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Supervisor’s Foreword

One of the most common experimental methods in Physics is to illuminate a target,
observe the pattern of the scattering, and learn something about the structure of the
target. A famous example is of course the experiment of Rutherford in 1911, when
he illuminated a gold foil with alpha particles and discovered the atomic nucleus.
A later example is the electron scattering experiment using the Stanford Linear
Accelerator which led to the discovery of the quarks inside the protons and
neutrons. The highest resolution is obtained with the highest energy particles,
and today, those are to be found at the Large Hadron Collider (LHC) at CERN.
In the historic examples above, the targets were at rest in the laboratory, while the
scattering is in a different rest-frame at a collider. Nevertheless, the principle is the
same. By studying the angular distribution of the scattered quarks and gluons, at
the LHC, their possible structure and the forces acting between them, are explored.
This was the thesis topic of Dr Boelaert.

In 2006 the Physics Department at Lund University got the opportunity to
launch a graduate school in High Energy Physics, thanks to a Marie Curie grant
from the 6th framework programme of the European Union. It allowed seven
students to start as graduate students. The students came from Belgium, China,
Denmark, Italy, Romania and UK, and studied and did their research together in
Lund during four years. I believe that this has given them and us, the permanent
staff, an experience for life. Nele Boelaert came to this group with a degree in
Engineering Physics from the Technical University in Gent/Belgium and I had the
privilege to become her supervisor.

My interactions with her were a sequence of positive surprises in learning how
much she had done, the quality of what she had done, and her innovative approach.

N. Boelaert started before the LHC became operational, and the original plan
was that after a year of courses and a year of research preparation, she would have
a few years of data from the LHC as basis for her thesis. However, like many
frontier projects, the LHC encountered some delays. This gave her time to enter
deeper into the phenomenological aspects of the measurements to be done, but also
reduced the prospects of the scientific potential of the data that would be at hand
for the thesis. Nevertheless, the LHC started during the last year of her position in
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Lund allowing her to get results from the first, but limited, data from this new
facility. This data was just a tiny first step into the vast space that the coming years
of LHC operation will allow to be explored.

Her analysis has shown how well these measurements can be done, how well
our current theory, the Standard Model, describes the entering point into the space
opened up the LHC, and has shown the precision of the understanding of ATLAS
at the LHC that has been built up by the scientific collaboration that constructed
this facility. Nele Boelaert’s thesis has set the best possible stage to pursue this
exploration in the years to come as the LHC integrates luminosity and increases its
energy. Her thesis is very well structured and written, and provides an excellent
introduction for new graduate students to come.

Lund, August 2011 Torsten Åkesson
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Abstract

Dijet angular distributions provide an excellent tool for looking at high transverse
momentum parton interactions in order to study both QCD and new physics
processes. With the Large Hadron Collider (LHC) recently brought into use, an
unprecedented energy regime has opened up. ATLAS is one of the experiments at
the LHC. Its high performance calorimeter system providing near hermetic cov-
erage in the pseudorapidity range |g|\4.9, enables ATLAS to perform reliable jet
measurements. Detailed Monte Carlo studies at

ffiffi

s
p

= 14 TeV, the LHC design
collision energy, and at

ffiffi

s
p

= 7 TeV, the collision energy foreseen for the initial
years of the LHC operation, clearly show that dijet angular distributions can be
used to discriminate the Standard Model from a new physics model describing
gravitational scattering and black hole formation in large extra dimensions. When
considering only the shape of the distributions, both the theoretical and the
experimental uncertainties are predicted to be small in those regions where new
physics is expected to show up. The study at

ffiffi

s
p

= 7 TeV indicates that ATLAS is
already sensitive to large extra-dimensional gravity mediated effects with 1 pb-1

of data. The first measurement of dijet angular distributions at
ffiffi

s
p

= 7 TeV with
ATLAS was carried out in two mass bins, using data that were recorded early
2010, corresponding to an integrated luminosity of about 15 nb-1. The measure-
ment shows good agreement with QCD predictions and demonstrates that ATLAS
is ready to search for new physics in the dijet angular distributions with more data.
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Chapter 1
Introduction

1.1 The Standard Model and Beyond

Already in the sixth century BC, the Greeks believed that matter is composed of
elementary particles. But it took until the discovery of the electron at the end of the
ninetieth century to finally get a breakthrough in our understanding of the structure
of matter, which forced the twentieth century into a rapid growth of theories and
knowledge.

Nowadays scientists believe that the Universe is made of elementary particles
which are governed by four fundamental forces: electromagnetism, strong and weak
force, and gravitation [1]. The Standard Model of particle physics (SM) is a theory
of elementary particles and all forces but gravity, which describes existing data very
well [2].

The elementary particles of the SM are twelve fermions (and their antifermions),
twelve gauge bosons and one neutral Higgs particle. Fermions are half-integer spin
particles which respect the Pauli Exclusion Principle, but gauge bosons have integer
spin and do not follow this rule. The Higgs particle is a scalar, meaning that it has
spin 0.

The gauge bosons mediate the forces between the elementary particles. Each of
the forces is associated with a charge: electric charge, weak charge and strong charge.
The strong charge is also called the color charge, or color for short.

Two types of fundamental fermions exist: quarks and leptons. The leptons come
in three lepton families: electron (νe, e), muon (νμ, μ), and tau (ντ , τ ). They can
also be classified according to their charge: the neutral neutrinos νe, νμ, ντ and the
negatively charged e−, μ− and τ−.

The quarks come in six flavors and, like the leptons, they can be grouped into
three quark families: (u, d), (c, s) and (t, b). The u, c, t quarks have electric charge
2e/3, and the d, s, b quarks have charge −e/3, with e being the elementary electric
charge.

Fermions can be decomposed into left-handed doublets and right-handed singlets
of the electroweak force. The three fermion families can be summarized as follows:
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2 1 Introduction

Table 1.1 Nonzero fermion masses in the SM.

1st family 2 st family 3st family
Name Mass (MeV/c2) Name Mass (GeV/c2) Name Mass (GeV/c2)

u 1.5–3.3 c 1.27+0.07
−0.11 t 171.2 ± 2.1

d 3.5–6.0 s 0.104+0.026
−0.034 b 4.20+0.17

−0.07

e 0.511 μ 0.106 τ 1.777

1st family :
(
νe

e−
)

L
, e−

R ,

(
u
d

)
L
, u R, dR

2nd family :
(
νμ
μ−

)
L
, μ−

R ,

(
c
s

)
L
, cR, sR

3rd family :
(
ντ
τ−

)
L
, τ−

R ,

(
t
b

)
L
, tR, bR

Each fermion has an associated antifermion with the same mass, but opposite charges.
Unlike leptons, quarks have color charge and engage in the strong interaction.

As for the fermion masses, the members of the first family are very light, but
the masses increase with the family number, which explains why ordinary matter
is made of the first family. According to the original formulation of the SM, neu-
trinos are massless, but nowadays it is generally accepted that they have small but
non-vanishing mass. A summary of quark and lepton masses is given in Table 1.1.
Quarks are confined (more about confinement in Chap. 2), and therefore their masses
cannot be directly measured, which explains the rather large error ranges in the
table. On the other hand, the masses of the charged leptons are known to a high
precision. The SM is a quantum field theory which is based on the gauge symmetry
SU (3)C × SU (2)L × U (1)Y . This gauge group includes the symmetry group of
the strong interactions SU (3)C —the subscript C stands for color—and the symme-
try group of the electroweak interactions SU (2)L × U (1)Y , where the subscript L
indicates that among fermions only left-handed states transform nontrivially under
the electroweak SU(2), and the Y stands for hypercharge, the generator of U(1). The
group symmetry of the electromagnetic interactions, U (1)em, appears in the SM as a
subgroup of SU (2)L ×U (1)Y and it is in this sense that the weak and electromagnetic
interactions are said to be unified.

The gauge sector of the SM is summarized in Table 1.2 and is composed of eight
gluons which are the gauge bosons of SU (3)C , and the γ, W ± and Z particles which
are the four gauge bosons of SU (2)L × U (1)Y . The gluons are massless and electri-
cally neutral, and carry color quantum number. There are eight gluons with different
color-anticolor combinations. The consequence of the gluons carrying color is that
they interact not only with the quarks but also with other gluons. The interactions of
quarks and gluons can be described by a theory called quantum chromodynamics,
or QCD in short, and we will discuss this in detail in the next chapter.

http://dx.doi.org/10.1007/978-3-642-24597-8_2
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Table 1.2 Gauge bosons in the SM.

Force Gauge boson Mass(GeV/c2) Gauge group Charges and
range

Electromagnetism Photon (γ ) 0 Unbroken U(1)
combination
of
SU (2)×U (1)

γ is electrically
neutral, force
has infinite
range

Weak force W ± Z 80.4 Broken
combination
of
SU (2)×U (1)

W and Z have
weak charge,
W has electric
charge,
interaction is
short ranged

91.2
Strong (or color) force 8 gluons (g) 0 SU (3)C Gluon carries

color force
force has
finite range

The weak bosons, W ± and Z are massive particles and also self-interacting.
The W ± bosons are electrically charged with Qe = ±e respectively and the Z boson
is electrically neutral. The photon γ is massless, chargeless and non-selfinteracting
as it does not carry electric charge. Of all gauge bosons, only the gluons carry color.

The W ± and Z bosons are heavy, of the order of 100 GeV, which implies that the
weak force is short ranged (of the order of 10−3fm). Because the photon has zero
mass, the electromagnetic force has infinite range. The gluons are massless too, but
because they are self interacting, the range of the strong force is limited to distances
<1fm.

As for the strength of the three interactions, the electromagnetic interactions are
governed by the magnitude of the electromagnetic coupling constant e or equiv-
alently α= e2

4π , which at low energies is given by the fine structure constant,
α(Q = me)= 1

137 . The weak interactions at energies much lower than the exchanged
gauge boson mass, have an effective (weak) strength given by the Fermi constant
G F = 1.167 × 10−5 GeV−2. The name of strong interactions is due to their compar-
atively larger strength than the other interactions. This strength is governed by the

size of the strong coupling constant gS or equivalently αS = g2
s

4π which is about ∼1
at energies comparable to hadron masses.

The fact that the weak gauge bosons are massive particles indicates that SU (3)C ×
SU (2)L × U (1)Y is not a symmetry of the vacuum. On the other hand, the fact that
the photon is massless reflects that U (1)em is a good symmetry of the vacuum.
We therefore expect spontaneous symmetry breaking in the SM and it must occur in
the following way:

SU (3)C × SU (2)L × U (1)Y → SU (3)C × U (1)em (1.1)
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The above pattern is implemented in the SM by means of the so-called Higgs mech-
anism, which provides the proper masses to the W ± and Z gauge bosons and to the
fermions, and leaves as a consequence the prediction of a new particle: the Higgs
boson particle, which must be a scalar and electrically neutral. This particle has not
been observed so far.

Although the SM succeeds at describing precisely phenomena in the GeV energy
range, there are a variety of indications that more fundamental physics remains to be
discovered. For example the experimental observations that neutrinos have mass [3],
are not quite compatible with the original formulation of the SM. Also the hierar-
chy problem—fine tuning problems from radiative corrections to the Higgs mass
[4]—requires physics beyond the SM. New physics will extend and strengthen the
foundations of the SM, but the SM will remain a valid effective description within
its energy range, whether it is a fundamental theory or not.

A large number of physics scenarios beyond the SM have been considered. One
way to extend the SM, is to try for further unification by constructing models that
unify quarks and leptons, and the electroweak and strong force. These theories are
called Grand Unified Theories.

Supersymmetry is another possibility. This is the name given to a hypothetical
symmetry of nature which relates fermions and bosons. Every particle (quark, lepton
and boson) has a superpartner in this theory. Because supersymmetry can only exist
as a broken theory in nature, all superpartners have a high mass, which explains why
they have not been observed yet.

Exploring the world in extra dimensions is another way of dealing with unex-
plained phenomena. The ADD model addresses the hierarchy problem by assuming
the existence of large extra dimensions in which gravity is allowed to propagate,
while the SM fields are confined to a four-dimensional membrane. More about this
theory in Chap. 5.

1.2 High Energy Physics Experiments and the Large
Hadron Collider

It might sound contradictory, but experiments carried out for testing the smallest
particles physicists believe exist, are typically huge in terms of design and number
of participating scientists. Particle accelerator experiments belong to that category;
particles are brought to almost the speed of light and are then directed into collisions
with particles traveling in the opposite direction.

The Large Hadron Collidor (LHC) [5] is the world’s largest and most powerful
particle accelerator, designed to either collide protons at an energy of 14 TeV per
particle pair, or lead nuclei at an energy of 5.5 TeV per nucleon pair. However, in the
early phase of LHC (2009–2012), only protons with an energy 3.5 TeV are brought to
collide. The accelerator was built by the European Organization for Nuclear Research
(CERN) nearby Geneva, with the intention of testing various aspects of high energy

http://dx.doi.org/10.1007/978-3-642-24597-8_5
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Fig. 1.1 Schematic view of
the LHC accelerator [6]

physics, ranging from more precise measurements of Standard Model parameters to
the search for new physics phenomena and properties of strongly interacting matter
at extreme energy density.

Most of the accelerator is situated in a 27 km circular tunnel underground. A salient
feature of the LHC is the superconducting helium cooled dipole magnet system which
operates at 8.3 T in order to keep 7 TeV protons in their circular orbits.

The LHC design luminosity for proton collisions is 1034cm−2s−1,which will only
be reached after an initial period of running at lower luminosity. In a proton–proton
run, the LHC beam is subdivided into bunches with a spacing of 25 ns or 7.5 m.
At design luminosity, 2808 bunches will circulate in the ring, each bunch containing
about 1011 particles, and the total energy of the beam will be around 362 MJ.

Four large detectors are placed at different interaction points around the ring,
see Fig. 1.1; ATLAS [7] (A Toroidal LHC ApparatuS), CMS [8] (Compact Muon
Solenoid), ALICE [9] (A Large Ion Collider Experiment) and LHCb [10] (Large
Hadron Collider beauty). ATLAS and CMS are general purpose detectors, designed
to observe at LHC design luminosity phenomena that involve highly massive particles
which were not observable using earlier lower-energy accelerators and might shed
light on new theories of particle physics beyond the Standard Model. ALICE is
designed for heavy ion collisions and aims to study a “liquid” form of matter called
quark-gluon plasma that existed shortly after the Big Bang. LHCb is a specialized
b-physics experiment, particularly aimed at measuring the parameters of CP violation
[11] in the interactions of b-hadrons.
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The LHC became operational at the end of 2009. After a few months of
commissioning at lower energies, the LHC was brought to collide protons at a center
of mass energy of 7 TeV early 2010. A further increase in energy is not foreseen for
2010/2011. By the end of June 2010, an integrated luminosity of nearly 30 nb−1 was
recorded by ATLAS. At present, the instantaneous luminosity is increasing expo-
nentially and the goal for 2010 is to record about 100 pb−1 of data.

1.3 This Thesis: Dijet Angular Distributions at LHC Energies

The QCD production of jets of particles is by far the most dominant hard process at
colliders. Previous experiments—at lower energies than the LHC—have shown that
the study of the angular correlation between the two strongest (hardest) jets provides
a good tool for probing both the Standard Model and new physics theories.

This thesis continues this study at LHC energies. The aim is to carry out the
measurement of dijet angular distributions with ATLAS and compare the results
with theory predictions. Both the Standard Model and a new physics model for large
extra dimensions have been considered.

Due to the delay of the LHC startup, this thesis is largely based on Monte Carlo
simulations of the collisions. The simulated collisions have been used for studying
both the phenomenology of the collision processes and how they show up in the
acquired data and can be analyzed. But besides these detailed Monte Carlo studies,
we will show the first results of the actual measurement as well, and make the
comparison with the Standard Model.

The first chapters (Chaps. 2–5) of this thesis mainly contain theory. An intro-
duction to QCD and collider physics is given in Chap. 2, which is followed by a
detailed discussion about next-to-leading order Monte Carlo techniques in Chap. 3.
Dijet physics, with emphasis on dijet angular distributions, is discussed in Chap. 4.
Chapter 5 is about new physics, more precisely about gravitational scattering and
black hole production in a world with large extra dimensions. This chapter also
details the implementation of a dedicated Monte Carlo particle generator in the
ATLAS software framework, which was done in order to be able to compare offi-
cial ATLAS (simulated) data with the new physics predictions. The theory chap-
ters are followed by three chapters about the ATLAS detector. Chapter 6 gives a
general description of the detector, together with a rather detailed report about the
data quality work done during this PhD study. Chapters 7 and 8 focus on the jet
reconstruction; Chapters 7 reviews the methods for the jet reconstruction and its per-
formance evaluation based on Monte Carlo simulated data, while Chap. 8 focuses on
the jet reconstruction using ATLAS data that were recorded at the end of 2009 and
in the first half of 2010.

A detailed Monte Carlo phenomenology study at a center of mass energy of√
s = 14 TeV is presented in Chap. 9. Both QCD and new physics coming from

gravity mediated effects in large extra dimensions, are topics of discussion.

http://dx.doi.org/10.1007/978-3-642-24597-8_1_2
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http://dx.doi.org/10.1007/978-3-642-24597-8_1_8
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Since in the initial phase of LHC, protons only collide at half their nominal
energy, ATLAS has performed its first measurement of dijet angular distributions at√

s = 7 TeV. Chapter 10 contains a dedicated Monte Carlo study aimed at preparing
the ATLAS detector for this measurement. Apart from a phenomenology study, this
chapter also investigates the technical aspects of the measurement and the ATLAS
sensitivity to new physics addressable by dijet studies.

The measurement of dijet angular distributions is presented in Chap. 11, and the
comparison with Standard Model predictions is made.

Finally the conclusions of this thesis and outlook are presented in Chap. 12.

1.4 Author’s Contribution

The work in this thesis was published in a number of publications. Below I will
make a chronological listing of my research activities during the past four years, and
describe my contributions to scientific papers.

Every PhD student in the ATLAS collaboration is expected to work on a technical
task, and mine was situated in the ATLAS data quality framework; during the second
year of my PhD, I worked on a web display for prompt monitoring of the data
quality of reconstructed data in ATLAS. More specifically, I developed the handi
and DQWebDisplay applications for the ATLAS data quality group, and I assisted
the ATLAS physics validation group with using the tools to set up their own display,
PhyValMon.

The work was published in Ref. [12] and is also summarized in Sect. 6.4 of this
thesis. Writing the technical note was my initiative and I was the main responsible.
But I worked closely with most of the authors and only about 50% of the text was
written by me.

On September 10 2008, the LHC accelerated its first protons ever, but shortly
after that—on September 19—a major accident happened that forced the LHC to be
in repair for over one year (until November 2009).

Because of the delay, I decided to move away from pure experimental work and
focus on the phenomenology of dijet angular distributions at

√
s = 14 TeV. First I

studied the distributions in the context of QCD and later on, I included new physics
from large extra dimensions. All details can be found in Chap. 9.

A publication concerning this study was written mainly by me, and was eventually
published [13]. In the summer of 2009 I gave a talk about this study at the 2009
Europhysics Conference on High Energy Physics in Krakow, Poland [14].

In the beginning of 2009, it became clear that the LHC was initially going to
collide protons at

√
s = 7 TeV, and that collisions were foreseen by the end of

the year.
We therefore set up a small team within the ATLAS collaboration that worked

on the preparation of the early measurement of dijet angular distributions. QCD and
many other physics models were investigated, but my focus was on QCD and new
physics from large extra dimensions only. I was able to use my experience from

http://dx.doi.org/10.1007/978-3-642-24597-8_1_10
http://dx.doi.org/10.1007/978-3-642-24597-8_1_11
http://dx.doi.org/10.1007/978-3-642-24597-8_1_12
http://dx.doi.org/10.1007/978-3-642-24597-8_1_6
http://dx.doi.org/10.1007/978-3-642-24597-8_9


8 1 Introduction

my previous study to work on the phenomenology part, but I also investigated the
influence of pure detector effects, such as jet energy calibration.

An ATLAS internal note was published in Ref. [15]. My contributions concern the
selection cuts in kinematics, the QCD theory calculations, the estimate of theoretical
uncertainties and NLO effects, and the sensitivity to gravitational scattering and
semiclassical black holes in large extra dimensions. Chapter 10 is entirely devoted
to this study.

In order to be able to study gravitational scattering and semiclassical black hole
formation with ATLAS, I needed to implement a dedicated standalone Monte Carlo
generator, called GravADD, in the ATLAS software framework. This is a non-trivial
task since the ATLAS software framework has specific requirements and conventions.
In order to provide documentation for future ATLAS users and programmers, I
published an internal note [16]. Details are given in Sect. 5.5.4.

On March 30, 2010. The LHC started to collide protons at
√

s = 7 TeV. The
small team that worked meticulously on the preparation of the measurement, was
now able to actually perform the measurement in a rather limited amount of time.
I worked on the Standard Model theory predictions and uncertainties and wrote the
code to run over the data and create the final plots. More about this in chapter 11.
The analysis was made public in July 2010 at the International Conference on High
Energy Physics in Paris [17]. In August 2010, I presented the results at LBNLMIT10,
a joint Berkeley-MIT workshop on Implications of First LHC Data in Cambridge,
USA.
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Chapter 2
Introduction to QCD and Collider Physics

2.1 Quantum Chromodynamics (QCD)

Quantum chromodynamics (QCD) is the theory of the strong interaction, describing
the interactions of the quarks and gluons, using the SU(3) non-Abelian gauge theory
of color charge [1]. The expression for the classical QCD Lagrangian density is
given by:

L = −1

4
F A
αβFαβA +

∑
flavors

q̄a(iγμDμ − m)abqb, (2.1)

where the sum runs over the n f different flavors of quarks (n f = 6 in the SM), and
α, β, γ are Lorentz indices. Throughout this entire chapter, we will work with the
convention that repeated indices are implicitly summed over. F A

αβ is the field strength

tensor derived from the gluon field AA
α :

F A
αβ = [∂αAA

β − ∂βAA
α − gs f ABCAB

αAC
β ] (2.2)

The capital indices A, B and C run over the eight degrees of freedom of the gluon
field. Note that it is the third (non-Abelian) term in the above expression that makes
the gluons have self-interactions. This means that, unlike the photon in QED, the
carrier of the color force is itself colored, a property that is giving rise to asymptotic
freedom (see further in the text). The numbers f ABC are structure constants of the
SU(3) group. Quark fields qa (a = 1, 2, 3) are in triplet color representation, with
colors red (r), green (g) and blue (b).

The strong coupling strength gs in Eq. 2.2 is used to define the strong coupling
constant αs = g2

s /4π. D in Eq. 2.1 stands for the covariant derivative, which takes,
acting on triplet and octet fields respectively, the form:

(Dα)ab = ∂αδab + ig(tCAC
α )ab (2.3)
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12 2 Introduction to QCD and Collider Physics

(Dα)AB = ∂αδAB + ig(T CAC
α )AB, (2.4)

where t and T are matrices in the fundamental and adjoint representations of SU(3)
respectively.

2.1.1 Perturbative QCD (pQCD)

By adding a gauge-fixing term to the classical QCD Lagrangian (Eq. 2.1):

Lgauge−fixing = − 1

2λ
(∂αAA

α )
2, (2.5)

and a so-called ghost Lagrangian which is derived from a complex scalar field ηA

and is needed because the theory is non-Abelian:

Lghost = ∂αη
A†(Dα

ABη
B), (2.6)

any process can be calculated in a perturbative way using Feynman rules which are
obtained from replacing covariant derivatives by appropriate momenta. The Feynman
rules in a covariant gauge are given in Fig. 2.1. However, a perturbative calculation
generally requires 4-dimensional integrations over intermediate momentum states
arising from gluon quantum fluctuations, which suffer from ultraviolet divergences.

A renormalization procedure is needed to remove these divergences, which essen-
tially means that the Lagrangian is rewritten so that bare masses and coupling
strengths are eliminated in favor of their physically measurable counterparts, giving
rise to a renormalized Lagrangian [2]. Modified Feynman rules are derived from this
Lagrangian and singularities in the contributions from individual diagrams are now
absorbed by the physical quantities, leading to a finite result at the end.

Several renormalization methods are possible, and the exact definitions of physical
quantities—masses and coupling constants—depend on the specific renormalization
scheme used in the theory, but common to all schemes is the inclusion in the renormal-
ized Lagrangian of a new, arbitrary parameter, with the dimension of mass, needed
to define the physical quantities.This parameter is often called the renormalization
scale μR . It appears in the intermediate parts of a calculation, but cannot ultimately
influence the relations between physical observables.

A consequence of renormalization is that the definition of the physically observ-
able quantities not only depends onμR, but also becomes scale dependent; when the
theory is normalized at a scale μR but then applied to a very different scale Q (of
the order of the momentum invariants of the reaction), the coupling constants and
masses adjust to that scale, a process which is commonly referred to as the running
of the coupling constants and masses.

The running of the coupling constant αs is controlled by the β function [3], which
is derived from the statement that a physical observable cannot depend on μR:
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Fig. 2.1 Feynman rules for QCD in a covariant gauge from gluons (curvy red lines), fermions (solid
blue lines) and ghosts (dotted black lines) [1]

Q
∂αs

∂Q
≡ 2βQCD = − β0

2π
α2

s − β1

4π2 α
3
s − O(α4

s ), (2.7)

with

β0 = 11 − 2

3
n f (2.8)
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β1 = 51 − 19

3
n f (2.9)

Given that αs is known (from experiment) at a certain scale Q0, Eq. 2.7 can be
used to calculate its value at any other scale Q:

log(Q2/Q2
0) =

αs (Q)∫
αs (Q0)

dα

β(α)
(2.10)

Equation 2.10 is solvable using the leading-order (LO) term of β(α) only, which
gives:

αs(Q) = αs(Q0)

1 + β0
2π αs(Q0) ln(Q2/Q2

0)
≈ αs(Q0)

(
1 − β0

2π
αs(Q0) ln(Q2/Q2

0)
)

(2.11)
Another way to solve Eq. 2.7 is by introducing a dimensional parameter 
, repre-
senting the mass scale at which αs becomes infinite. This way, we get:

αs(Q) = 4π

β0 ln(Q2/
2)

[
1 − 2β1

β2
0

ln[ln(Q2/
2)]
ln(Q2/
2)

+ O(ln−2(Q2/
2))

]
(2.12)

Note that in Eqs. 2.11 and 2.12 the running of αs with Q is logarithmic, so that
we do not need to worry too much about choosing Q precisely.

Equation 2.12 illustrates the hallmark of QCD, namely asymptotic freedom:
αs → 0 as Q → ∞. It also shows that QCD becomes strongly coupled at Q ∼ 
,

which is at about 200 MeV. This implies that perturbative methods can be used in the
short-distance limit, at scales Q much larger than 
. The fact that the strong force
becomes strong at larger distances, means that color charged particles cannot be iso-
lated singularly and cannot be observed as states that propagate over macroscopic
distances, a property which is called confinement. Only color singlet states composed
of quarks and gluons, i.e. hadrons, can be observed. We will talk about hadronization
in Sect. 2.5. Perturbative methods are no longer a valid approximation in this area.

Experiments usually report the strong coupling at the scale corresponding to
the Z mass (MZ = 91.2 GeV). The world average of αs(MZ ) is determined from
measurements which are based on QCD calculations in complete next-to-next-to
leading order (NNLO) perturbation theory, giving αs(MZ ) = 0.1182 ± 0.0027 [4].

2.2 The Parton Model

The high-energy interactions of hadrons are described by the QCD parton model
[5, 6]. The basic idea of this model is that the hard scattering between two hadrons
can be understood as the interaction between the partons—quarks and gluons with
their masses neglected—that make up the hadrons.



2.2 The Parton Model 15

A hadron consists of a number of valence quarks (e.g. uud for the proton) and an
infinite sea of gluons and light quark-antiquark (qq̄) pairs. The valence quarks carry
the hadron’s electric charge and baryon quantum numbers. When probed at a scale
Q, the sea contains all quark flavors with mass mq � Q. The gluons carry about
50% of the proton’s total momentum. A parton distribution function (PDF) is used
to denote the probability distribution that a quark, antiquark or gluon carries a given
fraction of the momentum of the hadron.

The sea is not static, there is a continuous movement of gluons splitting and
recombining into qq̄ pairs, and both quarks and gluons can emit and absorb gluons
as well. These processes imply that the transverse momenta of partons inside the
hadron are not restricted to small values, and that the PDFs describing the partons
depend on the scale Q that the hadron is probed with, a behavior which is known as a
violation of Bjorken Scaling. At leading order, the dependence on Q is logarithmic.

If q(x,Q) is the PDF describing quark Q, then q(x, Q)dx represents the probability
that Q carries a momentum fraction between x and x +dx when the hadron is probed
at a scale Q.

Each hadron has its own set of PDFs and separate PDFs are used for describing
the sea and the valence quarks; the PDFs for the valence quarks are flavor specific,
but QCD guarantees flavor number conservation of the sea quarks.

For example, for the proton at a scale of about 1 GeV, we can write:

u(x, Q) = uv(x, Q)+ us(x, Q) (2.13)

d(x, Q) = dv(x, Q)+ ds(x, Q) (2.14)

Taking into account quark number conservation, the following sum rules apply:

1∫
0

dx uv(x, Q) = 2 (2.15)

1∫
0

dx dv(x, Q) = 1 (2.16)

And experimentally, it was found that:

∑
q

1∫
0

dx x[q(x, Q)+ q̄(x, Q)] ≈ 0.5, (2.17)

meaning that the quarks carry only about half of the proton’s momentum (and the
gluons the other half).
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When a quark emits a gluon, it can acquire a large momentum kT with probability
proportional to αsdk2

T /k2
T at large kT . This splitting diverges in the collinear region

(kT → 0). This is not a physical divergence; it simply means that perturbative QCD
is not a valid approximation in this region.

The way to solve this is to renormalize the PDFs by introducing a factorization
scale μ f . Similar to the renormalization scale, the factorization scale absorbs the
divergences coming from interactions that are not calculable in perturbation theory.
This way, the PDFs become scale dependent, just like the strong coupling constant
discussed in the previous section.

Perturbative QCD carries no absolute prediction of the PDF, but does predict how
the PDF scales with Q; these are the so called DGLAP (Dokshitzer–Gribov–Lipatov–
Altarelli–Parisi) evolution equations [7–9]:

t
∂

∂t

(
qi (x, t)
g(x, t)

)
= αs(t)

2π

∑
qi ,q̄ j

1∫
x

d z

z

(
Pq j →qi g(z, αs(t)) Pg→qi q̄i (z, αs(t))
Pq j →gqi (z, αs(t)) Pg→gg(z, αs(t))

)

(
q j (x/z, t)
g(x/z, t)

)

(2.18)
Here, t = −Q2, qi, j (x, t) and g(x,t) are the quark and gluon parton distribution

functions respectively, and the functions Pa→bc(z) are the so called unregularized
splitting kernels [1]. We will derive the DGLAP equations in Sect. 2.4

The DGLAP evolution equations specify the evolution of the parton density func-
tions in the same way as the β function (Eq. 2.7) specifies the evolution of the strong
coupling constant. When solving Eq. 2.18 to the leading order, the term ∂t/t will
cause the PDFs to obey a logarithmic dependence on t = −Q2.

The DGLAP equations do allow for the evolution of the PDFs from a certain
reference scale Q0 onwards, but data are still needed to determine its value at the
scale Q0. Deep inelastic lepton-hadron scattering measurements are an excellent
tool for probing PDFs and the reference scale is typically chosen around 1 GeV. Note
that PDFs are universal, i.e. they can be determined from one type of experiment
(e.g. e− p collisions) and used in another (e.g. pp collisions). In the past, leading-
order matrix elements together with lowest order running of αs (see Eq. 2.11)
were used for the fit. Nowadays, also next-to-leading order (NLO) and even NNLO
PDFs—resulting from a fit to NLO or NNLO matrix elements and a higher order
running of αs—have become available.

Historically there are two major collaborations working on PDFs: the CTEQ
[10], and the MRST [11], nowadays MSTW [12], collaboration. Figure 2.2 shows
the MRST2004NLO PDFs multiplied with x, for the up and down quark and the
gluon inside the proton at Q2 = 104 GeV2. The gluon distribution is scaled with a
factor 1/10 in order to fit into the plot. Note that the gluon distribution dominates at
small values of x.
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Fig. 2.2 Proton parton
distribution functions
multiplied with x. The gluon
distribution is scaled with a
factor 1/10 [11]

2.3 Hard Scattering Processes in Hadron Collisions

When two hadrons collide at high energy, most of the collisions involve only soft
interactions of the constituent quarks and gluons. Such interactions cannot be treated
using perturbative QCD, because αs is large when the momentum transfer is small.
In some collisions however, two quarks or gluons will exchange a large momen-
tum. In those cases, the elementary interaction takes place very rapidly compared
to the internal time scale of the hadron wavefunctions, so the lowest order(s) QCD
prediction should accurately describe the process.

The cross section for such a process can be written as a factorized product of short
and long distance processes:

σ(P1, P2) =
∑
i, j

∫
dx1dx2 fi (x1, μ

2
F ) f j (x2, μ

2
F )σ̂i, j (μ

2
R, μ

2
F ), (2.19)

where P1 and P2 denote the momenta of the incoming hadrons. Figure 2.3 shows this
schematically. The momenta of the partons that participate in the hard interaction
are p1 = x1 P1 and p2 = x2 P2. The functions fi (x1, μ

2
F ) and f j (x2, μ

2
F ) are the

usual QCD quark or gluon PDFs, defined at a factorization scaleμF ,which take into
account the long-distance effects. It is in this sense that μF can be thought of as the
scale which separates long- and short-distance physics.

The short-distance cross section for the scattering of partons of types i and j is
denoted by σ̂i, j . Since the coupling is small at high energy, σ̂i, j can be calculated as
a perturbation series in αs .
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Fig. 2.3 The parton model
description of a hard
scattering process

At leading order, σ̂i, j is identical to the normal parton scattering cross section
and the dependence on μF disappears, but at higher order, long-distance parts in the
parton cross section need to be removed and factored into the parton distribution
functions.

Note that if calculated to all orders, the cross section should be independent of
the factorization and renormalization scales:

∂σ

∂μF
= ∂σ

∂μR
= 0 (2.20)

In practice, one is restricted to calculations at low orders, for which the residual
dependence on μF and μR can be appreciable.

Equation 2.19 is a prediction of the cross section with partons in the outgoing state.
Experiments however, measure hadrons and not partons due to confinement. The non-
perturbative process that transforms partons into hadrons is called hadronization and
this will be discussed in Sect. 2.5. But first we will discuss parton showers in the
next section.

2.4 Parton Branching

As discussed in Sect. 2.3, the hard collision between two hadrons, can be understood
as the collision between two partons. The first terms in the perturbative QCD expan-
sion, usually suffice to describe successfully the hard interaction between these two
partons, because the scale of this process is large.

However, in some regions of the phase space, higher order terms are enhanced and
cannot be neglected. For example, we have seen in Sect. 2.2 about the parton model
that when a quark emits a gluon, perturbation theory fails to describe the process in
the collinear region.



2.4 Parton Branching 19

Fig. 2.4 Schematic illustration of the hard scattering process and the softer showers. For initial
state branchings, t is increasing towards the hard scattering by means of successive small-angle
emissions (t0 < t1 < t3). The opposite is true for final state branching, where t is decreasing after
every branching (t4 > t5 > t6 > t7)

Enhanced higher-order terms occur in processes where a soft gluon is emitted or
when a gluon or light quark splits into two almost collinear partons. Parton branching
is the common name for these soft and collinear configurations.

In collision processes, parton branching typically happens for the ingoing and
outgoing quarks and gluons of the hard interaction. The incoming quark, initially
with low virtual mass-squared and carrying a fraction x of the hadron’s momen-
tum, moves to more virtual masses and lower momentum fractions by successive
small-angle emissions, and finally undergoes the hard scattering which happens at a
scale Q. After the collision, the outgoing parton of the hard scattering process has ini-
tially a large positive mass-squared, which then gradually decreases by consecutive
parton emissions.

Figure 2.4 shows schematically a hard hadron collision. Two hadrons (A and B)
are coming in and one incoming parton in each hadron gets selected, and undergoes
a hard scattering, resulting in outgoing partons. The hard scattering of the incoming
partons which happens at a scale Q, can be calculated using perturbative QCD. But
all incoming and outgoing partons undergo branchings as well, giving rise to the so
called parton showers (and to scale dependent PDFs). A lower order perturbative
calculation fails to describe the shower behavior, but perturbative QCD calculations
become too complicated at higher orders to be of practical use. We will show that an
approximate perturbative treatment of QCD to all orders is adequate at describing
the branching physics.

A distinction needs to be made between partons that are incoming lines in the
Feynman diagram describing the hard interaction, and partons that are outgoing lines.
An incoming parton has a negative (virtual) mass-squared. Therefore its branching
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process is called spacelike, giving rise to initial state showers. The opposite is true for
outgoing branching partons. These partons have a positive mass-squared and their
branching is said to be timelike. They give rise to final state showers.

A branching can be seen as a a → bc process, where A is called the mother and
b and c the daughters. Each daughter is free to branch as well, so that a shower-like
structure can evolve.

For a timelike branching, we assume that the mass of the mother is much higher
than the masses of the daughters. For a spacelike branching, we assume that the
daughter that will finally take part in the hard interaction has a much larger virtuality
than the other partons.

In the approximation of small angle scattering, the branching kinematics can be
described by two variables, z and t. We define z as the fraction of energy carried
by daughter b: z = Eb/Ea = 1 − Ec/Ea . The variable t can have different inter-
pretations, but always has the dimensions of squared mass. Here we will define t as
the mass squared of the mother (t ≡ p2

a) for timelike branching and as the absolute
value of the mass squared of the daughter (t ≡ |p2

b|) for spacelike branching.
In terms of z and t, the differential probability that one branching occurs is given

by:

dPa =
∑
b,c

αs

2π
Pa→bc(z)

dt

t
dz, (2.21)

where the sum runs over all branchings the parton is allowed to make. The functions
Pa→bc(z) are the so called splitting kernels. They are written as a perturbation series
and, at lowest order, can be interpreted as the probability of finding a parton of type
b in a parton of type a with a momentum fraction z. For example, for the splitting
of a gluon into a quark antiquark pair, we have at lowest order that Pg→qq̄(z) ∝
(z2 + (1− z)2).We integrate Eq. 2.21 over z in order to get the branching probability
for a certain t value:

Ia→bc(t) =
z+(t)∫

z−(t)

dz
αs

2π
Pa→bc(z), (2.22)

where we have considered one type of branching only. In principle z can vary between
0 and 1, but because most splitting kernels suffer from infrared singularities at
z = {0, 1},we need to introduce an explicit cut-off. Physically, this can be understood
by saying that branchings close to the integration limits are unresolvable; they involve
the emission of an undetectably soft parton. Alternatively, the plus prescription of
the splitting function can be used instead of z−(t) and z+(t) [7–9].

The naïve probability that a branching occurs in the range [t, t + dt], is given by∑
b,c Ia→bc(t)dt/t, and thus the probability of no emission is 1−∑

b,c Ia→bc(t)dt/t.
This is however, not correct when we consider multiple branchings. Note that

from Heisenberg’s principle, t fills the function of a kind of inverse time squared



2.5 Hadronization 21

for the shower evolution; t is constrained to be gradually decreasing away from the
hard scattering in final state showers, and to be gradually increasing towards the hard
scattering in initial state showers.

This means that the probability for branching at a time t needs to take into account
the probability that the parton has not branched at earlier times t0 < t. The proba-
bility that a branching did not occur between t0 and t, is given by the Sudakov form
factor [13]:

Pno−branching(t0, t) = exp

{
−

t∫
t0

dt ′

t ′
∑
b,c

Ia→bc(t
′)
}

= Sa(t), (2.23)

giving rise to the actual probability that a branching occurs at time t:

dPa

dt
= −dPno−branching(t0, t)

dt
=

(1

t

∑
b,c

Ia→bc(t)
)

Sa(t)

=
(1

t

∑
b,c

z+(t)∫
z−(t)

dz
αs

2π
Pa→bc

)
exp

⎧⎪⎨
⎪⎩−

t∫
t0

dt ′

t ′
∑
b, c

z+(t ′)∫
z−(t ′)

dz
αs

2π
Pa→bc

⎫⎪⎬
⎪⎭ (2.24)

The first term in the right hand side of the above equation is the naïve branching
probability. The other term is needed to deal with the fact that partons that have
already branched can no longer branch. This is similar to the radioactive decay.

Equation 2.24 can be used to simulate jet production, and therefore forms the
basis for parton showers implemented in many Monte Carlo event generators [14].

Because inside the hadron, sea quarks and gluons undergo the same branchings
as described in this section, the evolution of PDFs can be described with the same
techniques [1]. These are the DGLAP equations, which were shown in Sect. 2.2 (see
Eq. 2.18).

The DGLAP equations are not applicable in all regions of phase space. As a
matter of fact, it turns out that when ln(t/
2) � ln(1/x), i.e. for small values of
x, not all leading terms are included; important contributions in terms of ln(1/x)
are neglected. The resummation of terms proportional to αs ln(1/x) to all orders,
retaining the full t dependence and not just the leading ln(t) is accomplished by the
Balitsky–Fadin–Kuraev–Lipatov (BFKL) [15, 16] equation.

2.5 Hadronization

Due to color confinement, quarks and gluons cannot propagate freely over macro-
scopic distances. When two quarks are close together, the strong force between them
is relatively weak (asymptotic freedom), but when they move farther apart, the force
becomes much stronger (confinement). The potential between the quarks increases
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linearly with their mutual separation, and at some distance, it becomes much easier
to create a new quark-antiquark pair than to keep pulling against the ever-increasing
potential. This process is repetitive and the newly created quarks and antiquarks will
combine themselves into hadrons.

In a collision experiment, all outgoing partons will therefore undergo parton show-
ering and transform themselves into hadrons, forming jets, i.e. sprays of hadrons,
which are then experimentally detected. The process is called hadronization.

Hadronization cannot be calculated in perturbative QCD, because it happens in a
region where αs is too strong. But still, jets are very useful for our understanding of
QCD. The reason is that by the uncertainty principle, a hard interaction at a typically
large scale Q occurs at a distance scale of the order of 1/Q, while the subsequent
hadronization processes occur at a much later time scale characterized by 1/
,where

 is the scale at which the strong coupling becomes strong. The interactions that
change quarks and gluons into hadrons, certainly modify the outgoing state, but they
occur too late to modify the original probability for the event to happen, which can
therefore be calculated in perturbation theory. Each hadron appears in the final state
roughly in the same direction as the quark or gluon it originated from. The cross
section for a single hadron is therefore closely related to the underlying partonic
direction, and for a good jet finding algorithm, the extension to jet cross sections can
be made. We will talk about jets in detail in later chapters.

Popular models describing hadronization are the Lund string model [17] and the
cluster model [18]. In all models, color singlet structures are formed out of color
connected partons, and are decayed into hadrons preserving energy and momentum.

2.6 Monte Carlo Event Generators

As already mentioned in the introductory chapter, particle collision experiments
are of high importance for testing theories. In order to be able to interpret scattering
experiments in terms of an underlying theory, a comparison between events simulated
according to that specific theory and data is needed. Since nature is fundamentally
probabilistic, the generated events need to exhibit the same statistical fluctuations.
Pseudo-randomness can be computed using suited Monte Carlo techniques.

The generation of an event is done using a factorized approach, and the major
steps are:

1. the hard scattering process
2. initial and final state radiation (i.e. parton showers)
3. hadronization and beam remnants
4. multiple interactions

The first three steps were discussed in this chapter, but more generator-specific
information can be found in Ref. [14].

Besides a hard scattering, additional interactions between partons occur in the
event, which are called multiple interactions and cannot be neglected.
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A beam remnant is what remains of the incoming beam after one of its partons has
initiated the hard scattering. Because the beam remnants are no longer color neutral,
they need to be included into the calculation.

Due to its high complexity, the hard scattering is usually calculated at leading
order. Programs with higher order scatterings exist, but these programs do not include
the other steps of the event generation (i.e. they are not complete).

The work in this thesis is done using four generators:

• PYTHIA [14, 19]
• NLOJET++ [20]
• JETRAD [21]
• GravADD [22]

PYTHIA is a complete, multi-purpose event generator with leading-order matrix
elements. Within many experimental collaborations, this program has become the
standard for providing event properties in a wide range of reactions, within and
beyond the Standard Model, with emphasis on those that include strong interactions,
directly or indirectly, and therefore multihadronic final states. While the first releases
were coded in Fortran [14], more current releases have been written in C++ [19] .

NLOJET++ and JETRAD use a next-to-leading order (NLO) description of the
hard scattering, but parton showers, hadronization, beam remnants and multiple
interactions are not implemented. NLO Monte Carlo techniques will be the topic
of Chap. 3 .

GravADD is a complete generator for black holes and gravitational scattering in
large extra dimensions, in addition to standard QCD processes. See Chap. 5 for a
detailed description.
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Chapter 3
NLO Monte Carlo Techniques

3.1 Introduction

Although LO calculations generally describe broad features of a particular process
and provide the first estimate of its cross section, in many cases this approximation
is insufficient. The inherent uncertainty in a lowest-order calculation derives from
its dependence on the unphysical renormalization and factorization scales, which is
often large. In addition, some processes may contain large logarithms that need to
be resummed, or extra partonic processes may contribute only when going beyond
the first approximation.

Thus, in order to compare data with predictions that have smaller theoretical
uncertainties, next-to-leading order calculations are a must. This chapter will present
the tools for next-to-leading order (NLO) calculations.

For simplicity, we will start with discussing processes with no initial state hadrons
(e.g. in e+e− annihilation). The cross section can be written as an expansion in the
strong coupling constant:

σ = σ0 + σ1αs(Q)+ σ2α
2
s (Q)+ O

(
α3

s (Q)
)

(3.1)

Using Eq. 2.11 to express this as function of αs(μ), Eq. 3.1 becomes

σ = σ0 + σ1αs(μ)+
(
σ2 − σ1

β0

2π
ln(Q2/μ2)

)
α2

s (Q)+ O
(
α3

s (Q)
)

(3.2)

Since μ is arbitrary and therefore αs(μ) can be given any value, a leading-order
QCD calculation of the cross section (i.e. the first two terms in Eq. 3.2) predicts only
the order of magnitude. To get some control over the scale dependence, at least a
next-to-leading order calculation (i.e.including the third term in Eq. 3.2) is required.

Let us assume that we want to compute the next-to-leading order m-jet cross
section, i.e. the cross section for m jets in the final states obtained from running
a jet algorithm on the final-state partons. Up to NLO, the cross section σ can be
written as:

N. Boelaert, Dijet Angular Distributions in Proton–Proton Collisions, Springer Theses, 25
DOI: 10.1007/978-3-642-24597-8_3, © Springer-Verlag Berlin Heidelberg 2012

http://dx.doi.org/10.1007/978-3-642-24597-8_2
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σ = σ L O + σNLO (3.3)

The LO cross section involves m partons in the final state:

σ L O =
∫
m

dσ B, (3.4)

where dσ B stands for the Born approximation.
At NLO, the m-jet cross section receives contributions from virtual corrections to

the m-parton final state (dσ V ), and from real corrections coming from the (m + 1)-
parton final state (dσ R):

σNLO ≡
∫

dσNLO =
∫

(m+1)

dσ R +
∫
m

dσ V (3.5)

Both contributions are separately divergent in d = 4 dimensions, though their sum is
finite.

Two conceptually different techniques have been developed for dealing with
these divergences, namely the phase space slicing technique [1] and the subtraction
scheme [2]. The phase space slicing method is based on approximating the matrix
elements and the phase space integration in boundary regions of phase space so
that the integration may be carried out analytically. The subtraction method is based
on adding and subtracting counterterms designed to approximate the real emission
amplitudes in the phase space boundary regions on the one hand, and to be inte-
grable with respect to the momentum of an unresolved parton on the other hand. The
most recent implementation is the dipole subtraction method [3]. We will discuss
both techniques in the next two sections, and we will make a brief comparison in
Sect. 3.4.

The same principles hold for processes with initial state hadrons, but in these
processes, additional soft and collinear singularities in the initial state are absorbed
in the PDFs and give rise to extra counterterms.

Note that the virtual contribution in Eq. 3.5 suffers from ultraviolet poles as
well, but we assume that they have been removed by carrying out a renormalization
procedure.

3.2 The Dipole Subtraction Method

3.2.1 General Method

The general idea behind this method is to rewrite Eq. 3.5 in the following way:

σNLO =
∫

(m+1)

[
dσ R − dσ A

]
+

∫
(m+1)

dσ A +
∫
m

dσ V , (3.6)
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where dσ A functions as a local counterterm for dσ R; it is an approximation of dσ R

in the sense that it has the same pointwise singular behavior as dσ R itself.
The first term of the right-hand side of Eq. 3.6 can be integrated numerically

in four dimensions. All singularities are associated with the last two terms. Using
dimensional regularization in d = 4 − 2ε dimensions, the virtual divergences are
replaced by poles in ε. But these poles can be combined with the ones resulting from
the analytical integration of dσ A over the one-parton phase subspace, canceling
all divergences. This cancelation is however, only guaranteed for cross sections of
so-called jet observables, i.e. hadronic observables that are defined in such a way
that their actual value is independent of the number of soft and collinear hadrons
(partons) produced in the final state. In particular, this means that the jet observable
has to be the same in a given m-parton configuration and in all (m + 1)-parton
configurations that are kinematically degenerate with it (i.e. that are obtained from
the m-parton configuration by adding a soft parton or replacing a parton with a pair
of collinear partons carrying the same total momentum). We will discuss this issue
more in Chap. 7, but this means that the collinear and infrared safety of a jet algorithm
is a must.

After this cancelation, the limit ε → 0 can be carried out without problems and the
remaining integration over the m-parton phase space can be calculated numerically.
Schematically:

σNLO =
∫

(m+1)

[(
dσ R

)
ε= 0

−
(

dσ A
)
ε= 0

]
+

∫
m

⎡
⎣dσ V +

∫
1

dσ A

⎤
⎦
ε= 0

(3.7)

The challenging task of the above subtraction scheme is to create a method to
construct the actual form of dσ A. Using the physical knowledge of how (m + 1)-
parton matrix elements behave in the soft and collinear limits, so-called universal
dipole factors can be constructed which allow for dσ A to be rewritten in a factorized
form:

dσ A =
∑

dipoles

dσ B ⊗ dVdipole (3.8)

The notation in Eq. 3.8 is symbolic. Here dσ B denotes an appropriate color and
spin projection of the Born-level exclusive cross section. The symbol ⊗ stands for
properly defined phase space convolutions and sums over color and spin indices. The
dipole factors dVdipole, which match the singular behavior of dσ R, are universal,
i.e. completely independent of the details of the process and they can be computed
once for all. The dependence on the jet observable is completely embodied by the
factor dσ B.

There are several dipole terms on the right-hand side of Eq. 3.8, each of them
corresponding to a different kinematic configuration of (m + 1) partons. Each
configuration can be thought of as obtained by an effective two-step process; an
m-parton configuration is first produced and then a dipole of two massless partons

http://dx.doi.org/10.1007/978-3-642-24597-8_7
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decays into three partons. It is this two-step pseudo-process that leads to the fac-
torized structure on the right-hand side of Eq. 3.8. This means that whenever the
(m + 1)-parton state in dσ R approaches a soft and/or collinear region, there is a
corresponding dipole factor in dσ A that approaches the same region with exactly the
same probability as in dσ R . In this manner dσ A acts as a local counterterm for dσ R .

The product structure in Eq. 3.8 allows for a factorizable mapping from the (m+1)-
parton phase space to an m-parton subspace times a single-parton phase space:

∫
(m+1)

dσ A =
∑

dipoles

∫
m

dσ B ⊗
∫
1

dVdipole =
∫
m

[
dσ B ⊗ I

]
, (3.9)

where all poles are contained in the universal factor I :

I =
∑

dipoles

∫
1

dVdipole (3.10)

The final result can be written as:

σNLO = σNLO{(m+1)} + σNLO{m}

=
∫

(m+1)

⎡
⎣(

dσ R
)
ε=0

−
⎛
⎝ ∑

dipoles

dσ B ⊗ dVdipole

⎞
⎠
ε=0

⎤
⎦

+
∫
m

[
dσ V + dσ B ⊗ I

]
ε=0

(3.11)

The above subtraction scheme however, only holds for processes with no initial-
state hadrons. But with a few modifications, it can also be used for hadron–hadron
collisions. For hadron–hadron processes, the cross section can be regarded as a con-
volution of the partonic (short-distance) cross section with non-perturbative parton
density functions (Eq. 2.19 ). The partonic cross section can be written in a similar
way as done in Eq. 3.5, but a collinear counterterm

∫
1 dσC needs to be added in order

to account for the factorization scale dependency of the parton densities:

σNLO ≡
∫

dσNLO =
∫

(m+1)

dσ R +
∫
m

[
dσ V + dσC

]
(3.12)

We can apply the subtraction method described above (Eq. 3.7) to evaluate this cross
section:

σNLO =
∫

(m+1)

[(
dσ R

)
ε= 0

−
(

dσ A
)
ε= 0

]
+

∫
m

⎡
⎣dσ V + dσC +

∫
1

dσ A

⎤
⎦
ε= 0
(3.13)

http://dx.doi.org/10.1007/978-3-642-24597-8_2
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However, a few modifications in the construction of dσ A need to be made. We will
discuss them briefly.

In hadron–hadron collisions, an extra singularity for the real cross section dσ R

occurs when one of the (m + 1) final-state partons becomes collinear to a parton
in the initial state. Furthermore, because of the well defined momenta of the initial-
state partons, the phase space integration has to be performed in the presence of
additional kinematics constraints. In order to make sure that the counterterm dσ A is
also canceling these later singularities and that the integral

∫
1 dσ A is still computable

analytically, even in the presence of the additional phase space constraints, Eq. 3.8
needs to be modified:

dσ A =
∑

dipoles

dσ B ⊗
[
dV dipole + dV ′

dipole

]
(3.14)

The additional dipole terms dV ′
dipole match the singularities of dσ R coming from

the region collinear to the momenta of the initial partons. They are also integrable
analytically over the one-parton subspace.

Using the above expression for dσ A, the dipole subtraction scheme in Eq. 3.13
can now be rewritten as:

σNLO(p) = σNLO{(m+1)}(p)+ σNLO{m}(p)+
1∫

0

dxσ̂NLO{m}(x; xp)

=
∫

(m+1)

⎡
⎣(

dσ R(p)
)
ε=0

−
⎛
⎝ ∑

dipoles

dσ B(p)⊗
(

dVdipole + dV ′
dipole

)⎞⎠
ε=0

⎤
⎦

+
∫
m

[
dσV (p)+ dσ B(p)⊗ I

]
ε=0

+
1∫

0

dx
∫
m

[
dσ B(xp)⊗ (P + K + H) (x)

]
ε=0

(3.15)

The momentum p denotes the dependence on the momenta of the incoming partons
and x is the longitudinal momentum fraction. The contributions σNLO{(m+1)}(p)
and σNLO{m}(p) are completely analogous to those in Eq. 3.11. The last term is a
finite remainder that is left after factorization of initial-state and final-state collinear
singularities into the non-perturbative parton density functions. The functions P, K
and H are similar to I, that is, they are universal—independent of the detail of the
scattering process and of the jet observable—and depend on the number of initial-
state partons only.
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3.2.2 NLOJET++

NLOJET++ [4] is a multipurpose C++ program for calculating jet cross sections in
e+e− annihilations, DIS and hadron-hadron collisions: e+e− → 4 jets, ep → (≤
3+1) jets, p p̄ → ≤3 jets. Its core library is based on the dipole subtraction method
discussed in the previous section, but with a modification that was implemented
for computational reasons. NLOJET++ uses a cut dipole phase space parameter
α ∈ [0, 1] to control the volume of the dipole phase space, with the original dipole
subtraction scheme obtained for α = 1. The NLO corrections are independent of
the value of α, but α < 1 is favored because of computational reasons. This is
because a smaller value of α speeds up the evaluation of the subtraction terms and
increases the stability of the program because it reduces the chance of missed binning.
Missed binning happens when a very large positive weight from the real part and the
corresponding weight from the subtraction term are filled into different histogram
bins. The introduction of this dipole phase space parameter requires a redefinition of
the functions K and I . We refer to the reference for the exact implementation.

3.3 The Phase Space Slicing Technique

3.3.1 General Method

The core of this method is to divide the (m + 1)-phase space into regions where
(m + 1) partons are “resolved” and regions where only m-partons are “resolved”.
The invariant mass si j between two partons is used to make the distinction; when si j

is smaller than a resolution factor smin, only one parton is resolved, but both partons
are resolved in the other case. The reason for doing this is that all divergences
occurring in the real (m + 1)-parton final state are associated with the regions where
only m-partons are resolved. In this soft/collinear region, both matrix element and
phase space can be approximated, and the integration over the unresolved degrees
of freedom can be done analytically, so that these real divergences can be canceled
directly against the virtual corrections of the m-parton cross section.

Rather than using the full matrix element, the ordered amplitudes associated with
each color structure are used, and the full squared amplitude is obtained by summing
the squared ordered amplitudes over all permutations of the identical particles in the
final state, neglecting subleading terms in the number of colors. Symbolically:

|M|2 ∼
∑

Perm.

|A|2 . (3.16)

For the calculation of the real corrections, the (m +1)-phase space is decomposed
into two regions; the resolved region, R, and the unresolved region, U, with the
partitioning depending on the resolution factor smin. This way, the real emission
scattering amplitude is split up into a resolved and an unresolved part.
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The calculation of the resolved part is performed using standard Monte Carlo
techniques, and the result depends logarithmically on smin.

The fact that both the phase space and the matrix element exhibit a factorization
of the soft and collinear parts in the unresolved phase space regions, meaning that
the integration of the (m + 1)-amplitude over the singular (or unresolved) parts of
phase space can be done analytically in d = 4 − 2ε dimensions, without knowing
the (m + 1)-scattering amplitude explicitly, can be used to calculate the unresolved
part:

∫
d PSsoft/collinear |An+1|2 → R(smin) |An|2 (3.17)

The result of this integration is proportional to the tree level amplitude, and contains
double and/or single poles in ε and accompanying double and/or single logarithms in
smin. For sufficiently small values of smin, the smin terms in the U region compensate
the smin logarithms in the R region.

Furthermore, soft and collinear final state poles in ε in the U region are canceled
against the poles that show up in the virtual corrections. The virtual corrections to
the squared matrix elements have the generic form:

|M|2V =
∑

Perm.

V |An|2 + F , (3.18)

where V is the singular part proportional to the three level ordered amplitude and F
is the remaining finite contribution. Combining Eq. 3.18 with Eq. 3.17 results in the
finite (F) next-to-leading order squared matrix elements:

|M|2F ∼
∑

Perm.

(
[1 + K] |An|2 + F

)
(3.19)

The combination of the phase space factor and the virtual factor, K = R+V, is finite
(this is guaranteed by the Kinoshita–Lee–Nauenberg theorem [5–7]) and therefore the
squaring and summation over all polarizations can be performed in four dimensions.
While K is universal, the virtual correction F is process dependent.

As for the collinear singularities in the initial state, they are absorbed into the bare
PDFs, leaving a finite remainder which is written in terms of modified PDFs.

Provided that smin is small enough so that the soft and collinear approximations
are valid and that smin is not so small that the calculation becomes numerically
unstable, the cross section should be finite and independent of the unphysical smin.

A reasonable value to choose for processes at LHC energies, is smin = 10 GeV2.
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3.3.2 JETRAD

JETRAD [1] is an NLO Monte Carlo generator for 1-jet and 2-jet production at
hadron colliders, it is a direct implementation of the method described in the previous
section. The program uses the VEGAS-algorithm [8] to perform the integration.

3.4 Comparison of the Subtraction Method
and the Phase Space Slicing Technique

The difference between the methods was summarized in Ref. [9]. Schematically, the
(m + 1)-parton contribution to the m-jet cross section is given by

d, σ(m+1) = |M(m+1)|2 × J(m+1)d PS(m+1)

=
(
|M(m+1)|2 × (1 − θs)+ |M(m+1)|2 × θs

)
× J(m+1)d,PS(m+1)

= |M(m+1)|2 × (1 − θs)J(m+1)dPS(m+1)

+ θs × (T1(θs)+ T2(θs)+ T3(θs)), (3.20)

where the (m + 1)-parton differential cross section dσ(m+1) is given by the matrix
element squared, |M(m+1)|2, J(m+1) which is a term including phase space con-
straints from the jet algorithm and cuts, and d PS(m+1) which is the (m + 1)-parton
phase space. The soft/collinear unresolved part of phase space is separated off using
the resolution criterion embodied in the quantity θs, which takes the value θs = 1 in
the unresolved phase space region and θs = 0 otherwise.

T1 is given by

T1(θs) = S|Mm |2 × Jmd PSsoftdPSm

= R(θs)|Mm |2 × JmdPSm, (3.21)

and represents the integral of the approximate matrix element |M(m+1)|2 → S|Mm |2
over the approximate phase space d PS(m+1) → d PSsoftd PSm .The resolution factor
R(θs) is independent of the hard scattering and can be calculated analytically for a
wide range of multiparton processes.

T2 is given by

T2(θs) =
(
|M(m+1)|2 − S|Mm |2

)
× J(m+1)d PS(m+1), (3.22)

and represents the integral over the true unresolved phase space of the difference
between the true matrix element and the approximate matrix element.

Finally, T3 is given by

T3(θs) = S|Mm |2 (
J(m+1)d PS(m+1) − Jmd PSmd PSso f t

)
, (3.23)
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and represents the difference between the integrals of the approximate matrix ele-
ment over the true unresolved phase space and the approximate unresolved phase
space. Note that T1 contains the soft and collinear divergences needed to cancel the
singularities of the virtual term, while T2 and T3 vanish as θs is taken to zero.

The phase space slicing method keeps T1, but sets T2 = T3 = 0, while the
subtraction method keeps both T1 and T2, but sets T3 = 0. An exact method, in
which both the correction factors for the phase space and matrix elements in the
unresolved region are added in numerically, keeps all three terms [10].

In Chap. 9, studying dijet phenomenology at
√

s = 14 TeV, we will show that
NLOJET++ (using the subtraction method) and JETRAD (using the phase space
slicing method) generate consistent results for the region of phase space that has
been investigated (see e.g. Figs 9.1 and 9.2 ).
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Chapter 4
Dijet Physics at Colliders

4.1 Leading-Order Jet Pair Production

4.1.1 Massless Partons

In QCD, two-jet events result when an incoming parton from one hadron scatters
off an incoming parton from the other hadron and produces two high transverse
momentum partons which are observed as jets. From momentum conservation, the
two final-state partons are produced with equal and opposite momenta in the center-
of-mass frame of the subprocess. If only two partons are produced, and the relatively
small intrinsic transverse momentum of the incoming partons is neglected, the two
jets will also be back-to-back in azimuth and balanced in transverse momentum in
the laboratory frame.

Below we will discuss cross sections using the Mandelstam variables. For a 2 → 2
process, symbolically 1 + 2 → 3 + 4, we define:

ŝ ≡ (p1 + p2)
2, (4.1)

t̂ ≡ (p1 − p3)
2 = −1

2
ŝ
(
1 − cos(θ̂)

)
, (4.2)

û ≡ (p2 − p3)
2 = −1

2
ŝ
(
1 + cos(θ̂)

)
, (4.3)

with θ̂ the center-of-mass scattering angle and ŝ the squared center-of-mass energy
in the parton–parton frame (ŝ = x1x2s, with x1,2 defined in the same way as in
Eq. 2.19 ). The equality signs in Eqs. 4.2 and 4.3 are only correct in the case of
massless particles. Also, note that in the case of massless particles ŝ + t̂ + û = 0.

In this section, we approximate partons as being massless, the next section dis-
cusses the modifications for non-negligible masses. The cross section for the follow-
ing 2 → 2 parton scattering process:

partoni (p1)+ parton j (p2) → partonk(p3)+ partonl(p4), (4.4)

N. Boelaert, Dijet Angular Distributions in Proton–Proton Collisions, Springer Theses, 35
DOI: 10.1007/978-3-642-24597-8_4, © Springer-Verlag Berlin Heidelberg 2012
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(a)

(b)

(c)

(d)

Fig. 4.1 Some of the diagrams for jet production, the other diagrams can be obtained by crossing.
The distinction is made between identical (rows b, c and d) and non-identical (row a) final-state
partons. Figure taken from Ref. [1]

is given by

dσ̂

dt̂
= 1

2ŝ2

1

8π

∑
|M|2δ4(p1 + p2 − p3 − p4), (4.5)

where
∑

denotes the average and sum over the initial- and final-state spins and colors
respectively. Figure 4.1 shows some of the leading-order diagrams contributing to
this cross section [1], the other diagrams can be obtained by crossing. The distinction
is made between identical and non-identical final-state partons.

The leading-order expressions for the matrix elements squared
∑|M|2, together

with their value at a 90◦ scattering angle in the parton–parton center-of-mass system
(θ̂ = π/2, t̂ = û = −ŝ/2) are shown in Table 4.1.

Numerically, the most important subprocesses for a pp collider are qq ′ → qq ′,
gq → qg and gg → gg. Let us first concentrate on qq ′ → qq ′. From Table 4.1,
the matrix element squared for this process behaves as α2

s
ŝ2+û2

t̂2 . Because |t̂ | < ŝ and
|û| < ŝ, it follows that:
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Table 4.1 The invariant matrix elements squared
∑|M|2 for 2 → 2 parton subprocesses with

massless partons. The color and spin indices are averaged (summed) over initial (final) states

Process
∑|M|2/g4 θ̂

qq ′ → qq ′ 4
9

ŝ2+û2

t̂2 2.22

qq̄ ′ → qq̄ ′ 4
9

ŝ2+û2

t̂2 2.22

qq → qq 4
9

(
ŝ2+û2

t̂2 + ŝ2+t̂2

û2

)
− 8

27
ŝ2

ût̂
3.26

qq̄ → q ′q̄ ′ 4
9

t̂2+û2

ŝ2 0.22

qq̄ → qq̄ 4
9

(
ŝ2+û2

t̂2 + t̂2+û2

ŝ2

)
− 8

27
û2

ŝ t̂
2.59

qq̄ → gg 32
27

t̂2+û2

t̂ û
− 8

3
t̂2+û2

ŝ2 1.04

gg → qq̄ 1
6

t̂2+û2

t̂ û
− 3

8
t̂2+û2

ŝ2 0.15

gq → gq − 4
9

ŝ2+û2

ŝû + û2+ŝ2

t̂2 6.11

gg → gg 9
2

(
3 − t̂ û

ŝ2 − ŝû
t̂2 − ŝ t̂

û2

)
30.4

ŝ2

t̂2
<

ŝ2 + û2

t̂2
<

2ŝ2

t̂2
, (4.6)

and thus in a good approximation, ŝ2+û2

t̂2 ≈ ŝ2

t̂2 . For the other processes, if singular,
it can be shown that there is a similar behavior for the matrix elements squared when
t̂ → 0, i.e. for small scattering angles when the t-channel gluon exchanges are domi-
nating. Therefore, in a good approximation the parton cross section is approximately
inversely proportional to t̂2 :

dσ̂

dt̂
∝ α2

s

t̂2
(4.7)

We will now discuss the kinematics in more detail. For this purpose, rapidity y is
introduced:

y = 1

2
ln

( E + pz

E − pz

)
, (4.8)

so that the four-momentum of a massless particle is given by:

pμ = (E, px , py, pz)

= (
pT cosh(y), pT sin(φ), pT cos(φ), pT sinh(y)

)
(4.9)
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Fig. 4.2 Two massless partons in the lab frame boosted to the center-of-mass frame giving them
equal but opposite rapidities

Note that the rapidity difference between two particles is invariant for boosts along the
z-axis. We also introduce yboost = (y3 + y4)/2 and y∗ = (y3 − y4)/2.A longitudinal
boost yboost will boost the lab to the center-of-mass frame, giving the particles equal
but opposite rapidities. Figure 4.2 shows what is going on. For massless partons, the
center-of-mass scattering angle θ̂ is given by cos(θ̂) = tanh(y∗).

The colliding partons carry a fraction x1, 2 of the momentum of the hadron they
belong to, and, using momentum conservation, the momentum fractions can be deter-
mined as:

x1 = 1

2
xT

(
ey3 + ey4

)
= xT eyboost cosh(y∗)

x2 = 1

2
xT

(
e−y3 + e−y4

)
= xT e−yboost cosh(y∗),

(4.10)

where xT = 2pT /
√

s.
At the LHC (

√
s = 14 TeV), a central hard jet of 100 GeV corresponds typically

to x ≈ 0.01.Figure 2.2 shows that this is the region where the gluon PDF is big. This
means that the LHC is actually a gluon–gluon collider.

The invariant mass M j j of the jet–jet (parton–parton) system is given by:

M2
j j = ŝ = 4p2

T cosh2(y∗) (4.11)

4.1.2 Massive Particles

Above formulae are valid at lowest order, and for massless particles. The four-
momentum of a massive particle with mass m is no longer given by Eq. 4.9, but
is written as

pμ = (
mT cosh(y), pT sin(φ), pT cos(φ),mT sinh(y)

)
, (4.12)

http://dx.doi.org/10.1007/978-3-642-24597-8_2#Fig2
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with the transverse mass mT =
√

p2
T + m2.

Consequently, the invariant mass M j j between two massive particles, is given by:

M2
j j = m2

1 + m2
2 + 2mT,1mT, 2 cosh(y1 − y2)− 2pT,1 pT, 2 cos(φ1 − φ2) (4.13)

Experimentally, the mass of a jet is not well defined, and therefore pseudorapidity
is preferred over rapidity:

η = 1

2
ln

( |p| + pz

|p| − pz

)
= − ln

[
tan

(
θ

2

) ]
, (4.14)

with θ the angle the particle is making with the beam axis. The longitudinal momen-
tum is given by pz = pT sinh(η), while the total three-momentum,

|p| =
√

p2
x + p2

y + p2
z , is given by |p| = pT cosh(η).The pseudorapidity approaches

the true rapidity in the massless limit. In hard scattering processes, the masses can
usually be safely neglected and η 
 y.

The transverse energy ET = E sin(θ) is defined as the projection of the energy
onto the transverse direction of the beam. Because cosh(η) = 1/ sin(θ) (and
sinh(η) = cos(θ)/ sin(θ)), the energy E can be rewritten as ET cosh(η), and the
four-momentum takes the following form:

pμ = (
ET cosh(η), pT sin(φ), pT cos(φ), pT sinh(η)

)
(4.15)

4.2 Dijet Angular Distributions

4.2.1 Parton Level Considerations

Equation 4.7 rewritten in terms of θ̂ reveals that this cross section corresponds to
Rutherford scattering, i.e. a cross section that peaks at small scattering angles:

dσ̂ /d(cos θ̂ ) ∝ sin−4(θ̂/2), (4.16)

which is common to all t-channel exchanges of massless vector bosons (gluons and
photons). Experimentally, the study of the angular behavior is done using the variable
χ, which is defined as

χ = exp (|η1 − η2|) = exp
(
2|η∗|) , (4.17)

with η1 and η2 the pseudorapidities of the two hardest jets in the event and
η∗ = 1

2 (η1 − η2). For massless particles, i.e. when the pseudorapidity equals the
true rapidity, χ is invariant under Lorentz boosts along the beam axis and can be
calculated in the rest frame of the experiment.



40 4 Dijet Physics at Colliders
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At lowest order, i.e. for a 2 → 2 process, the pseudorapidity of the two massless
particles in the center-of-mass frame is given by ±η∗ and can be related to the
scattering angle θ̂ = arccos(tanh η∗), and therefore also the following expression
for χ as a function of θ̂ holds:

χ = 1 + | cos θ̂ |
1 − | cos θ̂ | ∼ 1

1 − | cos θ̂ | ∝ ŝ

t̂
(4.18)

Using the approximation that χ ∝ ŝ/t̂ and keeping ŝ fixed, the partonic cross section
in Eq. 4.7 can now be rewritten as a function of χ and turns out to be approximately
constant:

dσ̂

dχ
∝ α2

s

ŝ
(ŝfixed) (4.19)

On the other hand, a cross section that is isotropic in θ̂ ,meaning that dσ̂ /d(cos θ̂ ) ∝
constant, will give rise to a cross section in χ that is peaked at low χ values,
i.e. dσ̂

dχ ∝ 1/(χ + 1)2. New physics is typically hidden in isotropic events; this

will be shown later on (see e.g. Sects. 5.3.4 and 5.4.1).
Using cos θ̂ = (χ − 1)/(χ + 1), the explicit χ -dependence of several inclusive

subprocesses is plotted in Fig. 4.3 for ŝ = 1 GeV2. The individual subprocesses
have been symmetrized in t̂ and û for non-identical particles in the final state.
Because dt/dχ = 2ŝ/(χ + 1)2, the matrix elements are scaled with (χ + 1)−2 in
order to display the correct behavior. Note that all contributions are quite similar in
shape—i.e. flat for a large region in χ—and that the gg subprocess is by far the most
dominant. The fact that the cross section for an isotropic event drastically differs
in shape from QCD scattering in the case of fixed ŝ, makes that this cross section
measurement is preferred to be done in bins of ŝ. In terms of χ, ŝ (Eq. 4.11) can be
rewritten as:

http://dx.doi.org/10.1007/978-3-642-24597-8_5
http://dx.doi.org/10.1007/978-3-642-24597-8_5
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√
ŝ = M j j = pT

(√
χ + 1√

χ

)
= 2pT cosh (log(χ)/2) (4.20)

The above equations tell us that, for ŝ fixed, low values of χ correspond to high
values of pT and vice versa.

4.2.2 Hadron Level Considerations

To obtain the result at the hadron level, the partonic cross section needs to be mul-
tiplied with the parton distribution functions and integrated over the momentum
fractions (see also Eq. 2.19):

dσ

dχ
=

∫
dx1

∫
dx2 f1(x1, Q2) f2(x2, Q2)

dσ̂

dχ
(4.21)

This differential cross section dσ/dχ vsχ is commonly referred to as the dijet angular
distribution. Because at lowest order the dijet invariant mass M j j equals

√
ŝ, this

measurement is done in bins of M j j .Apart from binning in dijet invariant mass, also
selection cuts in pseudorapidity are made in order to improve the QCD sensitivity of
this measurement. We will discuss them.

At lowest order, the variables determining the cross section in Eq. 4.21 are x1, x2
and χ. Note also that dx1dx2 can be rewritten as dτdy, where τ = x1x2 = ŝ/s and
y = (1/2) ln(x1/x2) = (η1 +η2)/2. This means that an equivalent set of parameters
is ŝ, (η1 + η2)/2 and χ, with the partonic cross section depending on ŝ and χ only.

In Sect. 2.4 it was mentioned that the parton distribution function only shows
logarithmic QCD scaling violations (up to leading order) and from itself does not
carry a direct QCD prediction. On the other hand, the partonic cross section is a
direct prediction of QCD. This means that, if we want to use Eq. 4.21 to study QCD,
we should try to keep x1 and x2 fixed and study the remaining variation in χ. But
this ideal view is not a realistic one because of statistical reasons, and therefore we
need to open up the range in x1 and x2.

Keeping ŝ fixed implies that in a given bin of χ only (η1 + η2)/2 can vary. In this
bin, for each (η1 + η2)/2 value, the same partonic cross section is probed [because
it has no dependence on (η1 + η2)/2 ], but the sampling points are weighted with
different PDF factors. In order to probe the partonic cross section over the whole
range of χ and not the PDF convolution, the same (η1 + η2)/2 range in each bin
of χ has to be used, otherwise different χ bins cannot be easily compared. In other
words, a selection cut of the format |η1 + η2|/2 < (1/2)c is required.

Experimentally, a detector measures jets up to a certain ηmax. In order to benefit
maximally from the detector, the following orthogonal selection cuts need to be made
for an angular distribution measurement up to χmax :

|η1 + η2| < c, |η1 − η2| < 2ηmax − c, (4.22)

http://dx.doi.org/10.1007/978-3-642-24597-8_2
http://dx.doi.org/10.1007/978-3-642-24597-8_2
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Fig. 4.4 Pseudorapidity range of a generic detector, before (grey square) and after (blue rectangle)
applying selection cuts Eq. 4.22. The lines parallel to the diagonal are lines of constant |η1 − η2|
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Fig. 4.5 Dijet angular distributions from QCD and new physics are expected to behave differently
at low values of χ; the QCD curve tends to be flat, while new physics curves are more peaked at low
χ because they usually contain more isotropic processes. The exact behavior of the QCD parton
cross section is shown in Fig. 4.3

where χmax = exp(2ηmax − c), and the parameter c is a trade-off between statistics,
sensitivity to the partonic cross section and χ -range. Figure 4.4 illustrates this for
a generic detector; the axes represent the pseudorapidity reaches of jet 1 and jet 2,
the grey square is the combined reach in pseudorapidity of the detector, and the blue
rectangle shows what is left after applying the selection cuts in Eq. 4.4. The values
of ηmax and c will be discussed in later chapters.
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4.3 Conclusion

To summarize, in order to mainly probe the partonic cross section and to a lesser
extent the PDFs, the dijet angular distribution dσ/dχ vs χ is measured in bins of
dijet invariant mass and with cuts in pseudorapidity as defined in Eq. 4.22. With
these cuts, lowest order QCD tells us that the distribution is flat to a large extent.
On the other hand, the dijet angular distribution for processes that are more isotropic
will be peaked at small χ, or equivalently high pT . In later chapters we will show
that this is often the case for new physics. This different behavior makes the dijet
angular distribution measurement a suitable tool to probe new physics, see Fig. 4.5.
Measurements carried out in the past were published in references [2–11].
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Chapter 5
Gravitational Scattering and Black Holes
in Large Extra Dimensions

5.1 Extra Dimensions

Even though the Standard Model is fairly complete, some phenomena cannot be
explained with this theory, such as the fact that gravity appears to be much weaker
than all other forces. In the 1920s, Kaluza and Klein posted the idea that the exis-
tence of extra spatial dimensions provides a mechanism to unify gravity with elec-
tromagnetism. Even though this theory failed in its original purpose due to internal
inconsistencies, the idea of extra dimensions was set and became rather popular in
the second half of the twentieth century. Nowadays it forms the basis of string theory.

The fact that extra dimensions have not been observed yet can be explained by
assuming that they are compactified to a small scale, with a compactification radius
R. E.g. for one extra dimension, we can imagine in each spacetime point a circle
with radius R (cfr. Fig. 5.1 ). Spacetime then has the topology M4 × S1, with M4
the ordinary four-dimensional Minkowski spacetime. When R is sufficiently small,
we cannot probe this circle in our every day world, and we cannot directly feel the
effect of the extra dimension.

At first, the size of the extra dimensions was dictated by the inverse of the observed
four-dimensional Planck Scale (∼1019 GeV), but more modern models such as the
ADD [1, 2], see Sect. 5.2, allow for values of R as large as submillimeter.

5.1.1 Kaluza-Klein Mode Expansion and Reduction

In the general case of n extra dimensions, spacetime has the factorized topology
M4 × K, with K an n-dimensional compact manifold.1 The fact that K is compact
means that the coordinates on the volume obey boundary conditions. Going back to

1 Even though non-factorizable geometries exist and give rise to interesting physics, we will not
discuss them here.
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Fig. 5.1 One extra dimension compactified on a circle of radius R. At every point in the four-
dimensional spacetime (here collapsed onto a line), there exists an “orthogonal” dimension com-
pactified on a circle of radius R. This way, spacetime has the topology M4 × S1

the example of the one-dimensional circle, the coordinate y describing the circle is
periodic with periodicity 2πR.

In a D = 4 + n-dimensional world, the D-dimensional quantum fields, which
are representations of the D-dimensional Lorentz group, are used to formulate the
D-dimensional action SD. The fields can be decomposed into a sum of irreducible
representations of the four-dimensional Lorentz group, which will yield a spectrum
of fields of different four-dimensional spins. Next, a mode expansion for each field
can be performed, taking into account the boundary conditions. In the case of the
one-dimensional circle, the most general expansion of the wavefunction �(xμ, y),
with xμ the coordinates on M4 and y the coordinate on S1, consistent with the
compactification symmetry, takes the following form [3]:

�(xμ, y) = 1√
2πR

∞∑
n=−∞

φn(x
μ) exp(iny/R) (5.1)

In the general case, the exponentials in Eq. 5.1 are replaced by mutually orthogonal
eigenfunctions of the Laplace operator on the manifold K.

We then insert the mode expansion into the D-dimensional action SD, and integrate
SD over the volume K in order to obtain the four-dimensional action S4:

S4 =
∫
K

dn ySD (5.2)

In the example above, imagine that�(xμ, y) is a complex Klein-Gordon field of
mass m0, with the five-dimensional action given by

S5 =
∫

d4x

2πR∫
0

dy
[1

2
(∂M�)

∗(∂M�)− 1

2
m2

0��
∗], (5.3)
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where M is the five-dimensional spacetime index. After inserting the mode expan-
sion and taking into account the orthogonality of two different modes, the four-
dimensional action becomes:

S4 =
∫

d4xdy
{1

2

∑
n

(∂μφn)
∗(∂μφn)− 1

2

∑
n

[m2
0 + n2

R2 ]φnφ
∗
n

}
(5.4)

What we get is an infinite tower of Klein-Gordon fields, φn, with masses given
by:

m2 = m2
0 + n2

R2 (5.5)

We can interpret n
R as the—quantized—momentum in the fifth dimension, which

is then absorbed by the effective mass in the effective four-dimensional theory. This
is called Kaluza-Klein (KK) reduction, which is explained here for a simple case, but
can be generalized to other fields and actions. The lightest field is obtained for n = 0
and is called the KK zero mode or ground state, while the other fields are called
excited KK-states. Excited states have exactly the same quantum numbers (spins,
couplings) as those of the ground state mode.

It generally holds that four-dimensional KK-mass terms emerge from kinetic
terms in the higher-dimensional Lagrangian. From Eq. 5.5, we note that the threshold
energy for detecting excited states is of the order R−1, since this is the threshold for
producing the first excited state.

5.1.2 Compactification on an Orbifold

In order to describe better the reality, compactification is done rather on an orbifold
than on a manifold. An orbifold is a manifold with some special points, caused
by a superimposed discrete symmetry �. The discrete symmetry eliminates cer-
tain points of the manifold K, and the resulting space K/� is called an orbifold.
E.g. the discrete Z2 identification � : y ↔ −y in our example would change our cir-
cle to a line segment of length πR. The original domain 0 ≤ y < 2πR is reduced to
0 ≤ y < πR, and, unlike the case of the circle, the endpoints of this smaller domain
are fixed and not identified with each other. The resulting geometry is S1/Z2.

Orbifold compactification does not affect the general idea of KK reduction, but
since the higher-dimensional actions must be invariant under this discrete symme-
try, certain interaction terms coming from higher dimensions will be removed in
the KK-reduction, which allows the theory to describe much better low energy phe-
nomenology. Imposing the symmetry on the fields will reduce the number of excited
levels in the KK-expansion of the fields (Eq. 5.1) as well, since the original KK mode
expansion has to be rewritten in terms that are also eigenfunctions under �, followed
by an elimination step in which only those modes that belong to a specific eigen-
value of � are kept, removing certain degrees of freedom of the theory. Fields that
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transform non-trivially under the orbifold discrete action will have their zero-mode
eliminated.

5.1.3 Types of Extra Dimensions

There are two big classes of extra dimensions. In universal extra dimensions, all
forces and particles feel the extra dimensions.

However, there also exist Dirichlet branes (D-branes), dynamical, fluctuating
hypersurfaces of dimension p that float in the D-dimensional world, capable of trap-
ping certain gauge fields on their surface. Traditionally p represents the number of
space dimensions (p ≤ D−1), rather than spacetime, and one speaks of a Dp-brane.
Extra dimensions in the bulk are called transverse, while extra dimensions on the
brane (for p > 3) are called longitudinal.

A common case is the D3-brane that is capable of trapping all gauge forces. All
gauge bosons and all particles that carry gauge charges are restricted to the brane,
and do not accrue KK-excitations. But states that do not feel these forces, such as
the graviton, are free to wander off the brane and experience the full D-dimensional
world. For this reason, this type of extra dimensions is often called gravity-only extra
dimensions, and its existence forms the basis of the ADD-model which will be the
topic of Sect.5.2.

5.1.4 Bounds on Extra Dimensions

At the present time, there exists no experimental evidence for large extra dimensions;
so far, the (lightest) Kaluza-Klein excitations of particles have not been discovered,
nor have been indirect effects such as loops or additional effective interactions.

Instead, since collider experiments have probed the structure of matter down to a
length scale near the TeV range, without detecting any extra dimension, we can set
a limit on the size of uniform extra dimensions:

R−1 ≥ O(1)TeV (5.6)

Experiments conducted to test the gravitational inverse-square law can be used
to set bounds on the existence of gravity-only extra dimensions. In the normal four-
dimensional world, the graviton is responsible for ordinary Newtonian gravity, with
the inverse-square law arising from graviton exchange, and a potential given by
V (r) = −G(4)

N M1 M2/r.
However, if we do not have a single graviton, but a KK-tower of gravitons, with

the ordinary graviton the KK zero-mode, we must consider the exchanges of the
excited states as well, and sum over them. This way the potential changes to:
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V (r) = −G(4)
N M1 M2

r

[
1 +

∑
mn

gmn e−mnr ], (5.7)

with gmn the graviton state for the nth excited level and mn = n/R. For distances
r 	 R all modes except n = 1 are suppressed.

Recent experiments have found that the inverse-square law holds down to a length
λ = 56 µm [4]. A violation of the inverse-square law is parametrized as

V (r) = −G(4)
N M1 M2

r

[
1 + αe−r/λ], (5.8)

with α = 8n/3 and λ the Compton Wavelength of the first KK mode, equal to the
radius R. For n = 2 (1), one has that

R ≤ 37(44) µm ⇐⇒ R−1 ≥ O(10−13) TeV (5.9)

Gravity can also be tested indirectly through cosmology or astrophysics, but these
measurements do not manage to further constrain the limit in Eq. 5.9.

5.2 The ADD-Model

5.2.1 Concept

An attempt to address the hierarchy problem in particle physics, i.e. why the elec-
troweak scale is so many orders of magnitude lower than the observed Planck
scale, was done by Arkani-Hamed, Dimopoulos and Dvali in the late nineties of the
twentieth century [1, 2]. Their so-called ADD model assumes the existence of gravity-
only dimensions in which gravity is allowed to propagate, while the SM fields are
confined to a four-dimensional membrane (see Sect. 5.1.3). Figure 5.2 shows this
schematically.

This way the D-dimensional fundamental Planck scale can be much lower than the
observed four-dimensional one, allowing the fundamental energy scale associated
with quantum gravity to be in the TeV range, of the same order of the electroweak
scale.

5.2.2 Lowering the Planck Scale

In D = 4 + n dimensions, two test masses of mass m1 and m2 placed within a
distance r � R will feel a gravitational potential dictated by Gauss’ law:

V (r) ∼ m1m2

Mn+2
P

1

rn+1 , (r � R), (5.10)
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Fig. 5.2 The ADD-model
[1, 2] assumes the existence
of large extra dimensions in
which gravity is allowed to
propagate, while SM fields
are confined to a
four-dimensional membrane.

with MP the Planck scale in (n+4) dimensions, derived from the (n+4)-dimensional
Newton’s constant:

MP ≡ [G(n+4)
N ]−1/(n+2) (5.11)

On the other hand, if the masses are placed at distances r 	 R, their gravitational
flux lines cannot continue to penetrate in the extra dimensions, and the ordinary 1/r
potential is obtained. Since the potential is a continuous function in r, we have:

V (r) ∼ m1m2

Mn+2
P Rn

1

r1 , (r 	 R), (5.12)

We use the above formula to define the effective four-dimensional Planck scale
MP4:

M2
P4 ≡ 1

G(4)
N

∼ Mn+2
P Rn, (5.13)

so that we obtain the ordinary gravity potential for distances much larger than R:

V (r) ∼ m1m2

M2
P4

1

r1 , (r 	 R), (5.14)
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with MP4 ∼ 1019 GeV.. If reality truly is D-dimensional, then MP4 is not a fun-
damental scale of nature, but MP is. We note from Eq. 5.13 that since R can take
large values, the higher-dimensional Planck scale can remain much smaller than the
observed four-dimensional one.

Note that Eqs. 5.7 and 5.10 are consistent with each other, since for r � R the
sum in Eq. 5.7 can be turned into an integral over m = |m �n|:

1 +
∑
mn

gmn e−mnr ∼
∫
(Rnmn−1)e−mr dm ∼

( R

r

)n ∼ M2
P4

Mn+2
P

(1

r

)n
(5.15)

The term (Rnmn−1) comes from the density of KK states; we will derive this
(Eq. 5.22) in Sect. 5.3.1.

In the ADD model, MP is of the order of 1 TeV. This means that, using Eq. 5.13,
one extra dimension (n = 1) corresponds to R ∼ 1014 cm, which is excluded by—
daily—experimental observations. The case n = 2 corresponds to R ∼ 1 mm, which
is excluded as well (Eq. 5.9). So far, n > 2 has not been excluded for fundamental
Planck Masses in the TeV range [2]. With the LHC starting up, soon the TeV range
will be explored.

5.2.3 Implications for Low Energy Phenomenology

Even though the bounds on extra dimensions are quite generous (Eqs. 5.6 and 5.9),
extra dimensions were originally considered to be small. The reason for this was
naturalness; their natural scale lies in the neighborhoud of the Planck Scale, giving
rise to KK excitations with masses ∼1019 GeV. These excitations will be essentially
unobservable, having no notable relevance to the low-energy world.

However, in the previous section, we have seen that if the fundamental Planck
Scale is at about 1 TeV, the size of the extra dimensions is no longer extremely small,
meaning that the excited KK states are not so remotely heavy. When the KK states
become sufficiently light, they must affect the observable physics.

This also means that, for a fundamental Planck scale of around 1 TeV, the ADD
model predicts the production of gravity mediated processes at the LHC, with prob-
ably as the most striking one the black hole production. But also processes involving
the production of on-shell gravitons, or the exchange of virtual Kaluza-Klein (KK)
modes of the graviton, with gravitational scattering of hard partons as dominant
process, will be present.

In this thesis, we focus on two processes, namely black hole production and
gravitational scattering.



52 5 Gravitational Scattering and Black Holes in Large Extra Dimensions

5.2.4 Kinematic Regimes

Three different kinematic regimes exist, depending on the scattering energy
√

ŝ.
In the transplanckian region, where

√
ŝ 	 MP , elastic collisions can be described

by linearized general relativity as long as the momentum transfer of the process is
sufficiently small. The Schwarzschild radius rs of a (4 + n)-dimensional object is
given by [5]:

rs = 1√
πMP

[
MB H

MP

8�( n+3
2 )

n + 2

] 1
n+1

, (5.16)

and the transplanckian regime corresponds to a classical limit in which the length
scale rs characterizes the dynamics. The gravitational field is weak and we will
show later on (Sect. 5.3) that the interactions between two colliding partons and the
gravitational field can be computed using the eikonal approximation, which can be
trusted at small scattering angles. Collisions with an impact parameter (defined as
the perpendicular distance between the two colliding objects) smaller than rs will
result in black hole production, see Sect. 5.4.

A classical description of the process is valid if the quantum-mechanical uncer-
tainties in the impact parameter and in the scattering angle are small with respect
to their classical values. This is no longer true in the cisplanckian region, i.e. the
region where

√
ŝ � MP . For these low energies, the theory can be described by an

effective field theory of graviton KK excitations (Sect. 5.3.1).
In the neighborhood of the fundamental Planck scale, i.e.

√
ŝ ≈ MP , quantum

gravity effects are no longer negligible. This is the planckian region. Unfortunately,
since quantum gravity dynamics is still unknown, systematic theoretical predictions
cannot be made.

Consequently, if MP ≈ 1 TeV, experiments at the LHC could probe all three
regions.

5.2.5 Definitions

Unfortunately, the definition of the fundamental Planck scale is not unique but differs
from author to author. For clarity we will list the most common ones and relate them
to each other.

The 4-dimensional Newtonian constant G N (4) is used to define the 4-dimensional
Planck mass MP4 [6]:

MP4 = 1√
G N (4)

= 1.22 × 1019 GeV/c2 (5.17)

In this thesis we will use the fundamental (higher-dimensional) Planck mass MP

according to Ref. [5, 7, 8]:
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M2+n
P = 1

LnG N (4)
= M2

P4

Ln
, (5.18)

with the compactification circumference L, related to the compactification radius
R: L = 2πR.

A different definition (and notation) for the fundamental Planck mass MD was
used in Ref. [6]:

M2+n
D = 1

8πRnG N (4)
, (5.19)

and thus

M2+n
P = 2(3−n)π(1−n)M2+n

D (5.20)

5.3 Gravitational Scattering in the ADD Model

5.3.1 KK Reduction of the Graviton

A KK reduction of the graviton is presented in Ref. [9, 10]. The theory is formulated
as an effective field theory (strictly only valid for

√
ŝ � MP ) and the starting point

for the analysis is the linearized gravity Lagrangian in D = 4 + n dimensions.
For simplicity, the fields are compactified on an n-dimensional torus with common
radius R. For a given excited KK level �n, there are one spin-2 state, (n − 1) spin-1
states and n(n − 1)/2 spin-0 states, all mass degenerate with mass m2

�n = �n2

R2 . The
zero modes, �n = 0, of the (4 + n)-dimensional graviton become the graviton, n
massless U(1) gauge bosons and n(n + 1)/2 massless scalar bosons.

Since R−1 is smaller than the typical energy resolution in collider experiments,
the mass distribution of KK states is quasi continuous, and the number of states in
the mass interval dm2

�n is obtained by

	�n2 ≈ ρ(m �n)dm2
�n, (5.21)

where the KK state density function, ρ(m �n), is given by:

ρ(m �n) = πn/2 Rnmn−2
�n

�(n/2)
= 1

2nπn/2�(n/2)

M2
P4

M2+n
P

mn−2
�n (5.22)

This means that the multiplicity of gravitons beneath a relevant energy scale E is
∼(RE)n .
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When constructing the effective interactions between KK states and ordinary
matter fields, it was found that spin-1 states decouple and spin-0 states only couple
through the dilation mode. The interacting Lagrangian for the KK states and SM
fields, together with the Feynman rules was presented in Ref. [9, 10].

Each graviton couples to matter with normal (weak) gravitational strength
∼1/MP4, having a negligible effect on particle physics. However, since the den-
sity of gravitons beneath a relevant energy scale can be large, the combined effect of
all the gravitons is not always negligible. It follows from Eq. 5.22 that gravitational
scattering processes are suppressed by powers of 1/MP only.

5.3.2 Scattering Amplitude

In a gravitational scattering event, quantized KK modes occur as intermediate states
and the sum over all modes has to be made, which can be turned (see Eq. 5.22) into
a divergent propagator integral:

∑
m �n

1

−m2
�n + k2

≈ 2πn/2

�(n/2)
Rn

∫
mn−1

−m2 + k2 dm, (5.23)

with �n enumerating the allowed KK modes with momenta m �n, m = |m �n| and k the
exchanged 4-momentum in normal space. This integral diverges for n ≥ 2, but can be
rendered finite by introducing a physical cut-off of the KK tower to be summed over.
A cut-off implied from a narrow (small compared to the compactification radius R)
width of the four-dimensional membrane was proposed in Ref. [11]. This was done
by assuming a Gaussian extension of the standard model field densities into the bulk:

ψ(y) =
(

Ms√
2π

) n
2

exp

(
− y2 M2

s

4

)
, (5.24)

with y being the coordinate in the extra dimension. Formula (5.24) introduces a new
parameter, Ms, with the dimension of mass, which is a measure for the inverse of
the brane width. The overlap between two SM fields and a KK mode of mass m is
then proportional to:

∫
dyeim·y

(
Ms√
2π

)2 n
2

exp

(
− y2 M2

s

2

)
= e−m2/(2M2

s ) (5.25)

This suppression factor occurs once at every vertex, so the total suppression for
KK exchange will be e−m2/(M2

s ). In this context Ms can also be regarded as KK mass
cut-off.

Instead of Eq. 5.23, we now have an “effective” propagator,
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2πn/2

�(n/2)
Rn

∫
mn−1

−m2 + k2 e−m2/M2
s dm, (5.26)

which is then used for the Born amplitude:

ABorn(k
2 = t) = ŝ2

2n−3πn−1 Mn+2
P

Sn

∞∫
0

mn−1

−m2 + k2 e−m2/M2
s dm, (5.27)

in the approximation of ultra-relativistic small angle scattering. This integral is
convergent and finite for all negative values of k2 = t, and can be calculated in the
limits of large and small momentum transfers. The scattering process now depends
on three energy scales, namely the collision energy

√
ŝ, the fundamental Planck scale

MP and the inverse of the membrane width Ms .

5.3.3 Large Momentum Transfers:
√

ŝ � Ms

In the case of large momentum transfers, i.e.−t̂ 	 M2
s , the term m2 in the denomi-

nator in Eq. 5.27 can be neglected, which gives the result:

ABorn(t) ≈ ŝ2

2n−3πn−1 Mn+2
P

Sn

∞∫
0

mn−1

t̂
e−m2/M2

s dm = πn/2

2n−3πn−1

( Ms

MP

)n ŝ2

M2
P · t̂

,

(5.28)
which is dominated by small values of (t̂/ŝ), i.e. small angle scattering via the
t-channel. This means that the cross section can be calculated in the eikonal approx-
imation:

dσeik

dt̂
= 1

16π ŝ2 |Aeik|2 (5.29)

Contributions from multi-loop ladder diagrams exponentiate and the all order
eikonal amplitude is given by

Aeik(k
2) = −2i ŝ

∫
d2bT eikT ·bT (eiξ − 1), (5.30)

with b the impact parameter and ξ(b) the eikonal scattering phase, given by

ξ(b) = 1

2ŝ

∫
d2kT

(2π)2
eikT ·bT ABorn

(
−k2

T

)

= − ŝ Mn
s

(2
√
π)n Mn+2

P

�
(n

2

)
U

(
n

2
, 1,

M2
s b2

4

)
(5.31)

When ŝ > (M (n+2)
P πn/2)/Mn

s �(n/2), |ξ | is large compared to 1 and the exponen-
tiation in Eq. 5.30 is important. This corresponds to the region of classical scattering.
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In the opposite case, the importance of higher order corrections is negligible and the
Born term is dominating. This corresponds to the region of quantum mechanical
scattering.

5.3.4 Small Momentum Transfers:
√

ŝ � Ms

For small momentum transfers, i.e. −t̂ � M2
s , t can be neglected in the nominator

of Eq. 5.27:

ABorn = − ŝ2

M4
eff

, Meff = 1

2

(
(n − 2)2nπ

n−2
2 Mn+2

P

Mn−2
s

) 1
4

, (5.32)

meaning that scattering is almost isotropic. KK propagators can be replaced by vertex
factors so that the exchange of KK modes corresponds to a contact interaction.
A geometric series of ladder diagrams is obtained and summed over so that unitarity
is constrained:

Aladders = ABorn

1 − ABorn X
, (5.33)

with X ≈ 1
32π2 (ln

M2
s

ŝ/4 + iπ). The Born term—neglecting spins of the colliding
partons—can be written in terms of an effective Planck mass Meff:

ABorn = − ŝ2

M4
eff

(5.34)

with:

Meff = 1

2

(
(n − 2)2nπ

n−2
2 Mn+2

P

Mn−2
s

) 1
4

(5.35)

When |ABorn X | � 1, the Born term dominates. In that case, the cross section is
written as

dσ

dt̂
= ks

ŝ

[
πα2

s

ŝ
f (z)− ŝαs

M4
eff

g(z)+ ŝ3

πM3
eff

h(z)

]
(5.36)

In the above equation, z = cos(θ̂), θ̂ being the scattering angle in the center of
mass system. The first term covers QCD processes, while the last term covers the
gravitational part. The term in the middle is the interference between QCD and grav-
itational scattering. The functions f(z), g(z) and h(z) and the constant ks are process
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dependent and take into account the spin of the colliding partons. The definitions can
be found in Ref. [12].

In the case of small momentum transfers, s-,t- and u-channels are equally efficient.
The s-channel ladder diagrams are unitarized in a similar way. KK modes can also be
produced on shell in this channel, but these stable gravitons would not be observable
by a general purpose detector such as ATLAS (see Sect. 6.1) at the LHC.

The relevance of the u-channel contribution is suppressed for proton-proton colli-
sions because of the low probability for a collision between two partons with identical
flavor, spin and color.

Note that gravitational scattering will become weaker for smaller values of Ms

(i.e. wider membranes), because the KK-modes with a mass above Ms are suppressed.

5.3.5 Experimental Limits

Experiments at the Tevatron have looked for gravitational effects, but
have—so far—only been able to put limits on the model parameters. The most strin-
gent limits come from dijet angular distribution measurements done by the D0 exper-
iment [13]. Two different formalisms were investigated, namely the GRW model [10]
and the HLZ model [9]. The model parameter is the effective Planck scale, MS (not
to be confused with the KK mas cut-off Ms), which is related to the fundamental
Planck scale MP used in this text in the following way:

MP = 2
1−n
2+n π

−n
4+2n �

(n

2

) −1
2+n

MS (5.37)

The HLZ formalism also includes the subleading dependence on the number n
of extra dimensions. None of these models contains a parameter comparable to Ms,

i.e. the KK mass cut-off, discussed in this text; the KK mass cut-off was in both
models fixed at the Planck scale, i.e. Ms = MS . For six extra dimensions, a 95%
confidence limit was observed at MP = 0.54 TeV, with Ms = 1.39 TeV. For four
extra dimensions the limit was set at MP = 0.80 TeV, with Ms = 1.66 TeV.

5.4 Black Holes in the ADD Model

An exciting consequence of the ADD model is the possibility of the production of
black holes (BHs) at the LHC and beyond. Black holes are well understood general-
relativistic objects when their mass MB H far exceeds the fundamental Planck mass
MP . But when their mass approaches MP , the BHs become stringy and very hard
to predict. In this section we will discuss the properties of light BHs by simple
semiclassical arguments, which are strictly valid for MB H 	 MP . Because of the
unknown stringy corrections, this is merely an approximation.

http://dx.doi.org/10.1007/978-1-4471-2194-7_6
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5.4.1 Production

The Schwarzschild radius rs of a (4 + n)-dimensional black hole is given by [5]:

rs = 1√
πMP

[
MB H

MP

8�( n+3
2 )

n + 2

] 1
n+1

(5.38)

Consider two colliding partons with
√

ŝ = MB H . A black hole can be formed
when the interacting partons come closer than twice rs . This means that in the rest
frame of the incoming partons their longitudinal wavelength λl ∝ 2/

√
ŝ and trans-

verse wavelength λT ∝ 1/pT need to be smaller than rs .

This implies a minimum on the black hole mass, which lies in the neighborhood
of the Planck scale [14]:

Mmin,1 = MP

(
(2

√
π)n+1(n + 2)

8�( n+3
2 )

) 1
n+2

(5.39)

The parton cross section for black hole production can be estimated from geo-
metrical arguments and is of the order σ(MB H ) ≈ πr2

s . To calculate the production
in hadron collisions, the convolution with PDFs needs to be made. It was calculated
[8] that for a fundamental Planck scale of around 1 TeV, LHC will produce over 107

black holes a year for a luminosity of 30 fb−1/year.
Another limit on the black hole’s mass comes from the existence of the finite width

of the membrane; in the approximation of a narrow width, the membrane cannot be
more extended than the black hole itself. This means that the Schwarzschild radius
rs should not be smaller than 1/Ms, which is only true for masses above Mmin,2:

Mmin,2 = Mn+2
P (2 + n)π

n+1
2

8�( 3+n
2 )Mn+1

s
(5.40)

The maximum of Eqs. 5.40 and 5.39 is the minimum black hole mass possibly
created. Table 5.1 shows the minimum mass for a few choices of MP , Ms and n.
For n = 4 extra dimensions and for Ms/MP > 1.12 (Ms/MP > 1.05 for n = 6),
the minimum black hole mass equals Eqs. 5.39 and depends on MP only. In the
complementary region the minimum black hole mass is described by Eq. 5.40 and
goes as MP/(Ms/MP )

5 (MP/(Ms/MP )
7 for n = 6). In the latter case, small values

of Ms, i.e. larger values of the membrane width, will prevent black holes from being
created.

5.4.2 Decay

The decay of the BH is thermal and governed by its Hawking temperature TH , given
by
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Table 5.1 Table showing for
a few choices of MP , Ms and
n, the minimum black hole
mass possibly created,
defined as the maximum of
Eqs. 5.39 and 5.40

MP (TeV) Ms (TeV) n Mmin (TeV)

1 1 6 2.4
1 1 4 2.2
1 0.5 6 14.0
1 2 6 2.2
2 2 6 4.7
5 5 6 11.8

TH = n + 1

4πrs
(5.41)

The above formula means that heavier BHs have colder decay products. To a first
approximation, a BH is a point radiator and the average multiplicity 〈N 〉 is given by:

〈N 〉 ≈ MB H

2TH
(5.42)

Equation 5.42 is only reliable when the mass of the BH is much larger than the
Hawking temperature, i.e. 〈N 〉 	 1. The decay kinematics truncates the spectrum
at energies E ≈ MM B/2.

The thermal decay of the BH means that the decay is flavor independent, with
roughly equal probability to all particles of the SM (about 60). It is expected that
about 10% of the particles are leptons and that only ∼5% are neutrinos.

5.5 The GravADD Generator

5.5.1 Introduction

The GravADD generator [7] is a generator for gravitational scattering (GS) and
black hole production (BH) in large extra dimensions, based on the theory discussed
in the previous sections. Studies [7, 10, 15] have demonstrated that the Large Hadron
Collider (LHC) is sensitive to these gravity mediated processes for certain parameter
ranges. Given this motivation, the GravADD generator has been interfaced with the
ATLAS software framework Athena [16], so that a comparison with ATLAS data
becomes possible.

Because the standalone generator is not publicly available, we will only focus on
its implementation in Athena. Details about the implementation and use from inside
Athena were documented in an ATLAS internal note [17], and we will discuss the
essential points in Sect. 5.5.4.
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5.5.2 Monte Carlo Generators in Athena

The ATLAS software framework is called Athena and is written in C++ using Python
for job configuration (so-called jobOptions files). Since most Monte Carlo generators
are developed independently of the experiment, their libraries are kept as external
libraries. Athena provides access to these libraries through so-called interface pack-
ages that allow for specifying parameters and calling the generator. The interface
packages contain three major functions:

• initialize(): configuration of the generator.
• execute(): call the generator routines to generate the event, convert the event to

HepMC format [18] and write the event to the transient store named StoreGate.
The events can be read out of the StoreGate, converted to a ROOT-style format
[19] and written out to a persistent store, namely an output file.

• finalize(): call destructors.

The GravADD generator uses mainly the PYTHIA source code, but contains a
number of modified PYTHIA routines, as well as an external generator that is called
by PYTHIA to generate the black hole production.

In the Athena implementation, GravADD is linked to the external PYTHIA library,
while the modified functions and routines and the black hole generator are kept inside
Athena, together with the interface class that steers GravADD.

5.5.3 Model Parameters

The parameters that describe the model are:

• MP , the fundamental Planck Scale defined as in Eq. 5.18. Equation 5.18 is the
default definition in GravADD, but it is also possible (see Sect. 5.5.4) for the user
to change to the definition used by the Particle Data Group (Eq. 5.19) [6].

• Ms, the Kaluza Klein mass cut-off, with 1/Ms a measure of the width of the
four-dimensional membrane.

• n, the number of extra dimensions, with (n + 4) the total number of dimensions.
• Meff , the effective Planck Scale which is used for the calculation of the gravitational

scattering amplitude, see Eq. 5.32.

A set of parameters is given by Meff , Ms/MP (i.e. the relative KK mass cut-off)
and the total number of dimensions.
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5.5.4 Implementation in the ATLAS Software Framework Athena

The GravADD generator has been implemented in Athena and has become available
from release 15.6 onwards. The code is available on the web.2

GravADD generates three different types of events: QCD, GS and BH. The gener-
ator assigns a flag to each event, gravev, to indicate if the event is a QCD (gravev= 0),
a GS ( gravev= 1) or a BH (gravev= 2) event. In the Athena implementation, this
flag is stored in the StoreGate’s weight container, allowing the user to retrieve this
information afterwards in the analysis stage.

Gravitational scattering is implemented in PYTHIA 6.410 [20] by means of actual
changes in the source code (see details later), while black hole production is plugged
in as an external process using the UPINIT and UPEVNT routines that come with
PYTHIA, and are called after initialization with PYINIT USER. The QCD processes
are selected in the normal way, using the MSUB array in PYTHIA.

In order to maintain the distinction between external and internal code in the
Athena implementation, the modified PYTHIA library is kept separated from the
external black hole code by using two different packages; the package Genera-
tors/GravADD_i has been created to contain the code for the black hole production,
while the modified PYTHIA library, called PythiaGS, has been added to the already
existing Generators/PythiaExo_i package. We will give more details in the next
paragraphs.

As mentioned earlier, the PYTHIA 6.410 library has been modified in order to
incorporate the gravitational scattering. We refer to the PYTHIA manual [20] for
more information about the standalone PYTHIA 6.410 program, and to the documen-
tation inside the Generators/Pythia_i package for the implementation of PYTHIA
6.410 in Athena.3

The PythiaGS library distinguishes internal events (QCD and GS) from external
ones (BH). For the generation of an event, instead of the ordinary PYEVNT call,
PythiaGS calls its own subroutine PYEFFEVT, which calculates the probability
that for an internal event, the event is not a QCD event, but a gravitational scattering
one. In case of the latter, the program performs a proper color reconnection for
the colorless graviton. In case of a QCD event, PYEFFEVT does the same as the
ordinary PYEVNT routine in PYTHIA. Interference between QCD and gravitational
scattering has been taken into account.

For the generation of an external event (BH), PythiaGS calls the black hole
routines which are localized in the Generators/GravADD_i package. This pack-
age does not only contain the code for black hole generation, but also contains the
interface code for reading in model parameters and other options from the Athena
jobOptions file.

The black hole generator is a modified version of CHARYBDIS.1003 [21] which
takes into account the extra requirement on the minimum black hole mass coming
from the finite width of the membrane (see Eq. 5.40). The momentum scale for

2 Available from http://alxr.usatlas.bnl.gov/lxr/source/atlas.
3 Available from http://alxr.usatlas.bnl.gov/lxr/source/atlas/Generators/Pythia_i/doc/.

http://alxr.usatlas.bnl.gov/lxr/source/atlas
http://alxr.usatlas.bnl.gov/lxr/source/atlas/Generators/Pythia_i/doc/
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evaluating the PDFs is the inverse Schwarzschild radius rather than the black hole
mass. The black hole is set to decay into all quarks, as well as into the W and the
Higgs boson, with the particle types and energies chosen according to the gray-body
modified emission probabilities and spectra. During the decay, the temperature of the
black hole is allowed to vary. The termination of the decay occurs when the chosen
energy for the emitted particle is ruled out by the kinematics of a two-body decay.
At this point an isotropic 2-body decay is performed on the black hole remnant.

In order to be able to access the high-pT phase space, GravADD performs a pre-
weighted event generation. For GS and QCD events, the weight WTXS is assigned
according to:

WTXS =
(

p2
T

s
800.0

)3

(5.43)

In the PythiaGS code, this is done by modifying the ordinary PYTHIA PYEVWT
routine, and by setting MSTP(142)= 1. In the next step, the event weight pari(10)
is re-weighted with a factor σGS+QCD/σQCD to take into account the GS.

In case of a black hole event, the pre-weighting of pari(10) is done by the external
black hole code, and the weight is set to

WTXS = 0.5

fi (x1, μ
2
F ), f j (x2, μ

2
F )
, (5.44)

with fi (x1, μ
2
F ) and f j (x2, μ

2
F ) the quark or gluon PDFs, defined at a factorization

scale μF . Since the PDFs fall off with increasing x, the weight defined in Eq. 5.44
will favor high mass BH production.

Since black holes are included as external process, it is possible to switch off
black hole production, see Sect. 5.5.5.

5.5.5 Use From Inside Athena

The configuration of GravADD is done through the so-called Athena jobOptions
files, which are Python files where the user can set options for the generator [16].
The package Generators/GravADD_i contains the code to handle them.

Apart from the model parameters listed in Sect. 5.5.1, the user can also use the
jobOptions service for setting the collision energy, turning off BH generation, and
for changing the default definition of the fundamental Planck scale (see Eq. 5.18) to
the definition used by the Particle Data Group [6] (see Eq. 5.19).

A detailed description of how to compose a jobOptions file and an example of
use are given in Ref. [17].

Note that since GravADD generates weighted events, the user should always fill
analysis histograms with the event weight pari(10), which is stored in the weight
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container. At the end of the event loop, the histograms need to be divided by the
bin width and the total sum of the weights, and multiplied with the total integrated
cross section, in order to convert the results to nb/(dimension of the horizontal axis).
The total integrated cross section of event samples generated in Athena, is stored as
MetaData in the logfile.
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Chapter 6
The ATLAS Experiment

ATLAS is a general purpose detector, designed to investigate at high luminosity (up
to 1034 cm−2 s−1)many different types of physics that might become detectable in the
energetic collisions of the LHC. The ATLAS collaboration aims at performing high
precision tests of QCD, electroweak interactions, and flavor physics. Furthermore,
the search for the Higgs boson, incorporating many production and decay channels
over a large mass range, is a very important aspect of the ATLAS physics program.
Not only the Standard Model is subject of investigation, but also physics beyond
the Standard Model forms an important area for study. Large extra dimensions,
supersymmetry, quark compositeness and new heavy quarks are just a few topics
that are grouped under this numerator. Signatures of new physics are quite often
provided by high-pT jet and missing transverse energy Emiss

T measurements. More
information about the physics program can be found in Ref. [1].

6.1 Detector Layout

The overall detector layout of ATLAS is shown in Fig. 6.1. The detector is nominally
forward-backward symmetric with respect to the interaction point and consists of a
series of concentric detector systems around the interaction point. The main compo-
nents of the detector are: the inner detector (ID) used for tracking of charged particles,
the electromagnetic and hadronic calorimeters used for measuring the energy of elec-
trons, photons and jets, the muon detector for identifying and measuring muons, and
the magnet system. We will briefly discuss their main properties; more information
can be found in Ref. [2, 3].

The coordinate system used to describe the ATLAS detector has the origin in
the collision point, the z-axis parallel with the beam direction and the x-y plane
transverse to it. The positive x-axis is defined as pointing from the interaction point
to the center of the LHC ring and the positive y-axis is defined as pointing upwards.
The azimuthal angle φ is measured around the beam axis, and the polar angle θ is
measured from the beam axis. The pseudorapidity defined as η = − ln tan(θ/2) is

N. Boelaert, Dijet Angular Distributions in Proton–Proton Collisions, Springer Theses, 65
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Fig. 6.1 Schematic view of the ATLAS detector

very often used instead of θ. Transverse quantities, such as transverse momentum
pT and transverse energy ET are defined in the x-y plane.

A characteristic feature of the ATLAS detector is its enormous magnet system.
The magnet configuration is based on an inner thin superconducting 2 T solenoid
surrounding the inner detector cavity, and three large superconducting air-core toroids
consisting of independent coils arranged with an eight-fold radial symmetry outside
the calorimeters, see Fig. 6.2.

Inside the solenoid is the inner detector (ID), used for precise tracking of charged
particles in the pseudorapidity range −2.5 < η < 2.5. The ID is contained within
a cylinder of length 7 m and a radius of 1.15 m. Pattern recognition, momentum
and vertex measurements, and electron identification are achieved with a combina-
tion of discrete high-resolution semiconductor pixel and microstrip (SemiConductor
Tracker or SCT) detectors in the inner part of the tracking volume, and continuous
straw-tube tracking detectors (Transition Radiation Tracker or TRT) with transition
radiation capability in its outer part. Figure 6.3 gives a schematic view. The highest
granularity is achieved around the vertex region using the pixel detector which con-
sists of three cylindrical layers with radius 5, 8, 12 cm in the barrel region and two
times three disks in the forward region. There are 1,744 modules, each module con-
taining about 47,000 pixels which have an area of 50 × 400 µm2. The hit resolution
is 15 × 115 µm.

The SCT has four cylindrical double layers with radius 30, 37, 44, 51 cm and
two times 9 disks in the forward region. There are 4,088 modules with 80 µm strips,
using small (40 m rad) angle stereo to obtain the z measurement, allowing for a hit
resolution of 17 × 580 µm.
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Fig. 6.2 Geometry of magnet windings and tile calorimeter steel. The eight barrel toroid coils, with
the end-cap coils interleaved are visible. The solenoid winding lies inside the calorimeter volume.
The tile calorimeter is modelled by four layers with different magnetic properties, plus an outside
return yoke. For the sake of clarity the forward shielding disk is not displayed

The TRT is constructed from straw tubes with a diameter of 4 mm and with 35 µm
anode wires. The straws are arranged in 73 layers in the barrel region (straws along
beam-axis) and 2 × 160 layers (disks) in the end-cap region (straws radially placed).
A hit resolution of 130 µm per straw is obtained.

The combination of precision trackers at small radii with the TRT at a larger radius
gives very robust pattern recognition and high precision in both R-φ and z coordi-
nates. The straw hits at the outer radius contribute significantly to the momentum
measurement, since the lower precision per point compared to the silicon is compen-
sated by the large number of measurements and longer measured track length.

A schematic view of the ATLAS electromagnetic and hadronic calorimeter sys-
tem is given in Fig. 6.4, with its main parameters listed in Table 6.1. The calorimetry
consists of an electromagnetic (EM) calorimeter covering the pseudorapidity region
|η|< 3.2, a hadronic calorimeter covering |η|< 3.2 and forward calorimeters cover-
ing 3.1 < |η|< 4.9.

The central part of the EM calorimeter covers pseudorapidity values up to
|η| < 3.2 with an accordion geometry made of liquid argon and lead. The accordion
structure ensures azimuthal uniformity (no cracks). Over the region devoted to pre-
cision physics, i.e. |η| < 1.475 (the Electromagnetic Barrel Calorimeter, EMB), the
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Fig. 6.3 Cut-away view of the ATLAS inner detector

Fig. 6.4 Cut-away view of the ATLAS calorimeter system
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Table 6.1 The main parameters of the ATLAS calorimeter system

EM calorimeter Barrel (EMB) End-cap EMEC

Coverage |η| < 1.475 1.375 < |η| < 3.2
Longitudinal segmentation 3 samplings 2–3 samplings
Granularity (�η ×�φ)

Sampling 1 0.003 × 0.1 0.003 × 0.1
Sampling 2 0.025 × 0.025 0.025 × 0.025
Sampling 3 0.05 × 0.025 0.05 × 0.025
Number of channels 102,400 62,208

Presampler Barrel End-cap

Coverage |η| < 1.475 1.5 < |η| < 1.8
Longitudinal segmentation 1 sampling 1 sampling
Granularity (�η ×�φ)

Sampling 1 0.025 × 0.1 0.025 × 0.1
Number of channels 7,808 768

TileCal Barrel Extended barrel

Coverage |η| < 1.0 0.8 < |η| < 1.7
Longitudinal segmentation 3 samplings 3 samplings
Granularity (�η ×�φ)

Samplings 1 & 2 0.1 × 0.1 0.1 × 0.1
Sampling 3 0.2 × 0.1 0.2 × 0.1
Number of channels 5,760 1,792

Hadronic end-cap (HEC)

Coverage 1.5 < |η| < 3.2
Longitudinal segmentation 4 samplings
Granularity (�η ×�φ)

1.5 < |η| < 2.5 0.1 × 0.1
2.5 < |η| < 3.2 0.2 × 0.2
Number of channels 3,072

Forward calorimeters

Coverage 3.1 < |η| < 4.9
Longitudinal segmentation 1 EM sampling

2 Hadronic samplings
Granularity (�η ×�φ)

Sampling 1 ≈ 0.1 × 0.1
Sampling 2 & 3 ≈ 0.2 × 0.2
Number of channels 1,792

EM calorimeter is segmented in three sections in depth, with a fine granularity of
typically �η × �φ = 0.025 × 0.025. For the end-cap inner wheels (Electromag-
netic End-cap Calorimeter, EMEC), 1.375< |η|< 3.2, the calorimeter is segmented
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in two sections in depth and has a coarser lateral granularity. The total thickness of
the EM calorimeter is> 24 radiation lengths1 in the barrel and> 26 in the end-caps.

A Presampler (PS) is placed in front of the electromagnetic calorimeters and
extends from −1.8 < η < 1.8. Its purpose is to estimate the energy lost in material
between the interaction point and the calorimeter.

The EM calorimeters have a total of about 180,000 cells. Ionization signals are
summed and brought through feedthroughs to exit the cryostats. Next, they are ampli-
fied, shaped and digitized in Front End Boards (FEBs) which are located inside Front
End Crates (FECs). A calibration board is placed in each FEC in order to generate
and distribute adjustable currents to all cells readout through the feedthrough. The
calibration board has 128 channels used for injecting charge.

The hadronic calorimeter is surrounding the EM calorimeter. The bulk |η| < 1.7
of the hadronic calorimetry is provided by a novel scintillator-tile calorimeter—and
is therefore called TileCal—which is separated into a large barrel and two smaller
extended barrel cylinders, one on each side of the barrel. Between the modules
are 700 mm wide gaps that are needed for the services of the inner detector and
the central EM calorimeter. The radial depth of the TileCal is approximately 7–8
pion interaction lengths2. All TileCal barrels are divided along into 64 modules in
φ (�φ ≈ 0.1), and three radial layers, containing cells with �η = 0.1 for the
first two layers and �η = 0.2 for the last layer. TileCal is a sampling calorimeter
using iron as absorber and tiles of scintillating plastic as the active material. The tiles
are oriented perpendicularly to the beam direction and staggered in radial depth.
The light readout is done by optical fibers, that couple to photomultiplier tubes in
the outer part of each module. The outer part of each module also contains several
detector electronics services: the electronics for the analog trigger, signal shaping,
digitization and integration, the charge injection calibration system, the low voltage
power supply and a set of optical fibers dedicated to the laser calibration system.

The two hadronic end-caps (HECs) of the ATLAS detector occupy the region
from 4,200 to 6,118 mm measured axially from the interaction point and 1.5 to 3.2
in pseudorapidity, and overlap partially with the tile hadronic calorimeter and the
forward calorimeters. The HEC is a liquid argon sampling calorimeter with copper
absorber plates that are oriented parallel and perpendicular to the beam direction.
Each end-cap consists of two separate wheels, formed from 32 pie-shaped modules,
located directly behind the end-cap electromagnetic calorimeter and sharing the same
liquid argon calorimeter cryostats.

The forward calorimeter (FCAL) system covers the region very close to the beam
pipe, from 3.1 < |η| < 4.9, and is therefore a particularly challenging detector
owing to the high level of radiation it has to cope with. The FCAL is a liquid argon
sampling calorimeter and consists of three sections: the first one is an electric layer
with a copper absorber, while the other two are hadronic layers made out of tungsten

1 A radiation length is defined as the thickness of material crossing for which an electron has a
probability P = 1 − 1/e (or roughly 63%) of radiating a photon.
2 The interaction length of a particle is its mean free path before undergoing an interaction that is
neither elastic nor quasi-elastic (diffractive).
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absorbers. The FCAL modules are cylindrical in shape with a coaxial hole through
which the LHC beams pass. Liquid argon is chosen because of its radiation hardness
and because the HEC is made of liquid argon as well. The FCAL system is placed
adjacent to the other calorimeters in the two end-cap cryostats, relatively close to the
interaction point, providing a nearly seamless calorimetry and a natural shielding for
the muon system.

The set of calorimeters made from liquid argon is often called the LAr.
The LAr calorimetry is contained in a cylinder with an outer radius of 2.25 m

and extends longitudinally to ±6.65 m along the beam axis. The outer radius of the
scintillator-tile calorimeter is 4.25 m and its half length is 6.10 m. The total weight
of the calorimeter system, including the solenoid flux-return iron yoke which is
integrated into the tile calorimeter support structure, is about 4,000 Tons.

The readout of the calorimeters is highly granular for the electromagnetic devices,
with typically three longitudinal segments with varying cell sizes, e.g. �η ×�φ =
0.025 × 0.025 in the second segment, containing the electromagnetic shower maxi-
mum. The hadronic calorimeters are coarser, with typically �η×�φ = 0.1 × 0.1,
but also have at least three shower segments. The total thickness of the ATLAS
calorimeter system is at least 10 hadron absorption lengths over the whole accep-
tance region.

The calorimeter system is surrounded by the muon spectrometer (cfr. Fig. 6.5 )
which is based on the magnetic deflection of muon tracks in the large superconduct-
ing air-core toroid magnets. The magnet system, with a long barrel and two inserted
end-cap magnets, generates a large magnetic field volume with strong bending power.
The bending power can be characterized by the field integral

∫
Bdl, i.e. the integra-

tion over the magnetic field component orthogonal to the muon direction and along
the trajectory of the muon. For the pseudorapidity range 0 < |η| < 1.4, values of the
field integral ranging from 1.5 to 5.5 Tm are obtained. The magnets have a light and
open structure, minimizing multiple-scattering effects, and good muon momentum
resolution is achieved with three stations of high-precision tracking chambers. In the
barrel region, tracks are measured in chambers arranged in three cylindrical layers
(stations) around the beam axis; in the transition and end-cap regions, the chambers
are installed vertically, also in three stations. Over most of the pseudorapidity-range,
a precision measurement of the track coordinates in the principal bending direction
of the magnetic field is provided by Monitored Drift Tubes (MDTs). At large pseudo-
rapidities and close to the interaction point, Cathode Strip Chambers (CSCs) with
higher granularity are used in the innermost plane over 2 < |η| < 2.7. For muons
with an energy less than 1 TeV, a stand-alone momentum resolution better than 10%
is obtained.

The muon spectrometer defines the overall dimensions of the ATLAS detector.
The outer chambers of the barrel are at a radius of about 11 m. The half-length of
the barrel toroid coils is 12.5 m, and the third layer of the forward muon chambers,
mounted on the cavern wall, is located about 23 m from the interaction point. The
overall weight of the ATLAS detector is about 7,000 Tons.

In order to perform luminosity measurements, ATLAS has a number of detectors
placed in the forward region. LUCID, a LUminosity Cherenkov Integrating Detector,
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Fig. 6.5 Cut-away view of the ATLAS muon system

monitors the luminosity by counting the number of inelastic interactions for each
bunch crossing in projective Cerenkov counters placed at 17 m from the center of
ATLAS.

The Absolute Luminosity for ATLAS (ALFA) detector performs a luminosity
calibration by measuring the elastic scattering cross section in the region of Coulomb
Nuclear interference.

The ATLAS detector main performance goals are listed in Table 6.2. It is important
to note that, for high-pT muons, the muon-spectrometer performance as given in
Table 6.2 is independent of the inner-detector system. Also note that a big fraction
of the jet energy is measured in the electromagnetic calorimeters (see also the next
chapter, more specifically Fig. 7.2).

6.2 Trigger

The mean number of interactions per bunch crossing at the design luminosity of
1034 cm−2 s−1 is 23, while the bunch spacing is 25 ns. This means that the proton-
proton interaction rate is approximately 1 GHz, while the event data recording, based
on technology and resource limitations, is limited to about 200 Hz. This requires an
overall rejection factor of 5×106 against minimum-bias processes while maintaining

http://dx.doi.org/10.1007/978-3-642-24597-8_7#Fig2
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Table 6.2 General performance goals of the ATLAS detector [2]. The units for E and pT are given
in GeV

Detector component Required resolution η Coverage
measurement Trigger

Tracking σpT /pT = 0.05%pT ⊕ 1% ±2.5
EM calorimetry σE/E = 10%

√
E ⊕ 0.7% ±3.2 ±2.5

Hadronic calorimetry (jets)
Barrel and end-cap σE/E = 50%

√
E ⊕ 3% ±3.2 ±3.2

Forward σE/E = 100%
√

E ⊕ 10% 3.1 < |η| < 4.9 3.1 < |η| < 4.9
Muon spectrometer σpT /pT = 10% at pT = 1 TeV ±2.7 ±2.4

maximum efficiency for the new physics. Therefore, a dedicated trigger system is
necessary.

The ATLAS trigger system has three levels: L1, L2 and the event filter. L1 is
a very fast hardware implemented trigger, but L2 and the event filter are software
implemented triggers. The combination of L2 and event filter is called the high-level
trigger.

Each trigger level refines the decisions made at the previous level and, where
necessary, applies additional selection criteria. The data acquisition system receives
and buffers the event data from the detector-specific readout electronics, at the L1
trigger accept rate. There are over 1,600 point-to-point readout links. The first level
uses a limited amount of the total detector information to make a decision in less than
2.5 µs, reducing the rate to about 75 kHz. The two higher levels access more detector
information for a final rate of up to 200 Hz with an event size of approximately 1.3 Mb.

6.2.1 The Jet Trigger Slice

The jet slice is the subset of the ATLAS trigger for jet selection. The jet slice at L1
works with a fast sliding window in (η, φ) of dimension 0.8 × 0.8 in order to find
regions of local energy maxima, which is replaced by a simple cone algorithm at
L2. The event filter is running the so called ATLAS Cone algorithm. Jet algorithms
are subject of discussion in Sect. 7.2. A study dedicated to jet algorithms [4] has
concluded that a more suitable algorithm for the event filter exists, namely the anti-
kT algorithm. However the ATLAS Cone will still be used for the early data taking
period.

There are two broad classes of jet triggers: single jet triggers which are triggering
on the highest jet in the event, and multijet triggers. The exact definition of the trigger
(threshold, prescale, etc) depends on the LHC collision energy, the luminosity and
the physics priority.

http://dx.doi.org/10.1007/978-3-642-24597-8_7
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6.3 Event Reconstruction

The event filter assembles data into several physics streams and one express stream
and sends them to the CERN Tier-0 center where they are stored on tape. The assign-
ment of a given event to a certain physics stream (e.g. jet stream, minimum bias
stream, muon stream, etc.) is based on the trigger signature. The express stream con-
tains about 10% of the recorded data, mostly high-pT events with leptons or jets. The
physics streams are grouped together in what is called the “bulk” data. Apart from
express and physics streams, there are also streams used for calibration purposes.

The processing of the express stream starts promptly (in quasi-real time) after
the data are sent to the Tier-0. Also the calibration streams are processed in quasi-
real time. But the bulk reconstruction cannot start before the express stream is fully
reconstructed and an assignment of the quality of the data is made. If problems with
the express stream occur (bad calibration, software problems ...), they need to be
solved and the express stream needs to be processed again. A “sign-off” procedure
using the results from the data quality (DQ) assessment of express and calibration
stream monitoring, determines whether Tier-0 bulk data processing can begin. This
procedure is based on automated checks on histograms representing the data quality.
Detailed information can be found in the next section.

Once the green light has been given for the bulk processing, the Tier-0 will start
to produce Event Summary Data (ESDs, created from the RAW data) and Analysis
Object Data (AODs, reduced event representation derived from ESDs). Both ESDs
and AODs are transferred to different computing facilities spread over the world,
using the computing grid. These centers are so-called Tier-1 centers and apart from
being a storage facility, they are also re-reprocessing the ESDs and AODs (e.g. with
an updated calibration).

Derived physics datasets (DPDs, derived from AODs) produced by the physics
groups are copied to the Tier-2 facilities for further analysis. The Tier-2 facilities also
provide the simulation capacity for the experiment, with the simulated data housed
at Tier-1s. In addition, Tier-2 centers will provide analysis facilities and some will
provide the capacity to produce calibrations based on processing some raw data.

This way, the ATLAS Computing Model [5] embraces a high degree of decen-
tralisation and sharing of computer resources, and enables for all members of the
ATLAS Collaboration speedy access to all reconstructed data for analysis during
the data-taking period, and appropriate access to raw data for organised monitoring,
calibration and alignment activities.

6.4 Data Quality

As mentioned in the previous section, the ATLAS experiment continuously produces
large streams of raw data that need to undergo various stages of processing. In order
to be able to diagnose problems in the processing phase as soon as they occur—
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Fig. 6.6 Flowchart showing input and output of han and handi

so as to avoid processing delays—and to verify the data integrity, tools for prompt
monitoring and archiving of the quality of the processed data have been developed
and have become an essential part of the data processing chain. This collection of
software is part of the ATLAS Data Quality Monitoring Framework (DQMF) [6],
which embraces both online (before processing) and offline (after processing) data
quality operations. The sections below will only focus on the quality of the processed
data, since from an analysis point of view, this is the most important aspect of DQMF.
As already mentioned at the beginning of this thesis, an ATLAS internal note was
published in Ref. [7].

During the processing of the data, distributions representing the quality of the data
are continuously being produced. The data quality distributions of one run (60 min)
are merged in so-called monitoring ROOT files [8], containing histograms that either
cover the whole run (providing global run information), or only part of it, of the order
of a few minutes (providing minutes block information). These histograms serve as
input for the evaluation of the quality of the run, which is done by running automated
tests on them.

6.4.1 Automatic Evaluation and Display of Data-Quality
Histograms: Han and Handi

The core utilities among those developed for data-quality assessment of processed
data are the histogram analyzer, han, and the histogram-analysis display, handi.
These utilities have been designed to be used in both standalone modes and as
functions called from other applications. The han application performs an automatic
evaluation of a set of histograms based on a user-defined configuration file, and the
histograms and evaluation results are stored in a binary file. The handi application
takes the han-output file as input and creates a tree of HTML files for viewing the
histograms and associated evaluations. Figure 6.6 shows this schematically.
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6.4.1.1 The Histogram Analyzer: Han

The han application is designed to promptly perform automated histogram checking
using ROOT. Each distribution is checked according to a predefined algorithm and is
assigned a DQ status flag; “green” for good, “yellow” for flawed (questionable, use
with care but likely recoverable), “red” for bad, “gray” for undefined and “black” for
disabled. han is implemented in C++ classes using libraries from ROOT and from
the ATLAS Data Quality Monitoring Framework. The primary design considerations
for this program are reliability and flexibility to be used as a component with other
software.

The program is given two input files, one with the histogrammed data to be
analyzed and one with a compiled configuration, and it produces one binary output file
with the results of the analysis (see Fig. 6.6 ). The analysis takes a stepwise approach;
first it checks individual histograms and assigns them a status, then it combines
histograms into groups and provides summary information for those, based on the
status of the individual histograms they contain. Finally it combines different groups
and produces a summary based on the status of the subgroups. This hierarchical
structure allows the result of a single histogram to propagate up to the highest level.
This way, the user can easily detect data quality problems from the top-level by
following the tree structure down to the level where they occur.

The han configuration format allows for the specification of the histograms to
check, the algorithms to check them with, thresholds for yellow and red flags, and the
place of each checked histogram in the data quality hierarchy. Furthermore, options
for displaying the results with handi need to be set in the han configuration as well.

As a simple example of how this program is intended to work, suppose one has
a set of histograms of a quantity that is distributed as a Gaussian. To quickly deter-
mine if the widths of all the distributions are as expected, one would provide these
histograms as input to han, along with a configuration that specifies an algorithm
that evaluates widths. The output would then have the information to quickly alert
the user to unexpected distributions, along with the relevant information about how
those decisions were reached.

The distributions, together with their status and summary information about the
algorithm, are saved in a new ROOT file, which can be opened for inspection in
ROOT. But in order to provide a more user friendly interface and a world wide
accessibility of the data, handi—the han display—was developed, which translates
the han-output into a HTML coded web display.

6.4.1.2 The Histogram-Analysis Display: Handi

handi is written in Python and uses, apart from standard Python modules, a C++
library of relatively simple, statically linked functions designed for reading and
processing the han results.

The han-output file contains T Directories with groups of histograms that are
structured in a directory tree defined by the user through the han configuration input
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Fig. 6.7 Screenshot of the output of handi at the top level

file. Apart from the histogram itself, information about the algorithm configuration
parameters and the results of the histogram check are stored in the output as well.
Not only the histograms, but also every TDirectory is assigned a status—defined by
the histograms it contains—by han, and all relevant information about this process
is saved in the output file as well.

The goal of handi is to display the histograms and all information, maintaining
the han-output directory tree structure. World wide accessibility is guaranteed by
making a HTML web browser display.

handi is designed in a way so that the HTML pages offer information at three
levels, going from very general to histogram specific. Figures 6.7 and 6.8 shows
snapshots of these three levels.

First there is the top-level page (Fig. 6.7), which is an overview page displaying the
complete directory structure of the han-output file, listing the name of the directory
together with its status (which is colored accordingly).

When a certain directory contains histograms or subdirectories, the user can click
on the name in order to get linked to a directory page (Fig. 6.8 top) which shows
thumbnails of all histograms and subdirectories in that directory. The thumbnails are
displayed in a colored frame according to their status.

In order to view detailed information about the histogram, the user can click on
the thumbnail to get linked to the one-histo page (Fig. 6.8 bottom), containing an
enlarged view of the histogram, together with extra information such as the algorithm
configuration parameters (which algorithm, what thresholds) and the evaluation of
the check (status and algorithm specific info). Basically all information that is found
in the han-output file is displayed.

The histograms are loaded from the han-output file, plotted on ROOT canvas
and saved in png format. Whenever an algorithm uses a reference histogram, the
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Fig. 6.8 Screenshots of the output of handi. Information is provided at three levels: top-level
(see Fig. 6.7 ), directory level ( top plot) and one-histo level (bottom plot)

reference is shown as well. Through the han configuration file, the user can give in
options related to the plotting style (logarithmic axis, axis range, etc.).

Python modules are used to automatically generate the html files.
As for the input of handi, apart from the han-output file, the user also has to give

in a title that will be used on every page and the location of where the HTML files
need to be stored. There are also a few extra parameters that are used internally, such
as the location of javascripts that run on the pages.
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6.4.2 Prompt Assessment of Data-Quality During Data Taking

Use of the core utilities during the processing of recorded data requires a set of
specific tools appropriate to the running environment. The data are processed in
parallel on O(1000) machines, producing output files that must be combined and
organized by data type and time interval. Files are merged so that the contents of the
histograms and other plots are combined appropriately, in a configurable manner.
As merged files are produced and updated while a run is being processed, they are
displayed on the web. After a run has been completely processed, the final histograms
are displayed, and the automatic assessments are uploaded to a database.

Within the ATLAS software environment, the AthenaMonitoring package pro-
vides common functionality for histogramming quantities during event reconstruc-
tion. A crucial feature of this package is that users define logical histogram locations
within an output file; the physical placement of the histogram within the output file is
determined by the framework in AthenaMonitoring. In this way, histograms can be
placed in a directory structure ensuring that the proper time-granularity is attributed.
For example, the top-level directory may be labelled according to the run number, and
subdirectories may correspond to sub-run intervals within that run. Also, additional
information may be saved along with the histograms for later bookkeeping or other
operations. These metadata may be derived from the information provided when the
histograms are registered with the application. An important use of the metadata is
to specify which algorithm is used to combine instances of a particular histogram in
the file-merge process.

Additionally, the AthenaMonManager holds general information about the run-
ning environment, and it makes this information available to the monitoring tools it
manages. In this way, users can define and configure histograms according to infor-
mation that is only available at run time. Also, different sets of histograms can be
produced for different stages of event reconstruction; this is used to limit the number
of histograms produced during memory-intensive processes by producing only those
that cannot be made at a later stage.

Because the event-reconstruction programs run on many processors in parallel,
many histogram files are produced with histograms filled with data from only a part
of a run. To evaluate complete time intervals, all the histograms with partial statistics
are combined into final histograms with full statistics. The application that merges
the histogram files in this manner is DQHistogramMerge.

The DQHistogramMerge is executed at regular time intervals while a run is
being processed. For input, it is given all the histogram files produced since the last
execution. This way, the final merged file for a run is built in chunks. Since the raw
data files are not necessarily processed in the order in which they were produced, it
is crucial that the histograms are organized in a directory structure corresponding to
sub-run time intervals. Since the directory structure is maintained during the merge
process, all of the merged files, partial and final, correctly attribute time intervals to
histograms regardless of the order in which the data are reconstructed.
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The application DQWebDisplay is the heart of the web-display production that
runs at Tier-0. It ties the core utilities han and handi together with scripts to upload
data to the web server, to automatically generate index pages, and to upload results
to a database.

The configuration of the web display contains a number of settings, but these
settings are all correlated with the type of run that is being processed. To enhance
reliability and reproducibility, the complete configurations are encoded in Python
classes that are fixed for a given release of the ATLAS software. The selection
of a particular configuration at runtime is done with a single string provided to
DQWebDisplay.

The execution of DQWebDisplay is as follows. First, the input histogram file is
analyzed by han; each distinct time interval contained in the input file is analyzed
separately, so that after all analyses are complete, there are separate results files for
these time intervals, e.g. a run file, several 10 min files, and several 30 min files.
Second, handi is run on each of the results files, producing separate hierarchies of
web pages for each time interval. Third, an index web page is generated for the run,
with links to each of the separate hierarchies. Fourth, all of the HTML and image
files are transferred to the web server. Finally, a script is executed on the web server
that builds a list of all the runs that are present and generates a central web-page
index. The final step ensures that the index page is always available and current,
even if some other part of the script fails.

The DQWebDisplay application can be run in a special mode for producing
web pages while a run is still being processed. In this case, it is given as input a
histogram file with partial statistics, produced by one of the periodic executions of
DQHistogramMerge. When running in this mode, DQWebDisplay maintains a
local merged file with all of the statistics seen up that point: it runs DQHistogram-
Merge on the input file and the existing local merged file to produce a new local
file. This procedure is not completely reliable, in the sense that the local file is not
archived and not generally reproducible. However, since it operates entirely out-
side of the production system, it prevents the production system itself from being
disrupted by the additional complexity of this process. These partial-statistics web
pages are deleted when the full run has been processed and the final web pages are
produced.

Apart from automated checks and a web display, the DQMF also provides a tool
for monitoring the history, i.e. the evolution over several runs, of the DQ results.
Furthermore, the most relevant results of the automated histogram checks, i.e. the
status flags green, yellow, red, gray and black, are archived in the ATLAS condition
database [5].

The archived DQ status flags are then used to filter on good data runs and luminos-
ity blocks (corresponding to approximately two minutes of data taking with a constant
instantaneous luminosity), by appliying DQ flag selection criteria. The resulting lists
are also known as good run lists (GRLs). We will discuss the good run list criteria
for studies with jets and missing transverse energy in Chap. 8.

http://dx.doi.org/10.1007/978-3-642-24597-8_8
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Chapter 7
Jet Reconstruction

7.1 General Approach

A jet is a narrow cone of hadrons and other particles. Jets have to be defined by an
algorithm and the definition of a jet is therefore unavoidably ambiguous; many jet
finding algorithms exist and the best choice often depends on the topology of interest.

A jet algorithm starts from a list of input particles and tries to associate them to
jets, so that the kinematic properties of the jets (e.g. momenta) can be related to the
corresponding properties of the energetic partons produced in the hard scattering
process. The input particles can be partons or hadrons in a theoretical calculation,
but they can also be calorimeter signals at the experimental level. Quite often, parti-
cles that do not interact with material (e.g. neutrinos) or parent particles that decay
too quickly to interact with the detector (lifetime less than 10 ps), are disregarded
(although the decay products may be included). When comparing experiment with
theory, it is important to use the same jet algorithm to ensure consistency.

A jet algorithm has two main elements; there is the jet finding algorithm, grouping
together the particles that belong to a common jet, and there is the recombination
scheme, defining how to add the momenta of the particles when combining them.

ATLAS has many different jet finding algorithms, and we will discuss them in
the next section (Sect. 7.2), but the recombination scheme is always four-momentum
addition. Section 7.3 specifies the input for ATLAS jet finders.

Apart from the ambiguity intrinsic to the jet algorithm, a further experimental
complication to jet reconstruction is the jet energy calibration. A jet measurement
in the ATLAS detector starts from signals recorded in the calorimeter cells which
have been calibrated at the electromagnetic (EM) scale. This scale is set in test
beams and/or in situ measurements and is defined to reproduce correctly the response
to electromagnetic showers. But the electromagnetic scale does not reproduce the
energy of hadrons correctly because hadrons deposit less energy in the calorimeters.
Typically, the ATLAS calorimeter response to electrons is about a factor 1.3 higher
than the hadron response. This is due to energy losses in forms not measurable,
such as nuclear break-up, spallation, and excitation, energy deposits arriving out of

N. Boelaert, Dijet Angular Distributions in Proton–Proton Collisions, Springer Theses, 83
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the sensitive time window (such as delayed photons), soft neutrons, and particles
escaping the detector (neutrinos). Furthermore, the ATLAS magnetic field is able to
bend low energetic charged particles out of the jet cone, and part of the energy is lost
because of cracks, dead material and gaps in the calorimeter. Therefore a hadronic
calibration is necessary in order to get to the hadronic level, i.e. the scale at which
hadrons are defined. All effects from the detector itself are removed in this step.
ATLAS has opted for a calibration style following a factorized approach, ensuring
flexibility, which is desired in the early stage of ATLAS data taking where experience
still needs to be gained. We will discuss several hadronic calibration methods in
Sect. 7.4. A more detailed description can be found in Ref. [1].

7.1.1 Jet Reconstruction Performance Studies

Using a combination of Monte Carlo and data-driven calibration steps, ATLAS aims
at obtaining an initial uncertainty of the jet energy scale between 5 and 10%.

Various aspects of the jet reconstruction performance have been studied using
ATLAS fully detector simulated events that were produced using a variety of Monte
Carlo generators. Monte Carlo generators are used to simulate events at the truth
level, this is without including detector effects. These truth events are then sent
through a GEANT [2] detector response simulation and reconstructed (including
the calibration steps) with the ATLAS software, resulting in events at the so-called
fully reconstructed or hadronic level. The jets obtained this way are also called
physics jets.

Most of the studies are done by comparing fully reconstructed jets with their
matching truth jets. In order to assign a fully reconstructed jet to a truth jet, the
matching radius Rm is used to define the so-called distance in (η, φ) between truth
and fully reconstructed jets:

Rm =
√
�η2

i j +�φ2
i j (7.1)

Two jets are matched if the distance Rm in (η, φ) between them is smaller than a
given value, e.g. Rm ≤ 0.3.

A few variables are used to express the performance. The signal linearity is defined
as the ratio of the energy of the reconstructed jet over its matched truth jet. The signal
uniformity is measured by the variation of the signal as function of pseudorapidity
and azimuth. Another important variable is the energy resolution, which is given
by the width of the distribution of the relative difference between the reconstructed
energy of the jet and the energy of its matched truth jet. Additional features of jet
reconstruction performance are the jet reconstruction efficiency, defined by the ratio
of the number of truth jets that are matched to a reconstructed jet over the number
of truth jets, and the jet reconstruction purity, defined by the ratio of the number of
truth jets that are matched to a reconstructed jet over the number of reconstructed jets.
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It is not uncommon that for these tests, detector misalignments and other imper-
fections are included in the ATLAS response, so that the calorimeters do not respond
optimally, but rather behave as is expected in the initial days of data taking.

7.2 Jet Finding Algorithms in ATLAS

Many jet finding algorithms exist, and four criteria are used to determine their
quality [3]. A jet algorithm should be fully specified (criterion 1) and theoreti-
cally well behaved (criterion 2). Furthermore it needs to be detector independent
(criterion 3) and order independent (criterion 4), the latter meaning that the algo-
rithm has to behave equally at the parton, the hadronic and the detector levels. These
last two criteria can probably never be exactly true, but must be approximately cor-
rect. But the first two criteria should be satisfied by every algorithm.

A jet algorithm is theoretically well behaved when it has the following features:
it must be infrared safe, i.e. be insensitive to soft radiation, and collinear safe, meaning
that the algorithm is independent of the fact that a certain amount of transverse
momentum is carried by one particle, or by two collinear particles. Furthermore, the
behavior of a theoretically well behaved jet algorithm is invariant under longitudinal
boosts along the beam axis.

There are two broad groups of jet algorithms, those based in one form or another on
geometrical cones in (η, φ) and those that involve repeated recombination of particles
that are nearby in some distance measure. A recent review about jet algorithms can
be found in Ref. [4].

7.2.1 Cone Algorithms

The long standing jet algorithm in ATLAS is a seeded fixed cone. This algorithm
starts with ordering the input according to decreasing transverse momentum pT .

The highest pT object gets selected if it is above a certain seed threshold (1 GeV),
and all objects within a cone with fixed radius Rcone in (η, φ) around it, i.e.
�R = √

�η2 +�φ2 < Rcone, are combined with the seed. A new direction is
calculated from the four-momenta inside the initial cone and a new cone is centered
around it. Objects are then (re-)collected in this new cone, and again the direction
is updated. This process continues until the direction of the cone does not change
anymore and the cone is labeled a jet. After that, the next seed is taken from the list
and a new cone jet is formed in the same iterative way. ATLAS has chosen two cone
sizes: a narrow Rcone = 0.4 and a wider Rcone = 0.7.

The jets found this way can share constituents and therefore a split and merge step
after the jet formation is done. Jets which share more than a fraction fsm ( fsm = 0.5
in ATLAS) of the pT of the jets are merged, while they are split in the opposite case.
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This seeded algorithm is collinear but not infrared safe; soft particles can easily
modify its behavior.

A cone algorithm that does withstand the infrared problem is SISCone, a Seedless
Infrared Safe Cone algorithm [5]. Contrary to the ordinary seeded cone algorithm,
SISCone finds all stable cones using a sliding window technique, ensuring collinear
and infrared safety. Cones can still be overlapping, and a split and merge step is
needed. Following the recommendation of the authors, ATLAS has chosen a split-
merge factor fsm = 0.75 in order to prevent an excess of soft jets. As for the speed,
SISCone takes a time O(Nn ln n) to find jets among N input particles, with n the
typical number of particles in a circle of radius R.

7.2.2 Sequential Recombination Algorithms

Another big class of jet finders groups the sequential recombination algorithms. For
these algorithms, all pairs ij of input objects are analyzed with respect to their relative
distance measures:

di j = min(p2p
T,i , p2p

T, j )
�R2

i j

R2 = min(p2p
T,i , p2p

T, j )
�η2

i j +�φ2
i j

R2 , (7.2)

di B = p2p
T i (7.3)

R is called the radius parameter [6], and p is an integer number. The index B stands
for Beam. The minimum dmin of all di j and di B is found. If dmin is a di j , the
corresponding objects i and j are combined into a new object k, and both elements
i and j are removed from the list, while k is added to it. If dmin is a di B , the object
i is considered to be a jet by itself and is removed from the list. This procedure is
repeated until all objects are removed from the list. Contrary to the cone algorithms,
no seed is needed and all objects are uniquely assigned to one jet, implying that a
split and merge step is redundant and that the algorithm is infrared safe.

ATLAS uses the fast jet library [6] to run these jet finders, and two different
radius parameters are implemented, namely R = 0.4 and 0.6. Different values of p
correspond to different algorithms. For p = 1, one recovers the inclusive kT algorithm
[7], which will be used in Chap. 9. The case of p = 0 corresponds to the inclusive
Cambridge/Aachen algorithm [8], and the more recent anti-kT algorithm is obtained
with p = −1 [9]. We will use the anti-kT algorithm in Chaps. 10 and 11. Older
implementation of these algorithms run as O(N 2), but the fast jet implementation
runs as O(N ln(N )).

With anti-kT , high pT objects are merged first, so that the shape of the jet is conical
and unaffected by soft radiation. Therefore this algorithm is very robust under pile-
up conditions. The opposite is true for the inclusive kT algorithm that starts with
clustering the soft objects into the nearest hard object.

http://dx.doi.org/10.1007/978-3-642-24597-8_9
http://dx.doi.org/10.1007/978-3-642-24597-8_10
http://dx.doi.org/10.1007/978-3-642-24597-8_11
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7.2.3 Anti-kT : the ATLAS Default Algorithm

A detailed study of the performance of the jet algorithms available in ATLAS, was
presented in Ref. [10]. It was found that the differences in performance are in general
not very large. However, the anti-kT algorithm is the most performant, and therefore
ATLAS has decided to adopt the anti-kT jet algorithm as default algorithm for offline
reconstruction.

When considering speed and memory consumption, both the ATLAS Cone and
sequential recombination algorithms perform well. SISCone, however, is a lot slower.

At low pT the jet reconstruction efficiency and purity is algorithm dependent
with anti-kT showing the best behavior. The ATLAS Cone algorithm has the worst
behavior which is due to the split and merge step. Furthermore, the ATLAS Cone
is more sensitive to non-perturbative QCD effects, such as the underlying event and
hadronization.

In addition, caused by the fact that the ATLAS Cone algorithm is seeded, a small
but non-negligible number of events has large calorimetric energy depositions that
do not belong to any jet (a detailed study of this phenomenon was done in Ref. [10]).

Both inclusive kT and anti-kT are stable against pile-up, due to the fact that they
are infrared and collinear safe. However, since these algorithms do not use seeds, they
are more sensitive to electronic noise in the calorimeter. Therefore, it is recommended
to use these algorithms with input objects that are noise suppressed (topotowers or
topoclusters, see Sect. 7.3).

It has also been demonstrated that the trigger efficiency can be improved by
replacing the ATLAS Cone in the event filter by the anti-kT algorithm. So far, this
has not been implemented, and the trigge still uses the ATLAS Cone algorithm.

7.3 Input for Jet Finding Algorithms

The ATLAS calorimeter system has about 200,000 individual cells of various sizes.
For jet finding, it is necessary to combine these cell signals into larger signal objects
with massless four-momenta. Three different combinations exist: signal towers, topo-
logical cell clusters (topoclusters) and topotowers.

In the case of signal towers, the cells are projected onto a fixed grid in pseudora-
pidity and azimuth. The tower size is�η×�φ = 0.1 × 0.1 everywhere, with about
6,400 towers in total. When the shape of a cell does not follow the shape of a given
tower, only the overlapping fraction of the cell signal contributes to the tower. The
towers are calibrated at the electromagnetic scale.

The major problem with towers is that all cells are included, even those cells that
have a negative energy, because a too high noise subtraction has occurred during
online data taking. Since a jet finder cannot deal with negative energies, negative
tower signals are made positive by summing up the towers signals in the vicinity
until the energy becomes positive. This method of noise cancelation has given many
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Fig. 7.1 Illustration of the
topocluster formation; all
non-white cells belong to one
topocluster

problems, and a better way to deal with noise is done in the construction of topoclus-
ters and topotowers.

Topoclusters are built according to criteria that identify energy deposits in topolog-
ically connected cells. They are an attempt to reconstruct individual parton showers.
The clustering starts with seed cells with a signal-to-noise ratio � above a threshold
S, which is currently set to four. All directly neighboring cells of these seed cells,
in all three dimensions, are collected into the cluster. Neighbors of neighbors are
considered for those added cells which have � above a secondary threshold N, with
currently N = 2. Finally, a ring of guard cells with signal significances above a basic
threshold P = 0 is added to the cluster. The concept is illustrated in Fig. 7.1.

After the cluster formation a split step follows, splitting clusters that have more
than one local maximum. Like towers, clusters are initially formed using the basic
electromagnetic scale cell signals. These clusters can already be used as input for
the jet finder. In addition, clusters can be calibrated to a local hadronic energy scale
first, and then used in the jet finder. Local calibration will be the topic of Sect. 7.4.2.

In the central region of the detector, clusters resolve the particle content of the jet
better than towers, but because they cannot resolve individual showers in the forward
regions, they cannot reproduce the jet shape very well at high pseudorapidities. In
these regions, the towers perform better.

Another difference between clusters and towers, is that a tower includes all cells,
while a cluster applies a noise suppression by selecting fewer cells.

The construction of topotowers is an attempt to combine the benefits from the
geometrically well defined signal towers with the noise suppressed topoclusters. This
is done by combining only those calorimeter cells that would have been selected by
the topoclustering algorithm, into towers of size�η×�φ = 0.1×0.1. So basically,
topotowers are signal towers with noisy cells removed. Signal towers are disfavored
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Fig. 7.2 Left fractional energy carried by different particle types as a function of the jet energy.
Right fraction of true energy deposited in the different calorimeter samplings for a jet in the central
(|η| < 0.7) calorimeter region as a function of its true energy. The figures are taken from Ref. [1]

with respect to topotowers. Both topotowers and topoclusters are robust against pile-
up, whereas signal towers are not.

7.4 Jet Energy Calibration

7.4.1 Overview

In order to understand the underlying mechanisms of jet energy calibration, it is
instructive to look at the particle content of a jet and its particle dependent energy
deposits.

Figure 7.2 left shows the relative contribution of the different particle types to the
jet energy as function of ET . It can be seen that this contribution is nearly independent
of the jet energy. About 40% of the total energy is carried by charged pions, while
25% is carried by photons (mainly coming from neutral pion decay), causing 25%
of the energy deposits to come directly from pure electromagnetic showers.

Figure 7.2 right shows the average fractional energy deposit at the EM scale in the
different calorimeter samplings with respect to the true jet energy. The full bullets
represent the sum of all separate contributions. Most of the energy (about 2/3 of
the reconstructed energy) is measured by the electromagnetic calorimeter. The total
reconstructed energy differs significantly from the true jet energy, and this is because
of a number of detector effects. The major cause is the ATLAS calorimeter non-
compensation, meaning that the calorimeter response to hadrons is lower than to
electrons and photons, and also non-linear with the hadron energy. Furthermore, part
of the energy is lost because of dead material, cracks and gaps in the calorimeter.
Finally the ATLAS magnetic field will bend low energy charged particles outside
the jet cone.
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Fig. 7.3 Hadronic calibration steps

Therefore, a calibration procedure is needed to correct the jets back to the hadronic
level, i.e. the scale at which hadrons are defined.

The hadronic calibration can be factorized into different steps which are shown
in Fig. 7.3. First there is the actual jet energy hadronic calibration step, giving rise
to so-called “Calorimeter jets”. This step applies most of the corrections and its goal
is to improve the jet energy resolution. However, a number of effects are not taken
into account in this step: noise, pile-up, algorithm effects, etc. Therefore, step 1 is
followed by additional jet-level energy corrections. An offset correction is applied
in a second step: jet energy not originating from the hard scattering (electronic noise
and pile-up) is subtracted. After that, a third step follows which tries to uniformize
the jet response in pseudorapidity and azimuth. The fourth step consists of response
corrections that finally bring the energy scale back to the hadronic (or particle) level.
Next, additional corrections that improve the jet energy resolution and finally flavor
corrections make step 5 and 6 respectively. We will discuss the main steps below.
Important to know is that step 1 is primarily based on studies with testbeam and
Monte Carlo data, while most methods mentioned in the other steps are data-driven,
using suitable in-situ physics processes. After going through these steps, jets are
finally calibrated at the hadronic level and referred to as “Physics jets”.

The physics jets are not always the preferred analysis objects, because they are
influenced by physics effects such as Initial and Final State Radiation (ISR and FSR),
the underlying event, etc. Hadronic jets are therefore “cleaned” from these physics
effects in a step which follows after the hadronic calibration, so that the final scale is
reached with “Refined Physics jets” that correspond to energies at the matrix element
level. It is also possible to skip step 1 and to apply the in-situ corrections directly at
the EM scale.

The particles in a jet do not necessarily have high energy. An ATLAS study has
shown that in order to be able to measure 95% of the energy of a 100 GeV central
jet, particles of typically a few 100 MeV need to be included. Furthermore, nearly
30% of the energy of a 100 GeV jet comes from particles with energy below 10 GeV.
Hence, it is important that the hadronic calibration is robust over the energy range
going from about 200 MeV to a few 100 GeV.
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7.4.2 Step 1: Energy Hadronic Calibration

ATLAS has four energy hadronic calibration strategies. The first one is referred
to as global cell weighting calibration, and aims for a calibration at the jet level,
after running the jet algorithm. The second strategy is called local cell weighting
calibration and provides a calibration at the jet constituent (topocluster) level, thus
before running the jet algorithm. The third method is the longitudinal weighting
method, which makes use of the longitudinal development of the shower to correct
for calorimeter-non-compensation. And the last method is the Monte Carlo driven
response correction, which is a global (i.e. at the jet level) method using pseudora-
pidity and transverse momentum dependent scale factors that bring jets at the EM
scale to the calibrated scale.

7.4.2.1 Global Cell Weighting

This method is based on the fact that a shower produced by a jet in the calorimeters
is composed of an electromagnetic and a hadronic component. The electromag-
netic component is characterized by a compact, highly dense energy deposit, while
the hadronic one is broader and less dense. Going from the electromagnetic to the
hadronic scale, can therefore be realized by an appropriate weighting of the calorime-
ter cells; cells with mainly hadronic shower activity will get a higher weight than
their electromagnetic counterparts.

After running the jet algorithm, the jet energy at the electromagnetic scale is
given by the summation of the calorimeter cells that make up the jet, i.e. Eem =∑

i=cells Ei . In a first correction step, weights are applied so that the jet energy and
momentum at the hadronic scale are given by:

E =
∑

i=cells

wi Ei and �P =
∑

i=cells

wi �Pi (7.4)

Ei and Pi are the ith cell energy and momentum at the electromagnetic scale. The
weights depend on the energy cell density (Ei/Vi , with Vi the cell volume) and the
cell location ( �Xi ) and are obtained from a 45 parameter global fit by minimizing
the resolution of fully Monte Carlo simulated jets to Monte Carlo truth jets. But the
weights do not depend on the jet algorithm.

In a second step, residual non-linearities introduced by cracks and gaps and dif-
ferences introduced by the use of different reconstruction algorithms are corrected
by scale factors, which depend on pseudorapidity and transverse energy, so that the
truth scale is finally recovered:

Eδ = ρδE and �Pδ = ρδ �Pi , (7.5)

where δ indicates the dependence on the jet finding algorithm.
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The scale factors are obtained from numerical inversion, which is a technique
where one starts with a four-vector, and tries to apply a correction factor based on
the original (truth) four-vector that will bring you back to the original vector.

The derivation of these factors is based on the inverse of the response function
R(preco

T ) = preco
T /ptrue

T ,where preco
T refers to the cell-weighted jet obtained from the

previous step (cfr. Eq. 7.4). Given this response function, the calibrated pT of the jet
can be estimated as preco

T /R(preco
T ).

The problem is that in bins of fixed preco
T , the response function is not Gaussian;

due to the falling pT spectrum, there will be more low-ptrue
T jets, for any fixed preco

T
bin, which causes a positive tail of the response function. On the other hand, the
response function for jets of fixed ptrue

T is Gaussian.
The numerical inversion technique [11] handles the non-Gaussian nature of

the response function. The method starts with the derivation of R(ptrue
T ) from the

Gaussian response function in different ptrue
T bins. From this an estimate preco

T,est is
made such that on average preco

T,est = R(ptrue
T ) · ptrue

T . The response function R(preco
T,est)

is then calculated from preco
T,est, and the jet is calibrated through the inverse of this

response function, by scaling its four-momentum with it.
Fully simulated Monte Carlo data samples have been used to evaluate the per-

formance of the global cell weighting technique, and it has been observed that the
different jet algorithms have similar behavior in terms of linearity and resolution.
In the central region of the detector, a linearity 〈Erec/Etruth〉 close to one (within
±1 %) is obtained for jets above 100 GeV, while small deviations of not more than
3% show up at lower energies.

Also the uniformity of the response over pseudorapidity is satisfactory. Apart
from a small dip at |η| ≈ 1.5 (in correspondence with the gap between the hadronic
central barrel and the extended barrel) and at |η| ≈ 3.2 (corresponding to the crack
between the end-cap and the forward calorimeters), a flat behavior of 〈Erec/Etruth〉
versus pseudorapidity is obtained.

The energy resolution σ/E improves with increasing energy, and is best in the
central region. A 10% resolution is obtained for 100 GeV seeded cone (R = 0.7) jets
in the region |η| < 0.4, which drops to better than 4% for 1 TeV jets.

The global calibration method operates by default on uncalibrated (at the EM
scale) topoclusters, but also signal towers and topotowers can be used. When com-
paring the three different inputs, no difference in linearity has been observed, but
topotowers and topoclusters do have a better resolution at lower energies since they
are less sensitive to electronic noise.

7.4.2.2 Local Cell Weighting

This method is only applicable on topoclusters and starts by identifying them as
mainly electromagnetic, mainly hadronic or unknown, depending on cluster shape
and other variables, such as cluster energy. This classification is based on predictions
from GEANT simulations for charged and neutral pions (they make up the major
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contribution to the jet energy deposit, see Fig. 7.2). Clusters classified as hadronic
receive cell weights derived from detailed simulations of charged pions in order to
compensate for the different response of hadrons compared to electrons. In a second
step, out-of-cluster corrections are applied to correct for energy deposits that were
made inside the calorimeter but fell outside the calorimeter clusters. In a final step,
dead material corrections are applied to compensate for energy deposits outside the
calorimeters.

The main difference with the global cell weighting is that no matching with truth
jets occurs. One of the advantages of this method is that the jet finding algorithm
(Sect. 7.2) runs over the input objects which have the proper scale, in contrast to the
global cell weighting approach where the scale corrections are applied after the jet
is reconstructed.

Important problems with this technique are the misclassification of topoclusters
and the loss of particles in dead material, especially the low energy regime, since many
low energetic particles do not have sufficient energy to meet the cluster reconstruction
thresholds, causing the linearity never to come closer than 3% away from unity. Also
the jet energy resolution is affected by this, and is typically 20% or more worse than
the global cell weighting result.

Corrections for these effects are currently under study, and promising improve-
ments are obtained using the tracker system. The ATLAS tracker covers the region
|η| < 2.5 and is able to reach a 1% level of precision within the first months of
data taking. Therefore, the energy over momentum ratio (E/p) of individual isolated
hadrons can be used to study the local cell weighting calibration performance. The
track direction is extrapolated to the calorimeter and all clusters inside a cone with
radius�R = 1.0 are included for the calculation of E of the hadron. Selection criteria
are used to reduce the contamination from the underlying event.

7.4.2.3 Longitudinal Weighting Method

An alternative global calibration approach is the longitudinal weighting method,
which makes use of the longitudinal development of the shower to correct for
calorimeter non-compensation. On average, the early part of a hadronic shower is
dominated by electromagnetic energy; about 70% of the energy deposited in the
first interaction length of the calorimeter is electromagnetic. This fraction decreases
with interaction length—it is about 25% at six interaction lengths—meaning that
more of the hadron shower goes undetected. The longitudinal weighting method
assigns weights to the energy deposition which are a function of calorimeter depth.
The weights are pseudorapidity and energy dependent and, in order to take into
account the different shower behavior of the different particles that make up the jet,
they depend on the fraction of energy deposited in the liquid argon electromagnetic
calorimeter as well. Although the resolution improvement is smaller with respect
to other methods, the longitudinal weighting method is less demanding in terms of
detector simulation dependences, compared to the previous two methods.
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7.4.2.4 Monte Carlo Driven Response Correction

The Monte Carlo driven response correction [11] uses scale factors that depend on
transverse momentum and pseudorapidity, to correct jets calibrated at the EM scale to
the hadronic level. The scale factors are derived from numerical inversion techniques,
in the same way as is done in the second step of the global cell weighting method.
Of course, the scale factors one needs to apply on EM scale jets are not the same
as for cell-weighted jets. The resolution obtained with this method is worse than the
other methods, especially for central high-pT jets. On the other hand, this method
does not rely as much as the others on the description of the calorimeter response.

7.4.2.5 Default Method for ATLAS 2010 Data

The first three methods discussed above, heavily depend on the Monte Carlo simu-
lation of the calorimeter response. In case the calorimeters are understood very well,
these methods will give a very good performance in terms of jet energy resolution.
The Monte Carlo driven response technique does not use the detailed description of
the calorimeters, because the scale factors depend on η and pT only, and no infor-
mation about the calorimeter cells that make up the jet is used. This is not the case
in e.g. the global cell weighting method, where the weighting coefficients largely
depend on the calorimeter cell location.

Since in the early stage of ATLAS data taking, the calorimeter response might
not be fully understood, it has been decided to use the Monte Carlo driven response
technique as default calibration for physics studies in 2010.

7.4.3 Step 2: Offset Correction

There are two approaches to correct for jet energy not associated with the primary
interaction; the first one is an average event-based correction, while the second one is
a jet-by-jet correction. Jet-by-jet corrections can be used to improve the jet resolution,
and they will be discussed in step 5 (see Sect. 7.4.6). Here, we will concentrate on
the event-based correction.

Sources of jet energy offset are noise from the calorimeters, out-of-time pile-up
(due to the fact that the liquid-argon calorimeter drift time is about 600 ns), in-
time pile-up (multiple proton–proton collisions within the same bunch1) and the
underlying event (multiple parton–parton interactions, ISR, FSR, etc). No attempt is
made to correct for the underlying event as these effects are present at the jet truth
level, but the other contributions—noise and pile-up—can be corrected for in an

1 Note that the LHC at nominal luminosity is expected to have almost 25 simultaneous collisions
per bunch crossing.
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average way and measured as a function of pseudorapidity, instantaneous luminosity
and number of interaction vertices.

Currently, ATLAS has established two alternative methods, one based on calcu-
lating the average energy in randomly placed jet cones, the other one measuring the
average tower energy in zero bias and minimum bias events. The energy obtained
from zero bias events can be used to estimate the noise and out-of-time pile-up, while
the minimum bias events are used to estimate the in-time pile-up. The corrections
obtained depend on the instantaneous luminosity, the (average) number of primary
vertices and the pseudorapidity.

7.4.4 Step 3: (η, φ) Correction

QCD dijet events allow to check and correct the uniformity of the calibration as a
function of azimuth φ and pseudorapidity η. The uniformity in φ can be checked by
studying QCD jet rates which are supposed to be constant in φ. The uniformity in η
with respect to a reference region around η = 0 can be validated using the transverse
momentum balance between the dijet system. To limit unwanted imbalance effects
coming from initial and final state radiation (ISR and FSR), the two jets are usually
required to be back-to-back.

7.4.5 Step 4: Response Correction

7.4.5.1 Low- pT Jets

After a uniform detector response is obtained, the absolute hadronic energy scale will
be studied using (γ + jet) or (Z + jet) events, in which the pT balance between
the boson and the jet will be used to relate the hadronic scale to the well understood
energy of the electromagnetic objects. The Z boson is observed via its decay into
two leptons.

The (γ + jet)balance has the advantage of higher statistics compared to (Z + jet),
but has the disadvantage that there is a significant QCD background from misiden-
tified jets which mainly shows up at low pT .

The balance is affected by various physics effects such as ISR and FSR, the
underlying event, jet splitting and out-of-cone losses, which systematically limit the
precision of the procedure. These effects can be as large as 5–10% at 20 GeV, and
tend to decrease to the percent level at about 100 GeV. In order to reduce the bias due
to additional radiation, the boson and jet are typically required to be back-to-back
within �φ of ±0.2, and no further jets above a certain threshold are allowed in the
event.

Alternatively, the missing �ET projection method can be used with (γ + jet) or
(Z + jet) events. This method projects the transverse momenta of all activity in the
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calorimeter and of the photon or Z onto the direction of the photon or Z, and derives a
correction factor from this which is independent of the underlying event and pile-up,
and to a high extent also independent of the jet algorithm.

7.4.5.2 High- pT Jets

At very high energies, the statistics of (γ /Z + jet) events vanishes, and in that energy
region (pT > 400 GeV) the hadronic scale will be evaluated using QCD multijet
events by balancing the momentum of the highest jet to the momentum of the sum of
the other remnants jets. The method works iteratively its way up in pT , it is therefore
also called the “bootstrap method”.

Major systematic errors arise from the underlying event, from the fact that a
fraction of the soft radiation is missed and from the jet energy scale uncertainty of
the remnant jets. An uncertainty of the jet energy scale in the pT -range of 400 <
pT < 1100 GeV obtained with this method is about 8%.

Alternatively, instead of momentum balancing, the angle between particles in the
jets can be used in the track angle method for high-pT validation. The idea behind this
method is that the invariant mass of two particles in a jet is approximately constant
(given by the scale of 
QCD), which leads to a p−1

T behavior of the η − φ distance
between two particles in a jet (pT the transverse momentum of the jet).

This knowledge is used in the following way. First the distance between particles
in low-pT jets (with well calibrated pT ) is determined in both data and Monte Carlo
samples. In a second step, the Monte Carlo simulation is scaled in order to match the
data. Then, the distance between particles in high-pT jets in data is measured, and
consequently compared with the—scaled—Monte Carlo in order to deduct the pT

of the jet.

7.4.6 Step 5: Resolution Improvement

7.4.6.1 Track-Based Corrections

For both the global and the local calibration scheme, the jet energy resolution worsens
at low energy. Track-based corrections can be applied on jets after the standard jet
energy calibrations have been implemented, improving the jet energy resolution with
about 20% at low energy (about 50 GeV).

Pions are the main component of jets that deposit energy in the hadronic calorime-
ter. Roughly two thirds of the outgoing pions are charged, meaning that two thirds
of the jet energy is carried by tracks associated with the jet. Hence, the ratio of track
to calorimeter transverse momentum ( ftrack = ptracks

T /pcalorimeter
T ) is centered

around 0.66. ftrack provides a measure of the particle composition of the jet; jets
with a large ftrack have a larger amount of their energy carried by charged hadrons.
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In bins of ftrack, the distribution (preco
T − ptrue

T ) has a Gaussian shape with a
mean that depends on ftrack . This means that the combination of all ftrack-bins will
result in a much broader jet resolution compared to the individual ones. Therefore
Monte Carlo data are used to study the jet response E jet

T /Etrue
T in bins of ftrack

and jet pT , which is then used to derive correction factors. This correction to jets
will reduce the ftrack-dependence on the mean of (preco

T − ptrue
T ) and will therefore

improve the resolution.

7.4.6.2 Longitudinal Weighting Method

The longitudinal weighting method was introduced in Sect. 7.4.2 as an alternative
hadronic energy calibration method, starting from jets calibrated at the electromag-
netic scale. However, longitudinal weighting can also be used to correct the response
after the global or local cell weighting calibration has been applied. This correction
will also improve the jet energy resolution.

7.4.7 Step 6: Topology and Flavor Corrections

Another improvement of the jet calibration can be obtained specifically for jets
originating from a b quark. When a b quark is created, it decays semileptonically
into a muon and a neutrino with roughly a 10% probability. The neutrinos carry away
a fraction of the energy, introducing a systematic underestimation of the jet energy.
But since these jets can be tagged by the presence of a muon, the jet energy scale
can be corrected for this as a function of jet and muon pT , leading to a noticeable
improvement of the jet response of b-jets.
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Chapter 8
Jet Reconstruction with 2010 ATLAS Data

8.1 Jet Algorithm and Jet Calibration

From the previous chapter it is clear that many jet algorithms and calibration schemes
are foreseen in ATLAS. Due to the absence of real data for many years, the jet
reconstruction performance has mostly been evaluated using Monte Carlo generated
events. Even though these studies are very important for our understanding, real data
studies form undoubtedly a vital ingredient of the performance evaluation.

Now that the LHC has become operational, all methods will be investigated and
improved. But for the first physics publications in 2010, it has been decided to only
work with jets that are constructed from topoclusters using the anti-kT algorithm,
making the jets theoretically well behaved and robust against calorimeter noise.

Several calibration steps were discussed in the previous chapter, going from the
jet energy calibration, over offset and (η−φ) corrections, to the response correction
and corrections to improve the resolution. But with early data, only the first step,
i.e. the jet energy calibration will be applied to the jets, and none of the other steps,
since these steps require more data. The very first jets will be corrected using the
Monte Carlo driven response technique (see Sect. 7.4.2), since this method does not
depend heavily on the Monte Carlo description of the ATLAS calorimeter system.

8.2 Data Quality Requirements and Event Cleaning

8.2.1 Run Selection

ATLAS collects its data in so-called data runs, of which many typically cover
a few hours. These runs are subdivided into luminosity blocks, corresponding to
approximately two minutes of data taking with a constant instantaneous luminosity.
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Using the data quality framework that was discussed in Sect. 6.4, green, yellow1 and
red data quality flags are assigned to all sub-systems of the detector and all luminosity
blocks.

The ATLAS collaboration has decided to have the same data quality requirements
for jet studies as for studies with missing transverse energy (Emiss

T ). The data sample
for generic jet and Emiss

T studies is obtained by requiring a selection of data quality
flags to be green, and applying a few other criteria [1].

Since the primary sub-systems for jet studies are the calorimeters (LAr and
TileCal), these systems are required to be green. Note that the presence of hot and
noisy cells does not prohibit green data quality flags, because these fake cells can
be eliminated using jet cleaning cuts. However, a large LHC beam background will
mark the LAr as bad, since this results in large background levels seen by the LAr.

Furthermore, the trigger system must be functional, and the magnet system must
be on and stable. Also the muon system must be fully operational, since the missing
ET reconstruction depends on it. Because many jet studies use the properties of
tracks related to jets, the inner detector is required to operate at nominal voltage
and without major problems. Data quality flags for basic jet and Emiss

T distributions
aimed at finding problems in the jet reconstruction, are required to be green as well.
A final requirement is the presence of stable beams as declared by the LHC.

8.2.2 Event Selection

ATLAS defines a collision event as a head-on inelastic collision, which is the type of
event suitable for many physics studies. The main backgrounds to collision events
are caused by collisions between one proton beam and the beam gas within the beam
pipe (beam-gas collisions) and muons or pions traveling in the halo of the beam
(beam-halo). There is also a small background component formed by cosmic muons
overlapping with the actual collision events.

The background events are removed from the collision events by requiring that
the event has passed an appropriate trigger, which for jet studies is either a jet trigger
or a minimum bias trigger. The minimum bias trigger consists of Minimum Bias
Trigger Scintillators (MBTSs): two discs of 16 scintillators situated on each side of
the ATLAS detector, outside the end-caps of the inner detector. The minimum bias
trigger requires at least one hit on each MBTS, together with a signal from beam
pick-up timing devices (BPTXs), which are located on either side of the ATLAS
detector, at a distance of 175 m along the beam pipe. Jet triggers look for single or
multi jets with a minimum jet energy.

Furthermore, the timing of energy deposits in the end-cap inner wheels and for-
ward calorimeters is considered as well when trying to remove backgrounds; on both
sides there needs to be a number of cells that have deposits well above the noise level.

1 Right now, the yellow flag is assigned to bad but recoverable systems, i.e. systems that
are expected to obtain green flags after a—final—reprocessing of the data (with improved
reconstruction software). Therefore yellow flags should not appear in the final dataset.

http://dx.doi.org/10.1007/978-3-642-24597-8_6
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On top of these requirements, only events with at least one vertex with at least five
reconstructed tracks and a longitudinal position from the center of ATLAS < 10 cm
are selected.

8.2.3 Jet Selection

Fake jets arise from various sources, ranging from hardware problems, LHC beam
conditions, cosmic rays and cosmic air showers. Fake jets are classified as bad and
ugly jets.

Bad jets arise from in-time fake energy depositions, and they need to be rejected
at the analysis level. Dedicated cleaning cuts have been developed for this purpose:

• In order to reduce noise in the hadronic end-caps (HECs), either the fraction of the
jet’s energy deposited in the HEC is required to be smaller than 0.8, or the number
of energy-ordered cells accounting for at least 90% of the jet energy is supposed
to be greater than five.

• Coherent noise affecting the EM-calorimeters is a rare but unfortunate event that
fakes bad jets. These bad jets are characterized by a poor quality of the calorimeter
readout signal in the cells or by a large amount of energy reconstructed by the EM
cells. Therefore jets are required to have a limited number of EM cells with bad
quality or to have a fraction of energy in the EM-calorimeter that is smaller than
0.95.

• Jets reconstructed from out-of-time energy depositions, for example due to photons
produced by cosmic ray muons, need elimination as well. This can be done by
cutting on the jet time, which is defined as the energy-weighted cell time average
within two beam crossings. Jets with a jet time > 50 ns are disregarded. This is
a rather loose cut, given that the bunch crossing time is 25 ns (but so far, filled
bunches are much more separated).

Ugly jets are real jets but with a wrong calibration. This happens for jets that have
a large fraction of their energy from masked cells, i.e. cells that are broken, so that
only an estimate of the energy deposit can be made based on the neighboring cells.
When the fraction of energy from problematic cells to the total jet energy (at the EM
scale) exceeds 0.5, the jet is labeled ugly. Also jets which have an energy fraction in
the gap between the hadronic barrel and end-cap that exceeds 0.5, are labeled ugly
because the scintillators in that region have not been fully commissioned.

8.3 Jet Reconstruction Performance

8.3.1 Jet Energy Scale Uncertainty

The first determination of the jet energy scale (JES) and the evaluation of its sys-
tematic uncertainty for inclusive jets have been described in Ref. [2]. The systematic
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uncertainty on the jet energy scale is assumed to be given by a Gaussian distribution
with a width σ(pT , η) depending on the transverse momentum and the pseudorapid-
ity of the jet.

Monte Carlo studies show that the Monte Carlo driven response technique restores
the jet energy and transverse momentum response within 2% for non-isolated jets.
Furthermore, using this jet energy calibration method, a good agreement between
Monte Carlo simulations and data has been found, assuring the applicability of this
method to data.

Deviations from unity for the jet response are caused by the fact that for the deriva-
tion of the calibration constants, a different jet selection and topology is used and
the assumption is made that each constituent needs the same average compensation.
Therefore, the non-linearity of the jet response needs to be added to the jet energy
scale uncertainty.

Other contributions to the uncertainty can be divided into different categories.
Firstly there are the detector related contributions, such as the uncertainty
in the detector description (dead material, etc), shifted beamspots, noise descrip-
tion, the hadronic shower model and the uncertainty on the EM-scale (see Sect. 7.4.1
for the definition of the EM-scale).

Secondly there are the theoretical uncertainties which stem from uncertainties
in the fragmentation and the underlying event models, and the Monte Carlo event
generator tune.

Finally also multiple proton-proton collisions (pile-up) contribute to an uncer-
tainty, since—so far—there is no explicit correction for the extra energy they cause
during the jet calibration.

Dedicated Monte Carlo samples with systematic variations that aim at provid-
ing a conservative estimate of the detector-related and theoretical uncertainties
have been generated and compared to the nominal sample (used to derive the cal-
ibration constants) in order to deduct a systematic uncertainty for each individual
contribution. The uncertainties from non-independent effects are grouped (e.g. the
uncertainty on the hadronic shower description and the noise thresholds) and the
largest deviation is taken bin-by-bin. These results and other non-factorizable uncer-
tainties are then combined in quadrature. The non-linearity of the jet response is
added linearly.

An extra uncertainty is added in order to account for the uncertainty on the relative
response of jets in the hadronic end-cap compared to jets in the barrel. This choice
is motivated by a better knowledge of the material in the barrel than in the end-cap.

The relative response in data of end-cap to central jets is evaluated using the pT

balance technique (see Sect. 7.4.4) and the results show that the deviation from unity
of the relative energy scale in the end-cap region is nearly negligible for |η| < 2.1
and does not exceed 2% for 2.1 < |η| < 2.8).

Furthermore the difference between data and Monte Carlo in the relative energy
scale has been evaluated to be 2.4% for jets with 2.1 < |η| < 2.8.

Both contributions are added as an uncertainty for jets with |η| > 1.2. This choice
over-estimates the JES uncertainty because it partially double-counts the contribution
from the dead material uncertainty, but it is considered as a conservative estimate in

http://dx.doi.org/10.1007/978-3-642-24597-8_7
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Fig. 8.1 Absolute JES
uncertainty σ(pT , η) as
function of η for three
different bins of jet pT .
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a region where the material budget could not be well described by the Monte Carlo
simulation.

As for the pile-up contributions, again a conservative approach is taken; the aver-
age impact of pile-up is considered as an additional systematic uncertainty estimated
directly from data, assuming that all jets and events are affected. This provides an
upper bound on the uncertainty due to pile-up effects. For data that were recorded
up to May 2010, and for jets with pT = 20 GeV, the pile-up relative systematic
uncertainty is about 1% in the barrel and 1 − 2% in the end-cap. For pT > 50 GeV,
the pile-up uncertainty is only significant for |η| > 2.1 and it is smaller than 1%.

The total inclusive uncertainty, obtained from combining all contributions, is
shown in Fig. 8.1 for three different pT bins as a function of pseudorapidity.
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Chapter 9
Dijet Angular Distributions at

√
s = 14 TeV:

A Phenomenology study

9.1 Introduction

The LHC is designed to collide protons at a center of mass energy of 14 TeV. This
energy will however only be reached after a long initial run at

√
s = 7 TeV. Even

though collisions at nominal energy are still far ahead in the future, it is very instruc-
tive to already explore at this moment the ultimate potential of the LHC at nominal
energy.

In this chapter we will therefore present a phenomenology study at
√

s = 14 TeV.
First we will perform a QCD study; we will calculate the distributions up to NLO
in four different bins of dijet invariant mass using different Monte Carlo programs
and different jet algorithms, and we will also investigate the systematic uncertainties
coming from the choice of the parton distribution functions and the renormalization
and factorization scales.

In the second part we will present the effects on the distributions coming from
gravitational scattering and black hole formation in large extra dimensions. Assuming
a 25% systematic uncertainty, we will report a discovery region for the mass bin
1 < M j j < 2 TeV at 10 pb−1 integrated luminosity.

This study was published in Ref. [1] and reported in Ref. [2].

9.2 Kinematics Cuts

Dijet angular distributions were discussed in Sect. 4.2. The goal is to study the
differential cross section

dσ

dχ
=

∫
dx1

∫
dx2 f1(x1, Q2) f2(x2, Q2)

dσ̂

dχ
(9.1)

in bins of dijet invariant mass. QCD is expected to give rise to a cross section that is
rather flat in χ, while new physics often shows up as an increase of the cross section
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√
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Table 9.1 Values of pT,min
for 4 different dijet invariant
mass bins and 2 values of
χmax

Mass bin χmax = 100 χmax = 600
pTmin (GeV) pTmin (GeV)

0.5 < M j j < 1 TeV 35 14
1 < M j j < 2 TeV 70 28
2 < M j j < 3 TeV 140 57
3 TeV < M j j 210 86

at low χ.The following four mass bins were chosen for
√

s = 14 TeV: 0.5 < M j j <

1 TeV, 1 < M j j < 2 TeV, 2 < M j j < 3 TeV and 3 TeV < M j j .

Selection cuts in pseudorapidity were previously discussed as well; see Eq. 4.22:

|η1 − η2| < 2ηmax − c (9.2)

|η1 + η2| < c (9.3)

In this study we take c = 1.5. The ATLAS calorimeters can measure jets fully up
to ηmax ∼ 4. With this choice for the value of c and with ηmax = 4, the angular
distributions can be measured up to χmax ∼ 600. In case we are only interested in
measuring up to χmax ∼ 100 (e.g. for new physics searches), we can limit ourselves
to ηmax = 3.1.

At lowest order, the relation between M j j , χ and the transverse momentum pT

is the following:

M j j = pT (
√
χ + 1/

√
χ) (9.4)

The selection cuts on dijet mass (M j j,min < M j j < M j j,max) and χ(χ < χmax),

will determine the minimum pT the two leading jets in the event need to have in
order to pass the selection cuts:

pT,min,LO = M j j,min

(
√
χmax + 1/

√
χmax)

(9.5)

NLO contributions will lower the minimum transverse momentum with a factor
√

2,
as a consequence of the fact that the subleading jet in the event can never have a
transverse momentum less than half the transverse momentum of the leading jet. So,
up to NLO:

pT,min = M j j,min√
2(

√
χmax + 1/

√
χmax)

(9.6)

Equation 9.6 will be used as a pT -selection cut to optimize the efficiency of the
Monte Carlo event generation. Table 9.1 lists the values of pT,min for the different
mass bins and for two different values of χmax.

http://dx.doi.org/10.1007/978-3-642-24597-8_4
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9.3 QCD Calculations

We will use both JETRAD [3] and NLOJET++ [4] for NLO jet calculations. The
programs use a conceptually very different approach, see Chap. 3 for a detailed
discussion.

While the considerations in the previous section are at the parton level, experi-
ments have to deal with jets made of hadrons, which are the result of three major
steps: hard interaction, parton showering and hadronization. Jets carry the memory
of the hard interaction and a good jet-finding algorithm can exhibit this information
in an infrared and collinear safe way. A detailed discussion about jet algorithms
was given in Sect. 7.2. Here we will use the inclusive kT algorithm and SISCone.
Although seeded cone algorithms are not infrared stable, we will also present results
with a seeded cone algorithm because they are still frequently used in experiments.
More precisely, we will use a seeded, iterative cone with progressive removal that
comes with JETRAD and was brought into use by the CERN UA1 collaboration [5].
NLOJET++ comes with an exact seedless cone algorithm which was first proposed
in Ref. [6] and finds all stable cones in a given configuration, ensuring infrared safety.
We will also show results using this algorithm.

Note that the final state for an NLO order calculation at the matrix element level
contains at most three partons and that we consider only those events with at least
two jets. Therefore most problems emerging from infrared and collinear instabilities
are absent in our calculations.

The major difference between the previously mentioned cone algorithms is that
the JETRAD seeded cone clusters two nearby partons if their separation in (η, φ) is
less than the cone radius R, while the NLOJET++ seedless cone and SISCone do so
if the cone containing both partons is stable, i.e. if their separation is smaller than
R(1 + z), with z = pT,2/pT,1 and pT,2 < pT,1 [7].

Figure 9.1 shows the angular distributions for the mass bin 1<M j j < 2 TeV,
calculated both with JETRAD and NLOJET++, using an inclusive kT algorithm
with radius parameter R = 1.0. JETRAD uses a different parametrization of the strong
coupling constant than NLOJET++, which explains the difference between the curves
to a large extent. To illustrate this, we show in Fig. 9.2 the angular distributions with
αs kept constant at 0.1.

NLOJET++ (coded in C++) has the advantage over JETRAD (coded in fortran)
that it can be combined with more modern jet algorithms, such as SISCone and an
exact seedless cone. But it has the disadvantage that the angular distributions have
a statistical error that is not homogeneous over the whole χ range, but is instead
increasing with χ, which is not the case for a JETRAD calculation, as can be seen
from Fig. 9.1.

Figure 9.3 compares calculations at the Born (lowest order) level with next-to-
leading order calculations, done with JETRAD, for the four different mass bins
and for 1<χ < 600. All NLO distributions have been calculated with the
next-to-leading order CTEQ6M PDF [8], while the leading order distributions have
been calculated both with the CTEQ6M PDF and with the leading order CTEQ6L1

http://dx.doi.org/10.1007/978-3-642-24597-8_3
http://dx.doi.org/10.1007/978-3-642-24597-8_7
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Fig. 9.1 NLO calculations
using JETRAD and
NLOJET++ and an inclusive
kT algorithm with R = 1.0
for the mass bin
1 < M j j < 2 TeV
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Fig. 9.2 NLO calculations
using JETRAD and
NLOJET++ and an inclusive
kT algorithm with R = 1.0
for the mass bin
1 < M j j < 2 TeV and for
αs = 01
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PDF. Two different jet algorithms are used for the NLO calculations; the JETRAD
seeded cone algorithm with radius R = 0.7, and an inclusive kT algorithm with R = 1.0
level calculation, the outgoing partons are back-to-back, so that a jet algorithm is
redundant. The NLO angular distributions with the two different jet algorithms tend
to have the same shape, but differ in absolute normalization.

From this figure, we also note that the NLO calculations are flatter than the Born
calculations, especially at high χ values, which can be explained to a large extent
by the fact that the running of αs with pT (or equivalently χ) has more effect on
a LO than an NLO calculation. To illustrate this, we have plotted in Fig. 9.4 four
different LO calculations in the mass bin 1<M j j < 2 TeV; the dashed blue curve is
the same Born calculation as the one presented in the top right plot of Fig. 9.3. For
this calculation, the values of αs and of the factorization scale (μF ) have been varied
according to the pT of the hardest jet. The other three curves show what happens if
αs and/or μF have been kept constant. The grey dotted curve is a calculation with
αs = 0.1 and μF = 100 GeV and is much flatter compared to the blue one. The red
curve has been calculated with αs = 0.1 and running of μF, and the green one with
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Fig. 9.3 LO and NLO angular distributions calculated with JETRAD for 4 different mass bins. The
NLO calculations are reconstructed with two different jet algorithms: the JETRAD seeded cone
algorithm with R = 0.7, and an inclusive kT algorithm with R = 1.0. All NLO curves are calculated
with the CTEQ6M PDF, while the LO distributions are calculated with both the CTEQ6M and
the CTEQ6L1 PDF. In the bottom two plots, the LO CTEQ6L1 and LO CTEQ6M curves are
overlapping

Fig. 9.4 Influence of the
running of αs and the
variation of μF on LO
distributions
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μF = 100 GeV and running of αs . There is a much bigger effect on the distributions
from keeping αs fixed than from μF .
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Fig. 9.5 Influence of the
running of αs and the
variation of μF on NLO
distributions. The
calculations are done with
JETRAD and an inclusive kT
algorithm with R = 1.0
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But these are observations at the Born level. At NLO, the sensitivity due to scale
variations is reduced as can be observed in Fig. 9.5. This is because perturbation
theory tells us that an all-order calculation should not depend on the renormalization
scale at all, and therefore, compared to the LO calculation, an NLO calculation is
more stable against the running of αs . Furthermore, an NLO order calculation uses
an NLO expansion of αs, and the running of αs at NLO is less pronounced than at
LO. Figures 9.4 and 9.5 clearly illustrate the need for an NLO order calculation with
the running of αs and μF enabled.

This is also confirmed by calculations done with NLOJET++. In Fig. 9.6 we
present the angular distributions, done with NLOJET++, for the same mass bins,
using the NLOJET++ seedless cone algorithm with R = 0.7 and overlap 0.5, the SIS-
Cone algorithm with R = 0.7 and overlap 0.75, and an inclusive kT algorithm with R =
0.6. We show the distributions for 1<χ < 100 only and,
compared to the big variations between the LO and NLO calculations observed at high
χ (χ > 100) in Fig. 9.3 , the difference between LO and NLO is much less at small
values of χ.

In Fig. 9.7 we show the ratio of the NLO cross section calculated with CTEQ6M
over the LO one calculated with CTEQ6L1, for 1<χ <100 and for different jet
algorithms, a quantity which is often called the k-factor in literature. The k-factor
varies around 1 with a deviation of 30% at the most.

The calculations above have been done with the CTEQ6M and CTEQ6L1 par-
ton distribution functions and with a normalization and factorization scale chosen to
be the transverse momentum of the hardest jet. Uncertainties coming from parton
distribution functions (PDFs) and the choice of renormalization (μR) and factor-
ization (μF ) scale will contribute to a systematic error. We will investigate them
using JETRAD with an inclusive kT algorithm with R = 1.0. The exact scale and
PDF uncertainties may vary with different jet algorithms and cone sizes.

Figure 9.8 shows the angular distributions for the mass bin 1<M j j < 2 TeV
for three different PDF-sets, namely CTEQ6M, CTEQ66 [9] and MSTW2008NLO
[10]. The distributions differ mainly in absolute normalization, and less in shape.



9.3 QCD Calculations 111

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 10  20  30  40  50  60  70  80  90  100

dσ
/d

χ 
(p

b)

χ

0.5 < Mjj < 1 TeV

NLO (CTEQ6M): inclusive kT, R = 0.6
NLO (CTEQ6M): SISCone, R = 0.7

NLO (CTEQ6M): seedless Cone, R = 0.7
LO (CTEQ6L1)

NLO (CTEQ6M): inclusive kT, R = 0.6
NLO (CTEQ6M): SISCone, R = 0.7

NLO (CTEQ6M): seedless Cone, R = 0.7
LO (CTEQ6L1)

NLO (CTEQ6M): inclusive kT, R = 0.6
NLO (CTEQ6M): SISCone, R = 0.7

NLO (CTEQ6M): seedless Cone, R = 0.7
LO (CTEQ6L1)

NLO (CTEQ6M): inclusive kT, R = 0.6
NLO (CTEQ6M): SISCone, R = 0.7

NLO (CTEQ6M): seedless Cone, R = 0.7
LO (CTEQ6L1)

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450

 10  20  30  40  50  60  70  80  90  100

dσ
/d

χ 
(p

b)

χ

1 < Mjj < 2 TeV

 0

 2

 4

 6

 8

 10

 12

 14

 10  20  30  40  50  60  70  80  90  100

dσ
/d

χ 
(p

b)

χ

2 < Mjj < 3 TeV

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 10  20  30  40  50  60  70  80  90  100

dσ
/d

χ 
(p

b)

χ

3 TeV < Mjj

Fig. 9.6 LO and NLO angular distributions calculated with NLOJET++ for 4 different mass bins.
The NLO calculations are reconstructed with three different jet algorithms: an inclusive kT algorithm
with R = 0.6, SISCone with R = 0.7, and the NLOJET++ seedless cone algorithm with R = 0.7

Normalizing the distributions to unit area make them differ no more than 3% over
the whole χ range, as can be seen in Fig. 9.9.

To further examine the uncertainties coming from PDFs, we have calculated the
angular distributions for all 44 error members of the CTEQ66 PDF and applied the
Master Equation suggested in Ref. [11] to deduct a positive (+) and negative (−)
uncertainty on a quantity X:

�X+
max =

√√√√ N∑
i=1

[max(X+
i − X0, X−

i − X0, 0)]2 (9.7)

�X−
max =

√√√√ N∑
i=1

[max(X0 − X+
i , X0 − X−

i , 0)]2 (9.8)

�X+ adds in quadrature the PDF error contributions that lead to an increase in the
observable X, and �X− the PDF error contributions that lead to a decrease. Using
this formula, the error on the dijet angular distribution calculated with the central
PDF member, in the mass bin 1<M j j < 2 TeV is plotted in Fig. 9.10 as a blue band
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Fig. 9.8 Angular
distributions with different
PDF-sets for the mass bin
1 < M j j < 2 TeV. The
calculations are done with
JETRAD and an inclusive kT
algorithm with R = 1.0
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around the central member. The uncertainties given in terms of percentage are shown
in Fig. 9.11.

The choice of μR and μF will also influence the distributions. We have stud-
ied this by letting μR and μF vary independently between 0.5, 1 and 2 times the
transverse momentum of the hardest jet, resulting in 9 different distributions in total.



9.3 QCD Calculations 113

 0

 5

 10

 15

 20

 0  20  40  60  80  100

er
ro

r 
(%

)

χ

unnormalized
normalized to unit area χ < 100

Fig. 9.9 Difference in terms of percentage between the dijet angular distributions calculated with
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Fig. 9.10 Central member of the CTEQ66 PDF, together with its uncertainty band for the mass bin
1 < M j j < 2 TeV. The calculations are done with JETRAD and an inclusive kT algorithm with
R = 1.0

Figures 9.12 and 9.13 summarize the results for the mass bin 1 < M j j < 2 TeV. The
other mass bins have similar results. For all these figures, the plots at the left show
the distributions for χ < 100, while the plots at the right go up to χ = 600. The
variables r and f used in the figures, denote the fraction of the transverse momentum
of the leading jet at which respectively the renormalization and factorization scale
are evaluated. In Fig. 9.12 μF is kept constant, while μR is varied, which influences
both the shape and the normalization of the distributions. The effect is small at low
χ but increases drastically with increasing χ values. The plots in Fig. 9.13 all have
fixed μR and varying μF , which causes a change rather in normalization and not so
much in shape.

The difference between these distributions is an estimate of the uncertainty
coming from the choice of μR and μF . In Fig. 9.14 we show the uncertainty
on the distributions both with and without normalization to unit area 1<χ < 100.
Normalizing the distributions reduces the error drastically; averaged over the wholeχ
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Fig. 9.12 Variation of the choice of μR for the mass bin 1 < M j j < 2 TeV. The variables r and f in
the figure denote the fraction of the transverse momentum of the leading jet at which respectively
the renormalization and factorization scale are evaluated, i.e. μR = r pT and μF = f pT . Left
χ < 100, right χ < 600. The calculations are done with JETRAD and an inclusive kT algorithm
with R = 1.0

range, the uncertainty on the normalized distribution is 9%, and is never
exceeding 20%.

Figure 9.15 shows the combination in quadrature of the uncertainties coming
from the choice of renormalization and factorization scale (Fig. 9.14), together
with the intrinsic uncertainty from the CTEQ66 PDF (Fig. 9.11), drawn as an
error band around the calculation done with nominal values (central CTEQ66 mem-
ber and μR =μF = pT of the leading jet). Both the distributions with (plot right)
and without (plot left) normalization to unit area 1<χ < 100 are shown. In both
plots, the error band is dominated by the error coming from the choice of the
scales, more precisely, the renormalization scale introduces the major uncertainty.
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Fig. 9.13 Variation of the choice of μF for the mass bin 1 < M j j < 2 TeV. The variables r and f in
the figure denote the fraction of the transverse momentum of the leading jet at which respectively
the renormalization and factorization scale are evaluated, i.e. μR = r pT and μF = f pT . Left
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Fig. 9.14 Systematic
uncertainty coming from the
choice of μR,F for the mass
bin 1 < M j j < 2 TeV, both
on normalized and not
normalized distributions
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When normalized to unit area 1<χ < 100, the combined error does not exceed 20%
over the whole χ range.
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Fig. 9.15 Black line: calculation done with nominal central CTEQ66 member and μR = μF =
pT of the leading jet, both with (plot right) and without (plot left) normalization to unit area
1<χ < 100. Blue band: error band from combining the uncertainties coming from the choice of
renormalization and factorization scale (Fig. 9.14) , together with the intrinsic uncertainty from the
CTEQ66 PDF (Fig. 9.11)

The calculations have been done at the parton level of the hard interaction, without
showering, multiple interactions or hadronization. In Fig. 9.16 we show what happens
if we turn on these processes. In the top figure, we have plotted angular distributions
calculated with PYTHIA 6.410 [12]. The dashed gray curve is a calculation at the
Born level, without switching on showering, multiple interactions or hadronization.
Initial state radiation (ISR) and primordial kT (prim kT) have been turned on for the
dashed red curve, and the full blue curve is a calculation with final state radiation
(FSR) included (but initial state radiation and primordial kT turned off). As can be
observed in the figure, final state radiation causes losses out of the jet cone. The
dashed magenta curve covers both initial and final state showers, primordial kT and
multiple interactions. Finally, the full green curve includes all these processes and
hadronization. The calculations are done with the PYCELL cluster jet algorithm
from the PYTHIA library and the PYTHIA default settings for initial and final state
radiation, multiple interactions and hadronization. For this particular choice of jet
algorithm and settings, the difference between the calculation at the Born level and
the one at the hadron level is non negligible, as can be seen from their ratio, shown
in the bottom plot of Fig. 9.16. The corrections may vary for different jet algorithms
and PYTHIA settings.

9.4 Gravitational Scattering and Black Hole Formation
in Large Extra Dimensions

In this section we use the GravADD generator to make a study about gravitational
scattering and black hole formation in large extra dimensions. We refer to Chap. 5
for more information about the model and the generator.

The calculations have been done using an inclusive kT algorithm with separation
parameter 1.0. We have used the k-factor which was derived in the previous section
(see Fig. 9.7) to scale the PYTHIA QCD distributions up to NLO.

http://dx.doi.org/10.1007/978-3-642-24597-8_5
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Fig. 9.16 Including primordial kT , initial and final state radiation, multiple interactions and
hadronization in a LO calculation. The calculations are done using PYTHIA and the PYCELL
cluster jet algorithm

Table 9.2 Different parameter sets

Name Meff (TeV) n Ms/MP MP (TeV) Ms (TeV)

C1 1.0 6 1.0 0.282 0.282
C2 1.0 6 2.0 0.564 1.128
C3 1.0 6 4.0 1.128 4.513
C4 0.5 6 8.0 1.128 9.027
C5 1.0 6 8.0 2.257 18.05
C6 1.0 4 4.0 1.263 5.053

As discussed in Chap. 5 , the model parameters determining the phenomenology
are MP , n and Ms .An equivalent set of parameters is Meff (Eq. 5.35), Ms/MP and n,
and we will work with the latter one. Table 9.2 shows a few combinations. All
parameter choices in Table 9.2 have been simulated in proton-antiproton collisions
at an energy of

√
s = 1.8 TeV for the mass bin 635 GeV <M j j and for χ ≤ 20,

and turned out to show no deviations from QCD, which is consistent with the dijet
angular distribution measurements done by the CDF [13] and D0 collaboration [14]
at the Tevatron.

http://dx.doi.org/10.1007/978-3-642-24597-8_5
http://dx.doi.org/10.1007/978-3-642-24597-8_5
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Fig. 9.17 Angular distributions for C1 (see Table. 9.2) for the mass bin 1 < M j j < 2 TeV. Left
cross section in mb, right cross section normalized to unit area 1 < χ < 100
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Fig. 9.18 Angular distributions for C3 (see Table. 9.2) for the mass bin 1 < M j j < 2 TeV. Left
cross section in mb, right cross section normalized to unit area 1 < χ < 100

To get a feeling of the impact of the parameters, we have performed a few runs
with PYTHIA with parton showers, multiple interactions and hadronization turned
off. Figures 9.17, 9.18, 9.19, 9.20, 9.21 and 9.22 show the dijet angular distributions,
with and without normalizing to unit area 1<χ < 100, for some of the parameter
sets defined in Table. 9.2. Previous experiments [13, 14] have shown that normaliz-
ing the distributions reduces the experimental error (see also Sect. 10.6 of the next
chapter). Furthermore, in the previous section we have demonstrated that the theo-
retical error on normalized distributions is smaller as well (Fig. 9.15). We have plot-
ted the different contributions—i.e. gravitational scattering (GS), black holes (BH)
and QCD—separately, as well as their sum. As with most new physics, the biggest
effects from gravitational scattering and black hole formation show up at low χ (high
pT ) values. How much each process contributes to the total cross section, depends
on the parameter settings and the mass bin. We will make a few quantitative
observations.

Increasing Ms/MP while keeping Meff fixed, results in an increase of gravitational
scattering and a decrease of black hole formation. The effect is clearly visible when set
C1 (Fig. 9.17) is compared with set C3 (Fig. 9.18) for the mass bin 1 < M j j < 2 TeV.
For C1, the total cross section at low χ values, is dominated by black holes, while

http://dx.doi.org/10.1007/978-3-642-24597-8_10
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Fig. 9.19 Angular distributions for C3 (see Table. 9.2) for the mass bin 2 < M j j < 3 TeV. Left
cross section in mb, right cross section normalized to unit area 1 < χ < 100
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Fig. 9.20 Angular distributions for C4 (see Table. 9.2) for the mass bin 1 < M j j < 2 TeV. Left
cross section in mb, right cross section normalized to unit area 1 < χ < 100

gravitational scattering is of no importance. But this changes drastically for C3; black
holes have almost completely disappeared for C3, but the gravitational scattering
cross section has increased by two orders of magnitude. QCD still dominates in this
mass bin, but gravitational scattering starts to dominate the cross section for mass
bins ≥2 TeV, as can be seen in Fig. 9.19.

Compared to C3, C4 has the same fundamental Planck scale and number of extra
dimensions (1 and 6 TeV, respectively), but a different width of the membrane (9 vs
4.5 TeV), and this causes effects from gravitational scattering to set in at lower mass
values; from Fig. 9.20, it is observed that gravitational scattering dominates the cross
section from 1 TeV onwards, which is not the case for C3 (Fig. 9.18).

Figure 9.21 examines what happens if we double the effective and fundamental
Planck scale; we have plotted the angular distribution in the mass bin 3 TeV < M j j

for C4 (Fig. 9.21 left) and C5 (Fig. 9.21 right). As expected, gravitational scattering
becomes weaker for C5, but it still strongly dominates QCD. The cross section
for black hole formation has decreased much more than the one for gravitational
scattering.



120 9 Dijet Angular Distributions at
√

s = 14

 1e-11

 1e-10

 1e-09

 1e-08

 1e-07

 1e-06

 1e-05

 0  10  20  30  40  50  60  70  80  90  100

dσ
/d

χ 
[m

b]

χ

Dijet angular distribution 

QCD + GS + BH
QCD

GS
BH

 1e-13

 1e-12

 1e-11

 1e-10

 1e-09

 1e-08

 1e-07

 1e-06

 0  10  20  30  40  50  60  70  80  90  100

dσ
/d

χ 
[m

b]

χ

Dijet angular distribution 

QCD + GS + BH
QCD

GS
BH

Fig. 9.21 Angular distributions (in mb) in the mass bin 3 TeV < M j j for C4 (left) and C5 (right)
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Fig. 9.22 Angular distributions (in mb) in the mass bin 3 TeV < M j j for C3 (left) and C6 (right)

Finally also the number of dimensions matters. Figure 9.22 gives the angular
distributions in the mass bin 3 TeV < M j j for 6 (parameter set C3, plot at the
left) and 4 (parameter set C6, plot at the right) extra dimensions, while keeping the
other parameters constant. The difference between 6 and 4 extra dimensions is very
small.

Note that when gravitational scattering is the most important contribution, devia-
tions from the QCD cross section are still visible at large χ values, which is not the
case for black holes. But because at large χ values gravitational scattering is mainly
a t-channel process, the shape of the graviational scattering curve is close to the QCD
one, and the difference between QCD and gravitational scattering disappears in the
normalized distributions.

Deviations from QCD are most visible at low χ values, and a summary of the
above observations is done in Table. 9.3 here we give for a selection of parameter
settings and mass bins, the integrated cross sections between χ = 1 and χ = 50 for
QCD (σQCD), gravitational scattering (σGS) and black holes (σBH) separately.

We will now compare the different new physics scenarios with QCD for a
given integrated luminosity, so that we can establish a region sensitive to discovery.
We use the distributions that are normalized to χ < 50 and perform a chi-square
(χ2) test between them.
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Table 9.3 Different parameter sets and the relevance of GS and BH in several mass bins

Name Meff (TeV) n Ms/MP MP Ms Mass bin σQCD σGS (nb) σBH

(TeV) (TeV) (TeV) (nb) (nb) (nb)

C1 1.0 6 1.0 0.282 0.282 [1,2] 7.23 8.2310−3 113
C2 1.0 6 2.0 0.564 1.128 [1,2] 7.23 4.7410−2 20.5
C3 1.0 6 4.0 1.128 4.513 [1,2] 7.23 7.0110−1 1.0110−1

C3 1.0 6 4.0 1.128 4.513 [3,14] 2.3010−2 8.8010−1 2.3310−1

C4 0.5 6 8.0 1.128 9.027 [0.5,1] 47.0 3.44 2.7810−3

C4 0.5 6 8.0 1.128 9.027 [1,2] 7.23 37.37 0.10
C4 0.5 6 8.0 1.128 9.027 [2,3] 6.9610−2 2.98 1.2210−1

C4 0.5 6 8.0 1.128 9.027 [3,14] 2.3010−2 1.89 2.3310−1

C5 1.0 6 8.0 2.257 18.05 [3,14] 2.3010−2 5.4310−1 4.1510−3

C6 1.0 4 4.0 1.263 5.053 [3,14] 2.3010−2 8.1510−1 1.4510−1

We have used the following recipe. For a given integrated luminosity, we
consider the normalized distributions (d NQCD/dχ)/NQCD and (d Ntotal/dχ)/Ntotal,

with NQCD and Ntotal respectively the number of QCD and total (= QCD + GS + BH)
events. We perform a chi-square (χ2) test between these distributions to test the
null hypothesis that (d Ntotal/dχ)/Ntotal follows the QCD distribution. We use both
a statistical and systematic uncertainty for the calculation of χ2:

χ2 =
∑

allbinsi

⎡
⎢⎣

(
NQCD,i
NQCD

− Ntotal,i
Ntotal

)2

s2
stat,i + s2

sys,i

⎤
⎥⎦ , (9.9)

where NQCD,i and Ntotal,i are the number of QCD and total events respectively in
bin i. The statistical error sstat,i is for each bin taken as

√
NQCD,i . See Appendix A

for the derivation of the above formula (Eq. A.21).
Based on the fact that the theoretical uncertainty does not exceed 20% (see Fig.

9.15 right), and that experimental uncertainties reported by the Tevatron experiments
are less than 11% [13, 14], the systematic error ssys,i is taken to be 25% over the whole
χ range. Using χ2 (Eq. 9.9) and the number of degrees of freedom, the probability p
of having d Ntotal/dχ/Ntotal given the null hypothesis is true, can be calculated. The
null hypothesis of identity is rejected for p < 0.1.

Let us focus on the mass bin 1 < M j j < 2 TeV and consider only those worlds
with n = 6 extra dimensions and work with an integrated luminosity of 10 pb−1. We
have used the recipe mentioned above to test several physics scenarios and the green
colored area in Fig. 9.23 shows for which model parameters—Meff and Ms/MP —
the null hypothesis is rejected. This region is from now on called the region of
discovery.

As can be seen from the figure, large values of Meff (Meff > 1.5 TeV) and small
values of Ms/MP (Ms/MP < 1) fall outside the region of discovery. The reason is
the absence of black hole creation because in that region the lower limit on the black
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Fig. 9.24 Angular distributions in the mass bin 3 TeV < M j j for C3, with and without parton
showers. Left cross section in mb, right cross section normalized to unit area 1 < χ < 100

hole mass is drastically increasing with decreasing Ms/MP . See Eq. 5.40 and the
discussion underneath.

Above calculations have been done without parton showering, multiple interac-
tions or hadronization. In Fig. 9.24 we compare the angular distributions with and
without parton showers in the mass 3 TeV < M j j bin for C3. The effect of parton
showers is most visible at low χ values.

9.5 Conclusions

We have discussed dijet angular distributions at
√

s = 14 TeV. First we have
performed a QCD study, then we have shown the distributions in a scenario with
gravitational scattering and black hole formation in large extra dimensions.

http://dx.doi.org/10.1007/978-3-642-24597-8_5
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We have used JETRAD and NLOJET++ for the calculation of QCD up to next-
to-leading order, and found that both programs generate similar results. The angular
distributions at NLO are flatter than the Born calculations, especially at large values
of χ (χ > 100), which is mainly caused by the fact that the running of αs has less
effect on NLO than on LO calculations. Different jet algorithms tend to keep the
shape of the distributions unchanged, but give a different normalization.

We have investigated the systematic uncertainties coming from the choice of
renormalization (μR) and factorization (μF ) scale and parton distribution function
(PDF), and found that a change in μF and PDF mainly influences the normalization.
On the other hand, a change in μR has an impact on both the normalization and the
shape of the distributions; the distributions have a similar behavior at low χ but tend
to spread out as χ increases.

The effects on dijet angular distributions from gravitational scattering and black
hole production, have been studied in the ADD scenario, with the extra requirement
that the membrane on which the standard model fields are allowed to propagate, has
a finite but small width. The model parameters are the fundamental Planck scale, the
width of the membrane and the number of extra dimensions, and it has turned out that
the phenomenology is very much dependent on the fundamental Planck scale and the
width of the membrane. For a fundamental Planck scale of around 1 TeV and for a
wide range of parameter settings, quantum gravity effects are noticeable in mass bins
above 1 TeV. For small widths of the membrane, gravitational scattering is the most
important process, while black hole formation dominates for wider membranes. In
both cases, the effects mainly show up at small values of χ. The same conclusions
can be made for the normalized distributions. Using the shape of the distributions,
rather than the absolute normalization, for χ < 50, we have determined the region
of parameter space that could be discovered with 10 pb−1 integrated luminosity and
a 25% systematic uncertainty in the mass bin 1 < M j j < 2 TeV.

In conclusion, uncertainties from QCD that cannot be reduced by normalizing
the distributions mainly show up at large values of χ (χ > 100), while effects from
quantum gravity are mostly present at small values of χ. Depending on the region
of χ under study, dijet angular distributions can therefore either be used as a probe
for new physics or as a test of QCD.
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Chapter 10
Preparing ATLAS for the Measurement
of Dijet Angular Distributions at

√
s = 7 TeV

10.1 Introduction

This chapter describes a Monte Carlo study aimed at preparing ATLAS for the
measurement of dijet angular distributions, by establishing the measurement proce-
dure, investigating experimental and theoretical uncertainties, discussing unfolding
issues, and studying the sensitivity to gravity mediated processes that were discussed
in Chap. 5. This work was documented in Ref. [1].

Since in the initial phase of LHC protons collide at
√

s = 7 TeV, we carry out
this study at this energy and with an integrated luminosity ranging from 1 pb−1 to
10 pb−1, which is a realistic expectation for the first year of data taking.

In order to be able to relate jet properties to the underlying partonic scattering, a
jet algorithm that is infrared and collinear safe must be used. We will use the ATLAS
default jet algorithm, i.e. the anti-kT algorithm, with a radius parameter of 0.6.

The structure of this chapter is as follows: first we start with a discussion about the
triggers used for this kind of measurement (Sect. 10.2). Section 10.3 describes the
kinematic cuts and histogram binning, optimized for the trigger set-up and the geom-
etry of the detector. QCD predictions up to next-to-leading order and the calculation
of k-factors are the topic of Sects. 10.4 and 10.5 investigates theoretical uncertainties
coming from the renormalization and factorization scale and the choice of PDFs.
Experimental uncertainties are detailed in Sect. 10.6. Since detector effects deform
the measured distribution, we need to correct the data for that. This procedure of
data unfolding will be the topic of Sect. 10.7. The ATLAS sensitivity to black hole
production and gravitational scattering in large extra dimensions is investigated in
Sect. 10.8. Finally, conclusions are made in Sect. 10.9.

N. Boelaert, Dijet Angular Distributions in Proton–Proton Collisions, Springer Theses, 125
DOI: 10.1007/978-3-642-24597-8_10, © Springer-Verlag Berlin Heidelberg 2012
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Table 10.1 Trigger menu for
1031cm−2s−1 luminosity
running at

√
s = 7 TeV

L1 trigger Threshold (EM scale) (GeV) Prescale

L1_J5 5 2000
L1_J10 10 1000
L1_J20 20 50
L1_J40 40 3
L1_J70 70 5
L1_J100 100 1
L1_J130 130 1

10.2 Trigger Study

10.2.1 Trigger Menu

We will accept events passing one of the single jet triggers. See Sect. 6.2 for more
details about the ATLAS trigger system.

The trigger menu that is currently expected in early data taking at 1031 cm−2s−1

luminosity consists of the L1 single jet triggers shown in Table 10.1. All triggers
follow the same naming convention, L1_JX, indicating a L1 trigger which requires
that at least one jet in the event has a transverse momentum above the threshold
of X GeV. For each trigger, the prescale factor is mentioned in the table as well.
Prescales are used to reduce the trigger rates; for a prescale factor of N, only 1 in
every N events which pass the trigger is actually accepted. In the initial stage of the
LHC operation, the instantaneous luminosity is lower (<1029 cm−2s−1) and there is
enough bandwidth available to write all events onto tape without applying a prescale.
In that case, L1_J5 is used as the single jet trigger.

In this study we will use the L1_J5, L1_J40, L1_J70 and L1_J130 triggers from
the expected menu and, so as to avoid bias, we will only use each trigger within
the kinematic region where its efficiency curve is stable and close to 100%. In order
to determine the trigger efficiency from data, the tag and probe method [2] has
been used.

10.2.2 Trigger Efficiency Using the Tag and Probe Method

The tag and probe method provides an in-situ measurement of the trigger efficiency.
We will use fully detector simulated dijet events generated with PYTHIA to derive
the efficiencies and demonstrate a proof of principle by comparing them with the
truth trigger efficiency which was used in the actual simulation of the event.

The ATLAS L1 trigger searches for so-called Regions Of Interest (ROIs). A ROI
is a geometrical region in (η, φ) of the ATLAS detector that possibly contains
interesting information about the event, and therefore needs to be further investi-
gated at higher trigger levels. The ROIs for the triggers under consideration have an
opening of (0.8, 0.8) in (η, φ).

http://dx.doi.org/10.1007/978-3-642-24597-8_6
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The tag and probe method is based on matching reconstructed jets to the nearest
ROI. In order to assign a fully reconstructed jet to a ROI, the matching radius Rm is
used to define the distance between the jet and the center of the ROI:

Rm =
√
�η2

i j +�φ2
i j (10.1)

A ROI and a jet are matched if the distance Rm between them is smaller than a
given value, in this study Rm ≤ 0.4.

The tag and probe method consists of two parts. In the first part, the jet-level
trigger efficiency is determined. This is done in the following way:

• Run over all events in the data sample and construct a subdata sample by selecting
all events passing a given trigger, e.g. the L1_J40 trigger.

• For each event in the subdata sample, match each reconstructed jet to a L1 ROI.
• For each jet in each event, check whether the matched ROI exceeds the trigger

threshold. If this is the case, the jet has “passed the trigger”.
• For each event in the subdata sample, “tag” randomly one of the jets for which its

matched ROI passes the threshold.
• For each event in the subdata sample, disregard the tagged jet (this is to remove

bias caused by the fact that we work with a triggered sample where by definition
a jet is over threshold) and “probe” the remaining jet(s).

• Determine the jet-level trigger efficiency from the probed jets as a function of jet
pT by verifying whether the probed jets (with a certain pT ) pass the trigger which
is being investigated.

The jet-level efficiency is used to determine the acceptance efficiency P(A)
(A stands for acceptance), defined as the probability that there is a jet matching
a ROI over threshold in the event under consideration:

P(A) = 1 −
∏

P(jet fail) (10.2)

= 1 −
∏

(1 − P(jet pass)) , (10.3)

where the product runs over all probed jets in the event, and P(jet pass) is the jet-level
efficiency calculated in the first step.

In the next part, the event-level trigger efficiency P(T) (T stands for trigger) is
determined. This is done by looping once more over all the events in the subdata
sample in order to calculate the probability that any of the jets—including the “tag”
jet—satisfied the trigger in question. Mathematically, this is expressed as follows:

P(T ) = P(A)

P(A|T ) , (10.4)

with P(A|T ) the conditional probability that there is a jet matching a ROI over
threshold, given that the event triggered. This is calculated using the TrigDecision-
Tool class available in the ATLAS software.
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Fig. 10.1 Determination of
the L1_J40 trigger efficiency
ε obtained using the tag and
probe method and Monte
Carlo simulation. Figure
taken from Ref. [1]

Table 10.2 Reconstructed jet
pT where the triggers become
95% efficient using both the
Monte Carlo simulation and
tag and probe methods

L1 trigger L1 threshold (GeV) Jet preco
T for which ε > 95% (GeV)

L1_J5 5 >50
L1_J40 40 >80
L1_J70 70 >130
L1_J100 100 >170
L1_J130 130 >195

Using the tag and probe method, the trigger efficiencies for the triggers listed
in Table 10.1 have been calculated. For example, the result from the tag and probe
method for the L1_J40 trigger is shown as the red dotted curve (εtag−probe) seen in
Fig. 10.1.

Since this is a study with Monte Carlo simulated data, there is also the possibility
to deduct the trigger efficiency directly by looking up the information of the event that
triggered before it was digitized and sent through the detector simulation (including
trigger simulation), i.e. when it comes out of the event generator; for each jet and in
each event, we can see whether it passes a given trigger and we can compare that
with its transverse momentum at the event generator level. Of course, this method
is not applicable on real data, but in this study, it is a good test of the tag and
probe method. The black dotted curve (εMC ) in Fig. 10.1 shows the—true—trigger
efficiency obtained this way. The trigger efficiency on the plateau derived using
the tag and probe method agrees at the percent level with that from Monte Carlo
simulation. This is also the case for the other triggers.

Table 10.2 shows for all triggers the reconstructed jet pT where the triggers reach
95% efficiency using both the Monte Carlo simulation and the tag and probe method
(with less than 1% residual difference between the two). This table will be used in
the next section for deriving an optimal binning in kinematics.
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10.3 Kinematic Cuts and Histogram Binning

10.3.1 Kinematic Cuts

The cuts in pseudorapidity were discussed in Chap. 4. To summarize, we repeat
Eq. 4.22:

|η1 + η2| < c,

|η1 − η2| < 2ηmax − c, (10.5)

with η1 and η2 the pseudorapidity values of the leading and subleading jet respec-
tively, ηmax the maximum pseudorapidity of the two jets, dictated by the limited
detector range, and c a constant. Even though ATLAS can detect jets fully up to
η ∼ 4, we restrict this study to jets up to ηmax = 2.5 in this study. This is because
in the initial stage of ATLAS data taking (corresponding to an integrated luminosity
< 100 pb−1), the forward calorimeters are not well understood. Furthermore, we
take c = 1.5, which is a trade-off between the measurable χ -range and the available
statistics. We have tested that a larger value of c, e.g. c = 2.5, does not give a notable
increase of the cross section, while it does limit the χ -range. Decreasing c, e.g. from
c = 1.5 to c = 0.5, reduces the statistics too much.

With these choices, we can measure the distributions up toχmax = exp(2ηmax−c)
� 30.

Apart from these cuts in pseudorapidity, the dijet angular distributions are also
binned in dijet invariant mass M j j . The dijet invariant mass of two massless partons
can be written as:

M j j = √
pT 1 pT 2

√
(χ + 1/χ − 2 cos(�φ)), (10.6)

with pT 1 and pT 2 the transverse momenta of the leading and subleading jet respec-
tively, and �φ = |φ1 − φ2|.

Since single jet triggers will be used for this kind of study, a cut on the transverse
momentum of the leading jet will be made in order to avoid bias from the trigger.
Given this pT cut and the available χ -range (going from 1 to χmax), the minimum
dijet invariant mass that can be measured without introducing a bias caused by the
pT cut, can be found by noting that, for a dijet with pT 1 > pT min, the maximum
mass possibly created is given by the LO configuration:

M j j = pT,min
√
(χmax + 1/χmax + 2) = pT,min(

√
χmax + 1/

√
χmax) (10.7)

Higher order configurations will always lower the pT of the subleading jet com-
pared to the LO configuration, so that the dijet mass obtained from higher order
configurations does not exceed Eq. 10.7. Therefore, the minimum mass M j j,min that
can be measured without bias is given by Eq. 10.7.

Equation 10.7 allows us to select the dijet invariant mass bins for this study based
on ATLAS trigger information; using the single jet triggers discussed in the previous

http://dx.doi.org/10.1007/978-3-642-24597-8_4
http://dx.doi.org/10.1007/978-3-642-24597-8_4
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Table 10.3 Table containing for those jet triggers relevant for this study: the value of pT,min corre-
sponding to the onset of the trigger plateau increased with 10%, M j j,min according to Eq. 10.7, the
mass bin chosen in such a way that there is no overlap in mass bins from other triggers, and χmax

Trigger pT,min(GeV) M j j ,min(GeV) Mass bin (GeV) χmax

L1_J5 55 311 [320, 520] 30
L1_J40 88 500 [520, 680] 30
L1_J40 88 500 [680, 800] 30
L1_J70 143 800 [800, 1200] 30
L1_J130 215 1200 [1200, 1700] 30
L1_J130 215 1200 [1700, 2500] 30
L1_J130 215 1200 [2500, 7000] 30

section, we determine the transverse momentum where each trigger reaches 95%
(see Table 10.2) and, so as to avoid problems caused by the uncertainty on the jet
energy scale, we let pT,min correspond to this value increased with 10%. Since we
also know χmax, we can determine the lower bound M j j,min of the mass bin using
Eq. 10.7. The upper bound M j j,max is chosen in such a way that there is no overlap
with mass bins from other triggers.

This is summarized in Table 10.3, which shows for the selected single jet trig-
gers the following information: the value of pT,min as discussed previously, M j j,min
according to Eq. 10.7, the mass bin chosen in such a way that there is no overlap
in mass bins from other triggers, and χmax. The trigger thresholds are from the jet
trigger menu shown in Table 10.2.

10.3.2 Binning in χ

With the kinematic cuts given in Sect. 10.3.1, a binning in χ has to be defined. The
main metrics used here to decide on a strategy, are bin purity and bin stability, which
are obtained from comparing detector fully simulated jets with the underlying truth
jets (at the generator level). These two variables quantify bin migrations between
truth level spectra and reconstructed spectra.

The purity is defined as:

Purityi j = Nrec(i)&gen(j)

Nrec(i)
, (10.8)

with Nrec(i)&gen(j) the number of entries that were fully detector reconstructed in bin
i but belong to bin j at the truth level, and Nrec(i) the total number of reconstructed
entries in bin i.

Stability is defined in a similar way as:

Stabilityi j = Nrec(i)&gen(j)

Ngen(j)
, (10.9)
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Fig. 10.2 Stability (left diagram) and purity (right diagram) for the mass bins 1200 < M j j <

1700 GeV and 1700 < M j j < 2500 GeV. Figures taken from Ref. [1]

with Ngen(j) the total number of entries in bin j at the truth level. Note that∑
j Purityij = 1 for all i and

∑
i Stabilityij = 1 for all j.

An optimal binning in χ is defined as a high bin Purityi= j and Stabilityi= j over
the whole range of χ, as then resolution effects in reconstructed data play a limited
role.

Furthermore two additional criteria have been considered for obtaining an optimal
binning. The first one is the ability to resolve the detailed shape of χ -spectra at
low χ, where an excess of events is expected for the studied models of new physics.
The second one is related to the typical cell granularity of the ATLAS hadronic
calorimetry, which is 0.1 in η for the TileCal (see Sect. 6.1 for a description of the
calorimeters). Small migrations of the jet axes due to the granularity can occur, which
would lead to a modulation of the jet η-spectrum with a periodicity of 0.1. The same
is true for observations in |η1 −η2|. In order to reduce the impact on a measurement,
bin borders should be chosen where the migrations are minimal. For a measurement
in χ this means that the bin edges follow an exponential curve.

It has been found that the following lower borders bi of bins i satisfy the last two
considerations:

bi = e0.1ai , (10.10)

with a an integer number. Since small binsizes are desired in order to be able to resolve
the shape of the distribution, a should be chosen as small as possible. However, an
inferior purity and stability (values below 0.6) are obtained for bins with a = 1 and
a = 2. But for a = 3 continuously high values of purity and stability are obtained, as
can be seen in Fig. 10.2. There is one deviation from the above formula, namely
that the bin border of the highest χ bin is extended to 30 to provide the full χ range
available after kinematic cuts. In summary, the binning used in the following is:

http://dx.doi.org/10.1007/978-3-642-24597-8_6
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Fig. 10.3 Dijet angular
distributions as calculated
from QCD (top figure) and
the statistical errors (bottom
figure) corresponding to an
integrated luminosity of
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10.3.3 QCD Distributions and Statistical Uncertainties for 10 pb−1

Given the binning in χ discussed in Sect. 10.3.2 and the dijet mass bins proposed
in Sect. 10.3.1, we show in Fig. 10.3 the QCD expectations and their statistical
errors corresponding to an integrated luminosity of 10 pb−1, in the top and bottom
figure respectively. Note that trigger prescales have not been taken into account
for the calculation of the statistical error, since they might vary depending on the
instantaneous luminosity. From the bottom figure, it is clear that the highest mass bin
lacks statistics with 10 pb−1 of data, but that the other bins have reasonably sufficient
statistics. When it comes to investigating new physics, we will focus on the higher
mass bins, namely 1200<M j j < 1700 GeV and 1700<M j j < 2500 GeV.
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10.4 NLO QCD Calculations and k-Factors

10.4.1 Calculating k-Factors: General Method

Monte Carlo studies investigating the behavior of ATLAS for a certain measurement,
are typically carried out using so-called complete event generators (e.g. PYTHIA),
that take a factorized approach with the major steps being the hard scattering process,
initial and final state radiation, multiple interactions and non-perturbative processes
such as hadronization and beam remnants. This was also discussed in Sect. 2.6. The
hard scattering processes in these generators are calculated at leading order (LO)
only, and even though LO calculations generally describe broad features and provide
a first estimate of the cross sections, next-to-leading (NLO) calculations are a must
in order to get more precise estimates (see Chap. 3).

In order to compensate for that, we can multiply fully perturbative LO calculations
bin-by-bin with the so-called k-factors that take into account perturbative NLO cor-
rections. The k-factors have been derived from QCD calculations using NLOJET++
[3] and PYTHIA [4].

As stated before, PYTHIA is a complete event generator, while NLOJET++ only
calculates the hard scattering—using NLO matrix elements—and none of the other
steps, which makes the generator incomplete.

Since the parton showers in PYTHIA take over part of the NLO corrections,
care needs to be taken when combining the two generators for the derivation of the
k-factors.

Assume a distribution in x for which a complete LO Monte Carlo sample (includ-
ing hard scattering, showers and non-perturbative effects) has been generated:
runCOMPL(x). For the derivation of the k-factor (as function of x), three different
types of Monte Carlo calculations are needed:

1. runLO(x): LO matrix elements: done with PYTHIA, runLO (PYTHIA)(x), and
NLOJET++, runLO (NLOJET++)(x)

2. runNLO(x): NLO matrix elements with NLOJET++
3. runSHOW(x): LO PYTHIA with parton showers (PSs) only and non-perturbative

processes ‘off’

These runs should be calculated with the same parameter settings and selection
cuts, apart from the choice of PDFs. To ensure consistency, a LO PDF is needed for
the LO calculations, while the NLO calculation needs an NLO PDF.

Having all these runs, the accuracy of runCOMPL(x) can be improved using NLO
knowledge in the following way:

runCOMPL(x)×
(
runNLO(x)/runLO(NLOJET++)(x)

)
(
runSHOW(x)/runLO(PYTHIA)(x)

) = runCOMPL(x)× runNLO(x)

runSHOW(x)
,

(10.11)

http://dx.doi.org/10.1007/978-3-642-24597-8_2
http://dx.doi.org/10.1007/978-3-642-24597-8_3
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Fig. 10.4 K-factors for the dijet angular distributions in the dijet mass bins that were defined in
Sect. 10.3

where the equals sign only holds for runLO (NLOJET++) ≡ runLO (PYTHIA). Pos-
sible differences in the parametrization of the strong coupling constant make this a
non-trivial assumption.

From Eq. 10.11, the k-factor can be defined as:

k(x) =
(
runNLO(x)/runLO(NLOJET + +)(x))(

runSHOW(x)/runLO(PYTHIA)(x)
) = runNLO(x)

runSHOW(x)
, (10.12)

which can then be used to scale runCOMPL(x). Again the last equal sign only holds
for runLO (NLOJET++) ≡ runLO (PYTHIA).

10.4.2 NLO QCD Calculations and k-Factors for the Dijet
Angular Distributions

Figure 10.4 shows the k-factors for the dijet angular distributions in the dijet mass
bins that were defined in Sect. 10.3. The LO calculations have been done with the
CTEQ6L1 PDF [5], while the NLO calculations have been done with the CTEQ66
PDF [6]. From the figure, it can be noticed that the k-factors are rather flat and close
to unity, which indicates that higher order corrections are at a controllable level. The
k-factors vary between 1.2 and 1.55 and are closest to unity for the lowest mass bin,
while the largest deviations show up for the highest bin.

Since most of the early new physics searches will be done in the mass bins
1200<M j j < 1700 GeV and 1700<M j j < 2500 GeV, the different runs used for
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Fig. 10.5 The different runs used for the calculation of the k-factor (Eq. 10.12) for the dijet angular
distribution for the mass bin 1200 < M j j < 1700 GeV. See the text for more information about
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the k-factor calculation in these bins, are shown in Figs. 10.5 and 10.6 respectively.
From these figures, it can be seen that the LO cross sections calculated with NLO-
JET++ are about 4–5% higher than the ones calculated with PYTHIA. This is because
the programs use different values of αs(M2

z ): 0.129783 in NLOJET++ and 0.1265
in PYTHIA. Since (0.129783/0.1265)2 ≈ 1.0526, the LO cross section obtained
with NLOJET++ is indeed about 5% higher than the PYTHIA one. In fact, for the
mass bins under study the ratio will be a bit lower because of the running of αs . For
example for a 200 GeV jet and a LO running of αs (see Eq. 2.11), the ratio becomes
(1.0811/1.0582)2 ≈ 1.042.

Previous studies carried out at the Tevatron, do not always mention the use of
k-factors. Instead, their—completely equivalent—approach was to correct a pertur-
bative NLO QCD calculation with non-pertubative effects such as hadronization
and the underlying event [7, 8]. These corrections are determined on a bin-by-bin
basis by the ratio of a complete LO sample and a sample with non-perturbative
effects and the underlying event turned off [8], which is, with the notation used
here, runCOMPL(x)/runSHOW(x). The end result equals runNLO(x)runCOMPL(x)/
runSHOW(x), which is Eq. 10.11, apart from possible differences between runLO
(NLOJET++) and runLO (PYTHIA).

Both approaches are equivalent when making QCD predictions, but sometimes
k-factors are also used for new physics distributions. This was done in the past [7]
and the ATLAS collaboration has opted for the same approach.

http://dx.doi.org/10.1007/978-3-642-24597-8_2
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Beyond the Standard Model physics (BSM) causes an increase in the cross section:

dσtotal

dχ
= dσQCD

dχ
+ dσBSM

dχ
(10.13)

Since k-factors are typically > 1, which can be seen from Fig. 10.4 and was also
reported by Ref. [7], this means that multiplying the new physics distributions with
k-factors will move them away from the QCD curves, making it more difficult to
discover new physics when making a comparison with data. Instead, one can put
tighter limits on new physics models this way.

10.5 Theoretical Uncertainties

10.5.1 Renormalization and Factorization Scale Uncertainties

The uncertainty of the renormalization (μR) and factorization (μF ) scales contributes
to a systematic error. We have studied this by letting μR and μF vary indepen-
dently between 0.5, 1 and 2 times the average transverse momentum μ0 of the dijet
(μ0 = (pT 1 + pT 2)/2), resulting in nine different distributions in total. The central
member has μR = μF = μ0, and all calculations have been done at NLO using
NLOJET++.
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Fig. 10.7 Dijet angular distributions for the mass bin 1200 < M j j < 1700 GeV, and for different
choices of μR and μF

The scale uncertainties have been calculated both for the distributions normalized
to unit area 1<χ < 30 and unnormalized. Each scale uncertainty is split up in a
positive (+) uncertainty and a negative (-) uncertainty, defined around the central
member:

+scale uncertainty(χ)

= max{r, f }={0.5,1.,2.}
(
dσ/dχ(μR=rμ0,μF = f μ0) − dσ/dχ(μR=μF =μ0)

)
dσ/dχ(μR=μF =μ0)

−scale uncertainty(χ)

= max{r, f }={0.5,1.,2.}
(
dσ/dχ(μR=μF =μ0) − dσ/dχ(μR=rμ0,μF = f μ0)

)
dσ/dχ(μR=μF =μ0)

(10.14)
Figure 10.7 shows all nine distributions for the mass bin 1200<M j j < 1700 GeV.

Figure 10.8 shows the same distributions but normalized to unit area under
1<χ < 30.

Using Eq. 10.14, we calculate the positive and negative uncertainties for the mass
bins defined in Table 10.3. This is shown in Fig. 10.9. The procedure is repeated for
the angular distributions normalized to unit area, and the results are shown in Fig.
10.10. Normalizing the distributions reduces the uncertainties somewhat.
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10.5.2 PDF Uncertainties

We have calculated the angular distributions for all 44 error members of the CTEQ66
PDF and applied the Master Equation suggested in Ref. [9] to deduct a positive and
negative uncertainty on a quantity X:

�X+
max =

√√√√ N∑
i=1

[
max

(
X+

i − X0, X−
i − X0, 0

)]2

(10.15)
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tions normalized to unit area 1 < χ < 30. The full lines denote the positive uncertainties, while
the dashed lines denote the negative uncertainties (see Eq. 10.14)

�X−
max =

√√√√ N∑
i=1

[
max

(
X0 − X+

i , X0 − X−
i , 0

)]2

(10.16)

�X+ adds in quadrature the PDF error contributions that lead to an increase in the
observable X, and �X− the PDF error contributions that lead to a decrease.

In Fig. 10.11 we plot the positive and negative uncertainties on the dijet angular
distributions for all mass bins. The uncertainties are largest for the highest mass
bin. This is not surprising, given the lack of experimental data for such high masses
to constrain the gluon PDF. Fortunately, the uncertainties in PDFs mainly cause an
uncertainty in absolute normalization of the distributions, rather than in shape. This
is confirmed by Fig. 10.12 which shows the PDF uncertainties on the distributions
normalized to unit area 1<χ <u j 30. Apart from the first χ bins, the error is less
than 1%.

10.6 Experimental Uncertainties

10.6.1 General Considerations

The measurement of dijet angular distributions uses the kinematics of the two leading
reconstructed jets. Any uncertainty in these quantities will give rise to a systematic
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uncertainty in the measurement. The major effects come from uncertainties on the
reconstructed energy, pseudorapidity and azimuthal angle.

Since the ATLAS calorimeters are non-compensating, a set of energy calibra-
tions needs to be applied to the reconstructed jets before their kinematics correspond
to the hadronic level. The various calibration methods were discussed in Chap. 7.
Having to apply these correction procedures will cause systematic errors on a mea-
surement, which can be divided up into two categories, namely Jet Energy Scale
(JES) uncertainties and Jet Energy Resolution (JER) uncertainties. JES uncertainties
can be further split up in Absolute JES and Relative JES uncertainties.

http://dx.doi.org/10.1007/978-3-642-24597-8_7
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The Absolute JES uncertainty can be thought of as a shift in the mean of the
fractional difference in the energy between the reconstructed calorimeter jet and its
associated truth jet. This shift affects all jets and can originate from biases introduced
by the calibration methods (limited statistics and intrinsic biases for the in-situ meth-
ods, disagreements between Monte Carlo predictions for Monte Carlo based methods,
etc.,). A conservative number is 10% [10].

The Relative JES uncertainty represents the variation in the uniformity in the
energy scale across different detector regions. Such shifts introduce a pseudorapidity
dependency of the Jet Energy Scale, and can be due to different detector technologies,
different geometrical layouts of the detector components, presence of local dead cells,
etc. ATLAS uses the balance of dijet events to improve the relative scale (see also
Sect. 7.4.4), and a conservative uncertainty is 3% [10].

The resolution is given by the width of the distribution of the relative difference
between the reconstructed energy of the jet and its associated truth jet. In Ref. [11],
it was shown that the resolution can be parametrized as:

σE

E
= A

E
⊕ B√

E
⊕ C (10.17)

where A is the noise term (electronic noise, important at low energies), B is the
stochastic term (Poissonian event-to-event fluctuations, for instance in the energy
deposited in the active calorimeter volume or in the particle composition of the jet),
and C is the constant term (effects proportional to the jet energy, like non-uniformity
in the calorimeter structure, or the presence of cracks and dead material). The values
(A = 4.9 ± 0.2, B = 0.62 ± 0.03,C = 0.027 ± 0.002) were derived using the de
dijet balance technique (see also Sect. 7.4.4).

Apart from JES uncertainties and a finite energy resolution, also uncertainties in
pseudorapidity and azimuthal angle must be considered. In Sect. 7.3, we saw that
the input for a jet algorithm has the typical size of a tower,�η × �φ = 0.1 × 0.1.
Hence, a conservative estimate for uncertainties in pseudorapidity and azimuthal
angle is of that order. Note that the size of the actual calorimeter cells can be much
smaller (depending on their location in the detector).

10.6.2 Estimate of Experimental Uncertainties

We have used PYTHIA in order to investigate the importance of the different aspects
of experimental uncertainties.

First we have generated dijet events in a reference sample, meaning that we have
not applied any disturbance. Next we have generated a few samples aimed at imitating
the detector effects discussed in the previous section:

• Variation of the Absolute JES (AJES): we have increased and decreased the jet
energy with 10% respectively.

http://dx.doi.org/10.1007/978-3-642-24597-8_7
http://dx.doi.org/10.1007/978-3-642-24597-8_7
http://dx.doi.org/10.1007/978-3-642-24597-8_7


142 10 Preparing ATLAS for the Measurement of Dijet Angular Distributions

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 5  10  15  20  25  30

ra
tio

χ

[dσ(AJES + 10%)/dχ] / [dσ/dχ]
[dσ(AJES - 10%)/dχ] / [dσ/dχ]
[dσ(RJES + 3%)/dχ] / [dσ/dχ]
[dσ(RJES - 3%)/dχ] / [dσ/dχ]

[dσ(RES smearing)/dχ] / [dσ/dχ]
[dσ(η smearing)/dχ] / [dσ/dχ]

[dσ(φ smearing)/dχ] / [dσ/dχ]
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• Variation of the Relative JES (RJES): we have varied the jet energy linearly in η,
with 0% at η = 0, and 3 or −3% at |η| = 3. This choice is motivated by the fact
that the reference scale is at η = 0.

• Investigation of the jet energy resolution (JER): we have varied the jet energy
according to a normal distribution with standard deviation given by the resolution
in Eq. 10.17.

• Investigation of the polar angle: we have smeared the pseudorapidity of each jet
according to a normal distribution with zero mean and standard deviation 0.1.

• Investigation of the azimuthal angle: we have smeared the azimuthal angle, again
using a normal distribution with zero mean and standard deviation 0.1.

We have used these samples to construct the dijet angular distribution in the
mass bin 1700<M j j < 2500 GeV (with the binning in χ as defined in Sect. 10.3.2).
Figure 10.13 shows the resulting distributions normalized to the reference distrib-
ution. The smearing in pseudorapidity and azimuthal angle does not cause a large
deviation from unity, nor do resolution effects.

However, a change in the jet energy does have a large impact. This is caused by
the fact that the angular distributions are binned in dijet invariant mass. Since the
dijet invariant mass spectrum is a steeply falling distribution, a shift in dijet invariant
mass (caused by a shift in the jet energy scale) will have a large impact on the dijet
angular distribution.

Compared to the changes in absolute energy scale, the changes in the relative
energy scale are modest in size, since the Relative JES is believed to be much more
controllable than the Absolute JES (3 versus 10%). However, an absolute shift in jet
energy will mainly influence the normalization of the dijet angular distributions.
But the non-uniform shift in jet energy will cause variations both in shape and
normalization.
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Fig. 10.14 Ratio of modified dijet angular distributions over reference cross section, in the mass bin
1700<M j j < 2500GeV.The dijet angular distributions are normalized to unit area 1<χ < 30.The
cross sections are modified in order to represent the effects coming from the absolute and relative
jet energy scale (AJES and RJES) uncertainties, a finite resolution (RES) and angular smearing in
pseudorapidity and azimuthal angle

The uncertainty coming from the Absolute JES can be largely reduced by nor-
malizing the dijet angular distributions to unit area 1<χ < 30. This can be seen in
Fig. 10.14, which shows the uncertainties for the distributions normalized to unit
area. With the exception of the Relative JES uncertainty, the effects from all other
uncertainties have been largely reduced.

The same conclusions hold for the other mass bins. To illustrate this, we show
the uncertainties for the normalized dijet angular distributions in the mass bin
320<M j j < 520 GeV in Fig. 10.15. In this bin, the systematic uncertainty on the
Relative JES has less impact than in the higher bin.

10.7 Data Unfolding

Distributions measured by ATLAS are usually deformed by detector effects.
To illustrate this, we use Monte Carlo data to compare a fully detector simulated
and reconstructed “measurement” (typically referred to as RECO) of the dijet angu-
lar distributions, with its true physics distribution (TRUTH). Figure 10.16 shows the
ratio of RECO to TRUTH for the mass bins defined earlier. The ratio is very close to
unity, with deviations not more than a few percent. This is not surprising since the
binning in χ was optimized to reduce bin migration (see Sect. 10.3.2).

A measured distribution can be seen as a convolution of the true physics distri-
bution with the detector response. Therefore, in order to be able to study physics,
we need to unfold the measurement, so that the result corresponds to a physical
distribution. A migration matrix is used to describe the migration between true
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Fig. 10.16 Ratio of the dijet angular distributions that are fully detector simulated an reconstructed
(REC0) over the true physics distribution (TRUTH)

physics bins and the measurement. For the dijet angular distributions, we will have
one migration matrix for each dijet mass bin.

We can find this matrix by looking at Monte Carlo data and comparing the RECO
data with the underlying truth events. For each event we fill a 2-dimensional histogram
with (χreco, χtruth, w), with w the event weight, being the cross section times the
integrated luminosity. Figure 10.17 shows the migration matrix as a scatter plot for
the dijet angular distribution in the mass bin 1700<M j j < 2500 GeV, corresponding
to an integrated luminosity of 1 pb−1.
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Fig. 10.17 Scatter plot of
(χreco, χtruth, w), also known
as the migration matrix, for
the dijet angular distribution
in the mass bin
1700<M j j < 2500GeV
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Given the migration matrix, we can recover the true physics distribution, by taking
the inverse and multiplying this with the measured distribution. Since the migration
matrix is typically ill behaved, algebraic techniques such as Singular Value Decom-
position are often used to get more accurate results [12]. Because the ratio of RECO
over TRUTH is close to unity, we expect to be able to perform a data unfolding rather
well.

10.8 Sensitivity to Black Hole Production and Gravitational
Scattering in Large Extra Dimensions

This section concentrates on GravADD processes [gravitational scattering (GS)
and semi-classical black holes (BH)] with early data, with an integrated lumi-
nosity ranging from 1 to 10 pb−1. We study the dijet angular distributions nor-
malized to unit area 1<χ < 30, in the mass bins 1200<M j j < 1700 GeV and
1700<M j j < 2500 GeV. We fix the number of extra dimensions to n = 6. We
have checked that changing the number of extra dimensions (e.g. from 4 to 6) does
not modify the distributions drastically. However, the parameters Meff and Ms/MP

(see Sect. 5.3 for a description of the parameters) do have a large influence on the
phenomenology.

The approach is similar to what was done in Sect. 9.4 and which is explained
in detail in appendix A. We calculate (dNQCD/dχ)/NQCD and (dNtotal/dχ)/Ntotal,

with NQCD and Ntotal respectively the number of QCD and total (= QCD + GS
+ BH) events corresponding to a certain integrated luminosity. We then perform
a chi-square (χ2) test between these distributions to test the null hypothesis that
(dNtotal/dχ)/Ntotal follows the QCD distribution. We use both a statistical and a
systematic uncertainty for the calculation of χ2:

http://dx.doi.org/10.1007/978-3-642-24597-8_5
http://dx.doi.org/10.1007/978-3-642-24597-8_9
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Fig. 10.18 Discovery region
for the mass bin
1700<M j j < 2500 GeV at
10 pb−1, assuming a 25%
systematic uncertainty. The
green region is the discovery
region for GS only, the blue
area is for BH production
and GS together
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where NQCD,i and Ntotal,i are the number of QCD and total events respectively in
bin i. The statistical error sstat,i is for each bin taken as

√
NQCD,i , and the systematic

error ssys,i is taken to be 25% over the whole χ range.
Since the distributions are normalized to unit area, the quadratic sum of all exper-

imental uncertainties does not exceed 10% (see e.g. Fig. 10.14), while the theoretical
uncertainties—dominated by the renormalization scale uncertainty—remain under
the 15% (see Sect. 10.5). Hence, the assumption of a 25% total systematic uncertainty
is a conservative one.

Using χ2, we can calculate the p-value:

p =
∞∫

χ2

f (z; nd)dz, (10.19)

with f (z; nd) the probability density function of the chi-square statistic with
nd = (number of bins −1) degrees of freedom. The p-value can be understood as the
probability, under the assumption of the null hypothesis, of obtaining data at least
as incompatible with the null hypothesis as is actually observed. Values for p can
be found in standard math references. The null hypothesis of identity is rejected for
p< 1.35 × 10−3, corresponding to a significance Z = 3 (see Appendix A), and the
parameter region for which this occurs, is denoted as discovery region.

Figure 10.18 shows the discovery region obtained for the dijet angular distribution
in the mass bin 1700<M j j < 2500 GeV and with 10 pb−1 integrated luminosity. The
smaller green area is the discovery area for gravitational scattering as new physics
process only, while the blue area results when one includes black holes as well. Note
that small values of Ms/MP (Ms/MP < 1) fall outside the sensitivity region. The
reason is the absence of black hole creation because in that region the lower limit on
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Fig. 10.19 Discovery region
for the mass bin
1700<M j j < 2500GeV for
GS and BH production for an
integrated luminosity of
1 pb−1 (green lines) and
10 pb−1 (blue lines),
assuming a 25% systematic
uncertainty
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Fig. 10.20 Discovery region
for the mass bin
1200<M j j < 1700 GeV at
1 pb−1, assuming a 25%
systematic uncertainty. The
green region is the discovery
region for GS only, the blue
area is for BH production
and GS together
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the black hole mass is drastically increasing with decreasing Ms/MP . See Eq. 5.40
and the discussion underneath.

For an integrated luminosity of 1 pb−1, we expect a lot less statistics in this mass
bin (see Fig. 10.3 for a plot with the expected statistics). In Fig. 10.19 we compare
the discovery region for GS and BH production for an integrated luminosity of 1 and
10 pb−1, in the mass bin 1700<M j j < 2500 GeV. The discovery region reduces,
but not that much since the difference between new physics and QCD overcomes the
statistical uncertainty.

The statistics in the lower mass bin 1200<M j j < 1700 GeV is better, but this
cannot compensate the drop of new physics signal due to the lower masses being
considered. Figure 10.20 shows the discovery region both for BH production and
GS, and for GS only, for the mass bin 1200<M j j < 1700 and with an integrated
luminosity of 1 pb−1. Compared to the higher mass bin (Fig. 10.19), the discovery
region is smaller.

The conclusion is that, for an integrated luminosity ranging from 1 or 10 pb−1,we
are most sensitive to GravADD processes in the mass bin 1700<M j j < 2500 GeV.
Masses above 2,500 GeV have not been considered since this study focuses on an

http://dx.doi.org/10.1007/978-3-642-24597-8_5


148 10 Preparing ATLAS for the Measurement of Dijet Angular Distributions

early data measurement and the jet calibration for high pT jets will initially suffer
from large uncertainties.

10.9 Conclusions

This chapter has investigated the various aspects that go into the measurement of
dijet angular distributions with ATLAS.

We have used the trigger menu and the detector layout to define the selection cuts
in pseudorapidity and to optimize the binning in dijet invariant mass andχ.Migration
effects in χ are at a minimal level when using a binning that increases exponentially
with χ. The mass bins have been chosen in such a way that the measurement does
not rely on trigger turn-on effects or jet energy scale uncertainties, but instead makes
optimal use of the plateau where the trigger reaches its maximum efficiency.

The dijet angular distributions have been calculated up to NLO in the case of QCD,
and k-factors have been derived. The k-factors are rather flat and in the neighborhood
of unity, which indicates that higher order corrections are at a controllable level.

For each mass bin, we have quantified the theoretical and experimental uncer-
tainties on the distributions, assuming a realistic but conservative performance of
the jet reconstruction. Most of the uncertainties can be reduced by normalizing the
distributions. After normalization, the theoretical uncertainty is dominated by the
choice of the scales used in the calculation, while a non-uniform (pseudorapidity)
dependent uncertainty of the Jet Energy Scale is the most important uncertainty at
the experimental site.

Using Monte Carlo data, we have discussed unfolding issues. Since the ratio
of a fully detector simulated and reconstructed distribution over its true physical
distribution is close to unity, we expect to be able to perform the data unfolding rather
well. We have shown the migration matrix for a particular mass bin and noticed that
the migrations between different χ bins are rather small.

The sensitivity of ATLAS to gravitational effects coming from large extra dimen-
sions has been investigated, and it turns out that already with 1 pb−1, the ATLAS
experiment is sensitive to these effects in the high mass bins. For a luminosity rang-
ing from 1 or 10 pb−1, ATLAS is most sensitive to GravADD processes in the—
normalized—mass bin 1700<M j j < 2500.
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Chapter 11
Measurement of Dijet Angular
Distributions by ATLAS

11.1 Introduction

This chapter presents the first measurement of dijet angular distributions in pp colli-
sions at

√
s = 7 TeV by the ATLAS detector. The dataset consists of about 31 million

events that were recorded in 2010 during the months April and May. The dijet angu-
lar distributions have been measured in the mass bins 340<M j j < 520 GeV and
520<M j j < 680 GeV, and have been compared to Monte Carlo simulations.

Rather than using pseudorapidity, rapidity is used to define the angular
variable χ :

χ = e|y1−y2| (11.1)

A motivation for this change will be given in Sect. 11.4. The distributions are mea-
sured up to χ = 30, using the same binning as outlined in Sect. 10.3.2. In order to
reduce the systematic uncertainties, the distributions are normalized to unit area.

11.2 Data Selection

Run selection criteria have been discussed in Sect. 8.2.1. The dataset obtained after
applying the jet data quality requirements corresponds to an integrated luminosity of
(15.6±1.7) nb−1. For these data, approximately 99% of the calorimeter system was
usable for event reconstruction. Details about the jet reconstruction and calibration
can be found in Sect. 8.1.

The event selection procedure has been discussed in Sect. 8.2.2. For this study we
will use the L1_ J5 trigger, which triggers on leading jets with a transverse momentum
above 5 GeV at the EM scale. The trigger plateau for this trigger—incorporating the
jet energy scale uncertainty—starts at 60 GeV [1], and the minimum mass that can
be reconstructed without causing a trigger bias is 340 GeV (see Eq. 10.7).

N. Boelaert, Dijet Angular Distributions in Proton–Proton Collisions, Springer Theses, 151
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Due to the fact that the jet energy scale has large uncertainties for |η| > 2.8, all jets
with |η| > 2.8 are disregarded. The leading and subleading jets are selected from the
remaining jets, and trigger effects are avoided by requiring the transverse momentum
of the leading jet to be above 60 GeV. Furthermore the transverse momentum of the
subleading jet is required to be above 30 GeV.

Jet selection criteria have been discussed in Sect. 8.2.3. For this analysis we
disregard the event if the leading or subleading jet is labeled as bad, or if the event
contains an ugly jet with a transverse momentum above 15 GeV, since these jets can
influence the subleading jet.

11.3 Monte Carlo Samples

Monte Carlo samples have been produced with PYTHIA 6.421 using the ATLAS
MC09 parameter tune [2]. The samples are QCD dijet events, generated in bins
of the transverse momentum of the partons produced by the 2 → 2 matrix ele-
ments. This is necessary in order to obtain a reasonable number of events at
high pT .The mass bins in partonic pT are: [8, 17] GeV, [17, 35] GeV, [35, 70]
GeV, [70, 140] GeV, [140, 280] GeV, [280, 560] GeV and [560, 1120] GeV.

The samples have been combined by weighting the events in each sample accord-
ing to the cross section divided by the total number of events in the sample. The
generated events have been sent through a Geant4 simulation of the ATLAS detector
[3] and have been reconstructed and analyzed using the same procedure as is applied
to data (see Sect. 8.1 for details about jet reconstruction and calibration).

11.4 Physics Selection Cuts

The selection cuts aimed at studying the physics are made in true rapidity and
dijet invariant mass. The mass bins were selected to be 340<M j j < 520 GeV and
520<M j j < 680 GeV.

The rapidity cuts are the following:

|y1 + y2|< 1.5,

|y1 − y2|< log(30) ≈ 3.40
(11.2)

These cuts differ from the ones specified in Eq. 4.22 due to the use of rapidity
instead of pseudorapidity. From a physics point of view, rapidity-difference is pre-
ferred to pseudorapidity-difference, since it is invariant under boosts along the longi-
tudinal axis, meaning that we can safely perform the measurement in the laboratory
frame. But rapidity is defined using the jet mass, which is a quantity—historically—
not well measured (see Sect. 4.22 for the definition of rapidity). Progress in the

http://dx.doi.org/10.1007/978-3-642-24597-8_8
http://dx.doi.org/10.1007/978-3-642-24597-8_8
http://dx.doi.org/10.1007/978-3-642-24597-8_4
http://dx.doi.org/10.1007/978-3-642-24597-8_4
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Fig. 11.1 Angular
resolutions in rapidity (black
line) and pseudorapidity (red
line) for jets for which the
true value of |y| (for the
rapidity resolution) or |η|
(for the pseudorapidity
resolution) lies between 0
and 0.5. The curves are
normalized to unit area
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Fig. 11.2 Angular
resolutions in rapidity (black
line) and pseudorapidity (red
line) for jets for which the
true value of |y| (for the
rapidity resolution) or |η|
(for the pseudorapidity
resolution) lies between 2.5
and 3. The curves are
normalized to unit area
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ATLAS jet reconstruction and calibration has improved the reconstruction of rapid-
ity, which is no longer inferior to the reconstruction of pseudorapidity.

This can be understood from comparing the resolution in rapidity with the res-
olution in pseudorapidity. For this we use the Monte Carlo samples that have been
discussed in 11.3 and compare the reconstructed (pseudo)-rapidity value with its
underlying truth value. We only consider jets with a transverse momentum above 30
GeV.

Figure 11.1 shows the angular resolution, defined as the difference between the
reconstructed and its truth value, in rapidity (black line) and pseudorapidity (red
line) for jets for which |y| (for the rapidity resolution) or |η| (for the pseudorapidity
resolution) lies between 0 and 0.5. The curves are normalized to unit area. The same is
shown in Fig. 11.2 for jets with |y| or |η| between 2.5 and 3.0. There is no significant
difference between the resolution in rapidity and the resolution in pseudorapidity.
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Fig. 11.3 Jet energy scale
uncertainties for the mass
bins 340<M j j < 520 GeV
and 520<M j j < 680 GeV
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11.5 Results

11.5.1 Systematic Uncertainties

We have considered the following experimental uncertainties: the uncertainty on
the jet energy scale, the jet energy resolution and the angular resolution (see
also Sect. 10.6). The major experimental systematic uncertainty on the normalized
angular distributions comes from the uncertainty on the jet energy scale (see e.g.
Fig. 10.15).

The jet energy scale uncertainty in early data was measured to be�pT /pT < 10%
for jets up to |η|< 2.8 (see Sect. 8.3.1). This uncertainty is assumed to have a Gaussian
distribution, with a width σ(pT , η) dependent on the transverse momentum and the
pseudorapidity of the jet (see Fig. 8.1).

In order to estimate the uncertainty on the dijet angular distributions coming from
the uncertainty on the jet scale, we make a large collection of replicated datasets
that have been modified to imitate the effect of wrongly calibrated jets; for a certain
replicated dataset, the transverse momentum of all jets in all events has been scaled
with a factor which is generated from a Gaussian distribution with zero mean and unit
standard deviation, multiplied with σ(pT , η). We then reconstruct the dijet angular
distributions using this modified dataset.

This procedure is repeated many times (of the order of 103), and the bin-by-
bin comparison between the modified and the nominal—undisturbed—distributions
allows for an estimate of the uncertainty by determining the area that contains 68%
of the modified distributions, corresponding to a 1 − σ deviation. For the mass
bins considered in this chapter, this uncertainty does not exceed 5%, as shown in
Fig. 11.3.

The theoretical uncertainties coming from the PDF uncertainties and the scale
uncertainties have been determined according to the methods described in Chap. 10,

http://dx.doi.org/10.1007/978-3-642-24597-8_10
http://dx.doi.org/10.1007/978-3-642-24597-8_10#Fig15
http://dx.doi.org/10.1007/978-3-642-24597-8_8
http://dx.doi.org/10.1007/978-3-642-24597-8_8#Fig1
http://dx.doi.org/10.1007/978-3-642-24597-8_10
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Fig. 11.4 Theoretical uncertainties coming from the PDFs and the scale uncertainties. Left mass bin
340<M j j < 520 GeV, right mass bin 520<M j j < 680 GeV. See the text for a discussion about
the uncertainties

and they are summarized in Fig. 11.4 for the mass bins 340<M j j < 520 GeV (left
figure) and 520<M j j < 680 GeV (right figure). The green area shows the total
uncertainty calculated as the addition in quadrature of PDF and scale uncertainties,
while the blue area shows the PDF uncertainty only. Positive and negative errors
have been considered separately; for the ease of representation, they are shown as
positive and negative percentages plotted around zero.

11.5.2 Distributions

Figure 11.5 shows the measured normalized dijet angular distributions in the mass
bins 340<M j j < 520 GeV (top figure) and 520<M j j < 680 GeV (bottom figure),
together with the Monte Carlo predictions. The lower mass bin contains 1374 events,
while the higher mass bin contains 162 events. For these histograms, the data quality
cuts discussed in Sect. 11.2 remove < 2.1% of the events.

The errorbars on the experimental results combine the systematic uncertainty
coming from the jet energy scale and the statistical uncertainty in quadrature.

The Monte Carlo prediction has been calculated from the samples discussed in
Sect. 11.3. In order to account for NLO effects, the distributions have been multiplied
with the k-factors, which have been derived using the method described in Sect. 10.4.
The errorbars correspond to the addition in quadrature of PDF and scale uncertainties
as well as statistical uncertainties (which are negligible).

Taking into account only statistical uncertainties, we use Eq. A.4. to calculate
the ratio of the χ2 value over the number of degrees of freedom, i.e. the number
of histogram bins minus one (since the distributions are normalized), for the lowest
mass bin. The result equals 0.60, which implies a good agreement between Monte
Carlo prediction and data.

No data unfolding techniques have been applied to correct the measured distribu-
tions for detector effects. Even though Monte Carlo studies (see Sect. 10.7) show that

http://dx.doi.org/10.1007/978-3-642-24597-8_10
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Fig. 11.5 Dijet angular
distributions measured by
ATLAS, together with the
Monte Carlo predictions.
Top: mass bin
340<M j j < 520 GeV,
bottom: mass bin
520<M j j < 680 GeV. See
the text for a discussion
about the uncertainties
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the corrections are at a controllable level, more data and study are needed in order
to be able to apply correction factors that do not suffer from large uncertainties.
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Chapter 12
Conclusions and Outlook

12.1 Conclusions

In the first half of 2010 the LHC had its first proton–proton collisions at
√

s = 7 TeV,
which allows the LHC experiments to start investigating a kinematic regime that has
never been explored before; the multi TeV range is expected to reveal both Standard
Model phenomena and new physics discoveries.

Many new physics models exist, but in this thesis we have chosen to focus on
gravity mediated effects coming from large extra dimensions, in addition to the
Standard Model. More precisely, we have studied gravitational scattering and black
holes in the ADD model where the four-dimensional world membrane has a small
but finite width.

Jet production is the most dominant hard process in hadron collision experiments.
Jets form the background to many new physics searches, yet they can also be used as
a signal, both for probing QCD and for physics beyond the Standard Model. Because
of their rich abundance, many jet studies can be performed with little integrated
luminosity.

The ATLAS detector is one of the multi-purpose detectors that operate at the
LHC. Its hermetic calorimeter system allows measuring jets rather precisely up to
high values of pseudorapidity (ηjet ∼ 4). First measurements have shown that for
early ATLAS data a jet energy scale uncertainty of less than 10 % is obtained for jets
up to |η| < 2.8.

The dijet angular distribution is the differential cross section dσ / dχ versus χ in
bins of dijet invariant mass. Dijet angular distributions are an excellent tool to test
both QCD and new physics, since they mainly probe the hard matrix element, and
do not rely as much as other dijet observables on the jet energy scale.

This thesis has studied dijet angular distributions at
√

s = 7 TeV and√
s = 14 TeV, the latter one being the LHC design energy which will only be

reached after a few years of operating the LHC at
√

s = 7 TeV followed by a long
period of shutdown needed to train the magnets for higher energies.
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In order to explore the ultimate physics potential of the LHC, a detailed phenom-
enology study at

√
s = 14 TeV has been carried out to study several aspects of QCD

and new physics coming from gravity mediated effects in large extra dimensions.
The conclusion of this study is that for dijet masses in the TeV range and low

values of χ, i.e. high values of dijet transverse momentum, a clear discrimination
between the rather flat QCD prediction—characterized by mainly gluon t-channel
exchanges—and the peaked contribution arising from new physics processes—
mainly s-channel exchanges—can be made. At high χ, theoretical uncertainties,
such as the uncertainties coming from the choice of the renormalization and factor-
ization scales, start to become important.

The same conclusions can be made for dijet angular distributions at
√

s = 7 TeV.
A dedicated Monte Carlo study aimed at preparing ATLAS for the early measure-
ments has been carried out in order to investigate the phenomenology and detector
effects.

It has been shown that normalizing the distributions reduces both the theoreti-
cal and experimental uncertainty. The sensitivity of ATLAS to gravitational effects
coming from large extra dimensions has been investigated, and already with 1 pb−1

of data the ATLAS experiment is expected to be sensitive to these effects in the dijet
mass bins above 1 TeV. No new physics is expected to show up in the lower dijet
mass bins but, given the fact that the systematic uncertainties are well constrained
and that by construction the dijet angular distributions mainly probe the hard matrix
elements and not so much the convolution of the hard cross section with the PDFs,
the measurements in the lower mass bins can be tested against QCD predictions.

We have made the data-QCD comparison using ATLAS data; the normalized dijet
angular distributions have been measured by the ATLAS detector in two dijet mass
bins, up to M j j < 680 GeV, using data that were recorded during April and May of
2010, corresponding to an integrated luminosity of about 15 nb−1. The measurement
shows good agreement with QCD predictions.

12.2 Outlook

This thesis is a first look at dijet angular distributions at LHC energies. Only masses
below the TeV range that were measured with ATLAS have been analyzed, and no
discrepancy with QCD has been found. But with more data being recorded daily,
we hope to study higher jet masses very soon. Furthermore, the performance of
the ATLAS detector is expected to increase as well, so not only statistical but also
experimental uncertainties will decrease rather quickly. This means that at lower dijet
masses we will be capable of studying QCD more precisely, while at higher masses
we will soon be able to either observe signals that arise from new physics or—if
nature turns out to be more complicated—set limits on the new physics models. The
LHC era has only just begun.



Appendix A
Statistical Hypothesis Testing Using
the Frequentist Method

This appendix describes how to test the hypothesis that the measured dijet angular
distribution agrees with a theoretical prediction, which is either the Standard
Model or a new physics model. This hypothesis test is done by defining a v2 test
variable. In the next section we derive this variable in the absence of systematic
uncertainties in the data, and we describe how to test the null hypothesis of the
Standard Model (no new physics). Since measurements are prone to systematic
errors, we generalize in Sect. A.2 the method to account for them. Finally Sect.
A.3 describes how to set limits on new physics models. The method described in
this appendix is referred to as the frequentist hypothesis test and is explained in [1].

A.1 Null Hypothesis Testing Using Method
of Maximum Likelihood

We assume that Poisson statistics apply on the dijet distributions. We have k bins
labeled by the index i running from 1 to k. We let ni be the number of events in the
ith bin, with n ¼ ðn1; n2; . . .; nkÞ and N ¼

P

i ni:
Without systematic uncertainties, the mean number of entries is predicted by

E ni½ � ¼ lisi þ bi; ðA:1Þ

with li the strength parameter (li ¼ 1 for the expected signal), bi the theoretical
prediction of the background and si the prediction of the signal. Furthermore, we
use the notation that l ¼ ðl1; l2; . . .; lkÞ: Our task is to test the hypothesis that
l ¼ 0; which can be done using the method of maximum likelihood ratios. For
Poisson distributed data, the likelihood L is given by the product of Poisson
distributions for each bin:

Lðl : nÞ ¼
Y

i

ðlisi þ biÞ½ �ni exp �ðlisi þ biÞ½ �
ni!

; ðA:2Þ
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From this we can derive the likelihood ratio kðlÞ:

k lð Þ ¼ L l : nð Þ
L l̂ : nð Þ ; ðA:3Þ

with l̂ ¼ ðl̂1; l̂2; . . .; l̂kÞ the values of li that maximize the likelihood.
Maximizing the likelihood gives the best estimate for the parameters li; and is
equivalent to maximizing the likelihood ratio or to minimizing v2ðlÞ defined by

v2 lð Þ ¼ �2 ln k ¼ �2 ln L l : nð Þ þ 2 ln L l̂ : nð Þ ðA:4Þ

The likelihood ratio test theorem says that v2 asymptotically obeys a chi-square
distribution with the number of degrees of freedom equal to the independent
number of parameters being tested, i.e. ðk � 1Þ [1]. Note that the second term of
the right hand side of Eq. A.4 is independent of l so that the minimization of v2 is
entirely equivalent to the maximization of the likelihood function L.

For Poisson distributed data, we may replace the unknown values of l̂i by their
bin-by-bin model-independent maximum likelihood estimations, which can be
easily found by taking the derivatives of Lðl : nÞ with respect to li; and solving
them for li; giving:

nisi ðlisi þ biÞ½ �ni�1exp �ðlisi þ biÞ½ �
ni!

� si ðlisi þ biÞ½ �ni
exp �ðlisi þ biÞ½ �

ni!
¼ 0

ðA:5Þ

() ni � lisi þ bið Þ ¼ 0 ðA:6Þ

So that:

l̂i ¼ ni � bið Þ=si ðA:7Þ

Suppose we want to test the null hypothesis H0 that l ¼ 0:We can use v2ðl ¼ 0Þ
(Eq. A.4) as a test statistic to test whether to accept or reject H0: Inserting Eq. A.7
into Eq. A.4:

v2ð0Þ ¼ �2
X

i

ln
bni

i expð�biÞ
ni!

� �

þ 2
X

i

ln
nni

i expð�niÞ
ni!

� �

¼ 2
X

i

ni lnðni=biÞ þ ðbi � niÞð Þ �
X

i

ni � bið Þ2

ni

ðA:8Þ

In the above expression, the following approximation was used:

ni ln
ni

bi

� �

¼ �ni ln 1þ bi � ni

ni

� �

� ni
ni � bi

ni
þ 1

2
ni � bi

ni

� �2
" #

ðA:9Þ

We now use v2ðl ¼ 0Þ (Eq. A.4) to derive the p-value:
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p ¼
Z

1

v2 l¼0ð Þ

f ðz; ndÞdz; ðA:10Þ

with f ðz; ndÞ the probability density function of the chi-square statistic with nd

degrees of freedom [here nd ¼ ðk � 1Þ]. The p-value can be understood as the
probability, under the assumption of a hypothesis H0; of obtaining data at least as
incompatible with H0 as is actually observed. Values for p can be found in
standard math references.

The p-value can be related to the significance, which is defined as the number of
standard deviations Z at which a Gaussian random variable of zero mean would
give a one-sided tail area equal to the p-value:

p ¼
Z

1

Z

1
ffiffiffiffiffiffi

2p
p e�x2ðl¼0Þ=2 ¼ 1� UðZÞ; ðA:11Þ

where U is the cumulative distribution for the standard (zero mean, unit variance)
Gaussian. Often in HEP, a significance of Z ¼ 3 is regarded as evidence, and
Z ¼ 5 is taken as discovery. These values correspond to p-values of 1:35� 10�3

and 2:87� 10�7 respectively.

A.2 Systematic Uncertainties in the Data

Assume now that we have a systematic uncertainty ai in each bin, which modifies
the expectation of the mean in each bin (Eq. A.1):

E ni½ � ¼ lisi þ bið Þ 1þ aið Þ; ðA:12Þ

with ai typically called the nuisance parameter. Assume that ai is modeled by a
Gaussian with mean zero and rai : For example, if the jet energy scale is
established with a 5% uncertainty, then r ¼ 0:05:

The likelihood is given by:

Lðl : aÞ

¼
Y

i

�

ðlisi þ biÞð1þ aiÞ
�ni

exp
�

� ðlisi þ biÞð1þ aiÞ
�

ni!

1
ffiffiffiffiffiffi

2p
p

rai

exp � a2
i

2r2
ai

 !

;

ðA:13Þ

with a ¼ ða1; . . .; akÞ: This changes the expression for v2ðl ¼ 0Þ:

v2ðl ¼ 0Þ ¼ �2 ln
Lðl ¼ 0 : ^̂aðl ¼ 0ÞÞ

Lðl̂ : âÞ ; ðA:14Þ
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with ^̂aiðliÞ the value of ai that maximizes the likelihood for a given li: The value

of l̂i can be found by maximizing the likelihood Lðl : ^̂aðlÞÞ and furthermore,

âi ¼ ^̂aiðl̂iÞ: The calculation of ^̂aiðliÞ is done by taking the derivative in terms
of ai:

oLðl : aÞ
oai

¼ 0, o

oai
1þ aið Þni exp �ðlisi þ biÞð1þ aiÞ �

a2
i

2r2
ai

" #

¼ 0; ðA:15Þ

giving:

, ni � lisi þ bi �
ai

r2
ai

 !

ð1þ aiÞ ¼ 0 ðA:16Þ

To solve this, we make the approximation that rai and therefore most likely ai

are small, meaning that 1þ ai � 1: This gives:

^̂aiðliÞ ¼ ni � lisi þ bið Þð Þr2
ai

ðA:17Þ

Using again 1þ ai � 1:

Lðl : ^̂aðlÞÞ �
Y

i

ðlisi þ biÞni exp
�

� ðlisi þ biÞ � 1
2 ni � ðlisi þ biÞð Þ2r2

ai

�

ni!
ffiffiffiffiffiffi

2p
p

rai

ðA:18Þ

We now set the derivative of Eq. A.18 with respect to li equal to zero and solve
the result for li:

0 ¼ nisi

�

ðlisi þ biÞ
�ni�1exp

�

� ðlisi þ biÞ � 1
2 ni � ðlisi þ biÞð Þ2r2

ai

�

ni!

� si � si ni � ðlisi þ biÞð Þr2
ai

� �

�
�

ðlisi þ biÞ
�ni

exp
�

� ðlisi þ biÞ � 1
2 ni � ðlisi þ biÞð Þ2r2

ai

�

ni!

() 0 ¼ ni � ðlisi þ biÞ 1� ni � ðbi þ lisiÞð Þr2
ai

h i

; ðA:19Þ

giving:

l̂i �
ni � bi

si
ðA:20Þ

We can now calculate v2 (Eq. A.14):
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v2ð0Þ ¼ �2
X

i

ln
bni

i exp �bi � 1
2ðbi � niÞ2r2

ai

h i

ni!

0

@

1

Aþ 2
X

i

ln
nni

i expð�niÞ
ni!

� �

¼ 2
X

i

ni lnðni=biÞ þ ðbi � niÞ þ
1
2
ðbi � niÞ2r2

ai

� �

�
X

i

ðni � biÞ2

ni
þ
ðbi � niÞ2nir2

ai

ni

" #

�
X

i

ðni � biÞ2

nið1þ nir2
ai
Þ ¼

X

i

ðni � biÞ2

ðni þ n2
i r2

ai
Þ ðA:21Þ

The interpretation of the above formula is rather straightforward; the presence
of a systematic uncertainty, characterized by r2

ai
; reduces the v2-value so that it

becomes more difficult to reject the null hypothesis. The denominator can be
interpreted as the addition of the statistical and systematic uncertainties in
quadrature.

A.3 Limits

The previous sections describe how to use data to exclude the null hypothesis of
the Standard Model. But data can also be used in a different way, namely for the
exclusion of new physics models, i.e. for setting limits on new physics model
parameters. We then need to test the hypothesis that l ¼ 1: We can derive v2ð1Þ in
a similar way as was done for v2ð0Þ; and the result is similar to Eq. (A.21) but
with bi replaced by bi þ si: Once we have calculated the v2 value, we can obtain
the p-value. For those model parameters for which the p-value is sufficiently small,
we can exclude them, i.e. set limits on the theory. A common choice is to let the
critical p-value correspond to a significance of Z = 2. In that case p ¼ 0:05 and we
obtain so called 95 % Confidence Level (C. L.) limits.
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