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Supervisor’s Foreword

It is believed that hierarchical structures of the Universe such as galaxies, clusters
of galaxies and the large-scale structure are originated from tiny quantum fluc-
tuations generated in the epoch of inflation, which is the accelerating expansion
period in the very early stage of the Universe. The remnants of these quantum
fluctuations are also shown in temperature anisotropies of Cosmic Microwave
Background (CMB) radiation. These anisotropies were discovered by COBE
satellite in 1992 and studied in detail by WMAP satellite. To investigate these
structures observed today is so far the only clue for the mechanism of inflation. It
is no wonder that study of statistical nature of fluctuations becomes one of the
current hottest topics in cosmology.

Theoretically, it is predicted that fluctuations obey a Gaussian distribution as a
first approximation. Strictly speaking, however, the existence of a small deviation
from Gaussian distribution, i.e. non-Gaussianity that is induced by nonlinear terms
of density fluctuations in the evolution equations, is expected. Since the magnitude
of non-Gaussianity depends on the detailed mechanism of inflation, we can probe
inflation to study non-Gaussianity. For this purpose, a bispectrum, i.e. a three point
correlation function in Fourier space, is most useful since it only arises when there
is a deviation from the Gaussian distribution.

Although there is a flood of studies on non-Gaussianity and the bispectrum,
most of them are about simple temperature fluctuations or density fluctuations,
which are associated with structure formation and are classified as scalar pertur-
bations. On the contrary, vector type perturbations, which might be induced by
primordial magnetic fields, or cosmic string, and tensor type perturbations, which
are gravitational wave modes, are not studied in detail due to complications of
treatments.

In this thesis, “Probing the Early Universe with the CMB Scalar, Vector and
Tensor Bispectrum”, Maresuke Shiraishi has first time developed a comprehensive
formula to handle bispectrum of CMB for both vector and tensor mode pertur-
bations. This thorough work is truly a milestone in the study of non-Gaussianity.
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viii Supervisor’s Foreword

His formula can be used in diverse cases and enable us to access the very early
Universe more deeply and widely. As an example, in his thesis, he himself has
calculated the bispectrum in the cases of existence of primordial magnetic fields
and violation of parity invariance or rotational invariance.

Nagoya, July 2012 Naoshi Sugiyama
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Chapter 1
Introduction

1.1 History of the Universe

Several observational and theoretical studies on the cosmological phenomena such as
the cosmic microwave background (CMB) radiation and matter clustering established
the standard cosmological scenario that our Universe starts from microscopic scale
and has been cooling down via the spatial expansion. Here, we summarize this
scenario on the basis of Ref. [1].

In the primeval stage, the Universe may experience the accelerated spatial expan-
sion, so-called inflation. In this stage, physics is determined in the quantum fluc-
tuation. Via unknown reheating process, the energy of inflation is transformed into
particles. Just after reheating, (strong), weak and electromagnetic interactions are
unified and almost all of particles are relativistic. However, we believe that via cool-
ing of the Universe and some symmetry breakings, particles become massive and
decouple each other. Below 100 GeV, the electroweak symmetry breaking occurs and
the weak interaction weakens as the temperature drops. At around 1 MeV, neutrinos
decouple from electrons. Below 0.5 Meyv, electrons become massive and et — e~
annihilation frequently occurs. If the temperature reaches 0.1 MeV, the nucleus of
light elements are produced from protons and neutrons. Observational abundance
of these elements matches the theoretical estimation based on the Big Bang sce-
nario. If the temperature becomes less than 1 eV (10!! sec), the energy density of
matters dominates over that of radiations. At around 0.1 eV (380000 yrs), protons
(and helium nucleus) and electrons combine into hydrogen (and helium) atoms. This
process is called recombination. The CMB radiation is photon which decouples at
that time and comes to us now. This is the black body radiation whose averaged tem-
perature and its spatial anisotropies are, respectively, 2.725 K and ¢/(107>) K. The
anisotropies of CMB intensity and polarizations reflect the density fluctuations in
the primordial Universe. Resultant contrasts of matter distributions evolve observed
large-scale structures in the balance between the gravitational force and pressure of
radiations. Consequently, small-scale structures are produced earlier compared with
large-scale structures. First stars arise at around 10 yrs. After these die, emitted
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2 1 Introduction

photons ionize hydrogen atoms in the intergalactic medium until redshift z ~ 6.
This phenomenon is called reionization. At latter half of the age of the Universe, the
second accelerated expansion starts. This may be because an unknown energy with
negative pressure, the so called dark energy. This expansion continues at the present
epoch (13.7 Gyrs).

1.2 Access to the Inflationary Epoch

At the inflationary era, the field values of physical quantities, such as metric and
matters, quantum-mechanically fluctuate inside the horizon. However, the acceler-
ated spatial expansion stretches these fluctuations beyond the horizon. Due to no
causal physics, metric perturbations outside the horizon are preserved.! These con-
stant metric perturbations re-enter the horizon just before recombination and behave
as seeds of the CMB fluctuations. In this sense, detailed analyses of the patterns of
the CMB anisotropies will help explain the questions about the initial condition of
our Universe, e.g., what kind of field there exists, what state gravity is in, and how
strong the coupling is.

1.3 Concept of this Thesis

Conventionally, the information of the primordial density fluctuations has been
extracted from the two-point functions (power spectra) of the CMB fluctuations.
There is a statistical property that although a non-Gaussian variable generates both
even and odd-point correlations; a Gaussian variable generates only even-point cor-
relations. Hence, it is hard to discriminate between the Gaussian and non-Gaussian
signals in the CMB power spectrum. Theoretically, whether the primordial seed
fluctuations are Gaussian depends completely on the inflationary models. Therefore,
the check of the non-Gaussianity of the primordial fluctuations will lead to a more
precise comprehension of the early Universe. To extract the non-Gaussian signals
from the CMB anisotropy, we should focus on the higher-order correlations of the
CMB fluctuations such as the CMB three-point correlations (bispectra). Owing to
the recent precise observation of the Universe, the CMB bispectra are becoming
detectable quantities. As a result, the CMB bispectra are good measures of the pri-
mordial non-Gaussianity.

The primordial non-Gaussianities originating from the scalar components and
their effects on the CMB bispectrum have been well-studied (Refs. [2, 3]). However,
for some situations the vector components (vorticities) and tensor ones (gravitational
waves) also act as non-Gaussian sources. This indicates that unknown signals, unlike
the scalar case, may also appear in the CMB bispectra. To study these impacts in

! This is valid only when there are no anisotropic stress fluctuations.
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detail, we produced the general formulae for the CMB temperature and polarization
bispectra from the scalar, vector and tensor non-Gaussianities [4, 5]. Next, utilizing
these formulae and computing the practical CMB bispectra, we obtained new con-
straints on some primordial non-Gaussian sources and learned more about the nature
of the early Universe [6—10].

This thesis aims to discuss the CMB bispectra induced by the primordial scalar,
vector, and tensor non-Gaussianity on the basis of our recent studies [4—10]. More
concrete organization of this thesis is as follows. In Chaps. 2 and 3, we demonstrate
how to generate the seed fluctuations in the inflationary era on the basis of some
review papers and present formulae for the scalar, vector, and tensor modes of the
CMB anisotropies as mentioned in Ref.[4]. We also review some observational
findings obtained by the analysis of the CMB power spectra. In Chaps.4 and 5, we
describe the general formulae of the CMB bispectra generated from the primordial
scalar, vector, and tensor non-Gaussianities [5]. We then discuss the applications to
the non-Gaussianities in two scalars and a graviton correlator [5] (Chap. 6), involving
the violation of the rotational or parity invariance [9, 10] (Chaps.7 and 8), and
sourced by the primordial magnetic fields [6—8] (Chap.9). Finally, we summarize
this thesis and discuss some future issues (Chap. 10). In the appendices, we describe
some mathematical tools and the detailed calculations required for the conduct of
our formalism.
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Chapter 2
Fluctuations in Inflation

Inflation expresses an exponential growth of the scale factor of the Universe in the
early time, namely, a ~ e'’. In Einstein gravity, this requires p ~ —p with p and
p being the pressure and energy density, and is often realized by the existence of a
scalar field, inflaton. We believe that the small fluctuations of this field have created
the curvature perturbations and the density contrasts of matters. Moreover, some
vorticities and gravitational waves may also have evolved together. In this section,
we briefly describe the physical treatment of these fluctuations in the inflationary era
in accordance with Ref.[1].

2.1 Dynamics of Inflation

As the action in the inflationary era, we consider the simple one including a scalar
field ¢, which is called inflaton and minimally coupled with gravity as

1 1
S = /d4x«/_—g [EM]f]R - Egﬂva,“pav¢> - V(¢)] . (2.1)
where R denotes the Ricci scalar, V(¢) is the potential, and My, = (87 G) 2 is
the reduced Planck mass. The energy momentum tensor and the field equation for ¢
are, respectively, given by

2 &S 1
T = T g ogh 0.00v0 — &uv (530¢3a¢ + V(¢)), (22)
88 1
— = ——0,,(4/—g3"¢) + Vs =0, (2.3)
5o g~ ¢
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6 2 Fluctuations in Inflation
where Vy = dV /d¢. On the FLRW metric as
ds? = —di® + a*dx* = a*(—dt* + dx?) (2.4)

with t being the conformal time and under the assumption that ¢ (¢, X) = ¢ (¢), the
energy density and pressure of the scalar field are written as

1 1
ps =508’ +V@). py =509~ V(@) @3

Thus, if V exceeds (9;¢)%/2 and the parameter Wy = pg/py becomes less than
—1/3 and the accelerated expansion can be realized. The Friedmann equation, the
acceleration equation and the field equation are, respectively, given by

1 1
H? [5(8@)2 + V(d))} ,

3M
14 L (pp+3pg) = HX(1 1) (2.6)
— =5 (pp +3py) = —€H), :
de> — 6M]
d*¢ de
— +3H—+V, =0,
dr? + dt Ve

where H = 9:;a/a is the Hubble parameter and we have introduced the so-called
Hubble slow-roll parameter as

& H din H 3( o 1({ &¢ \° 07
& = — === =—{—), .
"= AN~ 2 2\ My H

with N being the e-folding number. For wy < —1/3, ey < 1 is realized and the
Universe experiences an accelerated expansion. Moreover, this acceleration is kept

stable if “227? <K |3H9;¢], |Vyl. This corresponds to

NH=—————> =g ———— <K 1. (2.8)
r €H

Other slow-roll parameters are defined as the function of the potential:
2

My (V2 V,
s(¢>57’”(7"’) WIOESIERS (29)

Here, ¢ and n are called the potential slow-roll parameters, and in the slow-roll
approximation, the Hubble and potential slow-roll parameters are related as

ey ~XeE, NgRN—E. (2.10)
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Hence, the slow-roll inflation occurs also for ¢, || <« 1. When these slow-roll
parameters reach unity as

€1 (fend) = 1, &(Pena) = 1. (2.11)

inflation stops.
The e-folding number as the function of given time during inflation is formu-
lated as

fend Qend H ¢ V
N(@) = In 20 _ Hdt = / —d¢p ~ —d¢
a t ¢ at¢ d)end V¢

Y dp [*  d¢
Qend MP1 \ 28H Qend Mpl V 2¢ .

Note that N(¢) = 60 should be satisfied in order to solve the horizon and flatness
problems.

(2.12)

2.2 Curvature and Tensor Perturbations

Here, we summarize the analytical solutions of curvature and tensor perturbations
in the de Sitter space-time, which is derived from the action (2.1). For convenience,
we adapt the comoving gauge as

8¢ =0, gij =a’[(1+29)8;j + hijl, oik';j=h'; =0. (2.13)

Comoving curvature perturbation & and the tensor perturbation /;; remain constant
outside horizon if there exist no extra anisotropic stresses. "

The quadratic actions of Eq. (2.1) for curvature and tensor perturbations are respec-
tively given by

S,(;Z) = Mgl/dtd3xa28H [%2 — (3,'%’)2] , (2.14)
M? .
s\ = 7}]1/clﬂu'cz’3)ca2 [hijhij — 0thijorhi;] . (2.15)

1 On superhorizon scales, this % is consistent with % in Refs.[2, 3], ¢ in Refs.[4, 5], —Z in
Refs.[1, 6], and —¢ in Ref.[7]. In a numerical code CAMB [8, 9], the primordial scalar-mode
power spectrum is given by this Z.

2 In Chap. 9, we will show that due to the finite anisotropic stresses of the primordial magnetic
field, the curvature perturbations (and gravitational waves) do not remain constant even on the
superhorizon.
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where * = d/dt. Obeying the Fourier expansion as

d3k ik-x

%(X, ‘L') =/m%(k, T)e . (216)
I’k o) 0 (o ikex

hij (X, T) = O Z h P &, )e; (k)e' ™, (2.17)
T A=12

these are rewritten as

2 d’*k
s2 =/dt (Mpia) gH/ o )g [L%’(k )2 k2|<%’(k,7:)|2], (2.18)
2
2 1a
SO = Z/ ( P ) (2 e [|h(k)(k DI — 2 1h® (k, r)|2].
A==%2

(2.19)
Here, e(] is the transverse-traceless polarization tensor which has two circular states

A = %2 and is normalized as ef?) (k)eg.‘ ) (—k) = 20, . The convention and useful
properties of this tensor are described in Appendix D. The variable transformation

asv0 = 7%, 7= ade (for scalar mode), v(#2) = ayl" h(*2) (for tensor mode), and
the variation pr1n01ple as 85/8v») = 0 lead to the field equation as
TR LR I 2.20
Vk 'L’ k — Y ( . )

where we have used a relation in the de Sitter limit: 7/z = d/a = 2/12.
To solve these equations, we perform the quantization of the field v as

(k) ~ (1)

= we(may +vima’). (2.21)

When we set the normalization of the mode functions as
(Vis Vi) = % (Vi — i) = 1, (2.22)

the canonical commutation relation between the creation (am T) and annihilation

(a ()‘)) operators can be written as

[ ()L)’ AIE)’L )T] = Q7)38(k — K)8; 5. (2.23)

A vacuum state is given by
a 10y = 0. (2.24)
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As a vacuum, one often choose the so-called Bunch-Davies Vacuum denoting the
Minkowski vacuum in the far past. In this condition, i.e., T — —oo or |kt| > 1, the
field Eq. (2.20) is reduced to

P kM = 0. (2.25)

This is equivalent to the equation for harmonic oscillators and hence easily solved as
—ikt

V(1) = ——.
2k

Owing to two boundary conditions (2.22) and (2.26), one can gain the solution of
the mode function in the field equation (2.20) as

e*ikr i
o =" (1 - E) (2.27)

Using this, we can express the time evolution of the primordial curvature and tensor
perturbations as

(2.26)

_ 7 AO) | xp A0
RK, T) = ——r[vk(t)ak +vk(r)a7k], (2.28)
0rd
H . )
hED (K, 7) = —«/EM—lr [vk(t)al((ﬂ) + vZ(r)a(j(z)T] . (2.29)
p

Finally, we summarize these power spectra on superhorizon scales (|kt| < 1) as

2 2
<H %(kn)> = 27)3 Py(k))s (Z kn) , (2.30)
n=1

n=1

P(k)_Hf Ho \> (H\ 1 (H) 1
P a3\ @), ) T \ My ) dendd T \My) ek

and
2 2
<H ]’l<)‘")(kn)> = (2n)3 Phékl)a (Z kn) 83y
n=1 ) n=1
H \" 2
Py (k) = (M—pl) 2. 2.31)
Here, we have evaluated all quantities at horizon crossing, namely 7, = —1/k. Note

that since % and h*? are constant on superhorizon scales, these power spectra
become the initial conditions for the CMB power spectra of the scalar and tensor
modes.
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2.3 Consistency Relations in the Slow-Roll Limit

As a measure of the amplitude of the primordial gravitational wave, one often use
the tensor-to-scalar ratio as

2Py (k
o2& (2.32)
Pg (k)
Comparing Eq.(2.30) with Eq.(2.31), we find a consistency relation
r = 16y, ~ 16¢,. (2.33)

Using Hdt = dN, we find that r is a measure of the evolution of the inflaton as

8 (do\>
pl

By performing an integral over N and an approximation as r ~ const during inflation,
we obtain the so called Lyth bound [10]:

2_3 - (()%)”2_ (2.35)

Therefore, if we observe r > 0.01(< 0.01), we may conclude that large-field (small-
field) inflation, namely, A¢ > My (< Mp) occurred.

As measures for the shapes of the spectra, we often use the spectral indices, which
are defined by

_dIn Py _dn Py (2.36)
BTN kM T 7T dmk '
From Egs. (2.30) and (2.31), the right-hand sides are expanded as
dIn Py _ dln H, B dlneg,\ dN 3 2.37)
dInk dN dN dlnk
dlnPh_ din H, dN
dlnk = dN dlnk

From the definition of the Hubble slow-roll parameters (2.7) and (2.8), we obtain

dIn H, dineys

AN e TN

=2(eHx — NH+)- (2.38)
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By usingk = a.H, anddInk = dN + d In H,, we have

dN |:1+dlnH*

-1
N ] ~ 14 ey (2.39)

Consequently, we can summarize the consistency relations:

ng —1=2nps —4epy = 20y — 68y, (2.40)

Ny = =284 X —28&4.
From Eq.(2.33), we also find the consistency relation between r and n; as
r = —8n;. (2.41)

As shown above, r, ng; and n; depend on the slow-roll parameters and hence are
observables which reflect the nature of inflation.
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Chapter 3
Fluctuations in Cosmic Microwave
Background Radiation

Cosmic microwave background (CMB) radiation is composed of photons which have
decoupled from electrons in the epoch of the hydrogen and helium recombination
at z = 1,089 and it is observed as the perfectly black body radiation whose aver-
aged temperature is 2.725 K. Historically, in 1949, Alpher and Herman predicted
its existence as relics of the big bang Universe and its first detection came in 1964.
More precisely, however, the CMB involves the spatial fluctuations of ¢’(107) K
(see Fig. 3.1). We had to wait the detection of the CMB anisotropy until the data of
the COBE experiment were released in the 1990s.

Theoretically, the density contrast of the CMB is computed in the system where
photons, neutrinos, baryons, dark matters and dark energy exist in the gravitational
potential. Compared with the observational data, the values of several key parameters
have been well-determined. The WMAP experiment established the facts that the
Universe is close to spatially flat and the present structure grew from the nearly scale-
invariant primordial fluctuations. These consequences are almost consistent with the
prediction of the standard slow-roll inflation. Furthermore, we have a compelling
evidence that the Universe is dominated by dark energy and dark matter, which
implies that 96 % of the total energy of the Universe remains unknown. Nowadays,
some bare anomalies such as the preferred direction and the parity violation are
furthermore being discussed [1], and we expect to extract more detailed information
from the new precise measurements [2].

In addition to the intensity of the CMB, the polarizations also lead to better
understandings. The curl-free component of the polarizations, £ mode, reflects the
recombination history, in particular, the reionization of the Universe. The curl com-
ponent of the polarizations, B mode, is generated from the primordial vector and
tensor perturbations. Hence, the detection of the B-mode polarization will provide
clues as to inflation and the physics beyond the standard model of the particle physics.

In this chapter, we describe the original formalism of CMB fluctuations including
intensity and polarization anisotropies from the scalar, vector, and tensor modes
partially on the basis of our paper [3], some publications [4—7] and some academic
dissertations [8—10], and summarize current outputs from the analysis of the CMB
power spectra.
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14 3 Fluctuations in Cosmic Microwave Background Radiation

Fig. 3.1 CMB anisotropy on the last scattering surface. The red (blue) parts correspond to the hot
(cold) spots (Copyright 2011 by Daichi Kashino)

3.1 Einstein Equations

Here, we derive the zeroth and first-order Einstein equations. Let us consider the flat
(K = 0) FLRW metric and small perturbations in the synchronous gauge (for open
and closed cases, see [11-13]):

ds? = a*[—d7® + (8;; + hij)dx'dx’]. (3.1)

We have the inverse metric to first order in perturbations as

1 ) 1 .
=8 =0.87 = (67— i), (3.2)

The Einstein equation with the cosmological constant A can be written as

1
G"y = R*y — 28" R =81 GT", — AS",, (3.3)
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where the left-hand side denotes the curvature of space-time and the right-hand one

is the energy momentum tensor. The Ricci tensor R, and Ricci scalar, namely a
contracted form of the Ricci tensor, R, are expressed with the Christoffel symbols as

R;w = Rauav = Fa;w,a - Fa;wz,u + Faﬂarﬁ/w - Faﬂvpﬁ;wu (3-4)
where, , = 9. The Christoffel symbols in a metric space without torsion are given by

r* —1“( + —~ ) (3.5)
ny — 2g g;u(,v gw{,u g;w,l{ - .

Up to first order, we can express as

Iy =2,
oo =1 =0, |
r% = A6+ hij) + Ehija (3.6)

Ilo=268; + %h"j,
iy = %@kh",- + okt — 0T,
therefore each component of the Ricci tensor is calculated as
a*R% =3 (é - %2) + 1 (h'"l- +%iz",») ,
a 2

Ry =~ (a1 — i),

a’R'; = (g + %2) 8+ %ii"j + K + %jﬂ}"ka"j (3.7)
- % (o0;mh i+ V20T — 0oy — ok oym)

Here, 7 = a/a = aH is the Hubble parameter in terms of conformal time with H
being the observable Hubble parameter. Then the Ricci scalar is also given by

R:R"Mza—2(6g+hl,~+3<%”h’i—V2h1i+8,~8]h‘j). (3.8)

Contracting the Einstein equation (3.3) allows one to eliminate the Ricci scalar and
reduce the Einstein equation to

1
R', =87G (T”'v - ESMUTUO') + AsH,. (3.9)

Hence, in vacuum, we have R*, = 0.



16

3 Fluctuations in Cosmic Microwave Background Radiation

Table 3.1 FLRW solutions dominated by radiation, matter, curvature, or a cosmological constant

w | pa) a) a@ | u
Rad dom 1/3 a=* 1172 T 0
IMat dom 0 a3 12/3 72 0
ICurv dom| — a2 t H"Q/:p’ —00
A dom -1 a° et —¢1 —00

3.1.1 Homogeneous Contribution

At zeroth order, the 00 and ii components of Eq. (3.3) lead to the Friedmann con-
straint equation and the Raychaudhuri evolution equation, respectively. Substituting
Eq. (3.7) into Eq. (3.9), these are obtained as

= 370 g0 L C
i 87?6 3
- — A = — a’Tl +a*A. (3.10)
a

The physical meaning of these equations can be illustrated with the perfect fluid form
as follows. The energy momentum tensor of the perfect fluid is given by

T, = (p + p)uu, + ps*,, (3.11)

hence the above equations change to

%2:871G 2( n A)

3 87G
. G

28 w2 — 8nGa? (p- 2o (3.12)
a 8 G

Note that we may identify the cosmological constant as a component of the perfect
fluid as

A
TAV =% Gdlag(l —1,—1). (3.13)
To use a different phrase, an unperturbed perfect fluid of density and pressure are
givenby pp = A/8nG), pp = —pa. lf weusew = p/p,then wy = —1.
For convenience, we change the Friedmann equation to

8n G 8 G 8 G
== ‘—23’;2@, (3.14)
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where in third equality, we decompose the total energy density in the Universe into
individual species p;. Introducing a quantity which means the ratio between the
energy density of each species and the critical density in the Universe at the present
time, £2;, and which is expressed as £2; = 87 Gpjp/ (3H§), and using the scaling
relation as p; = p;o/a™, this equation is rewritten as

Z& - (i)z (3.15)
at Hy) '

For radiations, matters and cosmological constant, we have n; = 4, 3, 0, respectively.
In this notation, we can also include a curvature term as a component of n; = 2. In
Table 3.1, we summarize the solutions of Eq. (3.15) if the cosmological fluid consists
of a single component.

3.1.2 Perturbed Contribution
At first order, 00 and ij components of Eq. (3.9) generate the evolution equations as
il + A = 87Ga? (57% — 5T7;),
20+ A0S = (0700 + VR — kol - a0t ) - (3.16)
= 16n1Gad® (Mi,- — %y‘jaTﬂu),
and 00 and {0 components of Eq. (3.3) generate the constraint equations as

2H0K': + 319l ; — VPhi; = —16mGa?S T,

L . . (3.17)
dh'; —8'h/ j = 16w GaST' .

From here, let us express these equations with the variables in the helicity states. To
do it, we decompose all kind of vectors and tensors, such as metric, velocities and
energy momentum tensors, into each helicity part in accordance with the formulae:

d*k '
wi(x,7) = —(w@) 0+ > w® Q@))e,k.x’

3
(ZT[) A==+1
d’k 1
10T = [y (_§XiS°5U +x"0f (3.18)

A A ik-
+ Z X(X)Oi(j)_l_ Z X()»)Oi(j))elkx’

A==1 A=12
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where we define the projection vectors and tensors as
0O (k) = ik,,
0&FV (k) = —ie*V (k),
P pe o1
04} (&) = —kaks + 2800, (3.19)
+1 +1) 0 A 0
04, (K) = kaey " (k) + kpelED (K),
+2 ﬂ 0
O,ﬁb (k) = 57 ().

&) ,&E2)

The polarization vector and tensor, &;~ ', ¢; i s satisfy the divergenceless and

transverse-traceless conditions as
+1 :|:2 +2)
eF (k) = ( (k) = e (k) = 0. (3.20)

The prescription for the scalar-vector-tensor decomposition and explicit forms of the
polarization vector and tensor are presented in Appendix D. Then, from Egs. (3.16)
and (3.17), we can rewrite the evolution equations as

h.iso + %hiso = —87Ga? ((STO() + 5Ttiso) ’

. . 1
WO 27RO + §k2(hiso —h ) = 167Ga?sT?, (3.21)

hED 4220 *D = 167 Ga?sT SV,
W 4220 4+ k2™ = 167 Ga*ST,*?,

and the constraint equations as

. 1
%hiso + gkz(hiso - h(o)) = 87TG(128T00,
k (hlso h“))) = 247Ga*sT?, (3.22)

kh&ED = —167nGa?sT Y.

Here, we have obeyed the convention as

ST o(x,7) = /(2 3 (aT(0)0(0)+ Z ST(A)O(A)) ’

A==l

. d’k |-
8T j(x,T) = W(—§5Ttlso5ij+5Tt(0)0i(j(~)) (3.23)

LS et + Y ST@)O@)) ,

A==1 A==2
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Our perturbation quantities are related to the variables for scalar mode in the
synchronous gauge of Ref. [14], namely % and 7, as

hiso = —h, h® = —(h + 6). (3.24)

Hence, we understand the correspondence to the gauge-invariant variables by
Bardeen (@4, @) [15] and Kodama-Sasaki (¥, @) [16]:

1
— Y = ©) )
Py =V =-— 2k2(h + h )
©0) ! ;)

3.2 Boltzmann Equations

The distribution function of several species evolves in accordance with the Boltzmann
equation as

d 0 af axt af apt 0
l=l+l_+_fL= _f (3.26)
dt 9t  ox' Ot opt ot ot

where 7 is the conformal time, p* is the proper momentum of species, and a sub-
script C denotes the collision term. In this Boltzmann equation, there exist two
contributions: the gravitational redshift and the effect of scattering, which corre-
spond to the third term of the first equality and the term of the second equality,
respecnvely For convenlence we introduce the comoving momentum and energy as
q' = ap', & = a/p* + m?. Setting a unit vector parallel to the fluid momentum as
q = g and expanding the distribution function up to first order:

f&xg. i 0= 0@ [1+ O xa.h.0)], (3.27)

the above Boltzmann equation is rewritten as

d af af (D gyt
7 — O af” A Tax
dt ot oxt dt

© 4 af(M g
of _q+ (O)f__q

+ dq drt aq dt
ar 9 dq af M dnl af
w21 o2 7 (2L 3.28
+f dq dt +f on' drt ot (3.28)

To estimate dg/dt and di’ /dt, we consider the geodesic equation as
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d

+ g P PP =0, (3.29)
T

where PH* is the canonical momentum as

1 A ; 1
PH = a_z (8, q; (811 _ Ehl])) , P, = (—5’ q] (aij + Eh”)) (3.30)

The contraction is given by P* P, = p* —(¢/a)*> = —m?>. From . = 0 component,
we obtain J ! oh
q Ajaj OMij
— = ——gqn'n’/ —=. 3.31
ar — 21" r 630

Similarly, from the spatial components, we have

AjA A mn A ij 20 ~ A i A A aj
24 — pif i, agf — nj—aglr — L, d"h" + Liyn,0' k"~ O'(h).

(3.32)
Furthermore, since we have the zeroth order expression as dx' /dt = (gq/e)i’, the
Boltzmann equations up to first order are expressed as

ar fD 1 . ohi:9ln fO@ 1 P
IR LU Y LUNELY Sy A (3.33)
ot e oxt 2 dt dlng FO\or ).
The general expression for the energy momentum tensor is given by
dPyd Pyd Py P*P,
_ _\—12 1 2 3 v
T = gy [ PSR (3.34)

where gqeg denotes the degree of freedom. Substituting the relations:
i\ 2 ) —4 1 ;
dPidPydPz =1+ Eh i)q°dqd$2,, (—g) =a 1-— Eh i), (335
and noting that
AP A 4 i A A A A
n'njd$2, = ?8 I3 nid§2, = | nin;jngds2, =0, (3.36)

the homogeneous and linearized components of the energy momentum tensor are
obtained as

1
% =—p= —W//gf(o)(l + fMq2dgd 2,

1 1 )
_2n2a4 /{;‘f(())qqu — (27‘[)3(14 //gf(o)f(l)ququn = TOO+8T00,
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I'o =~ @ﬂ34//'('——nwﬁf@u+fmm%mm;

= (2n)3 4//qn FOrMe244d0, = 8T, (3.37)

, P R
T = (2ﬂ)3a // ( ——nah’“) (nj+§nbhjb) O+ fMqg*dgds2,
[
~ 612a 4511/—f(0)‘12d‘1

nin . pO) £ 2 s ;
(277)3a4// n'n f f q dqd.Qn = le +5Tl],

These components correspond to the density contrast 8, velocity v/ and anisotropic
stress [T ; of fluid as'

70— 8T% s 8T 8T% i
0 Ch " h+p ptD ’
~i — o ‘STij i
T j= p8 J» - =11 j- (338)

Therefore, equating the integral of Eq. (3.33) over q, q2, q3 with Egs. (3.37) and
(3.38), we can see that the Boltzmann equation (3.33) becomes the differential equa-
tions with respect to 8, v/, IT! ; for each species. These equations correspond to the
Euler and continuity equations. Generally, as the species of the cosmological fluid
which mainly generate the inhomogeneity of the cosmological structure, there exist
baryon, photon, neutrino and cold dark matter (CDM), hence we can trace the evo-
lution of their fluctuations due to solving these Boltzmann equations coupled with
the Einstein equations (3.21) and (3.22). Between baryons and photons, Thomson
scattering is effective, so that their Boltzmann equations have the collision term. On
the other hand, for neutrinos and CDMs, since there are no short-length interactions,
the right-hand side of the Boltzmann equations vanishes. All these species couple
with the metric via gravity. This relation is illustrated in Fig. 3.2.

3.3 Stokes Parameters

Here, we introduce the Stokes parameters to characterize the polarization states of
the radiation field. For simplicity, at first, we consider a plane electromagnetic wave
propagating along the z axis. The Fourier decomposition of the radiation field is
expressed as

! The anisotropic stress of the magnetic field is often normalized by photon’s energy density
as Eq. (9.2).
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*.4-8
e

o0
E(z 1) = / dk (ﬁExeld’x + yEye’%) ¢l k= (3.39)
—00

Fig. 3.2 Interaction between
several components in the
Universe

where E, Ey and ¢y, ¢, are the real quantities describing the amplitudes and phases
in the X — y plane, respectively, and w = kc denotes the frequency of the wave.
The Stokes parameters are given by

I =|Ex|> +|E,|?,
0 = |E(|* — |Ey|*,
U = —2Re[EZE,], (3.40)
V = —2Im[E}E,],

where these are all real quantities. For the monochromatic wave, 12 = Q%>+ U?+V?
is satisfied. / measures the intensity of radiation and is always positive. The other
parameters represent the polarization states and can take ether positive or negative
values. Q and U quantify the magnitude of the linear polarization, and V parametrizes
the circular polarization. While / and Q are parity-even quantities, U and V are
parity-odd ones.

In order to see the transformation rule of Q and U under rotation of axes, let
us introduce the new coordinate (x’, y"), which is related to the original coordinate
(x, ) by the rotation around the z axis as

X'\ _ [ cosy siny X
()’/)_(—Sinl/fcosw)(y)' (341
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Then, the radiation field is converted into

o0
E(z,1) = / dk (X’E;e"f”‘ + y’E;e“z’-V) et ke
—0Q
/ A R= =112 : .
(Ex + zEy) = eV (E, +iE,); (3.42)
hence we have

Q' +iU =¥V (Q +il). (3.43)

This implies that the linear combination, Q iU, are the spin-£2 quantities. There-
fore, the anisotropy of the linear polarization should be expanded with the spin-2
spherical harmonics.

3.4 Boltzmann Equations for Photons

Here, for quantifying the CMB anisotropy, let us focus on the linearized Boltzmann
equation for photons. The distribution function of photons is given by

—1
— p JE—
= [eXp [ T+ O(x i, t)]] 1} ’ G49

hence we have [14]

q ofQ 9l fO
fO 3¢~ dlng

1 .
f(o) — 617/7"—_17 f(l>(x’ q,n, T) = e, (345)

where ® = AT/ T. Substituting Eq. (3.45) into Eq. (3.33), the Boltzmann equation
in terms of ® is expressed as

ar® 750 90 1. . 0h; 9
_ g (9 20 iy (A (3.46)
dg \ ot axt 2 ot at ) ¢

The first two terms in the bracket denote the free-streaming of the photon, whereas the
remaining third term in the bracket account for the gravitational redshift. As for the
CMB polarization, there exist no gravitational effects because Q, U and V them-
selves are first-order quantities and the third term in the left-hand side of Eq. (3.33)
does not appear. Hence, we summarize the Boltzmann equations of ®, Q, U and V:
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Fig. 3.3 Geometry of Thom-
son scattering. Blue (Red)
solid and two dashed arrows
denote the incident (scattered)
wave number vector and its
orthogonal unit vectors, re-

spectively. We set that X =%

scattering plane

90 L ;190 | Lainidhii _ g
aT axt 2 atT ’
% +ﬁi% =0r, (3.47)
W 72U Ur
aT dx! ’
8—‘/ +7Ali8—Y = VT,
aT ox!

where @7, O, Ur and V7 denote the collision terms of Thomson scattering and
"= 9/d7 is the derivative with respect to the conformal time. Next we consider the
contribution of these terms.

3.5 Thomson Scattering

The process of scattering off a photon by a charged particle without the energy
exchange of photons is called the Rayleigh scattering. In particular, when the charged
particle is an electron, the process is known as Thomson scattering. During the epoch
of recombination, electrons scattered off photons by Thomson scattering. Here, we
consider an incoming plane wave of the radiation with a wave number vector Ky
parallel to the z axis and an outgoing radiation scattered off by an electron with a
wave number vector kg. We take the plane spanned by ky and kg as the scattering
plane as shown in Fig. 3.3.
The differential cross section of Thomson scattering is given by

= kg - kg2, 3.48
10 = % kr - ks| (3.48)
where d§2 = d(cos0)d¢ and o7 is the cross section of Thomson scattering. This
equation quantifies the change of the intensity by the scattering. For simplicity, we
consider the case of the x” axis parallel to the x axis. Here, we suppose the incident
radiation with the polarization states I’ = (I ;,, 1 ;,, U', V'), where I' = I ;, + 1 ;/

and Q' =1 ;, -1 ; ,. When there is no dependence on the azimuthal angle, namely
¢’ = 0, from the notation of Stokes parameters (3.40) and (3.48), we obtain
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3ot 3or 3or
I, = Tew 6’1'/, I, = EI;/, U= FCOSQU (3.49)

where we have normalized these equations so that the number of photons is conserved
during a single scattering. For a general case with a non-vanishing azimuthal angle
¢, Q' and U’ are replaced as

Q' +iU = ¢P2P(Q' +iU). (3.50)

Then, the changes of the Stokes parameters between the incident radiation from
n’ =7 (0 =0, ¢’ = 0), and the scattered radiation with i = (6, ¢) are given by [17]

A/ A A l 3 2 12
APM =1z,n) = yr 4_1(1 + cos“ 9)®
4

— Z —sm fe 5P (Q +21U/):|

s= :|:2
1 3
AQ £ i)W =2.8) = I:—Zsinze@/ (3.51)
+ Z (1 + —cos@) e 5i® (Q'—i— %iU’):| ,
s= i2

where we use ® = AI/I/4. Using the explicit formulae of the spin-0 and spin-2
spherical harmonics described in Table A.2, we can extend this expression to the
form corresponding to an arbitrary direction of n’:

Al oA 1 ~ * oA/ ~ * oA/ /
A@(n,n)=Z“I—OYzm(n)Y2m(n)+Y0m(n)Y0m(n)]@

-> Zof Van (853, @) (Q'+ 5 )}

s==%2
Al A 3
(AQ +iAU)@, ) = Zmiznm(m (3.52)
2 A/ / *k ~/ / . I
x |:—\/;Y2*m(n)(~) + > 60 (0 +%1U)i| .
s==£2

We will use Eq. (3.52) in the frame satisfying k || Z, where k is the wave number
vector. Integrating these equations over all directions i, we express the scattered
fields as’

2 The Stokes parameter, V, which means the circular polarization of photon, can be ignored because
it cannot be generated through Thomson scattering if this is initially absent.
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Or(h) = —k [@(ﬁ) — /dQ/A@(ﬁ/, ) — vp n:|
(0 +iU), (h) = —k [(Q +iU)(h) —/d.Q’(AQ +iAU)#, ﬁ)}, (3.53)

where we define the differential optical depth as k = aorn.x, with n.x, being the
density of ionized electrons, and its total value at time t is given by

k(T) = /TO k(t')dt' (3.54)

with tp being the present conformal time.

From here, we discuss the polarization property in more detail. One of the key
points in Eq. (3.52) is that the temperature anisotropy generates the polarization of
the CMB photons. Then, what mode of the temperature anisotropy is related to the
generation of the polarization? For simplicity, we suppose that the incident radiation
field is unpolarized, Q' = U’ = V' = 0 and consider the case for i = z. Integrating
Eq. (3.52) over all incident radiation, we gain

3(TT

2
0+ilU@) = e 1751 /dﬂ Y0, ¢)e'©', 4. (3.55)

When the incident temperature (intensity) anisotropy is expanded with the spherical
harmonics as @' (0, ¢') = >_,,, a;,, Yem (0', ¢'), Eq. (3.55) is replaced with

QizU()—?’OT,/Zl: / (3.56)

Thus, if there exists no quadrupole moment (¢ = 2) in the unpolarized radiation field,
the total scattered radiation along the z direction would be never polarized. Long
before recombination, in the thermal equilibrium, the polarization states of photons
are equally populated and the incident radiation should not have any polarization.
Therefore, there are only the unpolarized radiations before recombination. Allowing
the polarization at the last scatters just before the photons begin to stream freely,
the polarized emission can lead to the multipole anisotropy and one has polarized
quadrupole and octupole and so on. These effects are automatically involved in the
Boltzmann equation.

3.6 Transfer Functions

Here, we derive the CMB anisotropy sourced from scalar-, vector- and tensor-mode
perturbations. We obey a Fourier transformation as



3.6 Transfer Functions 27

3
X, 1) = Ik Ax(t.k,n), (3.57)
2m)?

where X = @, Q iU and Ay is called the transfer function. Note that we include
the factor ¢/¥ 1 in Ax.

At first, for convenience, we derive the transfer functions of photons when k || z.
For k || z, the scalar-vector-tensor decomposition of the gravitational redshift and
Doppler term in the Boltzmann equation of photons (3.47) and (3.53) are given by

Loivii st L ; Ok 1 7 1) (= cos? !
2nnhl,(kllz,t)—2 3h.so(kllz,r)+h (kllz71)|—cos 9k,n+3

1 o
+ Z E sin O, cos O e P h M (k | Z, 7)
rA==%1
1 . .
+ D ——=sin? et PPk || 2. 7)
2V2 ’
r=12
1. . 1
=0k || 2) [ghf;? k. 1) +hS &, 7) (cos2 Okn — 5)] (3.58)
+ D sin O cos O ne g @ (k|| A (k. T)
r==%1
+ D sin? O et PP k|| )T (k, 1),
A=%£2

. L . —i . ; .
(k| 2, 7) i =i cos vy (K[| 2,7) + D —= sin O pe i (k | 2, 7)

r==%1 ﬁ
=i cos O O (k || v (k, 1)
+ > —isinf et g ® | vy (k. 1),

A==l

where £(@ &) and £ #2) are the initial stochastic variables of scalar, vector and
tensor modes, and we use the calculation results from Appendix D as

(+1) 1]
ey @2 =—| £i |,
@ V2 \ o
- L (001
0@ =—100 +i |, (3.59)
Y V2\14io0
L1 O
057 @) =e;P@) =— |+ -10
V21 00
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According to Refs. [14, 18, 19], if we equate & © with the comoving curvature per-
turbation on superhorizon scales Z, the initial conditions of the metric perturbations
and the baryon velocity are’

1
RS (k, Tini) = —Z(kfini)z,

150

B (k, tini) = =3 (kTini)?, (3.61)

"~ 2(15+4R,)
1
v (k, Tini) = %(kfimf-

In the tensor mode, equating &+ with the primordial gravitational wave on super-
horizon scales h£2), it is satisfied that

R (k. Tini) =

1 5 e
i [1 33 +4RU)(krlm) } : (3.62)

Note that the Doppler effect does not affect only the tensor-mode perturbation. We
introduce the transfer function in the Fourier space as [4, 20]

S A A Ay (S
AP @k |12, 8) = Ok | DA (T, k, pin),

S . S A A Ay (S
(A5 £ia) (@ k| 2.8) = QK | DAY (1. k. juen),

Vv A A . i
AV @k 20 = D i J1— puf &M

A==%1

x EN & | AV (2, k, juin), (3.63)
(A(QV) +iAY)) (e, k|| 2, 0) = > FaaF k#k,n)me“‘f’km

A==l

x Mk | A (v, k. pin).
AP @k 20 =0 —pd,) D HHre® k|| AT (0 k. piw),
A==42
. - ooV
Ay xia )@ k2= (1 :lelk,n) etk

A=2
A 2T

x Mk | DAY (v, k, ),

3 Then, the parameters in Ref. [14] are given by

5+4R,

K, Tini) = ~Z | 1 — —————(kTini)” | ,
n(k, Tini) |: 12(15+4Rv)( Tini) :|

h(k, Tini) = —%%(knm)z. (3.60)
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where pug, = k - f. Then, from Egs. (3.52) and (3.53), we can write the collision
term of Thomson scattering for the scalar mode:

(2m)3
x [{Yam (B) Y5, (') + 10Yo, ()Y, ()}
X ANES) (t, k, 1)

3
—\Gyzm (i) [ > SY;m(ﬁ’)} (3.64)

s=+2

4’k 1
dQ' A0 @, h) = /ds?/ — Ok 2
/ (i, ) %:105 k|| %)

<A @ k)],

d’k
/dQ’(AQ(S) +iAUS)@, h) = — W/d()’
T

6 A A
x> %ﬁm ek | 2)

x [ V3,60 AL k')

3 ~
—\g [ > SY;‘m(ﬁ/)] APz, k, u/)} :

s=+2

for the vector mode:

o d’k 1 27 R
/dQ’A@(V’(n’, i) = W/dﬂ’z 2 5y 3P KD

m A==+l
x [i {Yam () Y35, (") + 10Y0, (R) Vg5, ()}
<Y1, AY (. k. 1))
3
——= Yo () { > Y, @), sz(ﬁ/)]
ﬁ s=+2

x AW @k 1) ]

o d°k NE R
[agrao® ziav i = - [ 5 [ a0 3 2 v
m

(3.65)
x > 2P| 2)

rA=%£1

x (175, @)Y @) A (k)
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3
= sY*m (ﬁ/)s YZA(ﬁ/)]
\/g {s§2 ’

< AW (@ k1) ]

for the tensor mode:

4’k 2 27
d2'A0D @ h) = _/dg/ < Mk Il
/ (n’, n) o) Em Vs A:Eﬂg k| z)

x [{Yam (B) Y3, () + 10Y0,, (R) Y, ()}
x Yo, ) A (2, k, 1)

—3Yam (ﬁ)[ > XY;,,,m/)squﬁ’)]

s=%2

<A@k, 1] (3.66)
. R d’k 4 [x .
/d.Q/(AQ(T) +iAUTY@ h) = — W/m/zg\/;ﬁnm(n)
m

x > EW K| 2)

A==%2

X [Y;m(ﬁ/)sz(ﬁ/)AST)(t, k, 1)

—3{ > 5, (ﬁ%m(ﬁ’)}
s==42
< AD (&, u’)] .
Here, we use
3 2ig 8
V1—pret? = —) ?YM (for A = £1),
3 i l6m
VI=ps(IFarw)e™” = Ti2Y2k (for A = £1),
2\ Aig 2n
(1= ph)eH? =4\ =¥y (for b = £2). (3.67)

2
A .
(1 F E”) Mo = S\EﬂYn (for A = £2).

Using the multipole expansion as
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AR @k, M)—Z(—l)\/4n(21+ i) ARk (3.68)

and the £2’-integrals for A = 0:

/dQ'Yz*mYzo =681,28m,0

/dQ/ngYZO = 61,00m.0 » (3.69)

5 1
/d-Q/:I:ZYZ*m Yo = \/;Sm,o (31,0 — ﬁ&,z) ,

for A = £1:

/d.Q/Y*Y Yio = iS S —\/§5
am¥irYio =/ 5—0ma | O 7013 )

/dQ/YSmYQAYlo =0,

/dQ’ﬂYz*mizYuYzo = T (3.70)
V3 N&] N 2
—A8 1 — —0j2F —A6 3 — —§
( 3 Mo 702 7013 = 57014
and for A = £2:
1 2./5 1
d2'YS Y2 Yo = —$§ 80— —36 =4 ,
/ om¥2).X10 Nz m,k( 1,0 7 1,2+ 7 1,4)
/dQ/Y(;kaZAY]O =0,
(3.71)

/dQ/iZYQ*miZYZAYlO =

V3 23/5 V7 1
—Ad —4 —Ad 814 ),
¢3 11+ 7 12$28 13+42

X

> ai\‘”

° >
3

we can obtain the anisotropies generated via Thomson scattering for the scalar mode:
/ A2’ A0 (@, i) = / A% o 5
(Q2m)3

x [55,58 - @ Vao @)y S (k. r)} ,
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/d“Q (A0 = TaUThE. _/ Qn )35(0)(1( () (3.72)
61 )
X ?izYzo(n)w *k, 1),
vk, vy = &) + AT + 4D,

for the vector mode:

/d.Q’A@(V)(ﬁ’ i) = (2n)3 Z ,/ sz(n)

é”mnmwwkkw

3
/dQ L0V £iAUV)Y@, h) = (;lnl; Z ,/ T oYuh) (373)

sukknmwwkhrx

vk, 7) = —A(V)—i— Ry ({2

10
3 vy 3y 6 <
~3%P0 7 74P2 T 354P 4

and for the tensor mode:

43k 327
/d.Q’A@(T)(ﬁ’ = [ — E \ == Y2r ()
’ 3
@n)3 &V 15

xﬂ“mnvw”wr>

d’k
/dSZ’(AQ(T):tiAU<T))(ﬁ’ fl) = — > ,/ A NCOERZ)

(27T) r=%£2
xs“kknmwﬂkhrx
1. 3

(T) k A(T) —A(T) —A(T)
vk = R AT
3

i 6 xm 3 s
—38p0t 74p2 T 55 4P

Thus, from the Boltzmann equation (3.47), the gravitational redshift and the Doppler
terms (3.58), and the collision term of Thomson scattering (3.53) and (3.72)—(3.74),
we derive the Boltzmann equation for the scalar mode:

s 1\ -
AP +ikpea A = [3h1(gso) (Mk,n - 5) h(s)}
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oz oz, 3 1 . s
—e |9 - a3 (- 5) v -t

4
(3.75)
S) | . ~(S ore 3
AD ik, A = —k [Agj -0 Mﬁ,n)lﬂ(”] ’
for the vector mode:

AV ik Y = —ipg V) — [ﬁﬁv) +ipny) — Vz(;v)] :
A + ik &Y =~k [AY 49V (3.76)
and for the tensor mode:
A 4 ihgon B = D — i [A7 — D]
AD 4 ik n AT = —k [Ag;” + I/I(T)] . (3.77)
The multipole expansion of these equations gives

A(S/V/T)
Appl o

3.78
21+ 1 (3.78)

A(S/V/T) AS/VITY| _ \,(S/V/T)
[(l +DA P~ lAI/P,l—l] =Vyes

where

1. 2.
) _ (8) s
Vil =— [ghiso&,o - 15h( )51,2]

—k [A}S}(l —810) — %I/I(S)(S[,z + év,g%,,l] ,
=< [a81- L 3]
vy = %h‘v)&,l —k [A%) - %T//(V)(Sl,l - v,‘,V)(S,,o} , (3.79)
v =~k [AY) + wW)(sl,o] ,

T : R
V{(J) S ACOF [A(”) _ W(T)(Sl,o] ’

T [
Vi = =i [A) 4w T ].

Following the line of sight integration [21], we can give the explicit solution of this
Boltzmann equation as follows. At first, let us present the derivation for tensor mode.
Using de ™ /dt = ke~ and multiplying e’**+.»*=% in both sides of Eq. (3.77), we
have
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dd (A(T) ikpg nt— K) _ ezkuk,,[ AT _{_gw(T)] ,
T

d .
d-[ (A(T) ik nt— K) — —elk”k"”glﬂ(T). (3.80)

where g(7) = ke is the visibility function which describes the probability that a
given CMB photon last scattered at a given time. Through the integral over conformal
time and some treatments, we obtain each from of the transfer function at T = 7 as

AD :/fo Jre—iltiax I:—]:I(T)E_K +g¢m] 7
0
~(T 70 .
AD = —/ dre ™ Henx gy, (1) (3.81)
0

Here we use «(tg) = 0, k(t = 0) — o0 and x = k(19 — 7). In the same manner,
we also obtain the scalar-mode function:

- 70 . 1\ .
A;S) = / dre Hknt [— [3h1(sso) (,uk " 5) h(S)] e "
0

5 3
N
+8 ’Ai,g - (M}in - —) v iy )” :

0 —ip ( ) i S)
Ifg.nX N ”
j— / dte k, __hls + h

2h(S) ~(S) 31// S) V(S)
S _ b
+g( At T +4¢ . (3.82)

QS 3§ S 35S
T8 —2+‘w—z—b— +‘ng ’
k 2 k k 4 k
(9) i 2 3 ()
Ay’ = A dre ' Hhn (l—uk,,,)zgllf ,

and the vector-mode one:

~ TO . .
Ag\/) = / dre HhanX [—iuk,n (h(v) + glﬂ(v)) + gv(v)]
0

v ) PR W)
=/ dre—imens | o (PEV v eV sy
0 k k k
- 70 .
ASDV) — _/0 dreiHent gy (V)

where in the second equality of each equation, we neglect the topological terms.
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Consequently, we can summarize the transfer functions when k || Z for the scalar
mode:

70 .
AP (0. k [ 2.8) = £k || &) / dre M sk, T)
0
4 [6 0 .
(Ag FiAp) (o k| 2.8) = 5 ?”ﬂYZ()(ﬁ)s(O)(k I12) / dre Mt S (k, 7) |
0

) L) B 1
Sk, vy = —3hy +7+§h() e

3 180 k2

249 1) 34 Y

LAY ® _ Y
+g( R (R k2+41// k

(3.84)

LS 34 S 3 5
k 2 k k 4 k
3
S k) = Zgv k).

for the vector mode:

A (k28 = | D m,/%”m(ms(”(k I 2)]

L A==%1

70 )
x/ dre*’“k”xS(V)(k 7),

(g xiay ). k12,8 = | > ,/—ﬁm(n)s“)(k I z)} (3.85)

L A==%1

x/ dre™ 1 sk, 1),
0

) i ) W)
sk, n=——e¢ "t ++ vV +ng,

Sp (k1) == gy,

and for the tensor mode:
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Fig. 3.4 Geometry for the Z ,  n:line-of sight direction
line-of-sight direction : photon’s traveling direction)

vz

X
____________________________________ > y
X K' .
-
AP (. k || 2.18) = Z S v e (k| z)]
15
LA=+2
x/ dre™1anx s (1),
(A0 i)kl zh)= | > ‘/—ﬁm(n)sm(k I z)}
LA==£2
x / dre ¥ S (& 1), (3.86)
0

SO, 1)y =—hDe™ 4+ gy ™,
Sp (k1) =—gy'".

Here, we have introduced the source function, S}%V/ T)(k, 7).

3.7 All-Sky Formulae for the CMB Scalar-, Vector-
and Tensor-Mode Anisotropies

In this section, let us formulate the all-mode CMB coefficients ay,, in the all-sky
analysis on the basis of the derivation in Refs. [3, 7].

Since the CMB anisotropy is described in the spherical coordinate system, its
intensity (/) and two polarization (Q and U) fields should be expanded by the spin-0
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and spin-2 spherical harmonics, respectively, as
A V4 A
0¥ (h) = Za§ ) Yem (),

QW £iUP) @) = Zaﬂ om +2Yem (). (3.87)

Here, the index Z denotes the mode of perturbations: Z = § (scalar), = V (vector)
or = T (tensor). The main difficulty when computing the spectrum of polarization
arises from the variance under rotations in the plane perpendicular to fi. While Q
and U are easily calculated in a coordinate system where k || Z, the superposition
of the different modes is complicated by the behavior of Q and U under rotations.

However, using the spin raising and lowering operators d , § defined in Appendix A,
we can obtain spin-0 quantities. This leads to the rotational invariant fields like the
intensity one and there are no ambiguities connected with the rotation of coordinate
system arise. Acting these operators on Q iU in Eq. (3.87), we have

; {4 2)!
§20P +iv@)@) = [Ez i 2;!] ") Yon (),

tm

32(Q<Z>—iU<Z>>(ﬁ>=Z[—$“_L§;:] a?), Yen®),  (3.88)
tm ’

Instead of a(izz) ¢m» 1L 18 convenient to introduce their linear combinations as [22]

1
2 _ (2) 2)
ag im = ) (“2 m T a5 em) )
2y _ i (2) (2)
ag om = 3 (a2 im — A5 (Zm) . (3.89)

These fields E and B have parity-even and odd properties, respectively, in analogy
with the electric and magnetic fields. Then, from Eqgs. (3.88) and (3.89), we can
express

&’k .
agi, =/d.(2nY£*m(_Qn)/ (zﬂ)3A§f)(ro,k, i),

2) _ 1 2)']1/2
AP (1, k. ) = [(z+2)v
x [d 24P 1 ialP) + 2P - iAg,@)] (10, K, B), (3.90)
@) _ife=2"?
AD (1, k. ) = [(£+2)']
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(2, A(Z . A (Z 2, A(Z A (Z A
x [d AP i) 2 aP —iaf ))] (70, K, ).

Here, X discriminates between intensity and two polarization (electric and magnetic)
modes, respectively, as X = I, E, B. When k || Z, using Egs. (3.84)—(3.86) and the
operations derived from Eq. (A.3) as

2
5 . . A
g2 [2Y2A(n)€_'“k'"x] =\ O, t T—7
1- K n

x [(1= 1 )2¥os (e ™07,

2
. A
J? [fzyzx(ﬁ)e_'“’”’x] = (_8Mk,n - 1—2)
— Min
x [(1= 1 )2 Yo @ea)e et | 3.91)

we obtain more explicit expressions as

£ +2)!

) ~ A (K—Z)' 172 [ . 8 ~ N
AL (o, k || 2,8) = [(HZ)J 2 My S Yu@EP k) 2)

La=%1

¢—2)17"? w0 . ,
Ay (70, || 2. 6) = [Q} £k | 2) / drSP (k. E® (x)e i,
0

70 N i
x / drSy (k, 1Y) (x)e i 1en™,
0

-2 T 8 )
AY (0, K || 7 10) = [ﬁ} > iy TPk i)]

LA==+1

70 N X
x / A8 (k, ) BY) (x)e i1, (3.92)
0

. o -2 DT X
Ay (0, K || 2,0) = [(HZ)J 2\ G @EP kD)

LA=22

70 R )
X/ drSI(DT) k, )ED (x)e ™ Hhn*
0

. e—217"2T r 32 ) )
Ay (0. k || 2.1) = [Euzﬂ > S @V | z)}

LA=%2

70 - R '
X / 0lrS1(D )(k, )BT (x)e  Hhn*
0

with the operators é , % defined as
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EO ) = (14977,

W (x) = 4x + (12 + x)d, + 8292 + x292,

BV (x) = x2 + 4xd, + x%02, (3.93)
EM(x) = =12+ x*(1 — %) — 8x0,,

B (x) = 8x + 2x20,.

From here, we want to show analytical expressions of ay,’s. In the above
discussion, we have analytical formulae of the transfer functions when k || z. This
implies that we consider the physics in the blue basis of Fig. 3.4 and their transfer
functions are completely determined by not the angle between z and fi, namely £2,,,
but the angle between k and h, namely 2 ,. However, as shown in Eq. (3.90), to
obtain ay,,’s, we have to consider the physics in the red basis Fig. 3.4 and perform
the §2,-integral. Here, instead of the transformation of the transfer functions, it is a
better way to transform the integration variable in the ay,, as £2,, — $2 ,. This can
be done by using the Wigner D-matrix Df}fgﬂ, which is the unitary irreducible matrix
of rank 2¢ 4 1 that forms a representation of the rotational group. The property of
this matrix and the relation with spin-weighted spherical harmonics are explained in
Appendix B. If we consider the rotational matrix

€08 Oy cOs ¢y — sin ¢y sin Gy cos ¢y
S(82;) = | cosOsingy cosgy sin b sin ¢y (3.94)
— sin 6 0 cos G
corresponding to the configuration (@« = ¢, = 6,y = 0) of Eq. (B.3) and
satisfying
2 = S(821) 2k n, (3.95)

the transformation equation (B.1) can be equated with

Vi (@20) =D D (S(20) Y (Rkm). (3.96)

Using this equation and the relation of the coordinate transformation as d$2, =
d$2y n, the agy, of arbitrary mode is written as

(27)?
4r '* [ &k o
:[25—4—1} /W;Fl) V(20

« / dn ¥ (L) AL (10, K || 2, ). (3.97)

d’k -
o= [ Gy 2Dl (S0 [ dRu¥ (2087 (00, K 1 28
m/
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In the second equality, we have obeyed the relation of Eq. (B.4) in this case as

© ar 7'? m’ «
D, . (S(8¢) = Y (=" _ Y, (82). (3.98)

Using the mathematical results of the £2; ,-integrals

1
Yro($2k,n) .

e_iﬂk,nx = Z 4”(_i)LjL ()
L

/dQ"Q"Yz*m/e_i”"‘”x = (=) 8y oV AT 2L + 1) je(x)

€+ D! jelx)

/dﬂk,nYe*m/Ylile*i“k*”" = (—i)KISm’,il\/ (2 + )( — 1! , (3.99)
_ o— 15 (€ +2)! je(x)
nX __ -2
/ko,nYz*m/Yzize ket = (=) 5m’,i2\/ 8 (2e+ 1)(6 -2 x2

we can find the general formulae of the ay,, for all-mode perturbations:

, &’k oo
ay’p, = 4 (=)' / Gy ;[sgnan“ LY (206D 1078 (k) (3.100)

where the helicity of the perturbations is expressed by A: A = 0 for Z = §, = %1 for
Z =V or= £2for Z = T, the index x discriminates between the two parity states:
x=0for X =1,E,x = 1for X = B, and the time-integrated transfer functions

QX(ZZ) (k) are expressed as*

70
79 () = /0 dSS k1) jov),

_ 12 rwo .
TE) k) = [(z 2)'] / At ES (x) (),
’ 0

(€ +2)!
74 ) = [%]1/2/0 sV (k. )”(x)
el ® == [%%Tﬂfo azsy) tk, éV (x )ff(x)
RN [ITE L RPN

4InRef. [3], there are three typos: right-hand sides of Egs. (B21), (B22) and (B23) must be multiplied
by a factor —1, respectively.
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@ [+ 1/2/ ), o)
T ® = [(ﬂ—zw} o TS e DTG

Note that in the all-sky analysis, due to the dependence of transfer functions on ¢y ,,
agn’s depend on the helicity state through the spin spherical harmonics. In the above
discussion, we take the synchronous gauge and derive the ay,,,. However, in the same
manner, we can obtain the identical form of Eq. (3.100) even in another gauge. In
this case, the different points can be confined only in the transfer function (3.101).
In a numerical code CAMB [13, 19], these transfer functions of polarization modes
are expanded as, e.g.,

oy [ [E D 4260 + gD 4y ® + gD
Tgi Uy == | de 3 +2 ;

6
—gy @D (1 — F)] Je(x), (3.102)

m 2@ 4D\ gD
7w =2 | dr[g(‘”x + 2 )+g‘”k }Mx).

3.8 Flat-Sky Formulae for the CMB Scalar-, Vector-
and Tensor-Mode Anisotropies

The flat-sky approximation uses the (2D) plane wave expansion of the CMB fluctu-
ation instead of the spherical harmonics one, and it is valid if we restrict observed
direction (parallel to fi) only close to the z axis [4, 23]. As confirmed in Ref. [4],
the flat-sky power spectra of E- and B-mode polarizations sourced from the primor-
dial scalar and tensor perturbations are in good agreement with the all-sky ones for
¢ 2 40. On the basis of these studies, we have also compared the all-sky power
spectra with the flat-sky ones for the 7, E, and B modes from scalar, vector, and
tensor perturbations and found their consistencies at £ 2 40.

As mentioned in the previous section, in order to estimate the ay,;, one must
construct the transfer functions for arbitrary k. In other words, we want to obtain
the transfer functions expressed by arbitrary k (whose direction is denoted by £2%)
and 1 (denoted by £2,) instead of §2 ,, in Fig. 3.4. In the I modes, only by changing
£k n to 82y and £2,, with the relation (3.95), the transfer functions for arbitrary k can
be obtained. In the £ and B modes, in addition to this treatment, one must consider
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the mixing between Ag and Ay under the transformation S(£2;) as described in
Ref. [4]. This effect is expressed as

(A(QZ)/ +ia? ) (1, k, B) = FHNAY £in) (. k || 2.8).  (3.103)

with the mixing angle . The angle  represents the rotation angle between ékyn
and é,, , where ék, , and é,, are the unit vectors orthogonal to f in a particular basis in
which k || Z and a general basis, respectively (see Fig. 3.4).

In the flat-sky analysis, i.e., 6,, — 0, by using Egs. (3.84)—(3.86) and by using the
limit of ¥ as ¥ — ¢, — ¢ + 7, the transfer functions for arbitrary k are derived as

w0 s
A (1, k, 1) - €O (k) / drS® (k, r)e A,
0
. KU A
(A £iAy) (10, k. h) — e @ =9 sin? 9,0 (k) / deSy (k, v)e AP,
0

70 A
AV (1. k, B) > > isin g™ (k) / dvS™M) (k, 7)e kAL,
=1 0
(A5 £iay)) (1o, k i) — eTH@ 9 " 3 (1 F A cosb) sin 0P (k)
A==1

70 A
x / dtSY) (k, T)e kAL, (3.104)
0

K s
AP (0, k., B) — > sin? 66 ® (k) / drS\" (k, v)e ¥ 8D
0
A=%2

, . A ?
(A0 £iA7)) (10, k. ) — eFHG 00 " (1:F§cosek) £® (k)
A=12

70 . N
X / dtSfDT)(k, 7)e kD,
0

Itis important to note that the ¢x dependence which is inherent in the vector and tensor
perturbations vanishes in the flat-sky approximation, besides a trivial ¢, dependence
due to a spin-2 nature of the Stokes Q and U parameters. One may explicitly see that
¢k.n dependence vanishes in the transfer functions when taking 8, — 0 because the
S(£2;) matrix rotates the basis with the new z axis always being on the x — z plane
in a particular basis in which k || Z (see Fig. 3.4). This approximation means that for
6, < 1,1t is valid to calculate the CMB fluctuation on the basis of vector and tensor
perturbations fixed as 6, = 0, namely, ¢; , = 7.
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In the flat-sky limit, ay,, in the all-sky analysis described as Eq. (3.90) is modified
by using the plane wave as

, d*k .
o= [ @O [ 540wk iy =al @)

1 .
A (0. k) — 5 [Z (a9 + %m@z’) (0. K, ﬁ)e_“(w_‘/’”)], (3.105)
2

§=

) . i S (2 | S, (2 A —si(pr—n)
Ay’ (19, k, ) — -5 |:S§2§(AQ +51AU )(to,k,n)e si(pe—¢ :|,

where @ is the 2D vector projecting 1 to the flat-sky plane expressed as @ =
(Ocosg,, Osing,).>

For example, in order to obtain aﬂ)m, we substitute Eq. (3.104) into Eq. (3.105)
and calculate as follows:

aDw) = / Tk SERE ISl )
! 2n)?

A==42
KU . .
X / dt / d2@e—l(kHD+¢)'@ S;T) (k, T)E_lkZD
0

3
= [ G Hk( > e <k>)

A==%2

70 ‘
X/ dr2n)*s &' D + &) (k, v)e kP
0

_ [ > dk, Wl — _
_/0 df/wh(zés k! = —¢/D, k)

A==42
Ez (T 1 —ik;D
X msl (k = kzz + (Z/D)z, T)ﬁe Cae (3106)
Z

where D = 1y — 7 is the conformal distance and we have decomposed k into two-
dimensional vector parallel to the flat sky and that orthogonal to it, k = (k! k.). In
order to obtain the last equation, we use following relations which are satisfied under
kl = —¢/D as

3 Not confuse @ with the CMB temperature fluctuation.
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" 14 1
Sin = =
“T D V(k; D)2 + (2

/ 7 \2
cos O = sgn(k;),/ 1 — (E) , (3.107)

O =g+ 7.

The other-mode ay,,’s can be calculated in the same manner. Thus, we summarize
the all-mode a(4)’s:

0= [ar [ TS lsenare Vi = —/.k)
e m 2

1
x oye P S ke 1)

Dk 1) = 88 = \Jk2 + (¢/D)2, 1)
32
(8) _ S _
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IVt =i Sk = Jk2 + /D)2, 1) , (3.108)
hes kD) + 2! e+
¢ 1 22
(k; D)% + ¢2 (k;D)? + ¢2
x S8k = \[k2 + (/D). 7).,
¢
I ke 1) = —i ——— SV (k = /K2 + (¢/D)2, 1),
e kDy+ 2" :
ZZ
1) _ Ty,
y],f (kz,t)—WSl (k— kzz—f-(ﬁ/D)z,T),

ZZ
PRk = (2= ) S = R+ @R,
Z

Dk 1y — i e D |12 >
.o k2, T) = 2i sgn(ky), |1 — 7 D)2+£2SP (k =/kz + /D), 1),
Z

where we label f}((zi) as the modified source function. One can formulate the flat-sky
CMB power spectrum and bispectrum by using these formulae [3, 24-26].

S ke, 1) = —sgn(k,)
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3.9 CMB Power Spectrum

To extract several information about the Universe from the observational data, the
two-point correlation function of the CMB fluctuations (called CMB power spec-
trum) is often-used. Here, we formulate the CMB power spectrum and summarize
the constraints on several model parameters from the current observational data.

If we assume the Gaussianity and the symmetry under the parity and rotational
transformations in the initial stochastic variables, their power spectrum can be
expressed as

<s<*1><k1>s“2>*<kz>> = 21)} Pz (k1) (k1 — K2)85, 1,

. (3.109)
12 (Z=V,T)

{1 (Z=2S)
X

This implies that the couplings between the different modes of the perturbation vanish
in the power spectrum. Then, from the formula of the all-sky a¢;, (3.100), the CMB
power spectra of all modes are derived as

2
(Zn) — ~Z) mi
< aX,,rfﬁnm,,> = CX]Xz,Zl (=™ 8¢, 0,0m1,-my82,,2, Ox; x2>

n=1

2
CN = ;/kfdklpzl k) T (k) 37D (k) . (3.110)

where we use the relation derived by the reality condition of the metric perturbation:
§M (k) = (=DM (k). 3.111)

In Fig. 3.5, we plot the CMB intensity and polarization power spectra of the scalar
and tensor modes. Here we think that the scalar and tensor perturbations are sourced
from the primordial curvature perturbations (£’ = %) and primordial gravitational
waves (€ 2 = h#2)) respectively. The ratio between these power spectra, called
the tensor-to-scalar ratio r, is defined as®

_ 2Pr(k)

- Ps(b)

(3.112)

At first, let us focus on the /I spectra in the left top panel. In the scalar spectrum, the
dominant signal is generated from the acoustic oscillation of the photon and baryon
fluid. The first acoustic peak is located at £1 ~ 220. This scale is corresponding to
the angle of the sound horizon at the recombination epoch as €1 ~ 2w ty/rg(z4).

6 This definition is consistent with Eq. (2.69), and the notation of Ref. [27] and CAMB [13].
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At small scales corresponding to £ > £1, due to the difference between the photon
and baryon speeds, the coupling between photons and baryons is ineffective and the
acoustic oscillation is highly damped. This effect is well-known as the Silk damping
[28]. On the other hand, the gravitational blue shift due to the potential decay in the
late time affects the fluctuations for £ < £;. This is called the integrate Sachs Wolfe
(ISW) effect [29] and arises from the terms proportional to e~ of the source function
S;Z) in Egs. (3.84) and (3.86). In the tensor spectrum, the ISW effect leads to the
dominant signals and the scattering effect (the second term of the source function
$\") in Eq. (3.86)) is subdominant [6]. As shown in Egs. (3.84) and (3.86), the EE
and BB spectra (the bottom two panels) have no gravitational redshift term and there
is no ISW effect. Instead of it, the scattering term generates the CMB fluctuation.
The most interesting signature in the polarization power spectra is the enhancement
at £ < 10. This can be caused by Thomson scattering at reionization of hydrogen
which may have occurred at z ~ 10 [4]. Therefore, these signals can be important
to determine the optical depth of the Universe, k. The I E spectrum described in the
right top panel seems to include the features of both the /7 and EE spectra and has both
positive and negative values. Unlike the above three cases, the BB spectrum never
arises from the scalar mode because the scalar mode has only one helicity, namely
% = 0.7 Hence, we believe that the BB spectrum directly tells us the amplitude of
the primordial gravitational waves depending on the energy scale of inflation.
Theoretically, the CMB power spectrum depends on the parameters which
determine the dynamics of the Universe as the energy density of the cosmic fluids,
curvature, and the Hubble constant Hy. Figure 3.6 shows the dependence of Cg’)g on
the density parameters of cold dark matters, the cosmological constant and baryons
as w. = 2.(Hy/100sec - Mpc/km)?, 24 and wp, = £2;(Ho/100sec - Mpc/km)?,
respectively. From this figure, one can observe that as w, decreases, the overall am-
plitude of C}‘;?E enlarges. This behavior is understood as follows. If w. decreases,
since the radiation dominated era is lengthened, the gravitational potential for smaller
k enters the horizon and decays. Thus, C }f)g at corresponding multipoles as £ ~ kt
is boosted due to the gravitational blue shift. This is the so called early ISW effect
[29]. Next, focusing on the blue dotted line, one can find that if £24 becomes large,

Cﬁ?z is boosted for £ < 10. This is due to the late ISW effect, that is, A dominates

the Universe earlier and the potential at larger scales is destroyed, hence C ;‘j’)e at
corresponding £’s is amplified. We also notice that when w}, enlarges, the ratio of
the amplitude between the first and second peaks of the magenta dot-dashed line
increases. Solving the coupled Boltzmann equations, the acoustic oscillation of the
baryon-photon fluid in the matter dominated era is roughly given by

1
e ~ (5 + R) @ cos(krs) — RP (3.113)

7 The vector mode generates the BB spectrum due to its two helicities. However, due to the decay of
the vector potential via the Einstein equation, this becomes the subdominant signal. To avoid this,
the sources such as cosmic strings and magnetic fields need to exist and support.
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Fig. 3.5 The CMB spectra of the I (left top panel), 1 E (right top one), EE (left bottom one) and
BB (right bottom one) modes. Here we consider a power-law flat ACDM model and fix the tensor-

to-scalar ratio as r = 0.1. The other cosmological parameters are fixed to the mean values reported
in Ref. [27]

where @ is the potential of the conformal Newtonian gauge, ry denotes the sound
horizon and R = 3p5/(4p)). Then if w; increases and R becomes large, this equa-
tion experiences increase in amplitude and suppression of the intercept. Hence, the
difference of C}‘;?E o &2 between the odd- and even-number peaks increases. These
parameters are limited with the others from the current observational data set as
Table 3.2. Other than these parameters, massive neutrinos and some relativistic com-
ponents also make impacts on the CMB fluctuation (e.g. Refs. [30, 31]).

The CMB power spectrum also depends on the primordial curvature perturbations
and primordial gravitational waves. Conventionally, these spectra are parametrized as

k3 Ps (k k et
# = Ag (—1) , (3.114)
2 0.002Mpc™

and Eq. (3.112). As shown in Eq. (3.100), the magnitudes of the primordial curvature
perturbations A g and gravitational waves r A g simply determine the overall amplitude
of the Cgfl) X,.¢0, and C§(T1)X2, ¢, Tespectively . The spectral index of the power spectrum

of the curvature perturbations n; changes in slope of C;Z‘; ¢, - From the observa-
142,41

tional data, the constraints on Ag, ny, r are given as Table 3.2. Here, we want to note
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Fig. 3.6 CMB II power spectra sourced from the scalar-mode perturbations in a power-law flat
ACDM model. The red solid line is plotted with w. = 0.112, 24 = 0.728, wp = 0.02249, n; =
0.967, k = 0.088 [27]. The green dashed, blue dotted and magenta dot-dashed lines are calculated
if w. decreases to 0.1, £24 increases to 0.8, and wj, increases to 0.028, respectively

Table3.2 Summary of the cosmological parameters of ACDM with finite » model from the WMAP
7-year data [27], and the data set combined with the results of the galaxy survey [32] and Hubble
constant measurement [33], respectively

Parameter WMAP 7-yr WMAP + BAO + Hy
100w 22491005 2.255£0.054

we 0.1120 + 0.0056 0.1126 £ 0.0036

24 0.72719039 0.725 £ 0.016

ny 0.967 £0.014 0.968 + 0.012

K 0.088 +0.015 0.088 & 0.014

Ag (2.434+0.11) x 10~° (2.430 £0.091) x 10~°
r < 0.36 <0.24

Hy 70.4 £ 2.5 km/s/Mpc 70.2 £ 1.4 km/s/Mpc
2 0.0455 = 0.0028 0.0458 £ 0.0016

2. 0.228 + 0.027 0.229 £ 0.015

m 0.134510:90%6 0.1352 £ 0.0036
Zreion 106+ 1.2 106+ 1.2

to 13.77 £ 0.13 Gyr 13.76 £ 0.11 Gyr

Here z;¢jon denotes the redshift at the reionization epoch, 1y is the present time of the Universe, and
Wy = wp + O

that ny = 1 is excluded at about 3-sigma level. This implies the deviation from the
exact de Sitter expansion in inflation. As shown in the bound on r, unlike the primor-
dial curvature perturbation, the primordial gravitational wave has not been detected
yet. However, some experimental groups aim to discover the BB spectrum through
remove of some noisy foreground emission and improvement of the instruments



3.9 CMB Power Spectrum 49

[2, 34-36]. If these projects achieve, it will be possible to judge the existence of the
primordial gravitational waves of r < 0.01.

So far, we discussed under the assumption that the parity and rotational invari-
ances are kept. On the other hand, there are a lot of studies which probe the some-
what exotic scenarios where these invariances violate. As a theoretical prediction, if
parity-violating action such as the Chern-Simon term exists in the early Universe,

£ (kg H* (K )> # <E =2 (K)g D*(K/ )> and the IB and EB spectra appear [37—

40]. Using the parametrization as
C?];;,e = Crg,¢sinQAa) , (3.115)

the parity violation is limited as —5.0° < Aa < 2.8° (95% CL) [27]. The rotational
invariance is broken if the Universe has the preferred direction and this situation is
realized by the anisotropic inflation [41-43]. This leads to the direction-depending
power spectrum as '

Ps(k) = PEC(k)[1 + g(k - n)?], (3.116)

and produces the off-diagonal components in the CMB power spectrum as €1 # £5.
From the CMB observational data, the magnitude of the statistical anisotropy has
been limited as g = 0.15 &+ 0.039 [44]

Furthermore, owing to the progress of the observational accuracy, the deviation
of the Gaussianity can be measured. Beyond the power spectrum, this is achieved
by using the three-point function (bispectrum). In the next chapter, we discuss about
how to extract the information on the early Universe from the CMB scalar, vector
and tensor bispectrum.

In addition, we can add other components of fluids in the analysis of the CMB
spectrum. From Chap. 9, we focus on the effect of the primordial magnetic fields on
the CMB.
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Chapter 4
Primordial Non-Gaussianities

The study of non-Gaussian impacts in the cosmological fluctuations provides an
important information of the early Universe [1]. The primordial non-Gaussianities
are measures of the interactions in inflation, hence constraining this will lead to a
great deal about the inflationary dynamics. It may also puts strong constraints on
alternatives to the inflationary paradigm (e.g., Refs. [2-8]).

In the previous chapter, we expanded the inflationary action to second order in the
comoving curvature perturbation % and the gravitational waves ¥, These actions
allowed us to compute the power spectra Py (k) and Py, (k). If the fluctuations &% and
h*2) obey the exact Gaussian statistics, the power spectrum (or two-point correlation
function) contains all the information.! However, for the non-Gaussian fluctuations,
higher-order correlation functions beyond the two-point function contain additional
information about inflation. Estimating the leading non-Gaussian effects requires the
expansion of the action to third order since we must take into account the leading non-
trivial interaction terms. In this chapter, we review recent studies about the primordial
non-Gaussianity based on e.g., Refs. [9—11].

4.1 Bispectrum of the Primordial Fluctuations

At first, we give the definition of the bispectrum of the initial perturbations £ of
the scalar (A = 0), vector (A = =£1), and tensor (A = +£2) modes. The Fourier
transformation of the two-point function is the power spectrum

2 2

(o) _ 3 M I (Z=5)
<r£[]§ (kn)>—(27[) PZ(kl)B(’;kn)%,xz( 1) X [1/2 (Z: v, T)'
4.1

1 0dd-point correlation functions of Gaussian fluctuations vanish while their even-point functions
can be expanded by two-point functions due to the Wick’s theorem.
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Similarly, the Fourier mode of the three-point function is so called the bispectrum

3 3
<H s“n>(kn>> = 2m)  FH*28 (ky, ka, k3)d (Z kn) : 4.2)

n=1 n=1

Here, the translation invariance of the background results in the delta function denot-
ing the momentum conservation. If the scale invariance is kept, we have

FM1%2%3(pky, bky, bk3) = b0 F*1%2%3(k;, ka, k3). (4.3)

Moreover, due to the rotational invariance, the independent variables are reduced to
ko/ ki and k3 / k.

In order to compute the primordial bispectrum, it is necessary to deal with the
vacuum evolution under the finite interactions carefully. This is not the leading order
effectin calculating the power spectrum. The in-in formalism is a powerful method to
compute the primordial higher-order cosmological correlation [12—16]. In Chap. 8,
using this formalism, we actually discuss the computation for the bispectrum of the
gravitational waves.

4.2 Shape of the Non-Gaussianities

The delta function in Eq.(4.2) results in a closed triangle in Fourier space. The
triangle configuration at which the primordial bispectrum is amplified is dependent
on the inflationary models; therefore the shape of the non-Gaussianity is a powerful
clue to inflation [17, 18].

We can study the bispectrum shape by plotting the magnitude of (k; kok3)? F414243
(k1, k2, k3) as a function of ky/k; and k3/k; for k3 < ky < kj. For identification
of each triangle, one often use the following names: squeezed (k; ~ ky > k3),
elongated (ki = ko + k3), folded (k;y = 2kp = 2k3), isosceles (ko = k3), and
equilateral (k; = k» = k3). In Fig. 4.1, the visual representations of these triangles
are depicted.

From here, we concentrate on three representative shapes of the primordial bis-
pectrum: “local”, “equilateral”, and “orthogonal”. Then, it may be convenient to
decompose the non-Gaussianity of the curvature perturbations into the magnitude-
depending and shape-depending parts:

3
FOO(ky, ko, k3) = ngL@nzAs)zS(kl, ka, k3), (4.4)

where Ag is the magnitude of curvature perturbations defined in Eq. (3.114).
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Fig. 4.1 Representations of triangles forming the bispectrum. This figure is adopted from the paper
“Perturbation Theory Reloaded II: Non-linear Bias, Baryon Acoustic Oscillations and Millennium
Simulation In Real Space” Ref. [19]

4.2.1 Local Type

The simplest way to parametrize the non-Gaussianity of curvature perturbation is to
expand by Gaussian fluctuation Z, [20] as

BX) = Hy(X) + gf;?fa‘ %07 - (#,x7)] 4.5)

From this equation, we can see that the non-Gaussianity is localized at a given point
in the real space. Therefore, we call this the local-type non-Gaussianity, and fgf}fal is
called the local-type nonlinearity parameter. Then, the bispectrum of the local-type
non-Gaussianity of the curvature perturbations is derived as

6
F2O k1, ko, k3) = gfﬁffa‘ [P (k1) Py (ka) + 2 perms.]. (4.6)

Fixing the spectral index as ngy = 1 and equating this equation with Eq. (4.4), we can
write

Slocal(kl, ko, k3) =2 [ +2 perms.i|. 4.7

(kik2)3

This is boosted in the squeezed limit: k3 < ki & ky as shown in the top-left panel
(a) of Fig. 4.2. In this limit, the bispectrum reaches
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000 local ~
Fiocal k1, k2, k3 — 0) = f Pgp(k1) Pgp(k3). (4.8)

In Refs. [12, 21-24], the authors found that the local-type non-linearity parameter
is tiny in the single field slow-roll inflation as

5 5 5
N = (=m0 = 2 Qe — ) = £ Ge — ), (4.9)

which gives f© local — ().015 for ny = 0.963. In contrast, large N local can be realized in

the models Wlth multiple light fields during inflation [25-35], the curvaton scenario
[36-38], and inhomogeneous reheating [39, 40].

4.2.2 Equilateral Type

The equilateral bispectrum is parametrized as [41]

2
(ki1kak3)?

1
[ k1k2k3 + 5 perms. ]:| (4.10)

This bispectrum is obtained in the inflationary models with non-canonical kinetic
terms for the scalar field. For example, the so-called Dirac-Born-Infeld (DBI) infla-
tion [42, 43] predicts fy; equil /cf for ¢y < 1 with ¢, being the effective sound
speed of the scalar field fluctuation. We can also find a lot of other large fl\e]%ul models
[44—48]. This bispectrum has a peak at the equilateral limit, namely, k| = k = k3 as
described in the bottom-left panel (b) of Fig. 4.2. Due to the orthogonality between the
local- and equilateral-type bispectra, these can be measured almost independently.

In Chap. 8, we confirm that the graviton non-Gaussianity originated from the Weyl
cubic action is also categorized as the equilateral type.

. 1
SN (k1 ko, k3) = 6 H ok )3 + 2 perms. I —

4.2.3 Orthogonal Type

In the orthogonal type, we use the following parametrization:

8

(kikz)3 (k1kak3)?

3
+ + 5 perms. 4.11

Sorthog(kl’ ka, k3) = 6 |:[— +2 perms.] _
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Fig. 4.2 Two dimensional color contour for the shapes of the primordial bispectra. Each panel
describes the normalized amplitude of (k| k2k3)25 (ky, k2, k3) as a function of k> /k; and k3/k; for
k3 < kp < kj. The amplitude is normalized by the maximum value of (k1k2k3)2S(k1, ka, k3). The
top-left panel (a) is the local form given by Eq. (4.7), which diverges at the squeezed configuration.
The bottom-left panel (b) is the equilateral form given by Eq. (4.10), which is amplified at the
equilateral configuration. The top-right panel (c) is the orthogonal form given by Eq. (4.11), which
has a positive peak at the equilateral configuration, and a negative valley along the elongated
configurations. This is quoted in the paper “Hunting for Primordial Non-Gaussianity in the Cosmic
Microwave Background” [11]

This is nearly orthogonal to both the local-type and equilateral-type non-
Gaussianities [49]. This bispectrum can arise from a linear combination of higher-
derivative scalar-field interaction terms which produce the equilateral bispectra. This
function has a positive peak at the equilateral configuration and negative valley along
the elongated configurations as seen in the top-right panel (c) of Fig. 4.2.

4.3 Observational Limits

Using the optimal estimators [11, 49-52], the constraints on the nonlinearity para-
meters from the CMB data (WMAP 7-yr data) are obtained as [53]

—10 < f5l <74, 214 < £SO <266, —410 < fAMF <6, (4.12)

at a 95% confidence level. As another approach for extracting the non-Gausssinity
from the CMB data, the methods with the Minkowski functionals have been devel-
oped [54-56].

The PLANCK satelite [57] and the proposed CMBPol mission [58] will give
tighter bounds as o ( llﬁfa]) ~ 5 and 2. At the level of fﬁf}fal = 0(1), we need to be
concerned about the contamination of the signals from late-time secondary effects.
Studies on the gravitational non-linear evolution at late times can be seen in Refs. e.g.,
[59-62].
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In addition, the primordial non-Gaussianity also imprints its signatures on the
large scale structure in the Universe. Estimating the primordial non-Gaussianity
from the data of the matter distribution is hard due to large contamination of late-
time gravitational nonlinear evolution. Regardless of it, the scale-dependence of the
bias parameter between biased objects and linearized matter density fields is a good
indicator for the primordial local-type non-Gaussianity [63, 64]. From the luminous
red galaxies (LRGs) sample of SDSS, Ref. [64] obtained a bound as

—29 < figeal =70 (95% CL). (4.13)

This is comparable to bounds from the CMB data. The way to extract the information
on the primordial non-Gaussianity from the matter distribution has continuously been
studied (see, e.g., Refs. [65-67]).

4.4 Beyond the Standard Scalar-Mode Non-Gaussianities

Historically, as described above, only the non-Gaussianity of curvature perturba-
tions has been well-known studied. However, the non-Gaussianity of vector- or
tensor-mode perturbation can be generated from the cosmological defects [68, 69],
the magnetic fields [70], the nonlinear gravitational waves [12, 71-74], and so on.
Furthermore, somewhat exotic non-Gaussianities including the violation of the rota-
tional or parity invariance in the early Universe have recently been discussed (see,
e.g., Refs. [72, 75-77]). Hence, for precise comprehension of the early Universe,
detailed analyses of these signals are necessary.

This is the main motivation of our studies: construction of the general formulae
for the CMB bispectrum with not only scalar- but also vector- and tensor-mode
contributions, and computation and analysis of the CMB bispectrum sources from
these novel non-Gaussianities. In the following chapters, we focus on our studies.
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Chapter 5

General Formalism for the CMB Bispectrum
from Primordial Scalar, Vector and Tensor
Non-Gaussianities

In this chapter, on the basis of the formulation of the CMB anisotropy in Chap. 3,
we develop the formulae for the CMB bispectrum sourced from scalar-, vector-, and
tensor-mode non-Gaussianity. These results have been published in our paper [1].

At first, we should remember an expression of CMB fluctuations discussed in
Chap. 3. In the all-sky analysis, the CMB fluctuations of intensity, and E and B-
mode polarizations are expanded with the spin-0 spherical harmonics, respectively.
Then, the coefficients of CMB fluctuations, called ay,,’s, are described as

e [ Kk 5 oh g
ay), = 4n (=i / T ?sgn(»]“ Y REN®) T k). (5.0)

where the index Z denotes the mode of perturbations: Z = § (scalar), = V (vector)
or = T (tensor) and its helicity is expressed by A; A = 0 for Z = §, = %1 for
Z =V or==®2for Z =T, X discriminates between intensity and two polarization
(electric and magnetic) modes, respectively, as X = I, E, B and x is determined by
ittx =0forX =1, Eor=1for X = B, 5(” is the initial perturbation decomposed
on each helicity state and ﬂ;zg) is the time-integrated transfer function in each sector
given by Eq.(3.101). !
Next, we expand S(“ with spin-(—2X) spherical harmonics as

ENm) =D EN ) YimK) . (5.2)
tm

and eliminate the angular dependence in Eq. (5.1) by performing ﬁ—integral:

* k2dk
ay), = 4n (i) /0 P > sen WP ER ) 75 K. (5.3)
A

! Here, we set 00 = 1.
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Here, we use the orthogonality relation of the spin-A spherical harmonics described
in Appendix A as

/ PR Y], () Yim (R) = 8,08 (5.4)

Then the CMB bispectrum generated from the primordial non-Gaussianity of the
scalar, vector and tensor perturbations is written down as

3
K2dk, )
<H ay." Zlm,,> H‘”T( Do /O o )39§fg),,(kn)2[sgn(/\ )t

n=1 An

x <H S (kn>> : (5.5)

n=1
3
<H§g(:m)n(kn > |:H/d kn )‘nYZ mn(kn):| <H§(An)(k )>
n=1

This formalism will be applicable to diverse sources of the scalar, vector and tensor
non-Gaussianities, such as, a scalar-graviton coupling [1] (Chap. 6), cosmic strings
[2, 3], primordial magnetic fields [4—6] (Chap.9), and statistically-anisotropic and
parity-violating interactions [7, 8] (Chaps. 7 and 8).

To compute the CMB bispectrum composed of arbitrary perturbation modes, we

é:;n),, (ky) >, involving the
contractions of the wave number vector and polarization vector and tensor, and the
integrals over the angles of the wave number vectors. As shown later, this is elegantly
completed by utilizing the Wigner symbols and spin-weighted spherical harmonics.

If the initial bispectrum satisfies the rotational invariance, the CMB bispectrum
is divided into the Wigner-3 j symbol depending on the azimuthal quantum numbers

and the angle-averaged function as

s RN
(Zn) \ _ 1 €2 &3 (212, Z3)
< aenmn> = (ml - m3) By X, Xs 010005 - (5.6)

n=1

have to reduce the expanded primordial bispectrum, <H,31: X3

Let us focus on the CMB bispectrum from the curvature perturbations. Then, from
Egs.(4.2), (4.4), (4.7), (4.10), (4.11), (5.5), (5.6) and the knowledge of Appendix C,
we derive the reduced bispectra as
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Fig. 5.1 The CMB [11 (left top panel), 11 E (right top one), 1 EE (left bottom one), and EEE
(right bottom one) bispectra induced from the local-type (red solid line), equilateral-type (green
dashed one), and orthogonal-type (blue dotted one) non-Gaussianities of curvature perturbations.
The three multipoles are fixed as £; = ¢, = {3 = {. Here we consider a power-law flat ACDM
model and fix the nonlinear parameters as fgf’fa' = ;iun = Iﬁ}fhog = 100. The other cosmological
parameters are fixed to the mean values reported in Ref. [9] (Color figure online)
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where we have introduced the / symbol as

(5.8)

s _ \/ QL+ 1L+ 125+ 1) (zl I 13)

libl A7 5182 83

In Figs.5.1 and 5.2, we plot these CMB bispectra for each multipole configura-
tion. From these, one can see that depending on the shape of the primordial non-
Gaussianity, the overall magnitudes of the bispectra do not change, but the shapes in
£ space change. Comparing these with the CMB data, the bounds on the nonlinearity
parameters (4.12) are obtained.
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In this simple CMB scalar-mode bispectrum, there exists no dependence of the
initial bispectrum on the polarization vector and tensor, hence we can derive the
above formulae easily. Considering the vector- and tensor-mode contributions in
the CMB bispectrum, however, the computation becomes so cumbersome due to the
complicated angular dependence of the polarization vector and tensor. This difficulty
is also true for the bispectrum where the rotational or parity invariance is broken.
From the next chapter, we deal with these complicated bispectra depending on the
several scenarios by applying the wonderful mathematical tools such as the Wigner
symbols and the spin-weighted spherical harmonics.
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Chapter 6
CMB Bispectrum Induced by the Two Scalars
and a Graviton Correlator

In this chapter, adapting Eq. (5.5) to the primordial non-Gaussianity in two scalars
and a graviton correlation [1], we compute the CMB scalar-scalar-tensor bispectrum.
This discussion is based on our paper [2].

6.1 Two Scalars and a Graviton Interaction During Inflation

We consider a general single-field inflation model with Einstein-Hilbelt action [3]:
M2
S = /d4x«/_—g [TPR + p(o, X)] , (6.1)

where g is the determinant of the metric, R is the Ricci scalar, Mgl = 1/8nG),
¢ is a scalar field, and X = —g/*V0,¢0,¢/2. Using the background equations, the
slow-roll parameter and the sound speed for perturbations are given by

H Xp x 2 P.x

—_— = = — 6.2)
H? H2M§1 ' 2Xpxx+px ¢

E =

where H is the Hubble parameter, the dot means a derivative with respect to the
physical time ¢ and p_x denotes partial derivative of p with respect to X. We write
a metric by ADM formalism

ds®> = —N%di> + a®e" (dx® + N%d1)(dx" + Nbdr) , (6.3)
where N and N“ are respectively the lapse function and shift vector, y,;, is a transverse

and traceless tensor as Y, = 9,¥qp = 0, and €Y% = 8,4 + Vap + VacVen/2+ - -+ . On
the flat hypersurface, the gauge-invariant curvature perturbation ¢ is related to the
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first-order fluctuation of the scalar field  as ¢ = —H¢/¢.! Following the conversion
Egs (D.15) and (D.22), we decompose ¢ and y, into the helicity states as

1 ~
O =), F k) = zeg” (K) yap (K) - (6.4)

Here, e;?) is a transverse and traceless polarization tensor explained in Appendix

D. The interaction parts of this action have been derived by Maldacena [1] up to the
third-order terms. In particular, we will focus on an interaction between two scalars
and a graviton. This is because the correlation between a small wave number of the
tensor mode and large wave numbers of the scalar modes will remain despite the
tensor mode decays after the mode reenters the cosmic horizon. We find a leading
term of the two scalars and a graviton interaction in the action coming from the
matter part of the Lagrangian through X as

2 P.X
X |3rd—order D @ ZTyabaawaw, (6.5)

therefore, the interaction part is given by

Sint D /d4x agtssyabaagabg . (66)

Here, we introduce a coupling constant g;ss. From the definition of ¢, y,;; and the
slow-roll parameter, g;ss = €. For a general consideration, let us deal with g, as
a free parameter. In this sense, constraining this parameter may offer a probe of the
nature of inflation and gravity in the early Universe. The primordial bispectrum is
then computed using in-in formalism in the next section.

6.2 Calculation of the Initial Bispectrum

In the same manner as discussed in Ref. [1], we calculate the primordial bispec-
trum generated from two scalars and a graviton in the lowest order of the slow-roll
parameter:

3
(642005 e V0] = ' F00k, B K (Z k") |

n=1
dgiss I (k1 ko, k3)koks — H
[1; &) 2¢2 e2Mgl

e

FE0 Ky, ks, k3) (6.7)

oo
x e KKk,

I Here, ¢ and Yab are equivalent to # and h,p, in Eq. (2.13), respectively.
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kiky + koks + k3ky n kikoks

1k, ky, k3) = —k
(k1, ko, k3) r+ 5 02

)

where k; = ki + k» + k3, and * means that it is evaluated at the time of horizon
crossing, i.e., a, H, = k. Here, we keep the angular and polarization dependences,
egz) (kAl)kAzak} »» which have sometimes been omitted in the literature for simplicity
[4-6]. We show, however, that expanding this term with spin-weighted spherical har-
monics enables us to formulate the rotational-invariant bispectrum in an explicit way.

The statistically isotropic power spectra of & @ and £ #2) are respectively given by

<%—(0)(k)§(0)*(k/)> = (27‘[)3P5(k)5(k . k/) ’

k3 Pg (k) H?
= = AS N
272 Snzcs*s*Mgl
, Pr(k
<g<“(k)g@ >*(k’)> = (2;1)3%5(1( — k)8, (for A, M =+2),  (6.8)

KPr(k)  H?

*

2 202
2 T Mpl

r
= 8cysxAs = EAS s

where r is the tensor-to-scalar ratio and Ag is the amplitude of primordial curvature
perturbations.” Note that the power spectra satisfy the scale invariance because we
consider them in the lowest order of the slow-roll parameter. Using these equations,
we parametrize the initial bispectrum in this case from Eq. (6.7) as

FRO0y, ka, k3) = £ 759 (ky, ko, k3)e T2 (K Kaakap » (6.9)

167 ASgrss 1(ky, ko, k3) ke

TSS) (ky, ka, k3) = )
f (kt, ka, k3) fErers 3 I

(6.10)

Note that (7S5 seems not to depend on the tensor-to-scalar ratio. In Fig. 6.1 , we
show the shape of I/k;. From this, we confirm that the initial bispectrum f 5%
(6.10) dominates in the squeezed limitas k1 < kp =~ k3 like the local-type bispectrum
of scalar modes given by Eq. (4.7).

In the squeezed limit, the ratio of 7S5 to the scalar-scalar-scalar counterpart
FASRRAES g JNL Ps(k1) Ps(k2), which has been considered frequently, reads

f(TSS) _ 10g;ss i@ N ZOgtssi
FOS9 3 ke k3 3fnL ke

(6.11)

In the standard slow-roll inflation model, this ratio becomes &'(1) and does not
depend on the tensor-to-scalar ratio because g;s; and fnp. are proportional to the
slow-roll parameter €, and [/ k; has a nearly flat shape. The average of amplitude is

2 For ¢y, = 1, these results are identical to Egs. (2.30) and (2.31).
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Fig. 6.1 Shape of //k. For the symmetric property and the triangle condition, we limit the plot
range as k| < ko < ks and |k — k2| < k3z <k + k2

evaluated as 1/k;, =~ —0.6537. Therefore, it manifests the comparable importance
of the higher order correlations of tensor modes to the scalar ones in the standard
inflation scenario.

6.3 Formulation of the CMB Bispectrum

Here, using Egs. (5.5), (6.7) and (6.9), we explicitly calculate the CMB tensor-scalar-
scalar bispectrum as

4D Q) 4 H4ﬂ(— )(n ookde (Z)( k)
X1, 00m1 AX0,00my 4 X5, 03m5 ! 0 (@m )3 ann n

<X (3) | e]

X YZml (kl)YK*zmz (kZ)Y€*3m3 (kA3)
x (27)3 F TS (ky, ka, k3)

X e(:l'; )(kl)kzak3b5 (H kn) . (6.12)

n=1
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At first, we express all parts containing the angular dependence with the spin
spherical harmonics?:

(87’[)3/2

oo . . .
5P (Kp)kaaksp = > LYy KoY, k)Y, (K)

Mmgmy

2 1 1
X (Mma mb), (6.13)

3 0 3
S(Zki)=8 /O Yy [ [T D0 05 ju, ki)Y, p, (ki)

i=1 i=1L;M;

L Ly L
000 1 2 3
x 1999, (M1 o M3) , (6.14)

where we used the relations listed in Appendices C and D and

Iial3 - 5182 83 (6.15)

51525 \/(211 + DL+ D25 +1D (11 I 13)

Secondly, using Eq. (C.8), we replace all the integrals of spin spherical harmonics
with the Wigner symbols:

200 - - - 2052 ( €1 L1 2
/ PRy 2V ROV, (K)o Vi (Kp) = 20T (ml w M) ,

by Lo 1

/dzkA2 Yf*zmz (kAZ)YZzMz (kAz)Yl*ma (kAz) = 1592?‘201 (mz M ma) - (019

20 ~ - ~y 000 [ ¢ L3 1
/d K3 Y., (k) Y] 0 (k)Y (K3) = Ip7 (m3 M; mh) )

Thirdly, using the summation formula of five Wigner-3j symbols as Eq. (C.20), we
sum up the Wigner-3; symbols with respect to azimuthal quantum numbers in the
above equations and express with the Wigner-9; symbol as

Z Ly Ly L3 2 1 1
My My M3 M m, my

M M> M3
Mmgmy
« 0y Ly 2 by Ly 1 l3 Ly 1
mp My M my Mo myg, m3 M3 my,
L1 £y L3
= (El £ 53) LyLyLs} . (6.17)
nmi nmp mj 21 1

3 Equations (3.14) and (3.21) in Ref. [2] include typos.
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After these treatments and the summation over A = £2 as

Z ()»_I)Xl IMO—)LI _ 216210L_122 (forx; + L1 + £ = even) , 6.18)
A=+2 a2 0 (for x1 + L1 + ¢; = odd) , ’

we can obtain the CMB angle-averaged bispectrum induced from the nonlinear cou-
pling between two scalars and a graviton as

3/2 Ly £y L3
(TSS) (8m) Litla*ls 600 ;20—2 7000 7000
BX[XQX},Z|£2[3 = Z (_l) 2 1L1L2L31[]L]2152L211€3L31 Ll L2 L3
LyLyL3 2 1 1
* N PR (Zy)
x/ Yy | [] =0 | kidkn 757 jL, kay)
0 n:1 JT 0 nstn
< [Tk, ky. k3) . (6.19)

Note that the absence of the summation over m, my and ms3 in this equation
means that the tensor-scalar-scalar bispectrum maintains the rotational invariance.
As described above, this consequence is derived from the angular dependence in the
polarization tensor. Also in vector modes, if their power spectra obey the statistical
isotropy like Eq. (6.8), one can obtain the rotational invariant bispectrum by consid-
ering the angular dependence in the polarization vector as Eq. (D.11). Considering
Eq. (6.18) and the selection rules of the Wigner symbols explained in Appendix C,
we can see that the values of L, L, and L3 are limited as

¢ +2,0, (for X1 =1E
coflaE2 b Qo Xy =1 E) ) L= ey 1],
€] £ 1] (for X1 = B)
3
ILi— Lol <Ly < Li+Ly, D Li=even, (620

i=1

and the bispectrum (6.19) has nonzero value under the conditions:

3
even (for X| =1,E)
=0 <3<+, l = . 6.21
6y =l <83 <41+ ;; Iodd (for X1 = B) (6.21)

In Figs. 6.2 and 6.3, we describe the reduced CMB bispectra of intensity mode
sourced from two scalars and a graviton coupling:

(TSS) (STS) (SST)
b]][,f]lzf:; + b111,51€2£3 + blll,llfzfg

—1
(000 (TSS) (STS) (S5T)
= ( mm) (BIII,€1€2€3 + Bl e T BIII,€1€2€3) . (6.22)
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Fig. 6.2 Absolute values of the CMB reduced bispectra of temperature fluctuation for £; = £, =
{3 = €. The lines correspond to the spectra generated from tensor-scalar-scalar correlation given by

Eq. (6.22) with g;ss = 5 (red solid line) and the primordial non-Gaussianity in the scalar curvature

perturbations with f;}’fal = 5 (green dashed line). The other cosmological parameters are fixed to

the mean values limited from WMAP-7yr data reported in Ref. [10] (Color figure online)

and primordial curvature perturbations (5.7):

-1
($8$)  _ (7000 (555)
biire e = ( 1116223) Bi11 10065 - (6.23)

For the numerical computation, we modify the Boltzmann Code for Anisotropies in
the Microwave Background (CAMB) [7, 8].% In the calculation of the Wigner-3
and 9 symbols, we use the Common Mathematical Library SLATEC [9] and the
summation formula of three Wigner-6j symbols (C.21). As the radiation transfer
functions of scalar and tensor modes, namely, “7;,-5,)&' and .7, X(ITEZ, , we use Eq. (3.101).
From the behavior of each line shown in Fig. 6.3 at small £3 that the reduced CMB
bispectrum is roughly proportional to £~2, we can confirm that the tensor-scalar-
scalar bispectrum has a nearly squeezed-type configuration corresponding to the
shape of the initial bispectrum as discussed above. From Fig. 6.2, by comparing the
green dashed line with the red solid line roughly estimated as

7SS STS SST _ _
|b§11,z§zz + bgll,e)u + bgu,zixﬂ ~ 0 x 8 x 10718 gy (6.24)

we find that |g;ss| ~ 5 is comparable to Ilf}fal = 5 corresponding to the upper bound

expected from the PLANCK experiment.

4 The CMB bispectra generated from the two scalars and a graviton correlator in Figs. 6.2 and 6.3
become slightly smaller than those in Ref. [2] due to the accuracy enhancement of the numerical
calculation.
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Fig. 6.3 Absolute values of ] ———y ———ry
the CMB reduced bispectra I
of temperature fluctuation
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Eq. (6.22) (TSS + STS +
SST) and the primordial
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curvature perturbations (SSS)
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6.4 Estimation of the Signal-to-Noise Ratio

Here, we compute the signal-to-noise ratio by comparing the intensity bispectrum
of Eq. (6.19) with the zero-noise (ideal) data and examine the bound on the absolute
value of g;s. The formulation of (the square of) the signal-to-noise ratio (S/N) is
reported in Refs. [11] and [12]. In our case, it can be expressed as

(TSS) (STS) (SST)
E)- x (B + Bl + Biilr)

N 2
2<by<lr<t3<t Ot

where oy, ¢,¢, denotes the variance of the bispectrum. Assuming the weakly non-
Gaussianity, the variance can be estimated as [13, 14]

07 1r03 ~ Ct; Ct,Coy Aty 05 (6.26)

where Ay, ¢,¢, takes 1,6 or 2 for €1 # €y # €3, = £, = {3, or the case that
two £’s are the same, respectively. C; denotes that the CMB angular power spectrum
included the noise spectrum, which is neglected in our case.

In Fig. 6.4, the numerical result of Eq. (6.25) is presented. We find that (S/N)
is a monotonically increasing function roughly proportional to ¢ for £ < 2000. It is
compared with the order estimation of Eq. (6.25) as Ref. [12]

el @ £3|b111w +brrreee + birrece

(26)3
24 o 0 o (€2C)32

~ 0% 5.4 % 1075 gs] - (6.27)

(TSS) L p(STS) | p(SST)
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Fig. 6.4 Signal-to-noise N —
ratio normalized by g5 as L 1
a function of the maximum L 4
value between £, £, and {3, 0.1} =
namely, ¢. Each parameter i 1
is fixed to the same values 0.01 I 1
defined in Fig. 6.2 3 T F 3
§ L ]
S 0.001 |- i
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Je-05 Lo iiiiinl Ll N
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000
0.36 x £, and £2C4g ~ 6 x 10719, We confirm that this is consistent with Fig.6.4,
which justifies our numerical calculation in some sense. This figure shows that from
the WMAP and PLANCK experimental data [10, 15], which are roughly noise-free
at £ < 500 and 1000, respectively, expected (S/N)/g:ss values are 0.05 and 0.11.
Hence, to obtain (S/N) > 1, we need |g;s5| > 20 and 9. The latter value is close to
a naive estimate |g,5s| < 5, which was discussed at the end of the previous section.

2
Here, we use Eq. (6.24) and the approximations as > ~ 0324, 03 (6 ¢ 6) ~

6.5 Summary and Discussion

In this chapter, we present a full-sky formalism of the CMB bispectrum sourced from
the primordial non-Gaussianity not only in the scalar but also in the vector and tensor
perturbations. As an extension of the previous formalism discussed in Ref. [5], the
new formalism contains the contribution of the polarization vector and tensor in the
initial bispectrum. In Ref. [5], we have shown that in the all-sky analysis, the CMB
bispectrum of vector or tensor mode cannot be formed as a simple angle-averaged
bispectrum in the same way as that of scalar mode. This is because the angular
integrals over the wave number vectors have complexities for the non-orthogonality
of spin spherical harmonics whose spin values differ from each other if one neglects
the angular dependence of the polarization vector or tensor. In this study, however,
we find that this difficulty vanishes if we maintain the angular dependence in the
initial bispectrum.

To present how to use our formalism, we compute the CMB bispectrum induced
by the nonlinear mode-coupling between the two scalars and a graviton [1]. The
typical value of the reduced bispectrum in temperature fluctuations is calculated as
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TSS)

a function of the coupling constant between scalars and gravitons gs;: |b5 11000 T

bﬁ??& + bﬁfe}zﬂ ~ 04 x8x 10718 |gtss|. Through the computation of the signal-

to-noise ratio, we find that the two scalars and a graviton coupling can be detected
by the WMAP and PLANCK experiment if |g;ss| ~ €(10). Although we do not
include the effect of the polarization modes in the estimation of g;ss in this study,
they will provide more beneficial information of the nonlinear nature of the early
Universe.
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Chapter 7
Violation of the Rotational Invariance
in the CMB Bispectrum

The current cosmological observations, particularly Cosmic Microwave Background
(CMB)), tell us that the Universe is almost isotropic, and primordial density fluctua-
tions are almost Gaussian random fields. However, in keeping with the progress of
the experiments, there have been many works that verify the possibility of the small
deviation of the statistical isotropy, e.g., the so-called “Axis of Evil”. The analyses of
the power spectrum by employing the current CMB data suggest that the deviation
of the statistical isotropy is about 10% at most (e.g. [1-6]). Toward more precise
measurements in future experiments, there are a lot of theoretical discussions about
the effects of the statistical anisotropy on the CMB power spectrum, [7-11], e.g.,
the presence of the off-diagonal configuration of the multipoles in the CMB power
spectrum, which vanishes in the isotropic spectrum.

As is well known, it might be difficult to explain such statistical anisotropy in
the standard inflationary scenario. However, recently, there have been several works
about the possibility of generating the statistically anisotropic primordial density
fluctuations in order to introduce nontrivial dynamics of the vector field. [12-24]. In
Ref. [14], the authors considered a modified hybrid inflation model where a waterfall
field couples not only with an inflaton field but also with a massless vector field. They
have shown that, owing to the effect of fluctuations of the vector field, the primordial
density fluctuations may have a small deviation from the statistical isotropy and
also the deviation from the Gaussian statistics. If the primordial density fluctuations
deviate from the Gaussian statistics, they produce the non-zero higher order spectra
(corresponding to higher order correlation functions), e.g., the bispectrum (3-point
function), the trispectrum (4-point function) and so on. Hence, in the model presented
in Ref. [14], we can expect that there are characteristic signals not only in the CMB
power spectrum but also in the CMB bispectrum.

With these motivations, in this work, we calculate the CMB statistically anisotropic
bispectrum sourced from the curvature perturbations generated in the modified hybrid
inflation scenario proposed in Ref. [14], on the basis of the useful formula presented
in Ref. [25]. Then, we find the peculiar configurations of the multipoles which never
appear in the isotropic bispectrum, like off-diagonal components in the CMB power
spectrum. These discussions are based on Ref. [26].

M. Shiraishi, Probing the Early Universe with the CMB Scalar, Vector and Tensor 75
Bispectrum, Springer Theses, DOI: 10.1007/978-4-431-54180-6_7, © Springer Japan 2013
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This chapter is organized as follows. In the next section, we briefly review the
inflation model where the scalar waterfall field couples with the vector field and
calculate the bispectrum of curvature perturbations based on Ref. [14]. In Sect. 7.2,
we give an exact form of the CMB statistically anisotropic bispectrum and analyze
its behavior by numerical computation. Finally, we devote the final section to the
summary and discussion.

Throughout this chapter, we obey the definition of the Fourier transformation as

&Pk ..
f(x) = / mf(k)e""", (7.1)

and a normalization as Mp| = @rG)~ V2 =1.

7.1 Statistically-Anisotropic Non-Gaussianity in Curvature
Perturbations

In this section, we briefly review the mechanism of generating the statistically
anisotropic bispectrum induced by primordial curvature perturbations proposed in
Ref. [14], where the authors set the system like the hybrid inflation wherein there
are two scalar fields: inflaton ¢ and waterfall field x, and a vector field A, coupled
with a waterfall field. The action is given by

1 1
§= /dx4\/ —8 [ER - Eglw(a/t(bavfﬁ +0uxdvx) — Vg, x, Ay)

1
—8"e" f 2(¢) Fup Fva:| . (7.2)

Here, F),, = 9, A, —0,A,, is the field strength of the vector field A, V (¢, x, A,) is
the potential of fields and f(¢) denotes a gauge coupling. To guarantee the isotropy
of the background Universe, we need the condition that the energy density of the
vector field is negligible in the total energy of the Universe and we assume a small
expectation value of the vector field. Therefore, we neglect the effect of the vector
field on the background dynamics and also the evolution of the fluctuations of the
inflaton. In the standard hybrid inflation (only with the inflaton and the waterfall
field), the inflation suddenly ends owing to the tachyonic instability of the waterfall
field, which is triggered when the inflaton reaches a critical value ¢. In the system
described using Eq. (7.2), however, ¢. may fluctuate owing to the fluctuation of the
vector field and it generates additional curvature perturbations.

Using the § N formalism [27-32], the total curvature perturbation on the uniform-
energy-density hypersurface at the end of inflation # = 7, can be estimated in terms
of the perturbation of the e-folding number as
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{(te) = 8N(te, ty)
_ 8_N8¢ L1 192N 502 4 AN dqbe(A)M
ErS 2002 % 0¢. dAR ©
1 [ IN d*¢pe(A) | 3N dge(A) dge(A)
dpe dAMAAY ~ dpr dAH  dAY

} SAISAY.  (13)

Here, t, is the time when the scale of interest crosses the horizon during the slow-
roll inflation. Assuming the sudden decay of all fields into radiations just after the
inflation, the curvature perturbations on the uniform-energy-density hypersurface
become constant after the inflation ends !. Hence, at the leading order, the power
spectrum and the bispectrum of curvature perturbations are respectively derived as

2 2
<H ;(kn> = (2m)* N2 Py (k1)8 (Z k,,)
n=1

n=1

2dde(A) dge(A)
¢ dA*  dAY

3 3
<H ;(kn> = (271)> N} Nyu[ Py (k1) Py (k2) + 2 perms.]8 (Z kn)
n=1

n=1
N349e(A) dpe(A) dee(A)
¢ dAr  dAY  dAP
N4 d9e(A) dpe(A) (L d*pe(A) | Nee dde(A) d¢e(A))
¢ dAr  dAY Ne dAPdA® ~ N2 dAP  dA°
x [(8A% (k1)S AL (k) (BAP % A7) (K3)) + 2 perms.], (7.5)

(0AL (k1)dAl(k2)) (1.4)

(SAL(k1)SAL (k)AL (k3))

where Py (k) = H*2 /(2k3) is the power spectrum of the fluctuations of the inflaton,
Ny = ON/3¢ps, Nuw = 3°N/3¢p2, No = IN/d¢pe, Nee = 3°N/d¢p2, and *
denotes the convolution. Here, we assume that §¢, is a Gaussian random field and
(6pA*) = 0.

For simplicity, we estimate the fluctuation of the vector fields in the Coulomb
gauge: §Ag = 0 and k; A’ = 0. Then, the evolution equation of the fluctuations of
the vector field is given by

gz—igﬁ—azaja-w,- =0, (7.6)
f

where o7, = f§A;, denotes the derivative with respect to the conformal time, and we
neglect the contribution from the potential term. When f o a, a2 with appropriate
quantization of the fluctuations of the vector field, we have the scale-invariant power
spectrum of § Al on superhorizon scale as [14, 18, 33]

! This ¢ is consistent with # in Eq. (2.40).
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2
(SAL(k1SAL (k) = (27)’ Py (k) f > PV (kl)a(z kn) : (7.7)

n=1

where a is the scale factor, P (ﬁ) = 8 — ]21']2/', " denotes the unit vector, and
fe = f(t.). Therefore, substituting this expression into Eq. (7.4), we can rewrite the
power spectrum of the primordial curvature perturbations, ¢, as

2 2
<H ;(kn>> = (27)° P, (k1)$ (Z kn) :
n=l1

n=1

N\ . -
Pe (k) = Py(k) [Nf + (7) q'q’ Pij (k)} , (7.8)

(&

where ¢; = d¢e/dA", gij = d*¢e/(dA'dAT). We can divide this expression into
the isotropic part and the anisotropic part as [7]

4 N2
Pr(K) = PI(K) [1 +gp (q~k) } , (7.9)

with

PE(k) = NI Py()(1+ B), gp=— (7.10)

B
1+8°

where g = (Ne/N/f.)* |q|%. The bispectrum of the primordial curvature perturba-
tion given by Eq. (7.5) can be written as

3 3
<H§(kn)> = (27)° Fr (k1, k2, K3)8 (an), (7.11)
n=1

n=1

2
Fy(ki, ko, k3) = (%’3) PE° (k1) PE° (k)

N 2ranb 1 ~cd Nee ~cad - >
X — — P,.(ky) Ppy(k
[N,Z +B87°4%q Neq +Ne2461 ae (K1) Ppa(k2)

+ 2 perms. (7.12)

Here G4 = ¢°@/|q|* and we have assumed that the fluctuation of the vector field
8A" almost obeys Gaussian statistics; hence (5 A% (k1)SAY (k2)8 A% (k3)) = 0.
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Here in after, for calculating the CMB bispectrum explicitly, we adopt a simple
model whose potential looks like an Abelian Higgs model in the unitary gauge as [14]

. A 1 1 1
Vg, x, A= Z(x®2 —vH)? + Egzqszxz + §m2¢2 - EhZAMAMX2v (7.13)

4
where A, g, and & are the coupling constants, m is the inflaton mass, and v is the
vacuum expectation value of x. Since the effective mass squared of the waterfall
field is given by

(o8]

2
[

2 V 2, 2.2, ;2 L

My =gz M TE ¢ +h"A"A; =0, (7.14)

and the critical value of the inflaton ¢, can be obtained as
ol =0 —hPAA;, (7.15)

we can express 3, ¢' and ¢’/ in Eq. (7.12) in terms of the model parameters as

. U 1 2 1 (KA’
él:_Al’ él]:__ [(iqlze) 8’]+A1A]:| N ﬂ:F(T(p) s (716)
e \8Pe

where we have used Ny~ — No~1/+/2¢ withe = (dV /d$/ V)? /2 being a slow-roll
parameter and |[A| = A. Substituting these quantities into Eq. (7.12), the bispectrum
of primordial curvature perturbations is obtained as

Fy (k. ka, k3) = C P (k1) PE (ko) A* A5 Pye (Ky) Ppq (Ka) + 2 perms.

C= —gg%i (%)2 . (7.17)

Note that in the above expression, we have neglected the effect of the longitu-
dinal polarization in the vector field for simplicity? and the terms that are sup-
pressed by a slow-roll parameter n = 32V /d¢>/ V because —N**/NZ:Nee/NeZ: —
(Ne¢e)_1:r7. Since the current CMB observations suggest gg < 0(0.1) (e.g.,
Refs. [1, 2]) and N I~ _/2¢, the overall amplitude of the bispectrum in this
model, C, does not seem to be sufficiently large to be detected. However, even if
gp K land ¢ « 1, C can become greater than unity for (g/h/A)%pe > 1.Thus, we
expect meaningful signals also in the CMB bispectrum. Then, in the next section, we
closely investigate the CMB bispectrum generated from the primordial bispectrum
given by Eq. (7.17) and discuss a new characteristic feature of the CMB bispectrum
induced by the statistical anisotropy of the primordial bispectrum.

2 Owing to this treatment, we can use the quantities estimated in the Coulomb gauge as Eq. (7.12).
In a more precise discussion, we should take into account the contribution of the longitudinal mode
in the unitary gauge.
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7.2 CMB Statistically-Anisotropic Bispectrum

In this section, we give a formula of the CMB bispectrum generated from the pri-
mordial bispectrum, which has statistical anisotropy owing to the fluctuations of the
vector field, given by Eq. (7.17). We also discuss the special signals of this CMB
bispectrum, which vanish in the statistically isotropic bispectrum.

7.2.1 Formulation

The CMB fluctuation can be expanded in terms of the spherical harmonic function as

AX (R)
X

= Zax,emYem(ﬁ), (7.18)

tm

where 1 is a unit vector pointing toward a line-of-sight direction, and X denotes the
intensity (= 7) and polarizations (= E, B). According to Eq. (5.3), the coefficient,
agm, generated from primordial curvature perturbations, ¢, is expressed as

© K24k
ax.em =4n(—i)‘/0 ng(k)ﬁx,e(k) (for X =1,E), (7.19)

Com (k) = / PheM0Y], &), (7.20)

where Jx ¢ is the time-integrated transfer function of scalar modes as described in
Eq. (3.102). Using these equations, the CMB bispectrum generated from the bispec-
trum of the primordial curvature perturbations is given by

s s K24k, 3
<]‘[ax,,,e,1m,,> = [1‘[ At (—i)tr /O By Tt (k,»] <H Lty (kn)>,
n=1 n=1 n=1

(7.21)
with
3 3 R R 3
<H Lt (kn)> = [H / kY[, (k,,)} (2m)’s (Z kn) Fy (k1. k2. k3) .
n=1 n=1 n=1 (7.22)

We expand the angular dependencies which appear in the Dirac delta function,
d(ky + k2 + k3), and the function, F; (Ky, k2, k3), given by Eq. (7.17) with respect
to the spin spherical harmonics as
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3 00 3 .
5 (Z kn) =3 /0 yidy [H > (_I)L'1/2jL,,(kny)YZnMn(kn):|
n=1 *

n=1L, M,
ooo (L1 L2 L3)
x1 , 7.23
LilaLs (Ml M> M3 (7:29)
N . . 47\3 _1.01— LL L
becd _ 01—1;01—1 ;000 A
A? AL P, (Ky) Ppg(Ka) = —4(7) > it Iy, { L1
L,L' L 4=0,2
. . (L L Ly
x< 2 YzM<k1>Yz/Mf<kz>YzAMA<A>(MM/ MA),
MM My
(7.24)

where the 2 x 3 matrices of a bracket and a curly bracket denote the Wigner-3j and
6j symbols, respectively, and

I3 - 5159 83 (7.25)

o1y _ \/(211 +1DQRL+ D+ 1) (11 I 13)

Here, we have used the expressions of an arbitrary unit vector and a projection tensor
as Appendices C and D. Note that for Y(;ko (A) =1/ /47, the contribution of L 2A=0
in Eq. (7.24) is independent of the direction of the vector field. Therefore, the sta-
tistical anisotropy is generated from the signals of L4 = 2. By integrating these
spherical harmonics over each unit vector, the angular dependences on Kj, k3, k3
can be reduced to the Wigner-3j symbols as

210 v * * _ 7000 L Ly L
/d Ky o Yo, 0, Yo = 1o, (m1 M, M)’

27 ooo (¢ Lo L'
/d szﬁ*zmzYIszz Z/M/ = IﬁszL’ (mz My, M' )’ (7.26)

/d2l£3Y;3m3 YZ}M3 = (_1)m3 8143,33 8M3,ﬂn3-

From these equations, we obtain an alternative explicit form of the bispectrum of
Cem as

3 o .

1tLo+L3
<H:g,,m,,<kn>>= —en's [y S EnTER RS,
n=1

LiL>
x Pk i (i) PO k) e (Ray) Ciry (s )

4\’ 01—1701—1
X4(?) (=D™ Z Ipn I

L,L',L,=0,2
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i LyL L 11L 4 11 1

% ~ Ly Ly £3
SID R ] vl
M{MyMM' M 4

« ¢y Ly L ¢y L, L’ L L' Ly
my My M my My M’ MM My

+ 2 perms. (7.27)

w1000 IOOZOL,IOOO {LU LA]

This equation implies that, owing to the vector field A, the CMB bispectrum has a
direction dependence, and hence, the dependence on m 1, m,, m3 cannot be confined
only to a Wigner-3j symbol, namely,

miy ma m3

s A
<H¢e,,m,,(kn)>;é(h)%lezz}(kl,kz,ka)(1 ’ 3). (7.28)

n=1

This fact truly indicates the violation of the rotational invariance in the bispectrum
of the primordial curvature perturbations and leads to the statistical anisotropy on
the CMB bispectrum.

Let us consider the explicit form of the CMB bispectrum. Here, we set the coordi-
nate as A = 2. Then, by substituting Eq. (7.27) into Eq. (7.21) and using the relation
Yo, @ = V QL4 +1)/(47)8pm,.0, the CMB bispectrum is expressed as

<Haxn,znmn> = —/O y*dy [H;/O kﬁdknfxn,e,,(kn)}
n=1

n=1

0 ++L +Ly
+03 7000
x Z(_l) : 11,1505
LiLy

X P 1) (ki) Py (ka) o (kay) s (k3)

4 ar)’ 1™ 0117011
X 3 (=D™ Z L1 ‘o
L,L',L4=0,2

000 ;000 y000 | L L La
XI(]LILIKZLZL’IHLA[I 11

2
[2L 1
% AT Z Ly Lo {3
47 —my — M —my + M —mj3
M=-2
« A Ly L 1% Lo L
my—m — MM my —my+ M —M

L L Ly
X (M M 0 )+2perms. (7.29)
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Fig. 7.1 Absolute values of the CMB statistically anisotropic bispectrum of the intensity mode
given by Eq. (7.29) with C = 1 (red solid line) and the statistically isotropic one given by Eq. (7.31)
with fn. = 5 (green dashed line) for £1 = £, = €3. The left and right figures are plotted in the

configurations (m, my, m3) = (0,0, 0), (10, 20, —30), respectively. The parameters are fixed to
the mean values limited from the WMAP-7yr data as reported in Ref. [38]

By the selection rules of the Wigner symbols described in Appendix C, the ranges
of €1, £>, €3, my, my and m3, and the summation ranges in terms of L; and L, are

limited as
3 3
Z@n = even,Zm,, =0,
n=1 n=1

Ly =6y =2[,€1,81+2,Ly =l =2, £, 8+ 2,
[Ly — &3] < Ly < L+ 43.

(7.30)

7.2.2 Behavior of the CMB Statistically-Anisotropic
Bispectrum

On the basis of Eq. (7.29), we compute the CMB bispectra for the several £’s and m’s.
Then, we modify the Boltzmann Code for Anisotropies in the Microwave Background
(CAMB) [34, 35] and use the Common Mathematical Library SLATEC [36].

In Fig. 7.1, the red solid lines are the CMB statistically anisotropic bispectra of
the intensity mode given by Eq. (7.29) with C = 1, and the green dashed lines are the
statistically isotropic one sourced from the local-type non-Gaussianity of curvature
perturbations given by Eq. (4.7)

3
_ 000 [ & 43
Haxnsenmn — Ml my my ms
n=1
X/o yidy |:H;/o k,zldkngxn,z,,(kn)jz,,(kn)’)i|

n=1
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. . 6
x (p;SO(kl)Pg“’(kz)ngL +2 perms-) (7.31)

with fnp, = 5 for €1 = ¢, = {3 and two sets of m, my, m3. From this figure, we can
see that the red solid lines are in good agreement with the green dashed line in the
dependence on ¢ for both configurations of m1, my, m3. This seems to be because
the bispectrum of primordial curvature perturbations affected by the fluctuations of
vector field given by Eq. (7.17) has not only the anisotropic part but also the isotropic
part and both parts have the same amplitude. In this sense, it is expected that the
angular dependence on the vector field A does not contribute much to a change
in the shape of the CMB bispectrum. We also find that the anisotropic bispectrum
for C~0.3 is comparable in magnitude to the case with fyp = 5 for the standard
local type, which corresponds to the upper bound on the local-type non-Gaussianity
expected from the PLANCK experiment [37].

In the discussion of the CMB power spectrum, if the rotational invariance is
violated in the primordial power spectrum given by Eq. (7.9), the signals in the off-
diagonal configurations of £ also have nonzero values [7, 8, 10]. Likewise, there are
special configurations in the CMB bispectrum induced from the statistical anisotropy
on the primordial bispectrum as Eq. (7.17). The selection rule (7.30) suggests that
the statistically anisotropic bispectrum (7.29) could be nonzero in the multipole
configurations given by

b=y — 43| —4, |l — 3| =2, + 43+ 2,0+ 3+ 4 (7.32)

and two permutations of €1, €5, £3. In contrast, in these configurations, the isotropic
bispectrum (e.g., Eq. (7.31)) vanishes owing to the triangle condition of the Wigner-
L €y 3

3j symbol (ml ey ms3

) and the nonzero components arise only from

6o =83 < by = b+ 43 (7.33)

Therefore, the signals of the configurations (7.32) have the pure information of the
statistical anisotropy on the CMB bispectrum.

Figure 7.2 shows the CMB anisotropic bispectra of the intensity mode given by
Eq. (7.29) with C = 1 for the several configurations of £’s and m’s as a function of
£3. The red solid line and green dashed line satisfy the special relation (7.32), namely,
£y = €y + €3+ 2, €y — €3] — 2, and the blue dotted line obeys a configuration of
Eq. (7.33), namely, £; = £, + ¢3. From this figure, we confirm that the signals in the
special configuration (7.32) are comparable in magnitude to those for £1 = €, + £3.
Therefore, if the rotational invariance is violated on the primordial bispectrum of
curvature perturbations, the signals for £1 = €y +4€3+2, |€» — €3] —2 can also become
beneficial observables. Here, note that the anisotropic bispectra in the other special
configurations: £1 = £y + £3 + 4, [€o — £3] — 4 are zero. It is because these signals
arise from only the contributionof L = L' = Ly =2,Ly = €1 £2,Ly = {p £2
in Eq. (7.29) owing to the selection rules of the Wigner symbols, and the summation
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Fig. 7.2 Absolute values of the CMB statistically anisotropic bispectra of the intensity mode given
by Eq. (7.29) for (my, ma, m3) = (0, 0, 0) (left panel) and (10, 20, —30) (right one) as the function
with respect to £3. The lines correspond to the spectra for (¢, £2) = (102+4¢3, 100) (red solid line),

(]100 — 23| — 2, 100) (green dashed line) and (100 + ¢3, 100) (blue dotted line). The parameters
are identical to the values defined in Fig. 7.1

of the four Wigner-3j symbols over M vanishes for all £’s and m’s. Hence, in this
anisotropic bispectrum, the additional signals arise from only two configurations
01 =4y + €3+ 2, €, — €3] — 2 and these two permutations.

7.3 Summary and Discussion

In this chapter, we investigated the statistical anisotropy in the CMB bispectrum by
considering the modified hybrid inflation model where the waterfall field also couples
with the vector field [14]. We calculated the CMB bispectrum sourced from the non-
Gaussianity of curvature perturbations affected by the vector field. In this inflation
model, owing to the dependence on the direction of the vector field, the correlations
of the curvature perturbations violate the rotational invariance. Then, interestingly,
even if the magnitude of the parameter gg characterizing the statistical anisotropy
of the CMB power spectrum is too small, the amplitude of the non-Gaussianity can
become large depending on several coupling constants of the fields.

Following the procedure of Chap. 5 [25], we formulated the statistically anisotropic
CMB bispectrum and confirm that three azimuthal quantum numbers m 1, my and m3
b b G ) This is evidence that the
mi mz m3
rotational invariance is violated in the CMB bispectrum and implies the existence
of the signals not obeying the triangle condition of the above Wigner symbol as
[€y — €3] < €1 < €» + £3. We demonstrated that the signals of the CMB bispectrum
for 61 = £r + €3 + 2, |€2 — €3] — 2 and these two permutations do not vanish. In
fact, the statistically isotropic bispectra are exactly zero for these configurations;
hence, these signals have the pure information of the statistical anisotropy. Because
the amplitudes of these intensity bispectra are comparable to those for £1 = €5 + {3,

are not confined only to the Wigner symbol
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it might be possible to detect these contributions of the statistical anisotropy in future
experiments, which would give us novel information about the physics of the early
Universe. Of course, also for the E-mode polarization, we can give the same discus-
sions and results.

Although we assume a specific potential of inflation to show the statistical
anisotropy on the CMB bispectrum explicitly, the above calculation and discussion
will be applicable to other inflation models where the rotational invariance violates.
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Chapter 8
Parity Violation of Gravitons in the CMB
Bispectrum

Non-Gaussian features in the cosmological perturbations include detailed information
on the nature of the early Universe, and there have been many works that attempt
to extract them from the bispectrum (three-point function) of the cosmic microwave
background (CMB) anisotropies (e.g., Refs. [1-4]). However, most of these discus-
sions are limited in the cases that the scalar-mode contribution dominates in the
non-Gaussianity and also are based on the assumption of rotational invariance and
parity conservation.

In contrast, there are several studies on the non-Gaussianities of not only the
scalar-mode perturbations but also the vector- and tensor-mode perturbations [5-7].
These sources produce the additional signals on the CMB bispectrum [8] and can
give a dominant contribution by considering such highly non-Gaussian sources as
the stochastic magnetic fields [9]. Furthermore, even in the CMB bispectrum induced
from the scalar-mode non-Gaussianity, if the rotational invariance is violated in the
non-Gaussianity, the characteristic signals appear [10]. Thus, it is very important to
clarify these less-noted signals to understand the precise picture of the early Universe.

Recently, the parity violation in the graviton non-Gaussianities has been discussed
in Refs. [11, 12]. Maldacena and Pimentel first calculated the primordial bispectrum
of the gravitons sourced from parity-even (parity-conserving) and parity-odd (parity-
violating) Weyl cubic terms, namely, w3 and WWz, respectively, by making use of
the spinor helicity formalism [11]. Soda et al. proved that the parity-violating non-
Gaussianity of the primordial gravitational waves induced from W W? emerges not
in the exact de-Sitter space-time but in the quasi de-Sitter space-time, and hence, its
amplitude is proportional to a slow-roll parameter [12]. In these studies, the authors
assume that the coupling constant of the Weyl cubic terms is independent of time.

In this chapter, we estimate the primordial non-Gaussianities of gravitons gen-
erated from W3 and WW? with the time-dependent coupling parameter [13]. We
consider the case where the coupling is given by a power of the conformal time. We
show that in such a model, the parity violation in the non-Gaussianity of the primor-
dial gravitational waves would not vanish even in the exact de-Sitter space-time. The
effects of the parity violation on the CMB power spectrum have been well-studied,
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where an attractive result is that the cross-correlation between the intensity and
B-mode polarization is generated [14—17]. On the other hand, in the CMB bispec-
trum, owing to the mathematical property of the spherical harmonic function, the
parity-even and parity-odd signals should arise from just the opposite configurations
of multipoles [18, 19]. Then, we formulate and numerically calculate the CMB bis-
pectra induced by these non-Gaussianities that contain all the correlations between
the intensity (/) and polarizations (E, B) and show that the signals from w3 (parity-
conserving) appear in the configuration of the multipoles where those from ww?
(parity-violating) vanish and vice versa. These discussions are based on Ref. [20].

This chapter is organized as follows. In the next section, we derive the primor-
dial bispectrum of gravitons induced by W3 and W W? with the coupling constant
proportional to the power of the conformal time. In Sect. 8.2, we calculate the CMB
bispectra sourced from these non-Gaussianities, analyze their behavior and find some
peculiar signatures of the parity violation. The final section is devoted to summary
and discussion. In Appendices E and F, we describe the detailed calculations of the
contractions of the polarization tensors and unit vectors, and of the initial bispectra
by the in-in formalism.

Throughout this chapter, we use My = 1/+/87 G, where G is the Newton constant
and the rule that all the Greek characters and alphabets run from 0 to 3 and from 1
to 3, respectively.

8.1 Parity-Even and -Odd Non-Gaussianity of Gravitons

In this section, we formulate the primordial non-Gaussianity of gravitons generated
from the Weyl cubic terms with the running coupling constant as a function of a
conformal time, f(7), whose action is given by

S — /drd3x f;) («/—gW*z n vT/W2) , 8.1)
with
w3 = Waﬁyéwyﬁopwffpaﬁ’
WW2 = Saﬁﬂl}w’uv}/ﬁ WVB(TpWapotﬁﬂ (82)

where WP ys denotes the Weyl tensor, PV is a 4D Levi-Civita tensor normalized
ase?23 — 1, and Aisa sgale that sets the value of the higher derivative corrections
[11]. Note that W3 and W W? have the even and odd parities, respectively. In the

following discussion, we assume that the coupling constant is given by

A
f(x) = (1) , (8.3)
T.

*
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where 7 is a conformal time. Here, we have set f(t,) = 1. Such a coupling can be
readily realized by considering a dilaton-like coupling in the slow-roll inflation as
discussed in Sect. 8.1.2.

8.1.1 Calculation of the Primordial Bispectrum

Here, let us focus on the calculation of the primordial bispectrum induced by W3
and WW2 of Eq. (8.1) on the exact de-Sitter space-time in a more straightforward
manner than those of Refs. [11, 12].

At first, we consider the tensor perturbations on the Friedmann-Lemaitre-
Robertson-Walker metric as

ds® = a*(—dt* + eYidx'dx’), (8.4)
where a denotes the scale factor and y;; obeys the transverse traceless conditions;

Vii = 0vij/ dx/ = 0." Up to the second order, even if the action includes the Weyl
cubic terms given by Eq. (8.1), the gravitational wave obeys the action as [11, 12]

M?
§=—5 | drdx’ @Gy = vijavii) (8.5)
where "= d/drand ; = 9/ dx'. We expand the gravitational wave with a transverse

and traceless polarization tensor el.()f) and the creation and annihilation operators

J
a®i q® ag

d’*k -
Yij(x,T) = / Gy Z vas (k, 7:)411(()”)57;]).‘)(k)e‘kX + h.c.

A==£2
_ [k >y Pk, el (ke (8.6)
3 » Tej ’ :
(27[) A==42
with N N
y Pk, 1) = yask, al” + yigk, v)a%) (8.7)

Here, A = +£2 denotes the helicity of the gravitational wave and we use the polar-
ization tensor satisfying the relations as Eq. (D.13). The creation and annihilation
operators a7, a» obey the relations as

1 vij is identical to h;; in Sect. 2.6.
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a0y =0,
[0, al""] = @)k — K)o, 0, (8.8)

where |0) denotes a vacuum eigenstate. Then, the mode function of gravitons on the
de Sitter space-time y,s satisfies the field equation as

.. 2,
Vas — —as + Kyas =0, (8.9)
and a solution is given by
—ikt
Yds :lM—plk:,’T(l"‘lkf), (810)
where H = —(at)~! is the Hubble parameter and has a constant value in the exact

de Sitter space-time.

On the basis of the in—in formalism (see, e.g., Refs. [5, 21]) and the above results,
we calculate the tree-level bispectrum of gravitons on the late-time limit. According
to this formalism, the expectation value of an operator depending on time in the
interaction picture, O (t), is written as

<0(t)> = <O‘Teiin"'(t/)dt,O([)Teiinm(l/)dt’

0>, 8.11)

where 7 and T are respectively time-ordering and anti-time-ordering operators and
H;,;(t) is the interaction Hamiltonian. Applying this equation, the primordial bis-
pectrum of gravitons at the tree level can be expressed as

3 . 3
<H y ) (kp, z)> = i/ dr’<0‘ [: Hig (7). [ ™ e, r)} ‘0>, (8.12)
n=1 o0 n=1

where : denotes normal product.
Up to the first order with respect to y;;, the nonzero components of the Weyl
tensor are written as

. 1
W% = —(HT)*Vij aas

4
wii —lH 20
0k = 2( T) (Vkl,] yk],l)7
0 _ l 20
W=k = 2(HT) (Vtk,./ Vz/,k)» (8.13)

y 1
Wy = Z(HT)Z(—Sik)/jl,aa + S8itVjkaa + SjkVilaa — 8j1Vikea) »
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where y;j oo = Vij + V2y, j- Then W3 and WWw? respectively reduce to
W = W W W+ 6WO e Wk, Wi,
+ 12W0i0j WO WH o + 8W0i01 WO o W%,
WW? = 4niik [ij,,q (W”q,m W o 4+ 2W P4, WO’"Ol») (8.14)

+2Wkop (WOpzm Wi + 2w, Womoz')] ,

where n'/* = £%/k_ Using the above expressions and [ dt Hin; = —Sins, up to the

third order, the interaction Hamiltonians of W3 and W W2 are respectively given by

A
Hys = —/d%czrz(Hr)2 (l)
Ty

1 ..
X3 Vijow [Vik.pprioo + OVkLiVit,

+6VikaVjtk — 12Viki Vi, j] » (8.15)

A
— / BxA2(HT)? (TL)

Xﬂijk [qu,aa(_?’yjm,ﬂﬂl}iq,m + Vi, p8Ving.j)
+4Ypj kVpm.1 Fit.m = Vim.1)] -

Hy 2

Substituting the above expressions into Eq. (8.12), using the solution given by
Eq. (8.10), and considering the late-time limit as ¢ — 0, we can obtain an explicit
form of the primordial bispectra:

3
Ty ®a))ine = @7)? 5(an) f) (k. ko, k3) ) (ke k2. K3). (8.16)

n=1 n=1

with?

H\% (H\? 0
W= (i) (5) melr [Lamemren].
pl —00

1 3 .
— —x2) (= —A A
F@ = el 1)[5‘(3;" Dl 3>+4 eI A

4 Cri

6 2
f(r) -3 H E Im A 0 d‘E/‘r/5+A —ik; T’ ’
wwz — My A oo

2 Here, we set that 7, < 0.

3 3 i) (cAa)p o
e Vel ks — 3 el ey, *3’k2,k3,} + 5 perms, (8.17)
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A A s s
f(a‘)/v2 _mz]k[ (= 1)[ 3ejm 2) l(q z)k —}-e( 2) = A3)k3j]

lWl

“+e ; *1) e~ AZ)klkkzl{ 3)k3m ( M)k3l}] + 5 perms.

Here, k; = 2,31:1 ky, int = W3 and VT/WZ, “S perms” denotes the five sym-
metric terms under the permutations of (kAl, A1), (kAz, X2), and (kA3, A3). From the
above expressions, we find that the bispectra of the primordial gravitational wave
induced from W3 and WW? are proportional to the real and imaginary parts of

A f dr' Akt respectively. This difference comes from the number of
y, J.aa and Vij.k- Hys3 consists of the products of an odd number of the former terms
and an even number of the latter terms. On the other hand, in Hy 2, the situ-
ation is the opposite. Since the former and latter terms contain jz5 — k2ygs =
(2Hr’/Mp1)k3/ze_"kfl and ygs = i(Hr’/Mpl)kl/ze_””/, respectively, the total
numbers of i are different in each time integral Hence, the contributions of the
real and imaginary parts roll upside down in f 2 and f (r) ,. Since the time integral
in the bispectra can be analytically evaluated as

A /_Ooo dt/t e kT = [cos (%A) + i sin (%A)]
xT(6 + A)k; O (—k;te) ™4, (8.18)

Fws (") and f 2 teduce to

6 2
=8 (i) (E) cos(%A)F(6+A)k,‘6(—klr*)_A, (8.19)
1

My) \a
. H\®(H\* /= _ _
o =38 (M_pl) (Z) sin (EA) T6+ Ak (k1) (8.20)

where I'(x) is the Gamma function. For more detailed derivation of the graviton
bispectrum, see Appendix F.

From this equation, we can see that in the case of the time-independent coupling,
which corresponds to the A = 0 case, the bispectrum from W W?2 vanishes. This is
consistent with a claim in Ref. [12].3 On the other hand, interestingly, if A deviates
from 0, it is possible to realize the nonzero bispectrum induced from W W2 even in
the exact de Sitter limit. Thus, we expect the signals from W W2 without the slow-roll
suppression, which can be comparable to those from W3 and become sufficiently
large to observe in the CMB.

3 In Ref. [12], the authors have shown that for A = 0, the bispectrum from WW? has a nonzero
value upward in the first order of the slow-roll parameter.
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8.1.2 Running Coupling Constant

Here, we discuss how to realize f o¢ 74 within the framework of the standard slow-
roll inflation. During the standard slow-roll inflation, the equation of motion of the
scalar field ¢, which has a potential V, is expressed as

¢ =+ 2epMyt ", (8.21)

where e, = [0V /d¢/(3Mp H?)1?/2 is a slow-roll parameter for ¢, + and — signs
are taken to be for dV/d¢ > 0 and 9V /9¢ < 0, respectively, and we have assumed

that aH = —1/t. The solution of the above equation is given by
T
¢ = ¢y £ /269 Mp In (—) . (8.22)
T
Hence, if we assume a dilaton-like coupling as f = e®~?)/M e have
fo=(= ! A=+ /3e, Mol (8.23)
n=(—) , A= Ep——, .
Ty ¢ M

where M is an arbitrary energy scale. Let us take 7, to be a time when the scale
of the present horizon of the Universe exits the horizon during inflation, namely,
|Te| =k '~ 14Gpc. Then, the coupling f, which determines the amplitude of the
bispectrum of the primordial gravitational wave induced from the Weyl cubic terms,
is on the order of unity for the current cosmological scales. From Eq. (8.23), we
have A = £1/2 with M = \/@Mpl. As seen in Egs. (8.19) and (8.20), this leads
to an interesting situation that the bispectra from W3 and WW?2 have a comparable
magnitude as f‘(;g == f‘%)wz' Hence, we can expect that in the CMB bispectrum,
the signals from these terms are almost the same.

In the next section, we demonstrate these through the explicit calculation of the
CMB bispectra.

8.2 CMB Parity-Even and -Odd Bispectrum

In this section, following the calculation approach discussed in Chap. 6, we formulate
the CMB bispectrum induced from the non-Gaussianities of gravitons sourced by
W3 and WW? terms discussed in the previous section.
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8.2.1 Formulation

Conventionally, the CMB fluctuation is expanded with the spherical harmonics as

AX (R)
X

= > ax.imYom(B), (8.24)

tm

where h is a unit vector pointing toward a line-of-sight direction, and X means
the intensity (=7) and the electric and magnetic polarization modes (= E, B). By
performing the line-of-sight integration, the coefficient, ay,, generated from the
primordial fluctuation of gravitons, y #2), is given by [corresponding to Eq. (5.3)]

(%) v k), (8.25)

Vi () = / d*ky ™ (k) Y7, (K), (8.26)

K24k
_ Y4
ax,em = 4w (—i) /o G %{,e(k)xzzﬁ

where x discriminates the parity of three modes: x = 0 for X = I, E and x = 1 for
X = B, and Jx ¢ is the time-integrated transfer function of tensor modes (3.102).
Like Eq. (5.5), we can obtain the CMB bispectrum generated from the primordial
bispectrum of gravitons as

s s K2dk PN
I I ) = I |4 _ [ In 2 on
<n=1 ax,,,[,, nn> h 7[( l) / (27[)3 gxmzn (kn) ( 2 )

")

3
([T, ) 21)
n=1

In order to derive an explicit form of this CMB bispectrum, at first, we need to
express all the functions containing the angular dependence on the wave number

vectors with the spin spherical harmonics. Using the results of Appendix E, f‘;fg and

@

ji7w2 can be calculated as

(@ 32 2 LI
fW3 = (8m) Z Z MM M

L' \L"=23M M M"

X Yo KD Yoy (K2)as Yy (K3)

1 7 L' 7220—X2 y230—A
X [—%\/;SL,,Z(SU,ﬁ(—l) 175 7210505,
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. 2L/L// 2L/L//
X ——[21 1]—71 11 2
3 121

‘21L’][2L’L”
+27

211 21 1

2 L/ L//
fiwe=@0" >0 > (MM/M”)

L' \L"=23M M M"

~ ~ ~ " 0—
X Yo (KD Yy (K2)i Yo (K3) (= DE 1130772

] + 5 perms, (8.28)

22L"
2 "
x | 81/ 3,/—”[3L] }—2\/271 111
3 112
/ "
IRAPZUSTY Biia %IiLl +2—”\/7 2L0L
5 L2 3112 15V3]12 2
+ 5 perms, (8.29)

where the 2 x 3 matrix of a bracket, and the 2 x 3 and 3 x 3 matrices of a curly
bracket denote the Wigner-3j, 6j and 9 symbols, respectively, and

7515283 _ \/(211 + DL+ DB+ (11 1 13 (8.30)
hibly — 47 s15253)° ’
The delta function is also expanded as
3 00 3
5 (an) =38 / Yy | T] D0 (=052 ju, (kay) Y7y, (Kn)
n=1 0 n=1L, M,
000 Ly Ly L3
x<I7 114 (Ml M> M3) . (8.31)

Next, we integrate all the spin spherical harmonics over k}, kAz, kA3 as
/dzlA(lfMYZ*llele]MYZ*M = I (:111 Zf/[ll AZ/I)
/ ka1 Y, Vigwns Vo = 151010 ( ,fo sz ,ﬁ) (8.32)
/d2ﬁ3_’\3 Youms Yoy Yoo = 123323?’; (:;33 11;433 J\I:I/:/)

Through the summation over the azimuthal quantum numbers, the product of the
above five Wigner-3j symbols is expressed with the Wigner-9j symbols as
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Z Ly Ly Lj 2 L' L"
M My M3 MM M

MMy M3
MM/M//
« £y Ly 2 by Ly L' 3 Ly L
my My M my Mo M’ mz M3z M”
0 4y U3
= (El b £3) LiLyLs} . (8.33)
ml m2 m3 2 L/ L//

Finally, performing the summation over the helicities, namely A, > and A3, as

Z (A)x 70— _ [216222_2 (¢ + L + x = even)

¢L2 = ’
~=\2 0 (L + L + x = odd)
20—-2 y20-2
Z (i)x [ POh o 2y 1y (4 L4 x = odd) (8.34)
o \2) etz =g (€+L+x =even)’

5 (&)x“ P _ | 21557 (€4 L+ x = odd)
P 2 tL2 0 (¢ +L+x=even)

and considering the selection rules of the Wigner symbols as described in Appendix
C, we derive the CMB bispectrum generated from the non-Gaussianity of gravitons
induced by W3 as

3
Ly £y U3 o0 2 Litlatls 500
<1_[161X,,,e,,m,,> - (ml my m3)/0 y-dy Z =D 2 I,
n=

w3 LiLyL3

3
2 r
x [H —(=)" / kZdkn TX,.1, (k) JL, (km} Fad ey, Ky, ka)

n=1
& 43
3/2 20—2 y20—2 5202
x 82 > 8L Li Lo Ly
L', L"=23 2 L'L"
3
1 /7 ©
X | —=—+/ =81 28 9
|: 20V 3 L',20L ,2("l:[1 Ly, Ly Xn
L' 7202 7202 g;(e) (0) (0)
+(_1) 1L’12 IL”IZ @Ll,el,xl@Lz,ez,x29L3,€3,X3
- 2 L/ L// 2 L/ L//
NI
5 121

21L ) [2L"L"
~|—2n[21 1 }{2 11 ])}+5perms, (8.35)
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and WW?2 as
& 0y £y 43 o 2 Litlatls 500
(Haxnsgnmn>WW2 = m| mo mj /0 y dy Z (_1) 2 IL|L2L3
n=1 LiLyL3

3

20 [ 2 , (

x [Hl —(=i)" / kndknyxn,zn(kn)JLn(kny):| o) 2k ka, k3)

n—=

L & 4

3/2 20-2 y20-2 420-2 L" 720-2

X (87'[) / Z 81€1L|2162L2L’IK3L3L” Ll L2 L3 (_1) IL”IZ
L', L'=23 2 L'L"

(e) (e) (0)
x [8”’2@14 L. @Lz,fz,n ng,fs,n

22L"

2 [22L"
3 ?[121]—2«/271 111

112
3
202 (0)
+IL/12 (H gLn’en»xn)

n=1
2L/L//
4 27 [T (2L L"
X Y }% ;]-'—E 3[1 ) 2} + Sperms. (8.36)

Here, “5 perms” denotes the five symmetric terms under the permutations of
L1, my, x1), (€2, ma, x2), and (£3, m3, x3), and we introduce the filter functions as

gﬁl,x = (SLe—2+8L.0 +3L.042)8x0
+Bre3+8L.e-1+ 80,041 +8L.043)8x.1
@&,x = (8p,¢—2 +38L,0 + 8L ,0+2)x,1
+ r,e-3 +8L,e—1 + 81,041 +8L,443)8x0 (8.37)

where the superscripts (e) and (o) denote L 4+ ¢+ x = even and = odd, respectively.
From Egs. (8.35) and (8.36), we can see that the azimuthal quantum numbers m 1, m,
G £y 43
mip mz m3
the rotational invariance of the CMB bispectrum. Therefore, this bispectrum survives
if the triangle inequality is satisfied as [£1 — £a| < €3 < £1 + £5.

Considering the products between the & functions in Eq. (8.35) and the selection
rules as Zi:] L, = even, we can notice that the CMB bispectrum from W? does
not vanish only for

and m3 are confined only in a Wigner-3j symbol as ( ) This guarantees
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> + xn) = even. (8.38)

n=1

Therefore, W3 contributes the 111, IIE, IEE, IBB, EEE, and EBB spectra for Zi: 1
¢, = evenandthelIB, IEB, EEB, and BBB spectra for Zi:l £, = odd. This property
can arise from any sources keeping the parity invariance such as W3. On the other
hand, in the same manner, we understand that the CMB bispectrum from ww?2
survives only for

3
Z(zn +x,) = odd . (8.39)

n=1

By these constraints, we find that in reverse, ww? generates the IIB, IEB, EEB,
and BBB spectra for zz=1 £, = even and the IIl, IIE, IEE, IBB, EEE, and EBB
spectra for Zi: 1 £n = odd. This is a characteristic signature of the parity violation
as mentioned in Refs. [18, 19]. Hence, if we analyze the information of the CMB
bispectrum not only for zzzl ¢, = even but also for ZL] £, = odd, it may be
possible to check the parity violation at the level of the three-point correlation.

The above discussion about the multipole configurations of the CMB bispectra
can be easily understood only if one consider the parity transformation of the CMB
intensity and polarization fields in the real space (8.24). The /11, IIE, IEE, IBB, EEE
and EBB spectra from W3, and the IIB, IEB, EEB, and BBB spectra from ww?
have even parity, namely,

3 3

o AX;(nj AX;(—nj

1 an) H ( ), (8.40)
i=1 i=1

Then, from the multipole expansion (8.24) and its parity flip version as

AX(—n N N
2D = S axinYon() = Dy Vo @, @4D

tm tm
one can notice that 231:1 ¢, = even must be satisfied. On the other hand, since the

1IB, IEB, EEBLand BBB spectra from W3, and the 111, IIE, IEE, IBB, EEE, and EBB
spectra from W W? have odd parity, namely,

3
AX 1 X 1
(H X(“) H (“) (8.42)
i=1 i=1

one can obtain 22:1 £, = odd.
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0.5
ok

Fig. 8.1 Shape of k}k3k3S for A = —1/2 (top left panel), O (top right one), 1/2 (bottom left
one), and 1 (bottom right one) as the function of k»/ k| and k3/kj

In Sect. 8.2.3, we compute the CMB bispectra (8.35) and (8.36) when A =
+1/2,0, 1, that is, the signals from W3 become as large as those from WW?2 and
either signals vanish.

8.2.2 Evaluation of f‘f‘f; and fv('f:;VZ

Here, to compute the CMB bispectra (8.35) and (8.36) in finite time, we express the
radial functions, fv({g and fv% ;V2’ with some terms of the power of k1, k2, and k3. Let
us focus on the dependence on k1, k>, and k3 in Egs. (8.19) and (8.20) as

(") ) —6 —a_ Salky, ko, k3)
fw3 X WWZ X kt (_ktt*) — (k1k2k3)A/3(—‘[*)A 9 (843)

where we define Sy to satisfy Sy o< k~¢ as

(k1kaks)A/3

Saky, ko, k3) = 6T A
kl

(8.44)

In Fig. 8.1, we plot S4 for A = —1/2,0, 1/2, and 1. From this, we notice that the
shapes of S4 are similar to the equilateral-type configuration as Eq. (4.10)
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Sequil (k1, k2, k3) = 6(—3 “ 33T 33 333

1 1 1 1 1 1 )
+ + + + + + .
2.3 213 2.3 213 2.3 213
Kk kKK Kk koki T ksk3kg  kak3k3
(8.45)

To evaluate how a function S is similar in shape to a function §’, we introduce a
correlation function as [3, 22]

S8
N —
cos(S - §) = (S-S$)I2(8 - sH/2° (8.46)
with
S(ky, ka, k3)S' (k1, ko, k
S~S’Ez (k1, k2, k3)S"(k1, k2, k3)
m P (k1) P (ko) P (k3)
1 1
0(/ dxz/ dxsx3x§S(1, x2,x3)8'(1, x2, x3) , (8.47)
0 1—xo

where the summation is performed over all k;, which form a triangle and P (k) oc k=3
denotes the power spectrum. This correlation function gets to 1 when S = S’. In our
case, this is calculated as

0.968 (A =—1/2)

0970 (A=0)
S4 - Sequil) = , 8.48
cos(54 * Sequil) 0971 (A=1/2) ( )
0972 (A=1)

that is, an approximation that S4 is proportional t0 Sequil seems to be valid. Here,
we also calculate the correlation functions with the local- and orthogonal-type non-
Gaussianities [4] and conclude that these contributions are negligible. Thus, we
determine the proportionality coefficient as

4.40 x 1074 Sequil (A = —1/2)
2.50 x 10™*Sequit (A = 0)
1.42 x 107 *Sequit (A = 1/2)
8.09 x 107 Sequit (A =1)

SA - Sequi
Sy~ A equil

~ (8.49)
Sequil . Sequil

Sequil =

Substituting this into Egs. (8.19) and (8.20), we obtain reasonable formulae of the
radial functions for A = 1/2 as
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> 4 2 —4
(r) (r) T MP1 10395 [ 1.42 x 10 Sequil

0 (T Mpl - , (8.50
Fws = Tyw (2’ S) (A) 8 V2 Pkt s

and for A = —1/2 as

") _
f - fww2
4

2 M 2
T ag) (Mo %\/E
2 A 4 2

12

x 4.40 x 1074 (=) "2 (k1kak3)"/® Sequit - (8.51)
Here, we also use
H\> =
— ) = —rAg, (8.52)
My 2

where Ag is the amplitude of primordial curvature perturbations and r is the tensor-
to-scalar ratio [4, 8]. For A = 0, the signals from W W? disappear as fv% )W2 = 0and
the finite radial function of W3 is given by

72 4 My 2
I~ (?rAS) (7") 960 x 2.50 x 10™*Sequi. (8.53)

In contrast, for A = 1, since f‘f‘fg = 0, we have only the parity-violating contribution
from WW?2 as

2 2 =5
) T M, 8.09 x 1077 Sequil
U o~ raA — ) 5760 x —————. 8.54
Tww: (2 ’ S) ( A ) Tk a8

8.2.3 Results

On the basis of the analytical formulae (8.35), (8.36), (8.51), (8.51), (8.53) and
(8.54), we compute the CMB bispectra from W3 and WW?2 for A = —1/2,0,1/2,
and 1. Then, we modify the Boltzmann Code for Anisotropies in the Microwave
Background (CAMB) [23, 24]. In calculating the Wigner symbols, we use the Com-
mon Mathematical Library SLATEC [25] and some analytic formulae described in
Appendices C and D. From the dependence of the radial functions f 3 ") and f (r)

on the wave numbers, we can see that the shapes of the CMB bispectra from W3
and WW?2 are similar to the equilateral-type configuration. Then, the significant sig-
nals arise from multipoles satisfying £; >~ £, ~ £3. We confirm this by calculating
the CMB bispectrum for several £’s. Hence, in the following discussion, we give
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the discussion with the spectra for £; >~ ¢, ~ ¢3. However, we do not focus on the
spectra from 23:1 £, = odd for £; = {» = {3 because these vanish due to the
asymmetric nature.

In Fig. 8.2, we present the reduced CMB 111, IIB, IBB, and BBB spectra given by

3
_ L1 £r £
bx, X2 X5, 016205 = (Gey0303) " E ( bm2 ) (H ax, Cymy)s (8.55)
n=1

mip mja ms3
mymayms3

for €1 —2 = €, — 1 = {3. Here, the G symbol is defined by [19],%

20300 + Dt (6 + 1)
0+ 1) =l +1) =433+ 1)

B, +1) (€ 65 5
. 0-11)"

G51€253 =

(8.57)

At first, from this figure, we can confirm that there are similar features of the CMB
power spectrum of tensor modes [26, 27]. In the /1] spectra, the dominant signals are
located in ¢3 < 100 due to the enhancement of the integrated Sachs-Wolfe effect.
On the other hand, since the fluctuation of polarizations is mainly produced through
Thomson scattering at around the recombination and reionization epoch, the BBB
spectra have two peaks for £3 < 10 and £3 ~ 100, respectively. The cross-correlated
bispectra between I and B modes seem to contain both these effects. These features
back up the consistency of our calculation.

The curves in Fig. 8.2 denote the spectrafor A = —1/2, 0, 1/2,and 1, respectively.
We notice that the spectra for large A become red compared with those for small
A. The difference in tilt of £ between these spectra is just one corresponding to
the difference in A. The curves of the left and right figures obey Zf, 1 €n = even
and = odd, respectively. As mentioned in Sect. 8.2.1, we stress again that in the £
configuration where the bispectrum from W3 vanishes, the bispectrum from ww?
survives, and vice versa for each correlation. This is because the parities of these
terms are opposite each other. For example, this predicts a nonzero /II spectrum not
only for 33 _ ¢, = even due to W but also for 3°>_, ¢, = odd due to WW?2,

We can also see that each bispectrum induced by W? has a different shape from
that induced by ww?2 corresponding to the difference in the primordial bispectra.

4 The conventional expression of the CMB-reduced bispectrum as

3
_ 0y £ ¢
bX[XzX; Lty = (151[2[3) z ( ! 2 3 ) <Hax,ll”mn> (8'56)
n=1

mp mjz m3
mymayms3

breaks down for 22:1 £, = odd due to the divergence behavior of (7, 2 22(@)2) ! Here, replacing the

I symbol with the G symbol, this problem is avoided. Of course, for Zn: L, =even, G ¢,y 1S

: : 000
identical to Iue;a
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Fig. 8.2 Absolute values of the CMB /11, IIB, IBB, and BBB spectra induced by W3 and WW?2 for
A =—1/2,0,1/2,and 1. We set that three multipoles have identical valuesas {1 —2 = ¢, — 1 = (3.
The left figures show the spectra not vanishing for Zg;l £, = even (parity-even mode) and the

right ones present the spectra for 2,3,: 1 £n = odd (parity-odd mode). Here, we fix the parameters
as A =3 x 10°GeV, r = 0.1, and Ty = —k*_l = —14Gpc, and other cosmological parameters are
fixed as the mean values limited from the WMAP 7-yr data [4]

Regardless of this, the overall amplitudes of the spectra for A = +1/2 are almost
identical. However, if we consiger A deviating from these values, the balance between
the contributions of W3 and W W? breaks. For example, if —1/2 < A < 1/2, the
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Fig. 8.3 Absolute value of the CMB III spectra generated from W3 for A = —1/2 (red solid

line), O (green dashed one) and 1/2 (blue dotted one), and generated from the equilateral-type
equil

non-Gaussianity given by Eq. (8.58) with f; = 300 (magenta dot-dashed one). We set that three
multipoles have identical values as {1 = ¢, = {3 = {. Here, we fix the parameters as the same
values mentioned in Fig. 8.2

contribution of W? dominates. Assuming the time-independent coupling, namely,
A = 0, since fv%ivz = 0, the CMB bispectra are generated only from W3, Thus,
we will never observe the parity violation of gravitons in the CMB bispectrum. On
the other hand, when —3/2 < A < —1/2or 1/2 < A < 3/2, the contribution of

W W2 dominates. In an extreme case, if A = odd, since f‘f‘g = 0, the CMB bispectra

arise only from W W2 and violate the parity invariance. Then, the information of the
signals under 2131=1 £, = odd will become more important in the analysis of the /11
spectrum.

In Fig. 8.3, we focus on the /II spectra from W3fort; =0, =t3=~0t0 compare
these with the III spectrum generated from the equilateral-type non-Gaussianity of
curvature perturbations given by

(555) * 5 2 )
biir 0 yey0 :/0 yody | I ;/0 kydkn 77 (kn) je, (kny)
n=1

3 .
X3 IfIqul(zﬂzAS)2Sequil(kla ko, k3) , (8.58)

where f;im is the nonlinearity parameter of the equilateral non-Gaussianity and

91(‘? is the transfer function of scalar mode described in Eq. (3.102). Note that these

three spectra vanish for Zi:l £, = odd. From this figure, we can estimate the typical
amplitude of the III spectra from W? at large scale as
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_ _» (GeV 4
beee] ~ €4 % 3.2 x 10 2( — ) (01) . (8.59)

This equation also seems to be applicable to the 111 spectra from WW?2. On the other

hand, the CMB bispectrum generated from the equilateral-type non-Gaussianity on

a large scale is evaluated with fy; equil o

eqml

|beeel ~ €% x 4 x 1071 (8.60)

300

From these estimations and ideal upper bounds on f;iun estimated only from the
cosmic variance for £ < 100 [28-30], namely f;%uﬂ < 300 and r ~ 0.1, we find a

rough limit: A > 3 x 10°GeV. Here, we use only the signals for 2131: 1 £y = even
due to the comparison with the parity-conserving bispectrum from scalar-mode non-
Gaussianity. Of course, to estimate more precisely, we will have to calculate the
signal-to-noise ratio with the information of 231:1 £, = odd [19].

8.3 Summary and Discussion

In this chapter, we have studied the CMB bispectrum generated from the graviton non-
Gaussianity induced by the parity-even and parity-odd Weyl cubic terms, namely,
W3 and WW?2, which have a dilaton-like coupling depending on the conformal time
as f 74, Through the calculation based on the in-in formalism, we have found
that the primordial non-Gaussianities from W W2 can have a magnitude comparable
to that from W3 even in the exact de Sitter space-time.

Using the explicit formulae of the primordial bispectrum, we have derived the
CMB bispectra of the intensity (/) and polarization (E, B) modes. Then, we have
confirmed that, owing to the difference in the transformation under parity, the spectra
from W3 vanish in the £ space where those from W W2 survive and vice versa. For
example, owing to the parity-violating W W2 term, the 111 spectrum can be produced
notonly for 3°3_, ¢, = evenbutalso for 3">_, ¢, = odd, and the / I B spectrum can
also be produced for anl £, = even. These signals are powerful lines of evidence
the parity violation in the non-Gaussian level; hence, to reanalyze the observational
data for Zi:l £, = odd is meaningful work.

When A = —1/2,0, 1/2, and 1, we have obtained reasonable numerical results of
the CMB bispectra from the parity-conserving W3 and the  parity-violating WW?2. For
A = #+1/2, we have found that the spectra from W3 and W W2 have almost the same
magnitudes even though these have a small difference in the shapes. In contrast,
if A = 0 and 1, we have confirmed that the signals from WW2 and W3 vanish,
respectively. In the latter case, we will observe only the parity-violating signals in
the CMB bispectra generated from the Weyl cubic terms. We have also found that
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the shape of the non-Gaussianity from such Weyl cubic terms is quite similar to the
equilateral-type non-Gaussianity of curvature perturbations. In comparison with the
III spectrum generated from the equilateral-type non-Gaussianity, we have found
that if » = 0.1, A > 3 x 10°GeV corresponds approximately to f;%ml < 300.

Strictly speaking, to obtain the bound on the scale A, we need to calculate the
signal-to-noise ratio with the information of not only Zi:l £, = even but also

,31:1 £, = odd for each A by the application of Ref. [19]. This will be discussed in
the future.
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Chapter 9
CMB Bispectrum Generated from Primordial
Magnetic Fields

Recent observational consequences have shown the existence of ¢(107%) G
magnetic fields in galaxies and clusters of galaxies at redshift z ~ 0.7 — 2.0 [1-3].
One of the scenarios to realize this is an amplification of the magnetic fields by the
galactic dynamo mechanism (e.g. [4]), which requires ¢'(1072%) G seed fields prior
to the galaxy formation. A variety of studies have suggested the possibility of gen-
erating the seed fields at the inflationary epoch [5, 6], the cosmic phase transitions
[7, 8], and cosmological recombination [9—11] and also there have been many studies
about constraints on the strength of primordial magnetic fields (PMFs) through the
impact on the cosmic microwave background (CMB) anisotropies, in particular, the
CMB power spectrum sourced from the PMFs [12—17]. The PMFs excite not only
the scalar fluctuation but also the vector and tensor fluctuations in the CMB fields.
For example, the gravitational waves and curvature perturbations, which come from
the tensor and scalar components of the PMF anisotropic stresses, produce addi-
tional CMB fluctuations at large and intermediate scales [15, 17]. In addition, it
has been known that the magnetic vector mode may dominate the CMB small-scale
fluctuations by the Doppler effect (e.g. [14, 15]).

The PMF anisotropic stresses depend quadratically on the magnetic seed fields.
Thus, assuming the Gaussianity of the PMF, the anisotropic stress and CMB fluctua-
tion obey the highly non-Gaussian statistics [18, 19]. Owing to the Wick’s theorem,
the CMB bispectrum contains the pure non-Gaussian information. Hence, to extract
the information of the PMF from the CMB fields, the analysis of the CMB bispectrum
is of great utility. Recently, in Refs. [20-23], the authors investigated the contribution
of the scalar-mode anisotropic stresses of PMFs to the bispectrum of the CMB tem-
perature fluctuations. From current CMB experimental data, some authors obtained
rough limits on the PMF strength smoothed on 1 Mpc scale as By mpc < €(1) nG.
However, since in all these studies, the complicated angular dependence on the wave
number vectors are neglected, there may exist any uncertainties. In addition, the
authors have never considered the dependence on the vector- and tensor-mode con-
tributions and hence more precise discussion including these concerns should be
realized.
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Fig. 9.1 Interaction between
several components in the
Universe if the PMF exists

e
o

With these motivations, we have studied the CMB scalar, vector and tensor bispec-
tra induced from PMFs and firstly succeeded in the exact computation of them with
the full-angular dependence [24—26] by applying the all-sky formulae for the CMB
bispectrum [27].1 In our studies, we also updated constraints on the PMF strength.

In this chapter, after reviewing the impact of PMFs on the CMB anisotropies, we
present the derivation of the CMB bispectra induced from PMFs and discuss their
behaviors. In addition, we put limits on the PMFs by considering the WMAP data
and the expected PLANCK data [29, 30]. Finally, we mention our future works.
These discussions are based on our studies [24-26].

9.1 CMB Fluctuation Induced from PMF's

The PMFs drive the Lorentz force and the anisotropic stress, and change the motion
of baryons (protons and electrons) and the growth of the gravitational potential via the
Euler and Einstein equations. Consequently, the photon’s anisotropy is also affected.
We illustrate this in Fig. 9.1. In the following discussion, we summarize the impacts
of PMFs on the CMB fluctuations in detail and current constraints on the PMFs
obtained from the CMB power spectrum.

9.1.1 Setting for the PMFs

Let us consider the stochastic PMFs B (x, 7) on the homogeneous background Uni-
verse which is characterized by the Friedmann-Robertson-Walker metric,

! In Ref. [28], after us, the authors presented an analytic formula for the CMB temperature bispec-
trum generated from vector anisotropic stresses of the PMF.
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ds* = a(r)? [—drz + (Sbcdxbdxc] , 9.1)

where 7 is a conformal time and a(7) is a scale factor. The expansion of the Universe
makes the amplitude of the magnetic fields decay as 1/a? and hence we can draw
off the time dependence as B?(x, r) = B”(x)/a’. Each component of the energy
momentum tensor (EMT) of PMFs is given by

To(") = —pg = —o—— B2(X) = —p, (D Ap(x),
T9(xH) = Th(x*) = 0, 9.2)
oy = ! By _ B*®)B.(x) | = p, (1) [A M8t + 118 (x“)]

c drat D) ¢ c =Py B c Bc :

The Fourier components of the spatial parts are described as

Tk, ) = py (0) [85.4500) + 5. 00|
1 K

- b,/ W
Ap(k) = 87,0 )3 B”(K')Bp(k — k'), (9.3)
1 d°k’
ngc(k) = —m/ )3 B"(K)B.(k — k'),
Y,

where we have introduced the photon energy density o, in order to include the
time dependence of a—* and Py,0 denotes the present energy density of photons. In
the following discussion, for simplicity of calculation, we ignore the trivial time-
dependence. Hence, the index is lowered by §,. and the summation is implied for
repeated indices.

Assuming that B¢ (x) is a Gaussian field, the statistically isotropic power spectrum
of PMFs Pg (k) is defined by 2

3 P B (k) N
(Ba(k)By(p)) = 27)" —— Pap (K)o (k + p). 04
with a projection tensor
Pupy(k) = " el (key " (k) = b — kaks. 9.5)
o==%1

which comes from the divergence free nature of PMFs. Here k denotes a unit vec-
tor and séﬂ) is a normalized divergenceless polarization vector which satisfies the
orthogonal condition; k¢ eéil) = 0. The details of the relations and conventions of

the polarization vector are described in Appendix D. Although the form of the power

2 Here we neglect the helical component. This effect will be considered in Ref. [31].
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spectrum Ppg (k) is strongly dependent on the production mechanism, we assume a
simple power law shape given by

Pp(k) = Apk"®, (9.6)

where A p and n g denote the amplitude and the spectral index of the power spectrum
of magnetic fields, respectively. In order to parametrize the strength of PMFs, we
smooth the magnetic fields with a conventional Gaussian filter on a comoving scale r:

k2dk
B = /O e e Pp (), 9.7)

then, A g is calculated as

(2)"5 3 B2
Ap= —7F— 03, 9.8)

where I"(x) is the Gamma function and k, = 27 /r.

‘We focus on the scalar, vector and tensor contributions induced from the PMFs,
which come from the anisotropic stress of the EMT, i.e., ITp,5. Following the defini-
tion of the projection operators in Appendix D, the PMF anisotropic stress fluctuation
is decomposed into

Y k) = ) 0(‘” (k) [T, (K),
Sl k) = O@“(kmBU k), 9.9)
g2 (k) = 05,?2) (k)T ().

These act as sources of the CMB scalar-, vector- and tensor-mode fluctuations as
follow.

9.1.2 Scalar and Tensor Modes

If the seed magnetic fields exist in the early Universe, the scalar and tensor compo-
nents of the PMF anisotropic stress are not compensated prior to neutrino decoupling
[15, 17], and the scalar and tensor metric perturbations generated from them survive
passively. These residual metric perturbations generate the CMB anisotropies of the
scalar and tensor modes. These kind of CMB anisotropies are so called “passive
mode” and may dominate at intermediate and large scales depending on the PMF
strength [17].

To estimate curvature perturbation and gravitational wave driven by PMFs
on superhorizon scales, we shall focus on the Einstein equation at the radiation
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dominated era. Before neutrino decoupling, the Universe is dominated by the
radiative fluid. The fluid is tightly coupled to baryons and can not create any
anisotropic stress. Hence, in this period, total anisotropic stress comes from only
PMFs, namely, constant I7 gi//:::Z)‘ Until neutrino decoupling, this survives and it will
be a source of metric perturbations via the Einstein equation. Then, at the super-
horizon limit, the Einstein equation for scalar and tensor modes on the synchronous

gauge (3.21) reduces to same form as

" 2. 6
RO 1) + ZhOF P e 1) = R, 115 (K), (9.10)

where we have used /7 = a/a = 1/t, #? = 871 Gpa®/3 and R, = py/p = 0.6.
This is analytically solved as

C
ROED (K 1) = C) + 72 + 6R),1'[g1,//f2)(k) In (i) , 9.11)
B

where tp is the conformal time at the generation of the PMFE. On the other hand,
after neutrino decoupling (t > 7, = 1 MeV~!), resultant neutrino anisotropic stress
compensates the PMF anisotropic stress. Hence, right-hand side of the above Einstein
equation becomes zero and the growth of metric perturbations ceases. Accordingly,
for t > t,, superhorizon-scale comoving curvature and tensor perturbations are
evaluated as

#(k) = Z(k, 1p) + R, ITy) (k) In (l) , 9.12)
p
hED (k) = hED (K, 5) + 6R, 152 (K) In (T—”) , (9.13)
Tp

where we have used a relation of the scalar perturbations on superhorizon scales:
h® = 6.3 This logarithmic growth and saturation of metric perturbations even on
superhorizon scales are caused by only the property of sources as p o a~*, hence
the above discussion is applicable to the case of general radiation fluid other than
PMFs [32]. These metric perturbations act as a source of the CMB fluctuations of
scalar and tensor modes.

Note that the effects of PMFs on the transfer functions %g‘? and 9}((,? are incon-
siderable at larger scales [17], hence it is safe to use the non-magnetic transfer
functions (3.101) in the computation of the CMB spectra induced from scalar and
tensor modes of the PMF anisotropic stress.

3 % and h*? are equal to —¢ and —/3Hy of Refs. [15, 17], respectively.
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9.1.3 Vector Mode

The vector mode has no equivalent passive mode as the gravitational potential of the
vector mode decays away via the Einstein equation posterior to neutrino decoupling.
Thus, in the vector mode, we need to consider the impact of the PMF on the transfer
function. In Refs. [13, 14, 25, 28], it is discussed that the temperature fluctuations
are generated via Doppler and integrated Sachs-Wolfe effects on the CMB vector
modes. On the basis of them, we derive the transfer function of the vector magnetic
mode as follows.
When we decompose the metric perturbations into vector components as

880c = 08¢0 = a2Ac7

a&dzzﬂ(@hy)+aﬂﬁw), (9.14)

we can construct two gauge-invariant variables, namely a vector perturbation of the
extrinsic curvature and a vorticity, as

V=A-h,
R=v-—A, (9.15)
where v is the spatial part of the four-velocity perturbation of a stationary fluid ele-

ment and a dash denotes a partial derivative of the conformal time 7. Here, choosing
a gauge as h = 0, we can express the Einstein equation

167Gpy oy + 1" + 1Y)

V424V =— 5 : (9.16)
a“k

and the Euler equations for photons and baryons

@, +k(vy, —vp) =0, 9.17)
. w K LY
2, +RLy, — =V, —Vp) = /—. (9.18)
R a*(pp + pb)

Here LYY) = kpy oIl %V) is the Lorentz force of vector mode and ngv) = —i 121, P,

Iy, p is the isotropic pressure, the indices y, v and b denote the photon, neutrino
and baryon, « is the optical depth, and R = (o + pp)/(py + py) = 3pp/(4py). In
the tight-coupling limit as v,, > vy, the photon vorticity is comparable to the baryon
one: 2, ~ 2, = 2. Then, the Euler equations (9.17) and (9.18) are combined into

_ LY
(1+R)2 + R = (9.19)

a*(py + py)’
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and this solution is given by

LY (k)

2Kk, 1) > )
I+ R)(py,O + py,O)

(9.20)

Note that Eq. (9.19) and the above solution are valid for perturbation wavelengths
larger than the comoving Silk damping scale Lg = 27/ kg, namely, k < kg, where
photon viscosity can be neglected compared to the Lorentz force. For k > kg, due
to the effect of the photon vorticity, the Euler equation (9.19) is changed as [12]

: k% x LY
(1+R)SZ+R(%+—).Q=4—, 9.21)
app a*(py + py)
where x = (4/15)p, Ly a is the photon shear viscosity coefficient and L, = P

is the photon comoving mean-free path. We can obtain this analytical solution:

LY (k)
2k, 1)~ — . (9.22)
(k Ly/s) (Py,O + Py‘O)
Hence, we can summarize the vorticity of the baryon and photon fluids as

2k, 1)~ Bk, Y’ k),
kt/(1+ R) fork <k

Bk 7y = —Pro KT/ R) Hork <ks (9.23)

Py.0 + Pyo Sk /k for k > kg

As mentioned above, the CMB temperature anisotropies of vector modes are
produced through the Doppler and integrated Sachs-Wolfe effects as

Al (h)
1

70 .
=—v, -A|? +/ dtV-n, (9.24)
Ty

where 7 is today and 7, is the recombination epoch in conformal time, jx , = k-n,
x = k(zp — ), and 1 is a unit vector along the line-of-sight direction. Because of
compensation of the anisotropic stresses, a solution of the Einstein equation (9.16)
expresses the decaying signature as V oc a2 after neutrino decoupling. Therefore,
in an integrated Sachs-Wolfe effect term, the contribution around the recombination
epoch is dominant. Furthermore, neglecting dipole contribution due to v today, we
can form the coefficient of anisotropies as

Al (R) .

o= [ RS
[ &k
) @)}

/ i [ngV)(k) : ﬁ] Y, () Bk, T)e Hente (9.25)
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In the transformation fi — (itx », ¢k ), the functions are rewritten as

1-— ,u2 .
Y k) - f— —i — SN T (K)el M,
r==1

Y}, (R) — Z Do, (560) ¥ (k). (9.26)
d*h — d.Qky,,,

where we use the relation: I7,") = Doy —i 171(;) ) and the Wigner D matrix

under the rotational transformation of a unit vector parallel to z axis into k corre-
sponding to Eq. (3.96). Therefore, performing the integration over §24 , in the same

manner as Chap. 3, we can obtain the explicit form of a' 1. Zm and express the radiation
transfer function introduced in Eq. (3.100) as
> sy, o) 7, (),

a}vg)m—4n( l)l/(2 5
A==l

e+ 1)!]1/2 Bk, Ta) jo(xs)

D N (9.27)

This is consistent with the results presented in Refs. [15, 33]. In the same manner,
the vector-mode transfer functions of polarizations are derived [14, 19]. Then, we
can also express as

7w = |

) =d4n(—i)

ay o >y, g a0 78 (k). (9.28)

3
@) 2

9.1.4 Expression of agn’s

From the above results and Eq. (5.3), the CMB intensity and polarization fluctuations
induced from PMFs are summarized as

ay), = 4m (=) / s Z[ e ED (0 7 k),

£ (k) ~ / d*ky}, (k) |:R ln( )]H(O)(k) (9.29)
B

£ED () ~ / Pl v, R ITED (o),
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+2 N ~ T +2
£552) (k) ~ / A’k Y}, (K) [6RV In (é)} 5> ),

where we take Z(k, 73) = h'F (k, t3) = 0, and regard £¢© and £§*? as # and
h*2) | respectively.*

9.1.5 CMB Power Spectrum from PMF's

From the formulae (9.29), the CMB power spectra from PMFs are written as

2
(et -

n=1

[Tonc- )/ R AL >Z[sgn<A e

n=1
2
x <H gl (kn)> . (9.30)
n=1

(Xn)

To compute the initial power spectrum <Hi=1 %-E,Lm

(kn, )> we need to deal with the
power spectrum of the anisotropic stresses as

d’k;,
H/ (2;1)3}

n=1

(IMBap (k)M pea(K2)) = (—4mpy0) [

x (Ba () By (ki — Kp) B (Kp) Ba (ks — K))
2
S(H kn) —47py0)" /dSk/lPB(ki)PB(“(l -kiD
1
X4[Pad(k ) Ppc(ky — k/l)+Pac(k/)Pbd(kl ki)] (9 31)

Note that this equation includes the convolution integral and the complicated angular
dependence. In Refs. [16, 35-37], the authors performed the numerical and analytical
computation of this convolution integral over kj and provided the fitting formulae
with respect to the magnitude of the wave numbers k; for each value of the magnetic
spectral index np.

In Fig. 9.2, we plot the power spectra of the intensity anisotropies (9.30) for the
scalar, vector and tensor modes when magnetic spectrum is nearly scale invariant as
np = —2.9. Here, we assume that the PMFs generate from the epoch of the grand
unification to that of the electroweak phase transition, i.e., 7,/7p = 1017 — 10°.
Firstly, we will see that the shapes of the tensor and scalar power spectra are similar
to those of the non-magnetic case coming from the scale-invariant primordial spectra

4 In Refs.[31, 34], we equate 5(0) to —%.
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Fig. 9.2 Power spectra of the CMB intensity fluctuations. The red solid, green dashed and blue
dotted lines correspond to the spectra generated from the tensor, vector and scalar components of
the PMF anisotropic stress for ng = —2.9, respectively. The upper (lower) line of the red solid and
blue dotted ones are calculated when 7, /tp = 10'7(10%). The magenta dot-dashed line expresses
the spectrum sourced from the primordial curvature perturbations. The strength of PMFs is fixed to
B Mpc = 4.7 nG and the other cosmological parameters are fixed to the mean values limited from
WMAP-7yr data reported in Ref. [29] (see colours in online)

shown in Fig. 3.5. This is because PMFs impact on only the primordial gravitational
waves and primordial curvature perturbations, and do not change the transfer func-
tions of the tensor and scalar modes. For £ < 100, the tensor mode dominates over
the intensity signal. The scalar mode seems to dominate in the intermediate scale
as 100 < ¢ < 2000. The vector-mode spectrum monotonically increases for larger
than Silk damping scale, namely, £ < kstg ~ 2000, and decreases for £ = 2000.
These features seem to trace the scaling relation of the transfer function in terms of
the wave number (9.23). Hence, we can understand that the latter damping effect
arises from the viscosity of photons. The vector mode seems to show up for very
small scale, namely, £ 2 2000.

In this figure, for comparison, we also plot the CMB intensity power spectrum
from the primordial curvature perturbations not depending on the PMF. In princi-
ple, comparing this spectrum with that sourced from PMFs leads to bounds on the
PMF parameters. Actually, the researchers perform the parameter estimation by the
Malkov Chain Monte Carlo approach [35, 36, 38-42]. So far, the most stringent
limit on the PMF strength from the CMB two-point function data of the intensity and
polarizations are By mpc < SnGandnp < —0.12 [40]. In Refs. [35, 42], combining
the CMB data with the information of the matter power spectrum, tighter bounds are
gained.

As discussed above, conventionally, the CMB power spectra from PMFs are com-
puted by using the fitting formulae for the power spectra of the magnetic anisotropic
stresses. However, without these formulae, we can obtain the CMB power spectra
by applying the mathematical tools such as the Wigner symbols [25]. In the remain-
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ing part, focusing on the vector mode, we present this new approach and show the
consistency with the conventional result.

From Eq. (9.30), the CMB power spectrum of the intensity mode induced from
the magnetic-vector-mode anisotropic stress is formulated as

V) (s A * kydky 7V A
ar ¢im A my H A W (k) [ (=0)71

(A1) (A2)*
X Z )\1)\' <HBvl(|m](kl)nsz,szz(kz)>
A o==%1

= Cl1y,86.68m1 m>, (9.32)

where the initial power spectrum, which is expanded by the spin spherical
harmonics, is

Bv,flml Bv,[zan

<I‘1(’“) (kl)H(M)* (k2)> _ (_471’0%0)—2
x / d*ky / A*Ka—3, Y], (K13 Yo, (K2)
kp
x/ 2dk PB(kl)/ K5 diy P (k)
0

x/dzk/l/dzk/z(S(kl — Ky —k58(kz — Kk, — k)
1. .
kraey " Kkocey™ (K)

xGh
% [ Paa K PocKy) + Pac ) PraRp) | (9.33)

where we use Eq. (9.9) and the definition of the vector projection operator, 0;2:1) k),
in Appendix D. Note that we rewrote the power spectrum (9.31) as more symmetric
form in terms of kg, kz and k3. Then, we should simplify this initial power spectrum.

For the first part in two permutations, we calculate §-functions and the summations
with respect to a, b, ¢ and d:

L1+3L2+3L3
5(ky — K| —Kj) = 8/ A2da > (-1 1115,
0 LiLyL3
M Mz M3

x jr, (k1 A) jr, (Kj A) jr,(KyA)
X YLlMl (kl)YLzMz(k/)YL3 Mg(k )

L Ly L
\Ms 1 L2 3
x (1) (Ml _MZ_M3),
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o LY +3L5+3L%
S(ky — ky — ’1)=8/ BXdB ) (=) 7 IS/IOLEL%
° L L L, ‘
M| M)M;
X Jr (sz)jL;(kéB)ng (k\ B) (9.34)

* 2 7\ yE o
X YL/] M (k2) YL/zMé (k)Y L—M; (ky)

(L) L, L
x(—l)Mz( Y )
My —M; M

~ ~ ~ 4 \?

el P =SS (?) s
o=x1mg,,my==%1,0
X Yimy K1)y Yimg (K2)—o Y1 (Ko Vi, (KD,

o . N 47\ 2
kacey KD PRy = D D (?”) (=21)

o'=+1me,mp==%1,0

X Yime (K2) =3, Yimy (K1) g Yo (K)o Vi (KD),

perform the angular integrals of the spin spherical harmonics:
21 * * *
/ d k1*<f Ylma YioMs0 Ylmd YLg_Mé

o) Ly1L  “LolL —Mimqg M My —m, M ]’

21 * * *
/d Ky o' Yim Ym0 Yim, Y3 b

_ _1\o'+me 70—0’ =8 70—0' -5’
= 2 DT
L'M'S’

Ly 1 L'\(L, 1 L
% (—M3 mp M’) (Mé —me M) ©.35)
-
/d klf)qYlmhylma*)»lyl*lmlylel

_ Z 0% 1=Sk ORI =S Ly & Ly 1 1 L
Ly “1Le \ My my My ) \ma mp My )
Lj My Sk
d* Kz, Yim, Y Yeom, Y
20 Llmg L Ilme—Ap L lymy L/IM{
0x2—=Sp ,002—S),

_ _1\m2+A2
= D e L
L,M,S,

(L e L)1 1L,
—M{ my M, —me —mg My )’
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sum up the Wigner-3 j symbols over the azimuthal quantum numbers:

Z (—1)M2-tma L Ly Ly Ly Lj
mg mp My My —M> —M3

M1 Mo M3
Mymgmyp

« Ly 1 L L, 1 L Ly ¢ Ly
—Msz my M’ My, —m, M My m; My

L' L ¢
= (cMHOHL LA (L/ L 4 ) :

Ly Ly Ly ¢,
/_
M Mm1 1 lLk
1 1 L L, L L

Mj+m, p 1 Lo 3
I G [ i 1) S
MMM/
Mpmimd

Ly 1 LU\(L, 1 L\(L6 6L,
My —me. M’ —M5 mg M —M{my M,

L' L ¢
— ()M +Q+Ly+L+1+L, L' L & L. L. L
=(=D M —M m, 2 b3 b
1 1L,

)

and sum up the Wigner-3j symbols over M and M":

(L L \(L L ¢ (—1ym2
p G (M/ M mll) (M’ -M m22) = 20, 1 1000 037)
MM

Following the same procedures in the other permutation and calculating the sum-
mation over L as

L' L ¢ L' L ¢
ZIO)»Z A2 0)»2 %) I+ (— I)L L/2 L% L% _ 3 ]0)»27)»2 L% L/2 L%
LitL, llL, 31— L2 3 I
o 2 p 2 1L, 242w F1t2 T 1 2
(9.38)

we can obtain the exact solution of Eq. (9.33) as

3

(A1) (A2)*
<HBv],£1m1(kl)nsz,lgmz(kZ)> =

V2r (82m)/2\?
( 3,0 o ) /(251+1)5l1,/528m1,m2
V4

>3 (=Tl S5 000 1090,

LL' L\LyL3
IS
L1L2L3

L' L ¢ L' L ¢
x> (=Dt Ly Ly Ly Ly Ly L,

L 1 1 Lg I 1 2
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o0 o0
x/ Aszle(klA)/ BdejL/l (k2 B)
0 0
kD >
x /0 KRdK; Py (k) ju (K1 A) jp, (k1 B)

kp
x [ ks P i (B (3 )
0

_ 1 La+Lh+Ls+L} j0S—S y0S—S 708'—S' ;0S'—S’
x Z (=D T Tl Tee Ty
5,8'=%1

OA—A1 yOA =21 7002 —22
xah i L (9.39)

Note that in this equation, the dependence on the azimuthal quantum number is
included only in &, u,. In the similar discussion of the CMB bispectrum, this
implies that the CMB vector-mode power spectrum generated from the magnetized
anisotropic stresses is rotationally-invariant if the PMFs satisfy the statistical isotropy
as Eq. (9.4).

Furthermore, using such evaluations as

_\LaA+Ly+L3+L ;0S—S ;0S—S ;08 —8 ;05—
Z =D 31L’31L I I IL’21L’

S,8'==%1
01-1,01—-1,01—-1 ;01—1 / /o
_ 41L’31L1L21L1L31L'1L'21L/ (L3 + L2, L3 + Ly = even) (9.40)
0 (otherwise)
OA1—A1 ;001 —21 ;002 —A2
Z ILlélLk IllLk IL/IE22
A, ho==%£1
01—-1 ;01—-1,01-1 l —
_ M, IL’1E22 (E1 €1 Ly + £ = even) (9.41)
0 (otherwise)
2 oo 1,2 o0 o]
k;dk
H“”/ 12 75 (k) / Aszle(klA)/ B*dBj (kaB)
n=1 0 (2]T)3 o 0 0 1

k[) kD
x /0 kP dky Py (k) ji, (K A)jp, (K] B) /0 K5 dky Py (Ky) jp; (K B) L, (Ky A)
2 0 1,2
kK2dk, (v
~ 4 22 7Y ) e, Gk (T —
[14x /0 3 1t i, k(70 = 7))

n=1

T\2  —(np+1 —(np+1
xA%(ro — )t (?*) %2;[234— )(ro - T*)%%(L'l33+ )(7.’0 — T4), (9.42)



9.1 CMB Fluctuation Induced from PMFs 125

the CMB angle-averaged power spectrum is formulated as

12\ 2 © 1,2 2
e, = Y2 (32(2”)) J@e+1) [471 | s 70 Witk - r*»]

3 30y.0 (2m)3 "1
2
01—1 ;01—1 ,01—1 2 4 (T«
x D02 I ML s 20 2 Ao — ) (g)
LlL/l Ly LL LzL/2
LLs
—(np+1) _ —(np+1) _
XJi/Lng (o t*):%/uzL? (to — Ts)

3 Li+L] ,
3 S 437000 7000 7OI—1,01—1 ,01—1 7011
x(—1)Zi-1 =2 2 21L1L2L3IL’1L’2L’3[L’31LIL21L1L31L’IL’21L’
L L ¢ L' L ¢
x{LyLo Lyt Ly Ly Lyt (9.43)
1 1 L 1 1 2

Here, we use the thin LSS approximation described in Sect. 9.3.1. This has nonzero
value in the configurations:

(L, L) = 2, 1€ £2)), (2,0),(1,¢), Ly =1¢+2],¢,
€—LI <L <t+L,

(Lo, Ly) = (IL = 1], IL £ 1), (L, L), (L + 1, |L £ 1]), (9.44)
(Ly, L3) = (L' = 1|, IL" £ 1)), (L, L), (L' + 1, IL" £ 1)),

Ly+ Ly + Ly =even, L} + L)+ L;=even,

Ly — Lp| < L3 < Li+ Ly, |L} —L5| <Ly <Lj+L5.

This shape is described in Fig. 9.3. From this figure, we confirm that the amplitude
and the overall behavior of the red solid line are in broad agreement with the green
dashed line of Fig. 9.2 and the previous studies (e.g. [15-17, 43]). For £ < 2000, using
the scaling relations of the Wigner symbols at the dominant configuration L ~ ¢, L’ ~ 1
as discussed in Sect. 9.5, we analytically find that C%) oc £'8+3_ This traces our
numerical results as shown by the green dashed line.

This computation approach is of great utility in the higher-order correlations. In the
next section, in accordance with this approach, we compute the CMB bispectra sourced
from PMFs.

9.2 Formulation for the CMB Bispectrum Induced from PMFs

In this section, we derive the explicit form of the CMB bispectra induced from PMFs
by calculating the full-angular dependence which has never been considered in the
previous studies [20-23, 28]. The following procedures are based on the calculation
rules discussed in Ref. [25].
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Fig. 9.3 CMB power spectra of the temperature fluctuations. The /ines correspond to the spectra
generated from vector anisotropic stress of PMFs as Eq. (9.43) (red solid line) and primordial
curvature perturbations (blue dotted line). The green dashed line expresses the asymptotic power
of the red solid one. The PMF parameters are fixed to ng = —2.9 and B| mpc = 4.7 nG, and the
other cosmological parameters are fixed to the mean values limited from WMAP-7yr data reported
in Ref. [29] (see colours in online)

9.2.1 Bispectrum of the Anisotropic Stress Fluctuations

According to Eq. (9.2), EMT of PMF at an arbitrary point, T#, (x), depends quadrat-
ically on the Gaussian magnetic fields at that point. This non-Gaussian structure is
identical to the local-type non-Gaussianity of the curvature perturbations as mentioned
in Sect. 4.2, hence it is expected that the statistical properties of the magnetic fields obey
those of the local-type non-Gaussianity. This will be automatically shown in Sect. 9.4.

Using Eq. (9.4) and the Wick’s theorem, the bispectrum of the anisotropic stresses
is calculated as

(MBap (k1) Mpeq (Ka) Mper (K3))
M3 31,/
_ -3 d’k,
= (—47pr,0) ”1;[1/ (277)%i|
X (Ba(ky) By(ky — Kq) Bc(K3) Ba (kz — k) B, (k3) By (k3 — k3))
-
=pmww4]]/D#Mﬁmm/f@}
Ln=1 0

x8 (kg — K| 4 K3)8 (ks — Kj + k)8 (k3 — K + Kj)

1 n N .
><g[Pad(k’l)P;,e(kg)Pcf(k/z) +{a<borc<dore< f}], (9.45)


http://dx.doi.org/10.1007/978-4-431-54180-6_4
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where kp is the Alfvén-wave damping length scale [44, 45] as kz_)l ~ 0(0.1) Mpc
and the curly bracket denotes the symmetric 7 terms under the permutations of indices:
a < b,c < d,ore < f.Note that we express in a more symmetric form than that
of Ref. [18] to perform the angular integrals which is described in Sect. 9.2. To avoid
the divergence of (1'[ Bab (K1) I pcq (K2) I ey (k3)) in the IR limit, the value range of
the spectral index is limited as ngp > —3. We note that this bispectrum depends on the
Gaussian PMFs to six, hence this is highly non-Gaussian compared with the bispectrum
of primordial curvature perturbations proportional to the Gaussian variable to four as
shown in Sect. 4.2.

9.2.2 CMB All-Mode Bispectrum

Following the general formula (5.5) and using Eq. (9.29), the CMB bispectra induced
from PMF are written as

ﬁ X H4n( D' / ~ ladky gz ) (k) > [sgn () P
Xotas 0 @my Kt '

n=1 An

x <H g (k,,)> : (9.46)
n=1

Remember that the index Z denotes the mode of perturbations: Z = S (scalar), = V
(vector) or = T (tensor) and its helicity is expressed by A; A = 0 for Z = S, = £1 for
Z =V or= %2 for Z =T, X discriminates between intensity and two polarization
(electric and magnetic) modes, respectively, as X = I, E, B and x is determined by
ittx =0for X = I, E or =1 for X = B. In the following discussion, we calculate

<Hi: 1§ X‘}’;q (k,,)> and find an explicit formulae of the CMB bispectra corresponding to

an arbitrary Z.
Using Egs. (9.29) and (9.45), we can write

<H S U )> = (—4mpy,0)
n=1
3 R R kp R
<[T1 / d*Kn_3, Y}, (Kn) / k[>dk), Pg (k,) / d’K},
n=1 0

x8(k1 — Ky + K3)8(ka — kb + k)8 (ks — Kj + kj)
xC,, 05, k)L, 05 k)€, 057 (k3)
X P (K}) Po (K}) Py (Kp), (9.47)


http://dx.doi.org/10.1007/978-4-431-54180-6_4
http://dx.doi.org/10.1007/978-4-431-54180-6_5
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with
3R, In (f%) (L = 0)

C=13 (A ==%1). (9.48)

3R, In (TLB) (A = +2)

Let us consider this exact expression by expanding all the angular dependencies with
the spin-weighted spherical harmonics and rewriting the angular integrals with the
summations in terms of the multipoles and azimuthal quantum numbers.

In the first step, in order to perform all angular integrals, we expand each function of
the wave number vectors with the spin-weighted spherical harmonics. By this concept,
three delta functions are rewritten as

L1+3L2+Lg
a(kl—k’1+ké)=8/ A%dA D, (D) Tita,
LiLyL3
MMy M3

X jLy (k1 A) jL, (ki A) jLy (k3 A)

M 1 Ly L3
x Y[y, (kl)YLzMz(k )YLgMg(k )(—=1)™"? ( My M3),

L +3L’ ’
8(k2—k’2+k’1)=8/ BXMdB ) (=) 7T L
0 L/ L/ L/
MiMéMé
x jr, (k2B) jr; (k3 B) ji (ki B) (9.49)
L' L, L
,fww/wmw,mx1W{ L2 3)
Loty 2T LM M} — M} M}
L”+3L”+L
2 it W . 0 00
(k3 — ks +kb) = 8/ ac > (=1 Iy
L//L//L//
M”Mé/Mé,

x jrr(k3C) jry (K5C) jry (k5 C)

L// L// L//
/w&mwmeﬁAka%(l i 3)
LyM M M{’ —Mé/ Mé/

where

(9.50)

s — [QUA DG+ DG+ (446 43
bitats — 4 518283 )"

The other functions in Eq. (9.47), which depend on the angles of the wave number
vectors, can be also expanded in terms of the spin-weighted spherical harmonics as
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05, (K1) 0" (K2) 07" (K3) Pad (K}) P (Ky) Pey (K))

oz m )

o1, 02 o3==x1 Himegny

i, Y, (K1) ( o ) o Y (K Vi, ()
/ 4r\?
xC_;, Z (
Mzmcmd
1
XA2Y2M(k2) (Mz me m ) ~02Yim, (k )y Ylmd(k )
2
w2 ()
87 Mn3mem ¢

2 1 1

) oY, Ky)o Y (K, (9.51)

where we have used Eq. (9.5), some relations in Appendices C and D, and the definition

(D.23) as
~ 2 1 1
O;)l;) k) = \/ 2 , Yy (k)amaab (M my mb) ’

Mmarnb
-2 (A=0)
Cr=12V3%» (A ==1). (9.52)
2V3 (A =42)

In the second step, let us consider performing all angular integrals and replacing
them with the Wigner-3 j symbols. Three angular integrals with respect to ky’, k" and
Kk} are given as

2407 * * *
/d k]*m Ylma YLzszTl Ylm,YL LM

_ mgy 70—01—S 0 o1—S
_z Z( D aIL’lL L21L

LM S=+1
y Ly 1 L L, 1 L
Mimg M) \ My —my M )’
-
/d k/Z—UZYfkmCYL’ZMéazyrmeZuM”

=-> Z oyt 9.53)

L'M' S'=
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L1 L\(L, 1 I
X
Mé’mf M’ M, —me M)’

2 * * *
/d Ky o3 Y im YLy my o3 Yim, Y30

0—o03—S" 0 o3—S"
=-> Z D" I

L//M//S//
(Ls ! L” Ly 1 L
Mz mp M" )\ MY —m, M" )"

where we have used a property of spin-weighted spherical harmonics given by Eq. (C.7).
We can also perform the angular integrals with respect to ky, ka and k3 as

210 v * % _ g0A—Ag Ll Kl 2

/d leLlMl _)“lyzlml)“lyzlll = IL1[|2 (M] mi 5
200, v * *  _ 70A—22 L/l lH 2

/d kY p -2 ¥omara Yo, = Iprys (Mi ma s ) (9.54)
290 vk * x  _ 70A3—23 Lll/ 43 2

/d KaY Ly =32 Yemsia Yous = Ty (Mi/ m3 pu3 )

At this point, all the angular integrals in Eq. (9.47) have been reduced into the Wigner-3 j
symbols.

As the third step, we consider summing up the Wigner-3 j symbols in terms of the
azimuthal quantum numbers and replacing them with the Wigner-6; and 9 symbols,
which denote Clebsch-Gordan coefficients between two other eigenstates coupled to
three and four individual momenta [27, 46—48]. Using these properties, we can express
the summation of five Wigner-3j symbols with a Wigner-9j symbol:

Z (_1)M2+ma Ly Ly Ls 2 1 1
M| —M> M3 n1 mg myp

MMy M3
wimamp
« Ly 1 L” L, 1 L Ly £ 2
M3z my, M” My —my M My my
L" L ¢
4
Mo+ (LT L4y
= ( 1) (M//_Mml) Ly Ly Ly s
1 1 2
/ /
Z<1)M+m‘(L L L%)(Z 1 1)
i, M2 M; o2 me my
,uzmrzmar3
L, 1 L L, 1 L L ¢y 2
3 2 1
S | Cr A [ i
L L ¢
o (ML L L Lt Iy L%
’ M —M' m, 13 l2 21 ’
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" VA 1
> o (5B Y (201
My —M; My W3 me my

MY My MY
y L’3’ 1 L Ly 1 L LY £3 2
1" / " 1 "
M3 my M My —m, M My m3 u3

w3mem f

rorn
M"+03+L7+L" L L L3 L// L// Z3/‘/

= —(_1) 3 M —M" ms L3 Lz Ll
1 1 2

Furthermore, we can also sum up the renewed Wigner-3j symbols arising in the above
equations over M, M" and M" with the Wigner-6 symbol as [49]

Z (= DM+M'+M” L' L ¢ L L ¢ L' L ¢z
T M" —M m; M —M' mjy M —M" ms3

i L1 b 8 £y £y £
o \L+L+L 1 £ €3 1 42 43

With this prescription, one can find that the three azimuthal numbers are confined only in

. . by £y 3 oA . 3 (An)
the Wigner-3 j symbol as (m iy s ) This 3j symbol arises from( n=1 &0, m, (kn)>

and exactly ensures the rotational invariance of the CMB bispectrum as pointed out
above.

Consequently, we can obtain an exact form of the primordial angular bispectrum
given by

: I S
(An) 1 2 43 -3 2
<H5@nmn("")>=(m1m2 m3)(—4npy,o> [H} /0 k’ndk;,PB<k,;)}
n= n—=
01 o U3
<> 3 el

L'L" S8, S"=%x1
S SA SS'A NS
XfL//Lgll (ké, 17 kl)fLL/@zz (k/ ) kév kz)fL’L”Z; (ké, k%, k3)s
(9.57)
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where

o0
ot = > / Y2dyje, (r3y) i, (ray) ji, (r1y)
0

LiLyL3
X(_1)2+L2+L3(_1)7L1+L22+L3
L" L ¢
000 ;0S”"—S" ;0SS ;0r—A
XIL1L2L3]L31L” ILzlL ILIZZ L3 Ly Ly
1 2
@1 2Ry In(ry/75) (1 = 0)
X1 5(87)%2 (h==1) - (9.58)

—4(87)3 2R, In (v,/78) (A = £2)
Here, the coefficients have been calculated as

—%(871)3/2&, In(t,/t8) (A =0)

3 [47\?
C_iCl54/ o (;) 8=1-%@8n)1 (A=%D . 959
4(87)3 2Ry In (v,/7B) (A = +£2)

Substituting Eq. (9.57) into Eq. (9.46), we can formulate the CMB bispectra gener-
ated from arbitrary three modes such as the scalar-scalar-vector and tensor-tensor-tensor
correlations with the f function as

3
(Zn) _ (b & &Yy, -3
< axn_e,,m,l> = (ml my ms (—4mpy.0)

n=1
3 K2dk
x [H(—i)‘" [T
n=1

kp
x> [sgn(a) ]t /0 k;lzdk,’,PB(k;):|

)‘-H
Ly Uy 03
<> > ieY
LL'L”S,S",S"=+1

X oy s kL k) £ 2 (kK k) £ (K Kb Ka). (9.60)

From this form, it can be easily seen that due to the sextuplicate dependence on the
Gaussian PMFs, the Wigner-6j symbol connects the true multipoles ({1, £> and £3)
and the dummy ones (L, L" and L"), and the 1-loop calculation with respect to these
multipoles is realized as illustrated in the left panel of Fig. 9.4a. Due to the extra

summations over L, L’ and L”, it takes a lot of time to compute this compared with the
tree-level calculation presented in the previous sections.
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(a) b (b) 4

lo ls o lz

Fig. 9.4 Diagrams with respect to multipoles [34]. The left panel (a) corresponds to Eq. (9.60).
Due to the Wigner-6j symbol originated with the sextuplicate dependence on the Gaussian PMFs,
the true multipoles £1, £, and £3 are linked with the dummy ones L, L', and L” and the 1-loop
structure is realized. The right panel (b) represents the tree-structure diagram, which arises from
the CMB bispectrum induced by the four-point function of the Gaussian fields as mentioned in the
previous sections

9.3 Treatment for Numerical Computation

In order to perform the numerical computation of the CMB bispectra, we give the
explicit angle-averaged form of Eq. (9.60) as

(Z12273) _ -3 £y Lo 43
BX|1X22X33»515253 = Cz,CzCz (_477'01/»0) Z [L/ " L
LL/L//
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L’ L ¢ L L ¢ L' L" 3
x 3 L3 Ly L L’3 L’2 L’l L’3’ L’2’ L’l’
1 1 2 1 1 2 1 1 2
© 1 20kn (7
(—l) e AL m}
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O 272

o0
/O AdA]Ll(klA)/ de]L/(sz)/ de]L//(/QC)
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x/ k’zdk’ PB(k’)]Lz(k’A)jL/ (ki B)
0
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y / KRdiy Py () 1, (65 B) jp 5 (65C)
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kD
X/O dk3PB(k3)JL”(k3C)]L3 (k3A)
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x Z (_1)L2+L’2+L’2’+L3+L’3+L’3’
S,8,8"=%£1
0S—S 705—S 708'—S" 705’ —S" 708"—S" ;08" —S"
o Lo I Ty T
x1 7OA1 =21 x2 70A2—22
x D IsgnGaI I senGa) 2 1)
A1A2A3

x[sgn()I 170, (9.61)
with
%(871)3/2&, In(t,/t8) (Z = S)
Cy = %(871)3/2 (Zz=V) - (9.62)
—487)3 2R, In (v,/t8) (Z=T)

We consider performing the summations with respect to the helicities. By considering
the selection rules of the Wigner-3; symbol, the summations over S, S and S” are
performed as

_ Lo+ LS+ LY+ L3+ L5+LY j0S—S ;0S—S 108’ =S ;0S'—S' ;05" —5" ;05" —S"
Z =D ’ ‘IL’31L I IL’3’1L’ IL’ZIL’ I Ly1L”
5.8.8"=+1
_ 701-1701—1701—1 701—1 ;O1—1 701—1
- IL’31LIL21L ILg’lL/IL’QlL’IL31L”IL’2’1L”

8 (L5 + Ly, L5 + L), L3 + L)) = even)
[ 0 (otherwise) ’ (.63)

By the same token, the summations over A1, A and A3 are given by

Ohy— 0rp— Odz—
Z [sgn(.0)1" IL?élzh [sgn(r2)]*™ IL?Z;Z [sgn(x3)]" IL?EﬂM
AA2A3

OIMI*IMIIOMZI*\)»z\IOMﬂ*I?»zI

=162 L2 L2

3—Ng ’ " _
» 2 (L1+Z.1+x1,L1+K2+xz,L1+€3+X3—even) . (9.64)
0 (otherwise)

where Ny is the number of the scalar modes constituting the CMB bispectrum.® Thus,
we rewrite the bispectrum as

(2)Z,Z3) -3 £y Lo 43
BX11X22X33,Z]€2€3 = CVZI CZZCZ3 (—47T,0y.()) Z { L' L' L
LL'L"

3 Lp+Lp+Ly+26n
>, ettt 000 ;000 7000
x 2: (=DH&n=t : L oy

5 Caution about a fact that |x] is determined by Z, namely, || = 0,1,2 for Z = S,V, T,
respectively.
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® 124k,
><|: (- )“ T ;Zznacn}
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o0
/0 A2dAjL, (0 A) / B2dBjy, (kaB) / C2Cjy (50)
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x/ k2dk, Py (k) jr, (K} A) i, (k) B)
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x / Rk, Py (k) jp, (3B jr s (K5C)

(=]

kp
x /0 K2 Py (K3) 15 (65C) s (5 A)

01—1701—1701—1 701—1 ;01—1 701—1
XSIL’1LIL21LIL”1L'1L’1L/IL;1L”IL"lL”QLQ,Lz,LQL;’,L’Z,L/QLLL’Z’.L”

3—Ns jOlAtl=[21] ;OlA2]=]A2] ;OlA3|—[A3]
x2 e IL 62 IL”e 2 Uitin U Y0 s s

(9.65)

where we introduce the filter functions as

Py = Opy 1+ 01 11D OLa. L1 + 8Ly 2-1) + 814 101, L,

%Ll,fwﬂ = (8L1,2172 + aLl,ll + 8L1,Zl+2)8x1,0 + ((SL],[lfl + 5L1,l1+l)8x1,1-
(9.66)

The above analytic expression seems to be quite useful to calculate the CMB bispectrum
induced from PMFs with the full-angular dependence. However, it is still too hard to
calculate numerically, because the full expression of the bispectrum has six integrals.
In addition, when we calculate the spectra for large ¢’s, this situation becomes worse
since we spend a lot of time calculating the Wigner symbols for large £’s. The CMB
signals of the vector mode appear at £ > 2000, hence we need the reasonable approx-
imation in calculation of the CMB bispectra composed of the vector modes. In what
follows, we introduce an approximation, the so-called thin last scattering surface (LSS)
approximation to reduce the integrals.

9.3.1 Thin LSS Approximation

Let us consider the parts of the integrals with respect to A, B, C,k’, p’ and ¢’

the full expression of the bispectrum (9.65) of B;‘I/,V 2‘35223' In the computation of
the CMB bispectrum, the integral in terms of k (, p and ¢) appears in the form
as [ kzdkﬂl(v)(k) jr,(kA). We find that this integral is sharply-peaked at A =~

T0 — Tx, where 70 is the present conformal time and 7, is the conformal time of the
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Fig. 9.5 The ratio of the 2 - - .
left-hand side (exact solu- L=l +2
tion) to the right-hand side Li=4

(approximate solution) in Eq. Lp=ly-2 e

(9.67). The lines correspond
to the case for L1 = ¢ + 2
(red solid line), for L1 = £
(green dashed one), and for
Ly = €1 — 2 (blue dotted one)
(see colours in online)

exact / approximate

recombination epoch. According to Sect. 9.1.3, the vorticity of subhorizon scale sourced
by magnetic fields around the recombination epoch mostly contributes to generate the
CMB vector perturbation. On the other hand, since the vector mode in the metric decays
after neutrino decoupling, the integrated Sachs-Wolfe effect after recombination is not
observable. Such a behavior of the transfer function would be understood on the basis of
the calculation in Sect. 9.1 and we expect Z%) (k) o< jg, (k(to—74)), and the k-integral
behaves like 6 (A — (top — 7«)). By the numerical computation, we found that

(ee] e¢} v
/ A2dA / Kk 7.0 () ji, Gy A)
0 0 '
2 (T 2 ) :
~ (10 — T4) (g) /k,dk] T k) je, ki (o — 1)), (9.67)

is a good approximation for L = £1 £ 2, £; as described in Fig.9.5. Note that only
the cases L1 = £1 2, £1 should be considered due to the selection rules for Wigner-3j
symbols as we shall see later. From this figure, we can find that the approximation
(the right-handed term of Eq. (9.67)) has less than 20% uncertainty for £; >~ L; 2
100, and therefore this approximation leads to only less than 10% uncertainty in the
bound on the strength of PMFs if we place the constraint from the bispectrum data at
€1, £, €3 > 100.% Using this approximation, namely A = B = C — 19 — 7, and
JdA = [dB = [dC — t,/5, the integrals with respect to A, B, C, k', p’ and ¢’ are
estimated as

f[4 (—')‘"/c>o k’%dk”ﬂ‘”(k) /ooAsz' (k1 A)
n=l T o ()3 THET L V]

6 Of course, if we calculate the bispectrum at smaller multipoles and the CMB bispectra are produced
by other modes than the vector one, we may perform the full integration without this approximation.
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/0 Rk Py (K5) j, (ks B) iy (K5C)
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: 124
~ [Hm_iw /0 o) & T ) oy (To—T*)):|
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x A3 (19 — r*)é( ) OB (7 1y

LzL/
(ng+1) (np+1)
Ji/L, L (0 — r*)%/L/Z/ L (10— 7). (9.68)

Here the function Jif ;' 1s defined as

o0
AN () = / k" i ey jo (k)

0
_ Nt LN (HE2=N
2y 2N F(l—l,-‘gl-‘rN)F(—Z+l/;-]+N)1—v(l+l/-‘52+N)
(fory, N,I+1'+2— N > 0), (9.69)

which behaves asymptotically as %ﬁ' (y) o I™N for I ~ I’ > 1. Here we have
evaluated the k' integrals by setting kp — oo. This is also a good approximation
because the integrands are suppressed enough for k', p’, ¢’ < kp ~ ¢'(10) Mpc ™.

9.3.2 Selection Rules of the Wigner-3j Symbol

From the selection rules of the Wigner symbols as described in Appendix C, we can
further limit the summation range of the multipoles as

L — | <L <L+4#y, Max[|L —¢€1],|L' —¢3]] <L” <Min[L + ¢, L' + ¢3],
Li+Ly+Lz=even, L)+ L,+L5=even, L{ + L5+ L% =even,
Ly — Lyl < L3 <Ly + Ly, |L]—Ly| <Ly <Lj+Lj, (9.70)
IL] — Ly <Ly <L+ L7,

and from the above restrictions the multipoles in the bispectrum, £1, £, and ¢3, are also

limited as
|6y — o] <83 < L1+ L. (9.71)
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Therefore, these selection rules significantly reduce the number of calculation. In these
ranges, while L’ and L” are limited by L, only L has no upper bound. However, we can
show that the summation of L is suppressed at £1 ~ £» ~ £3 < L as follows. When the
summations with respect to L, L’ and L” are evaluated at large L, L’ and L”, namely
O, 0,03 K L~L ~L" Ly ~Ly~L,L,~L5~L and L] ~ L3 ~ L", we get

zl 52 53 kp 2 . .
> [ Y L] > /0 kP dk; P (K}) ji, (K} A) jp;, (k) B)
LL'r” LyLh LY
L%L%’L3

kp
x /0 k5 dky P (k) ji;, (k3 B) jry (k3 C)

kp
x / Kk Py (k3) jpy (R C) jiy (K5 A)
0

L;+L,+L"

L3 ST 000 ;000 5000

XD T s T
01—1401—-1401—-1 4y01—-1 401—-1 ;01—1
T e T e T e

L" L ¢ L L o L' L" 3

x{L3Ly Ly g LyL, L, ¢ LY Ly LY
112 112 11 2
o« > (LL'L"y s, 9.72)
LL/L//

Therefore, we may obtain a stable result with the summations over a limited number
of L when we consider the magnetic power spectrum is as red as ngp ~ —2.9, because
the summations of L’ and L” are limited by L. Here, we use the analytic formulas of
the / symbols which are given by

L' L" L
L" L £
Ly Ly L Y oc(L'L)"12, (9.73)
11 2

[51 1) 53] o (LL'L")~1/6. %/Lf(Ln/erl) o L5+,
243

as described in detail in Appendix C.

Using the thin LSS approximation and the summation rules described above, we can
perform the computation of the CMB bispectrum containing full-angular dependence
in a reasonable time.
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9.4 Shape of the Non-Gaussianity

In this section, in order to understand the shape of the non-Gaussianities arising from
PMFs, we reduce the bispectra of the PMF anisotropic stress by the pole approxima-
tion [34].

Let us focus on the structure of the bispectrum of the PMF anisotropic stresses
(9.45). If the magnetic spectrum is enough red as np ~ —3, the integral over the wave
number vectors is almost determined by the behavior of the integrand around at three
poles as k}, k5, k5 ~ 0. Considering the effects around at these poles, we can express
the bispectrum of the PMF anisotropic stresses approximately as

(MBap (k) Mpeq (k) Mg, r (k3))
1 aA 871
~ (o0 Pl (an)

1 . . . .
X3 [PB (k1) Pp (k2)8aq Ppe (K1) Pep (K2) + Pp (ko) P (k3) Pag (K2) Ppe (K3)3cf

+Pp (k1) Pp (k3) Pag (K1)Spe Pey (K3) + {a <> borc <> d or e <> f}] . (9.74)
where we evaluate as

(XAB

~ ks ~ ~ 8
/ &K Py (k) Pap(K) ~ @ / K2dK' Py (k') / d*K! Py (K') = pats s
0 npg+3

ky 3 ab-

(9.75)
Note that « is an unknown parameter and should be determined by the comparison with
the exact bispectra [(9.60) or (9.65)], and we take k, = 10 Mpc’l.
Under this approximation, the angular bispectrum of the primordial tensor pertur-
bations (A1, A2, A3 = £2) is given by

<H5W ( n)> {H/d Kn—3, ¥}, (kn)}
n=1
Ry In(t,/t8) ] aAp n8+387r
X[ } ng+3 b Zk

4mpy 0

x | P ) Pa(k2)8ad Poe (K) Per (K2)
+Pg (k2) P (k3) Paa (K2) Ppe (K3)8. 1
+ Py (k1) P (ks) Paa (Kn)Bse Pey (K3) |

x (=27)el, ™ (Knely ™ (Ka)el s (K3) . (9.76)
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Using Eq. (D.23), we reduce the contraction of the subscripts in the 77 T spectrum to

05, (K1) 0L, 15) 0 (Ks) | P k1) Py (2)8ad Poe (K) Pey (K2)
+Pp (k2) Pp (k3) Pud (K2) Pre (K3)3c
+ Py (k1) P (Ks) Paa (Kn)se Pey (K3) |
= el (Knel, ™ (K3)e' ' (K2)[Ps (k1) Py (ka) + 2 perms.]

__(877)5/210171[0171 222
= FamC VTR

} [Pg (k1) Pp(kz) + 2 perms.]
iy ~ ~ 2 2 2
X Z Al Y;M(kl))nz Y;M/(kz)l3 YQ*M//(k3) (M M’ M//) .

M,M' M"
(9.77)

The delta function is also expanded with the spin spherical harmonics as Eq. (6.14)

3 00 3
6(Zki)=8 / Yy [ [T D0 05 jn iy Yi, p, (&)
i=1

0 i=1L; M
<1900, ( o fj}) . 9.78)
Then, the angular integrals are performed as
/dzkAlf)LlY;llelelMY;M = 12\1121—22»1 (:1]1 11‘4/1]1 AZ/I) )
[ e Vi Vi = 1505 (,ffz s Aﬁ) EENCRD)
/deA‘?’_x3 YZM3Y:3M3)‘3 YZ*M“ = 12\331?3_2)\3 (Vfli 161%3 1\5”) ’

and all the Wigner-3 j symbols are summed up as

z Ly Ly L3 2 2 2
M M, M, MM M’

M My M3
MM/M//
« £y Ly 2 lr Ly 2 {3 Ly 2
m;y My M my Mo M’ m3 M3 M"
0 by U3
- (ﬁ‘ b 53) LiLyLs}. (9.80)
myp mja m3

2 2 2
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Thus the initial bispectrum (9.76) is rewritten as

3

() 66 63 \[RyIn(/tp) ]’ @A .87
[T G ) ~ K=
ol n/Mn mp mjp ms3 4mpy.0 ng+3 3

3

o0

xs [y | [T 080,60 | 1255,
0

n=1 L,

Ly £y U3

222 ,01-1,01=1 ;21041 y220—A2 ;A30—2
X [ 111 ] Ly Ly, Iellle llzzszz 2113;L32 ’ L21 L22 1423

x9(87)>/2[Pg (k1) Pg(ka) + 2perms.]. (9.81)

Comparing the exact initial bispectrum of the tensor modes (9.57) with this equation,
we can see that the number of the time-integrals and summations in terms of the multi-
poles decreases. This means that corresponding to the pole approximation, the 1-loop
calculation (the left panel of Fig. 9.4a) reaches the tree-level one (the right one of that
figure). This approximation seems to be applicable to the non-Gaussianity generated
from the chi-squared fields without the complicated angular dependence [50]. Note that
the scaling behaviors of these initial bispectra with respect to k1, k> and k3 are in agree-
ment with that of the local-type non-Gaussianity (4.7). Thus, if the pole approximation
is valid, we can expect that the PMFs generate the CMB bispectra coming from the
local-type non-Gaussianity. Via the summation over Ay, Ap and A3 as Eq. (9.64), the
approximate CMB bispectra of the tensor modes are quickly formulated:

3
app(TTT) . Ry In(zy/7B) aAp ppi38m _ Litlatly g
BX1X2X3,£162£3(0[)_|: 47py,0 n3+3k* 3 Z St Y 29
’ LiLyL3

Ly & 43

222 ,01-1,01-1
X[lll}lzn ]21] Ly Ly L3
2 2 2

20—-2 ;20-2 ;y20-2
X8](31L12[€2L22IZ3L32%L1,E1,Xl ULy 0,5, W15 05,35

00 3 00 kzdk
2 N n4kn (T) .
< [ 5%y L]:[l(—o | A i Gy

x9(87)>/2[Pg (k) Pg (ky) + 2perms.], (9.82)

where the multipoles are limited as

3
D Ln=even, |Li—Lo| < L3 <Li+Lo, (9.83)

n=1

and the triangle inequality imposes
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Fig. 9.6 Absolute values of the normalized reduced bispectra of temperature fluctuations for a
configuration £ = ¢, = ¢3 = £. The red solid, green dashed, and blue dotted lines correspond to
the spectra generated from the auto-correlations of the PMF tensor, vector, and scalar anisotropic
stresses for np = —2.9, respectively. The upper (lower) lines of the red solid and blue dotted
lines are calculated when 7, /t5 = 10'7(10°). The magenta dot-dashed line expresses the spectrum
sourced from the primordial non-Gaussianity with fllﬁfal = 5. The strength of PMFs is fixed to
B Mpc = 4.7 nG and the other cosmological parameters are fixed to the mean values limited from
WMAP-7yr data reported in Ref. [29] (see colours in online)

€ — o] = €3 < £y + Lo, (9.84)

In the next section, we compare these approximate spectra with the exact spectra given
by Eq. (9.65) and evaluate the validity of the pole approximation.

9.5 Analysis

In this section, we show the result of the CMB intensity-intensity-intensity spectra

induced from the auto-correlations of the each-mode anisotropic stress. In order to

compute numerically, we insert Eq. (9.65) into the Boltzmann code for anisotropies in

the microwave background (CAMB) [15, 51]. We use the transfer functions shown in

Sect. 9.1. In the calculation of the Wigner-3j, 6j and 9 symbols, we use a common

mathematical library called SLATEC [52] and analytical expressions in Appendix C.
In Fig.9.6, we plot the CMB reduced bispectra of these modes defined as [53]

b(212223)
111,814203

000 \~1 p(Z12273)
(1(15213) Bl[],@]fz&’ (985)

for £1 = ¢, = {3. Here, for comparison, we also write the bispectrum generated
from the local-type primordial non-Gaussianities of curvature perturbations given by
Eq. (4.7).
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From the red solid lines, we can find the enhancement at £ < 100 in tensor-tensor-
tensor bispectra. It is because the ISW effect gives the dominant signal like in the CMB
anisotropies of tensor modes [17, 54]. From the green dashed line, one can see that the
peak of the vector-vector-vector bispectrum is located at £ ~ 2000 and the position is
similar to that of the angular power spectrum C ;‘? induced from the vector mode as
calculated in Sect. 9.1. At small scales, the vector mode contributes to the CMB power
spectrum through the Doppler effect. Thus, we can easily find that the Doppler effect
can also enhance the CMB bispectrum on small scale. From the blue dotted lines, we
can see that the scalar-scalar-scalar bispectra are boosted around at £ ~ 200 due to
the acoustic oscillation of the fluid of photons and baryons. On the other hand, as ¢
enlarges, the spectra are suppressed by the Silk damping effect. These features are also
observed in the non-magnetic case (the magenta dot-dashed line), however, owing to
the difference of the angular dependence on the wave number vectors in the source
bispectra, the location of the nodes slightly differs. Comparing the behaviors between
the three spectra arising from PMFs, we confirm that the tensor, scalar and vector
modes become effective for £ < 100, 100 < ¢ < 2000 and ¢ 2 2000, respectively,
like the behaviors seen in the power spectra. Thus, for £ < 1000, namely the current
instrumental limit of the angular resolution such as the PLANK experiment [30], we
expect that the auto- and cross-correlations between the scalar and tensor modes will
be primary signals of PMFs in the CMB bispectrum.

The overall amplitudes of b%‘;?@ . and bg,TeTe) ¢ seem to be comparable to [C ;‘j) 6]3/2

T 132 . wvvv) .

and [C 1. e] . However, we find that the amplitude of b, ,;, is smaller than the
above expectation. This is because the configuration of multipoles, corresponding to
the angles of wave number vectors, is limited to the conditions placed by the Wigner
symbols. We can understand this by considering the scaling relation with respect to £ at
high ¢. If the magnetic power spectrum given by Eq. (9.4) is close to the scale-invariant
shape, the configuration that satisfies L ~ L” ~ £ and L’ ~ 1 contributes dominantly
in the summations. Furthermore, the other multipoles are evaluated as

Li~Ly~L{~¢ Ly~Lj~L3~Liy~¢ L)~L5~1, (9.86)

from the triangle conditions described in Appendix C. Then we can find bg‘;}/gjz)z x

02844 for ¢ < 1000, where we have also used the following relations

. Iy -
/kzdszz)(k)Jzi(k(fo—T*)) x ¢, [Ll’ L L3] e

—p+1)  y—(ip+D) | gnp+l
A1 Hy P o (9.87)
L" L ¢ L L ¢ L' L ¢
Ly Lo Ly f o€ YLLLy L ¢~ L5 LY LY ot
112 112 112

which, except for the first relation, are also coming from the triangle conditions of
the Wigner 3-j symbols. Therefore, combining with the scaling relation of the CMB
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Fig. 9.7 Absolute values of the normalized reduced temperature-temperature-temperature spectra
arising from the auto-correlation between the PMF vector anisotropic stresses for a configuration
{1 = £y = €3 = L. The lines correspond to the spectra generated from vector anisotropic stress
forng = —2.9 (red solid line) and —2.8 (green dashed line), and primordial non-Gaussianity with
flll‘}fa' = 5 (blue dotted line). The strength of PMFs is fixed to By Mpc = 4.7 nG and the other
cosmological parameters are identical to the values used in Fig. 9.6 (see colours in online)

power spectrum mentioned in Sect. 9.1, we find that b;‘;lvg?z is suppressed by a factor

28=D/2 from C;‘I/);/z.
' (VVV)

In Fig. 9.7, we show bI”’wz for £1 = ¢, = {3 for the different spectral index np.
Red solid and green dashed lines correspond to the bispectrum with the spectral index
of the power spectrum of PMFs fixed as np = —2.9 and —2.8, respectively. From this
figure, we find that the CMB bispectrum becomes steeper if n p becomes larger, which
is similar to the case of the power spectrum. These spectra trace the scaling relation in
the above discussion. These will lead to another constraint on the strength of PMFs.

In Figs. 9.8 and 9.9, we show the reduced bispectrum bﬁ‘l/l‘f[vl)e2[3 and b%;?b &
with respect to £3 with setting £1 = {5, respectively. From Fig. 9.8, we can see that

bE‘I/XX)Zzh for €1, €3, £3 = 100 is nearly flat and given as

1o ( Bivpe \°
"G +1)e3(63+1)‘b§Y,YX>€2€3‘ ~2x107" (4711123) . (988

We can understand this by the analytical evaluation as follows. As mentioned above,
in the summations of Eq. (9.65), the configuration that L ~ £;, L’ ~ 1 and L” ~ {3
contributes dominantly. By using this and the approximations that

Ly~ /¢, L/l ~ Uy, L/1/~€3, LQ’VL%’VL, L/Z’VL%/’VL/, L’2’~L3~L”!
(9.89)
which again come from the triangle conditions from the Wigner symbols, the scaling

relation of £3 at large scale is evaluated as bg‘l/lv fvl)éz 0 X 4 1. From this estimation
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Fig.9.8 Absolute values of the normalized reduced temperature-temperature-temperature bispectra
induced by the auto-correlation between the PMF vector anisotropic stresses and generated by
primordial non-Gaussianity given by Eq. (9.91) as a function of ¢3 with ¢; and £, fixed to some
value as indicated. Each parameter is fixed to the same value defined in Fig. 9.6
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Fig.9.9 Absolute values of the normalized reduced temperature-temperature-temperature bispectra
induced by the auto-correlation between the PMF tensor anisotropic stresses and generated from
primordial non-Gaussianity in curvature perturbations given by Eq. (9.91) as a function of ¢3 with
{1 = {;. Each parameter is identical to the values defined in Fig. 9.6

we can find that £;(¢; + 1)£3(¢3 + 1)b§‘;xx)£2[3 [0 3(3).1, forng = —2.9, and Zg'z for
np = —2.8, respectively, which match the behaviors of the bispectra in Fig. 9.8.

From Fig. 9.9, we can also see that if the PMF spectrum obeys the nearly scale-

invariant shape, bg;g@ o for £1, €2, €3 < 100 is given by

By Mpc

0161+ s (e 1‘17(””
1861+ D33+ 1) 170G

111,010203

6
~ (130 — 6) x 1016( ) . (9.90)
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where the factor 130 corresponds to the 7,/ = 107 case and 6 corresponds to
10°. In order to obtain a rough constraint on the magnitude of the PMF, we compare
the bispectrum induced from the PMF with that from the local-type primordial non-
Gaussianity in the curvature perturbations, which is typically estimated as [55]

G (01 + 103003 + Dbe,ryey ~ 4 x 10718 figedl, (9.91)

By comparing this with Eq. (9.90), the relation between the magnitudes of the PMF

with the nearly scale-invariant power spectrum and f;ﬁfal is derived as

B
( 11 I?“GPC) ~ (122 — 2.04) | floeal| V/© (9.92)
Using the above equation, we can obtain the rough bound on the PMF strength. As
shown in Fig. 9.6, because the tensor bispectrum is highly damped for ¢ > 100, we
should use an upper bound on fg}’fal obtained by the current observational data for
£ < 100, namely fgﬁfal < 100 [56]. This value is consistent with a simple prediction
from the cosmic variance [53]. From this value, we derive By pvpe < 2.6 — 4.4 nG.

From here, let us discuss the validity and possibility of the CMB bispectra under the
pole approximation (9.82). Figure 9.10 shows the shapes of the CMB tensor-tensor-
tensor spectra based on the exact form (9.65) and approximate one (9.82). Both spectra
seem to have a good agreement in the shape of the £ space. To discuss more precisely,
using the correlation

b-b' o> beuebly. (9.93)
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Fig. 9.10 Absolute values of the normalized reduced bispectra of temperature fluctuation for a
configuration {1 = ¢ = €3 = {. The red solid and green dashed lines represent the exact and
approximate spectra arising from the tensor-tensor-tensor correlation of the PMF anisotropic stresses
for By mpc = 470G, np = =29 and 7, /18 = 107, respectively. The cosmological parameters
are identical to the values defined in Fig. 9.6 (see colours in online)
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we calculate a correlation coefficient as
beX . papp
\/(bex ,bex)(bapp _bapp)

= 0.99373, (9.94)

where b®* and b?PP are the exact and approximate reduced bispectra, respectively. This
fact, which this quantity approaches unity, implies that the pole approximation can
produce an almost exact copy. An unknown parameter, ¢, is derived from the relation
as

byy, N b - b*PP (o = 1)

TP a=1) bW(a=1)-bPP(a=1)

=0.2991. (9.95)

The cases other than the tensor-tensor-tensor spectrum will be presented in Ref. [34].

As shown in the previous sections, the CMB bispectra from PMFs arise from the
six-point correlation of the Gaussian magnetic fields and have one-loop structure due to
the summation over the additional multipoles. Hence, it takes so long hours to estimate
all ¢’s contribution and it is actually impossible to compute the signal-to-noise ratio.
However, using the pole approximation, since the summation reaches the tree-level
calculation, we will obtain more precise bound through the estimation of the signal-
to-noise ratio including the contribution of the cross-correlations between scalar and
tensor modes [34].

9.6 Summary and Discussion

In this chapter, on the basis of our recent works [24-26], we presented the all-sky formu-
lae for the CMB bispectra induced by the scalar, vector, and tensor non-Gaussianities
coming from the PMFs by dealing with the full-angular dependence of the bispec-
trum of the PMF anisotropic stresses. Then, expressing the angular dependence with
the spin-weighted spherical harmonics and converting the angular integrals into the
Wigner symbols were key points of the formulation. From the practical calculation, it
is found that the CMB bispectra from the magnetic tensor, scalar, and vector modes
dominate at large (¢ < 100), intermediate (100 < ¢ < 2000), and small (¢ = 2000)
scales. For the discussion about the shape of the non-Gaussianity in the PMF anisotropic
stresses, we performed the pole approximation, which is the evaluation of the convo-
lutions at around the divergence points of the integrands, and found that the bispectra
of the PMF anisotropic stresses are classified as the local-type configuration. Owing to
this, we had some significant signals of the CMB bispectra on the squeezed limit also
in the multipole space. Compared with the exact formula, the approximate one reduces
the computing time, hence we expect the use for the calculation of the signal-to-noise
ratio [34]. We also investigated the dependence of the CMB bispectrum on the spectral
index of the PMF power spectrum and confirmed that the CMB bispectrum induced
from the PMFs is sensitive to it. Since the characteristic scale varies with the value of
the spectral index, it is important to consider not only the contribution from the scalar
mode, but also those from the vector and tensor modes.



148 9 CMB Bispectrum Generated from Primordial Magnetic Fields

By translating the current bound on the local-type non-Gaussianity from the CMB
bispectrum into the bound on the amplitude of the magnetic fields, we obtain a new
limit: By Mpc < 2.6 — 4.4 nG. This is a rough estimate coming from the large scale
information of the tensor mode and a precise constraint is expected if one considers the
full ¢ contribution by using an appropriate estimator of the CMB bispectrum induced
from the primordial magnetic fields.

Because of the complicated discussions and mathematical manipulations, here we
restrict our numerical results to the intensity bispectra of auto-correlations between
scalar, vector and tensor modes despite the fact that our formula for the CMB bispectra
(9.60) contains the polarizations and the cross-correlations between scalar, vector and

tensor modes. However, like the non-magnetic case [57], the modes other than our

. SVT - ..
numerical results, such as B; B 6)1 tots will bring in more reasonable bounds on the

PMFs [34]. Furthermore, the effect on the CMB four-point correlation (trispectrum) is
just beginning to be roughly discussed [58]. Applying our studies, this should be taken
into account more precisely.
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Chapter 10
Conclusion

The main purpose of this thesis was to present the formalism for the CMB bispectrum
induced by the non-Gaussianities not only in the standard scalar-mode perturbations
but also in the vector- and tensor-mode ones where the violation of the rotational or
parity invariance is also involved, and some attempts to prove the nature of the early
Universe by applying our formalism. To do this, we have discussed the following
things.

In Chap. 1, we gave the introduction of this thesis. Then, we quickly summarized
the history of the Universe, the paradigm in the early Universe, and the concept
of this thesis. In Chap.2, we summarized how to generate the curvature perturba-
tions and gravitational waves and the consistency relations in the slow-roll inflation.
In Chap.3, we showed how to construct the ay,,’s generated from the primordial
scalar, vector and tensor sources in order to formulate the CMB bispectrum easily.
We also summarized the constraints on several key parameters, which characterize
the nature of inflation and the dynamics of the Universe, obtained from the current
CMB data. In Chap. 4, we focused on the topic of the primordial non-Gaussianities.
In Chap. 5, we gave the general formulae for the CMB bispectrum coming from not
only scalar-mode but also vector- and tensor-mode perturbations, which includes
both the auto- and cross-correlations between the intensity and polarizations. Next,
applying this formalism, we computed the CMB bispectra from several kinds of the
non-Gaussianities. In Chap. 6, we treated the two scalars and a graviton correlator and
obtained the CMB bispectrum including the tensor-mode perturbation. Here, we had a
bound on the nonlinear scalar-scala-tensor coupling by the computation of the signal-
to-noise ratio. In Chap. 7, we considered the non-Gaussianity which has the preferred
direction. Through the analysis, we found that the finite signals arise from the multi-
poles except for the triangle inequality. We furthermore confirmed that these special
signals are comparable in magnitude with the signals keeping the triangle inequal-
ity. In Chap. 8, we dealt with the graviton non-Gaussianity arising from the parity-
conserving and parity-violating Weyl cubic terms. Calculating the CMB intensity
and polarization bispectra, we clarified that the intensity-intensity-intensity spectrum
from the parity-violating non-Gaussianity obeys the condition as Zi: 1 £n = odd.
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These configurations will be very beneficial to check the parity violation of the
Universe in the non-Gaussian level observationally. In Chap. 9, we took into account
the effect of the non-Gaussianities due to the primordial magnetic fields. Depend-
ing quadratically on the magnetic fields, the magnetic anisotropic stresses obey the
chi-square distributions. Since these non-Gaussian anisotropic stresses become the
sources of the CMB fluctuations, their bispectra have the finite values. Computing
the CMB intensity-intensity-intensity spectra, we clarified that the tensor (vector)
mode dominates at large (small) scales and the scalar mode shows up at interme-
diate scales. By the pole approximation, we also found that the bispectrum of the
magnetic anisotropic stresses is similar to the local-type bispectrum. Comparing the
theoretical results with the observational limit on the local-type non-Gaussianity, we
obtained a bound on the strength of the magnetic fields, By mpc < 2.6 — 4.4 nG.
We expect that this bound will be updated by considering the impacts of the cross-
correlations between scalar, vector and tensor modes, and the additional information
from polarizations.

Our formalism for the CMB bispectrum is general enough to be applicable to
the non-Gaussian sources other than the above ones. Moreover, this will be easily
extended to the higher-order correlations. Therefore, the studies in this thesis will be
very beneficial to quest for the true picture of the origin of the Universe.
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Appendix A
Spin-Weighted Spherical Harmonic Function

Here, we review the properties of the spin-weighted spherical harmonic function. In
the past, this was mainly applied to the analysis of the gravitational wave (see e.g.
Ref. [1]). This discussion is based on Refs. [2—4].

The spin-weighted spherical harmonic function on 2D sphere, Y}, (8, ¢), is more
general expression than the ordinary spherical harmonic function, ¥;,, (6, ¢), and has
additional U (1) symmetry characterized by a spin weight s. The spin-s function such
as ;Y1 (6, ¢) obeys the spin raising and lowering rule as (§ ; f) = e~ /6+DVg 7
and (d ) = e~i6=by g f. Here, the spin raising and lowering operators are
given by

I fO,0)=—sin’ 0 [dg +icscOdy]sin™> 0, f(6, ), AL

I fO,¢)=—sin""0[dg —icscOIy]sin® O, £ (0, p) . (A1)
Specifically, the spin raising and lowering operators acting twice on the spin-+£2
function 42 f' (i, @) such as the CMB polarization fields can be expressed as

- 2
2200, 0) = (=00 + 722) [ = 12 (1. 9] .
(A.2)

2
12270, 9) = (<0u — 22) [0 —1D-2f (. 9)]

where 1 = cos6 and 15 £ (0, ¢) = 12 f (n)e™?. Utilizing these properties, we can
express Yy, (0, ¢) in terms of Y7, (0, ¢) = Y1, (0, ¢) as

Fin®.6) =[5 ] T Ym0 0=5 <D,
1

Ym0, ¢) = [Eﬁii}i]j (=1)d =S¥ (6, ¢) (=1 <5 <0),

(A.3)
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Table A.1 Dipole (! = 1) harmonics for spin-0 and 1

m Yim 1Yim

+1 —m,/ % sin §e™i® —% %(1 — m cos 6)e™?

0 %\/;cose \/Szﬂsine

Table A.2 Quadrupole (/ = 2) harmonics for spin-0 and 2

m Yom 2o,

+2 % % sin® @ e™i® %\/g (1 -5 0059)2 emie

+1 —m gsine cos @ e™i® —%\/;sinG(l — mcos ) eMi®
0 1/ Beos?0 — 1) 3/& sin?0

where these equations contain

§ Yin(0.) = [A =)0 +5+ DI 01 Yin(0. 9) .
g_sYlm(ga P)=—[Ul+)U—-s+D]2;1Y,(0,¢),
33sY1m(9,¢) = _(l _S)(l + s+ 1)sYlm(9s ¢) .

These properties reduce to an explicit expression:

C+m!d—m)!20+1
I+ —s) 4dm

172
sYim (0, @) = emd |: i| Sin2l(9/2)

l—s [+s _\—r=s+m_ 2r+s—m
XZ( . )(r+s_m)( 1) cot /2) .

This holds the orthogonality and completeness conditions as

2 1
/ d(b/ d cos by Yﬁm,(g, D) Yin (0, ¢) = 81/,18m/,m s
0 -1

D Y 0.0 Yim (0, ¢') = 8(¢ — ¢')8(cos O — cos 0).
Im

The reactions to complex conjugate and parity transformation are given by

Y5O, ) = (=1 _ Y16, ),
Yim(@ — 0,0+ 1) = (=D ¥, (6, ) .

(A4)

(AS5)

(A.6)

(A7)

Finally, we give the specific expressions for some simple cases in Tables A.1 and

A2.



Appendix B
Wigner D-matrix

Here, on the basis of Refs. [3, 5, 6], we introduce the properties of the Wigner
D-matrix Dr(riZn” which is the unitary irreducible matrix of rank 2/ + 1 that forms
a representation of the rotational group as SU(2) and SO (3). With this matrix,
the change of the spin wighted spherical harmonic function under the rotational
transformation as  — R is expressed as

Y (RR) =" DY (R), Yy, () . (B.1)

This satisfies the relation as

J(R)=D") (R7YY. (B.2)

m'm

0% (py — —m' (1)
D, (BR) = (=D)""" D

—m,m

When we express the rotational matrix with three Euler angles («, 8, y) under the
z — y — z convention as

cosa cos fcosy —sinasiny —cosBsiny cosa — cosy sina cosw sin 8
R = | cosasiny +cosycosBsina cosacosy —cosfBsinasiny sinfsina |,
—cosy sin B sin y sin 8 cos B

(B.3)

we can write a general relationship between the Wigner D-matrix and the spin
weighted spherical harmonics as

DO (@, B y) = (=)' | =T v# (B, e . (B.4)
ms 2] +1 Im

Like the spin weighted spherical harmonics, there also exists the orthogonality of
the Wigner D-matrix as

M. Shiraishi, Probing the Early Universe with the CMB Scalar, Vector and Tensor 155
Bispectrum, Springer Theses, DOI: 10.1007/978-4-431-54180-6, © Springer Japan 2013



156 Appendix B: Wigner D-matrix
2
2141

(Sl’,lam/,m Ss/,s .

2 1 27 oy ;
/0 d“/ld“’sﬂ/o dyD, ) (. B, y)D (e, B, y) =
(B.5)



Appendix C
Wigner Symbols

Here, we briefly review the useful properties of the Wigner-3j, 6 and 9 symbols.

The following discussions are based on Refs. [5, 7-12].

C.1 Wigner-3j symbol

In quantum mechanics, considering the coupling of two angular momenta as

L=+,

(C.1)

the scalar product of eigenstates between the right-handed term and the left-handed
one, namely, a Clebsch-Gordan coefficient, is related to the Wigner-3j symbol:

Iobo 13\ _ DR dumibma | (b)) ms)
mymy —m3 ) 205+ 1 '

This symbol vanishes unless the selection rules are satisfied as follows:

mi| <Ili, Ima2l <l, |m3| <l3, mi+my=mj3,
|l — o] <13 <1y + [ (the triangle condition) , 1+l +13 €Z.

Symmetries of the Wigner-3j symbol are given by

M. Shiraishi, Probing the Early Universe with the CMB Scalar, Vector and Tensor
Bispectrum, Springer Theses, DOI: 10.1007/978-4-431-54180-6, © Springer Japan 2013

(C.2)

(C.3)

157



158 Appendix C: Wigner Symbols

( L b I ) — (DTl ( L L I3 ) — (DTl ( L Iz I )
mij ma m3 mjz myp m3 mip m3 m3

(odd permutation of columns)

_ lz l3 l] _ l3 l] 12
T \mymzmy ) \m3my mp

(even permutation of columns)

:(_1)2,3:,1,-( ho Ik 13)

—mjp —mz —m3

(sign inversion of m1, myp, m3) . (C4)

The Wigner-3j symbols satisfy the orthogonality as

L b I3 L I I3 _
2(213 +1D (m1 my m3) (m/l m m3) B 3m1,m’15m2,m’2 ’

l3m3

Lh I I L L [
@5+ Z (ml1 m22 m33) (ml1 n122 mgg) = 013,040,y - (C.5)

mimy

For a special case that Z?:l l; = evenandm| = my = m3 = 0, there is an analytical
expression as

Lhiblz) Z?:ii
(000)_(_1) b

(L )V F e FDWVG L+ BT+ L =B

(—11+212+z3)! (11—122+13)! (11+122—13)! (Z?:lli T 1)!

(C.6)

X

This vanishes for Zﬁ:] l; = odd. The Wigner-3; symbol is related to the spin-
weighted spherical harmonics as

2
N Ay g —S§]—Sy— Lh I Iz
* 51—82—53
i|=|1 5i Yiym; (0) = § S3Yl3m3(n)11] bl ( L myms )’ (C.7)

l3m3s3

which leads to the “extended” Gaunt integral including spin dependence:

N . N N —S]—87— I I I
/ d*fig, Yiymy () 5y Yigmy (R) gy Yiymy (R) = 17517 ”( b 3). (C8)

mi mp ms3
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Here 751925 — [@u+beh+bea+y (0 12 13
ikl 4 S1 52 83 :

C.2 Wigner-6j symbol

Considering two other ways in the coupling of three angular momenta as

k=h+L+] (C.9)
—L+l (C.10)
=1+, (C.1D

the Wigner-6; symbol is defined using a Clebsch-Gordan coefficient between each
eigenstate of Is corresponding to Egs. (C.10) and (C.11) as

[11 I3 ] _ (= DIHRHaHs ((141) 155 Lys Isms |1 (Lala)le; Isms) (C.12)
Iylsle | — VCE+ DR+ 1) T

This is expressed with the summation of three Wigner-3 j symbols:
Z (—1)2,-6:4 li—m; Is L le le b Iy ly I3 Is
ms —mi —meg me —my —m4 my4 —m3 —ms

maqmsme
_ l] lz 13 11 12 l3 .
- (m1 my m3) [14 I5 16] ’ (C.13)

hence, the triangle conditions are given by

i —hl<hB<h+bh, |ls—Is|<B<l4+ls,
i —Is| <ls <li+1s, s —h| <lg<ls+1. (C.14)

The Wigner-6j symbol obeys 24 symmetries such as

hibh| |[bhilz| [bizh .
I I Is l6] = [ s Iy I } = [ Is I 14] (permutation of columns)

(st (Ll
B 11 I lg B Iy Ih I3

(exchange of two corresponding elements between rows) .
(C.15)

Geometrically, the Wigner-6j symbol is expressed using the tetrahedron composed
of four triangles obeying Eq. (C.14). It is known that the Wigner-6; symbol is
suppressed by the square root of the volume of the tetrahedron at high multipoles.
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C.3 Wigner-9; symbol

Considering two other ways in the coupling of four angular momenta as

ly=h+h+l4+]s (C.16)
=3+ (C.17)
=l +1g, (C.18)

wherel3 =11 + b, lg =1y + 15,17 = 1 + 14,13 = I + 15, the Wigner 9 symbol
expresses a Clebsch-Gordan coefficient between each eigenstate of l9 corresponding
to Egs. (C.17) and (C.18) as

2 Z 52 _ {(i)13; (als)ls; lomo| (L14)l7; (als)ls; lomo) .
17 1g Ig a JCL+ D2l + 12 +DH(2Ig+ 1) . .

This is expressed with the summation of five Wigner-3j symbols:

Z I Is g l7 I3 o
mamame ny nms me m7 mg mqg

mymgmo
(b Is Is I le ly I3
mg m7 m ms mg my me mo m3
Ll
:(ll % 13) lalsle V (C.20)
mi mo ms3
17 I3 I

and that of three Wigner-6; symbols:

lilhl3

_ \2x hilsh | |hislg||l3lsly | .
%ZZ —;( D (2’““)[181””1”16 x| 2D
7

hence, the triangle conditions are given by

i —hl<hB<h+b,|ls—=Is|<lg<la+Is, |l7 —Ig| <lg <Il7+13,
i =Ll <hh<h+ly, |b—-Is|<lg<b+Is5, |lz—1| <lg <3+ .
(C.22)
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The Wigner-9j symbol obeys 72 symmetries:

bl 0 bhili 13 N Lhiblh
lalsls p = (=DZ=1 3 s Iy ls | = (=DZi=1" 117 g I
l7 13 Iy Ig 17 1y Iy I5 1
(odd permutation of rows or columns)
izl Iy l5 1
=3ls5lgls t =31710319
Ig lg 17 hibl
(even permutation of rows or columns)
I Iy 7 lo lg I3
= lz 15 lg = 18 lS 12
I3 16 1y I7 14
(reflection of the symbols) . (C.23)

C.4 Analytic expressions of the Wigner symbols

Here, we show some analytical formulas of the Wigner symbols.
The I symbols, which are defined as

ooy _ [ Chi+ D@L+ DL+ 1) (zl b 13)

il = - 51 59 83 (C.29)

are expressed as

[113
000 [;=, 2L+ 1) 3
P20 = %(_I)Zz_l 7

(L )V TR VG — L ¥ BIVE =)

( 11+212+13) (11 122+l3) (ll+12 13) \/m

(for l1 + [ + I3 = even)

=0 (forly + 1+ 13 = odd) , (C.25)
. ~ D+ 1D
By =y e [T D0ED i (orh=h-25=2
15 L+1/2
—— (=D~ for iy = b, I3 =2
<D \/(12—1/2)(12+3/2) forhi =tz =2)

~Vie
[5 [l +2)

=== == (forly =1, +2,13=2
87r( ) h+32 (forli =hb+2,13 )
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3
- /8_(_1)13“\/13? (forly =3 — 1, =1)
T
[3
= E(—l)”“ l3+1/2 (forly =13, = 1)
3
_ /8_(_1)13+1Jz§ (forly =l3+ 1,1 =1). (C.26)
T

The Wigner-9 symbols are calculated as

SRPRE 25+ 1
_ 3 )+ 1 [ Iy 1 L 51 _
lalsls ¢ =y 3 |lg:i:213i115 il | forle=56+2)

112

@B =DQ@+2)Q2I3+3) [} 14 1 L Is51
B 30(213) (213 + 1) Liz—1Ils||hL—-1511

2 -1DRB+1DQ@I+3) [L1ils 1] [Lis1
15213) (25 + 2) Lisls | |50

Rl —1D)QRL)2IL+3) [ Iy 1 I Is1
30213 + 1)(213 + 2) Bilz+11s i+ 1131

(forle = 13) , (C.27)

where these Wigner-6 symbols are analytically given by

[11 L1 ] (L pytaHet L+l +2 P2 1i41s—1g+1 P2
Iy 15 lg 2443 P3 21, +1 P3

(forlhhb =11 —1,Is=14+1)
_ (_1)11+14+16+1\/2(11 +la+le+2) + s =1+ 1)

w43 P3

(forly =11,ls =14+ 1)

X/(—ll+l4+l6+1>(ll — Iy +1g)
2 +2P3

_ (—1)hHatst ~li+HatHe+1P2 1 —ly+16+1 P2
2ws43P3 21,43 P3

(forlr =11 +1,lIs=1s+1)
— (_1)11+l4+l(,+1
X[laa+1D)+0U —DUa+1) =lee + 1) =11 (11 + 1)l4]

8 2+l + e+ 1)U+ 14 — o)
(—h+l+1le+ D1 —la+16)242P3 21,41 P3
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(forlp =11 — 1,15 =1y)
— 2(_1)ll+l4+16+1
y s+ D) +4LU +DUa+1) =l + 1) —Li(lh + Dy

Va2 P3 21,42 P3
(forl =11,15s =14)
— (_1)11+l4+16+1

X [laa+1D)+ U +DU +2)Us+ 1) —le(le + 1) = 11 (I1 + 1)l4]

o 2=l +la+ o)l —la+ g+ 1)
(h+ s+l +2)(1 +1a — e + Dopy42P3 21,43 P3

(forly =1, + 1,15 =13) . (C.28)

Using these analytical formulas, one can reduce the time cost involved with calcu-
lating the CMB bispectrum from PMFs.



Appendix D
Polarization Vector and Tensor

We summarize the relations and properties of a divergenceless polarization vector

eéﬂ) and a transverse and traceless polarization tensor esz) [6, 11].

The polarization vector with respect to a unit vector n is expressed using two unit
vectors 6 and ¢ perpendicular to f as

<
/2

eF @) =

|8 h) % da(i)] (D.1)
This satisfies the relations:

‘e ) =0,
E((Zi])*(ﬁ) — E((;Fl)(ﬁ) — G‘Sil)(—ﬁ) , (D.2)
el () =8,y (for 1,3/ = £1).

By defining a rotational matrix, which transforms a unit vector parallel to the z axis,
namely Z, to n, as

cos 6, cos ¢, — sin ¢, sin 6, cos ¢y,

S() = | cosB,sing, cos¢, sinb,sing, | , (D.3)
—sin6, 0 cos b,

we specify 6 and ¢3 as
6(h) = SM)X, ¢(h) = SM)Y, (D.4)

where X and § are unit vectors parallel to x- and y-axes. By using Eq. (D.1), the
polarization tensor is constructed as

el () = V2elED (e () . (D.5)
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To utilize the polarization vector and tensor in the calculation of this thesis, we

need to expand Eqs. (D.1) and (D.5) with spin spherical harmonics. An arbitrary unit
vector is expanded with the spin-0 spherical harmonics as

Fa = Za;nylm(f') s
m

2 _m(am,l + 8m,—l)
OtZ’ =4/ ? i (am,l +5m,—1) . (D6)
\/zam,()

Here, note that the repeat of the index implies the summation. The scalar product of
o) is calculated as

’ 4 , 4
wdy = — (D", aglay = —nam,mf . (D.7)

* 3 a % 3

Through the substitution of Eq. (D.4) into Eq. (D.6), 0 is expanded as
Oa(®) =D e Yim@@) = > et > DI (S@) Y1 (%)
m m m’

= —%(85’] + (Ss,fl) ;aznsylm(ﬁ) . (DS)

Here, we use the properties of the Wigner D-matrix as described in Appendix B
[3, 5, 6, 13]

Yen (SR)R) = D DOV (S(0)) Yo (%)

m'

(0) N — 4 12 N * oA
D,,(S(n)) = Y (=1 Y, () . (D.9)

In the same manner, ¢ is also calculated as

éa(ﬁ) = %(8&1 + 85,—1) ;alrlnsYlm(ﬁ) s (D.10)

hence, the explicit form of Eq. (D.1) is calculated as

eV @) =F D ol a1 Vin(R) . (D.11)
m

Substituting this into Eq. (D.5) and using the relations of Appendix C and

F2+1+1 _ 3 e
L =37 the polarization tensor can also be expressed as
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e )—\/—_ S v @aa)” (]lzlmla n;b) (D.12)

Mmgmy

This obeys the relations:

D (@) = Agel P () =0,
(iz)*(n) (:|:2) (l’l) — e(iz)(_ﬁ) ,

W(n)e“)(n)_zak v (for A, ) =42). (D.13)

Using the projection operators as

~

O(go)eikx = k*]vaeik'x — ikaelkx ,
. ) . ~A A ) .
O((;)ezk-x = (r a.b oikx —k, a,b oKX ’
¢ 3 3
OFEV X = D (k)e'*™ | (D.14)

Oéz}i:l)eikx =) (Va 0}§:|:1) + Vboéil)) oKX — (lgae,gil)(f() + ]gbelgil)(l})) oikx ’

Oéfz)eikx = e;:}EZ) (l’i)eikx

)

the arbitrary scalar, vector and tensor are decomposed into the helicity states as

n(k) = k), (D.15)
w,(k) =0 KO0 + D 0Pk 0N, (D.16)
A==%1
1
Xap (0) = == Xiso (K)8ap + X () 09
+ > XM ®ol) + > xPwol). (D.17)
A==+l A=12

Then, using Eq. (D.9) and (D.13), we can find the inverse formulae as

0@ k) = —0Pw, (k) , (D.18)
wF (k) = —0<¥1>(k)wa(k> , (D.19)
xOk) = 05,? (K) xap () , (D.20)
xEV k) = —ogif”@xah(k) : (D.21)

xF (k) = 0@2) (K) Xab (K) . (D.22)
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From these, we can derive the relations of several projection operators as

R ~A A 1
0 (k) = —kakp, + ~5a

3
E e ivomem (211
=\ > Yikaa Momymy )

Mmgmyp,

05V (k) = kye ™" (k) + kpelD (k)

3 * I mg ,,Mb 2 1 !
=+ 5 D w1l ®ega M mgmp )

Mmgmyp
05" (&) = e, (k)
3 e oomeomy (211
_«/T_an w2 a4 ) (D23)
mgmp

Pap(K) = 8ap — kakp
_ 5 Z 011 Z YF (R)aMg™ L1 1
= L1l LM% %\ Aoy, my |
L=0,2 Mmgmyp,
~ ~ 1 ~
0 (k) Py (k) = 3 Pac(k) .
05V (k) Pye (k) = keeD (k)
052 (k) Py (k) = ¢l (k)
ke = in™eelD (kyel ™V (k)
" kaey ) (k) = Fiel D k) .



Appendix E

Calculation of f,; “) and f ‘E‘%Vz

Here, we calculate each product between the wave number vectors and the polariza-
tion tensors of f‘f;;) and fv%‘)w mentioned in Chap. 8 [14].

Using the relations discussed in Appendix D, the all terms of f$3 are written as

e eV = =81 D 4 Ve (KD Yy (K2)as Y30 (K3)

ij
M,M',M"
L ﬁ 2 2 2
10 3 M M/ M// k]
(j A1) ( A2) ( A3)k2,k3j _ —(87[)3/2 Z E( I)Ll 22102 )»211):,3/?2)“%
L', L"=2,3
* - * > * >
X Z A YZM (kl)kz YL/M/ (k2)k3 YL//M// (k3)

M,.M' M
2 L/ L// 2L/ L//
X(MM’M”)[2 11 ] ’

47
- A x 0— 0
el(j |)el(a 2) ( g)k21k3k (871)3/2 Z . (_I)L 2212 leﬁlz/\s

L',L"=2.3
XD VKD Y (K2)is Y (K3)
1o B Eprag (82005 L g (K3
M.M' .M"
(2 L/ L” 2 L/ L//
X 11 2 (E.1)
M M/ M//) ’
121
M A A 3/2 AT\ 20—k ha0=23
,] €ik k21k3 —_(87[) Z ?(_1) L'12 IL”IZ
L'L"=2.3
XD Y KDYy (K2)as Yy (K3)
1om \BUx L g \B2) a3 L pgr (K3
MM .M"
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y 2 L' L 21L 2L L
MM M’ 211 21 1 ’

In the calculation of f5 @ \we also need to consider the dependence of the tensor

ijk

ww2’

contractions on n"/*. Making use of the relation:

47 \? 111
abc mg Mb _me __
oy ay e = l(—3 ) \/a(ma my, mc) , (E.2)

the first two terms of f‘%’ ‘)}Vz reduce to

A )2]! ”
)L A,
nl]k ( 1)65 2) ,( 3)k (87T)3/2 E ( l)L I)n;,/(]} A3

L"=23

X Z )\.|YQ*M(kAl))\.QYZ*M/(kAZ))gYz//M”(kA3)
MM, M"

o« 2 2L 22L
MM M’ 1211

”]z]k ( A ,(=22) (= ks)k3 (gﬂ)3/2 Z 227 (=)E 2‘,3,(1)2)‘3 (E.3)

ml

L'=23
* > * > * -
X YD), Y (K2)0, Y (K3)
M,M/,MN
1
e
! 4
MM M 112
For the other terms, by using the relation
kel (k) = zeff} k), (E.4)

we have
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. A A ~ A
. ijk (=X —A —A 1 2
”7” e;j ])e;m 2)klkk2lei(l 3)k3m = - ) (877)3/ E E
L' L"=23M,M  M"

4 ”
L” yA20—Xx2 ;230—A3
x ?(_1) I "

X oy Yo (K Yooy (K2) 35 Y iy (K3)

, y 2 L/ L//
(A2“L4, ALW) 121}, (B
11 2

- ijk (AD) (=A) 8 (A3 Al 3/2
ine, MVel D ke, ks = —— @m) D DY
L' L'=23M,M M"

2 |17 L” 7220—X2 7A30—A
x E\/;(_l) Iy P

X 30 Ving (KD Yy (K2) 35 Y oy (K3)

o 2 L/ L// 2 L/ L//
MMM 12 2 |°



Appendix F

Graviton Non-Gaussianity from the Weyl
Cubic Terms

Here, let us derive the bispectra of gravitons coming from the parity-even and parity-
odd Weyl cubic terms, namely, Eqgs. (8.16) and (8.17) [14]. For convenience, we
decompose the interaction Hamiltonians of W3 and Ww?2 (8.15) into

Hip = Z H. (E1)

Depending on this, we also split the graviton non-Gaussianity as

(m)
<Hy()m)(k > — Z <H y()» ) (Kp) > ) (F.2)
int

n=1 m=1 \n=1 int

In what follows, we shall show the computation of each fraction.

F1 w3

The bracket part of Eq. (8.12) in terms of H, g is expanded as

<0|[ H () Hy““(k r)} |0>
n=1
3

= <0| PHR @) [ ] v ka, r)|0>

n=1
3
I . 1 .
- <0| [H y *) (kn, r)} CH() |0>
n=1
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_ LT\ >
= —A"2(H7)? (Z) Z(zn)%(;kn)

A ~ A ~ s ~
x el (—Kpel? (—Kp)ef (—Ks)

3
x 6 H [T Gias — &2vas) Gn. T)is k. r)}

n=1

3
- {H vas(kn, T)(VJS - kﬁ)’js)(kna T/)}:|

n=1

3 \4 >
_ _ A2 AV 3
= - AT HT) (T) 27) 5(n§kn)

*

—A ~ —A ~ —A ~
x e DeT Y (K)e ™ (ks)

3

x 2ilm [H(m — k2yas) Gkn. Ty s (ki r)} : (E3)
n=1

Here, we use

3
Al /
<0| Ta”a%" |o> = Q1)°8 (K1 + K58, 11 8Ky +K3)d,, 5,

n=1

x 6(kay + k/z)(sxz,)»’z + 5 perms. (F4)
3
) )t
= <0| : Ha,ﬁn )agk;) : |0>
n=1

eV k) = e (k) .

Furthermore, since

2H'L'/ PP
Vas — Kyas = ——k>2e 7T,
pl
3 3
—0 ,H _
[T vistn o = i 5 takaka) ™2, (F5)
n=1 pl

the time integral at T — 0 is performed as



Appendix F: Graviton Non-Gaussianity from the Weyl Cubic Terms 175

T A3
Tm [ / dt'(Ht')? (j—) [ [ Gas — kvas) Gen, Tvfs e, r)}

n=1
8H? 3 .
= M3 k?k;kglm Hyjs(kn,f) ‘L’*_A/ dT/ 154+A —lk,r
pl — _
~o 8HS® 0
7—0 i/[ Re[ A/ dv't5 e —lk,ti| ’ (F.6)
pl —00

where k; = zn | ku. Thus, the graviton non-Gaussianity in the late time limit arising
from H‘;}z is

<f[ ) (ke >(1) (2n)8(2k) (Mpl)6(%)2

= w3
0
x Re |:r*_A/ dr/'t/ 5t Ae— ikt :|
—0o0

X 3efj_M)(151)65.;)"2)(152)@&:)‘3) (K3) . (F.7)

The bracket part in terms of H 1s given by

<0|[ HR (@), ]'[y““(kn r)} |0>

n=1
3
= <0| tHQ @) [Ty ka, r)|0>
n=1
3
- <0| [H y 0 (ke r)j| tH(T) : |0>
n=1

3 % >
- EA—Z(Hr’)2 C—) k2k3(2n)38(2kn)

n=1

A (=) gy, (A 5 L (—A3)
x kaiks el (Kneg ™ (K)ep; ™ (K3)

3
x 2ilm [(if}zs — ktyas)kr, T)vas(ka, T yas ks, T) H Yaskn, T)}

n=1

+ 5 perms. (E.8)
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Using
. . Ht Y
Vas = i—~ke T, (F.9)
My

we can reduce the time integral to

T 7\ A
Im |:/ dt' (Ht')? (T—) kok3 (Vas — k%VdS)(kla 1)
T

—00 *

3
x yas ko, T)7as ks, ) [ | vis kn T)}

n=1

~o0 2HS® 0 o
=0 —=—Re [r;*‘ / dr’f’5+Ae—"<ff] , (F.10)

and obtain

. 6 7 H\2
(An) -
() =ees(zn)s(57) (%)
0
« Re |:‘L'*_A/ dT/I/S+Ae—ik,t’:|

3 A
x kzz T EKDK e K)el ™ (K3)
+ 5 perms. . (F11)

. L 3) 4 S
The graviton non-Gaussianities from H ) ws and Hévz are derived in the same manner

as that from Hﬁ;:
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F2 Ww?

At first, we shall focus on the contribution of H - O

e The bracket part is computed
as
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Via the time integral:
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we have
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Like this, we can gain the second counterpart:
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The bracket part with respect to va)wz is
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The time integral is
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so that the bispectrum of gravitons becomes
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Through the same procedure, the bispectrum from H‘(}é i}vz is estimated as
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