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Foreword

The present volume contains contributions presented at the ninth European Confer-
ence on Complex Systems, held at Université Libre de Bruxelles, Brussels, from 2
to 7 September 2012, under the sponsorship of the Complex Systems Society.

The volume is divided into seven parts. The first six parts comprise contributions
to the main conference, whether oral or poster, compiled according to the six confer-
ence main tracks. The last part includes contributions to some of satellite meetings
hosted at the conference.

We are pleased to acknowledge the invaluable help of the colleagues who assisted
in the organization of this event, starting with the Organizing Committee members,
Vincent Blondel, Timoteo Carletti, Enrico Carlon, Anne De Wit, Pierre Gaspard, Al-
bert Goldbeter, Renaud Lambiotte, and Carlo Vanderzande, and the Steering Com-
mittee, responsible for the development and support of the ECCS conference series,
whose members are Fatihcan Atay, Vittoria Colizza, Thomas Gilbert, Janusz Holyst,
Jiirgen Jost, Markus Kirkilionis (Chair), Kristian Lindgren, Andras Lorincz, Jorge
Louca, Roberto Serra, Mina Teicher, Stefan Thurner, and Jeff Johnson (President of
the Complex Systems Society). The six Track Committees were skillfully chaired
by Claude Baesens, Andrds Lorincz, Eve Mitleton-Kelly, Jacques Demongeot, Pe-
ter Allen, and Sorin Solomon, who benefited from the support of Anne De Wit,
Pierre Gaspard, Hugues Bersini, Serge Massar, Annick Castiaux, Stéphane Vannit-
sem, Genevieve Dupont, Tom Lenaerts, Renaud Lambiotte, Nicolas Vandewalle,
Vincent Blondel, Timoteo Carletti, Natasa Golo, as well as of many anonymous
referees. The eighteen satellite meetings hosted at the conference were masterfully
organized by independent committees to whom we are indebted. In addition, we
wish to thank the students and staff members at the Université Libre de Bruxelles,
without whom the conference could not have been organized.

We wish to express our gratitude to Theo Geisel who delivered the inaugural
talk, as well as to the eight invited keynote speakers Charles H. Bennett, Jean-Louis
Deneubourg, Manfred Eigen, Santo Fortunato, Peter Grassberger, Jean-Marie Lehn,
Raymond Kapral, and Sylvia Walby.

Finally, it is our pleasure to thank the sponsors who enthusiastically supported
this conference: the Université Libre de Bruxelles, the Fonds de la Recherche
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Scientifique—FNRS, the Belgian Science Policy Office-Belspo, ASSYST—Action
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the CORDIS Seventh Framework Programme, Naxys—Namur Center for Com-
plex Systems, Springer Complexity, Oxford University Press, Cambridge University
Press, Groupe De Boeck, World Scientific, Wolfram Research, and Star Alliance.
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Part I
Foundations of Complex Systems



Chapter 1
Aggregation and Emergence in Agent-Based
Models: A Markov Chain Approach

Sven Banisch, Ricardo Lima, and Tanya Aratdjo

Abstract We analyze the dynamics of agent-based models (ABMs) from a Marko-
vian perspective and derive explicit statements about the possibility of linking a
microscopic agent model to the dynamical processes of macroscopic observables
that are useful for a precise understanding of the model dynamics. In this way the
dynamics of collective variables may be studied, and a description of macro dynam-
ics as emergent properties of micro dynamics, in particular during transient times,
is possible.

1.1 Introduction

Our work is a contribution to interweaving two lines of research that have devel-
oped in almost separate ways: Markov chains and agent-based models (ABMs).
The former represents the simplest form of a stochastic process while the latter
puts a strong emphasis on heterogeneity and social interactions. The usefulness of
the Markov chain formalism in the analysis of more sophisticated ABMs has been
discussed by [7], who look at 10 well-known social simulation models by repre-
senting them as a time-homogeneous Markov chain. Among these models are the
Schelling segregation model [11], the Axelrod model of cultural dynamics [1] and
the sugarscape model from [6]. The main idea of [7] is to consider all possible con-
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figurations of the system as the state space of the Markov chain. Despite the fact that
all the information of the dynamics on the ABM is encoded in a Markov chain, it is
difficult to learn directly from this fact, due to the huge dimension of the configura-
tion space and its corresponding Markov transition matrix. The work of Izquierdo
and co-workers mainly relies on numerical computations to estimate the stochastic
transition matrices of the models.

Consider an ABM defined by a set N of agents, each one characterized by in-
dividual attributes that are taken from a finite list of possibilities. We denote the
set of possible attributes by S and we call the configuration space X the set of all
possible combination of attributes of the agents, i.e. © =S¥ . This also incorporates
models where agents move on a lattice (e.g. in the sugarscape model) because we
can treat the sites as “agents” and use an attribute to encode whether a site is occu-
pied or not. The updating process of the attributes of the agents at each time step
typically consists of two parts. First, a random choice of a subset of agents is made
according to some probability distribution w. Then the attributes of the agents are
updated according to a rule, which depends on the subset of agents selected at this
time. With this specification, ABMs can be represented by a so-called random map
representation which may be taken as an equivalent definition of a Markov chain
[10]. Hence, ABMs are Markov chains on X with transition matrix P. For a class
of ABMs we can compute transition probabilities P(x, y) for any pair x, y € X of
agent configurations. We refer to the process (X, P) as micro chain.

When performing simulations of an ABM we are actually not interested in all
the dynamical details but rather in the behavior of variables at the macroscopic
level (such as average opinion, number of communities, etc.). The formulation of
an ABM as a Markov chain (%, 13) enables the development of a mathematical
framework for linking the micro-description of an ABM to a macro-description of
interest. Namely, from the Markov chain perspective, the transition from the micro
to the macro level is a projection of the Markov chain with state space X onto a new
state space X by means of a (projection) map I7 from X to X. The meaning of the
projection I7 is to lump sets of micro configurations in ¥ according to the macro
property of interest in such a way that, for each X € X, all the configurations of X
in IT~1(X) share the same property.

The price to pay in passing from the micro to the macrodynamics in this sense
[5, 8] is that the projected system is, in general, no longer a Markov chain: long
memory (even infinite) may appear in the projected system. In particular, well
known conditions for lumpability [8] make it possible to decide whether the macro
model is still Markov. Conversely, this setting can also provide a suitable framework
to understand how aggregation may lead to the emergence of long range memory
effects.

1.2 Application to the Voter Model

We illustrate these ideas at the example of the Voter Model (VM) (see Refs. [4, 9]).
In the VM, S = {0, 1} meaning that each agent is characterized by an attribute x;,
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i=1,..., N which takes a value among two possible alternatives. The set of all
possible combinations of attributes of the agents is ¥ = {0, l}N , that is, the set of
all bit-strings of length N. At each time step in the iteration process, an agent i is
chosen at random along with one of its neighboring agents j. If the states (x;, x;)
are not equal already, agent i adopts the state of j (by setting x; = x ;). At the micro-
scopic level of all possible configurations of agents the VM corresponds therefore to
an absorbing random walk on the N-dimensional hypercube. It is well known that
the model has the two absorbing states (1,...,1) and (0, ..., 0). For a system of
three agents this is shown in Fig. 1.1.

Opinion models as the VM are a nice examples where our projection construction
is particularly meaningful. There, we consider the projection [T}, that maps each x €
¥ into X, € X where b is the number of agents in x with opinion 1. The projected
configuration space is then made of the X, where 0 < b < N (see Fig. 1.1). Markov
chain theory, in particular lumpability, allows us to determine conditions for which
the macro chain on X = (Xo, ..., Xp,..., Xy) is again a Markov chain. We find
that this requires that the probability distribution w must be invariant under the group
S of all the permutations of N agents and therefore uniform. This underlines the
theoretical importance of homogeneous or complete mixing in the analysis of the
VM and related models.

In this way our method enables the use of Markov chain instruments in the math-
ematical analysis of ABMs. In Markov chains with absorbing states (and therefore
in the ABM) the asymptotic status is quite trivial. As a result, it is the understanding
of the transient that becomes the interesting issue. In order to analyze the transient
dynamics for the macro dynamics, all that is needed is to compute the fundamental
matrix F of the Markov chain [8]. For the binary VM we are able to derive a closed
form expression for the elements in F for arbitrary N which provides us with all the
information needed to compute the mean quantities and variances of the transient
dynamics of the model. In addition, we show in the VM with three opinion alterna-
tives (S = {0, 1, 2}) how restrictions in communication (bounded confidence) lead
to stable co-existence of different opinions because new absorbing states emerge in
the macro chain.

E
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1.3 Some Results

The micro chains obtained via the random map representations helps to understand
the role of the collection of (deterministic) interaction rules used in the model from
one side and of the probability distribution w governing the sequential choice of the
rules used to update the system at each time step from the other side. The importance
of this probability distribution is to encode social relations and exchange actions. In
our setting it becomes explicit how the symmetries in w translate into symmetries
of the micro chain. If we decide to remain at a Markovian level, then the partition,
or equivalently the collective variables to be used to build the macro model must
be compatible with the symmetry of the probability distribution w. In order to ac-
count for an increased level of heterogeneity the partition of the configuration space
defining the macro-level has to be refined. A first result into this direction is that the
symmetry group of agent permutations on w informs us about ensembles of agent
configurations that can be interchanged without affecting the probabilistic structure
of micro chain. Consequently, these ensembles can be lumped into the same macro
state and the dynamical process projected onto these states is still a Markov chain. It
is clear, however, that, in absence of any symmetry, there is no other choice than to
stay at the micro-level because no Markovian description at a macro-level is possible
in this case.

In our opinion, a well posed mathematical basis for linking a micro-description of
an ABM to a macro-description may help the understanding of many of the proper-
ties observed in ABMs and therefore provide information about the transition from
the interaction of individual actors to the complex macroscopic behaviors observed
in social systems. We summarize our main results below:

1. We formulate agent-based models as Markov chains at the micro level with ex-
plicit transition probabilities.

2. This allows the use of lumpability arguments to link between the micro and the
macro level.

3. In case of a non-lumpable macro description this explains the emergence non-
trivial dynamical effects (long memory).

4. In the Voter Model, homogeneous mixing leads to a macroscopic Markov chain
which underlines the theoretical importance of homogeneous mixing.

5. This chain can be solved including mean convergence times and variances.

6. The stable co-existence of different opinions with in the bounded confidence
model follows from the emergence of new absorbing states in the macro chain.

7. Heterogeneous mixing requires refinement and we show how to exploit the sym-
metries in the mixing distribution (w) to obtain a proper refinement.

For further reading, see Refs. [2, 3].
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Chapter 2

Chemically-Driven Miscible Viscous Fingering:
How Can a Reaction Destabilize Typically Stable
Fluid Displacements?

L.A. Riolfo, Y. Nagatsu, P.M.]J. Trevelyan, and A. De Wit

Abstract We experimentally demonstrate that chemical reactions, by producing
changes in viscosity at the miscible interface between two fluids, can be the very
source of viscous fingering in systems that are otherwise stable in the absence of
a reaction. We explain how, depending on whether the reaction product is more or
less viscous than the reactants, different patterns develop in the reaction zone.

2.1 Background

Viscous fingering (VF) is the hydrodynamic instability that classically appears when
a fluid with a given viscosity displaces another more viscous one in porous me-
dia or a Hele-Shaw cell [1]. It has diverse implications in various fields such as
hydrology [2], petroleum recovery [1], liquid crystal [3], polymer processing [4],
chromatography [5] or CO; sequestration to name a few [6].

Experimental [7, 8] and theoretical [9, 10] studies have shown that chemical
reactions, by modifying the viscosity of the solutions at hand, can influence miscible
VE. Changes in the viscosity profile, induced by a chemical reaction, give rise to
variations in the displacement evolution and hence different patterns are observed.

The present work, going further, presents experimental demonstration of reaction-
driven viscous fingering of the interface between a more viscous liquid displacing
a less viscous one, a displacement that in absence of reaction would typically be
stable. It has been theoretically predicted [9, 10] that the necessary condition for
such a reactive displacement to undergo fingering is to yield a reaction product with
a viscosity either larger or smaller than the viscosity of the reactants. Specifically,
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if p; and g denote the viscosity of the invading solution and that of the displaced
solution respectively, purely chemically-driven VF of the classically stable u; > g
situation should occur provided u,, the viscosity in the reaction zone, is either larger
than p; or smaller than w4 [9, 10].

We study here both scenarios, viscosity maximum (u, > @;) and minimum
(ur < q), exploiting the viscosity dependence of polymer solutions on pH. From
the experimental findings, the different fingering patterns are analyzed as a function
of the viscosity contrast generated by the chemical reaction [11].

The article organizes as follows: In the next section we explain the experimental
set up and the chemicals utilized in the experiments. Also in this second section we
present our experimental findings. In Sect. 2.3 we discuss and explain the evolution
on the displacements presented in the second section. Finally, conclusions are drawn
while highlighting the possible impact of this experimental work.

2.2 Methods

Experiments are carried out in a horizontal Hele-Shaw cell consisting of two trans-
parent glass plates 100 mm wide, 500 mm long and 14 mm thick separated by a gap
width b = 0.25 mm. The fluids are injected linearly at a constant flow rate g. As the
displacing more viscous fluid, we use aqueous polymer solutions. When these so-
lutions displace a less viscous dyed non-reactive solution, no instability is observed
at the miscible interface between the fluids. However, if the displaced fluid reacts
with the polymer, generating a maximum or a minimum in the viscosity profile,
the interface can become unstable undergoing fingering. In the displacement exper-
iments where the maximum develops, a more viscous aqueous solution of 0.30 %wt
polyacrylic acid (PAA—1250000 MW—Sigma Aldrich) displaces a dyed 0.06M
sodium hydroxide (NaOH) aqueous solution. The liquids react at the miscible inter-
face. The reaction product, sodium polyacrylate (SPA), typically presents a viscosity
larger than that of both reactants. The chemical reaction at the miscible interface is
PAA + NaOH — SPA.

On the other hand, in the case where the minimum in viscosity develops,
a sodium polyacrylate (SPA—2100000-6600000 MW—Wako) aqueous solution
0.125 %wt pushes a less viscous 60 %wt glycerol aqueous solution containing 0.5M
HCI. In this case the polymer reacts with the acid producing PAA, which here has a
viscosity lower than that of both reactants. The reaction is then SPA 4+ HCl — PAA
+ NaCl.

Figure 2.1 shows the temporal evolution of reaction-driven VF observed in a lin-
ear displacement for both cases. When the maximum in viscosity develops, fingers
grow behind the reactive interface (Fig. 2.1(a)). On the other hand, in the case of
a minimum in viscosity, the interface undergoes fingers that grow towards the dis-
placed fluid (Fig. 2.1(b)).
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Fig. 2.1 Temporal evolution of reaction-driven VF in a linear displacement. (a) A more viscous
solution of PAA displaces from left to right a less viscous aqueous dyed solution of NaOH in
concentration 0.06M. Flow rate ¢ = 0.5 ml/min. Time from top to bottom ¢ = 75, 150 and 225 s.
(b) A more viscous SPA solution displaces from left to right an aqueous dyed solution of 60 %wt
glycerol 4+ HCI 0.5M. Flow rate g = 0.25 ml/min. Time ¢ = 140, 280 and 360 s. Field of view of
each image =4 cm x 8 cm

2.3 Results

In order to understand the systems’ evolution we analyze experimentally the vis-
cosity contrasts generated during the displacement experiments. We measure the
viscosity of the pure reactants and estimate the viscosity developed in the reaction
zone as the viscosity of a mixture of the pure reactants. The respective viscosities
are measured with a rotational viscosimeter (Brookfield—Pro Extra II) at the shear
rate corresponding to the experimental conditions.

In the displacement experiments with a maximum in viscosity the reactants vis-
cosity are: invading fluid (0.3 %wt PAA) u; = 870 cp, displaced fluid (0.06M
NaOH) pg =1 cp. Hence, the initial viscosity contrast is stable, because the more
viscous fluid displaces the more mobile one. However, in the reaction zone the vis-
cosity developed is approximately p, = 3880 cp. Therefore, an unstable contrast of
viscosity is developed between the invading fluid and the reaction zone: u; < wu,
and we have locally a less viscous fluid pushing a more viscous one. As the unstable
region is located between the invading fluid and the reaction zone, the fingers should
develop in this region. This is consistent with the experiments (Fig. 2.1(a)), where
the fingers develop behind the reaction zone toward the invading fluid.

In the displacement with a minimum in viscosity, the viscosities are: invading
fluid (0.125 %wt SPA) w; = 794 cp, displaced solution (60 % glycerol 4+ 0.5M
HCI) pg = 10 cp. The viscosity falls to ;, =5 cp in the reaction zone. Therefore,
even if the initial viscosity contrast is stable, locally an unstable region develops in
time between the reaction zone and the displaced fluid (i, < g). The development
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of the instability is then predicted to occur in the region between the reaction zone
and the displaced fluid. This conjecture from the viscosity profiles agrees with the
experimental findings exposed in Fig. 2.1(b).

‘We show here that depending on the unstable viscosity contrast developed during
the displacement different patterns develop, and the interface deforms towards op-
posite directions, either in the displacement direction if a viscosity minimum devel-
ops, or against the displacement direction if a maximum in viscosity is chemically
induced.

In this way, we have provided experimental evidence of viscous fingering trig-
gered by a chemical reaction at the miscible interface between a more viscous solu-
tion displacing a less viscous one in a Hele-Shaw cell. Such a situation is classically
stable in the absence of a reaction as we have a fluid with low mobility invading
another more mobile one. The chemical reaction, by generating a product either
more or less viscous than both reactants, triggers in time a non-monotonic viscos-
ity profile. A locally unstable configuration with adverse mobility gradient develops
around the extremum. This leads to fingers developing respectively behind or ahead
of the reaction zone depending whether the viscosity profile exhibits a maximum or
a minimum.

This results may help to prevent undesirable mixing during fluids displacements,
such in the case of waste management in soils [12, 13], but also could lead to con-
trol of mixing enhancement in a unique direction in complex scenarios such as in
microfluidics [14].
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Chapter 3

Dynamical Localization in Kicked Rotator
as a Paradigm of Other Systems: Spectral
Statistics and the Localization Measure

Thanos Manos and Marko Robnik

Abstract We study the intermediate statistics of the spectrum of quasi-energies and
of the eigenfunctions in the kicked rotator, in the case when the corresponding sys-
tem is fully chaotic while quantally localized. As for the eigenphases, we find clear
evidence that the spectral statistics is well described by the Brody distribution, no-
tably better than by the Izrailev’s one, which has been proposed and used broadly
to describe such cases. We also studied the eigenfunctions of the Floquet operator
and their localization. We show the existence of a scaling law between the repulsion
parameter with relative localization length, but only as a first order approximation,
since another parameter plays a role. We believe and have evidence that a similar
analysis applies in time-independent Hamilton systems.

3.1 Introduction

One of the most important manifestations of quantum chaos of low-dimensional
classically fully chaotic (ergodic) Hamiltonian systems is the fact that in the (suf-
ficiently deep) semiclassical limit the statistical properties of the discrete energy
spectra obey the statistics of Gaussian Random Matrix Theory (RMT). The oppo-
site extreme are classically integrable systems, which quantally exhibit Poissonian
spectral statistics (see [1]).

Quantum kicked rotator (QKR) is a typical example in the field of quantum
chaos [2]. A typical property of the QKR is the chaos suppression for sufficiently
large time scales. The study of the statistical properties of the classical and quantum
(semiclassical) parameters in such systems is of great importance. Here we study in
detail the semiclassical region where kK > K > 1, i.e. the regime of full correspon-
dence between quantum and classical diffusion (on the finite time scale t < tp) and
the manifested quantum dynamical localization for ¢ > fp. Furthermore, we are fo-
cused in the probability level spacing distributions in the regime where the system is
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classically strongly chaotic (K > 7) but quantally localized, i.e in the intermediate
or soft quantum chaos, as it is described in the literature [5].

3.2 The Quantum Kicked Rotator Model

The QKR model [3] is described by the following function

L2 92 —
H:—gw—}—gocos@ Z 8(t —mT), G.1)

m=—0o

where 7 is Planck’s constant, / is the moment of inertia of the pendulum and &g
is the perturbation strength. The motion after one period T of the ¥ wave function
then can be described by the following mapping

VO, t+T)=Uy(,1), (3.2)

. Th 9* €0 Th 92
U =exp lﬂw exp —lgcose exp lﬂm , (3.3)

where the ¥ function is determined in the middle of the rotation, between two suc-
cessive kicks. The evolution operator U of the system corresponds to one period.
Due to the instant action of the perturbation, this evolution can be written as the
product of three non-commuting unitary operators, the first and third of which corre-

sponds to the free rotation during half a period G(z /2) = exp(i 5—7 %), t=hT/I,
while the second é(k) = exp(—ikcos®), k = go/h describes the kick. The sys-
tem’s behavior depends only on two parameters, i.e. T and k and its correspondence
with the classical systems is described by the relation K =kt =97 /I. In the case
K =kt > 1 the motion is well-known to be strongly chaotic. The transition to clas-
sical mechanics is described by the limit k — oo, T — 0 while K = const. In what
follows A=t and T = I = 1. We shall consider mostly the semiclassical regime
k> K, where t < 1.

In order to study how the localization affects the statistical properties of the
quasienergy spectra we use the model’s representation with a finite number N of
levels [4, 5]

N
Yn(t+T)=> Upm¥m(®), nm=12,...N. (3.4)

m=1

The finite unitary matrix U,,, determines the evolution of a N-dimensional vector
(Fourier transform of ) of the model

Unm = Z Gnm’Bn’m/Gn’m , (35)

n'm’
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where G = exp(itl 2 /4)8; is a diagonal matrix corresponding to free rotation dur-
ing a half period 7' /2 and the matrix B, ,, describing the one kick has the following
form

1 2N+1 271

_ o . ’ n_2ml
Bn/m,_2N+1§{cos|:(n m)2N+1] cos|:(n +m)2N+1:|}

. 2wl
X exp| —ik cos .
2N +1

The model (3.4) with a finite number of states is considered as the quantum analogue
of the classical standard mapping on the torus with closed momentum p and phase
6 where Uy, describes only the odd states of the systems, i.e. ¥ (0) = —(—0).

3.3 Intermediate Statistics and Comparison of Probability
Distributions

Let us first compare the Brody and Izrailev probability distribution functions (PDFs)
for the study of the intermediate level statistics. The Brody distribution is defined
by the relation

Pgr(s) = C15P2R exp(—CosPrtT), (3.6)

where the two parameters C; and C, are determined by the normalization con-
ditions fooo Pgr(s)ds =1 and fooosPB (s)ds = 1. Izrailev suggested the following
distribution (see [5] and references there for the details and the argumentation)

P =A A : 22— (B 1 3.7
1z(s) = <57TS> CXP[—EﬂIZﬂ s —( —Zﬂﬂlz)S}, 3.7

in order to describe the intermediate statistics, where the parameters A and B are
determined again by the two above normalization conditions. Both 8 parameters,
in the strongly localized regime tend asymptotically to 0 with Poissonian statistics
while in the chaotic one tend to 1, which excellently approximates the Gaussian
Orthogonal Ensemble (GEO) of the RMT. On the other hand, the non-integer
in the PDFs could be associated with the statistics of the quasienergy states with
chaotic localized eigenfunctions.

Here, we use N = 4000 (which is considerably much larger size compared to
the one used in the past studies) and K = 7 with k = 30. In Fig. 3.1(a) we show
the numerical data (histogram) and the two PDFs. Their repulsion parameters have
been calculated with best fit procedure independently. The corresponding values are
found to be Spg & 0.424 and Bz ~ 0.419 for the two PDFs respectively. In the inset
figure of Fig. 3.1(a), we may see how the Ppr(s) manages to capture and describe
better the peak of the distribution where the most significant part of quasienergies
w is concentrated. The dot-dashed gray line indicates the Wigner surmise while



18 T. Manos and M. Robnik

1 0.01
Wigners) (b)
0.75
0.8 / 07 w 0:0051
0.65 b—
; » )
=29 S o 3 Ny J
=z S A P
A
0.4} f N b?é /’NM
i 0 02 04 06 08 1 12 : -0.005@1 ' ]
- M fi
02p W
!/ Poisson(s)
! <0.01
0605 1 15 2 : 25 3 35 4 45 0 02 04 06 08 1
: Ugr
0.01 ‘ ‘ ‘ ‘ 0.01 ‘ ‘ ‘ : : :
(c) d
g 0.005} R ] g 0.005}
. P
X AN 2 A
) 0 Vi P s . ] 0 / ”'{ 4 N
= Yy WAL oo
% " #MA] §. Wu
= -0.005} 1 & -0.005}
-0.015 02 04 06 08 1 0075 g 5 5 g 5 5
War K

Fig. 3.1 Intermediate statistics (panel (a)) for distribution P (s) (histogram—black solid line) of
the model (3.4)—(3.5) fitted with distribution Pgg(s) (black dashed line) and Pyz(s) (black dotted
line) for N = 4000, K =7 and k = 30 (see text for discussion). The gray lines indicate the two
extreme distributions, i.e. the Poisson and Wigner. In panels (b)—(d) we show the comparison of
the Brody (black line) and Izrailev (gray line) PDFs with the numerical using the U-function and
W -distribution (see text for discussion)

the dot-dot-dashed one the Poisson distribution. Similar findings have also been
found even for smaller sizes of the matrix U,,,, where the statistics are improved by
sampling more matrices with slightly different values of k as e.g. in [5].

The above statement, regarding the Ppg(s) better agreement with the numer-
ical data, becomes more clear when checking the so-called U-functions U(s) =
(2/m)arccos /1 — W (s) of the two above distributions [6]. The W (s) = fg P(x)dx
is the cumulative (or integrated) level spacing distribution function (CDF). The
U-function has the advantage that its expected statistical error §U is independent
of s, being constant for each s and equal to §U = 1/( V/Ny), where Nj is the total
number of objects in the W (s) distribution. The numerical pre-factor 2/m is deter-
mined in such a way that U (s) € [0, 1] when W(s) € [0, 1]. We may note here that
the B values for the CDFs may be in principle slightly different compared to those
found by the PDFs. In Fig. 3.1(b), we show the Upg — U and Ujz — U vs. Upg
where one may see that the Brody one is in general closer to zero (black line) than
the Izrailev one (gray color). This fact indicates that the Brody one fits better the nu-
merical data. This is also evident in Fig. 3.1(c), where the Wpr — W and W;z — W
vs. Wpr are presented while in Fig. 3.1(d) the Wpr — W and Wjz — W vs. s. The
horizontal zero line in these panels indicates the complete agreement between the
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numerical data and theoretical predictions. The repulsion parameters for the CDFs
used in panels (b), (c), (d) are Bpr ~ 0.396 and Bz ~ 0.366 respectively.

3.4 Scaling Laws and Localized Chaotic Regimes

A number of different ways to measure and estimate the localization length of
the eigenfunctions have been proposed in the literature. Here, we adopt the well-
accepted measure described and justified in e.g. [S]: For each N-dimensional

eigenvector of the matrix U,, the information entropy is Hy(uiy,...,uy) =
- ij:l u,zl In u,zl, where u, =Reg, and ), u% = 1. The distribution of uﬁ for the

GOE in the large N-limit tends to the Gaussian distribution and we get JfAC,;OE =
Y (OS5N +1) —¢¥(1.5) ~In(0.5Na) + O(1/N), where a =4/exp(2 — y) = 0.96,
while ¢ is the digamma function and y the Euler constant (>~ 0.57). Then the en-
tropy localization length ly is defined as [ = N exp(Hn — RSOE). The fluctua-
tions can be minimized when using the mean localization length () = d, which is
computed by averaging over all eigenvectors of the same matrix (or over an ensem-
ble of similar matrices) d = N exp({Fn) — %gOE).

The parameter that determines the transition from weak to strong quantum chaos
is not the strength parameter k but the ratio of the localization length L« to the size
N of the system, A =,/ N, where looc = D1/ 2h% and D, is the classical diffusion
constant

K21 =20(K)(1 — Jh(K))], ifK =45
Der = s . 3.8)
0.30(K — K¢r)”s if Ko, < K <4.5,

where K. ~0.9716 and J>(K) the Bessel function. The localization parameter is
then defined as Bj,c = d/N. The scaling law we used is B (x) = yx/(1 + yx),
where x = A and y ~ 4.2 which is slightly different (but in agreement) to the one
proposed in [7], where x = k?/N and K = 5. In Fig. 3.2(a), we compare Bgg repul-
sion parameter of the Ppg(s) with the localization parameter By, through the lo-
calization length d = (Iy). For the numerical calculations and results regarding the
spacing distributions P (s) for the quasienergies, we have considered a wide range
of the quantum perturbation parameter k keeping the classical parameter fixed (clas-
sically always fully chaotic). In order to ameliorate the statistics, we considered a
sample of 161 matrices U,,, of size N = 398 (= 64000 elements), in a similar man-
ner as e.g. in [5]) with slightly different values of k (Ak = £0.00125 < k).

3.5 Summary

We studied aspects of dynamical localization in the kicked rotator, following
[4, 5, 7], and largely confirm these results. We here considered the case with
K =7, where the dynamics is already fully chaotic (ergodic). The fractional power
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Fig. 3.2 (a) The fit parameter Bpg as a function of Bj,. for 161 x 398 elements, K =7 (+),
14 (x), 20 (), 30 (O), 35 (M) for a wide range of k values. (b) The parameter B, vs. A where
the scaling law (see text) is shown with the black line

law level repulsion is clearly manifested, and globally the level spacing distribu-
tion is very well described by the Brody or by the Izrailev distribution, with a clear
and systematic (although not very large) trend towards Brody rather than Izrailev.
We show that the scaling law (B, vs. A) exists, but only as a first order approx-
imation, as we see some scattering of data around the scaling curve. It seems that
with increasing dimension of the matrices the scaling curve asymptotes to the lim-
iting curve with only statistical scattering of the data points left. Further research
confirms that a similar picture describing the dynamical localization applies also in
time-independent systems, like e.g. billiards [8].
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Chapter 4
A 4+ B — C Reaction Fronts in Hele-Shaw Cells
Under Modulated Gravitational Acceleration

Laurence Rongy, Kerstin Eckert, and Anne De Wit

Abstract We study the dynamics of A + B — C reaction fronts propagating under
modulated gravitational acceleration by means of parabolic flight experiments and
numerical simulations. We observe an accelerated front propagation under hyper-
gravity along with a slowing down of the front under low gravity. By reaction-
diffusion-convection simulations of an A + B — C front propagating in a thin layer,
we can relate this periodic modulation of the front position to the amplification and
decay, respectively, of the buoyancy-driven double vortex associated with the front
propagation. A correlation between grey-value changes in the experimental shadow-
graph images and characteristic changes in the concentration profiles are obtained
by a numerical simulation of the imaging process (Eckert et al., Phys. Chem. Chem.
Phys., 14:7337-7345, 2012).

4.1 Background

In a variety of chemical systems, buoyancy-driven convection has been shown to re-
markably influence the propagation of reaction fronts. For example, the propagation
speed of autocatalytic fronts in capillary tubes depends on the angle of inclination
of the tube with regard to the vertical [2]. Simpler and more common chemical re-
action types than autocatalysis are second-order irreversible reactions of the form
A 4+ B — C. Provided that the two reactants A and B are initially separated in
space, a reaction front can also propagate in these chemical systems. It has recently
been shown that the reaction-diffusion properties of such fronts [3, 4] are not re-
covered if they develop in thin horizontal liquid layers where gravity points across
the thin layer [5]. This suggests that the dynamics of these fronts can be influenced
by chemically-driven buoyancy convection if A, B, and C have different densities.
Rongy et al. [6, 7] have shown numerically that the nonlinear dynamics is character-
ized by one or two flow vortices developing around the front in covered horizontal
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layers. They have furthermore classified the various possible density profiles and
related flow properties in a parameter space spanned by the three Rayleigh numbers
of the problem. We provide here a direct comparison between experiments and these
theoretical predictions. We show moreover that they can be used to understand sit-
uations on earth but also more complicated scenarios with modulated gravity, such
as the ones observed in parabolic flights.

4.2 Chemical System and Model

The experimental container is a Hele-Shaw (HS) cell where propionic acid (A) un-
dergoes a mass transfer from an organic phase (cyclohexane) into the aqueous layer
and is subsequently neutralised by the base TMAH (B), producing a salt, tetram-
ethylammonium propionate (C), according to A + B — C (see Fig. 4.1). The re-
action front in the HS cell is followed by means of the shadowgraph technique [9].
This technique is sensitive with respect to the Laplacian of the refractive index n
and the shadowgraph produces a relative change in the light intensity, from which
the reaction front position X s can be extracted. In ground experiments the resulting
hydrodynamic instabilities have been well characterized [5, 8] and we focus here on
microgravity situations.

To reduce complexity, the simulations focus entirely on the aqueous phase, in-
stead of treating the complete liquid-liquid system with the mass transfer through
the interface. This is justified because, after some minutes only, the reaction front is
already sufficiently far from the interface. Thus we consider a two-dimensional (2D)
thin aqueous solution layer placed horizontally in the gravity field in which an acid-
base reaction, A + B — C, takes place. The governing equations for the acid, base,
and salt concentrations are isothermal reaction-diffusion-convection equations. The
evolution of the 2D velocity field, v, is described by the incompressible Stokes equa-
tions and is coupled to the evolution of the concentrations through an equation of
state. In the latter we assume a linear dependence between the solution density, p,
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and the concentrations, introducing Rayleigh numbers directly proportional to the
experimental contribution of each species to the changes in density. To simulate the
gravity modulations of the parabolic flight we let the normalized magnitude of the
gravitational acceleration, g/go , with go = 9.81 m/s?, vary with time following the
flight protocol (see Fig. 4.2).

4.3 Experimental and Numerical Results

When two miscible solutions containing A and B, respectively, are brought into
contact, the dynamics of the A + B — C fronts developing in the liquid layer mea-
sured experimentally during parabolic flights differ from those obtained on earth
[5]. This confirms that, even in thin liquid layers, convective motions can influence
the properties of such fronts drastically. When gravitational acceleration varies pe-
riodically, we observe an associated periodic change between an accelerated front
propagation under hyper-gravity and a slowed down propagation under low gravity.
These results are explained by the numerical integration of our reaction-diffusion-
convection model. The simulations reproduce the experimental behavior and allow
to relate the modulation of the front position to the changes in the buoyancy-driven
flow field consisting of a double vortex (see Fig. 4.1). This vortex consists of a
rising flow at the reaction front, advecting fresh reactants towards it. The amplifi-
cation or decay of such a double vortex when increasing or decreasing the g-level,
respectively, explains the periodic behavior of the front position.

Figure 4.3 indicates a representation of the reaction front under parabolic flight
conditions by two characteristic lines, the leading edge (LE) and the trailing edge
(TE) (see caption of Fig. 4.3). The width of the front, defined as the distance be-
tween these two lines, is maximum in the low-gravity phase and minimum in the
hyper-gravity phase. Thanks to the numerical simulations of the experimental shad-
owgraph visualization, we are able to interpret the meaning of LE and TE and to
establish a correlation between the changes of the grey values in the experimental
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Fig. 4.4 Experimental (leff) and numerical (right) behavior of the positions X%E and X;E of
leading and trailing edges versus time during different stages of one parabola

images with those of the concentration fields. In particular, the observation of an
increasing front width at decreased contrast during the low-gravity phase can be re-
lated to a change in the curvature of the concentration profiles. Indeed, the positions
of the leading and trailing edges are deduced from the positions of minimum and
maximum d?(n)/dx? during one period of g-modulation, where 7, the refractive
index, is reconstructed from the numerical concentration profiles as a linear combi-
nation of the concentration fields of each species.

Figure 4.4 illustrates the behavior of the two characteristic lines, LE and TE,
during the different stages of the parabolic flight. There is an excellent qualitative
agreement between the experimental and numerical results. In the numerical part of
Fig. 4.4 we also evidence the acceleration of the reaction front in the parabolic flight
conditions compared to the situation under constant normal gravity g = 1go.
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Chapter 5
Effect of Limited Stirring on the Belousov
Zhabotinsky Reaction

Florian Wodlei and Mihnea R. Hristea

Abstract The effect of a limited stirring phase on the general behavior of the pe-
riodic color change in the Belousov Zhabotinsky was investigated systematically.
The effects of stirring on the BZ reaction has other consequences too apart from the
pure homogenization of the system. We have investigated the system under different
conditions (changing dimensions and volume of the beaker, different stirring rates
and times). We found that the stirring can result in the disappearance of an aperi-
odic phase which is present in the non-stirred case. We suppose that the stirring time
plays the role of a ‘bifurcation parameter’.

Keywords Belousov Zhabotinsky reaction - Stirring - Rotational flow

5.1 Introduction

The Belousov Zhabotinsky reaction (BZ reaction), named after B.P. Belousov [1]
and A.M. Zhabotinsky [2], is a homogeneous chemical reaction system. It performs
periodic color changes from red to blue (in case of the ferroin indicator) or from
translucent to light yellow (in case of cerium as indicator). In last more than half
a century there has been a constant interest in studying BZ reaction because of its
rich and complex behaviors ranging from periodic to chaotic nature. Our interest in
BZ reaction arose from its high similarity to biological processes. By studying this
system we expect to get a better understanding of physicochemical and biological
processes such as pattern formation, metabolism, reproduction or adaptability.

As the color oscillations are in visible range one can easily monitor the concen-
tration of ferroin (or cerium) by measuring the transmittance of the light through
the solution. The reaction is normally studied in a constantly stirred tank reactor
(CSTR) [6]. According to our knowledge until now the effect of a limited stirring
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Fig. 5.1 Evolution of periodic color change corresponding to the periodic change of the ferroin
concentration. There exist four distinct regions (phases): the first periodic phase (PI), the stirring
phase (SP) and a short periodic phase right after (PS), the aperiodic (chaotic) phase (CH) and the
second periodic phase (PII). Phases are separated by vertical lines and different background colors
for which, except from the stirring phase, the times for the transion from one to the other phase are
not that clear

phase has never been investigated systematically although there exists some report
where the system was stirred for a limited time [7].

Apart from the experimental investigation of the BZ reaction we are also inter-
ested in a theoretical model capable of describing such behavior. For that reason we
are also engaged in the physicochemical description of the system in the context of
non-equilibrium thermodynamics and hydrodynamics. The mathematical methods
needed to describe the system involve functional analysis and nonlinear differential
equations. We followed the general ideas of Ilya Prigogine et al. [5] and R.J. Field,
E. Koros and R.M. Noyes (FKN model) [3, 4]. A first simplified model able to
describe the qualitative behavior we have observed was presented at the European
Conference on Complex Systems 2011 [9, 10]. Our model can be understood as a
dynamical FKN model as the parameters are time dependent.

In this work we report our investigation on the effect of a limited stirring phase
on the behavior of the BZ reaction. The effects of stirring on the BZ reaction has
other consequences too apart from the pure homogenization of the system. This can
be seen easily from the fact that if the BZ reaction is stirred at a ‘high’ rate, the color
oscillations stop immediately, and when the stirring is stopped, almost immediately
the oscillations restart. If the BZ reaction is stirred at a ‘low’ rate, the color oscil-
lations sustain and moreover the time period of the oscillations becomes regular. If
the stirring is done for a limited time the general behavior changes. A typical time
evolution of the periodic color change with an stirring phase of 30 minutes is shown
in Fig. 5.1.

5.2 Materials and Methods

The experiments were performed with chemicals of analytical quality without fur-
ther purification. We prepared solutions from the chemicals with the following con-
centration: Sodium bromate (NaBrOs3) 0.5 M, sodium bromide (NaBr) 0.18 M, mal-
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onic acid 1.5 M, sulfuric acid (H,SO4) 3.06 M and ferroin (complex built from o-
phenantroline-chloride monohydrate and iron(Il)sulfate-7-hydrate) 0.026 M. In an
Erlenmeyr flask 7 ml distillated water was poured together with 8 ml NaBrO3 solu-
tion, 10 ml from malonic acid solution, 10 ml H»SOy4 solution, 4 ml NaBr solution
and 0.6 ml ferroin solution constituting the total volume to 30 ml. The solution was
mixed for 2 minutes after adding sodium bromide and 1 minute after adding ferroin.
Right after, the solution was poured into a photometric quartz UV grade spectropho-
tometric cuvette with a colume of approx. 4 ml. For the measurements, where the
system was stirred, a teflon-coated magnetic stirrer of approx. 0.6 mm length was
on the bottom of the cuvette.

The time evolution of the transmittance was monitored by a photometric unit con-
sisting of a light dependent resistor (D 9960-23) with the peak wavelength at 600 nm
and a light emitting diode (LED 5 mm) with the peak wavelength at 700 nm. The
photometric unit was incorporated in an electric circuit such that the color change
could be monitored by measuring the voltage from the apparatus constructed. The
voltage measurements were performed and recorded using VC820 multimeter from
Voltcraft. The measurement was executed in a black box, where the cuvette was in-
serted such that the photometric unit was measuring the color change approx. 1.5 cm
from the bottom of the cuvette and 2.5 cm from the liquid-air interface.

5.3 Results and Discussion

The effect of a limited stirring phase was investigated under different conditions
(changing dimensions and volume of the beaker, different stirring rates and times).
We found out that the main experimental difference between unstirred and stirred
systems is that the ‘phase transition’ from chaotic phase (CH) to the second periodic
phase (PII) takes place earlier in the case where the system is stirred. Furthermore
we found out that if the time of stirring is increased up to 60 minutes the chaotic
phase disappears completely. In Fig. 5.2 from bottom to top one can see that the time
of stirring results in a shortening of the time of the chaotic phase (CH) which can
result in a complete disappearance of the chaotic phase (upper panel of Fig. 5.2).

The general behavior is as follows: The color change disappears after some few
oscillations (initial phase, periodic phase I) (Fig. 5.1, PI). When stirring is started
with a certain stirring rate (approx. 9 Hz) the color oscillations come back and be-
come stable (Fig. 5.1, S). After a time (30 minutes in Fig. 5.1) the stirring is stopped.
The periodic behavior continues for some more time (Fig. 5.1, PS) but the oscilla-
tions become irregular and smaller. A phase of ‘small’ irregular oscillations and not
always distinguishable from the noise of the measuring apparatus starts and can last
up to 1 hour (chaotic phase) (Fig. 5.1, CH). After that a phase of large, regular and
ordered oscillations starts which can last up to 10 hours (periodic phase II) (Fig. 5.1,
PID).

In general we can distinguish three scenarios. The first scenario, which is shown
in the lower panel of Fig. 5.2, appears if the BZ reaction is not stirred. Then the
periodic color change evolves from a periodic (PI) over an aperiodic (CH) to an



32 F. Wodlei and M.R. Hristea

Pl s PIl

1 hour
" . WWWWWWW

1 hour
PI [ CH PIl

1 hour
o 1t hour

Fig. 5.2 Effect of a limited stirring phase on the evolution of the periodic color change. Lettering
as in Fig. 5.1. Lower panel: time evolution without stirring phase. Middle panel: time evolution
with a limiting stirring phase of 30 minutes (grey area, letter S) (the middle panel of this figure
is shown in more detail in Fig. 5.1). Upper panel: time evolution with a limiting stirring phase of
60 minutes (grey area, letter S). Note that a chaotic phase (CH), as in the cases where the solution
is not stirred or only stirred for 30 minutes, is no more visible

again periodic phase (PII) (such a behavior is also reported by Rustici et al. [7]) [8].
The second scenario, which is shown in the middle panel of Fig. 5.2, appears if the
BZ reaction is stirred for (at least) 30 minutes right after the first periodic phase (PI).
During stirring the oscillations become regular and after stopping they continue for
some while. Then a chaotic phase (CH), as in the first scenario, starts and which
again after some time changes into a second periodic phase (PII). And the last and
most interesting scenario, which is shown in the upper panel of Fig. 5.2 and in more
details in Fig. 5.3, appears if the BZ reaction is stirred for (at least) 60 minutes right
after the first periodic phase (PI). During stirring the oscillations become regular
and after stopping they remain regular and the periodic behavior continues, i.e. the
chaotic phase disappears.

In all experiments where we stirred the system for 60 minutes and more there
appears an interesting ‘shift’” where the mean transmittance decreases for a couple
of oscillations and then comes back again (inset ¢ in upper panel of Fig. 5.3). We
still do not yet understand what that means but it might be connected to the disap-
pearance of the chaotic phase.

5.4 Conclusion

We show here that a limited stirring phase changes the general behavior of the time
evolution of the BZ reaction. As long as the stirring rate is not too ‘high’ the stirring
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Fig. 5.3 Evolution of periodic color change with a 60 minute stirring phase. Lettering as in
Fig. 5.1. Lower panel: full record of the periodic color change. Upper panel: Magnification of
bold-framed box from lower panel of this figure. Framed boxes (a)—(c) are magnified in insets of
this panel (a): Magnification shows the transition from phase PI to S. (b): Magnification shows
the transition from phase S to PII. Note that there is a smooth transition without the appearance of
a chaotic phase. (¢): Magnification shows a ‘shift” where the mean transmittance decreases for a
short time (details in Sect. 5.3)

time is more important then the stirring rate for this change. Moreover there exists a
threshold value in stirring time (more than 30 minutes and less or equal to 60 min-
utes) for which the chaotic (inter)phase (CH) disappears. If the stirring time is only
30 minutes the chaotic phase is still present, but compared to the non-stirred case it
is shorter (approx. 35 %); if the stirring phase is 60 minutes the phase is not present
anymore. In that sense the stirring time plays the role of a ‘bifurcation parameter’
(see difference between Fig. 5.2 middle and upper panel).

We do not yet have a quantitative model describing the complex behavior we
have observed in experiment. However we have developed a first qualitative model,
which was presented at the European Conference on Complex Systems 2011 [9, 10]
and is still one of our key topic of interest to further investigating the Belousov
Zhabotinsky reaction.
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Chapter 6
Size Distribution of Barchan Dunes
by a Cellular Dune Model

Atsunari Katsuki

Abstract Barchans, which are crescent sand dunes, are observed in desert and on
the surface of the Mars. They form barchan field through interaction such as col-
lision processes. In order to investigate dynamics of barchan field, we used cel-
lular dune model. The model includes only saltation and avalanche as the basic
sand transport processes. We succeed to reproduce a few hundred of barchans
in a numerical simulation. The size of barchans grows more and the number of
them is less. Also the size distribution has long-time tail like log-normal distribu-
tion.

Keywords Sand dune - Barchan

6.1 Introduction

Sand dunes are found in various places such as desert on the Earth and on the surface
of Mars. They are formed through interplay between sand and air flow. Morpholog-
ical shapes of dunes are determined by the directional variability of flow and the
amount of available sand on the ground [1]. In the case of the unidirectional wind
flow over a year and the insufficient amount of sand for covering the entire bedrock,
barchans are observed. The shape of a barchan is characterized by the two horns
that point downwind and the slip face among them [2, 3]. The slip face is a steeps
slope formed by an avalanche.

Its dynamics of dune geomorphology has studied by using both laboratory ex-
periments [4, 5] and numerical simulations[6—11]. Most of these researches mainly
focused on the morphology and interaction among a few number of barchans. On
the other hand, much more still about understanding of barchan field remains to be
done. Hastenrath [12] has reported from field measurements that size distribution of
dune has a Gaussian distribution. The amount of statistics is not sufficient. Hersen
et al. also has reported that size and spacing between barchans are well selected
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[13]. Duran et al. has measured the size distribution of barchan in some places [14].
They found a log-normal distribution of size of barchans. Thus we reproduce a lot
of barchans in a numerical field and investigate a size distribution.

6.2 Model

We introduce a numerical model of barchans. It is necessary to keep calculation
costs to a minimum in order to reproduce a lot of barchans. Since most of previous
dune models have performed on calculation for fluid flow and sand movement, it
takes high calculation costs. Thus we simplify these complicated processes down to
a few simple steps. Our model is basically a variant of cell models [7, 15] and takes
into account only saltation and avalanche as the element processes of a barchan. Al-
though this model has been simplified considerably, it can reproduce many realistic
features of dunes [11, 16].

The dune field is divided into square cells. Each cell represents an area of sandy
ground that is sufficiently larger than a sand grain. With regard to the basic con-
cept of a cell model, we do not consider a detailed structure inside the cell. A field
variable h(x, y, t) that expresses the local surface height is assigned to each cell; ¢
denotes discrete time step and spatial coordinates x and y denote the central position
of each cell in the flow direction and in the lateral direction, respectively. The edge
length of a cell is considered as a unit length. It should be noted that while x, y,
and ¢ are discrete variables, i (x, y, ) assumes a continuous value.

Saltation is the transported process of sand grains by the flow. We model this
process by a simple transportation rule without considering fluid dynamical details.
The saltation length and saltation mass are denoted by Lg and gg, respectively.
Here, the saltation mass is the volume of sand transferred from one cell to another.
Since the area of a cell is unity, gg represents the change in the height of a cell after
saltation. In each time step of the simulation, the saltation mass gy is shifted from a
cell (x, y) to the leeward cell (x + L, y). We further assume that the saltation occurs
only on an upwind face. The saltation length Ls and the amount of transported sand
gs are modeled by the following rules,

Ls=a+bh(x,y,1) —ch*(x,y,1), (6.1)
qs =d, (6.2)

where a = 1.0, b =1.0, c =0.01 and d = 0.1 are phenomenological parameters. In
form (6.1), the second term represents that sand are transported farther as the height
of sand surface at the take-off cell is higher. The last term is introduced for Ls to
saturate at a certain value. Equation (6.1) is used only in the range where L is an
increasing function of & (x, y, t). The saltation mass g is fixed as 0.1 for simplicity.
Avalanche is another process in which sand slides down the steepest slope when the
angle of the local slope exceeds the angle of repose. This procedure is repeated until



6  Size Distribution of Barchan Dunes by a Cellular Dune Model 37

Fig. 6.1 Size distribution of 120 :
barchan dunes (¢ = 0.009). Zﬁg:;
The upwind area (area 1) and 100 ; area3 @ |

the downwind area (area 4) aread -—4

shows “plus” and “triangle”,

. 80
respectively

40

20

80 90 100

all the cells satisfy the stability condition. The angle of repose is fixed at 34° in the
present simulations.

6.3 Results and Discussion

We reproduced a few hundred of barchans by a numerical simulation using the above
model. The supplied sand from an upwind boundary has constant density ¢. We
investigate about size distribution. The width as the size of the barchan is defined as
the distance between two horns. In the numerical field, there are some curious dune
like deformed barchans, temporarily. Since it is known that the width and the length
of barchan is proportional to height, we exclude the deformed barchans which is far
from the scaling 10 %.

In order to investigate time evolution of the size distribution with ¢ = 0.009, we
divides the numerical field to four parts and have studied size distribution in each
area (Fig. 6.1). Barchans are formed by self-organization. They are larger through
the barchans collisions and the supplied sand, decreasing the number density of
them. The large barchan is sometimes divided by collision with small barchan. In the
result, small barchans are observed around a large barchan and the size distribution
of all barchans in the downwind area become like log-normal distribution. This log-
normal distribution is consistent to field measurement by Duran et al. [14].

6.4 Conclusion

We reproduced the barchan field by a coarse-grained dune model, which has only
two processes, saltation and avalanche. Next we investigate time evolution of size
distribution of barchans. At the upwind area, small barchans emerge and become
larger through supplied sand and collision process. The large barchan is divided by
collision with small one and becomes smaller. In the result, the size distribution of
barchans is like log-normal distribution.
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Chapter 7
Experimental Study of Buoyancy-Driven
Instabilities Around Acid-Base Reaction Fronts

L. Lemaigre, L.A. Riolfo, and A. De Wit

Abstract The interplay between hydrodynamics and chemistry can give rise to
complex non linear dynamics. To study how a simple A + B — C reaction can
affect buoyancy-driven instabilities, we experimentally investigate convective flows
appearing at the miscible interface between a solution of a reactant A put on top of
a solution of another reactant B in the gravity field when a reaction takes place. The
main observation is that the symmetry of the hydrodynamic patterns is drastically
modified by the chemistry.

7.1 Introduction

The interplay between hydrodynamics and chemistry can give rise to complex non
linear dynamics [1]. For instance, when a hydrodynamic instability appears between
two reacting fluids, the flow will bring the reactants in contact and enhance the re-
action, which, in turn, will modify the concentrations and affect the flow. In order to
better understand the different mechanisms involved in such complex phenomena,
it is important to study simple model systems. To study how a simple A+ B — C
reaction can affect buoyancy-driven instabilities, we experimentally investigate con-
vective flows appearing at the miscible interface between a solution of a reactant A
put on top of a solution of another reactant B in the gravity field when a reaction
takes place.

Let us first review the instabilities taking place in non reactive systems. The con-
vective instabilities affecting a stratification of a fluid A on top of a miscible fluid
B in the gravity field are classified in three regimes [2]. The Rayleigh-Taylor (RT)
instability occurs when a denser fluid A is put in top of a less dense fluid B. The
interface deforms into rising and sinking “fingers” (Fig. 7.1(b)) hence also the name
“density fingering” sometimes attributed to this convective mode.

If pa the density of fluid A is lower than pp, the density of fluid B, i.e. if
we start from an initially statically stable stratification, instabilities can neverthe-
less occur because of differential diffusion effects. These can take place if D and
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Dg, the diffusion coefficients of A and B are sufficiently different i.e. if their ratio
6= Dp/Da # 1.1f § > 1, the so-called double-diffusive (DD) instability (also com-
monly named “salt fingering” because of its genericity in ocean dynamics [3]) can
be triggered. In this case symmetric ascending and descending fingers also develop
across the initial contact line (Fig. 7.1(a)) [2, 4, 5].

In order to study how a chemical reaction can affect these hydrodynamic insta-
bilities, we have experimentally studied the dynamics obtained when the solutes
react according to a simple A + B — C reaction. The main observation is that the
symmetry of the hydrodynamic patterns is drastically modified by the chemistry.

The coupling between an acid-base reaction and buoyancy-driven instabilities
has been already partly characterized experimentally for immiscible fluids [6] in
a Hele-Shaw cell. This cell is analogous to a porous medium and can be approxi-
mated to a 2-dimensional system. The two reactant solutions are injected one on top
of the other inside a vertical Hele-Shaw cell in order to obtain a flat contact line.
As the cell is composed of two glass plates, the dynamics can easily be visualized
by shadowgraphy [7]. This optical technique allows to visualize the variations in
refractive index, which are in turn related to the composition of the fluid. It is par-
ticularly interesting to visualise colourless solutions. It has indeed been shown that
the presence of a colour indicator influences the dynamics [8, 9].

7.2 Results

In a first set of experiments, we start with less dense NaOH on top of a denser
solution of HCI (Fig. 7.1(c)). After an induction time of the order of the minute, fin-
gers start to rise from the initial contact line. These fingers merge, then move away
from each other and some new fingers appear. The influence of the concentration
has been investigated by varying the concentration of the base while keeping the
concentration of the acid constant. As the concentration of the base increases, the
fingers appear and grow faster, indicating that the system becomes more and more
unstable. This result has been confirmed by measuring the length of the fingers by
image processing.

As the acid diffuses faster than the base, we are here in the conditions to have a
double diffusive instability if there were no chemical reaction. Indeed, this type of
instability appears when the upper solute has a lower molecular diffusion coefficient
than the lower solute, the lower solution being the denser one [3]. In the non-reactive
case, fingers grow symmetrically above and under the contact line (Fig. 7.1(a)).
However, in the reactive case the fingers only develop on one side of the contact line.
The reaction thus breaks the symmetry of the double diffusive patterns (Compare
Figs. 7.1(a) and 7.1(c)).

This breaking of symmetry has also been observed in the case of a Rayleigh-
Taylor instability, i.e. when the overlying NaOH solution is denser. Again, a break-
ing of symmetry is observed (Fig. 7.1(d)). However, when the density of the over-
lying solution is even more increased, a symmetrical Rayleigh-Taylor is recovered.
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Fig. 7.1 Convective patterns
observed for: (a) non-reactive
double diffusion,

(b) non-reactive
Rayleigh-Taylor, (c) reactive
double diffusion, (d) reactive
Rayleigh-Taylor instabilities.
Field of view of each image
=25cm

(d)

It must be noted that double diffusion and Rayleigh-Taylor are not the only possi-
ble buoyancy-driven instabilities. When the overlying solute has a larger molecular
diffusion coefficient than the lower solute and the lower solution is denser, fingering
appears because of diffusive layer convection. The interplay between this instability
and the acid-base reaction involving NaOH and HCI has already been studied in the
literature [10-12]. A breaking of symmetry due to the chemical reaction has also
been observed in that case.

During this study, the convective patterns induced by the coupling between an
acid-base reaction and buoyancy-driven instabilities have been studied experimen-
tally. Future research will focus on performing linear stability analysis and non lin-
ear simulations of a related reaction-diffusion-convection model in order to study
the stability conditions as well as the nonlinear dynamics at longer times.
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Chapter 8
Dynamical Trap Effect in Virtual Stick
Balancing

Arkady Zgonnikov, Ihor Lubashevsky, and Maxim Mozgovoy

Abstract We present the experimental evidence of the dynamical traps model de-
scribing the human fuzzy rationality in the dynamical systems framework. The re-
sults of the experiments on virtual stick balancing are compared to the results of the
previous studies on the dynamical trap effect. According to the results obtained, we
suggest that the dynamical traps model actually captures certain essential features of
human fuzzy rationality and therefore may serve as an alternative to the traditional
notion of stable equilibrium in describing the behavior of human as an element of
complex social systems.

Keywords Mathematical modeling - Emergence mechanism - Human fuzzy
rationality - Dynamical traps

8.1 Introduction

Wide variety of physical formalism and notions have been used recently in describ-
ing social systems and behavior of human as a part of such systems (e.g., see [1, 2]).
Particularly, the basic concepts of Newtonian mechanics are commonly applied in
the modeling of traffic flow and motion of groups of animals (fish schools, bird
flocks, etc.) [3]. The notions of master equation and Hamiltonian as an energy func-
tion were used in the theory of opinion dynamics and the dynamics of culture and
language (e.g., [4]). Among other concepts of physics that are widely used in so-
cial systems analysis are fluid dynamics, Ginsburg-Landau equations and reaction-
diffusion systems (e.g., [5]).

Despite aforementioned advances, one can still note that the mathematical theory
of human behavior in social systems is far from being developed well. Apparently,
inanimate objects under consideration of Newtonian physics differ substantially in
its nature from animate beings, since such features as motivation, morale, mem-
ory, learning, etc. are inapplicable to the former. So we may assume that the corre-
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sponding mathematical formalism still should be developed in the domain of social
systems in addition to the existing notions derived from the physical ones.

One of such notions widely met throughout probably all branches of physics is a
fixed-point attractor, or stable equilibrium point; it is also commonly used in social
psychology [6] as like as the notions of periodic attractor and latent attractor. Nev-
ertheless, social objects and systems in the real world demonstrate anomalous dy-
namics and irregular behavior which often cannot be reduced to established patterns
like equilibrium points or limit cycles. The development of individual, specialized
notions accounting for the peculiarities of human beings may enable us to better
describe and understand complex social systems involving human as a key element.

Let us consider a hypothetical dynamical system controlled by the operator
whose purpose is to stabilize the system near an equilibrium point. We assume that
the operator does not react on the small deviations from this equilibrium, though
these variations are clearly recognized by her perception. In other words, the opera-
tor is comfortable with the deviations of a small magnitude. Thus, until the variation
becomes large enough, the operator prefers not to intervene the system dynamics.
Therefore, any point from a certain neighborhood of the equilibrium one is treated
equally by the operator. This assumption is in fact due to the phenomenon of hu-
man fuzzy rationality [7]. In the present paper we discuss the notion of dynamical
traps which was previously introduced in order to mimic this feature of the bounded
capacity of human cognition [8]. Considering the series of virtual experiments we
discover the evidence of the dynamical trap effect presence in the human behavior
during the stick balancing process. The results obtained may be treated as a step to-
wards understanding the nature of various anomalous phenomena caused by human
imperfect rationality in complex social systems.

Dynamical Traps In order to illustrate the dynamical traps concept, let us assume
that considered hypothetical dynamical system is described by the following equa-
tions

X=y,

y=82x, »Fx,y)+E0),

8.1)

and has an equilibrium in the origin of coordinates (0,0). Here £2(x, y) stands for the
dynamical trap effect, F'(x, y) is the sum of the regular forces (implicitly including
human control) and & (¢) is the random factor. §2(x, y) could be defined as follows

QRx,y)~0 if (x,y) € Q,
2(x,y)=1 otherwise,

where Q is a certain vicinity of the equilibrium point.

In order to explain the meaning of cofactor §2(x,y) we consider the behav-
ior of the operator who is approaching the desired phase space position (x = 0,
y = 0). Let us assume that if the current position is far from the origin, the operator
perfectly follows the optimal control strategy. If the current position is recognized
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Fig. 8.1 The structure of Y
phase space of system (8.1)
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by the operator as “good enough” ((x, y) € Qy,, i.e. it may not be strictly optimal)
due to her fuzzy rationality, she halts active control over the system so that system
dynamics is stagnated in certain vicinity of the desired position. Therefore, Q;, is
called the region of dynamical traps. The structure of the described system phase
space is presented on Fig. 8.1.

The investigation of the dynamical traps model was originally inspired by a class
of intrinsic cooperative phenomena found in the dynamics of vehicle ensembles on
highways [9]; later it was shown that the dynamical trap effect could cause emergent
phenomena in the chain of oscillators mimicking the interaction of motivated objects
[8, 10]. Among other results obtained in [10], it was demonstrated numerically that
the “motivated” oscillator from the particle chain under the presence of dynamical
trap forms the specific phase space trajectories (see Fig. 8.2). The phase variables
distributions were shown to take non-Gaussian forms. The reviewed results demon-
strate that the dynamical trap effect could be responsible for establishing of complex
patterns of the system motion near the equilibrium point.

Inspite of these achievements up to now there were no experimental evidences of
the dynamical trap effect existence in the real world. The purpose of the current work
is to provide an experimental background to the theoretical framework developed
earlier by comparing the results of previous studies on the dynamical trap effect and
the results of the series of experiments aimed at elucidation of some characteristics
of human fuzzy rationality in stick balancing task.

In order to exemplify theoretical studies on the dynamical trap effect we con-
sider the process of the inverted pendulum balancing by human. The task of dy-
namic stick balancing has been investigated widely from various perspectives; stud-
ies on both real-world and virtual experiments are available (see, e.g., [11, 12]).
However, attention is mainly paid to the in-depth understanding of the mechani-
cal and psychomotor aspects of the human control, while we aim to provide an
experimental background to the simple model of human cognition which may be
useful in the modeling of complex systems where human decisions play crucial
role.
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8.2 Virtual Experiments

In present work we focus on the computer-based simulation of two-dimensional in-
verted pendulum motion in viscous environment. Real-world motion capture-based
stick balancing experiments were also held, as well as virtual experiments simulat-
ing stick balancing in non-viscous environment. Preliminary analysis of the exper-
imental data demonstrated that the corresponding dynamical systems exhibit more
complex behavior than the system currently under consideration due to the increased
number of phase space variables. Therefore its detailed analysis requires an individ-
ual study and does not fall under the scope of present work.

The mechanical system under consideration is described by the following dimen-
sionless mathematical model:

760 = sinf — Av(r) cos®. (8.2)

Here phase space variable 6 is the angle between the stick and the vertical axis, T
is a time scale parameter characterizing the operator perception and the right-hand
part of the equation represents the sum of friction and gravity force moments. v (¢)
stands for the velocity of platform motion which is actually the control parameter
affected by system operator while A is constant amplifying coefficient of control
effort.

It is notable that the phase space of system (8.2) should comprise not only angle
6 but also its derivative 6. This assumption is due to the fact that the operator con-
trolling the system evidently perceive the angular velocity of the stick and regulates
the value of control effort v(¢) based on the current values of both factors. Hence,
the system dynamics is determined not only by the stick angle but by the angular
velocity as well. The similar approach of the phase space extension was previously
proposed in the studies on the car following theory [9] where “position-velocity”
phase space was extended by the acceleration as the third independent phase vari-
able.

We developed a simple tool that implements the model described above. The
operator has to maintain the angle between the virtual stick and the vertical axis near
unstable equilibrium position 6., = 0 by moving the platform via computer mouse.
The total number of subjects participating in the experiment was 12, including both
male and female students and professors of different nationalities. Therefore, we
achieved participants diversity in nationality, gender and age in order to make the
experimental group more or less representative.

A few sessions of the experiments were held. During each session subjects had
to control virtual inverted pendulum for the time period of 5 to 20 minutes after
5-minutes adaptation period. To prevent the fatigue effect, sessions were held on the
different days. For each participant we have acquired at least three sets of data for
various durations of control process.

The numerical data captured from each subject was analyzed separately. It was
found that after a short period of adaptation each participant mainly starts to follow
the simple strategy of system control:
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Fig. 8.3 Phase portrait and phase variables distribution (normalized) of the virtual inverted pen-
dulum motion in viscous environment under the control of male student during the time interval of
5 minutes, T = 0.3, A = 0.5. The distribution of the angular velocity is represented in logarithmic
scale

— wait until the angle or angular velocity of the stick exceeds certain threshold;
— correct the platform position so that the angular velocity is damped and the stick
position is approximately vertical and so on.

From each raw data set obtained we extracted the data required to visualize the
phase space trajectories of the inverted pendulum motion in “angle-angular veloc-
ity” phase space. It was discovered that the phase portraits of the system under
human control are extremely similar in their basic properties for all participants and
for any considered process duration. It is notable that though the average magnitude
of deviation from the equilibrium and the average time of continuous balancing vary
from one subject to another, the structure of phase portrait is stable within the whole
group, as like as the probability distribution functions of the phase space variables
6 and w = 6. Figure 8.3 represents the typical system motion trajectory and corre-
sponding distribution functions.

8.3 Discussion

Surprisingly, the structure of the phase trajectory produced by the virtual stick under
human control is quite similar to the ones of a single oscillator from the particle
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ensemble studied in [10] (see Fig. 8.2). The certain dissimilarity of the trajectories
in the neighborhood of the equilibrium points is probably due to the fact that these
equilibria are of different nature; the oscillators in the chain are artificially exposed
to the external white noise disturbance, while the virtual stick is itself unstable at
6 =0.

This comparison may lead us to the assumption that human behavior during the
process of two-dimensional inverted pendulum balancing is in some sense analo-
gous to the behavior of the particle balancing its position between two neighbors
described by the dynamical trap model. Furthermore, the analysis of the system
(8.2) phase variables distributions revealed that the probability density functions for
both variables have anomalous bimodal form (see Fig. 8.3), as like as the corre-
sponding functions (Fig. 8.2) found during the analysis of the system of interacting
oscillators in [10]. Besides, the form of the angular velocity distribution found is
like cusp o exp(—|w|), which again is anomalous and highly analogous to the re-
sults of the previous studies on the dynamical trap effect. All these facts could be
considered as the first experimental evidence of the dynamical trap existence in the
real world.

We may therefore expect that the bounded capacity of human cognition could be
described by the proposed dynamical trap model, which in turn could be used for
modeling of wide variety of complex systems comprising large numbers of inter-
acting human beings. Moreover, one may even speculate that the results obtained
give evidence to the fact that the standard notion of fixed-point attractor may not be
applicable in dynamical systems where human role is crucial due to the phenomena
of fuzzy rationality.

Acknowledgements The work was supported in part by the JSPS “Grants-in-Aid for Scientific
Research” Program, Grant no. 245404100001.
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Chapter 9

Bounded Capacity of Human Cognition

as a New Mechanism of Instability in Dynamical
Systems

Ihor Lubashevsky

Abstract A new emergence mechanism related to the bounded capacity of human
cognition is considered. It assumes that individuals (operators) governing the dy-
namics of a certain system try to follow an optimal strategy in controlling its motion
but fail to do this perfectly because similar strategies are indistinguishable for them.
The main attention is focused on the systems where the optimal dynamics implies
the stability of a certain equilibrium point in the corresponding phase space. In such
systems the bounded capacity of human cognition gives rise to some neighborhood
of the equilibrium point, the region of dynamical traps, wherein each point is re-
garded as an equilibrium one by the operators. So when a system enters this region
and while it is located in it, maybe for a long time, the operator control is suspended.
The present work draws on the results obtained previously as well as new ones and
is mainly aimed at elucidating the basic principles in constructing a mathematical
formalism describing this human feature. In particular, it is demonstrated that oscil-
lator with dynamical traps can be derived within rather general assumptions about
human behavior.

In the present extended description the main attention is focused on the reasons
and motives for developing the concept of dynamical traps.

Keywords Bounded capacity - Human cognition - Dynamical traps - Instability -
Emergence

9.1 Introduction

During the last decades there has been a great deal of modeling social systems and
behavior of humans as a part of such systems using physical formalism (for a re-
view see, e.g., articles of Encyclopedia [1]). In particular, the basic concepts of
Newtonian mechanics are commonly applied to modeling traffic flow, motion of
pedestrians, groups of animals (fish schools, bird flocks, etc.) (e.g., Refs. [2-4]), the
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phenomenological theory of phase transitions was used to mimic jam formation in
congested traffic [5], animal forging was imitated by random walks (for a review
see Ref. [6]), probabilistic formalism of statistical physics was demonstrated to be
useful in describing opinion dynamics, the dynamics of culture and language (e.g.,
Refs. [7-9]). The Lotka-Volterra model and the reaction-diffusion systems found
their applications in stock market, income distribution, and population dynamics
[10], the replicator equations were employed to simulate the moral dynamics [11].

One of basic notions concerned with directly in the present work and widely met
throughout probably all the branches of physics is the stationary point, the system
dynamics in the vicinity, and emergent phenomena occurring via its instability. The
notion of a fixed-point attractor as a stable stationary point in the system dynamics
that corresponds to some local minimum in a certain potential relief is widely met
in social psychology [12]. The latter is extended even to collections of such fixed
point attractors forming a basin. Besides, social psychology uses the notion of latent
attractors, periodic attractors representing limit cycles, and deterministic chaos. In
addition, the concept of synchronization of interacting oscillators was used to model
social coordination [13].

In spite of these achievements we have to note that the mathematical theory of
social systems is currently at its initial stage of development. Indeed, animate be-
ings and objects of the inanimate world are highly different in their basic features,
in particular, such notions as willingness, learning, prediction, motives for action,
moral norms, personal and cultural values are just inapplicable to inanimate ob-
jects. This enables us to pose a question as to what individual physical notions and
mathematical formalism should be developed to describe social systems in addi-
tion to the available ones inherited from modern physics. For example, Kerner’s
hypothesis about the continuous multitude of metastable states representing the syn-
chronized phase of traffic flow, on one hand, stimulated developing the three-phase
traffic model explaining a number of observed phenomena in congested traffic flow
[14, 15]. On the other hand, a microscopic mechanism enabling the coexistence of
many different metastable states actually at the same point of the corresponding
phase space is up to now a challenging problem.

Previously the concept of dynamical traps was introduced to describe the
bounded capacity of human cognition in evaluating events, actions, etc. according
to their preference and its effects in governing a certain system or entity [16—18],
which was partly stimulated by studying the car following dynamics for bounded
rational drivers [19, 20]. When, for example, two actions are close to each other
in quality from the standpoint of a person (operator) making a decision their choice
may be random because he ought to consider them equivalent. The notion of dynam-
ical traps accounts for this feature. In particular, dealing with a dynamical system
in the phase space Ry its stationary point {x =0, y = 0} being initially stable is
replaced by a certain neighborhood Q, called the dynamical trap region such that
when the system goes into Q;, its dynamics is stagnated. This mimics vain actions
of an operator in directing the system motion towards the point {0, O} precisely. In-
deed, when the system under the operator control gets any point in Q;, the operator
may consider the current situation perfect because he just does not “see” the point
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{0, 0} and until the system leaves Q- he has no reason to keep the control active.
Broadly speaking, it is an alternative to the notion of stationary point in dynami-
cal systems [18]. We note that a concept of dynamical traps but of different nature
is met in theory of relaxation oscillations [21] and Hamiltonian systems (see, e.g.,
Ref. [22]).

9.2 Dynamical Trap Model

The present work is devoted to the general principles in constructing the governing
equations allowing for dynamical traps caused by human properties. By way of
example, at the starting point of theory development it is assumed that if the operator
was able to govern the system perfectly following a certain optimal strategy then its
dynamics would be described by the coupled equations

dx dy
rzzFx(x,y), rﬁsz(x,y). 9.1)
Here t is a time scale characterizing the operator perception delay, the “forces”
Fy(x,y) and Fy(x,y) are determined by both the physical regularities of the sys-
tem mechanics and the active behavior of the operator in controlling the system
motion. The origin {0, 0} of the coordinate frame is placed at the equilibrium point
of system (9.1), i.e., the equalities

Fily=0=0, Fyly=0=0 9.2)
0 0

X
y
are assumed to hold. In this context the perfect rationality of the operator means his
ability to locate precisely the current position of the system on the phase plane R,,,
to predict strictly its further motion, and, then, to correct the current motion con-
tinuously. Exactly in this case it is possible to consider that the operator orders the
strategies of behavior according to their preference and then chooses the optimal
one. As aresult the equilibrium point {0, 0} must be stable when the aim of operator
actions is to keep the system in close vicinity to this point (Fig. 9.1(b)).

The motion of the given system has been presumed to be a cumulative effect
of the physical regularities and the operator actions. The notion of dynamical trap
kernel implements this feature. Namely, the operator is considered to be able to
halt the system motion at a certain multitude L of points in the phase space Ry,
to be called the locus of partial equilibrium L, if after getting any point of Ly,
the system will stay at it without furthers actions of the operator. In this case the
system motion along L, is due to random factors or the operator action. If after the
operator suspending his control over the system its dynamics becomes unstable with
a relatively small increment, the multitude L is called the unstable kernel L, x. The
two cases differ from each other only in the mechanism forcing the system to leave
the dynamical trap region Q.. In the former case it is random or uncontrollable
motion of the system in the phase space R,, (Fig. 9.1(c)), in the latter case it is
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Fig. 9.1 The structure of the phase space Ry, of the system under consideration (a); a schematic
illustration of its dynamics near the stable equilibrium point {0, 0} in the cases of the perfect ra-
tionality (b), and illustration of system trajectories in the case of dynamical traps with a partial
equilibrium locus (¢) and a unstable kernel (d)

the weak system instability without the operator control (Fig. 9.1(d)). The given
coordinate frame is chosen so that the partial equilibrium locus L, be tangent to the
x-axis at the origin or the unstable kernel IL,; correspond to small variations in y.
The system motion outside Q- is governed by the active behavior of the operator
and the physical regularities. The points where the operator control is suspended or
resumed are called the action points and treated as random events. In the given work
the continuous approximation of action points is used within which the transition
from active to passive behavior of the operator is mimicked by introducing noise
&(t) with amplitude € and the factor

AT+ (x/6)7 + (v/6,)?
) = 602+ (/6,2

9.3)

such that in the region Q. it takes small value A? <« 1 whereas outside Q, it is
about unity. The thresholds 6, and 0, determine the dimensions of the region Q,,
namely, Q- = |x| <6y and |y| < 6y.

Considering, for example, systems with partial equilibrium locus the following
model called the oscillator with dynamical traps

¥ =—Q20)[x +ox]+€£@). 9.4)



9 Human Bounded Rationality and System Instability 55

is derived under rather general assumptions. Here the cofactor £2(x)

2 *\2
£2(x) = ﬂ, (9.5)
14 (%)%

describes the dynamical trap effect and o can be treated as a certain viscous friction.
Using model (9.4) it is demonstrated that dynamical traps can cause this oscillator
to undergo non-equilibrium phase transitions of a new type where noise plays a con-
structive role whereas the regular “force” does not exhibit a change in its structure
similar to the bifurcation of stationary points. In addition, the work briefly presents
available experimental evidence of the dynamical traps obtained in balancing a vir-
tual pole with strong friction.

Then the model of one oscillator with dynamical traps is generalized to a chain of
such oscillators to analyze the emergent cooperative phenomena. It is demonstrated
that due to the dynamical trap effect complex spatial-temporal patterns can arise, the
distribution functions of the particle velocities and positions take anomalous forms
with heavy tails and several scales, and it is possible to introduce the notion of dy-
namical phases which are treated as individual entities arising via self-organization.
Special attention is paid to the systems with complex dynamics without noise. In
this case a particle can leave the dynamical trap region only because of the mis-
match between the operator actions. Besides, a sequence of phase transitions with
anomalous properties caused by weak noise is discussed in brief.

9.3 Conclusion

The obtained results enable us to state that the bounded capacity of human cognition
in ordering, e.g., events or actions can be regarded as a new mechanism of complex
emergent phenomena in systems where human factor plays a crucial role. The math-
ematical formalism required for the description of this effect draws on the concept
of dynamical traps being a certain alternative to the notion of stationary points in
dynamical systems. It should pointed out that the dynamical trap effect can cause
the system instability giving rise to emergent phenomena even in the case when the
initial stationary point was stable.
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Research” Program, Grant 245404100001.
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Chapter 10
Complex Systems with Trivial Dynamics

Ricardo Lépez-Ruiz

Abstract In this communication, complex systems with a near trivial dynamics are
addressed. First, under the hypothesis of equiprobability in the asymptotic equi-
librium, it is shown that the (hyper) planar geometry of an N-dimensional multi-
agent economic system implies the exponential (Boltzmann-Gibss) wealth distri-
bution and that the spherical geometry of a gas of particles implies the Gaussian
(Maxwellian) distribution of velocities. Moreover, two non-linear models are pro-
posed to explain the decay of these statistical systems from an out-of-equilibrium
situation toward their asymptotic equilibrium states.

Keywords Statistical models - Equilibrium distributions - Decay toward
equilibrium - Nonlinear models

10.1 Introduction

In this paper, different classical results [1-4] are recalled. They are obtained from a
geometrical interpretation of different multi-agent systems evolving in phase space
under the hypothesis of equiprobability [5, 6]. Two nonlinear models that explain
the decay of these statistical systems to their asymptotic equilibrium states are also
collected [7, 8].

We sketch in Sect. 10.2 the derivation of the Boltzmann-Gibbs (exponen-
tial) distribution [6] by means of the geometrical properties of the volume of an
N-dimensional pyramid. The same result is obtained when the calculation is per-
formed over the surface of a such N-dimensional body. In both cases, the motivation
is a multi-agent economic system with an open or closed economy, respectively.

Also, a continuous version of an homogeneous economic gas-like model [7] is
given in the Sect. 10.2. This model explains the appearance, independently of the
initial wealth distribution given to the system, of the exponential (Boltzmann-Gibbs)
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distribution as the asymptotic equilibrium in random markets, and in general in
many other natural phenomena with the same type of interactions.

The Maxwellian (Gaussian) distribution is derived in Sect. 10.3 from geometrical
arguments over the volume or the surface of an N-sphere [5]. Here, the motivation
is a multi-particle gas system in contact with a heat reservoir (non-isolated or open
system) or with a fixed energy (isolated or closed system), respectively.

The ubiquity of the Maxwellian velocity distribution in ideal gases is also ex-
plained in the Sect. 10.3 with a nonlinear mapping acting in the space of velocity
distributions [8]. This mapping is an operator that gives account of the decay of any
initial velocity distribution toward the Gaussian (Maxwellian) distribution.

Last section contains the conclusions.

10.2 Systems Showing the Boltzmann-Gibbs Distribution

10.2.1 Multi-agent Economic Open Systems

Here we assume N agents, each one with coordinate x;, i =1, ..., N, with x; > 0
representing the wealth or money of the agent i, and a total available amount of
money E:

xi+x2+--+xy-1+xy <E. (10.1)

Under random or deterministic evolution rules for the exchanging of money among
agents, let us suppose that this system evolves in the interior of the N-dimensional
pyramid given by Eq. (10.1). The role of a heat reservoir, that in this model supplies
money instead of energy, could be played by the state or by the bank system in west-
ern societies. The formula for the volume Vy (E) of an equilateral N-dimensional
pyramid formed by N + 1 vertices linked by N perpendicular sides of length E is

EN
VN(E) = Tk (10.2)
We suppose that each point on the N-dimensional pyramid is equiprobable, then
the probability f(x;)dx; of finding the agent i with money x; is proportional to the
volume formed by all the points into the (N — 1)-dimensional pyramid having the
ith-coordinate equal to x;. Then, it can be shown that the Boltzmann factor (or the
Maxwell-Boltzmann distribution), f(x;), is given by
VN—1(E —x;)

fxi)= BRI (10.3)

that verifies the normalization condition

E
/ fxidxp = 1. (10.4)
0
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The final form of f(x), in the asymptotic regime N — oo (which implies E — o0)
and taking the mean wealth e = E/N, is:

1
fx)dx = Ee—x/fdx, (10.5)

where the index i has been removed because the distribution is the same for each
agent, and thus the wealth distribution can be obtained by averaging over all the
agents. This distribution has been found to fit the real distribution of incomes in
western societies [9, 10].

10.2.2 Multi-agent Economic Closed Systems

We derive now the Boltzmann-Gibbs distribution by considering the system in iso-
lation, that is, a closed economy. Without loss of generality, let us assume N in-
teracting economic agents, each one with coordinate x;, i = 1,..., N, with x; > 0,
and where x; represents an amount of money. If we suppose that the total amount of
money E is conserved,

xi+x2+ - +xy_1+ay=E, (10.6)

then this isolated system evolves on the positive part of an equilateral N-hyperplane.
The surface area Sy (E) of an equilateral N-hyperplane of side E is given by

VN EN-T,

Sn(E) = W _1

(10.7)
If the ergodic hypothesis is assumed, each point on the N-hyperplane is equiprob-
able. Then the probability f(x;)dx; of finding agent i with money x; is propor-
tional to the surface area formed by all the points on the N-hyperplane having
the ith-coordinate equal to x;. It can be shown that f(x;) is the Boltzmann factor
(Boltzmann-Gibbs distribution), with the normalization condition (10.4). It takes the
form,
I Sn—1(E —xp)

f(xi)=SN(E) oy (10.8)

where the coordinate 6y satisfies sinfy = ,/ NT*I After some calculation the Boltz-
mann distribution is newly recovered:

1
f(x)dx = Ee*x/ ke dx, (10.9)

with € = k7, being k the Boltzmann constant and t the temperature of the statistical
system.
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10.2.3 The Continuous Economic Gas-Like Model

We consider an ensemble of economic agents trading with money in a random man-
ner [9, 10]. This is one of the simplest gas-like models, in which an initial amount
of money is given to each agent, let us suppose the same to each one. Then, pairs of
agents are randomly chosen and they exchange their money also in a random way.
When the gas evolves under these conditions, the exponential distribution appears
as the asymptotic wealth distribution. In this model, the microdynamics is conserva-
tive because the local interactions conserve the money. Hence, the macrodynamics
is also conservative and the total amount of money is constant in time.

The discrete version of this model is as follows [9, 10]. The trading rules for each
interacting pair (m;, m ;) of the ensemble of N economic agents can be written as

m; =o(m; +mj),
ml’/=(1—o)(m,-+mj), (10.10)
i j=1...N,

where ¢ is a random number in the interval (0, 1). The agents (i, j) are randomly
chosen. Their initial money (m;, m ), at time ¢, is transformed after the interaction
in (m?, m’j) at time # 4 1. The asymptotic distribution p ¢ (m), obtained by numerical
simulations, is the exponential (Boltzmann-Gibbs) distribution,

pf(m) = pexp(—=pm), with B =1/(m)gs. (10.11)

where p y(m)dm denotes the PDF (probability density function), i.e. the probability
of finding an agent with money (or energy in a gas system) between m and m +
dm. BEvidently, this PDF is normalized, ||pr|l = fooo py(m)dm = 1. The mean value
of the wealth, (m)g., can be easily calculated directly from the gas by (m)gqs =
>_imi/N.

The continuous version of this model [11] considers the evolution of an initial
wealth distribution po(m) at each time step n under the action of an operator T .
Thus, the system evolves from time 7 to time n + 1 to asymptotically reach the
equilibrium distribution p r(m), i.e.

Lim 7" (po(m)) = p(m). (10.12)

In this particular case, p s (m) is the exponential distribution with the same average
value (p ) than the initial one (pg), due to the local and total richness conservation.

The derivation of the operator 7 is as follows [11]. Suppose that p,, is the wealth
distribution in the ensemble at time n. The probability to have a quantity of money
x at time n + 1 will be the sum of the probabilities of all those pairs of agents (u, v)
able to produce the quantity x after their interaction, that is, all the pairs verifying
u + v > x. Thus, the probability that two of these agents with money (u, v) interact
between them is p, (1) * p,(v). Their exchange is totally random and then they can
give rise with equal probability to any value x comprised in the interval (0, u + v).
Therefore, the probability to obtain a particular x (with x < u + v) for the interacting
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pair (u,v) will be p,(u) * p,(v)/(u 4+ v). Then, T has the form of a nonlinear
integral operator,

Pt (X) = Tpp(x) = // Pnpn® iy (10.13)
u+v>x u+v

If we suppose T acting in the PDFs space, it has been proved [7] that T conserves
the mean wealth of the system, (T'p) = (p). It also conserves the norm (|| - |), i.e.
T maintains the total number of agents of the system, ||Tp| = ||p|l = 1, that by
extension implies the conservation of the total richness of the system. We have also
shown that the exponential distribution ps(x) with the right average value is the
only steady state of T',i.e. Tp s = pr. Computations also seem to suggest that other
high period orbits do not exist. In consequence, it can be argued that the relation
(10.12) is true. This decaying behavior toward the exponential distribution is essen-
tially maintained in the extension of this model for more general random markets.

10.3 Systems Showing the Maxwellian Distribution

10.3.1 Multi-particle Open Systems

Let us suppose a one-dimensional ideal gas of N non-identical classical particles

with masses m;, withi =1, ..., N, and total maximum energy E. If particle i has a
momentum m; v;, we define a kinetic energy:
1 2
K = pl = Em vy, (10.14)

where p; is the square root of the kinetic energy K;. If the total maximum energy is
defined as E = R?, we have

Pi+pi+-+ Py + oy <R (10.15)

We see that the system has accessible states with different energy, which can be
supplied by a heat reservoir. These states are all those enclosed into the volume
of the N-sphere given by Eq. (10.15). The formula for the volume Vy(R) of an
N-sphere of radius R is

N

T2 RN

Vv(R) = — =
w(R) r+1)

(10.16)
where I"(-) is the gamma function. If we suppose that each point into the N-sphere
is equiprobable, then the probability f(p;)dp; of finding the particle i with coor-
dinate p; (energy pl.z) is proportional to the volume formed by all the points on the
N -sphere having the ith-coordinate equal to p;. It can be shown that

Vn_1(y/R? — p?
-1 ri) (10.17)

VN(R) ’

fp) =
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which is normalized, f_RR f(pi)dpi; = 1. The Maxwellian distribution is obtained in
the asymptotic regime N — oo (which implies £ — 00):

1 2
f(pydp = 5—e" 2 dp, (10.18)

with € = E/N being the mean energy per particle and where the index i has been
removed because the distribution is the same for each particle. Then the equilibrium
velocity distribution can also be obtained by averaging over all the particles.

10.3.2 Multi-particle Closed Systems

We start by assuming a one-dimensional ideal gas of N non-identical classical par-
ticles with masses m;, with i =1, ..., N, and total energy E. If particle i has a
momentum m; v;, newly we define a kinetic energy K; given by Eq. (10.14), where
pi is the square root of K;. If the total energy is defined as E = R?, we have

P%+P%+"'+P12v_1+P12v:R2- (10.19)

We see that the isolated system evolves on the surface of an N-sphere. The formula
for the surface area Sy (R) of an N-sphere of radius R is

271%
réh

where I"(-) is the gamma function. If the ergodic hypothesis is assumed, that is, each
point on the N-sphere is equiprobable, then the probability f(p;)dp; of finding the
particle i with coordinate p; (energy piz) is proportional to the surface area formed
by all the points on the N-sphere having the ith-coordinate equal to p;. It can be
shown that

Sn(R) = RN, (10.20)

1 Sn—1G/R?=p?)

fp) = )

= (10.21)
(1412

which is normalized. Replacing p? by %mvz, f(p) takes the following form g(v)
in the asymptotic limit N — oo,

g()dv =/ ;—kre*mvz/%fdu. (10.22)

This is the typical form of the Maxwellian distribution, with € = kt/2 given by the
equipartition theorem.
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10.3.3 The Continuous Model for Ideal Gases

Here, as we have done in the anterior case of economic systems, we present a new
model to explain the Maxwellian distribution as a limit point in the space of velocity
distributions for a gas system evolving from any initial condition [8].

Consider an ideal gas with particles of unity mass in the three-dimensional (3D)
space. As long as there is not a privileged direction in the equilibrium, we can take
any direction in the space and study the discrete time evolution of the velocity dis-
tribution in that direction. Let us call this direction U. We can complete a Cartesian
system with two additional orthogonal directions V, W. If p, (u)du represents the
probability of finding a particle of the gas with velocity component in the direction
U comprised between u and u + du at time n, then the probability to have at this
time n a particle with a 3D velocity (u, v, w) will be p, (u) p, (v) pp(w).

The particles of the gas collide between them, and after a number of interactions
of the order of system size, a new velocity distribution is attained at time n + 1. Con-
cerning the interaction of particles with the bulk of the gas, we make two simplistic
and realistic assumptions in order to obtain the probability of having a velocity x in
the direction U at time n + 1: (1) Only those particles with an energy bigger than x>
at time n can contribute to this velocity x in the direction U, that is, all those particles
whose velocities (u, v, w) verify w2+ v+ w?>x2, (2) The new velocities after col-
lisions are equally distributed in their permitted ranges, that is, particles with veloc-
ity (u, v, w) can generate maximal velocities FUpax = +/u? + v2 + w2, then the
allowed range of velocities [—Upmax, Umax] measures 2|Unax|, and the contributing
probability of these particles to the velocity x will be p, (1) p, (V) pn(w)/(2|Umax|)-
Taking all together we finally get the expression for the evolution operator 7. This
is:

S:
Pt (¥) = Tpy(x) =/// PulDPn@Pu®) \ i, (1023)
W22 4w?=x2 2/ u? +v? + w?

Let us remark that we have not made any supposition about the type of inter-
actions or collisions between the particles and, in some way, the equivalent of the
Boltzmann hypothesis of molecular chaos [12] would be the two simplistic assump-
tions we have stated on the interaction of particles with the bulk of the gas. Then,
an alternative framework than those usually presented in the literature [13] appears
now on the scene. In fact, it is possible to show that the operator 7' conserves in
time the energy and the null momentum of the gas. Moreover, for any initial velocity
distribution, the system tends towards its equilibrium, i.e. towards the Maxwellian
velocity distribution (1D case). This means that

. o _ 2
Tim T"(po(x)) = pa(®) =/;e o (10.24)

with @ = (2(x2, po))~!. In physical terms, it means that for any initial velocity
distribution of the gas, it decays to the Maxwellian distribution, which is just the
fixed point of the dynamics. Recalling that in the equilibrium (x2, pg) = kt, with k
the Boltzmann constant and t the temperature of the gas, and introducing the mass
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m of the particles, let us observe that the Maxwellian velocity distribution can be
recovered in its 3D format:

3
2
pa<u>pa(v)pa(w)=(@) e with o = (2kD) 7. (1025)
T

In general, it is observed that the convergence of the T -iterations of any distribution
p(x) to its Gaussian limit py (x) is very fast.

10.4 Conclusion

We have shown that the Boltzmann factor describes the general statistical behavior
of each small part of a multi-component system whose components or parts are
given by a set of random variables that satisfy an additive constraint, in the form of
a conservation law (closed systems) or in the form of an upper limit (open systems).

Let us remark that these calculations do not need the knowledge of the exact or
microscopic randomization mechanisms of the multi-agent system in order to reach
the equiprobability. In some cases, it can be reached by random forces, in other
cases by chaotic or deterministic causes. Evidently, the proof that these mechanisms
generate equiprobability is not a trivial task and it remains as a typical challenge in
this kind of problems.

In order to explain the ubiquity and stability of this type of distributions two
models based on discrete mappings in the space of distributions have been pro-
posed. On one hand, the gas-like models interpret economic exchanges of money
between agents similarly to collisions in a gas where particles share their energy.
The continuous version of a gas-like discrete model where the agents trade in binary
collisions has been introduced to explain the stability of the exponential distribution
in this kind of economic systems. On the other hand, a nonlinear map acting on
the velocity distribution space of ideal gases, which gives account of the decay of
an out-of-equilibrium velocity distribution toward the Maxwellian distribution, has
been presented. Some properties concerning the dynamical behavior of both opera-
tors have also been sketched.
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Chapter 11
Advection of Optical Localized Structures

F. Haudin, R.G. Rojas, U. Bortolozzo, M.G. Clerc, and S. Residori

Abstract We present an experimental and numerical study on the effects of a trans-
lational nonlocal coupling induced on localized structures (LS) in the context of
nonlinear optics. LS are obtained in a light-valve experiment and made to drift by
a mirror tilt in the feedback loop. Phase singularities are detected for small drifts,
whereas for large drifts, periodic organizations are observed.

11.1 Background

Advection phenomena are commonly studied in the framework of hydrodynamics
where fluid particles or scalar passive quantities can be transported by a flow. One of
the most famous examples of the advection phenomenon is the formation of Bénard-
von Kdrman streets, occurring when a viscous fluid is flowing past an obstacle.
Above a critical Reynolds number, organizations with two rows of eddies on either
side of its wake can develop [1]. Also in superfluids and Bose-Einstein condensates,
vortex shedding from a moving obstacle has been evidenced by numerical simula-
tions of the nonlinear Schrodinger equation [2, 3], showing several analogies with
vortex streets in Newtonian fluids [4]. The formation of pairs of vortex-antivortex,
also accompanies phase transitions associated with symmetry breaking [5]. Exam-
ples can be mentioned in magnets, superfluids [6] or in plasma jets [7].

In optics, vortices have been introduced as the topological defects arising above
the laser transition [8]. In this context, they have been identified as the singular
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points where the field amplitude is zero, while the circulation of the phase gradient
on any loop which encloses the vortex core is equal to 27, with conservation of
the total vorticity.

In nonlinear optics, the first observations of vortices pairs have been reported
twenty years ago in photorefractive cavities [9-11] and in Kerr media [12]. The idea
of drifting structures was used in a photorefractive cavity, where a wake of alternat-
ing vortices has been studied in the transverse field [13], showing analogies with the
street of eddies previously mentioned. Concerning localized states, in the LCLV ex-
periment, triangularly shaped localized structures have also shown to present optical
vortices [14], where the breaking of the circular symmetry is responsible for the ap-
pearance of pairs of oppositely charged phase singularities [15]. In an experiment
with two VCSELSs facing each other, vortex structures have been recently reported
[16]. Furthermore, other studies in the LCLV experiment have evidenced that in-
ducing a translational non local effect can induce secondary instabilities of patterns
[17, 18] such as transitions from hexagons to stripes, squares to zigzag [19].

In this context of study, the question we are addressing is how optical localized
states can be affected by a translational non local effect. The answer is not obvious a
priori since LS are particular objects. Indeed, they have wave properties, described
by the amplitude of the electric field, but they are “particle-like” too, if we consider
them as elementary pixels that can be switched on and off due to bistability [20].
Recently, the issue of drifting LS guided by using a spatial light modulator has been
addressed [21]. However, the deformation of LS due to a translational coupling, TC,
and the emission of optical vortices were not studied before. The present results are
reported in [22].

11.2 Methods

To characterize the effect of a drift on LS, structures are generated in an exper-
iment comprising a liquid crystal light-valve, LCLV, with optical feedback [23]
(Fig. 11.1(a)). The LCLYV is made of a thin nematic liquid crystal (LC) layer, with
thickness of 15 microns. This layer is sandwiched between a glass plate and a pho-
toconductive wall. The photoconductor is responding like an impedance varying
with the intensity of the light it receives and a dielectric mirror is deposited on it.
A planar anchoring is imposed to the molecules thanks to a prior treatment of the
surfaces in contact with the LC (nematic director parallel to the confining walls).
A voltage is applied across the cell. An expanded He-Ne laser beam, with wave-
length 632.8 nm, linearly polarized along the vertical direction, is illuminating the
cell. More precisely, the optical beam passes through the LC is then reflected back
by the dielectric mirror on the rear side of the valve. Finally the light beam is sent
in the feedback loop. An optical fiber bundle is used to close the loop and redirect
the beam back to the photoconductive side of the LCLV. The nematic director is
oriented at 45 degrees and a polarizing cube splitter introduces polarization interfer-
ence between the ordinary and extraordinary waves. This condition is responsible



11 Advection of Optical Localized Structures 69

o

J

>

LASER

Lo

near field
CCD

far field

Fig.11.1 (a) Experimental set up with an interferometer. LCLV means Liquid Crystal Light Valve,
L is a lens with focal distance f =25 cm; L, is a lens with short focal distance, CP a polarisor
cube, A/2 is a half-wave plate, P a polarisor, L is the free propagation length of light; (b) ex-
perimental profile of a quasi-motionless LS, (c) interferogram of the same structure and (d) two
experimentally advected LS

for the bistability between differently orientated states of the LC [24]. To observe
LS, the second effect needed in the system is diffraction, which is introduced by
displacing the fiber bundle over a L distance from this self-imaging configuration:
this leads to the selection of a transverse spatial characteristic size for the LS scal-
ing as the square-root of L. A CCD (Charged Coupled Device) camera is used to
record the intensity of the LS on an optical plane equivalent to the one of the photo-
conductor. Starting from a situation with LS in the transverse plane, a mirror of the
feedback loop is quickly misaligned, LS start to move in the direction induced by
the detuning.

11.3 Results

When they are moving, LS lose their circular symmetry. For relatively small trans-
lations, their profile is only slightly deformed. Wavelets are visible in the wake of
LS. For larger drifts, the deformation becomes more important.

From the intensity profiles, there is no direct access to the phase of the electric
field. Nevertheless, it is possible to detect phase singularities by interferometry, that
is, by taking a reference beam and making it to interfere at a given angle with the
beam extracted from the feedback loop. Phase singularities are, then, detected as
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Fig. 11.2 For a small drift: (a) interferogram of an advected LS and (d) same interogram with
inversion of colors and evidence of the fringes to detect phase singularities. For a larger drift:
(c) interferogram and (d) same interogram with inversion of colors and evidence of the fringes to
detect phase singularities

il

fringe dislocations appearing in the interference pattern. To optimize the location of
the singularities, we have settled the experiment with a large L in order to have large
structures, and the interferometer is adjusted to get a suitable number of fringes per
LS. Without using the reference beam, one gets the profile of intensity without the
fringes (Fig. 11.1(b)). In an ideal case without any translational effect (dx = 0), LS
have the usual circular geometry and no phase singularity is detected (Fig. 11.1(c)).
When the mirror is detuned, the symmetry of the LS is breaking (Fig. 11.1(d)). In
their intensity profile, phase singularities exist, detected by the fringe dislocations,
organized by pairs in a symmetric way on each side of the structure and visible
either in the front part of the structure or in its wake (Figs. 11.2(a) and (b)). For
bigger misalignments of the mirror, periodic organizations develop looking like a
necklace of LS (Figs. 11.2(c) and (d)). A remarkable feature is that the characteristic
size inside the organization is smaller than the natural size of the LS (for dx = 0).
Looking at the interference pattern, the presence of dislocations proves the presence
of phase singularities periodically distributed in space. All the experimental results
show qualitatively two regimes and the existence of phase singularities in both of
them.

To better analyze the appearance of these singularities in the profile of drifting
LS, numerical simulations are performed. They are done by integrating the equa-
tions of the full LCLV model [24] describing the dynamics of the localized struc-
tures in the presence of diffraction and a voltage, and by adding a translational cou-
pling. More precisely, the integration of the model is made by using a pseudo spec-
tral method, for which the spatial derivatives and the diffraction operator are solved
in Fourier space. The temporal derivate is calculated with an adaptive Runge-Kutta
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Fig. 11.3 Numerical intensity profiles of LS for growing dx values. In blue (respectively red)
are represented the null-lines of the real part (respectively imaginary part) of the electric field.
Intersections between blue and red lines correspond to phase singularities. The parameters are
the following: L = —16 cm, the voltage Vj across the LCLV is 12.9 V, the parameter for the
intensity is «/;; = 1.2 and the different values for the drift parameter are: (a) dx =0, (b) dx =56,
(¢)dx =112, (d) dx =169, (e) dx =211 and (f) dx =253 pm

algorithm. In the bistable regime, a single LS is generated by applying a Gaussian
pulse, then, a translation dx of the intensity on the photoconductor layer is intro-
duced. In the numerical profiles of the electric field of the LS, phase singularities
are detected every time a null-line of the real part of the field is crossing a null-line
of the imaginary part. When looking at the intensity profiles of LS for increasing
value of the translational coupling dx, the numerical results show behaviors similar
to the experimental ones. When the LS are motionless, the null-lines of the elec-
tric field are circular and never cross each-other. The deformation induced by the
translation brings the lines to intersect at multiple points, where optical vortices are
nucleated by pairs (Fig. 11.3).
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Chapter 12

Comparative Analysis of Buoyancy-

and Marangoni-Driven Convective Flows
Around Autocatalytic Fronts

M.A. Budroni, L. Rongy, and A. De Wit

Abstract We introduce a reaction-diffusion-convection (RDC) model to study the
combined effect of buoyancy- and Marangoni-driven flows around a traveling front.
The model allows for a parametric control of the two contributions via the solu-
tal Rayleigh number, Ra., which rules the buoyancy component and the solutal
Marangoni number, Ma,., governing the intensity of the velocity field at the interface
between the reacting solution and air. Complex dynamics may arise when the bulk
and the surface flows describe an antagonistic interplay. Typically, spatiotemporal
oscillations are observed in the parameter region (Ra, < 0, Ma. > 0).

12.1 Background

In spatially extended systems, autocatalytic reactions can sustain propagating chem-
ical fronts [1, 2] when coupled to diffusion. The study of such fronts has been
traditionally carried out in gels in order to avoid complications due to the onset
of convective flows. Convective instabilities inevitably occur in aqueous solutions,
where propagating waves generate a self-organised interface between two misci-
ble phases (the products and the fresh reactants respectively) and fluid motions
may arise, promoted by density and surface tension gradients across the chem-
ical front. The resulting convective flows feedback with the reaction dynamics,
modifying the reaction-diffusion structures. Interestingly, transport phenomena do
not act here as homogenising agents, but actively couple with the nonlinear ki-
netics to induce spatiotemporal reaction-diffusion-convection self-organisation. In
this framework, chemical fronts represent nice model systems for studying chemo-
hydrodynamic instabilities, which have implications also in practical terms, since
emergent behaviours due the coupling between reactions and transport phenomena
are widespread in different fields ranging from the atmosphere and the environ-
mental chemistry to the realm of applied processes. In the last years, the dramatic
influence of bulk and surface flows on the wave dynamics has been pointed out in
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Fig. 12.1 Sketch of the
vertical slab defining the
spatial domain of our RDC
problem
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Fig. 12.2 Classification of the dynamical regimes for the asymptotic front mixing length, W,
in the parameter space (Ra., Ma.). The first and the third quadrants frame dynamics in which
Marangoni and buoyancy effects are cooperative while in the second and the fourth quadrant the
two convective contributions act antagonistically. Empty diamonds represent stationary solutions.
Oscillatory behaviours are located in the second quadrant. When the two effects are antagonist but
comparable, W stabilises over a minimum, which scales linearly with Ra. and Ma,, as indicated
by black filled squares. No oscillatory behaviour is observed in the fourth quadrant, even if the
chemical front experiences the antagonist influence of the Marangoni- and buoyancy-driven flows

both experimental [3, 4] and theoretical works [4—-8], showing that chemical fronts
can be distorted, accelerated or even broken by the hydrodynamic feedback. The
reaction-diffusion-convection coupling was proved to be also responsible for order-
disorder transitions in chemical oscillators, where it controls the route from periodic
regimes to spatiotemporal chaos [9].

Several numerical studies were aimed to isolate the role played by pure
buoyancy-driven and pure surface-driven flows in chemical travelling structures
[5, 6]. While these limit cases were successfully understood, the combined inter-
play of surface and buoyancy effects still remains unexplored.
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12.2 Methods

Here we propose a reaction-diffusion-convection (RDC) model, where both buoy-
ancy and surface solutal contributions to hydrodynamic flows are taken into account.
The model is derived by coupling a cubic kinetics, which well describes autocat-
alytic processes, to Fickian diffusion and to the Navier-Stokes equations governing
the velocity of the fluid in the reactor. We consider a 2-dimensional slab of length
L, and height L, where the gravity force g is oriented against the vertical direction
z (see Fig. 12.1). The autocatalytic product ¢, characterized by the density p, and
the surface tension y,,, propagates towards positive x (from left to right in Fig. 12.1)
invading the fresh reactant with density p,, surface tension y, and initial concentra-
tion ag. The reactor is assumed to be in isothermal conditions. The system equations,
conveniently casted into a dimensionless form and written in the vorticity-stream
function (w — ) form [7],' read

dc 0y dc 0y dc
2 (a—fg—%£>=vzc+cz(l—c) (12.1)
B] VR VR, 9
90 | W e 9y dw = 5. (V20— RaZE (12.2)
ot dz 0x dx 0z 0x
2y 9%y

The surface effect is introduced by using the Marangoni boundary condition at
the upper free surface border:

9
w=—Ma. S atz=L,. (12.4)
0x

This mathematical description provides a mean for a comparative study of the
buoyancy and surface-driven effects via the change of two key parameters: the solu-

. L3 . . .
tal Rayleigh number, Ra, = —% % aODSg, which quantifies the buoyancy influence
. _ 1 d]/ . . .
and the solutal Marangoni number, Ma, = kD de” which tunes the intensity

of surface effects at the interface between the reacting solution and air.” The front
dynamics is probed by changing the relative importance of Ra. and Ma, and the
resulting chemical patterns are quantitatively characterised through the analysis of
(1) the asymptotic front mixing length, W, (which measures the distance between
the tip and the rear of the front) and (ii) by the topology of the velocity field.

I'The equations are scaled by using the time scale of the chemical process 7o = 1/ (kag) and
the reaction-diffusion characteristic length Lo = +/Dty; D is the diffusivity of the autocatalytic
species; k the kinetic rate constant of the reaction; p is the water dynamic viscosity, which is re-
lated to the kinematic viscosity, v, via v = i/ pg, where pg is the water density; the vorticity, v, and
the stream function, r, are tied to the velocity field v = (u, v)T through the relations w = V x v, v,
u=0;¢¥ and v = —0d, . In Egs. (12.1)—(12.4), the Schmidt number, S. = v/D, gives the balance
between momentum and mass diffusion.

2See footnote 1.
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Fig. 12.3 Spatio-temporal
oscillations of a typical RDC
structure obtained for the
antagonist case

(Ra, = —5, Ma,. = 200). On
the left is the autocatalytic
species propagating into the
fresh reactants on the right

i

12.3 Results

An overview of the various possible scenarios can be summarised in the (Ra., Ma.)
parameter space, as sketched in Fig. 12.2, where we report the asymptotic dynamics
of the front mixing length. Steady asymptotic regimes are found when the bulk and
the surface contributions to fluid motions act cooperatively, typically in the regions
of the parameter space where the control parameters have the same sign (Ra. > 0,
Ma. > 0 or Ra, <0, Ma, < 0). Complex dynamics may arise when the two effects
combine for an antagonistic configuration. An example of these are spatiotemporal
oscillations observed as the parameters are set in the region (Ra, < 0, Ma. > 0) (see
Fig. 12.3). Periodic behaviour develop even in the absence of any double-diffusive
interplay, which in previous literature was identified as a possible source of com-
plexity [10]. Oscillations at the autocatalytic front occur because the local region
of solute denser product brought on top of the less dense non-reacted fluid by the
Marangoni surface flow starts sinking under the influence of the gravitational field,
forming a finger. The time scale at which this tongue moves down along the z-
direction is comparable to that of the front propagation, so that they can annihilate.
This mechanism iterates, supporting the oscillatory dynamics. The necessity of an
active synergy between the convective contributions for oscillations to occur is con-
firmed by the strict dependence of the transition upon the reactor height, L_, which
can affect the importance of buoyancy driven flows. Below a critical threshold of
L, no oscillatory dynamics can be observed, since the buoyancy contribution is
suppressed. Nevertheless, we show that a hydrodynamic antagonism is not a suffi-
cient condition for periodic or more complicated oscillations. This is numerically
proved by considering the parameters region (Ra. > 0, Ma, < 0), where, even if
the system experiences the competing effect of the two convective contributions, it
always saturates to an asymptotic steady-state. For both antagonistic cases, the anal-
ysis of the front dynamics shows a self-similar architecture which relates the trends
of the front observables in the (Ra., Ma.)-space. This study complements earlier ef-
forts to give a significant overview of the possible instability scenarios originated by
a chemo-hydrodynamic feedback. Experimental observations in the most common
chemical clocks, such as the Iodate Arsenous Acid (IAA) and the Chlorite Tetra-
tionate (CT) reaction, can be framed within this “taxonomy”. New experiments are



12

Comparative Analysis of Buoyancy- and Marangoni-Driven Convective Flows 77

expected to be designed for validating our numerical predictions about the new route
to spatiotemporal oscillations found in this work.
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Chapter 13
A Field Theory for Self-organised Criticality

Gunnar Pruessner

Abstract Although self-organised criticality has been introduced more than two
decades ago, its theoretical foundations remain somewhat elusive: How does it
work? What is its link to ordinary critical phenomena? How can exponents be cal-
culated systematically? Does it actually exist at all? In the following a field theory
is introduced that addresses these questions. In contrast to previous attempts, this
field theory is not phenomenological, or based on symmetry arguments. Rather, it
is based on the microscopic dynamics of the Manna Model. Exponents can be cal-
culated in an e-expansion perturbatively in a systematic way. Above the upper criti-
cal dimension, the field theory becomes (asymptotically) exact, allowing immediate
comparison to numerical results.

13.1 Introduction

Twenty five years ago Bak, Tang and Wiesenfeld [1] conceived the idea of self-
organised criticality (SOC), as the phenomenon that some slowly-driven systems
dissipate their “load” by sudden outbursts of activity, so called “avalanches”, the
statistical features of which are scale free [2, 3]. These systems very much behave
like ordinary critical phenomena, which somehow mange to tune themselves to the
critical point.

Over the last couple of decades, a plethora of models have been developed with
the aim to identify the sufficient and necessary conditions for SOC. This has facil-
itated the development of a range of theories of the mechanism underpinning the
SOC phenomenon. Among these models are some that display self-organised crit-
icality in a robust and solid fashion, most notably the Manna Model [4] and the
Oslo Model [5]. Numerical evidence suggests that both models belong to the same
universality class [6].

Recently, extensive numerical work has been carried out to characterise the
Manna model on different (regular) lattices in d = 1, 2, 3 dimensions [7, 8], as well
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as at and above the upper critical dimension d = 4 on hypercubic ones [9, 10].
On that basis, the coefficients of an € = 4 — d expansion can be extracted [8],
suggesting the existence of a field theoretic description. In a convoluted way,
a field theory exists already: The equation of motion of the Oslo Model is the
quenched Edwards Wilkinson equation [11], which has been painstakingly anal-
ysed by Le Doussal, Wiese and Chauve [12]. Based on the link between inter-
face roughness exponent x and avalanche dimension D =d + x [13, 14], one
finds D =4 — (2/3)e + 0.04777¢> from [12], which compares acceptably well
to the numerical result of D =4 — 0.658(5)e + 0.00962(13)e? (with a some-
what uncertain second order term), at least to leading order. On the other hand,
numerically z =2 — 0.239(4)e (with a second order undetermined), compared to
z=2—(2/9)e — 0.0432087¢ from field theory.

A number of SOC models have been analysed using renormalisation group meth-
ods in the past. Diaz-Guilera [15, 16] focussed on a Langevin-like description of
the Zhang model [17], which highlighted the technical problems associated with
the appearance of sharp thresholds [18, 19]. Pietronero, Vespignani and Zapperi
[20] presented a physically very appealing real-space renormalisation procedure,
which seemed to capture all relevant correlations to produce a very good estimate
of T =1.253... for the two-dimensional Manna Model (compared to T = 1.273(2),
numerically [7]). Although the dynamical exponent z = 1.234 was not reproduced
as well (z & 1.54, according to [4, 7, 21]), this procedure was very widely and suc-
cessfully applied to a number of SOC models [22-25].

On the other hand, based on symmetry and conservation arguments Hwa and Kar-
dar [26] and later Grinstein, Lee and Sachdev [27] were able to determine stochastic
equations of motion for SOC models such as the Bak-Tang-Wiesenfeld model [1],
which displayed non-trivial scaling. This work has been extended to other models
[28-31] focusing more recently on the question whether the universality class of
conserved directed percolation, which should contain the Manna Model, is truly
distinct from that of ordinary directed percolation [32, 33].

So far, however, none of the established SOC models has been analysed using
traditional techniques. Either the method of analysis was developed phenomenolog-
ically, for example by ignoring certain correlations, or the equations of motion were
determined on the basis of symmetry considerations and expansions rather than the
underlying rules. Both approaches were undoubtedly successful, quantitatively as
well as qualitatively. Yet, a complete, field-theoretic treatment of SOC based on the
microscopic dynamics and using the established methods of critical phenomena re-
mains elusive. What is more, while non-trivial scaling had been found at the relevant
fixed points, no dedicated mechanism for the self-organisation to the critical point
was identified. Rather, it was observed [20] that SOC models flow to an attractive,
non-trivial fixed point.

Dickman, Vespignani and Zapperi [28, 34] proposed a more phenomenological
explanation of SOC on the basis of absorbing state phase transitions. While this es-
tablished the link between ordinary (non-equilibrium) phase transitions more firmly
(originally suggested by Tang and Bak [35]), the proposed tuning-mechanism has
the shortcoming of being essentially linear, thus failing to explain how it triggers
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a fundamentally non-linear phenomenon. At closer inspection, it remains unclear
why the self-organisation occurs at precisely the right pace [36] and how it is linked
to the underlying absorbing state phase transition[37].

In summary, to date, there is no theoretical foundation of SOC, which would

— explain how SOC is related to ordinary critical phenomena,

— explain what mechanism triggers the scale invariance observed in SOC systems,

— most importantly, predict exponents and other universal quantities in SOC sys-
tems.

In the present manuscript, I present a summary of recent work which tries to
overcome these limitations. Using the language of second quantisation, a field the-
oretic description of the Manna Model can be derived. This field theory is an exact
representation of its (Poisonian) dynamics. Taking the usual field theoretic steps re-
duces the number of non-linear vertices to four, resulting in the effective field theory
of the Manna Model, which is the first field theory of its kind.

13.2 The Manna Model and Its Field Theory

The Abelian Manna Model [4, 38] is defined as follows. Each site i carries a num-
ber of particles z;. Whenever z; exceeds 1, site i topples, whereby two particles are
removed from that site (thus reducing z; by 2) and placed at two uniformly, ran-
domly, independently chosen nearest neighbouring sites j (thus increasing their z;
by 1 each). In turn, these sites might topple, as their z; may exceed the threshold
of 1. Some sites i are boundary sites where particles are lost. These sites can be
thought of as having “virtual” nearest neighbours “outside” the lattice which can be
charged, but which never topple.

The Manna Model is normally initialised with an empty lattice, z; = 0 every-
where, and driven by adding a particle (“charging”) at a randomly chosen site (thus
increasing z; by 1). The driving has to cease whenever a sequence of topplings oc-
curs, thereby implementing a separation of time scales. The totality of all topplings
between any two driving steps constitutes an avalanche. In particular, the avalanche
size s is given by the total number of topplings occurring between any two external
charges.

When deriving the field theory, one key step is to capture the seemingly fermionic
nature of the Manna Model, as quiescent sites do not support more than one parti-
cle. One might be tempted to generalise the Manna Model by stipulating that a site
topples after being charged with probability z;/n, where n is a carrying capacity.
For n = 1 the Manna Model is recovered, yet, there is no guarantee that the scal-
ing behaviour would remain unaffected by this rather brutal manhandling of the
fermionicity.

However, numerical simulations of the modified Manna Model confirm that the
resulting model still is in the Manna universality class. What is more, the modified
Manna Model with the probabilistic toppling rule is exactly the original Manna
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Fig. 13.1 The original Manna Model on the lattice shown above behaves like a modified Manna
Model with probabilistic toppling rule, parameterised by the carrying capacity n. Each site in a
column is connected to every site in the nearest neighbouring columns. The lattice shown is a
snippet of a (decorated) one-dimensional lattice with length L

Fig. 13.2 The boundary

conditions in the field theory
are best chosen to be 1
cylindrical

Model on a lattice like the one shown in Fig. 13.1, if z; of the modified version is
the sum over the z; in each column in the original version.

The other obstacle to overcome is the nature of the boundary conditions, which
are necessarily open at some sites (otherwise stationarity cannot be maintained in
the presence of external drive). It turns out that cylindrical boundary conditions
are mathematically easiest, see Fig. 13.2. The bare propagator in a d-dimensional
system then becomes

1
—1w+ D(k? +g2)

(13.1)

with frequency w, diffusion constant D and momenta k € R?~! and ¢, € R. The
latter are “quantised”, g, = 7n with n =1,2,.... The eigensystem deployed,
+/2/Lsin(g,z), lacks momentum conservation, resulting in a number of compli-
cations, which, however, can be overcome and are well known from critical Casimir
systems [39].

In the present setup, some exact results are obtained immediately. To start with,
the average avalanche size can derived as exactly (s) = (d/6)(L + 1)(L + 2) in all
dimensions d. The fact that the average avalanche size derived from the bare prop-
agator Eq. (13.1) is identical to the average avalanche size derived on the basis of
random walker considerations, indicates that the bare propagator does not renor-
malise at any order [40].
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Table 13.1 Comparison of various moment ratios, derived analytically for the branching random
walk on the lattice, which is the (effective) mean field theory of the Manna Model, and the numer-
ical values found for the Abelian Manna Model in d =5 > d. = 4 dimensions (d = 5 avoids the
significant logarithmic corrections at d = 4)

Observable Analytical Numerical (leading order) [10]
(s3)(s)/(s%)? 3.08754. .. 3.061(5)

(sM)(s2)/(s%)? 1.6693... 1.65(2)

(s2)(s3)/ (sH)? 1.4005... 1.38(3)

Above the upper critical dimension d. = 4, exponents and universal moment
ratios are determined by tree-level diagrams, such as

%
3 6
4@%:21(3> 2 ™ gnz_ L (13.2)

- 2
L) A aigm //)z’ gn 560D
odd qm

which are easily evaluated numerically, and somewhat more tediously in closed
form. These tree-level diagrams give rise to the mean-field theory, which can be ex-
tracted and analysed in its own right. The effective mean-field process is a branching
random walk, controlled by a branching ratio that self-organises to the critical point.
The statistics of that branching random walk is given by the tree-level diagrams. Al-
ternatively, it can be characterised using standard techniques, such as generating
functions. The resulting recurrence relations can be solved analytically to give

1 2
5) =L (13.3)
1
2 6
- I04... 134
(%) =120t + (13.4)
131
3 10
— 2 0. 135
(") = T3seo0t (13.5)
1129
4 14
- = 13.6
(") = 5205200 (13.6)
18961343
(%) = 22y 16 (13.7)
293318625600

where most of the messy calculations has been performed by means of a computer
algebra program [41]. While the (dimensionful) amplitudes are not universal, suit-
able ratios of the amplitudes are, see Table 13.1.

What is more, the field theory also explains the self-organisation process itself. It
turns out that the bare propagator is not a priori massless, as the interaction with the
lattice and the particles stuck there can hinder or promote spreading of activity. The
diagrams contributing to the mass, however, cancel strictly if stationarity is imposed.
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This cancellation is caused by a symmetry of two vertices, which in turn is a result
of demanding bulk conservation. It is clear, however, that bulk conservation is not
in itself a necessary ingredient.

The field theoretical description of the Manna Model also applies to the gen-
eralised model with carrying capacity n, where the stationary, spatially averaged
particle density fluctuates just above n/2. As n increases, the mean value of the par-
ticle density approaches n/2, corresponding to a branching ratio fluctuating about
1/2. The fluctuations are irrelevant above the upper critical dimension, but need to
be considered in a systematic way, as done in field theoretic renormalisation, below
the upper critical dimension. The stationary value itself experiences a non-universal
shift away from half-filling, n /2, just like the critical temperature is lowered relative
to the mean-field value in ferromagnetic phase transitions.

Most importantly, below the upper critical dimension, the field theory gives ac-
cess, for the first time, to a systematic e-expansion of the critical exponents, which
can be compared to the results obtained numerically. As the Manna Model and
the quenched Edwards-Wilkinson equation are in the same universality class, the
present field theory applies equally to the latter. The quenched noise there might be
represented by the substrate configuration in the Manna Model.

13.3 Summary

Using the language of second quantisation, a field theoretic description of the Manna
Model can be obtained. This allows, for the first time, a route of analysis of Self-
Organised Criticality by means of a renormalised field theory, the most successful
method in statistical mechanics. The bare propagator of the field theory incorpo-
rates the open boundary conditions which have to be applied in order to maintain a
stationary state. A number of exact results, as well as leading order behaviour, can
be derived directly from the bare propagator. While a mechanism exists to generate
mass, the propagator’s mass vanishes due to a certain symmetry between vertices,
so that an entire set of diagrams vanishes necessarily in the stationary state. Both
mechanism and analytical results can be probed above the upper critical dimension,
confirming them by comparison to recent numerical results.
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Chapter 14
Chaos and Non-linear Tools in Website Visits

Maria Carmela Catone

Abstract The present work is an application of linear and non-linear tools, with
particular attention to the chaotic dynamics, in order to analyze the daily visits to the
Italian newspaper website “La Repubblica”. The series is examined, using the time
chart, the recurrence plot and the power spectrum. In the phase space, the detrend
series consists of 5 clusters of points, explained by the frequency distribution that
is centred on 3 values. The analysis is performed by calculating the embedding
dimension, Lyapunov exponents and the correlation dimension that suggests the
existence of an attractor. A non-linear forecast of the following values is made.
In conclusion, some theoretical issues on the characteristics of a chaotic system
emerge.

Keywords Chaos - Recurrence - Websites

14.1 Introduction

This work is a technical application of linear and non-linear tools, with particular
attention to chaotic dynamics, in order to understand the trend in the number of visits
received by the Italian newspaper website “La Repubblica”. Despite the consistency
of the influx of visits, it was possible to identify regularities in the behaviour models
in the use of the website. Moreover, from this case study, some theoretical issues
on the characteristics of a chaotic system emerge. The work is made up of part of
a description, an analysis of the number of hits registered over three years (from
31 March 2008 to 21 September 2011) and a prediction; the data is available on the
audiweb website and the following software are used: Visual Recurrence Analysis
(VRA), Chaos Data Analyzer (CDA) and Excel.
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Fig. 14.1 Time series chart

14.2 Development of the Research

At first, the general structure of the series was studied using the VRA [1].

The time series chart (number of visits versus time) is characterized by the pres-
ence of a growing trend, peaks caused by exceptional events of everyday life (e.g.
the fall of government, earthquakes, etc.) and minimums that occur during the peri-
ods August and Christmas (Fig. 14.1).

In particular, the daily visits are on average 2442065 and during the summer
holidays they decrease by almost 40 %. Furthermore, during the week there are
more visits from Monday to Friday, but they decrease on Saturday and Sunday.

In order to carry out a more thorough examination of this configuration, the num-
ber of weekly visits was observed in the phase space with a time delay of 7 days. The
graph shows the number of hits on one day in a week versus the number recorded on
the same day of the preceding week. A cluster of points emerges around the bisector
that extends from 600000 to over 4500000 visits. This distribution means that the
values of visits on consecutive weeks tend to be similar. Following this, by carrying
out the same analysis with a one-day delay, the occurrences from one day to the
next could be examined. In this phase space (Fig. 14.2) the points accumulate along
three lines (a bisector and two shorter parallels) and therefore:

e after one day, the number of visits on the bisector tends to remain unchanged. This
happens in the transitions Monday—Tuesday, Tuesday—Wednesday, Wednesday—
Thursday, Thursday—Friday and Saturday—Sunday. The highest values of the vis-
its are on the upper-middle part of the bisector, and along the lower part of the
same line the values of Saturday-Sunday can be found;

e the upper line is associated mainly to the transition Sunday—Monday because the
values of the next day are higher than those of the previous day;
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Fig. 14.3 Phase space plot with a one-day delay in the series without linear trend

e the lower line indicates the movement from Friday to Saturday because the values
of the successive day are lower than those of the preceding day.

The elimination of the trend is then carried out as some analysis tools require,
from a formal point of view, a stationary series, so that the mean and variance are
constant in consecutive time periods. The deletion of the linear trend is obtained
by subtracting the previous value from its current value. Once the linear trend is
removed, stationarity is evident through a simple inspection of its time chart.

Furthermore, in the phase space with a one-day delay there is a configuration
(Fig. 14.3) that is completely different from that of the initial series. Actually, it
consists of five clusters of points that directly specify the variations of the visits
during the week. Joining the consecutive points, paths which are almost cyclic are
obtained mainly in a closed area. Representing the data in the phase space with a
delay of 2, 3, 4, 5, 6 days, other cyclic diagrams are obtained.

The recurrence plots of the initial and no-trend series are worked out and they
put the indexes of the delayed vectors, made up of the data of the series, on the x
and y axes. The Euclidean distances between these vectors are represented using a
colour scheme: short and long distances are indicated by light and dark colours re-
spectively [2, 3]. The “La Repubblica” recurrence plot is characterized by white/red
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squared areas around the diagonal in a yellow/green context. The non-homogeneity
of the diagram and the white areas around the diagonal show the presence of a
non-stationary process. Additionally, there are white line diagonals that denote el-
ements of determinism together with horizontal and vertical lines that are signs of
laminarity. The stationarity of the no-trend series emerges, instead, from the greater
uniformity of its recurrence plot.

This series was then analyzed with the Chaos Data Analyzer (CDA). A section
of the program allows us to establish the possible periodicity of the series. The
series shows a periodic behaviour with a fundamental frequency of 0.142 cycles
per day. The period (i.e. the inverse of the frequency) equals 7 days, so the series
has a weekly periodicity where annual summer and Christmas cycles with minor
amplitude are also included. Moreover, the repetition of the development of the
signal allows us to make average predictions. Another unit of the program shows
that the frequency distribution of the series is centred on three points, characterized
by variations of visits: —B (negative), X (almost zero), A (positive). The central
population is greater than the almost identical lateral populations.

In an ideal model where weekly visits are on two levels (with a linear growing
trend), i.e. upper (Monday-Friday) and lower (Saturday-Sunday), their variations
from Monday to Sunday consecutively make a sequence of this type: A, X, X,
X, X, —B, X. It follows that the variations of the visits on a particular day com-
pared with the next day’s visits are identified by these kinds of coordinates: (A, X),
X, X), (X, X), (X, X), (X, —B), (—B, X), (X, A). This result explains the origin
of the five clusters of points in the phase space with a one-day delay, as previously
shown.

Next, the series was studied using non-linear analysis tools in order to extract
possible chaotic behaviour which occurs in a long run, in an aperiodic way and in a
deterministic and bounded system sensitive to the initial conditions [4]. The series
lacks the requirement of aperiodicity, but its periodicity is not exact because the sig-
nal does not repeat itself perfectly. Thus, I carried out the process of identifying the
presence of chaos in the amplitudes of oscillations. The analysis was performed by
calculating various coefficients: the correlation dimension, the embedding dimen-
sion and Lyapunov exponents [5]. The correlation dimension, which is one of the
ways of determining the existence and size of the attractor, was already adequately
levelled in the initial series, also because the linear trend was present. In the no-trend
series, the correlation dimension tends to stabilize at around the value of 4, suggest-
ing the existence of an attractor. The minimum embedding dimension, i.e. the size
of phase space from which we observe the image that preserves the properties of
the attractor, equals 4. The Lyapunov exponents are positive, showing a sensitivity
to initial conditions.

Following this, the series was surrogated in the phase to validate the presence of
determinism in the data. In the new series, the correlation dimension tends to in-
crease without levelling out, Lyapunov exponents usually grow and the points in the
phase space form a cloud where the early regularities no longer exist. So the hypoth-
esis that the “La Repubblica” series contains parts of determinism is confirmed as
the mixing of Fourier components of the signal produces a more irregular sequence
of data.
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After extrapolating the data from the series, a forecast of the following values was
made, using non-linear analysis tools. Additionally, examining the visits of another
Italian newspaper website, “Il Corriere della Sera”, a similar behaviour to that of
“La Repubblica” was identified.

To explore that a function, on average periodic, can have a chaotic component,
I determined the sequence:

Zn=Xn+ Yn (14.1)

where Xn assumes the constant value of 4 and thus a period of 1, and Yn was
extracted from the map:

Yn+ 1= (1.2 Yn)mod 1 (14.2)

which has a chaotic behaviour, being the Lyapunov exponent (log 1.2) positive. The
examination of Zn with CDA provided a correlation dimension of around 1 and an
embedding (minimum) dimension equal to 1. The Lyapunov exponent of Zn, for
proper values of parameters, tends to equal that of Yn. Thus, the Zn is on average
periodic, but also chaotic. Therefore, predictions could be made by repeating the
averaged function in a period or using non-linear criteria.

In conclusion, it is noted that while the use of the periodicity provides only av-
erage values, the non- linear analysis of the series, resuming the determinism of the
system, can offer more detailed and precise predictions.

References

1. Marwan N, Romano MC, Thiel M, Khurts J (2007) Recurrence plots for the analysis of com-
plex systems. Phys Rep 438(5-6):237-329

2. Faggini M (2007) Visual recurrence analysis: an application to economic time series. In:
Salzano M, Colander D (eds) New economic windows: complexity hints for economic pol-
icy, vol 2. Springer, Berlin, pp 69-92

3. Zbilut JP (2005) Use of recurrence quantification analysis in economic time series. In: Salzano
M, Kirman A (eds) New economic windows: economics—complex windows. Springer,
Berlin, pp 91-104

4. Sprott JC (2003) Chaos and time-series analysis. Oxford University Press, New York

5. Alligood KT, Sauer TD, Yorke JA (2007) Chaos—an introduction to dynamical systems.
Springer, New York



Chapter 15
Networks and Cycles: A Persistent Homology
Approach to Complex Networks

Giovanni Petri, Martina Scolamiero, Irene Donato, and Francesco Vaccarino

Abstract Persistent homology is an emerging tool to identify robust topological
features underlying the structure of high-dimensional data and complex dynamical
systems (such as brain dynamics, molecular folding, distributed sensing).

Its central device, the filtration, embodies this by casting the analysis of the sys-
tem in terms of long-lived (persistent) topological properties under the change of a
scale parameter.

In the classical case of data clouds in high-dimensional metric spaces, such fil-
tration is uniquely defined by the metric structure of the point space. On networks
instead, multiple ways exists to associate a filtration. Far from being a limit, this
allows to tailor the construction to the specific analysis, providing multiple perspec-
tives on the same system.

In this work, we introduce and discuss three kinds of network filtrations, based
respectively on the intrinsic network metric structure, the hierarchical structure of its
cliques and—for weighted networks—the topological properties of the link weights.
We show that persistent homology is robust against different choices of network
metrics. Moreover, the clique complex on its own turns out to contain little infor-
mation content about the underlying network. For weighted networks we propose a
filtration method based on a progressive thresholding on the link weights, showing
that it uncovers a richer structure than the metrical and clique complex approaches.

Keywords Complex networks - Persistent homology - Metrics - Computational
topology

15.1 Introduction

Over the last decade complex networks have become one of the prominent tools in
the study of social, technological and biological systems. By virtue of their sheer
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sizes and complex interactions, they cannot be meaningfully described and con-
trolled through classical reductionist approaches.

Within this framework, the study of the topology of complex networks, and its
implications for dynamical processes on them, has most often focused on the statis-
tical properties of nodes and edges and therefore found a natural and effective de-
scription in terms of statistical mechanical models of graph ensembles [1, 2]. These
models rely for their formulations on local interactions and become quickly hard
to manage when higher correlations are included or one-step approximations are
not sufficient, as Schaub et al. [3] pointed out for the case of community detection
algorithms for example.

The last few years saw a new perspective emerge that focuses on the very geom-
etry of complex network. It was promoted by a large availability of new (typically
geosocial) data coming from spatial networks [4], but also by analytical and numer-
ical results on the relations between geometrical properties and global features of
complex networks, e.g. the hyperbolic embedding of the Internet with the result-
ing increased efficiency of greedy routing algorithms [5], stationarity conditions for
chemical networks [6] and brain cortex dynamics [7].

In this work, we take on this perspective and study the geometrical properties
of networks through the goggles of persistent homology, a technique originally
introduced by [8, 9] to uncover robust topological information from noisy high-
dimensional point clouds. Persistent homology works by extracting from a dataset
a growing sequence of simplicial complexes (called filtration), indexed by a param-
eter €, and studying the associated homology groups, which encode the geometrical
information (for example, the holes of an n-torus). The robustness of each topo-
logical feature is then obtained from the persistence of the corresponding generator
along the filtration,

For example, in the case of the torus, there will be two persistent generators
associated to the two non-equivalent loops on its surface.

Persistent homology has received some attention in the context of networks [10],
but there has been no systematic study on its efficiency and sensibility for networks
yet. This is of particular importance since, in contrast with the unique natural met-
ric available for point cloud datasets, networks allow various rules to generate the
filtration.

Our results will show that the salient features of the homology do not change
significantly under different metrics and that there exist a metric scale €, at which
the filtration displays the richest structure.

We will then study a second method to create the filtration, relying only on the
network clique structure. Unfortunately, this will turn out to yield little additional
information.

In the case of weighted networks it is possible to devise a refined filtration based
on the clique structure of the network thresholded by €, which yield a much richer
picture than the simple clique complex method.

The rest of this work is organised as follows. In the next section a minimal in-
troduction to homology and its persistent sister is given. The following section will
present selected results of simulations and datasets under different choices of met-
rics for the network filtration.
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We conclude then presenting the procedure for the filtration built with the link-
thresholded clique structure and briefly discuss the results and implications for fu-
ture research. In particular, we have discuss the possibility of expanding the method
by considering multi-filtrations, that is filtrations indexed by more than one param-
eter.

15.2 Homology

Formally, homology is an algebraic invariant converting local geometric informa-
tion of a space into a global descriptor. There are many homology theories, but
simplicial homology is the most amenable for computational purposes thanks to its
combinatorial structure.

This kind of homology is applied to simplicial complexes, that are combinations
of vertices, segments, triangles and higher dimensional analogues, joined accord-
ing to specific compatibility relations. As we will see in the following, simplicial
complexes can be constructed from discrete spaces or networks. Low dimensional
homology groups have an intuitive interpretation. Given a simplicial complex X,
Hy(X) is the free group generated by the connected components of X, H;(X) is
the free group generated by the cycles in X, H>(X) is the free group generated
by voids—holes bounded by two-dimensional faces. The Betti numbers count the
number of generators of such homology groups.

The standard tool to encode this information is the so-called barcode, which is
a collection of intervals representing the lifespans of such generators. Long-lived
topological features can be distinguished in this way from short-lived ones, which
can be considered as topological noise. There are various ways of building persis-
tence modules out of a given dataset. The most known are the Rips-Vietoris com-
plex, the Cech complex and the clique complex [8]. The first two require a metric
space for the data and are generated by inflating spheres of the same radius around
points (or nodes in a network) and associating set of points to simplices according
to the overlap of the corresponding spheres. They can also be used to create a filtra-
tion out of general network, once a metrical structure is given on the network itself
(shortest-path, commute time distance, etc). Besides these two methods, there ex-
ist a few methods pertaining to networks only [8], the best known being the clique
complex, which is generated by associating to each maximal clique the simplex gen-
erated by the vertices of the clique.

15.3 Robustness Against Metric Change

Network metrics have been well studied, especially in the context of clustering al-
gorithms [11] and Markov Chain models [12]. In addition to the shortest path and
commute time metrics, it is possible to define kernel matrices as functions of the
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Fig. 15.1 Barcodes for the shortest path metric (/eft, panels (a), (¢) and (e)) and the Von Neumann
metrics (right, panels (b), (d) and (f)) on the C. Elegans brain network. From top to bottom, we
report the intervals of existence of the homological spaces Hyp (panels (a) and (b)), H; (panels (c)
and (d)), H (panels (e) and (f)). The parameter € € [0, 1] increases from left to right. Each hori-
zontal line corresponds to the intervals of existence of a generator of the corresponding homology
space. In both cases, the higher homology space are non-trivial only in the vicinity of the merging
of a large number of connected components, as highlighted by the drastic reduction in the number
of generators of Hy

network’s adjacency and Laplacian matrices. From such kernels one obtains a well-
defined distance, which effectively turns the network into a metric space.

We analysed the metrics associated to: the shortest paths, the commute time
between nodes, exponential diffusion [13] and exponential Laplacian diffusion
[11, 14], which emerge as solutions of diffusion processes on the corresponding net-
work, the von Neumann kernel [15],which generalises the hub-authority measures,
Markov diffusion [16] and random walks with restart.

For each metric, the filtration was generated and the persistent homology calcu-
lated. The analysis was repeated on a range of different networks, spanning different
network topologies, sizes and origins (biological, social, technological).

For brevity, in this paper, we show only the comparison of the barcodes obtained
using the shortest path and the exponential diffusion (with « = 0.01) distances for
the C. elegans neuronal network (Fig. 15.1). In order to compare the results both
metrics have been mapped to the interval [0, 1]. Surprisingly, we found that the
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higher homology spaces (H;, H> ..., bottom plots in Fig. 15.1) are trivial for most
values of the filtration parameter. They do however show the appearance of genera-
tors of higher homology groups in the vicinity of the value of € at which a significant
number of connected components merges into few, as shown by the decrease in the
number of generators of Hy.

In this respect, our results suggest the existence of a particular value €., a metric
scale, at which one observes the most structure in the metrical representation of the
network under study. The same behaviour was found in a number of other networks,
ranging from the US air passenger network to the human gene regulatory one. Note
moreover that, in general, €. is different from the average distance between the
nodes (in terms of the chosen metric) and therefore cannot be explained as a mere
effect of the distances distribution. Moreover, if the appearance of non trivial higher
homology groups was only due to the merging of small connected components into
a giant component, one would expect to observe the same phenomenon also for the
merging of smaller components. However, we did not see any of these signatures,
supporting the existence of a characteristic scale ..

15.4 Clique Complex and Link Weights Thresholding

Another natural filtration of a network is generated by considering its clique struc-
ture. The clique complex is obtained by associated to each maximal k-clique, a com-
pletely connected subgraph formed by k nodes, the (k — 1)-simplex whose vertices
are the nodes of the clique. The natural parameter for this filtration is the clique
dimension k. Recent work [10] tried to uncover specific signatures of modular and
cluster structures in complex networks by making use of this filtration. In our anal-
ysis the filtration obtained in this way did not show interesting features in addition
to the clique structure itself, which however can be investigated without recurring
to homological concepts. However, if we consider weighted networks, it is possible
to devise a filtration which combines link weights and clique structure. Given the
weighted adjacency matrix w;;, we let € vary in (minw;;, max ;;) and consider a
sequence of networks, such that the network at step € contains all links (i, j) with
w;j > €. As we decrease € from its maximum allowed value, we go from the empty
network to the original one. For each step, we build the corresponding clique com-
plex and study the persistent homology of the resulting filtration. Figure 15.2 shows
the results of this filtration on a large Facebook-like network of online contacts. It
is immediately evident that a very rich topological information is present. Long per-
sistent intervals appear both for some generators of H; and H,. The first implies the
existence of chains composed by edges with large weights, whose nodes though are
not strongly connected across the chain itself, but only with their two neighbours
along the chain. The same reasoning applies to the case of H, where the building
blocks are not segments but triangles. The presence of long persistent H, genera-
tors is a signpost for higher ordering in the structure of the online contacts. This
means that strong pair interactions organise in long loops without significant triadic
closure.
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H,

Fig. 15.2 Barcodes obtained from the weighted-clique complex filtration of a network of online
contacts for the homology groups Hy (a), H; (b) and H> (c). Persistent H; and H, generators
imply that the existence of loops and chains of tethraidra formed by nodes which are weakly
interacting with their neighbours in the chain, with the exception of the one directly adjacent along
the chain. In the case of human contacts, this means that strong pair interactions organise in long
loops without significant triadic closure

Finally, we can conclude that this method is able to identify mesoscopic and long-
range structures which are present in networks, but would otherwise pass undetected
with standard methods, and assigns to them also a measure of robustness in the form
of the persistence intervals.
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Chapter 16
Von Neumann Reproduction: Preliminary
Implementation Experience in Coreworlds

Barry McMullin, Declan Baugh, and Tomonori Hasegawa

Abstract We introduce the distinctive, self-referential, logic of self-reproduction
originally formulated by John von Neumann, and we present some initial results
from novel realisations of this abstract architecture, embedded within two com-
putational worlds: Tierra and Avida. In both cases, the von Neumann architecture
proves to be evolutionarily fragile, for unanticipated, but relatively trivial, reasons.
We briefly discuss some implications, and sketch prospects for further investigation.

Keywords John von Neumann - Artificial life - Self-reproduction - Coreworlds -
Tierra - Avida

16.1 Introduction

As early as 1948, John von Neumann had already formulated and essentially re-
solved a fundamental paradox in the theory of the evolutionary growth of machine
complexity: namely, how any (assumed or “divinely” created) seed machine can, di-
rectly or indirectly, give rise to machines arbitrarily more complex than itself [3]. In-
spired by Turing’s general purpose (programmable) computing machines, his reso-
lution relied on a machine architecture comprising a general purpose programmable
constructor which could act to decode a symbolic description of an arbitrarily
(more) complex target machine and thus construct it. As a special case, this also
led to a generic architecture for machine self-reproduction (where the description is
now a self-description, and must be copied as well as decoded).

This self-reproduction architecture, formulated very abstractly by von Neumann,
was subsequently found to be strikingly reminiscent of the biological role of DNA
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(as “symbolic description”) and of the molecular machinery of the “genetic code”
whereby ribosomes (supported by tRNAs and other enzymes) decode or “trans-
late” symbolic descriptions (presented as mRNAs) into arbitrarily complex protein
molecules (and protein machinery). Indeed, the prescient nature of von Neumann’s
contribution is made clear from the fact that the chemical structure of DNA was not
elucidated until 1953, and the programmable “decoding” or “translation” function
of the ribosome was not fully formulated until 1960 (the code “proper” only later
clarified as being implemented by the aminoacyl-tRNA synthetases).

More generally, von Neumann’s architecture gave a concrete mechanical inter-
pretation and implementation of the traditional biological idea that an organism can
be decomposed into a set of tacit hereditary “factors” (genome) and a corresponding,
manifest, functional, form (phenome). As subsequently emphasised by Pattee [6],
however, von Neumann’s architecture (and its real-world biological counterparts)
also carries with it an intriguing example of self-reference: the decoding relation-
ship (the “genotype-phenotype mapping”, in biological terms) implemented by the
programmable constructor is also represented, in encoded form, within the symbolic
description (genome)—and this encoding must be precisely according to, or at least
consistent with, the very same mapping that the constructor itself (part of the phe-
nome) implements. This most primitive and original form of self-reference has been
dubbed “semantic closure” by Pattee, and has also been explicitly discussed by Hof-
stadter [2]; but the full implications of this self-referential closure for understanding,
and fabricating, complex self-organising systems are, as yet, poorly understood.

The present contribution presents a brief summary of some preliminary attempts
to revisit and explore this issue afresh, through realising the von Neumann repro-
duction architecture in two abstract, computational, worlds: Tierra and Avida.

16.2 Von Neumann Reproduction in the Tierra World

Tierra is an artificial life platform where a population of reproducing computer
programs (“organisms”) compete with each other for both CPU time and mem-
ory space [8]. The platform contains a circular core memory, or soup, in which the
organisms are embedded. The Tierran instruction set consists of 32 assembler lan-
guage instructions, each occupying a single word, generally with no operands. How-
ever, certain op-codes are overloaded: in isolation, they function as NOP instructions,
but in certain contexts, sequences of them can be interpreted as immediate operands
specifying a biologically inspired pattern-based addressing mechanism. There are
various stochastic perturbations in program execution, including: cosmic rays (al-
teration applied to the contents of a random memory location within the soup), copy
errors (an error occurred when reading and/or writing the contents of a memory lo-
cation) and segment deletions (upon birth, a random organism segment is deleted).
Each organism is assigned a (virtual) CPU which includes four general purpose
registers, an instruction pointer and a small circular stack. A slicer allocates CPU
time to each living organism within the soup and a reaper limits the population by
reaping old and malfunctioning organisms.



16 Von Neumann Reproduction 103

The normal protocol for evolutionary experiments in Tierra is for the experi-
menter to first design “by hand” an organism that is capable of self-reproduction.
This is then used as a seed organism for one or more specific experimental runs.
In each run, the seed gives rise to a population, which then diversifies through mu-
tation, and ultimately evolves through selection and other ecological interactions
(potentially including parasitism).

Classically, the reproductive mechanism of Tierran organisms relies on an ap-
proach pioneered in predecessor systems such as Coreworld [7]. In effect, the parent
organism simply inspects and copies its own program directly. We may classify this
as reproduction by “self-inspection” or “self-copying”. Such a mechanism is not
possible for complex organisms in the real world for several practical reasons [4];
but it is closely analogous to the more primitive template replication process un-
derlying in vitro RNA evolution, and, indeed, to the DNA replication process that
is one component of normal biological reproduction. In particular, it does support
inheritable variation and evolutionary exploration of a combinatorially large (for
practical purposes, infinite) space of distinct organism strains. Under such a self-
copying reproduction architecture, there is no distinction between phenotype and
genotype as the entire organism acts as both the template for replication and the
active, functional, phenotype (the executing program and any associated data).

In our work we have instead designed a seed organism based on the von Neu-
mann reproductive architecture, and having an explicit genotype-phenotype decom-
position. Note that this is entirely specified by the particular configuration of the
organism’s memory image: it is neither required not prevented by the underlying
dynamics of the Tierra world. In the first instance the von Neumann “decoding”
(genotype-phenotype mapping) has been simply modelled on the standard biologi-
cal genetic code. That is, it is a sequential mapping from discrete “codon” symbols
in the genome to functional “instructions” and “data” symbols in the phenome, im-
plemented via a lookup table located in the (parental) phenome. This table is there-
fore directly analogous to the functionality implemented by the aminoacyl-tRNA
synthetases in RNA-protein translation. The lookup table is itself, self-referentially,
encoded into the genome. While it would be expected that this self-referential map-
ping would be highly conserved (robust) in evolution, we nonetheless conjecture
that some significant long term evolution (either selective or by drift) should be
observed.

When all stochastic effects are disabled, our seed organism reproduces effec-
tively and populates the memory to form a stable ecosystem of identical organisms.
However, when stochastic effects are switched on, we quickly see the emergence of
organisms which we classify as “pathological constructors”. These are organisms
which are not self-reproducing but which rapidly construct multiple short malfunc-
tioning offspring within their lifetime. Pathological constructors are a hindrance to
an ecosystem because their offspring, although sterile, still occupy both memory
space and CPU time. When several pathological constructors coincide in time, their
production rate can be so high that their non-functional offspring displace the entire
population of functional self-reproducing creatures. In the specific initial experi-
ments we have run, this has frequently resulted in complete ecosystem collapse.
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We note that this total collapse appears to also rely on a subtle, and presumably
unintended, heterogeneity in the Tierran world, whereby an organism located at the
“origin” of the memory space (absolute address zero) may preferentially “capture”
instruction pointers “lost” by malfunctioning organisms. In particular, a pathologi-
cal constructor at that location can capture instruction pointers initially associated
with its own non-functional offspring. This can dramatically increase its individual
fecundity; to the point where, even within a finite, “normal”, lifetime it can displace
all other organisms in the soup.

Under a series of simulations where each source of random perturbation was
individually disabled, the disabling of the segment deletions showed an apparent
barrier to the emergence of pathological constructors. We conjecture that the expla-
nation is as follows. For von Neumann style reproducers, all random perturbations
which corrupt the copying of the genome will result in an offspring which still has
a functional phenome, and which will therefore go on to create at least one further
offspring (which may be functional or not). If the corruption of the genome copying
is by way of a segment deletion, then the initial offspring will generally be capable
of quickly and repeatedly generating further offspring, which are non-functional:
quickly because both the copying and the decoding of a short genome will be quick;
and generating non-functional offspring because the offspring phenome will be the
result of decoding a drastically shortened genome. Thus, segment deletion within a
genome can be expected to quite typically result in a pathological constructor as we
have already characterised it.

This analysis concludes that the mechanism which results in ecosystem collapse
due to pathological constructors appears to depend critically on both the inclusion
of segment deletion perturbations and the spatial inhomogeneity affecting memory
location zero. By contrast, in order for a pathological constructor to emerge from
a classic Tierran self-copier organism, relatively much more specific random per-
turbations must occur affecting very specific locations, which will alter, but not cor-
rupt the reproductive functionality. This suggests that the probability of pathological
constructors emerging within a population of von Neumann reproducers in Tierra is
much higher than that of a population of self-copiers.

16.3 Von Neumann Reproduction in the Avida World

Avida is another abstract (“simulated” or “virtual”’) world which has been exten-
sively used to investigate very general properties of spontaneous evolutionary pro-
cesses [1, 5]. It is loosely inspired by the structure of a conventional, large scale,
cluster computer, with many separate computational nodes, each with one general
purpose CPU and a limited local memory. The nodes are sparsely interconnected,
typically in a regular two dimensional lattice.! The CPU instruction set is config-

IThe Avida world bears some superficial resemblances to von Neumann’s own early formulation
of an abstract cellular automaton (CA) world, particularly in its 2D network of discrete computa-
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urable on a system wide basis. It is normally reminiscent of a conventional micro-
controller, but with some specialised features. A program running on a given node
can overwrite the memory of a neighbouring node and in this way replace the pro-
gram running on that node (effectively re-programming the node). Based on this,
a suitably designed program can repeatedly and recursively reproduce itself into
neighbouring nodes. Such a program, combined with its associated computational
node/hardware, is regarded as an abstraction of a biological organism. If an Avida
world is initialised or seeded with a single instance of some such hand-designed
organism, a population of organisms will grow to occupy the entire world roughly
in the manner of bacteria in a Petri dish. Certain CPU operations in Avida are made
unreliable by design. This has the effect that mutant strains of organism can sponta-
neously arise, multiply, and compete in a Darwinian manner for the finite available
“space” (nodes) in the system. Unlike the Petri dish analog, a culture of Avida or-
ganisms can be continuously replenished with “nutrients” (analogous to a continu-
ous flow bioreactor) and thus the ongoing evolutionary process can, in principle, be
continued indefinitely.

As with Tierra, the “standard” mechanism whereby self-production is achieved
in Avida is based on self-copying; but again we have designed a novel organ-
ism which incorporates the characteristic genotype-phenotype structure and self-
referential genotype-phenotype mapping originally described by von Neumann.

As yet, only preliminary experiments have been run and analysed with this novel
self-referential seed organism in the Avida world. However, the consistent experi-
ence to date has been that instead of observing either simple conservation or long
term evolution in the genotype-phenotype mapping we see relatively rapid degen-
eration of the entire reproduction mechanism—i.e., emergence of “conventional”,
non-self-referential, self-copying organisms, comparable to the standard seed or-
ganisms. These organisms lack the decomposition into distinct genome and phe-
nome components, lack any genotype-phenotype mapping process, and therefore
also lack the characteristic von Neumann self-reference (or Pattee’s semantic clo-
sure); but they are still capable of self-reproduction. Once such organisms emerge
they are selectively favoured in this world (as they avoid the computational load of
translation/decoding without incurring any immediate offsetting penalty). It follows
that this degeneration is essentially irreversible.

Thus, it is not surprising that self-copiers should selectively displace self-
referencing organisms in Avida; nor is it very surprising that there might be some
available mutational pathways for such degenerative strains to appear, as the Avida
world is specifically designed to make reproduction by self-copying extremely easy
(it can be achieved with a program as short as 15 instructions under the default in-
struction set). However, what was surprising was that this degeneration could occur

tional nodes. However, there are also fundamental differences. In the von Neumann CA, each node
was a simple finite state automaton with no general purpose memory system (29 states per node,
equivalent to less than 5-bits of special purpose memory); whereas each Avida node comprises a
general purpose CPU and—by comparison—a substantial general purpose memory system, typ-
ically of capacity at least some hundreds or thousands of bits and potentially configurable to be
much bigger.
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with just a single point mutation in our newly developed seed organism. Given that
several aspects of the reproduction cycle need to be well co-ordinated for reproduc-
tion to succeed, we had not thought that a single point mutation would be likely to
already yield a viable self-copier. Further analysis is ongoing to fully understand the
mechanism for this transition.

16.4 Discussion and Future Prospects

The initial results from these experiments show on the one hand that it is, indeed,
perfectly possibly to realise the von Neumann reproduction architecture in these
coreworld type systems; and, on the other hand, that this reproduction architec-
ture can prove to be unexpectedly brittle. The particular phenomena reported here,
though degenerative, are still interesting in their own right. Moreover, we conjec-
ture that it will be possible, through relatively modest modifications to the under-
lying machinery or “physics” of these worlds, and/or adjustments to the specific
detailed implementations of the von Neumann reproduction architecture, to avoid
these particular breakdowns and evolutionary collapse. If this can be done, then
these platforms should still be fruitful “minimal” environments in which to explore
and understand the most basic evolutionary emergence and elaboration of “sym-
bolisation”, in the form of spontaneous evolutionary change in genotype-phenotype

mapping.
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Chapter 17
Modelling Complex Multi-particle Transport:
From Smooth Flow to Cluster Formation

Ko van der Weele and Giorgos Kanellopoulos

Abstract One of the major problems with multi-particle flows is their tendency to
spontaneously form clusters. This is a hot topic in contemporary science not only
because of its fundamental interest but also because of its ubiquity in industrial
applications and everyday life. Here we present a clear-cut method to model the
clustering, dividing the available space in a grid of discrete cells and describing the
dynamics from cell to cell by means of a flux function. The method is illustrated by
two representative examples: the onset of clustering in granular flow on a conveyor
belt and the formation of traffic jams on the highway. Further insight is gained by
studying the continuum limit of the model.

Keywords Pattern formation - Granular transport - Clustering

17.1 Introduction

On the fundamental side, clustering is a paradigmatic example of spontaneous pat-
tern formation in multi-particle systems out of thermodynamic equilibrium [1]. On
the side of applications, clustering is encountered in the flow of granular materials
such as mining ore, cereals, or rock avalanches [2—4], in traffic flows on the highway
(where the spontaneously occurring clusters are known as “phantom jams” [5]), in
crowds rushing towards emergency exits (where clustering may lead to trampling
and lethal accidents [6]), in ant trails [7, 8], in the dynamics of icebergs in the polar
seas [9], and countless other flows that consist of dissipatively interacting entities.
In regions where the particle density is slightly higher than average—due to some
external influence or simply by a statistical fluctuation—the particles collectively
dissipate more energy than elsewhere, become slower, and hence do not escape so
easily from this region anymore. Vice versa, in regions where the density is below
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Fig. 17.1 (Left): Model transport system consisting of K compartments, vertically vibrated in
order to fluidize the granular particles. Material from the kth compartment is able to flow into
either of its neighboring compartments: The flow in box k — 1 is prescribed by a flux function
F (ny) and that to box k 4 1 by a larger flux function Fg(ny). The adjustable inflow rate into
the top compartment is denoted by F;,. Under standard operating conditions the outflow from the
last compartment, Fg(ny), will be equal to the inflow rate Fj,. (Right): The flux functions given
by Eq. (17.2), with A =1 s71, Bg =0.1, and By = 0.2, i.e., for the case when the height of the
barrier to the left is twice as large as that to the right (h;, =2hpg)

average, the particles remain more mobile and move on easily. The separation of
dense and dilute regions thus becomes a self-enhancing effect, leading inevitably
to the formation of clusters consisting of many slow particles interlaced by diluted
regions with only a few, but fast particles [2]. Note that this pattern formation, and
the associated decrease in entropy, does not in any way violate the second law of
thermodynamics since the transport systems we are dealing with are inherently open
with respect to energy (a continuous input of energy is required to keep the parti-
cles going, while there is also a continuous dissipation of energy via the particle
interactions) and also with respect to mass (due to the in—and outflow of particles).

Here we present a particularly clear-cut and fast method to model the clustering:
we divide the available space in a grid of discrete cells and describe the dynamics
from cell to cell by means of a flux function. For instance, in a one-dimensional sys-
tem (such as the conveyor belt for granular materials of Fig. 17.1(a), or a motorway
for cars) we divide the total length in K intervals and denote the number density on
each of these intervals by ng (¢),k =1, ..., K. If the flux per unit time from such an
interval to the neighboring interval at the right is given by a flux function Fg(n),
and the flux towards the left by Fy (ny), it follows that the dynamics of the system
is governed by the following set of K coupled ordinary differential equations:

dny

e Fr(ng—1) — Fr(ng) — Fr(ng) + Fp(ngy1), fork=1,...,K (17.1)
Each of these equations simply expresses the mass balance for the cell in question:
the time rate of change of the density n(¢) is equal to the influx into cell k£ from the
neighboring cells k — 1 and k£ + 1, minus the outflux from k towards these cells.
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We will illustrate the method by means of several representative examples and in
doing so learn a good deal about the way in which these flows typically give way to
clustering.

17.2 A Model for Granular Transport

One of the main examples we study is the granular transport system depicted in
Fig. 17.1, consisting of an array of vibrated connected compartments. A steady in-
flow F;,, = Q is applied to the top compartment of the system and under normal op-
erating conditions (i.e., for not too large values of Q) a continuous flow establishes
itself all the way down to the last compartment, yielding an outflow that equals the
inflow Q.

In the case of granular transport, assuming that the particles are agitated suf-
ficiently vigorously to form a so-called granular gas, the flux functions take the
approximate analytic form depicted in Fig. 17.1 [10-13]:

Fr.p(n) = Ang2e™Brink (17.2)

which contains two parameters, A and Bg ;. The parameter A sets the absolute
flux rate. It is proportional, among other things, to the area of the opening between
the boxes and determines how fast (or how slow) the dynamical phenomena take
place. It can be incorporated in a dimensionless time scale T = Ar. The second
(dimensionless) parameter Bg ; may be regarded as the “Reynolds number” of the
transport process. It is proportional to

2
mghR. 1. 02 [ Nioed?
B 1— D 17.3
R,L X m(af)2 ( € ) ( 0 ( )

which is the product of three dimensionless numbers representing: (i) the potential
energy mghg, required to overcome the barrier towards the right or left (respec-
tively at height 2r and Ay above the bottom of the compartment) divided by the
kinetic energy %m(a f)? inserted by the vibration, where a and f are the amplitude
and frequency of the external driving, (ii) the loss of energy involved in each particle
collision, with € being the coefficient of normal restitution (equal to 1 for perfectly
elastic collisions and about 0.90 for the glass or metal beads used in most labora-
tory experiments), and (iii) a filling factor, with Ny, denoting the total number of
particles, d their diameter, and £2 the ground floor area of the system.

The central feature of the flux functions Fg 1 (ny) is their one-humped shape,
which is directly related to the dissipative nature of the particle interactions. For
small values of ng, the flux from compartment k increases with the density just as in
any ordinary gas; beyond a certain value of nk, however, the increasingly frequent
interactions make the particles so slow that they are hardly able to overcome the
barrier anymore, and hence the flux starts to decrease again. It is thanks to this one-
humped shape that clustering is possible, i.e., that a dynamic equilibrium can be
established between a well-filled compartment (with a density ny far to the right of
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the maximum) and its diluted neighbor compartments (with a density ny close to 0),
since they both have the same flux level.

Also other flow problems with a tendency to cluster can be described by a similar
one-humped flux function [14]. The precise shape will differ from one problem to
the next, but it will always exhibit a maximum like in Fig. 17.1(b).

17.3 Subcritical Pattern Formation

For sufficiently small inflow rates Q the material flows smoothly through the sys-
tem and all compartments are filled to the same density level. However, this changes
when we keep increasing Q and push it beyond the capacity of the system. At some
critical value (Q = Q) cluster formation becomes inevitable. Interestingly, the
clusters are announced in advance (already below Q..) by the appearance of an
oscillatory pattern in the density profile, see Fig. 17.2(a): The compartments now
alternately have higher and smaller density. This provides a valuable warning sig-
nal in practical applications. If immediate measures are taken, the imminent cluster
formation may yet be prevented. If not, a dense cluster is formed in the first com-
partment and obstructs any further inflow.

The critical flow and the associated wavy density profile can be explained quan-
titatively in terms of the dynamical flux model introduced above. The appearance
of the oscillatory pattern turns out to be connected to a reverse period doubling
bifurcation' of the previously uniform density profile (see Fig. 17.1(b)) [13].

In order to unravel the physical mechanism that lies at the basis of the pattern for-
mation, it is instructive to study the continuum version of the flux model. In this ver-
sion the compartment numbers k = 1, ..., K are replaced by a continuous variable
x and the number density ng () by p(x,#) Ax, where Ax is the compartment width.
The dynamics of the system is now described (instead of by K coupled ordinary
differential equations) by a single partial differential equation of the Fokker-Planck
type [15]:
ap ap d ap
o = P@%x+aJDm%x} (17.4)
where the right hand side contains a drift term and a diffusive term. The drift velocity
P (p) and the diffusion coefficient D(p) both depend on the density:

P(p)=A df _dFy (17.5)
=Ax| ——— — .
p dp dp
1 dFg dFy
D(p) = - Ax}( =8 L 20 17.6
(=3 x(@ @> (17.6)

The details of the transition (and the associated bifurcation) depend on the exact form of the flux
function. For instance, if the one-humped flux function happens to rise from zero not as n2 (as
in Eq. (17.2)) but rather more steeply as n'/? the period doubling bifurcation is no longer reverse
but takes place in the forward direction. In that case the system also exhibits oscillatory density
profiles of periodicity 4, 8, and so on, before the final clustering sets in.
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Fig. 17.2 (Left): Oscillatory density profile of a 25—compartment conveyor belt, at an inflow rate
Q = 1.87, just below the critical value Q, at which clustering sets in. The depicted profile rep-
resents a dynamical equilibrium, with a steady flow of Q = 1.87 (per time unit) being transported
towards the right. (Right): The reverse period doubling bifurcation associated with the clustering
transition. The basin of attraction of the uniform density 7(Q) is indicated in gray; its boundaries
are given (from Q = 1.855 onward) by the two elements of an unstable period-2 solution n,(Q)
and np(Q). The points k=K — 1, K —2,..., K —23, K —24 (=24,23,...,2,1) denote the
densities in the successive compartments from right to left. The oscillatory profile is the result of
the oscillatory convergence towards the value 7(Q)

In this continuum version of the model, the clustering (and the whole sequence of
events preceding it) is explained as an interplay between drift and diffusion. The
drift term turns out to be responsible for the subcritical density oscillations, while
the diffusion term is responsible for the eventual clustering. Clustering sets in when
the density p locally exceeds some critical threshold such that the coefficient D(p)
becomes negative there; this change of sign gives rise to anti-diffusion, which is the
continuum analog of cluster formation [15, 16].

17.4 Connection with Other Transport Problems
17.4.1 Traffic Flow

Even though at first sight they may seem quite unrelated, cars on the highway have
much in common with granular particles moving in a preferential direction. The
analogy is in fact so strong that it has led to a series of bi-annual conferences “Traffic
and Granular Flow” [17]. The engines provide the necessary energy input (the cars
are self-driven particles) and just as the particles in a granular gas, they interact
dissipatively. They do so without actual collisions but simply because a car that
closes in upon another must necessarily reduce its speed; so, just like the granular
particles, cars make each other slow and traffic jams are the natural result [5, 6, 18].
Another striking similarity with the granular transport system of Fig. 17.1(a) is the
fact that many highways are “compartmentalized” by means of induction loops in
the asphalt (usually about 500 m apart), which monitor every car that passes over
them, and also its speed.
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Fig. 17.3 (Left): Measured traffic flux (veh/h per lane) as function of the local vehicle density
(veh/km per lane) at a certain point along the highway A58 between the cities of Breda and Eind-
hoven in the Netherlands, during the morning traffic on a working day without exceptional weather
conditions (Data courtesy of the Dutch Ministry of Traffic, Public Works, and Water Management).
(Right): The reconstructed flux function given by Eq. (17.7)

At low densities, up to px ~ 30 veh/km/lane, the cars drive at their desired speed
of roughly 110 km/h, but above 30 veh/km/lane the distance between successive
cars becomes so small (less than 30 m) that the drivers can no longer maintain this
speed. They have to react, brake, and maneuver, and this causes a sudden drop in
the mean velocity. The corresponding car flux across the measuring point (density
times velocity), widely known as the “fundamental traffic diagram” of traffic analy-
sis [6, 18], is shown in Fig. 17.3(a). It shows the above two regimes very clearly: at
low densities the traffic flows freely and the flux function F (o) shows an upward
branch rising to nearly 3000 veh/h/lane, whereas for p; > 30 veh/km/lane the traffic
becomes congested and the flux goes down dramatically. Just like the granular flux
function of Fig. 17.1(b), the car flux F (px) thus has the one-humped shape which is
a prerequisite for clustering. Indeed, on the basis of the measured data in Fig. 17.3(a)
one may reconstruct a flux function of the form (see Fig. 17.3(b)):

F(p) = Fr(pi) = Apge™ 321070
with A = 112 km/h being the desired velocity at small densities.

Apart from the conspicuous similarities, there are also various interesting dif-
ferences with respect to the granular flow. For one thing, the traffic flux grows
linearly with the density for small pi, in contrast to the granular flux function of
Eq. (17.2), and—as discussed in Sect. 17.3—this implies a somewhat different bi-
furcation structure of the clustering transition. Also at variance with the granular
case is the fact that the traffic flux in the direction opposite to the main flow is not
just much smaller, but identically zero: Fr (ox) = 0. Further one should not forget
the in—and outflow of vehicles at the entrances and exits along the highway, which
introduces a time—dependent source term Qon/oft,k(t) in certain cells k. The set of
balance equations for traffic flow then take the following form:

17.7)

dpx
o Fr(pr—1, o) — FR(0ks Pr+1) £ Qonjott,k (1), fork=1,...,K (17.8)
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In this equation we have incorporated one further refinement by taking into account
that the flux function does not depend solely on the density of the cell &, but also on
that of the target cell, meaning that the flux from cell & to k + 1 will have the general
form Fr(pk, pk+1) instead of Fr(px). In fact, it will be a decreasing function of the
target cell’s density pi1 since the drivers enter this cell less freely when it is already
occupied by a large number of cars than when it is empty [19].

17.4.2 Energy Cascade in Turbulent Fluids

As a third example, and in order to illustrate that the transport need not be restricted
to material flows but may also concern the flow of energy or momentum, let us say
a few words about the energy cascade in turbulent fluids. As is well known, the
energy in three-dimensional turbulence is transported from the large length scales
to the smaller ones. One of the models that has been put forward to describe this
is the GOY model, named after Gledzer, Ohkitani and Yamada [20-23]. In this
model the spectrum of relevant length scales is divided into N discrete shells, with
the first shell representing the largest and the Nth shell the smallest length scale.
More specifically, the nth shell is determined by a wave number k,, = koA, with
A>1(m=1,2,...,N). Each shell is characterized by a complex velocity mode
u,, which is coupled to the modes in the nearest and next nearest shells in a way
that mimics the underlying hydrodynamic equations.

Energy is being put into the system in one of the first shells—conventionally in
the fourth—and this energy is transferred to the next shells (higher n, smaller length
scale) in a way similar to the granular transport studied in the present paper. In
dynamic equilibrium all shells contain a certain energy %|un |2, which is distributed
in such a way that the product u nk,l/ 3 oscillates around a constant level along most of
the cascade [24, 25]. The oscillatory profile of unk,}/ 3 is very reminiscent of that of
Fig. 17.2(a), with only one intriguing difference: the periodicity of the oscillations
is 3 instead of 2. This period-3 pattern suggests that the oscillatory profile does
not always have to be related to a period-doubling bifurcation but that also period-
tripling is possible; and in other systems it may well occur via even more elaborate
bifurcation schemes.

17.5 Further Extensions and Concluding Remarks

Up to now we have considered one-dimensional transport systems, where the for-
mation of one single cluster automatically implies the breakdown of the flow. If we
extend the transport system to a 2D grid, however, the material can stream around
this first cluster and the outflow does not come to a halt before the grid is covered
by a whole battalion of clusters. The precise positioning of these clusters—another
beautiful example of pattern formation—turns out to be sensitively dependent on
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the special characteristics of the system, its boundary conditions, and also on small
random (experimental) density fluctuations.

Naturally, in two spatial dimensions we are dealing with densities ny () and
the right hand side of the generalized balance equation Eq. (17.1) will contain the
various fluxes that represent the exchange with all nearest neighbors. If the system
under study warrants it, also the exchange with next-nearest neighbors or other cells
further away may be included. Boundaries or any obstacles within the system are
modeled by forbidden cells. Inflow or outflow of particles, either at the boundaries
of the system or in some intermediate cell (as with the on—and off—ramps along
the highway), or feedback loops, are equally straightforward to incorporate.

In conclusion, the method outlined above is extremely versatile and can be
adapted to a variety of dynamical systems of interest. The model is simple enough to
be robustly stable against small uncertainties in the initial conditions and, not unim-
portant for practical applications, it requires only a minimum of computer time. All
these features make the flux method uniquely suited for an accurate phenomenolog-
ical description of complex multi-particle transport problems.
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Chapter 18

Out-of-Equilibrium Dynamics in Systems

with Long-Range Interactions: Characterizing
Quasi-stationary States

Pierre de Buyl

Abstract Systems with long-range interactions (LRI) display unusual thermody-
namical and dynamical properties that stem from the non-additive character of the
interaction potential. We focus in this work on the lack of relaxation to thermal
equilibrium when a LRI system is started out-of-equilibrium. Several attempts have
been made at predicting the so-called quasi-stationary state (QSS) reached by the
dynamics and at characterizing the resulting transition between magnetized and non-
magnetized states. We review in this work recent theories and interpretations about
the QSS. Several theories exist but none of them has provided yet a full account of
the dynamics found in numerical simulations.

Keywords Vlasov equation - Long-range interactions

18.1 Introduction

Systems with long-range interactions (LRI) display unusual thermodynamical and
dynamical properties such as ensemble inequivalence, lack of relaxation to equilib-
rium or broken ergodicity (see Refs. [1, 2] for a review of the field). These prop-
erties stem from the non-additive character of the interparticle interaction potential.
Let us mention a few systems belonging to the LRI class: gravitational systems,
non-neutral plasmas, 2D fluid dynamics, etc.

We focus in this work on the lack of relaxation to thermal equilibrium in LRI sys-
tems when the system is initiated in an out-of-equilibrium state. This phenomenon
leaves the system in an intermediary stage of the dynamics that is called a quasi-
stationary state (QSS) [3]. This state does not correspond to the equilibrium pre-
dicted by statistical mechanics and its lifetime increases algebraically with the num-
ber N of interacting particles in the system.

The occurrence of QSS should be taken into account if one is interested in the
actual properties of a system. The time needed to reach thermal equilibrium may
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prevent a proper observation of equilibrium properties in the available experimental
or simulational setting.

In this work, we review the generic steps of the out-of-equilibrium dynamics of
LRI systems and use the paradigmatic Hamiltonian Mean-Field (HMF) model and
its Vlasov formulation to illustrate those steps. Then, several theories attempting to
predict or describe the QSS are reviewed.

18.2 The Hamiltonian Mean-Field Model and the Vlasov
Equation

Let us consider the Hamiltonian Mean-Field (HMF) model introduced by Antoni
and Ruffo [4]. This model aims at reproducing the collective behavior of more com-
plex models with ferromagnetic or gravitational interactions, for instance.

The particles in the HMF model lie in a 1-dimensional periodic space with posi-
tion @ € [—m : w[. The N-body Hamiltonian is

N

D; 1
Hz. 7’+ﬁz (1 —cos(8; — 6))) (18.1)
i=l1 i,j=1
where 0; is the position (in [—7 : 7 [) of particle i and p; is its momentum. N is the
total number of particles in the system.
One may also consider the continuum limit of the HMF model. This leads to the

Vlasov equation

af | of aVII@.naf _

0, 18.2
ar  Poe 30 op (18.2)
where
VIf10,t) = / do'dp' (@', p',1) (1 —cos(8’ — 9)) , (18.3)
is the interaction potential.
The mean field, or magnetization,
| N
m= NZ(COSQi,SiHGi):(mx,my), (18.4)

i=1

is used to follow the dynamical evolution of the HMF model. In the continuum limit.

m= /d@dpf(@, p)(cost, sinf) = (my, my), (18.5)

The norm of m is denoted m.

Equilibrium statistical mechanics allows one to compute the value of m for a
given energy or temperature. The authors of Ref. [4] observed a discrepancy in the
caloric curve between the theory and their simulations, close to the second order
transition separating the magnetized phase (m > 0) from the homogeneous phase
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(m = 0). Further investigations revealed the origin of the discrepancy: the system of
particles had not reached thermodynamical equilibrium in the simulations.

The evolution of many systems with long-range interactions consists in the fol-
lowing generic steps:

1. An initial condition that does not correspond to equilibrium.

2. Violent relaxation: the observables in the system undergo strong changes. The
time scale of this step does not depend on the number of particles N.

3. Quasi-stationary state (QSS). This state may either be stationary or present os-
cillations. Its lifetime grows algebraically with N.

4. Equilibrium: the state that is predicted by equilibrium statistical mechanics.

Simulations illustrating this dynamical evolution may be found in Refs. [3, 5], for in-
stance. An important consequence of the occurrence of QSS is that in addition to the
equilibrium phase transitions that the system may experience, one has to consider an
“out-of-equilibrium phase diagram” that is based on the magnetization found in the
QSS. In the thermodynamic limit N — oo, this “out-of-equilibrium phase diagram”
is the relevant one.

18.3 Theories for the Quasi-stationary States

Several attempts have been made at predicting the quasi-stationary state reached by
the dynamics. We review several of those attempts, namely: Lynden-Bell’s theory
that is based on an entropy maximization principle [6, 7], the exact stationary regime
theory proposed by de Buyl, Mukamel and Ruffo [8] and a dynamical reduction
proposed by Levin [9].

None of the aforementioned theories is able to take into account the existence of
states whose observables are not constant in time, i.e. they predict a time indepen-
dent distribution f (@, p). It is known that dynamical resonances lead to oscillating
regimes [4, 10] and those cannot be predicted.

18.3.1 The Theory of Lynden-Bell

In 1967, Lynden-Bell [6] devised a theory to compute the relaxed state of gravita-
tional systems obeying a Vlasov equation. His theory is based on the maximization
of an entropy functional that takes into account the incompressible character of the
distribution function in Vlasov dynamics. The computation is based on a coarse
graining of phase space but leads to a continuous prediction for the distribution
function.

Lynden-Bell’s theory has been applied with success to the prediction of the in-
tensity of the Colson-Bonifacio model for the free-electron laser [11] and to provide
an out-of-equilibrium phase diagram for the HMF model [6, 7].
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18.3.2 BGK Like Theory

Based on the fact that a distribution function that only depends on the energy is
stationary in Vlasov dynamics, one may try to construct stationary states. This ap-
proach is well know in plasma physics as Bernstein-Greene-Kruskal modes [12].
The authors of Ref. [8] develop this idea while proposing an approximate corre-
spondence between the initial condition and the state that is reached by the system.

The distribution f (6, p) is expressed directly as a function of the energy distri-
bution function of the initial condition. For low values of the initial magnetization,
the theory fails to predict the final magnetization. Else, it provides good results and
predicts a second-order phase transition for (m) and (m,). This theory is based
purely on dynamical consideration and as such provides interesting complementary
information with respect to Lynden-Bell’s theory.

18.3.3 Core-Halo and Envelope

The authors of Ref. [9] propose an ansatz for the distribution function f that repro-
duces the core-halo structure found in the phase space of the HMF model

f50,p)=n0[O(er —€) + xO(ep —€) Oe —€p)], (18.6)

where €(0, p) = p2/2 + (1 — Mgcosf), Mg is the value of the magnetization and
® is the Heaviside function.

This ansatz requires the determination of the energy levels (e for the core and ¢,
for the halo) and of the magnetization M. Those values are provided by a reduced
dynamical equation. This theory is tested on the transition between magnetized and
homogeneous regimes in the HMF model and predicts a first-order like transition
for (m) and (m,). The order of the transition is confirmed by simulation data for
(my). Simulation data for (m) is not given however.

18.4 Discussion and Conclusion

Out of the existing theories aimed at predicting the quasi-stationary states (QSS) that
have been applied to the Hamiltonian Mean-Field model, none is able to predict the
regimes in which oscillations are found. As is pointed out in Ref. [13], one may
relate the time averages of the squared norm of the magnetization to the one of the
x component of the magnetization! by the following relation:

)= (m})=(m,)* +o, . (18.7)

(m x

!Here, my can be set equal to zero without loss of generality.
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where o0y, is the time-wise standard deviation of m,. The choice of an observable
thus impacts the results that is found in simulations for non-steady QSS, explaining
the different results between Refs. [7] and [9]. As soon as the QSS displays oscilla-

tions in the magnetization, crnzl\_ > 0 and (m?) # (m,)?. The phase diagram provided

by Lynden-Bell’s theory [7] still represents the most ensemble view of the QSS for
the HMF model as well as an actual interpretation in terms of phase transitions.

We have reviewed in this work recent advances in the understanding of the out-
of-equilibrium dynamics in systems with long-range interactions. Several theories
exist but none of them has provided yet a full account of the dynamics found in
numerical simulations. Progress in this direction has been made by the construction
of counter-rotation BGK clusters by Yamaguchi [14]. This construction is however
not predictive.

Acknowledgements The author would like to acknowledge interesting discussions and collabo-
rations with R. Bachelard, G. De Ninno, D. Fanelli, P. Gaspard, D. Mukamel and S. Ruffo.
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Chapter 19
Distance Ratio: An Exploratory Application
to Compare Complex Networks

Nuno Caseiro and Paulo Trigo

Abstract This paper describes an experimental application of the distance ratio
measure used to compare individual networks among themselves and to analyze the
aggregated network representing the group mental model from the field of emer-
gency management.

The data was obtained by surveying a group of Civil Protection graduates and
aggregating all the answers (shared mental model). The data allowed us to deepen
the analysis of the resulting network in order to research for differences among
networks.

Keywords Complex networks - Network comparison - Distance ratio - Emergency
management - Mental models

19.1 Introduction

The study of complex networks are an important tool in different fields of knowl-
edge, with applications from social relations to power grids, from genes and proteins
to text analysis [1-6].

The usual approaches are centered in the statistical proprieties of one network
and its components: the nodes and the links between them (edges). In this case,
complex networks are taken as individual structures but they are normally dynamic
by nature and it’s important to understand the differences or similarities among two
or more.

In general, we can compare networks by means of: (i) global property statis-
tics, such as degree distribution, betweenness centrality, assortativity, and clustering
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coefficient; (ii) subgraph enumerating, such as over- and under-represented motifs
than in randomized networks, graphlet degree distribution, joint degree correlations
of subgraph, and trained subgraph feature. Each of comparison method has specific
characteristics, advantages and disadvantages [7].

When approaching two or more networks that share some elements among them,
are taken in several moments in time or in different physical settings the current
proposals are limited. Two networks even with different substructures can exhibit
some similitude regarding global properties [7].

Some examples of this situation are the network formed by words and phrases in
two books in a domain or written by the same author, citations in a field of knowl-
edge in two different years or power grids in different regions (with same equip-
ment). In these cases comparing can be a useful approach to detect differences and
similarities between the existing elements and their links.

With the present work we propose to address this gap by applying a measure,
Distance Ratio inspired in system analysis [8]. In this context a system is represented
by elements connect by causal relations with positive or negative impact within
them. It is possible to identify the existence of self-loops, when an element has an
impact on itself. But irrespective of the classification, the emerging representation
is a different form of network, so our research will test its suitability for complex
networks application.

As a practical application the presented indicator (Distance Ratio) is applied to
compare different networks representing mental models of emergency managers.
These structures are obtained by relating concepts of this field gathered by inquiry
from practitioners. It can be used to verify differences among a shared mental model
and the individual ones [9, 10] or to test the similarities between professionals of
different emergency agents.

In this application, obtained results can be useful for support training and recruit-
ment decisions since they give an indicator of closeness between different mental
models.

As a comparative indicator and methodology it can be extended to contexts like
plagiarism, when applied to compare the network of words between different docu-
ments or other settings where comparison is required.

19.1.1 The Distance Ratio

In the literature there seems to lack a measure that can be used for the purpose of
comparing complex networks. We will use an indicator, the Distance ratio (DR),
that in its original application, in the domain of system dynamics, was used to cal-
culate two causal maps similarity. Causal maps in systems dynamics are a set of
elements that influence each other in a sequence and with a level of intensity. In the
language of system dynamics there are more than variables and links. It is possible
to identify other constructs such as delayer links, non-linear links, stock variables or
rate variables and also feedback loops [11]. The distance ratio is used to compute to
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what extend two networks are close in terms of their constituents. Thus, an extended
matrix A and B is used, where a;; and b;; are their elements. The adjacency matrix,
with n variables, will form an xn matrix with the strength of the links as cell values
[12] or a binary representation (0/1) of the existing links if there is no information
about weights.

Since causal maps can be seen as a network where an element can be represented
as a node, the influence to other elements are links and the level of intensity is the
weight of that link, it is our belief that the DR measure can be extended and applied
to complex networks.

The formula for distance ratio is presented below [8, 12]

D1 2= diffG, )
(eB + 5)113 + )//(ZUC(U,M + vup) + U%a + U,fb) +a((eB + 5)”3 + ¥ (Vya + vup))

(19.1)
where
0, if i = j and o = 1 (no self-loops)
diff(i. 7) I'(aij, bij), ?fi or j v Al or j €v, or v (192)
lajj — bij| +6, ifa;;*bj; <0
laij — bijl, otherwise
and
0, ify=0
I'(aij,bij)1 0, ify=1landa;j=>b;;=0 (19.3)

1, otherwise

The result obtained by the formula can vary between 0 and 1, where 0 means
completely similar and 1 totally different (distant).

A group of parameters are denoted by the Greek letters («, 8, ¥, 8, €) and are
used to adjust the formula to different contexts. The o« parameter can be set to 0
or 1, whether self-loops are allowed or not. To reflect differences in weight between
nodes in the networks we pass the max weight to parameter S.

& accounts for the number of polarities in the matrix and it can take the value 1
or 2 (one polarity—only positive or negative or two polarities—positive and nega-
tive).

If § =0, we do not differentiate situations where different weights create the
same difference values. For instance, a difference between a weight of 4 and 1 is the
same as for —2 and 1 as per Eq. (19.2). In the latter, since a negative and a positive
value is involved, a value § is added.

The parameter y is set for how to interpret matrix cells for which one of the
maps does not have an edge because there is a mismatch of nodes. In the context
of concept maps the inexistence of a node is a result of the one that creates more
difficulties. If we do not want to deduce anything from the absence of nodes, we will
set y = 0. If we wish to assign meaning to the fact that one person as mentioned
one concept (node) and another does not, the value of y = 1 signaling that this
difference should be taken into account.
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19.1.2 Mental Models

Mental models are conceived of as a cognitive structure that forms the basis of rea-
soning and decision making, and can be seen as a network of associations between
concepts in an individual’s mind. Mental models have been described as a form of
intuitive knowledge that serve as a frame of reference for interpretation of the world
which forms the bases for reasoning and working with problems [13].

They are built by individuals based on their personal life experiences, per-
ceptions, and understanding of the world. Mental models provide the mechanism
through which new information is filtered and stored. However, the ability to repre-
sent the world accurately is always limited and unique to each individual [14].

There a variety of techniques for eliciting mental models, ranging from brain-
storming, to interviews or text analysis. They include concept mapping, word asso-
ciation techniques, ordered recall, card sorting procedures, paired-comparison, and
the ordered tree technique [12, 15, 16].

They can be applied both individually or to a group of people [10, 15]. Most of
procedures used are based on the assumption that an individual’s mental model can
be represented as a network of concepts and relations [14].

When working together people must share a part of the mental model to deal
effectively with each other. Team mental models promote understanding among
team members regarding information requirements, the need for communication
and coordination [17]. In the case of emergency management cycle the individuals
involved need to have a common mental structure to deal with information issues.
The lack of a common mental model is a common problem referred to in emergency
management literature [18-20].

19.2 Methodology

In order to compute the DR we asked a group of graduate students to identify, orga-
nize and relate the concepts they recognized in the emergency management field.

Each element of the survey group was asked to indicate a new level of concepts
related to a starting concept. In this situation the initial concept was “Civil Protec-
tion”. For each of the concepts in the new group, a new sublevel of concepts was
requested. By iterating on the above mentioned steps, it is possible to build several
levels of inter-related concepts (as represented in Fig. 19.1). An individual structure
is elicited representing the mental model of concepts of the respondents with the
respective relations. This structure is representable as a network.

As the concepts are words, the responses were verified for major spelling mis-
takes and typos. This is an important step to ensure that the same concept indicated
by two different respondents was not coded as different ones because of a mistake.
Finally, individual networks were grouped and processed to create a unique network
with all the contributions.

This grouped network can be seen as a shared mental model [10]. In this network,
we take into account the number of times a pair of concepts was mentioned by the
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Emergency
Management
I
| Concept1l | | Concept 2 |
I
| Sub-concept1 | | Sub-conceptn | | Sub-concept 1 | | Sub-conceptn

Fig. 19.1 Model of data gathering

respondents, because this stresses the importance of that relation within the group.
That total was taken as a weight of the edge between concepts.

The data was processed to transform the concepts identified in a network struc-
ture, where a node represents a concept and an edge represents a connection between
two concepts. Moreover, for each pair of nodes the respective weight was indicated.

19.3 Results

We compute the DR for each of the networks among subjects. For the current appli-
cation the parameters in the formula were set to:

e o = 1, meaning self-loops were not taken into account, because in the case of
complex networks a node do not link to itself directly;'

e [ =max weight, in the present case the value is one, meaning only that there is a
link between two nodes;

e y =1, because we want to take into account the fact that one network has a node

and another has not, thus valuing the eventual link that can exist;

8 =0, not adding any value to differences;

& =1, because in this case we only have one polarity. All link weights are posi-

tive.

The values presented in Table 19.2 point to a low distance ratio since they are
very close to 0, the lowest limit, meaning that networks are very similar among them.
This can be due to the nature of the sample used. The subjects were all graduate
students, with similar training and level of experience.

In spite of this fact, some differences can be perceived between subjects with
some of them with more proximity with the others (subject 4) and lower deviation.
Or with more relative distance (subject 6).

If we compare the subjects with the group network with the starting concept (the
aggregated network mentioned in Table 19.1). We find a mean DR of 0.005 (with

'We recall that the Distance Ratio formula is adapted from systems dynamics where self-loops are
a normal situation.
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standard deviation of 0.0001). The value is lower than the values obtained between
subjects (with mean of 0.02).

An possible explanation to this is that the aggregated network is constructed by
adding all the individual contributions, therefore when we perform the distance ratio
between the aggregated network and the individual ones, each one finds a “piece”
of itself in the group network thus having a lower distance.

19.4 Conclusions

Network analysis seems to be a valid tool to study mental maps since the concepts
and their relationships can be represented by nodes and links.

The application of the Distance Ratio to complex networks seems feasible but
requires a broader sample that can increase potential differences. The sample used
led to a low Distance Ratio, meaning that the mental models were very similar
within the group under study. The distance ratio approach can be refined to take into
account the ranking of concepts (node weight) in the case of aggregated networks.

Since this is an exploratory work that used a sample of graduates as the source
of concepts, the computed differences between mental models were not very sharp.
Future work will try to replicate this approach with professionals in the Civil Pro-
tection field, from different agencies and explore if greater dissimilarities exist.

The understanding resulting from that may be helpful to take decisions regarding
training improvement and information sharing among individuals or groups in key
organizations in the field.
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Chapter 20
Traveling and Stationary Patterns in Bistable
Reaction-Diffusion Systems on Network

Nikos E. Kouvaris, Hiroshi Kori, and Alexander S. Mikhailov

Abstract Traveling and stationary patterns in bistable reaction-diffusion systems
have been extensively studied for classical continuous media and regular lat-
tices. Here, we consider analogs of such non-equilibrium patterns in bistable one-
component systems on trees and on random networks. As revealed through numeri-
cal simulations, traveling fronts exist in network-organized systems. They represent
waves of transition from one stable state into another, spreading over the entire
network. The fronts can furthermore be pinned, thus forming stationary structures.
While pinning of fronts has previously been considered for chains of diffusively
coupled bistable elements, the network architecture brings about significant differ-
ences. An important role is played by the degree (the number of connections) of
a node. For regular trees with a fixed branching factor, the pinning conditions are
analytically determined. For large random networks, the mean-field theory for sta-
tionary patterns is constructed.

Keywords Self-organization - Pattern formation - Nonlinear dynamics -
Bistability - Complex networks - Traveling fronts - Pinning - Stationary patterns

20.1 Introduction

Pattern formation in reaction-diffusion systems for from equilibrium has been
widely studied for chemical and biological processes. Within the last years, atten-
tion has been turned to self-organization on network systems, where the network
nodes are occupied by active elements and the links represent diffusive connections
between them. Such systems may correspond to networks of diffusively coupled
chemical reactors [1] or biological cells [2]. Detailed studies of synchronization phe-
nomena in oscillatory systems [3] and of infections spreading over networks [4, 5]

N.E. Kouvaris (X)) - A.S. Mikhailov
Department of Physical Chemistry, Fritz Haber Institute of the Max Planck Society,
Faradayweg 4-6, 14195 Berlin, Germany

H. Kori
Department of Information Sciences, Ochanomizu University, Tokyo 112-8610, Japan

T. Gilbert et al. (eds.), Proceedings of the European Conference on Complex Systems 131
2012, Springer Proceedings in Complexity, DOI 10.1007/978-3-319-00395-5_20,
© Springer International Publishing Switzerland 2013


http://dx.doi.org/10.1007/978-3-319-00395-5_20

132 N.E. Kouvaris et al.

have been performed. Turing patterns in activator-inhibitor systems organized on
large networks have also been considered [6]. However, systematic research along
this directions is still largely missing. To contribute towards such research, we in-
vestigate here traveling and pinned fronts in networks formed by diffusively coupled
bistable elements.

The study of bistable media is of principal importance for the theory of self-
organization in reaction-diffusion systems. Traveling fronts which represent the
transition from one stable state into another are providing a typical example of self-
organized wave patterns. The velocity and the profile of the front are uniquely de-
termined by the medium properties. Depending on the parameters of the medium,
either spreading or retreating fronts can typically found. Stationary fronts, which
separate two regions of different stable steady states, are not characteristic for con-
tinuous media; they are found only at special parameter values along the border
line separating spreading and retreating fronts [7]. When discrete systems, formed
by chains of coupled bistable elements, are considered, traveling fronts can how-
ever become pinned if diffusion is sufficiently weak, so that, stable stationary fronts
which are found within entire parameter regions may arise [8—10].

As shown in our study [11], traveling and pinned fronts are also possible in
network-organized systems, but their properties are significantly different. The be-
havior of the fronts is highly sensitive to network architecture and degrees of net-
work nodes play an important role.

20.1.1 Bistable Systems on Networks

Classical one-component reaction-diffusion systems in continuous media are de-
scribed by the form

%u(x, 1) = f(u,h) + DVu(x, 1), (20.1)

where u(x, t) is the local activator density, function f (u, h) specifies local bistable
dynamics and D is the diffusion coefficient. Depending on the particular context,
the activator variable u may represent concentration of a chemical reagent or of
biological species which amplifies its own production.

Here we consider analogs of processes described by the model (20.1), which are
taking place on networks. In network-organized systems, the activator species oc-
cupies nodes of a network and can be transported over network links to other nodes.
The connectivity structure of the network can be described in terms of an adjacency
matrix T, whose elements are T;; = 1, if there is a link connecting the nodes i and
J G, j=1,...,N),and T;; = 0 otherwise. Processes in undirected networks, where
the adjacency matrix T is symmetric (7;; = T};), have been considered. Generally,
the network analog of system (20.1) is given by

N N
i = f(u;)+ D(Z Tijuj — ZTjiMz), (20.2)

j=1 j=1
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where u; is the amount of activator in network node i and f(u;) describes the local
bistable dynamics of the activator. The last term in Eq. (20.2) describes diffusive
coupling between the nodes. Parameter D characterizes the rate of diffusive trans-
port of the activator over the network links.

Instead of the adjacency matrix, it is convenient to use the Laplacian matrix L
of the network, whose elements are defined as L;; = T;; — k;§;;, where §;; =1 for
i = j, and §;; = 0 otherwise. In this definition k; is the degree, or the number of
connections, of node i given by k; =Y j T};. In the new notations Eq. (20.2) takes
the form

N
i = f()+ DY Lijuj. (20.3)
Jj=1

When the considered network is a lattice, its Laplacian matrix coincides with the
finite-difference expression for the Laplacian differential operator after discretiza-
tion on this lattice.

In our study we use the Schlogl model [12] which is a classical example of a
one-component system exhibiting bistable dynamics. This model describes a hy-
pothetical trimolecular chemical reaction which exhibits bistability. In the Schlogl
model, the nonlinear function f(u) is a cubic polynomial

v
Sy =——r=——r)u—r)u—rs), (20.4)

so that, V(1) has one maximum at r, and two minima at r; and r3. We have per-
formed numerical simulations and analytical investigations of the reaction-diffusion
system (20.3) random networks and for irregular trees using the Schlogl model.

20.2 Main Results

As revealed through numerical simulations, analogs of traveling fronts, spreading
or retreating, exist in such network-organized systems. Furthermore, stationary pat-
terns, pinned at subsets of network nodes, are found. Our numerical simulations
suggest that degrees of the nodes play an important role in such phenomena. The
observed behavior is however complex and depends on the architecture of the net-
works and on how the initial activation was applied [11].

In the special case of regular trees, an approximate analytical theory has been
constructed. Our theory, which represents an extension of the respective theory of
pinned fronts for the chains [10], reveals that the branching factors of the trees and,
thus, the degrees of their nodes, are essential for fronts dynamics [11]. By using
this approach, front pinning conditions could be derived and parameter boundaries,
which separate pinned and traveling fronts, could be determined. As we have found,
propagation conditions are different for the fronts traveling from the tree root to
the periphery or in the opposite direction. Generally, all fronts become pinned as
the diffusion constant is gradually reduced. While the theory has been developed
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for regular trees, where the branching factor is fixed, it can be used to interpret the
behavior found in irregular trees and also for large Erdos-Rényi networks.

It is known that large random Erdos-Rényi networks can locally be approximated
by the trees [13]. Therefore, if the initial perturbation has been applied to a node and
starts to spread over the network, its propagation is effectively taking place on a tree
formed by the node neighbors. Only when the activation has already covered a suf-
ficiently high fraction of the network nodes, loops start to play a role. When this
occurs, the activation may arrive at a node along different pathways and the tree
approximation ceases to hold. In this opposite situation, a different theory employ-
ing the mean-field approximation can however be applied as has been previously
used for spreading-infection problems [14] and the analysis of Turing patterns on
the networks [6]. Within the mean-field approximation, statistical properties of the
network stationary activity patterns are well reproduced [11].

20.3 Methods

In our study random Erdos-Rényi, scale-free and hierarchical tree networks were
considered. Erdos-Rényi networks were constructed by taking a large number N
of nodes and randomly connecting any two nodes with some probability p. This
construction algorithm yields a Poisson degree distribution with the mean degree
(k) = pN [15]. In our study we have considered the largest connected component
network, namely, we have removed the nodes with the degree k = 0.

Tree networks with branching factor kK — 1 were constructed by a simple iterative
method. Starting with a single root node and at each step k — 1 nodes are added
to each existing node with the degree k = 1. After L steps this algorithm leads to
a tree network with the size N = ZIL=1 (k — 1)!~1, where the root node has degree
k — 1, the last added nodes have degree 1 and all other nodes have degree k. In our
numerical simulations we have also used complex trees consisting of component
trees with different fixed branching factors which are connected at their origins.

Scale-free networks were constructed by the preferential attachment algorithm
of Bardbasi and Albert [15]. Starting with a small number of m nodes with m con-
nections, at each next time step a new node is added, with m links to m different
previous nodes. The new node will be connected to a previous node i, which has k;
connections, with the probability k; /> jkj. After many time steps, this algorithm
leads to a network composed by N nodes with the power-law degree distribution
P (k) ~ k3 and the mean degree (k) =2m.

Another issue in our study was to find the more convenient visualization of the
networks, for a better highlighting of self-organized patterns. Thus, network analogs
of traveling fronts was illustrated by grouping the nodes according to their distance
(the shortest path length) from the first activated node and the average value of
the activator density in each group was plotted as a function of the distance [11].
Stationary patterns, were displayed either by ordering the nodes according to their
increasing degrees or by using the Fruchterman-Reingold force-directed algorithm
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which places the nodes with close degrees near one to another in the network pro-
jection onto a plane, so that, the localization of the stationary patterns at the subsets
of nodes with certain degrees is clearly illustrated.
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Chapter 21
Searching Shortest Paths on Weakly Dynamic
Graphs

Jean-Yves Colin, Moustafa Nakechbandi, and A.S. Ould Cheikh

Abstract In this paper, we study weakly dynamic graphs, and we propose an effi-
cient polynomial algorithm that computes in advance shortest paths for all possible
configurations. No additional computation is needed after any change in the prob-
lem because shortest paths are already known in all cases. We apply this result to a
dynamic routing problem. In this problem, messages must be sent from some com-
ponents (captors for example) to a specific one (a processor for example) as quickly
as possible. The actual network is a mesh and the problem can represented by a
weighted directed acyclic graph. One known arc has unreliable performances.

Keywords Shortest paths - Dynamic graphs - Route planning

21.1 Introduction

In complex systems, dynamic graphs in which some of their values or even their
topologies may change from one moment to another offer new research opportuni-
ties.

One of the most famous algorithm, and one of the most used on static graphs, is
the shortest-paths algorithm from E.W. Dijkstra [1]. For the more complex dynamic
graphs, several models are proposed, probabilistic [2—4] or non-probabilistic [5-7].
In non-probabilistic models, most algorithms update previously computed data af-
ter each change in a value or after the addition or removal of an edge [8-11]. In
probabilistic models, the optimal paths definition of a shortest (or longest) path is
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different according to the published papers. The most usual definition sets as opti-
mal a path that maximizes the expected value of an utility function chosen by the
authors [2, 4]. The problem itself is usually NP-hard.

Among used metaheuristics, one can find ant colony algorithms [9] and other
swarm intelligence algorithms. These algorithms are very general and try too to
adapt their results following changes in the problem.

In this paper, we study weakly dynamic graphs, and we propose an efficient poly-
nomial algorithm that computes in advance shortest paths for all possible configu-
rations. No computation is needed after any change in the problem because shortest
paths are already known in all cases.

We apply this result to one delivery problem for trucks from one regional store-
house to several local stores when one possible point has a variable traversal du-
ration. We apply too this result to the problem of rerouting delivery trucks toward
their final destinations when there is a change in the traversal duration of one known
point.

21.2 Problem Statement

We first define weakly dynamic graphs.

Definition 21.1 A weakly dynamic graph is a graph in which there is an unstable
valuated edge (in an undirected graph) or valuated arc (in a directed graph) between
two known vertices x1 and x; of the graph. That edge or arc has an unknown positive
value x that may change at any time. All other edges or arcs are stable and their
values never change.

In the rest of this paper, we will study a weakly dynamic directed acyclic graph
G(V, E) with V being the set of vertices of G and E being the set of arcs. Each arc
(i, j) of G is valuated by a positive stable value p;;, except for two known vertices
x1 and xp of the graph. This arc (x1, x2) from x; to x» is valuated by an unknown
and unstable value x that may change at any time. The length of a path at a given
moment is the sum of the values of all the used arcs.

We now want to find in G shortest paths between a given vertex and all other
vertices, or alternatively shortest paths from all vertices to a given vertex.

21.3 Main Results
21.3.1 The Proposed Algorithm

In the following, we study only the problem of finding a shortest path between a
given vertex so and all other vertices. Finding a shortest path from all vertices to a
given vertex is a similar problem that can be solved by using predecessors instead
of successors in our algorithm.
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1

1

Fig. 21.1 Example of a Weakly Dynamic Graphs. The arrow in dotted lines represents the non
steady bow

The algorithm works in four successive phases:

o it first builds a set of the vertices that can be reached from the starting vertex using
arc (x1, x2). Only the successors of xp are considered because G is a directed
graph.

e next, it computes the length d(x2, s,) of the shortest path from vertex x;, to all
vertices of the above computed set.

e then it computes the length ds(sp, s,) of the shortest path that does not use arc
(x1, x2), from vertex sq to all other vertices of the graph.

o finally, it computes the length d(so, s,,) of the shortest path from vertex sq to all
other vertices of the graph, by comparing

e the length ds(so, x1) + x + d(x3, s,) of the shortest path that uses arc (x1, x2),

e and the length ds (s, s,,) of the shortest path that does not use arc (x1, x3). Thus,

d(so, s,) =ds(s0, x1) +x +d(x2,5,), if ds(so, sp) >ds(so, x1) +x +d(x2,5,)
else = ds(sg, sn).

Because the length of any shortest path that uses arc (x1, x») depends on the value
of x, the length d (s, sx) of the shortest path from vertex sq to another vertex s, will
also depends on x. In most cases for a vertex si, there will be one value x (si) of x
such that, if x is inferior to this value x(s), the shortest path will use arc (x1, x7),
else it will not use it. Each path itself to each vertex s, is computed during the
lengths computations.
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Fig. 21.2 Sub-graph
generate by step 1

>( 10 >( 14
N N

Example 21.1 We now apply this algorithm on the graph of Fig. 21.1.

Step I: the set of direct or indirect successors of x; is {6, 8, 9, 10, 12, 13, 14, 15,
16}. The corresponding sub-graph is that shown in Fig. 21.2.

Step 2: the computed shortest paths from x, to these successors s, have lengths
d(x2,sy,) of

Sn 5 6 8 9 10 12 13 14 15 16
d(x2, s,) 0 1 2 3 3 4 5 4 5 6

Step 3: the computed lengths ds (sg, s,) of shortest paths that do not use arc (x1, x2),
from vertex sg (with so being vertex 1) to all other vertices of the graph, are

S 1 2 3 4 5 6 7 8 9
ds(xyp, sp,) 0 6 3 6

Sn 10 11 12 13 14 15 16
ds(x2, sp) 10 5 9 10 6 7 11

Step 4: the lengths d(x1, x2) of the shortest paths for all vertices is the minimum of
the two values not using arc (x1, x2) and using arc (xp, x2).

Sn 1 2 3 4 5 6 7 8 9
If not using arc (x1,x0) 0 6 3 6 7 5 4 7 8
If using arc (x1, x2) - - - - 34x 44x - 54+x 6+x
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Sn 10 11 12 13 14 15
If not using arc (x1, x2) 10 5 9 10 6 7
If using arc (x1, x2) 64+x - 74 x 8+ x 6+ x 74+ x

Thus, for some vertices and some values of x, the shortest path uses arc (xp, x2),
and for these vertices and some larger values of x, the shortest path does not use arc
(1, x2).

21.3.2 Some Proprieties of the Algorithm

Theorem 21.1 The paths computed by the algorithm are shortest paths.
Theorem 21.2 The algorithm complexity is O (n?).

Definition 21.2 We call critical value of x for a vertex sy the value x (s;,) such that,
if x is inferior to this value, the shortest path from vertex sg to vertex sx will use arc
(x1, x2) and will have a length that depends on x, else it will not use it and its length
will be constant.

Theorem 21.3 Each vertex sy, that is a direct or indirect successor of vertex x, has
0 or 1 critical value for the computation of a shortest path from s to this vertex.

A corollary of the last theorem is that the number of critical values is a finite
number. Furthermore, if we sort in ascending order the critical values of all vertices
of the graph, one can remark that the computed set of shortest paths from s to all
other vertices in the graph is the same for all values of x between two consecutive
values critical values. So the proposed algorithm can be used to efficiently compute
shortest paths for all possible values of x from a given vertex to all other vertices. It
can be used too to efficiently compute shortest paths from all vertices of a graph to
a given target vertex, by using the predecessors instead of the successors during the
computation.

21.4 Application to a Routing Problem

We now apply the algorithm to the following dynamic routing problem. Messages
must be sent from some components (captors for example) to a specific one (a pro-
cessor for example) as quickly as possible. The actual network is a mesh and can
represented in this problem by a weighted directed acyclic graph [12]. One arc is
known to have unreliable performances for some reason. This problem is thus a
weakly dynamic graph problem with vertex s, being the destination, and arc (x1, x2)
being the unreliable arc (cf. Fig. 21.3).
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Figure 3-a Figure 3-b
Exemple de DAG Résultat pour x <2

Figure 3-c
Résultat pour x > 2

Fig. 21.3 Application 1. Trees of shorter path from vertex s¢ to all others

As said above, we may use a version of the proposed algorithm that uses the pre-
decessors instead of the successors. This allows us to compute shortest paths from
all other vertices to vertex s,. In the example graph of Fig. 21.4, there then are two
critical values, 2 and 4, giving 3 intervals. Each interval has its own (inverted tree)
of shortest paths spanning the whole graph and leading to vertex s, (cf. Fig. 21.4).
Each gives then a routing policy that is optimal in its interval. These routing poli-
cies are then all precalculated and stored in the vertices with their relevant critical
values of validity. The current value of x is next used to decide what routing will be
used. The unreliable arc is then monitored. When its value changes, the new value
is transmitted to all vertices. Each vertex compares it to the critical values and may
immediately decide to keep using the currently used local routing policy, or switch
to the already computed one best suited to the new value of x, just by checking in
which interval the value x is now in. Thus, no time is lost recomputing new optimal
paths.

21.5 Conclusions

In this paper, we proposed a new graph model we call weakly dynamic graph, and
we presented an algorithm to compute shortest paths for all possible cases in a given
graph. This algorithm has a polynomial complexity.
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Figure 4-a Figure 4-b
Exemple de DAG Résultat pour x < 2

Figure 4-c Figure 4-d
Résultat pour 2< x <4 Résultat pour x > 4

Fig. 21.4 Application 2. Trees of shorter path from all vertex to s, Here one uses the graph of the
previous application (Fig. 21.3(a))

We intend to extend this study to weakly dynamic non oriented graphs, to graphs

with 2 or more variable arcs, to logistical routing problems and to the longest paths
algorithms used in scheduling and project management.
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Chapter 22
Emergence of Long Range Order in the XY
Model on Diluted Small World Networks

Sarah De Nigris and Xavier Leoncini

Abstract We study the XY model on diluted Small World networks, i.e Small
World networks whose number of links scales with the system size Njjs ~ N7V,
1 <y < 2. Starting from the regular lattice topology, we first concentrate on the
behaviour varying the dilution parameter y: for low values, the system does not
exhibit a phase transition; while for y approaching 2 a second order transition of
the magnetisation arises since the system is near the HMF regime. Hence y,. = 1.5
appears to be a critical value: an energy range is observed in which the magnetisa-
tion shows important fluctuations and does not reach the equilibrium state. We then
take in account the model on a Small World network: for the latter, we have chosen
the Watts-Strogatz model, whose topology is parametrized by the rewiring proba-
bility p, 0 < p < 1. We performed microcanonical simulations of the dynamics and
we highlight the presence of a second order phase transition appearing even for very
low p and y, when the topology is still near the regular lattice one. Moreover we
observe a dependence of the critical energy €. on the rewiring probability p.

22.1 Introduction

The concept of Small World network can be found in systems which spread from
sociology and information science to biology and physics. We can take as funda-
mental and well known examples, among others, the Web [1] or networks of cells
in the living, like the neurons [2]. Despite the difference between those systems,
some common features arise in these real world networks like an high level of clus-
tering or the “Small World” effect itself, i.e. little average distance between two
nodes of the network. These shared properties are, looking at the heterogeneity of
the examples, quite independent from the punctual nature of the agents interacting
on networks and thus it represents a challenge to describe how common topological
features stem from simple assumptions which can be taken regardless to the particu-
lar model considered. Moreover the dynamical processes taking place on the top of
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networks are profoundly influenced by the underlying structure, pointing out a non
trivial interplay between the topology and the dynamics [3]. The statistical physics
approach could hence turn the qualitative matching between network structure and
dynamical processes into guantitative and the present work aims to inscribe itself on
this line. In this purpose, we chose a model for the network, the Watts and Strogatz
model [4], and a model for the interaction, the XY model for rotors. The latter, in
spite of its simple formulation, displays a very rich phenomenology and it has been
applied in various physical contexts: from solid state physics [5] to superconductors
and, recently, in more peculiar systems like bird flocks [6]. On the other hand, the
Watts-Strogatz networks model catches the two aforementioned features of Small
World networks and, at the same time, it provides naturally a control parameter on
the topology, the rewiring probability.

In Sect. 22.2 we present the XY model and we introduce the order parameter
used to characterize the phase transition of the system. Then, in Sect. 22.3, we first
concentrate on the behaviour of the model on a regular lattice, considering how its
thermodynamic properties vary changing the number of neighbours k connected to
each spin. Further on, in Sect. 22.4, we introduce the algorithm to create a Small
World network and we analyze the influence of this network structure on the phase
transition displayed by the XY model. We conclude, in Sect. 22.5, with a concise
summary of the main results.

22.2 The XY Model

In general the XY model describes a system of N pairwise interacting units. At each
unit i is assigned a real number 6;, called the spin of i. In the following, we will
consider the XY model from the point of view of Hamiltonian dynamical systems
by adding a kinetic energy term to the XY Hamiltonian. The total Hamiltonian H
takes hence the form:

2
sz%—i-

i=1

N|k‘

N
p > (1= cos®; —6))). (22.1)
i,j=1
Because of the periodicity of the cosine function in the Eq. (22.1), the phase space
for 6; is restricted to the interval (—m, w]. We associate to each spin i a canonical
momentum p; whose coupled dynamics with the {6;} will be given by the set of
Hamilton equations:

(22.2)
pi = —% = —%(Zj €i,jcos0;sing; — Y € jsinf;cost;).

The coupling constant J in Egs. (22.1)—(22.2) is chosen positive in order to ob-
tain a ferromagnetic behaviour and in the following it will be set at 1 without loss
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of generality. We encode the information about the links connecting the units in the
adjacency matrix €; ;.

(22.3)
0 otherwise.

{1 if i, j are connected
€}, j=

By construction, €; ; is a symmetric matrix with null trace since we do not consider
directed links. The system possesses two constants of motion preserved by the dy-
namics: the energy H = E and the total angular momentum P = ) _; p; which are
set by the initial conditions. We chose to start the system with a Gaussian distribu-
tion for both for the spins and the momenta. The numerical integration of Eq. (22.2)
is performed using a symplectic integrator [7], which ensures the conservation of
the momenta E and P and the symplectic structure. The thermodynamic quantities
are hence calculated averaging over time and over different network realisations.
The key quantity of our study is the order parameter M = (m, m,):

M :mx %Z/ cos(6;)
my =+ > sin(@)).

A well known limit of this model is recovered when the spins are fully coupled, the
Hamiltonian Mean Field (HMF) model. It will be our paradigm of confrontation
investigating the behaviour of the magnetisation M in Eq. (22.4) since the HMF
model displays a second order phase transition of the order parameter M . This tran-
sition has been widely studied, both numerically and analytically, and in this work
we aim to understand if it also arises when the topology of the spins connections
becomes non trivial. In fact, in one and two dimensions the Mermin-Wagner the-
orem predicts that the XY model with only local interactions should not possess
long-range order at any finite temperature. But including more and more long-range
interactions in the XY model we argue that it leads to true long-range order since
we are approaching the mean field regime. In the following section, we address this
issue investigating the transition in the XY model from short-range to long-range
interactions as the number of connections is increased.

(22.4)

22.3 Regular Lattice Topology

We introduce the dilution y as our parameter of interest to shift continuously from
the short-range to the long-range regime. It is defined as follows [8]:

 log(Ny)
"= Togv)

where N is the total number of links and y € (1, 2]. Hence the configuration corre-
sponding to the case y = 1 is the linear chain with only nearest neighbours coupling



148 S. De Nigris and X. Leoncini

and, on the other hand, y = 2 corresponds to the full coupling of the spins, the HMF
case. In Eq. (22.1) the normalisation constant k corresponds to the number of links
per unit, called the degree, and it is imposed by y:

227Y(N = 1)
po 2 TINZDY

~ (22.5)

The prefactor 22=Y accounts for the case of a linear chain (y = 1) in which we set
2 links per unit. We construct this way a lattice in which each spin is connected
to k/2 neighbours on each side and the width of this neighbourhood is imposed
by our choice of the dilution. Having set the structure of the lattice, we performed
simulations in the microcanonical ensemble and we studied the evolution of the total
equilibrium magnetisation (M) (Eq. (22.4)) where (...) denotes the time average
and M = |[M]|. We first concentrated on low dilution values (y < 1.5) : as expected,
the system doesn’t show a phase transition of the order parameter since low dilution
implies the existence of just short range interactions. In Fig. 22.1 the magnetisation
vanishes with the system size, so that in the thermodynamic limit we expect the
residual magnetisation to be zero. Nevertheless, quasi-long-range order could still
arise at finite temperatures like in the 2D XY model which displays the Kosterlitz-
Thouless phase transition [9]. This particular phase transition is characterized by
the change in behaviour of the correlation function, which decays as a power law at
low temperatures and exponentially in the high temperature phase. Hence to test the
eventual presence of a K-T transition, we consider the correlation function:

N
. 1
c(j) = I E ] cos(f; — Oy jNT)- (22.6)
1=

At equilibrium, the correlation decays exponentially fast (Fig. 22.1) at any temper-
ature in the physical range, confirming the absence of the aforementioned phase
transition. For those values of y, we can conclude that the number of links is still
too low to entail a change in the 1-D behaviour. Symmetrically, the other impor-
tant limit to consider is y > 1.5 when we approach the full coupling of the spins.
As shown in Fig. 22.2, the mean field transition of the order parameter is recov-
ered in this dilution regime: it is worth stressing here that we recover the mean field
result even for y significantly lower than 2, e.g. for y = 1.6, implying that global
coherence is still reachable with a weaker condition than the full coupling.

In both cases, y — 1 and y — 2, the variance of the magnetisation (0% = ((M—
(M))?) has the expected linear scaling with the system size, ensuring the reaching
of equilibrium in our simulations.

The transition between the 1-D behaviour and the mean field phase appears to be
critical for y, = 1.5: for low energies 0.45 < E < 0.75 the magnetisation is affected
by important fluctuations and it does not reach the equilibrium state (Fig. 22.3)
on the timescales considered. Moreover the correlation function in Eq. (22.6) does
not prove helpful in characterizing this peculiar state: it acquires the exponential
behaviour only for energies higher than € = 0.7, while in the interesting interval
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of energies it is heavily affected by the fluctuations and it is impossible to properly
determine its behaviour. We observed these effects on several sizes from N = 2% up
to N = 2!3 and, when considering the scaling of (o) with the size (Fig. 22.3), it is
evident that the variance is not affected by the increasing system size. We argue that
at y = 1.5 the number of links is at its lowest value to allow the arising of long range
order: at the moment, a more complete characterization of this state is ongoing as
well as a theoretical effort to explain the particular nature of this dilution value.

22.4 Small World Network

The algorithm chosen to produce networks is issued from the seminal paper of Watts
and Strogatz [4] and it acts on a regular network rewiring randomly the links. In
practice we start from the previous regular lattice in which each vertex is connected
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to his k neighbours and according to a fixed probability p each link is either left
untouched either it is rewired. Hence we have a parameter, the probability p, to
tune the level of rewiring: for low p values, the network is almost regular; on the
other hand, for high p values, almost all the links are rewired and the network is
random. With this parameter p, we can pass continuously between these two limit
cases. Depending on the system size, a parameter region can be found in which
the network has high connectivity and little average distance, being a Small World
network. In order to quantify this interval of interest, we define two parameters, the
average path length and the connectivity. The first is related to the “Small World
effect” itself, i.e. the property of some networks to have a logarithmic growth of the
average distance between two vertices (/) with the system size:

{1y ~ log(N). (22.7)

This scaling indicates that (/) grows slower than linear with the system size which,
on the contrary, is the behaviour of a regular network. This slow growth is the sig-
nature of shortcuts and, from the point of view of statistical physics, these shortcuts
can imply the emergence of global coherence, as we shall see later. We define (/) as:

1
0=~ Zl,-, (22.8)
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with /; being the longest path attached to the i vertex. To quantify these paths, since
the network lacks a metric, we count the number of edges between two vertices.
Starting for instance from the i vertex, we have that his neighbours are at distance
d =1, the neighbours of the neighbours are at d =2 and so on for the successive
generations of neighbours (Fig. 22.4). Finally, to ensure that the path taken is the
shortest possible, we impose to consider each vertex only once avoiding this way to
come back on links already explored. For the connectivity we have:

CZ%ZC,’,
]

where
€j

S 229
Tkitki — 1) (229

In Eq. (22.9), k; stands for the degree of the vertex i while e; is the number of
links existing between the k; neighbours of the vertex: the maximal number of cou-
ples between the neighbours is %ki (ki — 1) and we count how many of these trian-
gles effectively exist, e;. In practice the connectivity quantifies the average amount
of clustering per vertex and it is, by definition, a local parameter. We measured the
topological quantities C and (/) varying the rewiring parameter p and averaging on
different network realisations per each p value. As shown in Fig. 22.5, p changes
the topology of the network: for low p values, C and (/) are both high and we are
thus in the regular network region. On the other side, for high p values, the network
has low values of C and (I) since it is completely random. In the intermediate zone
the network is a Small World one, having high connectivity and low average path
length. This region varies with the system size since it is delimited by the fall of the
average path length which is a global parameter. Figure 22.5 provides thus a “map”
indicating when the network is in the Small World regime. Using this knowledge,
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Fig. 22.6 Phase transition of the magnetisation for y = 1.25 and p = 0.001 (a), p = 0.005 (b),
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we were able to investigate the XY model on this particular topology as we aimed
to highlight the interplay between the progressive introduction of rewiring and the
emergence of long range order. Consequently we took y = 1.25 for the dilution:
in this case the regular network does not show a phase transition as discussed in
Sect. 22.3 and, on the other hand, it has been shown that for random networks the
mean field transition is recovered at any value of y in the thermodynamic limit [8].
In between, in the Small World regime, the presence of the transition is strongly
dependent on the system size and on p (Fig. 22.6). The reason for this behaviour is
encoded in Fig. 22.5: the critical probability p. to have the breakdown of (/) scales
as 1/N and low values of (/) imply that enough shortcuts have been created to lead
a shift from the 1-D topology. Hence we expect that, in the thermodynamic limit,
pe — 0 with the increasing system size, as argued also in [10], but this limit proves
more and more numerically expensive and hence difficult to evaluate. In Fig. 22.6
we show the transition for three low values of probability p = 0.001, p = 0.005 and
for p =0.05.

We remark first that the lowest size considered N = 4096 does not show the mean
field transition implying that the probability is too low to produce enough shortcuts
for this particular system size. Moreover we observe a shift of the transition energy
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Fig. 22.7 Dependence of the 0.65
critical energy €. on the
rewiring probability p 0.6

0.55

log(p)

€. with p: from Fig. 22.7 we observe that the phase boundary in well described by
the form €. &~ C In(p). Our results appear hence in coherence with [11] and [10],
but in that case the simulations were performed in the canonical ensemble while we
deal with totally different dynamics since we use the microcanonical picture. This
difference in not negligible since ensemble equivalence, which exists for the HMF
model [12], cannot be taken for granted in long-range systems [13].

22.5 Conclusion

In this last section, we would like to resume the logical steps of our work and to give
a perspective of further developments. In Sect. 22.2, we first introduced our model
for the interaction, the XY model for rotors. We then recalled that a limit case of
our model (y = 2) is the Hamiltonian Mean Field (HMF) model and we stressed
the presence of a second order phase transition in the HMF which we retrieve, with
some differences, in the more general XY model on networks. In Sect. 22.3, we
first focused on the regular lattice topology in which we controlled the degree of
each spin via the dilution parameter . We showed to limit cases: the low dilution
regime, where the long-range order is absent, and the high dilution phase in which
the global coherence is recovered when the dilution overcomes the threshold of
y = 1.5. Interestingly, we highlighted that the phase transition is not a direct conse-
quence of the full coupling of the spins, like in the HMF model, but it can still arise
even for y = 1.6, quite far hence from the extremal configuration of y = 2. The
main result of Sect. 22.3 is the evidence of a non trivial behaviour when y = 1.5:
the important fluctuations affecting the order parameter and the invariance of these
effects on the system size in a whole interval of energies suggest the need of an en-
hanced analysis to characterize this state, probably with methods coming from the
field out-of-equilibrium critical phenomena. Section 22.4 is devoted to Small World
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networks with particular attention to their topological parameters, the connectivity
and the average path length. In this section we described operatively a model, the
Watts-Strogatz model, which via the rewiring probability p, allowed us to explore
the topologies of the three main configurations taken in account: random, regular
and Small World networks. Finally, we presented the numerical results of simula-
tions of the XY model on Small World networks with low dilution. We highlighted
the effect of the average path length / in giving the system global coherence: we ob-
serve the arising of phase transitions only in regimes of low / which imply the fun-
damental presence of shortcuts. These shortcuts are responsible for the efficiency
of information transmission throughout the network and they allow the emergence
of a collective behaviour in a 1-D network even surprisingly when the low dilution
would imply the absence of long-range order. This result indicates that it exists a
complex interplay between the number of links, given by y, and their distribution,
influenced by p, and this issue is object of ongoing investigations. Moreover a non
trivial effect induced by the rewiring gives the logarithmic scaling of the critical
energy with the probability p and the mechanism underneath this effect is, at our
knowledge, still unexplained.
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Chapter 23

Role Detection: Network Partitioning

and Optimal Model of the Lumped Markov
Chain

Maguy Trefois and Jean-Charles Delvenne

Abstract Nowadays, complex networks are present in many fields (social science,
chemistry, biology, ...) as they allow to model systems with interacting agents. In
many cases, the number of interacting agents is large (from hundreds to millions of
nodes). In order to get information about the functionality of the underlying system,
we are interested in studying the structure of the network. One way to do that is by
partitioning the network. In this paper, we present a method to detect a partition of
the network such that the dynamics of a random walker on the lumped network is a
good model of the dynamics of a random walker in the original network.

23.1 Introduction

Nowadays, complex networks are present in many fields (social science, information
theory, chemistry, biology, computer science, ...) as they allow to model systems
with interacting agents. In many cases, the number of interacting agents is large
(from hundreds to millions of nodes). In order to get information about the func-
tionality of the underlying system, we are interested in studying the structure of
the network. One way to do that is by partitioning the network into communities
(many links within the clusters and few links between them). In the last decade, this
community detection problem has attracted many interest in research [1-3, 6, 8—
10, 12, 13].

In this paper, we present a method to detect a partition of the network such that
the dynamics of a random walker on the lumped network is a good model of the
dynamics of a random walker in the original network. In particular, our strategy
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allows to find the communities in a well clustered network, or to discover if the
network is multipartite. Moreover, in the case of a lumpable Markov chain, this
strategy provides the partition with respect to which the chain is lumpable [7].

23.2 The Partitioning Problem

Consider an undirected and unweighted network. The dynamics defined on the net-

work is the following: being at node i, the probability of jumping to node j is

20 ifk #£0

Pij = ! .
0 otherwise

where k; is the degree of node i and A is the adjacency matrix of the network. This
dynamical process is a Markov chain on the network.

We are interested in partitioning the network so that the dynamics defined on the
blocks is a good model of the dynamics in the original network. More precisely,

we look for a partition S = {Si, ..., S,} such that for any blocks S, S; and for any
nodes i, j € Sk,
Z Pim = Z Pjm- (231)
mes; mes;

Notice this partitioning problem exactly corresponds to the lumpability of the
Markov chain defined on the original network.

In general, the Markov chain defined on the network in not lumpable, which
means that there does not exist a relevant partition S having exactly property (23.1).
That is why we are interested in the most relevant partition whose dynamics on the
blocks is a good model of the dynamics in the original network. The blocks of this
partition will be called “roles” (this role definition differs from those proposed in
[4, 5, 11]). In next section, we present our strategy to find such a partition.

23.3 The Objective Function

In [7], E et al. suggest a method in order to partition the network as defined in pre-
vious section. However, in their method they have to fix in advance the number of
roles to detect. As this number is a priori unknown, this seems to be a big disadvan-
tage of their strategy. That is why we present another strategy in which the relevant
number of roles is provided by the method itself.

The role partition will be represented by a lumped network. The nodes of the
lumped network correspond to the different roles and the weight of the directed
edge from node n; to node n; in the lumped network represents the probability of
jumping from node ny to node n;.

Given a role partition S = {S1, ..., Sy} of the original network, the weight my;
of the edge from node n; to node n; in the corresponding lumped network is given
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by the arithmetic mean of the probabilities of jumping from a node of role S to any
node of role S;, that is

mid = e ZP(! Si)s

ieSk

where p(i, S)) =>_ jes; Pij 1s the probability of jumping from node i to any node
of role ;.

We would like to find a partition S = {Si, ..., S,} such that for any nodes i and
J belonging to a same block and for any block S;, the probabilities p(i, S;) and
p(j, Sy) are very similar, that is we would like to find a partition S which minimizes
the expression:

n .
Z Z (p(i, S) —mp)?
kl=1ieSg ISkl
However, the partition with only one block and the partition with the maximum
number of blocks (that is, any node of the original network is a block) are triv-
ial solutions. So, minimizing previous expression does not provide a relevant par-
tition. To deal with this problem, we compare the observed “variance” ey :=

: 2
D ies, W with its expected value E(ey;) in a null model (e.g., the Erdos-

Rényi model). Then, we compute the mean of these differences on all pairs of
blocks.
Consequently, we would like to find a partition minimizing the function:

1 n
FS={S1 S =— D en — Een).

k=1

Notice that the partition with only one block and the partition with the maximum
number of blocks are not trivial minimizers of f.
We will show the efficiency of this objective function through several examples.
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Chapter 24

Kinetic Limit of Dynamical Description

of Wave-Particle Self-consistent Interaction
in an Open Domain

Bruno Vieira Ribeiro and Yves Elskens

Abstract In a closed domain §2 of space, we consider a system of N particles
oN = (x1,v1, ..., XN, UN) interacting via a pair potential U. In this region, particles
also interact self-consistently with a wave Z = A exp(i¢). We consider injection of
particles in £2, so N varies in time.

Given initial data (Z¥(0),c(0)) and a boundary source/sink, the system
evolves according to a Hamiltonian dynamics to (ZN (1), o™ (¢)). In the limit of
infinitely many particles (kinetic limit), this generates a Vlasov-like kinetic equa-
tion for the distribution function f(x,v,#) coupled to an envelope equation for
Z(t) = Z*°(t). The solution (Z*°, f) exists and is unique for any initial data with
finite energy, provided that £2 has smooth enough boundaries.

Further, for any finite time ¢, given a sequence of initial data such that
o (0) - f(0) weakly and ZN(0) — Z(0) as N — oo, the states generated by
the Hamiltonian dynamics (ZV (¢), o™ (¢)) are such that limy_, oo (ZV (), o™ (1)) =

(Z2(@), f(x,v,0).

24.1 Introduction

With the development of theories for the dynamics of wave-particle interaction, the
N-body Hamiltonian description of plasma systems (and alikes) has often been
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used alongside the well known Vlasovian model. Major developments have been
achieved in the study of the agreement between these descriptions in the N — oo
limit, in which the dynamics formally reduces to the kinetic theory. More precisely,
for long-range forces, and mean-field particle-particle interactions in the absence of
waves, it has been shown that the N — oo limit commutes with the time evolution
of the system, see [1, 2]. For the wave-particle interaction case, Firpo and Elskens
[3] have shown that the mean-field methods are also applicable and have proven the
equivalence of descriptions. Similar techniques also apply when the field obeys a
wave equation, see [4].

So far, these works assume periodic boundary conditions on an infinite domain.
Our goal is to consider open systems with finite extension, which can account for
injection of particles and reveal the possible importance of boundary terms, and
study their kinetic limit. We start with an open system of particles interacting via a
pair-wise smooth potential. In this case, the potential is assumed to be twice differ-
entiable and bounded, the potential vanishes outside the interaction region defining
the finite open system, outside which the particles are free. The injection of parti-
cles is accounted for by giving “fake” initial data outside the interaction region of
space. Moreover, particles are coupled to wave-like degrees of freedom, much as a
wavefield.

24.2 Dynamics

Consider a one-dimensional system of particles interacting via a pair potential in
a closed region defined by position coordinates x € §2 = [0, L]. Inside this region,
particles also interact with waves with given natural frequencies wp;, wave num-
bers k;, phases 6; and intensities /;.

The Hamlltoman describing thls system is given by

P
Hx, p, X, Y)—Z r +ZH0,(X,,Y )+& > U (xr. x)R(x)R(x])
r, r
+eZk; B (Y;sinkjx, — X cosk;x,)R(x,), (24.1)
r’j
where (x,, p,) are the canonical position and momentum of the rth particle and

(X, Y;) are canonical variables for the Cartesian components of the complex
mode, which is related to the intensity-phase components of the wave by

Z;j=X;+i¥; = 21;e7"%. (24.2)

This Hamiltonian is a modification of that of [5], plus a particle-particle inter-
action term as that of [2], limited to the region where R(x) > 0. ¢ and &’ are cou-
pling constants chosen to avoid divergences in the N — oo limit (in this limit, we
expect &’ N = 1, for example). The first two terms of Eq. (24.1) correspond, respec-
tively, to free particles and free waves, and the last term corresponds to wave-particle
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coupling in £2. The third term accounts for the particle-particle interaction, with a
pair potential U bounded, Lipschitz continuous, and symmetrical w.r.t. its two ar-
guments. As we consider all interactions to take place only in £2, we introduce the
function R in the Hamiltonian. It is a Lipschitz continuous function with value 0 for
all x €]—o0, —6[ and x € ]L + §, oo[, and value 1 for x € [§, L — §], for a given
small positive constant §. Therefore, outside £2, the Hamiltonian just expresses free
motion of particles and waves.
The dynamical equations of motion for the system are

i =pr | (24.3)
Pr=Rx,) ep;3(Z;e"i) Ze 3y, U (xr, X[ ) R(x,) R (x])
i

+ Zsﬂ,k;lm(zje“‘ﬂf)ax,R(x,)
j

— > &'U(xr, x]) 0, R(x,)R(x)) (24.4)

7!

Zj=—iwy; Zj + Zsﬁ, —ikjxr R (x,), (24.5)

where we use for Hp; a harmonic oscillator term

X2 + Y2
Hoj = Za)o ; ) (24.6)

We now introduce the velocity v, = p, as all particles have unit mass. We introduce
wave envelopes

aj(t)y=C7'Z;(t)e ™", (24.7)
with an appropriate constant C. For simplicity, here, we work with only one mode,
dropping the subscript j, and let ﬂ} =¢B;C and . Then,

X =y, (24.8)
0 = R(x) 'S (ae™ 70) = " ¢'a, U (x,. x]) R(xr) R(x])

r/

/
+ e%m (ae®r =00 g, R(x,) — > €U (xy, x)) 0, R(x,)R(x]) (24.9)

7!

c2k Z e ke Hwol py . (24.10)

The positions and velocities of particles determine an empirical sum o ® of point
measures on I" = 2 x R space,

R vy =0 8(x —x(0)5(v — v () R(x,), (24.11)

counting particles in I". The prefactor 5 is chosen as to keep a finite mass in the
kinetic limit N — oo.
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The space I" is equipped with the distance
[(x,v) = (X", V)| = e(lx = x|+ tlv = V'), (24.12)
where o~ ! and 7 are, respectively, length and time scales. In the mode space, Z, we
use the distance
la—d'||=¢la—adl, (24.13)

with a real positive coefficient ¢ .

24.3 Kinetic Limit

The kinetic limit we are interested in corresponds to the sequence of point measures
o® converging to a continuous measure o, defined by a positive density f(x, v, )
in I", where the density f is a (weak) solution of the Vlasov-like system, dual to

(24.8)~(24.10), given by

% f +vif+F[fald,f=0 (24.14)
a=F / f(x, v, e RO R () dxdv, (24.15)
Ck Jr
with the force field
F(x,v,1) = R(x)(ﬂ’s(a(t)eikxiwof) - e// BXU(x,x’)R(x’)df/>
r
+ 0, R(x) <%?ﬁ(a(l)eikx—i"’°’)
_8// U(x,x/)R(x/)df/), (24.16)
r
where
df'= f(x', v, t)dx'dv’. (24.17)

We want to account for particles being injected in £2. So, beside the mass mea-
sure o (or o®), we introduce a boundary flux measure v, in (¢, v) space, that counts
particles being injected in §2 through x; = —§ or xo = L + §. Thus, ultimately, we
have two types of trajectories to account for: (a) that of particles with initial condi-
tions in I” which remain in I"; and (b) that of particles with initial conditions outside
I" which are injected into I” at a finite time (note that we are not interested in parti-
cles after they leave I', nor in those that do not enter it in a finite time).l Therefore,
the evolution of trajectories in one-particle (x, v) space is governed by a flow T as
follows. For case (a)

@  (x0),vr () = T 5 (xr (), v (), (24.18)

'We are relying on the assumption that particles never re-enter £2 once they leave, which is rea-
sonable because the force vanishes outside I".



24 Open Domain Wave-Particle Interaction 163

describing particles that evolve from a time s to time ¢ inside I". And, for case (b)

) (0@ 0, (0) = T[T, (1 = v ) (s = 1), 0, )]. (24.19)

describing injected particles that, at some time ¢’ < s, were outside I" a distance
|v,(s)¢t'| from the boundary, where 79 is the free motion map. Clearly, T; ; depends
on the wave envelope and particle distribution history during [s, ¢].

By duality, any measure p; of the system is transported by the flow as

= (s +v.0TS) o Ty [a ), ], (24.20)

where we recall the proper parameters in the flow T'.
Let M be the space of positive measures  on I and N, be the space of
positive boundary flow measures v. In these spaces, define the distance

drjo,r1(p. w's v, v') = sup /1* ¢ (x,v)d(u— ') (x, )

¢peD

2
+ Z /A R(x)qb(xl —t, v)d(v, — \/) (t/, v)
=1

+ sup / R (x,v)d(pw— ) (x,v)|  (24.21)
¢eDIJ T}
D={¢lp e Cp' (R x R); lIllu < 1}, (24.22)

where CS’I(R x R) stands for the space of bounded, Lipschitz continuous func-
tions on R x R and | - [lu. = max{|| - |y, ALip(-)}, with a scaling constant 1. We
decompose the space I" into two regions I, U [,

Ie={(x,v):x €, dist(x,32) > §; ve R}, (24.23)
Is={(x,v) : dist(x,082) < §; v-n <0}, (24.24)

where n is the normal outward to £2. Finally, we also introduced the space
A={(',v):1'€[0,T]; v-n<0}. (24.25)

For any v, we may use the simpler expression dr (i, u') = dr,jo.71(is, /,L;; v, V).
Then, our distance in M4 x Z is given by

| (e, a@®) = (@' O) | =dr(pe, 17) + |la@) —a'@ . (24.26)

24.4 Results
Our main results are

Theorem 24.1 Let |0U| < By and |9, U (x,x") — 9, U(y, x)| < B2|x — y|, for pos-
itive and real constants By and B;. Given two different initial data (¢, a(0)) and
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(M6, a’'(0)) in My x Z, and same boundary fluxes, the kinetic evolution equations
generate, for any positive time t, unique states (i;,a(t)) and (u},a’(t)) from the
initial data, respectively. Furthermore, for any t > 0,

[(r.00) - (5.4 D) = '] (10.00) — (. )| @427

for a strictly positive constant §.

Theorem 24.2 Given a continuous measure oo € M and a sequence of point mea-
sures UORN € M defining the initial distribution of N particles in (x, v) space, such
that imy oo dr (GORN, 00) =0, and given an initial wave envelope a(0) € Z, for all
times 0 <t < T consider the resulting measure and envelope (Utlf\,, ak®) gener-

ated by H and the kinetic solution (o; = f(x, v, t)dxdv,a(t)) of (24.14)—(24.15).
Then, limy oo dr (0, 0) =0 and limy o0 aX (1) = a(t).

The theorems are proven by standard arguments (see [6]).
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Chapter 25

The Emergence of Pathological Constructors
when Implementing the Von Neumann
Architecture for Self-reproduction in Tierra

Declan Baugh and Barry Mc Mullin

Abstract John von Neumann’s architecture for genetic reproduction provides an
explanation in principle for how arbitrarily complex machines can construct other
(“offspring”) machines of equal or even greater complexity. We designed a von Neu-
mann style self-reproducing ancestor within the framework of the Tierra platform,
which implements a (mutable) genotype-phenotype mapping during reproduction.
However, we have consistently observed a particular phenomenon where what we
call pathological constructors quickly emerge, which ultimately lead to catastrophic
ecosystem collapse. Pathological constructors are creatures which rapidly construct
multiple short malfunctioning offspring within their lifetime. Pathological construc-
tors are a hindrance to an ecosystem because their offspring, although sterile, still
occupy both memory space and CPU time. When several pathological construc-
tors coincide in time, their production rate can be so high that their non-functional
offspring displace the entire population of functional self-reproducing creatures, re-
sulting in ecosystem collapse. We investigate the origin of pathological constructors,
and consider how a more mutational robust architecture which is less susceptible to
the emergence of these creatures can be created.

Keywords Von Neumann - Genetic reproduction - Tierra - Artificial life -
Genotype-phenotype mapping - Evolutionary growth of complexity - Pathological
constructors

25.1 Introduction

As early as 1948, John von Neumann had formulated his theory of the evolution-
ary growth of machine complexity [1, 2]. This theory provides a proof-of-principle
demonstration that machines can directly, or indirectly, give rise to machines arbi-
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trarily more complex than themselves. This machine architecture is comprised of
two specific parts, the phenotype and the genotype.

The phenotype is the functional, active section of the machine, and the genotype
is the passive section, dedicated to information storage. For genetic reproduction,
under some arbitrary genotype-phenotype mapping the genotype must contain an
encoded description of the phenotype. Conversely, the phenotype must include the
functionality to both decode the genotype and construct an offspring phenotype.

Previous work with evolutionary systems where the agents are responsible for
their own self reproduction has been based exclusively on machine architectures
which reproduce via template-reproduction, where there is no division of labour
between genotype and phenotype. In this case, self reproduction is performed by self
inspection, and no explicit mutable genotype-phenotype mapping is implemented.

Within the platform of Tierra, we designed an ancestor that reproduces via ge-
netic reproduction. More importantly, this design implemented a mutable genotype-
phenotype mapping as described by the von Neumann architecture, where the ar-
bitrary mapping between genotype and phenotype is subject to heritable mutations.
We aim to explore if alternative, viable mutational pathways are introduced while
implementing this architecture. However, during implementation within the Tierra
platform, several unanticipated phenomena emerged, which are examined and doc-
umented here.

25.2 Implementation of the von Neumann Architecture for
Machine Self-reproduction Within Tierra

Classically, the reproductive mechanism of Tierran creatures rely on self-copying,'
which involves the creatures activating a reproduction mechanism which incremen-
tally copies the contents of each memory location of the parent creature to an avail-
able space in memory which will become the offspring. There is no distinction be-
tween phenotype and genotype for a self-copying creature as the entire creature acts
as both the template for replication, and the implementation of the reproduction
cycle and all other functionality.

In order to achieve von Neumann style reproduction we must first devise a
method of mapping inert numbers within the genotype to active instructions to be
executed within the phenotype. There exists an infinite number of possible map-
pings which we could implement, however, we chose to implement ours via the
inclusion of a look-up table. The look-up table provides a method of translating the
inert numbers within the memory locations of a parent genotype to functional in-
structions which can be executed as part of the offspring phenotype. For this partic-
ular genotype-phenotype mapping we chose a 1:1 mapping where a single number
within the genotype is translated to a single instruction within the phenotype, there-
fore, the look-up table consists of 32 memory locations, each containing a value

! Analogous to RNA template replication.
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which corresponds to an instruction within the Tierran instruction set. The look-up
table of the seed ancestor will therefore represent a random permutation of the all
possible instructions.

Prior to reproduction, this seed creature must first allocate space for an offspring.
During constructing of an offspring phenotype, the parents Ax register incremen-
tally steps through each memory location within its genotype, and the number stored
at each address is inspected. A second register, Bx which initially points to the start
of the look-up table, is displaced by the number which was inspected by Ax. The
number within the updated Bx memory location (which lies within the look-up ta-
ble), is now written to the offspring phenotype, where it will subsequently function
as an instruction. This activity facilitates the mapping of numbers which are stored
within the parent genotype, to instructions incorporated in the offspring phenotype.
Furthermore, random perturbations within the look-up table facilitate the alteration
of the genotype-phenotype mapping. This may have the effect of introducing new
mutational pathways for the creature, which was not possible under the previously
unaltered look-up table.

Upon construction of the offspring phenotype, the parent’s genotype is incremen-
tally copied to the offspring space and the connection between parent and offspring
is severed. At this point, the parent loses write access to the offspring’s memory
block, and a new CPU is created and allocated to the offspring. While copying the
genotype, should a random perturbation occur which affects the encoded description
of the look-up table (or otherwise modify the decoding process), then the creature’s
offspring will incorporate a mutated genotype-phenotype mapping. This is the par-
ticular phenomenon which we initially set out to investigate.

25.3 The Emergence of Pathological Constructors from Genetic
Reproducers

When all random perturbations are disabled our seed creature reproduces effec-
tively and populates the memory to form a stable ecosystem of identical creatures.
However, when all random perturbations are switched on we immediately see a
large emergence of pathological constructors which saturate available CPU time
and memory space. Under a series of simulations where each source of random per-
turbation was individually disabled, the disabling of the segment deletions showed
an apparent prevention against the emergence of pathological constructors. When a
large segment deletion occurs while copying the genotype from parent to offspring,
the resultant creature will typically consist of a functional phenotype, assigned to
a partial genotype. This creature continues to rapidly produce offspring, (due to
the short genotype), but these offspring are non-functional as they consist of a cor-
rupt phenotype, assigned to a corrupt genotype. When several such pathological
constructors coincide in time, their production rate can be so high that their non-
functional offspring displace the entire population of functional self reproducing
creatures, i.e., ecosystem collapse.
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For von Neumann style genetic reproducers, all random perturbations which cor-
rupt the genotype will result in a constructor which will create at least one functional
or non functional offspring. A genotype which experiences a segment deletion will
result in a pathological constructor which can construct many non-functional off-
spring before it is killed by the reaper.

This analysis concludes that the mechanism which results in ecosystem collapse
due to pathological constructors appears to depend critically on both the one gener-
ation delay from when a random perturbation occurs in a genotype and when it is
expressed in the phenotype, and the inclusion of segment deletions. The combina-
tion of these factors results in a high level of ease in which segment deletions can
lead to corrupt genotypes, while still leaving a functioning phenotype.

By contrast, in order for a pathological constructor to emerge from a self-copier,
relatively much more specific random perturbations must occur upon very spe-
cific locations which will alter, but not corrupt the reproductive functionality. This
suggests that the probability of emerging pathological constructors within a pop-
ulation of genetic-reproducers is much higher than that of a population of self-
copiers.

25.4 Conclusions and Future Work

The highlighted intricate properties of the von Neumann self reproducing automata,
implemented in Tierra suggest that this may not be mutationally robust architecture
to support genetic reproduction. A combination of the effects of the segment dele-
tions and the generation delay in expressing random perturbations contribute to the
abundant emergence of pathological constructors, hence increasing the ecosystem’s
susceptibility to catastrophic collapse.

It is worth noting that in the typical reproduction cycle of complex (multi-
cellular) biological organisms, most of the “decoding” of the genotype takes place
as development of the offspring, i.e., it is under the direction of the (embryonic)
offspring phenotype rather than the parental phenotype [3]. If we incorporate this
concept within the von Neumann architecture, where the offspring phenotype is de-
coded from the offspring genotype (as opposed to the parent genotype which is the
case with von Neumann’s architecture), then this design may not exhibit the one
generation delay from when a random perturbation occurs in a genotype, and when
it is expressed in the phenotype. A corrupt genotype will immediately be assigned
a corrupt phenotype, and hence will not reproduce. It seems likely that such an ar-
chitecture, implemented in Tierra, would be more evolutionary stable and much less
vulnerable to emergence of pathological constructors.
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Appendix

Source code to reproduce results in this paper can be accessed at: http://alife.rince.ie/
evosym/sab-2012-db.zip.
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Chapter 26

A Preferential Attachment Model for Efficient
Resources Selection in Distributed Computing
Environments

Maria Boton Fernandez, Francisco Prieto Castrillo,
and Miguel A. Vega-Rodriguez

Abstract In the last decade, Complex Network theory has been applied in many
disciplines to solve a wide range of problems. Most social, biological and techno-
logical networks are modelled as complex networks from their topology point of
view.

In this regard, an Efficient Resources Selection (ERS) model was proposed in a
previous work to solve the resources selection problem in grid environment (i.e. to
find a suitable resource set for grid applications). In this model, the infrastructure re-
sources are considered nodes of a complex network that evolves during application
execution. On the other hand, the edges represent the interaction between resources
during the tasks execution. Besides, within the selection process the Preferential
Attachment technique (Barabdsi and Réka, Science, 286(5439):509-512, 1999) is
applied to determine the most efficient resources. This efficiency parameter is cal-
culated using both resources degree and fitness values.

In the present contribution, a summary of this ERS model along with an analysis
of its relevance parameters is exposed. The obtained results are also discussed.

Keywords Complex systems - Self-adaptive applications - Grid computing -

Optimization

26.1 Introduction

In recent years, Grid computing [2, 3] has become a powerful environment enabling
researchers to execute massive computing applications. This is due to the fact that
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Fig. 26.1 Evolution of the
complex network built at —
runtime. The broken lines L/“\ '
represent new links
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Grid infrastructures are composed by an unlimited amount of heterogeneous re-
sources geographically dispersed.

This infrastructure has been applied successfully in a wide range of projects and
domains: for analyzing extraterrestrial intelligent signals for patterns, in the high
performance data mining services, in medical imaging applications, in high energy
physics experiments developed at CERN as well as in biological projects.

However, the heterogeneous and changing characteristics of Grid resources along
with the dynamic nature of such infrastructure lead to non-trivial task scheduling
limitations. Hence, a challenge topic of this type of infrastructure is the resources
selection, i.e., finding a suitable resource set for the application deployment. In a
previous work [4], we focused on solving this problem applying a complex network
algorithm known as Preferential Attachment [1], i.e., the most popular/efficient re-
sources are selected at every application execution cycle. In this regard, we estab-
lished the following rules:

— The infrastructure resources are considered nodes of a complex network built
during application deployment (Fig. 26.1).

— At every application execution cycle a resource set is selected to perform the
corresponding tasks set. This resource set composes a complete subgraph in the
complex network.

— The edges of the complex network represent the constraint executing tasks from
the same task set.

To accomplish this goal, an Efficient Resources Selection (ERS) model was pro-
posed. This optimization strategy is defined at the user level, which means that the
methodology to choose the grid resources applies only both basic grid concepts and
operations. In a grid infrastructure, users interact with elements through the User In-
terface (UI) by using certain command set. As it is shown in Fig. 26.2, users submit
their application tasks through the UI. These tasks are managed by the metasched-
uler called Resource Broker (RB) which sends them to a specific site (known in grid
terminology as Resources Centres). Then, tasks are finally handled by the Comput-
ing Element (CE) in the corresponding site. The worker nodes (WN) are the compute
nodes where tasks are executed.

Once the model was implemented, a test set was defined and a real grid was cho-
sen as testbed. From the obtained results we concluded that the proposed model ben-
efits grid applications improving infrastructure throughput. However, we consider
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Fig. 26.2 Representation of a basic grid infrastructure

that more insight into model behaviour is needed. For that reason, in the present
contribution we analyse the effects of the model relevance parameters in the appli-
cation execution.

26.2 Aim

1. Modelling the Grid Infrastructure as a Complex Network to select the most effi-
cient resources.

2. Provide a self-adaptive capability to Grid applications.

3. Determine the influence of the model relevance parameters in the application
behaviour.

26.3 Model Definition

The ERS model is based on the mapping between two spaces: a task space denoted
as J and a heterogeneous resource space R. As stated, the resources handled by
the model are the grid schedulers known as Computing Elements (CE). During the
application execution, the resources efficiency is continuously monitored. This way
we ensure that the best resources are used.

The proposed model is composed by three modules as shown in Fig. 26.3. All the
actions related to the efficient selection are encapsulated in the Intelligence Module;
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Fig. 26.3 Modules that
compose the proposed ERS
model
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the mathematical formulation composes the Mathematical Module and, finally, the
Management Module is responsible for preparing the environment and invoking the
other modules as needed.

The model execution flow has four main steps that are presented as follows.
Firstly, the space J is partitioned into equally sized task sets. Next, a resource set is
randomly chosen for the initial task set. These operations are encapsulated within
the Management Module. Once the tasks are executed, the corresponding efficiency
metrics for the involved resources are calculated (the Mathematical Modules is in-
voked). This performance information allows the model to classify the resources and
to select the best ones at every execution cycle. The way to choose these resources
is by invoking the Intelligence Module where the particular designed PA (described
in the following section) is implemented.

As a summary, the present strategy is modelled from the complex network per-
spective. The CEs are represented as nodes in a complex network which grows at
runtime. The task space is divided in several subsets, all of them with the same size.
At every application execution cycle a task subset is launched. The links between
nodes in our resulting network represent the constraint executing tasks for the same
subset.

26.4 Heterogeneous Preferential Attachment

As stated, the algorithm used in the Intelligence Module is inspired on the Preferen-
tial Attachment (PA) technique [1] for selecting the most popular resources at every
application execution cycle. The main idea of this technique is that new nodes in the
complex network will connect more likely with those which have a higher degree.
Since every resource (CE) is considered as a node, taking into account the PA
rules, each node has associated two parameters: the degree and the fitness. The fit-
ness Fi (Eq. (26.2)) indicates how the node has performed the tasks assigned to it.
Consequently, using both parameters (degree and fitness) it can be deter-
mined how efficient the resource has been. This new metric, denoted as efficiency
(Eq. (26.1)) will determine how new nodes will connect to the existing ones, i.e.,
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the efficiency E; determines the link probability. Hence, in this new PA version
additional node features are superposed to the link probability.

Ei(k, F) = (ki - F})/kmax, (26.1)

where kmax 1s the maximum degree value for a specific resources set, k; is the re-
source degree value and F; is the obtained fitness value of the resource.

The fitness F; of a particular resource is calculated by using the increment of the
processing time AT; (Eq. (26.3)) along with other three parameters: on one hand,
the percentage of successfully completed task €;. On the other hand, two relevance
parameters a and b specified by users. Thus, the users can decide the highest priority
condition for their specific needs.

AT, = (Tmax - Ti)/(Tmax - Tmin)~ (26~3)

The increment of processing time depends on maximum and minimum time val-
ues (Tmax and Ty respectively) for a specific resource set. Ti is the processing time
for a concrete resource and it is calculated as shown in Eq. (26.4).

T = Tcomm,- + Z Tcompjf (26.4)
JENT;

26.5 Analysis and Results

The tests were performed in a real grid infrastructure belonging to the Spanish Grid
Initiative (ES-NGI) project [5]. The emergence of such infrastructure is based on
the growing demand by scientists for more computational resources. In addition,
the ES-NGI proposal encourages collaboration and data sharing in the scientific
community.

In a previous work, a test set was designed to verify that the proposed model
performs an efficient selection. It must also be highlighted that two additional goals
were fixed during the model definition phase: to reduce the application execution
time and to increase the successfully completed tasks rate. For that reason, the pro-
posed strategy is compared with the traditional or standard resources selection in
grid environment (based on a process called match-making in which the RB chooses
among all available CEs those with a higher rank that fulfill the task requirements).

In those preliminary tests, relevance parameters values a and b were fixed at 60 %
and 40 % respectively. Although these values are specified by users we decided to
begin with slightly higher importance to tasks rate, because we suppose this is an
important issue for scientists. From the obtained results we concluded that the model
performs well and reaches the established goals with this pair of values.

However, in the present contribution we consider to analyse how the model be-
haves for the possible pair of values. These results would be useful for a deeper
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understanding of the model behaviour. Furthermore, researchers may use this infor-
mation to decide how to specify their experiments by using our strategy.

For this evaluation, we have chosen the six most significant pairs of values within
the range of possibilities. By observing the results it can be deduced that the model
performs well with a remarkable exception; the overall application execution is
higher for the pair of values were execution time has a minimal relevance. More-
over, it is interesting that is in these two cases where the model reaches the worst
rate of successful completed tasks. In conclusion, the ERS model based on the PA
technique is a favourable strategy for grid application deployment.

26.6 Summary

The resources selection problem and the application adaptation in Grid infrastruc-
tures have been investigated. Furthermore, an efficient resources selection model
was proposed in a previous work by monitoring the resources efficiency.

Based on the data obtained in a previous work, we analyse the influence of the
relevance parameters in the grid applications deployment for a further knowledge of
the model behaviour.

From the exposed results it is possible conclude that the ERS-PA version gets a
good time reduction and an appropriate task rate in the different tests. The values of
this pair of parameters do not have a significant influence in the model performance.

In conclusion, the proposed approach is beneficial for scientific applications in
Grid environments.
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Chapter 27
The Challenge of Software Complexity

Kevin Moore and Michel Wermelinger

Abstract Given the interdisciplinary nature of complex network studies, there is
a practical need for dialogue between theorists proposing graph measurements
and those seeking to apply them into a domain. We consider this in the domain
of software complexity by highlighting the distinctive nature of networks repre-
senting software’s internal structure and also by describing the application of one
such proposal, the offdiagonal complexity, against two examples of software. The
results showed the promise of using complex networks to measure software com-
plexity but also demonstrated the confounding effects of size. Based on that ap-
plication we make proposals to improve the dialogue between theory and experi-
ment.

Keywords Software complexity - Software evolution - Graph theory - Software
metrics - Offdiagonal

27.1 Importance and Properties

Today’s society is heavily dependant on software. It runs our computers, our phones
and the internet, while managing economies and communications. This pervasive-
ness means that any improvement in understanding software has a potentially enor-
mous payback from better project management, control of costs and increased qual-
ity. Past practice of software development could be seen as a chimera of art-form
and engineering with success or failure in projects seemingly dependent on anec-
dotal wisdoms. While a comprehensive theoretical framework seems elusive, cur-
rent practice has become increasingly evidence-based and draws from a wide range
of disciplines such as psychology, sociology, data-mining and complexity theo-
ries.
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That software is complex is also largely self-evident. Brooks [8] (of “The Myth-
ical Man-Month” fame) argues that complexity is one of the fundamental essences
associated with software. As such, understanding this inherent property would make
great inroads into understanding software overall.

While there are several viewpoints into software such as its cognitive, compu-
tational, problem or solution complexity [9], this paper focuses on the structural
complexity of the code, arguing that it provides the most direct understanding of the
product.

27.1.1 Software as a Complex Network

The variety of coding languages, styles and paradigms makes processing and quan-
tifying code hard to generalise. One solution is to abstract the code into a network
graph, with vertices representing a chosen unit of code and edges representing an
arbitrary relationship between those units. By representing the interconnections be-
tween collaborating modules, objects, classes, methods, and subroutines with a net-
work graph, software becomes another domain capable of investigation with the
interdisciplinary toolset of complex networks.

The basic technique is well established [20, 28] and while more recent develop-
ments have for instance considered graphing the entire socio-technical system [7],
obtaining a measurement that represents the complexity of source code’s basic struc-
ture and that can be connected to software development practice remains desirable.

27.1.2 Software as a Typical Network

Software networks appear as typical complex networks exhibiting both small-world
behaviour and having a long and fat-tailed degree distribution obeying a power law.
If they are constructed as directed graphs, the degree distributions of the inward and
outward links differ, with the exponent for incoming edges being less than that of
the outgoing and showing a better fit to the power law [12, 18, 23, 28].

Solé and Valverde [24] identify software networks as heterogeneous, scale-free
and with some modular structure; a characterisation that also includes a wide range
of biological and technical systems. Based on earlier work [27] they suggest this
commonality is due to such systems being shaped through a processes of optimisa-
tion, a suggestion that reflects software development well. Technical and biological
networks are typically disassortative, i.e. vertices with a high degree preferentially
attach to those with low degree, as opposed to social networks which typically show
assortative mixing [22]. Perhaps unsurprisingly, software networks have been em-
pirically confirmed as disassortative [15, 24].

Software networks can therefore be recognised as typical examples of complex
graphs, but some atypical aspects of software create distinctive challenges and op-
portunities.
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Table 27.1 Example sizes of

real-world networks with Network Nodes
software networks in bold
Les Miserables character co-appearance 77
American football games 115
Tomcat 4.1.40° 181
C. elegans neural net 302
Netbeans 6.8* 1532
S. cerevisiae protein-protein interaction 1870
Tomecat 4.1.40° 2699
Netbeans 6.8° 14378
AS internet topology 22963
4Nodes represent packages
BEA Weblogic 8.1 middleware platform® 80095

PNodes represent classes

27.1.3 Software as an Atypical Network

Software networks demonstrate a wide variation of size, reflecting the range of avail-
able software from small tools to major applications, but are often large in compar-
ison with other networks commonly used in complexity research [18, 19, 21] as
shown in Table 27.1.

The same software network can be considered at different resolutions, i.e. by
considering different code units as vertices. For example, in code written in Java,
a popular programming language, one can consider classes (which group related
functions) and packages (which group related classes). While any scale-free network
could be considered in the same way, in software these two ‘granularity levels’ (or
equivalent ones for other programming languages) are particularly significant and
represent meaningful and deliberate constructs to software developers. It is possible
that the complexity of software networks behaves differently at different resolutions
while remaining the same coherent network.

Software evolves through multiple versions as the code is modified in response
to fault fixing and feature requests, but also as a result of refactoring activity. This
activity occurs when developers attempt to rework the code structure while preserv-
ing functionality. While refactoring is tricky to isolate from other coding activity,
this offers a network that has been changed, hopefully simplified, and yet remains
functionally the same. Software networks can also evolve by widespread deletion,
as functionality is split out of the main product in a sort of software cell division’.
The reverse can also happen as existing external products are absorbed wholesale.
Even under more routine development it is uncertain what growth models are being
applied; as a designed product it is clearly neither stochastic nor perfectly determin-
istic. The earlier suggestion that an optimisation process is at work seems likely, but
it is unclear exactly what developers are optimising for.
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Despite this apparent chaos, the evolution of software size is well described with
an inverse square model that results in a decaying growth curve. In this model S; is
the size of version ¢ and E is a model parameter [26]:

S =S—1+ E/(Si—1)> (27.1)

The evolution of software complexity is not as well described, although it is argued
that complexity will increase as software evolves [17]. Directly measuring software
complexity by measuring its representation as a complex network firstly requires
identifying a proposed measure and then applying it to example software.

27.2 Experiments
27.2.1 Offdiagonal Complexity

Proposed by J.C. Claussen [10] following earlier discussions and preprints, this
measure is capable of distinguishing complex networks from those with a regu-
lar or random structure. Its basis is the observation that for complex networks the
values in a node-node degree correlation matrix are more evenly spread along the
offdiagonals. Such correlations between the degrees of pairs of nodes allows the
construction of an approximative complexity estimator from the entropy of the nor-
malised distribution.

We computed the offdiagonal complexity (OdC) of two medium-sized software
networks through their evolution [19]. This required the development of software
implementing OdC, a process that encountered practical difficulties such as inter-
preting the mathematical notations, which appeared to vary between the original and
citing authors, limited examples and apparent errors in the examples given. While
these issues were neither insurmountable nor unexpected they did cause uncertainty
in validating the software implementation.

Two major free and open source software projects, the integrated development
environment Netbeans [4] and the Apache webserver component Tomcat [1], were
used as datasets. The available stable releases of each software project were con-
verted into network graphs and their OdC values taken alongside established size
measures, such as the number of Java classes, using a custom toolset christened net-
Metric [5]. For each release two network graphs were created, giving views of the
software at different granularities: one to represent the dependencies between Java
packages (referred to as ‘p2p’) and another to represent dependencies between Java
classes (‘c2¢’ and considered the more detailed).

Netbeans showed nearly a fourfold increase in size, supporting previous under-
standings of software evolution such as Lehman’s 6th law of continuing growth [17].
However the evolution of OdC behaved differently, challenging Lehman’s 2nd law
of increasing complexity.

The change of OdC behaviour after release 5.5.1 appears to be due to the removal
of the Java Enterprise Edition (J2EE) functionality into a separate product and sug-
gests that removal allowed the product to continue growing in size significantly
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Fig. 27.1 Netbeans size and OdC evolution for packages named org.netbeans.* and their classes

without comparable OdC increases. The releases studied were the major stable ver-
sions (and not for instance the developers’ in-progress snapshots) which can be
categorised as ‘new’ or ‘maintenance’ releases. As can be seen in Figure 27.1, there
is no discernible difference between new releases and their corresponding mainte-
nance releases (e.g. 5.5 and 5.5.1). Normally, maintenance releases correct defects
of the previous release by changing the code within code units instead of changing
the software’s higher-level structure.

A similar pattern of ‘punctuated equilibrium’, in which sharp changes are fol-
lowed by a stable period, has been observed in the evolution of other systems, e.g.
in Eclipse [30] (a similar product to Netbeans). The most drastic change was ob-
served when the Rich Client Platform was added, causing a major restructuring of
Eclipse’s software architecture.

The major versions of Tomcat showed far less distinctive evolution in either size
or OdC. This is understandable as a consequence of Tomcat implementing a fixed
specification meaning that beyond defect fixes the software changes little.

As well as measuring the entire software system, selected subsystems were in-
vestigated in the same manner. In Netbeans, each subsystem demonstrated its own
evolutionary pattern for both size and OdC in agreement with other works show-
ing that software evolution proceeds differently in different areas of the codebase
[14, 16]. Tomcat again showed little evolution within subsystems. These observa-
tions on software networks suggest that growth and perhaps system complexity arise
from localised changes in the network.

Offdiagonal complexity was shown to be realistically computable and to show in-
formative behaviour as the software evolved through its releases. However a strong
correlation with size (Pearson’s r = 0.86) limits its usefulness in evaluating software
complexity since size is easier and quicker to measure. However, with refinement,
the use of degree correlations in an entropy measure could still provide a measure-
ment distinct from size. Claussen [11] offers the “full OdC” as a way of comparing
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networks of different size, and Anastasiadis et al. [6] replaced the Boltzman-Gibbs
entropy in OdC with the generalised Tsallis, and suggested that changing the param-
eter involved in Tsallis’ entropy could make OdC sensitive to particular structures.
Unfortunately there was no suggestion as to what those structures might be. Build-
ing the correlation matrix using the idea of a remaining degree distribution a la
Newman [22] might also improve sensitivity to structural complexity.

As a way of examining its null-model behaviour, we also computed the OdC on
synthetic Barabdasi-Albert and Erd6s-Rényi graphs, observing a rapidly decreasing
sensitivity as the number of vertices increased, see Fig. 27.2. This suggests that the
OdC is most useful for smaller graphs with less than ~300 vertices. These scaling
properties demonstrate that measures that appear promising when applied to graphs
with tens of vertices lose their practicality applied to the typically much larger soft-
ware networks. Indeed it suggests that OdC is reflecting a complexity arising from
size and not just from structure. This confounding effect of size when measuring
complexity is a significant practical issue.

27.2.2 Practical Issues

Based on the experience with OdC we make several suggestions for proposed graph
measurements that would be helpful for experimentalists, e.g. software engineering
researchers like us, interested in complexity metrics.

— The scaling properties should be described. Ideally a proposal should be insen-
sitive to size, but a linear or monotonic relationship with size would still be of
practical use since software size can be measured and thus accounted for.

— Describing the computability of the metric with a ‘big O’ notation would allow an
assessment of practicality. The availability of this was instrumental in choosing
to experiment with OdC.

— Providing a reference algorithm in any coding language, including pseudo-code,
could improve understanding, especially for non-mathematicians.

— Offering downloadable example networks with correct values published would
help in verifying software implementations.
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— A discussion on how the proposal behaves (if at all) against network properties
such as diameter or average degree, and what type of network it is relevant for,
would help in assessing its suitability to measure software networks. A proposal
that for instance focused on polytrees would be unsuitable since they don’t repre-
sent software networks.

— Any suggestions as to what structural features it may be sensitive to would also
support the assessment of usefulness.

Ideally this information could be curated into a repository allowing the easy se-
lection of proposals for experiment. While admittedly creating more work for the
theorists, the advantage is the increased visibility of their proposal with a faster take
up and feedback against real world networks. The nature and form of that feedback
should be suggested by theorists as part of establishing a dialogue between theorists
and those wanting to apply measurement proposals.

The availability of multiple datasets such as the Qualitas Corpus [25], Helix [29]
and the Software-artifact Infrastructure Repository [13], alongside toolsets for cre-
ating call graphs such as netMetric [5], Dependency Finder [2] and Doxygen [3],
provide a ready and extensive source of graphs for analysis. Software is a dynamic
process with large amounts of ancillary information (such as changelogs) creating
software networks whose evolution is potentially observable step-by-step. Measur-
ing complexity in the structure of software remains elusive, but approached through
complex networks it is a potentially rich field for study.

27.3 Conclusions

In this paper we have shown how software networks offer some distinctive chal-
lenges and opportunities when measuring complexity which could be of interest to
theorists, particularly in terms of how complex networks evolve. The application of
the offdiagonal complexity to a software network has been described and shown to
be of interest but limited practical use for measuring software complexity. Based on
that, proposals are made in the anticipation of fostering a positive dialogue between
theorists proposing graph measures and those investigating their practical applica-
tion.
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Chapter 28
The Internet Geographical PoP Level Maps

Yuval Shavitt and Noa Zilberman

Abstract Inferring the Internet PoP level maps is gaining interest due to its im-
portance to many areas, e.g., for tracking the Internet evolution and studying its
properties. We introduce DIMES’s Internet PoP-level connectivity maps, annotated
with geographical information and created using a structural approach to automati-
cally generate large scale PoP level maps. The generated PoP level maps dataset is
presented and a detailed analysis of a map is provided. PoP level maps have a wide
range of applications, introduced in this work. We survey some of these applications
and propose further opportunities for future research.

28.1 Introduction

The Internet is one of the most interesting networks to study. It is a man-made net-
work, used by billions of people in their everyday life. The structure of this network
is of a special interest, as every service provider applies his own policies and de-
sign rules to his portion of the network, called an Autonomous System (AS). The
AS level is most commonly used to draw Internet maps, as it is relatively small
(tens of thousands of ASes) and therefore relatively easy to handle. An AS may
represent a local ISP as well as a large company spanning across continents. The
connectivity and growth of this network is driven by a large number of factors: from
business agreements between service providers, local population growth, techno-
logical trends and more. Looking at the Internet topology from the AS level is thus
coarse: it does not indicate the size of the AS nor local aspects and does not provide
any geographic notion. IP and Router level maps represent the other extreme: they
contain too many details to suit practical purposes, and the large number of entities
makes them very hard to handle.
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Service providers tend to place multiple routers and other networking equipment
in a single location called a Point of Presence (PoP). The equipment placed in a
PoP is used to serve a certain area and to connect it to higher hierarchies within the
AS. A PoP is owned by one AS, however several PoPs owned by different vendors
many times reside within the same campus, that provides them the infrastructure
they need. For studying the Internet evolution and for many other tasks, PoP level
maps give a better level of aggregation than router level maps with a minimal loss of
information. PoP level graphs allow to examine the size of each AS network by the
number of physical co-locations and their connectivity instead of by the number of
its routers and IP links, which is an important contribution. The points of presence
are not only counted, but also provided with a geographical location and information
about the size of the PoP. Using PoP level graphs one can detect important nodes of
the network, understand network dynamics, examine types of relationships between
service providers as well as routing policies and more.

While aggregating IPs to AS-level is a fairly simple task, PoP level maps are
more difficult to create. Andersen et al. [2] used BGP messages for clustering IPs
and validated their PoP extraction based on DNS. Rocketfuel’s [16] generated PoP
maps using tracers and DNS names. The iPlane project also generates PoP level
maps and their connectivity [9] by first clustering IP interfaces into routers and then
clustering routers into PoPs. They did so by estimating the length of the reverse
path, with the assumption that reverse path length of routers in the same PoP will be
similar.

Assigning a location to an IP address, let alone a PoP, is a complicated task. The
most common way to do so is using a geolocation service. Geolocation services use
DNS resolution [16], hand-labeled hostnames [1], user’s information provided by
partners [3], and more. Geolocation services are not highly accurate, as we showed
in [14]. Thus a measurement based approach was suggested to approximate the
geographical distance of network hosts [7, 8, 10].

This work presents PoP level connectivity maps generation and analysis, based
on an algorithm described in [5]. The traceroute measurements used in this work
were generated by DIMES, a highly-distributed Internet measurements infrastruc-
ture [13]. DIMES achieves high distribution of vantage points by employing a com-
munity based distribution methodology that uses Internet users’ PCs for measure-
ments.

28.2 PoP Level Maps Construction

A PoP is a group of routers which belong to a single AS and are physically located
at the same building or campus. In most cases [6, 11] the PoP consists of two or
more backbone/core routers and a number of client/access routers. The client/access
routers are connected redundantly to more than one core router, while core routers
are connected to the core network of the ISP. The algorithm we use for PoP extrac-
tion looks for bi-partite subgraphs with delay constraints in the IP interface graph
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of an AS; no aliasing to routers is needed [5]. The bi-partites serve as cores of the
PoPs and are extended with other nearby interfaces.

To identify the geographical location of a PoP, we use the geographic location
of each of its IPs. As all the PoP IP addresses should be located within the same
campus, the location confidence of a PoP is significantly higher than the confidence
that can be gained from locating each of its IP addresses separately. The location
of an IP address is obtained from numerous geolocation databases, and the PoP’s
location is set to the median of all PoP’s IP locations. Every PoP location is assigned
a range of convergence, representing the expected location error range based on
the information received from the geolocation databases. Further discussion of the
extraction and geolocation algorithms is provided in our previous works [5, 14].

The connectivity between PoPs is an important part of PoP level maps [15]. We
generate PoPs connectivity graph using unidirectional links. We define a link Lgp
as a the aggregation of all unidirectional edges originating from an IP address in-
cluded in a PoP S and arriving to an IP address included in a PoP D. Each of the IP
level links has an estimate of the median delay measured along it, with the median
calculated on the minimal delay of a basic DIMES operation. A basic DIMES op-
eration is comprised of four consecutive measurements and all measured values are
roundtrip delays [5].

28.3 Data Set

The collected dataset for PoP level maps is taken from DIMES [4]. We use all
traceroute measurements taken during weeks 42 and 43 of 2010, totaling 33 mil-
lion, which is an average of 2.35 million measurements a day. The measurements
were collected from over 1308 vantage points, which are located in 49 countries
around the world.

The 33 million measurements produced 9.1 million distinct IP level edges (no IP
level aliasing was performed). Out of these, 258K edges had less than the median
delay threshold, and had sufficient number of measurements to be considered by
the PoP extraction algorithm. A total of 4098 PoPs where discovered, containing
67422 1P addresses. The geographic spread of these PoPs around the world is shown
on Figure 28.1(left). Although the number of discovered PoPs is not large, as the
algorithm currently tends to discover mainly large PoPs while missing many access
PoPs, the large number of IP addresses and the spread around the world allow a
large scale and meaningful PoP level connectivity evaluation.

The PoP level connectivity map generated from the data set [15] contains 86760
links, which are an aggregation of 1.65 million edges. Out of the 4098 discovered
PoPs in week 42, 2010, 4091 have at least one PoP level link. 2405 PoPs have
outgoing links, and 4073 PoPs have incoming links. Out of those, 18 PoPs have
only outgoing links and 1686 have only incoming links. Note that a PoP without any
PoP level links, or a PoP with only incoming or outgoing links still have additional
[P-level connecting edges. As the full map is too detailed to display, a partial map is
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i

Fig. 28.1 An Internet PoP Level Location Map (left) and a Partial Connectivity Map
(right)—Week 42, 2010
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shown in Figure 28.1(right), demonstrating the connectivity between 430 ASes on
PoP level.

Almost all the IP edges that are aggregated into links are unidirectional: 99.2 %.
This is a characteristic of active measurements: the number of vantage points is lim-
ited in number and location, thus most of the edges can be measured only one way.
However, at PoP links level, 6.5 % of the links are bi-directional: eight times more
than the bi-directional edges. This demonstrates one of the PoPs strengths, as it pro-
vides a more comprehensive view of the networks’ connectivity without additional
resources. The average number of edges within a unidirectional link is 7.5, and the
average number of edges within a bidirectional link is 44.7. This is not surprising,
as it is likely that most of the bidirectional links will connect major PoPs within the
Internet’s core and thus be easily detected.

An additional view of edges aggregation into links is given by Figure 28.2. The
X-axis shows the number of edges aggregated into a link, while the Y-Axis is the
number of PoP-level links. The graph shows a Zipf’s law relation between the two,
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as 82.6 % of the links aggregate ten edges or less, and less than 2 % aggregate
100 edges or more. The large number of edges per link is explained by the fact that a
measured edge is not a point-to-point physical connection: Take two routers, A & B,
connected by a single fiber; If one of the routers has 48 ports, and we measure
through each one of them, we detect 48 edges between the two routers (incoming
port i on router A and the single connected incoming port of router B). We find that
the number of links per PoP also behaves according to Zipf’s law.

Looking at the number of links by destination PoP, 46 % of the PoPs are con-
nected by 10 links or less and the average number of links per PoP is 21. Most of
the PoPs are connected to PoPs outside their AS: 71.5 % of the source PoPs and
99 % of the destination PoPs. Interestingly, only 62.2 % of the destination PoPs
have links within their AS, which indicates that many PoPs are detected only thanks
to inter-AS measurements, and thus that the detected PoPs are probably large ones
and not small local access PoPs. We believe this is also the reason why few destina-
tion PoPs have a small number of links: PoPs with a large number of links to other
ASes are more likely to be discovered by our algorithm.

28.4 Applications of PoP Level Maps

PoP level maps can be leveraged for a large number of research interests. The most
obvious area is the study of Internet network topology, as it represents a level of the
network that was barely considered in the past. Tying a geographic location and a
size to a PoP, PoP level maps offer an opportunity to investigate service providers’
actual presence and influence on the network. An additional benefit is the ability to
study types of relationships (ToR) between service provider on different locations
around the globe.

An additional aspect of PoP level maps relates to cyber security research. As
shown by Schneider et al. [12], DIMES’s PoP level map can be leveraged to study
the robustness of a network. The Map can also be used for several Geolocation
purposes, such as improving the accuracy of Geolocation databases [14] and for
distance estimation.

Another application of PoP level maps is the study of Internet’s evolution. By
adding the maps as a new indicator, on top of economic, geographic and demo-
graphic parameters, a better understanding of the network’s growth can be achieved.

28.5 Conclusion and Future Work

We presented here DIMES’s PoP-level connectivity maps. The PoP level connectiv-
ity maps provide a new look at the Internet’s topology with a better level of aggre-
gation than router level maps and more information than AS level maps. The maps
provide network topology information, annotated with geographic location and link
delay, thus providing a large-scale look on the Internet using a light data set.
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The PoP level links maps are now available through the DIMES website [4] for

download, and can be useful to researchers in the fields of complex networks, Inter-
net topology, Geolocation, and more.
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Chapter 29

Practical Approach to Construction of Internal
Variables of Complex Self-organized Systems
and Its Theoretical Foundation

Dalibor Stys, Petr Jizba, Tomas Nahlik, Karina Romanova, Anna Zhyrova,
and Petr Cisar

Abstract We propose a method for characterizing the image—multidimensional
projection—of complex, self-organising, system. The method is general and may
be used for characterisation of any structured, experimentally observable, complex
self-organized systems. The method is based on calculation of information gain by
which a point contributes to the total information in the image, the point information
gain, PIG. We have also derived related variables, the point information gain entropy
PIE and point information gain entropy density PIED. The later values are unique
to a structured information and may be used for analysis of similarity by cluster-
ing, identification of states etc. We illustrate our key results using the example of
living cell. We discuss practical limits of the analogy between this observable self-
organising system and its possible theoretical model using an example of chaotic
attractor.

Keywords Rényi entropy - Point information gain - Principal component analysis -
Principal manifold - Chaotic attractor
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29.1 The Method

Complexity and self-organisation leads to formation of structures objects. Highly
discussed examples are living organisms which range from simple cells through
herds, flocks, insect colonies to humans and their herding behavior or cities. We
focused on analysis and interpretation of information on these structures [7—10].
We devised the method of calculation of the point information gain (PIG) PIGg y,
the information contribution to the image using the Rényi entropy concept.'-2

1 - 1 “
PIGq .,y = 7——1n (Z pﬁx,y> - (Z pf'>, (29.1)
i=1

i=1

where p; ., and p; are probabilities of occurrence of given intensity in the image
without and with the examined point, n is number of intensity levels and « is a
dimensionless coefficient.

By summation of PIG we obtain derived quantities, the point information gain
entropy PIE, and point information gain entropy density PIED, the sum of all PIG
levels at given alpha.

n
PIE/ points, = Z PIG, ;. (29.2)
i=1

PIE and PIED for infinite number of « create a state space in which the point
is unique for each image differing in properties or position of any of the points. In
practice, we use only 13 different « values for each of the camera colour channels.
Values of o were selected on the basis of previous experience of Petr Jizba with other
types of dataset and their usefulness was confirmed in many experiments. Yet, we do
not exclude that an experimental dataset may be obtained, for whose discrimination
we shall need to calculate PIG for other o values.

In [9] we show that PIE/points may be successfully used for multivariate sta-
tistical analyses such as principal component analysis [6]. There may be derived
clusters in the state space and transitions between them. We recently found out that
the information gain calculation has been independently developed as a very suc-
cessful optimisation criterion in widely distant field of self-organising semantics,
here it is used in construction of decisive trees [1]. The point information gain may
thus be a natural feature of self organising system whose significance has not been
fully understood. At Fig. 29.1 we show an example how a trajectory of a living cell
described in a PIE/points space may be used for objective identification of cell states
during the cell cycle.

Uhttp://expertomica.eu/software/eec.

Zhttp://expertomica.eu/software/pie/.
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Fig. 29.1 Objective analysis of the cell cycle: images of the cell were abstracted from the mi-
croscopic image and values PIE/points were calculated for 13« + values for each color channel.
Resulting 39 image variables were subjected to principal component analysis and clustered. In the
initial phase for the cell cycle results of clustering closely resembled those of manual annotation.
In the later phase the objective analysis indicated that the structure of cell interior still undergoes
significant changes which remain undetected by expert analysis. The analysis was made using the
Unscrambler software (http://www.camo.com/)

29.2 Limits of the PIED Metrics

A obvious limit of any measured system lies in the fact that we measure only
in distinct times and with distinct precision. As comprehensively delineated
by Zampa [11] (see also [7]), this fact has important influence on causal relations in
the dynamic system. Essentially, determinism is turned into stochastic causality. In
the state space containing several basins of attraction, such stochastic causality may
have much deeper origin. The probability density function of transition between
two attractor zones of a chaotic attractor may have very complicated shapes [2].
The assumptions of the general stochastic systems theory are still valid, but the ori-
gin of the probabilistic behaviour in self—organised systems is much deeper, truly
fundamental.

Key question in the application of combination the stochastic systems theory and
theory of chaotic attractor for interpretation of observable results in self-organising
systems is the question whether the image which is analysed is more a reflection
of the group (ball) of points in the phase space which evolved during the interval
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of the measurement or rather a portrait of the whole self organising system. This
depends on properties of the system and has to be determined experimentally. In
the case that we observe just an average of small number of points, we may use the
same approach as we use in measurement of standard technical systems. We must
study its evolution in time, determine the best approximation to internal orthogonal
variables and interpret them in terms of a model described by differential equations
and error functions.

In case of, for example, living cells, we may well assume that decisive elements
of the structure passed the trajectory sufficiently often in the time interval of the
data capture to account for probabilistic interpretation of the result. Theoretically
very well substantiated probabilistic approach is calculation of the generalised di-
mension D, [4, 5] which includes the calculation of Rényi entropy at the limit to
infinitely small yardstick e

D. — lim ﬁlog(Zi p?)
Y = oo 7o P 7

1 (29.3)
e—0 log -

The similarity of our approach of characterisation of the image by PIED and cal-
culation of the generalised dimension was discussed earlier [9]. Any real application
will always be complicated by distortion of the image by instrument transmission
function (i.e. microscope point spread function), standard electromechanical sources
of error and, with the same importance, by existence of several self organising sys-
tems in one observed system, often organised in a hierarchical manner. For example
in the case of living cell we must consider self organisation and asymptotic stabil-
ity of folded proteins and multiprotein complexes, membranes, organelles etc. We
most probably in all cases encounter a mixed situation, when part of the observable
objects passes within the time of measurement the state trajectory sufficiently often
to account for the calculation of the D, while others do not.

At Fig. 29.2 we show real example of analysis of several cell cycles. The cell
cycle may be considered as a sequence of changes in parameters of the internal self-
organising system of the cell which are expressed as different observable structures.
In fact we should also consider that for each of the cell states we have completely
different system. As may be seen, the time of duration of each of the phases of the
cell cycle differs widely. For prometaphase we see time ranging from two measure-
ment intervals (60 s) up to 45 (1450 s). The dataset is sparse although the measure-
ment took 24 hours and the manual analysis in the e-cells program’ several working
days.

29.3 Conclusions and Outlook: Multivariate Analysis of Datasets
from Dynamic Self-organising Systems

For objective interpretation and analysis of general experimental data it is good
to have a model of expected system dynamics. Only in such case data about the

3hitp://expertomica.eu/software/ecell/.
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Fig. 29.2 Manually annotated phases (state) in the cell cycle of a single cell. Clearly, the duration
of individual states differs significantly for individual cells and no obvious rule seems to be de-
tectable. Certainly the amount of data is very small, yet the dataset was large (over 2000 images)
and time resolution was clearly insufficient. Automation of the annotation process is needed, but
to achieve it, the system model must be created

system may be compared between various datasets characterising the same sys-
tem. Such models are available for most technical systems, but are difficult to be
achieved for natural self-organising systems. Stochastic models for technical sys-
tems are created to account mainly for measurement uncertainities. The case of
complex, namely self-organising, systems may include, besides experimental error,
also jumps between two distinct regions of the chaotic attractor. At events such as
changes between cell states during the cell cycle, we may assume also transitions
between two attractors with significantly different parameters or, equally well, two
completely different attractors, possibly with different dimensionality. Such events
have not been studied in detail. As we have shown at Fig. 29.1, the use of principal
component analysis is well possible for clustering of similar states. But it does not
bring any information about the possible models. We may potentially utilise var-
ious methods of multivariate non-linear analysis of which the principal manifold
approach [3] is the most instructive one. Similarly as the principal component anal-
ysis assumes that the manifold to which the model should be fitted—the equivalent
of the mechanical model—is the plane in multidimensional space, we may assume
that the resulting principal manifold is the best approximation to the manifold of the
attractor responsible for stability of an observed system. And the choice of chaotic
attractor which project to similar manifold may be made. This approach is in many
aspects similar to the approach of mechanical engineer who approximates move-
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ment of the device by equations of mechanics. Experiments in this direction are in
progress and will be reported at the conference.
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Chapter 30

An Efficient Simulator for Boolean Network
Models

Stefano Benedettini and Andrea Roli

Abstract Boolean networks (BNs), first introduced by Kauffman as genetic regula-
tory network models, are the subject of notable works in complex systems biology
literature. BN models lately garnered much attention because it has been shown that
BNs can capture important phenomena in genetics and biology in general. In this
work, we illustrate the main properties and design principles of a new efficient, flex-
ible and extensible BN simulator, named the Boolean Network Toolkit. This sim-
ulator makes it possible to easily set up experiments and analyse the most relevant
features of BN’s dynamics.

30.1 Introduction

Boolean networks (BNs) have been firstly introduced by Kauffman [1] and sub-
sequently received considerable attention in the composite community of complex
systems. Recent advances in this research field can be mainly found in works ad-
dressing themes in gene regulatory networks (GRNs) or investigating properties of
BN themselves. These models are often studied by means of simulation processes
and an issue arises concerning the efficiency and usability of the simulator. In fact,
this tool plays a crucial role for the results which can be attained because it should
enable the investigator to analyse large size systems, in order to avoid conclusions
that might be wrong because of the limited size of the simulated networks or un-
dersampling of some dynamic properties. In addition, a specific research stream in
this area is the ensemble approach [2], that aims at finding classes of GRN models
(such as BNs) which match statistical features of genes, such as the number of cell
types of an organism or cell dynamics in case of perturbation. In recent works, ! it

ISee, e.g., the work by Benedettini et al. [3].
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has been shown that the application of stochastic local search (SLS) techniques is
an effective approach to automatically design BNs to match certain desiderata. This
approach requires efficient and easily reconfigurable BN simulation tools, as well.

In this work, we illustrate the main properties and design principles of a new
simulator, named the Boolean Network Toolkit (BNTK) [4].

30.1.1 Simulator Requirements

BN models simulation has two main requirements: (i) efficiency and (ii) easy exper-
iment configuration. The first requirement addresses the issues of simulating large
size BNs and of sampling with sufficient precision level dynamic properties of the
networks, such as number of attractors, length of cycles and size of basins of attrac-
tion. A further issue adds upon simple simulation of a model when the investigator
aims at finding an model instance satisfying given requirements, for example a BN
with a given attractors landscape. Hence the requirement of exploring an enormous
search space. It appears clear that, in order to explore such a large search space ef-
fectively, we both need sophisticated search algorithms and an efficient simulator. In
fact, the search method will likely have to sample the search space many times and
each of these samples, a BN, will have to be evaluated, i.e., simulated; the simulation
being the most computationally expensive operation in this process.

Other important aspects are that of modularity and flexibility. The simulator
should be flexible enough to allow the researcher to quickly set up experiments
of different kind which go beyond the usual basic tasks, like computing a BN’s tra-
jectory or finding a set of attractors. For instance, the experiment described in [5]
to find Threshold Ergodic Sets is rather complex and requires a high degree of cus-
tomisability; the simulator should provide all that. As a further prerequisite, the
simulator should not also be limited to synchronous BNs and handling also other
different models of networks, such as BNs with stochastic dynamics.

To summarise, the simulator should satisfy the following requirements:

Flexibility. The simulator should enable the researcher to implement different kinds
of experiments in diverse contexts and under different constraints. It should also
provide a way to easily modify a BN, a fundamental operation required by de-
sign and training algorithms.

Ease of integration. The simulator is going to be integrated with other software li-
braries, typically written in C++ for greater efficiency.

Free and Open Source Software. We strive to maintain our software free so as to
foster adoption and extension.

Modularity and separation of concerns. It should be able to support different BN
update schemes and possibly different network models. Also, modularity is a
key to achieve flexibility by allowing the researcher to modify and extend the
tool itself.

Efficiency. The simulator should be as efficient as possible.
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30.2 Design of the Boolean Network Toolkit

This section briefly explains the design choices made to implement the BNTK. First
we will introduce the key abstractions in the simulator pertinent to BNs. Afterwards,
we describe the architecture of the simulator and we will see how these abstrac-
tions can be extended to encompass different kinds of update schemes and possibly
new network models. The requirements listed at the end of the introduction push us
to choose C++ as our implementation language; the main programming paradigm
adopted is, therefore, Object Oriented, but, as we will see, we will also employ
elements of functional programming.

Simulator Architecture The main entity in the simulator is, of course, the BN.
The principal design choice that can help us to achieve good modularity and flexibil-
ity is illustrated in the following. In the BNTK, network state, dynamics and topol-
ogy are separate concepts. Network state can be any indexable data structure whose
elements are Booleans, but in principle also integers or double precision floats de-
pending on the domain of node values; this is a crucial characteristic if we want to
extend the simulator with other network models. For BNs we employ the compact
bitset structure provided by the Boost Dynamic Bitset Library. Network topology is
a stateless entity, structurally represented by a directed graph data structure whose
nodes, indexed by integers, containing their update function. A network topology
exposes methods to access its graph structure and, most importantly, it provides a
method to compute the next value of a node given the current state vector. In order
to implement network topology, we use the excellent Boost Graph Library [6]. Net-
work dynamics is modeled by a specific entity that realises a particular node update
scheme.

Fundamental Abstractions The main abstraction in our design is a “‘synchronous
BN”. In the Object Oriented paradigm, it would be intuitive to model a BN as a
mutable object composed of a state vector and a topology. On the other hand, such
abstraction is rather distant to the original mathematical concept that sees BNs as
discrete maps, i.e., functions. In formal term, a BN is a function F that maps the
current state to the next state s;+1 = F(s;). Notice that the form of F is neither
dependent on the state nor the time parameter. Moreover, from a computational point
of view, a function is an immutable object. The functional programming paradigm
is the preferred approach to model BNs in the BNTK.

The most basic simulation task is to evolve a BN a certain number m of steps
starting from initial condition sg. With a functional approach this is straightforward.
Formally, we just need to take the first m elements from the sequence F'(so), i € N;
what we need is a way to lazily® represent such sequence, or, in computer science
parlance, a stream. Lazily evaluated sequences, such as lists, are typically available
in all major functional programming languages.

2“Lazy” roughly means “computed on demand”.
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Almost all computational tasks on BNs involve computing a trajectory, therefore
the concept of stream, or lazy list, is pervasive in the simulator. Such abstraction
is fundamental because, as we will see, it makes it possible to easily decompose
complex experiments on BNs into simpler and reusable components.

With a trajectory, it is easy to find an attractor: it is sufficient to apply one of
the well-known cycle finding algorithms. In the BNTK we implemented two al-
gorithms. One is a naive search that stores every state encountered and looks for
repeated values. This algorithm does not scale well, in terms of both time and space
complexity, with long transients, therefore we also provide an alternative, Brent’s
cycle detection algorithm [7] (see also [8]), which scales much better for long tran-
sients (chaotic RBNss, for instance), but is slower for short sequences. Finding an at-
tractor starting from an initial condition can be in turn interpreted as a higher-order
function which takes a BN (a function in our interpretation), an initial state and re-
turns an attractor object. Let us write the type of such function as State — Attractor.

Now that we have encapsulated the computation of an attractor into a function,
we can easily calculate a set of attractors starting from a sequence of initial condi-
tions. To do so we can use another important higher-order function on lists called
map, that, roughly, is an abstraction of a ‘for’ loop. map is a function that takes
a function from a type A to another type B (A — B for short), a list of element
of type A ([A] for short) and returns a list of elements of type B (in symbols
map : (A — B),[A] — [B]).

30.3 BNTK Functionalities

The BNTK contains also the implementation of some functionalities representing
common use cases. Among them, we mention finding the set of attractors, their
length and basin of attraction and computing dynamic measures such as the Derrida
plots. In the following, we show a couple of use case examples.

BN Trajectory Let us start with simply simulating the evolution in time of a BN
until an attractor is found.

1| BooleanNetwork bn = // read BN from file

2| BooleanDynamics* dyn = synchronous_dynamics(bn); // get an
updater

3| State sO = // an initial state vector

4] State s = (xdyn)(s0); // state at t=I

5|s = (xdyn)(s); // state at t=2

6|s = (xdyn)(s); // state at t=3

7| BrentCycleFinder finder (dyn);

where finder is a function object, implementing Brent’s cycle detection al-
gorithm, that takes a state vector and returns an attractor. Notice that neither
BooleanNetwork or BooleanDynamics are stateful objects and that network
state is externally maintained. This way, we are able to run several network evolu-
tions in parallel without copying the same topology over and over.
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Attractor Set Let us find a set of attractors in an N node network starting from m
random initial conditions. Implementation is in the following snippet:

1| RandomStateGen states (N, m);

2| BooleanNetwork bn = // read BN from file

3| BooleanDynamics* dyn = synchronous_dynamics(bn); // get an
updater

4| NaiveFinder finder (dyn);

5| AttractorRange ar = states | finder;

6| std :: set<Attractor > attractors (ar.begin(), ar.end());

where RandomStateGen is a range’ that yields m random Boolean vectors and
NaiveFinder is a function object that implements the naive cycle detection al-
gorithm. In Line 5 we show how new ranges can be constructed by using the pipe
operator and, in Line 6, we demonstrate how ranges interoperate with STL classes.
We also notice that At tractor objects provide a comparison operator, so they can
be inserted into sets.

Basins of Attraction A small extension to the previous use case is to enumerate
the whole configuration space of a network and count the multiplicity of each attrac-
tor?, so that we obtain their basin size. To do so, we use a std: :map to count the
occurrences and a StateEnumerator object, a range, like RandomStateGen,
which yields all state vectors of a certain dimension N.

1 StateEnumerator allStates (N);

2 BooleanNetwork bn = // read BN from file

3 BooleanDynamics* dyn = synchronous_dynamics(bn); // get an
updater

4 NaiveFinder finder (dyn);

5 AttractorRange ar = allStates | finder;

6 std :: map<Attractor ,int> m;

7 for (AttractorRange ::iterator it = ar.begin(); it != ar.end
O ++it) {

8 if (m.count(xit) == 0) // new attractor

9 m[*xit] = 1; // also inserts attractor into m

10 else

11 m[*it] += 1; // increment occurrences

12 }

where the C++ programmer can recognise the familiar STL iteration idiom. We also
recall that in the first case of the if statement (Line 9), the attractor pointed by iterator
it is also inserted into the map. In the end, map m contains, for each attractor, the
number of states in its basin.

3 A range is a stream encapsulated in a C++ object

40f course, such experiment is feasible only for small networks.
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Derrida Plot A useful mathematical tool to analyse BN dynamics is the Derrida
plot [9], which is a graphical way to visualise the sensitivity of a network to pertur-
bations. The brute-force computation of a Derrida plot is, of course, prohibitive for
all but the smallest networks. Nevertheless, we can resort to approximation and, for
each data point in the plot, take the average on a sample of network states. Let us
show how we can employ the BNTK to calculate the data points in a Derrida plot,
supposing that we set the number of sample for each data point to M.

1 BooleanNetwork bn = // read BN from file

2 BooleanDynamics* dyn = synchronous_dynamics(bn); // get an
updater

3 std :: vector <double> derrida (N) ;

4 for (int x = 0; x < N; ++x) {

5 std :: vector<int> distances M) ;

6 for (int i = 0; i <M; ++i) {

7 State s = random_state (N);

8 State sPrime = random_flips(s, x); // x random flips

9 State sl = (xdyn)(s);

10 State sPrimel = (xdyn)(sPrime);

11 distances[i] = hamming_distance(sl, sPrimel);

12 }

13 derrida[x] = average(distances);

14 }

Aside from average, all other functions are implemented in the toolkit; specifi-
cally, random_state generates a state vector whose element have value 1 with
probability 0.5 while random_ f1ips returns a state with x randomly chosen bits
flipped (hamming_distance has intuitive meaning). This shows how the toolkit
can be easily extended with new experiments. As a matter of fact, all use cases pre-
sented in this section are already implemented in the toolkit by ready-to-use func-
tions.

30.4 Ongoing Work

The BNTK can be downloaded from: http://booleannetwork.sourceforge.net. The
tool is actively used and maintained and important extensions are also planned.
Having encapsulated network dynamics in a class allows us to freely define different
update schemes without modifying other code. It is sufficient to implement the inter-
face BooleanDynamics for all update schemes desired. Although not currently
available, implementations of different update strategies, such as asynchronous and
random, are on their way.

Another extension regards the integration of other network types, in particular,
we plan on adding two alternative BN models, namely, Boolean Threshold Net-
works [10] and Glass Networks [11].
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Chapter 31
Inferring Information Across Scales in Acquired
Complex Signals

Suman Kumar Maji, Oriol Pont, Hussein Yahia, and Joel Sudre

Abstract Transmission of information across the scales of a complex signal has
some interesting potential, notably in the derivation of sub-pixel information, cross-
scale inference and data fusion. It follows the structure of complex signals them-
selves, when they are considered as acquisitions of complex systems. In this work
we contemplate the problem of cross-scale information inference through the deter-
mination of appropriate multiscale decomposition. Our goal is to derive a generic
methodology that can be applied to propagate information across the scales in a
wide variety of complex signals. Consequently, we first focus on the determination
of appropriate multiscale characteristics, and we show that singularity exponents
computed in microcanonical formulations are much better candidates for the char-
acterization of transitions in complex signals: they outperform the classical “linear
filtering” approach of the state-of-the-art edge detectors (for the case of 2D signals).
This is a fundamental topic as edges are usually considered as important multi-
scale features in an image. The comparison is done within the formalism of recon-
structible systems. Critical exponents, naturally associated to phase transitions and
used in complex systems methods in the framework of criticality are key notions
in Statistical Physics that can lead to the complete determination of the geometri-
cal cascade properties in complex signals. We study optimal multiresolution anal-
ysis associated to critical exponents through the concept of “optimal wavelet”. We
demonstrate the usefulness of multiresolution analysis associated to critical expo-
nents in two decisive examples: the reconstruction of perturbated optical phase in
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Adaptive Optics (AO) and the generation of high resolution ocean dynamics from
low resolution altimetry data.

31.1 Introduction

Most real-world signals are complex signals, usually difficult to describe but pos-
sessing a high degree of redundancy [1]. In particular, in the case of Fully Developed
Turbulence (FDT), there is a relation between the spectrum of singularity exponents
associated to structure functions and the existence of a multiscale hierarchy [2].
Turbulent flows, although chaotic in nature, possess a complex arrangement of ge-
ometrical structures related to the cascading properties of physical variables [3].
The same type of conclusion can be inferred from multiscale analysis of most nat-
ural complex signals [4]. As a consequence, the paradigm of understanding natural
signals as acquisitions of complex systems with unknown phase space is a use-
ful one [5]. The properties of physical cascading variables reflect the transfer of
energy, or more generally information, taking place from larger scales to smaller
ones. Recent developments in microcanonical framework for the computation of
singularity exponents and the derivation of singularity spectra have lead to a sen-
sible improvement in the numerical techniques for the determination of multiscale
characteristics of real signals [6, 7]. Experimental analysis on different real world
signals, ranging from stock market time series to atmospheric perturbated optical
path shows that these systems are not only found to be multiscale, but their singu-
larity spectra are also coincident. Consequently, the precise numerical computation
of geometrically localized singularity exponents in single acquisitions of complex
systems, without the averages taken on grand ensembles, unveils the determina-
tion of their universality class [6]. The statistical characteristics of information in
these signals can be described from the localisation and precise value of singular-
ity exponents. As a consequence, it should be possible to transfer across the scales
extra physical information from lower scale to higher resolution, a procedure which
unveils considerable enhancements of high resolution mapping of natural phenom-
ena.

In this paper, we demonstrate that microcanonical formulations for understand-
ing and evaluating the mechanisms that govern the evolution of dynamical systems
lead to accurate inference schemes across the scales in complex signals. We show
that the singularity exponents can be used in multiresolution analysis for accurate
inference of information across the scales. The profound reason for this fact comes
from the observation that geometrically localized singularity exponents encode tran-
sitions in complex signals in a much more accurate manner than done with linear
filtering processing techniques [8, 9], as will be demonstrated in this work, in par-
ticular in the case of 2D images and the accurate determination of edges (which are
typically multiscale characteristics on an image). Consequently, we study the no-
tion of optimal wavelet for inferring information across the scales. Our fundamental
contribution in this work is to show that multiresolution analysis associated to ge-
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ometrically localized singularity exponents is a very good candidate for inferring
information across the scales in complex signals. We take two specific examples:
the reconstruction of the optical phase shift perturbated by atmospheric turbulence
(Adaptive Optics) and the high resolution mapping of ocean dynamics using sea
surface temperature maps. In the first example, we derive a radically new and non-
linear approach for reconstructing the perturbated optical phase; while in the second,
we show that oceanic dynamical information acquired at low resolution (pixel size:
22 kms) from altimetry can be transferred across the scales at high resolution sea
surface temperature data (pixel size: 4 km s) to produce high resolution mapping of
oceanic currents. In both the cases we use a proper wavelet decomposition technique
on the signal of the singularity exponents to help us inferring information along the
scales of the signal.

The paper is organised as follows: in Sect. 31.2 we present a brief discussion on
the evolution of the theory of singularity exponents, in Sect. 31.3 we present the
numerical analysis for the singularity exponents and the idea of the most informa-
tive set within a signal. Theory behind the reconstruction of the whole signal from
the most informative set is explained in Sect. 31.4. Notion of optimal wavelet, for
inferring information pointwise in a cascade, is introduced in Sect. 31.5. The exper-
imental data used is discussed in Sect. 31.6 and the results are shown in Sect. 31.7.
Finally, we conclude in Sect. 31.8.

31.2 Universality Class and Multiscale Organisation

A power-law behaviour in the thermodynamical variables, and also time and spa-
tial correlation functions, is commonly observed in systems with high order transi-
tions. The underlying dynamics of such systems can be observed, at the macroscopic
scale, in the form of a power-law [10]. It was soon realized that the exponents of the
power laws define different classes: systems characterized by same values of singu-
larity exponents belong to the same universality class, which implies the presence
of a common macroscopic behaviour independent of the microscopic dynamics of
each system [11]. Different singularity spectra of very different physical systems
can match a same curve. Such a correspondance can be explained by the existence
of a common underlying dynamical system, the universality class, responsible for
similar statistical properties of information at macroscopic scale [11].

Previous works attempt to relate the general organisation of a multiscale structure
with the existence of cascade process [10]. In these works, a multiscale signal s is
characterized by the power-law scaling in the order p moments of some related
variable T, , in the way:

(ITrsI?)=Apr™ +o(r)  (r—0) (31L.1)

The existence of multplicative cascade process was first justified by Kolmogorov
in his theory on turbulence [3]. Kolmogorov proposed the following: given two
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scales r and L, 0 <r < L, we can characterize the distribution of the velocity field
by an injection parameter 7,7, as:

ITs| ﬁnr/L|TLS| (31.2)

)

where the symbol ‘=" means that both sides are equally distributed and 7,/; =
[r/L]¥. From this relation, the order p moments have the following relation:

(ITrs1?) = [r/L1"P(|TLs|7) (31.3)

Comparing Eqgs. (31.1) and (31.3) we get, T, = ap. However, experiments show
that in the case of FDT, the relationship between 7, and p is not linear rather it is a
convex bell-shaped curve, a condition known as ‘anomalous scaling’ [7]. To apply
Kolmogorov’s decomposition in anomalous scaling, certain assumptions have to be
made:

— ny/L has to be interpreted as a random variable, independent of L.

— The variables 7,1, has to be infinitely divisible to ensure downward process from
scale L to r is verified directly or in several stages giving rise to the famous
cascade process.

It has been verified [3] that an injection mechanism as the one proposed by Kol-
mogorov leads to the understanding of a underlying geometrical structure in a mul-
tiplicative cascade process, together with the knowledge of the exponents 7, for
inferring information along the scales of the signal. This experimental outcome of
self-similarity led researchers to propose a different model for the generation of
exponents.

31.3 Singularity Analysis in the Microcanonical Framework

Criticality, and the associated critical exponents are key notions in Statistical
Physics to understand phase transitions, which are prototypes of scale invariant
phenomena [10]. The spectrum of singularity exponents in a system determine its
multiscale properties which are accessible statistically. We will say that a signal s
is multiscale in a microcanonical sense, if for at least one multiscale functional
dependant on scale r, it is assumed that for any point x the following equation
holds:

Trs(x) = a@)r"™ +o(r"™)  (r — 0) (31.4)

for some functions «(x) and i (x). The exponent 4 (x), which is a function of the
point x, is called a singularity exponent or Local predictability exponent (LPE) of
the point [7]. The central problem is to compute at high numerical precision the
value of h(x) at point x: bad approximations of singularity exponents lead to poor
reconstructions.
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31.3.1 Local Predictability Exponents

According to microcanonical formulations [10], a multiscale signal is supposed to
satisfy Eq. (31.4) for a family of functionals T,, at any point x in the signal domain,
and have a singularity spectrum computed from singularity exponents as a convex
curve function of 4 [10]. Equation (31.4) is a pointwise and localized version of the
definition used in introducing singularity spectrum [6, 12]: we do not make use of
statistical averages and grand ensembles as in practice such an ensemble average
is not accessible. Rather, we seek to evaluate 4 (x) at point x. We denote F, the
component in the signal’s domain associated to singularity exponent value % as:

Fi={x:h(x)=h) (31.5)

In other words, we can say that each point x in the signal is characterized by a sin-
gularity exponent 4 (x) which is typical to one component Fy, i.e., the components
are level sets of the function 4 (x). This family of sets is naturally associated to the
multiscale hierarchy in a signal and in the case of natural images, it is expected that
there exists a particular set which comprises the point where sharp transitions within
the signal are well recorded. We will call this set as the Most Singular Manifold or
MSM. Geometrically speaking, it is the singularity component associated with the
smallest possible value A« , finite for signals corresponding to physical variables
that cannot diverge. We will denote this set by F, and can be expressed as:

Foo={x 1 h(x) = hoo = min(h(x))} (31.6)

The MSM plays a fundamental role in the multiscale geometrical hierarchy of natu-
ral images. Visual inspection of this set reveals a structure which is characterized by
the presence of ‘edges’ or contours in natural images [1]. It will be understood here-
after that the MSM contains the most informative set in an image so that the whole
signal can be reconstructed from the restriction of its gradient to the MSM. More-
over we will see that singularity exponents lead to a notion of edge that matches
much better across the scales than the edges computed from classical filtering meth-
ods. Before we go deeper into the subject of MSM and its application to recon-
structible systems, we give a brief overview for the determination of the singularity
exponents.

31.3.2 Singularity Analysis

The singularity exponents for experimental, discretized data can be calculated using
different methods [7], but for our case we will use the Unpredictable Points Mani-
fold (herein referred to as UPM) [13, 14]. According to this method, we make point
estimates of the singularity exponent, namely:

log(tys(x,r0))/(tws(.,r0)) L 0(

logrg

h(x)= ! ) (31.7)
logro
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Fig. 31.1 Top left: Image of a simulated optical phase perturbated by atmospheric turbulence. The
image corresponds to a 128 x 128 pixels sub-image extracted from an original 256 x 256 pixels
image to avoid the pupil boundary. Top right: Image of the singularity exponents computed from
the phase data. Bottom left: Excerpt of the Agulhas current below the coast of South Africa (sea
surface temperature image: each pixel record the temperature of the upper layer of the sea). Bottom
right: Singularity exponents of the Agulhas current

where (ty s(., rg)) is the average value of the wavelet projection over the whole sig-
nal and o(5 ;ro) is a diminishing quantity and rg is the minimum scale. If the signal
s is an image of size M x N, then we choose ro = 1//M x N. The singularity
exponents computed on our experimental dataset are shown in Fig. 31.1.

The values h(x) are computed for all points x within the signal domain. Now,
coming back to MSM, sorting of these singularity exponent values based on a typical
threshold value O defines the standard reconstruction set in the MSM method. Such
a set often provides a robust and accurate reconstruction and is defined by:

ewsm= J 7 (31.8)
hoo<h=<0
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31.4 Reconstructible Systems

In this section, we are led to find mathematically a functional G which permits the re-
construction of the signal’s gradient from its restriction to the MSM. The functional
must satisfy the properties of being deterministic, linear, translationally-invariant,
isotropic and yield correct power spectrum of natural images. We consider the gra-
dient measure of the signal s = Vs(x) and integrate it over the multifractal set of
most unpredictable points F,. A deterministic representation of the gradient mea-
sure for the signal can be:

Vs(x) =G(Vs| g )(x) (31.9)

Considering the fact of G being linear, an integral representation can be given by:
Vs(x):/ Vs(y)G(x, y)dy (31.10)
Foo

where G(x, y) is a density measure of the function G and is a 2 x 2 matrix. Using
isotropy, standard power spectrum (in the form 1/|| f]|?) for the associated spectral
measures of natural images, one obtains the following formula [1, 10] expressed in
Fourier space:

FVsl7.(f)
infI?

where i is the imaginary unit, i = v/—1 and ~ denotes the Fourier transform. We
normalize the result by taking the vector field vy unitary and normal to the MSM
instead of Vs|x_; where vo(x) = Vs(x)dr, , 65, being the density of the proper
Hausdorff measure restricted to the set Fo, [1]. We therefore perform integration
over all the space (the restriction is still present, but now introduced by vy):

o f0le(f)
D=0

Fourier inversion of this formula gives the reconstruction of the image from the
restriction of the gradient field to the MSM. Results of reconstruction on the MSM
of experimental datasets, and their performance over classical edge detection algo-
rithms, are shown in Tables 31.2 and 31.1. It is seen that in the case of acquisitions
of turbulent signals, the reconstruction based on the MSM (we call it MSM in Ta-
bles 31.2 and 31.1) performs significantly better among the algorithms tested. In
fact, when it comes to the case of turbulent signals, the classical edge detectors like
Sobel [15], Prewitt [16], Roberts [17], Laplacian of Gaussian (LoG) [18, 19], Zero-
cross [20, 21], Canny [8] to a more recent non-linear approach called NLFS [22],
dedicated to the computation of edges in digital images, are systematically out-
performed by MSM in terms of reconstruction from a compact representation of
its edge pixels. As a consequence, the fundamental notion of edge, which is a
basic multiscale feature, is much more well encoded by the set Evsy defined in
Eq. (31.8). This tends to show that singularity exponents are good candidates for

s(f) = (31.11)

(31.12)
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an accurate multiresolution analysis. In the next section, we develop the notion of
optimal wavelet.

31.5 Inferring Information Across the Scales Using
Microcanonical Analysis

To infer the cascading properties pointwise (called microcanonical cascade) we in-
troduce the concept of optimal wavelet. Let s(x) be a multiscale signal and let ¥ (x)
be a wavelet. We define the wavelet projection of s on ¥ at position x and resolu-
tion r as:

Tw|Vs|(x,r)=/|Vs|(y)l1/<ﬂ)dy (31.13)
r

We can now define a random variable ¢,/ (x) as
Ty|Vs|(x,r) =g/(x)Ty|Vs|(x, L) (31.14)

Now, we can talk about a wavelet ¥ which, if determined, will make ¢,/1 (x) inde-
pendent of Ty |Vs|(x, L). Such a wavelet is called an optimal wavelet. In subsection
Optimal Wavelet Analysis, we propose a new algorithm for a very robust detection
of the optimal wavelet in 2D signals. The new methodology helps us to detect the
presence of an optimal wavelet, in a totally unconstrained way, from the signal it-
self. Once determined, the optimal wavelet has the potential of unlocking the sig-
nal’s microcanonical cascading properties through simple wavelet multiresolution
analysis [23].

31.5.1 Multiresolution Analysis & Fast Wavelet Transform

Multiresolution analysis is a mathematical formalism that deals with the phe-
nomenon of detail-structured viewing of objects [23]. Data redundancy is minimized
by use of dyadic wavelet sequences which are Hilbertian frames associated to dyadic
partition of the space/frequency domain.

Any signal |s) can be represented in a dyadic wavelet basis of mother wavelet
|@) [24] as follows (from now on we use the notation |s) for the signal):

s)= Y > el (31.15)

j=—00 k
where
W) 1) (x) = 20/2@ (27 x — k) (31.16)
and «; x, are called wavelet coefficients. The wavelet coefficients « x can be ob-

tained by a simple projection of the signal |s) onto the basis function ¥; j, namely:
ajr=(s|¥k) (31.17)
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The decomposition process using multiresolution analysis gives rise to an im-
age fourth smaller than the previous one. Therefore, each parent coefficient o) =
o j_1,[k/2]» at the coarser scale j — 1, covers the same spatial extent of four children
coefficients a. = o i at the finer scale j.

31.5.2 Approximation of Microcanonical Cascade

In the wavelet analysis of 2D signals, persistence along the scales implies a relation
of the form between the wavelet coefficients:

de =mop+m (3L.18)

with 71, n2: random variables independant of a. and «, and also independant of
each other. For an optimal wavelet the above equation takes the form o, = njap.

31.5.3 Optimal Wavelet Analysis

Any given signal |s) can be represented in terms of their cascade variables n and
wavelet coefficients « as:

)= [T} .0/2-11@0.01®; k) + 0,01 P0,0) (31.19)
J#0.k j' k

where @; ;. is the wavelet basis for the optimal wavelet. Experimental observations
show that the expectation of the signal (|s)) =0 as (xp,0) = 0 due to symmetry.

We multiply the sign of «g g 1,e, 09,0 With the signal s and then compute the aver-
age. Since, in our case we have an ensemble of dynamically equivalent signals, we
compute the average over |s’) to get the expected value for all these signals; where
i is the index of an ordering of the signals. Equation (31.19) can be generalized to:

(09,015} = (leto,01}|@0,0) (31.20)
We try to estimate the sign of g o. Let €p ¢ be the estimation, we then have

(€h.0ls")) = (€0.000,0le0,01) 10,0} ox Po,0 (31.21)

Principle application of finding the optimal wavelet on a given set of images is
quite simple. The procedure is as follows:

We subdivide a given image |s’) over small areas of equal sizes and normalize
individually every sub-image.

We find the correlation between the sub-images of Is?): C; = (s |sk ).

For every i we find the average of the correlation.

We then find for which [, the average correlation is maximum. Let it be i*.

We call |s") as the most central element (MCE).
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Fig. 31.2 (a) Sub-image at 48 x 48 pixels resolution obtained after orientation with the sign with
the MCE (b) 2-D plot of the sub-image (¢) 2-D plot for the sum over the columns

=)

Since we don’t know @ o, we make the wavelet projection of the signal on the ele-
ment which has the most dependancy with all the other elements (dominant presence
of the term (|co,0])|Do.0)); 1,e, the MCE. So, we have

€00 =0 (Ciix) =0 ((s"1s™)

= |et 190,006, 0/(5P0.0) (31.22)

If we have a correct estimate of the sign, we can say (66’0|Si)> x (06"0|si)). And
we estimate the wavelet from Eq. (31.21). Since wavelets are normalized by defini-
tion, we can cancel the proportionality factor in Eq. (31.21):

(0,0l8")) =0 (Ciinls") = (o ((s'1s))Is")) (31.23)
We have tested this algorithm on Benzi model [25] to construct multiaffine fields
based on an order 2 Gaussian wavelet decomposition. The preliminary results are
shown in Fig. 31.2. Since, the process of finding an optimal wavelet is still un-
der review and subjected to constant experimentation, we approximate the optimal

wavelet by a Battle-Lemarié wavelet which is found to give an acceptable approxi-
mation of the optimal wavelet.
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31.6 DATA
31.6.1 Atmospheric Phase

The data is shown in Fig. 31.1(top). The datasets consists in simulated optical phase
perturbated by the Earth’s upper layer turbulent atmosphere. The optical phase cor-
responds to the acquisition of a point source (representing a star far away enough in
outer space so that the optical phase reaching the telescope is in the form of planar
wavefronts). These data are provided by the French Aerospace Lab-ONERA, and
they have the following imaging characteristics:

— diameter of the telescope: 8 m,

seeing at 5 microns: 0.85 arcseconds,

— wind’s speed: 12.5 m/s,

acquisition frequency: 250 Hz,

pupil size: 256 x 256 pixels, but for our experimental purpose we take 128 x 128
pixels from the centre to eliminate boundary effects.

We have the Hartmann-Shack (HS) acquisition of the x and y slopes for the phase
data provided by Onera given by 208 effective HS sub-pupils (size 16 x 16) which
samples the pupil of the telescope. The distribution of the sub-pupils within the
telescope is shown in Fig. 31.4(a). Figures 31.4(b) and 31.4(c) shows the x and y
low resolution acquisition of the phase data, which gives us an approximation of
low resolution x and y components of the gradients for the phase, by the HS sensor.

31.6.2 Sea Surface Temperature

Sea surface temperature data (SST) are global acquisitions of the temperature of the
ocean’s upper layer. Data is radiometrically corrected so that pixels values represent
celsius degrees. Data is acquired by the MODIS instrument orbiting around earth,
pixel resolution is 4 kms, data is acquired on 2 August 2007. In our experiment,
we also use low resolution products representing geostrophy and Ekman currents
deduced from altimetry data according to method exposed in [26]. Pixel size of
altimetry products is 22 kms. Figure 31.3(a) shows the altimetry, Fig. 31.3(b) the
MODIS data and Fig. 31.3(c) shows the low-resolution motion field derived from
altimetry according to [26].

31.7 Results

31.7.1 Edge Detection and Singularity Exponents

First we detail the comparison results on edge detection using classical linear filter-
ing and the set provided by Eq. (31.8). Reconstruction has been performed on the
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Fig. 31.3 (a) Altimetry data (b) Sea Surface Temperature (SST) acquired by MODIS satellite on
August 2, 2007 (c) low-resolution motion field derived from altimetry

edge files computed on the phase and sea surface temperature images. Performance
of the reconstruction on classical edge detectors to a more recent nonlinear deriva-
tive approach (called NLFS) [22] and MSM has been presented in Table 31.1. Also,
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Fig. 31.4 (a) Distribution of the sub-pupils within the telescope (b) HS acquisition of the x slope
for the phase data (c) HS acquisition of the y slope for the phase data

we evaluate the quality of the reconstruction using the peak signal to noise ratio
(psnr, expressed in decibels dB) defined by:

1 (Jp(s(x) —s5,(x))%dx)!/?
A($2) Ay

psnr = —20.0 x loglo( ) (31.24)
where 2 is the image domain, A(£2) its Lebesgue measure (image size), s the orig-
inal image, s, the reconstructed image, and A; is the dynamical range of s, i.e. the
difference between the maximal and minimal values. Better reconstructions tend
to have a higher psnr. A quantitative evaluation of the results are presented in Ta-
ble 31.2.

31.7.2 Reconstruction of Optical Phase

Also, we show that the application of wavelet multiresolution analysis technique
on the signal (optical phase perturbated by atmospheric turbulence) of the singu-
larity exponents provided by a simple approximation of an optimal wavelet (here
a third order Battle-Lemarié wavelet) help us to infer information along the scales
of the signal which in turn can be used to properly reconstruct the signal from low
resolution to high resolution. The process is summarized below:

— We first compute the third order Battle-Lemarié wavelet coefficients associated to
the signal of the singularity exponents computed on the perturbated phase signal,

— for each component (x and y) of the phase gradient at low resolution (16 x 16 sub-
image, see Sect. 31.6.1), back project the component from low to high resolution
to get a phase’s gradient at higher spatial resolution of 128 x 128.

Consequently, we reconstruct the phase by performing inverse gradient operation
on the norms of the gradients. We also check the robustness of our reconstruction
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Table 31.2 Evaluation of edge detection algorithms

Image Algorithm Parameter(s) Density Reconstruction (psnr)
Sea temp. NLES [22] 0=0.2 22.24 % 10.15 dB
Sea temp. Canny o =0.001,« =01 13.094 % 9.65 dB
Sea temp. Laplacian o =0.001, ¢ =01 24.47 % 10.16 dB
Sea temp. Sobel o =0.001 24.58 % 9.58 dB
Sea temp. Zero-crossing o =0.001 13.95 % 9.60 dB
Sea temp. Roberts o =0.001 27.97 % 10.22 dB
Sea temp. Prewitt o =0.001 24.83 % 9.83 dB
Sea temp. MSM parameter free 17.24 % 11.30dB
Phase NLFS [22] o =0.25 24.92 % 8.30dB
Phase Canny 0 =0.001, « =01 14.11 % 7.25dB
Phase Laplacian o =0.001, « =01 28.48 % 7.24 dB
Phase Sobel 0=03 5.83 % 6.48 dB
Phase Zero-crossing o =0.001 15.88 % 6.61 dB
Phase Roberts o =0.001 34.74 % 7.77 dB
Phase Prewitt o =0.001 26.72 % 6.96 dB
Phase MSM parameter free 15.75 % 13.18 dB

algorithm by adding different proportions of Gaussian white noise to the data. Re-
sults obtained, as shown in Fig. 31.6, show visual resemblance of the reconstructed
signal with the original one.

31.7.3 High Resolution Ocean Dynamics

In this experiment, the low resolution vector field shown in Fig. 31.3(c) and derived
from altimetry data is used to generate a high resolution vector field correspond-
ing to SST data. First, the singularity exponents are computed on SST data. Then
a multiresolution analysis is performed on the resulting singularity exponents from
SST spatial resolution (4 km s) down to altimetry resolution (22 km s). The low res-
olution vector field shown in Fig. 31.3(c) is propagated, componentwise, up to SST
resolution and the resulting vector field is prefiltered using an 1/|| f|| filter. The re-
sults are shown in Fig. 31.5: a high resolution vector field representing the ocean
dynamics at resolution 4 kms is obtained from the multiresolution analysis of the
singularity exponents. Validation has been performed on the outputs of a 3D sim-
ulation model, and shows proper reconstruction of the high resolution vector field
both in norm and direction: 80 % of vectors are correctly computed. This method
provides a very interesting alternative to classical motion computation techniques
that use conservation hypothesis (optical flow) or Maximum Correlation methods.
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Fig. 31.5 Vector field computed at high resolution SST MODIS data using the low resolution
altimetry of Fig. 31.3(c) and the multiresolution analysis of the SST singularity exponents as
explained in Sect. 31.7. The color of the vectors indicate their norm from 0.0 cm s~ (blue) to
83.9 cms™! (red). In the background we also display the singularity exponents

31.8 Conclusion

In this work we set up and study a multiresolution analysis scheme general enough
to suit the case of acquisitions of general complex systems. We first study geo-
metrically localized singularity exponents in natural signals, computed in a micro-
canonical framework, from which singularity spectra can be derived. We study their
relations with high order transitions in associated phase spaces, and conclude that
they unlock a notion of transition that outperforms all classical “linear filtering”
approaches for edge detection in the case of 2D images. Edges are typical multi-
scale features, which should maximize information content in natural signals. We
study the performance of reconstructible systems both with transitions associated to
singularity exponents and the edge pixels provided by standard edge detection tech-
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Fig. 31.6 (a) The original phase. Reconstructed phase (b) without noise. (¢) with an input SNR of
40 dB. (d) with an input SNR of 26 dB. (e) with an input SNR of 14 dB. (f) with an input SNR of
6 dB

niques. Examples are chosen among the most difficult natural signals: acquisition of
turbulent phenomena (perturbated optical phase and ocean dynamics acquired from
space). We study a multiresolution analysis scheme associated to the signal of sin-
gularity exponents, and in doing so we provide an effective determination of optimal
wavelets, which are wavelets whose associated multiresolution analysis is optimal
w.r.t inference across the scales. We show the power of the approach by studying
two specific examples: the reconstruction of the phase perturbated by atmospheric
turbulence applied to adaptive optics and the generation of high resolution ocean
dynamics from low resolution acquired altimetry signals. The method is general
enough to provide an effective approach to infer sub-pixel information in most nat-
ural complex signals.
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Chapter 32
On the a-Shiner—-Davison-Landsberg
Complexity Measure

Thomas L. Toulias and Christos P. Kitsos

Abstract Shannon entropy is essential for the study of complex continuous sys-
tems as it forms various complexity measures. Shiner—Davison-Landsberg (SDL)
complexity is such a measure used for the characterization of complex bio-systems,
especially in the study of the EEG signals on epileptic seizures. We consider a con-
tinuous system whose various states can be described by a wide range of distri-
butions provided by the family of the y-ordered Normal distributions. Moreover,
for the construction of the SDL measure of complexity we consider the generalized
Shannon entropy derived via the generalized Fisher’s entropy type measure of infor-
mation Jy. The obtained «-SDL complexity is evaluated and studied with regards
to the absolute complexity state, which is important in bio-systems.

Keywords Fisher’s information measure - Shannon entropy - SDL complexity
measure - y-Ordered normal distribution

32.1 Introduction

The role of complexity, in the behavioral study of bio-systems, attracts increasingly
attention in applications, [6, 8]. For the study of EEG signals on epileptic seizures,
through complexity measures, see [9, 10] and [7] among others.

The Shiner—Davison—Landsberg (SDL) complexity measure Kgpy is introduced
and extended in Sect. 32.3. This measure of complexity is a “universal” measure
in the sense that its dependence on “disorder” is the same between systems with
significant structural differences and is used for the study of systems to determine
their degree of “order” or “disorder”. An extension of the SDL complexity applied
on systems described by the family of y-ordered Normal distributions is adopted
and evaluated in Sect. 32.3.
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The multivariate and elliptically contoured y-ordered Normal distribution
(emerged through the generalized Fisher’s information Ji, ) [5] is defined as follows:

Definition 32.1 The p-dimensional random variable X follows the y -ordered Nor-
mal N)f' (u, X), y € R\ [0, 1], with position parameter u € R? and scale matrix
Y € RP*P  when the density function fy is of the form

—1 v
fx(xm,E,y)=C}’,’IdetEI_l/zeXp{—y—Q(x)ZWy“}, xeRP, (32.1)
Y

with Q the quadratic form Q(x) = (x — ) X! (x — )T . The normality factor C}
is defined as
-1
re+1 —1\"7
Cr=nr/2 (2_1 ) <V ) _ (32.2)
rp=+n\ v

The position parameters w is the mean of X, i.e. © = E(X). The family of the
y-ordered Normal distributions N}f' (u, X') provides a “smooth bridging” between
the elliptically countered multivariate Uniform UP(u, X), Normal NP (u, X),
Laplace L£P(u, X) and the degenerate Dirac D” (i) distributions. That is, all the
above significant distributions are members of the /\/')f7 (u, X) family of distribu-
tions for certain values of order y due to the following Theorem, see [2] and [3] for
details.

Theorem 32.1 The multivariate y -ordered Normal distribution Nf (u, X)), for or-
dervalues of y =0, 1, 2 and 00 coincides with

DP (), y=0, p=12,
0, y =0, p>3,
NP, D)= U, ), y=1, (32.3)
NP(u, 2), y=2,
LP(u, ), y==00

32.2 Generalized Fisher’s Information Measure

The entropy type information measure J,(X) for a random variable X, defined
through the probability density fx(x) of X, is given by

J“(X):/Rp fx@)|[Viog fx (0] dx, (32.4)

see [5] and [4]. This is a (power) generalization of the known Fischer’s entropy type
information measure J(X), since J(X) = J(X) for every random variable X.
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The generalized entropy power Ny (X) is of the form [4]

Na(X) = vger ™™, (32.5)
with normalizing factor v, given by the appropriate generalization of (27e)~!,
namely

—1\*" u TE+ 7
va:<°‘ ) n_2|:(2—1)]1, @ eR\ [0, 1]. (32.6)
ae r(pe—~+1

Theorem 32.2 The Shannon entropy for the multivariate and elliptically countered
Uniform, Normal and Laplace distributed X (for y = 1,2, 00 respectively) is
given by

P12 /det X
10 %7 XNNIP(HHE)a

H(X) = {logJQre)yP[det ], X ~N(u, %), (32.7)

2
log 7’7!6”;(54:;1)&2', X~NL(u, X)),
2

while H(X) is infinite when X ~ NJ (., o1,).

Through the generalized entropy power N, as in (32.5), we can work to obtain
an extended form of the Shannon entropy. This is due to the following Definition.

Definition 32.2 The generalized Shannon entropy of a random variable X, denoted
by Hy(X), is a Jy-related Shannon entropy, i.e. the known Shannon entropy of X,
where its corresponding entropy power is considered to be the generalized entropy
power of X, i.e.

2
Ny (X) = ver Ha®) (32.8)

Therefore, from (32.8) we derive the relation between the generalized Shannon
entropy H, (X) and the usual Shannon entropy H (X),

HeoX) = L10g 2 + L Hx). (32.9)
2 v 2
Practically (32.9) presents a linear (affine) transformation of H(X) depending on

parameter « and dimension p € N, i.e. for fixed p a class of generalized Shannon
entropy is obtained for a p-variate random variable X.

Theorem 32.3 The J,-related Shannon entropy of the multivariate X, ~ N, (i, X)
is given by

2y —« p a—1\*"17/ y ol
=TS Seeor (U] (59

r(pr=+07s .
x|:711| |det2|21’}. (32.10)
F(pet+1)
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Fora =1y itis Hy(Xy) = %log{(Zne)ﬂ det X|%/2}. Moreover for a random vari-
able X following the multivariate Uniform, Normal and Laplace distributions
(y =1, 2, 200 respectively), it is

z%a-’_hfz,av XNNIP(I’LaE)a
Hy(X) =1 p+%log{R/e)!*T' (5 + DY+ hl o, X~NT(n,2), (3211
p+5logp!+hi,, X~Nl (1, X,

where hY o = %log{(2m)P/e(&tyre=Dier(pe=l 4 1)]71|/det ). For the
limiting degenerate case of y =0 we obtain Hy(X¢) = (sgna)(+00).

Notice that despite the rather complicated form of the H, (X, ) with o # y, the
Jy-related Shannon entropy of an «-ordered Normal distributed X,, has a very com-
pact relation.

32.3 The a-SDL Complexity Measure

The Shannon entropy in a continuous system is defined over a random variable
X as the expected value of the information content, I(X) say, of X, i.e. H(X) =
E{I(X)}. This can be considered as a measure of the “disorder” of a system. How-
ever in applied sciences, the normalized Shannon entropy H* = H/max{H}, is
usually considered as a measure of “disorder” because H* is independent of all the
various states that the system can adopt. Respectively, the quantity 2 =1 — H* is
considered as a measure of “order”.

A quantitative measure of complexity with the simple possible expression is the
“order-disorder” product K" given by [1]

K" =Q°H*" = H*"(1 - H")” =2°(1 - 2)", w,heRy, (3212

which is usually called as simple complexity with “order” power w and “disorder”
power h.

The Shiner-Davison-Landsberg (SDL) [10] measure of complexity Kspy is an
important measure in bio-sciences, defined as a special case of (32.12) with w =
h=1,1i.e.

Kspr =4K"' =4H*(1 - H*) =42(1 — Q). (32.13)

We can extend the notion of Kgpr not by power-parametrization of or-
der/disorder, as in K“-" | but with the use of the generalized Shannon entropy defined
described in Sect. 32.2. The new parametrized SDL complexity, called the «-SDL
complexity measure, is defined by K¢, = 4Hy (1 — Hy), with H; being the nor-
malized form of H,. Therefore, the «-SDL complexity preserves the “qualities” of
the usual SDL complexity mentioned above.
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For evaluation purposes, consider a continuous system where its various states
can be described by a wide-range of distributions such as the family of the uni-
variate y-ordered Normal distribution with normalized Shannon entropy Hj (X, ) =
Ho(Xy)/Hy(Z) where X, ~ N, (i, 0%) asin (32.1),and Z ~ N (i1, 02) with 02 =
Var(X, ). The linear expression of H, through H, as obtained in (32.9), is now es-
sential for the normalization of H, because the Normal distribution (also a member
of the NV,, family with y = 2) provides maximum entropy not only for H, but also
for the generalized (Shannon) entropy H,, for every N, distributions with equally
given variances, i.e. a% = Var X,,. Hence, max, {Hy(X,)} = Hy(X2) = Hy(Z), and
the normalization is valid.

Theorem 32.4 The «-SDL complexity of a random variable X, ~ N, (1, o?) is
given by

a—1 F(—+1)
(“a‘+1>}
-1
2 2 45e y 2L 4 Z%LVT)
log*{(ro)2e = GED™ 7 (007 m i r e |

vy \? F(3 S
x logimwe v ( ) (" (32.14)
y—1 2F3(—Vy )

while the a-SDL absolute complexity, max{K gy, (X,)} = 1, is obtained for

+1 2 —1 —
PR Y 257 fa— 1\« TG4 )
o, = b4 e j 5 71 . Y F2
Y o > (5-)

810g{(27r)1/°‘ae y‘”V ( ) 2 (a S

KngL(Xy) =

(32.15)

Notice that Kg‘DL(X 2) =0 for every «, i.e. the normal distribution provides ab-
solute complexity on every «-SDL complexity measure. Thus, K¢, extends the
(expected) result that Normal distributions (as maximum entropy distributions) van-
ishes the SDL complexity. Moreover, it can be proved, through (32.14), that there is
no Uniform or Laplace distribution that provides absolute complexity on all ¢-SDL
complexity measures (including the usual SDL complexity).

32.4 Discussion

A computational overview of the SDL complexity clarifies the theoretical study of
Sect. 32.3.

Figure 32.1 illustrates the behavior of the 2-SDL complexity, i.e. the usual SDL
complexity Kspz (X)) = K3, (X)) with X;, ~ Ny, (i, o) for various scale param-

eters o 2.
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Fig. 32.1 Graphs of the
2-SDL complexity K2, (X,)
along y for various values of
o2 (the left-side graph
obtained for 02 > 1 while the
right-side graph for o2 < 1)
with X, ~ N, (i, 02)
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Table 32.1 Evaluation of KgDL(X »)s Xy ~ Ny (1, o2) for various y and o2 as well as the corre-

sponding y* = y*(o2) values for each o that provide “absolute” 2-SDL complexity

2

y o
130 1/20  1/10  1/5 12 1 2 5 10 100
-5 0917 0869 0567 0413 0302 0251 0215 0.180 0.161 0.118
—4 0944 0884 0599 0444 0329 0275 0236 0.199 0.177 0.131
—3 0965 0907 0.649 0493 0372 0314 0271 0229 0205 0.153
—2 0978 0943 0732 0582 0454 0388 0339 0290 0261 0.197
—1 0969 0993 0.890 0775 0652 0579 0520 0458 0420 0328
0 0000 0000 0.000 0000 0.000 0000 0000 0.000 0.000 0.000
1 —1.03 —144 —408 —18.7 0894 0647 0496 0377 0319 0210
20000 0.000 0.00 0.000 0.000 0000 0000 0.000 0.000 0.000
3 -026 0746 0099  0.053 0033 0025 0029 0019 0015 0010
4 —096 0675 0180  0.103 0066 0052 0.043 0038 0.030 0.021
5 234 0690 0223  0.137 0089 0071 0058 0047 0.042 0.030
+oo —051 0789 0416 0279 0.194 0.157 0.132 0.109 0.097 0.070
Ve - 2678 1383 1079 —023 —020 —0.17 —0.15 —0.14 —0.11
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Evaluations of the 2-SDL complexity KgDL(X y) forvaluesof y =—5,—-4,...,5,
and y = £o0o for various o2 are given in the following Table 32.1 (as these values
form, in some extent, Fig. 32.1).

The last row of Table 32.1 presents the values y; = y5(0'2) (for each given o2 of
the first row of the Table 32.1) which provide “absolute” 2-SDL complexity, i.e. for
K.S%DL(XV*) =1
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Chapter 33
State Space Properties of Boolean Networks
Trained for Sequence Tasks

Andrea Roli, Matteo Amaducci, Lorenzo Garattoni, Carlo Pinciroli,
and Mauro Birattari

Abstract In a recent work, it has been shown that Boolean networks (BN), a well-
known genetic regulatory network model, can be utilised to control robots. In this
work, we use a genetic algorithm to train robots controlled by a BN so as to ac-
complish a sequence learning task. We analyse the robots’ dynamics by studying
the corresponding BNs’ phase space. Our results show that a phase space structure
emerges enabling the robot to have memory of the past and to exploit this piece of
information to choose the next action to perform. This finding is in accordance with
previous results on minimally cognitive behaviours and shows that the phase space
of Boolean networks can be shaped by the learning process in such a way that the
robot can accomplish non-trivial tasks requiring the use of memory.

33.1 Introduction

Dynamical systems provide metaphors and tools which can be effectively used to
analyse artificial agents, such as robots [3, 15]. The dynamical systems metaphor
has also been advocated as a powerful source of design principles for robotics [8].
The core idea supporting this viewpoint is that information processing can be seen
as the evolution in time of a dynamical system [12]. In this paper, we show that a
dynamical systems perspective makes it possible to analyse the behaviour of a robot
controlled by Boolean networks and explain it in terms of trajectories in the Boolean
network’s state space.

Boolean networks (BNs) have been introduced by Kauffman [4] as a gene reg-
ulatory network (GRN) model. BNs have been proven to reproduce very impor-
tant phenomena in genetics and they have also received considerable attention in
the research communities on complex systems [1, 4]. A BN is a discrete-state and
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discrete-time dynamical system whose structure is defined by a directed graph of N
nodes, each associated to a Boolean variable x;,i =1, ..., N, and a Boolean func-
tion f;(xi,...,x; K ), where K; is the number of inputs of node i. The arguments
of the Boolean function f; are the values of the nodes whose outgoing arcs are con-
nected to node i. The state of the system at time ¢, ¢ € N, is defined by the array of
the N Boolean variable values at time z: s(t) = (x1(¢), ..., xy(?)). The most stud-
ied BN models are characterised by having a synchronous dynamics—i.e., nodes
update their states at the same instant—and defterministic functions. However, many
variants exist, including asynchronous and probabilistic update rules [13]. BN mod-
els” dynamics can be studied by means of usual dynamical systems methods [2, 12],
hence the usage of concepts such as state (or phase) space, trajectories, attractors
and basins of attraction. BNs can exhibit complex dynamics and some special en-
sembles have been deeply investigated, such as that of Random BNs [4, 11].

In arecent work, it has been shown that BNs can be utilised to control robots [10].
A BN is coupled with a robot by defining a set of input nodes, whose values are im-
posed by the robot’s sensor readings, and a set of output nodes, which are used to
maneuver the robot’s actuators. The BN is trained by means of a learning algorithm
that manipulates the Boolean functions. The algorithm employs as learning feed-
back a measure of the performance of the BN-controlled robot (in the following,
BN-robot) on the task to perform.

In this work, we use a genetic algorithm to train a BN-robot so as to accomplish
a task concerning sequence learning and we analyse their dynamics by studying the
characteristics of the corresponding BNs’ state space. Our results show that a state
space structure emerges enabling the robot to have memory of the past and to exploit
this piece of information to choose the next action to perform. In the following
of this brief contribution, we outline the task to accomplish and we illustrate the
main results achieved. For completeness, we include a description of materials and
methods.

33.2 The Task

Sequence learning is one of the most prominent activities in humans, animals, as
well as artificial agents and systems [14]. Sequence tasks involve the use of some
kind of memory which enables the agent to choose the next action depending on the
past. The main kinds of sequence tasks are: sequence prediction, generation, recog-
nition and sequential decision making. Sequence learning is clearly a difficult task,
due to the fact that forms of memory structures are needed. Several techniques exist
to tackle the problem, including recurrent neural networks, hidden Markov model,
dynamic programming, reinforcement learning and evolutionary computation tech-
niques, such as the ones used in this work.

In our experiment, the BN-robot must learn to recognise a sequence of colours,
by performing certain actions. The environment in which the BN-robot operates
is a straight corridor. Along the corridor, the ground is painted in three different
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t=0
0.5 T
OBOT EXIT
0o- @ ®
-0.5 1 J
6.5 6 5 4 3 0

7 2 1

Fig. 33.1 An example of the BN-robot’s working environment. The order of black and grey stripes
is randomly chosen at each trial

colours: white (W) represents the background, while black (B) and grey (G) denote
the symbols of a sequence to be recognised. See Fig. 33.1 for an example of the
environment. The BN-robot, placed at the beginning of the corridor, moves along it,
turning its LEDs on when it encounters a black or grey stripe in the right sequence
and keeping the LEDs off when the colour is not in the right order or it is the back-
ground colour. In our case, the sequence to be recognised is a cyclic repetition of
black and grey. For example:

Colours along the corridor: W B W G W G w B W B
BN-robot’s LEDs status: OFF ON OFF ON OFF OFF OFF ON OFF OFF

This task is dynamic, in that the robot needs to decide whether to switch on or off
the LED, on the basis of information concerning the past. To carry out this task, the
robot needs to exploit some sort of memory.

33.3 Results

A successful BN-robot is one which correctly switches its LEDs on and off accord-
ing to the desired sequence, when encountering different colours on the ground.
Since this task requires some kind of memory structure to be constructed, we anal-
ysed the state space traversed by the BN controlling a robot with the aim to under-
stand its operation and dynamics. A similar approach has also been used in previous
works in evolutionary robotics [6, 15]. To analyse a BN, we extracted a sample of
1000 trajectories in the state space by simulating the robot in corridors with colours
in random order. We gathered such trajectories and generated a graph of the ob-
served state transitions. The first relevant observation we derived from this analysis
is that the size of the state space traversed by the BN is a very tiny fraction of the
whole potential state space, which is of size 23, Indeed, the number of states in the
collected trajectories is about 200, on average; hence, the learning process shapes
the BN in such a way that its dynamics is confined in a limited portion of the state
space. A further notable property of the BN dynamics of the robot is that memory
is implicitly represented by connecting different areas of the state space, each de-
voted to a specific set of actions. A compact view of the state space can be provided
in the form of a finite state automaton (FSA), in which states represent clusters of
connected states in the BN phase space. Indeed, the BN phase space can be clus-
tered in sets of states which encode the memory of the previous colour encountered



238 A. Roli et al.

? Start

White / LEDs OFF White

Black

White

Black/ LEDs ON C Gray / LEDs OFF

White Gray L J
\ White

White / LEDs OFF

White

Black Gray

White

Black / LEDs OFF Gray/ LEDs ON

Fig. 33.2 Finite state automaton representation of the trajectory graph over the state space for a
typical BN. A state in the automaton represents a cluster of BN’s states in which the BN remains
until a specific input is received

by the robot. In Fig. 33.2, we report the FSA of a typical successful BN-robot. At
the beginning of the trial, the BN is in a state space area in which the values of the
output nodes are such that the BN-robot goes straight and keeps its LEDs off until a
coloured stripe is found. Then, depending on the detected colour, the BN goes into
either of two regions, which we will denote as the upper (red) and lower (blue) rect-
angles. As we can see, the mechanisms in the two clusters is dual: in the upper one,
the robot switches its LEDs on when it encounters a black stripe either if it is the
first non-background colour it detects or if a grey stripe has been previously found;
conversely, the second state space cluster is devoted to recognising grey stripes, after
a black one has been encountered.

In summary, we can assert that the information concerning the last seen colour is
implicitly stored in the state space area in which the BN operates. This finding is in
accordance with previous results on minimally cognitive behaviours [15] and shows
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that the state space of BNs can be shaped by the learning process in such a way that
the BN-robot can accomplish non-trivial tasks requiring the use of memory.

33.4 Materials and Methods

In this experiment, we control an e-puck robot [5] by means of a BN. The robots are
simulated with the ARGoS simulator [9]. The values of a set of network nodes (BN
input nodes) are imposed by the robot’s sensor readings, and the values of another
set of nodes (BN output nodes) are observed and used to encode the signals for
maneuvering the robot’s actuators. The BN controlling the robot has 30 nodes in
total and the function of each node depends on the value of 3 other nodes, chosen
at random. Four nodes are used as inputs and encode the proximity sensors (North,
South, East, West)—the node is set to 1 if an obstacle is near the robot—and two
encode the ground colours (00 < black, 01 < grey, 11 <> white). Two nodes are
used to control the robot wheels, which can be individually either set to a constant
non-zero speed or stopped.

The BNs controlling the robots are designed by means of a genetic algorithm
(GA),! according to the evolutionary robotics approach [7]. The genetic algorithm
adopts a proportional selection and applies mutation and crossover operators. Muta-
tion is implemented by randomly choosing a node and an entry in its Boolean func-
tion truth table and flipping it.> The crossover operator is a single point crossover,
operating on the binary string given by the concatenation of the nodes’ Boolean
functions. The training process changes the Boolean functions, while the BN topol-
ogy is kept constant (it is generated according to the random BN model, as described
by Kauffman [4]). The fitness function is computed as the average of the perfor-
mance across 10 trials, in which the sequence of colours is randomly generated.
The performance of the BN-robot in a trial is computed as the distance it can walk
along the corridor by correctly switching its LEDs and avoiding the walls. The GA
is run with the following parameter setting: population size equal to 20, elitism set
to 2, pmut = 0.02, pcx = 0.1, the number of generations is set to 5000. The GA is
run 60 times, starting from randomly generated BNs. The successful runs, i.e., those
returning BN-robots correctly performing the sequence task, were 10 out of 60.

33.5 Conclusion

In this brief contribution, we have outlined the results of the analysis of the be-
haviour of BN-robots trained to accomplish a sequential task. The behaviour of a
BN-robot is studied by means of the phase space analysis of the corresponding BN.

!Other search techniques have also been used and we obtained the same qualitative results.
2Details can be found in [10].
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The results show that the training process shapes the phase space so as to restrict
the BN dynamics to few, relatively small, areas. Phase space areas play the role of
memory, as they implicitly store the information concerning the past which is rel-
evant for the BN-robot to choose the next action. In addition, we observe that the
analysis of the BN phase space can be simplified by clustering the set of states and
studying the corresponding finite state automata. This method may also be subject
to formal verification, making it possible to validate the robot’s behaviour.
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Chapter 34

Towards a Deeper Understanding

of the Complex Behaviour Observed

in the Distribution of Words in Written Texts

Concepcion Carretero-Campos, Marcelo A. Montemurro,
Pedro Bernaola-Galvan, Ana V. Coronado, and Pedro Carpena

Abstract Here we show that the recently reported presence of long-range correla-
tions in the distribution of words along texts is due to the complex distribution of
the keywords, while common words are not correlated. Indeed we prove that the
degree of long-range correlations of a word at long scales is a good measure of its
relevance to the text. Additionally, we develop a model able to reproduce the spatial
distribution of a word in a text, based on the long-range correlations observed for
the word. The model not only reproduces the complex behaviour characterized by
the presence of correlations at long scales and the degree of relevance of the word,
but also the probability distribution of the inter-occurrences distances in the whole
range of scales.

Keywords Long-range correlations - Keyword detection - Complex structure
of words in texts - Word relevance and complexity

34.1 Introduction and Background

In the last years there has been growing interest for the study of human language
in the context of complex systems. Written texts are good candidates for such ap-
proach, since they are composed of single elements (words) which can interact
among them in complex forms and at different levels, controlled by grammatical
rules of the particular language, the literary genre, the writer’s style and the infor-
mation the text aims to communicate.

The approaches to text analysis have been focused on three main topics:

(1) The automatic detection of relevant words. The idea is to detect keywords in
a text (i.e. words related to the main topics of the text) without the use of external
information. One successful strategy proposed to tackle this problem [1] uses the
fact that relevant words attracts themselves, and are concentrated in certain regions

C. Carretero-Campos () - P. Bernaola-Galvan - A.V. Coronado - P. Carpena
Departamento de Fisica Aplicada II, Universidad de Malaga, 29071 Malaga, Spain

M.A. Montemurro
Faculty of Life Sciences, The University of Manchester, M13 9PT Manchester, UK

T. Gilbert et al. (eds.), Proceedings of the European Conference on Complex Systems 241
2012, Springer Proceedings in Complexity, DOI 10.1007/978-3-319-00395-5_34,
© Springer International Publishing Switzerland 2013


http://dx.doi.org/10.1007/978-3-319-00395-5_34

242 C. Carretero-Campos et al.

of the text forming clusters and giving rise to large frequency fluctuations. How-
ever, common words are distributed more homogeneously along the text. Therefore,
the larger the clustering, the larger the relevance of the word. Thus, by quantifying
properly the clustering of each word, a ranking of relevance can be obtained. That
connection between clustering and relevance has also been observed with a different
approach [2].

(ii) Long-range correlations in written texts. The complex interactions between
words occurring at many levels that we commented above produce an also com-
plex non-trivial spatial structure in written texts, that can be quantified through the
analysis of the long-range correlations present in the text. The results of such studies
conclude that written texts present long-range structures that give raise to long-range
correlations which have been quantified for different texts and languages [3-5].

(iii) Models for the spatial distribution of words in texts, and specifically for the
probability distribution of the inter-occurrence distances for a given word, p(d).
Some results show [6] that in general p(d) for any word is given by a stretched-
exponential distribution. Although this result agrees fairly well with experimental
observations for large d, fails at short distances d (see methods and results), where
p(d) is systematically overestimated.

Here we show that the three main topics described above are not independent
and in contrast, are deeply related and can be considered as different faces of the
same problem. First, we show that the long-range correlations observed in texts
are due to their keywords: we quantify the long-range correlation of any word in
a text, and show that relevant words present strong long-range correlations and are
responsible for the correlations observed in the whole text, while common words
are not correlated and do not contribute to the text correlations. Indeed, we present
results indicating that the degree of correlations of a word is also a good measure
for its relevance to the text. Second, and the main result of our paper, we present a
model able to reproduce the spatial distribution of a word in a text. Starting from the
correlations of the word and its frequency in the text, the model predicts the position
of consecutive appearances of the word and is able to reproduce all the interesting
properties of the word: its long-range correlations, its spatial structure characterized
by the distribution of distances p(d) in the whole range of d (solving the problem
of previous results) and also the degree of relevance of the word quantified by the
clustering approach referred above.

34.2 Methods

34.2.1 Keyword Detection: The Clustering Measure C

Carpena et al. [1] proposed the measure C. It is an improvement of the method
developed by Ortufio et al. [7], which is based on the statistical analysis of the dis-
tributions of distances between successive occurrences of a word. It follows the
hypothesis that the most informative words of a text have a strong self-attraction
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and tend to form clusters, while common words are placed randomly everywhere in
the text giving raise to a more homogeneous distribution.

Given a word with frequency n in a text, the inter-occurrences distances are
denoted by {d;}. Ortufio et al. [7] proposed the normalized standard deviation
o = s/(d) as a measure of the relevance of the word. The larger the value of o,
the larger the relevance. To avoid the dependence of o on the probability p of the
word in the text, it needs to be normalized to o, = ﬁ where /1 — p is the
expected value of o for a word with probability p randomly distributed. But both
o and oy, strongly depend on the frequency of occurrence n. In order to take into
account the information provided by the clustering o, and by the frequency n, the
measure C is defined as the deviation of o, with respect to the expected value in a
random text (o) (1) in units of the expected standard deviation sd(o,,,) (1) [1]:

Onor — {Onor) (1)
C(Onor, ) A ) (34.1)
C =0 indicates that the word is randomly distributed. The larger the value of C,
the larger the statistically significant clustering, and thus the relevance of the word.
Negative values of C indicate repulsion.

34.2.2 Quantification of Long-Range Correlations in Words:
Detrended Fluctuation Analysis

The occurrences of every word of a text are represented by a binary sequence. Given
a text of length N, for each word we generate a binary sequence x (i) by assigning
the value 1 on all positions i where the word appears in the text and O in all other po-
sitions. In this way, we have a different binary sequence for every word. We choose
a mapping of the text into a binary sequence in order to avoid the introduction of
spurious correlations due to the numeric assignment [8]. The correlations of those
sequences are quantified by the scaling exponent « obtained by Detrended Fluctua-
tion Analysis (DFA).

DFA [9] is a method widely used to estimate long-range power-law correlations.
It measures the average of the fluctuations F (/) of the sequence at different scales /.
A power-law relation,

F(l) 1% (34.2)

indicates the presence of scaling. The degree of correlations are quantified by «,
which can be estimated fitting the slope of log F (/) versus logl. If o = 0.5 the
sequence is uncorrelated, while if & < 0.5 or & > 0.5 there are negative or positive
correlations, respectively.

Note that in our computation we have considered / from 8 to N /10, a range of
scales in which it has been shown that DFA provides accurate results [10].
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34.2.3 A Model for Word Appearances

The goal of the model developed here is to reproduce the distribution of a word
along the text as well as its long-range correlations. To achieve this objective, we
propose to generate a binary sequence with long-range correlations that represents
the occurrences of every word throughout the text (1 when the word appears and 0
otherwise).

In a first step, by Fourier Filtering Method (FFM) [11], we generate a sequence of
random real numbers x (i) with long-range power-law correlations characterized by
the scaling exponent «. In a second step, to obtain from x (i) a binary sequence with
the desired correlation exponent, we assume that the word appears along the text in
the positions i in which the sequence exceeds a threshold (r), so the occurrences
of the word can be represented by a binary sequence obtained by mapping x (i)
to 1 if x(i) > r, and to O otherwise. The threshold r is obtained numerically by
imposing that the probability of having values of the sequence above the threshold
is just the frequency of the word we want to model. We denote the distribution of
inter-occurrences distances obtained by this mapping as po(d).

The analytical form of po(d) is in general unknown. By means of numerical
simulations we have obtained that the cumulative distribution Py(d) (defined as
Py(d) = f doo po(x)dx) is of stretched exponential form [12], i.e.

Po(d) ~ e~ @ (34.3)

where the constants 8 and ¢ depend on the word considered. This functional form
(corresponding to the dashed line in Fig. 34.5) has been proposed recently [6] to
characterize the distribution of distances between successive occurrences of the
same word. Such expression agrees fairly well with experimental observations for
large d but systematically overestimate the distribution at short distances d (see
Fig. 34.5).

Nevertheless, we notice that real words have repulsion at short distances, due to
restrictions imposed by the grammar that does not allow the occurrence of the same
word at very short distances. The previous mapping leads to Eq. (34.3) and does not
account for this feature. To incorporate this phenomenon we propose a repulsion
factor f(d) that modifies the distribution of inter-occurrences distances obtained by
the mapping described above. We accept a distance d (and therefore we accept a ‘1’
at a distance d from the previous one in the binary sequence) with probability f(d)
given by

Fdy=1-— e_(d (i 1)
if d > dpin and f(d) =0 if d < dpin, Where dp;, is the observed minimum inter-
occurrence distance of the real word along the text. The parameter a gives infor-
mation about the characteristic scale of the repulsion, and depends on the word
considered. With this repulsion factor, the final p(d) provided by our model is of
the form:

(34.4)

p(d) ~ f(d)po(d). (34.5)
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Note that the repulsion f(d) modifies po(d) lowering it only at short distances, but
keeps unaffected the large distances regime: for long enough distances d, f(d) ~ 1
and, consequently, p(d) =~ po(d). In this way, p(d) presents the correct behaviour
at all scales.

The three parameters of the model (the correlation exponent «, the threshold r
and the repulsion scale parameter a) can be initially estimated from the text ana-
lyzed: « is calculated using DFA in the binary sequence obtained from the text for
the word considered, r is obtained from the frequency of the word in the text, and a
is estimated as the distance d at which the distribution of distances of the real word
departs from the stretched exponential (see Fig. 34.5).

34.3 Results and Discussion

34.3.1 A Link Between Relevance and Long-Range Correlations in
Words

The results we show here are obtained using the book “The Origin of Species” by
Charles Darwin (6th Edition).! It has a length N = 193786 words and contains a
vocabulary of 8186 word types.

Firstly we calculate the relevance measure C for those 8186 word types to ob-
tain a ranking of relevance. Additionally, for each word with frequency al least 100
(a total of 252 words), we map its occurrences to a binary sequence (see methods)
and quantify the correlations of this sequence by DFA. We consider a cut-off for the
frequency to avoid results affected by low statistics.

Figure 34.1 shows the results of the DFA applied to a relevant word, “species”
(position 4 in the ranking), and to a non-relevant word, “but” (position 8185 in the

'Tt has been downloaded from the Project Gutenberg web page. http://www.gutenberg.org.
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Table 34.1 The first 10

words and the last 10 words Word @®2 Word *2

extracted from the book “The

Origin Of The Species” by seeds 0.945 case 0.500

the correlation exponent at islands 0.905 also 0.499

long scales young 0.901 whether 0.498
water 0.889 hence 0.495
flowers 0.859 SO 0.493
forms 0.849 either 0.491
varieties 0.843 both 0.484
organs 0.836 give 0.484
breeds 0.833 then 0.471
species 0.816 us 0.464

ranking). We observe that at short distances both words have a random distribution
characterized by a scaling exponent « close to 0.5. However, at a distance beyond
the effects of grammatical rules, we observe a crossover in the scaling exponent of
the relevant word towards a value of « significantly greater than 0.5, which indicates
strong long-range correlations.

The existence of a crossover in the correlations at intermediate scales appears
in general only for relevant words (words with high C), while non-relevant words
have a correlation exponent close to 0.5 at all scales and do not have a crossover
to a second regime. To illustrate this behavior, for each word we compute a linear
least squares fit of log F'(/) versus log!/ in a range of distances / from 1000 to 10000
to have a value for the correlation exponent at long scales, which we denote .
In Fig. 34.2 we show the probability distribution of o for the 50 most informative
words and for the 50 least informative words. The separation between the two dis-
tributions suggests that a» can be used to discriminate the relevant words of a text,
the larger the value of a» the larger the relevance, as we can see in Table 34.1. Note
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that the probability distributions of «; for the 50 most frequent words and for the
50 least frequent words almost do not differ one from another (inset in Fig. 34.2),
so these results are independent on the frequency of the words.

The results we have shown here allow us to conclude that: (i) The degree of
long-range correlations of a word at long scales is directly related to its relevance
and (ii) The long-range correlations that have been observed in texts are due to
the complex distribution of the relevant words along the text. Common words, that
have a homogeneous distribution, do not contribute to the existence of long-range
correlations in texts.

The link between long-range correlations and relevance have also been found for
other books and in different languages, suggesting that it is an universal feature.

34.3.2 Complex Properties of Words Reproduced by the Model

Here we present some results of the model we propose to reproduce the correlation
properties of the words. Figure 34.3 displays the generation process of an artificial
word that models the distribution of the word “parts” along the book “The Origin
Of The Species” (for a suitable election of the parameters, see methods). As we can
see in Figs. 34.3(b) and 34.3(c) the spatial distribution of the modeled word agrees
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with the real word, giving raise to a similar cluster structure. If now we apply the
DFA method to the binary sequences generated by 256 iterations of the model and
then average the curves, we prove that the model accurately retains the correlations
structure of the word (Fig. 34.4). The average curve of the model provides a very
good fitting of the correlations of the word “parts” at all scales. In this way we
prove that the model reproduces the distribution of a word along the text as well as
its long-range correlations.

In addition, we focus on the probability distribution of the inter-occurrence dis-
tances of the word “parts”, in order to know if the model is also able to reproduce
it. Motivated by the fact that the function used in the literature to fit this distribution
is the stretched exponential [6], in Fig. 34.5 we represent log(— log(P (d))) versus
logd, where P(d) is the cumulative distribution of the inter-occurrence distances
of the word. In this scale, the stretched exponential (see Eq. (34.3)) would appear
as a straight line of slope 8, but this behaviour is only observed at long distances.
At short distances, which are affected by the grammatical rules, the real distribution
is overestimated. However, if we plot the distribution of distances provided by our
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model, we are able to faithfully reproduce the behaviour at all distances since we
have had into account the repulsion that real words present at short distances.

Finally, we compute the average value of the relevance measure C over all the
iterations of the model, and compare it with the value obtained for the real word.
For the specific word “parts”, for which C =9.71, we have an average (C) = 12.55
with a standard deviation sd¢ = 3.9, and therefore the real C value is clearly within
the confidence interval.

The results of the model are completely general: It is possible to find suitable pa-
rameters which provide similar fittings for others words of this book, for other books
and for different languages (as we will detail in a forthcoming paper). Therefore, we
can conclude that the model we have developed is able to retain all the properties of
interest of words in written texts: it reproduces the complex behaviour characterized
by the presence of correlations at long scales, the spatial structure characterized by
the distribution of distances, and the degree of relevance quantified by the clustering
measure C.
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Chapter 35

Shared Information—New Insights

and Problems in Decomposing Information
in Complex Systems

Nils Bertschinger, Johannes Rauh, Eckehard Olbrich, and Jiirgen Jost

Abstract How can the information that a set {X, ..., X, } of random variables con-
tains about another random variable S be decomposed? To what extent do different
subgroups provide the same, i.e. shared or redundant, information, carry unique in-
formation or interact for the emergence of synergistic information?

Recently Williams and Beer proposed such a decomposition based on natural
properties for shared information. While these properties fix the structure of the de-
composition, they do not uniquely specify the values of the different terms. There-
fore, we investigate additional properties such as strong symmetry and left mono-
tonicity. We find that strong symmetry is incompatible with the properties proposed
by Williams and Beer. Although left monotonicity is a very natural property for an
information measure it is not fulfilled by any of the proposed measures.

We also study a geometric framework for information decompositions and ask
whether it is possible to represent shared information by a family of posterior dis-
tributions.

Finally, we draw connections to the notions of shared knowledge and common
knowledge in game theory. While many people believe that independent variables
cannot share information, we show that in game theory independent agents can
have shared knowledge, but not common knowledge. We conclude that intuition
and heuristic arguments do not suffice when arguing about information.
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35.1 Introduction

The field of complex systems investigates systems which are composed of many
components or sub-systems. Such a system is considered as complex if these com-
ponents interact in intricate ways and exhibit dependencies at all scales. Informally,
complex systems are often described in terms of information that is exchanged be-
tween components. Thus, information theory is a natural tool to study complex sys-
tems.

As an example from neural coding, consider two neurons which provide infor-
mation about some stimulus. Many scientists have tried to uncover whether both
neurons provide redundant information about the stimulus or act synergetically,
i.e. provide information which can only be recovered when the joint response of
both cells is recorded simultaneously [1, 2]. Similarly, one could ask for the unique
information of each response, i.e. information that can be obtained from one of the
cells, but not the other. For example, the brain separates visual information into the
where and what pathways [3] which potentially provide unique information with re-
spect to each other. Another way to explain the intuition on how information can be
decomposed, is to consider two agents which are interrogated about certain topics.
For example, assume that one agent is an expert in physics and biology, whereas the
other one has studied art and biology. In this case, both agents could answer ques-
tions about biology being their shared topic. Furthermore, each agent has additional
unique information about physics and art, respectively. Considering their joint re-
sponses an interrogator might be able to draw interesting connections between art
and physics none of the agents is aware of. This would correspond to the synergetic
information in this case.

In general, when considering more than two random variables, there may be
different combinations of shared, unique and synergistic information, depending
on how the information is distributed among the random variables. The total mu-
tual information /(S : X1, ..., X,) should then be a sum of different terms with
a well-defined interpretation. At the moment, it is not clear how many such terms
are necessary in the general case of n interacting elements. Williams and Beer re-
cently proposed one such decomposition, which they call partial information (PI)
decomposition [4]. This decomposition is naturally derived from simple intuitive
properties that such a decomposition should satisfy.

Before explaining the construction of Williams and Beer, we first have a look at
the case of n = 2 explanatory variables in Sect. 35.2. In Sect. 35.3 we discuss natu-
ral properties that such a decomposition should satisfy and, following Williams and
Beer, use these properties to derive the PI decomposition. In Sect. 35.4 we propose
additional properties that relate the values of shared information in situations where
we ask for information about different variables. In Sect. 35.5 we discuss the mea-
sure Inin proposed by Williams and Beer and compare it to another function Iy, i.e.
the minimum of the pairwise mutual informations. We show that the function I,
may decrease when we ask for information about a larger variable. In Sect. 35.6, we
study the case for three variables. We show that it is difficult to assign intuitively
plausible values to all partial information terms, even in the simple XOR-example.
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Using this example we show that the structure of the PI lattice is incompatible with
a symmetry property which we call strong symmetry.

In Sect. 35.7 we propose a geometric picture for information decomposition [5].
This view provides an appealing mathematical structure and provides additional in-
sights into the structure of information. Within this geometric framework, we com-
pare our ideas to the measures proposed in [4] and [6]. Then, in Sect. 35.8, we study
the game theoretic notions of shared and common knowledge that are used to de-
scribe epistemic states of multi-agent systems, and we discuss how these notions are
related to the problem of decomposing information. We conclude with an outlook
on the possibility of a general decomposition of information.

35.2 The Case of Two Variables

First, we fix the notation and recall some basic definitions from information the-
ory [7]. We assume that a system consists of N components X1, ..., Xy. For sim-
plicity we assume that the set of possible states A; that a component X; can be
in is finite. Thus, the set of all possible states for the whole system is given by
& 1N = XzNzl A

Given a probability distribution p on X'V, the X; become random variables. Mu-
tual information between two random variables X and Y quantifies the information

about Y that is gained by knowing X and vice versa. It can be defined as

IX:Y)=) pMD(pXI)IIp(X)) (35.1)
yey

where D(p(X|y)||p(X)) = er)( p(x|y)log, pp()(c_)lcy)) is the Kullback-Leibler (KL)
divergence between p(X|y) and p(X).! The KL divergence is often considered as
a distance between probability distributions even though it is not a metric. But, like
a metric, it vanishes if and only if the two distributions are identical. It can also be
interpreted as an information gain: if one finds out that Y = y then D(p(x|y)||p(x))
bits of information are gained about X. It is well known that the mutual information
is symmetric and vanishes if and only if X and Y are independent.

Consider now three random variables X, X, and S. The (total) mutual infor-
mation 7 (S; (X1, X2)) quantifies the total information that is gained about S if the
outcome of X1 and X is known. How do X and X, contribute to this information?

For two explanatory variables, we expect four contributions to /(S : X1X>):

I1(S:X1X2)=SI(S:X1; X2) +UI(S: X1\ X2) + UI(S: X2\ X1)
+CI(S: X1; X2) (35.2)

The shared (redundant) information S7(S : X1; X3), the unique informations U1
and the complementary (synergistic) information C7(S : X1; X»). Intuition tells us

'Here, p(X) denotes the probability distribution of the random variable X. When referring to the
probability of a particular outcome x € X of this random variable, we write p(x).
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that the individual mutual informations that are provided by X; and X should de-
compose as

1(S:X1)=SI(S:X1;X2)+UI(S: X1\ X2)
I(S:X2)=SI(S:X1; X2) +UI(S: X2\ X1).

(35.3)

Using the full decomposition (35.2) and the chain rule of mutual information [7]
we find that the conditional informations correspond to unique and complementary
information, e.g. 1(S: X1|X2)=UI(S: X1\ X2) + CI(S: X1; X3). Furthermore,
we recover the fact that the co-information /¢, [8] contemplates shared and com-
plementary information, i.e.

Ico(S: X1:X2) :=1(S: X11X2) — I(S: X1)
= CI(S:X1:X2) — SI(S: X1; X2) (35.4)

Unfortunately, the three linear equations (35.2) and (35.3) do not completely
specify the four functions on the right hand side of (35.2). To determine the decom-
position (35.2) it is sufficient to define one of the functions S/, U and C1. It seems
to be a difficult task to come up with a reasonable and well-motivated definition of
S1 such that the induced definitions of U1 and C/ via Egs. (35.2) and (35.3) are
non-negative. The same is true when trying to find formulas for U/ or C /. Note that
any definition of the unique information fixes two of the terms in (35.2). This leads
to the consistency condition

IS:X)+UIS: X2\ X)=I1(S:X2)+UI(S: X1\ X2), (35.5)

which resembles the chain rule. Indeed, U7(S : X \ X») can be considered as a
version of conditional information which does not contain the complementary in-
formation.?

Apart from the problem of finding formulas for S7, Ul and C1, a second prob-
lem is how to generalize the decomposition (35.2) to more than two explanatory
variables. A possible solution to both problems was recently proposed by Williams
and Beer.

35.3 Natural Properties of Shared Information and the Partial
Information Lattice

Williams and Beer [4] base their construction of a non-negative decomposi-
tion of I(S: X;---X,) on the notion of redundancy or shared information. Let

2 A related notion has been developed in the context of cryptography to quantify the secret informa-
tion. Although the secret information has a clear operational interpretation it cannot be computed
directly, but is upper bounded by the intrinsic mutual information 1(S : X1 | X2) [9, 10]. Unfortu-
nately, the intrinsic mutual information does not obey the consistency condition (35.5), and hence
it cannot be interpreted as unique information in our sense.
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a) {X1, X2} b) H(X1,X3)

{X1} {X2} H(Xy) H(X>)

/ N

{XiH{Xz} I(X1:

b

2)

Fig. 35.1 The PI lattice for two random variables. (a) The sets corresponding to the nodes in the
lattice. (b) The redundancies at the nodes for § = {X, X3}, assuming strong symmetry (see (S;)
in Sect. 35.4)

Aq, ..., Ay € {X1,...,X,}, and denote by In(S : Ay;...; Ag) the information
about S that is shared among the random variables in the sets Aj, ..., Ag. It is
natural to demand that I satisfy the following properties:

(GP) In(S:Ay;...;Ar) >0 (global positivity).

So) In(S:Ay;...;Ay) issymmetricin Ay, ..., Ay  (weak symmetry).

@ In(S:A) =1(S:A) equals the mutual information of S and A  (self-
redundancy).

M) In(S:Aq;...;A) <In(S:Aq;...; Ak—1), with equality if Ax_1 is a subset
of Ay  (monotonicity).

The properties (Sp), (I) and (M) have been proposed as axioms of shared informa-
tion by Williams and Beer in [4]. As Williams and Beer observe, (GP) is a conse-
quence of the other properties. Here we like to state it as a separate property, since
we want to discuss what happens if we drop or relax some of these properties.

The properties (Sp) and (M) imply that it is sufficient to define the function I (S :
A1;...; Ap) in the case that A; Q A foralli # j. A family of sets Ay, ..., Ay with
this property is called an anti-chain. The anti-chains form a lattice with respect
to the partial order defined by (By,...,Bg) < (Ay,...,Ay) if and only if for each
i=1,...,1 there exists j € {I,...,k} such that B; C A;. If § is fixed, then (Sp)
and (M) imply that In(S : -) is a monotone function on the lattice of anti-chains of
{(X1,.... X IEBy,...,By) <(Aq,...,A)), then

InN(S:By,....,Br)=In(S:B1,....Br, AL, ...,Ar) < In(S: Ay, ..., A)).

This lattice is also called the partial information (PI) lattice. In this paper, we focus
on the case of two or three random variables, and the corresponding lattices are
depicted in Figs. 35.1 and 35.2.

Properties (M) and (I) imply In(S: Ay;...;Ar) < In(S:A) =1(S:A)) <
I(S:X1...X,). To obtain a decomposition of this total mutual information, we
need to associate to each element of the PI lattice a “local quantity” [ in such a
way that

InN(S:Ap;...:Ap) = > I5(S:By,...,B).
By,...B)=<(Ay,....Ap)
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a) 123 b) H(123)
12 13 23 H(12) H(23)

s

I1(12:13)  I(12:23) I(13:23)

= N

1 2 3/ 12]13(23 HQ) HE) He)
1j53 % / : M

LS PPN
N L7

Fig. 35.2 The PI lattice for n = 3. For simplicity the sets are abbreviated by juxtaposing the in-
dices of the corresponding variables. For example, 12|13 corresponds to { X, X2}{ X1, X3}. (a) The
PI lattice. (b) The redundancies at the nodes, assuming strong symmetry and S = {X1, X2, X3}

One can show, using the notion of a M&bius inversion, that such a function 7 always
exists, and [y is uniquely determined from /.

As an example consider again the case of two variables (Fig. 35.1). When S is
given, then the upper three terms in the lattice correspond to the mutual informations
I(S:X1),1(S:Xp)and I(S: X{X»). The lowest term, In(S : X1; X») is the shared
information S7(S : X1; X2). The PI decomposition is

In(S : {X1X2}) = Iy (S : {X1 HX2}) + Ir (S : {X1})
+ (S {X2}) + I (S : {X1X2}),
In(S:{X1}) = I(S  {X1}{X2}) + I (S : {X1}),
In(S : {X2}) = I (S : (X1 HX2}) + I5(S : {X2}),
In(S : (X1}{X2)) = Iy (S : {(X1}{X2}).
A comparison with (35.2) and (35.3) shows that
Iy (S {X1X2}) =CI(S: X1; X2),

I(S:{X1}) = UI(S: X1\ Xa),
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L(S:{X2}) =UI(S: X2\ X)),
Iy(S - {X1}{X2}) = SI(S: {X1}{X2}).

As stated above, when I is known, then I3 can be computed uniquely using a
Mobius inversion. In general, I may have negative values. In order to have a natural
interpretation of the PI decomposition, we need to require:

(LP) Iy =0 (local positivity).

Local positivity can also be expressed as a condition on I, see [4].

35.4 Further Natural Properties of Shared Information

The properties presented in the preceding section were identified by Williams and
Beer and are naturally related to the notion of the PI lattice. Unfortunately, they are
not enough to specify the function I uniquely. The properties are incomplete for
mainly two reasons: First, they do not tell us much about the left hand side apart
from the normalization condition (I). Second, they do not tell us enough about what
happens when we add another argument on the right.

In this section we propose natural properties that describe the role of the left-hand
side. Our first proposal is the following property:

(S1) In(S:Ay;...;Ay) issymmetricin S, Ay, ..., Ay (strong symmetry).

In the following, we mostly consider the case that S = {X,..., X,;}, and in this
case (M) and (S;) together imply that In(S : Ay;...; Ax) = In(A] : Ag; ... Ap),
and hence we may omit the first argument S.

Unfortunately, strong symmetry is not satisfied by many information theoretic
quantities that are used to quantify shared information or synergy, but nevertheless
we think that it is natural: If I has just two arguments, then strong symmetry does
hold, since the mutual information is symmetric. In other words, the amount of
information that one random variable X contains about another variable X, is the
same as the amount of information that X, carries about X. It is natural to assume
that an analogous statement should hold if /n has more than two arguments. Note
that the co-information /¢, is symmetric in all its arguments.

Under the strong symmetry assumption, if we consider two variables X and
X5 and set S = {X1, X»}, then all functions are fixed. The corresponding lattice is
depicted in Fig. 35.1(b). We will see later that, given the other properties, strong
symmetry contradicts the local positivity in the case of three random variables
X1, X», X3. The implications of this will be discussed later.

A weaker property restricting the dependence on the first argument is the follow-

ing:
(LM) In(S:Aqp;...;Ap) <In(SS :Ay;...;Ar)  (left monotonicity).
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This property captures the intuition that if Ay,..., Ay share some information
about S, then at least the same amount of information is available to reduce the un-
certainty about the joint outcome of S and S’. Left monotonicity follows, of course,
from monotonicity and strong symmetry.

Another property, which is independent from strong symmetry and which also
implies (LM), is the following:

(LC) In(SS" :Ap; .. ;A =In(S: A 5 A) + IN(S AL ALLS)  (left
chain rule).

where In(S" 1 Ay;...; AglS) is given by Y o p($)In(S" 1 Ag; ... Akls), ie. all
distributions are conditioned on s and then the average is taken to obtain a con-
ditional information. This property is a natural generalization of the chain rule of
mutual information. Moreover, a similar property is used in Shannon’s axiomatic
characterization of entropy.

Unfortunately, the left chain rule is not fulfilled by any of the proposed measures
for shared information that we discuss later. Nevertheless, we state it here, since
we find it mathematically appealing. The same is true for left monotonicity: Most
measures do not satisfy (LM), see Sect. 35.5.

The left chain rule together with local positivity also implies the following prop-
erty which has recently been proposed by [6]:

(Id2) In(A1UA2:A1;A2) =1(A1:Ay) (identity).

The identity property implies that In({X1, X2} : X1; X») vanishes if X and X, are
independent. At first sight it seems natural that independent random variables cannot
share information. However, in Sect. 35.8 we will argue that they may indeed share
information in this case.

35.5 The Functions I,i, and I;

Williams and Beer define a function Iin(S, A1, ..., Ar) which satisfies all their
properties (GP), (So), (I) and (M) as follows:

Imin(S :A1;...5 Ap) = Z p(s) mmZ plails) log p(S(LCl)z)
- Z p(s) m,inaZi plails) log Pp(?;i;)
= o ton L2

pa)p(s)

The idea is the following: For each i compare the prediction p(s|a;) of S by A; with
the prior distribution p(s) of S. Then combine a minimization over i with a suitable
average using the joint distribution of A; and S.
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The order of the minimization and the averaging plays a crucial role. If we inter-
change it, we obtain another function
p(sla;)
p(s)

(S Ay ... Ap) =miian(s)Zp(a,-|s)log miin{I(S AN}

This function I; satisfies the same properties, including local positivity (LP) (the
proof of [4] that proves (LP) for I, applies). Of course, I; does not at all capture
the intuition behind the notion of shared information: I; just compares absolute
values of mutual informations, without caring whether different variables contain
“the same information.” We will later argue that Iy, suffers from a similar flaw
(in particular, In = I in the examples considered below). Note that any function
I satisfying the properties (GP), (So), (I) and (M) satisfies In < I;. In particular,
Iin < 1.

The function /; satisfies left monotonicity. However, I, does not: For example,
the following joint probability distribution

X, X S 9 |

0 0O 0 0]1/6
0 1 0 01(1/6
0 1 0 1(1/6
1 1 0 1(1/6
1 0 1 112/6

satisfies Imin(S : X15 X2) = + + 3(310g,3 — 1) > Iyin(SS” : X1; X2) = %. This ex-
ample can be understood as follows: If § = 0, then both X; and X, have some
information about S and thus contribute %log2 3 — 1 bits to Iy in this case. How-
ever, if we additionally condition on §’, then in any case one of X| or X; carries
no information: To be precise, if (S, S') = (0, 0), then X3 is uniformly distributed,
and if (S, S") = (0, 1), then X is uniformly distributed. Thus, in both cases the
minimization contributes zero bits to Iyi,. The remaining case (S, S) = (1, 1) is
equivalent to the case S = 1, where both X and X, are fixed, and contributes one
bit with weight .

Omitting the calculations we mention that the redundancy measure proposed
by [6] (and denoted by Iysp in Sect. 35.7) also violates left monotonicity in the
same example.

35.6 The Case of Three Variables

For three variables, the PI lattice is depicted in Fig. 35.2(a). Under the assumption
of strong symmetry all but two values in this lattice are fixed, see Fig. 35.2(b). The
unknown values correspond to the information shared by three random variables.
In the following, we discuss an example with three random variables X, X»,
X3: Assume that X; and X, are independent binary random variables, and let
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a) 2(0) b) H(123) =2
2(0)  2(0)  2(0) H(12) =KI(13) =2\ﬁ(23) =2
2(0) _ 2(0)  2(0) 1(12:13) 21<(12 : 23) 21<(13 :23) =2

1(0) 1(0) 1((»%2(1) H1) =1 W?

I(1:23)=1" I(2:13)=1 I(3:12)=1

X X > >

1(0) 1(0) 1(0) I(1:2)=0 I(1:3)=0 I(2:3)=0
1(1) \‘0/

Fig. 35.3 Redundancies in the XOR-example: (a) Inin(123, -) in the example. The numbers in
parentheses are [3(123, -). (b) The shared information assuming strong symmetry

X3 = X1 & X, where @ denotes the sum modulo 2 or the XOR-function. Note
that this example is symmetric in X1, X, and X3. Figure 35.3(a) shows the values
of Inmin and I3 in this example for S = { X, X», X3}; in other words, we decompose
the information that the system has about itself. What is striking is that the lowest
entry in this lattice does not vanish: According to Inin, X1, X2 and X3 share one bit
of information, although they are pair-wise independent. This fact that independent
variables may share information according to I, has also been observed and crit-
icized in [6]. We will later give an argument from game theory that explains how
independent variables can share information. Nevertheless, in our opinion one bit
of shared information is too much in this situation: The absolute value of one bit of
shared information needs to be compared to the fact that each of X1, X», X3 does
not carry more than one bit of information. Note that in the XOR-example Ijnin = I;.

A close analysis of this also reveals that strong positivity is incompatible with
the PI lattice:

Theorem 35.1 There is no measure of shared information that satisfies (S1), (M),
(D) and (LP).

Proof Assume that In is a monotone function on the PI lattice that satisfies
strong symmetry (S1). In the PI lattice for the XOR-example we can express
all values on the lattice in terms of entropies and mutual informations, with
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one exception, see Fig. 35.3(b). Note that, by strong symmetry, In(X1X2X3 :
At . A) =1In(Aq; ... ; Ax) whenever AjU---UAg C {X1, X», X3}. Comparing
with Fig. 35.2(b) we see that the information shared by X1, X» and X3 must vanish
by monotonicity, since the terms on the next layer also vanish, I(X;, X ;) =0 for
i # j. Only the information shared by the pairs {X1, X»}, {X1, X3} and {X5, X3} is
not determined. However, we can bound these terms by the monotonicity. Similarly,
we can compute bounds on /3. Namely,

Iy ({X1. Xa}: (X1, X3}: {X2, X3})

= In({X1, X2}: {X1, X3}: {X2, X3}) — In({X1}: {X2, X3})
— In({X2}: (X1, X3}) — In({X3}: {X1, X2}) £0<2 -3 =—1,

where 40 represents a sum of terms belonging to the lowest two layers of the PI
diagram, and these terms all vanish. This calculation shows that local positivity is
not possible. d

To resolve this problem, one of the properties mentioned in Theorem 35.1 has to
be dropped. The easiest solution is to drop strong symmetry. What are the alterna-
tives? We have to keep self-redundancy (I) and local positivity (LP), since we want
to find a decomposition of mutual-information into positive terms. Therefore, if we
want to keep strong symmetry, we need to replace monotonicity (M). It is probably
a good idea to keep the inequality condition in (M), but it is conceivable to replace
the equality condition. However, one must keep in mind that the equality condition
is essential in justifying the use of the PI lattice: Without this condition the values of
the function I on arbitrary collections of subsets are not determi