 Difference Equations

In this section, we consider difference equations of the form

X1 = S () + h(xie, 1, k) (3.1.1)
with x; € R", u € R™. We make the following assumptions of (3.1.1):

(i) f, h are C*>-smooth in all non-discrete arguments.

(ii) f(0) =0 and A(-,0,-) =0.

(iii) The eigenvalues of D f(0) are non-zero and all lie off the unit circle.

(iv) The unperturbed equation x;; = f(x;) has a homoclinic solution. That is, there
exists a nonzero sequence ¥ = {¥ }xez so that limy_.4 % =0 and Y1 = f(%)-
Moreover, Df (Yk), k € Z are nonsingular.

Our aim is to find a set of parameters u for which (3.1.1) has a transver-
sal bounded solution {¥;};cz near {};}rez, i.e. the linearization of (3.1.1) along
{X ez given by

Virt = (Df (%) + Dih(%, k) ) v, k€ Z

has the only bounded solution vy =0, Vk € Z (cf Lemma 2.5.2). When 4 is indepen-
dent of k, i.e. (3.1.1) is a mapping, we know from Section 2.5.2 that the existence of
such a bounded solution means the existence of a transversal homoclinic orbit and
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thus chaos. In general, (3.1.1) can be associated with quasiperiodically perturbed
systems [1-3]. To derive these sets, higher dimensional Melnikov mappings are in-
troduced. Simple zero points of those mappings give wedge-shaped regions in R
for u representing the desired sets.

We establish a complete analogy between the Melnikov theories for difference
equations and ordinary differential equations (cf Section 4.1). Two-dimensional
mappings are considered in [2, 4, 5]. Mappings in arbitrary finite dimensions are
considered in [6—8] but the dimension is 1 in [8], which is released in this section,
for the intersection of tangent spaces and stable and unstable manifolds along a
homoclinic solution to a hyperbolic fixed point of the unperturbed mapping, and
while the transversality is not proved in [6]. In this section, no restriction is given on
the dimension of the phase space or on the dimension of intersection of stable and
unstable manifolds. Other types of homoclinic bifurcations are given in [9].

3.1.2 Variational Equation

The norm and scalar product of R” are denoted by |- |, (-,-), respectively. Let us
consider the unperturbed equation

Xerr = f ). (3.1.2)

For (3.1.2) we adopt the standard notation W*, W* for the local stable and local
unstable manifolds, respectively, of the origin and dy = dimW*¥, d, = dimW". Since
x = 0 is a hyperbolic equilibrium, {7 }xcz must approach the origin along W* as
k — +o0 and along W" as k — —oo. By the variational equation of (3.1.2) along
{% } ez we mean the linear difference equation

1 = D (% )ug (3.1.3)

We note that as k — oo, Df (1) — Df(0), a hyperbolic matrix. Thus, the following
result yields two solutions for (3.1.3), one for k € Z . and one fork € Z_.

Lemma 3.1.1. Let k — A(k) be a matrix valued function on Z and suppose there
exists a constant nonsingular matrix, Ao, and a scalar a > 0 so that supycz, |A(k) —
Ag|e*®™ < oo, Then there exists a fundamental solution, X (k) for k large, to the dif-
ference equation x;.1 = A(k)x; so that klim X(k)Ay* =1

Proof. The proof is very similar to [10, Lemma 3.1.1] and [11, 1. Lemma], but we
present it here for the readers’ convenience. Let P be a matrix so that P~'AgP = J,
where J is the Jordan form with the block-diagonal form J = diag (J1,J>,...,J;).
Let k; be the order of J; and A; is the eigenvalue corresponding to J;. We arrange the
Jordan blocks so that [A;| < |A;11|. By putting y = P~'x and B(k) = P~'A(k)P, the
equation xg1 = A(k)x, has the form

Vi1 = B(k)yr = Jyx + (B(k) — J)yx . (3.1.4)
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We fix one block J; and define p; = k; +ky + --- + k;—1. Similarly we define ¢;
satisfying |A,,_,| < |4 and |A,,| = |A:|. We split the matrix J* into U, (k),Us(k),
where - .
Ui (k) = (Jf,J5,... JE_,0,...,0),
Us(k) = (0,0,...,0,J5 ,....JF).

Since the spectrum ¢(U; (1)) is contained inside the circle with the radius |[A,, ||,
we can assume by [12, 3.126 Lemma]

Ui(1)] < [Ag [ +D < M| =b

for b > 0 sufficiently small. Consequently, we obtain for k > 0 that |U; (k)| <
|UL(1)]F < (JAi| = b)K. Since o(Us(—1)) = (o(Uz(l)))*l, we similarly have

U>(K)| < (|Ai| = D), VkeZ_

again for b > 0O sufficiently small. Let ¢; be the k-th column of the n x n identity
matrix. By fixing ko € N sufficiently large, let us define a mapping T for k = ko, ko +
1,... and for j € {1,2,... k;} as follows:

k—1 oo
Tk =JTepsj+ Y Uilk—1—j)(B(j) —T)y;— Y Us(k—1— j)(B(j)—J)y;-
j=k

J=ko
(3.1.5)
We consider this mapping on the Banach space:

V= {h 1y €R - sup [y (] +6)7 < o=}
J=Ko

with the norm [[|y[| = supyy, |vel (4] +b) K fory= {y;}74,- To show that 7; is
well defined, we compute

sup [ el (1] +5) ™ < oo,

since |[J¥| < ¢1(|Ai| +d)* fora 0 < d < b and ¢; > 0. By taking b > 0 satisfying

|Ai|+b 42
<e*,
|Ai| —b
we have for a constant ¢ > 0
k—1 .
sup Y Uik = 1= )(BG) = T)y;| (|l +b)~
J=ko

B l‘—b kk—l |A|_|_b B J
< 1 1 ‘l i da 00
< el =b)blls ((F5) X (s e ™) <

J=ko
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and
sup Y |Uak—1— J)(BG) — Iy (4] +5)* <
=k

< esup Y (12l = b)Y V(A +B) e (| 43] +5)
j=k

_ Al =Nk Al D 4\
< 1 1 ‘ 4a
< c(|A] —b) |||y|||Sl,:P(;Li|+b>§(|xi|—be ) <

Consequently, we arrive at |||7;(y)||| < oo, so T : Y — Y. Furthermore, we have

|Ail —b
|li|+b

k
V8>03n0>k0:< ) < eVk>np.

By using this property, the contraction of T} follows the same arguments as the well
defined T;. Consequently by Banach fixed point theorem 2.2.1, T; has a fixed point
y(j) satisfying by (3.1.5)

() —I*ep il < Ko(|Ai| - b)Yk

for a constant K > 0. By defining the matrix ¥;(k) of the order n X k; with ()i in
column j, we obtain
[Yilk) = ()] (4] = 6) ™" < Ko,

where F;(k) is the n X k;-matrix with Jl!‘ in rows p; + 1 through p; + k; and all other
rows zero. Let G; be the identity matrix of order k; x k;. Then limy_... Y;(k)J~ k=g,
and G; is the matrix of order n x k; with G; in rows p; + 1 through p; +k; and all other
rows zero. This construction is done for the block J;. To get the result, we take the
n x n matrix Y (k) with ¥;(k) in columns p; + 1 through p; + k; fori =1,2,...,r. So
lim ... Y (k)J~* = I Finally, by putting X (k) = PY (k)P~' we arrive at X (k+1) =
A(k)X (k) satisfying
X(k)Ay* =1 as k— oo.

The proof is finished. a

Our next result matches at k = 0 the two solutions of (3.1.3) provided by the
preceding lemma. The proof of the following theorem is a slight extension of [10,
Theorem 3.1.2] and [11, Theorem. 2], so we omit the proof.

Theorem 3.1.2. Let d; = dimW?, d, = dimW* for (3.1.3) and let I;, 1, denote the
identity matrices of order ds, d, respectively. There exists a fundamental solution
U(k), k € Z for (3.1.3) along with constants M > 1, Ky > 0 and four projections P,
Py, Py, Py, so that P+ Py, + Py + P, = 1 and the following hold:

() |U@)(Pys+Pus)U(s) | < KpMU™) for 0<s<t,
(i) |U®#)(Pu~+Pu)U ()" | < KoM= for 0<1<s,
(iii) |U(t)(Pys + Pu)U (s) "' < KoM= for 1 <s<0,
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(Qv) |U(t)(Pys +Pu)U(s) 7Y < KoM= for s<t<O.
Also, rank P; = rank P, = d for some positive integer d.

In the language of dichotomies (cf Section 2.5.1) we see that Theorem 3.1.2
provides a two-sided exponential dichotomy. For k — —eo an exponential dichotomy
is given by the fundamental solution U (k) and the projection P,s + P, while for
k — +oo such is given by U (k) and Py, + P.

Let u;(k) denote column j of U (k) and assume that these are numbered so that

I; 0,0 0;0;0
Pu=1040401, Ps=|071;0
000 000

Here, I; denotes the d x d identity matrix and Od denotes the d x d zero matrix.
For each i = 1,...,n we define u; (k) by (u; (k),uj(kJr 1)) = 6;j. The vectors
ui-(k) can be computed from the formula U/ (k) =U(k+1)"! where U* (k) de-
notes the matrix with u; (k) as column j. By using the identity U (k+ 1)U (k)** =1
we obtain that U(k+ 1)+ = (Df(yk+|)*)71U(k)i. Thus, U (k) is the adjoint of
U (k). Note {ui (k) }rez, i = 1,2,--+ ,d is a basis of bounded solutions on Z to the

adjoint variational equation wy1 = (Df (Y%4+1)*) "k
We take the Banach space

Z={{yj}bjen 1 yj €R", suplyj| < oo
je

with the norm ||y|| = supcy, [yk| for y = {y;} jez. Summation of the inequalities in
Theorem 3.1.2 yields the following result.

Theorem 3.1.3. Let U be the fundamental solution to (3.1.3) along with the projec-
tions Py, Py, Py, Py, as in Theorem 3.1.2. Then there exists a constant K > 0 so
that for any z € Z the following hold:

D) Yo lUG) (P +Pu)UK) "2 <Kzl for j>0,
(i) T U ) (Pou+Pu)U (k) 'z < K|zl for j =0,
(iif) X [U (1) (Pus + Pu)U (k)2 < K[l2l| for j<0,
(iv) Z/izfm'U(])( P+ Py )U (k)™ Zk|<KHZ|| for j<0.

Let us define a closed linear subspace of Z given by

zoz{zez: y PWU(k+1)*lzk=o}.
f—
Note

0= i PuuU(k“rl) k= Z PuuU Zk<:>> Z =0
k=—o0 k=—oc0 k=—o0
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forall j=1,2,...,d. We consider the difference equation:

%1 =Df (M) +wk, {Witiez €Z. (3.1.6)
The following result is a Fredholm-like condition for (3.1.6).

Theorem 3.1.4. Necessary and sufficient condition for the existence of a solution
{xk}k€Z (SV4 Of (3.1.6) is that {Wk}kGZ € 7.

Proof. “="
Let z = {z }xez be a solution of (3.1.6). Denote A(k) = Df(7;) and compute

PuU(k+1) g = PuU(k+ 1) 'A(K) 25+ PuU (k+1) " 'w

Since U(k+1) = A(k)U (k), U(k+1)"' =U(k)"'A(k)~!, and hence

Z PuU(k+1)"" 2341 = Z PuU(K) e+ Y PuU(k+1)"'w
k=—o0 k=—oo0 k=—o0

which implies

We note that Theorem 3.1.3 gives the convergence of these series.
K‘¢”
Let w = {wi}7__.. € Zo. We define the mapping %" as follows:

—1 k—1
H Wi =Um)] Y PUG+1) i+ Y (Pt Pu)U(+1) 7w
J=— J=

=)

Z su""Puu .]+1)71Wj:|a

fork >0,

H (W) { Z U (G+1)7 Wj+ Z Pus +Pu)U ]+1)_1W1
: j—foo

- E(Pss +PSu)U(j+ 1)_1W'1} ’
j=k

for k£ < 0. Here we define ):j;lo = 0. Theorem 3.1.3 implies the well defined defini-
tion and continuity of % : Zy — Z and by putting 7z = & (W), Vk € Z in (3.1.6),
we easily verify that it is a solution. We note that the general solution of (3.1.6) has
the form:

d
Z:Zﬁjuj+d—|—jf/(w), ﬁjER.

Jj=1
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The proof is finished. O
The next result provides an appropriate projection.

Theorem 3.1.5. Let U be as in Theorem 3.1.2 and let Zy be as in Theorem 3.1.4.
There exists a bounded projection I1 : Z — Z so that ZI1 = Zj.

Proof. We take II in the form I — P, where P is defined by

U(k+1 ad . _
P(W)k:MPMM-Z U(j+1) le,
Jj=—o0

and the sequence {ay }rez satisfies

= ] U(k+1
a>0,YkeZ, Y —=1, sup(7+)<oo.
k= —oo k+1 ke7  Gk+1

We verify that this P is a projection, i.e. P> =P :

P(P(W))k:P<{U(s+1)Puu i U(j+1)le} )
SEZ

as+1 j=—oo

k+1 > [+1 >
VD oy vy (Y e Y wG )y ) = PO
Ak+1 oo aj+ Am—

Hence P is a projection. Now we verify that IT = I — P is such that [Iw € Zj :

i P U(k+1)" I (w); = i Py U(k+ 1)1 (T —P)(w)i

k=—oc0 k=—o0
iad Ulk+1 >
= Y Pk 1) (= YE e Y pG
oo k41 j=—oc0

= Y PLUMK+1)""wy

k=—oo
> [ Uk+1 o ) _
- Y P.UK+1)™ QPW Y uGi+1)"'w;| =0.
k=—o0 A1 j=—co
Consequently, IT has the desired properties. a

3.1.3 Perturbation Theory

We study the equation (cf Theorem 2.2.4):
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F[J,e,y(x)k = Xk+1 7f(xk) 7h(xk7“,k) 76“1“’%()6*)77 ’}/) =

(3.1.7)
Fuey:Z—2,

where .¢ : Z — Z is a linear continuous mapping so that ||.Z|| < 1,y € Z, and
€ € R is small. It is clear that solutions of (3.1.7) with € = 0 are bounded solutions
of (3.1.1). We define mappings L: Z — Z and G : Z X R" x R X Z — Z as follows:
L(2)k = zk+1 —Df (W) 2k
G(z, 1,89k = [+ %) — (%) = Df (V) zk + hlze+ Ve, M, k) + €[u| L (2 —y) .

By putting x = z+ Y in (3.1.7), this equation has the form:
L(z) = G(z,1,€,y). (3.1.8)

We decompose (3.1.8) in the following way

L(Z):HG(Z,[J,,S,)/), OZ(H*H)G(LM’&)’)'

By using Theorem 3.1.4, the above pair of equations is equivalent to

d
=Y Bjujra+-2# (IIG(z,u,e,y)), BjeR (3.1.9)
=

and
0=1-II)G(z,u,¢,y). (3.1.10)

Moreover by using the Lyapunov-Schmidt procedure from Section 2.2.3 like in [11,
Theorem 8], the study of Egs. (3.1.9) and (3.1.10) can be expressed in the following
theorem for z, U, €, B = (B1, B2, - - -, Ba), y sufficiently small.

Theorem 3.1.6. Let U and d be as in Theorem 3.1.2. Then there exist small neigh-
borhoods 0 € Q C Z,0c O CRY 0c W C R™",0 €V C R and a C*-function
H:QxO0xWxV — R denoted by (y,B,1,€) — H(y, B, 1, &) with the follow-
ing properties:

(1) The equation H(y, 3,1, €) = 0 holds if and only if (3.1.7) has a solution near y
and moreover, each such (y,B, L, €) determines only one solution of (3.1.7),
(ii) H(O 0,0,0) =0,

<o 0.0 0>zkgz<u 0 (0.0.0)).

V) azkaﬁ, (0,0,0,0) = = ¥ez (w5 (1), D* £ (1) (ua j (1), uasx(1)))-

We introduce the following notations:
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a,~,~=—2< y,,01)>

€7

bije = = ¥ (u (1), D2 () (a0 (1)) -

I€Z

Finally, we take the mapping M,; : R? — R4 defined by

))l = iaiju/ Z bl]kﬁjﬁk

jkl

Now we can state the main result of this section.

Theorem 3.1.7. If M,,, has a simple zero point By, i.e. By satisfies My, (Bo) = 0 and
DgMy, (Bo) is a regular matrix, then there is a wedge-shaped region in R™ for u of
the form

x = {szﬁ . s, respectively i, is from a small open

neighborhood of 0 € R, respectively of Ly € Rm}

so that for any u € %\ {0}, Equation (3.1.1) possesses a transversal bounded so-
lution.

Proof. Let us consider the mapping defined by

1 ~
5 —H(y,sp,s*f1,s38), for s#0,
(D(y7ﬁ7.a7§as): S2 .
Mﬂ(ﬁ)7 for s=0.

According to (ii)~(v) of Theorem 3.1.6, the mapping @ is C'-smooth near
(v, B.1,&,5) = (0, Bo, o, 0,0)
with respect to the variable B . Since
My, (Bo) =0 and DgMy,(Bo) is aregular matrix,

we can apply the implicit function theorem to solving locally and uniquely the equa-
tion @ = 0 in the variable B This gives for € = 0, by (i) of Theorem 3.1.6, the
existence of % on which (3.1.1) has a bounded solution.

To prove the transversality of these bounded solutions, we fix g € %\ {0} and
take

y= ’)7_ Y,
where 7 is the solution of (3.1.7) for which the transversality should be proved. Then

we vary € = s°& small. Note that s # 0 is also fixed due to u = s>fi. Since the lo-
cal uniqueness of solutions of (3.1.7) near 7 is satisfied for any € sufficiently small
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according to the above application of the implicit function theorem, such equation
(3.1.7) (with the fixed u € Z\ {0}, € = s°& where s # 0 is also fixed and the special
y = ¥—7) has the only solution x = ¥ near ¥ for any € sufficiently small. Now The-
orem 2.2.4 gives the invertibility of DF;, o 7—y(¥) and so the only bounded solution
on Z of the equation

Vir1 = Df (%) + Dih (i, 1, k)vi
is vy = 0, Vk € Z. The proof is finished. a

Remark 3.1.8. Note that we can take any bases of bounded solutions of the varia-
tional and adjoint variational equations for constructing the Melnikov function M,.
Similar observations can be applied to detecting of other Melnikov functions in this
book.

Remark 3.1.9. Assume that (3.1.1) is autonomous, i.e. & is independent of k, suppose
conditions (i)—(iv) and f is a diffeomorphism. Then we have a local diffeomorphism
Fyu(x) := f(x) +h(x,pt) for u small. If there is an open bounded subset 2 C R? so
that 0 ¢ M,,,(9Q) and deg (M, 2,0) # 0 then for any 0 # o € Z there isak, € N
such that for any k > k;, there is a set Ay C R” and a continuous mapping ¢ : Ay — &
so that Fi*(A¢) = Ay, ¢ is surjective and injective, and ¢ o F;;* = 6 o ¢. Note that
we do not know whether @ is a homeomorphism. But we do know that F,, has in-
finitelly many periodic orbits and quasiperiodic ones and it has positive topological
entropy. This is a generalization of the Smale-Birkhoff homoclinic theorem 2.5.4
to this case. Particularly, if By is an isolated zero of My, with a nonzero Brouwer
index, then we have a chaotic behaviour of F}, (cf [13]). This remark can be applied
to other Melnikov type conditions in this book.

3.1.4 Bifurcation from a Manifold of Homoclinic Solutions

In many cases, (3.1.2) has a manifold of homoclinic solutions. Hence we suppose
that

(v) There is an open non-empty subset & C R and C3-smooth mappings % : 0 —
R" w: 0 — R" Vk € Z satisfying

%r1(0) = f((8)), VkeZ,V0cO,
0(0)=f(w(0)), VOeO,
lim %(6) = 0(6), VOcO.

(vi) The eigenvalues of Df(@(6))V0 € & are non-zero and all lie off the unit
circle. Moreover, Df (%(0)) Yk € Z, V0 € € are nonsingular.

(vii) % are uniformly bounded on & with respect to k € Z when 6 = (6, 6,,
.oy 0y).
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(vili) From %.1(8) = f(1(6)). we obtain Z1(8) = D (%(6)) 3% (6). We sup-

d
pose that {%(9)} ez is a basis of the space of bounded solutions of the
i i=1,ke

difference equation
Vie1 = Df (1%(0)) v - (3.1.11)

We use the approach of Section 3.1.3 by considering 0 as a parameter. The dif-
d
ference is only that now {3 0, (6)} ez provides a natural family of solutions of
i=1,ke

(3.1.11) corresponding to the projections Py;. Hence we suppose that Theorem 3.1.2
holds parametricaly by 6 € €, i.e. U = U(0,¢) is smooth in (6,¢) and columns of
U(0,t) are numbered so that

I, 040 0, 04 0
Pu=1040401, Py=1071;0
000 000

Now we take x = z+¥(0),7(0) = {%(0) }rez in (3.1.7). The corresponding opera-
tors of (3.1.8) then depend on 6 as well:
L(z,0)k = zx+1 — Df (%(0)) 2,
G(z,0,1,€,y)k = f(z+ %(6)) — f(%(0)) — Df (%(0))zk
+h(zk + '}/k(o)auvk) +£|[J|$(ny) .
Consequently, (3.1.7) has the form

L(z,8) = G(z,0,u,¢.y),
and (3.1.9)—(3.1.10) are replaced by
2= (0)(I1(6)G(z,0,1,e,)), 0=(-I1(0))G(z,0,p,e,y), (3.1.12)

where J#(0) and I1(6) are corresponding mappings to %, I, respectively. We
consider in (3.1.12) the variable 6 as a bifurcation parameter. We take the mapping
Ny : R? — R? defined by

Za,] ;s

where

(6) = = I (u (0.0 5 (0(6).0.0).

I€Z

The vectors u;-(6,1) are defined by (ui(6,1),u;(6,1+ 1)) = §;;. By repeating the
proof of Theorem 3.1.7, we can state the main result of this section.

Theorem 3.1.10. If Ny, has a simple zero point 6y, i.e. 8y satisfies Ny, (6) = 0 and
DgNy,(60) is a regular matrix, then there is a wedge-shaped region in R™ for i1 of
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the form

X = {s/ft 1 s, respectively[l, is from a small open

neighborhood of 0 € R, respectively of Ly € R™ }

so that for any u € %\ {0}, Equation (3.1.1) possesses a transversal bounded so-
lution.

3.1.5 Applications to Impulsive Differential Equations

It is well known that the theory of impulsive differential equations is an important
branch of differential equations with many applications [14—20]. For this reason, we
consider a 4-dimensional impulsive differential equation given by
:=281(2), y=80),
Z(l+> :Z(l—)+‘uh1(Z(l—)7y(l—)7[J,), (3.1.13)
y(l+):y(l—)-|-‘uh2(Z(l—)7y(l—),[J), iEZv

where
g2 €CP(RER?), e CP(RPxR*xR,R?), ueR

and z = g1(z), y = g2(y) are Hamiltonian systems. Let ¥}, ¥ be the 1-time Poincare
mappings of z = g;(z), y = g2(y), respectively. Here z(i+) = lim z(s). We consider
S—iq

the mapping

F(z,y,u) =

(3.1.14)
(‘1’1 (2) +uh (Wi(2), B (y), 1), Fo (y) + b2 (P4 (Z),‘Pz(y),u)> :

Clearly the dynamics of (3.1.14) determines the behaviour of (3.1.13). In the nota-
tion of (3.1.1), we have

x=(z,y) ER* xR f(x)= (i(2), ¥a(y))

3.1.15
h(xa.uvk): (#hl('f’l(Z)»'f’z(y)»#)Mhz('f’l(z),‘f’z()’)aﬂ)) ( )

We suppose

(a) g12(0) = 0 and the eigenvalues of Dg »(0) lie off the imaginary axis.
(b) There are homoclinic solutions ¥;, 1> of Z = g1(z), ¥ = g2(), respectively, to 0.

The conditions (a) and (b) imply that
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%(0) = (1 (61 +k), n(62+k)), keZ
®(0) =(0,0), 6=(6,6,)c =R

satisfy (v)—(viii) of Section 3.1.4 for (3.1.15). Now (3.1.11) has the form
Vip1 = DL (71(61+K)) v, wir1 = DF(12(62 + k) ) w .

Hence (3.1.11) is now decomposed into two difference equations. We note that ¥ »
are area-preserving, i.e. detD¥; »(z) = 1 (cf Sections 2.5.1 and 2.5.3). We can take

u3(97k): (71(91+k)70)a Lt4(9,k): (OaYZ(GZ"V‘k))

Now we need the following result [8, pp. 104—105].

Lemma 3.1.11. Ler {A;}rez be a sequence of invertible 2 x 2-matrices so that

detA; = 1. If {xx}rez satisfies x,11 = Agxy, then zi := Jxpyq for J = <_01 (l))

satisfies zx41 = (A} +1)’lzk.
Proof. The result directly follows from the identity A} oJ oAy = detAyJ = J. a

Using Lemma 3.1.11, we can take
wi (6,k) = (1(61+k+1),0), u3(6,k) = (0,7a(62+k+1)),

where 7 = (22,—21),Vz = (z1,22) € R?, and u1(8,k), u2(8,k) are not required to be
known. Consequently, the mapping N,, of Section 3.1.4 has now the form

(Nu(8)), = =1 Y hi (i (n (61 +k)), H(12(62+k)),0) AT (61 +k+1)
keZ

=pY 16 +k)Ahi(1(61+k),1(6:+k),0),
kEZ

(Nu(0)), = =1 Y ha (Wi (71 (61 +k)), F5(12(62 +k)),0) Ao (62 +k+ 1)
keZ

=u Y B(6+k) A (71 (61+k),1(6:+k),0),
keZ
) (3.1.16)

where A is the wedge product defined by z Ay = z1y2 — z2y1, 2,y € R2. Theorem
3.1.10 gives the following result.

Theorem 3.1.12. If there is a simple zero point of Ni(0) given by (3.1.16), then
(3.1.13) has a transversal homoclinic solution and so it exhibits chaos for any 1L # 0
sufficiently small.

Of course, there are hj, hy satisfying the assumptions of Theorem 3.1.12. For
simplicity, we assume
g=81=8, hmyuw)=>0+wy+a

R (3.1.17)
ha(z,y, ) = (1+u%)z+ o,
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where o € R? is a constant vector. Then we have y; = 75 = vy and (3.1.16) possesses
the form

(Nu(0)), = ¥ 76 +K) A Y82 + )+ L 761 +8)) nex

kEZ kEZ
(3.1.18)
(Nu(0)), =1 ¥, 162 +K) A (8 +K)+p( ¥ 7(6:+8)) nax
keZ keZ

We put

=Y vt+k)Ay(t+k)+ (Zy (t+k) )
keZ kEZ

We note that Q is 1-periodic. We clearly for 8 = (7, 7) have
(N#(B))l = (NIJ(G))Q = ,LL.Q(T),
(DNH(O))l :LL(Q/(T)’O)’ (DN#(G))QZH(OVQ/(T))‘

Simple computations give the following result.

Theorem 3.1.13. Consider (3.1.13) with (3.1.17). If 1y is a simple root of Q(7T) then
0 = (70, T0) is a simple zero point of N1 (0) given by (3.1.18).

To be more concrete, we take in (3.1.17)
g(x,x2) = (x,x1—2x7), a=(B,B).

Hence (3.1.13) has the form

sz—2x3 "=y—2y37
(i) = x(i—) +u((1+p)y(i—) +B),
X(i) = a(i—) +p((1+p)yi—) +B), (3.1.19)

(i) =y(i—) + p((1+p1*)x(i—) + B),
¥(i+) =y(i—) +u((1+p*)i(i-)+B), i€Z.

(3.1.19) are two Duffing equations coupled by impulsive effects. We now take y(¢) =
(secht, secht) and Q has the form

2(r+k)
Zsech4 (T+k) +ﬁz sech? (T4k).
ke keZ 2

Consequently, we have
Q(7) = Qi(1) = f2a(7),
where

62(T+k) _3
Qi)=Y sech* (T4+k), (1) = y —-—

sech? (1+k).
keZ keZ 2
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The functions £, are again 1-periodic. Moreover, they are analytic and € is
positive (cf Section 2.6.5). Clearly, £2,/€; is non-constant. So the image of R by
2,/8; is aninterval [a;,a;], —eo < a; < ap < oo and there is only a finite number of
Bi,-..,Bj, € [a1,az] so that Q = Q| — B, does have a simple root for any 8 # 0
satisfying 1/B € [a1,a2] \ {B1,-..,Bj, }-

Numerical evaluation of the graph of Q,(7)/(7) shows that (Figure 3.1)

0.02f

0.01f

-0.01f

-0.02"*
Fig. 3.1 The graph of function y = Q2,(7)/€, (7).

a; = By = —0.0190729, a; =B, ~0.0199198, j,=2.

In summary, we arrive at the following result.

Theorem 3.1.14. If cither B < —52.431 or B > 50.202 then impulsive system
(3.1.19) has a chaotic behaviour for any p # 0 sufficiently small.

We note that a coupled two McMillan mappings (cf Section 3.2.4 and [4, 5]) can
be similarly studied. In general, after applying our results, the main difficulty is to
find an appropriate form of the Melnikov mapping derived in the above way so that
one could be able to detect its simple zero point. The Poisson summation formula
like in [4] could help to overcome this difficulty.

Remark 3.1.15. Similar to the above, we can study more general impulsive ODEs of
the form
x=f (xa 8)7

(3.1.20)
x(i+0)=x(i—0)+ea(x(i—0),€), i€Z,

where f, a € C2(R™!,R"), f(-,0) has a hyperbolic fixed point xo with a homoclinic
orbit y(+). Furthermore, assume that the adjoint variational equation
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- —(Dxf(y(t),o))*v

has only a unique (up to constant multiples) bounded nonzero solution u. Then the
Melnikov function of (3.1.20) has the form

=

M) =Y, <a(}’(l+i),0),u(l+i)>+/_°;<D€f(}/(s),0),u(s)>ds. (3.1.21)

[=—o0

Note that formula (3.1.21) follows also from considerations of Sections 3.3 and 3.4.
We see that (3.1.21) consists of the continuous and impulsive parts of (3.1.20) as
well.

Finally we note that a different type of chaos is studied in [21] for a special initial
value problem of a non-autonomous impulsive differential equation. ODEs with step
function coefficients are studied in [22-28], and our theory can be applied to such
ODE:s.

3.2 Transversal Homoclinic Orbits

3.2.1 Higher Dimensional Difference Equations

This section is a continuation of Section 3.1. So we consider difference equation
Xnt1 = g(xn) + €h(n,xp, €) 3.2.1)

where x,, € RV, € € R is a small parameter. The main purpose of this section is to
study the homoclinic bifurcations of difference equations in a degenerate case. We
assume the following conditions about the difference equation (3.2.1):

(H1) g,h are C3-smooth in all continuous variables.
(H2) The unperturbed difference equation

Xnt1 = g(xn) (3.2.2)

has a hyperbolic fixed poitnt 0, that is, the eigenvalues of g,(0) are non-zero
and they lie off the unit circle.

(H3) The unperturbed difference equation (3.2.2) has a one-parameter family of ho-
moclinic solutions y(¢t) = { % (@)} .., & € R connecting 0. That is, { %, (@)},
is a non-zero sequence of C3-smooth vector functions satisfying ¥,.1(o) =
g(wm(a)) and nETm () = 0 uniformly with respect to bounded . The set

Unez Uaer {1 ()} is bounded.
(H4) g.(1m()) is invertible, and || g; ' (:())|| is uniformly bounded on Z.

We denote by W*(0) and W*(0) the stable and unstable manifolds of the hyperbolic
fixed point 0, respectively, and by Ty o) W*(0) and Ty o W*(0) the tangent spaces
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to W#(0) and W*(0) at 3 (o). We say the homoclinic orbit {7y, (o) }*,, is degenerate
if the dimension of the linear subspace

T (o)W (0) Ty e WH(0)

is greater than one. Otherwise, we say the homoclinic orbit {y, (o) }%,, is nondegen-
erate. We can easily prove that the homoclinic orbit {7y, (&) }*,, is degenerate if and
only if the following variational equation along the homoclinic orbit {¥,(a)}*.,

§n+l = gx(yn(a))én (3.2.3)

has d > 1 linearly independent bounded solutions on Z.

When 4 is independent of n, i.e. (3.2.1) is a mapping, the existence of a transver-
sal homoclinic solution for (3.2.1) is discussed in [8,29]. When 4 depends on n, the
existence of a transversal homoclinic solution for (3.2.1) in the degenerate case is
discussed in Section 3.1. Now we study (3.2.1) also with d > 1 for (3.2.3). Our aim is
to find analytic conditions under which the difference equation (3.2.1) has for € # 0
sufficiently small a transversal bounded solution {x,(€)}*,, near the homoclinic so-
lution {7,(0t)}*,,. The transversality of {x,(€)}>,, means that the linearization of
the difference equation (3.3.1) along {x, (&) }*,, given by

Sni1 = [8x(xn(€)) + €hi(n,xn(€), €)] &

admits an exponential dichotomy on Z (cf Lemma 2.5.2).
The degenerate problem, when d > 1 for (3.2.3), can be naturally divided into
two cases:

(1) There exists a d-dimensional homoclinic manifold. This is the most natural way
to get d > 1 for (3.2.3).

(2) The invariant manifolds W*(0) and W*(0) meet in only a higher dimensional
tangency.

Case (1) is studied in Section 3.1.4 (see also more comments at the end of Section
3.2.2), and Case 2 is treated in this section.

Two-dimensional mappings for nondegenerate cases are considered in [2, 4, 5].
Higher dimensional mappings are studied in [7].

3.2.2 Bifurcation Result

Let

X= {{xn}f’w} | |x, € RY and suplx,| < 00}
nez

be the Banach space with the norm |x| = sup |x,| for x = {x,,}*°.,. We define a linear
nez

operator L as follows:
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L:X—X, (L&),=¢&1—a(m(a)é,

where & = {&,}*,, and L = {(LE),}*... Theorem 3.1.4 has the following equiva-
lent form [29].

Lemma 3.2.1. Suppose conditions (H1)-(H4) are satisfied. Then

(i) The operator L is Fredholm with index zero.
(i) f={fu}"w € ZL if and only if

+oo
Y vi(e)-f,=0 (3.2.4)

n=—o0

holds for all bounded solutions y(a) = {y, (o) }™,, of the adjoint variational
equation

€n+1 = (g;*c('}’nﬂ(a)))iléw (3.2.5)
(iii) If (3.2.4) holds, then the difference equation

X1 = &x(W(Q))Xn + fu
has a unique bounded solution x = {x,}*., on Z satisfying
(OC) -x0=0

for all bounded solutions @(at) = {@,(0t)}*,, of the linear difference equation
(3.2.3) on Z.

From condition (H3), we have ¥,. () = g(¥%(a)). Differentiating both sides

of this difference equation with respect to o, we obtain J,+1 (o) = gx(v(a)) T (et),

where “-” = %. Hence y(a) = {#(a)}”.. is a nontrivial bounded solution on Z

of the variational equation (3.2.3). That is, jo(ct) € Ty, () W*(0) N Ty (o) W*(0). We
assume that

(H5)  dim(Ty,()W*(0) N Ty o)W*(0)) =d  (d > 1) for a constant d uniformly
with respect to «.

Condition (HS) is equivalent to the condition that the variational equation (3.2.3)
has d (> 1) linearly independent bounded solutions on Z, denoted by

¢i() = 7(@) = {T()} =,
@2(0) ={@2(0)} e - 5 @a(@) = {Pun(0)} -

We let
(Dn(OC) = ((Pl,n(a)a (PZ.,n(a)v cee (Pd,n(a))

be an N X d matrix and

(o) = ((pz,n(a),---ﬂpd,n(a))
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be an N x (d — 1) matrix. From Section 3.1.2 it follows that under conditions
(H1)—(HS), the adjoint equation (3.2.5) also has d and only d linearly independent
bounded solutions on Z, denoted by

{Wl’n(a)}o—qooa {WZH( )}—oo’ - {de( )m :

We let
(@) = (1.0(0), Y200, ., Van(@))

be an N x d matrix. We suppose that &, (&) and ¥, () are C3-smooth in o for any
n € Z. The main result of this section is the following theorem.

Theorem 3.2.2. Suppose conditions (H1)—(HS) are satisfied. We define a Melnikov
vector mapping by

= Y (@) {2000 7(0).0) + g1 (00) (@) B B )B) ).

Nn—=—oo
If there exists (0, Bo) € R x R~ 50 that

M(op,Bo) =0 and detD 4 p) M(ag, Bo) #0,

then for € sufficiently small, there exist two continuously differentiable functions

= a(e), B = B(¢), satisfying o.(0) = ag, B(0) = o so that for € # 0 sufficiently

small, the difference equation
_ 2 2
Xni1 = 8(xn) + €°h(n,x,,€7)

has a bounded solution x(€) = {x,(€)}*,, so that

xn(€) — wm(a(e)) — Dy (au(e)) B ()| = O(€?) (3.2.6)

and the variational equation

Enr1 = {8e(xn(€)) + hx(n,xa(€), %) } &

admits an exponential dichotomy on Z.

=)

Proof. First of all, we prove the existence of a bounded solution {x,(&)}~,,. We
make a change of variables

Yn = Xn — Ya(Q) — (Dr(z)(a)ﬁ
for the difference equation (3.2.1), where 8 € R~ is a vector parameter. Then the
difference equation (3.2.1) reads
Ynr1 = g +W(a) + q)r?(a)ﬁ) +eh(n,y, + () + (P,?(Ot)ﬁ78)

(3.2.7)
—&(h()) = gx(1(@) Y () -
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For simplicity, we define

G(n,yn, . B, €) = eh(n,yn+ V(@) + Dy (@) B,€) — g(())
+g()’n+'}/n(a)+¢r?(a)ﬁ) _gx(')/n(a))(yn‘F(p;?(a)B)a

then the difference equation (3.2.7) can be written as

Yn+1 :gx('}’n(a))yn+G(n»))n7aaﬁa8)' (3.2.8)

We put

= Y w(a) (o),

n=—oo

so then the d x d matrix D(a) is invertible [30, p. 129]. Using the Lyapunov-
Schmidt method and Lemma 3.2.1, we see that the difference equation (3.2.8) is
equivalent to the following two equations

yn+1 = gx(Yn(a)>yn + G(”y)’m aaﬁag)

— @, (a)D(a) i W (@)G Uy, . Be) (3.2.9)
=
and i
Y, ¥ ()G(n,yn, . B.€) =0. (3.2.10)
Since o
T w@fGtape) - wi@n @ T @l ep o) =0

G(n,0,0,0,0)=0 and Gy(n,0,,0,0) =0,

it follows from Lemma 3.2.1 and the implicit function theorem that for €, suffi-
ciently small, the difference equation (3.2.9) has a unique small bounded solution

y=y(a,B,€) = {yu(a,B,€)}>,, € X satisfying
@;(a)yo(a, B,€) =0. (3.2.11)
Clearly y(a,0,0) = 0. We substitute
y=y(a,B,&) = {y(B,€)}"

into Eq. (3.2.10) and obtain the following bifurcation equation

B(a,B,€) Z ¥ (a)G(n,y. (o, B,€),a,B,€) =0. (3.2.12)

Nn=—oo

To solve Eq. (3.2.12), we consider the equation
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B(o,B,€) = B(o, B, € Z Y (o)G(n,y,(a,eB,€2),0,e,6%) =0.

n=-—oo

If Y, (&) = yo(a, B, €%), then we have

Yor1(€) = g(W(@))Ya(€) + G(n, Ya(e), 0, B, £2)

~¥,(a)D" () i W (@)GU.Y,(€), @B, €. (3.2.13)

17700

Differentiating both sides of the difference equation (3.2.13) with respect to € and
setting € = 0 and noting that ¥,,(0) = 0, we obtain

Y711(0) = gx( ()Y, (0)

where Y£(0) = LY, (€)|¢—o. Moreover, (3.2.11) implies & (a)Y$(0) = 0. By the
uniqueness of the bounded solution of the linear difference equation (3.2.3) satisfy-
ing (3.2.11) we have Y,£(0) = 0. We conclude

B(a,B,0) = Z'P* G(n,y,(2,0,0),,0,0) = Zly* G(n,0,,0,0) =0

n=—oo n=-—oo

and

(a,B,€) Z ¥ (o {Zeh n,yn (0, €B,€%) + V(@) + e () B, €%)

n=-—oo

2 (0, B,8%) + () + £0(@), %)
+8x (yn(avgﬁagz) + (@) + gdb}?(a)ﬁ) )

;e [n(a,eB,€%) + () + e () B]

(@)L

7z bn(aep.e?) +m(a) +ef)(c)B] } (3.2.14)

Noting y,(¢,0,0) = 0 and Y (0) = 0, we have
Be(at,$,0)=0. (3.2.15)

From (3.2.14) and y,(,0,0) = 0 and Y (0) = 0, we compute

Bee@.0) = Y. ¥ (@){20(n,1,(0),0) + g0 (00)) (£ (0) + 92(0),

n=-—oo

Y, (0) + @, (@)B) + gx(1 ()Y, (0) —gx(Yn(a))Yn“(O)}
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= Y o) {2h00 (0.0 + gu (@) (@)(c)B, 2)(c)B) }

= M(a.p)
where Y£2(0) = ddng (&)|e=0. We define the function H(a,3,€) b
B
Blabe) it e z0,
Hope)=1  °

1
EBSS(a7ﬁ70)a if €=0.

Since B(ct,3,0) = 0 and (3.2.15) holds, the function H(a, ,€) is continuously
differentiable in a, 8, €. From the conditions of Theorem 3.2.2, we have

JBee(ct, o, 0) = 3 M (0, o) =

H(&O,ﬁo,()) - )

and

21 detD 4 )M (0%, fo) # 0.

It follows from the implicit function theorem that for € sufficiently small, there
exist two continuously differentiable functions o = a(€) and B = fB(¢€) satisfying
o(0) = o and B(0) = Py, respectively, so that H(a(g), B(€),€) = 0. Hence for € #
0 sufficiently small, we have that B(a.(g),B(€),€) = 0. Thus for € # 0 sufficiently
small, the difference equation

detD(q g H (0, fo,0) =

Xn+l = g<xn) + gzh(”,xnagz)

has a unique bounded solution {x, (&)}, with

x(€) = ya(a(€), eB(€),€%) + m(a(e)) + &P (ale) Be)

satisfying (3.2.6). This completes the proof of the existence part of the theorem.
Finally, the transversality of the bounded solution {x,(€)}>., can be proved in
the same way as in Theorem 3.1.7, so we omit the proof. O

In the degenerate Case 1 from Section 3.2.1 one would start with a family of
homoclinic solutions y(a) = {(a)}>,, with & € R? like in condition (H3). For
bounded solutions to the variational equation (3.2.3) in accordance with the above
notations one now has

oY °° )
pi(0o) = {aé(a)} . i=1,2,....d.

Using the formula
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&2

azyn+1 o
G50, (@) = 8:(n(@)

(@) (@) (52 @), @)

do;da; da;

it is easy to show by Lemma 3.2.1 that for this case in the Melnikov vector mapping
of Theorem 3.2.2 the B terms are identically zero. The Melnikov vector mapping
here is

M(a) =Y ¥ (@) h(n,7(@),0), acR?.

We remark that Case 1 is already studied in Section 3.1. We also mention that the
vanishing of the f terms in the Melnikov vector mapping of Theorem 3.2.2 is a
necessary but not sufficient condition for Case 1. This means that in the general
theory, if one computes d > 1 for condition (H5) and then finds that all the 8 terms
vanish one cannot apply Theorem 3.2.2 and does not know if Case 1 can be applied
or if there is some other higher degeneracy. Then higher-order Melnikov vector
mappings could help to study the homoclinic bifurcations of the difference equation
(3.2.1).

Finally, we get the above Melnikov vector mapping M () also for the case d = 1
in condition (HS), but now o € R. So M is a function.

3.2.3 Applications to McMillan Type Mappings

We consider the following mapping of a McMillan type (cf Section 3.2.4 and [4, 5,
)

n = Vn, n = —<n 2K —&Yn,
Zn41 = Yn,  Yn+l Zn+ H_y%JrV Y
2 (3.2.16)
Un+1 =Vn, Vn+l = —Mn+2KVnm +M

where K > 1 is a constant. By Section 3.2.4 we know that

}/n(Ot) = (rn(a),rn+1(a),0,0),
ra(0) = sinhwsech(a —nw), w=cosh 'K, w>0

is a bounded solution of (3.2.16) with € = 0. Then (3.2.3) has now the form

1-r (@)
=by, byp1=— 2K¢b
An+1 n n+1 an + (l+rn+l(a))2 n
(3.2.17)
1(05)

Cnt1 =dp, dpy1 =—cn+2K

n-

(1+rn+1(06))2

The equilibrium (0,0, 0, 0) of the unperturbed mapping is hyperbolic with 2-dimensional
stable and unstable parts. We can easily verify from (3.2.17) that now d = 2 and
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@, (a) = (0,0, 7, (), 14 ().
We note that

{I(00)} 7 = {(r (@), 741 (),0,0)} 7

is another solution of (3.2.17) bounded on Z. We also remark that by (3.2.17),
the unperturbed mapping of (3.2.16) with € = 0 is volume preserving on the set
{1 ()}, Then according to Lemma 3.1.11, we find

rai(a) 0
—r(a) 0
¥ (o) =
@ 0 ’:1+1(0‘)
0 —r(a)

Furthermore, in the notations of the previous section we have

gu(h(@)) (7 (0)B, P () B) = (0,271 ()*B?,0,2r5 () B)
h(n,’}/n(a),()) = (OvirnJrl(a)va*rn(a)) .

Consequently, the Melnikov vector mapping has the form

M(a,B) = (Mi(e, B),Ma(cx, B))

where

Mi(@B) =2 ¥ r@mi(e) 26> ¥ rha(@r(@),

n—=—oo n—=—co

We conclude

o

Aiw) =Y r(0)rs1(0) = sinh? w i (sech(n+ 1)w —sech(n—1)w)

n——oo n=1
x sech? nwsinhnw < 0,

Ar(w) =Y 7,1(0)%7,(0) =sinh*w ¥ (sech*(n+1)wsinh?®(n+ 1)w
n=—oo n=1

—sech*(n — 1)wsinh?(n — Dw) x sech? nwsinhnw,

=

Y. (7(0)r(0) +7,,(0)*) = sinh®w (—1 +2 i sech* nw (cosh2nw — 2)) ,

n=—oo n=1
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Y. #,(0)*7(0) = sinh®w Y sech” nwsinh?® nw(cosh? nw —2),
n=1 n=1
Z r.(0)r,,(0) = sinh?w Z sech® nwsinhnw = 0,
n=—o0 n=-—oo

Y. 7,00 =sinh*w ¥ sech®nwsinh®nw =0,

n—=—oo n—=—oo

Z 0) +r,(0)) — 121322 7(0)%17/(0) = A3 (w, B).

(9a Nn=—oo n=1

The above series are very difficult to evaluate and they could be expressed in terms
of Jacobi elliptic functions [4]. Instead, we use the following lemmas.

Lemma 3.2.3. Let F : [0,0) — R be such that |F(x)| < c1e~?* for positive con-
stants cy,cp. Then

o

Z F(nw)

n=1

<2c¢; g c2W

Sorany w >1n2/c,.
Lemma 3.2.4. Let F,G : [0,00) — R be such that G(0) =0, and
cre I < F(x)<c e 0 ge ¥ < G(x)<d, e 0x
for any x > 1 and positive constants c;,d;, 0;,i = 1,2. Then for any w > 1, we have

Cldl 67(292+91 W _C2d2 67(2614*92)\;\7
1— 67(61+92>W

i (n+1D)w)—G((n—1)w)) F(nw)

CZdZ 67(2924»91) _cldl 67(2914*92)\5/
- 1 —e—(61+62)w

Proofs of the above lemmas are elementary, so we omit them. We apply Lemma
3.2.4 with G(x) = sech* xsinh? x, F (x) = sech? xsinhx. Then using

e ¥ <sechx<2e™, x>0,

62—

1
52 e" <sinhx<e*/2, x>1,
e

2
we get ¢| = 22,62—2 dy = ( ),d2:4,91:1and92:2,andthenwe

obtain
2
8 e W _ (62 ;1 ) e 4w
. e
Ay(w) <sinh®w T <0
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for any w > In [(;2’47'3]6)3] = 4.59512. Similarly, using Lemma 3.2.3, cosh? 1 > 2 and

|sech4x(cosh2x— 2)| < 32e ¥ 4166, x>0,
we derive

Az(w,B) < 2sinh’w (—1+64e " +32¢ ") <0
for any w > %ln {8 (\/§+ 2)} = 1.76154. We already know that A; (w) < 0. Hence
o=0,8=+/A1(w)/A2(w) # 0 is a simple zero of M(c,3) = 0 for any w >

6 1. 4096¢'2 + (2 —1)°
In [Mie],l.e.K>K = 7
(1) 0 128¢6(e2 ~1)°

3.2.2 to (3.2.16), and we produce the following result.

=49.5052. Now we can apply Theorem

Theorem 3.2.5. For any K > Ky, there is an & > 0 so that (3.2.16) exhibits chaos
forany 0 < € < &.

Of course, either more precise analytical or numerical evaluations of A, (w) and
Asz(w, B) could give also partial results for 1 < K < K. But we do not carry out these
computations in this book. We only note that our numerical computations suggest
that K > cosh0.1 = 1.005 for obtaining chaos in (3.2.16) for € > 0 small.

3.2.4 Planar Integrable Maps with Separatrices

A planar map is called a standard-like one if it has a form F (x,y) = (y, —x+g(y)) for
some smooth g. Note that F is area-preserving, i.e. |detDF (x,y)| = 1. A planar map
F is integrable if there is a function (a first integral) H : RZ S Rsothat HoF = H.
An interesting family of standard-like and integrable maps is given by [5]

K+ By
1-2By+y?

with the corresponding first integrals

F(x,y):= (y,—x+2y ) , —1<B<1<K (3.2.18)

Hy g(x,y) = x> —2Kxy+y* = 2Bxy(x+y) +x°y".

Map (3.2.18) with § = 0 is called McMillan map. Next, (3.2.18) has two sepa-
ratrices T Kj,tﬁ = {5 (®)},cz, contained in the level Hyx g = 0 given by ¥ (at) =

(rf(a),rE (@) with

w
inhwsinh —
sinhwsin 7

\/B%+sinh? % cosh(a —nw) F B coshg

rE(a) =+
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for w = cosh ' K. Clearly example (3.2.16) can be extended with (3.2.18), but we
do not go into details.

3.3 Singular Impulsive ODEs

3.3.1 Singular ODEs with Impulses

The theory of impulsive differential equations is an important branch of differential
equations with many applications [16-20]. So in this section, we continue to study
such systems by considering the problem

ex' = f(x) +¢eh(x),

x(i+) =x(i—) +eg(x(i-)), i€Z, 3.3.1)

when the following assumptions are valid

(H1) f,g heCR™R™).

(H2) 0 € R™ is a hyperbolic equilibrium of X' = f(x).

(H3) The equation X’ = f(x) has a homoclinic orbit ¢ to 0.

(H4) The variational equation v/ = Df(¢)v has the unique (up to scalar multiples)
bounded solution ¢’ on R.

By Section 4.1.2, we know that (H3) and (H4) imply the uniqueness (up to scalar
multiples) of a bounded solution ¥ on R of the adjoint variational equation ' =
—(Df(9)) " . By asolution of (3.3.1) we mean a function x(r), which is C'-smooth
on R\ Z, satisfies the differential equation in (3.3.1) on this set and the impulsive
conditions in (3.3.1) hold as well.

For simplicity, we assume f, h, g to be globally Lipschitz continuous. Let us
denote by @, (z,xp) the unique solution of the differential equation of (3.3.1) with
the initial condition @ (0,xo) = xo for € > 0. Then we can define the Poincaré map
of (3.3.1) by the formula

e (x) = e (1,x+£8(x)) .

Of course, the dynamics of (3.3.1) is wholly determined by 7.

The purpose of this section is to show the existence of a transversal homoclinic
point of 7, for any € > O sufficiently small (cf Theorem 3.3.10). Then, according
to Smale-Birkhoff homoclinic theorem 2.5.4, Equations (3.3.1) will have a chaotic
behaviour for € > 0 sufficiently small. To detect transversal homoclinic orbits of 7
for € > 0 small, we derive the Melnikov function of (3.3.1) given by the formula

AB)=(s(0B)- VB, + [ (h(66) W), ds. (32
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where (-,-),, is the usual inner product on R”. We see from the form of .# that
chaos in (3.3.1) can be made only by the impulsive effects, as the integral part of
A containing & is independent of . Of course, this fact is natural since the ODE
(3.3.1) is autonomous. For the readers’ convenience, we note that the approach of
this section can be simply generalized to study periodic perturbations of (3.3.1), i.e.
if h="h(x,r) and h(-,t+ 1) = h(-,1)Vt € R. Since the period of & in ¢ is the same as
the period of the impulsive conditions, the Poincaré map 7, can be straightforwardly
extended for this case. Then the Melnikov function is

M (B) = <g(¢(13)),w(ﬁ)>m+/_i<h(¢(S),0),w(s)>mdsv BER.

We are motivated to study such impulsive Duffing—type equations by [31] of the
form
' +a’p(z) = aq(z),
a(z(i+) —z(i—)) = r(z(i-)), (3.3.3)
Z(i+)=7(i—), i€z,

where a > 0 is a large parameter, p, g, r € C3(R,R).

3.3.2 Linear Singular ODEs with Impulses

In this section, we derive Fredholm-like alternative results of certain linear impul-
sive ODEs which are linearizations of (3.3.1). Let | - |,, be the corresponding norm
to (-,-)m, and set N_ = —N. Now we introduce several Banach spaces:

X" = {x : R\ Z — R™|x is continuous and bounded on R \ Z

and it has x(i+) = lim x(i+s)Vi € Z} ,

s—04

X" = {xeX"’|x’€X’"},

X! = {x : R4 \N — R™|x is continuous and bounded on R \ N

and it has x(i+), x(i—) Vi € N} ,
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X" = {x :R_\N_ — R"|x s continuous and bounded on R_ \ N_

and it has x(i+), x(i—) Vi € N} ,

v - {{an}newn € R", supla <°°}7
n

Y" = { {an}neNf ‘an eR", Sup|an|m < oo} ’
n

Y™ = { {antnez ]a,, € R™, sup |an|m < oo} .
n

The norms on these spaces are the usual supremum norms. For instance, the norm
on X" is defined by
[Pxllm = sup|x(s)|m
SER\Z

The norm on X{" is denoted by || - ||,»1 and on Y™ by ||| - |||,.. We note that ||x||,,1 =
[l 41 |-

In the first part of this section, we consider the following linear equation sug-
gested by (3.3.1)

¥y =Dg(t)y+q(t),
y(i/e+) =y(i/e=)+bi, i€Z,

where B € R, £ > O are fixed, Dg(1) =Df (¢(B+1)), bi e R™, g € X" and y(i/e+) =
y(g$)-

Let Zg(¢) be the fundamental solution of y' = Dg(t)y. Then by Section 2.5.1, this
equation has dichotomies on both R and R_, i.e. there are projections Py : R” —
R™ and constants K > 0, ¢&¢ > 0 so that

(3.3.4)

125 ()P 25" ()| < Ke @0, 1>,
125 () (1= P2)Zg " (s)| < Ke *070), s >1,

where s, t are nonnegative, and nonpositive, for P, , P_, respectively . Note that K, o
are independent of 8, while Py = PP = Zo(B)PYZy 1 (B).
Theorem 3.3.1. The problem
Y =Dg(t)y+4(t),
y(i/e+)=y(i/e=)+b;, i€N, (3.3.5)
Py(0) =& € Py,
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has a unique solution y € X' for any q € X', {b;}icn € Y. Moreover, for any
0 < € < ¢ and a fixed constant ¢ > 0, it holds

[l < e([11{bi}ienlllm + & + l1gllm) -
Throughout this section c is a generic constant.

Proof. Uniqueness. If g =0, b; =0, £ = 0 in (3.3.5), then the solution has the form
Zg(t)yo, Pryo = 0. S0 Zg(t)yo = Zg (t)(I— Py )yo. As

Yol = |(T= P )yolm = |(T—P+)Zg ' (1) Zp (1)y0lm < Ke™*|Zg ()yolm

we have, by the boundedness of Zg(#)yo, yo = 0. The uniqueness is proved.
Existence. Let us put for 0 <n/e <t < (n+1)/¢ and any n € NU{0}

y(t) = Zg(1)E + Z Zg(1)Pr 25" (k/€)by
~Y 20 @mm+/% )P.Z5 ' (s)q(s) ds
k=n+1

N /,w Zg(1) (1= P)Z5 " (s)q(s)ds

where we set, for the case n =0, Y{_; Zg(t )P+Z Y(k/€)by = 0. Now, we compute
for0<e<eé

n
_ —alt—k
[y(t)|m < Ke at|§|m+ZKe ol €>|bk|m
k=1

oo 1 oo
+ Y Ke gt [ Kem I gllds+ [ Ke ) gl ds
k=n+1 0 t

SK‘§|m+KSup|bk|m (Zea(t]é)+ Z ea(lgct)>
k

k=1 k=n+1

Rl ([ s [Teaas)

—a(-1)

e e—o(E 1) 2
< Klglo+ Ksuplinlo | S o+ 5o | + Kl

<K 2K b K 2
= ‘§|m+msip| klm + ||CI||ma

< 2K b 2
= K‘§|m+msgp| k‘m‘i‘KHCIHma
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So y(¢) satisfies the inequality of this theorem. It is not difficult to see that we can
take derivatives with respect to ¢ term by term in the series and with the integral sign
so that y(z) satisfies the differential equation in (3.3.4).

To check the impulsive conditions, we compute for i € N

Wife+) —ife—) = Y. 241/ 25 (kfelb— Y. Zg(ifeXI- P )Z5 (k/eWh
k=1 k=i+1
i—1

=Y Zp(i/e)PrZ5 (k/e)bi + izﬁ(i/e)(]l —Py)Z5 ' (k/€)b
k=1 k=i

Zg(i/e)P-Zy (i) €)bi+Zp(if€) (1 — P1)Zg ' (i/€)bi
= Zg(i 8) Yi/e)b; = b;.

= Zg(i/
/
Finally

oo

P+}’(0)=P+§—P+<ZH P.)Z k/ebk+/ (I-P)Zg (S)Q(S)ds>:§-

k=1
The proof is finished. a

Theorem 3.3.2. The problem

Y =Dg(t)y+4(t),
y(i/e+) = y(i/e—)+b;, i€N_, (3.3.6)
(I-P)y(0)=nec2(I-P),

has a unique solution y € X" for any q € X™, {b;}ien_ € Y™. Moreover, for any
0 < € < ¢ and a fixed constant ¢ > 0, it holds

[l < e (1{BiYien_lm+ 1|+ llgllm) -

Proof. The uniqueness is the same as in the proof of Theorem 3.3.1. For the exis-
tence, let us take forn/e <t < (n+1)/e <0Oand any n € N_

y(t) = Zg(t n+ZZ,; P-Zy L(k/€)by
k=—o0
-1

— Z Zﬂ(t)(H—P,)ZEI(k/S)bk—l-/Y Zﬁ(l)P,ZEl(s)q(s)dS
k=n+1 -

where we set again, for the case n = —1, Zlc_:ln+l Zg(t)(I —P_)Z[;1 (k/€)b =0. The
rest of the proof is the same as in Theorem 3.3.1, and so we omit it. The proof is
finished. a
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Now we can state the main result concerning (3.3.4).

Theorem 3.3.3. For any {b;}icy € Y™ and q € X™, Equation (3.3.4) has a solution
y € X{" if and only if

i <bi,1/f<l3+é)> +/ V(B +5s)),,ds=0. (3.3.7)

i=—oo

This solution is unique provided

| 66,08 +5)),,ds=0
and, for any 0 < € < € and a fixed constant ¢ > 0, it satisfies

[[¥llm1 < e(sup [bilm +lg]1m) -
1

Proof. Uniqueness. Assume that y; (¢),y2(t) are two solutions of (3.3.4) both satis-
fying the condition

[ (36,0 (B+5)),,ds = 0.
Then y(t) = y1 (t) —y2(t) satisfies y/ (1) = Dg (t)y(t) together with y(i/e+) = y(i/e—),
so that y(¢) is a C'-bounded function on R satisfying the linear homogeneous differ-

ential equation y'(r) = Dg(t)y(t). Hence y(0) € ZP, NZ(1—P-) ory(0) = A¢'(B).
As a consequence y(f) = A¢'(t + ) and then

/I/ B+s\2dsf/ (¥(s),9"(B+s)), ds=0.

This fact implies A = 0 or y; (t) = y(¢).
Existence. For any & € P, and 1 € Z(1— P_) let y,,y_ be the solutions of
(3.3.5) and (3.3.6), respectively. We compute

y0) =y (0) = £ ¥ (1= P07 (/e [ (117" (9a(5)ds
k=1

—n—ZPZ k/ebk—/PZ Y(s)ds.
k= —oo
As we also require y (0) —y_(0) = by, we obtain

é—n:bo+i(H—P L(k/e)by + Z P-Zg L(k/€)by
k=1 (3.3.8)

+ /0 1Pz (s)g(s)ds + [ P75 (s)a(s)ds,

Equation (3.3.8) is solvable if and only if the right-hand side is in the space
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%P, +R(—P.),

i.e. if and only if the right-hand side of (3.3.8) is orthogonal to any element of the
space

(%P, +Z(1—P.))" = ZPLNR(1—P ) = VPN (1—P).

But it is clear that .4"P; N4 (I — P*) is the space of all initial values yo for which

*

the solution of the adjoint equation y = —Dﬁ (t)y is bounded on R. This assertion
follows from the fact that (ZE)’] (t) is the fundamental solution of the equation
y = fDE (t)y possessing dichotomies on both R, and R_ with the projections I —
P}, I—P*, respectively. In our case,

NPINAN(I—P) = span{y(B)}.

Hence (3.3.8) is solvable if and only if the following holds

oz< bo+2 k/e)by + Z P-Zg' (k/€)by
+ /O m(ﬂ—m)z[;l(s)q(s) ds+ [ wPZgl(s)q(s)ds>
= (v(B).bv),,
+Z (Z5) ' (k/e)(T B),be),, +k_z_,m “(k/e)P y(B),bi),,
+ [ a0, @) )T P w(B)), s+ [i<q(s>,<z;;>—1<s>Piw<ﬁ>mds
k - k
=<w»bo>m+z<w<ﬁ+>7bk>m+kzw<w<ﬁ+g>abk>m
+/ v(B+s)) ds+/ V(B +s)), ds

E o) Loaens

We have used the identities
(Z5) () I=P)W(B) =y(B+s), Vs>0,
(Z5) ' ()P y(B) = yw(B+s), Vs<O,

which follow from the facts that (ZE)’l (¢) is the fundamental solution of the equa-
tiony’ = fDE (¢)y possessing dichotomies on both R, and R_ with the projections
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I— P}, I—P*, respectively, and y(f + ) is a bounded solution of this equation on
R.

So (3.3.8) is solvable if and only if (3.3.7) holds. Moreover, for any 0 < € < ¢,
with ¢ > 0 being a fixed constant, we have

1€ —Nlm < C<SUP‘bn|m+ ||51Hm)

Such &, 7 are not unique, since ZP; NZ(1— P-) = span{¢’'(B)}. However we can
obtain uniqueness asking, for example, that 1] is orthogonal to ¢’(f3). That is, in
Eq.3.3.8) wetake & € ZP; andn € ./ ={n e Z(1—-P-)|(n,¢'(B)), =0}. Of
course, ZPy ® ./ = #P, + % (1— P_), but the direct sum implies the uniqueness.
Then we obtain a solution (&;,1;) € ZP+ & . so that

1Etlm + M1 |m < C(Sup|bn|m+ anm) )
n

for any 0 < € < & (¢ > 0 being a fixed constant). So (3.3.4) has a solution y =
y1 ({bu}r e, q) satisfying

|[y1]]m SC(SUP|bn|m+||4Hm)a

for any 0 < € < ¢, if and only if (3.3.7) holds. As ¢’( +1) is a bounded solution of
(3.3.4) with ¢ =0, b; = 0Vi € Z, by putting
3O =31(0)=0'(B+0) [ (169" (B+9)), s/ [ 106 ds.

we obtain another solution of (3.3.4) satisfying

[ (3060 (B+5)),,ds =o0.
Of course, we also have

|l lm < c(sup|bn|m+ anm) )
n

for any 0 < & < ¢ As y'(r) = Dg(t)y(t) +q(t) we easily obtain the conclusion of
this theorem. O

Remark 3.3.4. Let By be a fixed real number. Then the proof of Theorem 3.3.3 can
be repeated to obtain a unique solution of (3.3.4) satisfying the condition

[ 666/ Bo-+),,ds =0,

provided |B — o is sufficiently small. This fact will be used in the proof of Theorem
3.3.8.
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In the last part of this section, we consider the following linear equation sug-
gested by (3.3.1)
Y =Df(0)y+4q(1),
y(i/e+) =y(i/e=)+bi, i€Z,
where € > 0 is fixed and b; € R™, g € X™. Let Z(t) be the fundamental solution of
y' = Df(0)y. Since 0 is hyperbolic for the equation x' = f(x), there is a projection
0 :R™ — R™ and constants M > 0, @ > 0 so that

3.3.9

1Z()0Z ' (s)| < Me @9 t>35,
1Z(O)([I—0)Z7'(s)| < Me @6 s>

By repeating the proof of Theorems 3.3.1 and 3.3.2, we obtain the following
results.

Theorem 3.3.5. The problem

Yy =Df(0)y+q(1),
y(i/e+)=y(i/e—=)+b;, i€N,
oy(0) =& € %0,

has a unique solution y € X' for any q € X', {b;}icn € Y!". Moreover, for any
0 < € < ¢ and a fixed constant ¢ > 0, it holds

[1lm < e ([P }ienlllm + & ]m + llgllm) -

Theorem 3.3.6. The problem

Y =Df(0)y+q(t),
y(l/8+):y(l/87)+blv igN*a
(I-0Q)y(0)=neZ(-0),

has a unique solution y € X" for any q € X™, {b;}ien_ € Y™. Moreover, for any
0 < € < ¢ and a fixed constant ¢ > 0, it holds

[l < e ([[1{Bi}ien_llm + 17 m +llgllm) -
Now we can state our main result concerning (3.3.9).

Theorem 3.3.7. For any {b;}icz, € Y" and q € X™, Equation (3.3.9) has a unique
solution y € X" satisfying

[¥llm1 < (sup Bilm + [lgllm) ,
1

forany 0 < € < ¢ and a fixed constant ¢ > .
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Proof. The proof of Theorem 3.3.3 can be repeated up to Eq. (3.3.8). Now Eq.
(3.3.8) is always solvable, since

(#0+A(1-0))" = H Q" NN (I-Q") = {0}.
Moreover, such a solution is unique, because
#0N%(1-Q) ={0}.

So (3.3.9) has the desired solution. The proof is finished. a

3.3.3 Derivation of the Melnikov Function

In this section, we show chaotic behaviour of the Poincaré map 7, of (3.3.1) for
€ > 0 small. For this purpose, we derive a Melnikov function for (3.3.1) to show the
existence of a transversal homoclinic orbit of 7, for € > 0 small. By taking the scale
of the time t <~ &t, we have

¥ = f(x)+€h(x),
x(i/e+) =x(i/e—)+eg(x(i/e—)), i€Z.

Equation (3.3.10) can be rewritten in the form F¢ = 0, where

(3.3.10)

Fe: X" = X" xY"=2",
Felx) = (x’—f( ) —eh(x), {x(i/e+) - (i/g_)_gg@(i/g_))}d).

We solve F; = 0 by the Lyapunov—Schmidt method. But this method cannot be
applied directly, since F; is not defined for € = 0. We overcome this difficulty by
Theorems 3.3.3 and 3.3.7. Let By be a fixed real number. Setting
x=z+0g, ¢p(t)=0(B+1),
we can write (3.3.10) as
¢ = Dy(t)z+{ f(z+95) ~ £(9p) ~ Dp(r)2} +eh(z+9p),
a(ife+) =z(ife—) +eg(z(i/e—) + 9p(i/e)), i€, (3.3.11)

/ <Z ﬁo+ > ds=0,

where | — By is sufficiently small. Finally, Equation (3.3.11) is rewritten, by ap-
plying the Lyapunov-Schmidt procedure, in the form
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¢ = Dy(r)z = P(e.B,2) ({(z+9p) — 1(05) ~ Dp(t)z} +eh(z+9p) )
2(i/e+) —z(i/e—) = eg(z(i/e—) + 9p(i/e)), i€, (3.3.12)

| (206).0'(Bo5)), s =0,

and
Ple.pd)({7c+09) —1(9) ~Dp()c} +ehc o)) o
= {f(z+8p) — f(8p) — Dp(t)z} +h(z+ ¢p)
where
Pp==|(a+ [ (p6)w(B+s),ds)/ [ | ﬁ+slmds]-w([3+-)+p
a=e ¥ (setifem) - apife)w (1))
P(e,B,2) =Py, Pj:X"—X".
Note that

/—o:o <Pdp(s)7 v(pB +S)>mds =_d.

The term f(z+ ¢g) — f(9p) — Dp(:)z is of order O(|z[,) in (3.3.12) as [z|m — O.
Moreover, the left-hand side of (3.3.12) defines a linear operator from X{" to 2",
which is uniformly invertible for € > 0 small according to Theorem 3.3.3 and Re-
mark 3.3.4. So by applying the uniform contraction principle of Theorem 2.2.1,
we can solve (3.3.12) for z, for any € > 0 small and f so that | — Bo| is suf-
ficiently small (say |B — Bo| < 0). Moreover, for any fixed € € (0,¢) this solu-
tion z = z(B, €) is C'-smooth in B and moreover a simple computation shows that
|12(B.€)llm; 1z (B, €)l|m = O(€) uniformly in B (here and in the sequel zg (B, €) will

denote & ﬁ £) ). By putting z(f,€) into (3.3.13), we obtain the bifurcation equation

(see the deﬁn1t1on of Pyp)

0=cy < o) opti/e)w (i)

+ [ (FB.)6) +95(5)) ~ F(85()) ~ Dp(s)2(B.e)()
+eh(z<e,ﬁ><s> +95(5)) W(B+5)) ds.

As [|z(B,€)lm, 128 (B, €)|lm = O(€), we can divide the above equation by € to obtain
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=

o=y <g(1(ﬁ78>(i/8)+¢ﬁ(i/8))"”<ﬁ+é>>

j=—o0 m

+ [ (h(B.2))+95(5)) W(B +)),,ds
et [ (F(B.£)6)+65(5)) ~ £(9p(5)) ~ Dp(s)2(B.e)(). (B +5)) ds.

Now, the last term in the r.h.s. of the above equation is clearly O(¢g) uniformly in
B and it is not difficult to see that it can be differentiated, with respect to 8, with
the integral sign and that this derivative is also O(¢€), uniformly in 3, because of
12(B€)l|m, ||z (B €)||m = O(€), uniformly in B. On the other hand, for i # 0, £ >0
sufficiently small and | — By| < o, we have

(et

where K > 0 is a constant, and a similar inequality holds for ¢g(i/€). Using these
facts the above equation takes the form

< Re B+l < Re%Blg—a/e — 0(e)

m

=)

(s(0(B)). w(h)), + / (h(95(5)), ¥(B+5),ds+0(e) =0 (33.14)

—o0

where O(¢) in Equation (3.3.14) has to be considered in the C'—topology in 8 €
(Bo—0,Bo+ o), i.e. O(g) expresses a term which is O(€) small, together with the
first partial derivative in 3, uniformly with respect to 8 € (y — o, Bo+ ©). Summing
up we see that if By is a simple root of the function (3.3.2) then (3.3.14) has a unique
solution near By for € > 0 sufficiently small. This means that (3.3.1) has a bounded
solution near ¢ for any € > O sufficiently small. So we obtain the following theorem.

Theorem 3.3.8. Assume that the function # : R — R given by (3.3.2) has a simple
root at B = By. Then (1.1) has a unique bounded solution near g, for any € >0
sufficiently small.

Let x(€) be the solution from Theorem 3.3.8. Then the sequence

{x(e)(i/e—)} .

is a bounded orbit of the Poincar¢ map 7, of (3.3.1). In the rest of this section, we
show that this orbit is a transversal homoclinic orbit to a hyperbolic fixed point of
7e. For this purpose (see Lemma 2.5.2), we show that the linearization of (3.3.10)
at x(¢€)

V' =Df(x(€))v+eDh(x(g))v,

v(i/e+) = v(ije—) +eDg(x(e) (i/e—))v(i/e—), i€

has only the zero bounded solution on R. To show this result, we apply Theorem
2.2.4.So0,let B: X{" — 2™ be a bounded linear mapping so that ||B||xm o) < L.
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Consider the equation
Fe(x) —H/SB(x—x(eo)) =0 (3.3.15)

for a fixed small & > 0. The perturbation of (3.3.15) is small for 7, € > 0 small and
it is vanishing for € = 0. Hence we can repeat the proof of Theorem 3.3.8 to obtain
a unique solution %(¢&) of (3.3.15) in a neighbourhood of ¢g, for € >0 and y >0
small. On the other hand,

Fgy (x(&0)) + veoB(x(€0) —x(€0)) = 0.

Hence x(g&y) = X(&). By using Theorem 2.2.4, we obtain that the linear map
DF, (x(eo)) is invertible, i.e. the above linearized equation of (3.3.10) at x(&) has
only the zero bounded solution on R.
Now we show that 7, has a hyperbolic fixed point near 0. For this purpose, we
solve
F.=0

near x = 0, i.e. we solve the equation

¢ =Df(0)z+ {f(z) —Df(0)z} +eh(z),
2(ife+) =z(i/e—)+eg(z(i/e—)),
near z = 0. By repeating the above procedure applied to Eqgs. (3.3.12)—(3.3.13), when

Theorem 3.3.3 is replaced by Theorem 3.3.7, we obtain a unique small solution
%(e) € X{" of (3.3.16). On the other hand, if X is a solution of F; then X(1+-) is also

a solution. Hence
x(e)(14-) =x(e)()

because of uniqueness. So the point ¥(1—) is a fixed point of 7.. To show the hy-
perbolicity of this point, we again apply Lemma 2.5.2 and Theorem 2.2.4 by taking
an equation similar to (3.3.15) of the form

(3.3.16)

Fe(x)+ yeB(x—x(g)) =0,

for a fixed small & > 0. By employing Theorem 3.3.7 as above for (3.3.16), the only
small solution of this equation is %(&). So DFg, (¥(g)) is invertible, i.e. ¥(g)(1-)
is a hyperbolic fixed point of 7g,. Summing up, we obtain

Theorem 3.3.9. The Poincaré map e of (1.1) has a unique hyperbolic fixed point
near 0 for any € > 0 sufficiently small.

Summarizing our results we see that the set {x(¢)(i/ 6—)}7’:_00 is a transversal
homoclinic orbit of 7 to the hyperbolic fixed point %(g)(1—) for any € > 0 suffi-
ciently small. This gives the main result of this section.

Theorem 3.3.10. If there is a simple root of # () = 0, then w, - the Poincaré map
of (3.3.1) - possesses a transversal homoclinic point for any € > 0 sufficiently small.
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3.3.4 Examples of Singular Impulsive ODEs

Consider
ex' = f(x) +eh(x),

3.3.17
x(i+)=x(i-)+¢eta, i€Z, ( )

where a € R™ is fixed, T € R is a parameter and f, & satisfy the assumptions (H1)—
(H4).

Theorem 3.3.11. If [~ (h(¢(s)), l/l(s)>m ds # 0 and there is By € R satisfying

(a,¥(Bo)),, #0. (a,¥(Bo)), #0.

Then, for any € > 0 sufficiently small, the Poincaré map of (3.3.17) has a transversal
homoclinic orbit for T = — [, (h(9(s)), ¥ (s)),, ds/{a, l//(ﬁo)>m .

Proof. In this case, the Melnikov function (3.3.2) for (3.3.17) with T = 1y has the
form

AB) = (0 v(B)), + [ (o). v, ds

It is clear that . (By) = 0, .#'(Bo) # 0. So Theorem 3.3.10 implies the assertion.
The proof is finished. O

We note that under the assumptions of Theorem 3.3.11, the Poincar¢ map of
(3.3.17) has a transversal homoclinic orbit for any 7 near Tp and any € > 0 suffi-
ciently small.

Theorem 3.3.12. If [ (h(¢(s)),w(s)), ds =0 and there is By € R satisfying

(a.9(Bo)),, =0, (a ¥ (o)), #0-

Then, for any € > 0 sufficiently small, the Poincaré map of (3.3.17) has a transversal
homoclinic orbit for any T # 0 fixed.

Proof. In this case,
M (B) =1(a, ¥(B)),,-
So . (By) =0, 4" (By) # 0. The proof is finished by Theorem 3.3.10. O

Finally, let us consider an impulsive Duffing—type equation of the form (3.3.3).
Theorem 3.3.13. Assume that p(0) = 0, p'(0) < 0 and the second—order ODE
'+pz)=0

has a nonconstant solution y(t) so that y(t) — 0 as t — oo, If there is By € R so
that ¥ (Bo) = 0, Y" (Bo) # 0 and r(¥(Bo)) # 0. then (3.3.3) has chaotic behaviour
for any a > 0 sufficiently large.
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Proof. The equation can be rewritten in the form

ex’ = f(x) +eh(x),

x(i+) = x(i—) +eg(x(i-)), (3.3.18)

where 5
€= 1/617 x:(xlvxZ) eR ) f(xlvxZ): (Xz,-p(?ﬂ)),

h(x1,x2) = (0,q(x1)), g(x1,x2) = (r(x1),0).
We note [31] that in this case

o(B)=(v(B).Y(B)), w(B)=(=7"(B).Y(B))-

So the Melnikov function of Theorem 3.3.10 has the form:
AB) = =r(B)Y'(B)+ [ a(r9)7 (s)ds =r(y(B))p(r(B)).

By . (Bo) = 0 and .#'(By) # 0, the conclusion follows from Theorem 3.3.10. O
Remark 3.3.14. Consider

' +a p( )=4(z),
( i+)—z(i ) ( ) (3.3.19)
Z(i+)=7(i—), i€’
instead of (3.3.3). Then the statement of Theorem 3.3.13 holds, since (3.3.18) is
replaced by
ex' = f(x) + €2h(x),
x(i+) =x(i—) +eg(x(i—)).
It easily follows, from the proof of Theorem 3.3.13, that . (B) = r(v(B)) p(¥(B))

in this case too, hence Theorem 3.3.13 still holds.

Remark 3.3.15. Consider

Z'+d’p(z) = q(z),
@ (2(i+) —2(i-)) = r(z(i-)), (3.3.20)
Z(i+)=7(i—), i€Z
instead of (3.3.3). Then the statement of Theorem 3.3.13 holds, since (3.3.18) is
replaced by
ex = f(x)+€%h(x),
x(i+) = x(i—) + e2g (x(i—)).
Of course, the Melnikov function for (3.3.21) is vanishing, since we derived in The-

orem 3.3.10 the first-order Melnikov function. However the factor €2 in both the
perturbation and the jumping term allow us to repeat the arguments of Section 3.3.3

(3.3.21)
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showing, then that the solution of system (3.3.12) is O(&?)-bounded, uniformly in
B and the same holds for its derivative with respect to . Thus, we can divide the
bifurcation function by £ and take the limit as € — O (uniformly in f3), getting the
same bifurcation function as in (3.3.2). Hence [31, p. 284] we see that a simple root
of the above Melnikov function of (3.3.18) ensures the validity of Theorem 3.3.13
also for (3.3.20).

3.4 Singularly Perturbed Impulsive ODEs

3.4.1 Singularly Perturbed ODEs with Impulses

In this section we proceed with the study of chaotic behaviour of dynamical systems
with impulses. More precisely, we study the chaotic behavior of the equation

ey = flx,y€),
Y =Txne) (3.4.1)
x =g(x,y,€),
with the impulsive effects
x(i+0)=x(i—0)+¢€a(x(i—0),y(i—0),¢),
(i+0) = (i ~0) + a(x(i ~0).3(i~ 0).¢) a2

y(i+0)=y(i—0)+eb(x(i—0),y(i—0),€), i€Z,

where as usual lim x(¢) = x(i£0). Here y € R”, x € R™ and € > 0 is a small pa-

t—i4
rameter. We assume that

(H1) f, g, a, b are C*~smooth;

(H2) f(7070) =0, D)’f('7050) = (A()vB())’ WhereA(') € L(Rkl )7 B() € L(sz)’
ki +ky = p;

(H3) {Rt|1€0(A())} C(—o0,—7) and {R7 | T € 6(B())} C (7,°0) for some
constant y > 0;

(H4) The reduced equation x' = g(x,0,0) has a hyperbolic equilibrium %, with a
homoclinic orbit x(z);

(H5) The variational equation v/ = D, g (x(t),O, O)v has the only unique (up to con-
stant multiples) bounded solution x'(-).

By a solution of (3.4.1)—(3.4.2) we mean some (x,y) which is C'—smooth in R\ Z
satisfying (3.4.1) on this set and moreover, (3.4.2) holds for any i € Z. For simplicity,
we assume that f, g, a, b are globally Lipschitz continuous. Then (3.4.1)-(3.4.2)
with any initial condition x(#y) = xo, ¥(f9) = yo, to ¢ Z has a unique global solution.
Furthermore, we can define a Poincare map H of (3.4.1)—(3.4.2) in the following
way. Let ¢ (t, (%0, yo)) be the unique solution of (3.4.1) with the initial point (xo, yo).
Then we put
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Hs(x(]ayﬂ) = 0¢ (17 ()C()—|—861()60,)1(),8)7))0—|—8b()€0,y0,8))) :

Of course, the dynamics of (3.4.1)—(3.4.2) is wholly determined by H,. The aim of
this section is to find assumptions for f, g, a, b which give the existence of transver-
sal homoclinic point of H, for any € > 0 small. For this purpose, we derive a Mel-
nikov function for (3.4.1)—(3.4.2). Then such Egs. (3.4.1)—(3.4.2) will have a chaotic
behaviour for € > 0 small. The chaotic behaviour of small periodic perturbations of
(3.4.1) is studied in Section 4.4.

3.4.2 Melnikov Function

We know by Section 4.1.2 that (H4) and (HS) imply the uniqueness (up to constant
multiples) of a bounded nonzero solution « of the adjoint variational equation

u=— (ng(x(t),0,0))*u.

Since the derivation of a Melnikov function for (3.4.1)—(3.4.2) is very similar to
results of Section 3.3, we omit further details and refer to [32]. Hence the Melnikov
function is now:

o

M (1) = Z <a(x(t+i),0,0),u(t+i)>m

[=—o0

+/:° (= Dyg(x(5).0,0)D,f (x(5),0,0) ' Def (x(5),0,0)+  (343)
+Deg(x(5).0,0),u(s)) ds

where (-,-),, is the usual inner product on R”. Now we are ready to state the main
result of this section.

Theorem 3.4.1. Assume that there is ty so that
M (10) =0, A'(19) #0.
Then (3.4.1)—(3.4.2) have transversal homoclinic orbit for any € > 0 small.

Remark 3.4.2. We have considered only the case of the uniform distribution of im-
pulsive effects. We may study (3.4.1) similarly as above with impulsive effects of
the form (3.4.2) at #;, i € Z for a fixed sequence {z;}3 t; < ti11 so that

[=—00°

ti— *oo as [ — oo

sup (ti+1 —t,') < oo, iIilf(tH] —t,') >0.
1
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Then, of course, (3.4.1)—(3.4.2) do not define any Poincaré map for general {;}3> ..
A line of the paper [33] may be followed for the above general impulsive effects.

Remark 3.4.3. The second term of the Melnikov function .# (see (3.4.3)), which
does not depend on ¢, is only a contribution of (3.4.1) (see Section 4.4). While the
first term of ./ is determined by both (3.4.1) and (3.4.2).

3.4.3 Second Order Singularly Perturbed ODEs with Impulses

In this section, we consider

ex’ =x — f(x),
x(i+0) =x(i —0) + ea(x(i— 0),x'(i—0)), (3.4.4)
X (i+0)=x'(i—0)+eb(x(i—0),x'(i—0))

where f:R” — R™ and f, a, b are C>~smooth. Moreover, assume that the equation
x' = f(x) has a hyperbolic equilibrium % with a homoclinic orbit x(-). Furthermore,
suppose the adjoint variational equation v/ = — (Df (x(¢)))*v has a unique (up to
constant multiples) bounded nonzero solution u. Taking x' = y+ f(x) we obtain
from (3.4.4)

ey =y—eDf(x)(y+f(x)),
X =y+fx),
x(i+0) = x(i—0) +ea(x(i—0),y(i — 0) + f(x(i—0))),
y(i+0) = y(i—0) + &b (x(i—0),y(i — 0) + f(x(i—0)))

+f(x(i—0)) —f(x(i —0) +a(x(i—0),y(i—0)+ f(x(i— 0))))
(3.4.5)
We see (3.4.5) is of the form (3.4.1)—(3.4.2), and the Melnikov function .#, for this
case, has the form (see (3.4.3))

M (1) = _i‘, <a(x(r+i),f(x(t+i))),u(z+i)>m+_/:o@f(x(s))f(x(s))M(s))mds
= X ale+ D)o+ ale + D)+ [ (DI 5)ls) s
= i <a(x(t+i),f(x(t+i))),u(t+i)>m+12<x”(s),u(s)>mds

= X alale+ ) fCxle+)ale 4 D) [ (5) 5) s

i=—oo

Hence
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= o

M)="Y] <a(x(t+i),f(x(tJri))),u(tJri))mf/ (x'(s),u(5))mds. (3.4.6)

[=—o0 —

By applying Theorem 3.4.1 we obtain.

Theorem 3.4.4. Assume that there is ty so that

M(10) =0, A" (19) #0.

Then (3.4.4) has a chaotic behaviour for any € > 0 small.

3.5 Inflated Deterministic Chaos

3.5.1 Inflated Dynamical Systems

The following problem arises in computer-assisted proofs and other numerical
methods in dynamical systems [34-37]. Let Zgrn be a unit closed ball of R”". For
a homeomorphism f : R" — RR", we consider an orbit {x;} jcz of an &-inflated map-
ping x — f(x) + €PBgn for € > 0. Then we deal with a difference inclusion

Xj+1 ef(Xj)‘i‘g%Rn, ]GZ (351)

The concept of e—inflated dynamics was introduced in [36] and was used in a fairly
large number of papers since then. For details, see the monograph [38] and the ref-
erences therein. Consequently, the theory of generalized nonautonomous attractors
in the e—inflated dynamics can be considered to be complete by now.

We are not interested in the existence of one solution of (3.5.1), but in the set of
all trajectories of (3.5.1). So, for instance, to fix the initial point xy, we consider a
single-valued difference equation

Xjt1 :f(xj)+8pj, pj € PBrn, JjEL, 3.5.2)

where p = {p;}jez € Pz (wn) 1s considered as a parameter. This orbit of (3.5.2) is
denoted by x(p) = {x;(p)}jcz. Then we define an &-inflated orbit of (3.5.1) given
by

XS(XO) = {X?}jez, xf = {xj(p) ‘ pc ,@ZDZG(R»L)} .

Here

lz(R") = {p ={pj}tjez |p; ER",Vj € Zand ||p|| := suglpjl < °°}
je

is the usual Banach space and L@gozo(Rn) is its closed unit ball. Certainly it holds
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X =f(5)+eBrn, jEL.

Hence x* are contractible into themselves to x? = fJ(xo). The iteration f/(xp), j # 0
is in the interior of xi. Note that x§ = x. Moreover, xf are compact.

This approach of considering parameterized difference equation (3.5.2) instead
of difference inclusion (3.5.1) is used in [39] for investigation of €-inflated dynam-
ics near either to a hyperbolic fixed point of a diffeomorphism or to a hyperbolic
equilibrium of a differential equation. More precisely, we construct analogues of
the stable and unstable manifolds, which are typical of a single-valued hyperbolic
dynamics; moreover, we construct the maximal weakly invariant bounded set and
prove that all such sets are graphs of Lipschitz maps. Then a parameterized general-
ization of Hartman-Grobman lemma is shown. Inflated ODEs are studied in Section
4.6.

3.5.2 Inflated Chaos

We consider a C'-diffeomorphism f : R” — R” possessing a hyperbolic fixed point
xo. Then we take its g-inflated perturbation

x — f(x) 4 g(x, Brn) (3.5.3)

where g : R"” x Zrn — R" is Lipschitz in the both variables, i.e. the following holds:
There are positive constants A, A and L so that

lg(x,p) —g(%p)| < Alx—%+Alp—p| and [g(x,0)| <L (3.5.4)

whenever x,%¥ € R" and p, p € PBrn. We suppose, in addition, that diffeomorphism f
possesses a transversal homoclinic orbit {xg} xez to hyperbolic fixed point xo. Then
f is chaotic by the Smale-Birkhoff homoclinic theorem 2.5.4. Our aim is to extend
this theorem to (3.5.3).

Our multivalued perturbation takes the special form G(x) = g(x, Zgn). So (3.5.3)
has the form x — f(x) + G(x). In view of the Lojasiewicz-Ornelas parametrization
theorem 2.3.1, this is not a loss of generality if the values of G are convex and
compact. However, in the general case a parameterization of G does not exist. We
mention that some nonconvex versions exist as well [40], but in general, a parame-
terization cannot be available, since continuous selections may not exists (see [41],
Section 1.6). Hence, we consider

X1 € f () +8(xk, Brn), kEZL. (3.5.5)
Like in [39], we take p = {pk };cz € €7 (R"), ||p|| < 1 and consider the system

Xey1 = fo) + g0, pr), kE€Z. (3.5.6)
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First, we know by Lemma 2.5.2 that the transversality of a homoclinic orbit {x,?}kez
is equivalent to the existence of an exponential dichotomy of wy,| = Df (x,?)wk on
Z, i.e. setting the fundamental solution

Df(xk D Df(xo) if k>0,
W (k) = I, if k=0,
Df(x2)7'~~~Df(x91)7', if k<0,

there are a projection P : R" — R" and positive constants K > 0, 6 € (0, 1) so that
|W(k)PW (r)~'| < K8*, for k> r,
|W (k)(I—P)W _1|§K6"", for k<r.

Now we fix @ € N large and for any & € &, & = {e,}jcz we define a pseudo-orbit
{xk}kez as follows for k € {2jw,....2(j+ o —1}, j € Z:

)Ck =

0 _
: {xk(2j+1)w, for e; =1,

X0, for e; =0.

Let ‘xl?o —xo| = Il?azx |x,(3 — xp|. Following [10, pp. 148-151] and [13], we have the
€
following result.

Lemma 3.5.1. There exist wy € N, oy > |ko| and a constant ¢ > 0 so that for any
¢ €& h={l}rez € ;(R"), there is a unique solution W = {wy }rcz € 07 (R") of
the linear system

Wil = Df(xf)wk+hk, kelZ.
Moreover, w is linear in h and it holds |w|| < c||h|.

We denote that K(£)h = w is the unique solution from Lemma 3.5.1. Certainly
K(E) € L(G(R") with [K(E)] < e, and K(E)~'w= {wis1 =DF G i}, 50
K&)' e L(6(RY).

Now we look for a solution of (3.5.6) near x&. For this reason, we make a change
of variables x; = wy, —|—x}§, k € Z to get the equation

weir =Df (6wt £ (it ) =k = DF (o ) wetg (we+f, ) 357
for k € Z. To solve (3.5.7), we introduce a mapping
G:& x 93@;(1@") x 07 (R") — £7 (R")
as follows:

G(&,p,w) = {f (wk +x§) fxgﬂ —Df (xf) wi+g (wk +x,§,pk)}

kez
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Now forany & € &, w!,w? € £3(R"), ||w!?|

<pandp',p’ec Bz () We derive
IG(&,p", W) = G(&,p*, W) < (A(p)+4) [w' —w? | +A[p' —p*| (3.5.8)
for
A(p) = sup {IDf(w+2) = DF()| < v = 0] < 24af, — xol, W] < p -

Note that A(0) = 0. Since {Xg}kez is a homoclinic orbit of f to xg, by [42, p. 148],
we also get

3 £ _(8+1\?
IG(E,0,0)| <L+ sup gy —fOp)l <Ltc{ —— (3.5.9)
keZ,Ee&

for a constant ¢ > 0 and any & € &. Now we are ready to rewrite (3.5.7) as the
following fixed point problem

w=F(&,p,w):=K(©&)G& p.w).
By Lemma 3.5.1, (3.5.8) and (3.5.9), we obtain

IF (& ! wh) = F(&,p2, W)l < c(A(p)+A) [w! —w?|[+Ac]p! —p],

_(8+1\?
(&t whll < e(8(p)+ )+ Acl'] + e (25

(3.5.10)
forany & € &, w',w? € £3(R"), |[w!2|| < p and p!,p? € Pz (). Assuming that

A<, (3.5.11)

~ . g, — %ol
Ko :=min< 1,cA +cA —a ,
Mp(c,A) := max {I_Kmin{A1<K_CA>}}
CASKS%O c c

and the above maximum is achieved at Ky € (cA,1). Here A~ : R, — 28+ \ {0} is
considered as an upper semicontinuous mapping which is increasing with increasing
compact interval set values. Put

po = min{A1 (KOZCA) }

we set

Note that
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- Ko — X0 —x
O<P0=min{A' (w)}ﬁmin{Al<K0 CA>}§|kO4 ol
¢ c

Ko = c(A(po) +A).

If
A+L<My(c,A), (3.5.12)

then A +L < My(c,A) = FTKOpo and so
cA+cL+c(A(po)+A)po=cA+cL+ Kopo < Po-
Consequently, we find N > w; > wy so that

1\
cz(‘S;’) +cA +cL+ Kkopo < po.- (3.5.13)

Then for any fixed N > @ > w;, mapping:

— B

F:&x %ZOZC(Rn) X B 0 ZM(R,,)

= (R")
is a contraction with a constant k), where %’KQ (") is the ball of E"Z"(R’l) centered at
Z

0 with the radius pg. By the Banach fixed point theorem 2.2.1 we get the following
result.

Theorem 3.5.2. Assume (3.5.11) and (3.5.12). Then there are ®; > @, ‘xko il >
po > 0 so that for any N > @ > @y but fixed and for any & € &, p € %gm(Rn) there
is a unique solution X(p,§) = {xx(p,&) ez € €5 (R") of (3.5.6) so that

Ix(p, &) —x*|| < po. (3.5.14)
By (3.5.10), mapping:
X: %@Z(Rn) X & +— EOZO(Rn)

is Lipschitzian in p:

(3.5.15)

1 2 cA
— <
[x(p", &) —x(p~,8) < 1—xo
forany & € & and p',p® € ,@[;(Rn). Let

lz(R") := {{x }rez | xx €R"}

be a metric space with a norm

lex — ¢
d({exez} {eier}) = .
szh{eie) = 1 ST 1 e, — el
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Clearly £ (R") C £7(R"). Now we prove several useful results.

Theorem 3.5.3. Mapping x : %g;(Rn) X & — Lz (R") is continuous.

Proof. Let Bp=n) > P' = {p}}jez — 0" = {P}} jez. € Bizwr), 6 2 &i={€}} jer. —
&= {e(}} jez € & as i — oo, Then using (3.5.14) and the Cantor diagonal procedure,
we can suppose, by passing to subsequences, that

x(p.&) =3, Viez,

as i — co. We note that ez- — e(])- asi— oo Vj € Zand x(p', &), i € Z solving (3.5.6)
along with (3.5.14) holds as well. By passing to the limit i — oo, we obtain

D=0 +eGhpY), kezZ

and X = {i?} jez satisfies (3.5.14) with & = &y. The uniqueness property of Theorem
3.5.2 implies X = x(p°, &). The continuity of x is proved. O

Theorem 3.5.4. It holds
Xk(ﬁ,c(é)) :xk+2w(pvé)? VkEZ, (3516)
for p = {pr+20 }kez-

Proof. Taking 2 := x4 2(p, &) forany k € Z, by x7) =2 vk € Z, (3.5.6) and
(3.5.14) we derive

Zer1 = f(z) + 82k Prt2o) »

6(5)’ _ ‘
@) —

‘Zk —X Xk+20 (pa é) 7x]§+2w < Po,

for any k € Z. The uniqueness property of Theorem 3.5.2 implies z; = x;(p, 0 (&))
for any k € Z, so (3.5.16) is shown. O

Then (3.5.16) implies
X2k (P, ) = Xo (c?k(p)ﬁk(é)), VkeZ, (3.5.17)
for a shift homeomorphism
G: B ®e) — Biz(rr)
given by 6 (p) := p. Note that

x2(k+l)co(p»§) :Fzzk(c](()ji)l)w (x2kw(p75)) ) Vk € Za (3518)

for continuous mappings
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Foat () i= (f + 80 parnyot) -+ (f + 80 pavo1)) (f +8( P2ro)) (3).

Then (3.5.17) and (3.5.18) imply
%0 (61(),0*1(8)) = it (30 (64(9).0°()) ), VkeZ, (3519
and since 6* : & +— & is a homeomorphism, (3.5.19) gives

X0 (6k+1(p),6(§)) = Fpet® <x0 (6"@),5)) . VkeZ. (3.5.20)
Next, introducing the following mappings
X ‘%EE(R”) X & XL %Z%Q(Rn) XE XL,
Z(p,8.k):=(p.0(8).k+1),
D : By (my X & X L= Bz (mm) % R*"X 7,
P(p,&.k) = (px0 (3(9).€ ) k)
F??: B n) X R" X L= By X R X Z,
F2(p,x, k) = (B, Fyigy  (x), k1) |

and the set
A=D (%[Z(Rn) X & X Z) s

we obtain the main result of this section.

Theorem 3.5.5. The diagram of Figure 3.2 is commutative. Moreover, mappings X
and ® are homeomorphisms.

%@;(Rn) X & XL 22 > %[:;(Rn) X & XL
D (o]
\4 F2a) \
A - A

Fig. 3.2 Commutative diagram of inflated deterministic chaos.

Proof. The commutativity of diagram in Figure 3.2 follows directly from (3.5.20).
Since ¢ : & — & is a homeomorphism, X is also a homeomorphism. Now we show
the injectivity of the mapping xo(p, -) : & — R". If there exist & 3 §' = {e}}jez #
2 ={ej}jez € € and xo(p, ") = x0(p, &), then xi (p, &) = xi(p, &?) forany k € Z
and jy € Z exists so that e}o # e?o. Then (3.5.14) gives
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1 2
X(2jo+1) 0+ko

2 &?
+ ’x(2j0+l)w+ko (p,&7) T X 2o+ Dotk

| 1
< ‘X(2j0+1)co+k0 (pag )_x(2j0+l)w+k0

0 _ .8 _
Ik — o0l = ‘x(2j0+1)60+/<0

<2pg < ‘xgo —)C()|,

which is a contradiction. Consequently xo(p, -) is injective. Now suppose @ (p', &1, k;) =
®(p?,E%,ky). Then p' =p? =p, k; = ko = k and

%0 (84(1).¢") =x0 (6"().&?)

and thus £! = £2. Hence @ is also injective. Finally assume that & (p’, &/ k;) —
®(p°, &Y ko) as i — oo. Then k' = k° for large i, p' — p” and

x0 (640, &) = x0 (6% (p").°) .
Since & is compact, we can suppose &! — EO and then
30 (64(6°),6°) =0 (5 (6°),€°)

and so £0 = E0 i.e. @ is continuous. In summary, @ is a homeomorphism. The
proof is finished. O

Figure 3.2 has the following more transparent form in Figure 3.3 where

I Bimn) X 6 Brany x 6, Z(p,€):=(p,0(§)),

Dy : Bz (rny X 6 = Brzwny xR", - B(p,§) :

I
VN
®
&
/N
A
o~
—
z
o
N—
SN—

A= By (f%’f;(ﬂ%") X éa) ,

2(k+1
szw : '%52(R”) x R" — %ZE(RH) X Rn7 szw(p,x) = (p,sz(w:; )w(x)) .

By putting
PP R, BP(E)i=x0 (G4(0).E), AP =P (&),

Figure 3.3 has also more transparent forms described in Figure 3.4. All mappings in
Figures 3.3 and 3.4 are again homeomorphisms, and sets A,f are compact. So Figure
3.4 is a two-parameterized analogy of Figure 2.1 of Section 2.5.2 by parameters
pc %{;(RH) and k € Z.

Set

P0(E) = BYE) =x0(0,&), Ag=AJ=x(0,&), m=20. (3.5.21)

By (3.5.195), all sets A,f arein a iAKO -neighborhood of Ay. If

1
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%{;(Rn) X & t%g;(Rn) X &
Dy Dy i
Fka
- A Ay ———

Fig. 3.3 A sequence of commutative diagrams from Figure 3.2.

o
> & > & >
P
op af,
2(k+1)@
szw.p
.- AP . AP

k+1

Fig. 3.4 A parameterized sequence of commutative diagrams from Figure 3.3.

g(x,0)=0 VxeR" (3.5.22)

then L =0in (3.5.4), ¢ = @, A = Ag in (3.5.21) and Figure 2.1 of Section 2.5.2
is derived from Figure 3.4 by setting p = 0. Moreover, inequality (3.5.13) gives

_ ay - ~ ~
po:=c (%) + Kop < po. Clearly A(pg) < A(po) and so Ky := cA(po) < K.

Repeating the proof of Theorem 3.5.2 we get ||x(0,&) —x°|| < po for any & € &.
Note, the above diagrams are generalizations of similar results of [33,43,44] for
non-autonomous sequences of diffeomorphisms, ordinary differential equations and
inclusions. Now we put _
A= |J Al
pG,%gozo(Rn),kEZ

Note that A = xg (%goi(w) ,E ) We can consider A as an inflated Smale horseshoe
of f.

Theorem 3.5.6. Assume (3.5.11), (3.5.12) and (3.5.22). If o € N is sufficiently
large, then the following properties hold:

i AC A and if in addition
gri=g(x,"): Brn — R" isinjective VxecR", (3.5.23)

then A is in the interior of/‘.

(ii) A is contractible into A in itself.

(iii) /~\ isina 1C—A1<0 -neighborhood of A.

(iv) A is back and forward weakly invariant with respect to an m-iteration of (3.5.3),
i.e. Im € N 50 that Vxy € A, IH{ Xy }rez satisfying X1 € f (%) + g(Xy, Brn) and

Fm EA, VK € Z.
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(v) Dynamics of (3.5.3) back and forward sensitively depends on A, i.e. there is a
constant 1) > 0 so that for any Xo € A and any open neighborhood 3o € U C R”,
there is xo € UNA and {Xk}kGZ: {fk}kgz satisfying Xy 1 € f(%) + g(Xk, Brn)
and Xyv1 € f(X) + g(Xp, Brn), Vk € Z, and there exist jo, j1 € Z, jo <0< ji
so that ‘fjo —fj0| > 1 and ‘)Ejl —Xj, ‘ >n.

(vi) (3.5.3) has a chaotic/oscillatory behavior on A.

where we consider Theorem 2.5.4 in the sense of (3.5.21).

Proof. Since Ag = A, we get A C A. Next we fix & € & and consider a mapping
O; : By (rn) > (7 (R") given by O (p) = x(p, &). We study g for p near 0. From

(3.5.23), there are open neighborhoods 0 € V C R" and X C W so that
VCgX(%Rn), VxeWw.

So we have v, :=g; ! 1V — PBga, Vx € W. Clearly y(x,z) := Wy (2), W : W xV — R"
is continuous. We continuously extend y on R” x R". Then we define R : /7 (R") —
27 (R") as follows
R(x) := {y (e, X1 — f () beez -

R is continuous. If ||p|| is small then x; 1 — f(x¢) = g(xx, px) € V for x(p,&) =
{atrezs 50 pr = g (a1 — F(w)) = W, 01 — £ (), ie. R(Og(p)) = p for
any p small. Note that @ (0) = x(0,&) = {f“(¢(&))},., and [x(0,&) — x5 <
po < po for any & € &. On the other hand, if x = {x; }1ez is close to @ (0) then
Xi+1 — f(x¢) €V Vk € Z along with Hx—x5 Il < po, so we can put py := W (X, Xgt1 —
F(xx)) € PBre. Then xi1 = f(xx) + g(xx, pi). From the uniqueness we derive x =
O¢ (p) = O (R(x)). In summary, @ is a local homeomorphism at p = 0. Now, a
projection Py : £7 (R") — R" given by Py ({%x }xez) := Xo is an open linear mapping.
Consequently, a mapping Py o O¢ (p) = xo(p, &) maps a small open neighborhood
of p = 0 onto a small open neighborhood of @(§) = Pyo @¢(0) € A. This implies
property (i). By taking

Ay = {xo(/lpé) P EHBppm) S € g}

for A € [0,1], we get property (ii), since clearly A, C A and Ay = A. Property
(iii) follows from (3.5.15). The definition of A implies property (iv). Now we show
property (v). Take 1 := ’Xko fx0| —2po > 0. Then for any Xy € A we have ¥y =
xo(p, &) for some p € ,%’gw rryand & € &. Let % € U C R" be an open neighborhood.
From the continuity of mapping & — xo(p &) (see Theorem 3.5. 3) there is 5 ¥3
close to & so that Xy = xg (p, 5) € UNA and there exist 0o, 1
so that ¢;, # e;,, €, # e;, for E = {éi}icz and .’;' = {€i}icz- Then for jo = (210 +
Dw+ky <0, (3.5.14) gives
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xjy(p,&) =25,

E_ &
Xjo ~ %o

~ [xio(p. &) =5,

xjo(p’g) _xjo(pag)’ >

> |xg, —x0| —2p0 =1 > 0.

The same estimates hold for j; = (2i; + 1)@ + ko > 0. Property (v) is shown. Dia-
gram in Figure 3.4 gives property (vi). The proof is completed. a

With property (v), we can construct many continuum orbits of (3.5.3) starting
from U and oscillating back and forward on Z between xy and x,?o in any order. Of
course, results of this section can be directly extended to more £-inflated systems of

the form xi1 = f(xx + €qx) + 8(xk, pi), k € Z for any { pi}rez, {qitkez € Bz (rn)
and € > 0 small fixed.
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Chapter 4
Chaos in Ordinary Differential Equations

Functional analytical methods are presented in this chapter to predict chaos for
ODEs depending on parameters. Several types of ODEs are considered. We also
study multivalued perturbations of ODEs, and coupled infinite-dimensional ODEs
on the lattice Z as well. Moreover, the structure of bifurcation parameters for homo-
clinic orbits is investigated.

4.1 Higher Dimensional ODEs

4.1.1 Parameterized Higher Dimensional ODEs

In this section, we consider ODEs of the form

x = f(x)+h(x,u,t) 4.1.1)
with x € R”, u € R™. We make the following assumptions of (4.1.1):

(i) f and h are C3 in all arguments.

(i) £(0)=0andA(-,0,-)=0.

(iii) The eigenvalues of Df(0) lie off the imaginary axis.

(iv) The unperturbed equation has a homoclinic solution, i.e. there is a nonzero dif-
ferentiable function ¥(¢) so that lim,_, 1. y(t) = 0 and y(z) = f(y(¢)).

V) h(x,u,t+1)=h(x,u,t) forteR .

Let ¥, be the period map of (4.1.1), i.e. ¥, (x) = ¢, (x, 1) where ¢ (x,?) is the solu-
tion of (4.1.1) with the initial condition ¢, (x,0) = x. The purpose of this section is
to find a set of parameters ( for which the period map ¥, of (4.1.1) has a transver-
sal homoclinic orbit. For this reason, higher dimensional Melnikov mappings are
introduced. Simple zero points of those mappings give wedge-shaped regions in R”
for u where ¥, possesses transversal homoclinic orbits. This result is a continuous
version of Section 3.1, where difference equations are studied. Melnikov theory for
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ODE:s is also given in a lot of work [1-7]. This method is usually applied when the
unperturbed equation

x=f(x) 4.1.2)
is integrable [8].

4.1.2 Variational Equations

For (4.1.2) we adopt the standard notations W*, W* for the stable and unstable man-
ifolds, respectively, of the origin and d; = dimW?¥, d, = dimW". Since x =0 is a
hyperbolic equilibrium, ¥ lies on W* N W*. By the variational equation along y we
mean the linear differential equation

i =Df(y(t))u. (4.1.3)

Now, we can repeat the arguments of Section 3.1.2 to (4.1.3), but since it is straight-
forward, we do not go into details, and we refer the readers to [3, Theorem 2] and [9,
Theorem 3.1.2]. Consequently, the following results hold.

Theorem 4.1.1. There exists a fundamental solution U for (4.1.3) along with con-
stants M > 0, Koy > 0 and four projections Py, Py, Py, Py, so that P+ Py, + Pys +
P, =1 and the following hold:

() |Ut)(Ps+Pu)U(s) 7| < K&~ for 0<s<t,
(i) |U(2)(Py+ Pu)U(s) 71| < Koe®MU=9) | for 0 <t <s,
(i) |U (1) (Pss + Pu)U (5) | < Koe*MU), - for 1 <5 <0,
(V) |U (1) (Pus + Pu)U (5) 71 < Ko7, for s <1 <0

Also rank P, = rank P, = d.

In the language of exponential dichotomies we see that Theorem 4.1.1 provides
a two-sided exponential dichotomy. For 1 — —co an exponential dichotomy is given
by the fundamental solution U and the projection P,; + P,, while for # — +o0 such
an exponential dichotomy is given by U and Pys + Py;.

Let u; denote column j of U and assume that these are numbered so that

I, 040 04 04 O
Pu=104 04 01, Ps=10; I 0
0 0O 0 00

Here, I; denotes the d x d identity matrix and 0; denotes the d X d zero matrix.
For each i = 1,...,n we define ui(¢) by (u-(t),u;(t)) = &;, where (-,-) is the

scalar product on R”. The vectors u:- can be computed from the formula U+* = U !

where U denotes the matrix with «; as column j. Differentiating UU* =T we

obtain UU* +UU+* =0 so that U+ = —(U~'UU)* = —Df(y)*U*. Thus, U+
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is the adjoint of U. Note that {u;(¢) | i = 1,2,...,d} is a basis of bounded solutions
on R of the adjoint variational equation w = —Df(y)*w. The function 7 is always a
solution to the variational equation (4.1.3) and we may assume that u,; = 7, since ¥
is a linear combination of columns u, | through u;; of U and a linear transformation
of these columns preserves the projections.

Now we define the following Banach spaces

Z={zeC((=ene)R") |sup[z(r)| <}

Y ={z€C'((—o,=),R") |z,z€ Z},
with the usual supremum norms.

Theorem 4.1.2. The linear equation
u=Df(y{t))u+z, z€Z.

has a solution u = K(z)(t) € Y if and only if
1€Z:= {Z eZ| / PoU(s) 'z(s)ds = 0} )
Moreover, if z € Z then we can take
0 1 ! I
VO] [ P ) ds+ [ (Pt RUG) 206 ds
—/ (PM—I—PW)U(S)flz(s)ds], fort >0,

t

Ur) [_ /0 " PuU(s) " 2(s)ds + /O (Pt Pus)U () 2(s) ds

+/_' (PW+PW)U(S)_1z(s)ds}, fort <0.

Note that z € Z < [ (u(1),2(s))ds = O foralli=1,2,...,d.

—o0

Theorem 4.1.3. Define a projection I1 : Z — Z by
)0 = () [ UOPLUG)'25)ds.

Sfor a smooth function ¢ : R — R satisfying sup, |(p(t)uj(t)‘ < oo for all j and
[=.0(s)ds = 1. Then Z(1—II) = Z.
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4.1.3 Melnikov Mappings

Without loss of generality, we can suppose that f and & as well as all their partial
derivatives up to the order 3 are uniformly bounded on the whole spaces of defini-
tion. We study the equation (cf Theorem 2.2.4)

Fuey(x) =x— f(x) = h(x,pu,t) —€|p|L(x—y) =0,

(4.1.4)
Fey:¥Y —Z,

where L:Y — Z is a linear continuous mapping so that ||L|| <1,y €Y and € € R
is small. It is clear that solutions of (4.1.4) near y with € = 0 are homoclinic ones of
(4.1.1). We make in (4.1.4) the change of variable

x(t) =yt — o) +w(r), (w(0),7"(~0)) =0, 4.1.5)

where @ € .# C R and .# is a given bounded open interval. We note that (4.1.5)
defines a tubular neighbourhood of the manifold {y(t — oc)} wcy 1Y when w is
sufficiently small (cf Section 2.4.3). Hence (4.1.4) has the form

Gapeyw) =w—f(y(t —a)+w))+ (1t - a))
—h(y(t— &) +w 1) — €lu|L(w+y(t — ) —y) =0,
Gopey: Y —Z.

We have
DywGo00y(0)u=u—-Df(y(t—o))u.

By putting
Uat) =U(t — @), Ug(1)=U"(r—a),

Theorem 4.1.1 is valid when U is replaced by Uy and (4.1.3) by
it = Df(y(t — a))u,
respectively, but Ky > 0 should be enlarged. Moreover, we put

Y(l(t):’}/(tia% uj,a:uj(tia)v u#a:u;(tia)'

Consequently, by taking
0= {ve¥ [sup(ly(0)| +15(0)l) < sup (|7(e)| + [7(0)]) +1
teR teR
and by using the same approach as in [3], [, p. 709] and Section 3.1.3 along with

Theorems 4.1.2 and 4.1.3, there are open small neighborhoods 0 € O C R¢~!,0 €
V CR,0 € W C R™ and a mapping
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GeC*(YXOX I XWXV xQ,Z),

so that any solution of (4.1.4) near Yy for 4 € W, € € V, y € Q is determined by the
equation G(z, 3, &, U, €,y) = 0 and this solution has the form

d—1
X=Ya+z, PusUyg'(0)(z(0) = Y Bjttjra.0(0)) =0, (4.1.6)
j=1

where B = (Bi,...,Ba—1). We remark that {u;(0)}_, are linearly independent,
u24,0(0) = 72 (0) = y(—0x), as well as

{veRr" | (n7 (=) =0} = span { {u;a(0) Y1\ {2 a(0)} },
and
0=PyUy ' (0)w = PoUq ™ (0)w <=> (4 4(0),w) =0, Vj1<j<d.

Hence (4.1.5) and (4.1.6) provide a suitable decomposition of any x in (4.1.4) near
the manifold {y(t — &)} yc.». Now by using the Lyapunov-Schmidt procedure (see
again [3, Theorem 8], [5, p. 709] and Section 3.1.3), the study of the equation
G(z,B,a, 1, €,y) =0 can be expressed in the following theorem for z, i, €, B small,
yeEQand o € 4.

Theorem 4.1.4. U and d are the same as in Theorem 4.1.1. Then there exist small
neighborhoods 0 € Oy C R4 0 e W; CR",0€V; C R and a C? function H : Q x
01 x I x Wy x V| — R? denoted (v, B, 0, i, €) — H(y, B, o, W, €) with the following
properties:

(i) The equation H(y,B,a, u,€) = 0 holds if and only if (4.1.4) has a solution near
Yo and each such (y, 3, a, 1L, €) determines only one solution of (4.1.4),
(i) H(y,0,,0,0) =0,

(i) 915(7,0,,0,0) = — [ {u-(1), 32 ((1),0,1 + @) ) d,

(iv) g5 (.0,0,0,0) =0,
V) %(%0,%070) = — [Z. (i (1), D F(¥(1) Juar j(1)ua-i (1)) dt.

We introduce the following notations:

ag(@) = [ (w0 G000+ a) ) ar

bijx = —L <”iLaD2f(7)”d+j”d+k> dt.

Finally, we take the mapping M, : RY — R¢ defined by
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(M# o ﬁ Zal} Z bljkﬁjﬁk

/,k 1

Note that we can take any bases of bounded solutions of the adjoint and adjoint
variational equations (with uo; = ¥) for constructing the Melnikov function M.
Now we can state the main result of this section.

Theorem 4.1.5. Let d > 1. If My, has a simple root (0, o), i.e. (0, o) satisfies
My, (a0, Bo) =0 and D g gyMy, (o, Po) is a regular matrix, then there is a wedge-
shaped region in R™ for | of the form

X = {szﬂ‘ s is from a small open neighborhood of 0 € R and [i is from

a small open neighborhood of ty € R™ satisfying || = |Uo| },

so that for any p € % \ {0}, period map ‘¥, of (4.1.1) possesses a transversal ho-
moclinic orbit.

Proof. Letustake .# = (ap — 1,09+ 1) and let us consider the mapping defined by

3 ~ ~ H(y,SB,a,S2ﬂ7S3é), for S%O,
‘P(y,ﬁ,a,,u,s,s) ==

Mg(a,B), for s=0.
According to (ii)~(v) of Theorem 4.1.4, the mapping @ is C'-smooth near

(y7B7avl17éas):(y7ﬁ07a0u.u07070)7 yEQ
with respect to the variables B , 0. Since
My, (a0, B0) =0 and D p\Myy (0, Bo) is a regular matrix,

we can apply the implicit function theorem to solving locally and uniquely the equa-
tion @ = 0 in the variables 3, ct, where fi is near fig satisfying |fi| = |go|. This gives
for € =0, by (i) of Theorem 4.1.4, the existence of % on which ¥, has a homoclinic
orbit. Moreover, we can suppose that the corresponding solutions of (4.1.4) lie in Q.

To prove the transversality of these homoclinic orbits, we fix u € #Z \ {0} and
take y = ¥, where 7 is the solution of (4.1.4) for which the transversality of the
corresponding homoclinic orbit of ¥, should be proved. Then we vary € = $38
small. Note that s # 0 is also fixed due to 4 = s*fi and || = |uo| as well. Since the
local uniqueness of solutions of (4.1.4) near 7 is satisfied for any € sufficiently small
according to the above application of the implicit function theorem, such equation
(4.1.4) (with the fixed u € Z\ {0}, € = s& where s # 0 is also fixed and the special
y = ¥) has the only solution x = ¥ near ¥ for any € sufficiently small. Hence Theorem
2.2.4 gives the invertibility of DF), o #(7), so the only bounded solution on R of
the equation v = Df(§)v+ D h(¥,u,t)v is v = 0. Then Lemma 2.5.2 implies the
transversality of these homoclinic orbits of ¥, for u € Z\ {0}. O
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Remark 4.1.6. (a) If My, has a simple zero point (Qo,fo), then M,2,, has also a
simple zero point at (o, rfy) for any r € R\ {0}.

(b) If d = 1 then we take the function M, (o) = Y7 ay (o), which is the
usual Melnikov function. So for any simple zero o of My, (ct) = 0, when py is
fixed, there is a two-sided wedge-shaped region in R™ for ut of the form

X = {sﬂ‘ s is from a small open neighborhood of 0 € R and fi is from

a small open neighborhood of py € R™ satisfying |fi]| = | /,10|}

so that for any u € %\ {0}, the period map ¥, of Eq. (4.1.1) possesses a transversal
homoclinic orbit.

Remark 4.1.7. A standard perturbation theory [10-13], which can be verified by
repeating the above arguments, implies the existence of a unique 1-periodic solution
of (4.1.1) for any u small, which is, in addition, hyperbolic. Then the transversal
homoclinic solution of Theorem 4.1.5 is exponentially asymptotic to this periodic
orbit.

Remark 4.1.8. Note that we can take any bases of bounded solutions of the adjoint
variational and variational equations (with uy; = ) for constructing the Melnikov
function My,. Similar observations can be applied to detecting the other continuous
Melnikov functions in this book.

Remark 4.1.9. The above results can be generalized to ODEs possessing hetero-
clinic orbits to semi-hyperbolic equilibria [14].

4.1.4 The Second Order Melnikov Function

When Melnikov function M, is identically zero then we need to compute the second
order Melnikov function. Since in general computations are awkward, we consider
the simplest case given by a C3-equation

i=f(x)+eq(r) (4.1.7)

with 27-periodic ¢(t), and ¥ = f(x) has a homoclinic solution p(z) to 0 with f7(0) >
0. We can suppose p(0) = 0. We are looking for bounded solutions of (4.1.7) near
p(t). We briefly repeat the above arguments, so we shift # < ¢ + o and take x = p+v
in (4.1.7) withv € Yy := {v € Y | v(0) = 0} to obtain

V—f(p)v=r(p+v)—f(p)v—f(p)+eq(t+a).

By introducing the projection IT: X — X as [Tz := [*_z(t)p(t)dt/ [~ p*(t)dt - p,
the Lyapunov-Schmidt method splits (4.1.7) into two equations
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V—f'(p)yv=>U-I){f(p+v)—f(p)v—f(p)+eq(t+ )} (4.1.8)

and
[ 1) +ve) = £ (p0)w(e) - £(p(0) + eqle-+ @)} pe)dr =0. @19

By the implicit function theorem, we can uniquely solve (4.1.8) to getv=v(g,a) €
Yy with v(0, &) = 0, so we put v(g, o) = ew(€, @), and inserting this into (4.1.9), we
get the scalar bifurcation equation

o0

B(e.a) = [ _{f(p(0)+en(e.a)) £ () ew(e.c)(0)

—f(p(t))+eq(t+c) }p(t) dr=0.

Clearly B(0,ct) =0 and B.(0,00) = [*_q(t + a)p(¢t)dt = M(a), where M(ct) is
the Melnikov function for (4.1.7). We have until now repeated arguments of Section
4.1.3 to (4.1.7). When M(a) = 0, then we proceed further to derive

—+oo

Bee(0.0) = [ p(0f" (ple)w(0. (1) dr.

—o0

Note that by (4.1.8), w(0,0) solves w(0,c)(t) = f'(p(t))w(0,x)(t) + q(t + a).
Summarizing the second order Melnikov function is given by

maa) = [ pO )0, @110

—oo

where v (2) is any fixed bounded solution of the equation

i=f'(p(t)x+q(r+a).

This solution exists thanks to the fact that M (o) = 0 (cf Theorem 4.1.2). Note
that any two of these bounded solutions differ for a multiple of p(z), and hence
Vatar(t) =va(t) + Ap(t), for some A € R. On the other hand, M>(a) does not de-
pend on the particular solution v, (¢) we choose. This easily follows from that ji(z)
is a bounded solution of the non homogeneous system

£=f(p(e))x+f"(p(1)p(1)*
and v (¢) is a bounded solution of
i=f(pt)x+f"(p()p(t)va +4(t + ).
Hence:

| s wopra=o

—o0
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and

+oo Foo
PO PE)Pealdr = [ pl)gle+ ) =M (@) = 0.

—oo

Note that M, (o) is 27-periodic since the bifurcation function itself is 27-periodic.

4.1.5 Application to Periodically Perturbed ODEs

We illustrate our theory on the following example. Consider the equation

¥ =x—2xz" +i° + Uy cos ot — Upz,

¥ =y—2yz> 4%y, (4.1.11)

£=2-22 +yy+ i cos o + (ty — )z
This equation is studied in Example 1 of [3]. In the space (x,%,y,y,z,2), the eigen-
values of Df(0) are A} = A = A3 = —1, 44 = A5 = A6 = 1. A homoclinic solution
when u =0is givenby x=0,y=0,z=r,i.e. y=(0,0,0,0,r,7) where r(t) = sechz.

Note that # = r — 7> and 7 = z — z° is the familiar Duffing equation (cf Chapter 1).
The linearization of (4.1.11) at y has the form

i=(1-27)x, y=(1-2¥)y, z=(1-67)z.
Clearly d = 3 and by Remark 4.1.8, it is readily to find
us = (r,7,0,0,0,0), us=(0,0,r,7,0,0), us=(0,0,0,0,7,¥)
uy = (—#,1,0,0,0,0), uy =(0,0,—#r0,0), wuz =(0,0,0,0,—#,7).
Using these results, we easily get
a (o) +2p2 — gﬁ]za

My(et,Bi,B2) = _gﬁ]BZa

2 T
a1 (o) — FH2 gﬁzz’
where
Tw 2 T
aj(a) = —ncosa)asechT, azi(a) = 3~ nwsinwasechT.

There are the following solutions of M, (a, B) = 0 (see Remark 4.1.6 (a))
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ﬁ(a)=< i(““H““)’O)’ H(a)=<l7;a31> 4.1.12)

Bla)= (0, ;;(0114—36131)), p(o) = (1,—;@) . (4.1.13)

The linearization D¢ g)My (e, B) at the points (4.1.12) reads

8
a’” —g ;(Clll +3asz;) 0
8
0 0 —% E(a11+3a31)
dy 0 0
and at the points (4.1.13) it has the form
aj, 0 0
T |8
0 ——y/— 3 0
A 3ﬂ(€111+ asi)
T /8
aj 0 1 g(a11+3a31)

Next, we have ay;(a) +3a31(a) > 2 - (3w+1)sech B2 > 0 for > ay, where
@y = 1.95332 is the only positive root of 7 (3wy+ 1) sech@ =2. So for 0 > ay
the points (4.1.12), involving (4.1.13), are simple zero points of My (ct,3) when

a# ) ZkH , A F G zk k¢ 7. Hence for @ > a, there are two small open wedge-
shaped reglons in the U1—Up plane with the limit slopes given by

3 Tw T Tw
1+~ h— 4+ —sech—
27ra)sec > and > sec >

containing parameters for which the period map of (4.1.11) possesses a transversal
homoclinic orbit near y. Since 13 rwsech %2 ~ 1 £370 e /2 and +7sech 22
+me "®/2 for large values of w, i.e. for rapid forcing, these wedge-shaped re-
gions become very narrow as @ — oo. For instance, if @ = 10 then %Tm) sech T2 =
0.0000142033 while J sech &2 =4.73443 x 10~7. Finally note that 1 + 3 5T a)o sech
T = 1.85423, 1 — 3may sech T = Z sech 0 =0.145773 and functions 3 7@ sech

”2‘" , 5 sech B2 are rapidly decreasmg on [(oo, o).
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4.2 ODEs with Nonresonant Center Manifolds

4.2.1 Parameterized Coupled Oscillators

To illustrate the ideas of this section consider the equations
¥ = x — 2x(x* +y%) — 2% + py cos o, (4.2.1a)
¥ = (1—k)y—2y(x* +y*) — 212y + 11 cos pat, (4.2.1b)

where p € N and @ > 0 . This system consists of a radially symmetric Duffing
oscillator with an additional spring of stiffness k in the y equation along with damp-
ing and external forces added as perturbation terms. Let us assume k > 1 in (4.2.1b).
Then, for the unperturbed equation, i.e. when p; = tp =0, the linear part of (4.2.1a)
has a hyperbolic equilibrium and the linear part of (4.2.1b) has a center. Further-
more, for small i, the eigenvalues of j = (1 — k)y — 2,y are complex functions,
A(12), with R(A(U)) = —z so that we have R(A(0)) = 0 and R(A'(0)) = —1.
Thus, for small p, # 0, the equilibrium of (4.2.1b) is weakly hyperbolic.
If we set y =0 in (4.2.1a) we get the standard forced, and damped Duffing equa-
tion
¥=x—2x° —2pX + 1] COS OF . 4.2.2)

Using Melnikov theory of Section 4.1 one can show (see Example 4.2.6 below) that
for small y; # 0 and for u # 0, within a range

Tw
A

3nw
2| < T|u1|sech 2

(4.2.3)
Equation (4.2.2) has a transverse homoclinic orbit and hence exhibits chaos. The
purpose of this section is to show that if p; # 0, tp # 0 are chosen to produce chaos
in (4.2.1a) when y = 0 and if pw # vk—1 then, as a consequence of the weak
hyperbolicity in the y equation, there exists chaos in the full Eq. (4.2.1) which, in
some sense, shadows the chaos obtained in (4.2.1a) with y = 0. Condition p® #
vk — 1 means non-resonance in (4.2.1b). Resonant systems of ODEs are studied in
Section 4.3.
As an abstract version of (4.2.1) we consider differential equations of the form

X = f(xaya.uat) = fO(xay) +.ulf1 (%%NJ) +.u2f2(xaya.I'Lvt)a (4243)
)} = g(xvyauvt) = gO(xvy) + 1181 (X»)’vIJ«at) —l—uzgz(x,y,/.t), (424b)

with x € R”, y € R, u = (u;, i2) € R%. We make the following assumptions of
(4.2.4):

(i)  Each f;, g; is C*-smooth in all arguments.
(1) f1, f» and g are periodic in ¢ with period T .
(i) D2 fo(x,0) = 0.
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(iv) The eigenvalues of D fy(0,0) lie off the imaginary axis.

(v) The equation x = fy(x,0) has a homoclinic solution .

(vi) go(x, 0) =82 (X,O,IJ) =0, Dzlgo(o,()) =0and Dzzgo(0,0) =0.

(vii) The eigenvalues of D,g((0,0) lie on the imaginary axis.

(viii) If a function A () is an eigenvalue of the matrix D,g¢(0,0) + uxD2g2(0,0,0)
then R(A/(0)) < 0.

(ix) D,g1(0,0,0,¢) =0.

Hypothesis (viii) is based on the examples for which the L, perturbation repre-
sents damping which cases all the eigenvalues of (4.2.4b) to move to the left of the
imaginary axis. In fact, it is sufficient to assume that R(A'(0)) # 0. In other words,
(4.2.4b) is weakly hyperbolic. This more general assumption requires a little more
work since it is necessary to include a nontrivial projection in Lemma 4.2.4 below.

4.2.2 Chaotic Dynamics on the Hyperbolic Subspace

In this section we consider the equation

X = f(x70nu7t) = f()()C,O) +Ivllfl (xvoauat) +[J2f2(x,0,/.l,,t) (4.2.5)

obtained by setting y = 0 in (4.2.4a). Equation (4.2.5) will be called the reduced
equation obtained from (4.2.4). We apply to this equation Melnikov theory from
Section 4.1 which we summarize here for the readers’ convenience. By hypothesis,
the equation X = fj(x,0) has a hyperbolic equilibrium and a homoclinic solution
y. Then (4.2.5) has a unique small hyperbolic T-periodic solution py (r) for ||
small (cf [11], Remark 4.1.7). Let {uy,...,uy} denote a basis for the vector space
of bounded solutions to the variational equation & = D fy(y,0)u with u; = ¥ and
let {v1,...,vs} denote a basis for the vector space of bounded solutions to the ad-
joint variational equation v = —D fy(y,0)"v. Now define the functions g;j : R — R,
constants b;j and function M : R* x R x RI~1 — R by

B 0,0 d t=i=d
aii(o) = vilt), fi(y(),0,0,r+x)) dt,
s = [ wi0.£10) hai N
b ) 0 d tsisd 4.2.6)
ik = vi,D ,0)uuy) dt, 2.
= [_tepusar Oy, 8 2 (
,u o ﬁ Za,] Z bukﬁjﬁk, 1 <i<d.

]kl

The function M is our bifurcation function and is used in Theorem 4.2.1 below.
The integer d has a geometric interpretation. Let P = y(0) and let W*, W* denote the
stable, unstable manifolds respectively of the origin for the unperturbed equation
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from (4.2.5). Then the entire orbit of ¥ lies in WS N W*" so that P € W N W" and
7(0) € TpW* NTpW". The vectors {u;(0),...,uy(0)} are a basis for TpW* N TpW"
and d = dim(TpW* N TpW*").

Suppose that W* N W*" has a connected component which is a manifold of di-
mension d and contains the orbit of y. Then in (4.2.6), all b;j; = 0, the hypothe-
ses of Theorem 4.2.1 below cannot be satisfied and an alternate bifurcation func-
tion is required. Let W” denote a homoclinic d-manifold containing 7, let Uy be
an open neighborhood of the origin in RY~!, let 1 : Uy — W” be a differentiable
function-denoted 8 — n(B) with n(0) = P, let 1 — y(¢) be the solution to the
unperturbed equation (4.2.5) satisfying y5(0) = n(f), and assume that 1 is con-
structed so that (B,) — Y5 (t) establishes local coordinates on W". In other words,
the original orbit y is embedded in a (d — 1)-parameter family of homoclinic or-
bits. We suppose that {}'/ﬁ(t),%j(t),i: l,...,d— 1}, B=Bi,-.-,B4_1), is a ba-
sis of bounded solutions of the variational equation v = D fo(¥3,0)v. For each fixed
B we let {vgy,...,vgq} denote a basis for the vector space of bounded solutions
to the adjoint variational equation v = —D; fo(¥g,0)'v. Without loss of generality
we can assume that each vg; depends differentially on . Now define functions
aij: RxUp— Rand M : R? x R x Uy — RY by
- 1<i<d,

ajlo.p)= [

—o0

(vgi(1), fi(15(1),0,0,t +x)) dt, { l<j<2
4.2.7)

2
M[(ﬂ,&,ﬁ)zza[j(a,ﬁ)uj, ]Slgd
j=1

This is our bifurcation function for the homoclinic manifold case. By combining
results from Section 4.1 we now get the following result.

Theorem 4.2.1. M is the same as in (4.2.6) or (4.2.7) and suppose (U, o, Po) are
such that M(po, &, Bo) = 0 and D gyM (Lo, &%, Bo) is nonsingular. Then there ex-
ists & > 0 so that if 0 < & < & the equation % = f(x,0,E Uo,t) has a homoclinic
solution Y to pg,. Furthermore, g (1) — P&y, at an exponential rate as t — oo,
Ye depends continuously on &, limg_ ¥ (t) = y(t — o) (or = Vg, (t — Q0)), uni-
formly in t and the variational equation along Yg has an exponential dichotomy for
the whole line when & # 0.

Following Sections 2.5.2 and 2.5.3, Theorem 4.2.1 establishes chaos for the dif-
ferential equation x = f(x,0, & Lo, ).

We remark that the constant K¢ of the exponential dichotomy for the variational
equation & = D1 f(¥,0,& o, ?)u along ¥ (¢) tends to infinity as & — 0. Indeed, let
ag, Pe, Ug be the corresponding constant, projection and fundamental solution from
the definition of exponential dichotomy from Section 2.5.1, respectively. The rough-
ness result for exponential dichotomies (cf Lemma 2.5.1) implies that we can take
ag = ap > 0 for some constant ag. If supg o Ke < oo, then there is a sequence {&;}7Z
so that & — 0, K¢, — Ko, P, — Py and Ug,(t) — Uy(t) pointwise. Clearly, Py is a
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projection and Uy(t) is the fundamental solution of & = D fy(7y,0)u creating an ex-
ponential dichotomy for this equation on the whole line R with constants (Kp,ap).
This contradicts the existence of a bounded solution 7y for this equation. Conse-
quently, Kz — e0as & — 0.

4.2.3 Chaos in the Full Equation

We construct the bifurcation function M from (4.2.6) or (4.2.7), as in the preceding
section, from the reduced equation (4.2.5). If M satisfies the hypotheses for Theorem
4.2.1 we have a transverse homoclinic solution and hence chaos for (4.2.5) when
w=Eup, 0 <& < &. We now establish a condition for chaos to exist in the full
equation (4.2.4). Since the exponential constant K¢ of it = Dy f (7/5 ,0,€ Lo, t)u tends
to infinity as & — 0, as we showed in previous section, we have to deal with the full
system (4.2.4). For this we consider the modification of (4.2.4) in the form

:f(x7ly7ll'l'7t)7
Y:go(xay)+)“N181(x7y7li>f)+I~L2g2(x7yvl~‘)7 (428)
0<A<I.

The changes x = Y+ X' € B + E%u, y = E2v, p = E2up with o # 0 into (4.2.8)
yield

i = Dy fy(7,0) u+ Z D11 fo(7,0)BiBjuiu;

lj 1
+ 1o.1f1(7,0,0,+ &) + o2 f2(7,0,0,1 4+ ) + O(&), (4.2.92)

v = [Dago(7,0) + &0 2D282(7,0,0)] v
ngo (Y-i-é )y Biui+&u 0) —D2go(7,0)
+ D2 go <7+:§ Z B,u,+§2u O) §2v+0(§4 2)}v+l,u01g1(0 0,0,7+ o)
+/lum{g1 <y+62ﬁ,u,+52 L E2,E%p, t+a> —gl(o,o,o,z+a)}

+ &% {ngz <Y+§ Y Bui+8%u,0,¢ HO) —D282(77070)+0(52V)}V

i=

(4.2.9b)

We consider the Banach spaces
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X, = {x € C(R,R")|sup|x| < oo}7
teR

Y, = {yeX ‘/ )) dt for every solution v € X,, of v = —Dfy(y,0)" }

with the supremum norm ||x|| = sup |x(¢)|. To solve (4.2.9a), we recall Theorems

teR
4.1.2 and 4.1.3.

Lemma 4.2.2. Given h € Y,, the equation it = D fo(y(t),0)u+ h has a unique so-
lution u € X,, satisfying (u(0),u;(0)) =0 for everyi=1,2,...,d.

Lemma 4.2.3. There exists a projection Il : X, — X,, so that Z(1—1I1) =Y,,.

We also need the following lemma.

Lemma 4.2.4. There exist constants b > 0, B > 0 and 50 > 0 5o that given g > 0,
for any 0 < & < & the variational equation

v = [Dago(¥(1),0) + &*1o2Dag2(¥(t),0,0)] v
has an exponential dichotomy on R with constants (B, bE? Ho2)

Proof. Write the given equation in the form v = Rv + S(r)v where

R = Dyg0(0,0) + E? 1y 2D2£2(0,0,0),
S(t) = D2go(¥(),0) — Dago(0,0) + &> o2 [D2g2(¥(1),0,0) — D2£2(0,0,0)]..

Let Vg be the fundamental solution for v = Rv+S(¢)v with V¢ (0) = I. Then for s <t
we have

t
Ve (1) = e =9IRV, (s) + / IR S(1)V (7) d

Using (V11) and (viii) for (4.2.4) we can, for 50 sufficiently small, find K;,b > 0 so
that [e(—9)R| < Ky eb8?H02(5-) when 0 < & < 50 and s < 7. Now define

x(t) = |V5 (t)Vé (5)71 | ebézlJ{Lz(tfs) )

Then from the preceding equation for V;; we get
t
X1 <K+ / Ki|S(7)|x(z) de
s
Hence, from the Gronwall inequality (cf Section 2.5.1),

x(1) < Kp ek KIs@ldr < g

for a constant B > 0. O
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We define the linear map % : Y,, — X, by £’ h = u where h, u are as in Lemma
4.2.2. Using the projection IT and the exponential dichotomy V from Lemma 4.2.4,
where we suppose > > 0 (the case [y < 0 can be handled analogously), we can
rewrite (4.2.9) as the fixed point problem

u=(1- < Z D1 fo(v,0)BiBjuiu;

i,j=1

+ :U'O,lfl (%0707 E+ a) + :u(),ZfZ(’}/aOvOJ + a) + 0(€)> y (42103)

—/_twvg(f)vz;(s)_l{{ng()( +<§zm +¢2<>)

+ D22go ( )+ Z Biui(s +éz (s), ) 52V(s)
— Dago(¥(s),0) + O(E*(5)) | v(5) +A0,181(0.0.0,5+ @)

+ )““0,1 {gl ( +§ Z ﬁlul +§2 (s )7‘52V(S)ﬂ'§2”075+ Ol)
—g1(0,0,07s+oc)}
+ éz.uo,Z{DZgZ ( +§ Z ﬁlul +§2 ( )70752“0)

— D1g2(7(s),0,0) +0(§2v)}v(s)}ds (4.2.10b)

along with the system of bifurcation equations

/_o;< Zano (t),0)BiBjui(t)u;(t) + to,1 f1(¥(t),0,0,1 4 o)

i,j=1
+ o2 f2(¥(),0,0,1 + ) +0(§)>d: -0, i=1,2,....d  (42.11)

where {vi,...,v4} is a basis for the space of bounded solutions to the adjoint equa-
tion. Using (ix) we have

-1 -1
D»go <7+§ Y ﬁiui+€2u70> —D1g0(7,0) + D280 <Y+§ Y 51'“["’&2”’0) &%

i=1 i=1

d—1
=0 (E2l7lIv]) +0 (E*ullv]) + 0 (E*Ylul) + 0 <§ ) ﬁiui> ,

i=1
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g1 ('}’4‘6dzlﬁiui-f—ézmézv,ézuo,l-i-a) —g1(070,0,t+06)
i=1
=0 (E2|yIIv]) + 0 (E*ulv]) + 0 (E*) + 0 (E*v]?)
+0 () + o) +o( zmu,|)

d-1
Dyg> <Y+§ Y ﬁiui+§2u707§2y0> —D2g2(7,0,0)

—0(&? )i+lo(§ 2lu)) +0< Z/ilu:l)

We note that |y(¢)| < ce™l and |u;(z)| < ce=@ll, i =1,2,...,d for constants
¢ >0, a > 0. Moreover, it holds that

-t 1
—bE2 o2 (t—5) g

e , ds = ,

.[oo b&2p»

/l eib§2uo,2(lfs)fa‘s‘ ds S /‘w e*als‘ ds = 2/Cl

Consequently, if we assume that

t

sup sup Vé(t)Vg(s)_lgl(0,0,0,era)ds < oo,
0<a<T &0/~
, (4.2.12)
sup sup Ve (t)Ve (s)"'D4g1(0,0,0,s+ oc)ds‘ < oo
0<a<T &>07—

then we can apply the Banach fixed point theorem 2.2.1 on a ball centered at 0 in
the space X, X X, to solving (4.2.10) for £ > 0 sufficiently small. Substituting this
solution into (4.2.11) yields a system of bifurcation equations of the form

M(.uaa7ﬁ)+0(€):07 (4.2.13)

where M is as in (4.2.6) or (4.2.7). The case for (4.2.7) can be handled like above.
The assumptions of Theorem 4.2.1 imply the solvability of (4.2.13). This gives
a transverse homoclinic orbit I'(A, &% o) (t) = (I3 (4, &% o) (1), I3 (A, &% o) (1)) of
(4.2.8) near ¥ so that I3 (4, &%) (t) = y(t) + O(&). The transversality follows ex-
actly as in Section 4.1.3, so we omit its proof. Moreover, we have I"(0,&2ug) =
(¢,0) for y¢ from Theorem 4.2.1, and I" (1,E%up) is a homoclinic solution for
(4.2.4). The dichotomy constants of the linearized system of (4.2.8) along I ()»,éz o)
(¢) are uniform for 0 < A < 1 and fixed &. This follows from the roughness result of
exponential dichotomies from Lemma 2.5.1. Now we can follow directly a construc-
tion of a Smale horseshoe of Section 3.5.2 [7] along I'(A, &2 y)(¢) for fixed small
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&. Thus we have a continuous family X, of Smale horseshoes for (4.2.8). This gives
us the lifting of the Smale horseshoe of the reduced system to the full one.

The conditions (4.2.12) are, in fact, ones of nonresonance. To see this consider
the equations

v = [D2go(7,0) + &9 2D2g2(7,0,0) v + A,
W = [D280(0,0) + & 19 2D2£2(0,0,0)]w + 1z,

where v,w,h € X,,. Then we get

(v =) = [D20(0,0) + £2102D262(0,0,0)] ()
+ [ngo(% 0) — D2g0(0,0) + &% 1o 2(D2g2(7,0,0) — Daga(7,0,0)) | v.

This gives

1
) = w(e)| < [WlIKr [ e 8aebl g <2y fa

—oo

for constants K; > 0, a > 0. Hence there is a constant K, > 0 so that
[lw=v[[ <K, [lw—v|] < Kl[w]].

These inequalities imply that assumption (4.2.12) is equivalent to the condition that
when & > 0 the only bounded solution, Vge» Of

v = [D2g0(0,0) + &% 1o 2D22(0,0,0)] v+ g1(0,0,0,7 + cx) (4.2.14)

satisfies Supy<q <7 SUPg~|[Va |l < oo. Then also supyy<z SUPe~g|[Ve el < oo.
Hence by the Arzela-Ascoli theorem 2.1.3, there is a sequence {&;}* |, & > 0,
& — 0 so that vy ¢ — vo and vy g — vo uniformly in compact intervals. Conse-
quently, we get

Vo = D2g0(0,0)vo +g1(0,0,0,¢ + ). 4.2.15)

We note that vy, ¢, v are T-periodic. We know [11] that (4.2.15) has a T-periodic
solution if and only if

T
/ (wi(1),21(0,0,0,0))di =0, i=1,2,....d, (4.2.16)
0

where {wy,...,wy, } is a basis of T-periodic solutions of the adjoint variational
equation w = —D;g0(0,0)"w. Hence assumption (4.2.12) implies the validity of
(4.2.16).

Conversely, let (4.2.16) hold. Then (4.2.15) has a T-periodic solution and we put
v =vo+w into (4.2.14) to get

W =[D2g0(0,0) + &2 119 2D222(0,0,0)]w 4 E2 119 2D22(0,0,0)vg.  (4.2.17)



4.2 ODEs with Nonresonant Center Manifolds 105

The above arguments and Lemma 4.2.4 give that the unique solution wy, ¢ € X, of
(4.2.17) satisfies supy< g <7 SUPg - |[Wa £ || < 0. In summary, we see that assumption
(4.2.12) is equivalent to condition (4.2.16).

Now we can state our results in the form of the next theorem.

Theorem 4.2.5. Let (i)-(ix) hold. Let M be the same as in (4.2.6) or (4.2.7) and
suppose (Lo, 0, o) are such that

M(.u'07 Qp, ﬁo) =0and D(a,ﬁ)M(.u'Uv x, ﬁO) is nonsingular.

If condition (4.2.16) holds then there exist 5_0 >0,K>0s0thatif0< & < tfo and if
the parameters in (4.2.4) are given by U = & Ly, then there exists a continuous map
0 : & x[0,1] = R"™™ (¢f Section 2.5.2) and mg € N so that:

i) o) =0(,A): & — R"™™ is a homeomorphism of & onto a compact subset of
R"™™ on which the moth iterate F;L" 0 of the period map Fj, of (4.2.8) is invariant
and satisfies Ffmo o @y = @, o 0 where o is the Bernoulli shift on &.

(i) ¢o = ¢(-,0) : & — R" x {0} and Fy = (Go,0) for the period map Gy of the
reduced equation (4.2.5).

(iii) Fy is the period map of the full system (4.2.4).

(iv) [¢(x, ) — 9(x,0)| < K+\/& forany (x,A) € & x [0,1].

Theorem 4.2.5 roughly states that the Smale horseshoe of the reduced equation

(4.2.5) can be shadowed and continued to the full system (4.2.4).

4.2.4 Applications to Nonlinear ODEs
We now illustrate the above theory with two examples. For convenience in our cal-
culations let us denote r(t) = secht. Note that # = r —2r3 and 7 = (1 — 6r°)F.

Example 4.2.6. As our first example consider the equations (4.2.1) from the intro-
duction. The reduced equation is

F=x—2x —2UpX + Uy cos ot

which we consider as a first order system in the phase space (x,x). Since this system
is in R? we necessarily have d = 1. A bounded solution to the adjoint equation is
v = (—F,F) and from this we compute

oo

10
ap(a) :/ r'cosa)(t+a)dt:nwseChTSinwa,

> 4
an :/_mfo"Zdt: -3

The bifurcation equation obtained from (4.2.6) is
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TO . 4
M(a,p) = (ﬂwseChT smwa) M=z = 0.

We can satisfy this equation by choosing o € [f%, %] and then taking po 1 # 0
and

3rtw Tw
Hoz _ 270 sech — sin w o .
Ho,1 4 2

Since in (4.2.6), d = 1, the transversality condition is

Tw
DM (0, o) = O 1o 1 sech - coswap #0
which is satisfied for ot € (=55, 25 ). Let mg := (37w /4) sechtw/2. By varying
op we see that the reduced equation exhibits chaos for all sufficiently small ||
satisfying —mqo < Moo/ Mo 1 < mo. Theorem 4.2.5 gives another result.

Theorem 4.2.7. If pw # vk — 1 then the full equation (4.2.1) exhibits chaos for all
sufficiently small [y # 0, W satisfying (4.2.3).

Example 4.2.8. As a generalization of the preceding example consider the equations

)’c':x—Zx(x2 +y2+z2) — M2 (X +y) 4 py cos wr,
F=y—29(% +y* +27) — ta (X +), (4.2.18)
= (1—k)z—2z(x> +y* 4+ 2%) — toz + 1 cos pot

where, as before, we assume that £ > 1 and p € N. We consider these equations
as a first order system in the phase space (x,x,y,y,z,Z). The reduced equations of
(4.2.18) are
¥ = x—2x(x* +y?) — W (i +y) 4 w1 cos o,
(4.2.19)
¥=y =20 +y) — (i +).

The unperturbed motion of (4.2.19) has a homoclinic 2-manifold with a family of
homoclinic orbits given by x = r(¢)cos B, y = r(¢) sin 8 (cf [9, p. 133]). Writing out
the adjoint equation in R* we obtain as a basis for the space of bounded solutions

vgi = (—FcosB,icos B, —isinfB,7sin B),

vgy = (—7sin B, rsinf3,7cos B, —rcos fB).

Next we compute

oo

an(e.B) = [

—oo

Tw
7cos Bcos@(t + o) dt = mwsech - sin@occos B,

oo

ap(o,B) = /m—fcosﬁ(icosB—H’sinB)—i’sinB(fcosﬁ + 7sin fB) dt

2 .
= —g(cosﬁ +sinB)?,
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az(a,B) =/

—oo0

0

. o .
rsinfcoso(t+ a)dt = 7tsech7003a)ocsm[37

o

an(a,B) = / —rsinfB(icos B +7sinfB) +rcos B(icos B +isinf)dt = 0.
In (4.2.7), d = 2, B3 is a scalar and the bifurcation equation M (¢, 3, it) = O takes
the form

ari(a, B +an(e, Bz =0, ax(o,B)u =0.

A sufficient condition for a nontrivial solution is ap; = 0 which is satisfied by
wai = £m/2. We then have

Tw
H _a”(agt,ﬁo) - 3ﬂwsech7cosﬁ0

i an(ag,Bo) ~ 2(cosPo+sinfy)?

We see from Figure 4.1 that the range is R of the function H(f) := % as
Belo.2x\ {3 F}.

H

Fig. 4.1 The graph of the function H () over [0, 27].

It remains checking the transversality condition which takes the forms

. . T®
p?m? e (sin By +2cos’ Bo) sin By sech? ——

2
(cos By +sin By)? 70,
(4.2.20)

detD (g gyM(0ty, Bo, ) = —

and
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detD(q gyM(0g , o, 1t) =

T
upm2 @ sech? = (2c0s 2y — 2~ 2sin2fy + 3sindfo) 4.2.21)
0
4(cos By +sin fo)? 70,

and (4.2.20) is satisfied for B € [0,27]\ {0, 2%, 7, ZF, 27}, while (4.2.21) holds for

! 17-1) _1 V1T -1
Bo € [0,27]\ {O,Zarccos <\ﬁ76 > 5 arccos (q) s

1 17-1 —Hr—l A 17-1 +277:3—n7r7—n27r
2arccos 6 R 2arccos 6 SR .

Thus, the reduced equation exhibits chaos for all sufficiently small ¢ in the py-u,
plane except along three lines of slopes m = +myg, o, where my = 3”7“’ sech 2.
From Theorem 4.2.5, if p® # +/k—1 then the full equation exhibits chaos for all
sufficiently small u lying except along three lines of slopes m = +my, c. We obtain
these transversal homoclinic orbits from (066r ,Bo). Moreover, we see from Figure
4.1 that the equation H(fy) = y has two solutions in [0,27) for any y € R. So we

get two different transversal homoclinic orbits. Furthermore excluding also the next

four lines of the slopes £m4 with my = 3oV 69£3VIT Vggﬂ\m sech % we can involve also

the point (¢, , Bo), and consequently we get four different transversal homoclinic
orbits. Note that H( + ) = —H(B), H(0) =1 and H (:F%arccos (@)) =
V694317

16

4.3 ODEs with Resonant Center Manifolds

4.3.1 ODEs with Saddle-Center Parts

We consider differential equations of the form

X = f(xayauvt) :f()(xvy)+u1fl (xaynu'ﬂt)+,u2f2(xayauvt)a (4.3.1a)
y= g(xvyauvt) = gO(xvy) + 1181 (xvyvl’,'at) +‘u2g2(x7y7.u) (431b)

with x € R”, y € R, u = (u;, i) € R%. We make the following assumptions of
(4.3.1):

(i)  Each f;, g; are C*-smooth in all arguments.
(1)  f1, f» and g are periodic in ¢ with period T .
(i) D2 fo(x,0) = 0.
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(iv) The eigenvalues of D fy(0,0) lie off the imaginary axis.

(v) The equation x = fy(x,0) has a homoclinic solution .

(vi) go(x, 0) =82 (X,O,IJ) =0, Dzlgo(o,()) =0and Dzzgo(0,0) =0.

(vii) The eigenvalues of D,g((0,0) lie on the imaginary axis.

(viii) If A(up) is an eigenvalue function of D;g(0,0) + u2D2g2(0,0,0) then
R(A'(0)) < 0.

In the hypothesis (viii), it is sufficient to assume that R(A'(0)) # 0. In other
words, (4.3.1b) is weakly hyperbolic with respect to L. This more general assump-
tion requires a little more work since it is necessary to include a nontrivial projection
in Lemma 4.3.4 below. Consider the reduced equation

%= fo(x,0) 4+ uy f1(x,0,1,1) + 2 f(x,0, ) (4.3.2)

obtained by setting y = 0 in (4.3.1a). By hypothesis, the equation X = fp(x,0) has
a hyperbolic equilibrium and a homoclinic solution y. Melnikov theory is used in
Section 4.1 to obtain a transverse homoclinic solution in the reduced equation. The
problem which naturally arises is showing that a transverse homoclinic solution for
the reduced equation is shadowed by a transverse homoclinic solution for the full
equation (4.3.1). This is done in Section 4.2 when the center equation

Y:go(07Y)+ngl(07y7Hat)+ﬂ282(0a)’au) (433)

is not resonant at y = 0. The purpose of this section is to treat the resonant case
and to detect a transverse homoclinic solution for the full system from a Melnikov
function derived from the reduced and center equations. But the situation in this
section is much more delicate than in Section 4.2.

Finally we note that a related problem is studied also in [15], where a three-
dimensional ODE is considered with slowly varying one-dimensional variable. The
approach in [15] is more geometrical than ours in this section.

4.3.2 Example of Coupled Oscillators at Resonance

We start with the equations

¥ = x—2x(x* + Ey?) — 2 8 + py cos(t + a) 4 pssin(r + o),
(4.3.4)
J=—y— 2y(x2 +2) = 210y + 1 cos(t+ o)+ ussin(t + ).

Here 8, & are positive constants and 1, i = 1,...,5 are small parameters. We put
y(t) = secht, x = y+€%u, y = ev, Wy = 3ay, W = €%, U3 = €%ay, Uy = a3 and
Us = €Zay, with ai,az,as,as € Rinto (4.3.4) to get
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i = (1—6y*)u—28y—2Ep? +azcos(t + ) +agsin(t + a) + O(€?),
V= —(14+29%)v— 2% —4e’yuy (4.3.5)
—2etu?v — 26203 4 €2a; cos(t + a) + 2apsin(t + &) .
First, we look for a 27-periodic solution of the equation

Veaa = —Ve.aa — 26 Ve, — 267y g o+ €71 cOS(t + 1) + E7ap sin(t + ) .

(4.3.6)
Clearly ve o.4(t) = we o(t + &) Where we , is a 27-periodic solution of

Weag = —Weq— ZSZWM — 282W2’a + 82a1 cost + 82a2 sint . 4.3.7)

Consider the operator L: C3_(R) — Coz(R) defined as Lw = v +w. Here C; (R),
r € Z, is the Banach space of C"-smooth and 27-periodic functions endowed with
the maximum norm. We have

AL = span{cost, sint},
2r 2
XL = {heCM(RH h(t)costdr =0, h(r) sintdt:O}.
0 0
Let Q : C2z(R) — ZL be the continuous projection
1 27 1 2
(oOw)(t) =w— —cost/ w(t)costdr — — sint/ w(t)sinz dt.
T Jo T 0
Equation (4.3.7) can now be split into a new differential equation
Ww = Q(—2e*w —2e°w* + £2a; cost + £2ay sint) = Q(—2&%w — 2e*w?)
and a bifurcation equation
(I—Q)(—2&*w —2*w? + €%aj cost + €2ay sint)

1 2w
=¢? {al - E/ (2W+2w3)costdt] cost
0
2 1 21
+e {az - ;/ (2w +2w?) sintdt] sint = 0.
0
The differential equation has a solution w € C3_(R) of the form

w(t) = @(€,c1,¢2) (1) +c1cost + ¢ sint

where ¢, ¢, are arbitrary and ¢ = O(€?). Substituting this into the bifurcation equa-
tion gives



4.3 ODEs with Resonant Center Manifolds 111
@ = [2(—cysint 4 ¢y cost) +2(cy cost + casint)* | sint dt + O(€%) =0,
0

1 (2=
a) — E/ [2(—cysint +cpcost) +2(cy cost + ¢ sint)3] costdr +0(e?) =0
0

or
4ey =363 —3cicr = —2ay + O(€%),
(4.3.8)
4ea 43¢t +3c5¢) = 2a; + O(€?).

The determinant of the Jacobian of the left hand side of (4.3.8) is
16427(c2 +¢3)* #0.
Now we have
ldct —3cter —3c3| +|dea 43¢ 4313 > (B(2+3) —4)(|er| +ea]) .
Hence the map
(c1,¢2) — (dey — 363 —3cier, 4er + 3¢ +3c3¢1)

from R? to R? is proper and locally invertible and thus a diffeomorphism by the
Banach-Mazur Theorem 2.2.6. Hence we can use the implicit function theorem to
get solutions ¢ (a,€) and c3(a, €) to (4.3.8) for € small and a = (a;,a2) € R? from
bounded subsets. In summary, we have the following result:

Lemma 4.3.1. For any n € N, there exist &y = & (n) > 0 and a differentiable function
c: (—n,n)? x (—&,&) — R? denoted (a,&) — c(a,€) so that (4.3.6) has a 27-
periodic solution of the form:

Ve.aal(t) = c1(a,€)cos(t+ ) +ca(a, €)sin(t + ) + O(€?). (4.3.9)

We note that the function ¢(a, €) may also depend on n, but when m > n these
two functions ¢(a,€) from Lemma 4.3.1 coincide on the set (—n,n)% x (—&y,&)
with & = min{é&y(n), & (m)}.

‘We now substitute v = w + g o 4 into (4.3.5) to get

i = (1= 67 )u—287—2E7(w+veaalr))’ (4.3.10a)
+ azcos(t + @) +agsin(t + o) + O(¢),
W= —(14+68>v; ;)W — 265 — 27w (4.3.10b)

— 2)/2\15’0,,“ — 482yu(w +Veoa) — 284u2(w + Ve oa)
— 682w2v57a_’a —2e%w’.
To study (4.3.10) we must establish the existence of properties for an exponential

dichotomy for the linear part of (4.3.10b) in three steps.
We first study the equation
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W= —[14+&2¢¢(1)*]w — 2>, (4.3.11)
where ¢ (1) = \@v&a_ya.
Step 1. We put w = e 7 z; to get
21 =22,
(4.3.12)
= —[1+9:(t)* — Yz

By Floquet theory [12,13] (4.3.12) has a solution, Ze, of the form Z, = Uy (t)e'Be
where Ug(0) =1, Ug(r +27) = Ue(t) and

Uo(t) = ( cost sint)

—sint cost

so that ||Up(t)|| = 1. Stability is determined by the matrix B and Z¢ (277) = e*™?¢, so
we are interested in Zg (27). We have Zg (t +27) = Z¢ (t)Z¢ (27) and from Liouville’s
formula (cf Section 2.5.1 and [12]) detZ; (27) = 1. Hence the eigenvalues of Z, (27)
are a complex conjugate pair with norm 1 if and only if |trZ¢ (27)| < 2. To compute
an estimate for Z; we expand

21 = ug+ %y + O(e),
2 = vo+ &% + 0(e*),
0 = ¢O+0(82)-

Substituting these expansions into (4.3.12) we get
o =Vo, Vo= —Uo, iy =vi, Vi =—u—9guo

and Z¢ (0) = I requires u; (0) = v; (0) = 0. By choosing either uy = cost, vo = — sint
or up = sint, vop = cost, we find i, v; and then a computation shows that

1 (2= 2

— [ ®(s)sin2sds 02 (s)sin’ sds
0 0

10 2 2 Jo 0 4
Ze(2m) = 01 +€ . | o +0(g%).

— (7)2 s)cos®sds —= (])2 s)sin2sds

0 2 0
0 0

We have ¢y(t) = V6vo.aa(t) = V6(c1(a,0)cos(t + &) + ca(a,0)sin(t + o).
Thus, as long as a # 0 it follows from (4.3.8) that ¢;(a,0)? + c3(a,0)> # 0 and
we can write

Vo.a,a = ¢s(a)sin(t + o+ ca(a))

where cs(a) = \/c1(a,0)2+c2(a,0)? and c4(a) is defined by the equality. Then
0o(t) = c3(a)sin(t + o+ c4(a)) where c3(a) = V/6cs(a) and
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21 27
03 (s)sin2sds = c3 (a)Z/ sin2ssin®(s+ & +c4(a)) ds
0

_ gc3(a)2sin2(oc+c4(a))»

2 2
03 (s) sin®sds = 63(a)2/ sin ssin” (s + o + c4(a)) ds
0
T T
= ¢3(a)? 7+7cos2(a+64(a))>,
2%
T 2n
03 (s)cos>sds = c3(a)? cos?ssin®(s +a +cq(a))ds
0 Jo

= c3(a Z(g —cos2(a+c4( )))

Hence

22( sin2(o +ca(a)) 2+C052(O‘+C4(a))> +o(e"

Z.(2m) = 1+ €%c3(a)* >
—2+cos2(a+ca(a)) —sin2(a+cq(a))
= ]I—s—.szA‘9

where the second equality defines the 2 x 2 matrix A whose entries we denote are
a;j. If A4 denotes an eigenvalue of A, then we can take

ZAA == trAg + (trAg)z - 4detA£.

A direct computation shows detA, = 16 C3( )*+0(€?). Also, detZ¢ (21) = 1 previ-
ously so that another calculation ylelds detZe(2m) = 1+ €2 trAe +e*detA; = 1 and
we get trA, = —e>detA, = —¢2 3{2 c3(a)* +0(e*). If we denote Ay = 24K +iAk
then

1 37’

2 ztrAg 37C3( )4+0(82),

2
l/{ _ \/detAg_ (;trA€> = \/fn@(a)z—‘rO(e).

Also, an eigenvalue, Az, of Z¢(27) is given by Az = 1+ &?A4. The corresponding
transformation matrix P is

Ay =

an 0 . y l/a122 . 0
Fe = —ay +e2AR Al with Fe " = an—&Ay 1
@ £ A TA mz/k{ /'Lf{

We have A} > 0 for small €, Fc3(a)? < ajp < %63(61)2 and
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RAz 32z )

P 'Z.2m)P. =
PRl (mzsmz

Since |Az| = 1 we can write

Rz SA,
‘ “) = eP  where &, = ( 0 9) with 0 = ArgAz.
—Slz %lz —600

Now, we observe that the operator norm of a 2 x 2 square matrix

= ()

(that is the square root of the greatest eigenvalue of the symmetric matrix A*A) is
given by

lA]I* = % (@ +b*+c +d*) + \/[(a—d)2+(b+c)2}[(a+d)z+ (b—c)?]

and hence ||[A7!|| = WIM‘HAH since

Using these formulas we get

3 4
1Bo]|” = g-e3(a)* [2+cos2(a + ca(a))]
2
detPy = ffg e3(a)* 2+ cos2(0t + ca(a))],
1Poll11By | = V3.

We see that || P;|| and ||P; ! || are both uniformly bounded for € small and a bounded.
Finally, we have

r—
Ze(t)Ze(s) ™" = Ue(t)e" B Ue(s) ™" = Ue(t) exp <27:P8<1>8P;1> Ue(s) ™!

= Ue(t)Pee ™ P P, U (s) !

cos <(t ;;)6) sin <(t ;7?6)

= Ue(t)Pe P U (s) 71

in (1529 e (1529)
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Taking norms we get || Z (1)Z¢(s)~!|| < v/3+ & where § — 0 as € — 0. This com-
pletes our study of (4.3.12).
Step 2. Next we write (4.3.11) as the system

Wi = wy,

43.13
Wy = —wi (14 €29¢(1)*) —2€%wy. ( )

Then the fundamental solution W, of (4.3.13) is given by

A ( s (1)) Ze(t).

This implies

Wele(s) e 0 (D) zwzo ! (2])
and hence [|We (t)We (s) || < (V3 +8)e (),
Step 3. Finally, we consider
W= —w(l+6eM () +27°) —2e*W
which we write as
Wi = wa,

4.3.14
wzz—w1(1+68 vsaa +2)/2)—282wz. ( )

Let W, be the fundamental solution of (4.3.14). We put

o 5 00
¥(r) = —2y(r) <1 0).

We (£)We (s) ™! = We (1) We (s) +/ We (1)We (z) "W (2)We (2)We (s) "' dz.

Then fort > s we get

By putting U (1) = We (£)We (s) "' e (—) we obtain
ol < (vVi+o) + (va+s) [ @U@l
= (va+8)+2(v3+8) [ PRIV

which gives

U@ < (\/§+ 5) 2(V3+8) [ Pz
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Now if either t > s > 1 or s <t < —1, then ez\ffY Y (@)dz is about 1. So then we

obtain R
[ We (£)We(s) ™| < Kye © 1)

with K; ~ /3 fors <1 e (—o0, —Tp] U [T, oe) for Ty > 1. Since Wy satisfies
Wy = wy,

Wy = —W1(1 +2}’2).

we see that
wo(r) =) g |
01/2 )’
where
cost — sint tanht sint + cost tanht
C(t) = . . 5 . )
—sint —costtanht —sintsech“t  cost —sinttanht + cost sech”t

Then we have
1
|C()|> = 3 (4+ sech*t +sech?r\/8 + sech4t) <4, detC(r)=2
which also imply [|C(¢)~"|| < 1. In summary, we arrive at

[We(£)We(s) 1| < Kye€0=)

with K| ~ V3x2x+v/3=6fors<reRand e > 0 small. This is our exponential
dichotomy for the linear part of (4.3.10b).

Remark 4.3.2. Note that in general the function fe(t) = We(t) /' We(s) "' f(s)ds is
O(1/€?) for f bounded. But if f € L' (R) such an expression is O(1) and we can let
€ — 0. More precisely, set fo := Wo(t) [*.. Wo(s) "' f(s)ds and let T > 0 be large.
Then fe(t) = o(1) and fo(¢) = o(1) uniformly for all ¢ < —T and € small. If 7 €
[ T,T] then Fe(t) =We(t) [* 5 We(s) ' £(s) ds+Wel(t) [~ We(s) ™" £(s)ds. Clearly

(1) [ Wg )" f(s)ds = o(1) and Wy () [~ Wo(s) ' f(s)ds = o(1) uniformly
for allz € [~T,T] and & small. Moreover

/Wg Yds — Wy(t /Wo f(s)ds

uniformly for allz € [~T,T] as &€ — 0. Consequently, we obtain limg o fe (1) = fo()
uniformly in any interval (—eo, a] for f € L'(R). If # > T then

= W, (t / We(s)™ f(s)ds+ We(t )/;:Wg(s)flf(s)ds.
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We again deduce that We (1) [7 We(s) ! f(s) ds = o(1) and Wy () [ Wo(s) ™" f(s)ds =

o(1) uniformly for all # > T and & small. Next

T
Welt) [ Wels) ™ 1(5)ds = We)Wel(T) (),
In summary we obtain || fe|| < (v/3+0(1)) || fol|- Moreover, when

1f|la == sup | f(t)]e™* < eo
1<0
fora >0, || fella < <& 2 flla- Soif

Xa = {f € C(=,0]| | flla < =}

and L f := f, then L, € L(X; ) Finally, we can check that L, — Ly as € — 0 in
L(X) for Lof = Wo(t) [T Wy ' (5).f (s) ds.

Equation (4.3.10a) has the form
=u(1-6Y(t))+h(r),  u(0)=0 (4.3.15)

for h(r) € Cg(R) — the Banach space of bounded and continuous functions on R
endowed with the supremum norm. For this we use the projection

/h
/yzds

From Section 4.1, (4.3.15) has a (unique) bounded solution u = K# if and only if
ITh = 0. We write (4.3.10) in the form

(t).

u(t) = K(I— 1) ( — 287~ 2£¥[w + e qa(t)]? (4.3.162)

+azcos(t+ o) +aasin(t + a)) +0(e),
t
0 = / Wg(t)Wg(s)q{(O,—ZYZV&QJ—4827u(w+vg7a,a) (4.3.16b)
—2e%? (W+vega)— 6£2w2v8.a7a — 282w3) } ds,

/m (— 287 26y [W+ Ve al? (4.3.16¢)

+azcos(t+ o) +aasin(t + Oc)) Y(t)dt+0(g) =0
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for w = (wy,ws). Since ve q4(t) = vo.0.a(t) +O(€) by Lemma 4.3.1 and y € L' (R),
we can consider, according to Remark 4.3.2, (4.3.16b) to be

W)= [ WelWels) (0,27 v0.0,)ds
- 4.3.17)
- / We (1)We(s) ™" (0, 62w ve.q.a — 262w3) ds +o(1).

We note that
2oft) = (an (), 202(6)) = | Wolt)Wo(s) ™! (0,27 als) s

solves

201 = 202,
. 5 5 z20(—e0) =0
Zoo = —201 — 27" (t)z01 — 27 ()v0, 00,05

which is the limiting equation for € — 0 in (4.3.10b). Since v q 4(t) = ¢5(a) sin(z +
o +cq(a)), we see that

e cos(t+ o+ ca(a)) —sin(t + a+cq(a)) '

= (4.3.18)

201(t) = c5(a
Then, with s = a + c4(a) + /4, we have

2 2 2
o]l = max (201 (1)° +z02(1)°)
2¢5(a)? et
ek (1+4e2)4
+2e¥ (1 —sin2(t +5)) +e*]

[1—2sin2(t +s) +4cos? (t +s)

2¢s(a)?et 1029
5( ) - (7+462t+e4t): D2 Cs(ll)z.

<
= TR (1+e¥)

Further, lim . (201 (¢) +202(¢)?) = 2¢5(a)? so that, finally,
V2es(a) < Jlzo| < kies(a)
with k; = /1029/512 = 1.417662. By using Remark 4.3.2 and (4.3.17), we have
1wl < V320l +6(6][ve.aall W]l + 2] wll*) +o(1)
< V3kyes(a) +36¢s(a) [w]* + 12]w]* +o(1).

So if we choose rg > 0 so that
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V3kies(a) 4 36¢s(a)rd 4 12r3 < ro,
(4.3.19)
T2¢s(a)ro+36r3 < 1,

then for £ > 0 small and ||w|| < ryp we can uniquely solve (4.3.16) using the Banach
fixed point theorem 2.2.1 on the ball

{uw) € Co®)? [ lul <R, |l <ro}
for a constant
& = K@= ID)|| (28]17]+ 28 17l[r0 + s (@) + Jas| + [as] ) + 1.
To find the largest ¢5(a) in (4.3.19), we solve
V3kiks +36k3k3 4+ 12k3 = ky,  T2kokz +36k3 =1,

which has a solution

\/—3—3ﬁk1+\@ 3410v/3k; + 9k}
b — =0.136179,
2 oV

5433k —/9+30V/3k + 2783
ks = = 0.0339006.

12\/—6 —6V/3k +2\/9 +30v/3ky +27k3

So we take rop = kp, 0 < ¢5(a) < k3. Then (4.3.19) holds. Consequently, we have a
bounded solution wg 4 ¢ = (Wi.a,0.e,Wi,a,0,e) Of (4.3.10b). Now we study the limit
as € — 0. Let Wo ae, ||[Wa,ael| < ro solve

w(t) = / W) We(s) " (0,2 vo.00) s
- (4.3.20)
_ / We (1)We(s) ™" (0, 62w ve . — 262w ds.

We note that the right-hand side of (4.3.20), denoted Ny 4 ¢ (W), is a contraction on
the ball {w € C(R) | |[w|| < ro}. So by the Banach fixed point theorem 2.2.1, W 4 ¢
exits and satisfies, according to (4.3.17), |[Waae — Waael = 0(1) as € — 0. Since
72 € X; forsome @ > 0, and Ny 4 ¢ : Xz — X; is a contraction on any bounded subset,
by Remark 4.3.2 we see that W 4 ¢ — 20 as € — 0in X5. S0 Wq 4.¢ — 20 uniformly on
(—o0,0]. Now let us fix an interval [—n,n], n € N and take a sequence {wg a¢ }i >
g — 0. By the Arzela-Ascoli theorem 2.1.3, we can suppose that wg 4 ¢ — Z uni-
formly on [—n,n]. But we already know that Z(z) = zo(¢) on [—n,0]. Since Z(z) sat-
isfies the same ODE on [—n,n] as zo(t), we get Z(¢) = zo(¢) also on [0,n]. These
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arguments imply that
waae(t) = 20()

for € — 0 and uniformly in any compact interval on R. Consequently, the limit
bifurcation equation of (4.3.16¢) is given by

M) = [ (=267() ~2£7(0)[zor 1) + es(a)sinle + @+ ca(a))
+azcos(r+ o) +agsin(r + Ot)) Y(t)dt = —%5 + m(azsina —ascos o) sechg =0.

The equation M (o) = 0 has a simple root if and only if

Y3
48 <3m\/d}+a3 sech 2. (4.3.21)

From (4.3.8) we derive
4(a} +a3) = 9cs(a)® + 16¢5(a)?. (4.3.22)

Since cs(a) < k3, we get

\/ 93+ 16
\J a3 +a3 <ks:= fkg =0.0678013. (4.3.23)
So if (4.3.21) holds, then we have a bounded solution for (4.3.4). Using the above
method along with an approach from Section 4.1, we can show that it is a trans-
verse homoclinic solution to a small periodic solution with appropriate shift-type
dynamics. Finally, we obtain another result.

Theorem 4.3.3. For any (aj,az) # (0,0) satisfying (4.3.23) there is a unique pos-
itive cs(a) solving (4.3.22). Then Eq. (4.3.4) has a transverse homoclinic solution
for any € > 0 sufficiently small with ) = a, U = €2, Uz = ay, Wa = €2as,
Us = €%ay, and 8 satisfying condition (4.3.21).

Note that if we suppose g = O(e?) and ps = O(e*) in (4.3.4) then we get
M(a) = ‘3—‘5, so M () # 0 and we do not get solutions of the desired form.

It is interesting to formulate the conditions in Theorem 4.3.3 in terms of the
original parameters as they appear in (4.3.4). The equation M(a) = 0, in place of

(4.3.21), requires
3
0<28uy < Sm\/13 + 42 sechg (4.3.24)

while (4.3.23) becomes
0 < \/uZ+ 13 < k. (43.25)

The condition (4.3.24) is a restriction on the allowed damping relative to forcing
in the first equation of (4.3.4). This result could be obtained by ignoring the center
part of the problem, i.e. by setting y = 0 in the first equation of (4.3.4) and then
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applying classical Melnikov theory. The effect of the center manifold appears in
condition (4.3.25) which imposes a limit on the magnitude of forcing relative to
damping in the second equation of (4.3.4).

In this example, the hyperbolic and center parts of the analysis turn out to be
separated but this is not always so. For example, if we replace —2&xy? in the first
equation with —2&xy?, the Melnikov function M () acquires a contribution from
the second equation. Indeed, it has now the form

8

_4c 2[8 2w
M(@) = =38 =6e5(a)" | 15~ g S 2a +cala))

. T
+7 (a3 sin ¢ — aq cos a¢) sech 5

By using (4.3.19) we study (4.3.16b) locally as a semilinear equation. In Section
4.3.4, we apply a global approach based on the averaging method [16] (cf Section
2.5.7) in order to study (4.3.5). This improves Theorem 4.3.3.

4.3.3 General Equations

To solve (4.3.1), we shift the time r «+— ¢ + o and substitute
d—1

x=y+e) Biui+€u, y=ev,
i=1

=€, po=¢€"oa, Ho#O

where {u,...,uy} is a basis for the vector space of bounded solutions for the linear
system &t = D fo(y(¢),0)u with ug = ¥ and po = (Ho,1, Ho2) is to be determined. We
suppose (o> > 0. Introducing this change of variables into (4.3.1) yields

1 d—1
i = D1 fo(y,0)u+ 3 Y. Diifo(v,0)BiBjuiu; (4.3.262)
i=1

1
+.uv0,2f2</)/70705t + (X) + EDZZfO(Yv O)VV + O<8)7

2
€
v = D1go(7,0)v+ ZDmgo(y,O)v3 (4.3.26b)

+€2110,181(0,0,0,7 + o) + €210 2 D2£>(7,0,0)v
+oo(u,v,e,1) + 82,110,1 o1 (u,v,e,1) + 82u0,2¢2(u, v, €,1)

where
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2

1 -] £
¢0(M,V,87t) = Ego <Y+£ Z Biui +82u78v> _ngo(/%o)v_ €D222g0('}/70)\/3,
i=1

d—1
o1 (u,v,8,0) = g1 <7+ e Y Biui+€u,ev, (o1, o) t + a)
=1

—£1(0,0,0,7 + &),
1 ~ 2 3 2
0 (u,v,€,t) = cor|vte Y Biui+€%u,ev, (70,1, o) | — D2g2(7,0,0)v.
i=1

We note that the functions y and u;,i = 1,...,d — 1 have a norm which is domi-
nated by e~ for some a > 0. Using this fact and assumptions (i)—(viii) we have

do(u,v,e,1) = 0(e) e +0(?),
o1 (u,v,e,t) = O(1) e~ +0(e),
¢ (u,v,€,1) = O(g).

We consider the Banach spaces

X, = {x € C(R,R")

sup [x(1)] <
teR

| _6.v0)d=o,

Y, = {y € X,
for every bounded solution v to v = —Dj fy(7,0)’ v}
with the supremum norm ||x|| = sup|x(¢)|. Now we recall the following results of
1R

Section 4.2.

Lemma 4.3.4. There exist constants b > 0, B > 0 independent of € so that given
Uo 2 > 0 the variational equation

v = [Dago(1(1),0) + > po2D2g2(¥(1),0,0) ] v
has an exponential dichotomy (Ve,I) on R with constants (B,be> 1y >).

Lemma 4.3.5. Given h € Yy, the equation u = D fo(y(t),0)u+ h has a unique so-
lution u € X,, satisfying (u(0),u;(0)) =0 foreveryi=1,2,....d.

Lemma 4.3.6. There exists a continuous projection denoted Il : X, — X, so that
Z(1—1II)=Y,.

We define the linear map %" : Y, — X, by £ h = u where h, u are the same as in
Lemma 4.3.5. Now, we assume the following conditions:
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(ix) For any € > 0 small and @ € R, there is a v¢ o € X, with Ve o € X, satisfying

Vea(t) = (D2go(¥(t),0) + €710 2D2g2(¥(1),0,0)) ve,a (1)
2

£
+€D22280(0, 0)ve,a(r)® +€%10,11(0,0,0, + o)

along with B = sup ||veq| < . Moreover, ve ¢ is Cl'-smooth in € > 0, «
e>0,00

and sup ||wvg,a\| < oo, Furthermore, there is a C'-smooth vy € X, so that

Ve,q — Vo and %vaa — %va as € — 04 uniformly in any compact interval of
R and uniformly for o as well.

(x) There are constants B > 0, b > 0 so that for any € > 0 small and o € R, the
equation

2
(1) = (Dago(1(1).0) €40 D282 (1(1),0,0) + 5 Drrag (0,0) ve.al1)? )it
has an exponential dichotomy (We,T) on R with constants (B, be?).

Let {vi,v2,...,v4} be a basis of bounded solutions of v = —D f(y,0)"v. Using
the projection I and the exponential dichotomy W, from condition (x), we can
rewrite (4.3.26), by changing v = v o +w in (4.3.26b), as the fixed point problem

d—
= (1-m(3 Y. Dufo(r OB + o2 fa(1.0.0.0+ @)

ljl

+ 1DZZ]“O(% 0)(V8 a+t W) (VE,OC + W) + 0(8)) ) (43273)
/w@% 1 D1 (1(5).0) ~ Danaso(0.0) v o)

n Dzzzgo(Y( ),0) [3ve.a(s)w(s)* +w(s)’]

6
2
+ £ [D2220(¥(5),0) — D22280(0,0)] v a(5)w(s)
+ @o(u(s),ve als) +w(s),e,s)+ 82/.10,1 01 (u(s),ve a(s) +w(s),€,s)
+ €2 10202 (u(s), ve.a(s) +w(s),€,5) } ds, (4.3.27b)

/:o< ZD“fO (1),0)BiBjui(t)u;(t) + po2f2(¥(t),0,0,t + o)

711

+ 3D fo(1(0).0)(ve a6) 4 w(t)) (vea6) +w(e)) + O(e) ) di =0,

i=1,2,....d.
(4.3.28)
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We note that |y(r)] < ce™@, |u;(t)] < ce™@, |vi(1)| < ce@l, i=1,2,--- ,d for
constants ¢ > 0, @ > 0. Moreover, it holds that

/t o bE =) go — ;7 /t o be(t=s)=als| g < /00 el gs = 2/a.
—oo b82 —o0 —

Using this we see that (4.3.27b) can be written as

2yt
w(t) = % /_Oo We (t)We (s) "' Dy2280(0,0) (w(s)3 +3W(S)2Vg7a(s)) ds+0(¢).

Using the above assumptions and the Banach fixed point theorem 2.2.1 on a ball
in X,, x X, centered at 0, (4.3.27) has a solution (u,w) € X,, X X,,, for any sufficiently
small & so that w = O(€). Substituting w = O(¢€) and using ve g — Vo, 35 Ve.x —
%va as € — 04 uniformly in any compact interval of R and uniformly for ¢ as
well we can write (4.3.28) as

Mi(uo, @, B)+0(1) =0, i=1,2,....d, (4.3.29)

where

-1 o
Mi(po, @, B) :% Yy bijkﬁj5k+ai(a)ﬂo,2+%/ (vi(1), Do fo(¥(2),0)ve (1)) dt
Jik=1 -

and
ai(a) = /m Wi(t), 2(7(2),0,0,t +a))dt, 1<i<d;

1<i<d,

b;; :/m vi,D ,0)ujuy) dt,
ijk 7w< llfO(y ) J k> {1§J,k§d—1

We note that v (¢) depends on . We put

M(.“O?“aﬁ) = (M]([J(),(X,ﬁ),Mz(,Ll(),O£7ﬁ),...,Md(ﬂo,(x,ﬁ)).

If we suppose (o, Bo) are such that M(uo, o, Bo) = 0 and D 4 g\M (Lo, 0o, Bo) is
nonsingular then we can solve (4.3.29) by using the implicit function theorem. This
gives a bounded solution of (4.3.1). As detected in Section 4.1, we can show that
this solution is transversal, i.e. the linearization of (4.3.1) along that solution has
an exponential dichotomy on the whole line R. In summary, we get the following
result:

Theorem 4.3.7. Assume that conditions (1)—(viii) are satisfied and (ix)—(x) hold. If
there are (Lo, &, Bo) so that po > 0, M (o, &%, Bo) = 0 and D4 gyM (Lo, 0%, Bo) is
nonsingular, then for 1) = 83;1071, U = 82,110,2 with € > 0 small, Equation (4.3.1)
has a transverse bounded solution with the appropriate shift-type irregular dynam-
ics.
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For ¢t > s, and using V; from Lemma 4.3.4, the equation in condition (x) can be
rewritten as

w(t) = Ve(t)Ve(s)™ / Ve (t)Ve(2) "' D22280 (0,0) ve,a(2)*w(z) dz.

This implies

2
€ ~
()] < Be=H0ali=) |yu(s )\+7BBZIIDzzzgo(0,0)H/ e P02 (1) dz

which implies
be? e " be?
[wie)|e?® #027>) < Blw(s)| + - BB IIDzzzgo(O,O)II/ P H02E) [y (2) | dz.
s
The Gronwall inequality (cf Section 2.5.1 and [11]) gives
|W(t)|eb€zﬂo4,2(tﬂ) < B et BB [D22280(0.0)||(1—s)/2 lw(s)].
Consequently, we obtain

w(t)] < Bet (BBID2g000)/2-bio2)(1=5) |y (5) |

Now we see that condition (x) holds provided that

—p 1P22280(0,0)[| < o2
As an application we return to (4.3.4) which we write in the form

i=x— Zx(x2 + éyz) — 2y 0% + azy cost + agllp sint, (4.3.30)
= _y—2y(x2+y2)—2uzy+a1u1 cost +ap g sint o

for which we use the usual first order form x; = x, x; = X, y;1 =y, y» = y. That is,
we make, as at the beginning of Section 4.3.2, the substitutions yu; — aju, Uy —
W, Uz — arlly, U4 — azllp, Us — aallp for some parameters a;, i = 1,2,3,4. Then
(4.3.30) becomes

X1 = x2,

Xy = x1 —2x1 (x% + éy%) + L ( —26xy +azcost +ay sint) ,

Y1 =y2,

Yo = —y1 —2y; (x% —|—y%) —2Upyr + W1 (a1 cost +ay sint)

which is clearly in the form of (4.3.1). We now check the hypotheses of Theorem
4.3.7 for (4.3.30). Conditions (i)—(viii) are easily verified.
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In (ix) we write ve o = (v,v) and then obtain
V4 (1427%)v+2€> 9 2v + 262V = €21 1 [ay cos(t + a) +apsin(r + @)]. (4.3.31)

Note that this is the second equation in (4.3.5) when u = 0 and p| = to = 1.
Setting (o1 = Hp2 = 1 (since we already have parameters a;), using the solution
Ve aa(t) of (4.3.6) and substituting v(t) = w(t) +ve q 4(¢) into (4.3.31), we get

W+ (146825 o, + 27 )W+ 28" W+27 Ve g+ 68 W e o o +26°w =0 (4.3.32)

which is (4.3.10b) when u = 0. Equation (4.3.32) can be rewritten as (4.3.16b) with
u =0 and then as (4.3.17). Taking 0 < ¢s5(a) < k3 the conditions of (4.3.19) are
satisfied and we obtain the unique solvability of (4.3.32) with solution we ¢ ()
satisfying ||we q.q|| < ro. Consequently, condition (ix) is verified for (4.3.30) with
Ve = (v,v) and vy = (¥, V) where

v(t) = veaalt) +Weaalt),
¥(t) =ajcos(t+a)+azsin(t+a) +zo1(¢) -

Concerning condition (x), we see that the equation from this condition has the
form

W+ (142977 4+ 62wy +2€% g iy = 0
with wy =)w;. Again using to,1 = Ho2 = 1 and substituting for v we get
W1+ (1427 + 6627 4 o)W1 + 2671 +6€% (v, qaWe.aia + We g.0)W1 =0,
which for ¢ > s has the form
r
W(t) = We.aa(t) We.a.als)~ w(s) — 6€2 / We o (1)We.qcals) "
—oo (4.3.33)
{(0,Cvea@Wena(@) + weaa@wi(2)) pdz.

Since ||ve,gall < cs5(a) 4+ O(€) and ||we g4l < ro, we get

[(0,-682(2ve.qals)We.aa(s) + We.aals))) | < 26k

for a constant
0: = 6(2¢s(a)ro+ r(2)) +0(¢).

From (4.3.33) we obtain

t
wlo)] < K1 (o) + Kiee, [ &0 ()] dz

which gives



4.3 ODEs with Resonant Center Manifolds 127
t
tez_ < Kij|w(s)|+K€°0; ez_ w(z)|dz.
i S(IS)<K K26 S(ZS) d
N
The Gronwall inequality again implies
|W(t)‘ eez(tfs) <K |W(S)‘ eKlszeg(tfx) )
Since ¢5(a) < k3, we see that K16y < 1 and then
w(r)] < Ky e K10 DI=9/2 ()]

Hence we see that condition (x) is satisfied with B = K| and b = (1 — K, 6) /2.
In summary, conditions (ix) and (x) are satisfied for (4.3.4).

Remark 4.3.8. The role of resonance is not clear in this section. But it is essential
and it is hidden in assumptions (ix) and (x). For simplicity, we explain it again
for example (4.3.4) by replacing the forcing terms cost, sint with cosnt, sint,
respectively. So we consider the equations

¥ =x—2x(x? 4 Ey*) — 202 85 + py cos w(t + o) + us sin (s + o),

(4.3.34)
J=—y—2y(x* +y%) — 2y + py cos m(t + &) + pasinw(t + ) .
Certainly, the linear part of the second equation in (4.3.34) is nonresonant. Then in
place of (4.3.6), we get

Veoa = —Ve.aa— 26 Ve 00— 26705 g o+ E7a1 COST(t + ) + Eap sin (1 + 1) .

Applying the method of Section 4.3.2, we obtain Ve ¢ 4(f) = O(€2) and V¢ . 4(t)
is 2-period. Then (4.3.16b) gives We ¢.4(t) = O(€?) without any further restriction,
i.e. aj, ap are arbitrary nonzero. Consequently, the corresponding Melnikov function
is independent of aj,a;. So the hyperbolic and center parts of (4.3.34) are always
separated. This is consistent with the method in Section 4.2 for the nonresonant
case. In summary, in the nonresonant case, the forcing terms in the center part do
not affect the Melnikov function, while in the resonant case the forcing terms in
center part do affect it in general.

4.3.4 Averaging Method

When Eq. (4.3.1) satisfies conditions (i)—(viii) the remaining task is to verify con-
ditions (ix) and (x). We note that the equation in (x) is just the linearization of
equation (ix) along ve ¢(¢). Consequently, we must study the equation of (ix) and
its linearization. For this purpose, we can use also the method of averaging [16]
(cf Section 2.5.7). As a concrete illustration of how this can be done we focus on
(4.3.31). Using the matrix C(¢) from Section 4.3.2, we put
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v(t) = cr()vi(r) + ea(t)nat),

vi(t) = cost —sinttanht, v,(¢) = sint + cost tanh¢

into (4.3.31) and set tp 1 = Up2 = 1. We get the system
¢ = €? {Cl\h(t) +eava(t) 4 (evi(t) +cova(2))?

761721 cos(t+a) — %2 sin(z + a)} va(t),

(4.3.35)
&= & [ =i (1) = e2na(t) — (e (1) + o (1))?
+a—21 cos(t+ o)+ %2 sin + oc)} vi(t),
where as usual we put v(z) = ¢ (t)v1(f) + c2(¢)v2(t). Now we see that
Vi(t) — V,'i(t), i=1,2,
being exponentially fast as t — £oo where
Vi + =costFsint, vp4(f)=sint+cosr.
Consequently, Equation (4.3.35) for ¢ > 0 has the form
¢ = 82{ (01\?1,+(t) +eava 1 (1) + (crvi 4 (£) + cava 1 (1))?
—% cos(t+ o) — a—zz sin(¢ + Oc))vz,gr(t) +hl (c1,c2, Oc,t)},
(4.3.36)
&= { (= e () = eavai () = (v () + v (1)
ai a . 2
+5 cos(t + ) + = sin(t + a))vu(z) 12 (c1, 02, (X,t)}
while Eq. (4.3.35) for t < 0 has the form
é1 :82{ (cm,,(t) Feavn_ () + (cvi— (1) + cava_ (1))
- %cos(r ta)— 122 sin(r + a))m(r) il (e1, e, Ot,t)},
(4.3.37)

& =e2{ (= e (1) = cava (1) = (erv1 (1) + cav2, (1)
+%cos(t+a)—|— “fzzsin(tJra))vL_(r) +h%(c1,C2,a,z)}
where hi’z(cl ,¢2,0,t) — 0, being exponentially fast for # — +oo and uniformly

for c1» on a bounded set. Now we average Eqs. (4.3.36) and (4.3.37) over Ry,
respectively, to get for ¢ > 0 the system
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2
¢l = 7 ( —4c; +6C%C2+6cg — (a1 +az)coso + (a; —az)sina),
: (4.3.38)
€
Gy = Z( 4cz—6clc2 6c1 + (a1 —ay)cosa + (a +a2)sma)
while for # < 0 we obtain the system
&’ 2 3
¢ = 1(7401 +6¢ica+6¢5 + (a) —az)cosa+ (a +a2)sina>,
(4.3.39)

2
¢y = Z<_4c2 —6¢1¢5 — 603 + (a +a2)cosa+(a2—a1)sma)

We put

A+ = —(a1+ax)cosa+ (a; —ar)sina,
A2+ (a1 —az)coso+ (a; +ap)sina,
= (a; —ap)cosa + (a; +ap)sina,

Az, (a1 +az)coso+ (ap —ap)sina.

The systems (4.3.38) and (4.3.39) form one system over R with a discontinuity at
t = 0. By using arguments of Section 4.3.2 (see (4.3.8)), we observe that the systems

—d¢) +6¢icr+ 603 +A L =0,

(4.3.40)
—4cy — 66‘162 66‘1 +A2 +=0

have unique solutions
Ca+ = (Cl.a,iaCZ,a,i)-

Moreover, the eigenvalues of the linearization of (4.3.38), (4.3.39) at ¢, + are

[—4+ 16\/§(C%ﬂ,i + c%,a,i)]82/4 :

Consequently, we see that systems (4.3.38), (4.3.39) have unique weakly exponen-
tially attracting equilibria ¢, +, respectively.

Note that for a = 0 we get co + = 0 and then from (4.3.31) v¢ o = 0 so the case
a = 0 is trivial. On the other hand, we need v¢ o # O for the influence of the center
part to affect the Melnikov function. For this reason, we assume that a # 0.

Now if the point ¢, is in the basin of attraction of ¢, , then we can construct a
solution ¢,(¢) of (4.3.38), (4.3.39) over R as follows:

Cq—, for <0,
Ca(t) = . .
the solution of (4.3.38) starting fromc, - for t>0.

This solution will generate, according to averaging theory [16] (cf Theorems 2.5.12,
2.5.13), a solution of (4.3.31) satisfying conditions (ix) and (x). We note that aver-
aging theory can be applied to (4.3.36) and (4.3.37) since they are sums of periodic
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and exponentially fast decaying terms containing ¢ variable. So (4.3.36) and (4.3.37)
are KBM-vector fields.

To show that ¢, is in the basin of attraction of ¢, 4 consider the function H :
R? — R given by

H(ci,02) =3(ci +63)° —2Ag 1c1 + 241 4.

For further reference we note that

H(ct,e2) <3(2 +2)? +2\/A{+ +A3 3+, 4.3.41)
and if t — (c1(#),c2(2)) is a solution of (4.3.38),
d
—H(ci(t),c2(t)) = —2¢? [6(6‘% + C%)2 —Ay —I—A1"+C2]

dt
< 28/ + 3o+ 4 443, ). (4342)

We define two sets
D={(er.e2)| d+c < (AT +43 )17}
U={(er,c2) [H(er,e2) < 5(a% . +43 )%},

Using (4.3.41) it is easy to verify that D C U. With (4.3.40) we obtain

2 2 2 2 2 2 \2
\/A1,+ +A3 . \/Cl,a,+ + 44 2A24Clatr —AL4C2 a4 = 6(‘71,a,+ +¢3a4)

from which it follows that |c, 1 |* < (§)*3(A7 | +A} )!/3 sothat ¢, € U.
If t — (c1(¢),c2(t)) is an orbit of (4.3.38) in the complement of U then

c1(t) +ea(t) = (A7, + 43 )"

and it follows from (4.3.42) that

S He1(0),e2(0)) < 1082 (4F L +43
Thus, U is an invariant global attractor. Since the divergence of (4.3.38) is —2¢2,
using Bendixson’s criterion 2.5.10, we see that U contains no periodic orbits. Thus
by the Poincare-Bendixson theorem 2.5.9, U is in the basin of attraction for ¢, ¢,
Ca,+ 18 a global attractor and, trivially, ¢, — is in the basin of attraction of ¢, 4.

In summary, we get the Melnikov function M (o) of Section 4.3.2 so that Theo-
rem 4.3.3 holds for any (aj,az) # (0,0) and we have the following improvement of
Theorem 4.3.3.
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Theorem 4.3.9. Equation (4.3.4) has a transverse homoclinic solution for any &,
and any small p;, i =1,...,5 and 8 satisfying condition (4.3.24) and (p;,U3) #
(0,0).

Finally, we note that in spite of the fact that the results of Section 4.3.2 are im-
proved in this section, that part is included here since it contains some useful deriva-
tions/computations such as the existence of periodic solutions and exponential di-
chotomies. We note that for general forms of coupled oscillators only local analysis
as in Section 4.3.2 can be used to verify assumptions (ix) and (x). As our averaging
technique uses the Poincare-Bendixson theorem and Bendixson’s criterion it cannot
be used for higher-dimensional systems. In general, the situation depends on the
form of the averaged equations.

4.4 Singularly Perturbed and Forced ODEs

4.4.1 Forced Singular ODEs

Consider a singular system of ODEs like

eu' = f(u,v)+eh (t,u,v,e), uekR" veR"
“4.4.1)
vV =g(u,v)+em(tu,ve), teR, €€R,

under the following conditions:

(a) f,g,h1,hy are Cg*l-functions in their arguments, r > 2, defined for (¢,u,v,€)
€ RXxR"xR™ x (—&,&) and their (r+ 1)-derivatives are continuous in u uni-
formly with respect to (¢,v,€).

(b) £(0,v) =0 for any v € R™ and there exists § > 0 so that for any v € R™ and
A(v) € 6 (f¢(0,v)) one has |RA(v)| > & > 0.

Then setting € = 0 in Eq. (4.4.1) we obtain the so-called degenerate system
vV =g(0,v), veR™ (4.4.2)

It was shown in [17] that given T > 0 the solutions of (4.4.1) are at a O(¢&)-distance
from the corresponding solutions of (4.4.2), for 7 in any compact subset of (0, T].
This result was improved in [18] leading to a condition similar to the above one
about the eigenvalues of f,(0,v) [19]. Later, a geometric theory of singular sys-
tems was developed in [20]. This theory applies to the autonomous case and states,
under certain hypotheses, the existence of a center manifold for (4.4.1) defined on
compact subsets of R on which system (4.4.1) is a regular perturbation of the de-
generate system (4.4.2). By means of this theory, a previous result given in [21] was
improved in [20], concerning the existence of periodic solutions of (4.4.1). After-
wards geometric theory is used in [22,23] to study the problem of bifurcation from
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a heteroclinic orbit of the degenerate system towards a heteroclinic orbit of the over-
all system (4.4.1). However, since the result of [20] holds in the autonomous case
and with some roughness assumptions on system (4.4.2), conclusions in [22,23] are
given just in the case of a transverse heteroclinic orbit. Later, using different meth-
ods, the non-autonomous case together with the homoclinic case have been handled
in [24,25]. A result in [25], however, does not contain any conclusion of the smooth-
ness of the bifurcating heteroclinic orbit with respect to the parameter €, while four
classes of differentiability (from C"*2 to C"~2) are lost in [24]. Let us mention some
related results in this direction. Attractive invariant manifolds of (4.4.1) are studied
in [26] when hj,h; are independent of ¢ and f,(0,v) has all the eigenvalues with
negative real parts. The same problem as in [26] is investigated in [27] when &y, h)
do depend on ¢.

4.4.2 Center Manifold Reduction

In this section we apply Theorem 2.5.8 to (4.4.1). Let T =t /¢ be the fast time and
denote the derivative with respect to 7. Then (4.4.1) reads:
= f(u,v)+ehi(t,u,v,€),
v=ge{g(u,v)+ehay(t,u,v,€)}, (4.4.3)

I=¢.

Take a C*-function ¢ : R — [0,&] so that ¢(g) = & for € € (—£,%), |%| <2and

supp¢ C [—&,&|. It is clear that ¢ € C;™'(R,R) since it has a compact support.
Then, define x = u,y = (v,¢,€¢9(€)) and consider, instead of (4.4.3), the following
system

X = fu(0,v)x+F(x,y) :=A(y)x+F(x,y),

(4.4.4)
y=G(x,y),

where
F(x,y) =F(x,(v,t,€)) = f(x,v) — fu(0,v)x+ ¢ (&)h (t,x,v,€0(€)),
G(xvy) = G()C, (V,I,E)) = 8¢(8)(g(xvv) +8¢(8)h2(taxa v,8¢(8)), 1a0) .

From the fact that the support of ¢ () is a subset of [—&, ], it follows that A(y),
F(x,y), G(x,y) can be considered as C;-functions in (x,y) € R" x R"™*2 and that
they satisfy the hypothesis (i) of Section 2.5.5. Moreover one has

[F(0,5)|+[F(0,y)| < Cleg(e)| < CE* < o

provided € < 1. In the same way we see that |G(x,y)|,|Gx(x,y)| < ©. As regards
the inequality |Gy (x,y)| < o, this follows also from the fact that supe.p | % [e¢ (€)]]
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< supjg<g [€9/(€)] + |@(€)| < 3. All the hypotheses of Theorem 2.5.8 are then
satisfied and hence the existence of a global center manifold for (4.4.4), satisfying
the conclusions of Theorem 2.5.8, follows. This center manifold can be represented
as:

¢ ={(&n.0e) R xR xRx(~£8) |§ =H(n, @) |

and is invariant under the flow given by (4.4.4). From % = 0 we obtain that € is
tant i e € (—5,5) can be writt £0 (&) that
constant, moreover, since any (—%5,%) can be written as £¢ (%), we see tha

for |e] < g = %, such a manifold is invariant for (4.4.3). Any solution of (4.4.3)
whose u-component is small must then satisfy (see property (P) of Theorem 2.5.8):
u(t) =H(y(t,n, 2 ¢)),

where y(7,1,a,€) = (v(7,n,,€), €T+ a, &) and v(T) = v(T,M, @, €) satisfies
v(t) =e{g(H(v(1),eT+ a,€),v(1)) +eh(eT+ a,H(v(7), €T+ o, €),v(T), €)}
so that v(z) = v(z/€) satisfying
V(t) =gHO(t),t+ o, €),9(t)) +eha(t + o, HV(t),t + 0, €),9(t),€).  (4.4.5)

Finally, note that H(n,o,0) = 0 because of uniqueness. We have then shown the
following.

Theorem 4.4.1. Consider system (4.4.1) and assume (a) and (b) hold. Then there
exist &, p > 0 and a C"-function H : R" x R x (—&, &) — R so that the following
properties hold:

) sup |H(n,o,€)| < p.
(1,00,€) ER™M xR x (—g,8)

(ii) For any € € (—&y, &) and o € R the manifold

Gue={(6m) €R"xR" | =H(n,a.€) |

is invariant for the flow of system (4.4.1), with t + o instead of t, in the sense
that if (u(a),v(Qt)) € Cae then (u(t),v(t)) € Cue foranyt € R.

(iil) Any solution (u(t),v(t)) of (4.4.1), witht + . instead of t, showing that ||ul|e <
p, belongs to €y e.

As an example of application of this result assume that

(c) The degenerate system (4.4.2) has an orbit ¥(¢) homoclinic to a hyperbolic equi-
librium, and the variational system v = g, (0, 7(¢))v has the unique bounded so-
lution Y(¢) (up to a multiplicative constant).

Then the following theorem holds:

Theorem 4.4.2. Assume (a), (b), (¢) and define
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Ala)

= . W*(t){h2(1+0‘7077(f)70) _gu(ovyo‘))fu(ov ’}/(I))ilhl(t*' (X,O,}/(Z‘),O)}dl

—o0

with y*(t) being the unique (up to a multiplicative constant) bounded solution to
the adjoint variational system v = —g,(0,¥(t))*v. Then, if A(o) has a simple zero
at o = oy, there exist p > 0, & > 0 so that for |€| < &y, system (4.4.1) has a unique
solution (u(t,€),v(t,€)) which is C"~" with respect to €, bounded together with its
derivatives (in €), and satisfying also:

lu(t,€)| < p and sup|u(t,€)|+|v(t,€) —y(t — )| — Oas e —0.  (4.4.6)
t€R
Proof. A solution satisfying (4.4.6) must lie in a manifold 6, ¢ owing to property
(iii) of Theorem 4.4.1, hence its v-component must satisfy (4.4.5). The unperturbed
system of (4.4.5) is the degenerate system (4.4.2). From regular perturbation theory
(see Section 4.1) we obtain the Melnikov function

M@ = [y (0 hali+0,0,7(0).0) + 8,0, ¥(0) He (7(1).1 + 0. 0)}

Taking the derivative with respect to € at € =0 of

S%H (v(t,no,a,€),t+ o, €)

= f(H(v(tan()va7£)at+aa£)av(tan07aag))
+£h1(t+(X,H(V(I,T]0,(X,£),l+a,€),v(t,no,06,£),€),

we get (recall H(n, ,0) = 0)

Fu(0,v(z, M0, @, 0))He (v(£, M0, @, 0),7+ 0,0) + hy (r + o, 0,v(z, 1o, ¢,0),0) = 0.
4.4.7)
Now v(z,7(at), ¢, 0) solves (4.4.2) with the condition v(0) = y(), as a consequence
v(t,y(@), a,0) = y(¢) and using (4.4.7) we obtain:

He (v(1),1+0,0) = = £u(0,7(1))” ' (1 +,0,7(1),0) } dr
and hence M(a) = A(a). O

Remark 4.4.3. From regular perturbation theory, it follows that the solution, whose
existence is stated in Theorem 4.4.2, is C"~! in €. This improves previous results
[24,25].

As another application of Theorem 4.4.1, the degenerate system (4.4.2) has an
orbit heteroclinic to semi-hyperbolic equilibria, but we do not go into details and
we refer the readers to [28].
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4.4.3 ODEs with Normal and Slow Variables

Only for the reader information, we note in this part an opposite case to (4.4.1) by
considering a system

X = f(x,y) +eh(x,yt,€),

(4.4.8)
y=¢€(Ay+g(y)+p(x,y,t,€)+eq(yt,€)),

where x € R", y € R™, € > 0 is sufficiently small, A is an m x m matrix, and all
mappings are smooth, 1-periodic in the time variable ¢ € R so that

(i) f(0,0)=0,g(0) =0, g(0) =0, p(0,-,-,-) =0.
(ii) The eigenvalues of A and f(0,0) lie off the imaginary axis.
(iii) There is a homoclinic solution ¥ # 0 so that ) liril v(t) =0and y(¢) = f(y(¢),0).

Here gy, frx mean derivatives of g and f with respect to x, respectively. The second
equation of (4.4.8) has the usual canonical form of the averaging theory (cf Section
2.5.7) in the variable y with x = 0, and it is assumed [29] that its averaged equation
with x = 0 possesses a hyperbolic equilibrium. Hence the homoclinic dynamics of
the first equation of (4.4.8) is combined with the dynamics near the slow hyperbolic
equilibrium of the averaged second equation of (4.4.8) when x = 0. Moreover, the
transversality of bounded solutions on R of (4.4.8) is studied for the sufficiently
small parameter € > 0. Consequently, as a by-product chaotic behavior of (4.4.8)
is shown for such € in [29]. Systems of ODEs with normal and slow variables are
investigated also in [30,31].

Systems like (4.4.8) occur in certain weakly coupled systems. More general
ODEs are studied in [32-37], and we refers the readers for further details to these
papers.

4.4.4 Homoclinic Hopf Bifurcation

Finally we note that the method of Section 4.4.3 can be applied to systems of ODEs
representing an interaction of the homoclinic and Hopf bifurcation, which are given
by

X= fl(x) +h1(x?y7)’) ’

y :fZ(ya/l) +lh2(x,y,k) +h3(x7y)a

where fi :R" = R”, f:R> = R? b : R"™3 S R”, by : R"3 = R?, by : R2 - R?
are smooth so that

(4.4.9)

0 £09=0.0p00= (1)

(ii) f1(0) = 0 and the eigenvalues of Df;(0) lie off the imaginary axis.
(iii) There is a homoclinic solution ¥ # 0 so that [lirin Y() =0and ¥(¢) = f1(y(2)).
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(iv) hy(-,0,0) =0, hy(0,-,-) =0, h3(0,-) = 0, h3(-,0) = 0.

The system (4.4.9) is an autoparametric system [38—40] consisting of two subsys-
tems: Oscillator and Excited System.The Oscillator which is vibrating according to
its nature is given by the second equation of (4.4.9) in the variable y possessing the
Hopf singularity at y = 0 for A = 0, x = 0 [41]. The Excited System is determined
by the first equation of (4.4.9) in the variable x exhibiting a homoclinic structure to
the equilibrium x =0 for A =0, y = 0. (4.4.9) has for A = 0 a semi—trivial solution
x =1, y=0. Either chaotic or at least periodic dynamics of (4.4.9) near y x {0} for
A # 0 sufficiently small is studied in [42], and we refer the readers to this paper for
more details. We note that x = 0, y = 0 is a nonhyperbolic equilibrium of (4.4.9) for
A =0 possessing a homoclinic loop x = ¥, y = 0. Related research work is presented
in [32,34,37,43].

4.5 Bifurcation from Degenerate Homoclinics

4.5.1 Periodically Forced ODEs with Degenerate Homoclinics

In this section, we consider ODEs of the form
x=f(x)+h(x,u,t), xeR" peR™ “4.5.1)
satisfying the following assumptions:

(1) f and h are C™ in all arguments.

(i) f(0)=0and A(-,0,-)=0.

(iii) The eigenvalues of Df(0) lie off the imaginary axis.

(iv) The unperturbed equation has a homoclinic solution y # 0 so that lim,_, 1. Y(¢) =
0and (1) = F((1)).

(V) h(x,u,t+1) = h(x,u,r) forany t € R.

(vi) The variational linear differential equation

i(t) = D (Y1) Ju(t) (4.5.2)
has precisely d, d > 2 linearly independent solutions bounded on R.

For the unperturbed equation

= f(x), (4.5.3)

we adopt the standard notation W, W* for the stable and unstable manifolds, re-
spectively, of the origin and d; = dimW?¥, d, = dimW*. Since x = 0 is a hyperbolic
equilibrium, ¥ must approach the origin along W* as t — +oo and along W* as
t — —oo. Thus, 7y lies on W¥ N W*. The condition (vi) means that the tangent spaces
of W* and W along 7y have a d—dimensional intersection.
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The case when £ is independent of #, m = 3,d = 2 is studied in [44] and it is
shown that the set of small parameters, for which homoclinics of (4.5.1) exist near
7, forms a Whitney umbrella (cf [45] and Figure 4.2).

Fig. 4.2 The Whitney umbrella.

Equation (4.5.1) is considered in [46] with d = 2 and
h(x,u,t) = hy(x,A) +€hy(x,p,1), 1= (A,e) eR>xR,

and it is shown that the set of small parameters, for which homoclinic points of
(4.5.1) exist in a small section transverse to 7, is foliated by Whitney umbrellas. Bi-
furcation results for (4.5.1) are derived from [47] with m = 1 and d = 2. Bifurcation
results in this direction are also established in [1,3-5].

Instead of (4.5.1), we consider

= f(x)+h(xur+a), xeR", peR™, (4.5.4)

where & € S' = R/Z is considered as another global parameter. Here S' is the circle.

In this section, we always mean “generically” in the sense that certain transver-
sality (nondegenerate) conditions are satisfied for the studied problems. Those con-
ditions usually are rather involved formulas and their verification is tedious for a
concrete example. On the other hand, if one of those transversality conditions fails
then we are led to a higher—order degenerate singularity of the studied bifurcation
equation with a vague normal form.

We also remark that we focus our attention in this section on describing the set of
all small parameters of the above types of (4.5.1) for which homoclinics exist near
Y. We do not investigate neither the numbers of those homoclinics nor which kind
of bifurcations takes place. But more careful analysis of the bifurcation equations
could lead to some results in that direction as [48]. However, their description is
outside the scope of this section.

4.5.2 Bifurcation Equation

The bifurcation equation for finding homoclinics of (4.5.4) near 7 is derived from
Section 4.1.3, so we only recall its form:
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H(ﬁ7a>“) = (Hl(ﬁ,oc,u)7...,Hd(ﬁ,a,u)) =0, (4.5.5)

where H : O x & x W, — R? is smooth for small neighborhoods 0 € O C
Rd_l, 0 € W) C R™, a bounded open interval .# C R, and

ﬂ a /.L Zau Z bukﬁjﬁk+ h.o.t,
]k 1
o oh
o) =~ [ 0), 50004 +a)

bijk = */ <u14_7D2f(7)“d+j“d+k>dt-

4.5.3 Bifurcation for 2-Parametric Systems

We investigate (4.5.1) in this section for m = 2 and the condition (vi) holds with
d = 2. Then the bifurcation equation (4.5.5) has the form

an () +apn(o)u, er]ﬁz 4+ hot.=0

) (4.5.6)
any (O!)[J] +(122(06)‘u2 —|—b2ﬁ + h.ot.=0.

Since the codimension is 1 of the set of all noninvertible 2 x 2—matrices in the space
of 2 x 2-matrices (cf Theorem 2.6.2), generically we assume that there is a finite
number of ¢, ...,0, € S! so that

ap () ap(e)
Ala) =
a1 (a) axn(a)
is noninvertible only for & = ¢y,..., 4

1

A1l. First of all, we study (4.5.6) for o near o & {ot1,...,, }. Then by applying
the implicit function theorem, we obtain from (4.5.6)

=i, B), e =p(a,p)
for a near o and B small. Moreover, (4.5.6) implies
pi(e, B) = B* (wn (o) + Bdi(at, B)), i=1,2,

where U1, d;, i = 1,2 are C”—smooth. Generically, we have the following possibil-
ities:

ALL  pn(ao) #0,  poi(og) # 0.



4.5 Bifurcation from Degenerate Homoclinics 139

Theorem 4.5.1. Generically in the case Al.1, the set of parameters (&, U, Up) near
(09,0,0), for which (4.5.4) has a homoclinic near v, is diffeomorphically foliated
along the a—axis by two curves

(a, 7+ Ter(a,7),7%),
where e| € C* satisfies e1(0t,0) # 0 and T € R is small (Figure 4.3).

Proof. We take

©=B/|u21(@) + Bda(a, B)].
Then our set has the form
(o, T3 () + T ds (@, T), T sgn i ()

where (13, ds € C, t13(0) # 0 and generically d3(0p,0) # 0. This set is diffeo-
morphic to

(aa Tz + T3d3(a> T)/.ul?ﬁ(a)v 12) :
The proof is finished. O

12

Ha

Fig. 4.3 p1(00) > 0, pa1(ag) > 0.

We note that generically we cannot avoid in the case A1.1 the following situation:

ALLL Hll(%)#ov “21(“0)#0, el(a()vo):()'

We note that this case generically occurs only in a finite number of og ¢
{o,... 04}

Theorem 4.5.2. Generically in the case Al.1.1, the set of parameters (o, 1, )
near (04,0,0), for which (4.5.4) has a homoclinic near v, is diffeomorphically foli-
ated along the o—axis by two curves

(o, 7+ 7 (00— ap)da (@, 7) +ds(a)T* + Tdg (e, ), T%) (4.5.7)
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where dy, ds, dg € C* satisfy ds(04,0) # 0, ds(,0) # 0 and T € R is small (Figure
4.4).

Proof. The statement of theorem is trivial, since by e (0,0) = 0, we have
er(o, 1) = (ot — o)dy(ct, ) +ds(o0) T+ t°dg(0t, T) .

To show the situation in Figure 4.4, we study the intersection of two curves (4.5.7)
by solving for small T > 0 the equation

2+ 73 (00— ap)da(at, T) +ds () T4+ dg (@, T)
=12 - (a—a)ds(0t, —7) +ds(a)t* — Tdg(at, — 7). (4.5.8)
(a—ap)(da(et, 7) +da(a,— 7)) = =72 (ds(0t, T) + do (0, — 7)) .
By the Whitney theorem 2.6.9, we have
dy(a,t) +ds(a, —7) = dy(a, 1), dy €C~,
ds(a,7) +ds(a,—T) =dg(t,7), dy€C™.
Hence (4.5.8) is equivalent to
(a0 —ap)da(o, ) = —72ds(a, %) (4.5.9)
We can solve 72 from (4.5.9) to obtain

72:7:1(05)7 Tl<a0> =0, Tl((XO) #0.

Now the situation in Figure 4.4 is clear. O

H2 J15] Ha

o< o o =0 o> o
Fig. 4.4 ;1 (ag) >0, w1 (o) >0, 7j () > 0.
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A12. pp(o) =0,

We note that this case generically occurs only in a finite number of o ¢

{OC],...,OC[I}.

Theorem 4.5.3. Generically in the case A1.2, the set of parameters (@, U, lp) near
(09,0,0), for which (4.5.4) has a homoclinic near v, is diffeomorphically foliated

pi(on) #0,  uor (o) #O.

along the a—axis by two curves

where ey € C* satisfies ex(0,0) # 0 and T € R is small (Figure 4.5).

(o0, (@ — 00) + Fen(@,7), 7).

Proof. Like in the above proof, our set is equivalent to

(o, Pz (@) + s (@, 1), T)

where p113, d3 € C*, i3(o) =0, i5(0t0) # 0, d3(0,0) # 0. Hence we have

(o, T (00 = o) pia(@) + Tds(at, 7), %)
where (14 € C”, t14(0p) # 0. Consequently, the set is diffeomorphic to

(Ot, Tz(a - (XO) + T3d3(05, T)/.U'H(a)’ Tz) .

The proof is finished.

H

H2

o <0y

H2

o = 0y o> 0y

Fig. 4.5 pj,(00) > 0, 21 (%) > 0.

Al3. up(on) #0,

pa1(00) =0, wy (a) #O0.

It is clear that this case is the same as A1.2.

H2
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A2. The second case is when « is near ap € {a,...,a;, }. So A(ap) is nonin-
vertible. We can assume

ain(on) #0, axn(a) =0, ay(on)#0, an(a)=0, ay(o)#0.

Then we solve

My :“l(avﬁvlJ'Z)

from the first equation of (4.5.6) for « near o and 3, 1, small. Consequently, by
inserting this solution into the second equation of (4.5.6), the bifurcation equation
now is reduced to

Q(Ol,ﬁ,‘uz) = (Ot - aO)dZI (a)nu'l (a’ﬁhuQ)

(4.5.10)
—l—(OC — 060)522(06)[12 +b2ﬁ2 + h.o.t.=0.

We note

(e, B,0)=0(B%), 0O(a,B,0)=0(B%), 0O(,0,12)=0(u3).

By using the Malgrange Preparation Theorem 2.6.8, generically (4.5.10) is equiva-
lent to
Q1 B, o) = BPA(er, B) + B(0t, B)pa + 113 =0, (45.11)

where A, B € C* satisfy
A,0) #0, B(a,B) = (o —a0)Bi (e, B) +BBa(B),
BlvBZECma Bl((X0,0)?éO

We take
©=BvI|A(e, B)], n=B(aB). (4.5.12)
Then (4.5.11) is equivalent to

2 sgnA(ap,0) + npa +p3 = 0. (4.5.13)
The discriminant of (4.5.13) is as follows:
D(n,7) =n* —47sgnA(0p,0).

We note that
= (n,7,12) = IEM, T, 12) + T°F(n,7),

where E,F € C* generically satisfy E(0,0,0) # 0 and %—E(0,0,0) # 0. Conse-
quently, our set of parameters in the space (1, i, i2) near (0,0,0) has the form

(N, E(M, T, 1) + T2 F(1,7), 1),

T sgnA(c,0) + Np2 + 3 =0,
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where 7 € R is small. We consider the following two possibilities.
A2.1. sgnA(ap,0)=—
In this case, (4.5.13) has the form
= (k2 +1).

Hence
T=+V (L +n),

where eithern >0, tp >0, < —norn <0, up <0, up > —n. Then

qu(nmuz)HzF(n,f)=uz(E(n,i\/uz(uz+n),uz)
+ (e +mF(M, £/ (2 +n ))

- Hj:(nv.uZ)'

We compute

(Hy(n,102) — H-(0,112)) /12 = E(1, /12 (12 + 1), 112)
+ (2 +M)F (N, /i (2 +1))
—E(Th—\/#z .U2+TI 7:“2)
— (H2+n)F(n,—/i2(t2+1n))
= (S5m0, + (e +) 2 (n,0)).

2/ (2 +1m) #0

for any sufficiently small 1) and p, # 0, uy # —1. We also note that Hy (1, 1) =0
for sufficiently small y,, 1 only if up = 0.
In summary, we obtain the following result.

Theorem 4.5.4. Generically in the case A2.1, the set of parameters (, U, Up) near
(00,0,0), for which (4.5.4) has a homoclinic near y (see (4.5.12)), is diffeomorphi-
cally foliated along the n—axis by four curves

(naHi(nth)a,uZ)
where either 1 >0, Uy >0, lp < —norn <0, Uup <0, Up > —n (Figure 4.6).
A22. sgnA(ap,0)=1.
In this case, (4.5.13) has the form

TN+ 5 =0
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M i

n>0

Fig. 4.6 E(0,0) > 0.

Hence
=\~ +1n)
where either n >0, —n <, <0orn <0,0 < up < —n. Then

NzE(naTaH2)+T2F(TTaT) = U2 (E(na:t\/ *,LLZ(.U'Z‘Fn)vIJ'Z)
~(p2 +mF (/=2 1)) )
= Gi(’”l7ﬂz)~

Similarly like the above, we see that G (n, ) # G_(n, ) for any sufficiently
small 1 and  # 0, g, # —n. We also have that G+ (1, p) = 0 for sufficiently
small u,, 1 only if t, = 0. We achieve the following result.

Theorem 4.5.5. Generically in the case A2.2, the set of parameters (o, [, ) near
(00,0,0), for which (4.5.4) has a homoclinic near y (see (4.5.12)), is diffeomorphi-
cally foliated along the N—axis by a closed loop

(n’Hi(nv.uZ)allZ)

where either 1 >0, — <, <00rn <£0,0 < up < —1. We note that for n =0
this is just the point (0,0) (Figure 4.7).

4.5.4 Bifurcation for 4-Parametric Systems

In this section, we consider the case m = 4 and the condition (vi) holds with d = 2.
Then the bifurcation equation (4.5.5) has the form

ar (@)1 +an (o) +aiz (@) s +as(@)pa + b1 g2+ hot. =0,
(4.5.14)

ax (o)) +axn (o) +aiz(a)us + axa(00) s +b2B2 + ho.t.=0.
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wot W 1 H
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Fig. 4.7 E(0,0) > 0.

H2

n>0

Since the codimension is 3 of the set of all 2 x 4—matrices with corank 1 in the space
of 2 x 4—matrices (cf Theorem 2.6.2), generically we may assume the invertibility
of the matrix A(c) for any o € S'. Then by applying the implicit function theorem,

we obtain from (4.5.14)

= (o, By s, pa), 2 = ta(e, B, U3, Ua)

for o € S' and BB, 3, py small. Moreover, (4.5.14) implies

“i(a7ﬁ70’0) = O(ﬁ2)7

Generically we may assume

(

We take the change of parameters

i=1,2.

82IJ«l
2%

(a,0,0,0)>2+ (%2[3 (a,0,0 0))27é0 V,aes

i = Ao +Az2 (o), o —Ax(o)p +A () o,

where
Al(a) = (?;27;(mO,O,O)/((?;‘Z;(a7070,0))2+ (%2‘;2(05 0,0 0))2),
As(a) = ‘;Z“z(a,o,o,O)/((‘;‘;; (,0,0 0)) + (%ZB (@,0,0 0))2).

For these new parameters, we have

9% (

78 ,0,0,0) # 0.

Then we solve for 3 small the equation
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d
T‘E(aaﬂau37“4) =0

to obtain B = f(a, i3, tls), and by replacing B with B + B (ct, i3, 1is), we may as-
sume that

(o, By us, pa) = (0t i3, a) + B2 (0, B, 13, a)

where fi; (e,0,0,0) # 0. Replacing 8 with B+/|fi; (@, B, U3, ta)|, we obtain

.ul(a7ﬁ7“3nu4> :ﬁl(a,ﬂ3,u4)j:ﬁ2.

Now we take the change of parameters

= (= (o, s, ), Mo < p — o (0,0, 1, pa) -

In this way, we arrive at

ul(avﬁvﬂ&,uét) :ﬁ27 .u2(avﬁvu3au4) :Bp(a7ﬂ7u37“4)

where p € C* satisfies p(+,0,0,0) = 0. All the above changes of parameters give a
local diffeomorphism
I; - 5! xﬁ1—>S1 x R*

foliated along S!, where ¢ is an open neighbourhood of 0 € R*. Generically we
may assume that

(2 (0000)" + (Zt@000) 0. vacs.

We take the change of parameters
ps < Di(o) s —Da(@)pa,  Ha < Da(a)ps + Dy () la,

where

Di(a) = aa:;(mO,O,O)/((i’;(a70,0,0))2+ ( J (a,0,0,0))z),

P
dly

_dp ap 2 ap 2
D2(a) - Tm(avoaovo)/<(87‘u}(avo7070)) + (m(a707070)> ) .
For these new parameters, we have

dp
=~ (@,0,0,0) £0.
8#3( ) #

Now we split
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(P(a»ﬁ»N%M) _p(aﬂ07.u37“4))/ﬁ :pl(a7ﬁ27.u37“4)+Bp2(a7ﬁ2hu37“4)7

where p; € C*, i = 1,2. For an open neighbourhood ¢, of 0 € R*, we take a local
diffeomorphism
G:S'x 0, — S' xR

given by

I (A5, A1, 42,43, A4)
= (/15,11712 —Mipi1(As,A1,243,24),p(A5,0,23,A4) +11P2(15,7Ll7/137l4)7l4) ,

which is foliated along S'. In summary, we arrive at the following theorem.

Theorem 4.5.6. Let d =2, m = 4 in (4.5.1). Then generically the set of parameters
(o, iy, Mo, U3, My near (,0,0,0,0), a € S', for which (4.5.4) has a homoclinic
near v, is diffeomorphically foliated along the o—axis by a surface of the Morin
singularity [49] given as follows:

(x1,%2,x3) — (x%,xlxz,xz,)g). (4.5.15)

Proof. 1t is enough to take the composition of all the above changes of parameters
[44, p. 221]. O

Remark 4.5.7. We note that singularity (4.5.15) is just the foliated Whitney umbrella
of [46]. Moreover, the foliation along the a—axis is nontrivial. In each a—section,
the diffeomorphism between the Morin singularity and the set of small parameters
u € R* for which (4.5.4) has a homoclinic solution near ¥, does depend smoothly
on «. This is the main difference between our result and [46]. We do not restrict the
existence of homoclinic solutions of (4.5.1) near Yy by supposing that they cross a
transverse section of y at t = 0. We really investigate all possible homoclinic solu-
tions of (4.5.1) geometrically near y. A similar nontrivial foliation along the oi—axis
holds for the result of Section 4.5.3. Furthermore, the result of Section 4.5.3 does
not follow directly from Section 4.5.4. It is more delicate even form =1, d =2 [47].
It seems that the case m = 3, d = 2 is more sophisticated than the case of Section
4.5.3. Finally, the result of Section 4.5.4 persists under further perturbations, that is,
generically we get the same result for m > 4 with d = 2.

4.5.5 Autonomous Perturbations

In this section, we study the case d > 3 of (4.5.1) with & independent of ¢. Then
the bifurcation equation (4.5.5) is independent of ¢, so we put & = 0 in (4.5.5).
Moreover, we assume that (4.5.3) is decoupled

2= f.j(zj), y=h0),

j:1727"'7d_27 x:(ZhZZv'“azd—Zvy)'

(4.5.16)
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Hence
Y= (')/171a71,2>---a')’l,d72772),
and (4.5.2) has the form

Mj:Dfl.j(’yl.j>uj7 ]:],277d—2, (4517)
v=Df(p)v. (4.5.18)

We suppose the following assumptions:

(H) The variational equations (4.5.17) with j =1,2,...,d —2, respectively (4.5.18),
have precisely 1, respectively 2, linearly independent solutions bounded on R.

Let
Weo = x4 {m0) |1 € R} x { (1) | 1 € R}

be a homoclinic manifold. Theorem 4.1.1 is applicable separately to (4.5.17) and
(4.5.18). Then a small transverse section ¥ at ¥(0) to W, in R” is given, and we
study the existence of homoclinic solutions of (4.5.1) crossing ¥. This leads us to
the bifurcation equation (4.5.5) possessing now the form

Qu+po*+ hot =0, (4.5.19)

where B € R is small, @ € R? is given and Q : R"™ — R? is a matrix. We suppose
that m > 2d — 1. Since the codimension is m — d + 1 of the set of all d x m—matrices
with corank 1 in the space of d x m—matrices (cf Theorem 2.6.2), generically we
may assume that rank Q = d and so by applying the implicit function theorem to
(4.5.19), we obtain

= m(B,12), M2 €R™? issmall,
where p; € C* satisfies 1 (8,0) = O(B?). Consequently our set has the form
{(i(B.p). ) | BER, p2 e R™™ are small .
We introduce a mapping M : & — R™ given by

M(B, p2) = (11 (B, 12), ha) ,

where € is an open neighbourhood of 0 € R”~4*!. The linearization DM (0) has
corank 1. Let J' (R"~4*! R™) be the 1-jet bundle (cf Section 2.6), and let S; be a
submanifold of J!' (R™~4*! R™) defined by

Si={o GJI(R’”_‘]H,R”’) | coranko = 1}.

Since m —d + 1 > d and according to Theorem 2.6.3, the codimension is d of the
set Sy in J! (Rm_d“,Rm), by recalling Theorems 2.6.6 and 2.6.7, we can assume
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that
le intersects transversally S; at O, (4.5.20)

where

is the 1—jet mapping. By applying a result of [49] (see also a proof of [45, Theorem
4.6 on p. 179]), we immediately obtain the following theorem.

Theorem 4.5.8. Let d > 3,m > 2d — 1 in (4.5.1) when h is independent of t. Sup-
pose (4.5.16) and that the assumption (H) holds for (4.5.17), (4.5.18). Then generi-
cally, when rank Q = d and (4.5.20) holds, the set of small parameters u € R™ for
which (4.5.1) has a homoclinic solution crossing WV is diffeomorphic to a surface of
the Morin singularity given by

2
(xl y X2y 7xm—d+1) - (xl yX1X2, X1 X350 oy X1 Xg, X2, X35 - 7xm—d+1) .

Remark 4.5.9. 1. Theorem 4.5.8 is valid also for d = 2, but then we recover the result
of [44] for m = 3. We note that the condition m > 2d — 1 is a principal and not a
technical restriction. Decoupling of (4.5.3) into (4.5.16) is motivated by examples
of [1,10,50]: When several oscillators are weakly coupled then (4.5.16) is naturally
satisfied. On the other hand, we are not able to find a reasonable result for the case
d > 3 in general (4.5.1) without assuming the decoupling condition (4.5.16).

2. We have a cross-cap singularity [45, p. 179] in Theorem 4.5.8 with m =2d — 1.

3. The transversality condition (4.5.20) is the condition on the 2—jet of M at
0[45, p. 179].

4. Under the assumptions of Theorem 4.5.8, there is a family ¥y;) of small trans-
verse sections to Wy at () for any ¢ sufficiently small so that ¥,y = ¥, the family
¥)(.) represents a tubular neighbourhood of Wy, in R" near 7(0) and the statement of
Theorem 4.5.8 holds also for any ¥;).

Finally, we can study more degenerate Morin singularities of M. Let
JERmATLR™) 2<keN
be the k—jet bundle, and let
Mo — JFRN R

be the k—jet mapping. Let Sy, be the contact class in JK (R’"““’l , ]Rm) [45, p. 174].
We know by [49] that S, is a submanifold of Jk (R”’_d+1,R’") with codimension

kd. Let us suppose that j*M(0) € Sy,. Again by recalling Theorems 2.6.6 and 2.6.7,
we can assume that

jkM intersects transversally S;, at O, 4.5.21)

provided thatm—d+1 > kd,i.e.m > d(k-+1) — 1. Results of [49] give the following
theorem.
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Theorem 4.5.10. Let d > 3,m > d(k+1)—1,2 <k € N in (4.5.1) when h is in-
dependent of t. Suppose (4.5.16) and that the assumption (H) holds for (4.5.17),
(4.5.18). If rank Q = d and jkM(O) € 81, holds with (4.5.21) as well, then the set of
small parameters L € R™ for which (4.5.1) has a homoclinic solution crossing V' is
diffeomorphic to a surface of the Morin singularity given by

yi=xj, 1<j<m-d
k
Ym—d+j = Zx(j—l)k+rxrrn—d+17 1<j<d-1
r=1
k—1 ol
= +
Ym = x<d*1)k+rx:nfd+1 X a -

r=1

The proof of Theorem 4.5.10 is outside the scope of this book.

4.6 Inflated ODEs

4.6.1 Inflated Carathéodory Type ODEs

Similar to Section 3.5, when we consider an orbit x(¢), r € R of an e-inflation of a
differential equation X = f(¢,x), then we deal with a differential inclusion

x(t) € f(t,x(t))+ €%PBrn  for almost each (f.a.e.) ¢ € R,

(4.6.1)
x(0) =xp.
Here we suppose that f : R x R” — R”" satisfies Carathéodory type conditions and
it is globally Lipschitz continuous function in x (cf [51-53] and Section 2.5.8). We
are again not interested in the existence of one solution of (4.6.1), but in the set of
all trajectories of (4.6.1). So we consider a single-valued differential equation

x(t) = f(t,x(r)) +€h(t), h(t) € Brn fae.t€R,

4.6.2
x(0) = xo, . :

where h € L (R,R") is considered as a parameter. This orbit of (4.6.2) is denoted
by x(h). Since f is globally Lipschitz continuous function, this orbit is unique and
continuously depends on A. Next, we define an €-inflated orbit of (4.6.1) given by

X (x0) () = {x(h)(t) |he L™ (RR"), h(t) € Bgn fae.1 € R} .
Sets of x(xo)(¢) are contractible into themselves to xo () = x’(xo) () — the solution

of x(t) = f(t,x(¢)) f.a.e. t € R, x(0) = xp. For t # 0, the point xo(¢) is in the interior
of x%(xo)(t). Moreover, x%(xo)(f) are compact.
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This approach of considering parameterized differential equations (4.6.2) instead
of differential inclusions (4.6.1) is used in [53] for investigation of an €-inflated
dynamics near to a hyperbolic equilibrium of a differential equation. More precisely,
we construct analogues of the stable and unstable manifolds, which are typical of
a single-valued hyperbolic dynamics; moreover, we construct the maximal weakly
invariant bounded set and prove that all such sets are graphs of Lipschitz maps.

4.6.2 Inflated Periodic ODEs

In this section we extend the results of Section 3.5.2 to continuous time case, i.e. we
start from ODE
x=h(t,x), (4.6.3)

where 7 € C! (R x R", R") satisfies the following hypotheses:

(H1) his 1-periodic in t € R. Moreover, (4.6.3) possesses a nonconstant hyperbolic 1-
periodic solution ¥ (#) along with a homoclinic one ¥(¢) so that lim,_, 1o |Y(¢) —
10(t)| = 0. Furthermore, the variational equation v = Dh(z,¥(t))v has an expo-
nential dichotomy on R.

Let ¢(t,x), ¢(0,x) = x be the evolution operator of (4.6.3). By introducing the
Poincaré map f(x) = ¢(1,x) of (4.6.3), diffeomorphism f has a hyperbolic fixed
point xo = ¥(0) along with a transversal homoclinic orbit {x) } ez x) = y(k). So
Theorem 2.5.4 can be applied to (4.6.3).

Next, we consider a differential inclusion in R” of the form

X € h(t,x)+q(t,x, Brn), (4.6.4)

where ¢ € C (R x R" x R",R") is a 1-periodic mapping in ¢ € R, satisfying the fol-
lowing hypotheses:

(H2) There are positive constants A, A so that
lq(t,x,p) —q(t,%,p)| < Alx—%|+Alp—p| and ¢(t,x,0)=0
forallt e R,x,x € R", p, p € Bpn.

We put £ = L”(R,R") with usual supremum norm ||u|| = ess sup,cp |u(f)| and
take u € B := {u € Z|||ull« < 1}. We remark (see Section 3.5.2) that (4.6.4) is
equivalent, i.e. it has the same solution set, to the family of ODE

X =h(t,x)+q(t,x,u(t)), uecA. (4.6.5)

Now we can repeat the arguments of Section 3.5.2. We sketch main steps for
the readers’ convenience. First we note that (4.6.5) is a continuous time analogy of
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(3.5.6). Then we fix @ € N large and for any § € &, & = {e;} jez define a pseudo-
orbit x5 € .Z as follows for 7 € [2jw,...,2(j+ 1)o), j € Z:

{y(t(2j+1)(u), fore; =1,

() =
W(—(2j+1)w), fore;=0.

Following the proof of Lemma 3.5.1 (cf Theorem 4.1.2), we have another result.

Lemma 4.6.1. There exist @y € N and a constant ¢ > 0 so that forany E € &, u e &,
there is a unique solution w € W' (R,R") of the linear system

W = Dyh(t,x5(1))w+u.

Moreover, w is linear in u and it holds ||w||e < ¢||tt||s-

Following Theorems 3.5.2 and 3.5.3, we get

Theorem 4.6.2. Assume A and A are sufficiently small. Then there are ®; > @y,
po>0andz>0s0 that for any N > @ > @y but fixed and for any £ € &, u €
B, there is a unique solution x(u,§) € £ of (4.6.5) so that ||x(u,§) — x5 | < po.
Moreover, ||x(u1,&) — x(u2,&) || < L|jus — uz||eo for any & € & and uy,uy € B.
Furthermore, mapping x : 8 x & — L7 (R,R") is continuous, where L’ (R,R") is
the usual topological vector space endowed with a metric

[l — u2]]x 0

d(ul,uz) = s
kg\T 2R (L + Jluy = 2 |xce0)

where || - || - are the supremum norms on [—k,k|, k € N.
Next, it is easy to verify
) (1) =x5(t+20).

Then by the 1-periodicity of (4.6.4) in  and the uniqueness of x(u, &), from Theorem
4.6.2, we get
x(u,0(8)) (1) =x(u,8)(t +20), ViER

for u(t) := u(t +2w), i.e. it holds
x(u, &) (2kw) = x (a'k(u), ak(g)) (0), VkeZ (4.6.6)

for a shift homeomorphism G : 8 — % defined as 6 (u) := u.

Let ¢,(t,s,y) be the evolution operator of (4.6.5) for ¢t,s € R, y € R". Here for
simplicity we suppose a technical condition that # is also globally Lipschitz contin-
uous function in x. Then clearly

X, &) 2(k+ 1)) = @, 20k + 1)0,2ko, x(1, ) (2ko)), VKkeZ. (4.6.7)
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So (4.6.6) and (4.6.7) yield
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€841 011()) 0= g (2014 Do 2kanx (3. 04(9)) (0)) - ke,

that is,

x (6k+1(u), c(g)) (0) = ¢ (z(k+ 1, 2ko,x (6’((@,5;) (0)) . VkeZ.

Now, introducing the following mappings
EBXEXLr— BXEXL
X (u,€,k) = (u,0(&),k+1),
D BXEXL— BxR"XZ
D(u, k) = (1.5 (3 (w),€) (0).%) ,
F**: BXR"XZ+— BxR"XZL
F2(u,x,k) := (u, 0, 2(k+ 1) 0,2k, x) ,k+ 1),

and using (4.6.8), we obtain the following analogy of Theorem 3.5.5.

BXxE XL z BXEXL

FZa)
A A

Fig. 4.8 Commutative diagram of inflated deterministic chaos.

Theorem 4.6.3. The diagram of Figure 4.8 is commutative for the set
A=P(BXxEXL).

Moreover, mappings X and @ are homeomorphisms.

(4.6.8)

For u =0, diagram of Figure 4.8 is again reduced to diagram of Figure 2.1 in Section
2.5.2 with f(x) = ¢@o(1,0,x) for the 1-time, Poincaré map of (4.6.3). Finally, we can
extend very similarly Theorem 3.5.6 to (4.6.4), but we do not write it since that

extension is almost identical to Theorem 3.5.6.
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4.6.3 Inflated Autonomous ODEs

In general, the situation is different when (4.6.3) is autonomous. Let us consider an
ODE
x=h(x), (4.6.9)

where h € C? (R”,R") satisfies the following assumption:

(A1) (4.6.9) possesses a solution ¥(¢) homoclinic to a hyperbolic equilibrium 0. More-
over, the variational equation v = Dh(7(t))v has the only bounded solution ¥(z)
on R up to constant multiplies.

Assumption (A1) means that y is nondegenerate in the sense that the stable and
unstable manifolds of 0 transversally intersect along ¥ (cf Section 2.5.4 and [7,54]).
Moreover, we know from Section 4.1.2 that (A1) implies that the adjoint variational
equation v = —Dh(7¥(¢))*v has the only bounded solution y/(¢) on R up to constant
multiplies.

Next, we consider a differential inclusion in R” of the form

X € h(x)+eq(x, Brn) (4.6.10)
where 0 # € € Ris small and ¢ € C (R" x R",R") satisfies the following assumption:
(A2) There are positive constants A, i so that
l9(x,p) —q(%, )| < Alx—%[+p|p—pl
forall x, ¥ e R",p, p € PBrn.
Again (4.6.10) is equivalent to the family of ODEs
x = h(x)+eq(x,u(?)), ue . (4.6.11)

For any fixed u € 4, (4.6.11) is the standard bifurcation problem studied in Section
4.1.3. Consequently, we can state the following result.

Theorem 4.6.4. There is an €° > 0 so that for any |e| < €° and u € B there is a
unique bounded solution x,, of (4.6.11) with a small amplitude. Next, let us set

Ma(a) = /_ Z W+ Q)q(y(t + a),u(t))dr (4.6.12)

Then there is an €° > & = &y(u) > 0 so that for any 0 < |€| < & it holds

(1) Ifthereis an gy € R so that M, (ay) = 0 and M, is strictly monotone at o, then
there is a unique bounded solution x of (4.6.11) so that

[lx—=7(-+ &)« — 0
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as € — 0, and x is asymptotic to x, as |t| — . Moreover there is a Smale
horseshoe type chaos when u is almost periodic.

(i) If M, is changing the sign over R, then there is a bounded solution x of (4.6.11)
orbitally near to 'y and x is asymptotic to x, as |[t| — e. Moreover there is a
Smale semi-horseshoe type chaos when u is almost periodic.

(iii) If infg |M,,| > O then there is no bounded solution of (4.6.11) near y and asymp-
fotic to x, as |t| — oo.

Remark 4.6.5. % contains two disjoint (possible empty) open subsets % and %,
which are satisfied either of (ii) or (iii) of Theorem 4.6.4.

Example 4.6.6. Let us consider an €-inflated weakly damped Duffing equation
¥ex—20 +e(—8x+[-1,1])

for a § > 0. Then y(r) = (y(¢),7(t)), ¥ = secht, y(r) = (—¥(¢),7(z)), and thus
(4.6.12) has the form

Mu@) = [ 3e+a) (~831-+ @)+ u(e)) di = —§5+/:7(z+ a)u(t)dr.

Using

oo

2 . 2
Mu(0)| > 38~ alle [ [7(e-+ @) dr = 58~ 2ull.

—oo

we see that if ||u]|. < min { g, 1} then u € %,. Particularly, for 6 > 3 we get # =
P If 0 < & < 3, then we take u(r) = —sgnr. Hence

2 © 2
M_gon(a) = —§5—/7 7(t+ o) sgnt dt = —§8+2SGChOC.

We see that if 6 = 3 then —sgnt € B\ (%1 UH,) andif 0 < § < 3 then —sgnr € A.
Finally we take u(t) = 6 cost for 0 < 6 < 1. Hence

2 i 2
Mycos(@) = —55—1—9[ ¥(t + a)cost dt = —55—n95echgsina.

Ifo<é< %nsech% = 1.87806 then B cost € %, for 0 < 6 < %cosh%, Ocost €
Py for1 > 6 > %%cosh% and %—icosh%cost € B\ (%1U%B). 1f § = 3mwsechZ
then O cosr € %, for 0 < 6 < 1 and cost € B\ (H1U%,). If 6 > %nsech% then

0 cost € %, for 0 < 0 < 1. These inequalities are balance between the damping and
forcing to either get chaos, or exclude it near the homoclinic solution.

Finally we remark that the inflated chaos could be extended also to the autonomous
case (4.6.10) under the assumption

(A3) (4.6.9) possesses a hyperbolic nonconstant periodic solution xy(¢) with a transver-
sal homoclinic point z € W*(xo) "W (xg), i.e. T,W* (xo) NT;W"(x¢) = span{h(z)}.
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The method of [55] could be used together with our parameterized approach but
this is outside scope of this book.

4.7 Nonlinear Diatomic Lattices

4.7.1 Forced and Coupled Nonlinear Lattices

We end this chapter with infinite dimensional ODEs [56, 57]. Let us consider a
model of two one-dimensional interacting sublattices of harmonically coupled pro-
tons and heavy ions [58-61]. It represents the Bernal-Flower filaments in ice or
more complex biological macromolecules in membranes, in which only the degrees
of freedom that contribute predominantly to proton mobility have been conserved.
In these systems, each proton lies between a pair of “oxygens”. The proton part of
the Hamiltonian is
vl 1 r 2
H), = ; Emun +U (un) + D) (U1 —un)™,
where u,, denotes the displacement of the nth proton with respect to the center of
the oxygen pair and k; is the coupling between neighboring protons. Furthermore,
U(u) = & (1 —u?/d})? is the double-well potential with the potential barrier &), and
2dy is the distance between its two minima. Finally, m is the mass of protons.
Similarly, the oxygen part of the Hamiltonian is

15 1 1
Hp :ZEMp’%—FEMQ(%p,%-F EK] (Pn+1 _pn)z’
n

where p, is the displacement between two oxygens, M is the mass of oxygens,
£ is the frequency of the optical mode and K is the harmonic coupling between
neighboring oxygens.

The last part in the Hamiltonian of the model arises from the dynamical interac-
tion between two sublattices and it is given by

Hip = prn("‘i - d(%) )

where ¥ measures the strength of the coupling. The Hamiltonian of the model is the
sum of these three contributions H = Hy, + Hop + Hip;.

We are also interested in the influence of external field and damping. For the
model studied here, since a spatially homogeneous field is not coupled to the optical
motion p, of the oxygens, a force term has to be considered only in the equation of
motion of the protons.
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In summary, we consider in this section the following coupled infinite chain of
oscillators

k 4 ; F
iy + 1, = *l(unﬂ —2uy, ""unfl) + iOzun(l - %) _lenun‘F —
m md; dy m m @7.1)
N . K
pn"'l—épn = Ml(prﬁl —2Pn+Pn—1) _'Qgpn - %(”3 —d%)7

where F is the external force on the protons and I, I; are the damping coefficients
for the proton and oxygen motions.

We are interested in the existence of homoclinic and chaotic spatially localized
solutions of (4.7.1). The existence of time periodic spatially localized solutions, the
so-called breathers are studied in [62-68].

4.7.2 Spatially Localized Chaos

We assume in this section that I] = €0y, I3 = €6, F/m = €f(t), ki /m = euy,
Ki/M =g, —2x/m=€eus, —x /M = €y for a small parameter € > 0, constants
8, >0,8 >0,u,i=1,2,3,4and a C'-smooth T-periodic function f(¢). Putting

4
md;

(4.7.1) has the form

lin + €811y + aPuy (u3 — df) = €y (up1 — 20y + 1) + EU3 Pty + € (1)

) _ T (47.2)
P+ €820+ 25 Pn = €12 (Pt — 2+ Pu—1) + EUa (Ul — d) .
We first consider the system
i+ €8+ d*u(u® —d3) = euspu+ef(r),
1 ( 0) H3p f(t) 47.3)

P+edp+Q5p = e’ —dj).

The equation
i=v, v=a*(d}—u*)u

has a hyperbolic equilibrium u# = v = 0 and centers u = +dj, v = 0 [35]. Further-

more, there are two symmetric homoclinic solutions (y(¢),7(¢)) and (—y(¢), —7(¢))

8[.L4d§ .
o

for y(t) = v/2dysechadyt. Now we make the change of variable p < p —

(4.7.3) to get

£u4d§
Q5
P+edp+Q3p =eugu®.

ii+edi+atu(u? —df) = eps (p— >u+£f(t),
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To study a small T-periodic solution of the above system, we take its equivalent
form

i+ €81+ a*u(u* —d3) =
(4.7.4)

. 2
el (‘?;4/ e 20792 6in Q¢ (1 — 5)u>(s) ds — 8‘3?) u+ef(t)
e J oo 0

252
where Q; = 1/ Qg — % and 0 < € < 20/ 5,. Now it is not difficult to prove for

(4.7.4) by using the implicit function theorem the existence of a unique small 7-
periodic solution ug (1) = O(€), pe(t) = O(¢€) of (4.7.3) . Then we make in (4.7.2)
the change of variables u,, < u, + ue, p, <> Pn + Pe to get the chain

Uy = Vp,
v, + €01V, — azundg + azufl + 3a2uﬁu8 + 3a2unu§
=& (uthl - 214;1 + unfl) + EU3 (pnun + Pnlte + psun) 5 (475)
pn = Yn,

Vi + €63 Wn + Q5 Pn = €12 (Pust — 2P0+ Pu1) + EMa (10, + 2ucuty)
We consider (4.7.5) as an ODE on the Hilbert space

nez

H:= {Z_ {(Mn»Vn»pann)}nEZ | Z (uﬁ—f—vﬁ—i—p,%—i—l]/,%) < Oo}

withthe norm ||z||= | ¥ (42 +v2+ pZ + y;?). The non-homogeneous linearization
nez

of (4.7.5) at z = 0 has the form
Uy =V +hn1 (1),
Vy + €81V, + un(3a2u§ — azdg — EU3Pe ),
—ety (Un1 — 2up + tn_1), —EU3Ptte = hya (1) (4.7.6)
Pn = Wn+8n (1),
Vi + €8 + Q3P — €12 (Puit — 2Pn + Pu1) — 26 Hattetty = 2 (1),

with w(t) = {(hn1 (1), hna (1), 8n1 (1), 8n2(t)) }, o5, € Cp(R, H) — the Banach space of
all bounded continuous functions from R to H with the norm |w| = sup ||w(¢)||. We
R

look for a solution z € C,(R,H) of (4.7.5) for € > 0 small. For this reason, we



4.7 Nonlinear Diatomic Lattices 159

consider the Hilbert spaces H, := H; x H; and
Hy == {untnez | Z u% < oo
nez

with the corresponding standard norms and scalar products. We first study the equa-
tion
P=V+g, V+ehY+Aep =g 4.7.7)
on H, for (g1,82) € Cp(R,H,) and
Acp = { Q30— €12 (Pns1 — 200+ Pu-1)} -

Clearly A, : H — H) is symmetrically and positively definite for £ small. Then for
any small €, there is a symmetrically and positively definite B, : H; — Hj so that

252
£°0
ﬁ:&—j%.

We take the operators cos Bt and sin B¢t from Hj to H;. For any p € Hy, we consider
the function
0 (t) :=|cosBetp|* + | sinBetp|? .

Then we have
@(t) = —2(cos Betp,Be sin Betp) +2(sin Betp, Be cos Betp) = 0.

Hence
|cos Betp|? +|sinBetp|* = p,

and then || cos Bet|| < 1 and ||sin Bgt|| < 1. Now, the equation
P=Vv, Y+ehy+A,p=0 (4.7.8)
has the form p + €6, + A¢p = 0 which has the general solution
e €%/ | cos Betpy + sinttpz]
for p1 2 € H;. Consequently, the fundamental solution of (4.7.8) has the form
Ve(r) = e 21 2W, (1)

with uniformly bounded W, (¢) for € > 0 small. Thus, the only bounded solution of
(4.7.7) has the form

(0 w0) = [ e B2 5) (g1(5),206)) s (4.79)

J —oo

Hence
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(o, w)| < Ki|(g1,82)|/¢

for a constant K; > 0 independent of € > 0 small. Furthermore, it is not difficult to
see that the linear system

iy = VIt (1), Vp+€8v, — a*ddu, = ha (1)
has a unique solution {(u,(1),v,(t)) }nez € Cp(R, Ha) so that

H(“n(t)avn(t))}nez‘ < K2|{(hnl(t)ahn2(t))}nez|

for a constant K, > 0 independent of € > 0 small. Now we turn back to (4.7.6). Sum-
marizing the above arguments, we see, by using the Banach contraction mapping
principle 2.2.1 for € > 0 small, that (4.7.6) has for any w(z) € Cp(R,H) a unique
solution z € Cp(R,H) so that |z| < K3|w|/¢€ for a constant K3 > 0 independent of
€ > 0 small. Since the system (4.7.6) is T-periodic, we get from Lemma 2.5.5 that
(4.7.6) has an exponential dichotomy on R in the space H for any € > 0 sufficiently
small. Consequently, we get another result.

Theorem 4.7.1. The T-periodic solution u,(t) = ug(t), pn(t) = pe(t) Yn € Z of
(4.7.2) is hyperbolic in H for any € > 0 sufficiently small, i.e. the zero equilibrium
of (4.7.5) in H is hyperbolic.

Now we look for more complicated solutions of (4.7.2). For this reason, we shift
in (4.7.5) the time r <~ f 4 & to get the system
Uy = vy
Vi + €81V, — dPu,d} + a* il + 3% uPue (1 + o) + 3’ uul (t 4 )
=€ (Mn+1 —2u, + Mn—l) +EW (Pnun + Pntte (t + 00) + et + (X)Mn) )
Pn =V
Vi + €8 + Q3 Py = €12 (Pns1 — 2P0+ Pa1)
+ ey (u? 4 2ue (t 4 a)uy,) .

(4.7.10)

We look for a solution of (4.7.10) for € > 0 small so that u, ~ 0, v, ~ 0 forn # 0
and up ~ 7y, vo ~ 7. Let (po, wo) = {(p2, w?)},.cz be the unique bounded solution
of (4.7.7) for g1 = 0 and g = {gu }nez With g2 = 0 for n # 0 and gor = eus(y* +
2ue(t + a)y). Let us put u =19 =0 for n # 0 and u) = 7, v} = 7. Now we make
in (4.7.10) the change of variables u, < u, + ug, V<V +v2, Pn < Pn +p,?, Yy,
v, + w? to get for n # 0 the system

I/ln = Vna
Vp+E8V, — azu,,dg +a?u} +3a21ue (t 4+ o) + 3dunul(t + o)
=&l (un+1 + ”2+1 —2uy + Uy, + MS,I)
+ el ((Pn + Py )un + (Pn +pyute (t +0) +pe(t+ )un) s (4.7.11)
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Pn = Yn,
Y+ €W + Q2P = €2 (Pus1 — 2P0+ Put)
ety (u2 4+ 2ue (t + @)uy) .

For the mode n = 0, we first note that the system

up =vo, Vo +a2(372 —dg)uo = h(t)
for h(t) € C,(R,R) has a solution (ug,vo) € Cp(R,R?) (see Section 4.1) if and only
if [*_h(¢)7(t)dr = 0 and such a solution is unique if [*_uo(z)y(¢)dt = 0. Conse-

quently, for the mode n = 0 we get from (4.7.10) the equations

o = vo,
i+ @GP —duo = o)~ 10) [ nopwar/ [ voPar,

/_muo(t)j/(t)dt:o;

(4.7.12)
Po=Wo
Vo -+ e&H W0 + Q5 p0 = ez (p1 —2p0 + p-1)
ety (U3 + 2u0 Y+ 2ue (1 + )ug)

and N

/_ _h(O)1(e)dr =0 (4.7.13)
for
h(t) = —a®(ug +3udy) — €817 — 3a® (uo +7)*ue (t + &) — €8y vo

— 3a*(uo + Y)uz(t+ o) + e (uy —2(uo +y) +u_p) (4.7.14)

+ et ((Po+p8) (o + ) + (o + p0)ue (1 + 00) + pe(t + ) (ug + 7)) -

Now for € > 0 small, we can solve (4.7.12) and (4.7.12) to get the solution
2= { (1) 1), pale). 1))
so that z = O(€). Then we put this z into (4.7.15) to get the function /¢ o € Cp(R,R).

We note he o(t) = O(€) uniformly for € > 0 small and ¢, € R. Clearly he o(¢) is
T-periodic in . Then from (4.7.13) we get the bifurcation equation

R.H
ZGCb( H),

ne

0(e,a) = %[ihs7a(t)7(t)dt 0.
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If we put
limug(t)/e =w(t), limpe(r)/e=1{(t),

£—0 e—0

then from (4.7.3) we get
w—dldiw=f(t), {+Q5¢=—1ud;.
Hence § = —4d} /93 and

_ 1 ! —ady(t—s) _ 1
W) =54 ./,we flo)ds =54

Clearly w(r) is T-periodic. Furthermore, since y(#) — 0 as t — too exponentially,

from formula (4.7.9) we see that liII(l)(po, vo)/€ = {(Pon, Won) }nez With po, = Yo, =
E—

0 for n # 0 and

/ Tewdt-9) f(5yds.  (47.15)
t

Poo + 25 poo = pay(t)?,

ie. poo(t) = %1 ["..sinQy(t — 5)y(s)*ds. In summary, from (4.7.15) we get

M(e) = 00,00 = [ [~ 8i710) = 3ayo)wle + @) — 24u (o) o) dr
4.7.16
- —ﬂ5]ad3—|—a2/w y(t)*v(t + @) dr . | )
3700 oo

Clearly M(o) is T-periodic. We note that similarly we can prove that

. d /
lim >~ 0(e, o) /e = M'(a)

uniformly for o € R. In summary, we get another result.

Theorem 4.7.2. Let M be given by (4.7.16). If there is a simple zero 0 of M, i.e.
M(ap) =0and M'(a) # 0, then (4.7.2) has for any € > 0 small a bounded solution
z(t) with small uy,, py, for n # 0 and (ug, po) near (y(t — o), 0).

Now, it is not difficult to prove like in the finite-dimensional case (cf Section 4.1)

that
(2) = { e 1) tte 1) pe 1), pe0))} ) =0

is exponentially fast as t — oo in H. Moreover, near z(f) we can construct the Smale
horseshoe. Consequently, we get in this case the chaos in (4.7.2) with corresponding
infinitely many periodic orbits with arbitrarily large periods. This Smale horseshoe
of (4.7.2) is spatially localized but not exponentially like in breathers.

To be more concrete, we take

f(t) =T cos ot

for T’ > 0. Then (4.7.15) gives
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w(t) = —m cos 0t ,
and the formula (4.7.16) has now the form
4 olrtyv?2 0]
M(a) = —géladg + n\[sech ZaZ;o sinwo.

Consequently, if
doTc+/
8v/28, &y < 3moY wdysech 20TV 47.17)

4/&

then M(a) has a simple zero, so (4.7.2) is chaotic for any € > 0 small. We note
that the inequality (4.7.17) gives sufficient conditions between the magnitude of the
forcing 1" and the damping &, in order to get chaos in (4.7.2) for € > 0 small. So
chaos is generated by the proton part of (4.7.2). If 6; = O then (4.7.2) is always
chaotic for f(t) = Y cos t. Furthermore, if I] > 0, I3 > 0 and F =0, i.e. there is no
forcing but damping then it is not difficult to prove that (4.7.1) has no nonconstant
periodic solutions in the space H.

Finally, we note that similarly we can study the case when more than one modes
are excited. We do not carry out here such computations [64].
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Chapter 5
Chaos in Partial Differential Equations

Functional analytical methods are presented in this chapter to predict chaos for pe-
riodically forced PDEs modeling vibrations of beams and depend on parameters.

5.1 Beams on Elastic Bearings

5.1.1 Weakly Nonlinear Beam Equation

This section deals with the beam equation (Figure 5.1)

Usr + Uyoxy + EOU; + EUN(x,\/€1) =0,
U (0,-) = ux(mw/4,-) =0, (5.1.1)
U (0,) = —f(u(0,)),  tpee(m/4,-) = ef (u(m/4,-))

where € > 0 and  are sufficiently small parameters, § > 0 is a constant, f € C2(R),
h € C?([0,7/4] x R) and h(x,t) is 1-periodic in ¢, provided an associated reduced
equation has a homoclinic orbit (cf (5.1.9)). Equation (5.1.1) describes vibrations
of a beam resting on two identical bearings with purely elastic responses which are
determined by f. The length of the beam is 7 /4. Since € > 0 is small, (5.1.1) is a
semilinear, weakly damped, weakly forced and slowly varying problem.

Let us briefly recall some results related to Eq. (5.1.1). The undamped case (6 =
0, 4 =0 and &€ = 1) was studied in [1, 2] by using variational methods. In both
papers, the problems studied are non-parametric.

The perturbation approach to the beam equation was earlier used in [3]. Recent
results in this direction are given in [4, 5]. We note that the problem (5.1.1) is more
complicated than the one studied in [3-5], since in those papers the elastic response
is distributed continuously along the beam, while in our case it is concentrated just
at two end points of the beam. Moreover, the €-smallness of the restoring force € f
at the end points leads to a singularly perturbed problem in studying chaotic orbits
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forcing

o

elastic elastic
bearing bearing

Fig. 5.1 The forced beam resting on two elastic bearings (5.1.1).

of (5.1.1). The existence of homoclinic and chaotic solutions has also been proved
in [6-9] for different partial differential equations, with different methods compared
with ours.

5.1.2 Setting of the Problem

First of all, we make the linear scale t <> /€t in (5.1.1), that is, we take u(x,t) <
u(x,/€t) to get the equivalent problem

Uy + %umﬂ +/€8u; + ph(x,t) =0,
(0, ) = (7 /4,) = 0, (5.1.2)
MXXX(O") = —sf(u(O,-)), ”Xﬂ(n/47') = 8f(u(7t/4,)) .

By a (weak) solution of (5.1.2), we mean any u(x,t) € C([0,7/4] x R) satisfying
the identity

/:; /()7:/4 {u(x,l) [Vtt (x,1)+ %Vxxxx(.X,l) —edv, (x,t)] + uh(x,t)v(x,t)}dxdt
+ /: {f(u(o»t))v(o,t) +f(u(7r/4,t))v(7r/4,t)}dt =0 (5.1.3)

for any v(x,t) € C*([0, /4] x R) so that v(x,¢) has a compact support and the fol-
lowing boundary value conditions hold
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Vix(0,7) = v (T/4,°) = v (0, 1) = virx(7/4,-) = 0. (5.1.4)

Now, it is well known [2] that there is an orthonormal system of eigenfunctions
{wi}z_, € L*([0, Z]) of the eigenvalue problem

U™ (x) = xU (x),

" "

U'0)=U"(x/4)=0, U"0)=U"(n/4)=0

As a matter of fact (cf Section 5.1.5), the eigenfunctions {w;}?* ;| are uniformly
bounded in C°([0, Z]), and setting k = u*, the eigenvalues of the above problem
satisfy 4 = ., k= —1,0,1,... with u_; = o = 0 and w, = 2(2k+ 1) + r(k), for
any k € N, where |r(k)| < ¢ e~%* for any k > 1, for some positive constants i, €.
Furthermore, the eigenfunctions w_j (x) and wo(x) of the zero eigenvalue are:

w_i(x) = %, wo(x) = % (x— g) %

Thus we seek a solution u(x,7) of (5.1.2) in the form
u(x,r) = y1(t)w_(x) +y2(r)wox) +z(x,1)

where z(x,7) € C ([0, %] x R) is orthogonal to the eigenfunctions w_; (x) and wy(x),
satisfying

"T/4 /4
/ z(x,t)dx = / xz(x,t)dx =0. (5.1.5)
0 0

To obtain the equations for y; (¢), y2(¢), and z(x,) we take v(x,7) = ¢ (F)w_;(x) +
$2(1)wo(x) +vo(x,1) in (5.1.3) with ¢; € C™, vy (x,1) € C ([0, ] x R) with compact
supports so that vy (x,) satisfies (5.1.4) and is orthogonal to w_(x) and wo(x), i.e.
it satisfies (5.1.5). Plugging the above expression for v(x,7) into (5.1.3) and using
the orthonormality, we arrive at the system of equations

V1 (1) + €8y (r) + %u ./0”/4h(x,t)dx
+%f (jﬁy (1 —z\/§y2<r>+z<o,r>>
+%f (\/ZE}’I (f)+2\/§y2(t)+z(7r/4,t)> =0, (5.1.6)

2 (1) +VEd(t) \/> / h(x,t) x—§>d
—2\/7]‘( \/7 ()+Z(0t))
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+ 2\/§f (\j%yl(f)‘Fz\/jyz(l)+Z(7T/4»f)> =0, .1.7)

/ ) / ”/4 2(x,1) [v,, (x,1) + évm(x,;) _ \/Ebv, (x,t)] + uh(x,t)v(x,t)}dxdt
+/ v(0,1) + f(u (Jr/4,t))v(7'c/4,t)}dt —0 (5.1.8)

where we write v(x,7) instead vo(x,¢). Thus, in Eq. (5.1.8), v(x,7) is any function in
C>([0,%] x R) having compact support so that the conditions (5.1.4), (5.1.5) (with
v(x,7) instead of z(x,#)) hold. We remark that in this way we have split up the orig-
inal equation into two parts. Equation (5.1.8) corresponds, in some sense, to Eq.
(5.1.1) on a infinite dimensional center manifold, while Egs. (5.1.6)—(5.1.8) are the
equations on a hyperbolic manifold for the unperturbed equation. Since the center
manifold is infinitely dimensional, the standard center manifold reduction method
(cf Sections 2.5.4, 2.5.5 and [10]) fails for (5.1.1). We use instead a regular singular
perturbation method. In fact, the above splitting of Eq. (5.1.1) has also the advantage
that the singular part (in €) is only in the z equation while Egs. (5.1.6) and (5.1.8)
look regular in /€.
Now we assume that the following conditions hold:

(H1) £(0) =0, f/(0) < 0 and the equation %+ f(x) = 0 has a homoclinic solution
¥(t) # 0 that is a nontrivial bounded solution so that tlinI:l y(t) =0;

(H2) let 7 () := 47(2\/%‘). Then the linear equation v + %f’ (%% (t)) v=0
has no nontrivial bounded solutions.

Without loss of generality we can also assume that 7(0) # ¥(0) = 0. This implies
that y(t) = y(—t) (and then ¥, (¢) = y1(—t)) since both satisfy the Cauchy problem
X+ f(x) =0, x(0) = ¥(0) and %(0) = 0. Note also that (H1) implies that the system

1+ %f(\zfyl 2\/§y2) + %f(%)ﬁ +2\/§y2> =0,
¥2—2 \/7f TN \/zyz) +2\/§f(\/25y1 +2\/zy2) =0

has a hyperbolic equilibrium y; = y, = 0 with the homoclinic orbit (¥ (¢),0) and
that (H2) is equivalent to requiring that the space of bounded solutions of the linear,
fourth order system

(5.1.9)

fit 2 (SnO)n =00 5t 2 (on)n=0 6110

is one-dimensional and spanned by (v1(£),¥1(1),2(t),¥2(1)) = (31 (1), 71 (1),0.0).
We look for chaotic solutions of Equations (5.1.6)—(5.1.8) so that the sup-norm of
[y2(1)| + |z(x,2)| on [0, F] x R is small and y; (¢) is orbitally near to ¥ (r).
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5.1.3 Preliminary Results

We begin our analysis by studying some linear problems associated with Egs.
(5.1.6)—(5.1.8). To start with, let us consider, for i € N, the following linear non-
homogeneous equation

40)+ VESa (1) + Lpiale) = ht), (5.1.11)

where £;(¢) belongs to the Banach space L*(R) of bounded measurable functions
on R, with norm ||/;]|e := esssup|k;(¢)| < e. This equation comes from searching

teR
a solution of Eq. (5.1.17) of the form
2(x,0) =) zi(t)wilx)
i=1

2
with z;(t) € W*(R). The only bounded solution of (5.1.11) for 0 < & < 2121{1{%’}
i>

is given by

N , ;
2i(t) = Lich; == a:/g/ e~ VES(=9)/2gip (w’e(t—s)) x hi(s)ds, (5.1.12)
e J—oo

2\/e
where @; ¢ = /4t — €282. Moreover it is easy to see that
el < <o ] (5.1.13)
I 5[.112 illeo 1.

(||z||- being the sup-norm of z(¢)) and

. 2\/€ 2
HZi”oo < (IJ2 + M) ||hi||00; (5.1.14)

2
provided 0 < € < \BH;I{I{%} Let h={h;(t)} |, h; € L”(R) be a sequence of uni-
i>
formly bounded measurable functions on R, that is, satisfying |||« := sup; ||| <

oo, Consider the function

oo

2(x,1) =Y zi(t)wi(x) (5.1.15)

i=1
where z;(¢) are given by (5.1.12). We put

M, ::sup{|wi(x)| xe [0,%} : ieN}; M :=4M1ii27 (5.1.16)

i=1 M

with the last series being convergent because of the properties of ., k € N.
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Now, let H; (x,) € L*([0, /4] x R), Hy(t),H3(t) € L”(R) be bounded measur-
able functions and consider the equation

/2/07;/4 {z(x,t) [Vtt(X,l)JréVxxxx(x,t)*\/Eavt(x,t)} + Hy (x,1)v(x,1)| dxdt

+/j° {Hg(t)v(O,t)+H3(t)v(7r/4,t)}dt =0 (5.1.17)

for any v(x,t) € C*(]0, /4] x R) so that v(x,#) has compact support and the bound-
ary conditions (5.1.4), (5.1.5) hold. For i € N let

/4
hi(t) =— (/0 H, (x,t)w;(x)dx+ H(t)w;(0) —|—H3(t)wi(7'f/4)> (5.1.18)

and take z;(¢), z(x,#) as in (5.1.12), (5.1.15). Note that

3
()| < My | 0o [ 0) |+ 3 ()] (5.1.19)
where ||H;(,t)|| = sup |Hj(x,t)| and, similarly,
0<x<%
. T . .
a(e)| < My | H (1) o+ Fa (0)]+ [ 1) (5.120)

provided H,(t), Hy(t), and the partial derivative of H,(x,z) with respect to ¢,
Hj,(x,t), are bounded measurable functions. Then, we can prove as in [11] that
z(x,t) is a solution of Eq. (5.1.17).

Let m > [e73/4] 4 1, with [¢~3/*] being the integer part of £3/4. From now on
we assume that 0 < & < (1/2)*3 so that m > 3. Then, for any E = {e, } ez € &, we
put

G={a={o}zer |ajeR and o=0 if =0},

with ¢ being the Banach space of bounded, doubly infinity sequences of real num-
bers, endowed with the sup-norm. We will also consider a bounded subset of & x £*:

x:{(E,a)e(fxew\aeeg and o gz}.

Note that X is closed. In fact if (E,, ) — (E, @) as n — oo, then, for any fixed j € Z,
we have (with obvious meaning of symbols) ei-") = ¢; for any n € N sufficiently

(n)

large. Hence Ocj" =0if e; = 0 and n is large enough. Thus o; = 0 if ¢; = 0, that is,
(E,a) € X.
For any § = (E,a) € X we take the function ¥z = ¥ ) € L™(R) defined by

( nt—2jm—oy),if 2j—Dm<t<(2j+1)m and e;j=1
) =
% 0, if (2j—I)m<t<(2j+1)m and e;=0.
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For the sake of simplicity we will silently include, in the above definitions, also the
end points of the intervals [(2j — 1)m,(2j+ 1)m], j € Z. We remark that ¥ (¢) has
the following properties:

(i) 7e(t) is a bounded, piecewise C?-function, with possible jumps at the points
(2j—1)m, j € Z, and satisfies, in any of the intervals ((2j — 1)m, (2j+ 1)m),
the equation

4 2
i+ —f|—=x)=0. 5.1.21
w7 () o2
(i) Ye(t), Ye(¢), ¥ (¢) belong to L*(IR) and are bounded uniformly with respect to

,m).

(iii) ¥g (1), Ye(t), Ye(¢) are Lipschitz continuous function in ¢ € £z uniformly with
respect to (E,m). In fact, let (E,a’),(E,&”) € X and assume that ¢; = 1 (if
ej = 0 there is nothing to prove). Then, for any r € ((2j — 1)m, (2j+ 1)m] we
have, for some 6 € R:

e (6) = Yer (0] < |7 (0)]] &) — o | < V2|7 0 — &"]]. (5.1.22)

A similar argument applies to ¥ (¢), whereas we will use point (i) to reduce the
study of the Lipschitz continuity of J (¢) to that of ¥ (r).

The following result deals with the solvability of Eq. (5.1.17).

Theorem 5.1.1. For any given functions H(x,t) € L*([0, /4] xR), Hy(t),H3(t) €
L*(R) and for 0 < € < min;{+/3u?/8}, Equation (5.1.17) has a unique solution
z(x,1) € C([0, /4] x R) of the form

) = Y wlwil)
i=1

with 7;(t) € W>*(R). Such a solution satisfies condition (5.1.5), moreover if h;(t) is
defined as in (5.1.18) the following hold:

(a) Assume that there exist positive constants ky, k, otj and B so that
|hi(1)] < ky + kp e PlE=2im=y
foranyt € ((2j—1)m,(2j+ 1)m] and j € Z. Then

Izl < Mo ﬁ; T ((313 + ;) zwg} |

(b) Assume that for any i, j € Z, h;(t) € Wl=((2j —1)m,(2j + 1)m) and that both
hi(t) and hi(t) satisfy the condition of point (a), then we have

1 2,/€

1
2]l < M2 |:58 (55 +14 ﬁ) (ki + k) + 6k1:|
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provided € satisfies the further estimate \/€ < 28°.

Proof. We only need to prove (a) and (b). Let (2j —1)m <1 < (2j+ 1)m and 0 <
€ < min;{v/3u?57'}. We have

t
‘/ VR 2 gin f(t—s)h()dsﬁ [ VIt kap(s)]ds

where ¢(r) = e PlI=2/m=%l for r € ((2j — 1)m, (2j+ 1)m]. Then we have

—/€b(t—s)/2 <
/ d—fa

and similarly, using also r > (2j — 1)m

(2j-3)m (2j=3)m 2 2
o VES(1=5)/2 </ e VESI=9)/2 o o = o—VEdm
/ ols)dss< | N e

—oo

since m > &3/ and 6%2¢ 0 < 1, when 0 > 0. Next,

(2j—1)m m—a_ o
P evEsiggas< [C 7 e Bilas<a [ e Pras<op!
( 0 7

2j—3)m —m—0j_|

and similarly

t oo
/< e~ Ved(i—s)/2 o(s)ds < / e Pl gg < 2[3*] .

2j—1)m —o0

Plugging everything together and using (5.1.12) and w; ¢ > uiz since €8 < \@uiz,

we obtain 4Tk | 5
1
ille < — | = +k —+=11.
& —u?LS* Ve (5t 5)

Thus (a) follows from (5.1.15) and (5.1.16). Now we prove (b). For (2j — )m <t <
(2j+ 1)m, write

;. 5
2 =G+ (5.1.23)
with -
J—3)m .
Gy= [ eV in < 2 s)) hils)ds,

1 o;
7)) = /(zj_3)m o VES(1-5)/2 i (2\/’% (t— S)) hi(s)ds.

From the proof of point (a) we obtain:

10\/e

_\[ﬁm(k +k2) 65

|Gijl < (ky + k) (5.1.24)

fs
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since 8%e~? < 4/ e)4 < 5. On the other hand, by the same method in the above, we
obtain

t
—VEd(1—s)/2 Die (o oY iuls)ds| < 2 k ik
[N CTR UM BT
(5.1.25)
t
~vEs (=92 g [ P o\ ) i < 2 k ik
‘/(zj_3)me sm(z\/g(t s)> i(s)ds < Jes 1—|—[3 5.

Then, taking

w =
2 2\/€

and integrating by parts the function of the s variable

A= \/E(s wi,e

e A gin(w(r — 5))hi(s)

in the two intervals [(2j — 3)m, (2j — 1)m], [(2j — 1)m,¢] and adding the results we
get, using also (5.1.25):

‘ /( L e sin(w(t — 5))hi(s)ds

()
< .
< gres ()

2j-3)m

A

2’2+w Hh (( )m+)|+|h,’((2j71)m_)|+e_2lm |hi((2j*3)m+)|]

A 2 4 A i ) 4
lz—tgz[\/ﬁlirﬁ }Sﬂﬂiwz {(SJF 22m) (ky + k) + \/§5k1+3k2 .

Finally, since

€6+ wie V2 V2 L 1

S =
;e (€287 + 007,) Wi e/ €262+ 02, zﬂizwz)s 2t o

we obtain after some algebra:

2\ _JEs 4 2

1 34+ VEIM) (k) 4k k ki
‘w,sz”() i{(+ ) (ki + 2)+ﬁ2+\/55 1}
Hence, using (5.1.23), (5.1.24), the assumption /€ < 282 and the fact that e Vedm <

1 VE.
Wesm)? < &7+

4 5 4e 2\
||z,-|oo<2{{ +3+\[] (k1+k2)+k2+fk1}

“u? | 18° 52 B 5
4 1 1 2\€
SAT,-Z {58 {55 +1+ﬁ} (k1+k2)+5k1}
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Again, the conclusion follows from (5.1.15) and (5.1.16). The proof is finished. O

In the following we denote by L. (H;,H>,H3) the unique bounded solution of the
form (5.1.15) of Eq. (5.1.17) and note that L, is a bounded linear map from the space
of bounded measurable functions to the space of bounded continuous functions, that
is,

Le(Hy + Hy,Hy + Hy,H3 + Hy) = Le(Hy, Hy, H3) + Le (Hy , Ha , H3).

We now study the linear non-homogeneous equation

=01 = h().

x1(2jm+aj) =0, forany je Zsuchthate; =1.

8
i 4 — /
XI ”f ( (5.1.26)

Here h € L”(R), and x; (¢), % () are absolutely continuous functions so that (5.1.26)
holds almost everywhere. Let us put

a=/8|f"(0)]/x.

Lemma 5.1.2. There exist positive constants A, B,C € R and mo € N so that for any
§=(E,a) € X, m>my, and j € Z, there exist linear functionals £,, ¢ ; : L (R) —
R, so that ||Z,, ¢ ;|| < Aeje™", with the property that if h € L*(R) then (5.1.26)
has a unique C' solution x,(t,&) bounded on R if and only if
2j+1)m
L jh+ Ye(t)h(t)dt =0 (5.1.27)
e (2j=1)m

for any j € Z.. Moreover, the following properties hold:
(1)

[x1(E)llee < BllAlleos (121, &) lleo < BllAr]|eo- (5.1.28)

(ii) Letx,(t) be the unique bounded solution of equation %, + % f'(0)x, = h(t), then
1 (1,&) —xp(1)] < C (e /2 emal=20m=4l/2) 1| (5.1.29)

Jor 2j—1ym<t<(2j+1)mandany j€Z.

(iii) Let &' = (E,a'), &" = (E, ") with o’ ,&” € {5 and & be either &' or &". As-
sume that h(t,&) € L*(R) satisfies (5.1.27). Then there exists a constant, ci,
independent of &, so that the following holds:

max {[x1(+, &) =x1 (- §")lles, 121 (- §") =1, &) [l }

, , ., (5.1.30)
<B||h(t,&") = h(t,8")||eo +c1[|2(t,E")||oo] [0 — &"[|co.

Finally, for any m > my, the map %, : X x L”(R) — ¢*(R) defined as £ (&, h) =
{Z.£.jh} jez is Lipschitz in « € 7 uniformly with respect to (E,m).

Proof. The equation
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8 2
i+ f <ﬁyl(t)>x:0 (5.1.31)

has a fundamental solution u(t),v(¢) with

Then v is bounded, odd and u is unbounded, even with asymptotic properties:
v(£),v(t) ~ e~ u(e),i(r) ~ e as 1 — oo,

Note that 7 () is a solution of (5.1.31) so that 7 (1) ~ el and 7, (0) = 0, #; (0) #0,
we get v(r) = %IT%)) Let us pause for a moment to recall some of the properties of

the functions u(z), v(¢) that will be used later. Equation (5.1.31), or, as a system

8 2
Uy =up, Up= —Ef/ (\/EYI(I)> ui, (5.1.32)

has an exponential dichotomy on R and R_ with exponent a (cf Section 2.5.1).
Thus projections Py, P_ exist so that rankP; = rankP_ = 1 and

X ()P X" (s)|| <ke =9, if 0<s<t,
XTI =PHX (s)|| < ket if 0<t<s,
X () (T—Pp)X " (s)]l (5.133)
IX()P-X1(s)|| <ke (=), if s<1<0,
1X(1)(T—P)X ! (s)|| < ke®C=9)if +<s5<0

where o) v(o)
u(t) vit
X =
" (u(r) v(r))

is the fundamental matrix of (5.1.32) so that X(0) = I. Although P and P_ are not
uniquely defined, ZP, and .4 P_ are precisely the one—dimensional vector spaces
consisting of all initial conditions one has to assign to the linear system (5.1.32) to
obtain solutions bounded on R, R_ respectively. Moreover, any projection pos-
sessing ZP, as range (resp. .4 P_ as kernel) satisfies conditions (5.1.33). Now,
since v(z),v(¢) — 0, as |t| — oo, we see that we can take:

e (a) = () =)

Hence the matrix of P, and I — P_ with respect to the canonical basis of R? is

(8 ?) Then Egs. (5.1.33) read:

[v(@)a(s)], V()us)], [9()ils) ] [p(0)u(s)] < ke (5.1.34)
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if0<s<tort<s <0, whereas

(1) 9(5)], L)), [t ()], Lo )v(s) | < e (5.1.35)
if 0 <t <sors<t<0.Now, let us go back to the proof of the Lemma. We consider

Eq. (5.1.26) on [(2j — 1)m, (24 1)m] according to e; =0 ore; = 1. When ¢; = 0
(5.1.26) has the general solution

1 1 1 (2j+1)m
xi(t) = —— e~ =) p(s)ds — —/ =) h(s)ds
1) 2a /(ijl)m () 2a J; (5)

+ajett= @M 4 p emalt=(2j=1m) (5.1.36)
with aj,b; € R. When ¢; = 1 we distinguish between ¢ € [2jm + aj, (2j + 1)m] and
te[2j—1)m,2jm+oy]. If t € 2jm+ o, (2j+ 1)m] we write the general solution
of Equation (5.1.26) with the condition X (2jm+ a;) = 0 as

xi(t) = /zt v(t—2jm—aj)u(s—2jm— a;)h(s)ds

jm+06j
(2j+1)m
—|—/ u(t —2jm—o)v(s —2jm— a;)h(s)ds
t
—l—afu(t—ij—aj)/u(m—aj) (5.1.37)

where a; eR.Ifr € [(2j— 1)m,2jm+ o] we take
2jm+06j
() = f/ vt — 2jm— otj)uls — 2jm — oj)h(s)ds
t

1

—/ u(t —2jm—o)v(s —2jm— a;)h(s)ds
(2j—1)m

+a;u(t—2jm—a;)/u(—m— ;) (5.1.38)

where a; € R. We note that x;(2jm+ o;;) = 0 in both (5.1.37) and (5.1.38). Thus
to obtain a C' solution we only need that

xi((2jm+aj)-) =x1((2jm+aj);), forany j€ Zsuchthate; =1,

that is,

e 2j h(s)d i a} 5.1.39
/(2j—1)m V(s =2jm = ay)his)ds = u(—m—o;) _u(m—(xj)' (5.1.39)

We note that from Eq. (5.1.36) we get, for any j € Z:

1
sup b1 ()] < lajl +[bj] + —esssupo;_1ym<i<2js1ymlhr)] (5.1.40)
(2j—D)m<t<(2j+1)m a
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and
. 1
sup 1 ()] < a(laj] + |b;]) + ZessSup(ijl)mgtg(Zj+1)m|h(t)|'

Q) 1)m<t<(2j+1)m
(5.1.41)

A similar conclusion also follows (when e; = 1) from (5.1.37) and (5.1.38) using
(5.1.34), (5.1.35). Equation (5.1.39) is the compatibility condition where the linear
maps i”m_’é’ j come from. For the moment, we forget about these conditions and
choose the constants a;, b, a/ﬁ a; so that the equalities

a((2j+Dm)) = xi(2j+1)m)y), jez
(24 Dm)) =512+ )m)y), jez

are satisfied. According to the values of ¢}, e; they read

(5.1.42)

—2am —2am
ajfbj+1+bje —aji1¢€

! B el ) sy g — / B @i m=s) () as,
2a J@2j-1)m 2a J@j+1)m

aj+bj—bje M —q;, e M (5.1.43)

3

_ _i/(21+1)mefa((2j+1)mfs)h(s)ds_i/(2'i+3)mea((2j+1)m*5)h(s)ds
2a J@2j-1)ym 2a J@jtiym

ifej=ej; 1 =0,o0r

g ~—2am
aj—a;,  +bje

2j+1)m .
= i/ ! e~ (IHNm=9) p(5) ds
2a J@j-1)m

2(j+1)m+aj+1 )
—/( v(—m—aj1)u(s —2(j+ 1)m— ajy1)h(s)ds,

2j+1)m
. 5.1.44

aj—a; 4lm = 1) —bje2am ( :
J J+1 au(—m— O‘j+1) J
__1 / I a0 0m=9) () i

2a J(2j—1)m

1 20+)m+aji )

—*/, " (m— e Ju(s = 2(j+ Dm — 0tj41)h(s)ds,
aJQ2j+l)m

if€j:0, €j+1 = 1,01‘
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+ —2
Clj —bj+1—aj+1e am
1 (2j43)m

- a((2j+1)m—s) his)d
2a /(2j+1)m ¢ (s)ds

(2j+1)m
—/ v(m—oj)u(s —2jm— oj)h(s)ds,
2

Jjm+a;

Lam-oy) (5.1.45)
ai; W+b1+l —ajt1€ an
2j+3
_ _i/( i )mea((2j+1)m—s)h(s) ds
2a J@j+1ym
1 r@j+m
—7/ v(m—o)u(s —2jm— og)h(s)ds,
a 2jm+0£j
ifej = 1, €j+1 = 0, or
ajr—a;H
2(j+Dm+ay g )
= —/ v(—m— o )u(s —2(j+1)m—aj1)h(s)ds
(2j+1)m
2j+1)m
—/ v(m—o)u(s —2jm— o)h(s)ds,
2jm+a;
. . (5.1.46)
o u(m—oy) - u(—m—otjyy)
Taulm—oy) I au(—m—ojy)
1 2(j+1)m+(1j+1 ) .
:_7/ | P(—m — oty Ju(s — 2(j + V)m — oyt Ya(s) ds
aJ2j+l)m

1 (2j+1)m
—f/ v(im—o)u(s —2jm— o)h(s)ds,
a 2jm+ot;

if e; = ej;1 = 1. We note that when § = (E, ) is fixed, for any j € Z only one
among Equations (5.1.44)—(5.1.46) occurs. We consider these equations as a unique
equation for the variable

{(@;,b))}jez € € x L7
where (@;,b;) = (aj,b;) if e; = 0 whereas (a;,b;) = (a7 ,a}) if ¢; = 1. The left-

J
hand sides of (5.1.44)—(5.1.46) define a linear bounded operator

Lyg : 0% 0 = 02X 02, Ly <{ij}> = <{ilj}> (5.1.47)
{bj} {b;}
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where
aj=(1—e))a;—[ej1+(1—ejp1)e > ™aj
+ej+ (1—ej)e b — (1 —ej1)bji1

bj=(1~ej)a;~ V(_m — )

) l—e: —2am | & 5.1.48
au(fmfajﬂ)eﬁ_l +( e]-‘rl)e aj+1 ( )

u(m—aj) ]~ N
*[M%—U—e;)e " b+ (1= ejun)bjan
Now, since 0 < 1—¢; < 1, |oj| <2, and

fim )
1= qu(r)

=41 (5.1.49)

we see that mg € N exists so that for any m > myg, & € X and j € Z, we have
|a;| <3(llalle+1Blle),  [b)] < 3(||@]|e0 + [|5]]c)

or ||L,,¢|| < 6. Now, we want to show that for m sufficiently large and any & € X, the
map L, ¢ 07 x 0= — £~ x ¢~ is invertible. To this end, we claim that when m — oo,
the linear map L,,, ¢ tends to the map Lg defined as follows:

. <{aj}> ({(1—ej)aj—e,f+15f+1+€jzj—(1—e,i+1)zj+1}>
E ~ == ~ ~
{bj} {(I—ej)aj+ejrajrr+ejbj+(1—ejr1)bji1}

in the sense that
Ly g —Le| — 0 (5.1.50)

as m — oo uniformly with respect to & = (E, a) € X. In fact,

{a;}
(Ene =te) ({%})

{(ejs1—1)e ™ a1+ (1—ej)e b}

_ K”(m_aj)) —1>e,—(1—e,)e2“m} b;

au(m — o

I/'t(fm*OCjJr]) D) -
B Y e N S VAT B 1—e: am |~
KW(—’"—O‘/H) " )e.,+1+( eji)e ]a"H

Thus (5.1.50) follows from (5.1.49) and ||| < 2. Next, the equation:

L <{§j}> _ (*{f?j})
{b;} {B;}
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is equivalent to the infinite dimensional system (j € Z):

- ~ Ai+B;
(l—ej)aj—i—ejbj: J 3 ],
- ~ B —A;
ejr1djr1+(1—ejy1)bjyr = 12 L.
Changing j with j — 1 we obtain
~ ~ Aj_1+B;
(I1—ej)aj1+ejoabj1 = =————,
~ ~ B —Ai,
ejaj+(1—ej)b;= %
Thus, for any j € Z, (aj,};,») satisfies
- ~ B —Ai,
ejaj—|—(1—ej)bj:71 3 J ,
- ~ Ai+B;
(1=e))dj+ejbj = =5,

which is a linear system in the unknown (a;, b;) having the solution

__1(1—ej)(A;+B))+ej(Aj-1—Bj1)

A 1—2e; ’
5 _1(=e)Bia—A;1)—ei(d;+B))
J 2 1—2ej '

Since e; is either 0 or 1 we see that |1 —2¢;| = 1 and then

JUR 1 - _ 1 _ _
lajl,[b;| < 5(‘Aj71‘+ |A;]) + §(|ij1|+ IBjl)
or "
llallco + 11B]]o0 < 2(||Al|e0 =+ [|B][oo)-

That is, L exists and ||L;'|| < 2. As a consequence, for any m sufficiently large
and § € X, L,, ¢ has a bounded inverse L;lé so that, say,

1L, 11 < 3. (5.1.51)

Thus we can uniquely solve Eqs. (5.1.44)—(5.1.46) for a; = a;(h,¢&), Ej = IZj(h,&)
and a constant ¢ independent of £ € X and m € N (provided m > my, with mq suffi-
ciently large) exists so that

(d;(h,E)| < éllhlle,  1B;(h,E)] < &l (5.1.52)
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for any j € Z. Consequently, the compatibility condition (5.1.39) reads

e o[ g amg)
Ly sy e OIBS)ds =~ )= (0) | P =

for any j € Z so that e; = 1. Since we do not need any compatibility condition when
ej =0, we set

Ze j(h) =0 forany j € Z such that e; = 0.

Clearly, the existence of a constant B > 0 so that Equation (5.1.28) holds, following
from Egs. (5.1.40), (5.1.41) and (5.1.52). Similarly the existence of the constant A
as in the statement of the Lemma follows from (5.1.52) together with the fact that
|ot;| <2 forany j € Z and u(t) ~ el as |¢| — oo.

Now we estimate 7(¢) = x1(¢) — x,(t), x,(¢) being the unique bounded solution
of the equation ¥+ 2 f'(0)x = h(¢). Observe that 7(¢) is a C! solution, bounded on
R, of the differential equation:

¥+ %f’(O)erw(t) =0
mem>_gQ(f%(»—memuymm

1/ e w(s)ds.

1 t
vwzf/:%”>mw+m

2a J—

LetA1:1+m%§<|y(z)\andN— max {\f’( ),17”(x)|}.Then
te

w(s)| < nl—jﬁBNnhnmwg )

and hence

i 16BN ||| s ® s
o) < = [ e pslascs [t e(olas).

So, we consider the integrals

10.8)i= [ eI glds. J0.8)i= [ e (o)l ds.

Forany §{ = (E,a) € X, E ={ej}jcz € &, o := {0} jez € {5, letg: (E,a)eX
be defined as

E:= {e,j}jezeéﬂ o= {—(ij}jgzeég.
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From the definitions of ¥ (¢) and ¥ (¢) = y1(—t) we see that ¥ (1) = yg(—t) for any
t€R,t# (2j—1)m, j € Z, and then

10.8) = [ et (=gl = [ e (o)l as = 1,8

Thus we see that it is enough to estimate I(¢,&). Let (2j — 1)m <t < (2j+1)m. We
have

(2j=3)m
e—a(t—s) |}, (S)|dS < ﬂe—Zam < ﬂe—am/Z )
s a a

Next, we estimate
(2j—1)m t
[ et elds, [ e () ds.
(2j=3)m (2j—1)m

Since ¥ (t) = 0if (2i — 1)m <t < (2i+ 1)m and ¢; = 0 we see that we can assume
that ej_1=¢ej= 1 and

( nt—2(j—1)m—aj_y),if (2j—=3)m<t < (2j—1)m,
t) =
% Nt —2jm—oj), if2j—1)m<t<(2j+1)m.

Now, let A» > 0 be such that

max {17 (0], 131 (1)), 9 ()] } < Ape"]. (5.1.53)

Then

[ e s [ e s -2 ym- g )l
e Ye (s s_/ € Nils—=2(j—1)m—o_1)|ds
(2j-3m - 2j-3)m !

i, /(2j71)m o—alt=s) g—als=2(j—Dm—aj_1| z¢
@j-3m

2(]‘7 1 )m+a_,v,|

2j—1)m
<A, /( =) efa(tfs) efa(sf2(j71)m7aj_1) dS+A2/ e*”(l*ﬁ') ds
2

(J=Dm+aj_ (2j=3)m

4a
< Az(e +1) e—a(m—Z)/Z .

<A e—4(m=2) (m+2)+ & e—a(m=2) <
a a

Finally, if (2j — 1)m <t <2jm+ a; we have:

t t .
/ efa(tfs) W?j (s)\ds SAZ/ efa(tfs) ea(s72]m7aj) ds
(2j—1)m (2j—1)m

< A2 —di—2jm-oy < A2 —ah—2jm-ay|/2
~ 2a ~ 2a
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whereas if 2jm+o; <t < (2j+1)m

1
/( =) |y (5)| ds

2j—1)m

3
SAZ/ e—a(t—s) e—a\s—ij—ocj| ds
(2j—1)m

ot

2 jm+aj
s / T malt=s) gma@imtoy=s) g 1 A, /
Joyim 2jm+0£j

efu(tfs) efu(s72jm7aj) ds

)

< A2 —a—2jm-a)) A e alt=20m-0)) (f 2 jim — ) < 342 —a(t—2jm—ay)/2
~ 2a 1= 2a

since a@e 9% < e~9%/2 for any @ > 0. The fact that inequality (5.1.29) holds in the
closed interval [(2j — 1)m, (2j + 1)m] follows from continuity. We now prove (iii).
Let w(r) € C*(R) be a smooth function so that suppw € (—1,1) and w'(0) = 1 and

set
xAl(t) :xl(t7él) *X](t,éﬂ) +e]x1(2]m+(le,§")w(t *ij* a;)

if (2j—1)m <t < (2j+1)mand j € Z. Note that £, (¢) is a bounded C!-function on
R that satisfies, in any interval ((2j — 1)m, (2j + 1)m], the equation:

i 2 (=)
— h(1,E") — h(1,&")
w217 (Ze0) -7 (w0 e
—ejx1(2jm+ o, ") [w(z —2jm— o)+ %f’ (\/zﬁyg/(t)) w(t —2jm— o)
together with ; (2jm + a}) = 0 when ¢; = 1. Thus, because of (i) and (5.1.22),

max{|lx; (&) = x1 (8,8 les, 151 (-, &) = 21.(£,6") |}
< B|(-,&") = h(-,E")]

8 16B°N
+Bsup e (2jm+ o}, §")| + h(- E")loo | Yer = Ye]loo
suplests (2jm -+, ") + L (-8l e
< B||h(-,&") 7h(',§”)Ho<,+§SUP|ejxl(2jm+O‘}7§”)|
JEL

+B1[lA(-,E"|es [l — o (5.1.54)
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for some choice of the positive constants B and B. On the other hand, when e =1,
we have, since %1 (2jm+ o, §") =0,

2jm+ocj’-

B (2jm+oc},§”):/ 1(1,6")dr

2jm+af

= [ (h(t,é”) -2 (275"(’)) - M”)) “
J2jm+-of & VT
and hence

!/ " 8B / " ! 1
i+ 0,8 < |1+ 52| 186 £ o - o

20 [* 7 (Zono) - o) ar

SB / " !/ "
< {1+ Z 1P O+ AN InC, &)l — o). (5.1.55)

Then (iii) follows from (5.1.54), (5.1.55). Finally, the proof of Lipschitz continuity
of the map %, with respect to o is given in Section 5.1.6. a

Now we consider the equation

24 2
Bt 2 (Z2h0)n=he (®) (5.1.56

and prove the following.

Lemma 5.1.3. There exist positive constants By,C; € R and m| € N, so that for any
& = (E,a) € X and m > my, Equation (5.1.56) has a unique C' solution x,(t,&)
which is bounded on R and satisfies

[x2(-,8)lleo < Billlleo,  [132(+6)lleo < Bul[]]oo- (5.1.57)
Moreover the following properties hold:
(i) Let z,(t) be the unique bounded solution of equation %, + 2—:]"(0)1,, = h(t), then
ba(1,€) — 2, (1)] < Cp (e /% el =2m=0l/2) |||, (5.1.58)
Jor 2j—1)ym<t<(2j+1)mandany j € Z.
(i) Let &' = (E, o), &" = (E, ") with &', " € {5 and & be either &' or E". Assume

that h(t,€) € L*(R). Then there exists a constant, &1, independent of &, so that
the following holds:
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! " . ! . "
max { 52 &') = x2(,&") s iz (-, &) = 2, E") 1 |

<Bi|h(t,8") = h(t,&") |+ E1[[A(t,E") o[l — @l (5.1.59)

Proof. Since the proof is very similar to that of Lemma 5.1.2 (actually simpler)
we only sketch it emphasizing the differences. Because of assumption (H2), the
homogeneous equation associated with (5.1.56) has an exponential dichotomy on
R, that is, there exists a projection P of rank one so that the fundamental system
X (1) of (5.1.56) satisfies:

[X()PX 1 (s)|| < ke b9, for any s < 1,
[X(#)(T—P)X ! (5)|| < ke 2(=9), forany t <s

where b = /2| f/(0)|. Let vo € %P, ug € 4P be unitary vectors, and set

u(r) _ v(t) _
(u(t)> .—X(l)um <V([)> .—X(I)V()

Then it can be proved that (5.1.34) holds for any ¢ < s whereas (5.1.35) holds for any
s <t. Now, when e¢; = 0 Equation (5.1.36), with b instead of a, gives the solution to
(5.1.56) but now, since when e; = 1 we do not impose the condition x(2jm+ «;) =
0, we do not need to split the interval [(2j — 1)m,2(j + 1)m] into two parts and the
general solution of (5.1.56) can be written as:

x1(1) /(t v(t —2jm)u(s —2jm)h(s)ds

2j—1)m
+/t2]+1 u(t —2jm)v(s —2jm)h(s)ds
+aju(t —2jm)/u(—m)+bjv(t —2jm) /v(m).

It is easy to see that xi(t) belongs to L*(R) and is C! in any open interval
((2j—1)m, (2j+1)m). Thus we obtain a unique bounded C' solution of Eq. (5.1.56)
provided we show that Eq. (5.1.42) can be uniquely solved. This fact and the prop-
erties (i), (ii) are proved in the proof of Lemma 5.1.2 and so we omit it. O

In order to apply Lemma 5.1.2, we consider the set

2j+1)m
I = {h e L”(R)| ,,Zny,g_jh—i-/( : Ye(t)h(t)dt =0 forany je€ Z} .
’ 2j—1)m

Note that if § =0 (i.e. (E,a) = (0,0)) then .7}, ¢ = L”(R). Then we construct a
projection Q,,, ¢ : L”(R) — .7, ¢ as follows. If § = 0 we set O, ¢ = I, whereas if
& # 0 (and hence E # 0) we proceed in the following way. For any ¢ = {¢; };cz € (%,
we put
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Ye(t) =cjTe(t) for (2j—1)m<t<(2j+1)m

We recall that {7 := {c ={citiez €L c;i=0 for ¢ = O}. Hence 7. € L*(R)
and

Ve ()] < llelleo| 7 ()] < Nlellool [ 71]]eo-
For any i € L”(R) we take i, = h— 7, and consider the system of equations

(2j4+1)m
L jhe + yg(t)hc(t)dt:O, JEZ. (5.1.60)
(2j—1)n

Our purpose is to determine a solution ¢ € £ of the above system. Note that when
ej=0,onehas &, ¢ =0, ¥ () = 0 and then the above equation is trivially satisfied
regardless of the value of c;. This is the reason why we take c; = 0 when e; = 0. On
the other hand, since ¥ (t) = 0 in ((2j — 1)m, (2 + 1)m] when e; = 0, the value of
¢; does not matter to defining ¥e(¢) in this interval. We can write (5.1.60) as

[///m’g +$,,7§ Gm.dc = [.,%,1’5 -l-Nm’g]h (5.1.61)

where
. 2j+1)m
gm,éh:{gm,c‘;,jh}jEZ EfE, Q//m,g;c‘: {Cj‘/(

2j—1)m

j'fg(t)dt} €z,

jez

Gz ="(1) =Y, cjTe () x(2j-1ym@j+1m () € L7(R),
JEZ

Q2j+1)m
Nméh{ /( | }'/é(t)h(t)dt} €.

2j—1)m jez

Note that for any fixed E € &, both sides of Eq. (5.1.61) are elements of /.
Now, we have already observed that ||G,, g¢||c < [|71]| - [|¢||, moreover, from
Lemma 5.1.2 it follows that [|.Z), ¢h|.. < Ae™“"||h|-. Hence

1L g Gmgclleo < Ae™" || ]]eo - [le]loo - (5.1.62)

Next, setting

Alz/ 171(2)|dt > 0, AZ:/ y1(t)*dt >0

we have, for m sufficiently large, and any j € Z, withe; = 1

A 2]+1 m—oj
22 < ‘/ (t)%dt| = / 1(¢)*dt
2j—

—m— (Xj
since |o;| < 2 for any j € Z. Thus 4, ¢ : lf — (¢ is a bounded linear map

<A2

(| Ay el < Ay) which is invertible and it is easy to see that its inverse ,//ln;é satis-



5.1 Beams on Elastic Bearings 189

fies: )
M| < =—
<, 4 <

provided m € N is sufficiently large. Thus, using also (5.1.62) we see that [e///mlg +
Lg G,n.g]’1 exists and is bounded uniformly with respect to (&, m) provided m is
large enough. Finally:

m ~
ej | it —o)h(t+2jm)dt| <Ay |hl| (5.1.63)

—m

[N, gh|| = sup
jez

and hence Equation (5.1.61) has the unique solution, linear with &
—1 o
c(m, g)h = [%m,é +$n,§ Gm,éjl ["E’ﬂmﬁé +vad he eE

and the linear map & +— ¢(m, & )h is a bounded linear map from L (R) into {5 with
bound independent of (m, &) (of course with m > m sufficiently large). We set

méh Yem,&n s Qm,éZH_Pm,é'

Obviously we mean that ¢(m,0) = 0 for any m € N so that P,,0 =0 and Q,,0 =1L
We have the following:

Theorem 5.1.4. B, : L (R) — L*(R) is a projection on L (R) which is uniformly
bounded with respect to (m,&) and Lipschitz in o € {3 uniformly with respect to
(m,E). That is, a constant L, independent of (m,E), exists such that ||, g o) —
Py ga)ll < Llloe—a'| for any m > in and (E, ), (E, &) € X. Furthermore

[P gh)(1)] < |c(m, &)|[|Al|-o| 72 (1)] (5.1.64)
and B, ¢h = 0 if and only if
[Lne + Ny glh=0. (5.1.65)

Proof. Since there is nothing to prove when & = 0 we assume & # 0. The fact that
P, ¢ is bounded uniformly with respect to (m, &) and actually satisfies (5.1.64) has
already been proved. We now prove the last statement: the equation £, ¢h = 0 holds
if and only if ¥(y,¢), = 0, that is, if and only if & = h(, £);- Thus (5.1.65) follows
because c(m, & )h satisfies Eq. (5.1.60). On the contrary, if & satisfies (5.1.65), we
have c(m,&)h = 0 because of uniqueness and then P, éh = 0. We can now prove
that P, ¢ is a projection. In fact, we have P, ¢[Q,, ¢h] = B, ¢ [h — P,, ¢h] = 0 because
h— P, gh=h—"Y(nep satisfies (5.1.65). Thus P, ¢ = Pn21,§ Finally we prove the
Lipschitz continuity of B, ¢. First we prove that

(§,h) = Ny eh= {ej/r:71(t—aj)h(t+2jm)dt}

jez
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from X x L* into ¢z, is Lipschitz continuous function in ¢ uniformly with re-
spect to (m, E). In fact, for 7,7 € R with |7”|,|7'| < 2, we have, using }(t) =
(0 (@). |f ()] <N and (5.1.53):

‘/ [t —7") =1t —7)]h(+2jm)dt
m 1 . /1 / 7 /
< [1(t — 07" — (1 —0)7")|dOdt ||h|||T" — |
—mJO
8N [m -1
<= " [inte—oc (1~ e)c)laear hl.Ic" - 7|
T J-mJoO
N m 1 /1 /
7/ / Aze—a\t—ef —(1-0)7 ‘det Hh||oo|T”7TI|
—-mJO

16NA
<</ /Aze 12 g ol ] < A e

Similarly we can prove that the bounded linear maps .#,, ¢ : (g — {7 and G, ¢ :
¢3 — L are Lipschitz continuous function in o uniformly with respect to (E,m).
Then the inverse [.#), &+ LGy 5} has the same property and the same holds
for the solution ¢(m, &)k of Eq. (5.1.61). Finally, let &' = (E,a),&" = (E,a") € X.
Then for any 7 € ((2j — 1)m, (2j + 1)m] we have

[Poerh — Py enh] (t) = Ve (0)[cj(m, &' )b — ¢ (m,E" )R] + [¥e/ (1) — Yen (1)]cj(m, & )R

and hence P, ¢ is Lipschitz continuous function in o uniformly with respect to
(E,m), so are c¢(m,&) and ¥/(t) and both are bounded uniformly with respect to
(&,m). The proof is complete. O

Remark 5.1.5. (a) Obviously (: is also Lipschitz continuous function in ¢, uni-
formly with respect to (m, E) and, using By £ Qe =0, we see that the equation

@j+1m
L Onght [, 00 ghl)dr =0

holds for any j € Z. That is, Q,,, ¢ is a projection from L*(R) onto .%, - which is
bounded uniformly with respect to (§,m), so is B, .

(b) It follows from the arguments in Section 5.1.6 that %, ¢ is not differentiable
in a. Hence P, ¢ and Q,, ¢ are also not differentiable in ¢. So the Lipschitz conti-
nuity of these maps is their best smoothness in .

(©) If h(t) = 7¢(t) and c; = e; for any j € Z, we have h.(t) = Jg(t) — T(t) = 0
and then (5.1.60) is satisfied. Thus, because of uniqueness, P, ¢ 7z = ¥ or

One¥e =0. (5.1.66)
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5.1.4 Chaotic Solutions

We look for solutions of Egs. (5.1.6)—(5.1.8), for which, the sup-norms of y; (t) —
Ye(t), y2(¢) and z(x,7) are small. Since the function Y () has small jumps at the
points t = (2j — 1)m, j € Z, we introduce a function v¢ (1) € L”(R) which has small
norm, so that

I () = ve (1) +ve (1)

isCl. As an example, we can take the function:

ve(t) = 225 (1= 2= 1)m)’ + 25 (1= (2 = 1)m)®

if (2j— )m <1t < (2j+1)m, j € Z, where

pi =3 ((2j+m)) = % (27 +1)m)-))
+2m (T (((2j+ 1)m)-) = T (2 + Dm)+))
q; = 2m (7 (((2j+ Dm)+) — % (((2j+ 1)m)))
+2(7 (27 + Dm)-) = % (21 + Dm))) -
Again, we will silently include, in the definition of v¢(¢) and I (#), also the end

points of the intervals [(2j — 1)m, (2j + 1)m] as we did for the function ¥ (¢). Next,
from (5.1.53) we obtain, for any j € Z:

max {7 (2 + Dm)c) |, [ (2 + Dim))| } < Aze2eo = Fye=on

where A, = A, e?*. As a consequence, we get

Ve [leo < (10+8m)Az e,
[Velleo < (124 10m)Aze™" /m, (5.1.67)
[[Vg [loo < (94 8m)Aze™™ /m?,

or, since 0 < € < 243 (and hence m > g=3/4 >2):

124,

. 6A; N
Ivglle < 22, glhe < e, gl < (5.1.69

6A

272.3/2
a

Note that to obtain the inequalities (5.1.68) from (5.1.67) we have used the fact

that for A > 0, and 6 > 0 we have 6*e=® < (1/e)* and (%)4/3 <% 1

7\7/3 _ 12e24 6e20 e .
(g) <1.LetA7max{ ERER ,e* b then:

[velle < AA2g, Vel < Ade, || [l < AApe™/?. (5.1.69)
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For reasons that will be clearer later, we now prove that the functions ve (¢), ve ()
and Ve (¢) are Lipschitz continuous funcfions in o, uniformly with respect to (E,m)
and that the Lipschitz constant is of the order O(¢€) as € — 0, uniformly with respect
to (E,m). So, let§' = (E,o),§" = (E,0") € X. Forany t € ((2j—1),(2j+1)m]
we have (with obvious meaning of symbols):

[ve: (1) =ver (1) < 1P — Pl + |4 — 4]

2|p; = pjl+3ld; — 4]
5o (1) — v (1) < 0 F i 4
Ver (1) = ven(1)| < .

P = P +3lq; — 4]
Ver(t) —Ven(t)] < ] J 1 j.
(1) = vn(e)] < T

Thus it is enough to estimate |p; — p//| and |¢; — ¢'}|. Assume e; = 1, then
Ye(((2j+1)m)-) = 1i(m— ;)
and hence, using (5.1.53) and ||, o] <2 (recall that Ay = A, e2),
Ve (27 +1)m) =) = ¥er (2 + 1)m) )| < Az " | — |-
Similarly, if ej11 =1,
e (27 Dm) ) — e (2 + Dm) )| < A o), — |

On the other hand, if, say, e; = 0 then ¥ (((2j+ 1)m)-) =0, & = o] = 0 and the
same conclusion holds. Thus we get, for any j € Z (recall that m > 3):

P =P < (6+4m)Aze™ ™ ||o — || < 6mAre™ " |lo' — ||
and similarly,

g — 4] < (4+4m)Aze " || — || < 6mAze™ " |[o' — .
Hence, like for (5.1.69), we see that the following holds:

Iver —ver |l < AsAe]a — o]
||\35/—\'/5HH00 <AQ/\8||OC/—OC”||7 (5.1.70)
||V§/ - 1./'5// H°° < A2A£3/2”(ZI — (X””

which is what we want to prove. Now we replace y; (¢) with y; (¢) + I (7) in (5.1.6)—

(5.1.8) and project the right-hand side of the differential equation for the new y; (r)
to .7, ¢. Since ¥ (¢) satisfies (5.1.21) and Q,,, ¢ ¥¢ (1) = 0 (see (5.1.66)), we obtain:
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510438 (=000

) 2 /4
= _Qm,é{\/g6y1(t)+ﬁﬂ/o h(x,t)dx

+%f (\/Zﬁ[m (1) + I (1) —2\/§y2(l‘) +z(0,t)> _ %f (\/Zﬁyé (t))

e (ji[ymm;(m +2\/§Y2(f)+z(zal)>

—%f’ (2”750)) yl(t)+\/56v'5(t)+'v'5(r)}, (5.1.71)

193

221 ( o)+ 012y 2o +2(m/40)
2 =00}, 5172

/jo /7:/4 {z(x,t) {v,t (x,1) + éVxxxx(x,t) —€dw, (x,t)} +Nh(x,f)v(x7t)}dxdt

+/ v(0,1) + f(u (7r/4,t))v(7r/4,t)}dt:0, (5.1.73)

in (5.1.73) we write u(x,t) for %[yl (t) + Tz (t)] + y2(t)wo(x) +z(x,1).
LetC ; (R) be the space of C! functions bounded together with their first deriva-

tive on R. To make notations simpler we define the Banach spaces Y| and Y, as the
space C} (R) endowed with the norms

[yl = %tsgﬂg{lyl(t)I, @0}, 2l = Zﬁfgﬂg{lyz(% y2(t)l},
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respectively. Unless otherwise specified, y;(¢), 91 (¢), resp. y2(t), $2(¢) will denote
functions in Y}, resp. ¥> and the norm in ¥; x ¥ will be ||y1 ||+ ||y2]|. Next, let p > 0
be a fixed positive number, y| (1) € Y1, y>() € Y2 and z(x, 1) € C)([0, F] x R) be such
that ||y ||+ ||y2]| + ||z]] < p. For any fixed choice of such functions we set:

(1) = Hh(x),
H1.8) = 1 (j%[ylm (0 2\Fyz(t) +z<o,t>> - (\/2%175 ")
f

(G720 |77

Aunt.8) = |1 (i) - r10) [jﬁyl 0 —Zﬁyz(t)ﬂ((),t)] ,

B3 (1,8) = { (} 5()) f’(O)} [\/zﬁyl(t)+2\/§y2(t)+z(7t/4,t)].

Let us continue to denote with N an upper bound for f/(x) and f”(x) in a neigh-
borhood of y(¢). We have the following result.
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Lemma 5.1.6. There exist positive constant ks and a function A(p) > 0 with lin}) Alp)=
p—
0, so that if [|y1]| + [[y2]| + |z]|l« < p < 1, E € & and o', & € {3 the following hold
|Hi(1,&') — Hy(1,8")| < pA(p) [e+e 2] lo/ —a||, k=2,3,
A (1,6") — Hia (1.8")| < kap [e+e~ 2] o —a”||, k=2,3
where &' = (E, o) and §" = (E,a") and t € ((2j — 1)m, (2j + 1)m]. Furthermore,
Hoo(t,E") — Hoo(t,E") = Hao(t,E") — Hzo(t,E") can be written as the sum of two
piecewise C'-functions Hoy (t) + Hoa(t), so that
[Hou(1)] < ksel|o” — o],
|Hoa(1)] < kse~ V=2l o — o,
Fioa(1)] < ksl =21 ! —
where &' = (E, o), &" = (E,&") and t € ((2j—1)m, (2j+ 1)m].
Proof. Lete; = 1. Then, for any r € ((2j — 1)m,(2j+ 1)m], we have
Lo (1) — Tz ()| < “5’1 (t—2jm—00;—(1-6)a)| +A2A£} o — ||
< [AsAe+ Ayl =2m] 1o/ — o

Obviously a similar conclusion holds when e; = 0 since in this case we have I': (1) =
ve () forany ¢ € ((2j—1)m, (2j+1)m]. Next, for any x € R we have |x+ %Fg () <
x|+ lve o+ |7l < 3 + FzAA2€ + Ay Thus, for any (y1,32,2) 1|+ [y2| +

|lz| < p and & € X, the functions ) (y, +I:(t) +y2+2), k= 0,1,2 are bounded.
Since

' " \/71%,0 2 3
Hy(1,§") — Ha(t,8") = 50 f <ﬁy1(t)+9—2\/;yz(t)+2(0,t)>

—F(8)— 1"(8) [j%ym 2\/§y2(f) +2(0.0)

_/ Fj/ / u<9+c \/ZEYIQ)—Z\/in(t)—i—Z(OJ)])

,f//(G)deG [j%yl (t) — 2\/3}’2([) JrZ(O,t)

do

we obtain:
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\Ha(1,6") — Ha(1,6")|< %PAO(P)IQU) —Ien (1))

< pA(p) [e+e=2m] o’ — |

where Ag(p) = supyjy<p <,y [f(x+¥) — f(x)| = 0 as p — 0 and A(p) =
%AQAAO(p). Similarly,

[H3(1,8") — H(1,6")] < pA(p) [e -+~ 2] Jlo! — o

whereas for k = 2,3 we get:

Bt (1, ") — i (1,7 < %pug,g)

24AN .
< € —alt—2jm| o —a'll.

The first part of the Lemma then follows. For the second we write

Tz (0)

Hoo(t,&") — Hoo(1,E") = Hox (1) + Hoo (1)

where

Ho0) =1 (=10)) =1 (Z60) -1 ( om0+ ( 2100).

Hu(0) = £ ( Z21e0)) ~ £ (2100,

Then, using (5.1.22) and (5.1.70), we have

|Hox ()]

<|r(Zr0) -1 (o0 +e0)

(=l +ve0) ) -1 (Z10) -1 (2 0 +veo))
+f<fy§,, )‘<fNA2A8||a—a”|

[ 1 (Gww+o) - (Zmw+o)|ao

2 2V2 )
< = Vol ) [l —
7\/ENA2A8(1+\/EH}/|| )Ha

Finally, forany t € ((2j—1)

|| < kzel|a’ —a”||.

m,(2j+1)m], j € Z, with e; = 1, we have
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Ho(t)= f (;E%(t—ij—a}O —f (;Eyl(r—zjm—a;)>
f/ < Nt —2jm— 9)> N(t—2jm—6)do.

2A;N
T

Thus

‘HOZ(I)| < e7a|t72jm\ |aj/ _ aj//| < ks efa|t72jm| ”a/ _ a//H

and similarly, differentiating with respect to #, we have

. 24>N 2 - —alt—2i / " —alt—=2jm| || o/ "
(oo (1)] < L=y ) e 2 o — g < kse 2 ol — o).
\/ﬁ \/E J J
The proof is complete. O

Now, consider the unique solution, whose existence is stated in Theorem 5.1.1, of

Eq. (5.1.73) with £(x,?) instead of z(x,7) and ﬁ V1 (1) + Tz ()] +ya(t)wo(x) +2(x,1)

instead of u(x,7):

ﬁ(xvt) =Hh (Z7y17y27<§71u38) +Ll£(y17y2) +L28(Z)

where A oA
Fl(zvylvy%éhuag) = LS(H]aH27H3)+L€(0aH27H3)7

Lie(y1,y2) := Le(0, Hy1, H31 ),
Loe(2) := Le(0,Hy, H3).
We are thinking of Fj(z,y1,y2,&, L, €) as a map from
Co([0, /4] xR) x ¥y x Y3 x X x R x Ry — CY([0, /4] x R).
We will need the following result.

Lemma 5.1.7. For any fixed, small, € > 0, Lig : Y1 x Y» — C)([0,7/4] x R) and
Ly : C)([0,7/4] x R) — C)([0,7/4] x R) are bounded linear maps whose norms
satisfy:

[Liell <2MMa|f/(0)[67",  [|Lae|l < 2M Mo|f7(0)[6". (5.1.75)

Moreover a function A(p) > 0 exists so that lin})A(p) =0 and for ||y1|| + ||y2|| +
p—

|
®

| Fi (zy1,y2,1,8,€) e

T —
< MM Vel (VEl|h]w+ 87 [h].)
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4 1 1 1 _
T e MIMNA [5 (55 +1+- ) (A+£> +25 1\/5] €
+ 2M 1 M, [8‘1A(p)+iA2Nf( +- 2, f)}
VT
(el [y2ll+llzlle=) - (5.1.76)
(i) forany &' = (E,a'),&" = (E, ") € X, @/, u”, we have

I Fi (zy1,y2, 1,8 €) = F (251,52, 1".8",€) |

1
Mlef[sf( gl )+za'} o+ o)l — "]

+2MiM2 [ 87 Ap) + 2A2Nf( + s ‘f)]

NG
(yr =51l + ly2 = 920+ llz = Zll)

e 1 2
+ 4ksM 1 M> Ve +55+- | pVelo —a|
6 0 a

1 1
10ks M M 1 "—a 1.77
+ 10ksM M€ (55 55 +1+ > ||(X o ||, 5 )

with ks being the positive constant of Lemma 5.1.6.

Proof. By following the above estimates, it is easy to derive (5.1.75) along with the
estimate

M1M27T

|Le(Hi, Ha H3) ||oo <

Vel (Velhl|e+ 87" 1Al
+2M1M26 Ayl + b2l + Jllle) - (5.1.78)

where

Alp) = sup

1]+ [y2| +1z] < p
—o0 L < o0

f (y1+\/zﬁf;;(t)+y2+z> —f <\/zﬁl—%(t)>‘ —0

as p — 0 (cf[11, Lemma 2, Eq. (3.17), (3.20)] for more details). Since f(0) =0 we
have H,(t,&) = Hzo(t,é):l—Hy(Lé) and H3(1,€) = H3o(¢,&) + H31 (1, 8), Hij(t)
defined in (5.1.75). Now, H»(,&) € C}(R) and the following inequalities hold (see
also (5.1.53)):

[ (1,6)] <

flfzz()l 7
|ﬁ120(r,§)\<7|1“5()|

|:A£ + efa|t72jmfoch ,

i Ae+e alt—2jm— ajq
|
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for (2j— 1)m <t < (2j+ 1)m, j € Z. Hence, from Theorem 5.1.1-(b), (5.1.19),
(5.1.20) we get

A A 1 1 1 2
2600, Ao )l < bt |5 (g 1) (5 ove) + 5 e e

i f
(5.1.79)
Next,

|1 (,8)] < %IQO)IHIMII + [1y2ll =+ [1z]]<o]

2 m—os
< —=MaN[Ag e M2l [[lya| 4 [ly2 ]| + [l2]| ),

Nz

R 2N
|H31(2,8)| < ﬁlfg(t)l[\lylll + [1y2ll =+ [1z]]eo]
2 .
< ﬁAzN{AS +em 2=l [y + [[yall + llzll]-

Thus, from Theorem 5.1.1(a) and (5.1.19) we obtain:

4 2 e
[[Le (0, Hzl,Hm)IIwSMleAsz( oA )[|y1||+||yz|+||1||]

NG

(5.1.80)
and (5.1.76) follows from (5.1.78), (5.1.79), and (5.1.80). Finally, we prove (5.1.77).
Using arguments similar to the above we see that

H F (ZvylvyZ’,u”vé”vg) —-hk (Zailai25””7§”76)H°°

(o3 4)

Uyt =il + lly2 = P2l + |1z = 2| ] -

< 2M M, [61A(p) +

Next,

Fi (z,y1,2,1",¢",€) = Fi(z,y1,32,1",&" )
= Le((4' —1")1,0,0) + Le(0,Hy(+, ') — Ha(+, "), Ha (-, &") — H(-, "))
+ Le(0, o (-, &) — Fao(-,"), Hzo (-, &) — Hzo (-, £"))
+ Le(0, M1 (&) — Ho (-,8"), H31 (&) — H31 (-, E"))
and hence, from Lemma 5.1.6, Theorem 5.1.1, (5.1.19) and (5.1.20) we obtain:

|| F (Z’y17y27l“",76178) -k (Z7y17y2au”7€”78)H°°

1
§4k3M1M2<\6[+63+ >pr||a o
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T 1 2
+opiae sV (55 1) + 3 (bl Il —u

1 1 1
10ksM Mg | — + = +1+— | |lo/ —a"||.
+10ks M M, <55+55+ +a> |
(5.1.77) then follows from the above two estimates. The proof is complete. O

Now, for given (yi(t),y2(t),z(x,1)) € Y1 x Y2 x C)([0, %] x R), we denote with
($1(1),$2(¢)) the unique solution of

50+ 37 (=00) 50 =00

o 5 (5.1.81)
0+ 21 (210 920 =00

where g;(¢), g2(¢) are the right-hand sides of Egs. (5.1.71), (5.1.72), that satisfy
y1(2jm+ aj) = 0 for any j € Z so that e; = 1. These solutions exist because of
Lemmas 5.1.2 and 5.1.3, moreover

19111 < Bllgill, (1921l < Billgzll (5.1.82)

where B and B; have been defined in Lemma 5.1.2 and Lemma 5.1.3. Note that in
the above formulas the norm on the left is the norm in ¥} (resp. ¥2), while ||g1]| =

2 sup,cr g1 (1) and [[ga]] = 2,/ sup,cp[g2(r)|. Let
61(1) = 21(0) + O {jﬁf <jﬁrg<r>> 2(0.1) +z<n/4,r>]} ,

g21(t) = g(1) +2\/zf’ (%Q(i)) [2(m/4,1) —2(0,1)].
Then (§(¢),$2(¢)) can be written as

(1) =91 (@) +910(),  92(t) = 21 (t) + $20(1)
where ($11(7),921(¢)) € Y1 x Y is the unique bounded solution of
1)+ (=20 ) 910 =110
yu p ﬁi’é yult) = guy),
2
V%3

that satisfies $11(2jm+ ;) = 0 for any j € Z so that e; = 1, and ($10(¢),$20(¢)) €
Y x Y is the unique bounded solution of

(5.1.83)

a0+ 221 (210 ) 3 0) = 1)
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() + 5.7 ( J270)) 5100 = Qg | = (Z=0) ) e00.0) ]

o)+ 25 (20 ) ) = -2y 217 (Jre0)) /4. -<00.)

(5.1.84)
that satisfies $10(2jm + aj) =0 for any j € Z so that e; = 1. We set

B (z,y1,y2.8,1,8) = (F11,921) €Y1 x Y2, Lz = ($10,520)-
Then we have the following result:

Lemma 5.1.8. L: C)([0,7/4] x R) — Y| X Y, is a bounded linear map. Moreover,
positive constants ke and ky and a function A(p, €) > 0 exist so that 0 lim A(p,e)=

€)—(0,0)
0 and for ||y yill+ 132/l + 1Z]] < p the following hold:
@

1B2(z,y1,52,8, 1, €) | < A(p, &)[llyi ]|+ [[y2ll + l|zllee] + ko |t + K7€, (5.1.85)
(i) Forany € = (E,a), & = (E, &) € X, , [i, we have

|| F2 (Z7y17y27§7“a8)7F2(’Zv737173727§7ﬁ78)”
< A(p,&)[llyt =3l +[ly2 = 2l + [l —Zl|es]
pA(p, &) +kelut| +kre] [ — &+ Kelu — . (5.186)

Proof. First we note that from Remark 5.1.5 (a) the existence follows of a constant
Ay > 0o that [|Q,, ¢l < Aq and [|Q,, ¢ — Oy er]| < Aglla’ — &”|| for any m suf-
ficiently large and any &,&' &" € X with &' = (E,a'), §&” = (E,a"). Then, L is
obviously linear and from (5.1.82) it easily follows that

8N(As4B +3B))

2

910/l + (920 <

that is, L is bounded and

Il < 8N(A4l7?r+ 3B1)

Next, it is easy to see that

2AA;

246 g2 4 104N,

Ve

gl < As{ /e8Iyl + w1l +

16AAN
/T

(& (P &) 1l + yall + Nzl + ke ]+ 2kre}

+——=—¢lnl+ A( )H|y1||+||y2|\+||Z||oo]}

_ZB
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where A(p,€) — 0as p +|&| — 0 and kg, k7 are suitably chosen. Similarly

1 -
821l < ﬂ{A(Pﬁ)[HMII + 12l + llzlleo] + ke 21}

Thus (5.1.85) follows from (5.1.81).

To prove (5.1.86), let (z(x,1),y1(),y2(t), &, 1), (Z(x,2),51(2),52(¢),E,Ji) be in
the statement of the theorem and write g“(t,z( %,t),yl( ),y2(1),&, 1, €) for
)

Z
gll( )andgll( )forgll(t Z<0 t) (7[/4 t) yl(t ) Z(I)aévua ) From Lemma 5.1.2-
(iii) and Lemma 5.1.3-(ii) we know that

~
~—
,_‘

|| FZ(Z7y17y27§7”38) 7F2(Zyl7y27§7ﬁa8)”

< Bllg11 —gu1l| +Billga1 — g1l + [crllgi ]| + érllgar]l] | — ]

where

g21(t) = g21(2,2(0,1),z(7/4,1), 31 (1), 32(¢), & , 11, €).
Now we have _
gu(t)—gn ) =Gn)+Gul(t)

G = #1200, 28/, (), 320), £ )
—gn(1,2(0,1),2(7/4,1),y1 (), y2(r), . [ &),

Gui(1) = g (1,2(0,),2(7/4,1),y1 (1), y2(t), &, Ji, €)
g (1,2(0,0),2(m/4,),51 (1), 52(), & i €)

An argument similar to the above shows that

~ 1. _ _
IGul < 55AP. &)yt =yill + 2 = Y2l + 2 = Z]les]-

On the other hand, since

11() = 0 {VES () + Tyt [ hler) it —[Ha(0.8)+ Ho(r.£)

2 [1(FR0) 1 (F270) 0+ vesi o)+

b Ger0) s ()]

we have, using also the estimate for Hy; (¢) given in the proof of Lemma 5.1.6,

Gl < 555 10me = @yl {A ()l + Iyl + 1)) + kel + 2ere
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o kel — |+ kslpA(p)(1 +-£) + (1 +p)] o~ @] }

< - [PA(p.&) + kelul + 2kt + ks (pA(p)(1 + &)+ £(1 1 p)) 1o~ ]

1 -
kel —
+5gkeln —Hl
and then
~ I ~ ~ ~
g —gnll < @{A(Pys)[llyl =il lly2 = y2ll + [lz = Zlleo] + Ko |1 — k]

+[PA(p.€) +kelu| +2kre + ks (A (p) (1-+€) +e(1+p) ) [l — ] }.

Similarly
~ | ~ ~
lez1 =821l < 55 {ACp.)lIy1 =51l + 2 =5all + 1e =2l

+ ks (pA(p)(1+)+e(1+p)) o — &l + kel — il },

hence, (5.1.86) follows from (5.1.30), (5.1.59) and (5.1.81) provided € > 0 and p >
0 are sufficiently small. The proof is complete. a

Our goal is to prove that the map (z(x,),y1(¢),y2(2)) — (2(x,2),91(¢),$2(¢)) has
a unique fixed point which is then a solution of Egs. (5.1.71)—(5.1.73). To this end,
we will make use of the following result, whose proof is omitted since it is a slight
modification of Lemma 3 in [11].

Lemma 5.1.9. Ler Z, Y be Banach spaces, Bzxy(p) be the closed ball centered at
zero and of radius p, S be a set of parameters, M C S x (0,6, and F : Bzxy(p) %
x [—[, 1] X (0,6] — Z XY be a map defined as:

Fl (Z7y7 Kmuac) +LIGY+L20Z
F(z,y,x,1,0) =

F2(Zay7 K,‘U,,G) +LZ

with Lig:Y — Z, Lys : Z — Z and L : Z — Y being uniformly bounded linear maps
for 6 > 0 small. Assume that a constant C and a function A(p,lL,0) exist so that

lim A(p,u,0) =0, and
(p,1,0)—(0,0,0) (p.4.0)

1F1 (2,3, 16 1, 0)|| < C(|u|+0)o +A(p, 1, o) Izl + [y,
1F2(z, ;16 1, 0) || < Cluf+A(p, o) Izl + [y,
1L16Fa(z,y, %, 1, 0) | < C(|u[+o)o +A(p, u, o) (2] + lIyl])

HFi(ZZJ’L K',‘LL,G) _E(Z17y17K7“7G)|| S A(P7H7G)(HZZ _ZIH + ||y2 —)’1”)
(5.1.87)
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when ||z|| + Iyl < p, lz1]| + 11l < p, and ||z2|| + ||y2|| < p. If there are 0 < A < 1

and 6y > 0 so that
ILicL+ Lag|| < A

for any 0 < o < Oy, then there exist Uy > 0, 69 > 0, p1 > 0 and p> > 0 so that for
|1] < o, kK €M, and 0 < ¢ < 0y, F has a unique fixed point (z(1,0,%),y(U,0,K)) €
Bz(p1) X By(p2). Moreover,

lz(, 0, %) |+ lly(1, 0, 6)[| < Ci(|u|+ o) (5.1.88)
for some positive constant Cy independent of (UL, 0, k), and

lz(u, 0,0/ (|| +0) =0

uniformly with respect to x, as (1,06) — (0,0), 6 > 0. Finally, (z(1,0,x),y(1,0,K))
isC', r>0,in(u,0) if F(z,y,K,1,0) is C" in (z,y,U, O).

We apply Lemma 5.1.9 with 6 = /€ <6 = (1/2)*3,S=X xN, k= (£,m,0) €
M:=X x {(m,0) eNx(0,6):m>[c3?+1} and
Fi(2,y1,2,§,14,0) = Le(H1, Hy, H3) + Le (0, Hy, H3),
B (z,y1,52,8,1,€) = (J11,521),
Lic(y1,y2) == Lie(y1,y2) = Le (0, A1, H31),
Loz :=Loez = Le(0,Hx, Hsp)
Lz = ($10,920)

where H;(t), H;(t) and H;;(t) have been defined in (5.1.75). We get the following
result.

Theorem 5.1.10. Assume that the conditions (H1)—(H2) hold and that § > 0 is a
fixed positive number so that
(H3) 2M,Ms | £'(0)] < 6.

Let I' > 0 be fixed. Then there exist positive numbers p1 > 0, po > 0, & > 0, and
Lo > 0 so that for any & € X, 0 < & < &, || < to, m > €3/* and € < T'|u|, the
integro-differential system (5.1.71)—(5.1.73) has a unique bounded solution

(Z(xatvﬂygaévgvm)7 yl(tvﬂagagvgvm)7 )’2(f7H’8’575,m))
so that
Hz(x7t7u’£757§’m)H°° < p1, Hyl(tnua&Saévm)” + HyZ(t7“7£75>§am)H <p2-
Moreover

||z(-,-7u,8,57§7m)||w+||y1(-,,u,8,5,€,m)|\+||y2(-,,u78,5,§7m)|| SCI(WH\/E)
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for some positive constant Cy independent of (L, €,&), and

HZ('a'>”a8787§7m)”°°/(|:u| +\/E) —0

uniformly with respect to (&,m), as (1,€) — (0,0), € > 0. Finally,

Z('>'7.u78767‘57m)7 yl('nu7£>6ﬂé7m)= y2(-,ﬂ,875,§,m)

are Lipschitz in o uniformly with respect to (E,m) and the Lipschitz constants are
O(Ve+|ul) for y1, y2 and o(V/€ +|1|) for z.

Proof. We shall prove that the assumptions of Lemma 5.1.9 are satisfied. Of course,
we take Z = C([0, /4] x R), Y = ¥; x Y, as Banach spaces, S = X x N and M =
{(&,m,0) | & € X,me N,m> o 3/2}. The fact that L;; = Ly and Ly = Ly are
bounded linear maps, as well as the fact that 2 = Fy(z,y1,y2,&, U, €) satisfies the
first and fourth conditions in (5.1.87) follow from Lemma 5.1.7. Similarly the facts
that L : Z — Y is a bounded linear map and F>(z,y,y2,&, U, €) satisfies the second
and fourth inequalities in (5.1.87) follow from Lemma 5.1.8 (see (5.1.85), (5.1.86))
and the assumption € < I'|u|. Thus, in order to apply Lemma 5.1.9, we only need
to prove that

1L1e(F11,321) 0 < 1|+ VE)6VE+A(P, 1, VE) (l2]leo + [y1 ]+ [[y2]]) (5.1.89)

and that
[(L1eL + Lag)z|leo < A][2[|0 (5.1.90)

for any € > 0 small enough and some A € (0,1). First we prove (5.1.89). We have

Lig(J11,921) =

Le (o,f’w) [jﬁyno) —2\/;21@)] S0) [jﬁynomﬁmmb |

Now, from (5.1.85), (5.1.86) and the definition of the norms in Y, ¥>, we see that
$11(¢) and $; (r) are bounded together with their first derivatives. Thus, using The-
orem 5.1.1(b), (5.1.85), (5.1.86), and assumption (H3) we get:

A 1 2 . .
ILie(sn San)lle < 200017 O)] 56 (5 +1) + 3vE| gl + ]

<Ve {5\/5 ((314 +5> +2] (91l + 1921 1]

< avelA(p) + Ve[S +ve) (vl + Iyl + llzll)
+eVe(|ulllh]l-+e(8ve+2))

for some suitable choice of the positive constants ¢; and & (possibly dependent on
8). Thus (5.1.89) follows. Now, we look at LcLz. We have
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LieLz = Ls<0,f/(0)[\/zﬁﬁlo(t) _ 2\/;20@)] £(0) [\/2%)710(0 +2\/§)720(l)1 )

where ($10(2),520(t)) € Y1 x Y3 is the unique bounded solution of Equation (5.1.84)
that satisfies y10(2jm+ ;) = 0 for any j € Z so that e; = 1. Let (§12(¢),922(¢)) €
Y x Y, be the unique bounded solution of

$1a0) 2 00(0) =~ e { T ( 20 ) e0) et .

alt) + 22110 =—2f f’(r:g )t/ ~<0.0)

and ($13(¢),923(2)) € Y1 x Y, be the unique bounded solution of

i3 (t) + f( )ylz():*ff( )[2(0,7) +2(7/4,1)]

);1(23( ) — = 2\/7](‘ 717/4 l‘ 0 l‘)]

We set

and note that
LigeLz = L¢ (0,Hp3(t), H33(t)) + Le (0, H3 (1), H33(1)) + Le (0, Hos (1), H33(t)) -
We know from [11, above equation (3.39)] that

|ILe (0, s (¢), A3 (1)) |o< 8M1 Mo | £/(0) | /& (205" + /&) ||2]|-»
<4/e(2a+8/e)2]len
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Then from Lemma 5.1.2—(ii) and Lemma 5.1.3—(i) we obtain:

R . 4A4NC 1 _ ali—2 im—o:
[10(0) = 91a(0)] < =72 (e et 2] .

. . 3 /(.- Cal—2jm—o:
[F20(r) = $22(1)| < 4NCy | = (o702 emeli=2im=esl2) |

fort € ((2j — 1)m,(2j+ 1)m], whereas Lemma 5.1.2—(iii) and Lemma 5.1.3—(ii)
with E = {0} and &' = o = 0, give:

4831

. . 8B . .
912 = F13]l < ;(A4+1)NHZH007 1922 = 923]| < ——N||z|»,

with the norms of the left-hand sides being in Y| and Y, respectively. Thus, Theorem
5.1.1—(a) implies, after some algebra:

7 f 8N 1
ILe (0, Ha3, H33) ||l < — (A4C+3C))
T

STt ) Vel

1/ am
using the inequality e 2 <\ /e (ﬁ) that follows from ( ) 23 e < % and

m > €3/* Next, applying again Theorem 5.1.1(b) with k> = 0 (and hence letting 8
tend to 4-c0) gives:

0 B < S 0 1)+ 08 VE [SVE () 2] -
Plugging everything together we obtain
ILieL] < KVeE
where K is a positive constant depending only on &. Thus, using (5.1.75) we get
ILieL+ Loe|| < 2M M8 |£'(0)| + K /e

and then, from assumption (H3), we see that & > 0 exists so that for any € € (0, &),
(5.1.90) holds. Since the assumptions of Lemma 5.1.9 are satisfied we obtain a so-
lution of Equations (5.1.71)—(5.1.73) provided 0 < € < &, |u| < Ho and € < I"|u].
Finally, we prove that this solution satisfies the Lipschitz condition in o € /% as
stated in the Theorem. Let ' = (E, ') € X, " = (E, ") € X and set
!

yi(t) =yi(t,1u,€,8,8" \m), y{(t)=yi(t,1,€,8,5" m),
W (t) =ya(t, 1, €,8,&"\m), y3(t) =y2(t,11,€,8,E",m),
('x’t) ( ’ 7#’87676/’ )’ Z”( 7t>7z('x7t7“ 8 6 é” )

Then (z(x.1),y1(1),2(1)) = (2 (x,1) — 2/ (x.),¥, (£) = Y} (1), 4 () — ¥4 1)) is a fixed
point of the map



208 5 Chaos in Partial Differential Equations

Z(x7 ) (Z(xﬂt) (x t)vyl( )+y/1/(t),y2(t)+y’1/(l),é/,,u,,8)

—F (2" (x,0), 51 (), 55(2), 8", 1, €) + Lie (y1 (1), y2(7)) + Loez(x,1,),
01(2),32(t)) = Fa(z(x,1) +2"(x,1), 31 (8) + 1 (), y2(t) + ] (), &', i, €)
FZ(Z”( ) ( ) z(t),gl/,[.l,S)-i-LZ(x,t).

(5.1.91)
From (5.1.86) we obtain

| Fa(z(x,1) +2" (x,1), 31 (£) + 37 (), y2 (1) + 371 (¢), &', . €)
_F2(Z//(x’t)vyll/(t)vyg(t)ﬂé//huve)H
< A(p,&) (1| + Iy + 1ll=) + k(|| +-2 +pA(p.e))[of — || (5.1.92)

where A(p,€) — 0 as p+¢& — 0" and k4 > 0 is a suitable constant. Thus, using
Theorem 5.1.1(b) (with k; = 0 and B = 4o0) we see that a positive constant ks
exists so that

| Lig (Fa(2(x,1) 42" (x, ), 31 (6) + 1 (1), y2(0) + 37 (¢), &', 1, €)
— (2" (x,1),57(0),55 (1), 8", 11, €)=
<ksvVe(lu|+e+pA(p,e))lla’ — || +ksv/eA(p.e)(|[y]| +|zll) (5.1.93)

for ||y|| = |Iv1]] + ||y2]]- Now we replace (y;(¢),y2(¢)) in Li¢(y1(¢),y2(¢)) in the first
equation in (5.1.91) with the fixed point of the second equation in (5.1.91). Using
Lemma 5.1.7, Lemma 5.1.8, (5.1.92) and (5.1.93), we get

2lle < A2(p, &) (YN + llzlle) + kov/E(VE + p + 1]l — [ + Allz]|ee ,

Iyl < Ai(p, &) (Il + llzll) +ka(pA(p, €) + || + &)l — & || +-[IL]l]|2]|o-
(5.1.94)
where A;(p,€),A2(p,€) — 0 as p+€ — 0" and kg is a positive constant. From
(5.1.88) we know that p = O(\/€ + |u|). Thus, if € is sufficiently small, we can
solve the first inequality in (5.1.94) for ||z||. and get:

Izll < A2(p. &) Iyl + VEO(u| + Ve) o' — o (5.1.95)

for Ay(p,€) — 0as p+& — 0F. Then we plug this estimate of ||z|. into the second
inequality in (5.1.94) and get:

Iyl < O(ul +Ve)o — "]

Finally, we plug again this estimate into (5.1.95) and obtain
Izl < o(vE+ )l — o]

The proof is complete. a
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In order to find a bounded solution, near g (1), of Egs. (5.1.6)—(5.1.8) we need to
show that the equation

G(éagal-L,(sam)
2
= m.g{\/géy'l(t,u,e,&é,m)Jr—ﬂufo”/“h(x,t)dx

\f
+V/ES Ve (1) + %f(%m (t,1,€,8,8,m)+Ik(t)]

3
—2\/;)’2(%!178757‘577”)+Z(0J7Na£757éam))

N %f(%[yl(t,u,e,a,;m) +IE(1)]

3
+2\/;y2(t7u78767€’m)+Z(Z’t7l’l”g’67§7m))

4 2 8 2
-t (e - 2

+\/§5vé(t)+\'i§(t)} -0

mr))yl(r,u?e,s,é,m)

can be solved for some values of the parameters. From Theorem 5.1.10, we know
that

Iyi(r,p.€,8,8,m)|| = O(|u| + Ve),
[y2(r, 1, €,8,8,m)|| = O(|u| + V),
||Z(x7t7u78767‘57m)”°° = 0(|/.L| + \ﬁ):

(5.1.
Hy1(t7[,L,8,57§/,m) _y1<ta.u787555//7m)|‘ < 0(|.u| + \/E)Ha/ - (X”H,
||y2(t7ﬂ78a675l’m) _y2<ta.u7£76a§//7m)” < O('“' + \/E)HO(/ - a//ll?

llz(x,t, p,€,8,8" m) —z(x,1, 1t,€,8,8" m)|| < o(|u| +VE)[[a' — |

whete & = (E,a), & = (E, o), & = (E,a"), and O(|ut| + /&), o(ju| + V&) are
uniform with respect to (&,m). Thus, we set L = /€1, where 7 belongs to a com-
pact subset of R\ {0} where the condition I'|n| > € is satisfied (possibly taking &
smaller). By multiplying the equation G(&,&,/€n,8,m) = 0 by £~'/2, we obtain
the equation:

96)

_ /4
BE.en.8m) = P {03600+ = [ bty det (e Euem,dm) | =0

~ (5.1.97)
where B(E,e,m,8,m) = £ '/2G(& &,/en,8,m). Using (5.1.70) and (5.1.97) we
see that
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”r(taéagvn753m)”°° :0(1)7

. S Y 5 ol — o (5.1.98)
Hr(t7é7ear’7 am) r(t7é 78717’ 7m)||°°—0( )Ha o H

as € — 0™ uniformly with respect to (§,1,m). Let

0 2 bl /4
:6/70071(S)2ds+ ﬁnlm/() T ($)h(x,s+ a)dxds (5.1.99)

and consider the space ¢ = C°([0,7/4] x R,R) endowed with the metric dy given
by
de(ui,) =Y 27" max  |u(x,) —ua(x,1)|.
ng\l [0,m/4]x[—n,n]
Finally we define a (weak) solution of (5.1.1) to be any u(x,t) € C([0,7/4] x R)
satisfying the identity

/:: /()7:/4 {u(x,t) [vt, (%,8) + Vyrrx (x, 1) — €Oy (x,t)} +euh(x, \@t)v(x,t)}dxdt

(5.1.100)
+£.[m {f(“(o”))v(o’t) +f(“(”/4af))V(7f/4J>}dt —0

for any v(x,z) € C*(|0,7/4] x R) so that v(x,) has a compact support and satisfies
boundary value conditions (5.1.4). Now we have the following result.

Theorem 5.1.11. Let f(x) € C?(R) and h(x,t) = h(x,t +1) € C*([0, /4] x R) be so
that (HI1), (H2) hold. Let § > 0 be a fixed positive number that satisfies (H3). Then,
if No # 0 can be chosen in such a way that the equation My (o) = 0 for n = 1o,
has a simple root o € [0,1], there exist & > 0, ] > 0 so that for any € € (0,&],
W= /en with |n —no| <7 and m > €3/*, m € N, there is a continuous map
IT: & — C°([0,/4] x R,R) so that [1(E) = ug(x,t) is a weak solution of Equation
(5.1.1). Moreover, I1 : & — II(&) is a homeomorphism satisfying

(o (E))(x,t) = I(E)(x,t + (2m/V¢))

with 6 : & — & being the Bernoulli shift. Consequently, the Smale horseshoe can
be embedded into the dynamics of (5.1.1).

Proof. We will prove that Eq. (5.1.97) can be solved for any £ € X and €, 4 and n
as in the statement of the theorem. Of course, there is nothing to prove if £ = 0 since
P = 0. Thus we assume E # 0 and recall (see Theorem 5.1.4) that P, ¢h =0 is
equivalent to [N,, ¢ +.Z, ¢]h = 0. So, we solve the equation

Nne +-L, ]{5}/5 n/ h(x,t)dx+r(t, &,e,n,é,m)}zo.

(5.1.101)
From (5.1.22) and (5.1.98) we know that the term in braces in the above equation
is Lipschitz continuous function in & € ¢3 uniformly with respect to (E,€,1n,m).
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But |-, || < Ae™™ < = 2~ (having used again 6*3e~? < 2) and in Section
5.1.6 that follows, we will see that a positive constant A exists so that | -Zer —
Lnerll <Aemm o — || < Hirello — o forany &' = (E, &), §" = (E, "),
As a consequence the function of &

gmé{(s%;( +777/ XI dx+r( év‘gvna67m)}

is Lipschitz in a € ¢§, with a O(€) Lipschitz constant which can be taken indepen-
dently of (E,n,m). Next we consider

Mg {310+ o [ b g e 8o .

From the proof of Theorem 5.1.4 we know that § ~ ||N,,, ¢|| is bounded uniformly
with respect to (§,m) (see (5.1.63)) and Lipschitz continuous func_tion in o €07
uniformly in (E,m) (actually we proved that ||N,, g/ — N, gn|| < 16;—;1\[ o’ — o).
So, using (5.1.98) we see that N, ¢ r(t,§,€,1, §,m) is Lipschitz continuous function
in o € (% uniformly in (E,m,n) and the Lipschitz constant tends to 0 as € — 0.

Finally, we consider the map from /%, into itself:

] 2 /4 __ .
& Ny, (£,a) {63/(570‘)0) + ﬁn/o h(x,t)dx} — My (a) ely  (5.1.102)

where
//?7 = {e;Mn( a])}jeZ'

It is easy to see that the j—th component of the map (5.1.102) is given by the sum of
the following two terms:

e /_ﬁmia" 10 [571 (1) + \/Zﬁn/()”/4h(x,t+aj)dx] dr,

=

= . 2 /4
7e'i/m+06j T(t) {6}/1 (t)+ﬁn/0 h(x,r+aj)dx} dt

and that the above functions are Lipschitz continuous function in ¢ uniformly in
(n,m, j) and with a O(€) Lipschitz constant, provided 1 belongs to a compact do-
main and ¢ is small. In fact, we have, for example, using also (5.1.53):

7m70£_; ) w/4 , ,m,a}/ ) /4 "
[ yl(t)/o h(x,t—i—aj)dxdt—/ yl(t)/o B, + o) dxd

J —oo

—m—ot]’- ] /4 ,
/ yl(t)/o h(x,t + o) dxdt

—m—o
m—a}

<
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—m—o /4 , "
+‘/ yl(r)/ [h(x,t + o) —h(x,t + &} )] dxdt

A
< A e e |+ ol

= 0(&) Ao+ 1) — "]

A similar argument applies to the other quantities. Next, it is easy to see that the
map .y Ly — lgis C Vin (ar,m), and its derivative, with respect to ¢ at the point
({eja0} jez,Mo) € L5 x R, is given by:

o — {My, (00) 0} jez, = Ay ().

As a matter of fact, we have:

My (a) — My (a0) — My (a0) (o — ao) = o(]| &t — )
uniformly with respect to (1, E). So, we write (5.1.101) as a fixed point equation in
g
a=a— %1{]0(%)71%77 ((X) - ‘%T/]O(aO)ilR(gagv n, 6)
where R(&, €,7,8) is Lipschitz continuous function in ¢ € ¢3 with a o(1) constant
independent of (E,m,n). Moreover, the map (¢, 1) — o — ///1/70((%0)_1///,7(06) is
C! and its a—derivative vanishes at o = o and N = No. Thus, from the uniform

contraction principle 2.2.1 it follows the existence of € > 0 and 7 > 0 so that for
any € € (0,&], |n —1no| <7 and m > £3/* m € N, the map

o— o —%0(050)71%((1) _%0(%)71R(5,8an’6>

has a unique fixed point @ = a(E,m,n, 0, €) that tends to o as € — 0 and 11 — 7o,
uniformly with respect to (E,m). This implies that for any € € (0, &), |7 — 10| <7
and m > £3/* the function

ug(x,1) = [y1(Ver,\/en,e,8,E,a(E,m,n,8,€)) + I (t) w-i(x)
+y2(Vet,Ven,e,8,E,a(E,m,n,8,€))wo(x)
+Z(x’ \/Et7 ﬁn78757E7a(E7m’n7578))

is a solution of (5.1.101) near Yz (z) defined as

y(zﬁ(ﬁ;_zjm_ao)), for (2j—1)m < /et <(2j+1)m

yo(t) = and e;=1,

0, for (2j—1)m< et <(2j+1)m
and ¢;=0.
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Since ug (x,2jme~"/?) is near to u = 0 if ¢; = 0 or to u = }/( - 2@0@) # 0 if
ej = 1, we see that for € sufficiently small, the map IT : E — ug is one-to-one and
the choice of E determines the oscillatory properties of ug(x,7) near y(r). More-
over, ug(x,t) is the unique solution of (5.1.101) that satisfies the above oscillatory
property and can be written as a totally convergent series:

Z MIE Wl

i=—1

Let 0 : & — & be the shift map defined by 6({e;} jez) = {€j+1} jez- Then ug(g) (x,1)
has the same oscillatory properties between u = 0 and u = }/( — 2\/% (Xo) # 0 as

ug (x,t +2me~"/2). But we have

uE(x,t + 2m871/2) = Z u,-_’E(t +2m871/2)wi(x)
i=—1

and the series is again totally convergent. Thus, because of the uniqueness, we ob-
tain:

Ug(g)(x,1) = up (x,t +2m/ /).

We now prove the continuity of Il, with respect to the topologies on & and
€ =C ([07 /4] x RR) induced by the metrics de and dy. First, we observe that
Theorem 5.1.1 implies the existence of a positive constant ¢y so that for any E € &,
the components u; g(t) of ug (x,t) satisfy:

Ui elleo < co/ (U7 +1), ]l < co (5.1.103)

with ¢( being a suitable constant (see (5.1.13), (5.1.14)). Hence, for any R > 0 there
exists ng € N so that, for any E € &, we have

lug (x,1) — Zu,E wi(x)]| < 1/R.
i=—1
Now, let {E;} jcn be a sequence in &. From (5.1.103) and the Arzela-Ascoli the-

orem 2.1.3 the existence follows of a subsequence { j,(c_l)} of { j,({_z) :=k} so that

U-1E ) (t) converges uniformly in any interval [—n,n]. Then another application
Tk

of the Arzela-Ascoli theorem 2.1.3 implies the existence of a subsequence { j,(co)}

of { j,(c_l)} so that ug g , (t) converges uniformly in any interval [—n,n]. Proceeding
T

in this way, for any i = —1,0,1..., we construct a subsequence {j,({i)} of {j,(ci_l)}
so that u; g @ (t) converges uniformly in any interval [—n,n]. Then, we use Cantor
T

diagonal procedure to see that for any i = —1,0,1... the sequence u; g It )( ) con-

verges uniformly in any interval [—n,n]. Now, let E;, be a subsequence of E; so that
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forany i = —1,0,..., uig,, (t) converges to a continuous function u;(¢) uniformly
on any compact subset of R. We have just proved that the set of such subsequences
is not empty. From (5.1.103) we obtain ||u;]j« < co/(u? + 1) and hence the se-
ries Yo | u;(¢)wi(x) is totally convergent and defines a continuous function u(x,?).
Moreover, for (x,t) € [0, ] x [-n,n] and any R > 0, we have

ug; (x,1) — u(x,t)‘ <

no
ug;, (x,1) — 'Zl ui k5, (1)wi(x)
=

0

+M; Z

i=—

u(x,t) — i(i u;(t)w;i(x)].

i=—1

i (1) = (1) +
So, o
limy oo |ug; (x,1) —u(x,1)] <2/R.

As a consequence, ug;, (x,t) — u(x,t) uniformly on compact sets. Thus the follow-
ing statement holds:

for any given sequence {E;} jen in & there exists a subsequence {Ej, }ren so that
{quk (x,1) }ren converges uniformly on compact sets to a continuous function

u(x,t) = ‘i1 u; g (t)wi(x)

with the series being totally convergent and u(x,t) being a weak solution of (5.1.1).

Now, assume that II is not continuous. Then E,E; € &, j € N exist so that
dg(Ej,E) — 0, as j — oo but dy (ug;,ug) is greater than a positive number for any
Jj € N. Passing to a subsequence, if necessary, we can assume that ug;(x,t) con-
verges uniformly on compact sets to a weak solution 7(x,?) of (5.1.1). Then, for any
(x,1) €[0,%] xR, we have

(e 1) = ve ()| < ug;, (1) = 4(x,0)| + lug, (x1) = Vg, ()] + |vg,, (1) — v @)
and hence, passing to the limit for n — oo:

Ji(x,1) = ye ()] < suplug;, — Ve, [loo +Timp oY, (1) = Ve (1)]-

But, since d¢(Ej, E) — 0 we see that for n > 7(e,t) we have ¥g, (t) = ye(t). So
ii(x,t) is orbitally close to Yz () and then, because of uniqueness,

i(x,t) =ug(x,t) =II(E)

contradicting the assumption that IT was not continuous. The proof is complete. O
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Remark 5.1.12. (a) If (H2) fails so that linear equation (5.1.10) has a two-dimensional
space of bounded solutions on R, then we can perform again the above procedure but
we get a two-dimensional mapping like (5.1.99) of the form My (a, ), (, B) € R?
(cf Section 4.1.3) and the existence of a simple root of function My (¢, B) implies a
result similar to Theorem 5.1.11.

(b) Assuming also that f is odd, i.e. f(—y) = —f(y), then we get the additional
homoclinic orbit (0,7%(t)) := (O, %\/gy(Z %t)) for (5.1.9) and we can repeat
the above approach by assuming the non-degeneracy of 7 (¢) as in (H2). We get in
this way another chaotic solutions of (5.1.1) when the corresponding mapping like
(5.1.99) has a simple root. We do not perform here such computations.

(c) If we consider in (5.1.1) the time scale 1, i.e. we have A(x,t) in (5.1.1), then
(5.1.2) becomes a rapidly oscillating perturbed problem. So we should arrive at an
exponentially small bifurcation problem [12, 13].

5.1.5 Useful Numerical Estimates

To get more information on condition (H3), we give in this section a numerical
estimate of the constants M and M, (see (5.1.16)). For this purpose, we recall [2]

4

i) = | cosh(puen) + cos(per) - cosh&; — cos

sinh & —sin&;

(sinh(pex) + sin(ukX))} ;

(5.1.104)
where & = /4 are determined by the equation cos &, cosh&, = 1 and the con-
stants Wy are given by the formula

cosh &, —cos &

Wi = cosh 0S G —
= cosh&+cos o sinh & —sin&;

(sinh& +siné&). (5.1.105)

We first evaluate Wj.. Numerically we find & = 4.73004075. Moreover, 0 < & <
& < --- and so cosh&; < cosh&, < ---. Since & ~ m(2k+ 1)/2 and cos(m(2k +
1)/2) =0, we get

<2e %

[sin 6| - [& — w(2k+1)/2| = |cos G —cos(m(2k+1)/2)| = cosh& —

fora 6 € (&, m(2k+1)/2). But we have

1> [sin&] = /1 —cos2& > /1 —cos? & =0.999844212,

since 0 < cos&, = sech&; < sech&; = cos&;. Next, we can easily see that in fact
(4k —1)1w/2 < Exy—1, &y < (4k+ 1)1/2 and function cosx is positive in intervals
(&, m(2k+1)/2) for any k € N. So function sinx is increasing in these intervals,
and it is positive on [Ey, (4k+ 1)7/2] and negative on [(4k— 1)7/2, & 1]. Hence
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sin&y = /1 —cos?&,;. Using also cosh&; = ﬁ and sinh& = \/cosh? & — 1

form (5.1.105) we derive Wy, = —2. Similarly, from sin&y;,_; < 0, k € N we derive

sinéy_1 = —+/1 —cos2 &1 and then Wy, = 2. Consequently, |W;| = 2 for any
n € N. Next, (5.1.104) implies

Wi ()]
2 cosh & sinh(pyx sinh &, cosh &,
<~ (|cosh —‘ I
- ﬁ(‘cos (be) = sinh &, —sin&; 1+ cos Gy sinh& — 1 sinhék—l>
< 2 (Sinh (e (5 —x)) +2cosh &+ cos & smhék )
=T sinh&, — 1
2 inh 2cosh h
< —(Sm &1 +2c0sh§; +cos &y sinh &y +1) = 45949831827 .
VT sinh&; — 1

Hence M| < 4.594983183. Now we estimate M,. From the above arguments we
deduce |sin 6| > |sin&| > |sin&;| = 0.999844212. This gives

e % =0.017654973.

B 2(2k+1)/2) < —>
[sin&;|

So we obtain & >~ ZkH) —0.017654973 > mk. Consequently, we arrive at
|& — m(2k+1)/2] < e 5 < 2 ok o T ook (5.1.106)
|si <§ © |sin&;| 4
for ¢ = 2.546875863. Furthermore, since & > &; > 4, we have
‘ 4 ’ ‘ 2 ‘ & —m(2k+1)/2 < 3 ok
ék 2(2k+1) ék w(2k+1) Em(2k+1) ~ 16|siné | ’
Hence, we arrive at
& iyl < K s e
=& (2k+1 - 16|s1n§1| ~16|sinéy| 1 —e 7
= 5.51594097~ 1011,
Thus
Y 1/
k=1
)1 4 4 & 1 1
B SIS | LRSS S N S
k; k ,; 2 m2(2k+1)2 7r2k§6(2k+1)2 7r2k=26(2k+1)2

<i1/§2+;i+1—4i L 0.09438295.
- kT 16|sing [ 1—e ™ ' 2 « (2k + )’
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This implies M, = %ZM 1 kgl 1/ ékz < 1.07008241. In summariy, we see that condi-

tion (H3) holds if
9.8340213469 - |f'(0)] < &

Finally, we note that wy(x) and wy (% — x) solve the same eigenvalue problem
Uprrr(X) = et (x), ey (0) = ey (T/4) = 13 (0) = e (w/4) = 0.

Since {wy | k € N} is an orthonormal system in L?([0,7/4]), we see that wy(x) =
+wi (§ —x). But wy(mw/4) =4//7 and wy.(0) =4/+/7 when k is odd, and wy (0) =
—4/+/7 when k is even. So wy; (% —x) = —wy(x) and wor_ (% —x) =wor_1(x),
Vk € N.

5.1.6 Lipschitz Continuity

Here we prove the Lipschitz continuity property of the linear map %), ¢ : L”(R) —
£ defined as

Lneh) ={L e i(h)}jez

with respect to o uniformly in E € & and m > mg. We start with the family of linear
maps L, ¢ : 7 X €7 — {7 x £~ defined as

Lm,?,‘ (575) = {Lm,é,j(avz)}jEZ

where a = {d;} jez, b={b j} jez and prove that it is Lipschitz continuous function
in o uniformly withy respect to (E,m), E € & and m > my.
As in the proof of Lemma 5.1.2, u(¢) denotes the (unbounded) solution of X +

%f’ (%% (t))x = 0 so that u(0) = 1 and #(0) = 0. For simplicity we also set:

a(r) = ;u((tt)) and note that 7(¢) is uniformly continuous in R since ,li»rfmﬁ(t) =+l

(see (5.1.49)). Moreover we have

£ ()25 182 ) () -
dii

as t — Foo. Hence %/ (¢) is also uniformly continuous in R. As a matter of fact, 4(r)

is Lipschitz continuous function with constant, say, A, since % (¢) is bounded on R.
Now, let £ = (E, o), &' = (E, ') be elements of X and consider the difference
Ly ¢ — Ly, ¢r. From (5.1.47), (5.1.48) we see that for any a@ = {d; } jez, b = {b;} jez.

we have
a 0
[Lm,§ _Lm,é’] (5) = (E) (5.1.107)

with B = {Ej}jEZ and
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Bj = [d(—m— ot} 1) —i(—m—aji1)]ej1dj1 + [@(m— o) — d(m— a})]e;b,.
(5.1.108)
Then we have, using the Lipschitz continuity of 4(z):

|Bj| <la(m— oj) —as(m— o) |bj| + [a(=m — &, ) —d(=m — a1 lajp]
<Alaj — ol bl +Alajer — oy |dj| < Allo— o || [||a]]ee + [|5]]-o]

As a consequence, B
||Lm_§ 7Lm’§/||oo <Alla—ad'| (5.1.109)

uniformly with respect to (E,m), E € & and m > mg. Then the same conclusion
holds for the inverse map L 1‘:. In fact, from L);l\g -L 1‘:/ = L;_lg (Lo —LinelL, 15/

we obtain HL;% fL’;lg,H < 9A| o — ||, since ||L*~1‘5 | <3 (see (5.1.51)). Now,

m

aj b
u(-m—oy) ulm—oy)

e j(h) = —€jh(0)

where (a@,b) is obtained by solving the equation Ly¢(a, b) = (Agh,Bgh) and Agh,
Bgh are the linear (in h € L=(R)) maps defined by the right-hand sides of Equations
(5.1.44)—(5.1.46):

Agh={(1-€;)Ci— (1 —ej11)Cjr1—e;Dj(e)) —ejn1Djr1(@je1) } oy
Beh={—(1—¢;)C;— (1—ej11)Cjr1 —¢;Fj(0) —ejr1Fjs1(0js1) } sy

where

L 1 /<2j+1)me*“(<2]“>”’*5)h(s)ds
2a J@j-1)m 7

¢ - 1 /’(2]+l)m 1) (s,
2a. (2j-1)m

Q2j+1)m
Dj(a) = /2 e V@l 2jm— ch(s)ds

R 2jm+o
Do) = /(zjil)mv(—m— @)u(s —2,jm — a)h(s)ds,

1 r@j+D)m ) )
Fi(a) = o /ijHx v(im— o)u(s —2jm— a)h(s)ds

R 1 r2imt+o
Fi(a) = 7/ v(—m—o)u(s—2jm— a)h(s)ds.
alJej-tm

So, if we prove that the linear map h — (Agh,Béh) is bounded uniformly with re-
spect to £ € X and Lipschitz continuous function in & uniformly with respect to
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(E,m), we get that %), ¢ (h) is Lipschitz continuous function in & uniformly with
respect to (E,m) and that the Lipschitz constant is O(e~*") = O(¢g) as € — 0 uni-
formly with respect to (E,m). Now, the fact that Agh, Bg¢h are bounded uniformly
with respect to & € X easily follows from

max {|C;|,ICil } < 5z [|All

. (5.1.110)

max {|D;(a)l, |D;(e)l, |Fj(e)], |Fj(a)| } < gllAlleo-

Then it is enough to study the Lipschitz continuity of the maps
(&.h) = {Dj())ej} ;qr (&.h) = {Dj(a)e))} ey S

(&.h) = {Fi(a)ej}icqr (&:h) = {Fi(aj)e)} ey

with respect to or. Writing D;(ct,m), D i(a,m), etc. to emphasize dependence on m
we see that

Dj(a,m):—D_j(Ot,—m), Fj(oc,m):—F_j(Oc,—m).

Thus we only need to look at D;(o) and Fj(a). We focus our attention on the map
(&,h) — {Dj(aj)e;}, & = (E,a), Fj(ct) being handled similarly. First, we look at
the difference D;(t”) — D;(7’), where 7/, 7" € R, 7 > 7/ and |7'|,|7"| < 2. We see
that D;(7”) — D;(7’) equals:

(2‘]+1)m 7 7 / /
/ [vim—1")u(s—2jm—1") —v(m—t")u(s—2jm—1")| h(s)ds
2jm+1"

2]m+r”
—/ v(m—1")u(s —2jm—1')h(s)ds.
2jm+1’

Then (5.1.34) implies

ZJM+T / / 1! /
/ v(im—1)u(s —2jm— 1t )h(s)ds| < k||h||t" — 7
2jm+1

Similarly, we get

2j+1)
/2 [v(im—1")u(s—2jm—1") —v(m—")u(s —2jm—7')| h(s)ds

Jjm+1"

1

/2::::’” (/; im—1)u(s—2jm—1)—v(m—1)u(s—2jm— ‘L')]dr)

-h(s)ds

2k
< —[hll=l7" =7l
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Consequently, we obtain

2k
() = Dy(e)] < (T +k) ol = 7.

Thus (§,h) — {Dj(ej)e;} jez is Lipschitz continuous function in o with the con-
stant za—k + k independent of (E,m). Similarly we can prove the global Lipschitz con-
tinuity in o of Fj(a). This completes the proof of the uniform Lipschitz continuity

in ot of £, ¢ (h). Note that when i € L, the maps in (5.1.111) are not differentiable
in o.

5.2 Infinite Dimensional Non-Resonant Systems

5.2.1 Buckled Elastic Beam
To motivate the ideas of this section consider the partial differential equation
T
ji=—u"" — P + [/ u/(s)zds} U’ —2poii+ Ly cos @t (5.2.1)
0

where Py, U1, W, @y are constants and u is a real valued function of two variables
t € R, x € [0, 7], subject to the boundary conditions

u(0,t) =u(m,t) =u"(0,t) =u"(7,t) = 0.

In (5.2.1), a superior dot denotes differentiation with respect to ¢ and prime differ-
entiation with respect to x. This is a model for oscillations of an elastic beam with
a compressive axial load Py (Figure 5.2). When P, is sufficiently large, (5.2.1) can
exhibit chaotic behavior. The first work on this was done in [3]. Some more recent
work on the full equation is in [4, 14]. An undamped buckled beam is investigated
in [15] to show Arnold diffusion type motions. We will discuss some of them in
more detail when we return to this problem in Section 5.2.6.

In (5.2.1) substitute u(x,7) = Y. ux () sinkx, multiply by sinnx and integrate from
k=1

0 to z. This yields the infinite set of ordinary differential equations

, Ty . 1=(=1)"
ii, = nz(Po — nz)u,, — Enz Lg{l kzud Uy — 2k, + 24 {fm)} cos myt,
n=1,2,....
We see that the linear parts of these equations are uncoupled and the equations
are divided into two types. The system of equations defined by 1 < n?> < Py has

a hyperbolic equilibrium in origin whereas for the system of equations satisfying
n* > Py, this equilibrium is a center. For simplicity let us assume 1 < Py < 4. Then
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L cos apt

Fig. 5.2 The forced buckled beam (5.2.1).

only the equation with n = 1 is hyperbolic while the system of remaining equations
has a center. To emphasize this let us define p = u; and ¢, = u,, 1, n=1,2,.... The
preceding equations now take the form

N T

— 2,2
p=ap )

> 4
PP+ Y (k+ 1)%14 P=24p+_pucosant, (52.2a)
k=1

=)

. T
Gn = —aqn— 5 (n+1)? | P+ Y (k+1)°G¢ | g
k=1
1— _1)n+l
—2U>g 2 —_—_— t 5.2.2b
Uy + Hl[ 2+ D) ]coswo ) ( )

n=1,2,...

where we have defined @ = Py— 1 and @7 = (n+1)* [(n+1)* — By|. In (5.2.2) we
project onto the hyperbolic subspace by setting g = 0 in (5.2.2a) to obtain what we
shall call the reduced equation. In our example this is

T
2

4
p=da*p— p3—2,u.2p'+;,u.1 oS Wyt (5.2.3)
We see that this is the forced, damped Duffing equation with negative stiffness for
which standard theory yields chaotic dynamics (cf Section 4.1). The purpose of this
section is to show that the chaotic dynamics of (5.2.3) are, in some sense, shadowed
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in the dynamics of the full equation (5.2.2). To put our example in the first order
form we define x = (p, p) and

y=1(91,91/01,92,¢2/m,...).

Equations (5.2.2 a and b) now become

X1 = X2,

xz—axlf—

X2+ Z (k+1) y%k_I] X1 (5.2.4a)

—2px; + ;m oS @yt ,

Von-1 = @WpYon,

. n+1 >
Yon = —@pyon—1— 7 (nt1)? X+ Y (k+ 1% | yan1 (5.2.4b)
2 o k=1
2 +2 - (=) cos Wyt
Moyon + 241 2+ 1o, Wot.

For these equations we define the Hilbert space
Y= {y={yn}fl | wmeR, Y 003, +3) <°°}
n=1

with inner product (u,v) = ¥ @2(t2,—1V2n—1 + U2,v2,). By a weak solution to
n=1

(5.2.4) we mean a pair of functions xo : R — R?, yo : R — Y so that xy is differ-

entiable and y( has a derivative yj — £2, which satisfy (5.2.4a) pointwise in R2,

(5.2.4b) pointwise in ¢2. Note that in this case we have
(ur,u2,...) = (x,p1,p2,---), X+ Z a),%pﬁ < oo,

(1, i,...) = (%, p1,p2...) € £

so that for the original differential equation (5.2.1), u € H*(0,7) NH} (0,7) and i €
L?(0,7). This is discussed in [5]. In the next section we will formulate an abstract
problem for which the hypotheses will consist of the essential features of (5.2.4).
We have already mentioned one of them: when y is set equal to zero in (5.2.4a)
the resulting equation is the transverse perturbation of an autonomous equation with
a homoclinic solution. To see another important property we linearize (5.2.4b) in
origin which yields the system of equations

Vop—1 = Wy Vo,
. (5.2.5)
Von = —Wpvay—1 — 2H2V2,, nEN.
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Note that for each n we get a pair of equations uncoupled from the others and for
|12| < @, we have a fundamental solution for (vo,_,v2,) given by

~ .~ @, . .
cOS @yt + & sin @yt — sin @yt
n a)l‘l — t
Va(t) = e 2
W, . . ~ H .
—— S1n Wyt COS W, — — SIN Wyt
n wn

where @, = /®? — p13. This solution has the properties V;,(0) = I and

Vat)Vals) ™ | = Va()Va(=5)| = [Vl = 5)| < KeH2C7),

where K > 0 is independent of n. Using the sequence {V, },”_, we can define a group
{Vi, (1)} of bounded operators from Y to Y by

Yan—1 ]

Yan

(Vuz (t)y)2 ~1
[ ! = Va(t)
(Vllz (t)y) 2n
Then |V, (1)Vy,, (5) 7| < Ket2071) For y0 € Y, y(t) = V), ()y° is the weak solution
to (5.2.5) satisfying y(0) = y°. If we retain the forcing term from (5.2.4b) we obtain
the system of nonhomogeneous variational equations

Vop—1 = WpVop,
Von = —WnVan—1 — 22V2n + Hi Vi COS Wt

21— (1]

n(n+1)w,
nonresonant case, i.e. @, # @y, the precedent has a particular solution in Y with
components given by

where v, = . Here we encounter the question of resonance. In the

vau1(n)] Vs 0, (®? — 0F) cos ot + 21y @y @, sin Wt
Von (t)

(07 = @F)> 413075 | — (02 — @2) sin wot + 2202 cos ot |

We make the existence of such a solution a separate hypothesis.

Finally, we mention other work on chaos in partial differential equations. For the
complex Ginzburg-Landau equation in the near nonlinear Schrédinger regime, i.e.
perturbed nonlinear Schrodinger equation, existence of homoclinic orbits is proved
in [7,16, 17], and existence of chaos is shown in [8, 18] under generic conditions.
For perturbed sine-Gordon equation, existence of chaos and chaos cascade around a
homoclinic tube was proved in [19-21]. For the reaction-diffusion equation, entropy
study on the complexity of attractor is conducted in [22-24]. Chaotic oscillations of
a linear wave equation with nonlinear boundary conditions are shown in [25]. The
development of chaos and its controlling for PDEs is summarized in [26,27].
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5.2.2 Abstract Problem

Using the example in the preceding section as a model we now develop an abstract
theory. Let Y and H be separable real Hilbert spaces with Y C H. We now consider
differential equations of the form

X :f(xayauvt) = fO(xvy) +:ulfl ()C,y,[.t,l) +”2f2(xaynu“7t)a

(5.2.6)
y=g(x,y,l,t) = Ay +go(x,y) + H1V cos ot + Urga (X, y, i)

withx € R, y € Y, u = (i, 1p) € R%, v € Y. We make the following assumptions
of (5.2.6):

(H1) A € L(Y,H).

(H2) fo € CHR"xY,R"), f1, o € C*H(R" x Y x R? x R,R"), g9 € C*(R" x Y, Y) and
g2 €CHR" x Y x R2,Y).

(H3) fi and f; are periodic in ¢ with period T = 27/ ay.

(H4) f5(0,0) =0 and D5 fy(x,0) = 0.

(H5) The eigenvalues of Dy fy(0,0) lie off the imaginary axis.

(H6) The equation x = fj(x,0) has a nontrivial solution homoclinic to x = 0.

H7) go(x,O) = gz(x,o,‘l.l) =0, D]zgo(0,0) =0and Dzzg()(x, 0) =0.

(H8) There are constants K > 0, d > 0 and b > 0 so that when 0 < || < 6 the
variational equation v = (A + 2D,g(0,0,0))v has a group {V,, ()} of bounded
evolution operators from Y to Y satisfying |Vy, (t)Vy, (s) 7| < KePH2(—1),

(H9) There is a constant K > 0 so that the nonhomogeneous variational equation
v =1[A+ 12D1£>(0,0,0)] v+ pt; v cos myt has a particular solution y: R — Y sat-
isfying |w(z)| < K| ||v].

By a weak solution to (5.2.6) we mean a pair of continuous functions xp : R —
R", yo : R — Y so that xq is differentiable and yy has a derivative yy : R — Hi,
which satisfy (5.2.6) pointwise in H. By (H8) we mean that Vj, (s) ™! =V, (—s),
Vi, () 0 Vi, (t) = Vi, (s +1), Vi, (0) =T and that for yo € Y, y(r) = Vy, (t)yo is the
weak solution to v = [A + 12 D»£>(0,0,0)] v satisfying y(0) = yo.

5.2.3 Chaos on the Hyperbolic Subspace

The reduced system of equations for (5.2.6) is

= f(x,0,u,1) = fo(x,0) + 1 f1(x,0,,7) + p2 f2(x,0, 1) (5.2.7)

with x € R". By (H6), (5.2.7) has a nontrivial homoclinic solution y when ¢t = 0. The
variational equation along ¥ is the linear equation & = D fy(y,0)u and its adjoint
variational equation

v=—D1fo(7,0)"v. (5.2.8)
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By repeating arguments of Section 4.2.2, we have the following result (cf Theorem
4.2.1).

Theorem 5.2.1. Let M be as in (4.2.6) or (4.2.7) and suppose Lo, Oy, Bo are such
that M(po, 0o, Po) = 0 and D4 g\M (Lo, 0o, o) is nonsingular. Then there exists
an interval J = (0,&] so that for each & € J the equation x = f(x,0,Eo,t) has
a homoclinic solution Y to a small hyperbolic periodic solution. Furthermore, Yg
depends continuously on &, limg_o Yz (t) = y(t — o) (or =Yg, (t — &), respectively)
uniformly in t and the variational equation along Vs has an exponential dichotomy

on R.

Then we can show chaos for the differential equation x = f(x,0, & to, ). For this,
first, foranym € N, § € Jand E = {e;} jez € & (cf Section 2.5.2) define the function
Ye Em € LOO(RJRn) by

( Ye(t —2jmT),if (2j—1)mT <t < (2j+1)mT and e;=1,
Yepm(t) =
SEm 0, if (2j—1)mT <t<(2j+1)mT and e;=0.

Now following arguments of Sections 3.5.2 and 5.1.4, we obtain the following ver-
sion of Smale-Birkhoff homoclinic theorem 2.5.4.

Theorem 5.2.2. (a) Ler Ly, o, Po, & be as in Theorem 5.2.1. Fix & € (0,&] and
let Ye be obtained from Theorem 5.2.1. Then there exist an & > 0 and a function
€ — M(€) € N so that given € with 0 < € < & and a positive integer m > M(€)
the equation % = f(x,0,&y,t) has for each E € & a unique solution t — xg(t)
satisfying
|xE(t)_7§,E,m(t>| <eg, VieR.

(b) xg depends continuously on E and xg(t +2mT) = xqg)(t) where o is the
Bernoulli shift on &.

(c) The correspondence ¢ (E) = xg(0) is a homeomorphism of & onto the com-
pact subset A of R" given by

A= {xp(0) | E € £}

for which the 2mth iterate F>" of the period map F of (5.2.7) is invariant and satis-
fies F*o¢ = ¢ oo.

Theorem 5.2.2 asserts that the following diagram is commutative.
& &
!l ls
A

A
This means that F2 : A — A has the same dynamics on A as the Bernoulli shift &
on &. Consequently, F>™ is chaotic on A, so (5.2.7) is also chaotic. This construc-

lo2

F2m
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tion is sometimes referred to as embedding a Smale horseshoe in the flow of the
differential equation.

5.2.4 Chaos in the Full Equation

Since the homoclinic orbit ¥ obtained in Section 5.2.3 is hyperbolic the variational
equation i = Dy f( Ye,0, & Uo,t)u has an exponential dichotomy on R with constant
K. Now, by Section 4.2.3, K tends to infinity as & — 0. For this reason we consider
the following modification of (5.2.6)

.X.: :f(x7y7“7l7t) ::f(x7ly7“’t)a

(5.2.9)
y :g(x7yau7)~7t) Z:Ay+g()(x7y)+A,U1VCOS(DOZ+,U2g2(X,y,,LL)

for a parameter A € [0, 1]. Now let (Lo, &, Bo) with Lo > 7 0 and ¥¢ be as in Theorem
5.2.1. Following the arguments of Section 4.2.3, we obtain a constant é_o and for each
& € (0,&p] a homoclinic orbit

L(A,8)(1) = (I(A,8)(1),13(1,8)(r))
for (5.2.9) with u = & iy so that

Ii(A,8)(t) — y(t—ao) (or — ¥, (t — o), respectively),
and G, E)(1) -0

as & — 0 uniformly for A € [0, 1]. Moreover, we have I'(0,§) = (¥%,0) and I'(1,£)
is a homoclinic solution for (5.2.6). The linearization of (5.2.9) with u = & iy along
I'(4,&)(¢) has an exponential dichotomy on R with dichotomy constants uniformly
with respect to 0 < A < 1 and fixed . Analogous to the construction in Section
5.2.3, for each E € &, & € (0,&)] and m € N we construct from I'(1,&) a corre-
sponding

l—k(k,é,m) = (H,E(Avgvm)vl—é,E(lvg,m))'

Similarly, from y: we obtain ¥ g ,,. Then we have I3 £(0,&,m) = ¥ g ,, and also
I3 £(0,&,m) = 0. Using the uniform exponential dichotomy, following Sections
3.5.2 and 5.1.4, we now obtain the following extension of Theorem 5.2.2.

Theorem 5.2.3. (a) Let [y, 0o, Po be as in Theorem 5.2.1 with [y, # 0. Fix & €
(0,&)] and let T'(A,&,m)(t) be obtained above. Then there exist an & > 0 and a
function € — M(€) € N so that given € with 0 < € < & and a positive integer
m > M(g) Eq. (5.2.9) with u = E g has for each E € & a unique weak solution
t— (xE,,l (t),yE2 (t)) satisfying

() —Ee(, 6m) (1) +yea(t) e, 6m) (1) <& VieR.
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(b) The functions (xEJL (t),yeA (t)) depend continuously on E, A and we also
have xg ;. (t +2mT) = xg(g) 2 (t), Ye A (t +2mT) = Yo (£) 2. (1)

(¢) The correspondence ¢; (E) = (x5 2(0),y£.4(0)) is a homeomorphism of &
onto the compact subset Ay, of R" XY given by

Ay = {(xE,)L(O)vYE,l (0>) |E € é"}

for which the 2mth iterate Ff’" of the period map F) of (5.2.9) is invariant and
satisfies Ff’” oy =@ o00.
(d) (xe,0(t),ye0(t)) = (x£(t),0) and ¢o = ¢ where ¢ is as in Theorem 5.2.2.

In summary, we obtain the following main result.

Theorem 5.2.4. Suppose (H1)—(H9) hold. Let M be as in (4.2.6) or (4.2.7) and sup-
pose (Lo, 0o, Po) are such that M(Uo, 0%, Bo) = 0 and D g\M (Lo, %, o) is non-
singular. Then there exists 5_0 > 0so that if 0 < & < é_o, if the parameters in (5.2.6)
are given by 1 = &y, and Uy # 0 then there exists a homeomorphism, ¢, of &
onto a compact subset of R" X Y for which the 2mth iterate, Flzm, of the period map
Fi of (5.2.6) is invariant and satisfies F]Z’” 0@ = ¢100. Here m € N is sufficiently
large.

We might paraphrase Theorem 5.2.4, loosely, say, the Smale horseshoe embed-
ded in the flow of the reduced equation (5.2.7) is shadowed by a horseshoe in the
full equation (5.2.6).

5.2.5 Applications to Vibrating Elastic Beams

We now return to the example in Section 5.2.1 and apply our theory to the prob-
lem of vibrating elastic beams. We shall consider a number of different cases and
generalizations. In each case our procedure will be:

(i) Use a Galerkin expansion to convert the partial differential equation to an infi-
nite set of ordinary differential equations as (5.2.6).

(i) Truncate the equation to get the finite problem(5.2.7).

(iii) Apply Theorem 5.2.2 to getting a Smale horseshoe for the finite problem. For
this we must verify (H1) through (H6).

(iv) Use Theorem 5.2.4 to lift the horseshoe to the flow of the original partial differ-
ential differential equation. This requires (H7)-(H9).

5.2.6 Planer Motion with One Buckled Mode

The boundary value problem for planer deflections of an elastic beam with a com-
pressive axial load Py and pinned ends is
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T
ji=—u"" — P + {/ u’(s)zds} u’ —2up1+ Uy cos wt,
0
u(0,t) =u(m,t) =u"(0,t) =u"(7,t) =0

where u(x,t) is the transverse deflection at a distance x from one end at time 7. We
consider the y; terms as perturbations. Our first step is to consider the linearized,
unperturbed problem. We compute the eigenvalues in origin to be 4, = n?(n* — R)
with corresponding eigenfunctions @,(x) = sinnx for n = 1,2,.... For small P the
origin is a center. As P is increased the first bifurcation occurs at Py = 1, the first
Euler buckling load. The corresponding eigenfunction, ¢; (x) = sinux, is referred to
as the first buckled mode. The second bifurcation occurs at Py = 4. Thus, the simplest
case, which we now consider, consists of 1 < Fy < 4. In the first equation we define

aziﬂ,lip()fl.

The eigenvalues for the center modes, or unbuckled modes, provide the frequencies
used in (5.2.6) as we define

W} =d=n*[n* =R, n=23,....

=

We now use the eigenfunctions for the Galerkin expansion u(x,t) = Y, u(#) sinkx
k=1
and obtain the system of equations

i = n*(Py — n®)u, — gnz [ E kzuﬂ uy,
k=1
(5.2.10)
. 1—(=1)"
—2Uptty, + 2 | —————|cosmpt, n=1,2,....
nn
To obtain a first order system as in (5.2.6) we define
x:(ulvul)a y:(MZ,”Z/(D],M?,,Il?,/(DZ,...).
The reduced equations are
).Cl =X2,
(5.2.11)

. 2 T 3 4
Xo=a"x; — le —2Upx> + ;Hl cos Wyt

obtained by setting y = 0 in the hyperbolic part. When u = 0, (5.2.11) has a homo-
clinic solution given by y = (r,7) where r(t) = (2a/+/7 ) sechat. Equation (5.2.8)
becomes

3n
V] = —(a2 — 7}’2)\/2, V) = —V]
with solution (vi,v) = (—F,7). We have d = 1 so the variable  does not appear,

M is a scalar function, and the function M = M; becomes
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3
M(a) = {8(00 sina)oasechnzwo] W — <16a )H2~
a

VT 3z
Thus, the conditions M (L, 0p) =0, (IM/d ) (o, o) # 0 are satisfied for all ty so
that % < 3‘2[% sech 2. Now we check condition (H9) which, for the present

problem, requires us to consider the equation

‘)anl = WpV2n s

Vop = —@yV2p—1 — 22V, + L Vy, COS Wt

where v,, = AL

-1 . . . .
I o This system has a particular solution in Y with components

given by
2 2 .
Van—1(t) B L1V 0, (0; — @y ) cos ot + 2 @ @, sin @yt
Van(t) (07 — 072 +4u507 | —an (@ — of) sin ayt + 21 0f cos ot |-

From this we see that (H9) is satisfied whenever @y # @, for all n.

We note that while the conditions M(ct) =0, M'(¢t) # O can be satisfied with
W =0, ¢ = 0 we require up # 0 in Section 5.2.4 where we use a weak exponen-
tial dichotomy to lift the full equation. Thus, we obtain the following result using
Theorem 5.2.4.

Theorem 5.2.5. If wy # w, for all n then whenever Uy satisfies Lo, # 0 and

RIVZ4 T
VD) o (5.2.12)
2a3 2a

Hop
Ho,1

0<‘ <

there exists a corresponding 50 > 050 thatif0 < & < Eo, if the parameters in (5.2.10)
are given by = & iy then there exists a compact subset of R*> x Y on which the
2mth iterate, F*", of the period map F of (5.2.10) is invariant and conjugate to the
Bernoulli shift on &. Here m € N is sufficiently large.

These results are stated in terms of the Galerkin equations (5.2.10) but they
can be transferred back to the original partial differential equation. In this case
we get a Bernoulli shift embedded in [H](0,7) NH?(0,7)] x L*(0, ). This is dis-
cussed in [5]. In the u;-u, plane we get from the condition (5.2.12) four small
open wedge-shaped regions of parameter values for which the partial differen-
tial equation exhibits chaos (Figure 5.3). These regions are bounded by the lines

ti/po = 13\53@0 sech 52 and pp = 0.

It is interesting to look at some history of this problem. The first work was done in
[28] in which the author started with the PDE and carried out the Galerkin expansion
but restricted his analysis to the reduced equation (5.2.11). The significance of that
work is that it introduced the idea of Melnikov analysis. In subsequent work [3], the
results are extended to infinite dimension but the Galerkin approach is abandoned

in favor of nonlinear semigroup techniques directly in infinite dimensions. In our
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%53

A AN
/ AN

Fig. 5.3 The chaotic open wedge-shaped region of (5.2.10) in R

section we go back to the original, simpler analysis of the reduced equation and
then show that the results apply to the original PDE. Some advantages of this are
that the Galerkin projection is a technique familiar to many engineers and physicists
and, also, we are able to utilize our general Melnikov results in Section 5.2.3. This
is illustrated further in the generalizations to follow. We note that Equation (5.2.10)
was treated also in [4].

5.2.7 Nonplaner Symmetric Beams

Let us consider a beam with symmetric cross section, pinned ends and compressive
axial load Py and assume now that the beam is not constrained to defect in a plane. If
u(x,t) and w(x,7) denote the transverse defections at position x and time ¢ we obtain
the following boundary value problem.

i = —u"" — Py + {/On (u'(5)* +w(s)?) ds] u’
—2upiicos N + g cos § cos mt

w=—w"—Pw' + {/On (u'(5)* +w(s)?) ds} w”
—2Upwsinm + p sin § cos apt

u(0,¢) = u(m,t) = u"(0,¢) =" (7,t) = w(0,1)
= w(m,t) =w"(0,t) =w'(m,t) =0
where 1, { are constants. The parameters {;, L represent the coefficients of, re-

spectively, total transverse forcing and total viscous damping. These effects are dis-
tributed between the two directions of motion. The quantity tan{ represents the
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ratio of forcing in the u-direction to forcing in the w-direction while tann plays
the same role in the damping. We suppose 1, € (0,7/2) in order to avoid certain
degeneracies. In these equations we use the Galerkin expansions

u(x,t) =Y w(t)sinkx, w(x,t)=

1 k

wy (1) sinkx

s
s

k 1

and proceed as before. This yields the system of equations
P o

iy = n2<P0 —n2>un — Enz |: y kz(u]% —|—W]%)] Up
k=1

) 1 _ (_l)n
—2Upit, cos ) + 24y cos § |08 ot ,
n

(5.2.13)

T o

Wy = nz(PU —nz)wn — Enz { ) kz(u,% +W%):| Wy
k=1
. . 1—(=1)"
—2Up W, sinn + 24y sin § e coSs Wyt .
n

As before, we assume 1 < Py < 4 and define a = Py —1, (0371 = n(n2 —R),

n = 2,3,.... Equations (5.2.13) take the form of (5.2.6) when we define x =
(ul,lftl,wl,wl) and y = (uz,I/'tz/(x)l,W2,W2/a)1,u37l/'t3/a)z,W3,W3/(l)2,...). The re-
duced equations are

X1 =x3,

. 2 T 2, 2 4

Xy =a’x] — E(xl +x5)x1 —2bxpcos M + E“l cos § cos wyf ,
X3 = X4,

. 2 jr 2 2 . 4 .

X4 =ax3— E(xl +x3)x3 — 2Uox4 sin M —|—;,u1 sin § cos @yt .

When p = 0 we have a two-dimensional homoclinic manifold given by y3 =
(rcosB,rcosB,rsinf,7sinB) where, as before, r(t) = (2a/+/7)sechat and B is
a parameter. The adjoint equations (5.2.8) take the form

v = {—az + g(3r200s2B +r? sinzﬁ)} va+ (r?sinfcos B) va
V) = —Vi,
v3 = (mr?sincosB) va + {—az + g(r2 cos’ B+ 312 sin2ﬁ)} va,
V4 = —V3.

A one-parameter family of bounded solutions to these equations is given by
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vgy = (—7#sinf,rsinB,icos B, —rcosf),

vgy = (—icosfB,icos B,—isinB,7sinf3) (>-2.19

and the function, M, as in (4.2.7) becomes

M (u,a,pB) = Lj% sin (B — C)cos(uoasechjzzo} Wi,

My(u,a,B) = ﬁ/a; cos (B — &) sinapasech 7172(;)0] U

{ 164> (cosn cos? B +sin7 sin” B) ]
- 2%
3r
Next, the conditions M (o, 0%, Bo) = 0, D¢ gyM (Lo, %, Bo) nonsingular are satis-
fied in two different cases. Of course, we suppose o1 7 0, o2 7# 0 and then put
Ao = % We have the following two cases:
Case 1. We can choose either By = ¢ and then look for a simple root of the
equation
Ao = mysinapor, (5.2.15)

or By = £ + m and look for a simple root of the equation

Ay = —my sinmy o (5.2.16)
for
3v/max Ty
mp = - — sech——.
2a2(cosn cos? § +sinn sin® §) 2a
Supposing under the condition
0 < [Ao| <my, (5.2.17)

there is a simple root o of (5.2.15). Similarly, (5.2.16) has also a simple root — .
According to the formulas (5.2.14) for vg, and vg,, these simple roots (¢, ap) and
(& +m,—0ap) give two different solutions of (5.2.13).

Case 2. We begin from choosing my0p = (2ko + 1) % for kg € {0,1} and then we
look for a simple root fy # § + k=, Vk € Z of

Ao = (—D)kod(B) (5.2.18)

where

do@ cos(B-Q)

D(B) = ech@.

2a*  cosmcos? B +sinn sin® B 2a
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Let my = maxgep @(B). A computation of the constant m;, is discussed in [29].
Since (B + ) = —P(P), the range of P is the closed interval [—my, m,]. We now
split this case into two parts:

Part 2A). For 17 =n/4 we get D(B) =mjcos(f — {), along with m, =m; =
3wp\/7
V2a?

se h —_— Equatlon (5.2.18) has now the form

k03w0\/>
V2a?

so under condition (5.2.17), there is a simple root fy different from § + k7, Vk € Z.
This holds for both cases ko € {0, 1} so we have two different solutions of (5.2.13).
In addition, the results of Case 1 still apply here. Thus, in this situation, we have
in the u-uo plane four wedged-shaped regions of parameter values bounded by
Up/Uy = £my, g = 0 for which the partial differential equation exhibits chaos.
Particularly, (5.2.13) has four distinct homoclinic solutions, two from Case 1, two
from Case 2A. These regions are labeled /7 in Figure 5.4. In this case there are no
regions labeled /.

(=1 Chfcos(ﬁ )=

Part 2B). For ) # /4 we get ®'({) # 0, so m; < my. Certainly for the solv-
ability of (5.2.18) we need |Ay| < my. Now we claim:

Lemma 5.2.6. If
Ao € (—my,mp) \ {£m,0}, (5.2.19)

then Eq. (5.2.18) has a simple root By € [0,27)\ {{,{ + 7}

Proof. Assume to the contrary that (5.2.18) has no simple roots for a A9 € (—my,
my) \ {zmy,0}. Then there are 0 < f8; < , < 27 so that

D(Pr2) = (1%, @'(Bi2)=0, @"(Bi2)=0. (5.2.20)

Note that 81 2 # { +km and B12 # § + 2k+1 7, Vk € {0,1}. After some calculation
we derive from (5.2.20) that cos2; » # O sin2f; » # 0 and that (5.2.20) is equiva-
lent to

cos(Bi2—¢) _ sin(B12 —€)
cosncos? B +sinnsin® B, (cosn —sinm)sin2p; o
(5.2.21)
cos(Bi2—¢) & 243 Ty
- : — (~1)ko h 2%
2(cosm —sinn)cos2Pi 2 (=1) SwOﬁCOS 2a Ao
From (5.2.21) we derive

COSZﬁLz = M 2tan(B172 — C) = tan2ﬁ172. (5.2.22)

3(cosn —sinn)’
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Hence
Bre{m—Bi,n+pi,2r—Pi}.

If B, = w— B then from 2tan(B; — {) = tan2f3, we get 2tan(fB; + §) = tan2p;,

but 2tan(f; — §) = tan2pf;, so tan(f; + §) =tan(B; — §),ie. { =km/2,k € {0,1}.
This contradicts § € (0,7/2). If B, = w + B then

(—1)2% = @(B2) = D(Bi +7m) = —P(B1) = (1)

which implies Ag = 0, a contradiction. If 8, = 27 — f3; then again we derive tan(f; +
§)=tan(B; — ), sothat { = km/2, k € {0,1}, a contradiction to § € (0,7/2). The
proof is finished. a

Note that By € {{,{ + 7} for the Case 1, while By € [0,27) \ {{,{ + 7} for the
Case 2. Lemma 5.2.6 can be applied to both cases oy = 22)0 (2ko+1), ko € {0,1},
so Part 2B yields, in the -y, plane, four wedge-shaped regions of parameter val-
ues bounded by /) = tmy, tp /W = £my, g = 0 for which (5.2.13) has two
different homoclinic solutions. These regions are labeled 7 in Figure 5.4. Note that
we have four different solutions of (5.2.13) in regions labeled /1, since there Case
1 can be also applied (see (5.2.15) and (5.2.16)). This completes the analysis of the
Melnikov function. We now check about resonance. Because in the present problem
all coupling terms are nonlinear, the linear equation in (H9) consists in two copies
of the system of equations in the preceding example. This yields the following result
obtained from Theorem 5.2.4.

1253

Hi

Fig. 5.4 The chaotic wedge-shaped regions of (5.2.13) in R2.

Theorem 5.2.7. Suppose wy # @, for all n and let m|, my be as above.

(a) If mg # 0 satisfies one but not both of |mo| < m; then if o2/ Uo,1 = mg there
exists a corresponding EO > 0 so that if 0 < & < EO: if the parameters in (5.2.13)
are given by U = £ L1y then there exist two homoclinic orbits which can be used to
construct a compact subset of R* x Y on which the 2mth iterate, F*", of the period
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map F of (5.2.13) is invariant and conjugate to the Bernoulli shift on &. Here m € N
is sufficiently large.

(b) If mo # 0 satisfies each of |mg| < m; then there are four homoclinic orbits as
in (i).

In summary, we obtain eight open small wedge-shaped regions of parameter val-
ues in the U -1, plane bounded by the lines u, /() = +my, U/l = £m; and p, =0
with m; < my for which the partial differential equation exhibits chaos (Figure 5.4).
In the regions labeled I there are two homoclinics while in regions I/ there exist
four. It is interesting to note that in this case, by adjusting the parameters 1 and &, it
is possible to make the size of the wedge arbitrarily close to filling the p;-u, plane.

5.2.8 Nonplaner Nonsymmetric Beams

For the case of a nonsymmetric beam with nonplaner motion we have the boundary
value problem

T
ii= —u" — Py + [/ (u/(s)z—i—w'(s)z) ds] u”
0
—2Mpticos M + iy cos & cos mpt
T
W= 7R2W””7P0W”+ |:/ (MI(S)Z—I—W/(S)z) dsi| w
0
—2Upwsinn + uy sin § cos wyt
u (0,¢) =u(z,t) =u"(0,t) = u"(m,1)
=w(0,t) =w(m,t) =w"(0,¢) =w"(m,t) =0

where R? is constant representing the stiffness ratio for the two directions. We as-
sume that R > 1 which amounts to choosing w as the direction with stiffer cross-
section. Note that R = 1 reduces to Section 5.2.7. As before we assume that 17,
¢ € (0,7/2). The Galerkin expansion becomes

T o
iin = n?(Py—n)u, — Enz L;l P (ug +wi) | uy

1—(—-1)"
— 2y, cosn + 21y cos § {fm)} cos myt
(5.2.23)

Wp

n (=<}
Vip = n?(Py—n*R*)w, — Enz [Z K (uF +w?)
k=1

—2UpWy sinm + 24y sin & {1_7(1__1)} COS Wt .
n
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If Py is increased only enough to give one buckled mode, necessarily in the u direc-
tion, the problem reduces to Section 5.2.6. We shall assume here the next simplest
case consisting of one buckled mode in each direction which occurs when 1 < Py <4
and R? < Py < 4R?. Note that this requires R < 2 and we assume that RP<Py<4.1f
the stiffness ratio is too high there will be multiple buckled in the u (soft) direction
before occurrence of the first buckled mode in the w (stiff) direction. We define

a%:P()fl, > l71:r12[(nz—P0], n=23...;

e
& =PR—-R, 0 ,=n’["RP—PR), n=273,....

n

We put (5.2.23) in the form of (5.2.6) by defining

X = (ulaulvwlawl)a

y = (u,ti2/ @11, W2,W2/ @12,u3,13/ W21, W3, W3/ W 2,...).
The reduced equations are
X'] = X2,

T 4
Xy = a%xl - E(x% +x§)x1 —2lxycosn + %Ml cos § cos wpt

X3 = x4,

T 4
X4 = a%)g - E(x% —l—x%))@ —2Upxysinm + E'ul sin { cos @t .

For the unperturbed equations we have two homoclinic solutions given by
')/1:(7'1,};‘17070)7 ,)/2:(0’07’.27’;2)

where r(t) = (2a1/+/7 ) sechayt and r,(t) = (2a,/+/7 ) sechayt. Using ¥ the ad-
joint equations (5.2.8) become

. ) 3T, .
V] = —a1+7r1 V2, V2= —Vi,

T

V3 = <fa%+ Er%) V4, V4= —V3.

The essential issue here is to determine the space of bounded solutions to these
equations. We can write these in the form

" » 3w, . 2 o
V2=<a1—2rl>vz, V4:((12—§rl V4.

The v, equation has a one-dimensional space of bounded solutions spanned by the
solution v, = 71, obtained from 7;. For the v4 equation we have the following result.
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Lemma 5.2.8. Let k > 0. The equation
v+ (—A + Ksech?r)v =0

has a bounded solution if and only if there exists an integer M so that

/l:%(\/41<+ —4M—1)> for 0§M<%(\/4;<+1—1)
or A:%(\/W—4M—3)z for O§M<%(\/W_3).

The idea for the proof of this lemma is to express the solution as the product
of a power of sechs and a hypergeometric function with argument — sinh’7. The
condition for the existence of a bounded solution is that the hypergeometric series
terminate and the resulting polynomial is of sufficiently small degree. The details
for this have been worked out in Appendix of [30]. See also Sections 23, 25 of [31].

Applying Lemma 5.2.8 to the equation for v4 we find that the condition for a
bounded solution is a; = a; which is ruled out by the assumption of R > 1. Hence,
the system of equations for v has a one-dimensional space of bounded solutions
spanned by v = (—#,7,0,0) and the Melnikov function (4.2.6) is
8wy cos § 1643 cosn
7\/% ) 120)

The non-resonance hypothesis follows as in the previous examples which leads, in
the present case, to the following result obtained from Theorem 5.2.4.

. Ty
M = h— -
(oc) [ s1n Wy & sec 1 } Ji5 <

Theorem 5.2.9. If wy # W, for all n and for i = 1,2, then whenever Ly satisfies
Ho.1 # 0 and
3v/Twycosl sech T

<
Za? cosn 2a;

0<‘”°"2
Ho,1

there exists a corresponding é_o > 050 thatif0 < & < Eo, if the parameters in (5.2.23)
are given by . = & gy then there exists a compact subset of R* x Y on which the
2mth iterate, F*", of the period map F of (5.2.23) is invariant and conjugate to the
Bernoulli shift on &. Here m € N is sufficiently large.

Replacing 7, with 7 yields the following analogous result.

Theorem 5.2.10. If wy # m,; for all n and for i = 1,2, then whenever Ly satisfies
Mo,1 # 0 and

Ho2
Ho,1

3 .
< 7\/%600 sing sech %

0<
‘ 2a3 sinn 2ay

there exists a corresponding 5_0 > 050 thatif0 <& < 50» if the parameters in (5.2.23)
are given by . = E g then there exists a compact subset of R* x Y on which the
2mth iterate, F*™", of the period map F of (5.2.23) is invariant and conjugate to the
Bernoulli shift on &. Here m € N is sufficiently large.
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In the u;-u, plane in this case we get a diagram as in Figure 5.4. For parameter
values in the regions labeled I there is one homoclinic orbit while for those in 17
there are two.

5.2.9 Multiple Buckled Modes

One has to consider the situation where the axial load, Py, is increased sufficiently
to produce multiple buckled modes. We will look at the case of a beam constrained
to planer motion. The calculations for the non-planer case are similar. We return to
the boundary value problem of Section 5.2.6 and use the same Galerkin equations

iy = n?(Py —n*)u, — %nz [kil kzu,%} uy,
= (5.2.24)

. 1—(=1)"
—2Uptt, +2U) | ————|cosmpt, n=1,2,....
n
In the present case we assume that there exists an integer N so that N? < Py <
(N +1)2. We then define
a =n*(Py—n?), forn=1,2,...,N;
w} y =n*(n*—PR), forn=N+1,N+2,...
and put (5.2.24) in the form of (5.2.6) by defining
X = (ul,lll,uz,blz,...,uN,blN),
Y = (UN41, N1/ O, UN 2, N2/ @)

A truncated version of the resulting equations with N = 2 was studied in [30]. The
reduced equations are

Xon—1 = Xon

2 /N
Tn
. 2 2.2
Xon = AyXon-1 =~ (k):]k x2k—1> P18 —1,2,...,N.

—2UpX0n + 2y [%} cos ot

When p = 0 we have N homoclinic solutions given by

Yu=(0,...,0, FypsFm ,0,...,0), m=1,2,....N
——

2m—1,2m

where 7, (t) = (2a,,/m*\/T ) secha,t and the adjoint equation (5.2.8) along ¥, is
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) ,  wm’n®
Vop—1 = | —a;, + Vi | Von

2 " n#m
Vo = —Van—1,
) 5 3wm* 2
Vom—1 = <_am+ ) rm> Vom ,
Vom = —Vom—1-
For the distinguished equation we have the bounded solution vy,,,—1 = —#y, Vo =

while for the equations with n # m we must solve

d*vy, a: 2n? 2
= | =4 — —5sech“x ) vy,.

2 2 2
dx ag m

Using Lemma 5.2.8 we find that this last equation has a bounded solution if and
only if there is an integer M so that one of the following conditions holds:

2
2 2 2
n*(Py —n*) 1 8n
1 8n?
for0< M < 5 \/%4—1—1 ,
2
2 2 2
n*(Py—n*) 1 8n
mz(Po—mZ) :Z W+174M73 (5.2.25b)
8n2

1
forO<M < - —+1-3
4 m

If, for some fixed m, none of the equations in (5.2.25 a and b) is satisfied for n # m
we can proceed much as in Section 5.2.6 since then the adjoint equation obtained
from 7, has a one-dimensional space of bounded solutions spanned by

v=1(0,...,0,—Fn,#m,0,...,0).
——

2m—1,2m

One complication has been introduced by our assumption in the original partial dif-
ferential equation that the transverse-applied load is uniform in x. This assumption
causes the | terms to drop out in (5.2.24) for n even which prohibits nonsingular
solutions of M () = 0 as can be seen by examining Section 5.2.6. For this reason,
we must choose m odd. Theorem 5.2.4 now yields the following result.

Theorem 5.2.11. Let m be an odd integer, 1 < m < N, and suppose Py is chosen so
that none of the equations in (5.2.25 a and b) is satisfied. If wy # @, for all n, then
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whenever Uy satisfies [, # 0 and

0< [H02
Ho,1

3
< 3MVTD gy T
2a;, 2ap,

there exists a corresponding EO > 050 thatif0 < & < EO, if the parameters in (5.2.24)
are given by . = E Ly then there exists a compact subset of R?N x Y on which the
2kth iterate, F?X, of the period map F of (5.2.24) is invariant and conjugate to the
Bernoulli shift on &. Here k € N is sufficiently large.

We can simplify the preceding results by finding cases where the equations in
(5.2.25) can never have a solution. The following is a helpful result along these
lines.

Lemma 5.2.12. The equations in (5.2.25) can never be satisfied for n < m < N.

Proof. For (5.2.25a) we have % (\ /8n%/m2 +1— 1) < % so we have only one equa-

n2(Py—n?)
m2(By—m?)

2 /2
2 n n
2 (T
1 8n? n? m? <m2 )
— +1—-1| —— = <0
4 m? m? 2 812

n
e RV

. . . 2
tion to consider with M = 0. But then we have, first, > :;172’ and also

so that Equation (5.2.25a) has no solution for any Py. Next we note that when n < m,
1 272 :
we have 7 (\/811 Jm?+1— 3) < 0 so that there are no equations for (5.2.25b). 0O

When m = N the preceding result will eliminate any restriction, obtained from
(5.2.25), on Fy. This fact was shown with a different technique in [4] where they
used a more general transverse forcing term which allowed for the possibility of a
U, term for each n in (5.2.24) and, hence, also for each 7 in the reduced equation.
They then take m = N. Since, for our specific form of loading, we must have m odd
we have the following result.

Theorem 5.2.13. Let N and Py be as for (5.2.24) and suppose one of the following
holds:

(i) Nisoddandm=N.
(ii)) Niseven, N >4, m=N—1 and

AN? — (N —1)? [\/9N2—2N+ —3(N-— 1)}2

PO# 2
AN? — [\/9N2 “ANF1-3(N— 1)}

(i) N=2, m=1and
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37+5ﬁ 55+9f
PO# ) P 7é

Suppose in addition that o, # @y for all n. Then whenever L satisfies Lo, # 0 and

3
myTey o T

Ho2
< | Ko,
C 243, 2a,,

Ho,1

there exists a corresponding EO >0sothatif 0 < & < <§0, if the parameters in (5.2.24)
are given by u = E Ly then there exists a compact subset of R?N x Y on which the
2kth iterate, F?X, of the period map F of (5.2.24) is invariant and conjugate to the
Bernoulli shift on &. Here k € N is sufficiently large.

Proof. The result is obtained by using %, and proceeding as in Section 5.2.6. This
is valid as long as Equations (5.2.25) have no solutions for n # m so it remains to
show that this is true in each case. If (i) holds we can use Lemma 5.2.12.

If m = N — 1 then, using Lemma 5.2.12, we need check only n = N. Define

1 8N?

fa(N):4 (Ni_l)z-i-l—l ,
1 8N?

fb(N):Z m+1—3

Then (5.2.25a) must be checked for integers M € [0, f,(N)) and (5.2.25b) for inte-
gers M € [0, f»(N)).

In case (ii) we have N > 4 which implies 1/2 < f,(N) < (v/137—3)/12 < 1 s0
we need consider only M = 0. In this case we solve

N*(Py—N?) B
Ry e R
for Py to get
NY—Af, (NN (N—1)? N? 8N2
b=y~ 2 [I_Q(N_nz_ EE

But this value is negative and can be discarded. Similarly, we have, for N > 4,
0< fp(N) < (v137-9)/12 < 1, 50 in (5.2.25b) we need also consider only M = 0.
Here we get

o N (N 1) 4N4—(N—1)2[\/9N2—2N+ —3(1\7—1)}2
0= 7 =

SN e [ onr N 13- )]
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Next, we consider (iii) where N = 2, m = 1. Since 2 > f,(2) = (v/33 —1)/4 > 1
we must consider M = 0 and M = 1 in (5.2.25a). When M = 0 we get the value
Py = —(7+/33)/2 < 0 which can be discarded while for M = 1 we have Py =
(37 4 5+/33)/16. Finally, 0 < f,(2) = (v/33 —3)/4 < 1, so only M = 0 must be
considered in (5.2.25b) and this yields Py = (55+9+/33)/16. O

5.3 Periodically Forced Compressed Beam

5.3.1 Resonant Compressed Equation

This section is a continuation of Section 5.2, and it is devoted to the study of a
system modelling a compressed beam with friction subjected to a small periodic
forcing. Particularly we are interested in the existence of chaotic patterns. The model
is described by the following PDE

Wy + Upyrx + Ylhy — Kty f (/On ui(é,t)dﬁ) = e(vh(x,V¢et) — uy), (5.3.1)

u(0,1) = u(m,t) =0 = uy(0,1) = uy(m,1) (5.3.2)

where u(x,1) € R is the transverse deflection of the axis of the beam; v > 0 is an ex-
ternal load, k¥ > 0 is a ratio indicating the external rigidity and d > 0 is the damping,
€ and Vv are small parameters, the function A(x,¢) represents the periodic (in time)
forcing distributed along the whole beam. We assume that & € L™ (R,L*([0, 7])) is
a 1-periodic function of ¢ with || i h(x,-)?dx|| , = 1. Therefore €V represents the
strength of the forcing.

Section 5.2 discusses Equation (5.3.1) when the external load 7 is not resonant
and x € R is fixed. Here we discuss the complementary case. Precisely we assume
that v is slightly larger than the i-th eigenvalue of the unperturbed problem: y =
2+ €02, where i € N is fixed, € >0 and 0 € (0, 1]. Therefore we will also assume
that x = €k, so that the contribution given from the stress due to the external rigidity,
does not drive the system too far away from the resonance.

5.3.2 Formulation of Weak Solutions

It is easily observed that the unperturbed problem

Upxxx + Yitax = 0,

u(0,8) = u(m,t) =0 = 1y, (0,1) = uy(7,1)
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admits {j?| j € N} as set of eigenvalues and that the corresponding eigenfunctions
% sin(jx), where j € N, form an orthonormal system in L% ([0, 7z]) which generates

the space HZ ([0, 7]). First of all we make the linear scale t <+ v/€t. Then Egs. (5.3.1),
(5.3.2) read:

u,,—|—1[uxxxx—|—( + €02y ] — kf(/()nui(é,t)d§>uxxzvh(x,t)—\/g&tt,

u(0,8) = u(m,t) =0 = uy(0,2) = upe(m,1).
(5.3.3)
We want to solve (5.3.3) in a weak form, that is, we look for a function u €
L~ (R,H§([0,x])) € L=([0,7] x R) so that

/+w/ { (zz+1[%m+( +e0%)%,]

(5.3.4)
—kf (/O” ui(é,t)cﬁ) Yoo — ﬁﬁ'ﬂ) — V¥ (x,1)h(x,1) }dxdt =0

for any ¥(x,t) € C~([0, 7] x R) with compact support so that

Y(0,t) =¥(m,t) = Wr(0,1) = W (m,1) = 0.

5.3.3 Chaotic Solutions

In this section, the existence of chaotic solutions is studied for (5.3.1). To start with,
note that we can expand the function u(x,r) € L (R, H3 ([0, 7])) as follows:

u(x,t) =1/ = [ Z @ (2) sin(Ix) + y(¢) sin(ix —|—sz sm(jx)],
0<I<i J>i
where ;(7),y(),z;(t) € L(R), the expansion holding in H3([0,7]). Similarly we
write:

o 2]

where, for any k > 1, y(t) € Ci’(R), the space of C*-functions on R having com-
pact supports. Plugging the above expression for u(x,t) and ¥(x,¢) into (5.3.4) and
using the orthonormality, we arrive at the system of equations for the components

(90(2), (1), 2j(1)) of u(x,1)

Zl//l sin(lx) + y;(¢) sin(ix) + ill//j(t)sin(jx)] ,
j=it
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oi(r) — ﬂlz ) +kI*f (Z Po(t) +i2y2(f)+zjzzj(f)2)¢z(f)

o<i<i j>i

+E8¢(1) \f/hxzsmlx =0,

(5.3.5)

5(0) Py + k21 (X PO+ B0+ X ALy +VEsi()

o<li<i J>i

—v\/z/:h(x,t) sin(ix)dx = 0

_02
PO+ (L Po? + BP0+ X o500 ()

o<i<i J>i

+1/€82(1) \/7/hxtsm]xd =0
(5.3.7)

where 0 </ < i < j. In this way we have decomposed the problem along three
submanifolds: a strongly hyperbolic second order problem in Ri~!, a hyperbolic
second order problem in R, and a second order problem in an infinite dimensional
center manifold. We assume that f(x) satisfies the following hypotheses:

(5.3.6)

(F1) The function f € C([0,0),[0,50)) N C?((0,0),[0,)). Moreover we assume
that the following conditions hold:

£(0)=0, Tlimsup|xf'(x*)| < oo, limsup|x’f"(x?)] < oo.
x—07t x—0F
(F2) The equation
j— oy +kf(y*)y=0 (5.3.8)
has a positive homoclinic solution that is a C2-solution ¥(f) > 0 so that

Jlim y(r) = lim 7(1) =
t|—o0 t|—o0

Remark 5.3.1. (a) Observe that ¥;(¢) = y(it) /i solves the equation
j— ity + kit f(i2y*)y =0 (5.3.9)

for any i € N\ {0}. That is, ¥;(¢) is a solution of the equation obtained from (5.3.6)
taking ¢;(r) =0, z;j(r) = 0 and € = v = 0. We will refer to Eq. (5.3.9) as the unper-
turbed problem.

(b) Equation (5.3.8) has the energy function
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E(u3) =3+ | " (kf(s)— 0?)ds

which is even in both y and y. Since tlim v(t) = 0, we see that J(z) = 0 has a solution

to. It is easy to prove [32] that this solution is unique. Hence we can assume that
fo = 0 and then y(r) = y(—t) because of uniqueness. Thus ¥(z) has either a positive
maximum or a negative minimum at the point = 0. Since —y(¢) satisfies Eq. (5.3.8)
as Y(¢) does, we see that the assumption y(¢) > 0 is not restrictive. Then, y(¢) is
increasing on (—eo, 0] and decreasing on [0,0). As a consequence, 0 < y(t) <M :=
¥(0). Since the energy function E(y,y) is constant along (y(¢),¥(¢)) and 7(0) =0
we get

M2
/O (kf(s)— 62)ds =0
(note that ,h_,rgE(Y(t)’ 1(t)) = E(0,0) =0) and

2

/Ox (kf(s)— 62)ds <0

for 0 < x < M. Finally kf(M?) # o2, since, otherwise x = M would be a fixed
point of Equation (5.3.8). As a matter of fact, we have kf(M?) > c2, since the

2
function [ (kf(s) — 0?)ds passes from negative values to O when x — M~ and
then its derivative at x = M must be nonnegative. As a consequence, assumption
(F2) implies that the following condition holds:
2

X
(F2’) There exists M > 0 so that / [kf(s)— 62] ds < 0 for any 0 <x < M and
0

/ " [kf(s) — 6] ds = 0. Moreover kf(M?) > 6.
0

On the other hand, if condition (F2’) holds then the solution ¥(¢) of (5.3.8), ¥(0) =
M and 7(0) = 0, satisfies 0 < y(¢#) < M for any 7 # 0, and is homoclinic to the
(hyperbolic) fixed point x = 0, X = 0 of (5.3.8). Thus the two conditions (F2) and
(F2’) are equivalent. Finally we observe that the curve (y(¢),7(¢)) is contained in
the sector {(,y) | y > 0 and |y| < oy}, thatis, |y(z)] < oy(¢) for any r € R.

(c) Since we look for solutions close to the homoclinic orbit, in fact, it is enough
that f is defined just for 0 < x < M? + 1.

(b) Assumption (F1) is satisfied in particular if we take any function f(x) of the
form f(x) = g(x*), where a >  and g(x) € C?([0,0),[0,0)) is a positive function
so that g(0) = 0.

We see that (5.3.5), (5.3.6) and (5.3.7) are similar to (5.1.6), (5.1.8) and (5.1.8).
So we can repeat arguments of Section 5.1, i.e. we can apply a Lyapunov-Schmidt
reduction method like for the system of (5.1.6), (5.1.8) and (5.1.8) to deriving a
Melnikov function for (5.3.1), (5.3.2). We do not go into details, and we refer the
readers to [33], we only here recall the following notations (cf Section 5.1.3). For
any E = {e;}jcz € &, we put
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lF = {oc ={a;}jez €”(R) |ajeRand oj = 0ife; = 0}’

with £°(R) being the Banach space of bounded, doubly infinity sequences of real
numbers, endowed with the sup-norm. For any (E, &) € & x {5 we take the function
YE,a) € L7(R) defined as

(1) = { W= 2jm—0)) if (2j—1im <1 < (2j+ )m and e; =1
YEo)(t) = 0 if (2j—1)m <1< (2j+1)m ande; =0.

Now we can state the following main result proved in [33].

Theorem 5.3.2. Assume that the conditions (F1) and (F2) are satisfied, and that h €
L>(R,L*([0,7])) is 1-periodic with respect to t and || [ h(x,-)*dx||, = 1. Assume,
further, that 1y € R exists so that the function

M(7) =8 [ Z (2di — “0\[2: | /:, . /0 " A, 4+ 1) /i) sin(ix) dxdr

has a simple zero at T = 1y € [0, 1], that is, M(t)) = 0 and M'(ty) # 0. Then there
exist p >0, € > 0and fi >0 so that forany 0 < € <&, | — Uo| < il and m > g3/,
with m = ki and k € N, there is a continuous function Og y » : & — £*(R) so that
e.um(E) € 03 and a continuous map Ig = & — L~ (R,H([0,7])) so that

up (x,t,€) i=i g y m(E) (x,iv/er)

is a weak solution of (5.3.1) with v = \/€LL that satisfies

ess Sup,cp <p

Hg ([0.7])

. 2 . .
iug(x,t,€) — \/;7/(57%”“(5))(1\/5) sin(ix)

where || - ||H§<[O.n]> is the norm in H3 ([0, 7t]). Moreover, the map Ig y n : & — I1(&)
is a homeomorphism satisfying

ITe y (0 (E))(x,t) = ITg yy i (E) (x,1 4 2m) .
Hence ug g (x,t,€) = ug (x,t +2k/\/€,€).
Finally we note that from (F1) it follows that:

1- ! :1 2010 2 :O 1 2 ol :1 4 o1y 2 :0
Jim xf(x) = hmocf (x) =0, lim x"f"(x) = lima"f" (")

Hence the function xf(x?) is C! on R and its second derivative is bounded on K \
{0}, with K being any fixed compact subset of R. In fact, for x # 0, we have

d , d
T =281 () + () = 0= - [xf ()] o
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as x — 0. Thus 4 [xf(x?)] is continuous in R. Next

2
&) = 65 () + 42 ()

is bounded on K \ {0} for any given compact subset K of R because of assumption
(F1).
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Chapter 6
Chaos in Discontinuous Differential Equations

This chapter is devoted to proving chaos for periodically perturbed piecewise
smooth ODEs. We study two cases: firstly, when the homoclinic orbit of the unper-
turbed piecewise smooth ODE transversally crosses the discontinuity surface, and
secondly, when a part of homoclinic orbit is sliding on the discontinuity surface.

6.1 Transversal Homoclinic Bifurcation

6.1.1 Discontinuous Differential Equations

DDEs occur in several situations such as in mechanical systems with dry frictions
or with impacts or in control theory, electronics, economics, medicine and biol-
ogy [1-8]. Recently attempts have been made to extend the theory of chaos to dif-
ferential equations with discontinuous right-hand sides. For examples, planar dis-
continuous differential equations are investigated in [9, 10], piecewise linear three-
dimensional discontinuous differential equations are investigated in [11, 12] and
weakly discontinuous systems are studied in [13—15]. Melnikov type analysis is also
presented for DDEs in [16-21]. An overview of some aspects of chaotic dynamics
in hybrid systems is given in [22]. A survey of controlling chaotic differential equa-
tions is presented in [23]. The switchability of flows of general DDEs is discussed
in [24-26]. Planar discontinuous differential equations are investigated in [27, 28]
using analytic and numeric approaches. Periodic and almost periodic solutions of
DDE:s are considered in [29-33].

In [34] bifurcations of bounded solutions from homoclinic orbits are investigated
for time perturbed discontinuous differential equations in any finite dimensional
space. We anticipated that under the conditions of [34] not only the existence of
bounded solutions on R, but also chaotic solutions could occur. The purpose of
this section is to justify this conjecture about the existence of chaotic solutions. To
handle this kind of problem one has to face the new problem that stable and unstable
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manifolds may only be Lipschitz in the state variable, even if they are possibly
smooth with respect to parameters. So it is not clear what the notion of transverse
intersection of invariant manifolds would be.

6.1.2 Setting of the Problem

Let © C R” be a bounded open set in R” and G(z) be a C’-function on Q, with
r>2. We set

Q. ={z€Q|+G(z) >0}, Qy:={z€Q|G(z)=0}.

Let f+(z) € Cj(£+) and g € Cj (R x 2 x R), i.e. f1 and g have uniformly bounded
derivatives up to the 7-th order on 21 and R x 2 x R, respectively. We also assume
that the r-th order derivatives of fy and g are uniformly continuous. Let & € (0, 1).
Throughout this section € will denote a real parameter so that |g| < &. Particularly
€ is bounded.

Remark 6.1.1. For technical purposes, we C; -smoothly extend f+ on R", g on R*+2
and Y4, % on R in such a way that

sup{| /()| | z € R"} < 2sup{|f:(z)| |z € 1},
sup{|g(,z,€)| | (t,z,€) € R""?} < 2sup{g(t,z.€)| [t ER,z€ Q,[e| < &} .

We also assume that up to the r-th order all the derivatives of the extended f. and
g are uniformly continuous and continue to keep the same notations for extended
mappings and functions.

We say that a function z(¢) is a solution of the equation
t=fi(z) +eg(t,z,€), z€Qq, (6.1.1)

if it is continuous, piecewise C! satisfies Eq. (6.1.1) on £, and, moreover, the fol-
lowing holds: if for some #y we have z(fo) € o, then there exists r > 0 so that
for any t € (fo — r,fo +r) with ¢t # f9, we have z(r) € Q_ U Q.. Moreover, if,
for example, z(¢) € Q_ for any t € (to — r,fo), then the left derivative of z(¢) at
t = to satisfies: z(1, ) = f-(z(t0)) + €g(t0,z(t0),€); similarly, if z(r) € Q_ for any
t € (to,to + 1), then 2(tf) = f-(z(to)) + €g(to,2(to), €). A similar meaning is as-
sumed when z(¢t) € Q. for either ¢ € (fo — r,#9) or t € (fo,to + r). Note that since
z(t) & Qo fort € (19— r,to+ 1) \ {fo} we have either z(¢) € Q_ or z(t) € Q. when
t € (to—rty) ort € (tg,tg+ 7).

We assume (Figure 6.1) that

(H1) For € =0 Eq. (6.1.1) has the hyperbolic equilibrium x =0 € £_ and a con-
tinuous (not necessarily C') solution ¥(¢) which is homoclinic to x = 0 and
consists of three branches
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v-(1), ift < -T,
¥ty = w(0), if ~T<1<T,
Y1), ift >T

where v (1) € Q_ for [t| > T, w(t) € Q4 for |t| < T and
Y-(=T)=n(-T) € Qo, 1:(T)=1(T) € Q.

(H2) Ttresults: G'(y(—T)) fe(y(=T)) > 0and G'(y(T)) f(¥(T)) < 0.

7 (1)

Fig. 6.1 Transversal homoclinic cycle y(¢) of x = f (x).

According to (H1) and because of roughness of exponential dichotomies the lin-
ear systems % = f (y_(t))x and x = f” (y:(r))x have exponential dichotomies on
(—oo,—T|] and [T, o0) respectively, that is, projections Py : R" — R" and positive
numbers k > 1 and & > 0 exist so that the following hold:

e 8(r=s), ifs<r<-T,

k
Ls) || <kedt9) ifr <s < T, 612
ke =) ifT <s<t,
)

el
=
\
5

X(s)|| <kePt9) i T <t <s

where X_(¢) and Xy () are the fundamental matrices of the linear systems % =
FL(y=(t))x and x = f" (4 (1))x, respectively, so that X_(—T) = X, (T) = L. Later in
this section we will need to extend the validity of (6.1.2) to a larger set of values of
s,t. So, let us take, for example, u(t) = X, (t)(I— Py )X (s), with T < s <t < s+2.
Then,
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t
=u(s)+ [ (e (@)ue) dr
and hence (using also |u(s)| < k (see (6.1.2))

|<|<k+K;/W o) de

where K_ = sup{f’ (y+(¢)) | t > T}. From Gronwall inequality (cf Section 2.5.1)
we obtain:

X (0)(T—P)XT ()] < kef-079) <ked0=9) i T <s<r<s+2,

where, for example, k= kmax{l,ez(K:‘s)}. By similar arguments we prove that
possibly replacing k with a larger value:

[X_()P-X="(s)|| < ke 009 ifs—2<sr< T,
X_()(I—P- <ked=s) ifr—2<s1<-T,
[[X-(2)( )X= ()II 6.13)
X ()P X7 ()| < ke 009 T <s,0 <142,
(X1 () (T—P)XZ (s)|| < kedU9) i T <5t <s5+42.

We now state our third assumption. It is a kind of nondegeneracy condition of the
homoclinic orbit y(¢) with respect to x = fi(x), that reduces to the known notion
of nondegeneracy in the smooth case [35, 36]. This is discussed in more detail in
Section 6.1.3.

Let Ry : R" — R" be the projection onto .4 G’(y(T)) along the direction of (T,

i.e. o

& T)w
G'(V(T)%(T)
and Xo(¢) be the fundamental solution of the linear system z = f% (W (t))z, =T <
t < T, satisfying Xo(—T) = I. Then let

Row=w—

o(T)

S = NP ANGC(Y(~T)) and &' =RP,ONGC (AT)).

Since 7 (-=T) ¢ ¥/ G (y(-T)), dim NG (y(-T))=n—1and y_(-T) € /' P_,
we have dim[.4"'P_ + 4G/ (y(—T))] = n and hence:

dim.#’ = dim[ A/ P_NAG'(y(-T))]

=dim A P_+dim A G (y(-T)) —n=dim A P_—1.

Similarly, from ¥, (T) & 4G (y(T)), 7. (T) € ZP; and dim NG (y(T)) =n—1,
we see that

dim.s” = dim[ZPy NN G (Y(T))]
=dim#ZP; +dim A G (y(T)) —n=dim#ZP; — 1.
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We assume that the following condition holds:

(H3) "+ Ro[Xo(T).#"] has codimension 1 in ZRy.

Lemma 6.1.2. From (H3), the linear subspaces ."" and %" = Ry[Xo(T ).7"] inter-
sect transversally in ZRy. Moreover, we have dim." = dim.7".

Proof. We have dim.¥”" < dim.’ = dim.4#"P_ — 1. Moreover from (H3) we get
dim[." 4+ .""| = n—2, and then:

dim [ N.7"] = dim.&" + dim.#" — dim [.7" + "]
<dimZP; — 1+dimAP_—1—(n—2) =dim#ZP; +dim A P_—n=0.
So the inequality is an equality and dim.¥”” = dim.¥”. The proof is finished. O
According to Lemma 6.1.2, we have a unitary vector ¥ € ZRy so that
R" =span{y}® N Ry®.S" &S (6.1.4)

and
(w,v) =0, foranyve.”"®.7". 6.1.5)

The main result of this section is the following:

Theorem 6.1.3. Assume that f+(z) and g(t,z,€) are C*—functions with bounded
derivatives and that their second order derivatives are uniformly continuous. Let
conditions (H1), (H2) and (H3) hold. Then there exists a Cz—function M (&) of the
real variable o so that if #(a®) =0 and #'(a°) # 0 for some a° € R, then
the following hold: there exist p > 0, ¢1 > 0 and € > 0 so that for any 0 # € €
(—€,€), there exists Ve € (0,€]) (cf (6.1.91)) so that for any increasing sequence
T = {Ty ez that satisfies

Tpi1 =Ty >T+1-28""In|e| foranyme Z
along with the following recurrence condition
18(t + Tom,2,0) — g(t,2,0)| < Ve forany (t,z,m) € R"' x Z, (6.1.6)

there exist unique sequences & = {0 }mez,B = {Bu}mez € £=(R) (depending
on 7 and €, ie. & = 07(€), B = Br(€)) so that sup,,cy |0, — a°| < ¢1le
Sup,cz |Bn — o°| < €1 €| and a unique solution z(t, 7 ,€) of Eq. (6.1.1) satisfying

»

SuptE[T2nlfl+Bm71 aT2m77+&IH] |Z(t) B ’y7 (t B T2m - (Axm)| < p’
SUP e (73, T4 Gy Ty + 7] 1) — 1007 = Tom — Gin)| < (6.1.7)

SuptE[T2)71+T+Bm:T2m+l+Bm] ‘Z(t) o ,}/+ (t o sz o 3'n)| < p
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We conclude this section with a remark on the projections of the dichotomies of
the systems x = f’(y.(¢))x on [T,o0) and (—eo, —T:

Pi(t) = X ()P X1 (£2). (6.1.8)

Let Py be the projection of the dichotomy of the linear system % = f/(0)x on R. We
have (see Lemma 2.5.1) limy_c ||Ps(f) — Po|| = 0. Thus T > T exists so that

NP (YO ZP_ (") =R" foranyt' 1" >T. (6.1.9)
We prove that a positive constant ¢ exists so that
max {|x; |, |x_|} <élxy +x-| V(xp,x_) € NPy x ZP_(t").  (6.1.10)

Since it is clear that |x; +x_| < 2max {|x|,|x—|} we get, then, that the two norms
|x+ 4+ x_| and max{|x;|,|x_|} are equivalent. To prove the statement (6.1.10) take
0<v<1/2andfix T > T so that for any ¢, > T > T we have

[P —Pr()[<v, [|B—P-(")][<v.
Next consider a linear mapping A, : R"” — R” given by
Apz:i= I —P.(t"))z+P-(t")z.

Note that
Avz=z—[(Pi(f) = Ry) + (Py—P_(1")] z.

Since ||(Py (') — Py) + (Py— P_(¢")|| <2v < 1, Ay is invertible and
Ao <1420, [A'] < 1/(1-20).
So for any x € R” there is a unique z € R" so that
x=Apz=x4+x_

where xy = (I—Py(¢'))z € A Pr(¢') and x_ = P_(t")z € ZP_(¢"). Then

- |T—Pol| + v
| S I=Pr(E) |zl < 11— P14 1] < W'x‘a
_ [| Pol| + v
< 1P < [P g b < PR

This proves (6.1.10) with, for example,

»_ max{|[I-All+v [|B]+ol} _ L+[|A]+v
1-2v - 1-2v

<2(1+(Al)

L+[|Py| 1

fOrv§W<§
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6.1.3 Geometric Interpretation of Nondegeneracy Condition

Now we present a geometric meaning of condition (H3). For any x € Q near y(—T)
we consider the solution ¢_(¢,x) of x = f_(x) and the solution @ (7,x) of x = f (x)
so that ¢_(—T,x) = ¢o(—T,x) = x, respectively. Similarly, for any X € Q) near y(T)
we take a solution ¢ (,X) of x = f_(x) so that ¢, (T,X) = X.

By the implicit function theorem, for any x € € near xq := y(—T) there is a
unique time 7(x) so that

G(9o(t(x),x)) =0, T(xo)=T. 6.1.11)

In summary, for any x € € near x(, we have constructed a solution ¢ (¢,x) of x =
fx(x) defined as

o_(1,x), fort < -T,
o(t,x) =< ¢o(t,x), for =T <t <1t(x),
O (t—7(x)+T,90(t(x),x)), for 7(x) <t.
We recall the following properties of the function ¢ (¢,x):
¢-(t,y(=T)) =v-(t), for t < -T,
¢0(I’Y(_T)):y0(t)v for —-T<t<T,
) _

o+ (t,¥(T)) =y (1), for 1 >T,
do(7(x),x) € Qo, forany x € Qq (near y(—T))

(6.1.12)

and note that from (6.1.12) we get, for any n € 4G’ (y(T)):

%(T’x‘))*‘i’o(im)f/(}‘o) neNG(UT))=%Ro. (6.1.13)

We are interested in the linearization ¢ (r) := g—f(z,xo)n of ¢(t,x) at x = xp
along 1 € NG (Y(~T)) = Ty_7)€ that is using ¢+ (£T,x) = x, ¢o(~T,x) = x
and (6.1.12):

X -(t)n, t<-T,
0() =14 Xo()yn, -T<t<T,
X+(t)77= <

(6.1.14)
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Next, differentiating (6.1.11) we get G'(y(T)) [a% (T,x0) + @0 (T, x0)7'(x0)| =0,
that is,
&/ (1(T)) [Xo(T) +(T)7'(x0) | =0

)
As a consequence, we have, for any n € 4G (y(—T)):

oy G T)X(T)n
0N =~ T @)

Plugging everything together and using the definition of Ry, we finally arrive at:

Iy

= (T:x0) +90(T,%0)7' (x0) | 1 = [Xo(T) +70(T) ' (x0)]n = RoXo(T)n

and
X (1)1 = X (0)[RoXo(T)0 — 74 (T (x0) 1.

Now, if ¢ (¢) is bounded on R we need n € A4 P_and hence, being € 4G (y(-T)),
we need 1) € %", Moreover, since 7. (T I') € ZP,. we see that X, (¢)7 is bounded on
Ry if and only if so is X (t)RoXo(T)n, i.e. RoXo(T)n € ZP;. But RoXo(T)n €
RoXo(T)”" C #Ry. Hence assumption (H3) implies that RoXo(T)n € (ZRyN
ZP.)NRoXo(T) =."N." = {0} as we proved in Lemma 6.1.2. In summary
we derive the following result.

Theorem 6.1.4. Condition (H3) is equivalent to, say, that ¢(t) is bounded if and
only if it is equal to zero. This corresponds to some nondegenerate condition on Y(t)
with respect to x = f(x).

For the smooth case, i.e. when f_(x) = f(x) = f(x) € C" (), we have (T) =
7, (T) and hence ¢ () = X (r)n where X(7) is the fundamental matrix of the varia-
tional equation x = f'(y(t))x along ¥(t) with X (—T) = I. Note that n € Ty _7)Qo
and 7,7 is a transversal section to the homoclinic solution ¥(r) at y(—T). So in
the smooth case, Theorem 6.1.4 states that condition (H3) is equivalent to the prop-
erty that the only bounded solutions of the variational equation X = f’(y())x are
multiples of 7(¢). Hence in the smooth case, condition (H3) is just the well-known
nondegeneracy condition of y(t) (cf [35]).

Finally, we observe that (6.1.14) can be written as

X (1) = X, (0)[L+ )Xo (T)
where S is the so called transition matrix S [8, 13, 14,19] and is given by

M ((Ro—H)V_V’Yo(T))
G'(v(T))w(T) 170 (T)|I?

with the last equality following easily from the definition of Ry, where (-,-) is a
scalar product on R”" with the corresponding norm || - ||.

sw= (1) (1) & = (1) —n(D))
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6.1.4 Orbits Close to the Lower Homoclinic Branches

Let p > 0 be sufficiently small, o, 8 € R so that | — ot| < min{1,27}, and /3 (RR) be
the space of doubly infinite sequences {7, } ez so that T, 11 — T,, > T + 1 where T
is chosen so that (6.1.9) holds. Note that T,,, — Tp > mT if m is positive and T,, — Ty <
mT if m is negative.

In this section we show how to construct solutions z,,(¢) and z}, (¢) of (6.1.1) in
the intervals [Toy—1 + 0 — 1,5 — T + o] and [Toy, + T + B, Toms1 + B + 1] respec-
tively, in such a way that

SuptE[sz,l —1.T2m—T] |Z;1 (t + a) - /Y* (t - sz)| < p’

N (6.1.15)
SUPte [Ty +T Doy 1 +1] |z (t+B) =¥+ (t —Tom)| < p.

Note that B,y 1+ 0 — 1 < Doy — T+ A < Doy +T + B < o1 + B + 1. We show
how to construct 7, (¢) for ¢ € [To—1 + @ — 1, Ta,, — T + @], the construction of 7} (¢)
fort € [T +T + B, Tams1 + B + 1] is similar. Let

I, = [Tmel_l;TZm_T}a Irjl- = [T2m+T7T2m+l+1}a

Lyo:=[Dm1+a—1,T—T+a], (6.1.16)
1,;/3 = [Tom+T + B, Toms1 + B +1]

and set, forr €1,

x(t) =z, (t+a)—y-(t — Tom)
and
h,;(Lx,OC,S) = f—(x+Y—<t_ sz)) —f_(’J/_(t—sz)> 6.1.17)
—fL(y=(t = Tom))x +€8(t + 0, x + Y- (t — Tom), €). h

Then z,,(¢) satisfies Eq. (6.1.1) for ¢ € I, ,, together with (6.1.15) if and only if x(¢)
is a solution, in ,;, of the equation

X Lyt = Tam))x = Iy, (2,x, 01, €), (6.1.18)

so that sup, - [x(z)[ < p.

Remark 6.1.5. According to Remark 6.1.1, we see that up to the r-th order all
derivatives of &, (t,x,a,€) with respect to (x,o,€) are bounded and uniformly
continuous in (x,@,€) uniformly with respect to ¢t € I,, and m € Z. This state-
ment easily follows from the fact that for r < —T, one has h,, (t + Topm,x, 0, €) =
S (A 0) — £ (7)) = S~ (7 1))+ €8{t + Ton+ &, ¥+ ¥. (1), €) and the con-
clusion holds as far as f(x) and g(¢t 4+ To;m + ¢, x+ y_(2), €) are concerned.

We will need the following Lemma [37,38]:
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Lemma 6.1.6. Let the linear system x = A(t)x have an exponential dichotomy on
(—oo, —T| with projection P, and let X (t) be its fundamental matrix so that X (—T) =
I Set P(t) := X (t)PX~\(t). Then for any continuous function h(t) € C°([~T,—T]),
E_e NPand ¢ € ZP(—T), the linear non homogeneous system

x=A(t)x+h(t) (6.1.19)
has a unique solution x(t) so that
(I-P)x(-T)=§&., P(-T)x(-T)=¢_ (6.1.20)

and this solution satisfies
x(0) = X0 +XOPX ' (-T)g+ [ X(0PX ()h(5)ds
7 -T

7 (6.1.21)

_ / X(6) (1= P)X " (s)h(s)ds.

t

Proof. We can directly verify that (6.1.21) solves (6.1.19) and it satisfies (6.1.20)
as well. Next, if =0, £_ = 0 and ¢_ = 0, then (6.1.19) implies x(¢) = X (¢)xo for
some xo, while (6.1.20) gives (I — P)xo = 0 and X (—T)Pxp = 0. Since X(—T) is
invertible, we obtain xo = 0, which yields to the uniqueness of x(¢). The proof is
finished. O

Remark 6.1.7. From (6.1.2) and (6.1.21) we immediately obtain the following esti-
mate for |x()]:

sup  |x(t)| <k |[|E-|+|p-|+287" sup |h(t)|] . (6.1.22)

—T<t<-T —T<t<-T

We apply Lemma 6.1.6 and Remark 6.1.7 with A(¢) = f” (y—(t — Tam)) in the
interval I, (instead of [—7,—T]). Note that the fundamental matrix X (¢) and the
projection P of the dichotomy on (—oo, T3, — T of the linear system x = f” (y_(f —
To))x are X_(t — Tpy,) and P, respectively. Thus, in the notation of (6.1.8) and
Lemma 6.1.6 we have

Py =P(Dy1—1)=X_(Tom1— Do — 1)P-X"" (Toy—1 — Do — 1)
= Pf(TZm - Tmel + 1) .

Set:

%[l = sup [x(z)[.
1€ly

Then a trivial application of Lemma 6.1.6 and (6.1.22) gives the following

Corollary 6.1.8. Let h(t) € C°(1,,), & € AP and ¢_ € RP- . Then the linear
nonhomogeneous system
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5= £ (7=t = Tam) 4 A1)
has a unique solution x(t) € C'(I,,) so that
([P )x(Tom—T)=&_, P_px(Top—1—1)=0_. (6.1.23)
Moreover this solution satisfies (see (6.1.22))
()]l <k|IE-|+ -] +267" ||h(t)||1,;j| (6.1.24)

and

x(t)=X_ (tt— Do) +X_(t —Top)P- X" (Top1 — 1 — Do) @
+ X_(t — Tom)P-X"" (s — Tam)h(s)ds

Toy—1—1

Tom—T
_ / X (t = Tom) (I — P_)X " (5 — T )(5)ds.

(6.1.25)

Using Corollary 6.1.8 we define a map from C°(I,) x A P_ x ZP_ ,, x R? into
C%(I,) as
(x(1), 8-, 0, a, &) — £(1) (6.1.26)

where y(r) = £(¢) is the unique solution given by Corollary 6.1.8 of the equation
V() = FL(v=(t = Tom))y(1) = by (2,x(2), 00, €)
that satisfies conditions (6.1.23). We observe that the map
(x(2),0t,€) = hyy (2,x(2), 0, €)

is a C" map from C°(I,) x R? into C°(I;,) [39] and hence, from (6.1.25) we see that
so is the map (6.1.26) from C%(I,,) x A P_ x ZP_ ,, x R? into C°(I,,). Next, from
(6.1.17) we obtain immediately:

(1A (5%, 00, €) || < A (|x])[x[ 4 Nl (6.1.27)

where
A_(r)=sup{[fL(x+71-(1) = fL(r-(0)| |1 < =T, x| <}

is an increasing function so that A_(0) = 0 and
N =sup{lg(t,z€)| | (1,z,€) e R""}

and hence, using (6.1.24) we get:

||£H1,; <k “64 +[o-| +25_1A7(|IXI|1,;)||XH1; +25_1N|8|} . (6.1.28)
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Similarly, for fixed (&_,¢_, &) € NP x BP_ ,, x R? and x; (t),x2(t) € C°(I,,)
we see that
122 — %1~ <2k67 [A_(F)+N'|e]] |lx2— x| - (6.1.29)

where 7 = max{||x ||1’;, ||x2||1,;} and

N :sup{’gi(t,z,s) | (t,z,€) € R"“} .

Thus if p > 0, |&_|, |@_]| and |g]| are sufficiently small, the map (6.1.26) is a
C"—contraction in the ball of center x(¢) = 0 and radius p in C(I,), which is uni-
form with respect to the other parameters (&_, @_, o, €) and m € Z. Hence we obtain
the following:

Theorem 6.1.9. Take on (H1), (H2) and let (§—,¢_, 0, €) € NP x ZP_,, x R?,

p > 0 be such that 2k [|E_| + |@_| + 28 'N|e|] < p and 4k6~' [A_(p) + N'|e|] < L.
Then, fort € I, Eq. (6.1.18) has a unique bounded solution x,, (t) = x,, (t,6_, ¢_, ¢, €)
which is C" in the parameters (_,¢_, o, €) and m € Z, and satisfies

6 (6, 0 0t €) | < 2Kk [|E- |+ |- +28 'Nlel] <p (6.1.30)
together with
(TP ) (o —T) =&, P Xy (Tom—1 — 1) = @_.

Moreover the derivatives of x,,(t,E_,¢_,a,€) with respect to (E_,¢_,a,€) are
also bounded in I, uniformly with respect to (—,¢_, o, €) and m € Z and they are
uniformly continuous in (E—,@_, &, €) uniformly with respect to m and t € I,

Proof. Only the last part of the statement needs to be proved. We know that
x,(t,E_,@_,a,€) is the unique fixed point of the map given by the right-hand side
of Eq. (6.1.25) with h,,(¢,x(t),a,€) instead of A(t). Since &_ € A P_ we have
Xt — Tom)E-| = [X(t — Tom) (1~ P_)X_(~T)&_| < ked0-Bn—T) & | < KIE_|
for any ¢t € I;. A similar argument shows that |X_(r — sz)P,X:I(sz,] —1-
Tom)@—| < k|o_| for any ¢ € I,. As a consequence, the right-hand side of (6.1.25)
consists of a bounded linear map in (&, ¢_), with bound independent of m € Z,
and the nonlinear map from CJ(I,,) x R x R:

t
(x(+), 0, €) — X_(t— Tgm)P,X:1 (s — Tam) by, (s,x(s5), 00, €)ds
Toy—1—-1

Tym—T
- /l Xt — Tom) (L — P_)X =" (5 — Tam) - (s,x(s), o0, €)ds

whose derivatives up to the r-th order are bounded and uniformly continuous in
(x, o, €) uniformly with respect to m because of the properties of &, (z,x, a, €) (see
Remark 6.1.5 and 6.1.2). The proof is complete. a

We are now ready to prove the main result of this section:
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Theorem 6.1.10. Take on (H1), (H2) and let (_,@_,at,€) € N P_ x ZP_ ,, x R?,
p > 0 be such that 2k [|E_| + |@_| + 28 'N|e|] < p and 4k6~' [A_(p) + N'|e|] < 1.
Then, fort € I, ,, equation 7z = f_(z) + €g(t,2,€) has a unique bounded solution
2,(1) =2, (t,E_, @_, &, €) which is C" in the parameters (E_, ¢_, o, €) and satisfies

”Zr;( + a’§—7¢—?a7£) - Y—( - sz)”I,; < 2k [|§—| + |(P—| +2671N|£|] < P
(6.1.31)
together with

(I—=P)zy(Tom =T + ) =y (-T)| =&,
Pl (D1 +0=1) =y (Tom1—Tom—1)] = ¢_.

Moreover x,,(t) =z, (t + o, &_,@_, 00, &) — Y_(t — Tam) is the unique fixed point
of the map (6.1.25) and z,,(t,&_,Q_,0,€) and its derivatives with respect to
(E_,9_,a,€) are also bounded in I, uniformly with respect to (E_,¢_,a,€) and
m € Z, uniformly continuous in (E_, o_, &, €) uniformly with respect to (t,m) with

t€l,, meZ and satisfy:

dz,,

9E_

(t+0,0,0,0,0) = X_(t — To) (I~ P_),

g(;r;([+ (X,0,0,a,O)(Pf :X*(t_ TZm)P*X:l(T2m71 - T2m - 1)(P7

P)
%(hLa,O,O,a,O) (6.1.32)

r
= X (= Tan) P-X_1 (5 = Tom )85+ 0, V- (5= Tam) 0)ds
Tom—1—

Tm_T
—/2 X_(t = Tom) (T P) X~ (s — Tom)@(s+ @, 7 (s — Tom), 0)ds
t

Proof. Setting x(t) := z,,(t + o) — y—(t — Toy) the existence of z,,(t,&_,0_, o, €)
satisfying (6.1.31) follows from Theorem 6.1.9. Thus we only need to prove (6.1.32).
From (6.1.28) we see that x;,(¢,0,0,,0) = 0 and then differentiating equation
(6.1.25) with x,, (t,&_, ¢_, o, €) instead of x(¢) and h,, (t,x,,(t,é—, 0,0, €),Q, €)
instead of h(f) we see that

daz, ox,,
%(r +0,0,0,0,0)&- = a’gj (1,0,0,0,0)6_ = X_(1 — Ton)E_.
Similarly we obtain the rest of (6.1.32). O

Remark 6.1.11. The function z,(¢) = z,,(¢t,€-,¢_,a,€) is a bounded solution of
Eq. (6.1.1) in the interval 1, , as long as it remains in Q_ for 7 € /,, ;. and sat-
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isfies (6.1.31). However in order that z, (1) € Q_ for t € I, , it is sufficient that
G(z,,(Tom — T + @)) = 0. This follows directly from (H2) and (6.1.31).

Next, let
Ac(r) = sup {| £ (e 22 (0) — - (e ()| | T <.l < 7}
Py =Py (Toms1 —Tom+1)
=X, (Dyms1 — Do+ VP Xy (Dopps1 — Do +1)71, (6.1.33)
Iy (1,3, B,€) = f- (x+ ¥ (t = Tom)) = [~ (¥ (t = Tom))
Sy (0 = Tom))x+ €8(t + B, x+ 74 (1 = Tam), €).
By an almost identical argument we show the following:

Theorem 6.1.12. Take on (H1), (H2) and let (&, @+, B,€) € BPy X N Py x R
and p > 0 be such that 2k [|& |+ |@+| + 28 "' N|e|] < p and 4k6~ ' [AL(p) + N'|e|] <
1. Then, fort € Izﬁ’ equation z = f(z) +€g(t,z, €) has a unique bounded solution

() =75 (t,Ex, 04, B,€) which is C" in the parameters (&4, @, B,€) and satisfies

e -+ B &1, 0. Bo€) = V(- = Tom) I < 2K [1E| + 4| +287'Nlel] < p

(6.1.34)
together with
Pilzy (Tom +T +B) — v (T)] = &4,
(]I_Pme)[Z)Jnr(TmeLl +ﬁ + 1) - ’Y+(T2m+l — D+ 1)} =@+
Moreover x} (1) := 24 (t + B, &+, 0+, B,€) — Vi (t — Tam) is the unique fixed point of

the map

(x(t)7§+a(P+a ﬁae) =
X+(’ - T2m)€+ +X+(t - T2m) (H _P+)X;1(T2m+1 —Tom + 1)(P+

t

[ Xe(— TP X5 (5= Tan ) (5,2(5), B €)ds
Tom+T

Tom+1+1
- / Xyt — Tom) (I— Py) X7 (5 — Tom) Ik (5, x(s), B €)ds,

' (6.1.35)
and 7} (t,E+, 04, B,€) and its derivatives with respect to (Ey, @, ,B,€) are also
bounded in I uniformly with respect to (€., @4, B,€) and m € Z, uniformly con-
tinuous in (4,94, B, €) uniformly with respect to (t,m) with t € I}, m € Z and
satisfy:

ot
9, " (t+,0,0,B,0) =X, (t — Tom) Py



6.1 Transversal Homoclinic Bifurcation 263

ozt
90, " (14 8,0,0,8,0)@4 =Xy (t — Ton) (1= PL)XT (Tami1 — Tom + 1) 94

Iz,

=2 (1+8.0,0,B.0)

t
:/T +TX+(I_Tz’")PJrX;l(S_T2m>g(s+ﬁa7’+(5—sz),O)ds
2m

TZm-H‘H
- / X (t = Tan) (L= P )X; (5= Ton)g(s+ B ¥ (5 — Tom), 0)ds.
(6.1.36)

Remark 6.1.13. Note that z,,(t,&_, ¢_, @, €) (resp. z,,(t,E+, 9., 0, €)) depends on
m by means of Tr,_; and T», (resp. Tp, and Tp,4+1). Consequently, we may
also write x~ (t7 5,’ O, 0, & Do, Tom—1 )’ Xt (t7 nga O+, 0,8 Do, Tomt 1 ) instead of
x,;(t,é,, ¢, (X,E), x;;(tvéJra (er,(X,S) and say that x_(ta(é*v ¢, a>£7T2m3T2m71)’
xT(t,E, @4, a,€ Doy, Tome1), respectively, is uniformly continuous with respect
to (&-,9_,0,¢), resp. (&4, @+,B,€), uniformly with respect to Tay, Tom—1, TESP.
Tom, Tom+1, and 1 € I, (resp. t € I)).

6.1.5 Orbits Close to the Upper Homoclinic Branch

Theorem 6.1.14. Take on (H1), (H2). Then there exist posztzve constants ¢, & and
Do so that for any o ﬂ ecRand & cR"
and |& — y(=T)| < Po, there exists a unique solution 70,(t) = zm( E a [3 8) of
equation z = f (z) + €g(t,z,€), fort € [Tom — T + 0, Ty + T + B] so that

D (P —T+a)=E
and

zm(®) = 100t = Tom = )lliz,,, 70,748 < €lIE = W(=T)| +2N8 " e]].
(6.1.37)
Moreover 20, (t,€ o, B, €) and its derivatives with respect to (€, o, B, €) are bounded
in [Ty — T + 0, To + T + B] uniformly with respect to m € Z, uniformly continuous
in (E,a,B,€), uniformly with respect to t € [Ty — T 4 0, To + T + B], m € Z, and
have the following properties:

i) 0=+, & a,B,e)—1(t — o) is a fixed point of the map

x(t) = Xo(t = Tom) [ —0(=T)]

' (6.1.38)
+ . TXo(t—sz)Xo_ (s — Tom) 12, (5, X(s), @, €)dss
2m—
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where
hi(1,x,0,€) = fo(x+ (1 = Tom)) = f (W (1 = Tom)) — f1- (0 (t — Tom) )x
+eg(t+o,x+ 0t —Tom), €).
(i) The following equalities hold:

%o 1 (7). .8.0) = ~io(t - o~ ),

% (7). 5.0) =0,

8zm
¢

Iz,

o€ (l—i—OC,’)/o(—T),OC,ﬁ,O)

t,0(=T),0,B8,0) =Xo(t — o — @), (6.1.39)

t

= . TX( Tom)Xy (S_T2m) (s+ 0, 10(s — Tom),0) ds.
2m—

Proof. The statement concerning the existence of the solution 20, (t) = 20 (1, &, o, B, €)
from which (6.1.37) holds, follows from the continuous dependence on the data.
Moreover the fact that x) () is a fixed point of the map (6.1.38) follows from
the variation of constants formula. The boundedness and continuity properties of
2(t,&, ., B, €) follow from the similar properties of 40, (¢,x, &, €) as in Theorems
6.1.10, 6.1.12. Then, because of uniqueness of fixed points we also get:

an(t,0(=T), 0, ,0) = Y (t — Tom — 0t)

from which the first two equalities of point (ii) easily follow. Differentiating (6.1.38)
with respect to &, € respectively and using the fact that h?n(t,x, o,0) is of the second
order in x, we derive the other two equalities in (ii). a

Note that if
c[po+2N8 ) < p

from (6.1.37) we obtain:
SUp{|, ¢+ @) — 10t — To)| | 1 € [Tom— T, Tom+ T+ B— ]} <p.  (6.140)

Remark 6.1.15. Note that z9,(t, t,E,a,B,€)) depends on m by means of T»,,. Thus
we may also write 2(1,&, a,,€,Toy) instead of z5,(z, t,€,a,B,€) and say that

2(t,E, 0, B,€,Ts,) is uniformly continuous in (&, &, B, &) uniformly with respect
t0 Doy and t € [Toyy — T + &, Top + T + B].
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6.1.6 Bifurcation Equation

Let & > 0, pg > 0 and ¢ > 0 be constants as in Theorem 6.1.14, C := max{c,2k},
x < 1 a positive constant that will be specified and fixed below and py < cpy be the
largest positive number satisfying

N'6
-1
4ké {Ai(poﬂ—ZNcpo} <1.

Next, let 0 < p < pp and &y := min{z”c—?\,,&‘o}. For any o = {04, } ez € £°(R) and
€€ (—gp, &) we set

Gae={0:={(0n: 0 & & 6B}y € 7R
((pt;7(p1:1ra€r;7§;{a§m7ﬁm) S %P—,m X r/VP_Hm x N P_ X%P+ % RnJrl ,
2k 1651+ 1@ +287'Nel] <. cll&n—n(=T)| +2N8"[e]] <p,

w1 Bl < 1)

mez

and
05 ={(6.0,8) € 500 X "(R) x (~5p.6p) 1 € 55 }

where

ﬁ;; = {(X EZM(R) : Sl;l%“xm_am—l' <X}

Note that because of the choice of p, &, €7 , ¢, {5 and £ are open nonempty
subsets of

O(BP- g X N Py oy X N P_ X BPy xR" X R),
O(RBP— g X N Py X N P_ X P xR" xR) x £7(R) X (—&p,&p)

and £~ (IR), respectively. In £7 , . we take the norm

1611 = [[{(@ur @+ &+ &+ s B) ez |
= su%maX{l%? Q| A& 1161 1Eml 1Bl } -
me

Let 7 = {T,y}mez be given as in Section 6.1.4 and take (6, a,€) € £7. In this
section we want to find such conditions that system (6.1.1) has a solution z(z) de-
fined on R so that any m € Z satisfies:

l2(t) ~ 7t = Tan — o). < p.
||Z(I) - YO(I —Tom — am)”]j(')? <p,
l2(t) = v (¢ = Tom = Bu)ll iz <P
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where I, = [Tom—1 4 0 — 1, Tom — T + 0], I3, = [Tom — T + O, T + T + Bu] and
It;t = [T2m + T +ﬁm; T2m+1 + ﬁm}

We note that for any (0,0, ¢€) € 5 assumptions of Theorems 6.1.10, 6.1.12 and
6.1.14 are satisfied. Indeed we have

N'S
4k67 ' [As(p) +N'le|] <4k8™' [AL(p)+N'ep] < 4k&™! [Ai(po) + 2Ncp0] <1

along with |e| < & and
£ 0
E-n(-T) <2 <2 <pp.

So according to the previous sections and because of uniqueness of the solutions
o (6, E 0 By €), 2 (6,E,) s Opr s O, €) and 20, (¢, €, O, B, €) We see that such a
solution can be found if and only if we are able to solve the infinite set of equations
(me 7).

o (Tams1 By 6t s Pon s B €) = 2yt (ot + Bins & 15 P 15 Ot 1,€) = 0,
2O (T — T + Qo Emny Oy By €) — 2y (o — T A+ Gy &7, 0 s Oy €) = 0,

2 (Tom + T + B &y Oy B €) — zm(sz+T+Bm, o P B, €) =0,
G2 (Tom =T + G, &5y, P O, €)) =

G (20, (Tom + T + Brs Ems O, B, €)) =0,

Gz (Tom +T + By &y O s B €)) =

(6.1.41)
Since Tomt1+ i1 — 1 < Doyt + B> system (6.1.41) is well posed. Note that from
Theorem 6.1.14, the second of the above equations reads:

Em = Zy;(T2m - T+am7€n;7q)r;7am7£)

and gives the sequence {&, } ez in terms of the sequences {& } ez, {0 Ymezs
{0} mez. and €. Moreover, if p is sufficiently small, 20 (T2, + T + B, Em, O, By €)
is close to (T 4 Bu — Ow), While 2} (Tom + T + B, &, @, B, €) is close to
Y+ (T) = w(T). So there is a positive constant ¥ < min{1,27} so that the 5th and
the 6th equations in (6.1.41) imply that the 3rd equation is equivalent to

R [Z&(T2m+T"’ﬁmaérmamuﬁm,g) —Z:;(sz+T+ﬁm,€,:;7(}),;r,ﬁm,€)] =0

where Ry : R” — R” is the projection defined in Section 6.1.2. From now on, we fix
such a y. Here we use the fact |3, — a,,| < 2 for any m € Z, s0 (T + B — Qn)
and ¥ (T) are sufficiently close for x is small enough uniformly for any m € Z.
Let
7= R"<xR"x ZRy x Rx R xR)

with the norm
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sup max {|aml, [bml, [cm|; |dm|, |em], [ fn| }
me

for {(am,bm,Cm,dm,em; fin) } ez, € €. We define amap Y5 € C” (é;;,ﬁ‘f) as

gy(@,(x,S) = gy({((p,;,(p,j,é,;, 11J1F7Emaﬁm)}m€Za{am}m€Zv£) =

o (Do 1 4+ By Eot s O s Bins €) = 2t (Do 1 + By §pp 15 Py 15 Ot 1, €)
& =27 (Tom =T+ 0, & @ Ol €)
Ro[2% (Tom + T + B, Ems O, B €) — 2 (Tom + T + B 5, 03, B €))]
Gz (Tom =T + O, &y Oy 5 O, €))
G (25, (Tom + T + By &y O, B, €))
Gz (Tom +T + B, &t s O s Bns €))

meZ
so that Eq. (6.1.41) reads
Y7(0,a,e)=0. (6.1.42)

Before giving our main result we state few properties of the map ¥+ . First, from
[39] it follows that ¥+ is C" and has bounded derivatives. More precisely, from
the continuity properties of the solutions z;\ (t,&X, oF, B, €), 2, (t, &, @ O, €),
and 2 (t, E s Oy, Brns €) we see that ¥ (0, a, €) and its derivatives are bounded and
uniformly continuous in (8, @, €) uniformly with respect to .7 € ¢ (R). Next, for
any o € ¢35, we set:

0 = {(0;070707 YO(_T)’ am)}mEZ :
From (6.1.31), (6.1.34), (6.1.37), and G(y=(+T)) = 0, 1 (+T) = 0 (+T), we get

Yo (Tomt1 — Tom) — V= (Toms1 — Tams2 + Gy — Qly 1)
0

%7(9067(170) =

0
0
0
0

meZ

Now, for ¢t > T we have

O [ 1Olds< [ ke 20T g (T)lds = k6~ e 20D 1T,

and similarly i
FAGIES R VA C 5]
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for any t < —T. Thus

‘V+(T2m+l - T2m) - ’)L(TZerl - T2m+2+am - am+])‘
< k& e 8 Tomet=Tow=T) |97, (T)| 4+ kS~ e3Tome1 ~Toms2tT+1) |y (_T)]
< 2k6~ e T max{|y_ (=T)|, |7, (T)|},
that is,
G (0. 0,0)| < 2k6~ e dT=T) v (=), |7 (T 6.1.43
|97 (6a, 0, 0)[| < e max{|7-(=T), |7 (T)|}- (6.1.43)

Similarly we get:

V- (Toms1 — Tams2 + O — Oyi1) (O 1 — Oty
0
17 (00, 0,0)] = ’
da 0
0
0 mez
and hence
”L[%(ea,a,())]H <2k e 8 T-T) |y (=T)|. (6.1.44)

Next, from Theorems 6.1.10, 6.1.12, 6.1.14, the equality Ry (7) = 0 and the
identities

P X" (Tt = Tom— 1)@y =X (Tom—1 — Tom— 1)@y,
(6.1.45)
(1= P)X: (Tomi1 — D+ 1)@ = X5 (Tomir — Tom + 1) @)

(that follow from @,, € ZP_ ., @,; € N Py ), we see that the derivative D19 of
97 with respect to 6 € £ , . at the point (6, ,0) is given by
ZLou( Pyt (Pr—n~_7ér;+l7€rjl_7§m7ﬁm)

En = X" (Tt = Ton — 1)
Ro[Xo(T)én — & — X (D1 — Tom + 1) @]
G'(0(=T))[& + X (Tam-1 = Tom = 1),]
G (0(T)) - [Xo(T)&n + %0(T) Bl
G (1e(D)) - [&F + X7 (Tomr = T+ 1) 03] ) 0

D197 (04, 0,0)0 =

where, we recall 0= {((p); ) (P}Ia 5}’;7 );7 Eﬂﬂﬁm)}mGZ’ and
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L s 1> Pors Gt ot Ems B)
=X (Dms1 — Tam)&,n
X (Tmt1 — Tama + O — 1) &, — V- (Tamt1 — Toms2 + Oy — Cii1) B
X1 (Tt = Tom) (L= P)X (Tt — Tom + 1)@
X (Toms1 — Toms2 + O — O 1 )P- X" (Tomst — Tomiz — 1)@, -

Then, using again (6.1.45) we obtain:
X (Bt — P + 1) | < ke 0Tt == TH) | oot < e =0T =T42) |

X (Dot — Tom — 1)@, | < ke 0T Tt H D) g ) < gm0 TH2) ).
(6.1.46)
Moreover,

X (Tt — Tom) | = X (Tt — Tom) Pe X7 (T)ES| < ke 0T TH gk
(6.1.47)
and, since |, — 04y11| < 1 implies that T2 — Toms1 — Oy + Oy > T > T
‘X— (T2m+1 - T2m+2 + 0y — O‘m—‘rl)ér;r] ‘
= |X_(Toms1 — Toms+2 + Oy — Qg 1) (I— P)X ! (=T)&, 1l

_ 6.1.48
< ke 8(T-T) |€ ( )

it |
7= (Toms1 — Tome2 + O — Gyt | < ke 2D |y (—T)|

for any m € Z. Next,
X_(Tams1 — Toms2 + Om — O 1 ) P-X (Do 1 — Doz — 1)@
€ AP_(Toms2r — Toms1 — O + Oy 1),

Xi (Toms1 — Do) U= PO)X; (T — Tom + 1))}
€ NPy (Tomy1 — Tom),

and (see (6.1.9))
NP (Toms1 — Tom) & ZP—(Tomsr — Toms1 — O + Q1) = R™.
Hence the linear map
L @i 1:0m) = Xo (Tt = Do) U= P )X (Dot = Tom + 1)@
—X_(Toms1 — Toms2 + O — O 1) P-X " (Tomit — Tomiz — 1)@,

is a linear isomorphism from ZP_ 1.1 ® A Py ,, = R" into A Py (Doms1 — Tom) B
RBP_(Tams2 — Tom+1 — O + O4y1) = R” whose inverse is given by:
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Lot (@i, @) = X (Tt — T+ 1) (L= PO)X T (o1 — Tom) By
~X_(Tomi1 — Toms2 — DP-XZ (Toms1 — Tomiz + O — X 1) Py -
Note that (see (6.1.3)):
X_(Tomr1 — Tamsz — DP-X=" (D1 — Tomr2 + O — Qs 1) Py |
< keS(1+0m—01) |¢m7+1| < ked(+x) |¢r;+1

|X+(T2m+1 - TZm + 1)(H _P+)X;1(T2m+l - T2m)¢n;+]‘ S kes ‘(pn;Jr]‘

and

0 _
%vfa,m(‘l’mﬂ,q’g)a = —fL (Y- (Toam1 — Tami2 + Oy — Oy 1)) -

X_(Tams1 — Toms2 + Op — O 1)) P-X " (Dot — Tomsz — 1)@ 1 (G — Olp1) -

Thus we obtain (see also (6.1.10)):

|$a,m(¢;;+1a¢$)| S k676 |(pnt| +kei5(17){) |(pr;+1| S ka(P;; =+ (py;+1|7
Lo (B @) < kel @y | + ke |G, | <kce® [y + 9,4,
d _ _
‘aaga7m(¢m+1a(p$) < 2N—k|(pm+l

for N_ := sup,cpn | f—(x)|. So, using also aa,i” V=L ho famoafi}n:

ocm Jdo

| Lom|l <k¢ and |.ZLy Ll < kce?d,

9
Jda

Next, using (6.1.47), (6.1.48):

fa,mHSZN,k and ’

2 7 1H<2Nk3246

|$€X (Per]’(pmvgy;Jrlv maélmﬁm) ga’m((pn;+l’(p’:;)‘

O (6.1.49)
< ke @+lr-T)Dlie]

(recall 8 = {(¢5, 05 &+ &+ s Bin) hmez). We define oy : €5, o — £ s

Lom( Py 15O
Em - é;;

Ro[Xo(T)&m — &,

Ho =
G'(nw(-T))n
[

G'(w(T)) - [Xo(T)Gm + 10(T) B]
G'(r(T))-&m ez
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Clearly

90 7ta0 =

and so

d
Haa%

Next, note that

0

0
0
0
0

2 Loam( P 1> O

<2N_k.

[D197(0g,a,0) — 4]0

0

Hence, from (6.1.46) and (6.1.49), we get

G (v (THX: (T — Tom + 1)@

mez

Lo @i 1O i1 6t s &ms Bn) = L (91, 0ot
X (D1 — Do — 1)@y,

—RoX:(Toms1 — Tom + 1)@

G (W(=T)X" (Tom-1— Tom— 1),

D197 (8, @, 0) — || < Tske 0T-T)

where

meZ
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(6.1.50)

(6.1.51)

(6.1.52)

& 1= max {2+ |7 (=), [IRolle 72,16 (o(~T))| e, |G/ (v (T)) | e }

Next, given {(@m,bm,Cm;dm,€m, fn) } mez € €7 We want to solve the linear equa-

tion

Hp0 =

that is the set of equations:

am
b
Cm
dm
€m

Jm

meZ

(6.1.53)
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ga,m((P,;H ) (P;;D = dm,

&n— & = b,

Ro[Xo(T)&n— &1 = cm,
G'(W(=T))&y = dm,

G (0(T)) - Xo(T)&m +10(T) Bl = €m,
(v (T)) &y = fon-

To solve (6.1.54) we write:

(6.1.54)

Q

& =My + - (=T),
Ef=Chruiv(T), mez, (6.1.55)
{nrﬂz_}mez € goo(‘y/)» {Crﬂz_}mEZ € goo(y//)v {Mrf}mez € ew(R) )
and plug (6.1.55) into (6.1.54). We obtain
((p;;+17 (pnt) = "E/ﬂo?,;zam 9

- dm
m = G0ty -1)

+ Jm
S AGIAGE (6.1.56)

En =N+ U V- (=T) + b,

ﬁ — em*G,(VO(T))XO{
" ™)@

RoXo(T )Moy — Cor = €m — My RoXo(T) V- (—=T) — RoXo(T )b + s Ro74 (T) .

Now we denote by IT : ZRy — /" & " C ZR, the orthogonal projection onto
" @ " along span{y} (recall that y € ZRy = A G'(y(T)) is a unitary vector
so that (6.1.4) and (6.1.5) hold). In other words:

([—Mw = (y,w)y (6.1.57)
for any w € ZRy. Assumption (H3) implies that the linear mapping . & ." —

" @S = RI defined as ({+,n+) — —C*+ + RoXo(T)n* is invertible. So in
order to solve (6.1.56), we need to suppose

{(amab/mcmadmaemafm)}mez S K""(,S”’”) ,
where

P = {(a,b,c,d,e,f) ERY x ZRy x R : (I— M)L(a,b,c,d,e, f) = 0}
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and L: R" X R" X ZRy Xx R x R x R — ZRy is the linear map given by:

Labed.e.f) = e Gt RXo (7)1 (-T)

7R0X()(T)b +

(6.1.58)

Note that . is a codimension 1 linear subspace of R** x ZR, x R3. Hence ¥ €
R?" x ZRy x R3 exists so that

span { Y} ©.7" = R* x %Ry x R>.

Of course, to be more precisely, we can take ¥ so that (y,v) = 0 for any v € .7,
where (-, -) is the usual scalar product on R***3. To construct such a ¥ we note that
from (6.1.57), it follows that (I—IT)Lv = (y,Lv)y = (L*y,v)y, where we take
the natural restriction of (-,-) onto ZRy C R". Thus v = (a,b,c,d, e, f) € /" if and
only if (L*y,v) =0 or v € {L*y}* and we can take

v =Ly/|Lyl.

Let IT : R x #Ry x R® — .V be the orthogonal projection onto .%"" along
span{y}. Then

(L'y,v) . (y,Lv) -

[—)y=(y)y= = )
( v =(y,vy ‘L*ww |L*W|w

We set
£y = 0=(span{y}) C £7.
Let ITy : £7 — £=(.”") be the projection onto £~ (.#") along {5, given by

Hllf ({(amvbmacmvdmaemvfm)}mGZ) - {ﬁ(amabmacmadmaemvfm)}mez .

In summary, we see from (6.1.56) that there is a continuous inverse 7, ! : (= (S")
03, where

é; = {{((plg’(p;:’é';’&;’Em’ﬁ’”)}mez c Vis (RSnJrl) :
((pi;7(pr:lra€n:a nf7‘§m7ﬁm) G%P,Jn XJVP+7n1 X N P_ X%PJr XR"+1,Vm€ Z}
Note that from (6.1.56) it easily follows that H%ﬁ;' || and H%%ﬂ H < H%%

|5, 1||? are uniformly bounded with respect to c.
Finally, we define projections onto ZG’(y(T)) and ZG'(y(—T)), respectively,

as
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R Gy(Mw . =

(I—-R;) G/(é(,(T )( ﬂT()T)) o (6.1.59)
- . y_— woo

(I-R_) G =TV (=T V- (=T)

)
Note that R, is the projection onto 4G’ (( I')) along 7. (T) whereas R_ is the
projection onto A4 G (y(—T)) along 7-(— T). First, we observe that for any w € R”
we have [[— P, R, P, =0, since ¥, (T) € ZP;. So R, Py = PR, P, and then for
any w € R" we have R, P,w € ZP, NZR, = .". As a consequence, we see that
Y*R Prw =0 for any w € R" (see (6.1.4)). Similarly we see that P_R_[I—P_] =0,
hence R_[I—P_lw € /' P-NZAR_ = N P_NNG (y(-T)) =" for any w €
R". As a consequence, we get Y*RoXo(T)R_[I— P_]w = 0 for any w € R" since
RoXo(T)R_(I—P+)w € RoXo(T ). Consequently we arrive at

PRy =0, (I-P)R'Xo(T)Ryy=0. (6.1.60)
Next we set:
X" OR Xo(T)'Ryy, ift<-T,
v(t) =< Xy " (0)Xo(T) RSy, if -T<t<T, (6.1.61)
X (R v, ift>T,
and -
_ /_ Y08+ (), 0)dr (6.1.62)

Using (6.1.60), we easily obtain:

O] < IX2 () M= POXE(T)||RLw| < k||Ry [e 3T ifr > T,
()] < X2 () I=POXT) IRy < kR | 6.1.63)

lw(t)| < k||RoXo(T)R_| e3¢+T) ifr < —T.

Thus .#(c) is a well defined C? function because of Lebesgue theorem. We are
now ready to state the following result.

Theorem 6.1.16. Assume that f1(z) and g(t,z,€) are C"—functions with bounded
derivatives and that their r-order derivatives are uniformly continuous. Assume,
moreover, that conditions (H1), (H2) and (H3) hold.

Then given co > 0 there exist constants py > 0, ¥ > 0 and ¢y > 0 so that for
any 0 < p < po, there is € > 0 so thatfor any €, 0 < |e| < &, for any increasing
sequence T = {Tyy}mez C Rwith Ty — Ty > T +1—28""In|g| so that

M (Ton+ 04) = 0m € Z and inf |.4" (Ton + 04,) | > co (6.1.64)
me

for some oy = {02} ez € 3, there exist unique sequences {0 bmez = {&m(§7
&)} ez € 5 (R) and {Bu}tmez = {Bn(T &) Ymez € L= (R) with |0 (T ,€) — 09| <
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cile| and |Bn(T ,€) — add| < c1|e| Vm € Z, and a unique bounded solution z(t) =
(7 ,€)(t) of system (6.1.1) so that

SUP €Ty 1+ Bt Tam— T+ |2(8) = Y- (t = Tom — &) | < P,

SUB €[y~ T+ 4, Ty + T+ i) |2(t) = W (t — Tom — Gm)| < p,

Supte[T2m+T+B/n7T2m+l+Bm] |Z(t) - y+ (t - sz - ﬂm)‘ < p

for any m € Z (c¢f (6.1.7)). Hence z(t) is orbitally close to y(t) in the sense that
dist(z(1),I") < p where I = {y(t) | t € R} is the orbit of ¥(t).

Proof. 1f p and &, < &, are sufficiently small then, for ¢t € I, ,, the solution z(z)
we look for must satisfy z(¢) = z,,(¢,€—, ¢—, o, €) for some value of the parameters
(E_,9_,a,¢) and similarly in the other intervals [T, — T + o, To,, + T + B] and
I;,ﬁ' So, we solve Eq. (6.1.42) for (0,a) € €5, . x {3 in terms of 7 and € €
(—&p,&). Set
F7(0,a€)
= %9(61 a?‘c:) - %(6 - 906)
= gj(ea, aa 0)
+ [g7(97 auo) - g{?(eaa a70) —D1%7(9a7 a70)(6 - 606)]

1
+ (D1% 7 (8, 0, 0) — Hay) (6 — 6g) +g/ D:%5(0,a, 7€) dt
0

where D39+ (0, a, €) denotes the derivative of ¢ with respect to €. It is easy to
see that

F7(0q,0,8) =97(0q,00,8), D|.F7(0,a,6)=D957(0,a,€)— Hy,

Dlyy(elaa7£)_Dlyy(62aa7£) :Dlgy(elaaas)_Dlgg(ebaag)a

0., 90y
D)7 7(0,a,€) =Dy¥97(0,0,€) — P (60 —6q) — %W'
(6.1.65)
For simplicity we also set: i
= -1
From the definition of % (6, a, €) we see that Eq. (6.1.42) has the form
0 — 0y + 7, ' 1y F7(8,a,€) =0, (6.1.66)
and
(I-II,) Z7(6,a,€) =0. (6.1.67)

We denote with c;), resp. cgj ), upper bounds for the norms of the first order, resp.

second order, derivatives of ¥+ (0, a,€), in £3. Thus for example,
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)= sup {ID1%7(0,a.€)|,|D:%7(6,0.8)||,|D:%7 (6,0, ]}

(0,a,8)ely

2

and ¢y’ is similar. Then
%7(97 a70) _%7(906’ a,O) _D1%7(9a7 a70)(6 - 906)

= /01 (D197 (10 4+ (1 —1)60y,,0) — D195 (04, ,0)) dT(0 — O4)
=1(0,00,x)(0 —6q),

where )
11(8, 60, )] < ][0 — 04]l.

Hence, since

j? (9,(1,8) 79\&7(9&;“38)

_ /Ol[Dlyy(reﬂl — 7)04, 0, €)]dT(6 — 6)

1

+Dlj9(60ha78)(676a)
1
= / [Dlg7(10+(1 71)9(17“58) 7D1g7(9a7a78)]d1(9700)
0

+[D197(6q,0,€) — H5| (6 — 0gy)

(see also (6.1.65)) we derive, using also (6.1.52) (recall u = e~ -7))

1 ~
| 77(0.008) = Z7 (6, €| < 5610 — O + (Tt + ¢l €]} |0 — O
(6.1.69)
and (see also (6.1.43), (6.1.65))

@)
17:7(8,08)[| < “2-16 = Bal* + (ks + 5 [€])[16 — 6a +¢iy €] + cyu
(6.1.70)
where ¢y = 2k max{|7_(=T)|,|7-(T)|}. Note that ¢, cé,p, c{(;) and ¢3 do not
depend on (o, 7 ,€) € 7 x 0% (R) x R. Next, from (6.1.50), (6.1.52) and (6.1.65)
we get

|D1.Z 7 (04, @,0)|| < ke,
1D1.757(0, 0.€) = D1.7 7 (8, 0,8) | < |0 = Ol 6.171)

D27 7(8,0t,€) — Dr.F 7 (04, 01, €)|| < (cg) +2kN_) 16 — 64l
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From (6.1.70) and (6.1.71) we conclude that

li F7(0,a,e) =0, li D\ Z7(0,a,6) =0
st Mop00 > 7 (8 %E) st o 00 177 (6 %)

uniformly with respect to &. Thus, if po > 0, tp > 0 and 0 < & < g, are sufficiently
small and 0 < 1 < U, €| < &), from the implicit function theorem the existence
follows of a unique solution 8 = 07 (o, €) of (6.1.66) which is defined for any
a€ly, el <&,0<u<pand T = {Ty}mez so that Ty — Ty > T + 1 where
T —T = —&""Inu. Moreover 87 (, €) satisfies

sup [|07(a,€) — 6l < Po (6.1.72)

a,7 €

with the sup being taken over all @, .7 and & satisfying the above conditions. Next,
using (6.1.66) with 87 (o, €) instead of 6 and (6.1.70), we see that:

167 (o, 8) = Bl < || ' Ty ||| 77 (67 (2, €), 0t €) ]| <

2

_ Cq ~ 2
Ez m( 21107 (a,€) — B2 + (kT3pt +cif e[| 0.7 (o, ) — Oa|

+c§(¢1)|£| —|—cyu>.

Hence if pg, 1o and &y are so small that

1, Ty |2 (Po + 2¢0) + 2k 0] < 1 (6.1.73)

we obtain: |
167 (er,€) — 6| < 2|75 " Ty | (cypt +ci[e]). (6.1.74)

Note that since IT is an orthogonal projection, it is enough to choose p, & and py in

such a way that Cg) (Po+28&0) + 2k < || 7 1||~!. Moreover, plugging (6.1.74)

into (6.1.69) we obtain
|77 (67(a,€),0,€) = F7(6a, 0, €|
<2 || Iy P ey + )2 (6.1.75)
+2(kE3 1+ e [e]) | A Ty | (eqp + ) le]) < Ar(u+ Je])?
where A} > 0 is independent of (.7, a, 11, €). For example:
Ay =201 Ty || max{ey,clf) e ke ) (1 Ty e +1]

Next, differentiating the equality
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—1
07 (0, €)= 0q+ 7y IIyF7(07(a,€),0,€) =0

with respect to @ we obtain:

0
@[6{7(&,8) - 906] = _%7IHW£2<7(9<7((178)7(Xu8)

da

= ot "Iy { L1757 (07(0.6),0,8) - F 7 (60,0, )]

- [ J %;;lnw} F7(07(c€), t¢)

d d
7[32:7(905,(1,8) _ﬁy(eaaaao)} +aag<7(60t7aa0)}

+
o
d
- %% HW 'g.{?(a?(aag)aaﬂs)'

(6.1.76)
Then note that

% [ Z7(07(0,€),0,€) —F7(0q,0,€)]

1
_ %/0 D\F 7 (107 (at,€) + (1 — 7)60, t,€) dT(0.7 (@, €) — B)
1 P
—{ [ D705 (0e) + (1~ D6u,0.0) 5 07 ,6) ~ Buleae
0
1 d
+/ D%fg(rey(a,s)Jr(lff)ea,a,e)%eadr
0
1
+ [ D12 (505 (,0) + (1000, )7 | (O (a) - 6u)

1
4 [ D1F (207 (06) 4 (1~ 0000, ) de 0 0 (t.6) — O]
0 da
(6.1.77)

First we derive

1
| [ 0175005 (@) + (1= )00, 0.6) 52 [0 (,6) — ulas
0

Jda
1 ) 0 1 o 0
g/o e zdz|| 107 () 0l | = 3¢ | [0 (@0.2) ~ 6] |

Next, from (6.1.71) we obtain
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1
H [ D175 (205 (@) + (1~ )0 .07 2 [05(@,e) - 6

1
S (/ “Dlg\y(reg(aﬂg)_'_(l _T)GOHaaS)_Dlgzy(eoha7£)]”dr
0
D177 (8a, 0,€) = D1.F 7 (66,0, 0)| + D1 F 7 (8, 0,0 )

5 [07(a,€) = 6q]

0
Ja

! d
(2) (2) ~
< (/0 cy |07 (0, &) — Oyl TdT+ 0y |£|+kC3u) Haa[eg(a,s)—ea]

1 ~ d
< (e (310 e —0ull +lel )+ ) | 1 10 (cre) 0

Finally, using (6.1.50), (6.1.72) and (6.1.74), the identity

dy
e I 6.1.78
o (0,0,0,0,0,1) ( )
and D1D, % #(0,a,¢) =D1D,9#(0,a,¢€) — 9550; , we conclude
d
@[yy(e?(aa8)7a>g) _yg(eaaavg)]
_ ~ d
< [ (Po + £0) + k3 o] H 5407(ct.€) 6] (6.1.79)
2 _ 1
4 () kN ) 1 Ty | (e + i lel)
Similarly, we obtain
a ar a
%[JY(G(M(Xag)_‘/y(O(ha?O)] = |€|
(6.1.80)

i/1D§ (6g,,tE)dT <2c<2>\£|
oo 0 377 \Ya, K, % .

Now, since

d _ _ _
Sy Ty || < || Ty ||| 5 Ha || < 2kN-|| A Ty |,
do Jo

|

we derive, using also (6.1.75), (6.1.43):
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H[ A 11,] 7507 (000

< 2kN_|| Ay 'y |?

(6.1.81)
{17767 (@.6), 0.8) = (8, 0,8)|| + G5 (8 t,)]| }

< 2N Ty | A (1 + el + cqpa ¢l el

Plugging (6.1.79), (6.1.80), (6.1.81) into (6.1.76) and assuming, instead of (6.1.73),
that

2|| Ay Iy | [05(42)(!30 + &) +kczpo) < 1

we obtain

|07 (@)= 60

< 20|ty Ty lI{4 () + N- ) 12 Ty | (eyp+ el

2 — 1
+265) ]+ eyt -+ 2kN- |7 Ty | [ A (e + [e)? + g +-cly el | |

< Ag(u+lel),
(6.1.82)
where A; is a positive constant that does not depend on (7, &, i, €). We now take

u=¢
thatis T =T — 28~ !In|¢|. Note that from (6.1.74), we get:
167 (at, €) — || < 21|75 Ty (cyle] +c))) e (6.1.83)

Then, if we can solve the equation (I—1ITy).%7(07(c,€),0t,€) =0 for o0 =
a?(e) = {am,,7(£)}m€Z and deﬁne Z;,S“q(tvg)a Z&)y(tag) as Zm( m 7(pmaﬁma )
2 (1,650 @ O, €) and 25, (1, &, O, B, €), with

07(e)=07(az(€),€)

instead of 0 = {(¢,,, 0,0, &, &0 &msBn) },;, and with 1 = €2, we see that condi-
tion (6.1.7) follows from (6.1.31), (6.1.34) and (6.1.40) provided |¢| < €p, taking &
smaller if necessary. Thus to complete the proof of Theorem 6.1.16 we only need to
show that the equation

(I-IIy)Z#7(67(a,€),0,€) =0

can be solved for « in terms of € € (—€p,&p) and .7 satisfying the conditions of
Theorem 6.1.16. Now, from (6.1.83) we see that
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lin%)(]I—Hu,)ﬁg(eg(a,s),ms) = lin}](H—Hw)%g(Ga,a,O) =0
€ £—

uniformly with respect to (@, .7) (recall that, see (6.1.43), |97 (04, o, 0)|| < cyp =
cy€?). Hence we are led to prove that the bifurcation function

é(]lfﬂl,,)ﬁy(eg(a,s),a,e) —0 (6.1.84)

can be solved for « in terms of € € (—&p, &), € # 0, and .7 satisfying the conditions
of Theorem 6.1.16. We observe that, with y = €2, (6.1.75) reads:

| 77(67(a.€), 0. 8) = F7 (6 0, €) || < Ar (1 + [e]) €.

Hence, using also (6.1.65) and (6.1.43) with u = e O0(T-T) — g2,

Bg(a7£) = é (]I—Hy/) {ﬂiq(@a,aﬂi)—‘rO(ez)}

= é (I-11y) [97(0a. t,€) = F7 (6a, a,0)] + O(€)

= (I-11y) D397 (04, ,0) + O(¢)

where O(¢€) is uniform with respect to (.7, o). Now we look at:

1 d
DBy (a,€) = E(]I - Hw)ﬁﬁy(ey((x, €),a,¢€). (6.1.85)

Subtracting

do
(0177 (00 .0/ 52 D107 (00, 0.0)) (0 ()~ )

d
= %[Dlﬁy(ea,(x,())}(@y(a,&‘) - 905)
from both sides of (6.1.77) and using the uniform continuity of D%f 7(0,a,¢),
D\D,Z7(0,a,€)in (0, ,€), uniformly with respect to .7 we see that:
Hiﬁ (67 (a,e),a £)—i9 (B, t,€)
aa T T ) y Ay aa T oy My

do,
— (D%Eg(ea,a,o)d;‘ +D1D2§y(6a,a,0)> (07 (a,€)—6y)

- d
< ((c5'167(c8) — 8u +[e]) +keze?) Haawy(a,e)— 6c)

(/|67 (e, €) — Oal| +|€]) |67 (o, €) — Bc |
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where 11(r) — 0 as r — 0, uniformly with respect to (7, @, €), So, using (6.1.83)
and (6.1.82) with u = £ we obtain:

ai y9(6§<a7£>7a78) - aiyg(et)haag)
* ] * (6.1.86)
_@[Dly7(ea7avo)](ey(a78) - 00!) :0(8)

uniformly with respect to (a, ?) So, plugging (6.1.86) into (6.1.85), using (6.1.65)
and (6.1.44) with p = e 9(T=T) = £2 we obtain:
a 9(7(906’ (X,S) - yg7(6067a70)

D\B7(a,€) = (H—Hv)w s

+(I—-1I1y) {e‘ldcfx[Dlﬂy(ea,a,o)][eg(a,s) - Ga]} +o(1)

_ 4

ey (I—ITy)D397 (64, @,0)

0= 11y) {7 2L 1017 (00,0.0) ~ il [0 (c0)— 0]
+o(1)

with o(1) being uniform with respect to . But, differentiating (6.1.51) we see that

d
@ (Dlgy(ea,(x,()) _‘%) = {(fn‘f,O,O,O,O,O)}meZ

where
L(@)(0) = L (@) (@1 O3t G- or S B)
= [X_(Tamt1 — Toms2 + O — O 1) (Comgt — On) | &y
[V (Toms1 = Tomsa + O — Og 1) (O 1 — Cin) | B
< ANk (8 + |- (=T))ul6] ol = o)l «|
and hence

d
@[Dlgﬁ(em a,0) — || = 0(82).

In summary, we obtain:

i[(11 —IIy)D397 (04, ,0)] +o(1) (6.1.87)

uniformly with respect to @ and 7. We have then
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gig(l)By(%E) = (I-I1y)D397 (84,0, 0) = (W,LD39 7 (64, ,0))y,

b
IL*

hleBq((x €)= (W,LD39 7 (6q,,0))y,

do |L*y|

uniformly with respect to o and .7 (recall that L has been defined in (6.1.58)). To
conclude the proof of Theorem 6.1.16 we evaluate (y, LD397 (04, ¢,0)). We have:

D3gy(90ha70) =

92y, 911
T(TZm-&-l + am,0,0, anuo) - 7(T2m+1 + (Xm30707 am+170)
€ de
_ai:(TZIn_T‘f'am?O;OyanuO)
70 _ - Fon _
Ro | 5 (Tom +T + 0, 0(=T), G, O, 0) =72 (Tom + T + 0n, 0,0, 04, 0)
— 817 -
G/(Y(_T))TZ(TZm_T+amao70a amvo)
9
G/(Y(T))X(Bm“'T‘F(XmaYO( ) Olm,Otm,O)
_ . dzf -
G/ ((T)) 52 (Tan+ T + 0, 0,0, 4, 0)
S mez
Thus:

LD 8%7(6067 (X,O)

810
=Ro{a (Tam + T + s Y0(=T), Gy, 0, 0)

_%(TZm'i‘T"'amyO O (Xm,())

G H-T) 2 (T~ T +0,0.0.0,0)
- 2 X(T)7- (~T)
+Xo(T )aa—’;( Tom — T + 04,,,0,0, 0, 0)

_ a7t

G'(y(T)) 8;:” (T + T + 04, 0,0, 04y, 0) o

" TN (T) (0}
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920
:RO{ az (Tom+ T + 04, Yo(—T), O, A, 0)

_ 9z _
+X0(T)R* a;:n (T2m -T+ ama0707 am70)

dz) _
_R+ aZ (sz—i—T—i-OC,mO 0 > O )Y+(T)}
0

d
= Ro{ G2 (T + T+ 04, 10 (—T), G, 4,0)

FXo(TIR- 228 (T~ T4 ,0,0,0,0) )

oz, )
—Rio (Tom + T + 0, 0,0, 0, 0) 74 (T)

since ZR 1 C #Ry. Next from Egs. (6.1.32), (6.1.36), (6.1.39) we get:

0

9z,
(T2m+T+am;'y0( ) (Xm,OCm,O)

En

—/ Xo )&(t + Topm + 0w, Y0(2),0)dt

92

(9 (T2m T+azn70707ama0)

-T
= P_X:l(t)g(t+T2m+anY—(t)ao)dt7
Tom—1—Tom—1
Iz
e

T2m+l T2m+1 1
:7/ (I—=Pp)X 7 (2)g(t + Tom + O, Y4 (1),0)dt .

T

(T + T + 04, 0,0, 04, 0)

As a consequence, using also (6.1.60), we get:

<W,LD3%7(00“ a70)>

-T
=y [/T RoXo(T)R_P_X~'(t)g(t + Top + G, 7 (2),0

2m—1—Tom—1

—|—/ RoXo T)X ()g(t+T2m+(Xm,7’0() )dt

T2m+| T2m+1 _
+/T R (T—Po)X; ! (0)g(t + Tom + Gy 12 (1), 0)dt
T2m+ 1 7T2m +1

Y (1)8(t + Tom + o4, (1), 0)dt
Dom—1—Tom—1

7/ V(1) g(t + Tom + G, ¥(t),0)dt + O(e 2T HD)

—/ W (1)g(t + T + 04, ¥(2),0)dt + O(£?)

(6.1.88)

(6.1.89)
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where y(¢) has been defined in (6.1.61). Thus we prove that

Bz(a,e) =

\L* ‘{‘///(aM"‘Tan)W}mez-i-O( ),

DBy (a,€) = {//(am+T2m)‘l/}meZ +o(1),

IL* |

where O(¢€) and o(1) are uniform with respect to o and .7. Now assume that .7 =
{Tu}mez and o = {a®},,c7 satisfy the assumptions of Theorem 6.1.16. We have:

lim B 7 (ao,€) =0,
£—0

lim D1 B 7 (a0, €) = { ' (o) + Do) W men,

IL* |
uniformly with respect to .7. That is |D1B# (., €)|| > zle‘ provided |g| is suf-
ficiently small. From the implicit function theorem we deduce the existence of
0 < & < g so that for any 0 # € € (—&,,&p) and any sequence .7 = {T;} ez
that satisfy the assumption of Theorem 6.1.16 there exists a unique sequence
(7€) ={tn(T,€)}men € {3 so that a(7,0) = ap and

Bz (a(7,¢e),e)=0.

Taking 07 (¢) = 05 (a(.7,€),€) and

Zm.’y(tae)a ifte [Tmel +ﬁmfl,,?(8)aT2m T+ am,y(g)]v
20)=4 D ,(t,€), ift€[Dm—T+ 7€), Tom+T+Bunr(€),

m,.

Z;-;ﬁ(t’g)’ ifr e [T2m +T +ﬁm,9(8>7T2m+1 +Bm,y(£>]7

we see that z(¢) satisfies the conclusion of Theorem 6.1.16 with &,, = &,(.7, €) and
B = B (0t (7 ,€),€). The proof is complete. O

Remark 6.1.17. Functions .# ,.#" : R — R are bounded.

Remark 6.1.18. Following the above arguments, we can consider also cases when
m € Z exists so that either Tj = —o Vj <2 —1 or Tj = o Vj > 2in+ 1. Then
Theorem 6.1.16 is obviously modlﬁed (see (6.1.97), (6.1. 98) and (6.1.99) below).

Remark 6.1.19. Here we emphasize that during the proof of Theorem 6.1.16, we
only use the fact that f and g are C> with bounded and uniformly continuous deriva-
tives. We should need higher derivatives if o is a degenerate root of .#Z4(at) =
{A (T + 04)},,c7» When condition (6.1.64) fails.

We are now able to give the proof of Theorem 6.1.3. First we show the following
preparatory results.

Lemma 6.1.20. For any € # 0 there exists |€| > Ve > 0 so that if a sequence T =
{Tn}mez, satisfies (6.1.6) then also it holds
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‘Dlg(t+T2m,Z70)_Dlg(f,Z,O)| < |£| (6.1.90)
for any (t,z,m) € R"! x 7.

Proof. Let € # 0. Take ne € Nand v > 0 as
D
n8—2{” 18|l

le]
and let 7 = {T,, }nez be a sequence satisfying (6.1.6). Then we derive [40]:
|Dlg(t + szaz70) _Dlg(t,Z7O)‘

1
< ‘D1g(t+sz,z,0) —ne [g <t+T2m + n7z,0) —g(t+sz7z,0)} ‘
£

lel

1, Ve:=
}Jr’ 7 dn,

(6.1.91)

1
+‘D1g(tazao)n8 |:g <t+ nazao> g(tvzao):H
t3

1 1
g (t+T2m+,z,O) -8 (t+ ,Z,O) ’
Ng Nge

+ne ‘g(t+T2rn7ZaO) _g(t,Z,O)‘

+n5

1/ng
< ng/o D1 (4 Tam+1,2,0) — D1t + Tam, 2,0)| d

1/ne
+n£/0 |D18(H‘TI,Z»O)—Dlg(fyZao)‘dTH‘znevs

_ IDug|

+2ngve < €|
ng
The proof of Lemma 6.1.20 is complete. O

Lemma 6.1.21. If € # 0 is sufficiently small then for any given sequence {Ty,}mez
with the properties of Lemma 6.1.20, a sequence {00 },.cz € 03 exists satisfying
(6.1.64) for some co > 0.

Proof. Let |.#'(a®)| = 4cy. We have:
M (Do + ) = +/ v ()[g(t+ Tom + 0, ¥(1),0) — g(t + @, ¥(2),0)]dt

and hence:

|t (T + ) — ()] < |g|/ (1)]dr < 2K6 e

since |y*(1)] < Ke %l for some K > 1 (see (6.1.63)). Similarly, from (6.1.90) we
get

M (Do + ) — A (@) < 2KS ! e].
Let /2 > 8 > 0 be so small that .7 (a® — &) ).# (a® + ;) <0 and |.#" ()| > 2c
for o € [® — &1, + &;]. Then, there is an & > 0 so that for 0 < || < & and for
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any m € 7 the equation .# (T», + o) = 0 has a unique solution o) = &(Th,) €
(OCO — 61,060 + 01) along with |%/(T2m + OC)‘ >co fora € [OCO — 0y, al + 61] The
proof of Lemma 6.1.20 is complete. O

Now we proceed with the proof of Theorem 6.1.3. Using Lemma 6.1.21, as-
sumptions of Theorem 6.1.16 are verified and consequently, we obtain sequences
{Gn.7(€)}, {Bn.7(€)}, and a unique solution z(¢) of Eq. (6.1.1) that satisfies
(6.1.7). To prove that sup,,c7, |6, 7 (€) — @°| < c||¢| and sup,,c7, B, 7 (€) — 0| <
c1|€| assume for simplicity that .#’(a®) = 4cg (a similar argument applies when
M'(a®) = —4cp). Then we have, since .# (Ta,, + &) > co for any & € [0t — 81, ot +
51]:

2K el >

o
[, B+ 0)dx) > ol — o],
o

hence

N N 2K|e ~
|6, 7 (&) — °| < |04n (T ,€) — Q|+ |l — a®| < c1e] + 6c| | =2clle].

Similarly we get (possibly changing cp): |3m’y(8) —aP| < ¢le|. The proof of
Theorem 6.1.3 is complete.

Remark 6.1.22. By (6.1.91), we get vg ~ €2 in Theorem 6.1.3.

6.1.7 Chaotic Behaviour

Set (cf Section 2.5.2)
E:={ec&|inf{lmcZ|ey=1}=—oo,sup{mecZ]|e,=1}=oco},
Ep:={ec&|inflmecZ|e,=1}>—co,sup{mecZ|e,=1}=oo},
& ={ec&|inf{imeZ|eny=1}=—co,sup{mEZ| ey =1} <oo},
&y:={ec&|inflmecZ|ey=1}>—co,sup{mEZ | ey =1} <oo}.

Note that & , &, &, & are invariant under the Bernoulli shift. In this section we
suppose for simplicity that assumptions of Theorem 6.1.16 are satisfied with a tech-
nical condition ||ap|| < x/2, i.e the following holds:

(C) For any € # 0 sufficiently small there is a sequence .7 = {T,,} ez so that
Tpni1 — T > T +1—28""In|e| along with the existence of an ap = {00 },ez €
€7 with ||| < x /2, satistying (6.1.64).

Let 7 = {Ty},,cz be as in assumption (C). Assume, first, that e € &. Let
né }nez be a fixed increasing doubly-infinite sequence of integers so that ¢, = 1 if
m g y q g



288 6 Chaos in Discontinuous Differential Equations
and only if k = n¢,. We define sequences 7¢ = {T¢ }nez and af = {a0¢} ez as

Toe, if m=2k,
TS = . (6.1.92)
TZn,‘:,—la ifm=2k— 1,

and similarly

o = ol . (6.1.93)
Note that T¢, | — T;¢ > T + 1 —28"'In|e| for any m € Z and .# () has a simple
zero o, i.e. (6.1.64) holds with exchanges ¢ <~ 7 and of§ < 0. Since \a,?ljl -
a%| < x for any m € Z, assumptions of Theorem 6.1.16 are satisfied by .# (),

¢ and of. Let z(t) = z(t, 7€) be the corresponding solution of Eq. (6.1.1) whose
existence is stated in Theorem 6.1.16. Then z(¢) satisfies
- _ _ Te _ e
SUPyeire  +pe_ 15, Trag) [2(0) = v- (1 =Ty, — o) < p,
SUPrc(re Trag1g +T+pg) 1) = Wt — Ty, — 0)| < p, (6.1.94)
SUPye(re 7+ 75, +Be) 1200 — Vet = T3, = Ba)l < p,
where the sequences a¢ = {a } ez and B¢ = {B¢ } ez are determined as in Theo-

rem 6.1.16 (note here we remove hats for notational simplicity).
Now, consider the sequence 7y, := n, 4 instead of n¢, and denote with .7°¢, o,

B¢ and of§ the corresponding sequences:

Te __ e ~e __ e pe _ pe ~0e __ .,0e
Tm — Im+2» am - (Xerlﬂ :Bm - ﬁm+17 am - Ym+1- (6195)

Then .# Fe (o) has a simple zero & and Theorem 6.1.16 is applicable. But clearly
Z(t) == z(t, 7°) satisfies the same set of estimates (6.1.94) and hence, because of

uniqueness, z(f, 7¢) = z(t,.7¢) depends only on e and .7 (and not on the choice of
n,). So we will write z(¢, .7, e) instead of z(¢, 7°).

Now, assume that ¢; = 1. Then j = n;, for some m € Z and (6.1.94) gives, pro-
vided |g] is sufficiently small,

[2(T2)) = 0(= )| < [2(Ta) = w(—o5)| +W(—0) = ()|
< p+sup|io(t)| [, — off|
t€R

. 3
<pteilelsup[h()] < 5p
teR

since Ty, = T;. On the other hand, if e; = 0, let m € Z be such that n;, < j < nan.
Thennan—l > j>ng,+1andso
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Taj—Tong, — T — B = Tane 42— Tone — T — || a0]| — c1|€]
>T+2—45""Inle| — ||| —c1e]
>0

and
Tiir B =T 2 Tong, o1 = T, -2 = [l —cue]
>T+1-26 " Inje| — el —cile]
>0
for 0 < |e| < 1. Consequently, we have Ty; € [T5,, + T + B, T, | + By,] . and using
(6.1.94), we get

e e 3
12(T2))| < |2(Taj) = V4 (Taj — Tang, — Bp) | + ¥4 (T2j — Tang, — Byy)| < 2P

since T — Dong, — Bt > Dong,+2 — Tone, — ool — cile| > 2T+2745_11n|8| —
||| — ci]e] > 1 for 0 < |e] < 1, and thus |y (Taj — Taue, — B2)| < p/2. So
z(t,7 , e) has the following property

3 .
|2(T2)) = W(—0af)| < Fp.ifej=1,
3 (6.1.96)
eTs3)] < 3P, ife; =0,

Next, assume that e € & and let again {n¢, },,cz be a fixed increasing sequence of
integers so that ¢; = 1 if and only if k = n¢, and lim n;, = co. Corresponding to this

sequence, we define 7¢ as in (6.1.92) and then we obtain ¢ and ¢ as in (6.1.94)
with the difference that 7, = —oc and o, = B, = 0 for any m < 2/ where m is such

thate,c =1 and e; = 0 for any j < nj;. According to this choice, by Remark 6.1.18,
we obtain a solution z(r) = z(r, 7¢) of Eq. (6.1.1) that satisfies (6.1.94) when m > m
whereas for m = m it satisfies:

SUDs (oo 1 Tyag) [2(1) = V- (1 =Ty — o) [ < p,
SUPse(re Trog1g +7+pe) 1) = Wt — To — 03)| < p, (6.1.97)

SUP (1, +T+Bg T +BG)] |2(t) — ys (t — Tyn— Bl <p.

Note, then, that if we take, as in the previous case, n;, = ny, ; and J°¢, al, B¢ as

in (6.1.95), then (6.1.94) holds with 7°¢ instead 7 ¢, provided m > m — 1 whereas
(6.1.97) holds with Tz"(mil) and T5;,_, instead of T3, and T3, respectively. So
in this case we can also see that z(¢,.7¢) = z(t,.7,e) depends only on (.7 ,e) and
not on the choice of the sequence n;,. Moreover, (6.1.96) holds also in this case.
In fact if either e; = 1 or e; = 0 and there exists m € Z so that nj, < j <nj | the

same proof as before goes through. If, instead, e; = 0 and j < ny;, then the estimate
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l2(T2))| < %p follows from the first estimate in (6.1.97) since 2j < 2n§, —2 and then
T5; — Tg — 0, < Tie 5 — Tong, + || +c1|e] < =27 —2— 48" "Infe| + [ o] +
c1le] < 0for0 < |e] < 1.

Similarly, if e € &_ then by Remark 6.1.18, we obtain a solution z(¢) = z(t, 7°¢)
of Eq. (6.1.1) that satisfies (6.1.94) when m < m whereas for m = m it satisfies

SUPre(1g, | TS~ T+og) |2(t) = y-(t = T3 — o3)| < p,
SUPse(re Tros,1g, +7+pe) 1) = Wt — T — 03)| < p, (6.1.98)

SUP; (15, +T+B8 ) |2(1) = v (t = T3 — BR)| < p-

m

From an argument similar to the previous one (in this case, we can take, for example,
ng, =n¢,_,) we see that z(t,.7¢) = z(t, .7 ,e) depends only on (.7, e) and not on the
choice of the sequence n¢, and (6.1.96) holds.

Next, assume that e € &y with e # 0. Then there are m_ < my so that ¢z =0
if either k < ny, or k > ny, and Eq. (6.1.1) has a unique solution z(t, 7¢) so that
(6.1.94) holds when m_ < m < m, whereas when either m = m_ or m = m_ it
satisfies

Je(@) =y-(t = T3 —og )| <p,
SUDreire Trag 15, +T4ps | 120 — W —Th —og)[ <p,
SUPre(rg, +T+py 15 o +Bs 1120 — vt = T3 =B )l <p,
- Trag 20 = v (= T35, — o )l <,

SUPre(r5,,, —T+of, , \T5,, +T+BS, ] 2(t) =Wt — T35, —og, )| <p,

SUP e (oo, 15, —T+af

m_

(6.1.99)

Sup’E(Tzerh+—1 T
"l+

SUPrefry, 4745, o) [20) = Vet = T3, — Bi )l <p-

Moreover z(t,.7¢) = z(t,7 ,e) depends only on (.7, e) and not on the choice of r,
and (6.1.96) holds.

Finally, if e = 0, that is ¢, = 0 for any k € Z, by we define z(¢,.7,0) = u(t) as
the unique bounded solution of (6.1.1) so that

sup|u(t)| < p. (6.1.100)

teR

The existence and uniqueness of u(z) follow from the standard regular perturba-
tion theory (see [41-44], Remark 4.1.7). Now we are able to prove the following
theorem:

Theorem 6.1.23. Let assumptions (HI1), (H2), (H3) and (C) be satisfied. Then there
exists p > 0 so that for any 0 < p < p there exists & > 0 so that for any € # 0, |€| <
& and for any e € &, Eq. (6.1.1) has a unique solution z(t, 7 ,e, €) that satisfies one
among (6.1.94), (6.1.97), (6.1.98) or (6.1.99) and consequently (6.1.96). Moreover,
setting T7®) = {T;, 1o }nez, we have
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2, 7% o(e),e) =z(t,T7W e,¢) (6.1.101)

foranyt e Rande € &.

Proof. We only need to prove that (6.1.101) holds. Since z(¢, 7, e, €) does not de-
pend on the choice of {n¢,},,cz we see that we can take g

setting 7' = {Tu42 hmez, We have, if m = 2k:

=n;, — | and then,

16(e) _ _ _
Ty " =Tyo,, = Tong = Ty
and, if m =2k—1:
1o(e) _ _
Dot = Ty, = Tong—1 = Ty

that is
o) = e, (6.1.102)

Hence we see that, for any r € R and any e € &, the following holds
2(t,T',0(e),€) =z(t, 7 ,e,€). (6.1.103)

Now, from the definition of .7 ®) we see that 7*+1) = 7K thus (6.1.101) follows
from (6.1.103). The proof is complete. a

Now, we define F; : R" — R" so that F;(&) is the value at time 75 ) of the
solution z(#) of Eq. (6.1.1) so that z(Ty) = &:

i= fu(z) +eglt,z,€), z(Tu)=¢& (6.1.104)
and let @y (e) := z(Tu, §<k),e,£). Then we have:

¢k+100(€): Z(TZ(kJr])vg(k-i-l)vG(e)ve) :Z(TZ(kJrl)ay(k)»evS)

(6.1.105)
= Fi(2(Tox, W e,€)) = Fi o Dy (e).

Note that (6.1.105) can be stated in the following way. Let
S = {(Z(Tmﬂ(k),ae) |ee @@}, keZ.

Although F; may not be defined in the whole R”, for sure it is defined in the set
- It is standard to prove (see [36], Section 3.5) that .%} are compact in R” and
Dy . & +— S are continuous and clearly onto. Moreover, by (6.1.105), all Fj, : %} —
Z%+1 are homeomorphisms.

Remark 6.1.24. Here we silently suppose that F; are defined. We can do that since
we can modify (6.1.1) outside of a neighbourhood of the homoclinic orbit.

Next, let e,e’ € & be two different sequences in &. Then there exists j € Z so
that, for example, ¢/; = 0 and e; = 1. From [~ /2, x/2] C [T, T] and (6.1.96) we
see that
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‘Z(T2ja yae7£) _Z(sz,9,€/78)‘
Z ’YO(_aJO)‘ - ‘Z(TZja t?7678) - YO(_aJO)‘ - |Z(T2j7 y76/78)‘
> |w(—op)|—3p > min_|y(1)]-3p >0
te[-T,T]
provided p is sufficiently small. As a consequence, z(T»j,.7 ,e,€) # z2(T»j, 7, € ,€)
and, since both are solutions of the same Eq. (6.1.1):
(t,T ,e,€) #z(t,T € €) (6.1.106)

for any ¢ € R. Thus we have proved that the map e — z(r, 7, e, €) is one-to-one.
Hence if @y (e) = Pi(€’) then e = ¢’ since otherwise:

Dile) = 2(To, 70, e,€) # 2(Toy, TW € €) = Dy (€).

So @, : & — /% is one-to-one and a homeomorphism for any £ € Z. In summary,
we get another result.

Theorem 6.1.25. Assume that (H1), (H2), (H3) and (C) hold. Then for any € # 0
sufficiently small, the following diagrams commute:

& 2 &
‘t‘ki l‘karl
k 7 1

forall k € Z. Moreover, all &y are homeomorphisms.
Sequences of 2-dimensional maps are also studied in [45].

Remark 6.1.26. We improve (6.1.94) as follows. First, assume that e; = 1, and
ejr1 =0. The cases e; =0, e;;1 = 1 and e; = e, = 1 can be similarly handled.
Then, if j = nf, we have ni+1 > ng + 1 and then if

2niy—1)
te[TZni+l+Bk67T2ni+lfl+.Bke]: U [Tj+Bke7Ti+l+ﬁk6]7
j=2ng+1
we have t € [T5, + T + B¢, T, + B¢] and
t = T3 = B € [Taue 11— Tons, Tone -1 — Toue) C (T +1-28""In e, e0)

and hence if € is small enough that |y_(t)| < p forany t > T +1—-25"'In|e
(6.1.94) we get:

, by

sup |2(t) —u(1)] <3p
t€[Tj+B¢ T 1 +Bf]
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forany j € {2nf +1,...,2(ng, | — 1)}. On the other hand,

SUPte(Ty 0 +B Tang +T-+5¢] |2(t) = ¥(t — T — )| < p,

SUPL€ [Ty, +T+ B Tope 1 +55] |2(1) = ¥(t = Tang = BO) < p-

In summary, we can roughly state that for # € [T5;_1,7>1] the solution z() is close
either to the homoclinic orbit ¥(¢) or to the bounded solution according to e; = 1 or
ej =0.

6.1.8 Almost and Quasiperiodic Cases

In this section we assume that g(#,x, €) is almost periodic in ¢ uniformly in (x, €),
that is, the following holds:

(H4) For any v > 0 there exists L, > 0 so that in any interval of a length greater
than Ly there exists 7, which is an almost period for v satisfying:

lg(t+Ty,x,€) —g(t,x,€)| <V
for any (¢,x,€) € R"2,

Note that under (H4), function .# () is almost periodic in o. In this section we
suppose the existence of a simple zero a of .# (). Then following the arguments
of the proof of Theorem 6.1.3 we see that for any € # 0 sufficiently small there is a
sequence 7€ = {T,t} ez sothat TS, | —T% > T+ 1+4|a’| — 28 In|e| along with
the existence of af = {@f } ez € £~ with ||af|| < 2|a’|, satisfying .# (T, + &f) =
0 for any m € Z and inf,cz | 4" (T5, + 0f)| > co for some ¢o > 0. Then taking
Do =Ty, + 0y, Tom—1 =Ty, and o9 = 0, assumption (C) is satisfied. So applying
Theorem 6.1.25, system (6.1.1) is chaotic for any € # 0 small. In summary we obtain
the following theorem.

Theorem 6.1.27. Assume that (HI)—(H4) hold and that the almost periodic Mel-
nikov function # () has a simple zero. Then system (6.1.1) is chaotic for any € # 0
sufficiently small.

Next, it is well known (see [41-44], Remark 4.1.7) that near the hyperbolic equi-
librium x = 0 of the equation X = f_ (x) there exists a unique almost periodic solu-
tion of x = f_ (x) + €g(z,x, ). More precisely, given p > 0 there exists € > 0 so that
for any |e| < & equation x = f_(x) + €g(t,x,€) has a solution u(r) = u(t,€) so that
|u(t)] < p for any 7 € R and it is almost periodic with common almost periods as
g(t,x,€), i.e. assumption (H4) holds in addition with

lu(t+Ty) —u(t)| < év VteR
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for a positive constant ¢. Note that u(¢) is a bounded solution of X = f_(x) 4+
€g(t,x,€) mentioned in (6.1.100). Thus the conclusion of Remark 6.1.26 holds with
the further property that u(z) is almost periodic.

Results of this section generalize the deterministic chaos of [42-44,46] to the
discontinuous almost periodic system (6.1.1).

Finally, if g(,x, €) is quasiperiodic in 7 the following holds:

(H5) g(t,x,€) =q(mnt,...,ont,x,€) for @,..., 0, € R with g € C;(R" 1 R")
and ¢(0y,...,0,,x,€) is l-periodic in each 6;, i = 1,2,...,m. Moreover, ®;,
i=1,2,...,m are linearly independent of Z, i.e. if ¥ i =0, € Z, i =
1,2,...,m,then; =0,i=1,2,---,m

Then g(z,x, €) satisfies assumption (H4) [40,42] and hence the conclusion of Theo-
rem 6.1.27 holds.

6.1.9 Periodic Case

Here we assume that g(¢ + p,z,€) = g(t,z,€) that is g(z,z,€) is p-periodic. Then
(@) is also p-periodic. We suppose the existence of a simple zero a® of .Z ().
Then Theorem 6.1.3 is applicable with 7, = mT and 2T = rp forr > 1, r € N. So

. 2m(T, if m =2k,
|l erg-DT, ifm=2k—1.
Since we can take ng,(e) =n;, — 1 we see that
Joe _ [ 2T 2T, tm=2k |,
" (2n¢ —1)T —2T, if m=2k—1 "

for any m € Z. Again we denote with z(¢t) = z(t, .7, e) the solution of equation (6.1.1)
corresponding to the sequence .7¢. Then Z(t) := z(¢ + 2T satisfies the equation

¢= f+(z) +eglt,z,€)

together with the estimates:

SUD, o) L pe o0 g e |20) — 1 (1= T — ) <,
Sup [ () T+OC,$7 T2m( +T+B ] ‘Z(t) B YO([ B sz( ) B ae )| < p’ (61107)
sup, |Z( )= 1i(t =Ty 2m =Bl <p-

[ +T+Bm 2m 1+ﬁ

Thus, because of uniqueness:

a(7¢e)=a(T°C e)c*(R), PB(T¢e)=PB(T7° g)ecR)
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and z(t + 2T, 7 ,e,€) = z(t,7,0(e),€). Thus, using (6.1.101) and recalling that
T = kT:

ATaprr), T N e,8) = 2Ty, 78V [0 (e), €) = 2(Tot, TH e €),

that is, we see that

Pi(e) = Ple), Fr=T

are independent of k. Similarly, because of uniqueness and periodicity, the value at
the time T5(4.1) = 2(k+ 1)T of the solution of (6.1.104) is the same as the value at
time 27 of the solution of

t=fe(2) +egltz€), 2(0) =,
that is, also Fi(&) = F (&) are independent of k and we have:
DPoo=Fod.
In summary we arrive at the following result.

Theorem 6.1.28. Assume that g(t+p,z,€) =g(t,z,€), that is, g(t,z,€) is p-periodic.
If € # 0 is sufficiently small and there is a simple zero o° of .4 (o) then the follow-
ing diagram commutes:

& &
o] |o
52 . 32

forany N> r > 1. Here F = Q] = Qg 0...0 Qg (r times) is the rth iterate of the
p-period map Qg of (6.1.1).

Theorem 6.1.28 generalizes the deterministic chaos of Section 2.5.2 [36,47] to
the discontinuous periodic system (6.1.1).

6.1.10 Piecewise Smooth Planar Systems
In this section we apply the theory developed in the previous parts to a two—
dimensional system (x,y € R)

&= P=(x,),

y=0%(xy),

where + holds if (x,y) € Q; = {(x,y) | G(x,y) > 0} and — when (x,y) € Q_ =
{(x,y) | G(x,y) < 0}. We will construct an explicit expression for .# (ct) showing

(6.1.108)
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that it extends to the discontinuous case, the usual Melnikov function, thus vali-
dating the name of Melnikov function we have given to .# (). Let us write the
homoclinic orbit

as

Ye(t) = (ui(t)> €eQ , w)= <u0(t)) €Q,.

Vi(l‘)

Then let
ax(t) = P (us (1), v+ (1)) + Oy (ux(2),v4(2)),

ao(t) = P (uo(t),vo(t)) + Qyf (uo(t),vo (1))

be the trace of the Jacobian matrix of the linearization of (6.1.108) along (u4 (¢),v+(¢))
and (ug(t),vo(t)) respectively, and

a_(t), ifr<-T,
a(t):=< ap(t), if =T

ai(t), ifr>

Then ( v}j(t()t )) e~ Jerax(Ddr satisfy the adjoint variational system:
—y

and similarly (_vz(t) ) e L1047 Gatisfies the adjoint system:

o(t)

X = =P (0(1)x—0f (1)),
y=—Pf (w(t)x—0F (w(t))y.

Asa consequence,

£\ e _ e e Ve (£T)
(—uﬂz))e =X:() iy (£T)

VO(t) — [ gap(v)dT _ yrx (1 VO(_T)
<llo(t)> ) — —ig(-T) )

Next, since the system is two-dimensional, we have

and
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Gy(y(T
span{y} = ZRy = span{ ( G(Y( ) > } .

g Gy(Y(T))
=i\ ey )

Let {e},e2} be the canonical basis of R2. According to the definition of R+, Ry we
have

So we take:

Rt =61 G 7y D
e == Gy
Roer=e- G/(y%—(zgﬂ)—T) =,
= G/(yG<y—(;(>wT)<)—T> T,
Roer =e1 = G@E%(ﬁii 7y o0
Rae =2 g ey oD

and then (here .#; denotes the matrix of the linear map L with respect to the basis
{e1,e2} of R?)

My = . . (@) (Gy(YT)) —G(Y(T)))
G )y (T) \ iy (T) y !
e ——— (DN (6 ey —ar-T)
-G\ —a(-T) ) ’
M 1 (@) (Gy(YT)) —G(y(T)))
O GT))0(T) \ —ig(T) y !



298 6 Chaos in Discontinuous Differential Equations

and

ot AGCWINL ( 50) \ e (o
XL R = G T (—L(t))ef o

for t > T. Putting everything together we obtain

G'(v(T))0(T)
G D 1) R Jra(t)dT
{G'(y(T))y(T) /_m <_u_(t)>g(t+a ¥(1),0)e dt
/T V(.)(t) >g(l+a,}/(t) O)e fTaO(T)d’L'dt
=T \ —ug l‘)
G'(V(T)(T) [=( v+() s ey
+G’(y(T))y+(_)/T (_u+(t)> g(t+a,y(t),0)e dt
that can be written as:
___le'(n(1))
) = =G o)
G/(}/(_T))YO(_T) - — Jfa(t)dr
{G’(Y(T))y(T) /_m F-(v(®)) Ag(t+a,y(t),0)e d
+/TTf+(Y(t))/\g(l+a7y(t),0) e Jraldr g (6.1.109)

n G/(Y(]_T:))YO(Y;) /Toof—('Y(t)) /\g(H— Ol,’)/(l‘)70) ej}a(r)d’rdt} ,

where

Note that we can write:
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M) =— |G’(GEy7lef(]ao {/ Flr) Aglt + o, (), )e_fé“(f)drdt—ﬁ—é,—ﬁ—&r}
where
_ G'(y(=T))1(— )_ -7 — Jta(t)dt
o = (ST ) [ st a0 b
_ (G M) N\ [ Ha(yde
.= (LD 1) [ ) mste+ a0, 0) e B,

Remark that the extra terms 8+ vanish in cases Jo(—7) = 7. (—=T) and }%(T) =
7+ (T). Thus .# () extends the usual Melnikov function (cf Section 4.1) to the
discontinuous case.

6.1.11 3D Quasiperiodic Piecewise Linear Systems

In in section, we consider the example

Ax+€(gisinwit + gasinapt), fora-x<d,
;= (6.1.110)

Ax+b+e(grsinwir+gysinawpt), fora-x>d

of a quasiperiodically perturbed piecewise linear 3-dimensional differential equa-
tion. Hered > 0, w; 2 > 0, a,x,812 € R3, @- x is the scalar product in R3. Moreover,
we consider system (6.1.110) under the following assumptions

(i) Ais a3 x 3-matrix with semi-simple eigenvalues, A;,4; > 0 > A3 and with the
corresponding eigenvectors, e, ez, e3.

(i) Let b = Zf’zlbiei and a; :=a-e;, i = 1,2,3. Then a;,b3 > 0, ar,az > 0 and
bi1,b; <O0.

Remark 6.1.29. Certainly we can study more general systems

m
Ax+82gksinwkt, fora-x <d,
k=1
m
Ax+b+e¢ ngsina)kt, fora-x>d
k=1

but for simplicity we concentrate on (6.1.110) in this section.

If either g1 = 0, g» = O or the ratio 2L is rational, then we get the periodic case
studied in [34]. Theorem 6.1.28, however, improves the result in [34] in the sense
that here we obtain chaotic behaviour of the solutions. Thus, we focus here on the
case

(iii) g1 # 0, g2 # 0 and @; /@, is irrational.
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Given the vectors in R3: x = Y3, x;e; and y = Y3, y;e; we define

3
<x,y> = ZXiYi~
i=1

Then (x,y) is a scalar product in R?® that makes {e1,e,e3} an orthonormal basis
of R3. From now on we will write also (x1,x2,x3) for the vector x = Z?zl x;e; and
hence we identify e}, ey, e3 with (1,0,0),(0,1,0),(0,0,1) respectively.

Writing x =Y | x;e; and g; = Y3, gjiei, j = 1,2, (6.1.110) has the form

Aixi + € (g1;Sin @17 + go; sin wyt) , for (a,x) <d,
Xi = (6.1.111)

l;xi—&—bi+£(g1isina)1t+g2,'sina)zt), for (a,x> >d,
i=1,2,3, where a = Y'}_, aje;. Hence G(x) = (a,x) —d = 25:1 ajxj—d and thus
3
Q_ = {(xl,xzpcg) S R3 | Za;x; < d},
i=1
3
Q = {(xl,xz,X3) eR3| Zaix,- > d}.
i=1
Theorem 6.1.30. If conditions (1)—(ii) and the next ones

2
- b -
wby(@BT —1)=dxs, Y %(e*”ﬂ—l) —d (6.1.112)
=1

hold, then system

ll' iy ) <da
'~={ ! for - {a,3) (6.1.113)

Aixi+bi,  for {a,x)>d,

i=1,2,3, has a homoclinic orbit to x = 0:

where
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and conditions (H1), (H2) and (H3) are satisfied.

Proof. With a view to constructing the homoclinic solution y(¢) of system (6.1.113),
we describe the local stable and unstable manifolds of the fixed point (x,x;,x3) =
(0,0,0) € Q_: the local unstable manifold of the origin is

$ (0) = {(X17X2,0) ‘Xl,xz ER, aixi+arxr < d}

loc

and the local stable manifold is

u (0) = {(0,0,)63) |X3 ER, azx3 < d}.

loc

Thus it must be:

cqeM! 0
()= | ce® |, n@)=| 0
0 c3 ehst

as long as y_(2),y+(t) € Q_. Note that, if ¢|,c2,c3 > 0 then, because of (ii), the
scalar product {a, y_(t)) (resp. {a, ¥4 (¢))) is increasing (resp. decreasing) and hence
Y- () € Q_fort < —T and v, (1) € Q_ for ¢t > T together with y_(—T),y+(T) €
0Q_ifand only if {a,y_(—T)) = {(a, v, (T)) = d, that is, if the following conditions
on the non-negative numbers T,d,c1, ca, c3 hold

AT

arcre M tapere T =d, azezelT =4, (6.1.114)

Next we have to choose ¢; > 0, ¢c; > 0 and ¢3 > 0 in such a way that the solution
%(t) of system (6.1.113) with y(—7) = y_(—T) belongs to Q, for —T <t < T
and satisfies 1(7) = ¥+ (T). Now, it is easy to see that if the solution of (6.1.113)
belongs to 2 and satisfies yy(—7) = y_(—T), then it must be

A eM (b eMT e dy) — by
w(t) = | A eR (bremT +erdy) — b
b3z”;1 (elg(l‘-‘rf) 71)
Hence the condition (7)) = v, (T) is equivalent to:
Clxl = —2b1 sinh(llf),
Ay = —2by Sinh(lzT), (6.1.115)
03}13 = 2193 Sinh(ﬂ,gT) .

Plugging these values of ¢y, c,c3 into (6.1.114) (note that ¢, c2,c3 > 0) we obtain
(6.1.112) on T, d. We assume that conditions (6.1.112) are satisfied and show that
in this case, % (1) € Q forany ¢ € (—T,T). To this end we consider the function:
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2 _
010 1= G = X G 1) G 1)

We derive 5
=Y ajpjrieritD pazbydy e+
j=1
From assumptions (ii) and (6.1.112) we see that

o(-T)=¢(T)=0, ¢"(1)<0 forany reR.
Hence we obtain
o(t)>0 on (-T,T)

that gives 3 (7) € Q. for —T < < T. Moreover, from ¢(

—T)=0and ¢"(t) <0
we also get ¢'(—T) > 0 and similarly ¢'(7T) < 0, that is,

_ 2 _
Y ajbje T tazby >0, Y ajb;+azbse*sT <0. (6.1.116)
j=1 j=1

Condition (H1) is verified. Now we verify (H2) by checking the inequalities
G'(v(=T))fe(v(—

that in this case read:

7))>0 and G'(Y(T))f=((T)) <0

_ 2 _
Y appieT-1)>0, Y abje M7 +azby >0,
=1 =

2

Y ajbj+asbye?T <0, dls; <0.
j=1

(6.1.117)

The first and the fourth inequalities come immediately from assumptions (i)—(ii)

the second and the third ones from (6.1.116). So (H2) also holds. Next we verify
condition (H3). First we note that VG(x) = a, for any x € R3, and

000
P,=P.=[00 0 (6.1.118)
001

Then, since A [G'(Y(T))] = {a}* and a3 > 0, we get

S = NG (AT %P, = {0}
Similarly, since .4 P_ = span{e,e2} and A G (y(—T)) = {a}*, we obtain

" = span{(az,—a1,0)}.
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Next, from (6.1.113), we see that

eh+T) 0
Xo(t)=X_(1) = 0 ehT) g (6.1.119)
0 0 eh+T)
and B
eh=T) o 0
X, (1) = 0 eht-T) ¢ ) (6.1.120)
0 0 el
Hence
ap T
Xo(T)7" =span{wy} with wp:= | —q e2®T |. (6.1.121)
0
Since VG(x) = a, we have:
R <= )
R+wwm7+(]_‘), (6.1.122)
Rowmwe ()
As a consequence,
Rowg =W0—<:2)VEOT>)>70(T) #0 (6.1.123)

since from (ii) it follows that wy is not parallel to j(T) = (b1 b, b3 eMﬁ)*.

Thus we get ."" = RoXo(T)”’ # {0} that is dim."” = 1 and condition (H3) is
satisfied. The proof is completed. O

We start with construction of y(t): Since . = {0}, we see that y is such that
{y}*+ = span{a,Rywo}. From (6.1.123) it is easy to see that (a,Rowo) = 0, hence
we can take:

Y =aARowo,

where A denotes the cross product.

First we construct W(t) fort < —T: Since: (I— P*)R* X;(T)Rjy = 0, we can
compute P* R* X5 (T )R;;y instead of R* X;; (TR, with the first one being simpler.
We recall that Ryw = w for any w € {a}* and RoJo(T) = 0. Thus the eigenvalues
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of Ry are 0 (simple) and 1 (double). The same conclusion holds for R1. As a conse-
quence, we obtain:

trace Ry = trace Ry = traceR_ = 2. (6.1.124)
We also remark that
by 0 b](éiz}llf—l)
o - 0 . - .
W)= b |, w(l)= , Y-(=T)=| by(e 2T 1)
b% 62137: LAS 0
3 0

Hence we get:

0 0 O
PRX(TR;=[ 0 0 0 |,
A3 A2z A3
where
A3 = (A13,A23,A33)* = RoXo(T)R_63 (6.1.125)

is the third column of the matrix RyXo(7)R_. Thus

0
PRX(TDRw=| o
<A37 lll>

Since y = a A Rywg we get, using (6.1.61) and (6.1.119):
W(l) = eil3([+f) <A3,a/\ROW0>e3
for t < —T. Note that
A3 ar (Rowo)i
<A3, l[/> =det| A3 ay (R()Wo)z = det(A3 a ROWO)
Azz a3 (Rowo)s

where (Rowo); is the j-th component of Rowo and that A3 = Ro[Xo(T)R_e3] €
ZRo = {a}* so both A3 and Rywy belong to span{a}, but of course this does
not mean they are parallel. The computation of the vector A3 is really messy even in
an example as simple as this, so we don’t proceed further with its computation now,
but will do it later when we fix some particular values of the parameters.
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Next, we look at the expression of ¥(t) for —T <t < T: Since the linear system
X% = Ax is autonomous, and Xo(—T') = I, we have X, ()X (T) = X (—1). Next, to
compute Ry we make use of the following identity.

Lemma 6.1.31. For a given 3 x 3—matrix M, it holds
(Mu) A\v+un (Mv)— (traceM)uAv=—M"(uAv) (6.1.126)
for any u,v € R3.

Proof. Indeed, taking the scalar product with a vector w € R?, (6.1.126) is equiva-
lent to

det(Mw,u,v) + det(w,Mu,v) + det(w,u, Mv) = (trace M) det(w,u,v). (6.1.127)

To prove (6.1.127), we note that the map from R? x R® x R? to R given by
(w,u,v) — det(Mw,u,v) + det(w,Mu,v) + det(w,u, Mv) € R is multilinear and al-
ternating. Thus there exists k¥ € R so that

det(Mw,u,v) + det(w, Mu,v) + det(w,u, Mv) = kdet(w,u,v).

Taking w = e, u = ep and v = e3 we see that k¥ = trace M and (6.1.127) is proved.
The proof of Lemma 6.1.31 is completed. O

We apply (6.1.126) with M = Ry, u = a and v = Rywy. We get, since trace Ry = 2:

—Rjy = —Rj [@a A Rywo] = Roa A Rowo + a A [RoRowo| — 2a A Rowo

2
= Roa A\ Rywo —a A Rowy = —(]I—R())a/\R()W() = _<LZ,;(1)|(T)>YO(T) A Rowo
and then | ‘2
a —
v(r) R) o(=1)[10(T) A Rowo]

for =T <t <T, since X (1) = Xo(t).
Finally we compute y(t) when t > T: Applying again (6.1.126) with M = R,
u = a and v = Rywy. We get:

—Ril/l = —Ri (aARowo) = (Rra) A (Rowo) +a A (RLRowo) — 2a A Rowo
since trace R, = 2. Now, we have:

2
a e
(R+6l) A (R()W()) =a /\R()W() - <a7|/+(]—_‘)>'y+ (T) /\R()W(), R+ROW0 = R()W()

since Rywg € ZQ = ZR, and R, is a projection. Thus:

2 2
|a| ’}/Jr(T) ARowgy = ﬂeg A Rowp

Ry =RilanRowo) = 2 7y .



306 6 Chaos in Discontinuous Differential Equations

and

jal? -1
= ——X\ (1)[es ARowo]

y(t)

fors > T, since X} (1) = X (¢). In summary, we conclude with the following result.

as

Theorem 6.1.32. Let assumptions (1)—(ii) hold and suppose (6.1.112) is satisfied.
Then the function y(t) of (6.1.61) for the system (6.1.113) reads

(3713(I+T)<A3,61/\R()W()>e37 ift < —T,
ol Xo(—1)[i6(T) ARowo), if T <t<T
E e A 0 owo|, - >~ 1,
y(t) = ¢ (a, (7)) (6.1.128)
|a|2 —1 . -
—X (t)[e3 /\R()WQ]7 ift>T
as

where Xo(1), X4 (t), wo, Ro, A3 are given by (6.1.119), (6.1.120), (6.1.121), (6.1.122),
(6.1.125), respectively.

So we are in position to apply Theorem 6.1.16. Writing g; = (g;1,8/2,8j3)
j=1,2, we get the Melnikov function (6.1.62)

M (a) = / [sin @1 (7 + o)y (1) g1 + sin s (¢ + &)y (1)ga] dr

2=} oo

_ sin(aor) / cos(@17)W* (t)g1 d +cos(aon) / sin(@0)y (1)g1 di

J —oo —
oo oo

+sin(aw) / cos(@) (1)gadi + cos( ) / sin(@0)y (g2 ds

= A ((1)1 ) sin(a)] o+ W ((1)1 )) +A2((02) Sil’l((lh(x =+ @'2((1)2))

where

Ai@r) = \/(/O;coswitl//*(t)gidt>2+ (/O; Sina)itl//*(t)g,-dt>2

for i = 1,2. Now we consider the following two possibilities:

1. Either A (C()[) 75 0, AQ(C()z) =Q0orA; (C()[) =0, Az(a)z) 75 0. Then .//(OC) has the
simple zero oy = —@;(®;)/ ®;, i = 1,2, respectively.
2. Aj(m) # 0 and Az() # 0. Let s; := sgnA;(a;) € {—1,1}, i = 1,2. Then

l—S,'

S1MA] ((1)1) +S2(1)2A2((1)2) = |A1 (0)1)| +(D2|A2((l)2)| > (. Since cos T =35;
and sin %n =0fori=1,2, and @, / @, is irrational, from [40] the existence fol-
lows from @ (as a matter of fact infinitely many o exists) so that ;0 + @;( ®;)

are near to IES" 7 modulo 27, i = 1,2, and .# (o) = 0 while

s10A1 (@) + 520A2 (@)

M (o) > 5

>0.
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Hence also in this case we have a simple zero of .Z ().

Consequently if Aj(@;) and A;(®;) do not vanish simultaneously, Theorem
6.1.27 applies and we conclude that (6.1.110) behaves chaotically for any € # 0
sufficiently small. Next, we note that A;(®;) # 0 if and only if

& (ay) = / ey (1) gidt # 0. (6.1.129)
Since y(¢) # 0, Plancherel Theorem (cf Section 2.1) ensures that
V()= / ey (t)di #0. (6.1.130)

Note that &;(®) = V(®)*g;. So condition (6.1.129) is equivalent to the non-
orthogonality of V() to g;. Furthermore, it is not difficult to observe that &;(®) are
analytic for @ > 0. Indeed, we have |y(z)| < ke~ °l, for some positive constants k
and J, and for @,n € R we have: sin((®+11)x) = sin(wx)e™ M +1e 7" sinhnx.
Thus the function

| _sintan)y” (g

is holomorphic in the strip {@ +:m € C | [n| < 8}. A similar argument works with
cos(zt) instead of sin(zt). Consequently, when functions @;(®) are not identically
zero, they have at most countable many positive zeroes with possible accumulations
at +oo (cf Section 2.6.5). In summary, we get the following result.

Theorem 6.1.33. Let assumptions (1)-(iii) hold and suppose (6.1.112) holds. When
both ®@1(®) and P2(w) are not identically zero, there is at most a countable set
{®;} C (0,00) with possible accumulating point at +oo so that if ®;,® € (0,00) \
{@;} then system (6.1.110) is chaotic for any € # 0 sufficiently small.

Since in general, the above formulas are rather difficult to find the solution, now
we consider the following concrete examples.

Example 6.1.34. We take

=0, m=az=1, M=2, Ah=1 NA3=-1,
(6.1.131)
bi=by=-1, by=1, d=3/4.

Then (6.1.112) is satisfied with T = In2. With these parameters values we have:
s 1
ROW():WU: 16817 Y()(T):_e] _62+Ze3'

Thus,
YO(T) ARowo = 4e) + 16e3

and we get
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64
——[eTer+ees], for —In2 <t <In2,

vi)=q 3
64e ey, for t > 1n2,
since
4¢2 0 0 %ezt 0 0
XO=x@0= 0 2 0 | x@o=|, 1. ,
0 0 %e_' 0 0 2e

Finally we compute y/(¢) for t < —In2. First we need to know A3 which is the third
column of RyXo(T)R-_ that is

A3 = ROX0<T)R_e3.

We have R_e3 = —%el — ey +e3, then Xo(T)R_e3 = —20e; — 4es + £e3 and thus
A3 = —15e; + ey — e3. As a consequence,

—15 0 16
(A3,a A Rowg) = det 1 1 0] =32
-1 1 0

and y(t) = 64¢’ e3 for t < —In2. We conclude that (see (6.1.128))

64¢' es, for t < —1In2,
_ 64 _
y(r) = f?[e "eytees], for —In2 <t <lIn2,
64e " e, for ¢t >1n2.

Putting this formula of y(z) into (6.1.130), we finally obtain

256sin(@w1n2)

V(io)=— 30 1) [@(e2+e3)+1(ex—e3)].

Then from &;(®w) =V (w)*g;, we have:

256sin(@w1n2)

P0) =2

((D(giz +gi3)+l(gi2_gi3))- (6.1.132)
So for the parameters (6.1.131), &;(w) is identically zero if and only if g;» = g3 =0.
Otherwise, it has only the simple positive zeroes ®; = 7;j/In2, j € N. In conse-
quence of Theorem 6.1.33 we get the following.

Corollary 6.1.35. Consider (6.1.110) with parameters (6.1.131) and (iii) holds. If
either gin # 0 or g # 0 for some i € {1,2} and w,,0, # ©j/In2, Vj € N then
system (6.1.110) is chaotic for any € # 0 small.
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Example 6.1.36. On the other hand, for the following set of parameters

aq =a2=a3=1, b] szz—l7 b3=13/87

(6.1.133)
M=2, h=1 A=-1, d=39/32,
we get T = 1n2 and (see (6.1.128))
1344
7 € e3, for 1< -—In2,
16
v(t) = —ﬁ(13e’2’e1+26e”e2+206’e3), for —In2<t<In2,
48 B
ﬁ(496 Te1 +18e " ey), for ¢>In2.
Then
Di(w) =

2671013419 — 10) (g1 + 2802 + g1 @0 + g @ — 2853 + W*gin — (g +38i3) ®)
17(0—1)(0 —21)(1 —10)

for i = 1,2. Clearly, for the parameters (6.1.133), ®;(®) is not identically zero. If

gi2 # —3gi3 then &;(®) has no positive roots. If g;, = —3g;3 then &;(®) has the only
positive root @; = ,/% provided % > 0. In consequence of Theorem
6.1.33 we obtain the following.

Corollary 6.1.37. Consider (6.1.110) with parameters (6.1.133) and (iii) holds. If
one of the following conditions is satisfied

gin # —38i,

gn = —38i3, &1 =283 #0, q
| — 821

gin = —38i3, 81l # 283, iligl <0,
8i3 — &il

i1 — 8 i3 i1 — 8 i3
gin = —38i3, 81 # 283, 8117985 - 0 and ; 7 4/ u,
2gi3 — gi1 2gi3 — &l

Sor some i € {1,2} then system (6.1.110) is chaotic for any € # 0 small.

Remark 6.1.38. Parameters (6.1.131) and (6.1.133) give Examples 6.1.34 and 6.1.36
for which &;(w) is either identically zero, or has infinitely many positive roots, or
has no positive roots, or has finitely many positive roots.

Remark 6.1.39. If @1(w;) =0 and ®,(w;) = 0 then .# () is identically zero and
a second-order Melnikov function must be derived as in Section 4.1.4. But those
computations should be very awkward for (6.1.110), so we omit them.

Finally when g; # 0, g2 # 0 and m; /o, is rational, we get a different situation.
For instance, consider Example 6.1.34 with @ = 1, o =3 and gpp = gi3, i = 1,2.
Thus (6.1.110) is 27w-periodic and
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1 4
A (a) = Pi(1)sino+ P,(3)sin30 = sinor — gsin3(x = gsin3(x

provided @ (1) = 1 and ®,(3) = —3. From (6.1.132) we derive

3 5

$2 80 =~ ogangy 82T T gy

Then the Melnikov function is .Z (o) = %‘sin3 o and it has only the zero op = 0 in
[— 7, 7] which is not simple but has Brouwer index 1 (cf Section 2.2.4). So Theorem
6.1.27 is not applicable, but we still get a chaos for (6.1.110) with € # 0 small as in
Remark 3.1.9 [15].

6.1.12 Multiple Transversal Crossings

The above results can be extended to cases when homoclinics are transversally
passing through several discontinuity manifolds. More precisely, let 2 C R" be a
bounded open set in R” and G(z), j = 1,..., p be C"—functions on £, with r > 2.
Weset S; ={z€ Q| Gj(z) =0}, and

p q
.Q\ U Sj = U .Q,'
j=1 i=0

with €; being the connected components of Q \ U?ZIS j. Let fi(z) € Cj(R") and
gi(t,z,€) € Cj(R"2), i.e. fi(z) and g;(t,z,€) have uniformly bounded derivatives
up to the r-th order on R” and R"*2, respectively. We also assume that the r-th order
derivatives of f;(z) and g;(z,z, €) are uniformly continuous. We set

fz):=fi(z),  glt,z,€) :=gi(t,z,€) ifz€

and
G(z) =1I"_,G;(2).

Definition 6.1.40. We say that a piecewise C'—function z(t) is a solution of the
equation i
= f(z) +eglt,z€), 7€, (6.1.134)

if it satisfies Eq. (6.1.134) when z(¢) € £;, and moreover, the following holds: if
for some 7, we have z(t.) € S}, then z(z,) ¢ S; for any [ # j and there exists r > 0
so that for any ¢ € (t, — r,t, +r) with 1 # 1,, we have z(r) € UJ_ €;. Moreover,
if, for example, z(t) € Q; for any ¢ € (t, —r,1), then the left derivative of z(¢) at
t =t satisfies: 2(¢; ) = fi(z(t.)) + €gi(t+,2(t), €); similarly, if z(¢) € €; for any
(€ (torty 1), then 2(17) = i(2(0.)) +Egi(20,2(1.), ).
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Remark 6.1.41. Since z(t) € U!_€; for any t € (t, —r,t, +r) \ {t.} there exist

two indices i = i};,i] so that z(¢) € ; when t € (t. —r,t,) and z(t) € Q for 1 €
J J

(t«,t« + r). Moreover, since z(r) ¢ UleSj, for any t € (t. — rty) U (t, 8 + 1),

z(t) € UleSj only for 7 in a discrete increasing subset {t;} of R with possible

accumulation points at 4-e0. Moreover z(#) € C"HH(R\ {#;}).

We assume (Figure 6.2) that:

(H1) For € = 0 Eq. (6.1.134) has the hyperbolic equilibrium x = 0 € y and a
continuous, piecewise C'-solution ¥(¢) € Q which is homoclinic to x = 0 and
consists of three branches

y(t) =< w(), if-T<t<T,
Y+(t)v lftZT,

where 4 (1) € Qo for |t| > T, y(t) € Q for |¢| < T and
r-(-T)=n(-T)€9Q. ¥ (T)=n(T)<c .
(H2) Atany point#, € R so that y(,) € S;, we have

G (V(t) fiy (v(t)) - G (v(:)) fir (v(8)) > 0,

where i’j, i’j’ are the two indices defined in Remark 6.1.41.

Let , be such that y(.) € S; for some j. Then (H2) means that both ¥(z;") and
¥(t;) are transverse to S; at the point ¥(z.). Next, since ¥(t) € € for || > T, it
follows that }p(¢) intersect UleS,- only a finite number of times denoted by —T =
fo<t; <---<ty_i <ty =T.Insummary y(t) € U_S;if and only if r € {—T =
to<t) <--<ty_1 <ty =T} and ¥(t) is continuous, piecewise C' in R and has
left and right derivatives at the points ¢t =t;, i =0,...,N. Next for [ =0,...,N—1,
we define i;, j; so that ’]/o(t) S ‘Qil for any t € (tl7tl+1) and ’)/()(t[) S Sjl’ }/o(t]v) S SjN'
Thus, with reference to the notation of Remark 6.1.41, we have i/jz =1i;_; and i’j’[

Forl=1,...,Nlet X;(t), t € [t;_1,1] be the fundamental matrix solution of x =
i, (W())x with X;(t;1) = L. The transition matrix .7 : R" — R" is defined as

=i

G'(w(n)w
G'((u) ()
forl=1,...,N—1. It is easy to see that all .7 are invertible. Finally we define

the fundamental matrix solution of the variational equation of (6.1.1) along () at
€ =0 as follows:

Sw=w+ () — )] (6.1.135)

Xo(t) :==X,(1) 121 X1 (t1=1) L2 - L1 X (n)  for t€[t_y,1y)
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Fig. 6.2 Homoclinic orbit y(¢) transversally crosses discontinuity manifolds S; and S,. It may
cross Sy > several but finite times before eventually getting in £2;.

and / =2,...,N, where we have Xy(¢) = X;(¢) on [fy,#1). Note that Xo(¢) solves the
following impulsive linear matrix differential Cauchy problem

Xo(1) = Df (W(1))Xo(1),
Xo(t") =S Xo(t;), 1=1,....,N=1, Xo(-T)=1I
fort € [-T,T]. Now we can repeat the above arguments over (6.1.134) by intro-

ducing (6.1.61), (6.1.62) and then restate Theorem 6.1.16 and the other above re-
sults [48].

6.2 Sliding Homoclinic Bifurcation

6.2.1 Higher Dimensional Sliding Homoclinics

In [34] the problem of bifurcations from homoclinic orbits is studied whereas in Sec-
tion 6.1 chaotic behaviour of solutions is proved for time perturbed discontinuous
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differential equations in a finite dimensional space, when the homoclinic orbits of
the unperturbed problem crosses transversally the discontinuity manifold. Thus, it is
natural to argue if a similar behaviour arises also when sliding homoclinic orbits are
concerned. The purpose of this section is to give an affirmative answer to this ques-
tion. It has been observed in Section 6.1 that one of the problems we have to face
studying discontinuous differential equations, is the loss of smoothness of invari-
ant manifolds, a problem persisting also in the sliding case. Moreover in the sliding
case the additional problem arises, that is, during the sliding time the system should
be considered only on the discontinuity manifold, thus reducing the dimension of
the system. However, we show in this section that the method used in Section 6.1
to prove chaotic behavior can be arranged to handle the case of sliding homoclinic
orbits, leading to a similar conclusion.

Typical examples of sliding motions are in relay controllers, impact oscillators
and stick-slip friction systems where the stick motion corresponds to sliding. Many
non-smooth models can be found in [6,7,11, 14,27,28,49-54]. Sliding homoclinic
solutions to pseudo-saddles (saddles lying on discontinuity curves/lines) of planar
DDE:s are studied in [6,51] both numerically and analytically. A theoretical discus-
sion on sliding homoclinic solutions to saddles of planar DDEs is presented in [6].
However, we have not found any concrete example in literature with a sliding ho-
moclinic orbit to a saddle, except in [28] where an example is given with two dis-
continuity lines. In our opinion the reason why it is so difficult to find examples is
because when the discontinuity manifold is linear, the DDE must be nonlinear in the
open subset the equilibrium point belongs to and this makes computations harder.
Of course, one can imagine a linear system of ODE with a sliding homoclinic orbit
to a nonlinear discontinuity manifold. But one can reduce to the linear discontinuity
manifold (and then to a nonlinear equation) by a simple change of variables, and for
computational reasons, it is better to work with linear discontinuity manifolds. For
this reason we investigate examples of DDEs exhibiting sliding chaotic behaviour
in consequence of Theorem 6.2.5 in Sections 6.2.2 and 6.2.3.

Now we go into details. Let R” = R x R"~! with corresponding projections P, :
R" — R and P, : R" — R"~!. For x € R" we write x = (z,y) € R x R"~!. Consider
a discontinuous system in R” with a small parameter such as:

x=f(x)+eg(t,x,e), 6.2.1)

where
f+(zay) fOI', Z>0)

f-(z,y) for, z<O0,

with f1 : Q = R", fL € () and g: Rx Q2 xR = R", g € C}(R x 2 x R),
with © being a bounded open subset of R” that has nonempty intersection with
the hyperplane z = 0. Note that we allow the possibility that f,(0,y) # f_(0,y).
We also assume that the r-th order derivatives of fi (x) and g(,x, €) are uniformly
continuous. We set

() =
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i:{X:(Z,y)EQ‘:tZ>0}7 Qoz{x:(zuy)€Q|Z:O}‘

By putting
fi = (hx(z,y),kx(2,y)),
where iy : Q — Rand kg : Q — R" !, we assume that

(H1) For any (0,y) € € it results:
h_(0,y) —h.(0,y) > 0. (6.2.2)
Then we set (see [8, Eq. (2.12)]))

kJr(O’y) _k*(ovy) + k+(07y) +k*(0’y)

H(y):=V(y) 3 5

where
h+(07y) +h— (07y)

VO = 0y —ha(0)”

and for (0,y) € Qp, we consider the equation

y=H(y). (6.2.3)
Note that H(y) has the following symmetric form with respect to indices +:

h— (O>y)k+(07y) B h+(07y)k— (an) .

H(y) = h_(0,y) — h.(0,y)

We suppose that

(H2) The unperturbed equation x = f_(x) has a hyperbolic fixed point xg € Q_
and two solutions 7y, (¢), defined respectively for > T and t < —T, so that
llirin ’)/i(t) = xp and ’)/:t(iT) € Q.

(H3) Equation (6.2.3) has a solution yg(t), (0,y0(t)) € Qo for —=T <t < T so that

v-(=T)=w(-T), v(T)=n(T)

where 1(#) = (0,y0(t)), and the following hold:
hy(w(t)) <Oforanyt € [-T,T];
—(w(r)) >0 foranyr € [— T T);
h-(y(T)) =0 and k_(y(T)) is not orthogonal to Vyh_((T)) # 0. Here
(w(T)) is the gradient of &_(0,y) at the point % (T) € €.

Remark 6.2.1. 1. Note that the assumption that system (6.2.1) has a discontinuity on
the hyperplane z = 0 is made only for sake of simplicity. We could have assumed,
instead, that the singularity was at a hypersurface x; = @(xz,...,x,) since we can
reduce to our hypothesis by the simple change of variables:

y:(x27-~-axn), z:xl—(p(xz,...,xn).
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2. It will result from the argument given in the next sections that we may as well
consider the case
g+(t,z,y), for z>0,
8(x) =
g—(t,z,y), for z<O0,
with g1 :Rx Q2 xR —R", g1 € C;(R x 2 x R). However, for simplicity, we will
continue to assume that g € C; (R x  x R).

Remark 6.2.2. From (H3) it follows that h! (0) is a submanifold " of Qg of codi-
mension 1 near the point % (7) (here we consider the restriction 2_ : Q5 — R).
Moreover, since V (yo(T)) = —1, we get

H(yo(T)) = k-(n(T)),
s0 (T) = (0,H(yo(T))) = (0,k_(1(T))) = f-(y(T)). Thus condition (H3) means
that 7o ( _) is transverse to £~ in €y. Next, from (H3) it follows immediately that
Yy (0,0(T)o(T) < 0.

Note that Vyh_(0,yo(7))yo(t) = H_(y(2))¥(t) for t € [~T,T). Finally, for the va-
lidity of the results of this section, it is enough that condition (H1) holds for y in a
neigbourhood of yo(t), —T <t <T.

We set: _
y-(¢), ift<-T,
Y(t) =X w(), if-T<t<T,
ve(t), ift>T

and will refer to y(¢) as the sliding homoclinic solution of (6.2.1) when € = 0 (Figure
6.3).

We note that ¥(¢) is C'-smooth also at r = T. In fact from h_(0,yo(T)) =
h_(y(T)) = 0 we obtain V(yo(T)) = —1 and then:

@ —r - (TN 0 N0 )
STy ) T ey ) T \ageay ) T

Recalling x = (z,y) € R x R"™!, we set

f:t(x) +8g(l,x,£) = (hi(EZ,Ya 8)7ki(f’1,y78))-

and

h—(t707ya €)k+(ta03y7£) _h+(l707y7£)k—(t707y38)

H(t,y€):=
(7)’7 ) hi([’07y’8)—l’l+(t707ya8)
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Fig. 6.3 A homoclinic sliding orbit () of (6.2.1) with € = 0 to the hyperbolic equilibrium x = xo.

Note that i_(,0,y,€) — hy(¢,0,y,€) = h_(0,y) — h; (0,y) > 0 for any y € Qo by
(6.2.2). So H(t,y,€) is well defined. We are interested in the chaotic dynamics of
(6.2.1) near y(t) for € # 0 small.

Definition 6.2.3. By a sliding solution x(¢) of (6.2.1) we mean a function x : R — R”
for which the following hold:

There exists an increasing sequence {T } (possibly finite or with m < mg € Z, or
m > my € Z, with mg € Z, or m € Z) so that x(¢) is C'-smooth for any 7 € R \ (D}
and possesses right and left derivatives att = T»,,. If € (sz 1, T2m) then x(r) € Q_
and satisfies the equation % = f_(x) + £g(t,x,€). If t € (Tam, Tom+1) then x(1) =
(0,y(1)) € Qo and y(¢) satisfies the equation y = H (t,y, €). Att = Ty, the equation
h,(ﬁmH,O,y(fzmH),e) =0 is satisfied.

Since xg is a hyperbolic fixed point of & = f_ (x), the linear system x = f* (y, (¢))x
has an exponential dichotomy on [T',e0) with projection Py, and denotes by X (¢)
its fundamental matrix with X, (7) = I. Similarly the equation x = f’ (y_(t))x has
an exponential dichotomy on (—oo, —T] with projection P_, and denotes by X_(¢)
its fundamental matrix with X_(—7) = L. Let

S = NP (PRR)={yeR" | (0,y)e #P_} CR" .

Note that dim.’ = dim .4 "P_ — 1. Next we define projections Q and R as follows:

Q:R" — R" is the projection on R" with ZQ = {0} x R and A4Q =
span{y-(=T)},
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R: %P, — ZP, is the projection on ZP, so that ZR = A'Vyh_(0,yo(T)) and
AR = span {3o(T)}.

Let Yy(¢) be the fundamental solution of y = H(yo(t))y, with Y5(—T) = L. Since

dim.’ = dim.4#"P_ — 1, it is obvious that dim< > <dimAP_ —1.

Then

0
0 < dim ) NP,
RYy(T).7”

= dim _ +dimZP; —dim _ + %P,
RYy(T).7" RYy(T).7"

0
+ %P,

RYy(T)."
0
=n—1—dim ) +ZPy
RYy(T)."

since dimZP;. +dim .4 P_ = n. As a consequence,

i) +.] <.

Our next assumption is as follows:

0
RY,y(T)."

—~~

o
o

(6.2.4)
<dim A P_ — 1 +dimZP, — dim

0 o
(H4) < RYo(T) y,) + %P, has codimension 1 in R”.

It follows from (H4) that a unitary vector y € R” exists so that

0
v = (Ryom(f')) AR

Using this vector we define the function
XYy pr Q" P Yo(T [)*R*Pyy, fort < T,
ByYy (1) Yo(T) P,

YO =9 ke (0,00(0)) +5-(0,50(1)) povt /ey s ) ]
he (0,y0(2)) — h7(07y0(,))PzYo () Yo(T)*Pyy, for—T <t<T,

XN ) (1- Py, fort > T.

Set

= [ v s+ ay).0a
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Remark 6.2.4. (i) Since yo(T) = Yo(T )yo(—T), we get RYy(T )yo(—T) = 0. But (H4)
and (6.2.4) imply that dimRYy (7).’ = dim A'P- — 1 = dimYy(T)”’ = dim.&".
Then RYy(T) : %" — RYy(T).”" is an isomorphism and hence yo(—T) ¢ .. This
means that J(—7) transversally crosses the unstable manifold W' of x = f_(x) at
7% (—T). Consequently recalling also (6.2.4), assumption (H4) is a kind of nonde-
generacy and transversality condition as well.

(i) Ifdim A P-=n—1andyo(—T) ¢ .7’, then ZP; = span{ 7, (T)} = span{j(T)}
and RYy(T) : ' — RYy(T).#"is 1 : 1. As a consequence, (RYO((%)Y/) NRAP, =
{0} and all the inequalities in (6.2.4) are equalities. Consequently, if dim.4/"P_ =
n—1 then yo(—T) ¢ ' if and only if (H4) holds. Moreover, we get ¥ = e =
(1,0,...,0) and P,y = 0. Hence

0, fort <T,

= 6.2.5
V) {XQ(r)*(H—Pj)yg fort>T ( )

and

(@) = /T v (D)t + o, y(t),0)dt. (6.2.6)

Formula (6.2.6) corresponds to formula [27, (2.45)] for the planar case, that is, the
Melnikov function contains only the ¥4 () part of ¥(¢).

We recall that g(z,x, €) is quasiperiodic in ¢, if hypothesis (H5) of Section 6.1.8
holds. Now we can directly follow the method of Section 6.1 so we omit details and
we refer the readers to [55]. Here we state the following result:

Theorem 6.2.5. Assume that (H1)—(H4) and (HS) of Section 6.1.8 hold. If .# has
a simple zero @, i.e. M () =0 and ' () # 0, then for any € # 0 sufficiently
small, there are sequences {T;f }rez, C R, {7 brez, { P} brez so that

(a) infrez (T, —Tf) — o ase—0,

(b) & CR" are compact,

(c) ®f : & — S f are homeomorphisms,

(d) Let FE : R" — R" be defined so that FE(&) is the value at time Tz‘g(kﬂ) of the

solution of Eq. (6.2.1) so that z(T5,) = &. Then the following diagrams commute:

o

& &
@f i \L‘plfﬂ
%{8 Fe LSﬂk‘:—l

k

forall k € Z.. If, in addition, g(t,z,€) is p-periodic int then F€ = Qf = @z0...0Q =
F§ (re times) is the reth iterate of the p-period map Q¢ of (6.2.1) for some large
re €N, % = S and O = @, that is, in the periodic case the above diagram is
independent of k.
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Here we recall Remark 6.1.24. Finally, Theorem 6.2.5 generalizes results of [43,
44,46,47] to the DDE (6.2.1) (cf Section 4.1).

6.2.2 Planar Sliding Homoclinics

First, we apply our theory to the planar discontinuous system

2= fi(z) +eg(z,t,e) for y>1,

6.2.7)
z=f_(z)+eg(zt,e) for y<l1

where z = (x,y) € R?, fy, g are C*>-smooth and g is 1-periodic in . Here we set

qi(z,tv‘g) = fi(Z) +8g(zat’8) .
Ony =1 (cf (6.2.3)), we consider the system

. q+2()€,1,t,8)
x= 1(x,1,2,€
Q+2(x7latvg)_q—Z(x717t7£)q+ ( )
g-2(x,1,t,€)

(,]72()(,1,178) 7q+2(xa 17ta8

)q—l(xa 17ta8)7

where g+ = (g+1,¢+2). We suppose the following conditions hold:

2= fi(2)

NN N N NN

P A A A A e o

¥+

Fig. 6.4 A planar homoclinic sliding on the line of discontinuity.

(i) f-(0) =0 and Df_(0) has no eigenvalues on the imaginary axis.

(ii) There are two solutions y_(s), 74+(s) of = f_(z), y < 1 defined on R_ =
(—e0,0], Ry = [0,4o0), respectively, so that SErjIElw Y (s) =0and yi (s) = (x+(s),
34(5)) with y2.(0) = 1, x_(0) < x. (0). Moreover, £ (2) = (f11(z), foa (2)) with
fr1(x,1) >0, fi2(x,1) < 0 for x_(0) < x < x4(0). Furthermore, f_»(x,1) >0
for x_(0) < x < x4(0), f_2(x4+(0),1) =0 and d,f—2(x+(0),1) < 0.
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Assumptions (i) and (ii) mean that (6.2.7) for € = 0 has a sliding homoclinic solution
7, created by 7., to a hyperbolic equilibrium O (Figure 6.4). Now we have a case of
Remark 6.2.4-(ii), so we can use the formulas (6.2.5)—(6.2.6) to derive:

~+oo

(o) = A w(s) g(vi(s),t+s,0)ds (6.2.8)

where () is a basis of a space of bounded solutions on R ;. of the adjoint variational
system w = —Df”* (4 (s))w. By Theorem 6.2.5, we arrive at the following result.

Theorem 6.2.6. If there is a simple root of M given by (6.2.8), then (6.2.7) is
chaotic with € # 0 small.

As a concrete example we consider

. . 1 5 _4/3z
Y=z 2=yo 5y Ay forz<e "9,

1 i (6.2.9)
y=gz, Z:y*§y3+(yfq)z for z>e 9

that have a sliding homoclinic orbit to a saddle (0,0) for any g > 6.947. Indeed,
we start from (6.2.12) with B = 1/2. Note the phase portrait of (6.2.9) looks like

Figure 6.4. Then we get T = \ﬁ/Z (cf (6.2.16)), Q; = e’@ (cf (6.2.18)) and

y(T)=V2+2e" e (cf (6.2.19)). The segment
V3n _
{(re) er o<y <y

is attractive from above for (6.2.9), if

2= fr(2)
NONN N N NN

P4 P A A A =

Fig. 6.5 A planar homoclinic sliding on the line of discontinuity with transversal crossing of an-
other discontinuity line.
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1 15 2V/6 32 .
> max — (y—=y +Quy | = 1+9:)*% = 6.94609.
17 ey @ (y 2’ Ty) 90, 1)

Hence we could take g > 6.947. Next we may also add its periodic perturbation

. . 1 5 _4/3n
Y=z, zzy—iy + yz+ €cos o, forz<e "9

1 i (6.2.10)
y=z, Z:y—§y3+(y—q)z+ecoswt forz>e 9

Then the Melnikov function is the same as in Section 6.2.3, and we could apply
Theorem 6.2.8 with F(1/2) = 0.00228 and D(1/2) = 25.3974. Consequently, if
either 0 < @ < 0.0022 or ® > 25.3975 then (6.2.10) is chaotic.

The above approach to (6.2.7) can be generalized [28,48] to cases when homo-
clinic orbit y(s) transversally crosses another curves of discontinuity. For simplicity,
we suppose that such a discontinuity in (6.2.7) occurs at the level y = 1/2, i.e. we
deal with the system

= fi(z) +eg(z,t,e), fory>1,
z=f_(z) +eglz,t,e), forl/2<y<]l, (6.2.11)
:=F(z)+eglz,t,e), fory<1/2

where z = (x,y) € R?, fi, F, g are C3-smooth and g is 1-periodic in . We suppose
the following conditions hold:

(a) F(0) = 0 and DF(0) has no eigenvalues on the imaginary axis.

(b) There are two solutions 1_, N+ of z= f_(z), 1/2 <y < 1 defined on [a_,0],
[0,a+],a— <0< a,respectively, so that Ny (s) = (X1 (s), ¥+ (s)) with y1 (0) =1,
Filas) = 1/2, 7 (0) < %,(0), ¥-(a_) < ¥, (a;). Moreover, f1.(2) = (f11(2),
fa2(z)) with fi1(x,1) >0, fia(x,1) <0 for x_(0) < x < x;(0). Furthermore,
S2(x,1) >0 for x_(0) < x < x4(0), f—2(x1:(0),1) =0 and dyf_»(x(0),1)
< 0. Finally, we suppose that f_»(1—(a—)) > 0and f_»(n4+(as)) <O.

(c) There are two solutions 7_(s), ¥+ (s) of z = F(z), y < 1/2 defined on R_ =
(—o0,0], R = [0, +o0), respectively, so that Jim Ye(s)=0and 7+ (0) =N (ay).

Moreover, F(z) = (Fi(z),F2(z)) with F>(y-(0)) > 0 and (7, (0)) <O.

Again, assumptions (a), (b) and (c) imply that (6.2.11) for € = 0 has a sliding homo-
clinic solution ¥, created by N+ and 74, to a hyperbolic equilibrium 0 (Figure 6.5).
We do not make further computations for (6.2.11), instead, we refer to [28,48] for
more details.

6.2.3 Three-Dimensional Sliding Homoclinics

This section is devoted to a construction of a concrete example (cf (6.2.20), (6.2.21),
(6.2.23)) of (6.2.1) to which the above theory is applied. Then we proceed with a
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more particular perturbation (cf Theorems 6.2.8, 6.2.9). In order to construct our
example, we start from [56]

. 3
i=y— By +yz,

p (6.2.12)
y=z

for B > 1/8. Then (0,0) is hyperbolic and (1/1/f,0) is an unstable focus. Since
(0,0) is hyperbolic it has one-dimensional stable and unstable manifolds. In the fol-
lowing we first show that these two manifolds have the structure depicted in Figure
6.6 where the stable manifold is tangent (and the unstable manifold is transverse) to
the horizontal straight line. Performing the transformation u = 1 — By, y > 0,v=z

we get
Jisu
VB
JiTu
VB

Note that (0,0) corresponds to (1,0) and (1/1/8,0) to (0,0). Let’ d9 and con-
sider the linear system

=-208v

(6.2.13)

= (ut)

' =—2Bv,
V=u+v, (6.2.14)

whose solution has the form

ur(0) =e?2cos(10) — L e/2sin(10),
| 21 (6.2.15)
v(0) = s e%/25in(70)

with
\/8B —1
= % , (6.2.16)

and so B = 4% 4l Note that

u-(8) = —2Bv.(0) = —Zﬁ%ee/z sin(76)

has the opposite sign to sin(78) thus u;(0) < u;(0) =1 for any 6 € (—%,%). On
the other hand, if 760 < —7 we have

x VATZ+ 1 x 1\?
ur(e)ﬁe_ﬂ%ze_? l+<> <1
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since €™ > v/1+s2 for any s > 0. As a consequence, (uz(0),v¢(0)) is tangent to
the line u = 1 from the left at 6 = 0 for 6 € (—e0,0;). Here 6 > 0 is the least
positive value so that u;(0) = 1. Next, let 8, be the greatest negative value for
which v,(6) =0 and v¢(6) > 0. Then 8; solves the following system:

1
cos(10; )+ Esin(reg) =0, sin(t6;)>0

so
70, = —arctan2T— 7.

Given T > 0 (we will fix it later) we consider the solution 8~ (¢) of the equation:

o= 1240 g7 o (6.2.17)
B
Separating variables we see that
07 () do t—T
/9; JI-u:(8) B

or

ot (=T _ 6 de
0 (1) = O- (\/B> 0_(6) /m

From (6.2.14) we easily see that
1—u(6) = BO*>+0(6%)

as O — 0. As a consequence, ®_(0) is an increasing function that tends to +oo as
0 — 0. Thus 6 (¢) is increasing and tends to 0 as t — co. Moreover, since u(0) <
1 for 6 < 0 we also see that 6(f) — —oo as t — —co. Summarizing 6~ () is an
increasing function defined on (—oo, ), taking values on (—,0), 8~ (T) = 6, .
Setting

a0 = [ =)

we see that (z4(¢),y4(r)) is a solution of Eq. (6.2.12) so that

lim(z. (1).34 (1) = lim (me), 1‘[3“")> ~(0,0),

tEIPm(Z+(t),y+(t)) = elirgm (vr(e), 1_';;(9)> = (0, \/g> ,
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that is, (z+(7),y+(¢)) is a heteroclinic connection from (0, \/%) to (0,0). Next, we

know that 6 is the greatest negative value so that v/(6) = 0 and v(0) > 0. This
means that at 7 = T we have

2o () = ve(67) = Qe >0, 2,(T) =0

and these two conditions are not satisfied when ¢ > T. Note that:

_ Yooy —neti 2 /L e |1
Q= 17e sin(70; ) =2e Trae =e 3B (6.2.18)

moreover:

y+<T):\/1—ul§(er):\/1+vl§(91):\/1297. 62.19)

Now we consider the solution (z_(¢),y—(¢)) of Eq. (6.2.12) that belongs to the unsta-
ble manifold of the saddle (0,0). Since (z_(¢),y—(¢)) — (0,0) as t — —eoo it follows
that we have to look for a solution (u(t),v(¢)) of (6.2.13) so that (u(z),v(¢)) — (1,0)
as t — —oo. Thus we consider again Eq. (6.2.14) with 6 € (0,6;"). Thus 8 = 67 (r)
is again a solution of

1—uc(0)
B

with the initial condition 6(0) = 6;". So we obtain:

6=

/"”‘19:1
o7  /1-u(6) /B

that is
0" (t)=

o' ). o (a)—/9 L

TA\VB) T 67 /T—u(0)
Obviously O, (0) is an increasing function and since 6 € (0,0;), ©.(0) < 0
for 0 < 0 < 6. Arguing as before we see that limg_,o©,(0) = —oo and hence
lim, o 87 () = 0. For t € (—oo,0] (and hence 67 (1) € (0,0;]) we set:

0=\ [ =)

and note that the following hold:
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. . 1- ut(e)
1 —(),y-() =1 0),y/—=——=]=1(0,0).
Jlim (e (1),y (1) (gg(w()7 o) =00
Now, since u(0) < 1 for 6 € (0,0;), we see that u,(6;) > 0 and then z_(0) =
vz(0;7) < 0. But it must be z_(0) = v¢(6;) < 0 otherwise (z—(0),y_(0)) = (0,0)
because of uniqueness. Next (z—(¢),y—_(¢)) belongs to the unstable manifold of the
equilibrium (0,0) and y_(¢) > O for any ¢ € (—e,0), thus

(y-()
P -0

ast — —oo, with v_ being the eigenvector of the positive eigenvalue of the lineariza-
tion of Equation (6.2.12) at (0,0), i.e.

=y,

y=z

having a positive second component. Hence z_ () = y_(¢) is eventually positive
for t — —oo. Thus the curve (z_(z),y_(¢)) has to pass from the first quadrant to the
fourth one and this can be realized only by passing above the line z =z (T') because
otherwise it would intersect the curve (z4(¢),y4(¢)). As a consequence, fo < 0 must
exist so that z_(fo) = z4-(T) = Q¢ and z_(¢) < Q. for any 7 < fy. We set

1 uc(6 (1))
Vri= B .

Shifting time we can suppose without loss of generality that fo = —7T. Thus we have
found solutions ¥ (f) = (z4(¢),y+(#)) of (6.2.12) so that

¥-(t) — (0,0), ast — —oo,
’}7+([)*>(070)7 aSt*)+°°a

2 (-T)=z2:(T)=Q .

The graphs of the above-mentioned invariant manifolds of (6.2.12) and the line z =
Q in the right half-plane for B =37/8, i.e. T = 3, are given in Figure 6.6.
We are now able to construct our example. We take

z=y1—By; +21+3,
y1 =2, (6.2.20)
y2=y2(1+2z)

for z < Q; and
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0.4+

0.2

AL

0.2 0.4 .6 0.8

Fig. 6.6 The stable and unstable manifolds of system (6.2.12).

y1 =0, (6.2.21)
when z > Q;, that is, we take:

f+(zvy17y2): 0 fOI'Z>QT,
0
(6.2.22)
yi—Byi+1+y;
ff(Zv)’h)’z): Z fOI'Z<QﬂL-.
»2(1+z)

Then

ho(Qe,91,52) =y1 — By + Qovi +¥3, hi(Qe,y1,32) = — Q¢

and

Hiyiy2) = & ( @ )
’ yi =By + Qi+ 1) +y3 \02(1+82:) )
We note that

ho(Q¢,31,y2) = hie (Qe,y1,32) = y1(1 = Byt + Qc) + 3+ 2 >0
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ifo0<y < Hﬁﬁ Then we take the solution ¥ (z) of

Q7
yi—Byi+Qc(y1+1)

yi=
so that y;(0) = y; and let T be such that y;(T) = , /HTQT. Note that according to

the previous remark, i_(Q¢,y1,y2) — hy (27, ¥1,y2) > 0 in a neighborhood of 7 (
0 <t < T. Thus we are in position to apply Remark 6.2.2. Now we define T =
and set

1),
7
2

W0(t) = (Qe,51(t+T7),0), (1) =(7-(1),0), re(t)=(7:(:),0)

and -
y-(¢), ift<-T,
Yt)=q w@), if -T<t<T,
ve(t), ift>T

is a sliding homoclinic orbit for the system (6.2.20), (6.2.21).
For concrete values of T > 0, we take f§ = % + %2, compute 2; and we solve

(6.2.12) with initial values z,(7) = 4/ HﬁQf ,ys(T) = Q¢ to get 7, (¢) and v, ().

We now verify that system (6.2.20), (6.2.21) and y(¢) satisfy conditions (H1)-
(H4) of this section. We have already seen that (H1) is satisfied (see also Remark
6.2.2). Condition (H2) is also satisfied with xo = (z°,y7,9) = (0,0,0). Note that
in this example the discontinuity level is at z = £2; and not at z = 0 but we have
observed that this fact does not make any difference. Now we verify (H3). It is
trivial to verify that A, (y(r)) < 0for =T <t <T,h_(y(t)) >0for —T <t < T and
h-(y(T)) = y+(T)(1 = By+(T)*>+ Q) = 0. So we check the last condition in (H3).
We have:

v n=-2(1 %) e k= ()

from which we obtain
Vyh—(YO(T)k—<YO(T))* =—2Q:(14+Q2;) #0.

Finally, we check (H4). By Remark 6.2.4 it is enough to prove that (y; (—7),0)* ¢
<" or, equivalently, that (1,0)* ¢ .. Now, the variational system of (6.2.20) along
Y- (2) is given by:

z=y_()z+(1=3By_(t)>+z-(t))y1,
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Since this system has the bounded solution at —oo: (0, 0,e - (t)> ,and dim.¥’ =1

it follows that ./ = span{(0, 1)} and hence (1,0) ¢ .#’. Thus (H4) holds.
Finally we add a perturbation

eg)=¢e| 0 (6.2.23)
q1(ont)

to (6.2.20), (6.2.21) and compute the Melnikov function. Here @, ®; are positive
constants and g1, g are almost periodic C>—functions with bounded derivatives and
their second order derivatives are uniformly continuous. To this end, we need to
compute the solution y(¢) of the adjoint variational system:

i=—yi(t)z—y
yi=—(1=3By(1)*+z4(t))z (6.2.24)
y2=—(14+2z+(t))y2

with y(0) = (1,0,0) (see (6.2.5)). Since y, = 0 is invariant for system (6.2.24)

Wig?tw(f) (W1(1), ¥ (1),0) where (z,y) = (w1 (1), ya(r)) is a bounded (at +=°)
solution o

= -y (l‘)Z—)’la
o . (6.2.25)
Yr=—(1=3By(t)" +z+(1))z
that is
y+(t)
y(n) = | —2elo) el
0
and the Melnikov function is
M) = / Yo (1) e OB g (or + )t
T
Since -
lim (@) = a(@) [ "3+(0)e P00 ar,
w—0 T
lim (o)) =/ (0) [ il O,
w—0 T
we see that if (o) has a simple zero at some @ = ¢ and
/ o ()e B g 2o, (6.2.26)
JT

then .# (o) will have a simple zero at some « near to o for @ > 0 small. To check
condition (6.2.26) we recall that
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ol = [ o
‘ T:t y+(s)ds=0"(t)—0 (T)=0"(t)—6; . (6.2.27)
Now, let Y(0) = F"TT(G). Then:
y+(t)=Y(0" (1))
and

vy () =Y'(07(1))0 (1). (6.2.28)
Plugging (6.2.27), (6.2.28) into (6.2.26) we obtain:

)

/_my+(t)e—f%>’+<f>d3dt:eer‘ / e Y0 (1))6 (1)dr
T T

_ 10 ,
=¥ /7e_eY'(9)d9:eef {Y(B)e_e

67

0 0
+/ e_eY(O)dG}
[ 0;

0; 0 0
= et /7e7 Y(6)d6 —Y(6;) (6.2.29)

67

0, 1+Q
— [ et ty(g)a0— |2
o B

_ \/13 (/eoeﬂrﬂ \/l—uT(G)dG—\/H--Qr)-

We prove now that the expression (6.2.29) is negative for any 7 > 0. Using Cauchy-
Schwarz-Bunyakovsky inequality we get

0 0 0
[ e 1_uf<e>deg\//e6r6dewe9r9<1—uf<9)>d6-
) 0; 67

T
Next, we integrate

0o _
/ e¥ 040 =1-¢%
0;

and

/90 e% 0 (1 — uy(6))d6 — /0

_ 1
b 9 (1 —e%2cos(10) + Eee/z sin(re)) do
Jor

_ _ 1 _
=1—e% 428 /2 a2 —1-—e% +Q..
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Consequently:

0
/ e% 0 \/1—u.(0)do < \/17e9f\/17e6€ +Q: <1+,
o

hence the expression (6.2.29) is negative for any value of 7 > 0. In summary, we
obtain the following result.

Theorem 6.2.7. Let q(t) have a simple zero. Then there exist @ > 0 and & > 0 so
that for 0 < |@| < @y and 0 < |€| < &, system

X = fi(x)+egt), xcQu (6.2.30)

where x = (z,y1,y2) € R3, fi(x) is as in (6.2.22) and g(t) as in (6.2.23), is chaotic.
For example, if ¢(7) = cost we get
M) = /:y;(t)e*f%y*(s)dscos(a)t +o)dt
and then
Q) — 1 () = “ (o), / V() e frre s gor gy

As a consequence if ¥ (@) # 0 then .# (@) has a simple zero. Since ¥;(0) # 0,
¥ (w) is a nonzero analytical function. From Theorem 6.2.7 we know that (6.2.30)
behaves chaotically for |@| < wp (and |€| < &) sufficiently small. However, for this
particular example (g(¢) = cos?), (6.2.30) behaves chaotically also when o is large.
As a matter of fact, we have the following:

Theorem 6.2.8. There exist continuous functions F(B),D(B) : (§,50) — (0,0) s0
that for any given constants B > 1/8, w; >0, ® € (0,0) \ [F(B),D(B)] and an
almost periodic C>—function qi (t) with bounded derivatives so that its second order
derivative is uniformly continuous, there exists €y = €(f, 0, ®1,q1(+)) so that for
0<|e| < g and

cos(t)
g(r) = 0

qi (@)
system (6.2.20), (6.2.21) is chaotic. Moreover, it holds
2v/2

lim F(B)=0, limF(B)= L =0.235166,
T—1/8, oo T(2v24+1)
3\f7r

lim D(B)=c, limD(B)= +4—V2=925011.

B—1/8+ B—soo
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Proof. We omit the proof of this theorem, since it is rather technical and refer the
readers to [55] for more details. a

Here we only mention that

D(B):=B(V8p=1/2),

where
8(14+7-le %)
B —
(%) 47211
Va+12 (32
+ J;T ( {”(r—2+4r1+4)+(2+r1)(2— 1/2))
and the graph of D(f) in interval (1/8,20] looks like
D
o ¥
10}
s
0 5 10 15 %"

Furthermore, we have

F(B)=c(V8B=1/2)

where
(e = 22t I+ —V1—eb% /1—eb 10,
RRVZEZ a3
l4+e 27
2arctan2t\| ———— + w —arctan27
1+Q;

and the graph of F(f) in interval (1/8,20] looks like

F
0.12r

0.10t
0.08
0.06
0.04r
0.02r
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For instance, a numerical evaluation shows that for § = 25: D(25) = 0.1337
and F(25) = 10.6489, so for @ € (0,0) \ [0.13,10.65], system (6.2.20), (6.2.21) is
chaotic for € # 0.

Furthermore, since W; () is analytical (cf Section 2.6.5), there is at most a finite
number of @1, ..., @, € [F(B),D(B)] so that forany @ >0 and @ ¢ {@1,..., W, },
there is a chaos like in Theorem 6.2.8. An open problem remains to estimate ng. On
the other hand, the statement of Theorem 6.2.8 can be extended as follows.

Theorem 6.2.9. There exists a continuous function G(®) : (0,00) — [§,0) so that
for any given constants @ € (0,00), B > G(w), @; > 0 and an almost periodic
C*—function q1(t) with bounded derivatives so that its second order derivative is
uniformly continuous, there exists & = €(,®,®1,q1(+)) so that for 0 < || < &

and
cos(t)

system (6.2.20), (6.2.21) is chaotic.

We again refer the readers to [55] for more details. A lower bound G(®) for 8 could
be numerically estimated, but we do not carry out these awkward computations in
this section. By Theorem 6.2.8, it would be enough to estimate G(®) in the interval
[0.2,9.3].

6.3 Outlook

The above results could be extended to other types of discontinuous homoclinics.
First we could study impact systems like in [17, 18,20, 21, 49]. Second we could
develop Melnikov theory for grazing homoclinics which has not yet been done.
Discontinuous systems with grazing orbits are investigated in [6,22,24,57,58].
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Chapter 7
Concluding Related Topics

The final chapter of this book deals with three topics. In the first part, we study thor-
oughly the Melnikov function: its computation and structure. We also investigate
an inverse problem: the construction of ODEs by prescribed homoclinic solutions.
In the second part, as a by product of our investigation, is presented a result of the
existence of a transversal homoclinic solution near a transversal homoclinic cycle.
We end up with the third part devoted to blue sky catastrophes of periodic solutions.

7.1 Notes on Melnikov Function

7.1.1 Role of Melnikov Function

We know from Chapter 4 that the Melnikov method is an easy and effective method
to detect chaotic dynamics in differential equations. In this section, we study the
simplest case: The starting point is an autonomous system x = f(x), where x belongs
to an open subset 2 C R”, having a hyperbolic equilibrium x¢ and a nondegenerate
homoclinic orbit ¢(¢), that is a non constant solution ¢(¢) so that rErj{lwd)(t) = X0

and ¢ (¢) spans the space of bounded solutions of the variational system

= f(¢(0))x. (7.1.1)

Then, associated with a given time periodic sufficiently smooth perturbation €h(¢, x, €),
with € sufficiently small, there is the Melnikov function (cf Section 4.1):

~+oo
M(a):= [ w0t + o, 0(1),0)dr
with y(¢) being the unique (up to a multiplicative constant) bounded solution of the
variational system

x=—f'(o(t))x.
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Note that M (o) is a periodic function having the same period as A(z,x, €). The basic
result states that M (o) gives a kind of O(g)-measure of the distance between the
stable and unstable manifolds of the (unique) hyperbolic periodic solution xy(z, €)
of the perturbed system

%= f(x)+eh(t+a,x,e) (7.1.2)

which is at an O(¢)-distance from xo [1]. Thus if M (o) has a simple zero at some
points, then these two manifolds intersect transversally along a solution ¢ (¢,€) of
(7.1.2) which is homoclinic to x¢(, €). This transversality implies, by the classical
Smale horseshoe construction, that a suitable iterate of the Poincare¢ map of the
perturbed system exhibits chaotic behavior (cf Section 2.5).

In this section, we mainly consider the case where h(f,x,0) = ¢(¢) is a T-periodic
perturbation independent of x, although in the next part some results are derived for
the more general case. We also assume that ¢(z) is C'. Our first remark is that the
Melnikov function is a bounded linear map from the space of T-periodic functions
to itself, as it can be easily checked using the fact that |y(z)| < Ce °ll, for some
positive real numbers C, 0. Moreover the average M of M() is:

—+oo

_ 1 % _
v*(¢)dt - g.

21
27r/o (a)do

Now, in many interesting cases, for example, when one deals with a second order
conservative equation on R, one has

+o0
v (r)dr=0
so that M = 0. In this case Melnikov functions can be either zero or there are o; and
0 so that M (o) < 0 < M(0r). This means that the Brouwer degree of M () in the
interval [o, o] is different from zero. This, in turns, implies a chaotic behaviour of
some iterate of the Poincare map (see Remark 3.1.9 and [2, 3]). This seems to be a
good reason to study the kernel of the Melnikov map:

a0 [t

This is the purpose of this section. Melnikov functions for two-dimensional map-
pings are investigated in [4, 5].

7.1.2 Melnikov Function and Calculus of Residues

We assume that

(a) ¢(t) = P(e"), where @(u) is a rational function on C so that @(u) — 0, and
®P(1/u) - 0asu—0;
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(b) y(r) =e"WP(e'), where ¥ (u)u — 0 as |u| — +oo, and ¥'(u) is a rational function
on C.

From h(t,x,€) = h(t + T,x,€) we deduce that M(c) is T- periodic Let X—7/2,7/2)

be the characteristic function of the interval [T /2,T /2]. Set @ = 2F and Mp(ax) =

M(a) (-7 /2,7 /2 (@), ho(t,x) = h(t,x,0)2— T/27T/2]( ), and for any n € Z, consider

Mo(n) = — /T/2 &m0 4oy
/2
/2
- /’ (1)h(t + &, 6(1),0)e "% drdex
T/2
oo T/2 B
= 1// (1) = / h(t+a,¢(1),0)e”"°*dads
- T /2

—+oo
_/ o P (e Yi(n, B(e')) " dr,

where
n 1 [+ T/2
h(n,x) := T ho(t,x)e " dt = T/ h(t,x,0)e """ dt (7.1.3)

—o0

is the n-th Fourier coefficient of /g (¢,x). We assume that

(c) For any n € 7Z the function h(n, ®(x)) extends to a meromorphic function
h(n,®(u)) on C having the same poles as P (u).

Thus R
F(n,u) =¥ (u)h(n,®(u))

is meromorphic in C, for any fixed n € Z, and its poles are either those of ¥'(u) or
those of ®(u). Let us make some comments about the function F(n,u). As ¥ (u)

and @ (u) take real values when u € R, Schwarz reflection principle (cf Theorem
2.6.10) gives:
Y(ia)=¥(u) and P(@)=P(u). (7.1.4)

Second, we notice that being /i(n,x) = ii(—n,x) for any x € Q C R" we obtain
h(n, ®(i)) = h(~—n, P(u))

because of the uniqueness of the analytical extension and hence

F(n,ia) = F(—n,u). (7.1.5)

From (7.1.4) it follows that ¥ («) and & (u) have complex conjugate poles and hence
the same holds for F(n,u). Let w; = uj+1wj, j=1,...,r be the poles of F(n,u)
(independent of n € Z). Note that the w; do not belong to an angular sector around
the positive real half-line, otherwise W (e’) will have singularities on the real line.
Thus the poles of F(n,e?) are given by
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z=Logw; :=log|w;|+1Argw;

where Argw € (,2m — f3) for some 8 > 0 and Logw; is the logarithm principal
value. We remark that Argw; = 27 — Argw;. Finally, for any u € C\ {0} so that

0 < Argu < 2w, we set

ulCOn = em(oLogu.

Then we integrate the meromorphic function e* F (n,e%) e”®% on the boundary of the
rectangle {—p < Rz < p,0 < 3z < 2x}. For p sufficiently large Cauchy residue
theorem implies:

2m1) Res (¢ F(n,e) e %, Logw;)
J

P
:/ e F(n,e')e"® dt
—p
P 21
—/ e F(n,e') e e 2% 4 +/ el eV F(n,eP ) e"P e " 1dy
—p 0

27
—/ e PeVF(n,e Pe?)e 0P e " qy.
0

Now, the last two integrals on the right tend to zero as p — oo uniformly with
respect to n. Hence, for any n # 0 we get (cf (2.6.1))

T 2m
/ e F(n,e')e"® dt = l_em;Res (e°F(n,e%)e"®* Logw;)

F(n,u)u™®
= 2EIZR€S <1_ezﬂl’l(ﬂ’w] .
J
Thus we have proved the following:

Theorem 7.1.1. Under the conditions (a)—(c) the Fourier coefficients of the Mel-
nikov function M(a) are given by:

1—e 2o’ "/

My(n) =2m ) Res (F(””)”mw w) (7.1.6)
j

Sforn # 0, while

. 1 T/2 o0 .
W) = [ Moleda= [ "y e)hof0.0())as

where ho(n,x) has been defined in (7.1.3).

Using (7.1.5) we obtain:
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Feo -
My (n) :/ elF(n,el)emwtdt:/ e Fn,el)e " dr

—o0

—+o0
= e F(—n,e')e " dr = My(—n).

Finally note that since h(t,x,0) is T-periodic in ¢ and C' we have (cf Section 2.1)
Mo (n) = 0 for any n € Z if and only if My(a) = 0.

We conclude this section by giving a first example of application of the above
result. Consider the Duffing-like equation:

)'c'—l—x(%—l) = ¢e[q1(t)x+q2(1)1] (7.1.7)

where k > 0 and ¢ (t), g2(t) are 27-periodic, C'-functions. Setting x; = x and x; = %
we obtain the equivalent system

X1 =Xz,
. X1
X =x1 (1 - f) +e[q1(t)x1 +q2(t)x2] .

6k.
Let dp(x) = ™ Then the homoclinic solution of the unperturbed system is
(x+1)

x+1)2
given by ¢(r) = ®(e') where
Po(x)
D(x) = .
9= (o)

Moreover: ; . (
—x B (x) — D)(x)
¥ (x) = < |
2 (x)
and
h( ) °
1,X1,X2,€) = .
q1(t)x1 +q2(1)x2

Thus,

F (n,u) = g, Po(u) P (u) + guudf ()

where ¢! and ¢? are the Fourier coefficients of ¢;(r) and ¢(t) respectively. From
Theorem 7.1.1 we obtain then:

My(n) = 8,45+ 8,4,
where

51 27

), — m Res (@0(“)@(’)(“)””17 71)

and
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271

o

1 —e27n

(note that —1 is the unique pole of Py (u)). Hence, using the fact that Argu € (0,27),
we obtain the following expressions of §!, 82 for n # 0:

Res (&) (u)?u" !, ~1)

T T

6
8 = =3Pk (n* + 1) & = —znk’ (n* = 1)

sinhnn’ sinhnm’

A, +°° . A
Thus My(0) = g3 [ ¢(¢)?dt = 6k>q3/5 and My(n) = 0, for n # 0, are equivalent to

q. 52 2(n? —1)

n
= —— = a” =
5}’1

2 5] (7.1.8)

Note that, obviously, &_, = @&, and then taking, for any integer n # 0, ¢\ = o4,q>,
q% € R, we get the following (cf Section 2.1)

Corollary 7.1.2. Given any 2x-periodic function q:(t) € H>(R) with zero mean
value, there exists a unique 27-periodic function with zero mean value, q(t) €
H?*(R) C C!(R) so that the Melnikov function of Eq. (7.1.7) vanishes identically
on R. Actually, for n # 0, the Fourier coefficients of q1(t) and g, (t) satisfy the rela-
tion (7.1.8). The map q>(t) — q1(¢) is linearly bounded and its kernel is the space
span{cost,sint}. That is, if q2(t) € span{l,cost,sint}, the Melnikov map of Eq.
(7.1.7) does not vanish identically for any nonconstant and nonzero 2x-periodic
perturbation €q (t)x.

For example, if ¢5(t) = cos2t then ¢y (t) = —2 sin2t.

7.1.3 Second Order ODEs

In this section we consider the Melnikov function for the second order equation

#= f(x) + eq(t)

where x belongs to an open interval I C R, f € C'(I,R), ¢(t) is a C!, T-periodic
function, and ¥ = f(x) is assumed to have a hyperbolic equilibrium x =0 € I and an
associated homoclinic orbit p(¢) € I. In this case we have

9" (1) =(p(t) p(), (1) =(=p(t) p@0)), h(x)=(0 gq())

and hence y*(¢)h(t,x p 1)q(t). As in the previous section we assume that p(1) =
@y(e'). Then p(r) = e P)(e’), and

@Dy (u —ud! (u) — D) (u
wm<§)>7ww< fo ou>
ud)(u) D (u)
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Note that we have
F(n,u) = ¥* (u)h(n, ®(u)) = B (1)

where g, is the n-th Fourier coefficient of the periodic function g(z). Thus in order
that the analysis of the previous section is valid we see that we only need that @/ (u)
is rational and lim, ... ®)(u)u = 0. Anyway, for simplicity, we also assume that
&y (u) is rational with the same poles as @) (u). Next:

0) = [ pleyar-go=0

—o0

because p(t) is homoclinic, and from (7.1.6) we obtain for n € Z, n # 0:

. D (u)G,u'"® .
M()(n) = ZEZZRGS (106’21””(07‘4}1 = Sn%
wj
where g, is the n-th Fourier coefficient of the periodic function ¢(z), w; is the pole

of ®y(u) and
21
8, = WZRes (Do (u)u”,wj) . (7.1.9)
Wj
Now, let ¥; be a circle around w; so that no other pole w;, i # j, is inside y;. We
have, integrating by parts:

2miRes (D) (uw)u®,w;) = | Bh(uw)u"du = —nw [ Po(uw)u™® 'du (7.1.10)
Yi Vi
and then )
o -
O = T e L Res (Po(wu™® Lw)). (7.1.11)

wij

Next, assume that w; is a pole of @y(u) of multiplicity k. We have:

Res (@o(u)u™®~ !, wj)

S el

(ma) — ]) ce. (ln(l) _ m)umwfmfl }
k=1 u=wj

= Z jRCS((Lt—Wj)méo(u),wj) lm (”l +l) m£’1/l +ml) emeOng .
m=0 m. WJ'

(7.1.12)
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Now, Res ((u—w;)"®Po(u),w;) = 0 for m > k because (u—w;)" Po(u) is holomor-
phic in a neighborhood of w; when m > k. Thus, denoting by r the maximum of the
multiplicities of the poles w;, we can extend the above sum up to r — 1 obtaining:

T = Z m!Res((u—wj)’"CIJO(u),wj)lm
J=1m=0 (7.1.13)
efna)Argwj- e
(no+1)(nw+2i)--- (na)erl)W gmneloglwj|

J
with wy,...,wy being the poles of @y(u). Let By = min{Argw;: j=1,...,N} €
(0,7] and ry be the greatest multiplicity of the poles of ®y(u) that belong to the
half line Argu = fy. Multiplying both sides of Eq. (7.1.13) by " we see that

% e"@Po 8,(1 —e~2™®) is asymptotic, as 1 — oo, to

) \ Res (o (u)u® ", w)) "o
Arng: 0

Now, again from Eq. (7.1.12) we see that for any pole w; Argw; = By, and multi-
plicity less than rg the quantity n'~"0 Res (P (u)u®~!,w;) e"®Po tends to zero as
n — oo, Thus the leading term in ZRes (¢0(u)u’"w_17wj) is:

Wi

Y Res(Po(u)u~" w))

Argw; = fo
multw; =ry

with multw; being the multiplicity of w;. As a consequence, using also §_, = S
we obtain the following:

Theorem 7.1.3. Let By = min{Argw;: j=1,...,N} € (0, ] and ro = max{multw; :
Argw; = Bo}. Then, if

enwﬁo

liminf
n—oo plo— 1

Y Res(@o(u)u™® " w;)| #0, (7.1.14)

Argw; = fo
multw; =rg

there exists 71 so that for any n € Z, |n| > i, we have 6, # 0. As a consequence, the
space of T-periodic functions q(t) that the associated Melnikov function is identi-
cally zero is finite-dimensional.

Condition (7.1.14) can be simplified a bit looking at Eq. (7.1.12). In fact setting
ro in the place of k in that equation and multiplying by ePor pl =70 we see that only
the term with m = ro — 1 survives. Thus we obtain the following:

Theorem 7.1.4. Let By, ro be as in Theorem 7.1.3. Then, if
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1
liminf| Y —=Res((u—w;)0 ' @y(u),w)) e eMil| 0, (7.1.15)
N—sco w

Argw;j =By " J

multw; =rg

there exists 71 so that for any n € Z, |n| > 7, we have 6, # 0. As a consequence, the
space of periodic T-functions q(t) that the associated Melnikov function is identi-
cally zero is finite-dimensional.

Proof. As we have already observed, for any pole w;, Argw; = 8 and multw; = r
the quantity:

enwﬁ o1 1 r—1 ki

1
X Res ((u—w;) ' ®o(u),w;) et@logwjl
J

tends to zero as n tends to infinity, and then the result follows from:

ol < ‘((,H;). .(a,+<r;1>z>’< ((Hr;l)rl.

The proof is finished. a

Remark 7.1.5. If ®y(u) has only one pole on the line Argu = fy with maximum
multiplicity ry, condition (7.1.15) of Theorem 7.1.4 is certainly satisfied. In fact in
this case the left-hand side of (7.1.15) reads:

1
—5 lim (u—w;)"0Py(u)
Wj U—w;

and cannot be zero because w is a pole of multiplicity ro of Pg(u).

Equation (7.1.13) has an interesting consequence when @ (u) has only the simple
poles w and w (we do not exclude that w = w). In fact in this case we have the
following result:

Theorem 7.1.6. Assume that Py (u) satisfies the assumption of the previous section
and, moreover, that it has only the simple poles w and w (including the case that
Dy (u) has only one simple pole w = w). Then , # 0 for any n € Z, n # 0. Thus,
for any T-periodic, nonconstant function, the associated Melnikov function is not
identically zero.

Proof. Let us consider, first, the case where ®y(u) has only the simple pole w =
w < 0. We have

1— ef2nfna) 1
75’1 — —Res (‘I’o(u),w) e O emwlog\w\
w

— o MO gmolog|w| lil‘I}(Z —1)dy(zw) #0

7—

2Tnw
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because w is a simple pole of ®y(u). Now consider the case where w # w and
assume, without loss of generality, that 0 < Argw < 7. We have:

%Res(@o(u),w) _1 lim Py (u)(u—w) = %13} Dy(zw)(z—1),

W u—w

%Res(dbo(u),w) — L lim @) (u— ) = Tim B (29) (z— 1).

W u—w z—1

Since the above two limits exist we can evaluate them by changing z with x € R. We
get:

1 s (000, ) = lim ) 1)

x—1

= lim P (xw)(x—1) = %Res(cbo(u),w).

X—

Setting A = w~! Res (P (), w) we obtain, from the above equation, and (7.1.13):

1 — e—27n0 _
— G, = AW L AW"®,
2nnw
Thus, when n # 0, 8, = 0 if and only if
), -\ now
_:_<W> . (7.1.16)
A w
Now
- mow
(W> _ e—n(Argw—Argw)a) _ e—2n(7r—Argw)co _ ar% >0.
w
Thus A = —a2A and then A = —a2A. So A = a*A and hence o2 = 1, because
A # 0. But this means that w is real and negative and this contradicts w # w. The
proof is finished. a

We now give a closer look at the case where @y (u) has two poles of multiplicity
ro on the half-line Argu = f3y. Since

1 .
o Res ((w—wj)o~ Py (u), wj) = lm}(z — 1)@y (w;z),
fi —

we see that we have to study the equation:
11|W1|mw+)~2‘W2|mw=O (7.1.17)

where A; =lim,_,(z— 1)"0®y(w,z). Now, Equation (7.1.17) has a solution n € N if
and only if

wi mo A«z

w2

Thus we have the following cases:
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(i) |A2] # |A1]. In this case liminf, e [A1 |w1|"? + Aa|wo || # O,

(i) [A2| = |41] and log(|}[) is a rational multiple of 7 = 2% Tn this case Eq.
(7.1.17) has either a (1east) solution ng € N, and hence it has infinite solu-
tions of the type: n = ng + kg, k € Z, and g € Z so that %log(\%D €Z,or
liminf,,_. Ml ‘Wl |mw + )Q|W2|mw| #0;

(iii) |A2| = |1 and log(| ;1) is not a rational multiple of 7'. In this case we obtain

liminf| A [wy |"® + Az w2 | @] = 0.
n—o0

As a consequence, Theorem 7.1.4 applies if either |4, # |44, or log(|:%\) is a
rational multiple of T and f% is not one of the (finite) values of |% ’mw

Remark 7.1.7. (i) In this section we have assumed that ®y(u) and P)(u) are both
rational functions on C with the same poles. However it may easily happen that
the poles of ®;(u) correspond to essential singularities of @y (u). Nonetheless, the
argument of this section hold even in this case, we simply do not have to integrate
by parts as in (7.1.10) and use (7.1.9) instead of (7.1.11). For example Eq. (7.1.13)
reads:

r—1

S 1 —27ma) N 1
n( Z Z . u W]) ‘Po( ) )lmemwlog|wj\
=m0 (o m!
efnwArgwj-
o(now+1)(nw+2i)--- (now+ (m—1)1) —

J

with r being the multiplicity of the pole w; of ®(u). Thus Theorems 7.1.3 and 7.1.4
hold with the following changes:

ro is the maximum of the multiplicities of the poles of ®/(«) and in Egs. (7.1.14),
(7.1.15), ®p(u) and u""®~! have to be changed with @} (u), and u™® respectively.
Moreover, Theorem 7.1.6 holds as is (with @ (u) instead of ®y(u) of course). The
proof goes almost in the same way, apart from that Eq. (7.1.16) has to be written as:

Aw w\ "¢
aw _<W> =% <o

The rest of the proof is the same as Aw instead of A.
Note that the function

@y (u) = arctan (2(511))

is an example of such a situation, since ®)(u) = Hﬁ u2 =
give a method to construct a second order differential equation satisfied by p(z) :=
@y (e"). Following this method we see that p(¢) satisfies:

In the next section we

1 9—4ltan’p

P=9 (tanZp + 1)2 an
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(ii) From Section 7.1.2 we know that &, is also given by:

~+oo
5, — / ()" di.

—o0

Now, the function:
o0

§(6)=/ pl) e " dr

tends to zero as |&| — o and the same holds for :£5(&) and (1£)%8 (&) because p(t),
p(t) tend to zero exponentially fast as |¢| — oo (and hence belong to L?(R)), and p(t)
satisfies the equation jj = f(p). In fact we have, for example, integrating by parts:

w58(&) = [ pneSar= [ ppm)e s ar
and

(10€)? / fp )e 1% dp.

As a consequence, E8(E) — 0, E25(E) — 0as |E| — oo and then §, € £1(Z)N2(Z).
Thus the series:
Z 5n emwt

nez

is totally convergent to a continuous, T-periodic function A(t) whose n-th Fourier
coefficient is precisely §,. Note that because 6_,, = §, we have:

~+oo
A(r)=8+2 Y (R6,) cosnt — (38,) sinnt.
n=0
Now, let ¢y (¢) and ¢ (¢) be two T-periodic functions on R. For ¢ € R, we set:

T/2
1% 9 (1) / 1(t—5)¢2(s)ds.
Then ¢@; * ¢ (¢) is T-periodic and its n-th Fourier coefficient is:

T/2 T/2
2/ 1(t—8)Pa(s)dse " dt
T= J-1)2 T/2

T/2 T/2 '
:%/ {/ ‘Pl(f)e’"“”dr}%(s)emmds:¢f">¢§">

12 \J-1)2

with ‘7’/(‘") being the n-th Fourier coefficient of ¢;(¢). As a consequence, 6,§, is the
Fourier coefficient of both M (o) and A * g(¢t), that is,
/2

M(a)=Axq(a)= = Ala—s)g T/T/ZA s)g(ot —s)ds.
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Finally, we note that the function A (o) can be expressed by means of p(r) as fol-
lows:

foo (2k+1)T /2
M) = [ pli-ajgar=Y [ pls— o)q(s)ds
o iend @k=1T1)2

/2
= Z p(s+kT — a)q(s)ds.
T/2kez

Now, the function Y7 p(kT —t) is T-periodic and continuous (actually analytic,
since so is p(z)). Thus:

A(t)=T Y p(kT —1).
keZ

7.1.4 Applications and Examples

In this section we apply the result of Section 7.1.3 to constructing a second order
equation in R whose Melnikov function vanishes identically on an infinite number
of independent 27-periodic functions, or on any 27-periodic function ¢(¢). To do
this we will first prove a result allowing us to construct second order equations
satisfied by prescribed homoclinic solutions. For completeness we will also give
an example showing that this procedure can also produce non-rational differential
equations. To start with, we make some remarks on the properties of the function
p(t) and the associated Py(x). Since p(t) — 0 as |t| — oo, there exists 7y so that
p(tp) = 0. Without loss of generality we can assume that fo = 0. Thus p(t) = p(—t)
because both satisfy the Cauchy problem:

X =f(x)
x(0) = p(0), x(0) = p(0).

Possibly changing f(x) with — f(—x), we can also assume that pg := p(0) > 0. Thus
tp(t) < 0 for any 7 # 0. In fact if p(7) = 0 for some 7 > 0 then p(¢) would be 27-
periodic contradicting the fact that p(¢) — 0 as |t| — o. Now, let ®y(x) be as in the
previous section. Since we want that the equality @y(x) = p(logx) holds for any
x > 0, we see that we have to assume that:

@y (x) = Po(1/x) (7.1.18)

for any x > 0 and then @y(u) = Py(1/u) because of uniqueness of the analytical
extension. Thus, besides the pole w;, @y(u) has also the pole wjfl whose argument
is 2 — Argw; (here we assume that 0 < Argw; < 7). Then, the function @, (x) is
increasing in [0, 1] and decreasing in [1,o0), moreover ®y(1) = py. Thus there exist
two functions x4 (p) defined on (0, po] so that

(i) x4 (p) is decreasing on (0, po] and x4 (po) = 1,
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(ii) x_(p) is increasing on [0, pg] and x_(py) =1,x_(0) =0

satisfying:
Do (x+(p)) = p- (7.1.19)
Note that because of (7.1.18), we obtain

for any p € (0, po), moreover, being ®)(1) = 0 we get: lim x, (pg) = Foo. Now,
P=po

p(1) satisfies the equation:
plt)=F(e)
where F (x) = x> @[ (x) +x®P{ (x) is a rational function defined on a neighborhood of

x > 0. Thus the point is to see whether F(e’) = f(p(t)) for some C'-function f(p).
We note the following

1 1
F(1/x) = 5 ®(1/x) + - @h(1/x)
and using (7.1.18), we get

R/ = B), S B(1/x)+ @ (1/3) = B,

Thus it is easy to see that F(x) = F(1/x) and then F (x_(p)) = F (x+(p)). Note that
we also get x2F’(x) = —F’(1/x). This last equation implies F/(1) = 0 (note that a
similar conclusion holds for @ (1)). We set

f(p)=F(x_(p)) (=F(x+(p)), pe<I0,pol

Note that we choose x_(p) so that f(p) is continuous up to p = 0; moreover from
(7.1.19) we see that either x_(p(r)) = ¢’ or x;(p(¢)) = ¢, but then, in any case
f(p(t)) = F(e') = jj(t). Thus we want to show that f(p) can be extended in a C!
way in a neighborhood of [0, po]. To this end we simply have to show that the limits:
lim,,_. ,, %F(x_ (p)) and lim,_ ﬁF(x_ (p)) exist in R. We have:

d P P P )
odp” )= I () T M g M e g <

Note that we have to assume that &g (1) # 0 because otherwise f(po) = 0 and then
p(t) = po will be another solution of the Cauchy problem p = f(p), p(0) = po,
p(0) = 0. Hence f(p) cannot even be Lipschitz continuous function in any neigh-
borhood of pg. Next we prove that the limit
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exists in R. To this end we observe that ®y(x) being analytic, x = 0 has to be a zero
of finite multiplicity, say, k > 1, of @ (x), that is, Py(x) = ka(x), with G(0) # 0.
Then F (x) = k> ®y(x) + O(x**1) and

F'(x) i K2 D) (x) + O(x*)

li = =i
SR D) a0 B
d? d?
Furthermore we show that the limits lim —= F (x_ and lim —= F (x_ ex-
Jim 3 F (e (p)) and lim 7 F(x(p)

istin R. As for the first we will see that the result holds without any further assump-
tion on @y (x), but the same does not hold in general for the second. We have:

a F _ F'(x(p) Py (x—(p)) — F'(x—(p)) P (x—(P))
Dy (x—(p))?
and hence we are led to evaluate the two limits:

F"(x) ®p(x) — F'(x) Py (x)

)1(1211 ¢6(x)3 (7.1.20)
nd FY ()0 (x) — F'(x) B} (x)

lim T 0 (7.1.21)

x—0 <P0(x)

Let us consider, first, the limit in (7.1.20). Since F'(1) = ®}(1) = 0 we apply
L’Hopital rule and get:

L PR - F W) 1 P H@) — F )9 ()
x—1 (I)(’)(x)3 3(15(/)/(1))‘%1 (D(/)(x)z

_ 1 PO P @R ()~ F ) ()~ F ()8 ()
DR 200

provided the last limit exists. Now, from ®y(1/x) = Py(x) we get:
— @' (1/x) = x5®)' (x) 4 6x° BY (x) 4 6x* P} (x)

and then @;’(1) = —3®(/(1). Similarly F” (1) = —3F"(1). Thus we can apply again
L’Hopital rule and obtain:

o PR~ F )@ () _ F™ (1) (1)~ F'(a™ (1) R
x—1 456()6)2 o 3@6/(1)3 ’

Now we consider lim,_o f”(p) that is the limit in (7.1.21). Recall that we set
@y (x) = x*G(x), with G(0) # 0 and note that also F(x) has x = 0 as a zero of
multiplicity k. Thus the numerator of (7.1.21) has x = 0 as a zero of multiplicity
(at least) 2k — 3 while the denominator has x = 0 as a zero of multiplicity 3(k —1).
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Now a simple computation shows that x = 0 is actually a zero of the numerator of
multiplicity (at least) 2(k— 1), but in general this is the maximum we can expect. In
fact one has:

F"(x)®4(x) — F'(x) @4 (x) = k(k+1)(2k+ 1) DG ()G (x) + 00 ).
(7.1.22)
Of course, this is not enough to prove that f(p) is C> up to p = 0, unless k = 1. So
we assume that k € N, k£ > 1, and the following holds:

Dy (x) = X*Go ()

where Go(0) # 0. In this case, in fact the left-hand side of Eq. (7.1.22) vanishes at
x = 0 (since G'(0) = 0) and we actually have:

F" (x) @) (x) — F'(x) DY (x) = 6k>Go () Gy ()3 =D 1 0 (xH—3)

and then
i F"(x)®)(x) — F'(x)®] (x)  6k>G}(0)
im =
x—1 d)(’)(x)3 G()(O)2
Let us rewrite what we have done as a theorem:

Theorem 7.1.8. Let ®y(u) = u*G(u), k > 1, be a rational function so that G(0) # 0
and the following hold:

() @o(u) = Po(1/u) (that is G(1/u) = u**G(u)),
(ii) Py(x) > 0 when x is real and x > 0,

(iii) D) (x) =0 on x > 0 is equivalent to x = 1,

(iv) Bl/(1) # 0.

Then 1imy ... u®}(u) = 0 and there exists a C'function f(p) in a neighborhood of
[0,P0(1)] so that p(r) = Py(e") is the solution of the equation p = f(p). Moreover,
if G(u) = Go(u") for some rational function Go(u), Go(0) # 0, the function f(p) is
C? in a neighborhood of [0, @y (1)].

eR.

Proof. We only have to prove that lim, ., u®{(u) = 0. To this end we note that
G(1/u) = u**G(u) implies

G'(1/u) = —2ku®* ' G(u) — u** G (u)

and then

lim MCD(/)(M) = limM — lim kG(1/u) n G'(1/u)

u—0oo u—0 u—0 uk uk+1
= lir% — " {uG' (u) + kG(u)} = 0.

Finally note that condition @ (1) # 0 can be also stated in terms of G(u) since
condition (i) implies G'(1) = —kG(1) and then &; (1) = G"(1) —k(k+1)G(1). The
proof is finished. a
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One might wonder what kind of system one obtains starting with functions Py (x)
as in Theorem 7.1.8. Actually, since ®Py(x) is a rational function one might expect
that the function F(x_(p)) is a rational function of p. However this is not generally
true because x4 (p) are in general far from being rational. To show this we start with
the function )

x(x=+1)
D = a0
0(x) X +4x2+1
There is no particular reason for the coefficient 4. It only has to be different from
2, otherwise the expression of @y(x) can be simplified. It is easy to see that all the
conditions of Theorem 7.1.6 are satisfied. Particularly we have:

1 1 1
Py (x) = Py (x) ;o Do) = 3 (1) =0, D)(0)=1; &f(1)= 5
Moreover we obtain the following expression for F(x) = x> ®f (x) + x P} (x):
Flx) (2 +1)(x — 16x5 + 18x* — 1632 + 1)
X)=
(x*4+4x2+1)3
X8 —16x0 4 18x* — 16x° + 1
= (DO(x) ( 2 2 )
(x*+4x2+1)
In order to apply the above described procedure we have to solve the equation:
x(P+1)=(*+4x2+1)p (7.1.23)

with x being a function of p. Since ®y(x) = Py(1/x) we can solve (7.1.23) multi-
plying it by x~2 and setting z = x +x~'. We obtain:

pP—z+2p=0

which has the solution
14+4/1—8p?
2p '

Now, x_(p) and x4 (p) = x_(p)~! are both solutions of the equation x +x~! =
z+(p), and not x +x~' = z_(p), because, for p = pg = Py(1) = 1/3 we have
z+(po) =2, z-(po) = 1 and x4 (po) = x_(po) = 1. Now, we want to construct
f(p) = F(x_(p)) where x_(p) is the unique solution of ®Py(x) = p so that 0 <
x_(p) < 1. We have ®y(x_(p)) = p forany 0 < p < 1, and x_(Py(x)) = x for any
0<x<1.So,

z+(p) = (7.1.24)

f(p)=pfolx_(p))

where

a8 —16x0+ 18k — 162 +1 Xt — 167+ 18— 16x 2 +x*
[ o T N P N WS S

fo(x)
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1

Since x_(p) +x_(p) ' =z4(p) we have

2 (p)+x_(p)r=21(p) -2,

and
X (p)+x_(p) =21 (p) 423 (p)+2.

So 4 2
24 (p) —20z% (p) +52

(3 (p) +2)?
Plugging (7.1.24) in the above equation we obtain, after some algebra:

folx—(p)) =7—6/1—8p2 —48p°.

Thus we have seen that the second order equation

i =x(7—61/1—8x2 —48x%) (7.1.25)

has the homoclinic solution p(r) D e that Eq. (7.1.25) is defined
as € nomoclinic solution = . INote al . . 1S denne
g e +4e¥ +1 d

i i N B i 1
in the interval ( W33 fz) that contains [0, 3].

Jolx—(p)) =

We now give an example of equations whose associated Melnikov function van-
ishes on an infinite dimensional space of C'-smooth and 27-periodic functions. Take
aeR,a? #0,1 and set:

la* —1|x?
(2 +a?)(a2x2+1)

Py (x) =

Note that ®y(x) > 0, for x # 0, and changing a with a~!, we obtain the same func-
tion, so we assume a > 1. Moreover @y (x) satisfies all the assumptions of Theorem
7.1.8 including ®y(u) = u*Go(u*) with k = 2. For example, one has:

" 8a*(1 —a?
@) =S

which is different from zero when a® # 0, 1. Now, the (simple) poles of @y (u) are

1

wy =1, w|=-—a, Wwy:=1ad , Wy= —a”!

and thus Eq. (7.1.11) gives, after some algebra:

O = 771771}177: sin(nloga)
sinh(nE)

and we obtain the following:
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(a) Taking a = e™*, m € N, we can construct a family of second order equation
whose Melnikov function is identically zero, no matter what the 27-periodic
perturbation is.

(b) Taking a = ¢”%/2, m € N, we can construct a family of second order equation
whose Melnikov function is identically zero on an infinite number of indepen-
dent 27-periodic perturbations but not for all.

To obtain an analytical expression of such systems, we proceed as in the previous
example. The equation ®y(x) = p reads:

1
pa® (xz—l—xz) —d*tp+pat+1=0

and again can be solved by setting z = x +x~!. We obtain:

a@4+1—p(a®>—1)
pa?

2=(@-1)

which has the solutions

vVl —1—p(a@®—1)7]

— 4
z+(p) a

It is not necessary to solve the equations x +x~! = z... We only have to note that
both x_(p) and x, (p) =x_(p)~! are solutions of the equation x+x~! =z, (p), and
not x+x~"' = z_(p), because z4(po) = 2, z—(po) = —2 and x_(po) = x+(po) = 1.

Recall py = Pp(1) = Zi;: . Next we compute

F(x) = X2 (x) + xP) ().

Since F(x) = F(1/x) we expect that F(x) can be expressed in terms of z = x+x~!.
An annoying computation shows that, in fact, F(x) = G(x+x~!) where
a2t —(a* +4a® + 1) +2(a® — 1)?

(@222 + (a2 —1)2)3

G(z) = 4a*(a* - 1)

Thus f(p,a) = F(x_(p)) = G(z+(p)). After some algebra, we get:

441
f(p,a)=4p (2192—3“47L 1p+1) =4p [2p* —3pcoth(2loga) +1]. (7.1.26)
P

Thus, in this case, p(t) = Py(e') is the solution of an analytic second order equation
X = f(x,a) so that when a = e"” (ora = e"™/2) m € N, its Melnikov function van-
ishes identically on any 27-periodic functions (or it is identically zero for infinitely
many independent 27-periodic functions but not for all). The geometrical meaning
of this is that in spite of the fact that the perturbation of the equation is of the order
O(¢e), the distance between the stable and unstable manifolds of the perturbed equa-
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tion, along a transverse direction, is of the order (at least) 0(82). This means that
in order to study the intersection of the stable and the unstable manifolds, we have
to look at the second order Melnikov function. By Section 4.1.4, for a C?-equation
X+ f(x) = €q(z), this second order Melnikov function M, (o) is given by (4.1.10).
We now prove the following result.

Theorem 7.1.9. For any m € N and ¢ # 0, the second order Melnikov function
M, () associated to the equation

£ = 4x(22% — 3xcoth(2mm) + 1) + ¢ (% ) (7.1.27)
does not vanish identically on the complement of a codimension one closed linear
subspace of the space Colddﬁzzr of all C'-smooth, 2m—periodic and odd functions
Qodd(t). Moreover if a positive integer k € N exists so that qoga(t + %) = —qoaa(t),
M, () changes sign in the interval [0, %].

Proof. We emphasize the fact that many of the arguments of this proof can be used
even for more general equations than (7.1.27) having a homoclinic orbit. For this
reason we will write f(x) instead of 4x(2x*> — 3xcoth(2mz) + 1), g(¢) instead of
5 +4oaa(t) and p(z) for the orbit homoclinic to the hyperbolic equilibrium x = 0, in
the first part of the proof. Note that the hyperbolicity of x = 0 implies that f/(0) > 0.

As a first step we simplify the expression of M>(«) in the following way. Let
v (t) be a bounded solution of the equation (cf Section 4.1.4)

i=f(p(t)x+q(t+a), (7.1.28)

whose existence is guaranteed by the fact that M () = 0, and u(¢) be the unique 27-
periodic solution of the equation % = f7(0)x + g(). Then ro(f) := v (t) —u(t + o)
is a bounded solution of

i=f(p(t)x+[f'(p(t) = £ (0)]u(t + ).

As a consequence, rq () — 0 exponentially together with its first and second deriva-
tive (uniformly with respect to o) and vy () = rg(t) + u(t + @). Then

+e
@)= LU0~ SO 0
400
—2 [ 1 (p0) = £ O)valt)ia (o)

=2 [ (1ralt) gt + )loalt) — £ Ot le) ).

Now we observe that
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nmw

2 1im_ [ ¥alt)va(r)d = lim {[fa(nﬂ)+u(nrc+a)]2

n—-oo —nr n——+oo
~lFa(—nm) +i(—nz+ @)} =0
because 7o () — 0 as |t| — +o0 and u(z) is 27-periodic. Similarly, using the fact that
rg(t) — 0 as |t| — +oo, we get:
nm

n—+o | _ng

— tim_{[ra(nm) + u(nm + @) ~ [ra(~n) + u(—nm+ @) } =0.

n— oo

Asa consequence,

nmw

Mr(a) =2 lim va(t)g(t+ o)dt . (7.1.29)
n—+e J _nx
nmw 400
Note that lirE in Eq. (7.1.29) cannot be replaced by / because the conver-
n—+oo |_,r _

gence of this integral is not guaranteed. Now, in order to compute v (#), we first look
for a fundamental matrix of the homogeneous equation ¥ = f'(p(t))x. We already
know that p(z) is a solution of the previous equation that satisfies also p(0) =0, and
P(0) # 0. So we look for a solution y(z) so that y(0)$(0) = 1 and y(0) = 0. If y(¢)
is such a solution, Liouville Theorem implies that (Section 2.5.1 and [6])

satisfies detX (¢) = 1, that is, p(¢)y(¢) — p(t)y(¢) = —1. Integrating this equation we

obtain:
1

t
y0) = =p(0) [~ s
p(s)?
Note that regardless of the constant we add to the integral, cp anishes for ¢ = 0;

(1) va
however the constant is uniquely determined by the condition y(0) = 0 (from which
the equality y(0) 5(0) = 1 follows). Let & = 1/ f/(0). From p(¢) = P(e"), we obtain:

(1) =Y (e") (7.1.30)

where | . i
Y (x) :*PxP'(x)/ PO (7.1.31)
Specializing (7.1.31) to Eq. (7.1.27) where P(x) = (}CJF%(%, with g = 2, we

obtain ¥ (x) = Yp(x) 4 Y, (x) + ¥, (x) where
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3a?(a®+3a*+1)  x(x* —1)logx

Y = -
o) 2 at—1 (x+a?)?(a2x+1)%’
2
a -1
Ys(x):m(x-m )5
Y (x) 3a*4+1  a'%4+52a"24+72a% —4a* -1 a'? 42948 +29a% + 1
b

TiA-1 16R@—12G+a) 6@ —)a+a)

a'® +4a'? —72a8 — 524* — 1 n a'? +29a8 +294* + 1
16a*(a* —1)%(a?x+1) 16a*(a* —1)(a?x+1)%"

Note that ¥'(1) = 0 and that Yy(x) + Y, (x) is bounded on [0, +e0) while Y(x) is
unbounded near x = 0 and infinity. Now, the variation of constants formula gives,
for any solution of Eq. (7.1.28):

valt) =ery(@) +e2p(0)+ [ [pO¥(G) — plo)y(@)gls + s
[cl /p s+ads} y(t)+p(t) [cz—f—/y s-l—a)d}

Then, from the boundedness of ¢(r), the fact that y(r) is of the order e“l’l at +oo
and p(t) is of the order e Ml at +oo, we see that the second term is bounded on R.
Hence v (f) will be bounded on R if and only if a constant ¢; exists so that

{cl /p s+ads} »(0)

is bounded on R, and this can happen (if and) only if
0

c 7/+°° s+a)dS*/ p(s)g(s+ a)ds.

—o0

This choice of ¢ is made possible by the fact that M () = 0 and gives:

/p q(s+oa)ds+ p(r) [cfr/y s+a)ds}

Note that v (2) is bounded on R for any value of ¢,. However we can make it unique
by adding the condition v (0) = 0. Since y(0) = 0 we see that this is equivalent to
choosing ¢; = 0. That is,

t

valt) = y(t) /t " p(s)als + a)ds + plo) /O ¥(s)q(s + o)ds. (7.1.32)
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It is worth mentioning that Eq. (7.1.32) gives a bounded solution of Eq. (7.1.28)
provided p(¢) is a homoclinic solution of ¥ = f(x), and y(¢) is defined as in (7.1.30)
and (7.1.31).

Now, we write

q(t) = Geven(t) + qoda(t)

where Geven(—1) = Geven(t) and gogq(—t) = —qoqa(t). Then the solution vo(z) of the
equation X = f(p(r))x+ q(¢) satisfies vo(t) = Veven(t) + Voda (t) Where veyen(t) is the
(unique) bounded solution of

&= f"(p(t)x+qeven(r), %(0) =0

while v,44(t) is the (unique) bounded solution of

= f"(p(t))x+qoaa(t), x(0)=0.

From p(z) = p(—t), and the uniqueness of the solutions we get Veyen () = Veyen(—1)
and v,g4(t) = —Vvoqq(—t) and then

nm
M2 (O) = ZnhI}E Veven (I)QOdd (l) +Vodd (t)Qeven (t)dt-
—too | _nm
Now, we consider the situation where geyen (t) = % = () is constant and different from
zero. We obtain immediately:

nmw
/ Vodd () Geven (1)t = ¢ Voga(n10).

—nm

Next, let u,q4(t) be the unique bounded solution of % = f(0)x + g,q4(t). From the
uniqueness we see that u,g,(t) is 27-periodic and odd, moreover vy () — Uogq(t)
is a bounded solution of & = f(0)x + [f'(p(¢)) — f'(0)]veaq(t) and hence tends to
zero exponentially as |f| — 4-oo. As a consequence,

im vogq(nm) = Hm uygq(nm).
n——+oo n—r—+oo

On the other hand, —uygy(—n7T) = Upyq(nT) = Upqq(—nm) because of oddness and
periodicity. As a consequence, U,q4(n7) = 0 and then

nm

Mr(0) =2 Tim | Vevon(t)Goua (t)dt =2 / Veven (1) qoda (1)d1
/4 —o0

n—-+too —n

with the last equality being justified by the fact that vey.,(f) + ﬁm) tends to zero,

as |t| — oo, together with its first derivative, being a bounded solution of

#= £ (plt))x— %[f’(p(t))ff’(o)]-
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At this point we note that when goa(t + %) = —qoaa(t) we have vz i () = Veven(t) —
Vodd (t) and hence it is easy to see that
. n c
Ma(x/k)=2 Tim [ e u(e) [§ = doaalt) dr
n~>+oo_ nmw 2
= _2/ Veven (t)CI(Jdd(t) =-M, (0)

and the theorem follows provided we prove that M (0) # 0.
Now, from Eq. (7.1.32) we obtain:

sountt) = 5 (210 [ (515 = @) = 5100

where v(¢) is defined by the equality. We note that v(¢) is the bounded solution of

3= f"(p(r))x+1, with (0) = 0 and that v(r) + ﬁ tends to zero exponentially, as

|f| — oo, together with its derivative. Moreover,

oo 21
My(0) = ¢ /_ 0)oaal1)dt = ¢ /O F(0)qoaa(1)dt
where
r(t) =Y v(r+2km) (7.1.33)
keZ

is 2w—periodic and odd. From p(t) = P(e*') and y(z) = Y (e"") we see that v(z) =
V(eM") where
*y
V(x) = xP(x) / %dc ~PH)Y(x).
1

Note that V(x) is linear in Y (x). Applying the above considerations to Eq. (7.1.27)
(hence with yu = 2) we obtain after some integrations:

3a*x(a* +1)(1—x?)logx

1
V) + 4 4(a%x+1)2(x+a?)?

+x[(a12 +23a® 4+-23a* 4+ 1) (x* + 1) + 16a% (a® + 4a* + 1)x]
16a%(a2x+1)2(x+a?)? '

We set
~+oo

My(a) = V(t)qoaa(t + 0t)dr.
Then M, () is 2t—periodic and M, (0) = M, (0). Expanding M () into its Fourier
series we get:

My(at) = — Z my,gn e
nez

with g, being the n-th Fourier coefficient of g,44(¢) and
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T :/ [V(e N+ 4} e dt.
Note that iny_,/(27) are also the Fourier coefficients of the function r(z) defined in
(7.1.33). Since ¢,q4(t) is an odd real function we easily get ¢, = ic, where ¢, are
real numbers so that ¢, = —c_,,. Thus

My(ar) = Y nyucpe™®. (7.1.34)

nez

With 1\712(05 ) being a real valued function, we also get: %, = y_,. Moreover, arguing
as in Section 7.1.2 we can evaluate the Fourier coefficients of M (o) by means of
residues. For a = "™ and n # 0, an annoying computation shows that:

_1 nm
Y = ()77;” [Coshz(Zmn) — 6mmcoth(2mm) +2} ;
8sinh (nz)

that is,

nm,,2

(—1)"™n?c, 9e.C Z (=1)"n*c,

M>(0)=c-Cy T T
nez\{0} sinh <n7) n>0 sinh (nf)

2 2
with C,, being a positive constant. Since M>(0) = 0 gives a codimension one closed
linear subspace of C!, 427> the proof is finished. O

We conclude this section with a remark. Letting m — +-c0 in equation
¥ = 4x(2x* — 3xcoth(2mm) + 1) (7.1.35)

we obtain the equation
¥ =4x(2x® —3x+1) (7.1.36)

which has two heteroclinic connections to the equilibria x = 0 and x = 1 (Figure
7.1 A). Since the Melnikov function of Eq. (7.1.35) is identically zero for any 27-
periodic perturbation of the equation, one might wonder whether this fact holds for
the Melnikov functions associated with the heteroclinic orbits of Eq. (7.1.36). The
answer to this question is negative as it can be easily seen by direct evaluation of the
Fourier coefficients of the Melnikov function. In fact, let us consider, for example,
the heteroclinic solution of (7.1.36) going fromx=0tox = 1:

(1) R(e")

= 7621_*_1 =

where R(x) = % Applying the procedure described in this section we see that the

Fourier coefficients of the Melnikov function are given by 8,¢q,, where & = 1 and
for n # 0:
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—0.6L

Fig. 7.1 A: The phase portrait of (7.1.36) nearby the heteroclinic cycle. B: The phase portrait of
(7.1.35) with m = 0.6 nearby the homoclinic orbit.

2nm u1n+1 um+1 nn
6, = —— |Res -, + Res -, 1 = .
" l—e—z’m |: <u2—|—1 > <M2+l >:| 2sinh (ng)
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Geometrically, this strange behaviour depends on the fact that the homoclinic solu-
tion of (7.1.35) gets orbitally closer and closer (as m — o) to the heteroclinic cycle
but not to any of the heteroclinic orbits (Figure 7.1 B). As a matter of fact, setting

eZt (e4m7r -1 )
eZt + e2m7l:) (eZI+2mn + 1) ’

pm(t) = (

the Melnikov function associated with a heteroclinic solution of (7.1.36) is the limit,

for m — oo of either: .

Dom(t)q(t + a)dt
or 0
/_ pan(0)q(1+a)ds

and these are not zero in general. To see this, consider, for example, the heteroclinic
solution of (7.1.36), p..(t). We have, for t <0:
1

= 2—_ < 2621 .
2cosh”(mm —1t)

0 S pw(t+m7r) _pm(t)

From Lebesgue’s theorem we get then:
0
lim [Poo(t +mm) — ppy(2)]0(2)dt =0

m——+oo |_ o

for any L”-function b(¢), and hence:

2mn

/jo Peo(t)q(t +at)dt = lim Pes(t)q(t + ct)dt

m——+oo | _ o

m— oo m— oo

0 0
— lim / peo(t +2mm)q(t + @)dr = lim / Pam(t)a(t + Q).
A similar argument shows that
o 0
/ Peolt + 7)1 + @)t = Tim_ / a1 (1)q(t + ).

Finally we note that coth(27) = 1.00000698, while coth(1.27) = 1.001064, so for
m = 1 the phases portraits of (7.1.35) and (7.1.36) graphically coincide. For this
reason we consider m = 0.6 in Figure 7.1 B.

7.2 Transverse Heteroclinic Cycles

The purpose of this section is to show the existence of a transversal homoclinic
orbit near a transversal heteroclinic cycle. This gives a chaos near a transversal het-
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eroclinic cycle. To start with, we extend and study the above relationship between
(7.1.35) and (7.1.36) for more general systems. More precisely, we study the rela-
tionship between

¥ = 4x(2x* — 3xcoth(2mm) + 1) + eq(1), (7.2.1)

and
% =4x(2* = 3x+ 1) +eq(t). (7.2.2)

To this end, and to help the readers in understanding the assumptions we make, we
observe that the difference between the r.h.s. of Egs. (7.2.1) and (7.2.2), given by:

2452

12)(2(1 —COth(ZmTE)) = _W

tends to zero as m — oo uniformly on compact sets and the same holds for its deriva-
tive with respect to x. Hence we consider a family of 7T-periodic differential equa-
tions

%= fu(t,x) = fu(t + T,x) (7.2.3)

where either m € Norm = oo, t € R, and x € 2, an open and bounded subset of R".
We assume that f,,(t,x) are C* functions in (¢,x) € R x €, and that the following
conditions hold:

(a) X = fw(t,x) has a transversal heteroclinic cycle in  made of two hyperbolic T -
periodic solutions p;(t), i =0, 1, and two heteroclinic orbits pﬁ? b (t) and pgol 0 (1)
connecting them, that is,

tim [ () = po(r)] = Jim [ s (1) = po(r)] = 0.

f——o0

(7.2.4)
tim |0 = pi(1)] = tim_ [ 0) = p1(1)] =o0.
[—00 t——oo
(b) fw(t,x) is a regular perturbation of f,(¢,x), that is,
sup | fm(t,x) — fo(t,x)| =0 as m— oo,
(t.x)ERXQ
7.2.5
sup  |Dafu(t,x) —Dafu(t,x)| =0 as m— co. ( )
(t.x)ERxQ

Note that by transversality of the heteroclinic cycle we mean that the stable and
unstable manifolds of the periodic orbits p;(¢) intersect transversally along both
(01) (10)
P (t) and pss ' (2).
By using the implicit function theorem, it is not difficult to show (cf [1] and
Remark 4.1.7) that the conditions (a) and (b) imply that for any m sufficiently large,
the T-periodic nonlinear system

X = fin(t,x)
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has unique T-periodic solutions gy, (¢) and r,,(¢) so that sup,cg |gm(t) — po(t)| —
0 and sup,cg |7m(t) — p1(t)] — 0 as m — oo. Moreover, both g, (¢) and r,(7) are
hyperbolic.

The purpose of this section is to prove the following:

Theorem 7.2.1. There exists my € N so that for any m € N, m > my, system (7.2.3)
has an orbit py(t) homoclinic to q(t) so that

Sup|pm(t)*l7c<x(>)l)(f+mT)‘ —0 as m— oo,
t<0

» (7.2.6)
Sup|pm(t) —pe ' (t—mT)| —0 as m— co.
>0

Moreover, the stable and unstable manifolds of the periodic solution g,,(t) of system
(7.2.3) intersect transversely along the homoclinic solution py,(t).

Proof. To simplify the proof, we first replace x with y = x+ po(t) — g, (¢). We obtain
the family of equations

y= fAm(tvy)
where

fm(taY) = fm(tvy_p()(t) +‘Im(t)) + feolt, po(t)) _fm(t7‘1m(t))

and A
Joolt,y) = fu(t, 7).

Note that the family ﬁn(t, y) satisfies assumptions (a) and (b). Hence, without loss
of generality, we suppose in this proof that for any m € N system (7.2.3) has the
periodic solution pg(t).

From the transversality assumption of the heteroclinic cycle (cf Lemma 2.5.2) it
follows that the linear system

=D foo(, 0V (1)) (7.2.7)

has an exponential dichotomy on R with projection, say, O, that is, the fundamental
matrix X.(¢) of (7.2.7) satisfies

1Xee (1) QX0 (5) ]| < Ke 279, s <1,
IXeo (1) [T~ Qo] XM ()] S K20, 1 <s

for a constant § > 0. Similarly there exists a projection P. so that the fundamental
matrix Y. (¢) of the linear system

&= Do fuo(t, p10 (1))

satisfies
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Voo (1) oY (5)|| < Ke8U—9) | s<t,
e t<s.
Yoo (1) [T = PoJY ()] < K272, 1 <

Now, it is clear that the fundamental matrix X..(t +mT)X; ! (mT) of the linear sys-

tem X = Dj fu(t, pgc(,) D (t +mT))x has also an exponential dichotomy on R with pro-
jection matrix

Qe (mT) = Xoo(mT) QX' (T,
and similarly, the fundamental matrix Y..(t — mT )Y, ! (—mT) of the linear system

X =Dy ful(t, pgo) (t —mT))x has an exponential dichotomy on R with projection
matrix
Po(—mT) = Yoo (—mT)PoY5 ' (—mT).

We seek for a solution p,,(t) of the nonlinear system (7.2.3), with m € N, sufficiently
large, so that (7.2.6) holds. Hence, setting

x1(t) = pu(t) = POVt +mT),  x2(t) = pu(t) — plO (¢t = mT),

we look for a pair of functions (x;(¢),x2(¢)) so that

sup|x;(¢)] and sup|x(¢)]
1<0 >0

are small, and actually tend to zero as m — oo, satisfying:

— Do fu(t, POV (¢ +mT))xy = b (£,x1) for 1<0,
%2 — Do ful(t, P9V (¢ —mT))xy = - (t,3x0)  for 120, (7.2.8)
22(0) = x1(0) = by := p&" (mT) — pLO (=mT),
where
i (8,3) = foolt,x+ Pl (¢ +-mT)) — fuolt, p0) (e +mT))
~Da foolt, ") (¢ +mT))x
it x4+ PV (4 mT)) = ful(t,x+ pV (1 +mT)) |
Iy (0,3) = foolt,x+ U0 (¢ —mT)) — fuolt, p17 (¢ = mT))
~Da fuolt, P20 (1 — mT))x
x4 pQO (¢ —mT)) — folt,x+ pUO (1 — mT)).

Note that b, = 0(1) as m — oo. Let p > 0 be a fixed positive number so that the
closure of the sets:

ferpwlrer i <pf, {x+pl00) 1R M <p}
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is contained in . Then note that
sup |k (2,%)] = A= (|x]) x| + o7 (1),
teRL,|x|<p

sup Do (1,)| = A% (lx]) + 05 (1)

teRL,|x|<p

(7.2.9)

where
_ _ (01) (01)
A™(r) = sup,eg yj<r D2 fou .3+ pE (¢ +-mT)) = Do fro(t, pS) (e +-mT)))
A*(r) = supye yj<p D2 foult, 5+ pSO (1 +-mT)) — Da fult, pa° (¢ 4+ mT))|

are positive increasing functions so that A% (r) — 0 as » — 0 uniformly with respect
to m € N (see (7.2.5)) and, for example

oy ()= sup |fult,x+pLY(t+mT)) = fult,x+ pOV (¢ +mT))| — 0
teR, |x|<r

as m — oo, uniformly with respect to # € R and |x| < p, because of assumption (b).
Of course, a similar conclusion holds as far as 0} (1) and 05" (1) are concerned.

Owing to the exponential dichotomy, any solution of the first two equations in
(7.2.8) whose sup-norm in (—oe,0] is less than a given r > 0 satisfies

x1(f) = Xoo(t + mT)[1 — Q) Xy (mT)é

+/ Xoo(t +mT) QX (s+mT ), (s,x1(s5))ds

/ Xoolt +mT) I — Qu)XZ (s -+ mT)h (5,31 (s))ds  (7.2.10)
and similarly
x2(t) = Yoot —mT)PY  (—=mT)7

+ /[ Yoo (t — mT)PY,S (s — mT ), (5,x2(s) )ds
0

/y (t —mT)[I = PV (s — mT)Ic (s,30(s))ds. (7.2.11)

A classical argument shows (cf Section 4.1) that the maps defined by the right-hand
sides define contractions on the appropriate spaces Cy (R_,R") and C)(R,R") of
bounded continuous functions on R_ and R respectively, provided m > my is suf-
ficiently large, 6K|§| < r, 6K|n| < r, and ||x;|| < r where r > 0 is such that

3K6 'A% (r) < 1.
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Let x;(¢,&,m), x2(t,n,m) be the solutions of the above fixed point equations. From
Eq. (7.2.10) and the properties of the functions ;- (s, x) we easily obtain

suplxi (1, &, m)| < KIE|+2K8 " | A~ (r)suplx (1,E,m)| + 07 (1)
<0 <0

and then
sup |x1 (¢,€,m)| <3K|E|+o01(1) <r (7.2.12)

t<0

where 01(1) — 0 as m — oo uniformly with respect to &, 1. Similarly:

sup |xa (¢, m,m)| <3K|n|+o0x2(1) <r (7.2.13)

t>0

where 03(1) — 0 as m — oo uniformly with respect to &, 1. In order to find p,,(t)
we have to solve the equation:

Peo(=mT )N — [I = Qs (mT)]&

_/ Yoo(—mT)[I— P.]Y. ' (s — mT )i (s,x2(s,1,m))ds (7.2.14)

Jr/ Xoo(mT) Qo X2 (s +mT) by, (5,x1 (5, & ,m))ds + by, .

Now, according to (7.2.4) and (7.2.5), D fe (npggl) (t+mT)) and szm(t,pgolO) (t—
mT)) tend to D, fw (2, p1 (¢)), uniformly in compact intervals in R as m — oo. Hence
from Lemma 2.5.1 the projections Po.(—mT) and Q..(mT) tend, as m — oo, to the
projection £ of the dichotomy of R of the linear system along p1 (¢):

X =Dy foo(t, pr(1))x-

Thus for any m € N sufficiently large ||Po(—mT)|| and |1 — Q. (mT')|| are bounded
below by a positive constant. Then, using (7.2.9), (7.2.12) and (7.2.13), we see that
the right-hand side of (7.2.14) is bounded by a term like

3K257 AT (BKIE|+o1(1))|E| +AT (3K |+ 02(1))|n]] +o(1) (7.2.15)

where 0(1) — 0 as m — oo uniformly with respect to ||, ||. Thus by using the
implicit function theorem, we see that (7.2.14) can be uniquely solved for & = &,
and 1 = 1,,. Moreover, since the expression in (7.2.15) tends to zero as & — 0,
N — 0 and m — +oo, we easily see, from the uniqueness, that &, and 1,, tend to
zero as m — oo. We set

x1(t,&mym) + pS (t+mT), if 1<0,
Pnt) = (10)
X2 (t, M, m) + peo” (t —mT), if 1>0.
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Then p,,(7) satisfies (7.2.6) because of (7.2.12), (7.2.13) and the fact that |, |, || —
0 as m — oo and hence |7| sufficiently large remains in a small neighborhood of
the periodic orbit py(¢). Thus, because of the saddle node property of hyperbolic
periodic solutions, p,,(¢) is homoclinic to po(t).

To complete the proof of the theorem we have to show that the stable and unstable
manifolds WS (po) and W;5,(po) of the solution po(t) of (7.2.3) with m > my intersect
transversely along p,, (7). From the hyperbolicity of the periodic solution py(¢) and
the roughness of exponential dichotomies, for any m > my, the linear systems

x:D2fm(t7pm(t))x (7.2.16)

have an exponential dichotomy on R_ with projections Q,,, that is, the fundamental
matrix X,,(¢) of (7.2.16) satisfies:

X0 (1) O X,y (5) || S ke 09), s <1 <0,
X (1)L~ Q] X, ()| < keC™), 1 <5<0.

Moreover, from (7.2.4), (7.2.5), (7.2.6) it follows [7] that the projections Q,, can be
chosen so that
lim |Q,, — Qw(mT)| =0. (7.2.17)
m-—oo

On the other hand, Eq. (7.2.16) has also an exponential dichotomy on R with
projection, say, B, and we can similarly assume that

lim [Py, — Po(—mT)| =0. (7.2.18)

m-—oo

We now describe the unstable manifold W (po) of po(r). Let x,,(z,&) be the
solution of (7.2.3) so that x(0) = &. We have

W(po) = {€ €R: lim_|uu(t,€) — po(t)] =0}

Because of the exponential dichotomy, the solutions occurring in the definition of

Wi(po) can be written as xm(t,g) = zm(t) + pm(t), where z,,(t) = z,,(£,€) is the
unique solution of the implicit equation:

Zm(t) = X () [I = Q)& + /_t X (1) O Xy L () (5,2m(s))ds
(7.2.19)

_ /t Xon ()1 OonlX=(5) (5. 2 (),

where & = E — pm(0) and

hm(t,Z) = fm(t,Z‘f'pm(t)) _fm(t7pm(t)) _Dme(tvpm(t))Z- (7220)
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Note that (7.2.19) defines z,(¢) for ¢ < 0, however z,,(¢) can be extended up to any
finite time mT and satisfies the same formula. Moreover, because of the uniqueness,
we have z,,(t,0) = 0. Thus the tangent space of W*(po) at the point pO!(mT) is
spanned by the vectors

Xeo(mT) [[ = Qo] § = [l = Qeo (mT )Xo (mT )&

while the tangent space of W (po) at the point p,,(0) is spanned by the vectors like
[I— Q)€ where we used the identity X,,,(0) = I. Thus

Tﬂm(O)VViZ (po) = ’/VQWL’ T (01)

Poo (mT)WOO(pO) = ‘/VQW(mT) °

Similarly

By Wnlpo) = ZEn, T o) Wi(po) = #Po(—mT).

oo/ (—mT)
Thus in order to show the transversality of the intersection of W (po) and W (po)
along p,,(¢) we have to show that R" = ZP,, ® .4 Q,,. But, we have already seen
that Qw(mT) and Po.(—mT) tend, as m — oo, to the projection & of the dichotomy
on R of the linear system along p;(¢):

X =Dafel(t,p1(t))x.
So, using also (7.2.17), (7.2.18), we have
lim ||Q, — Z] =0
m—oo

and similarly
lim ||P, — Z|| =0.
m-—oo

Thus we can assume mg € N is so large that
R"=%Py® N QO

for any m > myg and then the stable and unstable manifolds W, (po) and W (po)
intersect transversally along py,(¢). The proof is finished. a

Remark 7.2.2. Theorem 7.2.1 holds also for the periodic solutions r,,(f).

As an application of this result we can consider the family of second order equa-
tions (7.2.1) whose limiting equation, for m — oo, is (7.2.2). We know that the un-
perturbed limit equation (7.1.36) has the heteroclinic cycle made of the two hetero-
clinic connections pe(t) and p..(—t). Moreover the Melnikov functions associated
with both heteroclinic orbits have a transverse zero at least for infinitely many 27-
periodic C'-functions ¢(¢). Hence, for any € # 0 sufficiently small, ct.(€) exist so
that Eq. (7.2.2) has hyperbolic periodic solutions py(z,€), p;(z,€) and bounded so-
lutions p. (¢,€) so that
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sup|po(t,€)| — 0, sup|pi(t,e)—1] — 0,
teR teR

sup |p4(1,€) — peo(t — 0t1.(€))| = 0,
teR

sup [p—(t,€) = peo(—t — ¢ (£))| = 0

teR
as € — 0 and the same holds for the —derivative. Moreover the variational equations
of (7.2.2) along p+(z,€) have an exponential dichotomy on R. Since p.(t) tends
to x =0 when t — —o and to x = 1 when ¢ — +oo, and the periodic solutions
po(t,€), p1(t,€) have the saddle point property, we easily obtain that the solutions
{po(t,€),p+(t,€),pi1(t,€),p_(t,€)} form a heteroclinic cycle, which is transverse
thanks to the exponential dichotomy of the linear systems. Thus, the result of this
section applies and we obtain the following:

Theorem 7.2.3. If the function q(t) in system (7.2.1) is such that the Melnikov func-
tions associated with p.(=£t) of the limiting equation (7.2.2) have transverse zeroes,
then for any given 0 < || < &), sufficiently small, there exists m(€) so that for any
m > m(€) system (1.2.1) has a transversal homoclinic orbit py, ¢ (t) with such a q(t),
therefore,

SUp|pe(t) = p(t+mT,&)| — 0 as  m— oo,

1<0

SUp |pme(t) —p—(t—mT,€)] -0 as m— oo.
>0

Theorem 7.2.1 can be related to the following result [8]:

Lemma 7.2.4. Let  : R" — R" be a C'-diffeomorphism possessing hyperbolic fixed
points py and po. If W, transversally intersects W, and Wy transversally inter-

u u : N 7 —
sects Wy, , then Wy transversally intersects Wy, for i =1,2.

Indeed, assuming that (a) holds. we take f,(¢,x) = fw(f,x). Then we get a
transversal homoclinic solution for X = f..(#,x), so the existence of a transverse het-
eroclinic cycle gives a chaos. Lemma 7.2.4 is proved in [8] by using the A-lemma.
Our proof, instead, is based on such notions as exponential dichotomies and rough-
ness. We emphasize the fact that our proof is more constructive than the one given
in [8] and also leads to Eq. (7.2.6) which allows of locating, within some small error,
the homoclinic orbit. Finally we note that the above results can be directly extended
to transverse heteroclinic cycles consisting of a finite number of transverse hetero-
clinic orbits connecting hyperbolic periodic solutions. Such transverse heteroclinic
cycles occur often for symmetric systems of ODEs [9].

7.3 Blue Sky Catastrophes

Typically a family of periodic orbits of scalar second order equations terminates
in either to equilibria or to heteroclinic/homoclinic orbits. In the last case the
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minimal periods of periodic orbits increase to infinity as orbits approach hete-
roclinic/homoclinic cycles, i.e. we have a period blow-up or blue sky catastro-
phe [10-12]. Clearly this phenomenon occurs in the Smale-Birkhoff homoclinic
theorem 2.5.4. The purpose of this section is to survey certain results in this direc-
tion. Other types of blue sky catastrophes are investigated in [3].

7.3.1 Symmetric Systems with First Integrals

In this section, we consider a smooth system
= f(u) (7.3.1)

with some symmetry conditions, that is, either (7.3.1) is equivariant (i.e. f(Tu) =
T f(u) for a linear map T : R" — R" with T? =1 for some p € N) or (7.3.1) is
periodic (i.e. f(u+7) = f(u) for some 7 € R"\ {0}). Furthermore, we suppose that
(7.3.1) has a heteroclinic orbit ¥(¢) to hyperbolic equilibrium points pg, p; satisfying
T po = p1, if (7.3.1) is equivariant, or po+ T = py, if (7.3.1) is periodic.

If (7.3.1) is equivariant then we look for solutions satisfying

Tu(t) =u(t+w) VieR (7.3.2)
fora @ > 0, and if (7.3.1) is periodic then we look for solutions satisfying
ut)+t=u(t+w) VieR (7.3.3)
for a @ > 0. Now we can state the following result [9].

Theorem 7.3.1. Let (7.3.1) satisfy the above assumptions. Furthermore, assume
that the variational system v = Df(y(t))v has the unique bounded solution Y(t)
up to a multiplicative constant. If (7.3.1) has a symmetric smooth first integral
H:R"— R (i.e. either H(Tu) = H(u) if (7.3.1) is equivariant, or H(u+ ) = H(u)
if (1.3.1) is periodic) and DH ((0)) # 0, then there is a @y > 0 so that

(a) If (7.3.1) is equivariant then it has a ®p-periodic solution ug for any ® > @y
satisfying (1.3.2) and this solution accumulates on the set Uy_ {T*y(r) | t € R}
as @ — oo,

(b) If (7.3.1) is periodic then it has a solution ug, for any @ > @y satisfying (7.3.3)
and this solution accumulates on the set Uycz{y(t) + kT |t € R} as @ — oo,

Theorem 7.3.1 is a generalization of results of [10—-12] to symmetric conservative
systems.
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7.3.2 D’Alembert and Penalized Equations

Let .# be a smooth orientable submanifold of R". Let D; be the covariant derivative
along the tangent bundle 7.7 and P, : R" — T,.# be the orthogonal projection on
T,.# along the normal space T,.# . We recall that given a smooth curve z(t) on
A and a vector field Y (¢) € T,).# , the covariant derivative DY (¢) is defined as

DyY(t) = PyY (1)

(see [13, p. 305-306]). It is well known [14] that the constrained motion on .Z of a
second order smooth ODE given by

i+F(z)=0 (7.3.4)
is determined by the D’Alembert equation of the form
Diz+PF(z) =0. (7.3.5)
By penalized equation of (7.3.4), instead, we mean the equation [14, 15]
4+ F(2)+€%G(z) =0 (7.3.6)

where € > 0 is small and G(z) is a smooth function vanishing on .# so that for
any x € .4, G'(x) is positively definite on the normal space T,.#*. Often, in the
applications, G(x) is the gradient VU (x) of a smooth function vanishing on ..
Thus the previous condition means that U (x) > 0 in a neighborhood of .# and any
point of .# is a strict local minimum of U (x) in the direction normal to ./ .
Setting 71 = z, 20 = €z, Eq. (7.3.6) reads:
€21 = 22,
€2 =—G(z1) — €F(z1)
which has the form of a singularly perturbed system (cf Section 4.4.1). Passing to
the time T =t /¢ and setting € = 0, we obtain the system
Q=2
2 =-G(z1)

whose local set of equilibria is (z1,z2) = (x,0), x € .#, and the Jacobian matrix at

these points is
o) 0 I
J(x) = .
—-G'(x) 0

Now, since G'(x)v = 0 for any v € T,.#, we see that zero is an eigenvalue of J(x),
for any x € ./ and that the eigenvectors of the zero eigenvalue are those v € R?" so
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that v = g with u € T.# . Next, if A # 0 is another non-zero eigenvalue of J(x)

there should exist v,w € C" so that
w=Aiv, —G(x)v=2~Aw.

Thus —A? is one of the positive eigenvalues of G'(x) and v is an eigenvector of
—AZ. Hence we are in a situation where geometric singular perturbation theory [16]
cannot be applied, because the manifold of equilibria is far from being normally
hyperbolic. On the contrary, the presence of positive eigenvalues of G'(x) makes
the manifold of equilibria not normally hyperbolic and the problem is resonant.
We speak of elliptic singularly perturbed problem. Now we can state the following
result [17,18].

Theorem 7.3.2. Suppose that F(z) € C?, G(z) € C° and .4 is an orientable C-
smooth submanifold with codimension m of R". Moreover assume that the following
conditions hold:

(1) G(z) =0 for any z € .# and P, F (z9) = 0 for some z € M ;

() T..#* has an orthonormal basis {n;(z) | j = 1,...,m} so that G'(z)n;(z) =
lf(z)nj(z), with )sz(z) > A% >0, foranyz € M;

(3) the D’Alembert equation (7.3.5) has a (nontrivial) symmetric solution % (t) =
Yo(—t) € M homoclinic to the equilibrium zo which is hyperbolic for the dy-
namics of (7.3.5) restricted on M ;

4) z(t) = (¢) is the unique bounded solution, up to a multiplicative constant, of
the variational equation of (7.3.5) along y(t) so that z(t) € Ty )./ and

[n(0(1)2(1)]" 1o (t) + 5 (w(r))2(t) = 0
forany j=1,...,m.
Then, there exist M >0, § >0, u > 0, & > 0 so that for any € € (0, &) there exists
a subset S¢ C (=38 'Ing, pe="/2) with the Lebesgue measure satisfying

1
m(Se) > 5[#8_1/2+38_11n£]

and for any T € S, penalized equation (7.3.6) has a 2T —periodic solution z(t) so
that 7(t) = z(—t) and the following holds.

sup [z(r) = w(r)| < Me.
~T<I<T

Moreover, there is a T¢ > 0 so that for any T > T the D’Alembert equation (7.3.5)
has a 2T —periodic solution Z(t) € M so that Z(t) = Z(—t) and the following holds

sup [2(1) —0(1)| < Me.
~T<I<T
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Hence Theorem 7.3.2 deals with the problem of existence of periodic solutions of
penalized equation (7.3.6) for € > 0 sufficiently small, when the D’ Alembert equa-
tion (7.3.5) restricted to .# has a homoclinic orbit ¥(¢) € .#. A problem similar to
this is considered in [19] where it is assumed that y(¢) is a T-periodic solution of
the D’ Alembert equation. It is proved, there, that if T satisfies a non-resonance con-
dition then penalized equation (7.3.6) has a T-periodic solution near y5(z). On the
other hand, we have a continuum layer of periodic solutions of penalized equation
(7.3.6) near yy(¢) with large periods. This is a kind of partial blue sky catastrophe
for penalized equation (7.3.6). But the D’ Alembert equation (7.3.5) has a blue sky
catastrophe on .# near Y(z).
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